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Forword of the Editor

The German Federal Government has set the goal of achieving climate
neutrality by 2045. The expansion of renewable energy sources is be-
ing accelerated to meet this target. With the 2022 ”Easter Package”
from the Federal Ministry for Economic Affairs and Climate Action
(BMWK), the aim is to triple the speed of this expansion. Integrating
such a high share of renewable energy successfully requires an energy
system capable of managing an increasingly fluctuating electricity sup-
ply.

The Federal Ministry of Education and Research (BMBF) launched
the Kopernikus Projects in 2015 to facilitate the energy transition. One
of these projects, ”SynErgie,” focuses on aligning industrial processes
with a fluctuating energy supply. To use the existing energy flexi-
bility of industrial processes, they must be technically enabled, and
an appropriate market and electricity system, along with automation
through information and communication technology (ICT), is also es-
sential. ICT is a key element in connecting production and production
infrastructure with the market and the electricity system. To achieve
this successfully, a standardized description of energy flexibility is essen-
tial. The application of a standardized data model to describe energy
flexibility enables automated communication between various parties
within the energy system.

The Energy Flexibility Data Model (EFDM) represents energy flexi-
bility in a flexibility space on the one hand and specific energy flexibility
measures on the other. The EFDM thus enables the exchange of in-
formation on energy flexibility in a generic format, regardless of the
actual underlying physical infrastructure and measures. This is where
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this dissertation by Mr. Martin Lindner comes in. The overarching aim
of his dissertation is to develop a method for the automated parame-
terization of an energy flexibility data model using machine learning
approaches and tools. Mr. Lindner refers to this developed approach
as “Data-Driven Energy Flexibility Modeling” (DD-EFMod).

Darmstadt, November 2024 Prof. Dr.-Ing. Matthias Weigold
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Abstract

Implementing industrial energy flexibility is a complex challenge within
complex production systems. To successfully utilize energy flexibility, it
is crucial to ensure product quality, manage production schedules, and
understand systemic dependencies. By adapting production processes
to volatile energy prices, industrial energy flexibility makes it possible
to reduce costs without compromising productivity and minimize the
carbon footprint by using renewable energy efficiently. In addition,
energy flexibility opens up potential revenue opportunities by trading
flexibilities in future dynamic energy systems and markets.

One of the most important aspects of this adaptability is the use of
a standardized data model to identify and model flexibilities. How-
ever, the complexity of industrial processes and the need for extensive
domain knowledge make it difficult to model all relevant production
assets. This thesis presents a methodology that simplifies the model-
ing process for describing energy flexibility. Therefore, the aim of the
thesis is to develop an automated parameterization methodology for an
energy flexibility model, hypothesizing that data-driven, automatically
parameterized models and machine learning techniques can be used.

Using the Design Research Methodology, this thesis provides a com-
prehensive understanding of the current state of science and technology
related to industrial energy systems, digital production, and energy
flexibility modeling. The research identifies a research need in this
area, formulates research questions and hypotheses, and develops the
Data-Driven Energy Flexibility Modeling (DD-EFMod) method. This
method is validated using a use case that confirms the feasibility of
using data analytics and machine learning algorithms to parameter-
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ize energy flexibility, with batch clustering methods showing promising
results.

In addition, the work shows the energy and cost savings through
energy-flexibility measures based on the detailed modeling of energy
flexibility. The prototypical application use case at the ETA Research
Factory shows that the energy-flexibility measure change processing
sequence enables cost savings of 9.2 %. Additional cost savings of up
to 69.4 % was achieved through a combination of the energy-flexibility
measures change processing sequence and shift start of job within the
validation of the use case.

Key Words List:
Demand Response, Manufacturing, Energy Flexibility, Energy Flexibil-
ity Data Model, Energy Flexibility Modeling, Data-Driven Modeling



Zusammenfassung

Die Umsetzung von industrieller Energieflexibilität stellt eine komplexe
Herausforderung innerhalb komplexer Produktionssysteme dar. Um
die Energieflexibilität erfolgreich zu nutzen, ist es entscheidend, die
Produktqualität zu gewährleisten, Produktionszeitpläne zu verwalten
und systemische Abhängigkeiten zu verstehen. Durch Anpassung von
Produktionsprozessen an volatile Energiepreise ermöglicht industrielle
Energieflexibilität, ohne die Produktivität zu beeinträchtigen, Kosten
zu senken und den CO2-Fußabdruck zu minimieren, indem erneuerbare
Energien effizient genutzt werden. Darüber hinaus eröffnet Energieflex-
ibilität potenzielle Einnahmequellen durch Handel mit Flexibilitäten in
zukünftigen dynamischen Energiesystemen und -märkten.

Einer der wichtigsten Aspekte dieser Anpassungsfähigkeit ist die Ver-
wendung eines standardisierten Datenmodells zur Ermittlung und Mod-
ellierung von Flexibilitäten. Die Komplexität industrieller Prozesse und
der Bedarf an umfangreichem Fachwissen machen es jedoch schwierig,
alle relevanten Produktionsanlagen zu modellieren. In dieser Arbeit
wird eine Methodik vorgestellt, die den Modellierungsprozess zur Be-
schreibung der Energieflexibilität vereinfacht. Ziel der Arbeit ist es da-
her, eine automatisierte Parametrisierungsmethode für ein Energieflexi-
bilitätsmodell zu entwickeln, wobei die Hypothese aufgestellt wird, dass
datengesteuerte, automatisch parametrisierte Modelle und Techniken
des maschinellen Lernens verwendet werden können.

Unter Verwendung der Design Research Methodology wird in dieser
Arbeit ein umfassendes Verständnis des aktuellen Stands von Wis-
senschaft und Technologie in Bezug auf industrielle Energiesysteme,
digitale Produktion und Energieflexibilitätsmodellierung vermittelt. Die
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Forschung identifiziert einen Forschungsbedarf in diesem Bereich, for-
muliert Forschungsfragen und Hypothesen und entwickelt die Methode
der datengetriebenen Energieflexibilitätsmodellierung (DD-EFMod).
Diese Methode wird anhand eines Anwendungsfalls validiert, der die
Machbarkeit des Einsatzes von Datenanalyse und Algorithmen des
maschinellen Lernens für die Parametrierung der Energieflexibilität be-
stätigt, wobei Batch-Clustering-Methoden vielversprechende Ergebnisse
zeigen.

Darüber hinaus zeigt die Arbeit die Energie- und Kosteneinsparun-
gen durch Energieflexibilitätsmaßnahmen auf der Grundlage der detail-
lierten Modellierung der Energieflexibilität. Der prototypische Anwen-
dungsfall in der ETA-Forschungsfabrik zeigt, dass die Energieflexibil-
itätsmaßnahme Änderung der Bearbeitungsreihenfolge Kosteneinsparun-
gen von 9.2 % ermöglicht. Durch eine Kombination der Energieflex-
ibilitätsmaßnahmen Änderung der Bearbeitungsreihenfolge und Ver-
schiebung des Auftragsbeginns wurden im Rahmen der Validierung des
Anwendungsfalls zusätzliche Kosteneinsparungen von bis zu 69.4 % erzielt.

Stichwörter:
Demand Response, Fertigung, Energie-Flexibilität, Energie-Flexibilitäts-
Datenmodell, Energie-Flexibilitäts-Modellierung, Datengesteuerte Mod-
ellierung
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1 Introduction

”Great things are done by a
series of small things brought
together.”

Vincent Van Gogh



2 1 Introduction

This chapter describes the motivation of this thesis and sets it into
the current social and economic context in Section 1.1. Based on this,
the problem is discussed in Section 1.2, from which the main contribu-
tion of this thesis is derived. The chapter concludes in Section 1.3 with
an overview of the structure of this thesis based on the used research
methodology.

1.1 Motivation

Climate change is one of the greatest challenges of our time and affects
all levels of society and economy. This was recognized by the inter-
national community, so that in 2015 the Paris Climate Agreement was
adopted to counteract this challenge [1]. The European Union has com-
mitted itself to become climate neutral by 2050 within the framework
of the Green Deal [2]. As a member state of the European Union, the
German government has set itself the ambitious target of achieving this
goal as early as 2045 [3]. To achieve this goal, the energy transition is
one of the biggest levers and goals for the future of the German econ-
omy [4, 5, 6]. The measures adopted as part of the national climate
protection plan and the energy transition include the strong expansion
of renewable energies. As a result, around 55 percent of electricity de-
mand was met from non-fossil energy sources in 2022 (see Figure 1.1b)
[7]. This increasing feed-in of energy from renewable energy produc-
ers into the energy grids increases the volatility of the energy supply.
This, on the one hand, and the additional acceleration of the energy
crisis due to the Ukraine conflict since 2022, on the other hand, have
caused extremely strong fluctuations in international and national en-
ergy prices (see Figure 1.1c) [8]. These effects are particularly relevant
for industry, which accounts for the majority of energy demand in Ger-
many at around 43 percent (see Figure 1.1a) [9]. To solve these energy
challenges, digitalization of industry plays a central role [10]. On the
one hand, production processes can be better monitored, and equally,
equally, more targeted control of production is also possible. This also
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applies to the energy supply and energy management of a company. On
the one hand, demand response measures can better ensure the stability
of the power grids, and on the other, production can be adapted to the
volatile supply of electricity. Such adaptability of an industrial com-
pany, also called energy flexibility, is a central aspect of future energy
supply [11]. This thesis is framed in this context.
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Figure 1.1: Overview of the energy market in Germany. Figure (a)
shows net electricity consumption by sector in 2021 [9]. Fig-
ure (b) shows the primary energy generated and the per-
centage share of renewable energy in it [7]. Figure (c) shows
the development of the wholesale electricity price and its in-
creasing volatility [8]. (own figures)
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1.2 General Objective and Contribution

In order to apply energy flexibility successfully in industry, it has been
researched in the SynErgie research project since 2016 with a focus
on its applicability in industry [12]. For this purpose, various methods
were developed within the project to identify and exemplarily realize in-
dustrial energy flexibilities [5]. Due to the high complexity of industrial
production, the successful application of industrial energy flexibility is
associated with high obstacles. Some of the obstacles identified include
the following [12, p. 234]:

• product quality must be ensured

• scheduling of the production in terms of time and quantity

• total costs should be further reduced

• production systems are complex systems with different dependen-
cies

Taking these aspects into account, a company must also operate prof-
itably and efficiently. This increasingly includes taking energy costs
into account, especially due to the increasing volatility of energy prices.
Industrial energy flexibility offers a solution to this problem. Through
the targeted use of energy flexibility, it is possible to adapt a production
process to fluctuating electricity prices while maintaining the same level
of productivity. Thus, on the one hand energy costs can be saved and
on the other hand the CO2 footprint of a production can be reduced by
increased use of renewable energies [5]. In addition, flexibilities can be
traded in a future energy system, which can generate additional rev-
enues. To enable a factory to become energy-flexible, the process shown
in Figure 1.2 was developed [13]. This consists of the steps potential
analysis, conceptualization and planning, application and implemen-
tation, operative flexibility marketing, controling and monitoring and
optimization. Each step of the process is explained in detail in Section
2.1.
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Potential
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Figure 1.2: Methodology for energy flexibilization of factories (own fig-
ure based on [13]).

To implement the entire process, it is necessary to describe the flexi-
bilities identified in the potential analysis by a standardized data model
in step three. Such a model for describing energy flexibility was devel-
oped in the SynErgy project. It allows the generic description of en-
ergy flexibility [14]. This model has been designed to be applied to any
technical plant or storage facility in order to realize the highest possible
flexibility potential. Since industrial processes are complex and contain
many different assets and dependencies, it is also difficult to create such
a model for each relevant asset of a production system. In addition, a
high degree of expert knowledge and system understanding is required.
This is the starting point of this thesis.
The main contribution of this work is the development of the Data-
Driven Energy Flexibility Modeling (DD-EFMod) method, which sim-
plifies the parameterization of the Energy Flexibility Data Models. The
following steps are applied:

1. Development of the DD-EFMod method. To achieve this, the
methodology for the energetic flexibilization of factories is ex-
tended in the implementation step with a focus on the parame-
terization of Energy Flexibility Data Models. For this purpose,
the Cross-Industry Standard Process model for the development
of Machine Learning applications with Quality assurance method-
ology (CRISP-ML(Q)) approach is adapted and transferred ac-
cordingly to this parameterization.

2. Development of a software concept. In order to ensure the appli-
cability of the DD-EFMod method, a software concept is devel-
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oped, whereby the implementation of the method corresponds to
a standardized procedure.

3. To demonstrate the practical application of the DD-EFMod method,
this is validated using a use case with four different scenarios:
a) The first scenario comprises the modeling and parameteri-

zation of the Energy Flexibility Data Model for a machine
tool.

b) In the second scenario, the Energy Flexibility Data Model
for the machine tool is extended to include the data model
of the associated product storage system.

c) In the third scenario, the system boundary is changed so
that the cooling water supply of the machine tool is con-
sidered and the associated Energy Flexibility Data Model is
parameterized.

d) The fourth scenario focuses on the dependencies between
the systems of the previous scenarios and parameterizes the
associated class of the Energy Flexibility Data Model.

4. The validation of the method concludes with an examination of
the economic potential, showing that the detailed modeling of
energy flexibility in the Energy Flexibility Data Model offers ad-
vantages. To this end, the energy-flexibility measures change of
processing sequence and shift start of job are compared and the
costs are considered with regard to the Day-Ahead and Intraday
electricity market.

1.3 Research Methodology and Structure of
Work

To achieve the overarching goal, this research work is based on the
Design Research Methodology (DRM). [15]. This approach is suitable
for achieving the objective, as it involves the following four phases as
an iterative process:
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According to the first phase (Research Clarification), the research
field and the underlying question are identified based on literature and
experience, and the overarching research objective is formulated (Chap-
ter 1) [15].

Based on this, a fundamental understanding of the state of the art in
science and technology is established in the second phase (Descriptive
Study I) (Chapter 2 and 3) [15]. This work presents the fundamentals
of industrial energy systems and energy flexibility in interaction with
digital production. Furthermore, existing approaches to data analy-
sis and modeling of energy flexibility are presented, and the research
deficit is identified through literature research and analysis.

This work focuses on the third phase (Prescriptive Study) [15]. Based
on the identified research gap, the research questions, hypotheses, and
requirements for the solution method for data-driven automated mod-
eling of energy flexibility are formulated in Chapter 4. This is followed
by the development of the DD-EFMod method in Chapter 5, which
provides a structured procedure for the automated modeling of energy
flexibility.

In the fourth phase of the DRM (Descriptive Study II), the DD-
EFMod is initially applied and validated to provide conclusions for
further use in this research work [15]. To this end, the use case that
forms the framework for the validation is first presented in Chapter 6.
The method is then applied prototypically to various scenarios, and
the results are discussed (Chapter 7). This thesis concludes with a
conclusion, a summary, and an outlook in Chapter 8.



2 Fundamentals

”What I’m trying to do is to
maximise the probability of
the future being better.”

Elon Musk
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After defining the overall objective of this thesis in the previous chap-
ter, this section delves into the relevant fundamentals for the develop-
ment of the methodology for the automated parameterization of energy
flexibility metrics. To this Section 2.1 first provides an introduction to
the complexity of industrial energy systems. The focus is on the system-
theoretical connection between the production system and the different
energy supply systems in the industrial environment. Furthermore, the
importance of demand-side management and energy flexibility as well
as the basics of modeling energy flexibility are shown. This is followed
by relevant principles in the context of digital manufacturing in Section
2.2. Subsequently, Section 2.3 focuses on data analysis and machine
learning in the context of the development and implementation of the
method for DD-EFMod.

2.1 Industrial Energy Systems

Production systems are at the heart of modern industrial societies and
are the driving force behind the production of goods and services that
characterize our everyday lives. A production system is defined in the
context of this work according to:

Definition 2.1: Production System [16, p. 2]
A production system is a collection of people, equipment, and proce-
dures organized to perform the manufacturing operations of a com-
pany.

A crucial aspect that determines the performance and sustainability
of production systems is their close connection with industrial energy
systems. Industrial energy systems supply production systems with
the required energy and thus play a key role in ensuring operational
efficiency and minimizing environmental impacts [17, pp. 7–9]. Opti-
mizing these systems is therefore crucial to overcoming the challenges
of energy efficiency and environmental sustainability in production [18,
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pp. 15–25]. In the face of global challenges such as climate change and
resource scarcity, there is an increasing focus on research in the field of
industrial energy systems to develop innovative solutions for a reliable,
cost-efficient, and environmentally friendly energy supply [19]. One ad-
vanced strategy that is playing an increasingly important role in this
context is demand-side management and the use of industrial energy
flexibility. By specifically controlling energy consumption depending
on the availability and cost of energy, companies can significantly re-
duce their operating costs while contributing to stabilizing the power
grid and integrating renewable energy [20]. Therefore, the research and
application of demand-side management and energy flexibility concepts
in industrial energy systems plays a key role in the design of sustainable
and efficient production systems [21].

2.1.1 Demand-Side Management and Industrial Energy
Flexibility

To get the possibility of adapt the power consumption of a consumer,
the concept of demand-side management was defined by the American
Electric Power Research Institute in 1992 [22]. Based on this the term
demand response was defined in 2006 and is used in this work as:

Definition 2.2: Demand Response [23]
Demand response are the changes in electric usage by end-use
customers from their normal consumption patterns in response to
changes in the price of electricity over time, or to incentive payments
designed to induce lower electricity use at times of high wholesale
market prices or when system reliability is jeopardized.

For the realization of industrial demand response the Association of
German Engineers e.V. (VDI) defines energy flexibility in 2020 as a
capability:
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Definition 2.3: Energy Flexibility [24]
Energy Flexibility (EF) is the ability of a production system to adapt
quickly and in a process-efficient way to changes in the energy market.

When considering energy flexibility, a distinction is made between
different energy-flexibility potentials [24] as follows:

• Theoretical potential is the mathematical factor determined by
the rated power of all forms of final energy.

• The technical potential is the possibility of varying the power re-
quirement within the scope of technological conditions, particu-
larly system-specific conditions that influence power consumption
and single time periods.

• Economic potential is the proportion of the technical potential
that can be used commercially.

• Practical potential is the subset of the technical potential which
takes into account factors such as regulatory and administrative
obstacles.

• Realisable potential is the intersection of economic potential and
practical potential.

Figure 2.1 shows the relationships between the different potentials. To
leverage energy-flexibility potential, appropriate measures are required.

Theoretical potential

Technical potential

Economic
potential

Practical
potential

Realisable
potential

Figure 2.1: Spaces of the energy-flexibility potentials (own figure based
on [12]).
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These are referred to as energy-flexibility measures.

Definition 2.4: Energy-Flexibility Measure [24]
An Energy-Flexibility Measure (EFM) is a deliberate action taken
to implement a defined change of state in a production system and
encompasses the change in state of a production station and the
interactions in the production system which this change entails.

Based on the definitions multiple measures can be used to achieve
the adjustments. Table 2.1 overviews those various measures. A pro-
duction system must be enabled for such an energy-flexible operation
to implement a measure. A corresponding procedure is shown by the
VDI in [13]. The individual steps of the enablement process are shown
in Figure 1.2 and discussed below.

Table 2.1: Classification of energy-flexibility measures by duration [24]
and by levels of the automation pyramid defined according
to [25] (own table).

Automation level Implementable energy-
flexibility measure

Duration

Level 4:
Business planning and logistics
(Business level)

•Shift production start

long-term
•Shift break times
•Change production sequence
•Adjust shift times
•Adjust capacity planning

Level 3:
Manufacturing operations and
control (Manufacturing level)

•Interrupt job
week•Store energy

•Shift start of job
•Change job sequence

day•Adjust energy procurement
•Adjust resource allocation

Level 2:
Monitoring, supervision and
control (Control level)

•Interrupt process
hour•Store energy (inherently)

•Change processing sequence
•Operate with bivalent energy minute•Adjust process parameters

Level 1:
Sensing and actuation (Field level)
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1. The initial step of the six-stage methodology focuses on a non-
invasive and low-effort estimation of technical and economical en-
ergy flexibility potentials. First, promising systems are assessed
for energy-flexible operation prerequisites, followed by an analysis
of their technical flexibility potential [26]. Subsequently, the sys-
tems are evaluated for energy-flexible operation suitability within
the production ecosystem, considering factors like control type,
process relevance, and temporal decoupling.

2. In the second step of design and planning, the previously priori-
tized energy-flexibility measures are examined in detail, data (e.g.
load profiles or individual plant parameters) are collected, and
measurements (e.g, following [27]) are carried out if required. On
this basis, the economic efficiency of individual energy-flexibility
measures are determined. Subsequently, implementation plan-
ning is done for selected EFMs.

3. The third step is the actual implementation of promising energy-
flexibility measures and an energy-flexible operation of the fac-
tory. The technical enablement of individual systems must be car-
ried out holistically, considering aspects of hardware, information
and communications technology, and production planning and
control. The energy-flexible operation is to be validated based on
test runs, analyses, and safety checks.

4. After the successful realization of the energy-flexible operation,
the operational marketing of the flexibility can be started in step
four (cf. [24]).

5. During and after the implementation and marketing of flexibil-
ity, the controlling and monitoring phase analyzes the degree and
quality of performance. This can be done with the help of en-
ergy management systems to identify anomalies and potential for
improvement and to derive appropriate action steps.

6. With the help of the knowledge gained, further improvements in
energy flexibility are possible in the step of operational optimiza-
tion. Data-based analyses or simulations can further increase the
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utilization of various energy-flexibility measures. The theoretical
potential identified in this way can then be incorporated into a
further iteration of the design and planning, thereby continuously
optimizing energy-flexible operation.

Specific technical and market-related requirements are necessary to ef-
fectively and safely integrate flexibility into the future energy system
based on this six-step process. A comprehensive implementation of en-
ergy flexibility requires automated marketing processes based on stan-
dardized procedures, often implemented through platform solutions at
both company and market levels. In addition, intensive use of informa-
tion and communication technologies is required, both within compa-
nies and across company boundaries. This makes it necessary to model
the existing energy flexibility accordingly to ensure such an information
exchange.

2.1.2 Modeling of Energy Flexibility

In order to describe energy flexibility, appropriate modeling is required.
A method for modeling and description of energy flexibility is given by
[14], which was published in 2019 and has been gradually developed
since then [28, 29, 30]. This method allows a generic description of

Storage Flexible
Load

Dependencies

Flexibility Space Flexible Load Measure

Figure 2.2: Classes of the Energy Flexibility Data Model that span
the flexibility space, which can contain various flexible load
measures [14] (own figure).
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energy flexibility and was developed while research of the ”SynErgie”
project. Thus, any technical system can theoretically be modeled ac-
cordingly. The advantage compared to other modeling approaches is
the consideration of technical properties as well as market-side require-
ments for potential trading on the electricity market by corresponding
suppliers. Since 2019, this original model has been further developed
and adapted to achieve a higher degree of applicability in industry, es-
pecially using the json schema of the EFDM developed in [29]. This
Energy Flexibility Data Model (EFDM) is composed of four classes
that span the flexibility space, which can contain various flexible load
measures (see Figure 2.2). The first class are the Flexible Load (FL).

Definition 2.5: Flexible Load [28]
A Flexible Load (FL) models a technical system or the interaction
of different technical systems that have the potential to produce a
change in performance.

This class flexible load is described by the key figures shown in Ta-
ble 2.2. To increase the energy-flexibility potential, flexible loads can
interact with one or more storages. For this purpose, storage facilities
are defined as follows and the key figures are shown in Table 2.3.

Definition 2.6: Energy Storage [28]
An energy storage system is a technical system or the interaction of
different technical systems that have the potential to store energy.
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Table 2.2: Description of the key figures in the EFDM of class flexible
loads, following [29].

Key Figure Description
IDLoad Flexible load ID

TV Validity
P Vector of power states
TH Holding duration

TRea Reaction duration
PS Power state sequence
∇PAct Activation gradient
∇PMod Modulation gradient
∇PDea Deactivation gradient
TReg Regeneration duration
NUse Usage number
NMod Modulation number
cLoad Costs for usage of the flexible load

p Price for the flexible load
tOCD Order conformation deadline
LLoad Metering point designation of flexible load

Table 2.3: Description of the key figures in the EFDM of class storages,
following [29].

Key Figure Description
IDStor Storage ID

CS Usable capacity
Et0 Initial energy content at the start time of the

validity
ETar Target energy content
ELoss Energy loss

SS Suppliers
EDrain Energy drain from storage
cStor Cost for operation of flexible storage
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As shown in Figure 2.2 the third class of the Energy Flexibility Data
Model (EFDM) are dependencies. These class decribes the interaction
of multiple flexible loads and is defined as follows.

Definition 2.7: Dependency [28]
Dependencies model the constraints and dependencies for the inter-
action of multiple flexible loads.

This means, for example, the use of one flexible load can imply or
exclude the use of another flexible load. Therefore those dependencies
musst be taken into account while the realization of an energy-flexibility
measure.

Table 2.4: Description of the key figures in the EFDM of class depen-
dencies, following [29].

Key Figure Description
IDDep Dependency ID
IDTri Trigger flexible load
IDTar Target flexible load
TypLog Logical type

TypTemp Temporal type
TApp Applicability duration
AC Applicability conditions

For a realization of an energy-flexibility measure on a production sys-
tem based on the EFDM, a more specific description in change of power
and how long this variation should be accordingly to all given contraints
of the flexible loads, storages and dependencies. Therefore the class
flexible load measure (FLM) is defined. The necessary key figures are
given in Table 2.5.
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Definition 2.8: Flexible Load Measure [28]
A flexible load measure (FLM) defines a concrete power change within
the flexibility space in the form of a load change profile, takes into
account the dependencies, has no degrees of freedom itself and is time
scheduled.

Table 2.5: Description of the key figures in the EFDM of a flexible load
measure, based on [29].

Key Figure Description
IDFLM Flexible load measure ID
IDLoad ID of the flexible load to which the flexible load

measure is directed.
PFLM Vector of load change profile

r Reward

Not all energy flexibility key figures are mandatory for any system.
Therefore, their necessity was defined in Lindner et al. [29] for each key
figure. The classes storage and dependency are optional by definition,
see Appendix A.3.
As seen in Figure 2.3 there are multiple periods and times which are
necessary to describe and to realize a flexible load measure but not all
of them are a key figure. The first relevant time is tOCD which means
the point in time until orders are accepted at energy markets [31]. This
is following by the validity TV which is given by the refering FL and
starts with the timestamp tV,start and terminates at the timestamp
tV,end. Within the validity lies the flexible load measure (FLM) which
spans from starting time t0, there the system gets the initial signal to
activate the FLM, to the end time tend. The regeneration duration
TRea describes a delay which a system could have until the first load
change is detectable or realizable. For trading and usage of the FLM
by a grid operator the delivery duration TD is given by

TD = TAct + TH (2.1)
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Figure 2.3: Schematic explanation of a flexible load measure and all
relevant describing periods and times (own figure).

or respectivly by
TD = TMod + TH (2.2)

and describes a active change in state of power. In Figure 2.3 the first
delivery durations T 1

D which is calculated by equation 2.1 and T 2
D fol-

lowing equation 2.2. A delivery duration do not include a deactivation
gradient ∇PDea or a regeneration duration TReg.

After the relevance and methodological approaches to modeling and
implementing energy flexibility in industrial systems have been pre-
sented, it becomes clear that their effective implementation and op-
timization require deep integration into the digital processes of mod-
ern manufacturing. The topic of digital manufacturing is therefore
explained in more detail below.
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2.2 Digital Manufacturing

Digital manufacturing, also known as Industry 4.0, is described by [32]
as the intelligent networking of machines and processes for the indus-
try with information and communication technology. The integration
of digital manufacturing processes is crucial in the context of energy
flexibility as it enables the seamless implementation of energy flexibility
measures, which are vital for optimizing energy demand and enhanc-
ing operational efficiency in industrial systems. This section explores
how digital manufacturing technologies facilitate the realization of en-
ergy flexibility and adjust production processes to an energy-flexible
operation. Some of the possibilities of Industry 4.0 are [33]:

• Flexible production: Networking facilitates coordination and plan-
ning in production by optimizing the involvement of different
companies.

• Changeable factory: Production lines of the future will be modu-
lar and quickly configured for specific tasks, enabling the efficient
and economical production of individual products.

• Optimized logistics: Intelligent algorithms improve the flow of
materials and delivery routes and automatically report material
requirements.

• Use of data: Analyzing production data enables process optimiza-
tion and new data-based business models.

These aspects are characterized by the objective of achieving both op-
timization and flexibility in production through Industry 4.0, while at
the same time supporting sustainable and economic goals. One of the
central models for structuring and implementing Industrie 4.0 concepts
is the Reference Architecture Model Industry 4.0 (RAMI 4.0) as shown
in Figure 2.4 [34]. The model is divided into three main axes.
The hierarchy axis represents the different levels within a company,
from the product level to the company level, and thus integrate all
levels of the automation pyramid. This enables end-to-end networking
and control of production processes. At the same time, the life cycle
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and value chain axis consider the entire life cycle of a product or plant,
enabling a holistic view and optimization. The six structured layers
on the vertical axis describe the decomposition of a machine into its
properties.
Based on this, the RAMI 4.0 architecture offers a suitable structure
for implementing energy flexibility. In particular, the possibilities of
bidirectional data and information exchange across company levels and
company boundaries to the connected world, e.g., to energy or flex-
ibility markets, enable the description and implementation of energy
flexibility [35], as in the validation use case of this work in Chapters
6 and 7. In order to automate and standardize the entire process of
energy flexibility trading from the machine to marketing, integrating
energy-flexibility measures into the production planning and control
of the company is essential [36]. The Energy Synchronization Plat-
form [37] addresses precisely this goal. The Energy Synchronization
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Figure 2.4: Reference Architecture Model Industry 4.0 (based on [34]).
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Platform comprises framework conditions, interfaces, data models for
describing energy flexibility (see Section 2.1.2), stakeholders, and secu-
rity aspects and maps the entire process of automated energy flexibility
trading from the machine to trading itself [38] (see Appendix A.1.2 ).

Modeling and simulation of machines and machine operation play a
crucial role in digital manufacturing and implement energy-flexibility
measures. They allow the virtual representation of production pro-
cesses to test and validate optimizations in advance, for example, con-
cerning energy efficiency or adaptability to fluctuating energy prices
[39]. A simulation is defined as follows:

Definition 2.9: Simulation [40, p.3]
Simulation is the imitation of the operation of a real-world process or
system over time. Simulation involves the generation of an artificial
history of the system and the observation of that artificial history to
draw inferences concerning the operating characteristics of the real
system that is represented.

Using advanced software and algorithms, complex systems can be
modeled and simulated in real-time, enabling precise prediction and
planning of energy consumption and production [39]. Using those ap-
proaches different models are necessary. A model is generally defined
as:

Definition 2.10: Model [41, p.13]
A model is defined as a simplification representation of a system for
the purpose of studying that system.

The creation of such a model is called model specification and is
defined as

Definition 2.11: Model Specification [42, p.3]
Model specification is the exercise of formally stating a model and
involves formulating a statement about a set of parameters.
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In the context of this work and in particular for enabling energy-
flexible operation, the energy flexibility model described in Section 2.1.2
is such a representation and specification. The defined key figures to
describe the energy flexibility must be filled with values to describe the
energy flexibility of a system. This important step of describing one or
more values for each variable quantity for each key figure of the model
is called model parameterization and is defined as:

Definition 2.12: Model Parameterization [43]
Adaptation of a system, technical device, model, or software by spec-
ifying one or more values for each variable quantity.

This step for determining the key figures of the Energy Flexibility
Data Model is described in Section 5.1.

Digital manufacturing refers to the comprehensive use of data in
real-time to monitor and optimize the entire production process [44,
pp. 181–183]. Data-based and data-driven approaches represent dif-
ferent degrees of integration and use of data in manufacturing. While
data-based approaches use data at the beginning of a process to set
parameters or workflows, data-driven approaches take a more dynamic
role by continuously collecting and analyzing data to optimize pro-
cesses continuously. A distinction must be made between the two ap-
proaches. Data-based is defined as:

Definition 2.13: Data-Based [45]
Data-based means the process is an open loop, and only the starting
point uses data.

The term data-driven encompasses this term more broadly and is
defined as:

Definition 2.14: Data-Driven [45]
Data-driven means that the process is a closed loop and its starting
point and destination are both data.
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In the context of digital manufacturing, these approaches enable pre-
cise monitoring and control of machines and systems, leading to more
efficient and flexible processes. By implementing closed-loop systems,
it is possible to react automatically to changes in the production pro-
cess and operate flexible [38]. Using real-time data analysis and adap-
tive systems, it is also possible to parameterize models of the produc-
tion system automatically. This is possible with the method developed
in in this work for the Energy Flexibility Data Model. Data analyt-
ics approaches and fundamentals, which are used while implement the
method for DD-EFMod, are explained in the following.

2.3 Data Analytics and Machine Learning

In order to implement data-driven approaches, methods from the fields
of data analytics and machine learning play a central role. The aspects
relevant to this work are examined in more detail below. First, meth-
ods of correlation analysis are discussed, as these methods are used
to determine correlations between variables, which is a key aspect of
the parameterization of energy flexibility. Secondly, this section shows
which different clustering algorithms, such as those implemented in the
DD-EFMod method, exist and how they can be validated. This is
followed by an explanation of the CRISP-ML(Q) methodology, whose
individual steps are adapted during the development and implementa-
tion of the DD-EFMod.

2.3.1 Data Analytics

In particular, correlation analysis is a common tool for identifying and
interpreting relationships between different variables within large data
sets. By calculating the correlation coefficient, insights can be gained
into the strength and direction of the relationship between two vari-
ables. For this purpose, the correlation between variables can be de-
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scribed using the correlation coefficient ρ. The greater the amount ρ of
the correlation coefficient, the more dependent two measured variables
are and is in gerally defined according to [46, p. 821]:

Definition 2.15: Pearson Correlation Coefficient [46, p. 823]
Pearson’s correlation coefficient

ρX,Y = cov(X, Y )
σXσY

(2.3)

with the covariance of the two variables cov(X, Y ) divided by the
product of their standard deviations σ.

A correlation coefficient of +1 means a perfect positive correlation,
-1 a perfect negative correlation and 0 no correlation. This is followed
by enhancing the informational value of the dataset. This involves
deriving auxiliary variables and increasing the density of useful infor-
mation within the data. In a more specific way for time series which
are necessary for an energy-flexible operation, like power consumption
or temperature data, correlation is calculated by

ρ =

n∑
i=1

(x1,i − µ(x1)) (x2,i − µ(x2))√
n∑

i=1
(x1,i − µ(x1))2

√
n∑

i=1
(x2,i − µ(x2))2

(2.4)

with x1,i and x2,i as values of the relvant signals x1(t) and x2(t) at
the time i with n samples [47, p. 384] . In addition, for a deeper look,
lagged correlation could be applied when there is a time delay in the
relationship between two signals. The lagged correlation is calculated
with a time shift τ for one of the signals by

ρ(τ) =

n−τ∑
i=1

(x1,i+τ − µ(x1)) (x2,i − µ(x2))√
n−τ∑
i=1

(x1,i+τ − µ(x1))2
√

n∑
i=1

(x2,i − µ(x2))2

(2.5)
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by shifting the signal x1(t) by τ points in time and then correlating
it with x2(t). A lagged correlation can be used to investigate whether
there is a time lag in the relationship between two signals. A high
lagged correlation value at a certain lag τ could indicate that one sig-
nal influences the other with this time delay.
However, in order to determine meaningful correlations, it is often nec-
essary to standardize and normalize the data. Normalization for better
scaling according to

xnorm,i(t) = xi(t)−min(x(t))
max(x(t))−min(x(t)) (2.6)

should be done [48, p. 110]. Normalization aims to scale the data
so that it lies within a specific range, typically between 0 and 1. In
addition signal standardization transforms the data so that they have
a mean value of 0 and a standard deviation of 1, with the calculation
following

xstd,i(t) = xi(t)− µ(x(t))
σ(x(t)) (2.7)

with µ(x(t)) as mean of the input signal and σ(x(t)) the standard devi-
ation [48, p. 113]. These steps are crucial to make data sets comparable
and to improve the efficiency of data processing, especially if the data
comes from different sources or is available in different units.
Another important step in data analysis and the preparation of data
sets for machine learning processes is quantization. This process re-
duces the complexity of the data by dividing continuous variables or
time series into discrete intervals. Quantization not only simplifies
the data structure, but can also help to reduce the risk of overfitting
and increase the computational efficiency of algorithms [49, p. 115] [50,
p. 290]. Let a data set D with N values and a value range from min(D)
to max(D). The data set is to be divided into k bins, then according
to [51, p. 332] the width W of each bin is given by

W = max(D)−min(D)
k

(2.8)
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and its boundaries as

bi = min(D) + i ·W (2.9)

for i = 0, 1, . . . , k. Thus, the assignment of the data to the bins follows
with

Bin(x) =
⌊

x−min(D)
W

⌋
(2.10)

where b·c is the rounding function. Such a quantification method can
be further used to calculate the moving average of a signal according
to

xMA (tk) = 1
M

k+bM/2c∑
i=k−bM/2c

x (ti) (2.11)

with a window of size M |M < N where N is the number of signal
samples under consideration [52].
Another option for data and signal analysis is Boolean logic analysis,
which enables the mathematical treatment of binary values (1 for ”true”
and 0 for ”false”). This analysis uses fundamental logical operations
[53]:

• Conjunction: A ∧B is true if both A and B are true.

• Disjunction: A ∨ B is true if at least one of the statements A or
B is true.

• Negation: ¬A reverses the truth value of A; true becomes false
and vice versa.

In data analysis and processing, Boolean logic enables data sets to be
filtered using defined conditions that specify specific criteria for data
selection or processing.
The presented data analysis methods are often used as pre-processing
steps for other data processing algorithms, like the implementation of
the DD-EFMod method. Such pre-processing steps are exceptionally
fundamental for machine learning algorithms.
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Figure 2.5: Subdivision of machine learning methods into online and
offline and the subgroups incremental learning and batch
learning based on [57] (own figure).

2.3.2 Machine Learning and Data Stream Mining

A machine learning algorithm is a process or method for recognizing
patterns in data and learning from them [54]. It is essentially a pro-
cess or set of rules applied to a data set to achieve a specific goal,
such as classification or clustering. Examples of machine learning al-
gorithms include Decision Trees, K-Nearest Neighbors, clustering algo-
rithms such as K-means, and network algorithms such as Neural Net-
works [55, pp. 2–4]. In the context of production systems it is relevant
to consider offline algorithms for historical or storaged data and also
consider online algorithms for real-time data streams with only tem-
porary availability to facilitate immediate operational adjustments and
real-time decision making [56].
A machine learning model is the resulting product of a machine learning
algorithm applied to a data set. After the algorithm has been trained,
the model represents the knowledge learned, it is basically a specific
representation of what has been learned from the data. The model can
then be used to make predictions or decisions based on new, unknown
data [51, p. 7].

Furthermore, a distinction must be made between offline and online
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algorithms when using machine learning. The following options must
be differentiated here, as shown in Figure 2.5 while following [57]:

• Online learning: Refers to learning processes in which the
model is continuously updated as soon as new data is available.
It is ideal for applications where data must be processed in real-
time.

• Offline learning: Also known as batch learning, it refers to the
situation where the learning model is trained with a fixed data
set. New data leads to a retraining of the model.

• Batch learning: A special form of offline learning in which large
amounts of data are processed in batches to train or update the
model.

• Incremental learning: In contrast to batch learning, this method
updates the model step by step by continuously processing smaller
amounts of data.

• Instance incremental: A form of incremental learning where
each individual instance is used to incrementally update the model.

• Batch incremental: This uses small batches of data to incre-
mentally update the model instead of retraining it with a full set
of data.

• Full batch learning: A method where the entire available dataset
is processed in a single batch, often used in the initial training
phase.

• Sequential learning: Focuses on sequential processing of data,
where the order of the data matters and the model is updated
based on this sequence.

If the data of a data set needs to be grouped, K-means clustering, which
represents an offline full batch learning algorithm, can be used for this
[58, pp. 45–63]. If f [k] as a feature vector with historical batch data
was formed through preprocessing and data engineering, initial cluster
centers C must be defined during the initialization step. The cluster
assignment is then carried out for each data point using a distance
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measure (e.g., using the Euclidean distance) according to

d(p, C) =

√√√√ n∑
i=1

(pi − ci)2 (2.12)

while p = [p1, . . . , pi] with i ∈ N|n > 0 Datapoints and C = [c1, . . . , ci]
with i ∈ N|n > 0 cluster centers. This is followed by the recalculation
of the cluster centers c′ according to

c′
j = 1
|Aj |

∑
p∈Aj

p (2.13)

as the mean value of all data points assigned to the cluster, c′
j is the

center of the j-th cluster, and Aj is the set of all data points assigned
to this cluster. The recalculation according to equations 2.12 and 2.13
is iterated until no significant changes in c′ occur [58, pp. 45–63].

An alternative to offline full batch learning with K-means is the batch
incremental learning algorithm, mini-batch K-means [59]. This algo-
rithm divides the data into smaller batches, enabling its use in offline
or online applications. Such adaptability makes it suitable for a wide
range of data processing scenarios. Each batch contains a selection of
n data points. These are assigned to the existing cluster centers C, and
then the cluster centers are updated according to

cj = (1− η) · cj + η · µ(xbatch ) (2.14)

which corresponds to weighted averaging, where c′
j is the center of

the jth cluster, µ(xbatch) is the mean of the data points of the batch
that were assigned to the jth cluster, and η is the learning rate that
determines how much the cluster center is shifted [59]. The advantage
of the mini-batch K-means is its efficiency with large data sets and the
ability to work in real time, as the entire data set does not have to be
processed with each iteration.

In data stream mining, online clustering is central to meet the spe-
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cific challenges associated with processing continuous and dynamic data
streams [60, pp. 67–76] and is defined as:

Definition 2.16: Data Stream [56, p. 26]
Data stream are data generated in real-time and whose volume is
potentially unlimited.

To analyze data streams, it requires approaches that are not only
efficient, but also able to adapt to changes in the data streams [61,
pp. 23–32] [56, pp. 87–105].
The CluStream algorithm, which represents an online learning instance
incremental method, has been specifically developed for the online
clustering of data streams [62]. The special feature is that the cur-
rent structure of the data can be recorded in real-time, and historical
data can also be taken into account [47]. The CluStream algorithm is
based on the concept of micro-clusters, which summarize data streams
[47, pp. 237–239]. A microcluster for a data stream is represented as
c(t) = (N, LS, SS, LT, ST ), where [56, pp. 177–179]:

• p is the number of data points in the cluster up to time t.
• LS is the linear sum vector of the data points in the cluster.
• SS is the squared sum vector of the data points in the cluster.
• LT is the sum of the timestamp of the last update of the cluster.
• ST is the sum of the squares of the timestamp of the last update

of the cluster.
When a new data point x arrives at time t, the microcluster is updated:

pnew = pold + 1 (2.15)

LSnew = LSold + x (2.16)

SSnew = SSold + x2 (2.17)

LTnew = LTold + t (2.18)

STnew = STold + t2 (2.19)

The distance d between a data point x and the center of a micro-
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cluster C is often calculated using the Euclidean distance [46, p. 252].
The center of a microcluster is determined by LS

N . The CluStream
method is a robust and adaptive method that makes it possible to
extract information from continuously generated data and effectively
capture dynamic changes in the data that frequently occur in the pro-
duction environment. Validation of clustering algorithms is required to
ensure the reliability and accuracy of the clusters generated. Checking
the results ensures that the algorithms create meaningful and valuable
groups within the data. Validation also helps to adjust and optimize
the machine learning models to improve performance in real-world ap-
plication use cases, such as those in the validation Chapter 7 of this
thesis.

2.3.3 Validation of Clustering Algorithms

There are various methods for evaluating the quality of clustering al-
gorithms. Two of the most common are discussed below. The silhou-
ette coefficient s [63], where a higher coefficient value suggests more
distinctly defined clusters in the model. The silhouette coefficient, cal-
culated for each sample, comprises two components:

a This represents the average distance between a sample and all
other points in its cluster.

b This is the average distance between a sample and all other points
in the nearest cluster that it is not a part of.

For an individual sample, the silhouette coefficient s is calculated by

s = b− a

max(a, b) where− 1 ≤ s ≤ +1 (2.20)

with the conditions:
• s = +1: Indicates an ideal, high-density clustering where each

group is clearly separated from others.
• s = −1: Represents a completely incorrect or inappropriate clus-

tering, with no meaningful grouping of the data.
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• s ≈ 0: The clusters overlap or are not clearly distinguished from
one another.

On the other hand Davies-Bouldin-Index [64] can be used to evaluate
the model to indicates the average similarity between clusters, where
similarity is a measure that compares the distance between the clusters
with the size of the clusters themselves. The index is defined as the
average similarity between each cluster ci for i = 1, . . . , k and its most
similar one cj . In the context of this index, similarity is defined as a
measure Rij that trades off

• si, the average distance between each point of cluster i and the
centroid of that cluster - also know as cluster diameter.

• dij , the distance between cluster centroids i and j.

A simple choice to construct Rij so that it is nonnegative and symmetric
is with

Rij = si + sj

dij
(2.21)

and the the Davies-Bouldin index is defined by [65] as

DB = 1
k

k∑
i=1

max
i 6=j

Rij . (2.22)

Both the Silhouette Coefficient and the Davies-Bouldin Index are met-
rics for evaluating the cluster quality of an online and offline clustering
algorithm. These metrics, independent of the clustering method used,
assess how well data points have been assigned to clusters.
In this thesis, the DD-EFMod method is used to analyze data and de-
rive key figures from the This is possible with the method developed in
in this work for the Energy Flexibility Data Model. The machine learn-
ing algorithms and methods presented are used for this. A structured
approach is required for the application and implementation of the pre-
sented algorithms. The CRISP-ML(Q) method is presented below for
this purpose.
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2.3.4 Implementation of Machine Learning Algorithms
with CRISP-ML(Q)

The CRISP-ML(Q) model is an adaptation of the Cross-Industry Stan-
dard Process for Data Mining (CRISP-DM) framework [66] specifically
for machine learning. It represents a structured process for planning,
implementing, and evaluating machine learning projects [67]. It inte-
grates a strong focus on quality assessment in every project phase, from
conceptualization to implementation and operational deployment. The
CRISP-ML(Q) model aims to balance technical feasibility, practical ap-
plicability, and the creation of added value [67]. The CRISP-ML(Q)
approach is essential for the development and implementation of the
DD-EFMod method for determining the key figures of the EFDM.
The structured procedural model of CRISP-ML(Q) ensures that all
aspects of the applied machine learning algorithms, from data prepa-
ration to model evaluation, are considered systematically and under
constant quality control. This quality assurance is important as the

Business & Data
understanding

Data
preparation

Modeling

Evaluation

Deployment

Monitoring &
Maintenance

Figure 2.6: Phases of the CRISP-ML(Q) Process (own illustration
adapted from [66] based on [67]).
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accuracy and reliability of the identified energy flexibility key figures of
the EFDM through DD-EFMod directly influence the effectiveness of
the energy flexibility operation. Furthermore, the CRISP-ML(Q) sup-
ports the effective planning and implementation of machine learning-
based projects through its structured approach. Adapting CRISP-
ML(Q) in the development of DD-EFMod thus ensures that the iden-
tified key figures of the EFDM are robust, reliable, and directly im-
plementable.
The CRISP-ML(Q) model is divided into several phases:

• Business & Data Understanding: This initial phase defines
project goals and requirements from a business perspective. It
lays the foundation for the entire project. The data sources are
identified and examined in this phase. The aim is to deeply un-
derstand the data used during the project.

• Data Preparation: This phase includes all the steps required
to prepare the data for analysis. This includes selecting, cleaning,
and transforming the data.

• Modeling: In the core phase of the model, suitable machine
learning algorithms are selected and applied. This phase also
includes the adaptation of the algorithms to the specific require-
ments of the project as well as the evaluation and selection of the
models based on their performance.

• Evaluation: The evaluation phase focuses on checking the mod-
els in terms of their effectiveness and accuracy. The technical
aspects of model performance and the relevance of the results to
the business objectives are considered.

• Deployment: In this phase of the CRISP-ML(Q) process, the
selected model is transferred to the production environment. This
phase also includes planning for monitoring and regular mainte-
nance of the system to ensure its performance and reliability.

• Monitoring & Maintenance: This step includes the contin-
uous monitoring of system performance and model accuracy to
ensure that the models continue to function effectively and effi-
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ciently under changing environmental conditions. It also includes
maintenance work, where models are adjusted or retrained to
maintain relevance and accuracy over time and respond to new
data or requirements.

The CRISP-ML(Q) model thus supports a comprehensive and system-
atic approach to machine learning projects, from data preparation to
model development and evaluation through to practical implementa-
tion. The inclusion of quality assessment ensures that the solutions
developed are also effective and sustainable in practical application. It
is, therefore, very effective for use in the context of energy flexibiliza-
tion.

2.4 Interim Summary

This chapter provides a comprehensive basis for developing the method
for DD-EFMod by focusing on key concepts and technologies that con-
tribute to its effectiveness and feasibility. First, industrial energy sys-
tems in the context of production systems are discussed. This is fol-
lowed by an introduction to demand-side management and the con-
cepts of energy flexibility, as well as corresponding energy-flexibility
measures. Furthermore, the core aspects of modeling energy flexibility
is discussed. In particular, the Energy Flexibility Data Model (EFDM)
and its classes, flexible loads, storage, their dependencies, and specific
flexible load measures, are introduced. This is followed by an expla-
nation of the importance of digital manufacturing and RAMI 4.0 in
order to illustrate the implementation of energy-flexibility measures in
modern production environments, such as in the validation use case of
this work. The importance of modeling, simulation and data-driven
approaches is emphasized, as they are essential for the development
of the DD-EFMod method. Furthermore, the basics of data analyt-
ics and machine learning algorithms, especially clustering methods, are
presented, which are central to the identification of key figures of the
EFDM. In addition, the distinction between online and offline machine
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learning algorithms is discussed in order to clarify their applicability
in real-time applications and more static environments. Furthermore,
the validation of clustering algorithms is shown. Finally, the CRISP-
ML(Q) process is described in detail, providing a structured process
for quality assurance and successful implementation of machine learn-
ing algorithms, which are essential for developing and implementing
the DD-EFMod method.
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”To raise new questions, new
possibilities, to regard old
problems from a new angle,
requires creative imagination
and marks real advance in
science.”

Albert Einstein
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The following chapter presents the current state of science and tech-
nology on modeling energy flexibility in production systems. This is
conducted on the basis of a systematic literature review. This proce-
dure and the methodology is explained in Section 3.1. Subsequently,
Section 3.2 shows the results of the individual methodological steps and
presents the relevant reports identified on the basis of the literature re-
view. Finally, Section 3.3 discusses the identified need for research,
which is addressed in this dissertation.

3.1 Procedure of Systematic Literature
Review

The presented systematic literature review is based on the approach
of the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement [68]. Following the PRISMA statement,
a systematic literature review contains the overall parts of identifica-
tion, screening, eligibility and including of studies and reports [69]. For
clear understanding of what a report in this context is, the PRISMA
statement gives these following explanations:
A report is a document (printed or electronic) supplying information
about a particular study. It could be a journal article, preprint, confer-
ence abstract, study register entry, clinical study report, dissertation,
unpublished manuscript, government report, or any other document
providing relevant information [68]. As second, a study is an investiga-
tion, such as a clinical trial, that includes a defined group of participants
and one or more interventions and outcomes. A study could contain
multiple reports [68].
In addition to the PRISMA based systematic literature review, the part
of concept and planning which is based on [70] and [71] is placed as the
first. So my complete systematic literature review procedure is shown
in Figure 3.1. The systematic literature review starts with the part
concept and planning, which contains the following three steps:
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Figure 3.1: Overall steps of the systematic literature review following
the PRISMA statement (own figure based on [68, 73]).
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In the first step Define search strategy the dimensions for the sys-
tematic literature review are defined. These dimensions, following [18]
and [72] are objective, system boundary, approach and method. The
objective of this work is to improve the enabling process for energy-
flexible factory operation. This results in the system boundary, the
building of a factory with a production process. To realize and de-
scribe energy flexibility a model based approach is chosen. In addition,
the modeling should be data-based to obtain a system description that
is as real as possible. Therefore data from different sources like load
profiles, electric or thermal energy consumption could used for data-
analysis or pattern detection. To evaluate and classify the relevant
reports, I developed a classification scheme. The scheme is used to
evaluate and classify the identified reports for research content under
the aspects of the objective, the system boundary, the approach, and
the methodology to the following topics:

• energy consumption data analysis or pattern detection

• energy flexibility

• industrial energy flexibility

• identification, description, usage of energy flexibility

• modeling of energy flexibility

• use of a data-based approaches to reach one of these targets

• use of an automated approach for modeling

• use a machine learning approach

As second step choose database the research data bases, including
open access reports, ”Web of Science” and ”ScienceDirect” are defined.
These data bases include scientific journals, publishers and conferences
of related engineering communities and topics such as The International
Academy for Production Engineering (CIRP) and Institute of Electri-
cal and Electronics Engineers (IEEE).
In define query the search queries for browsing the databases are de-
fined. Therefore, for each dimension resulted from step one analogously
and closely related terms are considered and systematically linked by
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Table 3.1: Search strings for each dimension of the systematic literature
review (own table).

Demension Search string

AN
D

objective "energy flexibility" OR "demand response"
OR "demand side management"

system boundary "production" OR "factory OR "manufacturing" OR
"machine tool" OR "industry"

approach "model" OR "simulation"

methode "data-based" OR "data stream mining" OR
"data analysis" OR "pattern detection"

logical operations. This results in the queries given in Table 3.1. In the
next step metadata search these search strings are used to search the
databases for each dimension starting with the dimension objective.
Afterwards, the search string is successively extended by the search
strings for the other dimensions with a logical AND operator. The
second part of the systematic literature review is identification. This
starts with the metadata search where the browsing is done, using
the queries given in Table 3.1, and the results are collected. It follows
by the metadata analysis. In this step, the results are interpreted
and discussed. The results of my systematic literature review are dis-
cussed in Section 3.2. In addition to browsing the research databases,
also the step manual search is done. The manual search is necessary
to find relevant national standards (e.g., International Organization for
Standardization (ISO) or VDI) and other previous dissertations on the
topic which are not listed in the databases. In the next parts, screen-
ing and eligibility the analysis and synthesis of the report results
from the identification part is done. Subsequently, as shown in Figure
3.1, I performed the review of the titles and abstracts of the reports
one by one. For the reports, which fullfils the scheme of step one, the
classification and review of the full text of the report was done. In the
course of the literature synthesis, essential characteristics are recorded
and summarized (see Section 3.2). Through screening of the literature
references in the selected publications, additional relevant references
are fed back into the literature search if suitable. Finally, I evaluate
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Figure 3.2: Results of the metadata analysis for the search query com-
bination of the dimensions objective, system boundary and
approach (own Figure).

the reports to the developed scheme and identified the research gap
based on the analyzed literature.

3.2 Results of the Literature Review

As the first result of the systematic literature review the analysis of the
metadata search shows that 166 relevant reports result from browsing
the databases for all dimensions (see Table 3.2). In comparison, the
objective query still yields 10677 reports. The analysis of the tempo-
ral development of the relevant publications clearly shows the increased
research activities in industrial energy flexibility and demand-side man-
agement. This evolution is shown in Figure 3.2 for the third level of
dimensions (objective, system boundary, and approach). Also, 20 re-
ports related to the topic could I identify while doing the manual search.
So overall I start the part of screening for 184 reports. In the title re-
view, only 84 were left, and while reviewing the abstracts, 36 reports
were identified as relevant. Finally, 26 reports result from the full text
review to consider. These 26 reports are discussed shortly and classified
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by the scheme in the following. The results of the classification is given
in Table 3.3.

Akhavan-Hejazi et al. present various possible applications of
big data analytics in energy systems. Among other things, real-time
analysis and monitoring, monitoring of decentralized energy networks,
but also the improvement of demand response are listed. The necessary
basis for this is big data to enable robust analyses and thus extract new
information [74].

Li et al. show that needed data for machine learning models are
difficult to collect. The most important barriers are cost, technical
constraints or privacy. To address these problems they propose a data
generation model to synthesize energy consumption time series. These
synthetic data a used to train and validate classification models. In
result the time series have satisfactory similarity with real data in terms
of data distribution, pattern and performance [75].

Calikus et al. propose a data-driven approach for pattern detec-
tion methods for analyze power consumption data. The automatic
analysis of heat load patterns of district heating networks requiring no
prior knowledge. The given approach clusters the customer power load
profiles into different groups and extracts their representative patterns
[76].

Corsetti et al. give a modeling framework and an associated opti-
mization tool to support short-term operational planning and electricity
market service trading. The focus is to to deploy flexibility with specific

Table 3.2: Results of the metadata search of the systematic literature
review (own Table).

Combination of demensions Number of Reports
objective 10677
objective AND system boundary 3976
objective AND system boundary AND approach 3238
objective AND system boundary
AND approach AND methode 166
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application to provision of frequency control ancillary services. There-
fore they discribe caracteristics of flexibility, based on energy grid time
series and model it with mathematical features to use mixed-integer
linear programming optimization of the flexibilities [77].

Sossenheimer gives in his work, a hybrid energy metering point
concept for the implementation in industrial environments. The avail-
ability of energy demand information is the basic prerequisite for the
identification, evaluation and implementation of energy efficiency and
energy-flexibility measures. Accordingly, end-to-end energy monitoring
at all production system levels is essential for enabling holistic energy
efficient and energy-flexible factory operations. The primary objective
of this work is to develop a continuous hybrid energy monitoring con-
cept taking into account all production system levels. [27, pp. 68–76]

Tsay et al. provide a method, using time-series analysis, to facilitate
online scheduling computations. Optimal demand-response scheduling
of industrial air separation units should account for process dynamics
and control to ensure that schedules are dynamically feasible. Their
work presents a data-driven strategy to create machin learning models
for an industrial process from routine operational data. They find
that time-series models can accurately represent process dynamics over
several days, but that their accuracy can suffer over time. To handle
this challange they show that it is possible to online update the models,
which significantly improve demand and response planning models in
the future [78].

Ulbig et al. quantify and visualize the technically available opera-
tional flexibility of individual power system units. Necessary metrics for
defining power system operational flexibility are presented. The flexi-
bility properties of different power system unit types are qualitatively
analyzed and compared to each other. The contributions of this paper
are the presented modeling and analysis techniques in electric power
systems. The calculation of the remaining operational flexibility in a
power system after having subtracted the needed from the originally
available operational flexibility was shown [79].
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Zhao et al. discuss ensemble clustering for power data while re-
ducing the dimensions of the data. The relationship between the data
dimensions and the clustering performance were determined. Specific
characteristics and practical significance for different mode were de-
termined. Furthermore, the users’ electricity consumption behavior in
one week based on these modes were analyzed. This paper proves that
ensemble clustering can be successfully applied for power data analysis
[80].

DIN SPEC 91366 specifies a reference model that systematically
shows companies which aspects must be considered and investigated
when identifying, evaluating and using energy flexibility. The reference
model supports the communication of energy information and knowl-
edge as well as an evaluation of energy consumption behavior with re-
gard to energy flexibility in order to create a basis for participation in
the intelligent electricity supply system. Relevant control and planning
variables in energy and load management or in production planning
and control are included in the evaluation [81].

DIN SPEC 91410-2 specifies requirements for the method of iden-
tifying and evaluating the temporal flexibility of energy conversion
plants in buildings and districts. The method makes it possible to
identify these plants with regard to flexibility options, to characterize
and evaluate them according to technical, organizational, systemic and
informational criteria. Different fields of application for flexibility in
the electrical energy market, grid and system are considered. Capa-
bilities of electrical systems to dynamically respond to corresponding
flexibility needs are evaluated [82].

VDI 5207 Part 1 focus on energy-flexible factories. The standard
describes the process of identifying and marketing energy flexibility and
defines pertinent terms. The standard is applicable to different forms
of energy but focuses on electrical energy [24].

VDI 5207 Part 2 describes in detail the process of identifying and
marketing options of energy flexibility for industrial companies. Also
challanges and a guideline to solve them are given [26].
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Lee et al. show a method to evaluate the demand respose potential
of industrial loads according to a process of related load-characteristic
data analysis. The proposed potential-estimation model considers fre-
quency, consistency, and demand response event operation scores dur-
ing designated ramp-up and ramp-down time intervals separately [83].

Sadeghianpourhamami et al. focus on the validation of flexibil-
ity in households. Analyses of customer load patterns show high un-
certainty about customer habits in offering flexibility. Therefore, a
quantitative specification of flexibility was done. To address this, they
give two systematic methodologies for modeling individual customer
behavior, evaluate the proposed models, and provide a fundamental
analysis of factors influencing flexibility behavior based on statistical
tests. [84].

Schraml shows a method which makes it possible to optimize the
electrical load profile of metal-cutting machine tools, in particular by
synchronizing the activities of auxiliary units over time. The results
enable operators and manufacturers of machine tools to estimate and
evaluate the load reduction potential of metal-cutting machine tools
and, if the evaluation is positive, to realize it [85, pp. 49–54].

Schulze et al. present an approach for flexibilization of energy inten-
sive system elements. Against this background, technical capabilities
and operational strategies for energy-flexible management of industrial
cooling towers are analyzed, basing upon empiric data from a plant.
A synergetic approach of data-driven analysis and scenario-based sim-
ulation is applied to demonstrate benefits of energy-flexible technical
building services management [86].

Schott et al. present a descriptive model for industrial flexibility
with respect to power consumption. The advancing digitization in the
energy sector opens up new possibilities for utilizing and automatizing
the marketing of flexibility potentials and therefore facilitates a more
advanced energy management. This requires a standardized description
and modeling of power-related flexibility [14]. A detailed description of
this Energy Flexibility Data Model is given in Section 2.1.2.
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Bahmani et al. propose a mathematical optimization model that
uses the generic data model for flexibility description based on [14].
The optimization model supports industrial companies to select when,
where, and how to market their flexibility potential to optimize profit.
The results of the optimization model evaluation suggest the model can
fulfill its purpose under different use cases even with complex use cases
such as various loads and storages [87].
In Bank et al. we present an approach to integrate Energy Flex-

ibility (EF) into Production Planning and Control (PPC). Based on
the energy-oriented PPC, the approach identifies and model EF of pro-
cesses in a generic Energy Flexibility Data Model based on [14], which
is subsequently integrated in the energy-oriented production plan and
further optimised on the energy market side [36].

Unterberger et al. model energy storages, energy-flexible machines
and smart controls. To realize smart control, electrical energy must be
included into production planning and control as resource. Therefore
an energy-flexible production control is realized by using the modeling
language SysML [88].

Degefa et al. propose unified characterizing terms for flexibility
resources. Furthermore, a taxonomy method which is applied to classify
flexibility resources is presented. The taxonomy method clears the
confusion on ”what-is-what” under the concept of flexibility. This paper
also presents the benefits of unified characterizing terms in mapping
flexibility resources to ancillary services [89].
In Lindner et al. we show an approach to modeling and aggrega-

tion of flexibility in complex manufacturing processes. To overcome
this challenge, a method for the aggregation of energy flexibilities that
is based on the generic Energy Flexibility Data Model given by [14].
The method proposes a two-step approach to aggregate flexibilities cost
efficiently and considers manufacturing specific limitations [90].

Strobel develops a software framework to realize the demand re-
sponse measures store energy inherently given in [24]. Therefore the
energy storages are modeled using the key values given in [14]. For the
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application the energy flexibility model is used for an optimization [72,
pp. 74–104].

In Buhl et al. we present an advanced model of [14] for the generic
and standardized description and modeling of energy flexibility. The
data model enables a (partially) automated information-technical pro-
cessing of the most diverse flexibility. The aim is to develop a com-
prehensive data model to represent flexibility in a flexibility space and
concrete flexibility measures (see Section 2.1.2). The focus is on the
mapping of technically and energetically relevant information in a gran-
ularity that enables the communication and of flexibility between in-
dustrial companies and energy markets [28].

Sauer et al. show how an energy synchronization platform enables
the entire process of automated energy flexibility trading from the ma-
chine of a production system to energy flexibility marketing services.
It thus represents the overall concept of a digital ecosystem. The pro-
cesses are illustrated by means of use cases. In addition, we present
the further developed Energy Flexibility Data Model [28] and show the
application [5, p.249-260].

In Lindner et al. we examine the practicality of a methodical ap-
proach for energy-flexible and energy-optimal operation in the field of
metal-cutting production. The analysis focus on a grinding machine
and its central cooling system. An Energy Flexibility Data Model is
built for each subsystem, which describes energy flexibility potentials
generically. This is then extended to enable combined energy cost-
optimal production planning. As a basis for the links between the data
model representations, the cooling between the subsystems are mod-
eled using parameter-estimation methods. Based on the presented ap-
proach, the results successfully validate the possibility of energy-flexible
cost-optimal and sensor-reduced production planning [30].
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3.3 Conclusion on the State of the Art and
Research Deficit

The systematic literature review conducted on the state of the art and
research in the field of energy consumption data analysis and the topic
of energy flexibility shows a strong increase, especially since 2016 in
this field (see Figure 3.2). Based on the classification scheme (see Ta-
ble 3.3), I could show that the work from the energy and consumption
data analysis field uses data-based tools and methods. In addition
to statistical methods, machine learning approaches, e.g., for pattern
recognition or parameter estimation, are also used for this purpose.
On the other hand, some research work and standards deal with iden-
tifying and describing energy flexibility, especially in the complex envi-
ronment of industrial processes. The analyses of the systematic litera-
ture review show that about one-third of the reports or studies on this
topic are within the SynErgie project. The identified relevant reports
or studies often focus on identifying or describing industrial energy
flexibility in specific use cases. In these cases, the EFDM presented in
Section 2.1.2 is used as a basis. As it turns out, no report has been
identified that provides automated data-based or data-driven model-
ing of industrial energy flexibility through load profile analysis. This
research gap is to be filled by the present work.
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Table 3.3: Relevant reports as results of the systematic literature review
(own table).
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”A new idea must not be
judged by its immediate
results.”

Nikola Tesla
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The previous chapters showed the necessity of modeling industrial
energy flexibility. In addition, a need for research in automated param-
eterization of such models was identified. On this basis, the research
objective, the resulting research question and the derived research hy-
potheses are formulated in this chapter. This chapter concludes by
deriving the requirements and defining the assumptions and prerequi-
sites for the functionalities of a method that can be applied to achieve
the research objective.

4.1 Research Objective

The central research objective of this thesis is derived from the frame-
work outlined in Chapter 1 and 2 and the research gap identified in
Chapter 3. To enable a factory to become energy-flexible, it is nec-
essary to describe the existing energy flexibility. This description is
possible with the help of the data model shown in Section 2.1.2. Due
to the complexity of production processes and their supply systems, the
correct modeling of existing energy flexibilities is not trivial. However,
this central step of the enabling process should be as simple as possible
for plant operators or energy managers of a company. In summary, the
research objective can be formulated as follows:

Research Objective

The primary goal of this work is to simplify the enabling pro-
cess of a factory to energy-flexible operation. For this purpose,
a data-driven method should be developed, which reduces the
modeling effort of energy flexibility, based on information and
data from the production system.

In order to achieve this research goal in a well targeted manner,
the research questions and, from these, the research hypotheses are
formulated.
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4.2 Research Questions and Hypotheses

From the research objective, the central research question is derived,
which focuses on the modeling and parameterization of the EFDM:

Research Question

Is it possible to develop a method for automated parameteriza-
tion of an energy flexibility model, based on data from a produc-
tion system, to describe the energy flexibility of the production
system?

This given central research question leads to further sub-research
questions, which serve to answer it and reach the objective. These sub-
research question focus on specific parts to reach the research objective.

Sub-Research Questions

1. What methods can enable automatic parameterization of
a model to describe energy flexibility?

2. Which data and which information of a production system
are necessary for modeling energy flexibility?

3. Can an automated parameterized model enable an energy-
flexible production system operation?

The research hypotheses can be derived from these research ques-
tions. Accordingly, under the assumption that an automated parame-
terization of energy flexibility models is possible, it follows that these
also fulfill the requirements to implement an energy flexibility measure.
The automated parameterized models should fulfill the same require-
ments as a manual modeling of energy flexibility. This results in my
first research hypothesis.
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Research Hypothesis : 1

Data-driven automatically parameterized energy flexibility
models of machines in production infrastructure can be used
to enable energy-flexible operations.

Growing digitization and data availability mean that more and more
data-based methods can be used to obtain information (see Chapter 2).
The systematic literature review shows that machine learning and data-
based or data-driven methods have the potential to be used for model-
ing, simulation and data analysis in the context of consumption anal-
ysis and energy flexibility. Furthermore, the developed method should
also be applicable in the brownfield and systems with low amount of
historical data availability, e.g. through temporary or streaming data
acquisition. This leads, based on the research question, to my second
research hypothesis:

Research Hypothesis : 2

Machine learning and data stream mining algorithms can be
used to automate the parameterization of energy flexibility mod-
els of machines from the production infrastructure.

4.3 Requirements and Assumptions

The approach devised to achieve the research objective and address
the research questions must satisfy specific functional and quality re-
quirements. Additionally, boundary conditions and prerequisites are
essential for efficiently implementing this method and its transfer to
industrial applications [91]. These requirements, assumptions, and pre-
requisites are detailed and discussed below.
The following functional requirements on the method (FR-M) focus on
the development of the method itself and are essential for the approach:
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FR-M 1: Applicability: The method must be designed to be
applicable for real industrial production systems and
scenarios, as explained in Chapter 2.

FR-M 2: Modularity: The method is structured so that indi-
vidual steps of the method can be applied separately if
required.

FR-M 3: Transferability: The method is designed in such a
way that different energy-flexibility measures (see Ta-
ble 2.1) can be realized and should be transferable to
different machine types.

FR-M 4: Reproducibility: Repeated application of the method
under the same conditions leads to the same or very
similar results.

In addition, with a focus on applicability, requirements are needed for
the energy flexibility to be modeled. These functional requirements for
energy flexibility modeling (FR-EF) are:

FR-EF 1: Feasibility: The parameterized model describing the
existing energy flexibility can be used to realize it.

FR-EF 2: Accuracy: The energy flexibility models parameter-
ized with the help of the method should be sufficiently
accurate to enable an application.

FR-EF 3: Maximization: The calculated energy flexibility model
should describe the maximum realizable energy-flexibility
potential.

FR-EF 4: Explainability: The calculated key figures of the en-
ergy flexibility model should be as comprehensible as
possible.

FR-EF 5: Safety: The parameterization of the energy flexibility
key figures must take the related machines’ technical
boundaries into account.

The above FR-EF lead to requirements for the Machine Learning (ML)
algorithms to be used for the energy flexibility modeling. The for the
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DD-EFMod method relevant quality requirements (QR) for machine
learning models, which were derived from the de facto standard of
machine learning applications, the CRISP-ML(Q) Studer et al. [67]
explained in Chapter 2, are as follows:

QR 1: Quality: The ML model’s quality should fit the applica-
tion requirements and should validated by accuracy and
performance measures.

QR 2: Robustness: The ML algorithms should have the capa-
bility to maintain its performance level despite certain cir-
cumstances.

QR 3: Explainability: The ML model should directly or post-
hoc explainable.

QR 4: Scalability: If necessary, the ML model should also be
able to work reliably with more significant amounts of
data.

QR 5: Real-time capability: The ML model should work in a
application defined time.

The application and the development of the method based on prereq-
uisites that are assumed to be fulfilled within the context of this work.
These prerequisites (PR) are:

PR 1: Data Availability: All data and information (see Chap-
ter 7, e.g., power value, operating condition) necessary to
calculate and parameterize key figures of the EFDM are
available and of sufficient quality.

PR 2: Information and Communication Technology (ICT)-
Availability: The existing ICT infrastructure ensures suf-
ficiently fast and secure transmission of the required data
to the corresponding data processing devices.

PR 3: Energy Flexibility Identified: The relevant systems for
which an energy flexibility model should be parametrized
and the corresponding energy-flexibility measure are al-
ready known through methods of energy flexibility identi-



58 4 Research Gap and Concept

fication following [26] with tools like the E-FLEX-Scanner
or the Energy-Flexibility-Audit [5, pp. 167–169].

PR 4: Technichal Scope: The method focuses on the determi-
nation of technical key figures for the modeling of energy
flexibility.

The derived requirements and prerequisites form the framework for
developing the methodology for a DD-EFMod. The development of
this methodology is presented in Chapter 5.

Table 4.1: Summary of requirements and prerequisites (own table).
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4.4 Interim Summary

Based on the previous systematic literature review from Chapter 3, this
Chapter derives the central research objective and the research ques-
tions. Subsequently, the research hypotheses are formulated. Finally,
the functional requirements and prerequisites, summarized in Table 4.1,
for developing a method to automate data-driven parameterization of
energy flexibility models are derived.
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”The true Logic for this world
is the Calculus of
Probabilities, which takes
account of the magnitude of
the probability.”

James Clerk Maxwell
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To fulfill the research question and research hypotheses defined in
Chapter 4, this chapter shows the development of the DD-EFMod
method. First, Section 5.1 describes the approach and structure of
the method, with detailed explanations of the steps and how the auto-
mated parameterization of energy flexibility models are realized within
the DD-EFMod method. In Section 5.2 afterwards, the software con-
cept for the method and its components is discussed.

5.1 Approach and Structure of the
DD-EFMod Method

The research goal of simplifying the enabling process of energy flexibil-
ity in factories (cf. Figure 1.2) is the starting point. As described in
Section 2.1.1, the third step of the process requires the implementation
of identified possible energy-flexibility measures while taking into ac-
count the technical environment. As the systematic literature review
shows, the realization requires modeling the identified energy flexibil-
ities (e.g. Lindner et al. [30]). This can be done with the Energy
Flexibility Data Model (EFDM) described in Section 2.1.2.
With the goal, that the parameterization of the EFDM should be as
simplified and automated as possible (see Section 4.3) and as a re-
sult conducted from the systematic literature review (see Table 3.3),
machine learning and data analytic algorithms can be used to achieve
this.
Due to its structured approach to the planning, implementation and
evaluation of machine learning projects, the application of the CRISP-
ML(Q) process [67] (see Chapter 2) in this thesis provides a good basis
for the realization of a method for data-driven automated parameter-
ization of energy flexibility key figures of the EFDM in the context of
this thesis. The CRISP-ML(Q) process is particularly well suited to the
complexity of energy flexibility in factories, as it takes quality assur-
ance into account at every stage of the project. This focus on quality is
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essential for the parameterization of EFDMs, as energy flexibility needs
to be modeled based on multiple data sources and variable conditions
as they occur in production systems. In addition, the CRISP-ML(Q)
process supports the use of advanced machine learning and data ana-
lytics algorithms, which are required to automate the parameterization
of EFDMs. By adapting the CRISP-ML(Q) process steps, I can sys-
tematically address the challenges associated with accurate modeling of
energy flexibility by ensuring that each step, from data verification over
machine learning model deployment to energy flexibility model valida-
tion, is executed precisely. This structured methodology is essential to
achieve the quality required for the modeling and parameterization of
EFDMs.

The adaption of the CRISP-ML(Q) process to the automated de-
termination of the key figures of the EFDM for the description and
modeling of energy flexibility by applying machine learning or data an-
alytic algorithms represents the DD-EFMod method. The overall con-
sideration for developing the DD-EFMod method is divided into the
three layers: energy-flexible system layer with focus on the com-
plete energy-flexible system, the application and implementation
layer with focus on the handling and implementation of the complete
EFDM, and the energy flexibility modeling layer in which the au-
tomated parameterization of each relevant energy flexibility key figure
of the EFDM is realized by the application of machine learning or data
analytics algorithms. The overall methodology and the interaction be-
tween this three layers is shown in Figure 5.1 and discussed in detail in
the following.

5.1.1 Layer One - Energy-Flexible System

This layer is based on the VDI process (see Figure 1.2) and defines the
starting point and the process or system to be enabled in the context
of the DD-EFMod method. As described in Section 2.1.1, this layer
focuses on the holistic identification, enablement, implementation, de-
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ployment, and commercialization of energy flexibilities with the follow-
ing steps:

1. Potential analysis: Initially, the energy-flexibility potential is
evaluated both technically and economically. The input data, such
as the power consumption, operating limits or system dependencies
of a system, are collected with the help of an external software tool,
the E-Flex Scanner. This tool supports those responsible in select-
ing relevant machines and systems for energy-flexible operation and
helps to define company objectives for the use of energy flexibility
[5, pp. 168–169].

2. Concept and planning: Detailed analysis and preparation for
the implementation of selected energy-flexibility measures. In this
step, the external software tool the Energy-Flexibility Audit can be
used to systematically identify energy-flexibility measures and assess
their potential, which is then documented for further processing [5,
pp. 76–83].

3. Application and implementation: Technical realization of the
energy-flexibility measures defining the corresponding EFDM and
validation through test runs. This step is the primary focus of
this thesis, representing the central step where theoretical energy-
flexibility measures could be transformed into practical application-
able load change profiles based on the EFDM to enhance energy-
flexible operation.

4. Operative marketing: Start of marketing the achieved energy flex-
ibility.

5. Controlling and monitoring: Monitoring and analysis of perfor-
mance to identify potential for improvement.

6. Optimization: Enhancement of energy flexibility through contin-
uous improvement.

The first two steps set the basis for successfully applying the DD-
EFMod method. In the first step, the potential analysis, the energy-
flexibility potential is determined to identify which possibilities of energy-
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flexible operation are technically and economically feasible. This is
crucial as it determines which systems and processes are eligible. The
second step builds on this by defining how and which energy-flexibility
measures can be implemented. This detailed planning and preparation
is essential and can be done with the help of the E-FLEX-Scanner,
or the Energy-Flexibility-Audit [5, pp. 76–83]. In the context of the
CRISP-ML(Q) process, these results are part of the business and data
understanding. Both steps, potential analysis and concept and plan-
ning, are assumed as fulfilled as defined as the prerequisite number
three in Chapter 4. The data collected in these two steps can be used
in layer two of the DD-EFMod, the application and implementation
layer, and further processed and analyzed to determine the key figures
of the EFDM.

5.1.2 Layer Two - Application and Implementation

The focus of the DD-EFMod method is on the actual enabling, mod-
eling, and implementation of energy flexibility measures, which are de-
scribed by the EFDM. Therefore, the second layer of the DD-EF-Mod
looks at the EFDM of an energy-flexible system as a whole and de-
scribes how it can be deployed. For this purpose, as it contains the
modeling step of energy flexibility, the CRISP-ML(Q) process, with the
steps data preparation, modeling, evaluation, deployment, and moni-
toring and maintenance is adapted and applied. This adaptation makes
it possible to provide a methodological structure that covers the specific
steps for implementing and operating an energy-flexible production.
The DD-EFMod method uses this structure to effectively manage the
complexity of energy consumption data and the dynamics of production
systems. Data which are relevant for these steps can be taken from the
previous steps of potential analysis and concept and planning, and fur-
ther relevant data for the correct EFDM modeling can be determined
through hardware enablement and data verification. Within the appli-
cation and implementation layer, the second layer of the DD-EFMod
method, various sub-steps are executed that are derived directly from
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the CRISP-ML(Q) process (see Chapter 2):

• Hardware Enabling: Preparing and adapting the physical and
technical infrastructure to collect relevant data and information
to model energy-flexibility measures.

• Data Verification and Data Preparation: Verify and pre-
pare the collected data to ensure its quality and usability for the
subsequent modeling processes.

• Energy Flexibility Modeling and Energy Flexibility Model
Validation: Modeling of the EFDM and its key figures by auto-
mated parameterization with the usage of machine learning and
data analytics algorithms. The validation of the energy flexibil-
ity models applied in order to proof and quantify the automated
parameterized EFDM in the energy-flexible system context.

• Energy Flexibility Model Deployment and Monitoring
and Maintenance: Implement the EFDM in the production
environment and continuously monitor their performance.

Between these steps, dynamic feedback loops enable continuous feed-
back and adaptation of the models. These loops are for iteratively
improving the energy flexibility models and adapting them to changing
conditions. They enable an agile response to new findings and chal-
lenges during operation. As shown in Figure 5.1, corrective feedback
between the following sub-steps are considered:

• from energy flexibility model validation to energy flexibility mod-
eling and data verification

• from energy flexibility model deployment back to data verification.

These individual steps of the application and implementation layer
are described below in their respective functions.

The Hardware Enabling stands at the beginning of creating a
model for the description of energy flexibility. It contains the enabling
of relevant hardware to ensure sufficient data availability and the as-
sociated information density. Various approaches and solution can be
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used for this purpose:
• data acquisition using hybrid measuring points according to [27]
• centralized or decentralized energy management systems [92]
• collecting raw data via temporary measuring technology
• readout of data points of the building automation [93]

Depending on the application, the requirements (e.g., sampling rate,
consistency, and accuracy) must be defined individually, and the hard-
ware must be selected accordingly. For more information, I refer to our
previous work in Fuhrländer-Völker et al. [93], and Ahrens et al. [38].
As well as to the work of Lodwig et al. [92] with a focus on decentral-
ized systems. In the context of this work, as defined in Section 4.3 as
prerequisites number one and two, this step is assumed to be fulfilled.

The Data Verification step forms the basis for the subsequent
steps of modeling energy flexibility. In this sub-step, data from var-
ious systems, including Enterprise-Resource-Planning (ERP), Energy
Management System (EMS), machine data, data sheets, and product
information, is verified. The data verification step is based on the
CRISP-ML(Q) data quality verification sub-step, which sets require-
ments for data quality. The aim is to ensure the accuracy, consistency,
and completeness of the data, which is a central condition for all sub-
sequent steps of usage machine learning or data analytics algorithms
for the automated determination of the energy flexibility key figures
(EFKF) for parameterize the EFDM.
By reusing data from previous steps, duplication of work is avoided, and
a consistent database is ensured. This is particularly important as data
verification not only identifies errors, but also ensures that all relevant
data and information for modeling energy flexibility is collected and
interpreted correctly. Successful data verification makes it possible to
make informed decisions about the data analytics and machine learning
algorithms to be used. During data verification relevant metrics are
defined. While non-technical metrics can be defined directly, technical
metrics require further steps, especially those that are not trivial to
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determine. In this work, the aim is to carry out automated param-
eterization of EFDMs to increase the depth and accuracy of energy
flexibility models further. Therefore for a system under consideration,
let the flexibility space be F . This is described by

F = f(L,S,D) (5.1)

as a functional combination of the spaces of flexible loads L, storages
S, and dependencies D. Each of these spaces is spanned by the en-
ergy flexibility key figures defined in the EFDM (see Chapter 2 and
Appendix A.1).
For the considered system, from the relevant defined EFKFs, it follows
for the data verification step that K = [K1, . . . ,Ki] with i ∈ N repre-
sents the vector of the EFKF to be determined. Data-driven modeling
of the key figures is carried out based on time-variant measurement data
as input variables X(t) = [x1(t), ..., xn(t)] with n ∈ N. Accordingly, for

Ki = fi (x1(t), . . . , xn(t)) (5.2)

and thus

K = [f1 (x1(t), . . . , xn(t)) , . . . , fi (x1(t), . . . , xn(t))] (5.3)

apply. Taking the example of the flexibility space of the flexible load,
it follows

L = f(K(X(t))) (5.4)

which means the modeling of the flexible load depends on the cor-
responding energy flexibility key figure, which depends on the input
variables. This is equivalent for the spaces S and D. By determining
the relevant measurement data for the respective Ki, relevant features
required for automated key figure modeling can be derived in the next
sub-step.

The Data Preparation forms a central element of the entire method.
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Figure 5.2: Data preparation step (own figure).

It significantly influences the quality of the machine learning or data
analytics algorithm procedures used and, thus influences the accuracy
of the identified EFKFs and the resulting EFDMs [67]. It is an iterative
step due to feedback loops from subsequent steps (as shown in Figure
5.1). This ensures continuous improvement of both the machine learn-
ing or data analytics algorithms and the EFDM. The data preparation
includes the sub-steps data selection, data cleaning, data construction,
and data standardization as shown in Figure 5.2
The sub-step data selection includes the actual selection of relevant
data samples and feature selection. In this phase, according to the
CRISP-ML(Q) methodology, raw input signals or datasets X(t) are
formed that are suitable for advanced analytical processing. This step
involves several key transformations like moving average, normaliza-
tion or standardization (see Chapter 2). The selection and refinement
of the raw data X(t) leads to a more focused dataset x(t). This pro-
cess involves identifying and extracting the most relevant data features
(e.g., power values, machine states, or energy consumption) that are
crucial for the energy flexibility modeling. Data and information that
provide only little added value for achieving the target variable will be
excluded. This avoids overfitting and reduces the computational effort
of the resampled application [67].
This is followed by cleaning and smoothing the data values of x(t).
During this stage, tasks such as outlier removal (e.g., IQR-Method)
and denoising (e.g., Gaussian low-pass filter) are done to create more
accurate and reliable data. Unwanted interfering signals, outliers, and
missing data points are filtered out. Thus, an increase in data quality
takes place [67]. These pre-processing steps are essential when the data
has different scales, typically for modeling EFKF based on different raw
data. This transformations resulting in x∗(t∗) as the cleaned dataset.
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This step ensures the data is free of anomalies and noise, which could
otherwise skew the analysis.
In the data construction sub-step, the feature engineering occurs. In
this process, new features can be derived based on expert knowledge,
data, or existing information. This can be done, for example, by gener-
ating new feature spaces or transformations (e.g., from the time domain
to the frequency domain). Overall this leads to the contruction data
signal x̃∗[t] which is processed further as shown in Figure 5.2 by using
standardized data types, formats (JavaScript Object Notation (JSON),
Comma-separated values (CSV)) and sampling. Finally this leads to
the feature vector f [k] as the result of the data preparation step. Each
of these sub-steps plays a relevant role in ensuring that the raw data is
not only clean and reliable but also rich in information and structured
in a way that machine learning and data analysis techniques are usable
to automate the EFKF determination.

The Energy Flexibility Modeling step represents the third layer
of the DD-EFMod. The automated modeling of the energy flexibility
is done by the application of machine learning and data analytics algo-
rithms for determination of the relevant EFKF for each energy-flexible
system. Therefore the input of this step are the preprocessed data f [k]
and the output are the EFDM with the determined EFKFs. The exact
procedure and the individual steps, cf. Figure 5.1, are described in the
following Section 5.1.3.

The Energy Flexibility Model Validation is the step where the
automated parameterized EFDM is validated. This step is a part of the
energy flexibility model setup sub-process, as shown in Figure 5.3. The
results of the determined energy flexibility key figure (EFKF) must be
evaluated for correctness regarding the complete EFDM into account.
On the one hand, this can be done manually by experts with sufficient
knowledge of the domain and the system. On the other hand, it is
possible to perform this automatically using validation procedures. The
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Figure 5.3: Energy flexibility model setup sub-process (own figure).

validation of the EFDM can be done by simulations as well as on real
systems. Various conditions have to be evaluated [67]:

• Accuracy: Are the EFKF of the energy flexibility model correct,
and do they meet the success criteria?

• Feasibility: Are the process parameters and technical limits met?

• Robustness: Which process and system tolerances are considered
to react to disturbances and process deviations?

• Explainability: Are the EFDM parameterization results trans-
parent?

Findings and possible improvements identified in this step are fed back
to the previous data verification and energy flexibility modeling steps
via feedback loops. This ensures the successive improvement of the
EFDM quality by adjusting the EFKF. If the validation is successful,
a deployment of the energy flexibility model must be tested.

The Energy Flexibility Model Deployment is the application
step, where the previously automated parameterized EFDM is applied.
For this purpose, the EFDM is transferred to operational mode. The
parameterized EFDM must be checked for actual feasibility and ac-
ceptance by the user. A deployment strategy should be applied. This
means that it is defined on which instance the EFDM are stored, how
the resulting flexible load measure is to be transferred to the systems
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for energy-flexible operation, and how the flexible load measure is im-
plemented by the energy-flexible system. This can be done manually by
the machine operator or automatically via the machine’s Programmable
Logic Controller (PLC). Identified obstacles, system behavior, or errors
that have not yet been considered should be fed back to the previous
data verification step to adapt the key figures of the EFDM accord-
ingly. In addition, considering an automated fallback mechanism, as
we shown in [93], should safeguard the implementation. This ensures
safe system operation by automatically switching off the flexible load
measure to the reference case.

The Monitoring and Maintenance step is essential for main-
taining the correctness of the EFDM and the automated determined
corresponding EFKFs. Monitoring and updating the EFDM is nec-
essary due to process changes, adjustments to the operating strategy,
incorrect data transfers, or wear and tear. This step is not limited to
monitoring the EFKF of the EFDM but is an extension of the control-
ling and monitoring step in the layer one. The update, to take account
of identified changes, must be carried out while running through the
other layer one steps, including the optimization step. This is the only
way to identify and improve higher-level systematic changes.

5.1.3 Layer Three - Energy Flexibility Modeling

The third layer, the Energy Flexibility Modeling layer of the DD-
EFMod method describes the process of how individual energy flex-
ibility key figures (EFKF) can be automatically determined and so the
energy flexibility model is parameterized. This layer is divided in two
sub-processes, the energy flexibility key figure determination (Figure
5.4) and the energy flexibility model synthesis (Figure 5.5). For this
purpose based on the input from the previous data-preparation step in
layer two, a distinction is made between the available data type, stream-
ing data or batch data, in the algorithm selection sub-step. Based
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automated determination of a single energy flexibility key
figure of the EFDM (own figure).

on this, an appropriate machine learning or data analytics algorithm
is applied to automatically determine the relevant key figures of the
EFDM. Adapted from the CRISP-ML(Q) process, the quality require-
ments (defined in Section 4.3) of the machine learning algorithm must
be evaluated and, if necessary, improved by adjusting the algorithm
parameters. If the machine learning model is of sufficient quality, the
EFKF is parameterized and evaluated. If requirements meet the ac-
tual EFKF correctly, the entire energy flexibility model can build in
the step energy flexibility model building which is then transferred back
as the output to the second layer. If the EFKF identified by the ma-
chine learning or data analytics algorithm is incorrect, a manual EFKF
calculation should be performed. If this is also not possible, e.g., due
to missing information or data, the process of this layer three energy
flexibility modeling must be started again with new input data. Each
sub-step of layer three is explained in detail in the following.

Algorithm Selection is based on the previous steps of data ver-
ification and data preparation, the type of machine learning or data
analytics algorithm A to be used for the automated determination of
the EFKF is selected. Conventional offline batch machine learning or
data analytics algorithms can be used if sufficient historical data are
available. In the other case, where only temporary measurement data
were available, online data stream mining algorithms can be selected
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(see Chapter 2). In addition, existing framework conditions such as
computing capacity and robustness must be considered when selecting
an algorithm.

Algorithm Parameter Selection is the sup-step, which defines
the measured data and features for the selected algorithm. In addition,
quality criteria for the evaluation of the selected machine learning or
data analytics algorithms must be selected (cf. Chapter 2). In this step
the selected algorithm A results in a specific modelM.

Model Deployment includes training and applying the selected
machine learning or data analytics modelM. Depending on the energy-
flexible system and the EFKF to be determined, various combinations
of algorithms may be possible. This step is based on the deployment
according to [67]. If the internal algorithm finishes the calculation
and iterations, the specific machine learning or data analytics model
M′ results. With this model M′ the automated determination of the
EFKF can derived.

Model Quality Sufficient is used as the sub-step to evaluate the
deployed machine learning or data analyticsM′ and thus decide whether
the results of the algorithms are usable. According to [67], the quality
criteria of reproducibility, performance, robustness, accuracy, and ex-
plainability can be included in this model evaluation. If all criteria and
requirements are met, the next step is to determine the corresponding
EFKF from the output Y. Otherwise, if the model quality does not
meet the required conditions, a new training with adjusted algorithm
parameter selection must be carried out.
The sub-process energy flexibility model synthesis (see Figure 5.5)

starts with the step EFKF Parameterization. This step evaluates
the result Y of previous data-driven automated EFKF determination
sub-process based on the selected machine learning or data anayltics
algorithms for a single EFKF. For this purpose, the output variable of
the EFKF determination sub-process Y is assigned to the correspond-
ing energy flexibility key figure Ki and its attributes according to the
energy flexibility model, in the case of this work the EFDM [29] as
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machine learning or data analytics model output Y to
the corresponding energy flexibility key figure Ki, validate
them, and parameterize the EFDM (own figure).

shown in Appendix A.3, for further processing.

The step of the EFKF validation is to check the respective specific
key figures or their attributes for correctness. The evaluation is based
on the defined criteria (see Chapter 4). The validation can be found on
expert knowledge, simulations, or manual calculations. The main part
is to check that the operating limits b1 as the lower limit and b2 as the
upper limit are met for a determined key figure Ki. This can be done
using

b1 ≤ Ki ≤ b2. (5.5)

In the case that several operating conditions B = {b1, b2, . . . , bn} are
to be fulfilled, a logical operation

(Ki > b1) ∧ (Ki < b2) ∧ · · · ∧ (Ki > bn) (5.6)

can be used for validation. In the event of successful validation, K can
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be used as a vector with the individual key figures in the next sub-step
of the synthesis process, see Figure 5.5.
The Energy Flexibility Model Building step is to span the flexibil-
ity space F . In this process, this F is converted into the corresponding
standardized data format. In this work, the JSON schema format pub-
lished in Lindner et al. [29] describes the energy flexibility space as
EFDM. Therefore our developed external service the EFDM GUI, can
be used [94] (see Appendix A.1.1).
If, on the contrary, the validation of a Ki cannot be carried out suc-
cessfully, it must be checked whether a manual calculation of the
corresponding key figure is possible. If not, the modeling process must
be restarted as shown in Figure 5.1, starting with the data preparation
step. If a manual determination of the key figure is possible, as shown
in our previous work [30], the flexibility space F can be spanned on
this basis.
After completion of the energy flexibility model building sub-step, the
modeling of the energy flexibility is completed, and the automated pa-
rameterized EFDM is transferred to the application and implementation
(see Figure 5.1). The EFDM is transferred to the second layer energy
flexibility model validation step (see Section 5.1.3).

The developed structure of the DD-EFMod method enables a proce-
dure to realize the automated parameterization of the Energy Flexibil-
ity Data Model by determine the relevant energy flexibility key figures
of the Energy Flexibility Data Model with the application of machine
learning or data analytics algorithms. A software concept is presented
in the following section to demonstrate its feasibility and prototypical
implementation.

5.2 Software Concept

To ensure the applicability of the DD-EFMod method, I developed
a corresponding software concept. This is visualized in the Unified
Modeling Language (UML) component diagram in Figure 5.6. The
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component diagram (own figure).

software concept corresponds to a prototypical implementation of the
developed DD-EFMod method. The focus here is on demonstrating
that implementing the method can be realized under consideration of
the functional requirements defined in Chapter 4. The software concept
is structured around several key components:

• Energy-flexible system, referred to as the EF System compo-
nent, which serves as the main data source. Data and information
are transmitted to a central database via corresponding inter-
faces (e.g., Open Platform Communications Unified Architecture
(OPC UA)).

• The Database allows various data formats, such as time series
(CSV), status data (CSV), machine data (Portable Document
Format (PDF)), and the Energy Flexibility Data Model (EFDM)
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as JSON format to be stored and managed.
• Data and information can be transferred via interfaces from the

database and the energy-flexible system to the DD-EFMod
structure (realized in python programming language (see Section
6.2)). This is made up of the main components:

– data verification

– data preparation

– energy flexibility modeling

– energy flexibility model synthesis

Each sub-component corresponds to the DD-EFMod method steps
described above in Section 5.1. Furthermore, an interface to the
central database is provided for the setup component to save the
determined EFDMs.

• Interaction with the external service EFDM Graphical user
interface (GUI) can transform the determined key figures of
the EFDM in the standardized JSON structure. This external
service is explained more in detail in Appendix A.1.1.

• A defined flexible load measure can be transmitted via an inter-
face to the energy flexible system PLC. This means that the
system can implement a flexible load measure derived from the
EFDM.

By using appropriate interfaces (like our previuos work [95]), the database
can also be enriched with information from external services, in-
cluding EMS (energy management system), ERP (enterprise resource
planning), or the energy market. This information can be used in the
automated determination of the key figures of the EFDM.

5.3 Interim Summary

The primary objective of this work is to simplify and automate the
enabling process for energy-flexible operation of production infrastruc-
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ture (see Chapter 4). To achieve this, the DD-EFMod method, as
shown in Figure 5.1, has been developed to facilitate the necessary
modeling of energy flexibility through data-driven approaches. This
method integrates and adapts the CRISP-ML(Q) process, extending
the VDI process of enable factories to energy-flexible operation during
the application and implementation step. The application and imple-
mentation layer of the DD-EFMod method specifically use the differ-
ent steps data verification, data preparation, and the energy flexibility
model setup to describes energy flexibility, reducing the need for manual
intervention. The energy flexibility modeling layer further automates
the process by determining the individual energy flexiblity key figures
(EFKF) of the Energy Flexibility Data Model using suitable machine
learning and data analytics algorithms. The DD-EFMod method pro-
vides structured steps to automate and simplify the modeling of energy
flexibility. The DD-EFMod method provides structured steps to auto-
mate and simplify the modeling of energy flexibility, ensuring efficient
and effective implementation of energy flexibility. Based on the devel-
oped method with the individual steps, I derived a software concept
for feasibility. This software concept consists of modular subcompo-
nents and has software and hardware interfaces to enable interactivity
between external software services and the energy-flexible system un-
der consideration. The method development and the software concept
development were carried out considering the requirements and quality
criteria (see Section 4.3). The following describes how these functional
requirements on the method (FR-M), functional requirements for en-
ergy flexibility modeling (FR-EF), and quality requirements (QR) are
addressed:

• The applicability of the methodology (FR-M 1) is addressed by
the software concept, using standardized interfaces and program-
ming languages. In addition, the applicability is also supple-
mented by the fulfillment of the other criteria.

• The chosen division into layers, sub-steps and into corresponding
software components and steps ensures modularity (FR-M 2) so
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that only sub-steps can be executed if required.

• The requirement of transferability (FR-M 3) is met, as the method
can be used to calculate the key figures of a model to describe
energy flexibility, which in turn can represent individual energy-
flexibility measures.

• The reproducibility of the results when applying the method (FR-
M 4) is ensured by iteratively running through the individual
sub-steps and saving the output data and results in the database.

• The feasibility (FR-EF 1) and accuracy (FR-EF 2) of the auto-
mated determined EFKF and the parameterized energy flexibility
model can be ensured by the sub-process of the energy flexibility
model setup through validation, deployment, and monitoring of
the energy flexibility model.

• The EFKF validation step built into the method ensures that
the energy flexibility key figures consider the possible identified
maximum limits (FR-EF 3 and FR-EF 5) and are also explainable
and comprehensible (FR-EF 4).

• The defined criteria for the machine learning and data analytics
algorithms used (QR 1-5) to determine automatically the EFKF
can be considered in the algorithm selection step and checked for
their quality as part of the model deployment step and machine
learning and data analytics model quality sufficency evaluation.

The validation of the DD-EFMod method is carried out in the following
chapters to check the applicability of the DD-EFMod method and the
associated software concept. I will first discuss the use case in the next
chapter, including the machines and components involved (Chapter 6).
This is followed in Chapter 7 by the implementation and validation
under consideration of the results.



6 Use Case and Application at
the ETA Research Factory

”Almost everything is like a
machine.”

Ray Dalio



82 6 Use Case and Application at the ETA Research Factory

This chapter describes the use case after showing the development of
the method in the previous chapter. For this purpose, I first describe
the machines used in the use case in Section 6.1 and discuss their sys-
tematic technical relationship. Then, in Section 6.2, I describe how the
machines are connected to aggregate all relevant data from the differ-
ent systems. This is followed by the description of four scenarios which
focus on validation of the method in Section 6.3.

6.1 Process and Machines of the Use Case

To ensure the practical applicability of the developed DD-EFMod method
for data-driven energy flexibility modeling, I evaluated the approach at
the ETA Research Factory. The ETA Research Factory is located at
the Technical University of Darmstadt and represent a real-scale re-
search factory [96]. At the ETA Research Factory a holistic approach
for an energy-efficient factory is realized. Energy efficiency is achieved
by integrating the production machines, the technical building service
systems, and the building shell in a thermal network. This factory
setup aligns well with the RAMI 4.0 framework, which emphasizes the
integration of digital and physical processes across different layers of a
manufacturing system. The research factory is equipped with an exem-
plary production process chain for metal processing and the required
technical building service systems. This production process contains
the steps, lathing, cleaning, heat treatment, grinding, and final clean-
ing as shown in Figure 6.1.
For the validation use case of the developed DD-EFMod, I focused on
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Figure 6.1: Production process chain of the ETA Research Factory
(own figure adapted from [96]).
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Figure 6.2: Flexible loads of the use case (own figure).

the grinding sub-process. I have chosen this sub-process for validation
to examine a system with several flexible loads of different types, stor-
ages, and dependencies. This allows a validation of the applicability of
the DD-EFMod method within a RAMI 4.0 structured environment un-
der consideration of the defined functional requirements on the method
(see Section 4.3).
The central system of the grinding process is the EMAG VLC-100GT
[98] machine tool (see Figure 6.2b), which is integrated into the higher-
level production process. In the context of the production process, the
machine is charged with workpieces from a material storage via support
automation and grinded in the machining area. The finished compo-
nent is then forwarded to the product storage, where it is stored and
transferred to the next production step.
To ensure process stability and take energy efficiency aspects into ac-
count, the machine is supplied with cooling via the factory’s central
heating and cooling system. In the application case, central cooling
is provided by the eChiller45-II cooling machine from Efficient En-
ergy GmbH [97, 99] (see Figure 6.2a). Both machines are electrical
consumers must be cooled while operating, and therefore they are con-
nected to the building’s central cooling supply system, which allows
the buffer storage of the central cooling supply system to be considered



84 6 Use Case and Application at the ETA Research Factory

E
xt

er
na

l
su

pp
ly

Su
pp

ly
sy

st
em

s
P

ro
ce

ss
flo

w

Cooling
maschine

Material
storage

Machine
tool

Energy
demand

Data, signals,
information

Cold
storage

Data
base

Product
storage

C
om

pa
ny

m
an

ag
em

en
t

le
ve

l

Cooling supply input
Cooling supply output

Electrical energy

E
n

er
gy

-fl
ex

ib
le

p
ro

ce
ss

an
d

sy
st

em
s

System PLC
DD-EFMod

External
services

EFKF determination

Energy flexibility modeling

Figure 6.3: Use case process and systems their connections, informa-
tion, and data flows between the sub-systems (own figure).

[100]. As mentioned in Section 4.3, a central prerequisite for the appli-
cation of the DD-EFMod method is that all relevant components and
systems for which an energy-flexibility measure is to be created pro-
vide the relevant data and information with the help of ICT systems
(see prerequisite number two in Section 4.3). Therefore in the ETA Re-
search Factory we implement a framework which we developed over the
last years [95] to enable different machine types, various databases and
monitoring systems implemented in the ETA Research Factory. This
framework facilitates the data integration and management required
for effective energy flexibility modeling, reflecting the hierarchical and
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functional structuring proposed by RAMI 4.0 (see Chapter 2). All rel-
evant components and their energy supplies and data connections of
my validation use case are shown in Figure 6.3.

6.2 Hardware and Software Enabling

As mentioned in Section 4.3, this work focuses on the parameteriza-
tion of energy flexibility models and the automated determination of
technical energy flexibility key figures. This is possible by integrating
the software concept presented in Section 5.2. Therefore, the hard-
ware capability of all relevant systems is assumed to be fulfilled (see
prerequisites 1-4 in Chapter 4). We allready presented the hardware
enablement in Fuhrländer-Völker et al. [93]. Also refer to Bauer et
al. [101] as well as to the results of Sossenheimer [27] and Fuhrländer-
Völker [102]. To address the functional requirement on the method
number one for the applicability of the DD-EFMod method as part
of the implementation of my software concept, I used the open-source
standard libraries listed in Table 6.1. The method was implemented in

Table 6.1: Software and hardware used for implementation of the soft-
ware concept (own table).

Software Version Reference
Python 3.10.11 [103]
scikit-learn 1.3.2 [104]
scipy 1.11.3 [105]
numpy 1.26.2 [106]
pandas 2.0.3 [107][108]
river 0.21.0 [109]
Hardware
System Lenovo 20WE
Operating system 10.0 Pro 64 Bit
Processor Intel(R) Core(TM) i7 2.80GHz
Memory 16 GB
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the specified open-source Python libraries to enable the broadest pos-
sible applicability without the vendor lock effect of software licenses.
The implementation was carried out using the hardware also set in
Table 6.1. This is a standard workstation, which also ensures simple
implementation and transferability. There is no need for special high-
performance computers or cloud applications, as at least the prototype
implementation in the context of this work does not require intensive
computing power. This work focuses on determining and calculating
the technical key figures describing energy flexibility. Four different
scenarios are discussed below.

6.3 Scenario Definition

All relevant components, energy supplies, and data connections of my
validation use case are shown in Figure 6.3. As shown, the processes and
systems that should operate energy-flexible are the grinding machine
tool and the cooling machine, which extend their flexible potential by
considering product storage and cold storage. These systems and their
connections result in the following scenarios, which are used to validate
developed DD-EFMod method:

Scenario 1: The focus is on the EMAGVLC-100GT machine tool
to show that the method works for a machine mod-
eled as the EFDM class flexible load. I will also
validate the deployment of batch and data stream
machine learning algorithms for automated determi-
nation of the EFKF.

Scenario 2: This extends scenario one by considering the ma-
chine tool EMAG VLC-100GT combined with the
product storage to show the DD-EFMod methods
application for the EFDM class storages.

Scenario 3: Validation of the transferability of the method is
demonstrated with this third scenario. For this pur-
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pose, the DD-EFMod method is transferred to an-
other machine type, the cooling machine eChiller45-
II, and the cold storage.

Scenario 4: The focus here is on two flexible loads, the machine
tool EMAG VLC-100GT together with product stor-
age and considering the cooling machine eChiller45-
II with the cold storage to validate the DD-EFMod
capability for automated determination of the EFKF
of the EFDM class dependency.

In addition to the four scenarios mentioned above, an evaluation of
the potential energy and cost savings that are possible through the use
of energy-flexibility measures defined as flexible load measures, based
on the automated parameterized EFDM, on different energy markets
is carried out. The implementation and application, as well as the
discussion of the results, are discussed in the next Chapter 7.

6.4 Interim Summary

This chapter first describes the use case for the validation of the DD-
EFMod method I developed as part of this thesis. For this purpose,
the process chain of the ETA Research Factory was described, and the
individual machines, the machine tool EMAG VLC-100GT, and the
cooling machine eChiller45 are relevant. I also listed the appropriate
software that I used while implementing the software concept of the
DD-EFMod method. This was followed by defining the four scenarios
used to validate the method.



7 Implementation and
Validation

”An experiment disproving a
prediction is discovery.”

Enrico Fermi



7.1 Scenario 1 - EMAG GT 89

This chapter shows the validation of the developed DD-EFMod method,
which was applied to the use case and four different scenarios (see sec-
tion 6.3). A separate system boundary is considered for each scenario
in order to test different applications of the method. For this purpose,
each scenario is divided into three sub-steps. First, the framework
conditions of the scenario and the energy flexibility key figures to be
determined are discussed. This is followed by an explanation of the
implementation based on the sub-steps using the DD-EFMod method.
Finally, the results of the individual sub-steps for each scenario are pre-
sented and discussed. Following the four scenarios, the implementation
of the energy flexibility measures change processing sequence and shift
start of job defined as flexible load measures based on the automated
parameterized Energy Flexibility Data Models of the four scenarios is
validated. This additionally evaluates the implementation of the DD-
EFMod method in practice. The chapter concludes with a summarizing
interim conclusion. To ensure sufficient traceability of the validation of
this work, all measurement data, implemented algorithms, and results
used in this work are documented and made available as a publicly
accessible TUdatalib repository [110].

7.1 Scenario 1 - EMAG GT

The focus of this scenario is on the EMAG VLC-100GT machine tool
(see Chapter 6) to show that the method works for the EFDM class
flexible load. In this scenario, I will also investigate the use of offline
and online streaming machine learning algorithms to calculate the cor-
responding EFKF.
Based on the method (see Figure 5.1), the first step is to determine
which energy-flexible system is to be examined (layer 1). The system
boundary of this scenario in the use case presented in the previous
chapter is shown in Figure 7.1 and is defined around the machine tool
EMAG VLC-100GT itself. This means that only the energy supply,
particularly the electrical power consumption, is considered as a sim-
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Figure 7.1: System of scenario 1 (own figure).

plification in this scenario to analyze and determine energy flexibility.
The next step is to analyze and select the data required to determine
the relevant technical EFKF for describing the energy flexibility of the
machine. For this purpose, an exemplary electrical power consump-
tion of the machine, shown in Figure 7.2 recorded on 31.08.2023, is
examined as a starting point and reference case operation load profile.

7.1.1 Key Figure Definition

The data verification begins with the definition of the relevant EFKF.
Assuming that the EFDM is used to describe energy flexibility, as de-
scribed in Chapter 2.1.2. In the following, it is assumed that the EFDM
according to [29] is used to describe the existing energy flexibility. In
the case of the EFDM class flexible load, the following selected sub-
model of technical key figures is shown in Table 7.1.
As discussed in the fundamentals chapter, not all key figures are always
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Figure 7.2: Electrical power consumption of EMAG GT (own figure).

necessary. For this scenario, determining the power states is defined as
the minimum criterion, and the other technical key figures are consid-
ered optional. This results in the vector of relevant EFKF

K = [P, TRea, TV, TH,∇PAct,∇PMod,∇PDea, TReg] . (7.1)

I examined in the data verification step the measured variables and
input data listed in Table 7.2 as the data basis for the next steps. In the
first step, I examined the measurement variables mentioned based on
system knowledge. The aforementioned prioritization could be carried
out based on these. Based on this prioritization, the definition of the
input variables follows

X(t) = [P (t), sst, swk, sop, sda, tpro] (7.2)

to determine the flexibility space L.
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Algorithm 1 Data Verification and Preparation
Input: Dataset of measured data X
Output: Feature vector f [k]

1: Load dataset X;
2: Analyze power values P (t):
3: Calculate min, max, and mean of P (t);
4: Apply IQR method to detect and filter outliers in P (t);
5: Compute Moving Average xMA of P (t) with

window size M (Eq.: 2.11);

7.1.2 Implementation

The next step in layer 2 is data preparation. Here I have processed
the input data from X(t) using standard methods (e.g., normalization,
moving average, see Chapter 2), from which the respective feature vec-
tor f [k] is derived.
The example code of the implementation for this step is shown in Al-
gorithm 1 as an example for X(t) = [P (t)]. The results are shown and
discussed in the next section. This is followed by the step of energy
flexibility modeling, starting with the algorithm selection sub-step in

Table 7.1: Technical key figures in the EFDM for describing the flexi-
bility space and their feasibility levels of scenario 1 following
Lindner et al. [29] (own table).

Class Key Figure Description Feasibility
Level

Fl
ex
ib
le

Lo
ad

P Power states 1
TRea Reaction duration 2
TV Validity 2
TH Holding duration 2
∇PAct Activation gradient 2
∇PMod Modulation gradient 2
∇PDea Deactivation gradient 2
TReg Regeneration duration 2
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Table 7.2: Priority of measured values of the EMAG GT for scenario 1
(own table).

Measured Value Symbol Unit Priority
Electric Power P W
Machine state - standby sst binary
Machine state - working swk binary
Machine state - operational sop binary
Machine state - disabled sda binary
Processing time tpro s
Electric voltage U V
Electric current I A
Frequency f Hz
Machine temperatur Tpro

◦C

layer three of the DD-EFMod. In this scenario, the focus is initially on
automatically determining the power states of the EMAG GT, as this
is the minimum requirement (see Table 7.1). For this purpose, a of-
fline batch clustering algorithm is first selected to quantify the possible
machine states and their associated power states based on historical
data. As a clustering algorithm, I first select a batch K-means clus-
ter algorithm (see Chapter 2). This was implemented on the basis of
[58] in Algorithm 2 using [111]. The deployment of the algorithm is
followed by the model quality sufficient validation step of the machine
learning algorithm (see Figure 5.4). I have used the Algorithm 3 for
this purpose. If the quality measures are sufficient, the energy flexibility
model synthesis sub-process follows (see Figure 5.5). Thus, based on
the clustering results, the EFKF parameterization of the power states
P follows. One cluster ci represents one power state. Each of these clus-
ter centers is associated with a power state Pi, where Pi,min and Pi,max

represent the corresponding minimum and maximum power values of
the power state. This applies

Pi = [Pi,min, Pi,max] (7.3)
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Algorithm 2 Deployment: K-Means Clustering
Input: xMA with C clusters
Output: Custercenters C, Clusterboundries CB

1: Apply K-means clustering with ci clusters;
2: repeat
3: Assignment of the data from xMA to the respective cluster

with the next cluster center (Eq.: 2.12);
4: Recalculation of the ci cluster centers as centers of the

objects of the individual clusters (Eq.: 2.13);
5: until Cluster partition remains unchanged;
6: Initialize indentify cluster boundaries;
7: for each data and center in C do
8: Calculate lower boundary as 10% below the center as ci,min;
9: Calculate upper boundary as 10% above the center as ci,max;

10: end for

where

Pi,min = ci,min (7.4)

Pi,max = ci,max (7.5)

for all clusters and power states. These must then be checked according
to the energy flexibility model synthesis and saved in the corresponding
EFDM data format. Once the power states have been calculated, the
minimum requirement for determining the power states is fulfilled (see
Table 7.1).
To determine the other EFKFs, the power states already identified were
the basis. For this purpose, the sub-processes of EFKF determination

Algorithm 3 Model Quality: Clustering Quality
Input: C′ clusters
Output: Cluster Performance Values

1: Calculate the Silhouette Score for the data and clusters (Eq.: 2.20);
2: Calculate the Davies-Bouldin Score for the data and clusters (Eq.:

2.22);
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Algorithm 4 Deployment: Power State Duaration Analysis
Input: Power Data P (t), Operation states S
Output: Intervals of Power States I, Power State Durations D,

1: Allocation machine state temporal intervals I;
2: Define power states S;
3: for each mode si in S do
4: Identify continuous intervals Is where

machine state s is constant;
5: Record start and end indices of each interval Is;
6: I[si]← Is;
7: end for
8: Analyze Durations of I:
9: Calculate duration for each interval in I;

10: Identify unique power states in D.
11: Determine minimum and maximum duration TH

for each unique power state.

(see Figure 5.4) and energy flexibility model synthesis (see Figure 5.5)
are rerun for each EFKF to be determined (see Equation 7.1).
To identify the key figure power state duration TH of the grinding ma-
chine, the different machine operation states are defined as
S with si ∈ {Working, Operation, Standby, Disabled} .

The automated determination of the key figures holding duration is
done by deployment of Algorithm 4. Here, D describes an unspecific
data vector with all holding durations TH.
To determine the key figures power gradients (∇PAct, ∇PDea, ∇PMod)
for each power state change, the gradients are calculated with

∇P = (Pend − Pstart)
tend − tstart

. (7.6)

The identification of the power gradients is done by Algorithm 5. Thereby
T is an unspecifc data vector for all transitions.
To automatically determine the key figure reaction duration TRea, it is
necessary to analyze the processing time of a workpiece. This is based
on the assumption that the shortest time horizon of a energy-flexible
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Algorithm 5 Deployment: Gradient Analysis
Input: Power Data P (t), Power States Transitions T
Output: Average Gradients for Transitions

1: Determine current power state gradient for value:
2: for each transition pair (fromState, toState) in T do
3: for each Data Value in P (t) do
4: Check if power state transition occurs;
5: if transition starts then
6: Record start power and time;
7: else if transition ends then
8: Record end power and time;
9: Calculate gradient (Eq.: 7.6);

10: end if
11: end for
12: Calculate average gradient ∇P for the transitions;
13: end for

operation is based on the electricity market. For the Intraday energy
market, this is divided into TIntraday = 15 min sections [112]. This
means that the cycle time corresponds to tcycle = 15 min. From the
analysis of the load profiles of the machine tool (see Figure 7.2) and
the process times tpro, the following relationship emerges

tpro = tcycle

n
with tcycle = TIntraday (7.7)

with n number of processed parts, which directly results in the maxi-
mum reaction duration

TRea = tpro. (7.8)

The EFKF for regeneration duration TReg is also use case or scenario
specific. For the machine tool of the use case, assuming that the ma-
chine goes into regular operation after an energy-flexible operation or
is in standby mode, then

TReg = max(tpro) (7.9)
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if a machining process has to be terminated.
The EFKF validity TV is defined manual. I choose this approach
because it is a very benefit-specific key figure. This primarily influ-
ences the period the energy-flexible system under consideration can be
switched to energy-flexible operation (see Appendix A.3). This can be,
for example, the next hour, the duration of a shift, a specific day, or
even several days.
As described in the previous chapter (see Chapter 5) and shown in the
software concept, the building and transfer of the key figures, which
are automated determined with the mentioned machine learning or
data analytics algorithms, into the standardized EFDM format takes
place in the step energy flexibility model building. For this work, with
a focus on the DD-EFMod, I use the external software service EFDM
GUI [94] for building the standardized EFDM in JSON schema (see Ap-
pendix A.1.1). Flexible load measures can then be derived and further
processed from the defined flexibility space.

Alternative Implementation with Data Streaming
Algorithms

To address the second research hypothesis (see Chapter 4), I also in-
vestigate the applicability and feasibility of online machine learning

Algorithm 6 Deployment: Mini-Batch K-Means Clustering
Input: Data Stream Xscaled, number of clusters k, batch size n
Output: Cluster centers C, Predicted clusters P

1: Initialize mini-batch K-means with k clusters and batch size n
2: for i = 0 to len(Xscaled) step n do
3: batch← Xscaled[i : i + n]
4: Perform partial fit of mini-batch K-means on batch (Eq.: 2.14)
5: end for
6: Predict clusters for all data in Xscaled to get P
7: Retrieve cluster centers C from mini-batch K-means
8: Inverse transform cluster centers if necessary



98 7 Implementation and Validation

Algorithm 7 Deployment: CluStream Clustering
Input: Data stream X, window size w
Output: Cluster centers C, Predicted clusters P

1: Load dataset X
2: Compute moving average of X with window size w
3: Initialize CluStream
4: for each value x in the moving average do
5: Update CluStream with x (Eq.: 2.15 - 2.19)
6: end for
7: Simulate data stream
8: for each data point x in X do
9: Assign x to the nearest cluster center (Eq.: 2.12)

10: end for
11: Compute cluster centers C and predicted clusters P

methods as part of the first scenario. Since the automated determi-
nation of the EFKF of the power states is the minimum requirement,
the focus of testing data stream mining algorithms is on this key figure.
The batch incremental learning clustering method mini-batch K-means
(see Algorithm 6) [59] and the instance incremental method CluStream
(see Algorithm 7) are selected as standard clustering algorithms for
data stream mining problems [56]. The selection of these two methods
was based on the fact that they are proven standard methods from data
stream analysis and on the open-source availability of the algorithms as
well. Furthermore, the basic principles of the two methods are similar
to the batch K-means clustering algorithms wich performed well for
the automated parameterization of the key figure power states in the
context of the DD-EFMod method in scenario 1. For this very reason,
the three methods are comparable. The respective implementation of
the selected data stream algorithms is part of the DD-EFMod within
the EFKF determination sub-process (see Figure 5.4). Due to technical
limitations (network failures, excessive latencies), the three algorithms
were compared using two data sets: a measurement data set and a sim-
ulated data set with significantly increased measurement points. The
results are listed and evaluated in the next section.
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7.1.3 Evaluation and Results

The results and their evaluation of the implementation of the DD-
EFMod method based on the software concept (see Figure 5.6) of the
first scenario using the algorithms discussed in the previous section are
presented in this section.
Based on the known reference case operation load profile of the EMAG
GT (see Figure 7.2), the data verification and data preparation step (Al-
gorithm 1) was applied. The data profile of the dataset from the load
profile consists of 7595 samples with a sampling rate of 1 second, result-

Table 7.3: Results of data verification and preparation of scenario 1
(own table).

Value Result Unit
Minimum -7718.63 W
Maximum 12681.04 W
Mean 1634.01 W

Figure 7.3: Preprocessed electrical power consumption of EMAG GT
(own figure).
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ing in a dataset size of 0.370 MB. The data was sourced from recordings
in the machine’s PLC system and contained no missing values. The
power consumption data exhibits strong transient behavior, which is
typical for this machine’s operation, as illustrated in Figure 7.2. This
transient nature highlights the dynamic changes in power usage during
the machining process, necessitating careful denoising and smoothing
to obtain accurate characteristic values for subsequent analysis. The
calculated characteristic values resulted from the data verification and
data preparation step shown in Table 7.3 and the signal curves for the
denoised power consumption and the power consumption signal with
moving average (with window size M = 50) shown in Figure 7.3.
Figure 7.3 clearly shows the necessity of the data verification and data
preparation step. The original measured load profile repeatedly shows
power transients that are part of the normal operating behavior (e.g.
spindle movements). However, these must be suppressed to enable the
automated determination of the key figures like the power states with
machine learning algorithms in a targeted manner. The resulting mov-
ing average xMA power signal achieves this because it is free of extreme
outliers. Based on this, I could apply the Algorithm 2 as the EFKF
determination sub-process. For this purpose, the batch K-means algo-
rithm was executed with the signal xMA and the specification C = 3.
Here, C = 3 is derived from the machine states relevant for the analysis
(see Table 7.2). For this purpose, I have combined the states sst and
sop as one common state. Thus

c1 = sst ∪ sop (7.10)

c2 = sda (7.11)

c3 = swk (7.12)

follows as individual clusters to be determined, representing the power
states. The combination of c1 is based on the operating behavior of
the machine. It was shown that the EMAG GT automatically switches
from mode sop to sst after 3min if there is no further manual state
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Figure 7.4: K-means clustering results EMAG GT (own figure).

change. Thus, the outcome of this model deployment step is shown in
Figure 7.4 results from implementing Algorithm 2 for the automated
EFKF determination step for the key figure power states. Within the
model quality sufficient step, the results of the batch K-means clustering
algorithm are used to validate and analyze the statistical consistency
and homogeneity of the clusters. This is shown by the values given in
Table 7.4 and illustrated in the corresponding boxplot in Figure 7.5.
As the figure and table show, the cluster centers determined for each

Table 7.4: EMAG GT K-means clustering statistical results (own ta-
ble).

Cluster Standby Disabled Working
Center 1172.91 222.93 2081.26
Min 704.66 214.03 1627.49
Q1 1010.07 214.24 1819.01
Median 1119.5 214.4 2016.22
Q3 1327.58 214.64 2328.25
Max 1626.45 689.32 2658.07
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Figure 7.5: Boxplot of the clusters formed for the EMAG GT (own
figure).

cluster are close to the median of the associated data point.
To further test the cluster quality, I determined the quality measures
of the Silhouette Score and Davis-Bouldin Score (see Chapter 2). The
implementation of the Algorithm 3 leads to the results in Table 7.5,
which confirm the good quality of the clustering algorithm in this case.
Thus, the automatically determined cluster centers from Table 7.6 can
be used as the EFKF power states.

Table 7.5: Quality measures of batch K-means clustering (own table).
Quality measure Value
Silhouette Score 0.68
Davis-Bouldin Score 0.37
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As part of the step EFKF parameterization it follows

Pstandby = [1055, 1290]W (7.13)

Pdisabled = [200, 245]W (7.14)

Pworking = [1873, 2289]W (7.15)

as the elementary key figure power states because these EFKFs are
valid.
To further refine the Energy Flexibility Data Model and enhance its
applicability, it is essential to extend the parameterization by incor-
porating optional key figures. This leads to revisit the steps of EFKF
determination and energy flexibility model synthesis. Algorithm 4 is im-
plemented in order to assign a possible holding duration to each power
state, which results in the values given in Table 7.7.
Thereby max(T standby

H ) is determined from the operating behavior of
the machine tool, which automatically switches from the standby state
to the Pdisabled state at 30 min of inactivity. For min(T working

H ), the 90 s
corresponds to the processing time of a process step (see equation 7.7)
of the machine tool EMAG GT.
The next rerun of the EFKF determination sub-process with imple-
menting the Algorithm 5 for automated determining the EFKF of the
power gradients results in the mean gradients as shown in Table 7.8.
Analyzing this results as part of the energy flexibility model synthesis
sub-process, no transition from Pdisabled to Pstandby could be measured

Table 7.6: Results of batch K-means clustering (own table).
Value Cluster

Standby
Cluster

Disabled
Cluster

Working
Cluster Center 1172.91 W 222.93 W 2081.26 W
Upper bound
Cluster

1290.20 W 245.23 W 2289.39 W

Lower bound
Cluster

1055.62 W 200.64 W 1873.14 W
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Table 7.7: Identified holding durations of EMAG GT (own table).

Value T standby
H T disabled

H T working
H

Minimum 66 s 0 s 90 s
Maximum 1800 s inf 1365 s

Table 7.8: Identified power gradients of EMAG GT (own table).
Transition Value

Pdisabled to Pstandby 0.0 W
s

Pstandby to Pworking 320.0 W
s

Pworking to Pstandby −13.8 W
s

Pstandby to Pdisabled −804.5 W
s

in this data set. This was due to the technical network problems that
had already occurred. However, it can be deduced from all the tests
carried out, and the other state changes that the state changes are
instantaneous and, therefore, immediate. This is typical behavior for
an electrical consumer. This can be seen, for example, in the activa-
tion Pstandby to Pworking with 320.0 W

s or the deactivation of Pstandby

to Pdisabled with −804.5 W
s .

Finally for this scenario, the EFDM is further extended by determine
the key figures TRea and TReg which can be determined with the equa-
tion 7.8 and 7.9. This results in TRea = 90 s and TReg = 90 s.
Overall, this creates the flexibility space as EFDM of the EMAG GT
with the automatically determined key figures as shown in Table 7.9. I
manually defined the key figure validity as an example for a day from
06:00 to 22:00.

This resulting flexibility space is shown in Figure 7.6. The space of
possibilities for the implementation of a possible flexible load measure,
which can be realized by the EMAG GT, is limited as a set with the
smallest (Pdisabled = 0.200 kW) and largest power value (Pworking =
2.289 kW), the smallest (T disabled

H = 0 s) and largest holding duration
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Table 7.9: Automated determined key figures of the EFDM parameter-
ized via the DD-EFMod method for the EMAG GT (own
table).

Key Figure Min Max
P

Pdisabled 0.200 kW 0.245 kW
Pstandby 1.055 kW 1.290 kW
Pworking 1.873 kW 2.289 kW

TRea - 90 s
TV 2023-08-31 06:00:00 2023-08-31 22:00:00
TH

T disabled
H 0 s inf

T standby
H 66 s 1800 s

T working
H 90 s 1365 s

∇PAct - 0.320 kW
s

∇PMod - −0.013 kW
s

∇PDea - −0.804 kW
s

TReg - 90 s

(T standby
H = 1800 s) as well as the maximum rate of change (∇PAct =

0.320 kW
s ).

The results indicate that accurately determining power states is cru-
cial for evaluating other energy flexibility key figure (EFKF). Conse-
quently, assessing the prototypical implementation of online streaming
data algorithms, specifically Algorithm 6 and 7, is deliberately focused
on this key figure. This focused approach thoroughly examines the
effectiveness of data streaming algorithms in real-time processing en-
vironments. By concentrating on the key figure power states, we can
effectively demonstrate the algorithm’s utility in capturing incremen-
tal changes and their potential applicability to other key figures in the
context of energy flexibility.

The results of the implementation of the Algorithms 6 for mini-batch
K-means and Algorithm 7 for CluStream, as part of the sub-process en-
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ergy flexibility key figure determination are given in Table 7.10. This
automated determined clusters, which representing the key figure power
states are based on a measured data set. In Appendix A.2 the graphical
representation for each test run is given.
Comparing the performance of the clustering algorithms with the mea-
sured data set provides essential insights into their applicability. The
batch K-means and mini-batch K-means algorithms are close to each
other in their cluster centers for the power states Disabled, Standby,

Figure 7.6: Resulting flexibility space of EMAG GT represented quan-
tity as a function of the flexibilizable power, duration and
rate of change (own figure).
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and Working, with mini-batch K-means showing a slightly higher value
for the Working state. CluStream shows a significantly different cluster
center for the disabled state and higher values for the standby and work-
ing states, indicating a different clustering sensitivity than the K-means
variants. In this respect, the CluStream algorithm must be rated as
critical. Regarding silhouette values, mini-batch K-means slightly out-
performs the others, indicating better cluster cohesion and separation.
The Davies-Bouldin index, which is lower for CluStream, suggests that
CluStream may produce clusters with better separation.
From these results, it’s evident that both K-means algorithms offers a
good balance between computational efficiency and clustering quality
for offline (batch) or online (data streams) clustering, as shown by its
silhouette score and Davies-Bouldin Index. This is confirmed by the
evaluation of the simulated significantly longer data set in Table 7.11
and Appendix A.2. Therefore, I select the batch K-means algorithm
for the automated determination of the key figure power state in the

Table 7.10: Comparison of clustering algorithms performance relating
to measured data set (own table).

Value Batch
K-means

Mini-batch
K-means

CluStream

Disabled
Cluster Center 222.93 W 291.11 W 0.07 W

Standby
Cluster Center 1172.93 W 1151.05 W 1344.66 W

Working
Cluster Center 2081.26 W 2224.02 W 2236.13 W

Silhouttte-Score 0.68 0.69 0.67
Davies-Bouldin-
Index

0.37 0.36 0.34

Samplenumber of
data set

7595 7595 7595

Computation time 0.057 s 0.245 s 8.42 s
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next scenarios in the following sections.

Table 7.11: Comparison of clustering algorithms performance relating
to simulated data set (own table).

Value Batch
K-means

Mini-batch
K-means

CluStream

Disabled
Cluster Center 258.13 W 270.67 W 410.15 W

Standby
Cluster Center 1050.70 W 1107.04 W 0.00 W

Working
Cluster Center 2080.77 W 2199.71 W 2088.21 W

Silhouttte-Score 0.78 0.75 0.73
Davies-Bouldin-
Index

0.24 0.32 0.36

Samplenumber of
data set

167400 167400 167400

Computation time 0.474 s 4.686 s 19.65 s

In conclusion, the validation and implementation conducted in Sce-
nario 1 confirms the feasibility of automating the determination of en-
ergy flexibility key figures for the Energy Flexibility Data Model for
machine tools as flexible loads using the DD-EFMod method. The
findings demonstrate that determination of key figures possible with
historical data, but also with data streams. Furthermore the impor-
tance of selecting and evaluating the appropriate algorithms to ensure
accuracy and reliability of algorithms for the energy flexibility mod-
eling is shown. This initial success underscores the potential of the
DD-EFMod method in enhancing the operational flexibility of indus-
trial environments.
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Figure 7.7: System of scenario 2 (own figure).

7.2 Scenario 2 - EMAG GT and Product
Storage

This scenario extends the system boundary of the EMAG VLC-100GT
machine tool (see Section 7.1) to the product storage in which the pro-
cessed, manufactured parts are stored. This is intended to demonstrate
the applicability of DD-EFMod to the class storage of the EFDM (see
Section 2.1.2) and product storage in particular and to show what ad-
ditional energy-flexibility potential can be realized by taking material
storage into account. The results and key figures for the machine tool
are taken from the first scenario for these system considerations. This
means that the focus of this scenario can be placed on validate the auto-
mated determination of the energy flexibility key figures of the EFDM
for the storage system by apply the DD-EFMod method.
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Table 7.12: Technical key figures in the EFDM for describing the flexi-
bility space and their feasibility levels of scenario 2 following
Lindner et al. [29] (own table).

Class Key Figure Description Feasibility
Level

St
or
ag
e

CS Usable capacity 1
Et0 Initial energy content 1
SS Suppliers 1
ETar Target energy content 2
ELoss Energy loss 2
EDrain Energy drain from storage 2

7.2.1 Key Figure Definition

Following the steps of DD-EFMod method the data verification step
starts with the definition of the relevant key figures of the EFDM to
determine. As described in the fundamentals chapter, according to
the definition of EFDM [29], a storage system can only be considered
in conjunction with a flexible load. Therefore, the known key figures
from Table 7.9, which are extended by the energy flexibility key figures
(EFKF) shown in Table 7.12 to describe the class storage, result for the
system consisting of EMAG GT and product storage. The minimum
requirements to be determined are the technical key figures of the usable
capacity, the initial energy content, and the associated supply system.
Together with the EFKF of feasibility level 2, it follows

K = [CS, Et0 , SS, ETar, ELoss, EDrain] (7.16)

as the vector of relevant EFKF for this scenario. Knowledge of the
amount of energy in the product storage is relevant to determining
the key figure storage capacity and its current state. The measured
variables in Table 7.13 are pertinent to decide on this. In addition,
the conditions defined in Table 7.14 are selected for this scenario. The
values shown are derived from the fact that 10 raw materials pieces
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Table 7.13: Priority of measured values of the EMAG GT for scenario
2 (own table).

Measured Value Symbol Unit Priority
Electric Power P (t) W
Processing time tpro s

can be processed by the EMAG GT within 15 min (see Section 7.1).
As a further boundary condition, I asumed that the storage capacity
consumed 40 produced parts to start the next processing step (see
Figure 6.1).

Table 7.14: General conditions for the product storage (own table).

Term Symbol Value
Working shift time tshift 8 h
Cycle time tcycle 15 min
Storage capacity min Cmin

S 20 pcs
Storage capacity soll Csoll

S 40 pcs
Storage capacity max Cmax

S 320 pcs

Based on this prioritization, the definition of the input variables fol-
lows

X(t) =
[
P (t), tpro, tshift, tcycle, Cmin

S , Csoll
S , Cmax

S

]
(7.17)

to determine the flexibility space of the storage S.

7.2.2 Implementation

The data preparation step for the following step of energy flexibility
modeling for the product storage begins with the definition of frame-
work parameters. Therefore the total energy requirement of the sup-



112 7 Implementation and Validation

Algorithm 8 Deployment: Storage Capacity
Input: Raw Data X(t)
Output: Storage EFKF,

1: Load data from X(t);
2: Define production cycle;
3: Calculate energy consumption per part (Eq.: 7.19);
4: Calculate storage capacity (Eq.: 7.20);
5: Calculate energy content (Eq.: 7.21);

plier of the storage during a production cycle is relevant with

Etotal =

∑ (
P (t)
1000 · tcycle

)
3600 (7.18)

resulting in the energy per part with n number of parts per cycle

Epart = Etotal

n
(7.19)

can be determined. The maximum and minimum storage capacity then
follows with

CS =
(
Cmin

S · Epart, Cmax
S · Epart

)
(7.20)

and equivalently the initial energy content by

Et0 =
(
Cmin

S · Epart, Csoll
S · Epart

)
. (7.21)

For the scenario, the initial energy content is defined as the target
energy content. The energy requirement EDrain of the product storage
depends on the production plan

EDrain = f(Eout, t) (7.22)

and should, therefore, not be relevant for the product storage. This
assumption is permissible, as the subsequent processing step is not
part of the system boundary of this scenario. The implementation of
the steps defined by the DD-EFMod method of EFKF determination
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an energy flexibility model synthesis for the automated determination
of the key figures of the EFDM for this scenario is summarized in
Algorithm 8.

7.2.3 Evaluation and Results

The dataset used for this second scenario extends the dataset of the first
scenario described in Section 7.1.3 with the scenario-specific informa-
tion given in Table 7.14. This results in a data profile of 7595 samples
with a sampling rate of 1 second recorded from the machine tool PLC.
The data quality was assessed and confirmed to be consistent with the
requirements of the analysis, exhibiting similar transient behaviors as
noted in the first scenario. The scenario-specific storage information in-
cludes product storage characteristics, allowing a more comprehensive
analysis of energy flexibility under varying storage loads. The applica-
tion of Algorithm 8 for the energy flexibility modeling of the product
storage resulted in the key figures listed in Table 7.15. This results in
a maximum possible energy content of 18.97 kW h. Within step energy
flexibility model validation, the positive validation of these key figures
with the combination of the key figures from the first scenario is rele-
vant. In conjunction with the machine tool, this results in a significant
increase in flexibility potential. This flexibility potential is shown in
Figure 7.8. Compared to the isolated consideration of the EMAG GT

Table 7.15: Automated determined key figures of the EFDM parame-
terized via the DD-EFMod method for the product storage
(own table).

Key Figure Min Max
CS 1.16 kW h 18.97 kW h
Et0 1.19 kW h 2.37 kW h
SS EMAG GT
ETar 1.19 kW h 2.37 kW h
ELoss 0 %

h
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Figure 7.8: Resulting flexibility space of EMAG GT and product stor-
age represented quantity as a function of the flexibilizable
power, duration and rate of change (own figure).

from scenario 1, the combination with the product storage results in
an increase in the possible holding duration of flexibilization from 0.5 h
to 8.0 h, which corresponds to an increase of 1500 %.
The results of the implementation and validation of this second sce-
nario and the resulting EFDM, which was created using the software
concept, are available as a repository in the TUdata Lib directory [110].
The EFDM was systematically parameterized through the steps in the
DD-EFMod method, demonstrating automated key figure determina-
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tion of the EFDM. This process not only validates the applicability
of the DD-EFMod method for the EDFM class storage but also high-
lights how the inclusion of material or product storage can increase the
flexibility potential.
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Figure 7.9: System of scenario 3 (own figure).

7.3 Scenario 3 - Cooling Machine and Cold
Storage

The third scenario focuses on the supply systems of the use case. For
this, I define the system boundary, as shown in Figure 7.9, around the
chiller eCHiller45 [99] and the cold storage [100]. As in the previous
scenarios, I have recorded the corresponding measured values. These
measured data are used to validate the steps of the DD-EFMod method
to realize the EFDM parameterization. Applying the method to this
scenario checks whether the developed DD-EFMod method can be ap-
plied to different machine types to consider the functional requirement
on the method number three (see Chapter 4). In comparison to the
previous scenarios, a flexible load and a storage system are considered
in combination.
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Table 7.16: Technical key figures in the EFDM for describing the flexi-
bility space and their feasibility levels of scenario 3 following
Lindner et al. [29] (own table).

Class Key Figure Description Feasibility
Level

Fl
ex
ib
le

Lo
ad

P Power states 1
TRea Reaction duration 2
TV Validity 2
TH Holding duration 2
∇PAct Activation gradient 2
∇PMod Modulation gradient 2
∇PDea Deactivation gradient 2
TReg Regeneration duration 2

St
or
ag
e*

CS Usable capacity 1
Et0 Initial energy content 1
SS Suppliers 1
ETar Target energy content 2
ELoss Energy loss 2

7.3.1 Key Figure Definition

First, in the application and implementation layer of the DD-EFMod
method, the step of data verification is done by selecting the relevant
energy flexibility key figures of the EFDM of this scenario. These are
listed in Table 7.16. As with scenarios 1 and 2, the necessary and
sufficient feasibility levels are based on the EFDM [29], so

KChiller = [P, TRea, TV, TH,∇PAct,∇PMod,∇PDea, TReg] (7.23)

KStorage = [CS, Et0 , SS, ETar, ELoss, EDrain] (7.24)

as vectors of all relevant EFKF follows.
To determine these EFKFs, I analyzed the input variables listed in Ta-
ble 7.17 as part of the data verification step. In addition, the boundary
conditions and technical limits defined in Table 7.18, as well as the
manufacturer specifications, must be taken into account [100]. From
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Table 7.17: Priority of measured values of the eChiller45 for scenario 3
(own table).

Measured Value Symbol Unit Priority
Electric power Pel W
Thermal power Pth W
Operating point pop

◦C
Time t s
EER EER -
Operating state sop binary
Storage temperatur ϑstor

◦C

Table 7.18: General boundary conditions for the cold storage (own ta-
ble).

Term Symbol Value
Cooling network set temperature ϑset 15 ◦C
Technical maximum temperatur ϑcmax

stor 25 ◦C
Technical minimum temperatur ϑcmin

stor 12 ◦C
Maximum flexibility temperature ϑfmax

stor 20 ◦C
Minimum flexibility temperature ϑfmin

stor 15 ◦C
Volumen of storage Vstor 1000 L
Mass of storage mstor 1000 kg
Specific heat capacity cp 4.184 kJ

kg K
Heat loss of the storage qBS

1.37 kW h
24 h

this data, the vector of input variables

X(t) = [Pel, Pth, pop, t, EER, sop, ϑstor] (7.25)

for further processing derives. Using these measured variables and the
boundary conditions in Table 7.18, the data preparation step and the
energy flexibility modeling step is used to determine the flexibility space
F = f(L,S).
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7.3.2 Implementation

Based on the available input data X(t), it is not possible to identify
typical production power states for the cooling machine by using clus-
tering algorithms like batch K-means clustering directly (see Figure
7.10). The reason is, that this machine type is a continuous flexi-
ble load. So a procedure different from the application of clustering
algorithms used for the EMAG GT in scenario one (see Section 7.1)
is necessary. As part of the data preparation step the electric power
consumption of the eChiller45 cooling machine is first quantified into
different power ranges, starting from the power range specified by the
manufacturer from Pel,min = 0.3 kW to Pel,max = 14.5 kW. Assuming
that the building automation and control allows the chiller to be con-
trolled (I refer to the work of my research colleagues Borst et al. [113]
and our previous work Fuhrländer-Völker et al. [93]), it is possible to
determine P using Equal-Width Binning (see Section 2.3 in Equation
2.8 to 2.10). Based on this, the key figures of the flexible load eChiller45
can be determined through the implementation of data analytics algo-
rithms, as realized in Algorithm 9. This is part of the energy flexibility
modeling step with the sub-processes EFKF determination and energy
flexibility model synthesis and is described in the following.
Taking the cold storage for implementation into account of the EFDM
of this scenario this leads to a holding duration determined by

TH = CS

P . (7.26)

Algorithm 9 Deployment: EFKF of eChiller45
Input: Raw Data X(t)
Output: EFKF eChiller45

1: Data Preparation;
2: Calculate P (Eq.: 2.8);
3: Calculate TH (Eq.: 7.26);
4: Identification of gradients (Eq.: 7.6);
5: Calculate TRea (Eq. 7.27);
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Figure 7.10: Measured data of power consumption from cooling ma-
chine with defined power states (own figure).

The key figure of the power gradients could be determined based on
Equation 7.6. Subsequently, the key figure reaction duration of the
cooling machine could be determined according to

TRea = P max
5 − P min

1
mean(∇P ) . (7.27)

It is possible with the mean value of the power gradients as the max-
imum reaction time. The implementation of the calculations in the
context of the software concept are implemented according to Algo-
rithm 9.
The determination of the EFKF for the cold storage [100] is shown

in my previous work Lindner et al. [30] and briefly summarized below,
taking into account the boundary conditions from Table 7.18. The fol-
lowing equations are implemented in Algorithm 10 in the context of
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Algorithm 10 Deployment: EFKF of Cold Storage
Input: Raw Data X(t)
Output: EFKF cold storage

1: Data Preparation;
2: Calculate CS (Eq.: 7.28)
3: Identification of Et0 and ETar (Eq.:7.29-7.30)
4: Calculate ELoss (Eq.: 7.32)

the software concept:

CS = mstor · cp ·
ϑcmax

stor − ϑcmin
stor

ru
(7.28)

Et0 = mstor · cp ·
ϑfmax

stor − ϑfmin
stor

ru
(7.29)

ETar = Et0 (7.30)

∆T = ϑfmax
stor − ϑfmin

stor (7.31)

ELoss = qBS

V · cp · ρ ·∆T
· 100 = 0.98 %

h (7.32)

Here, ru = 1
3600 is the conversion coefficient between J and W h.

These equations and their implementation in Algorithm 10 represents
the DD-EFMod sub-process of EFKF determination. The results and
the steps of energy flexibility synthesis is discussed below.

7.3.3 Evaluation and Results

The application of the DD-EFMod method in this scenario was success-
fully implemented. The data profile for this scenario consists of 18,974
samples with a sampling rate of 1 second, resulting in a dataset size of
3.167 MB. It includes data points recorded from the energy monitoring
system of the ETA Research Factory given in Table 7.17, capturing
information on both the cooling machine and the cold storage. No
outliers were detected, but there were missing data points due to net-
work errors that caused incomplete data transmission. These gaps were
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Figure 7.11: Measured data of temperature from cold storage (own fig-
ure).

addressed through data imputation [104] during the data preparation
step. The main challenge of this scenario was that no distinguishable
power states of the cooling machine eChiller45 could be identified in
the period under investigation. Therefore I used the Equal-Width Bin-
ning method in the data preparation step. This allowed the operating
range to be divided into power states. This is applicable due to the
continuous controllability of the machine and leads to the operating
ranges shown in Figure 7.10. In addition to the power load profile, the
figure also shows the Energy Efficiency Ratio (EER) of the machine,
as this can be used to derive the dependency of the cooling capacity of
the machine.
I have also considered the cold storage in this scenario and use data

analytics algorithms for the energy flexibility modeling step. By this im-
plementation of the Algorithms 9 and 10 as part of the energy flexibility
key figure determination step it was possible to realize the automated
determination of the key figures. Thereby technical boundary condi-
tions and manufacturer information are required for the cold storage
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Table 7.19: Automated determined key figures of the EFDM parame-
terized via the DD-EFMod method for the cooling machine
eChiller45 (own table).

Key Figure Min Max
P

P1 0.3 kW 2.9 kW
P2 3 kW 5.9 kW
P3 6 kW 8.9 kW
P4 9 kW 11.9 kW
P5 12 kW 14.5 kW

TRea - 2892 s
TV 2023-08-31 06:00:00 2023-08-31 22:00:00
TH

T 1
H 18 620 s 180 000 s

T 2
H 9152 s 18 000 s

T 3
H 6067 s 9000 s

T 4
H 4537 s 6000 s

T 5
H 3600 s 4500 s

∇PAct - 0.005 kW
s

∇PMod - 0.005 kW
s

∇PDea - 0.005 kW
s

TReg - -

Table 7.20: Automated determined key figures of the EFDM param-
eterized via the DD-EFMod method for the cold storage
(own table).

Key Figure Min Max
CS 0 kW h 15.10 kW h
Et0 0 kW h 5.81 kW h
SS eChiller45
ETar 0 kW h 5.81 kW h
ELoss 0.98 %

h

system to determine the EFKF, in particular, to maximize the flexibil-
ity potential. If only the measurement data shown in the observation
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Figure 7.12: Resulting flexibility space of eChiller45 and the cold stor-
age (own figure).

period (see Figure 7.11) is used to determine the EFKF, a lower stor-
age capacity would be identified as the entire storage potential was not
utilized during the measurement recording.
The flexibility spaces resulting from the energy flexibility model syn-

thesis the EFDM which was built are listed in the Tables 7.19 and 7.20.
This leads to the energy flexibility model validation step to check this
EFDM. The resulting flexibility space with the flexibilizable power be-
tween 0.3 kW to 14.5 kW can be flexibilized by taking into account the
cold storage over a period of 5.2 h to 1.25 h with a change in power of
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0.005 kW
s . These results are valid since the operating boundary condi-

tions are met. The resulting flexibility space is shown in Figure 7.12 as
an example for an average power of 5 kW. Compared to the flexibility
space from scenario 2 (Figure 7.8), the low power gradients indicate
that this system is very inertial.
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Figure 7.13: System of scenario 4 (own figure).

7.4 Scenario 4 - Identification of
Dependencies

The fourth scenario focuses on the Energy Flexibility Data Model
(EFDM) class dependency, which models the dependencies among flex-
ible loads in the use case. For this purpose, all previous subsystems,
including the machine tool EMAG GT, the product storage, the cool-
ing machine eChiller45, and the cold storage, are considered (see Figure
7.13). This scenario explores the potential for automated determination
of the energy flexibility key figures (EFKF) for the class dependency,
following the steps outlined in the DD-EFMod method. In the data
verification step, the necessary EFKF, as defined in Table 2.4, are es-
tablished, and various analyses of the input measurement data are exe-
cuted. This includes a correlation analysis to assess direct relationships
and a lagged correlation analysis to identify possible dependencies with
temporal shifts among the subsystems. Following this, the energy flex-
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ibility modeling step involves implementing a data analytics algorithm
for Boolean analysis (see Chapter 2), which facilitates the recognition
of logical links between the data from the flexible loads. The implemen-
tation according to the software concept (see Section 5.2) is explained
in the following.

7.4.1 Key Figure Definition

The relevant energy flexibility key figures to be determined are based on
the conditions of the EFDM according to [29]. Based on this, the key
figures for dependencies between the flexible loads are defined in Table
7.21. For this purpose, the corresponding power values and machine
states of the flexible loads (see Table 7.2 and Table 7.17) are analyzed
as a combined set of data. Consequently, the vector of EFKF is defined

Figure 7.14: Power consumption of the flexible loads EMAG GT and
eChiller45 and the cooling temperature for EMAG GT
(own figure).
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Table 7.21: Technical key figures in the EFDM for describing the flexi-
bility space and their feasibility levels of scenario 4 following
Lindner et al. [29] (own table).

Class Key Figure Description Feasibility
Level

D
ep

en
de
nc
y* IDTar Target flexible load 1

IDTri Trigger flexible load 1
TypTemp Temporal type 1
TypLog Logical type 1

as

K = [IDTar, TypTemp, IDTri, TypLog] (7.33)

(7.34)

as the vector of input data for the following energy flexibility modeling
steps as

X(t) =
[
P EMAG

el , P Chiller
el , sst, swk, sop, sda, TproPth, pop, t, ϑstor

]
.

(7.35)
For illustrative purposes Figure 7.14 displays the measured power val-
ues for the flexible load eChiller45 and EMAG GT, together with the
cooling temperature of the machine tool. This figure shows the vari-
able power states of the machine tool with only low electrical power
consumption of the chiller.

7.4.2 Implementation

To identify dependencies between the machines and their corresponding
measured variables in the data verifaction step. Therfore I first carried
out a correlation analysis (see Chapter 2). Thereby I focused on the
electrical power consumption of the two machines. I then extended the
correlation analysis to include a lagged correlation to identify possible
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time-delayed operational process dependencies.
In addition, I performed a Boolean analysis using the binary machine
states to identify possible logical dependencies between the power states
of the individual machines as part of the EFKF determination sub-
process. In order to better evaluate the dependency between several
flexible loads, I further introduce the parameter D ∈ [0, 1] as the degree
of dependency. This describes the degree of dependency of a flexible
load in relation to all flexible loads in the system under consideration
and is calculated according to

Di =
∑n

j=1 aij

n− 1 . (7.36)

Let A be an n × n matrix with aij elements and with n ∈ N as the
total number of machines in the system, which represents the depen-
dencies between the machines. Here, aij = 1 means that machine i

is dependent on machine j and aij = 0 means that there is no logical
dependency. The degree of dependency Di is, therefore, a measure of
how strongly machine i is dependent on other machines in the system
relative to the maximum possible number of dependencies. This param-
eter can therefore support the selection of potential energy-flexibility
measures and correponding flexible load measures, as the lower the de-
gree of dependency, the easier it is to implement. The determination
of D is according to DD-EFMod in the step energy flexibility key figure
determination consider the developed software concept in Section 5.6.

7.4.3 Evaluation and Results

The application of the DD-EFMod method to determine the EFKF of
the EFDM class dependency was successfully applied for the flexible
loads EMAG GT and eChiller45 considered in the system of scenario
four. The data profile for this scenario consists of 6.989 samples with
a sampling rate of 1 second, resulting in a dataset size of 4.0 MB. The
data was sourced from the machine tool PLC system for the EMAG GT
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Table 7.22: Correlation matrix of flexible loads of scenario 4 (own ta-
ble).

Flexible Load EMAG GT eChiller45
EMAG GT 1 0.053
eChiller45 0.053 1

and the energy management system of the ETA Research Factory and
represent the input data X(t). No outliers or missing data points were
detected during the observed period. The correlation analysis of the
input data applied in the step data verification shows no dependency
due to the low correlation coefficients (see Table 7.22). The extended
analysis using the lagged correlation over the time horizon of 1800 s also
indicates only very low to no dependency (see Figure 7.15). However,
the evaluation of this result in the EFKF synthesis sub-process must
be assessed critically, as it is known from expert knowledge that the
production operation must be cooled during operation and therefore
requires the operation of the cooling machine eChiller45. However, it
is possible that other machines that were not explicitly considered in
the use case, but which are present in the overall infrastructure of the
ETA Research Factory, complicate the correlation analysis accordingly.
To determine the dependency key figures in the EFKF determination
sub-process, I performed the Boolean analysis (see Chapter 2) based

Algorithm 11 Deployment: Dependency Identification
Input: X(t)
Output: Dependencies between machines

1: Load data from X(t);
2: Compute correlation:
3: Compute correlation (Eq.: 2.3)
4: Compute lagged correlation (Eq.: 2.5);
5: Analyze operating states;
6: Compute Boolean analysis;
7: Derivate logical dependendcies;
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Figure 7.15: Lagged correlation of eChiller45 and EMAG GT (own fig-
ure).

on the machines and operating states (sst, swk, sop, sda). This analysis,
implemented by Algorithm 11 leads to the following results:

• Mutual Exclusion: False
• Concurrent Operation: True
• EMAG GT operation implies eChiller operation: True
• eChiller operation implies EMAG GT operation: False

As a result, when the machine tool is in operation, the chiller is also
in operation. However, the chiller can work without the machine tool
being in operation.
From this, the dependency matrix

A =
[

0 1
0 0

]
(7.37)

follows. As part of the energy flexiblity model synthesis stpes, this re-
sults in DEMAG = 1.0 and DChiller = 0.0 for the flexible loads. This
means that the EFKF for the dependencies of the machines can be
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Table 7.23: Automated determined key figures of the EFDM param-
eterized via the DD-EFMod method for the dependency
between two flexible loads (own table).

Key Figure Value
IDTri EMAG GT

TypTemp total
IDTar eChiller

TypTemp total
TypLog implies

build as listed in Table 7.23 and transferred to the EFDM.
In summary, the combined flexibility space F = f(L,S) of scenario 4
can be created taking into account the previous automated parameter-
ized EFDMs of the previous scenarios. The resulting flexibility space is
shown in Figure 7.16. In the DD-EFMod sup-process EFKF synthesis,
I added the degree of dependency D as an additional evaluation vari-
able to quantify how strong one flexible loads influences another flexible
load. This can support the realization of a flexible load measure, es-
pecially in automated information processing. For the final building
of the Energy Flexibility Data Model in a standardized form, I used
the external software tool EFDM GUI [94] (see Appendix A.1.1) as de-
scribed in the Software Concept. The automated parameterized Energy
Flexibility Data Model is available in the standardized JSON format
in the supplementary material collected in TUDataLib [110].
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Figure 7.16: Combined flexibility space of eChiller45 and EMAG GT
and all storage units of the use case. The combination
of the two flexible loads in one flexibility space increases
the possible applications as flexible load measures. The
degree of dependency between the two flexible loads, which
indicates mutual dependency during operation, must be
considered when implementing flexible load measures (own
figure).
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7.5 Evaluation of Flexible Load Measures

This section shows how the automated parameterized Energy Flexibil-
ity Data Model as the result of the DD-EFMod method can be used.
For this purpose, I use simulated machine operation of the EMAG GT
machine tool to show the revenue that an energy-flexible operation can
achieve as defined by a flexible load measure. The reference case op-
eration of the EMAG GT is used as a basis for comparison with a
production of 30 parts over a period of 2 h. The data profile for the
reference load curve is identical to that described in scenario one in
Section 7.1.3, consisting of 7,595 samples with a resolution of 1 sec-
ond, a dataset size of 0.37 MB, and no missing values or outliers. For
the simulated load profile, the dataset contains 8,475 samples with the
same 1-second resolution and a size of 0.25 MB. The data was synthet-
ically generated to represent the expected power consumption of the
EMAG GT under energy-flexible operation. No outliers or missing val-
ues were present in the simulated dataset, ensuring high-quality input
for the evaluation process. To determine the energy costs, I use the
energy prices with different resolutions of auction Day-Ahead 60 min,
auction Intraday 15min, Intraday Continuous 60 min, and Intraday
Continuous 15 min from 31.08.2023 of the European Power Exchange
(EPEX) energy market [114] (see Figure 7.17). The EPEX electricity
market features two primary trading mechanisms: auction trading and
continuous trading. Auction trading, including Day-Ahead and Intra-
day Auctions, operates at specific times with prices set by the market
clearing principle, facilitating better planning and demand coverage
for the next day [112]. In contrast, continuous trading runs from the
previous day up to shortly before delivery, with prices determined on
a pay-as-bid basis, offering real-time flexibility for adjusting positions
and managing short-term imbalances [115]. Both methods are essen-
tial for market stability, catering to different aspects of efficiency and
planning.
The reference case operation with a total electrical energy consumption
of 14.35 kW h results in total costs of 1.73€ in relation to the Day-Ahead
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€

Figure 7.17: Energy prices of different energy markets on 31.08.2023
(own figure).

€

€

Time in h

Figure 7.18: Electrical energy consumption and costs on Day-Ahead
market for reference case operation (own figure).
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market. The total consumption is made up of the aggregated operation
of the EMAG GT machine tool and the eChiller45. The electric power
consumption load profile for the period on 31.08.2023 from 08:00-10:00
o’clock is shown in Figure 7.18.
The energy-flexibility measure change processing sequence should be

applied (see Table 2.1) and is chosen because it’s applicability for the
machine tool EMAG GT was shown in [85], [116] and in my previ-
ous work with a similar use case [30]. The energy flexibility measure

Table 7.24: Flexible load measure for change processing sequence (own
table).

Key Figure Value
IDFLM Change processing sequence
IDLoad EMAG GT
PFLM [(8 kW, 08:00), (8 kW, 09:00),(5 kW, 09:00),(5

kW, 10:00) ]

€

€

Time in h

Figure 7.19: Electrical energy consumption and costs on Day-Ahead
market for energy-flexibility measure change processing se-
quence (own figure).



7.5 Evaluation of Flexible Load Measures 137

change processing sequence was applied following the definition in VDI
5207 (see Table 2.1). This measure is usually defined as rearrang-
ing individual processing steps with different energy requirements to
smooth out energy consumption peaks and optimize costs. In my spe-
cific case, however, there is no classic reorganization of the processing
steps. Instead, the adjustment is made through production in a com-
pact production batch without breaks, which reduces the production
time for the entire production batch. The batch size, defined as the
number of units processed in a production run, remains unchanged at
30 parts in 2 hours, as in the reference case. The selected batch size in
combination with continuous processing without interruptions creates
a compact load profile. This enables the entire production batch to be
completed in one continuous period. This compact production method
makes the prerequisite for a subsequent energy-flexibility measure shift
start of job to periods with lower electricity prices. This following sec-
ond energy-flexibility measure shift start of job decreases energy costs
while production targets are still met. By choosing a fixed batch size
and carrying out production without breaks, the change processing se-
quence measure is implemented following VDI 5207, but adapted to
the specific requirements by carrying out continuous processing in a
compact production batch. The flexible load measure can be defined
according to Table 7.24 as the load change profile PFLM as data tu-
ples of electrical power consumption and timestamp. This would lead
to a total consumption of 12.98 kW h, resulting in total costs of 1.57€
in relation to the Day-Ahead market. This would correspond to a cost
saving of 0.16€ or 9.2 % compared to the reference case operation. The
energy demand over time and the resulting costs are shown in Figure
7.19.
In a further step, the energy-flexibility measure change processing se-
quence is now combined with the energy-flexibility measure shift start
of job (see Table 7.25) [30]. The selected energy flexibility measures
change processing sequence and shift start of job provide a balanced
approach to achieving energy flexibility without disrupting the grind-
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Table 7.25: Flexible load measure for shift start of job (own table).
Key Figure Value

IDFLM Shift start of job
IDLoad EMAG GT
PFLM [(8 kW, 12:00), (8 kW, 13:00),(5 kW, 13:00),(5

kW, 14:00) ]

€

€

Time in h

Figure 7.20: Electrical energy consumption and costs for energy-
flexibility measure shift start of job on Day-Ahead market
(own figure).

ing process or compromising product quality. These measures can be
applied to the systems with minimal modifications, making them cost-
effective and quick to deploy [26]. For this purpose, the operation of the
machine tool is simulatively shifted to the period from 12:00 to 14:00
o’clock. This results in a total energy consumption of 12.98 kW h. The
total costs are reduced to 1.16€ in relation to the Day-Ahead market
due to the adjusted lower electricity prices for this period. This corre-
sponds to a cost saving of 0.57€ or 33.0 % compared to the reference
case operation. The time horizon of the energy demand and the re-
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€

€

Time in h

Figure 7.21: Electrical energy consumption and costs on Intraday mar-
ket for energy-flexibility measure shift start of job (own
figure).

sulting costs are shown in Figure 7.20. Since fine-grained power states
and corresponding holding periods can be identified with the help of
the EFDM and the developed DD-EFMod method, I finally look at
the possibility of revenue when procuring electricity on the Intraday
market. For this purpose, I transfer the existing combined flexible load
measure from Table 7.25 and calculate the resulting costs with regard
to the Intraday Continuous market with a resolution of 15 min. As a
result, the total energy consumption remains the same at 12.98 kW h
compared to the previous flexible load measure. The total costs are fur-
ther reduced to 0.53€ due to the higher volatility of electricity prices
for this period. This corresponds to a cost saving of 1.20€ or 69.4 %
compared to the reference case operation. The energy demand over
time and the resulting costs are shown in Figure 7.21. This clearly
shows that detailed knowledge of energy flexibilities and their appli-
cation in the form of a standardized data model leads to considerable
cost savings during implementation.
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7.6 Interim conclusion

This chapter is dedicated to validate the DD-EFMod method and the
associated software concept developed in Chapter 5) applied on the use
case presented in Chapter 6.
The first scenario successfully validated the basic functionality of au-
tomatically determining the EFKF for the EFDM based on historical
machine data. In the first step data verification, the input data was
verified for relevance, and the determining EFKFs were defined. In
the second step of data preparation, the necessary data for further pro-
cessing was prepared accordingly (e.g. by eliminating outliers). This
was followed by the energy flexibility modeling step. This involved
the deployment of offline clustering algorithm (K-means) and online
data stream clustering algorithms (mini-batch K-means, CluStream)
in the energy flexibility key figure determination sub-process to identify
power states. Based on this successful application, further automated
determination of the EFKF for the EFDM class flexible load for the
machine tool EMAG GT was possible by the implementation of data
analytics algorithms. As part of the DD-EFMod sub-process of energy
flexibility model synthesis the automatically determined EFKF was pa-
rameterized in the EFDM. Further, the deployment of the data stream-
ing algorithms for power state determination in scenario one confirms
research hypothesis number two, but the online clustering algorithms
only achieved partial success in this scenario.
The second scenario showed the successful application of the DD-EFMod
method to the EFDM class storage by considering the product storage
of the EMAG GT. Therefore, the energy flexibility modeling step was
applied with the deployment of storage-specific data analytics algo-
rithms. This successful application for the EFDM class storage shows
the modular applicability of the DD-EFMod method. This scenario
also demonstrated the high flexibility potential of product and mate-
rial storages in production systems.
In a third scenario, the transferability of the DD-EFMod method to
other machine types or flexible loads was successfully validated, consid-



7.6 Interim conclusion 141

ering a cooling machine and the linked cold storage. The main challenge
of this scenario is the continuous operation behavior of the cooling ma-
chine, which results in the machine not having defined power states. To
address this, within the application of the DD-EFMod steps of data ver-
ification and data preparation, Equal-Width Binning was implemented.
This leads further to the successful data-driven automated parame-
terization of the EFDM for this scenario within the energy flexibility
modeling sub-processes. The successful implementation of this scenario
confirms, therefore, the transferability of the DD-EFMod method.
In the fourth scenario, I validated the method for data-driven deter-
mination of the EFDM key figures for the class dependency between
flexible loads. For this purpose, the machines machine tool EMAG GT
from the first scenario and the cooling machine from the third scenrio
was analyzed in combination following the DD-EFMod steps. In order
to identify possible dependencies in the data verification step, a cor-
relation analysis was implemented. This analysis did not identify any
correlations in the available data at this point. Because of the operat-
ing behavior of the machine tool, however, simultaneous operation of
the cooling machine is required. This dependency could be determined
in the next step of energy flexibility modeling the EFKF determination
sub-process by implementing a Boolean analysis algorithm. This made
it possible to automatically determine the required key figures for the
EFDM class dependency based on the available data.
Finally, I validate the economic potential of the detailed determina-
tion and application of the automatically parameterized EFDM. For
this purpose, the automatically determined key figures of the scenarios
were used to form concrete load profiles for the machines in the form of
flexible load measures. Based on this, the first research hypothesis can
be confirmed. Furthermore, I was able to show that the application of
energy-flexibility measures based on detailed modeling of energy flexi-
bility offers monetary advantages, especially when oriented toward the
volatile Intraday energy market. However, this requires factories to be
able to operate in an energy-flexible manner. As shown, this can be re-
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alized by the application of the DD-EFMod method I developed in this
thesis. In the following summarizing section, I evaluate the prototypi-
cal implementation of the DD-EFMod method and the results achieved
meet the requirements specified in Chapter 4. This is summarized in
Table 7.26.

Table 7.26: Fulfillment of the requirements for the method and imple-
mentation as part of the validation (own table).

Criteria Fullfilment

FR-M 1 Applicability
FR-M 2 Modularity
FR-M 3 Transferability
FR-M 4 Reproducibility

FR-EF 1 Feasibility
FR-EF 2 Accuracy
FR-EF 3 Maximization
FR-EF 4 Explainability
FR-EF 5 Safty

QR 1 Quality
QR 2 Robustness
QR 3 Explainability
QR 4 Scalability
QR 5 Real-time capability

FR-M 1 Applicability:
The method was implemented using an open-source software concept
and real measured machine data. This ensures that the method is
widely accessible and based on real data. The validation through
the prototypical implementation in various scenarios with real machine
data confirms the successful application of the DD-EFMod method for
the data-driven determination of energy flexibility key figures and pa-
rameterization of the EFDM.
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FR-M 2 Modularity
The modularity of the software concept makes it possible to determine
only individual EFKFs if required. This increases the flexibility and
adaptability of the method to specific requirements. The successful
application and results in the scenarios clearly demonstrate the modu-
larity of the DD-EFMod method.
FR-M 3 Transferability The method was successful tested consider
different classes (flexible loads, storage, dependencies) of the EFDM of
production infrastructure machine types. This confirms the versatile
applicability and adaptability of the DD-EFMod method to different
system components. The results fundamentally demonstrate the pos-
sibility of transfer to different machine types.
FR-M 4 Reproducibility
Several test runs with the same database using different scenarios un-
derline the reproducibility of the DD-EFMod method. The consistency
of the EFKF and other parameters when repeatedly applied to the same
data confirms the reliability and repeatability of the method, which is
essential for scientific and technical application.
FR-EF 1 Feasibility
The transfer of the automatically determined EFKFs of the EFDM
in flexible load measures demonstrates the practical feasibility of the
method. Validation by simulated flexible load measures not only shows
the potential for energy and cost savings, and also the feasibility of
transferring the method to real systems, as has already been demon-
strated in my previous work Lindner et al. [30]
FR-EF 2 Accuracy
The accuracy of the method’s results is based on measured values,
which makes the parameterized EFKFs reliable. The validation pro-
cess of the DD-EFMod method in the sub-process energy flexibility
model synthesis including the EFKF validation and step energy flexibil-
ity model validation, is based on expert knowledge and defined metrics
and therefore fulfills the implementation requirements.
FR-EF 3 Maximization
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The implementation takes into account all theoretical power states and
storage capacities in order to exploit the maximum energy-flexibility
potential. The validation shows that the theoretically calculated max-
imum potential must be integrated into a flexible load measure within
the technical operating limits to be technically feasible. Not all maxi-
mum operating limits could be utilized during the validation.
FR-EF 4 Explainability:
The methodology ensures the traceability and validity of the parameter-
ized EFDMs, whereby this is achieved through the algorithm selection
step by selecting explainable machine learning and data analysis algo-
rithms. The machine learning and data analysis algorithms selected for
validation in this thesis meet the explainability requirements.
FR-EF 5 Safty:
Technical operating limits are an essential aspect of both the validation
of individual EFKFs and the validation of the entire EFDM in order
to enable safe, energy-flexible operation. The automated determined
EFKFs meet these requirements. In addition, it is necessary to check
that the limits are fullfilied by the flexible load measures.
QR 1 Quality
The development of the DD-EFMod method includes the step model
quality sufficient, which is crucial for the evaluation of the selected
machine learning or data analytics algorithm for the automated de-
termination of EFKFs, and ensures the quality of the method. The
validation of the selected algorithms in this thesis shows a good model
quality but with potential for improvement.
QR 2 Robustness
The selection and testing of efficient methods on different data sets
shows that not every algorithm is suitable for every key figure, which
requires an individual algorithm selection step for each key figure.
QR 3 Explainability
The method enables the selection of explainable algorithms through
the algorithm selection step, which contributes to the transparency and
comprehensibility of the results.
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QR 4 Scalability
The applied algorithms in this work show asymptotic behavior and
provide similar results even for larger data sets, which confirms the
scalability of the selected algorithms.
QR 5 Real-time capability
Real-time requirements were considered in the algorithms selection step,
with all tested algorithms being able to complete the calculations within
the specified time frame of a maximum of 15 minutes.

In summary, the method for Data-Driven Energy Flexibility Mod-
eling (DD-EFMod) and the prototypical implementation based on the
software concept fulfills the defined requirements from chapter 4 well.
However, there is still room for improvement in some technical details,
especially in the evaluation and selection of machine learning or data
analytics algorithms. The method represents a simplification in deter-
mining the energy flexibility key figures of the Energy Flexibility Data
Model. It can support energy or production managers in implement-
ing energy-flexibility measures. Due to the possibility of automated
parameterization and processing of an EFDM and its key figures, the
method I developed thus offers a good starting point for realizing the
automated application of industrial energy flexibility.



8 Conclusion and Outlook

”I think the first and most
important thing is that you’ve
got to have a goal and a
vision.”

Arnold Schwarzenegger
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This chapter gives a summary of the main findings and achievements
of this thesis. Finally, an outlook on possible further improvements and
future research topics are given.

8.1 Summary and Conclusion

The efficient and sustainable operation of industrial production systems
is associated with challenges. In addition to maintaining product qual-
ity and managing production schedules, adapting production to volatile
energy prices and renewable energy sources is becoming more impor-
tant. To achieve this, it is essential to consider all dependencies be-
tween production machines, supply systems, and storages. Therefore,
industrial energy flexibility provides a strategic solution by enabling
production systems to adjust to volatile energy prices or to renewable
energy sources without sacrificing productivity. This can be realized
by energy-flexibility measures. This adjustment has the potential to
reduce energy costs and furthermore to reduce the CO2 footprint of a
company by leveraging the increased use of renewable energies. Fur-
thermore, trading energy flexibility in future energy markets could gen-
erate additional revenues for a company while saving energy costs.
A core aspect of realizing energy flexibility is the modeling of energy-
flexible systems within a generic data model, such th Energy Flexibility
Data Model. Given the complexity of industrial systems and the exten-
sive expert knowledge required, the correct modeling of each relevant
system is a difficult task.
This thesis addresses these issues by proposing a data-driven method,
to automate the parameterization of energy flexibility models, which is
essential to realize energy-flexibility measures, particularly in dynami-
cally changing market conditions. This method, called the Data-Driven
Energy Flexibility Modeling (DD-EFMod) significantly streamlines the
process of enabling energy-flexible factory operations. The research
work and the the development of the DD-EFMod was therefore lead by
the following research question:
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”Is it possible to develop a method for automated parame-
terization of an energy flexibility model, based on data from
a production system, to describe the energy flexibility of the
production system?”

To answer this research question, two research hypotheses was de-
rived from these central research question:

1. ”Data-driven automatically parameterized energy flexibility mod-
els of machines in production infrastructure can be used to enable
energy-flexible operations.”

2. ”Machine learning and data stream mining algorithms can be
used to automate the parameterization of energy flexibility mod-
els of machines from the production infrastructure.”

To adress the research question and the research hypotheses, this re-
search work was carried out according to the Design Research Method-
ology. Based on the research scope in Chapter 1, a fundamental un-
derstanding of the state of the art in science and technology is estab-
lished in the Descriptive Study I (Chapter 2 and 3). Therefore this
work presents the fundamentals of industrial energy systems and en-
ergy flexibility in interaction with digital production. Furthermore,
existing approaches to data analysis and modeling of energy flexibility
are presented, and the research gap is identified through a systematic
literature review and analysis.
This work focuses on the prescriptive study. Based on the identified
research gap, the research questions, hypotheses, and requirements for
the method for data-driven automated modeling of energy flexibility
are formulated in Chapter 4. This is followed by the development of
the Data-Driven Energy Flexibility Modeling (DD-EFMod) method in
Chapter 5, which provides a structured procedure for the automated
modeling of energy flexibility.
The DD-EFMod method, as shown in Figure 5.1, has been developed
to facilitate the necessary modeling of energy flexibility through data-
driven approaches. This method extends the process to enable factories
to energy-flexible operation during the application and implementation
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step. Therefore, the application and implementation layer of the DD-
EFMod method specifically uses the different steps data verification,
data preparation, and the energy flexibility model setup to describe
energy flexibility, reducing the need for manual intervention. In the
energy flexibility modeling layer of the DD-EFMod method, the auto-
mated determination of the individual energy flexibility key figures of
the Energy Flexibility Data Model is realized by the implementation
of suitable machine learning and data analytics algorithms in the sub-
process energy flexibility key figures determination. These determined
key figures are then parameterized, validated, and built to the Energy
Flexibility Data Model within the energy flexibility model synthesis
sub-process. These structured steps provide the DD-EFMod method
to automate and simplify the task of modeling energy flexibility.
In the Descriptive Study II, the DD-EFMod is initially applied and
validated on the use case presented in Chapter 6 with a focus on ma-
chines which represents electrical flexible loads. The validation was
carried out as part of the work, and the resulting conclusions confirm
the second research hypothesis. This was proven in particular by the
successful implementation of DD-EFMod in the context of the use case.
However, it was found that the various implemented machine learning
algorithms delivered different results during the deployment. For ex-
ample, the offline batch K-means clustering algorithm and the online
batch incremental mini-batch K-means clustering algorithm produced
good and reliable results, particularly when determining the key figure
for power states. On the other hand, the data stream mining online
learning instance incremental CluStream clustering algorithm for iden-
tifying the power states on the basis of the available data does not have
the same performance as the K-means batch algorithms, but in princi-
ple, it is possible to use these algorithms.
The first research hypothesis can also be confirmed, as the simulative
applied energy-flexibility measure change processing sequence and shift
start of job, carried out as defined flexible load measures based on
the automatically parameterized Energy Flexibility Data Model shows
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good results.
In particular, it could be shown that the detailed modeling of the en-
ergy flexibility as EFDM of the machine tool and the cooling machine
enables potentially higher cost savings, as a more specific machine oper-
ation, oriented to the energy market, is possible. The application of the
energy flexibility measure change processing sequence as a EFDM based
flexible load measure resulted in cost savings of 9.2 %. Additional cost
savings of up to 69.4 % were achieved by combining the energy flexibil-
ity measures change processing sequence and shift start of job in regard
to the Intraday energy market as part of the validation of the use case.
The research question can be answered positively and confirmed by con-
firming the research hypotheses. This also shows that the DD-EFMod
method developed as part of this work simplifies the enablement process
for energy flexibilization of factories.

8.2 Outlook and Further Research

The implementation and the developed Data-Driven Energy Flexibility
Modeling method proposed in this thesis form a starting point for fill-
ing an essential gap regarding the modeling and application of energy
flexibility in manufacturing. While the proposed method demonstrates
significant potential, it also presents several limitations that should be
considered in its application and future developments:

• The parameterization of Energy Flexibility Data Models and ma-
chine learning models must be repeated for each new machine or
system, as the models are not directly transferable.

• The approach assumes the availability of high-quality, consistent
data as a prerequisite, which may not always be achievable in
every production environment.

• Reliable access to machine data and the network infrastructure is
critical. Network stability and data transmission issues can affect
the quality of the datasets used for modeling and analysis.
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• The dataset characteristics, including transient behaviors and
specific operating conditions (e.g., in the ETA Research Factory),
may limit the direct applicability of the findings to other produc-
tion environments or machine types without additional adapta-
tion efforts.

• The simulated dataset used for validation was tailored specifically
for the machine tool EMAG GT under predefined operating con-
ditions. This may restrict the generalization of results to other
configurations or scenarios.

Despite these limitations, the DD-EFMod method provides significant
opportunities for further development and enhancement. Addressing
these challenges is not only crucial for reinforcing the robustness of the
method but also serves as a foundation for exploring new research op-
portunities and practical applications in energy flexibility. Building on
these insights, several potential areas of future work have been identi-
fied, focusing on expanding and refining the method’s capabilities:

• Expanding the DD-EFMod method to include the parameteri-
zation of logistical and economic energy flexibility key figures,
broadening the scope of energy flexibility assessment. In partic-
ular, the key figures of the Energy Flexibility Data Model are to
be considered therefore.

• Developing automatic machine learning pipelines to fully auto-
mate the machine learning model selection and the method’s
application, thereby reducing manual intervention and expert
knowledge.

• Integrating the energy flexibility models into asset administration
shell submodels (given in [117]) and management systems for real-
time decision-making and operational control. This can make
a decisive contribution to standardized data exchange and thus
enhance the automated use of energy-flexible systems [118, 38].

• Validation of the DD-EFMod method for different use cases and
industries is crucial to ensure its robustness and applicability.
In the context of this work, the focus was on electrical flexible
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loads. Future research should therefore investigate the applica-
tion to other types of flexibilities, e.g. heat supply, aggregation of
multiple flexibilities [90], bidirectionally chargeable electric vehi-
cles for factories [119, 120] or chemical processes, to confirm the
method’s applicability in a much larger range of industrial energy
flexibility scenarios.

• Investigating alternative models, such as those proposed by [77]
and [82], or further developing the EFDM to incorporate data
exchange with external simulation and planning tools like [121]
or [122], offers promising opportunities for expanding the dimen-
sions of energy flexibility in manufacturing. These enhancements
could facilitate more sophisticated optimization strategies, en-
abling real-time energy management and more precise alignment
with market signals or operational constraints.

These research topics aim to address the current limitations and ex-
tend the potential of energy flexibility in manufacturing, contributing
to achieving sustainable and adaptable industrial production.
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A.1 Further Related Work

A.1.1 The EFDM GUI Service

The EFDM GUI is a web application tailored for creating energy flexi-
bility data models (EFDM) that facilitate the standardized description
of energy flexibility. The service was developed as an element of the
Synergy project in the period from 2019 to 2023 and has since been
provided by Institute of Production Management, Technology and Ma-
chine Tools (PTW) at the Technical University of Darmstadt [94].

This application supports energy managers in manually entering data
related to storage systems, flexible loads, their dependencies, and spe-
cific energy flexibility measures into the system [5, pp. 255–260]. The
DD-EFMod is used to automatically determine the energy flexibility
key figures of the Energy Flexibility Data Model. These key figures are
then transferred to the EFDM GUI, which facilitates their integration
into the required JSON format for further use. The interface of the
EFDM GUI, allows the input and management of this data through
an HTML-based graphical user interface. Users can manually fill out
various forms on the EFDM GUI to compile data, which can then be
downloaded as a JSON file for (automated) marketing of energy flexi-
bility [29].

The EFDM GUI is designed to ensure platform-independent, easily
readable JSON formatted data that conforms to a uniform schema,
enhancing (semi-)automated IT processing between industrial compa-
nies and energy markets. It includes multiple tabs for detailed editing
of classes such as Flexible Loads, Dependencies, and Energy Storage,
each contributing to a comprehensive representation of energy flexibil-
ity within an enterprise (see Chapter 2).

This tool also allows the integration and interaction with external
energy management and market services, aligning with the Energy
Synchronization Platform (ESP) to optimize energy-flexible operations
across systems. The EFDM serves as a crucial basis for internal and
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external communications, enabling users to effectively manage and up-
date energy flexibility data in line with industry standards.

A.1.2 The Energy Synchronization Platform (ESP)

The Energy Synchronization Platform [37] concept describes the archi-
tecture of components, interfaces and data models for the automation
and standardization of energy flexibility trading as well as the integra-
tion of the relevant stakeholders. The Energy Synchronization Platform
concept is implemented by the company platform and market platform.

The Energy Synchronization Platform is divided into two sub-platforms,
the company platform and the market platform, which are able to ex-
change data and interact via an interface. The Energy Synchronization
Platform thus describes the interaction of several company platforms
on a central market platform to carry out transparent energy flexibil-
ity trading supported by information technology. A company platform
offers the necessary functionalities for the IT connection and control
of energy-flexible production processes and infrastructure in a service-
oriented infrastructure. The market platform can be described as a
multilateral platform that makes it possible to connect and control
various energy flexibility markets and services .

The separation of the Energy Synchronization Platform into two log-
ical platform types is necessary to securely encapsulate their specific
domain knowledge, technologies, and methods without impairing the
overall system’s operation and performance. The Energy Synchroniza-
tion Platform represents the overall framework for cooperation between
the company platform and the market platform. In this global frame-
work, stakeholders, technical interfaces, data flows, and regulations are
defined for successful interaction and integration of the actual software
platforms, namely the company platform and market platform [38].

The Energy Synchronization Platform provides for several company
platforms existing in parallel, which, for example, provide the flexibility
of connected energy-flexible systems and processes. Various services
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are required on the company platform for provision and orchestration.
In contrast, a market platform that communicates with all company
platforms via a uniform interface acts as an intermediary. By setting
up the market platform as a multilateral platform, companies are given
access to a large number of existing and future markets, platforms, and
supporting services. To enable companies to market flexibility, various
services are also provided and executed via the market platform. These
support companies in various aspects of flexibility provision, flexibility
assessment, and energy flexibility trading [123].
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A.2 Additional Results

Figure A.1: Mini-batch K-means clustering results EMAG GT (own
figure).
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Figure A.2: CluStream clustering results EMAG GT (own figure).

Figure A.3: Batch K-means clustering results EMAG GT simulated
data set (own figure).
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Figure A.4: Mini-batch K-means clustering results EMAG GT simu-
lated data set (own figure).

Figure A.5: CluStream clustering results EMAG GT simulated data set
(own figure).
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A.3 Detailed Description of the EFDM
The Energy Flexibility Data Model (EFDM) developed within the
SynErgie-Project serves for the generic and standardized description
and modeling of energy flexibility [29]. It describes energy flexibility
in form of a flexibility space and concrete flexible load measure. The
goal is not to create a completely realistic representation of a flexibility,
but the mapping of technically and energetically relevant information
in a granularity that enables the communication of flexibility between
industrial companies and energy markets on the basis of the Energy
Synchronization Platform [37]. It is represented in the form of a JSON
schema [29].

Table A.1: Detailed description of the class flexible load of the EFDM
(mandatory).

Key figure
JSON object
Symbol

At-
tributes

Value range Data type Unit Re-
quired

Implicit
default
value

Flexible Load ID
flexibleLoadId
IDLoad

String For-
mat: UUID

yes

The ID of a flexible load for unique identification. The Universally Unique Iden-
tifier (UUID) is generated automatically and is used for identification and
assignment within an IT system in a company and for further processing by
external, market-side services.

Reaction Duration
reactionDuration
TRea

R0+ Number s no 0
Time required by a technical system between the call-up and the start of
a flexible load measure. The call must therefore be made at least with this
lead time before the start. This key figure is important for the correct and
timely execution of flexibility calls and is dependent on the communication
partner. Thus, the reaction duration of a machine itself is shorter than the
reaction duration that includes a communication chain via several upstream IT
systems.

Validity Period
validity
TV

temporal-
Type

start; end; total String For-
mat: enum

no total

from H String For-
mat: Date-
Time (ISO
8601)

no constant
availabil-
ity

until H String For-
mat: Date-
Time (ISO
8601)

no constant
availabil-
ity

Subset of the company-internal planning horizon in which the flexible load is
available. The beginning and end of this validity period are specified with the
attributes from and until. If this period is not specified, continuous availability
of the flexible load is assumed. The temporalType start specifies that the start
of each flexible load measure belonging to this flexible load must lie within the
validity period. end specifies that the end of each flexible load measure belonging
to this flexible load must lie within the validity period. Total specifies that the
total duration of each flexible load measure belonging to this flexible load must
lie within the validity period.

Power States
power
P

min;max R Number kW yes 0; inf

Duration
duration / type
TH / Ttype

min;max;
durationType

R+;
deliveryDuration;
holdingDuration

Number;
Enum

s no holding-
Duration
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Order
order
Po

order chronological;
arbitrary

Enum no arbitrary

A set of power states with which the flexible load can run during each of the
(number of changes + 1) holding periods. A positive sign means that the
flexible load causes an increase in power consumption. Negative Power States
represent a decrease in power consumption. Non-linear states can be approx-
imated by corresponding pairs of values.
The time period the flexible load runs in its power states. Duration corresponds
to the time of a constant power state (holdingDuration) OR a constant power state
with initial power modulation (deliveryDuration).
Specifies whether power states can be retrieved in any order OR whether a
chronological activation of the next power states must occur when the first
power state is activated. This enables the modeling of a defined load profile.

UsageNumber
usageNumber
NUse

min;max N0 Integer no
no

0;inf

The allowed number of uses of the flexible load within the validity period. By
specifying a minimum value, the necessity of calling a flexible load can be
described. By specifying a maximum value, a limitation of the call frequency
can be described.

Modulation Number
modulationNumber
NMod

N0 Integer no inf
The maximum number of power state changes (modulations) allowed within
one use of a flexible load. The two modulations corresponding to the initial
activation and the final deactivation are not counted.

Power Gradient
powerGradients
∇
∇PAct/∇PMod/
∇PDea

activa-
tionGra-
dient
(min;max)

R0+ Number kW
s no 0;inf

modula-
tionGra-
dient
(min;max)

R0+ Number kW
s no 0;inf

deacti-
vation-
Gradi-
ent
(min;max)

R0+ Number kW
s no 0;inf

The absolute value of the power gradient of a flexible load indicates how fast
the power can be increased or decreased.
The activation gradient describes the possible power gradient during the initial
activation of a flexible load.
The modulation gradient describes the power gradient during a change of power
states.
The deactivation gradient describes the possible power gradient during the final
deactivation period.

Regeneration
Duration
regenerationDuration
TReg

R0+ Number s no 0
The (minimum) time for which no (other) measure of the same flexible load
may be activated after the deactivation of a flexible load measure has ended.
This time is only to be taken into account if a deactivation is carried out. If
another measure follows seamlessly, no deactivation takes place between the
measures. This is therefore not a violation of the prescribed regeneration
time.

Costs
flexibleLoadCosts
cLoad

variable-
Cost

R Number € h
kW no 0

costPe-
rUsage

R Number €/usage no 0

fixedCost R Number € no 0
The costs associated with the use of the flexible load, excluding electricity
costs. The costs of a flexible load consist of variable cost, usage cost and fixed
cost: Variable costs refer to the total amount of energy converted. Usage
costs are incurred per use of a flexible load. Fixed costs incurred during the
validity period regardless of the call of a flexible load (example: standby costs
of a power generation plant).
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Order Confirmation
Deadline
orderConfirmationDeadline
tOCD

deadline-
Type

absolute;relative String For-
mat: enum

€ h
kW no relative

dead-
lineValue

R+
0 (relativ)

H (absolut)
Number(rela-
tive)
String For-
mat: Date-
Time (ISO
8601) (abso-
lute)

s no reaction-
Duration

Latest possible time by which confirmation of an accepted offer of the flexible
load must have been received. By this time, the flexibility provider needs to
know whether the flexible load must be held ready. After the booking confirmation
deadline is exceeded, the flexible load offer is removed from the market. The
order confirmation deadline can be specified either absolutely with a fixed time
or relative to the start time of the flexible load measure (e.g. 100 seconds
before the start of a flexible load measure). If no value is specified, constant
availability for offering is assumed until the latest possible start time within
the validity period minus the reaction duration.

Prices
prices
p

vari-
ablePrice

R Number € h
kW no 0

pricePe-
rUsage

R Number €/usage no 0

fixedPrice R Number € no 0
Prices to be realized on the market as a minimum for offering the flexible load.
The prices of a flexible load are composed of a variable price, a usage price and
a fixed price analogous to the costs. Prices are only needed if the flexible load
is to be actively offered on the market.

Location
location
L

meterLoca-
tion

String no

volt-
ageLevel

R+ Number kV no

Meter point designation for the geographical and power grid topological lo-
cation of a flexible load. The unambiguous allocation is made by means of the
meter point designation known in the energy industry / in market communi-
cation. In Germany, it corresponds to a 33-digit alphanumeric code number.
The specification of the grid voltage level to which the flexible load is con-
nected. The voltage level at the grid connection point is to be used, inde-
pendent of deviating voltage levels in any company grid.
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Table A.2: Detailed description of the class storage of the EFDM (op-
tional).

Key figure
JSON object
Symbol

At-
tributes

Value range Data type Unit Re-
quired

Implicit
default
value

Storage ID
storageId
IDStor

String For-
mat: UUID

yes

The ID of a storage for unique identification. The Universally Unique Iden-
tifier (UUID) is generated automatically and is used for identification and
assignment within an IT system in a company and for further processing by
external, market-side services.

Usable Capacity
usableCapacity
CS

(min;max) R Number kW h yes
Lower and upper limit of the storage energy content. These limits must never
be exceeded or fallen short of. Depending on the choice of reference point,
it is also possible to specify negative storage capacities, e.g. if it possible to
exceed or fall below storage limits.

Initial Energy
Content
initialEnergyContent
Et0

(min;max) R Number kW h yes
Energy content of the storage at the start time of the validity period of the
associated flexible load (suppliers). If the storage is connected to several flexible
loads, the initial energy content refers to the earliest start time of the validity
periods of all flexible loads. If the initial energy content cannot be quantified
exactly, the predicted range can be specified via min and max.

Target Energy
Content
targetEnergyContent
ETar

(min;max) R Number kW h no minimu-
mUsable
Capacity
maximum
Usable Ca-
pacity

Energy content that the storage must have at the end time of the validity
period of the associated flexible loads (suppliers). If the storage is connected to
several flexible loads, the target energy content refers to the latest end time of
the validity periods of all flexible loads. If the target energy content is flexible,
the desired target range is specified can be specified via min and max.

Energy Loss
energyLoss
ELoss

[0,100] Number %/h no 0
Proportion of the energy content that is continuously lost, e.g. through
exchange with the environment. The percentage refers to the actual energy
content and not to the storage capacity.

Suppliers
suppliers
SS

flexi-
bleLoadId

String For-
mat: UUID

yes

conversion
efficiency

R+ Number % no 100

One or more flexible loads supplying the storage. The flexible loads must be
defined in the same flexibility space. The conversion efficiency is specified for
each supply system.

Drain
drain
EDrain

power R Number kW no 0
timestamp H String For-

mat: Date-
Time

no total Va-
lidity Pe-
riod

A non-influenceable energy demand in the form of a load profile that must
be met. The interpolation between the power states is linear.

Costs
storageCosts
cStor

variable-
Cost

R Number €
kWh no 0

costPe-
rUsage

R Number €
usage no 0

fixedCost R Number € no 0
The costs associated with the use of the energy storage, which depend only
on the (time-dependent) energy content of the storage. The costs of a storage
facility consist of variable cost, usage cost and fixed cost. Variable costs
refer to the total amount of energy converted. Usage costs arise per use of a
storage tank. Fixed costs arise from keeping a storage facility on standby.



164 A Appendix

Table A.3: Detailed description of the class dependency of the EFDM
(optional).

Key figure
JSON object
Symbol

At-
tributes

Value range Data type Unit Re-
quired

Implicit
default
value

Dependency ID
dependencyId
IDDep

String For-
mat: UUID

yes

The ID of a dependency for unique identification. The Universally Unique
Identifier (UUID) is generated automatically and is used for identification and
assignment within an IT system in a company and for further processing by
external, market-side services.

Triggering Flexible
Load
triggeringFlexibleLoad
IDTri

trigger-
ingFlexi-
bleLoadId

String For-
mat: UUID

yes

temporal-
Type

start; total; end String For-
mat: Enum

yes

The ID of the flexible load that triggers the dependency. The ID must corre-
spond to a flexible load ID in the same flexibility space. In addition, one time
parameter (start, total or end) of the triggering flexible load affected by the de-
pendency is to be indicated. The temporalType...
- ...start specifies that with the activation of a flexible load measure belonging
to this flexible load, the dependency applicability duration of the target flexible load
begins.
- ...end specifies that at the deactivation end of a flexible load measure belonging
to this flexible load, the dependency appicability duration of the target flexible load
begins.
- ...total specifies that during a flexible load measure belonging to this flexible
load, the dependency applicability duration of the target flexible load is valid.

Target Flexible Load
targetFlexibleLoad
IDTar

targetFlex-
ibleLoadId

String For-
mat: UUID

yes

temporal-
Type

start; total; end String For-
mat: Enum

yes

The ID of the flexible load that is affected by the triggering flexible load. The ID
must correspond to a flexible load ID in the same flexibility space. In addition,
one time parameter (start, total or end) of the target flexible load that are affected
by the dependency is to be indicated. The temporalType...
- ...start specifies that the start of a flexible load measure of the target flexible load
is affected by the dependency applicability duration.
- ...end specifies that the deactivation end of a flexible load measure of the target
flexible load is affected by the dependency applicability duration.
- ...total specifies that the flexible load measure of the target flexible load is affected
by the dependency applicability duration starting at activation until the end of
deactivation.

Logical Type
logicalType
T ypLog

implies;
excludes

String For-
mat: Enum

yes

Specifies whether a use of the triggering flexible load requires (implies) or pre-
vents (excludes) the activation of the target flexible load within the applicability
duration.

Applicability Duration
applicabilityDuration
TApp

min R Number s no Ex-
cludes:0
Implies:-
inf

max R Number s no Ex-
cludes:0
Implies:+inf

The time period for which the target flexible load must be activated at least
once (implies) or may not be activated at all (excludes) after the triggering
flexible load has been used. The respective time linkage must be taken into
account.

Applicability
Conditions
applicabilityConditions
AC

formu-
laLeft

String no None

formula-
Right

String no None
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compara-
tor

equals; less;
lessEqual;
greater;
greaterEqual

String For-
mat: Enum

no None

Additional conditions that must be met for the dependency to be considered
fulfilled. In other words, an activation of the triggering flexible load implies or
excludes a corresponding activation of the target flexible load in a configuration
(measure), so that the applicability conditions are fulfilled. The triggering
flexible load metrics are incorporated on the left side of the formula. The
target flexible load metrics are incorporated on the right side.
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Table A.4: Detailed description of the class flexible load measure
(FLM) of the EFDM (mandatory).

Key figure
JSON object
Symbol

At-
tributes

Value range Data type Unit Re-
quired

Implicit
default
value

Load Measure ID
flexibleLoadMeasureId
IDFLM

String For-
mat: UUID

yes

The ID of the load measure for unique identification. The Universally Unique
Identifier (UUID) is generated automatically and is used for identification
and assignment within an IT system in a company and for further processing
by external, market-side services.

Flexible Load ID
flexibleLoadId
IDLoad

String For-
mat: UUID

yes

The ID of the Flexible Load to which the flexible load measure is directed.
Load Change Profile
loadChangeProfile
PFLM

power R Number kW yes
timestamp H String For-

mat: Date-
Time (ISO
8601)

yes

Load profile that represents the power reduction or increase of the flexible load.
Positive power states mean that the flexible load measure requests an increase
in power consumption from the flexible load. Negative power states require a
decrease in power consumption. Interpolation between power states is linear;
a step change in power can be mapped by specifying two equal timestamps
with different power values.

Reward
reward
r

R Number no 0
Total revenue received by a company for executing the
flexible load measure.
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