
Improving Scalability, Privacy, and

Decentralization of Blockchains and their

Applications via Multiparty Computation

Vom Fachbereich Informatik der TU Darmstadt genehmigte

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

von

Benjamin Schlosser (M.Sc.)

Darmstadt 2024

Gutachter: Prof. Sebastian Faust, Ph.D.

Prof. Carmit Hazay, Ph.D.

Datum der Einreichung: 15.07.2024



Autor: Benjamin Schlosser

Titel: Improving Scalability, Privacy, and Decentralization of

Blockchains and their Applications via Multiparty Computation

Ort: Darmstadt, Technische Universität Darmstadt

Datum der mündlichen Prüfung: 27.08.2024
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Abstract

Since the advent of Bitcoin in 2008, a myriad of blockchain systems have emerged.

Blockchains provide decentralized systems aiming to remove any trust in cen-

tralized parties. While Bitcoin provides simple money transfer and rudimentary

scripting capabilities, other blockchains like Ethereum support the execution of

complex smart contracts. Smart contrast sparked the invention of many new ap-

plications over blockchains, with decentralized finance (DeFi) being one of the

most prominent. By moving financial services and products to decentralized and

open blockchains, DeFi has the potential to democratize the financial market.

While showing a promising feature, state-of-the-art blockchains still suffer from

limitations and open problems. Limited scalability prevents mass adaption since

the number of tolerable actions within the system is too low. Additionally, many

systems lack strong privacy features, preventing their applicability to applications

with high privacy requirements, like in the healthcare sector. Despite these open

problems, blockchains are used in more and more new contexts due to their at-

tractive features based on their decentralized nature. One example is the concept

of self-sovereign identities (SSI), where blockchains provide decentralized storage

of public metadata. In many new contexts, blockchains are paired with additional

components, often not explicitly designed for blockchain applications. Hence, it

remains an open problem to align these components with the fundamental idea of

blockchains, i.e., removing trust in centralized parties.

In this thesis, we significantly contribute to the design of new solutions to all

three mentioned problems. More concretely, we tackle the scalability and pri-

vacy problem and mitigate the trust in centralized parties in a new component

combined with blockchains. Our main building block in all our contributions is se-

cure multiparty computation (MPC), which allows distrusting parties to compute

on private data without leaking anything except the output of the computation.

First, we present a new off-chain protocol that supports the execution of smart con-

tracts. Since prior work suffers from different shortcomings, our solution addresses

them all simultaneously. Second, we use MPC to facilitate private computation

for blockchains. To do so, we consider a security model that provides a trade-off

between efficiency and security. For this setting, we propose further efficiency im-

provements, present a compiler for enhancing security, and propose a protocol to
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combine MPC with blockchains. Our final result allows parties to perform com-

putation privately, and the computation’s result defines a distribution of coins.

Third, we look at anonymous credentials, an essential component of self-sovereign

identities. We present a distributed issuance protocol for anonymous credentials

based on the BBS+ signature scheme.
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1. Introduction

In 2008, Bitcoin [158], the first decentralized cryptocurrency, was introduced,

paving the way for a new payment paradigm. As of today, many payment systems

rely on trusted parties like banks or companies (e.g., PayPal) to execute client

transactions. In contrast, the fundamental idea of decentralized cryptocurrencies

is to replace trusted third parties with a decentralized system. These systems

benefit, among other things, from eliminating the risk of a single point of failure

and providing censorship resistance, as no single party can block transactions.

The state of the Bitcoin system, i.e., the parties’ balances, is stored in a so-called

blockchain. A blockchain is a data structure where transactions are packed into

blocks, and each block is linked to the previous block through a cryptographic

hash function. This results in a chain of blocks, therefore called a blockchain.

The blockchain is maintained by a set of parties instead of a centralized party.

More concretely, parties wishing to transfer money send a transaction to the net-

work. The network nodes, called miners, pack several transactions into a block

and link the new block to the previous block. The miners use a consensus protocol

to agree on new blocks. Such a protocol ensures that all parties have a com-

mon state of the blockchain. A common view of the state allows every miner to

compute all parties’ balances and prevent double-spending attacks. The Bitcoin

system builds on the Nakamoto consensus algorithm [158], which uses a proof-of-

work (PoW) algorithm [87] to determine which miners are eligible to add the next

block. Specifically, miners must solve a computationally hard puzzle to add a new

block to the chain. A PoW-based consensus algorithm guarantees the system’s cor-

rectness as long as the majority of computing power is controlled by honest parties,

shifting away from trusting a single party towards trusting an honest majority.

Since 2008, a myriad of blockchain systems have emerged [137]. Each aims to

improve on one or several aspects compared to prior systems. For instance, they

increase the throughput, use a different consensus algorithm to waste less energy

than PoW, or support more applications (e.g., [57, 92, 174, 202, 203]). The most

popular are Bitcoin and Ethereum [203]. Both are permissionless systems, where

parties may join and leave the system anytime. In contrast, permissioned systems

allow only permitted parties to join the system. In this thesis, we focus on the

permissionless setting.

1



1. Introduction

While Bitcoin supports money transfer and minimal scripting capabilities, other

blockchain systems like Ethereum allow the execution of Turing-complete pro-

grams. These programs are called smart contracts and open the opportunity for

many new applications. Nowadays, not only is simple money transfer possible

over a blockchain system, but also playing games like CryptoKitties [71], realiz-

ing fair exchanges [15, 88, 91], and much more. One application that remarkably

increased the interest in blockchain systems is decentralized finance (DeFi). The

term describes various financial products and protocols running over a decentral-

ized blockchain system. Examples of such protocols are exchanges, lending and

borrowing, and derivatives. Due to their open and decentralized nature, permis-

sionless blockchains have the potential to democratize the financial market, as

every party can participate in the financial market, even playing roles that are

reserved for banks or big financial institutes in traditional finance.

1.1. Open Challenges

In order to understand the state-of-the-art of blockchain technology, we analyzed

the decentralized finance landscape over Ethereum. In our work [4], we identified

limited scalability as the major technical challenge hindering mass adaption. With

an increasing interest in the system, the number of participants and transactions

grows. Eventually, this results in a congested network since it cannot handle that

many transactions. A congestion happened to the Ethereum system in 2017 when

the CryptoKitties game became highly attractive and significantly slowed down

the entire system [3]. Similarly, the Bitcoin system became clogged in 2023 when

the interest in BRC-20 tokens increased resulting in an increase of transaction fees

by over 300% [3]. These examples show that new techniques need to be developed

and deployed to meet the increasing demand.

Another open challenge of blockchains is the limited privacy features. Due to

the public nature of many blockchain systems including Bitcoin and Ethereum,

the money transfers and smart contract executions are inherently public. This

information disclosure poses a severe privacy threat, since transactions including

their inputs and results are visible to everyone. While Bitcoin and Ethereum were

designed without privacy at first, other systems like Monero [175] and Zcash [25]

aim to solve this issue and provide some privacy guarantees. However, Bitcoin and

Ethereum are still the most popular systems by now. Therefore, it is desirable to

add privacy guarantees on top to these systems.

Finally, more capabilities lead to more applications of blockchain systems. In

particular, blockchains are linked together with other components. For instance,

2



1. Introduction

the self-sovereign identity (SSI) context combines blockchains with the concept of

decentralized identities and anonymous credentials [157]. Often, these components

are not explicitly designed to be used with blockchains. As a result, they might

not adhere to the fundamental idea of blockchain systems, meaning trusted third

parties are replaced by a decentralized system. Therefore, effort needs to be taken

to align these components with the decentralized setting of blockchains.

In total, blockchain technology requires new techniques and solutions for the

three open problems of limited scalability, restricted privacy, and decentralization

of new blockchain applications. We elaborate on all of these challenges in the

following.

Scalability

In order to post a transaction on the blockchain, users send their transactions to

miners who maintain the system. Miners store the users’ transactions first in the

mempool. Then, a miner bundles a bunch of transactions into a block. Next, the

block is appended to the previous chain. Depending on the consensus algorithm,

a miner needs to take different actions. In the case of Bitcoin, whose consensus

algorithm uses PoW, a miner needs to solve a cryptographically hard puzzle. Once

the puzzle is solved, the miner distributes the new block to the entire network.

All other miners can verify the block’s validity and the puzzle’s solution. If both

are valid, the new block is appended to the previous chain, and all miners try

to append the following block to the new one. In Bitcoin, the parameters of the

cryptographic puzzle are set and automatically adjusted such that a new block is

mined roughly every ten minutes [32]. Ethereum is based on a different consensus

algorithm than Bitcoin and has an average creation time of 12 seconds [32]. Both

have in common that the block size is fixed, and it takes a predefined amount of

time before a new block is created. Given a fixed block size and a predefined block

creation time, the number of transactions per second is limited. For instance, in

Bitcoin, the theoretical block size is limited to 4 MB 1 and the block creation time

is ten minutes. Given a transaction size of 192 bytes for a simple payment [190],

the maximum number of transactions per second is 36.2

If the number of transactions sent to the network exceeds the maximal through-

put, the mempool increases, and congestion happens. Congestion might have a

severe impact, ranging from missed timeouts to a dramatic increase in transaction

1Since 2017, Bitcoin uses a block weight instead of a fixed block size [200]. For simplicity, we
consider the theoretical block size, which is accurate enough to compare the magnitudes.

2We stress that this calculation is strongly simplified but good enough to show the magnitude.
We refer the reader to [104] for more details.

3



1. Introduction

fees to incentivize the miners to include one’s transaction before other transactions

with lower fees.

Compared to centralized systems such as VISA, which achieves a throughput

of around 65,000 transactions per second [192], we must confess that blockchain

systems are not competitive without additional techniques. Therefore, new ap-

proaches and techniques must be considered to provide better scalability for

blockchain systems.

Privacy

Recall that the fundamental idea of decentralized cryptocurrencies is eliminating

trusted parties. This idea should also hold for checking the validity of transac-

tions. In particular, every party should be able to check a transaction’s validity

independently. Many blockchain systems, including Bitcoin and Ethereum, pro-

vide this property by making all data publicly visible. The public data includes all

payment details like sender, amount, and receiver and all inputs to smart contract

executions. In total, the entire transaction history is publicly available. This fact

allows every party to check invalid transactions such as double spending of coins

or incorrect smart contract execution. However, exposing all data to the public

poses a serious privacy threat. In particular, everyone can see to which address

money is transferred and which smart contract is executed. To illustrate the neg-

ative impact, consider a smart contract that gives money to someone who solves

a mathematical problem. Once a party solves the puzzle and sends a transac-

tion to the network, anyone else who sees the transaction and, thus, the solution

can create their own transaction containing the solution and try to include this

transaction before the benign transaction.

All in all, privacy is an important feature. However, many blockchain systems

were designed with little privacy at first. The most popular blockchains, Bitcoin

and Ethereum, have only little privacy features built-in, e.g., pseudonymity. How-

ever, there are deanonymization attacks to bypass this feature [27, 126]. Therefore,

adding an extra layer of privacy protection is especially attractive.

Decentralization in Applications

Since the emerge of Bitcoin, blockchains were first used to facilitate simple payment

systems allowing parties to transfer coins. Later, Ethereum introduced the execu-

tion of smart contracts. These contracts allow to run arbitrary code on a blockchain

facilitating conditional payments based on programmed behavior and much more.

The combination of blockchains and smart contracts opened blockchains for a huge

4



1. Introduction

range of new applications [194].

As blockchains gain more and more attraction, the number of applications in-

crease steadily. Moreover, research and industry become more interested in this

technology. Consequently, blockchains are used in new contexts such as Indus-

try 4.0 [62]. Another particularly interesting context is self-sovereign identities

(SSI) [35]. The idea behind SSI is to provide every individual the opportunity to

manage their own identity. This opportunity includes the power to decide when

and which information are revealed to other parties. SSI is build on top of three

components [177]. First, blockchain provides a decentralized infrastructure to store

and manage public metadata. Second, the concept of decentralized identifiers de-

fines a framework and standard of how to address parties. Third, anonymous

credentials allow parties to show credentials without revealing more information

than desired. For instance, parties can prove they are authorized to access special

content on some website without revealing anything else.

As a blockchain provides the infrastructure, the system profits from its decen-

tralized nature. However, there is a discrepancy as other building blocks still rely

on trusted parties. For instance, to issue anonymous credentials, often a central

issuer is required. It is desirable to extend the decentralized setting to components

that are paired up with blockchains to remove trusted parties.

1.2. Goal of this Thesis

This thesis aims to provide new solutions for the highlighted challenges of blockchain

systems. Secure multiparty computation (MPC) is an essential building block in

all our solutions. More concretely, our contribution is threefold. First, we use MPC

in combination with trusted execution environments (TEEs) to solve drawbacks of

existing scalability solutions. While TEEs offer fast and confidential execution, we

use MPC to add redundancy and, thus, increase the availability of our solution.

Second, we provide a new approach to privacy-preserving smart contract execu-

tion. While MPC inherently offers private computation, we present more efficient

protocols with adequate security guarantees. Third, we apply the decentralization

paradigm of blockchains to a popular anonymous credential scheme. To this end,

we design a tailored MPC protocol to issue credentials distributively and efficiently.

Since MPC is the primary building block of all our contributions, we provide a

high-level introduction to MPC, highlight its promising features, and stress the

challenges of using MPC for our goals.
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1. Introduction

Secure Multiparty Computation

Secure multiparty computation (MPC) allows distrusting parties to compute a

predefined function on private inputs. The term comprises tailored protocols,

which compute a specific function, such as the signing algorithm with the secret key

being split between a set of keyholders, and general-purpose protocols, which allow

the computation of arbitrary functions. Independent of the function, secure MPC

protocols provide correctness and privacy. Correctness means that the output of

the protocol execution is equal to the function’s output on the same input. Privacy

guarantees that parties cannot learn more about the other parties’ inputs except

what they can derive from the output itself. The security properties hold against

an adversary that can corrupt parties of the protocol execution. Depending on

the fraction of the corrupted parties, we distinguish between the honest majority

setting, where the adversary is allowed to corrupt less than half of the parties, and

the dishonest majority setting. In the latter setting, the adversary can corrupt all

but one party. Besides the number of corrupted parties, we distinguish between the

types of corruption. Most common are two types of adversaries. On the one hand,

an honest-but-curious adversary, also called a semi-honest or passive adversary,

instructs corrupt parties to behave like honest parties, but it is trying to learn

additional information from the communication. On the other hand, a malicious

adversary, also called an active adversary, may instruct the corrupted parties to

deviate arbitrarily from the protocol specification. This way, the adversary tries to

learn additional information except the output. We denote a protocol being secure

in the presence of a semi-honest adversary as semi-honestly or passively secure, and

we call it maliciously or actively secure if security holds even in the presence of a

malicious adversary. It is easy to see that malicious security provides more robust

security guarantees as security holds even in the presence of a stronger adversary.

A drawback of the malicious security setting is that we usually require expensive

cryptographic means to achieve this level of security. Thus, a semi-honestly secure

protocol provides better efficiency at the cost of a lower security level.

MPC is an appealing candidate for achieving privacy of computation. Addition-

ally, decentralization is easy to obtain as MPC allows parties to compute on their

inputs jointly. However, MPC comes with significant overhead in terms of compu-

tation, communication, and runtime compared to centralized execution. Therefore,

we aim to (1) design efficient protocols tailored towards a specific functionality and

(2) take a step forward in general-purpose MPC by finding a compromise between

security and efficiency.
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1.3. Thesis Outline

In Chapter 2, we give the notation we use throughout this thesis. Addition-

ally, we provide backgrounds on blockchains and MPC. Moreover, we present the

necessary preliminaries on trusted execution environments (TEE), and important

cryptographic building blocks.

In Chapter 3, we present the contribution contained in our publication [99].

Concretely, we advance the research on scalability solutions by presenting a new

off-chain protocol. Our protocol combines TEEs and a tailored MPC protocol to

provide correctness, privacy, and availability. During the presentation, we detail

how our protocol solves drawbacks of previous solutions.

In Chapter 4, we advance the research on private smart contract execution for

existing blockchain systems. We detail our contribution in the publications [94,

95, 96] proposing the use of MPC to realize privacy-preserving computing for

blockchains. More concretely, we start by considering a middle ground between

semi-honest and malicious security called the covert security setting. In [96], we

present efficiency optimizations in this setting for an important class of protocols.

Moreover, we improve efficiency without weakening the security. Next, we con-

sider an extension of the covert setting which is called publicly verifiable covert

security (PVC). In publication [95], we present a generic compiler to publicly ver-

ifiable covert protocols. Lastly, in [94], we combine the publicly verifiable covert

setting with blockchains. This allows parties to perform computation via an MPC

protocol and the result of the computation determines the distribution of coins in

the blockchain, analogously to the execution of a smart contract. While malicious

behavior during the MPC execution cannot be prevented in the covert setting, we

incorporate means to allow honest parties to point out malicious parties towards

a smart contract. Our techniques enable automatic verification of the claim inside

a smart contract which results in financial punishment of malicious parties and,

thus, strengthens the security.

In Chapter 5, we present the contribution contained in publication [93]. Con-

cretely, we present a threshold protocol for creating BBS+ signatures, which are

a popular instantiation of anonymous credentials. This way, we extend the decen-

tralized setting to issuing anonymous credentials, an essential building block in

the blockchain-related context of SSI.

Finally, in Chapter 6, we present a conclusion and point out interesting directions

of future research.
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In this chapter, we state the notation used throughout this thesis. Additionally,

we recall necessary backgrounds on blockchains (Section 2.1), multiparty compu-

tation (Section 2.3), trusted execution environments (Section 2.4), and the BBS+

signature scheme (Section 2.5).

2.1. Notation

Throughout this thesis, we denote the computational security parameter by κ and

the statistical security parameter by λ. We define [k] = {1, . . . , k}, i.e., the set

from one to k. The set from zero to k is explicitly stated by {0, . . . , k}. We further

use x⃗ to denote a vector, i.e., x⃗ = (x1, . . . , xℓ). The operator
$← signals a uniform

sampling, e.g., x
$← Zp denotes x being uniformly random sampled from Zp.

2.2. Blockchain

In this thesis, we consider a blockchain as a decentralized data structure main-

tained by a set of parties called miners. Miners receive transactions from users,

pack these transactions into blocks, and perform a consensus algorithm to append

a freshly created block to the previous one. This process forms a chain of blocks.

As a consequence of many consensus algorithms, e.g., algorithms based on proof-

of-work (PoW) [87, 119, 158] and proof-of-stake (PoS) [127], forks of the chain

might happen. In this scenario, two different states of the system exist in parallel.

The miners use the consensus algorithm to agree on one state. Agreeing on one

state makes the transactions included in the discarded block invalid. The oppor-

tunity of invalid transactions poses a risk to users since they might take actions

based on transactions that will be discarded afterward. Therefore, the concept of

confirmation blocks was introduced. The idea behind this concept is that blocks

and transactions are considered final as soon as several confirmation blocks are

appended afterward. The more confirmation blocks exist, the lower the proba-

bility that a block and its transactions will be discarded. Abstractly speaking, a

8



2. Preliminaries

blockchain can be considered an append-only ledger by considering only finalized

transactions.

In this thesis, we focus on blockchains that support smart contract execution,

e.g., Ethereum [203]. Therefore, transactions created by users can either be simple

payments or more complex smart contract invocations.

2.3. Multiparty Computation1

Secure multiparty computation in the standalone model is defined via the real-

world/ideal-world paradigm. In the real world, all parties interact in order to

execute the protocol π jointly. In the ideal world, the parties send their inputs

to a trusted party called ideal functionality, denoted by F , which computes the

desired function f and returns the result to the parties. Since F is trusted, the ideal

world guarantees the correctness of the computation and reveals only the intended

information by definition. The security of a protocol π is analyzed by comparing

the ideal-world execution with the real-world execution. Informally, protocol π is

said to securely realize F if for every real-world adversary A, there exists an ideal-

world adversary S such that the joint output distribution of the honest parties

and the adversary A in the real-world execution of π is indistinguishable from the

joint output distribution of the honest parties and S in the ideal-world execution.

We denote the number of parties executing a protocol π by n. Let f : ({0, 1}∗)n →
({0, 1}∗)n, where f = (f1, . . . , fn), be the function realized by π. For every input

vector x⃗ = (x1, . . . , xn) the output vector is y⃗ = (f1(x⃗), . . . , fn(x⃗)) and the i-th

party Pi with input xi obtains output fi(x⃗).

An adversary can corrupt any subset I ⊆ [n] of parties. We further set

REALπ,A(z),I(x⃗, 1
κ) to be the output vector of the protocol execution of π on input

x⃗ = (x1, . . . , xn) and security parameter κ, where the adversary A on auxiliary

input z corrupts the parties I ⊆ [n]. By OUTPUTi(REALπ,A(z),I(x⃗, 1
κ)), we specify

the output of party Pi for i ∈ [n].

2.3.1. Covert Security

Aumann and Lindell introduced the notion of covert security with ϵ-deterrence

factor in 2007 [13]. We focus on the strongest given formulation of covert security,

which is the strong explicit cheat formulation, where the ideal-world adversary only

learns the honest parties’ inputs if cheating is undetected. However, in this thesis,

we consider a slightly modified version of the original notion of covert security to

1This section is taken verbatim from our publication [95] with minor adjustments.
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capture realistic effects that occur, especially in input-independent protocols, and

are disregarded by the notion of [13]. The changes are detailed and explained in

our publication [95].

As in the standard secure computation model, the execution of a real-world

protocol is compared to the execution within an ideal world. The real world is

exactly the same as in the standard model, but the ideal model is slightly adapted

in order to allow the adversary to cheat. Cheating will be detected by some fixed

probability ϵ, called the deterrence factor. Let ϵ : N → [0, 1] be a function, then

the execution in the ideal model works as follows.

Inputs: Each party obtains an input; the ith party’s input is denoted by xi. We

assume that all inputs are of the same length. The adversary receives an auxiliary

input z.

Send inputs to trusted party: Any honest party Pj sends its received input

xj to the trusted party. The corrupted parties, controlled by S, may either send

their received input or send some other input of the same length to the trusted

party. This decision is made by S and may depend on the values xi for i ∈ I

and auxiliary input z. If there are no inputs, the parties send oki instead of their

inputs to the trusted party.

Trusted party answers adversary: If the trusted party receives inputs from

all parties, denoted by x⃗, the trusted party computes (y1, . . . , yn) = f(x⃗) and sends

yi to S for all i ∈ I.

Abort options: If the adversary sends abort to the trusted party as additional

input (before or after the trusted party sends the potential output to the adver-

sary), then the trusted party sends abort to all the honest parties and halts. If a

corrupted party sends additional input wi = corruptedi to the trusted party, the

trusted party sends corruptedi to all honest parties and halts. If multiple parties

send corruptedi, then the trusted party disregards all but one of them (say, the

one with the smallest index i). If both corruptedi and abort messages are sent,

the trusted party ignores the corruptedi message.

Attempted cheat option: If a corrupted party sends additional input wi =

cheati to the trusted party (as above: if there are several messages wi = cheati
ignore all but one - say, the one with the smallest index i), then the trusted party

works as follows:

1. With probability ϵ, the trusted party sends corruptedi to the adversary and

all of the honest parties.

2. With probability 1− ϵ, the trusted party sends undetected to the adversary

along with the honest parties inputs {xj}j /∈I . Following this, the adversary

sends the trusted party abort or output values {ŷj}j /∈I of its choice for the

10



2. Preliminaries

honest parties. If the adversary sends abort, the trusted party sends abort

to all honest parties. Otherwise, for every j /∈ I, the trusted party sends ŷj
to Pj.

The ideal execution then ends at this point. Otherwise, if no wi equals aborti,

corruptedi or cheati, the ideal execution continues below.

Trusted party answers honest parties: If the trusted party did not receive

corruptedi, cheati or abort from the adversary or a corrupted party, then it

sends yj for all honest parties Pj (where j /∈ I).

Outputs: An honest party always outputs the message it obtained from the

trusted party. The corrupted parties output nothing. The adversary S outputs

any arbitrary (probabilistic) polynomial-time computable function of the initial

inputs {xi}i∈I , the auxiliary input z, and the received messages.

We denote by IDEALCϵ
f,S(z),I(x⃗, 1

κ) the output of the honest parties and the

adversary in the execution of the ideal model as defined above, where x⃗ is the

input vector and the adversary S runs on auxiliary input z.

Definition 1 (Covert security with ϵ-deterrent). Let f, π, and ϵ be as above.

Protocol π is said to securely compute f in the presence of covert adversaries

with ϵ-deterrent if for every non-uniform probabilistic polynomial-time adversary

A for the real model, there exists a non-uniform probabilistic polynomial-time ad-

versary S for the ideal model such that for every I ⊆ [n], every balanced vector

x⃗ ∈ ({0, 1}∗)n, and every auxiliary input z ∈ {0, 1}∗:

{IDEALCϵ
f,S(z),I(x⃗, 1

κ)}κ∈N
c≈ {REALπ,A(z),I(x⃗, 1

κ)}κ∈N

2.3.2. Covert Security with Public Verifiability

Asharov and Orlandi introduced the notion of covert security with ϵ-deterrent and

public verifiability (PVC) in the two-party setting [10]. We give an extension of

their formal definition to the multiparty setting in the following.

In addition to the covert secure protocol π, we define two algorithms, Blame

and Judge. Blame takes as input the view of an honest party Pi after Pi outputs

corruptedj in the protocol execution for j ∈ I and returns a certificate cert, i.e.,

cert := Blame(viewi). The Judge-algorithm takes as input a certificate cert and

outputs the identity idj if the certificate is valid and states that party Pj behaved

maliciously; otherwise, it returns none to indicate that the certificate was invalid.

Moreover, we require that the protocol π is slightly adapted so that an honest

party Pi computes cert = Blame(viewi) and broadcasts it after detecting cheating.

We denote the modified protocol by π′. Notice that the adversary gets access to
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the certificate due to this change. By requiring simulatability, the certificate is

guaranteed not to reveal any private information.

We now continue with the definition of covert security with ϵ-deterrent and

public verifiability in the multiparty case.

Definition 2 (Covert security with ϵ-deterrent and public verifiability in the mul-

tiparty case (PVC-MPC)). Let f, π′,Blame, and Judge be as above. The triple

(π′,Blame, Judge) securely computes f in the presence of covert adversaries with

ϵ-deterrent and public verifiability if the following conditions hold:

1. (Simulatability) The protocol π′ securely computes f in the presence of covert

adversaries with ϵ-deterrent according to the strong explicit cheat formulation

(see Definition 1).

2. (Public Verifiability) For every probabilistic polynomial time adversary A
corrupting parties Pi for i ∈ I ⊆ [n], there exists a negligible function µ(·)
such that for all (x⃗, z) ∈ ({0, 1}∗)n+1 the following holds:

If OUTPUTj(REALπ,A(z),I(x⃗, 1
κ)) = corruptedi for j ∈ [n] \ I and i ∈ I

then:

Pr[Judge(cert) = idi] > 1− µ(n),

where cert is the output certificate of the honest party Pj in the execution.

3. (Defamation Freeness) For every probabilistic polynomial time adversary A
corrupting parties Pi for i ∈ I ⊆ [n], there exists a negligible function µ(·)
such that for all (x⃗, z) ∈ ({0, 1}∗)n+1 and all j ∈ [n] \ I:

Pr[cert∗ ← A; Judge(cert∗) = idj] < µ(n).

2.4. Trusted Execution Environments2

We comprise the hardware and software components required to create confidential

and integrity-protected execution environments under the term trusted execution

environment (TEE). An operator can instruct its TEE to create new enclaves, i.e.,

new execution environments running a specified program. We follow the approach

of Pass et al. [163] to model the TEE functionality. We briefly describe the op-

erations provided by the ideal functionality formally specified in [163, Fig. 1]. A

TEE provides a TEE.install(prog) operation which creates a new enclave running

the program prog. The operation returns an enclave id eid. An enclave with id

2This section is partly taken verbatim from our publication [99] with minor adjustments.
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eid can be executed multiple times using the TEE.resume(eid, inp) operation. It

executes prog of eid on input inp and updates the internal state. This means in

particular that the state is stored across invocations. The resume operation returns

the output out of the program. We slightly deviate from Pass et al. [163] and in-

clude an attestation mechanism provided by a TEE that generates an attestation

quote ρ over (eid, prog). ρ can be verified by using method VerifyQuote(ρ).

Our results within this thesis are based on specific correctness and privacy guar-

antees of TEEs. In particular, we require TEEs to provide integrity and confi-

dentiality guarantees for all its enclaves meaning that the enclave program runs

correctly and does not leak any data. Privacy holds specifically for all crypto-

graphic material stored inside an enclave. Additionally, we assume TEEs provide

a good source of randomness and a relative clock to all its enclaves.

2.5. BBS+ Signature Scheme3

Bilinear maps. We briefly recall the basics of bilinear maps following [38, 40]. Let

BGen be a randomized algorithm that on input a security parameter κ outputs a

prime p, such that log2(p) = O(κ), three cyclic groups (G1,G2,GT ) of prime order

p, generators g1 ∈ G1 and g2 ∈ G2, and a pairing e : G1 ×G2 → GT .

We call e a bilinear map if the following properties hold:

• Bilinearity: For all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) =

e(u, v)ab.

• Non-degeneracy: For generators g1 ∈ G1 and g2 ∈ G2 it holds that e(g1, g2) ̸=
1. Since GT is of prime order p, this implies that e(g1, g2) is a generator of

GT .

• Efficiency: e can be computed efficiently.

The literature differentiates between three types of pairings [101]: Type-1 with

G1 = G2, Type-2 with G1 ̸= G2 and the existence of an efficiently computable

isomorphism ϕ : G2 → G1, and Type-3 with G1 ̸= G2 and no such isomoprhism ϕ.

BBS+ signature scheme. The BBS+ signature scheme allows to create signa-

tures on an array of message with constant size. Let k be the size of the message

arrays, G = (G1,G2,GT , p, g1, g2, e) be a bilinear mapping tuple obtained form

BGen defined above and {hℓ}ℓ∈{0,...,k} be random elements of G1. The BBS+ sig-

nature scheme is defined as follows:
3This section is taken almost verbatim from our publication [93].

13



2. Preliminaries

• KeyGen(κ): Sample x
$← Z∗

p, compute y = gx2 , and output (pk, sk) = (y, x).

• Signsk({mℓ}ℓ∈[k] ∈ Zk
p): Sample e, s

$← Zp, computeA := (g1·hs
0·
∏

ℓ∈[k] h
mℓ
ℓ )

1
x+e

and output σ = (A, e, s).

• Verifypk({mℓ}ℓ∈[k] ∈ Zk
p, σ): Output 1 iff e(A, y · ge2) = e(g1 ·hs

0 ·
∏

ℓ∈[k] h
mℓ
ℓ , g2)

The BBS+ signature scheme is proven strongly unforgeable under the q-strong

Diffie-Hellman assumption (q-SDH) for pairings of type 1, 2, and 3 [12, 53, 187].

Intuitively, strong unforgeability states that the attacker is not possible to come

up with a forgery even for messages that have been signed before. We refer to

[187] for further details.

Recently, Tessaro and Zhu showed an optimized version of the BBS+ signatures,

reducing the signature size [187]. In their scheme, the signer samples only one

random value, e
$← Zp, computes A := (g1 ·

∏
ℓ∈[k] h

mℓ
ℓ )

1
x+e , and outputs σ = (A, e).

The verification works as before, with the only difference that the term hs
0 is

removed. Note that if the first message m1 is sampled randomly, then the short

version is equal to the original version.
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In the Introduction, we highlighted the necessity of scalability solutions for pop-

ular blockchain systems. In this section, we state existing approaches, mention

their drawbacks, and present a new scalability solution using a tailored multiparty

computation (MPC) protocol.

We categorize existing solutions based on different characteristics. First, we

distinguish between on-chain and off-chain solutions. On-chain solutions improve

throughput and transaction speed by changing the blockchain system itself. On

the one hand, such changes include modifications of blockchain parameters like

the block creation time or the block size. On the other hand, changes to the

consensus algorithm of the blockchain system can improve the scalability. The

most popular on-chain scalability approach is sharding, where the state of the

blockchain is split [193]. For every split of the state, called shard, only a subset of

miners perform the validation. This fragmentation enables parallel processing of

transactions by modifying different shards.

The main characteristic of on-chain solutions is the modification of the blockchain

system. However, changes to the underlying technology require either a completely

new system or all parties of the system must adapt to the modification. Since it is

likely that not all parties agree to the changes, a fork of the system might occur,

splitting the user base into two parts. This scenario happened when a set of devel-

opers proposed to increase the block size of Bitcoin from 1MB to 8MB [198]. Since

not all parties agreed to the suggested change, a fork occurred on August 1, 2017,

and Bitcoin Cash was created [31]. As the consequences of such modifications

might be drastic, the on-chain approach is less popular than off-chain solutions.

In contrast to on-chain solutions, off-chain protocols extend existing blockchain

systems without modifying the underlying technology. Instead, these protocols

allow users to offload transactions from the blockchain and thus reduce the com-

putational demand of the blockchain. In order to use off-chain protocols, a fork

of the system is avoided, but parties can make on-chain and off-chain transactions

simultaneously.

Abstractly speaking, to use off-chain protocols, users first make an on-chain
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transaction to transfer money to the off-chain system. Next, they use the off-chain

protocol, and finally, they make an on-chain transaction again to transfer money

back from the off-chain system to the blockchain. While all off-chain solutions

follow this blueprint, the concrete techniques and details differ widely.

Before giving examples of off-chain protocols, we make another categorization.

We categorize off-chain protocols based on the supported operations. On the

one hand, some systems allow users to transfer money only. On the other hand,

systems exist that allow users to perform more complex transactions, including

the execution of smart contracts. In this thesis, we focus on off-chain protocols for

smart contract execution.

In the last decade, several off-chain protocols for smart contract execution have

been proposed. There exist different approaches including state channels [90],

plasma chains [125, 168], rollups [8, 160, 161, 189], and trusted execution environ-

ment (TEE)-based protocols [63, 79].

A significant challenge of off-chain protocols is guaranteeing that users can in-

teract with the system and execute contracts anytime. This desired property is

called availability or liveness. The technical challenge to achieve this property is

that protocols must handle unresponsive parties. Here, we focus on the situation

where parties intentionally stop responding, i.e., behave maliciously, and disregard

unintentional stoppage, e.g., due to power outages. Existing scalability solutions

build on different techniques to achieve liveness, where different approaches incur

different drawbacks.

One way to deal with unresponsive parties is to require all parties to lock collat-

eral. In case of an abort, other parties get compensated using the locked money.

Consider the scenario where one party expects to lose money if the smart contract

execution terminates, e.g., the party expects to lose a poker game. Even if that

party decides to stop participating in the off-chain protocol to prevent the contract

execution from proceeding, other parties are compensated, and the malicious party

loses its collateral. The drawback of this approach is that the parties need to lock

a huge amount of money. The exact amount depends on the group of participants,

so the participants must be fixed for the contract’s execution. Furthermore, the

contract’s lifetime must be fixed at the onset to guarantee the compensation’s

payout.

Another way to deal with unresponsive parties is to store the state of the off-

chain smart contract on the blockchain. This enables other parties to carry on

the contract execution in case the intended party is unresponsive. Obviously, this

approach suffers from regular on-chain transactions, which are expensive. Another

drawback is that the contract state cannot be kept confidential if stored on the

blockchain so that other parties can continue the execution. This lack of a private
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state restricts the class of supported contracts.

We summarize the following limitations and show in Section 3.2 that all existing

off-chain protocols for smart contract execution suffer from at least one of them:

1. High collateral: Participating parties must lock a high amount of money

to compensate other parties in case of an abort.

2. Fixed set of participants and lifetime: The set of parties and the con-

tract lifetime must be fixed at the beginning of the contract execution.

3. Regular on-chain transactions: The protocol requires regular costly on-

chain transactions.

4. No support of private state: The contract state is not confidential, and

thus, contracts that require a private state are not supported.

3.1. Our Contribution

In this thesis, we contribute to the research field of off-chain scalability solutions for

smart contract execution. To this end, we present a new off-chain protocol called

POSE - Practical Off-chain Smart contract Execution in the following publication,

which can be found in Appendix A:

[99] T. Frassetto, P. Jauernig, D. Koisser, D. Kretzler, B. Schlosser, S. Faust, and

A. Sadeghi. “POSE: Practical Off-chain Smart Contract Execution”. In: 30th

Annual Network and Distributed System Security Symposium, NDSS 2023, San

Diego, California, USA, February 27 - March 3, 2023. 2023. Part of this thesis.

Concretely, in the above publication, we present an off-chain protocol for smart

contract execution that solves all of the aforementioned drawbacks 1-4 at the same

time. Our protocol is based on TEEs and a tailored multiparty protocol. POSE

enables a single operator to perform the contract execution and to sync the state

updates with a pool of watchdogs. In case the executing operator is not responsive,

one of the watchdogs takes over the execution. This way, our protocol achieves

liveness even if a large fraction of parties is malicious. Consequently, our protocol

avoids high collateral and regular on-chain transactions in the optimistic case and

supports unlimited lifetimes and participants. Additionally, the use of TEE pro-

vides state confidentiality during the execution, and our protocol guarantees that

parties can only learn information about the state if all parties eventually learn

the information.
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In the following, we first present the protocol architecture and state the consid-

ered adversary model, then we give a high-level view of the POSE protocol, and

finally, we take a closer look at the mechanisms to achieve liveness and private

state.

3.1.1. Protocol Architecture and the Adversary Model

Our POSE system consists of three types of parties: users, operators, and a single

manager contract running on the blockchain. This smart contract combines the

function of a bridge, i.e., it provides the entry point to the off-chain system for

users, a registry of operators, and a referee in case of challenges due to unresponsive

parties. Users aim to use the system to execute smart contracts cost-efficiently.

Operators possess TEEs and contribute computing power to the system.

We consider a static malicious adversary who may corrupt an arbitrary number

of users and a fixed fraction of the operators. Corrupted parties may deviate arbi-

trarily from the protocol specification and, in particular, may abort at any time.

As stated in Section 2.4, we consider a TEE to provide a secured environment

to perform computation. The security properties imply that corrupted operators

cannot learn information from the computation executed inside the TEE, and

they cannot read information from their TEE’s storage. In particular, any crypto-

graphic material, such as encryption keys, is hidden from the adversary. However,

the operator is under full control of its TEE’s communication channels. Thus, a

corrupted operator can intercept, delete, insert, and replay any messages from and

to its TEE. Our POSE protocol incorporates standard cryptographic means such

as signatures and encryption to facilitate authenticated and secure communication

over these channels.

3.1.2. Protocol Overview

Our POSE protocol consists of several subprotocols, which we present below. First,

operators need to register in the POSE system. Then, users can create new smart

contracts within POSE. Finally, users executed existing contracts. Figure 3.1 il-

lustrates the contract creation with step 1-4 and the optimistic contract execution

with step 5 and 6. While the contract creation and execution require only one

on-chain transaction in the optimistic case, our protocol must cope with situa-

tions where operators are unresponsive. To this end, another subprotocol is a

challenge and response procedure, where a dependent party challenges an unre-

sponsive party on-chain. This subprotocol requires two on-chain transactions—one

challenge message and one response message.
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Figure 3.1.: The contract creation (steps 1-3) and execution (steps 5 and 6) within
the POSE system. The figure is taken from our publication [99].

Operator registration. An operator willing to contribute its TEE’s computing

power to the POSE system starts the registration process. This process involves

the operator, its TEE, and the on-chain manager contract. The goal of this process

is to register the identity of a freshly generated TEE enclave in the manager, attest

that the TEE enclave is running a specific POSE program, and ensure that the

enclave is aware of the blockchain data up to some fixed offset.

Initially, the operator instructs its TEE to create a new enclave running a spe-

cific POSE program. The program comprises all the contract-independent code

necessary to maintain the system, e.g., to receive state updates if the enclave works

as a watchdog. When creating a new enclave, the enclave generates a public and

private key pair (pk, sk), where the public key is returned to the operator, and the

secret key is kept confidential in the enclave storage. The public key is later used

to identify this enclave in the list of all registered enclaves. Next, the operator

uses the attestation mechanism of its TEE to attest that the freshly generated

enclave is running the POSE program and that pk belongs to sk. Finally, the

operator provides blockchain data to the enclave, which returns a signature on

the information received. This step is necessary to ensure the enclave knows the

blockchain data up to some fixed offset. We elaborate more on the blockchain data

when explaining the synchronization mechanism in Section 3.1.4.

After the operator obtains the public key, the attestation, and the signature

on the blockchain data from the enclave, the operator provides the data to the

manager contract. The manager checks that the attestation and the signature
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are valid and that the signed blockchain data is up to date. If the checks hold,

the manager adds the public key of the enclave to the list of registered enclaves.

Eventually, the newly generated enclave is registered and ready to participate in

off-chain smart contract execution.

Smart contract creation. The creation of a smart contract within the POSE

system is initiated by a user who wants to deploy the contract. To this end, the user

selects an arbitrary enclave, called the creator enclave, from the list of all registered

enclaves. Then, the user sends the creator enclave’s identity together with the

contract code’s hash to the on-chain manager. The manager allocates storage for

the contract information and marks the contract as “in creation”. Next, the user

sends a creation request, including the contract code, to the creator enclave. Upon

receiving a creation request, the creator enclave randomly selects a set of registered

enclaves. This set forms the contract pool from now on. Such a pool consists of

a dedicated executor enclave and several watchdogs. While the executor enclave

is responsible for performing the contract execution, the watchdogs receive state

updates from the executor and take over the execution in case the executor is

unresponsive. In addition to selecting the pool, the creator enclave generates a

symmetric encryption key to facilitate efficient secure communication between the

pool members. The creator enclave distributes1 the information, i.e., the contract

code, the pool, and the key, to all pool members, which locally set up the smart

contract. After receiving confirmations from all pool members, the creator enclave

creates a signed creation confirmation. This signed message is sent to the manager,

who marks the contract as “initialized” after successful validation.

In the optimistic case, where every enclave and its operator respond in time,

the creation protocol requires two on-chain transactions. We can even improve

this to only one on-chain transaction if the user omits the initial transaction to

the manager. Since this message is only required to start a challenge afterward,

it is unnecessary in the optimistic case. In case some parties are unresponsive,

either the creator enclave or some of the pool members, the dependent party, i.e.,

the user or the creator enclave, starts a challenge-response protocol. In the worst

case, the parties execute at most two challenge-response protocols, resulting in four

sequential on-chain transactions. We explain the challenge and response procedure

below.

1The creator enclave uses the public keys of the pool members to distribute the information
confidentially.
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Contract execution. The contract execution protocol is initiated by a user who

wants to execute an existing smart contract. The user reads the identity of the

executor enclave from the on-chain manager contract. Then, it sends an execution

request to the executor containing the input to the smart contract and a nonce.

The nonce prevents replay attacks, where a corrupted party tries to execute the

move twice. Upon receiving an execution request, the executor enclave executes

the user’s move. Next, the executor enclave distributes the updated state to all

the watchdogs, which update their internal state and respond with a confirmation

message. After receiving a confirmation from every watchdog, the executor sends

the public state back to the user. Note that state updates transferred to the

watchdogs are encrypted under the symmetric pool key, which was set up during

the contract creation protocol. Therefore, even a malicious operator who controls

the connection between enclaves can only learn information once the executor

outputs the new public state.

Again, we described the optimistic case, where all enclaves were responsive. In

the case of unresponsive parties, either an unresponsive executor or watchdogs,

the dependent party starts a challenge period. If the executor does not respond

to a challenge, it will be kicked out of the pool, and one of the watchdogs will

become the new executor. The user can then send a new execution request to

the new executor. If one or multiple watchdogs are unresponsive, the executor

launches a challenge. Then, all watchdogs who do not respond to this challenge

are kicked out of the pool. As a result, all watchdogs still in the pool possess the

state updated and send a confirmation. We elaborate on the challenge-response

mechanism below.

Challenge and response procedure. In the optimistic case, where all parties

act in time, most of the messages are sent off-chain, including all messages of the

execution protocol. Only the creation protocol requires on-chain transactions to

inform the on-chain manager about a freshly instantiated smart contract. Unfor-

tunately, the protocol must care about unresponsive parties, where the operators

decide to stop acting on requests. In order to still guarantee an ongoing proto-

col, we incorporate a challenge-response protocol. In this protocol, the dependent

party acts as the challenger, and the challenged party must respond. While there

are several occasions where a challenge-response protocol can be executed, we ex-

emplify the procedure when the executor is not responding. In this scenario, the

user is the challenger.

The user starts the challenge period by sending an on-chain transaction to the

manager. This message contains the intended move and is stored by the manager.

Additionally, the manager starts a timeout when the executor must respond. The
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operator of the executor enclave monitors the on-chain manager to identify chal-

lenges. Upon seeing a challenge, the operator sends the move inside the challenge

to its enclave to execute the smart contract. The execution works exactly as high-

lighted above, i.e., the executor enclave updates the contract state and propagates

the state update to all watchdogs. Eventually, the executor enclave returns a re-

sponse containing the updated public state. This response is forwarded to the

on-chain manager by the enclave’s operator. Since the response contains the up-

dated public state, the user can read the result of the smart contract execution

from the response. Hence, this sequence yields a successful contract execution.

If the response is not submitted in time, the user triggers the manager to kick the

current executor enclave from the pool. Following that, one of the watchdogs takes

over the executor role. Note that the timeout parameter must be defined to give the

executor enough time to answer any challenge. This property is also necessary to

thwart a dishonest user kicking a responsive executor. When defining the timeout

parameter, we must consider that the executor might need to start a challenge

period by itself. Concretely, the executor creates a new on-chain challenge if some

watchdogs do not reply with a state update confirmation. Therefore, the timeout

parameter for an executor challenge must be high enough so no honest executor

can be kicked due to malicious behavior of the user or the watchdogs.

3.1.3. High Availability Guarantees

The core of our POSE system is an MPC protocol to sync state updates between

a set of enclaves. This pool is the primary mechanism for achieving high avail-

ability guarantees. If the executor enclave stops responding, one of the watchdogs

takes over the execution. In the following, we explain the availability guarantees

provided by POSE in more detail.

We start examining the contract creation procedure. Here, the creator enclave

selects a random subset of all registered enclaves of a configurable size. Since

we consider a static adversary who controls a fixed fraction of operators and the

selected operators are random, the adversary cannot bias the pool selection. Ad-

ditionally, a single honest operator is enough to ensure the liveness of the contract

execution. This low requirement is because only a single responsive operator is re-

quired to act as an executor. Even if only one operator continues responding and

all other operators stop reacting, this honest operator takes over the executor’s

role. Additionally, the POSE protocol is designed so that the adversary cannot

kick an honest operator out of the pool. In particular, the timeouts of the chal-

lenge protocols are set such that an honest executor has enough time to respond.

This requirement holds even if the watchdogs are malicious and abort.

22



3. New Off-Chain Protocol for Smart Contract Execution

We illustrate the scenario for a specific example. Let’s consider a pool size

s = 10, a total of n = 1000 operators, and the adversary controls 25% of them,

i.e., m = 250. Liveness of a single contract holds as long as at least one honest

operator is within the contract pool. In contrast, liveness breaks if only malicious

operators are selected. The probability for a liveness break can be calculated by

Πs−1
i=0

m−i
n−1

. It follows that the probability of liveness is the inverse probability given

by ϵ = 1 − Πs−1
i=0

m−i
n−1

. We get the lower bound ϵ = 1 − Πs−1
i=0

m−i
n−1

> 1 − (m
n
)s.

For the given scenario, we obtain a liveness probability for one contract of ϵ >

1− ( 250
1000

)10 > 99%.

To summarize, POSE takes a new approach to guaranteeing high availability.

POSE uses a pool of operators together with a tailored MPC protocol. While

this requires interaction between the parties, we emphasize that this interaction

occurs almost entirely off-chain. The advantage of this approach is that POSE

does not require high collateral or regular on-chain transactions. Additionally,

POSE supports a dynamic group of participants and an unlimited lifetime.

3.1.4. Supporting Private State

The POSE system supports private states through an interplay of different tech-

niques. While the TEE properties guarantee that an operator cannot learn state

information during computation and at rest, we use symmetric encryption to keep

state updates confidential in transit. The primary technical challenge to support

private states is to reveal information about state updates only if these updates

cannot be reverted. Without this property, a malicious operator could trigger a

state update with some input, observe the result, revert the state, and decide on

its input again. This hypothetical sequence would give the adversary an undesired

advantage.

The rollback attack is prevented in the POSE system by two aspects. First, state

updates are only revealed to the operator by the executor enclave if all available

watchdogs confirm the state update. Consequently, even if the executor enclave is

kicked afterward, the watchdog that takes over is aware of the updated state. Here,

we must prevent the attack where an operator pretends to its enclave that some

watchdogs are being kicked when, in fact, they are not. The only scenario in which

an operator gets kicked from a contract pool is when the operator is not responding

to an on-chain challenge. Therefore, we need a mechanism to synchronize the state

of the on-chain manager with the enclaves. This synchronization is the second

aspect required to prevent a rollback attack effectively. As the synchronization

mechanism is a crucial aspect of the POSE system, we dive into more details

below.
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Synchronization

While the contract execution proceeds entirely off-chain in the optimistic case,

there are on-chain events of which the executor enclave must be aware. Such events

are challenges to which the executor must react, as well as on- and off-ramping

transactions. An on-ramping transaction is an on-chain transaction where the user

transfers coins to a POSE off-chain contract. The transfer is done by locking coins

linked to a specific POSE contract in the manager contract. The executor enclave

of this POSE contract monitors the relevant on-chain transactions and transfers

the locked on-chain coins into coins usable in the off-chain contract. In order

to withdraw coins from an off-chain contract, the user requests an off-ramping

transaction from the executor enclave. Such an off-ramping transaction can be

posted to the on-chain manager contract to unlock coins. Once an off-ramping

transaction is requested, the executor enclave removes the coins from the off-chain

balances. This way, users can translate on-chain coins into off-chain coins and vice

versa, while the POSE system prevents double-spending.

In order to provide all relevant on-chain data to the executor enclave, we in-

corporate a specific synchronization mechanism. The mechanism’s goal is, first,

to provide all relevant on-chain events to the executor enclave and, second, to

facilitate a lightweight validation of blockchain data inside the enclave.

In order to achieve the first goal, the executor enclave must receive all relevant

blockchain data from its operator. This requirement implies that the provided

data is up to date, i.e., the most recent block provided must not be older than

a limited offset, and the data is consistent with the blockchain instead of being

from a fake chain. We tackle these requirements with several steps. First, during

the registration process, the operator provides the latest blocks to its enclave and

gets back a signature on the provided data. Then, the signature is forwarded

to the manager contract. The manager validates the signature and checks that

the signed blocks are part of the blockchain and, at most, a fixed offset behind

the most current block. Note that the manager cannot check if the latest signed

block is the last on-chain one because the transaction might take some time to

be processed. Nevertheless, the offset ensures that the enclave is aware of all on-

chain transactions except those that appeared in a limited number of more recent

blocks. Next, on every contract execution, the operator provides all new blocks

since the last execution. The enclave processes the new blocks to identify relevant

on-chain transactions since the last invocation. Additionally, the enclave expects

a minimum number of blocks per time interval. This rate is defined by a system

parameter and is required so that the enclave stays up to date except for the allowed

offset. Eventually, we require that the operator regularly invokes its enclave and
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provides new blockchain data, even if no contract execution is requested. This

requirement is because a malicious operator can create a fake chain with adjusted

timestamps if it has enough time to do so. We rule out this attack by requiring

regular invocations and a predefined rate of blocks.

Our second goal is to facilitate a lightweight validation of blockchain data inside

the enclave. Before, we simplified the description and mentioned that the operator

provides blockchain data or blocks to the enclave. However, validating entire blocks

inside the enclave is inefficient, and thus, we aim for a better solution.

Instead of entire blocks, the operator provides only block headers and the rel-

evant on-chain transaction with additional information to its enclave. The ad-

ditional information includes proofs showing that the on-chain transactions are

part of the blocks corresponding to the provided block headers. Based on this

information, the enclave validates the given block headers as well as the on-chain

transactions and incorporates the effects of the on-chain transactions. To prevent

the operator from withholding relevant on-chain transactions, we incorporate a

hash of all relevant transactions in the on-chain manager state. Consequently,

the header verification is only successful if the operator provides all transactions

required to recompute the hash value inside the manager state. In total, this mech-

anism results in a lightweight validation that can be executed inside an enclave.

3.2. Related Work

In the previous section, we presented our POSE protocol to improve the scalability

of smart contract-based blockchains. The most popular Blockchain supporting

smart contract execution is Ethereum [203], but many other systems, e.g., the BNB

Chain [34], Solana [180], Cardano [57] and many more, exist that can benefit from

our solution. In this section, we compare our results with other off-chain scaling

solutions. We focus on the scaling aspect of POSE and refer to Chapter 4 for

related work on privacy-enhancing off-chain solutions. We present related work,

highlight the differences to our POSE system, and specifically link back to the

drawbacks mentioned in the motivation of this chapter (cf. Section 3).

State channels enable parties to establish a peer-to-peer system to perform trans-

actions off-chain (e.g., [65, 68, 89, 151, 152, 154] and references within [109, 120]).

In contrast to payment channels, which support only money transfers, state chan-

nels allow the execution of arbitrary computation. A channel consists of an es-

tablishment, a transition, and a closure stage. While creating and terminating

a channel requires on-chain transactions, the execution of state updates happens

completely off-chain. This property yields only constant on-chain transactions in
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the optimistic case. However, state channels require a fixed set of participants

since all involved parties jointly establish a channel. Additionally, the channel’s

state is known by all parties of the channel to allow them to check the correctness

of state updates. This property prevents computation based on private state, like

the execution of poker.

Rollups provide a means to improve the throughput of blockchains by perform-

ing computation off-chain and reducing storage requirements. A single rollup node

bundles transactions and submits the batch to an on-chain contract containing the

rollup state. While optimistic rollups consider the published transactions to be

valid unless a fraud-proof is submitted [161], zero-knowledge rollups require the

rollup node to create a zero-knowledge proof guaranteeing a correct state transi-

tion [211]. Rollups are gaining more and more attraction and are implemented by

multiple projects, e.g., optimistic rollups by Optimism [160] and Arbitrum One [8]

and zk Rollups by StarkNet [183] and zkSync [214]. However, both variants suffer

from regular on-chain transactions. Additionally, optimistic rollups publish trans-

actions on-chain in clear and, thus, disclose the state to the public. In contrast,

zero-knowledge rollups use validity proofs instead of sending transactions in the

clear. However, current implementations of zero-knowledge rollups do not support

arbitrary computation due to the lack of efficient zero-knowledge proofs. Note

that the rollup operator is aware of the entire state in both variants.

Plasma [168] is similar to rollups because an operator must send regularly state

commitments to the blockchain. In contrast to rollups, Plasma suffers from the

data unavailability problem, which means that not all data required to verify state

updates are available to the users. Moreover, similar to zero-knowledge rollups,

Plasma does not support arbitrary computation [166].

Arbitrum [122] and Truebit [188] delegate the computation to off-chain parties,

called managers in Arbitrum, while using the blockchain to referee in case of a

dispute. In Arbitrum, a set of off-chain managers performs the computation. If

they disagree on the outcome of a state update, they perform a bisection protocol

to narrow down the disagreement. Then, eventually, an on-chain smart contract

validates a small step to resolve the dispute. In contrast to POSE, Arbitrum

requires each manager to perform the computation. Additionally, the managers

know the entire state, and thus, privacy breaks as soon as one manager is corrupted.

Truebit [188] allows parties to pose computation tasks. Then, other parties can

solve the task by performing the computation off-chain. Subsequently, the result

is posted on-chain. Afterward, a challenge period starts to detect incorrect results

submitted by malicious parties. During this period, other parties can challenge the

provided result. Similar to Arbitrum, Truebit uses a bisection protocol to resolve

the dispute and punish the corrupted party. Truebit suffers from regular on-chain

26



3. New Off-Chain Protocol for Smart Contract Execution

transactions as well as the lack of support for private state.

Bitcontracts [204], ACE [205], and Yoda [80] allow parties to move computation

off-chain by assigning a set of providers. Then, state updates are achieved by a

quorum of providers agreeing on the same result. Bitcontracts, ACE, and Yoda

require the providers to post state updates on the blockchain, resulting in regular

on-chain transactions. Additionally, they do not focus on supporting private state.

Moreover, Arbitrum, Truebit, Bitcontracts, and ACE have in common that they

require trust in the computing operators to achieve correctness of state updates.

This is in contrast to POSE, where correctness still holds if all operators are

malicious at the cost of requiring trusted execution environments.

FastKitten [79] and Ekiden [63] also leverage TEEs to perform off-chain compu-

tation. In contrast to POSE, FastKitten takes only one TEE-equipped operator

to perform the computation. Consequently, responsiveness of the operator is fi-

nancially incentivized via high collaterals. Additionally, the set of parties and the

contract’s lifetime is fixed to guarantee a payout if the operator is unresponsive.

Ekiden achieves liveness by requiring every state update to be submitted on-chain.

This procedure allows other parties to pick up the computation at any time. The

main drawback of Ekiden is the regular on-chain transaction.
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In the Introduction, we emphasize the necessity of enabling private smart contract

execution. In this thesis, we focus on adding this feature to existing blockchain

systems. For instance, we aim to add privacy-preserving smart contract execution

to Ethereum, the most prominent blockchain system that supports smart contract

execution but still exposes all data to the public. Compared to designing a new

blockchain system from scratch, the advantage of this goal is similar to the benefits

of off-chain scalability solutions discussed in Chapter 3. In particular, extending

an existing system makes the privacy feature accessible to an existing user base.

Extending an existing system prevents the necessity of users switching to a new

system, which is a massive hurdle for many users. This burden is evident when user

statistics of established systems are compared to follow-up systems. For instance,

the number of active addresses in Bitcoin is around 813K as of mid-April 2024 [30].

In comparison, Zcash, a modification of Bitcoin with additional privacy features,

has only around 13K active addresses on the same date [209].

Solutions to add private computing to existing blockchains follow different ap-

proaches. First, the trusted execution environment (TEE)-based approach builds

on a specific hardware component. A TEE is a separate part of computer chips

and provides secure enclaves to facilitate confidential computing and storage. The

most common TEE is Intel’s SGX (software guard extension). Several implemen-

tations of this approach were presented in the past, including ShadowEth [208],

FastKitten [79], Ekiden [212], Cloak [171], and references within [169]. Note that

our POSE off-chain protocol presented in Chapter 3 also supports private smart

contract execution and belongs to this class. While this approach is fast, it re-

lies on additional hardware guarantees. The past has shown that attacks on the

hardware level exist (e.g., Meltdown [142], Foreshadow [51], Spectre [128]). Ad-

ditionally, TEEs provide an attestation mechanism to create evidence about the

proper operation of a secure enclave. In the case of Intel’s SGX, this mechanism

requires trust in the manufacturer, constituting a single point of failure and a cen-

tralization of risk. For these drawbacks, different cryptographic approaches that

rely on computational hardness assumptions instead of hardware guarantees have

28



4. Private Computation for Blockchains via MPC

been proposed.

The second approach builds on fully homomorphic encryption (FHE). This

cryptographic primitive allows parties to compute arbitrary circuits on encrypted

data. After the evaluation, the final ciphertext can be decrypted to obtain the

result. While smartFHE [181] and Pesca [72] provide solutions based on FHE, the

former requires still impractical multi-key FHE to support smart contract execu-

tion with multiple parties, and the latter builds on an additional trust assumption

by requiring trust in the consensus nodes [169].

The third approach builds on zero-knowledge proofs (ZKP). This cryptographic

primitive allows a prover to create a proof for some statement. Then, any party

can verify the proof without learning anything besides whether or not the state-

ment is true. Several solutions building on ZKPs were introduced in the past (e.g.,

zkay [185], ZeeStar [184], ZEXE [41], Veri-ZEXE [206], Zapper [186], Kachina [124]).

However, these solutions build on trusted setups or are relatively inefficient.

A fourth approach uses multiparty computation (MPC) (e.g., Enigma [215],

zkHawk [16], V-zkHawk [17], Eagle [19]). MPC is an appealing candidate for pri-

vate computation as MPC protocols guarantee that parties learn nothing except

what can be derived from the output. However, this approach suffers from several

drawbacks. On the one hand, MPC protocols are slow due to their communica-

tion complexity compared to the other approaches. On the other hand, solutions

based on MPC must deal with malicious parties that deviate from the protocol

description. Parties can prove correct behavior via ZKP, but as stated before, this

incurs additional drawbacks like the requirement of a trusted setup.

In this thesis, we present a new solution for privacy-preserving smart contract

execution via MPC and tackle the challenges above in a new fashion. From a high-

level perspective, we cope with the efficiency challenge by considering a slightly

weaker security model that facilitates protocols with better efficiency and still an

adequate level of security. To deal with malicious parties, we incorporate tech-

niques that enable honest parties to detect malicious behavior and to create a

proof of misbehavior. The techniques build on simple cryptographic primitives

such as signatures and hash functions instead of requiring heavy cryptographic

tools like ZKP.

Before delving into the concrete contributions of this thesis, we illustrate the

desired scenario to which our contributions lead. We envision a set of parties

that aims to use a smart contract as a conditional payment mechanism, i.e., the

contract decides on the distribution of coins based on the parties’ inputs and

its code. At the onset of the protocol, each party deposits coins in an on-chain

manager, which is realized by a separate smart contract. This manager contract

is only responsible for distributing the coins and verifying misbehavior, not for
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performing the computation. Next, the parties execute the contract’s code inside

an MPC protocol, guaranteeing that the inputs are hidden from other parties.

Finally, the parties send the outcome of the protocol to the on-chain contract,

which distributes coins accordingly. For instance, the outcome of the protocol can

be the winner of some voting poll, and the on-chain contract is only responsible

for sending coins to the winner. In the optimistic case, i.e., when all parties

behave honestly, the protocol ends here. Otherwise, if an honest party detects the

misbehavior of some other party, the honest one creates a proof of misbehavior

and sends it to the on-chain contract. The on-chain contract verifies the claim and

punishes the misbehavior.

Next, we state the contribution of this thesis, which leads up to the envisioned

scenario.

4.1. Our Contribution

In this thesis, we significantly contribute to the field of privacy-preserving smart

contract execution based on MPC, which leads to the scenario above. Our contri-

bution is threefold.
First, we consider the covert security model as a trade-off between security

and efficiency. In covert security, malicious parties may deviate from the protocol
description, but any cheating attempt is detected with a fixed probability. The idea
behind this notion is that the deterrent effect results in malicious parties refraining
from cheating at all. We consider an important class of protocols and propose
significant efficiency improvements for this class without reducing security in the
covert security setting. Our contribution is presented in the following publication,
which can be found in Appendix B:

[96] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Putting the Online Phase on

a Diet: Covert Security from Short MACs”. In: Topics in Cryptology - CT-RSA

2023 - Cryptographers’ Track at the RSA Conference 2023, San Francisco, CA,

USA, April 24-27, 2023, Proceedings. 2023, pp. 360–386. Part of this thesis.

Concretely, we consider the offline/online setting, which is a widely used model

to increase the concrete efficiency of MPC protocols. In the offline phase, parties

compute correlated randomness, which is used to accelerate the online phase. As

inputs are only required in the online phase, the offline phase can be computed

beforehand, reducing the online phase’s response time. Since a large share of the

overall complexity is shifted to the offline phase, prior work focused on improving

efficiency by considering a covertly secure offline phase while keeping the online

phase maliciously secure. We are the first to show that reducing the online phase’s

30



4. Private Computation for Blockchains via MPC

security to the covert setting, too, significantly improves overall efficiency. Addi-

tionally, we prove that combining a covert offline and a covert online phase provides

the same security guarantees as combining a covert offline phase and a malicious

online phase. Consequently, we show that reducing the online phase’s security to

covert security improves overall efficiency without lowering the security. We state

the details about this contribution in Section 4.1.1.
Second, we consider covert security with public verifiability. This additional

property enables honest parties to transfer knowledge about malicious behavior to
any other party, even if this third party was not part of the protocol execution.
For this setting, we propose a generic compiler from semi-honest security to covert
security with public verifiability in the following publication, which can be found
in Appendix C:

[95] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Generic Compiler for Pub-

licly Verifiable Covert Multi-Party Computation”. In: Advances in Cryptology -

EUROCRYPT 2021 - 40th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,

Proceedings, Part II. 2021, pp. 782–811. Part of this thesis.

Prior work mainly focused on the two-party setting of publicly verifiable covert

security (PVC). In the multiparty setting, we present the first compiler that

supports an arbitrarily high deterrence factor. A property not achieved by prior

work in the multiparty setting [77]. A major challenge in realizing PVC is to ensure

that honest parties obtain verifiable evidence about malicious parties even if they

abort after they are detected. To cope with this challenge, we incorporate time-

lock puzzles (TLP), which ensure that parties can decrypt a ciphertext after some

time, even without knowing a key. By encrypting the evidence about malicious

behavior using TLP, honest parties are able to obtain the evidence even if malicious

parties abort. Further details are presented in Section 4.1.2.
Third, we transform PVC protocols to verify proofs of misbehavior inside an

on-chain contract efficiently. Our contribution is presented in the following publi-
cation, which can be found in Appendix D:

[94] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Financially Backed Covert

Security”. In: Public-Key Cryptography - PKC 2022 - 25th IACR International

Conference on Practice and Theory of Public-Key Cryptography, Virtual Event,

March 8-11, 2022, Proceedings, Part II. 2022, pp. 99–129. Part of this thesis.

Public verifiability is an appealing property to enable verification inside a smart

contract. However, prior solutions required expensive computation to verify proofs

of misbehavior, making it infeasible for verification inside a smart contract. Our

contribution includes modeling the desired privacy-preserving computing scenario
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outlined above that we capture under the notion of financially backed covert se-

curity (FBC). Then, we transform PVC into FBC protocols by reducing the

computational requirements for proof-of-misbehavior verification. We incorporate

techniques such as a binary search procedure to narrow misbehavior to a single

protocol message. We present the details of our contribution in Section 4.1.3.

4.1.1. Improved Covert Online-Offline Protocols

In this section, we present the main contributions of our publication [96], which can

be found in Appendix B. In this publication, we consider the covert security model.

In covert security, we consider malicious parties that may deviate arbitrarily from

the protocol specification. However, honest parties detect any cheating attempt

with a fixed probability. The idea of covert security is to deter malicious parties

due to the risk of being caught. This is why the detection probability is also called

the deterrence factor, often denoted by ϵ. Covert security presents a middle ground

between semi-honest and malicious security. In semi-honest security, we consider

malicious parties that follow the protocol specification and try to learn additional

information from the communication. Therefore, covert security is stronger, as

malicious parties may deviate from the protocol specification. In the malicious

security setting, corrupted parties may also deviate arbitrarily. However, while

there is a fixed probability of successful cheating, i.e., 1− ϵ, in covert security, the

successful cheating probability in malicious security is negligible in the security

parameter, providing higher security guarantees.

For the covert security setting, we propose significant efficiency improvements

for an important class of protocols. Moreover, we show that these efficiency im-

provements can come for free, as they do not reduce the overall security. In the

following, we first explain the class of protocols considered. Then, we explain the

traditional approach to achieving covert security and our new approach. Next, we

demonstrate the efficiency improvements when applying our new approach. Fi-

nally, we state the main idea of our new security composition theorem from which

we derive that our efficiency improvements can be obtained without losing security.

Offline/Online Protocols 1

A widely used technique for constructing efficient MPC protocols is to split the

computation into an input-independent offline phase and an input-dependent on-

line phase. This approach aims to shift the bulk of the computational effort to the

offline phase so that parties can evaluate the function efficiently once the private

1This part is taken verbatim from [96] with slight adjustments.
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inputs become available. To this end, the parties precompute correlated random-

ness during the offline phase. The randomness is then consumed during the online

phase to speed up the computation. For the offline phase, the parties use only

randomness and no private values as input, and thus, the parties can execute

the offline phase already before private inputs become available. Examples of of-

fline/online protocols are SPDZ [78], authenticated garbling [196, 197] and the

TinyOT approach [52, 100, 138, 159].

While the offline/online paradigm has traditionally been instantiated in either

the honest-but-curious or malicious setting, several recent works have considered

how to leverage the offline/online approach to accelerate covertly secure proto-

cols [75, 77]. The standard approach is to take a covertly secure offline phase and

combine it with a maliciously secure online phase. Since the offline phase car-

ries a large portion of the overall complexity, this approach significantly improves

efficiency. In contrast to the offline phase, we typically rely on a maliciously se-

cure protocol for the online phase. The common belief is that the main efficiency

bottleneck is in the offline phase, and thus, there is little value in optimizing the

online phase to achieve covert security.

In this thesis, we challenge this belief and show we can significantly improve the

overall complexity by using a covertly secure online phase.

Standard Approach to Covert Security

Covert security was introduced by Aumann and Lindell for a two-party garbling

protocol [13]. In the two-party garbling setting, one party plays the role of the

garbler, and the other acts as the evaluator. The garbler takes a Boolean circuit

representation of the function to compute and generates a garbled circuit, an

encrypted version of the circuit. Next, the garbler sends the garbled circuit to

the evaluator, who evaluates the circuit on a garbled version of the inputs. More

concretely, the evaluator obtains the garbled values of its inputs via oblivious

transfer (OT) to hide its inputs from the garbler. Additionally, the evaluator

receives the garbled inputs of the garbler via a direct message. A maliciously

secure OT protocol is used to secure the protocol against a malicious evaluator.

The protection against a malicious garbler is more complicated, as the protocol

must ensure that the garbled circuit is correct, i.e., represents the desired function.

The covert protocol presented by Aumann and Lindell is based on the cut-and-

choose approach. This approach builds on a semi-honest protocol and amplifies it

to covert security. More concretely, for the two-party garbling protocol, the garbler

must generate several garbled circuits and send all of them to the evaluator. Then,

the evaluator randomly selects one instance and checks the correctness of all other
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instances. If all checked instances are correct, the evaluator takes the remaining

instance to perform the evaluation. Assuming the garbler generates t garbled

circuits, then the evaluator checks t− 1 of them. Since the checked instances are

selected randomly after the generation, the malicious party must decide in which

instance to cheat without knowing which instances will be checked. Thus, the

probability of detecting cheating is at least ϵ ≥ t−1
t
.

To check the correctness of a garbled circuit, the evaluator recomputes the gar-

bling algorithm as executed by the garbler. In more detail, after the evaluator

randomly selects which instances to check, the garbler reveals all the randomness

used while generating the selected instances. Note that the generation of garbled

circuits is input-independent, i.e., the garbler needs only randomness and no private

inputs. Therefore, the garbler can reveal the randomness without breaking privacy.

Once the evaluator obtains the randomness for generating the selected instances,

it recomputes the garbling process for the desired function and compares the result

with the circuits obtained. Note that the garbling process is deterministic if the

randomness is fixed. Only if the circuits are identical the check holds.

We can abstract the protocol of Aumann and Lindell [13] into the following

blueprint for covertly secure input-independent protocols: (1) execute t instances

of a semi-honest protocol, (2) select one random instance, (3) open all other in-

stances by revealing a party’s randomness, (4) recompute the opened instance to

verify honest behavior, and (5) compute final results via the remaining unopened

instance.

We can extend the idea of Aumann and Lindell for a covertly secure two-party

garbling protocol to more than two parties and to the input-dependent setting, i.e.,

where parties use secret data as input. Extending it to the multiparty setting poses

two challenges. First, a protocol must address the question of selecting the opened

instances. The protocol must guarantee that the adversary cannot determine which

instances to check, as this would allow the adversary to know in which instance a

successful cheating is possible. Since an adversary may corrupt up to all but one

party, every party must contribute randomness to the selection process. Second,

the verification process might become more complicated. In particular, in a multi-

round protocol, one party’s behavior depends on the messages received from other

parties in previous rounds.

We can solve the former challenge in two ways. On the one hand, the parties

can jointly execute a coin-tossing protocol. This protocol outputs a single set that

contains all but one instance to open. Then, every party reveals its randomness

used in the instances to open. On the other hand, every party can define its own set

of opened instances. We call this the watchlist approach, as every party defines its

watchlist instead of having a single set of opened instances. This approach comes
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with a significant drawback. Recall that at least one instance must be unopened

so the parties can use this instance to compute the final outputs. To guarantee

one unopened instance, the sum of all opened instances must be lower than t.

Consequently, every party’s watchlist must contain less than t
n
instances, which

results in a deterrence factor of ϵ ≤ 1
n
. This upper bound is a significant restriction

compared to the joint coin-tossing approach.

To allow parties to verify honest behavior in a multiparty protocol instance,

every party must reveal its randomness. Additionally, parties send messages to all

parties instead of only to the receiver during the execution.2 Given the randomness

of all parties and all messages exchanged during the protocol execution, parties

can recompute the entire instance. Parties must get to know all messages during

the execution, as otherwise malicious behavior cannot be uniquely attributed to a

single party. Consider the scenario where a message of party Pi does not match

the recomputed data. It must be the case that either party Pi behaved maliciously

or party Pi received an incorrect message from party Pj in the previous round.

The verifying party cannot distinguish the two cases if this message from Pj in

the previous round is absent. To resolve this problem, parties send messages or

hashes of messages to all parties.

We can also extend the cut-and-choose approach to input-dependent protocols

borrowing techniques from [117] and [140]. Instead of executing several instances of

a semi-honest protocol, we execute just a single instance but increase the number of

parties. More concretely, every party splits its input into t shares using a t-out-of-t

sharing and uses one share as input for one of t simulated parties. Assuming n real

parties, the real parties perform a single semi-honest protocol execution between

all t ·n simulated parties. Afterward, every real party opens t−1 simulated parties

to show honest behavior during the single protocol execution. Since t−1 shares do

not reveal anything about the actual input, revealing these shares does not break

privacy.

As stated above, the covert security setting aims to provide a middle ground be-

tween the efficiency of semi-honestly secure and the security of maliciously secure

protocols. When using the cut-and-choose technique, the overhead compared to

semi-honest security is around t due to executing t semi-honest protocol instances.

Nevertheless, this approach still provides an efficiency benefit compared to mali-

cious protocols if the gap between semi-honest and malicious security is big. This

gap is particularly large for malicious protocols that build on the cut-and-choose

approach or costly preprocessing protocols [75, 77, 195]. Maliciously secure proto-

2If messages must be private during the execution, they can be encrypted under a symmetric
key, which the parties generate at the beginning of the protocol execution.
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cols based on cut-and-choose require the execution of ρ semi-honest instances [141,

195] for ρ being the statistical security parameters, which is typically set to 40 [98,

195]. Therefore, covert security can provide a trade-off. For instance, executing

t = 10 semi-honest instances reduces the overhead from 40 to 10, i.e., it saves 75%

of the overhead while still giving a 90% chance to detect malicious behavior.

In contrast to the described setting, some protocols provide malicious security

at a meager cost compared to semi-honest protocols. Many online protocols incur

a small overhead as they benefit from preprocessing or build on very efficient

information-theoretically secure techniques. For this class of protocols, covert

security based on the cut-and-choose approach offers no advantages.

Our Approach to Covert Security

The overall goal of our contribution in publication [96] is a more efficient combi-

nation of offline/online protocols in the covert security setting. As outlined in the

previous section, we can use the cut-and-choose approach to achieve a covertly

secure offline phase. In contrast, we take a different approach to a covert online

phase. On a very high level, we achieve covert security in the online phase by

weakening malicious security in contrast to amplifying semi-honest security.

Our idea is based on the observation that by reducing the statistical security

parameter of a malicious protocol, we slightly weaken the security but gain effi-

ciency improvements. In addition, this approach avoids the replicated execution

overhead of the cut-and-choose approach. We show the usefulness of this approach

by applying it to the online phase of the TinyOT protocol [159].

TinyOT is a two-party protocol for computing arbitrary Boolean circuits. The

protocol consists of an offline and an online phase. During the precomputation,

the parties set up correlated randomness in the form of authenticated bits and

authenticated multiplication triples. These values are authenticated in the sense

that one party knows the values and message authentication codes (MACs) on

these values, while the other party knows MAC keys. During the online phase,

the parties compute on these authenticated values to obtain an authenticated

output. In the end, the parties verify the MACs to verify the correctness of the

computation. Due to the preprocessing of the authenticated values, the online

phase is information-theoretically secure and very fast. The security of the online

phase is based on the fact that it is hard to guess the MAC key of the other party,

where the MAC key is a t-bit string. In our publication [96], we prove that the

TinyOT online phase with t-bit MACs and only minor modifications is covertly

secure with a deterrence factor of 1− (1
2
)t. This statement matches our intuition

as correctly guessing a t-bit MAC key happens only with a probability of (1
2
)t and,
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thus, the detection probability is 1− (1
2
)t.

Our following observation is that the MAC size used in the online phase of

TinyOT directly impacts the complexity of the precomputation. As mentioned

above, the offline phase is responsible for computing authenticated values, i.e.,

values and corresponding MACs consumed during the online phase. Therefore,

by reducing the size of the MACs in the online phase, we also reduce the size of

the MACs computed during the offline phase. The MACs are computed using

an oblivious transfer (OT) extension protocol. We observed that the MAC size

directly corresponds with the number of base OTs performed by the parties. As

the execution of base OT requires communication between the parties, fewer base

OTs result in lower communication complexity. To summarize, shorter MACs in

the online phase reduce the number of base OTs during the preprocessing and,

thus, improve the overall efficiency. We can quantify the improvements by calcu-

lating the communication complexity of an offline phase computing authenticated

values with 40-bit MACs, as required for a maliciously secure online phase, and

shorter MACs necessary for a covert online phase. Concretely, we specify a covert

offline phase based on the cut-and-choose approach and calculate the communi-

cation complexity for a deterrence factor of the online phase up to 7
8
. For this

setting, we achieve an improvement of at least 35% compared to the communica-

tion complexity required for a malicious online phase.

While we illustrate our new paradigm on the TinyOT protocol, we can apply

the approach to other offline/online protocols in the two- and multiparty case, e.g.,

[52, 100, 138, 196, 197].

So far, we have analyzed the efficiency gains due to a covertly secure online

phase. It remains to answer whether or not the security of the overall protocol is

reduced by relaxing the online phase to covert security.

Our Security Composition Theorem

In the previous section, we combined a covert offline and a covert online phase.

Next, we analyze the security of this combination. Concretely, we are interested in

the answer to the question of how is the overall deterrence factor ϵ defined if the

protocol consists of a covert offline phase with deterrence factor ϵoff and a covert

online phase with deterrence factor ϵon. While prior work shows that a combination

of a covertly offline and a covertly online phase is possible [13], we are the first to

answer the question about the resulting deterrence factor explicitly.

Intuitively, combining a covert offline and a covert online phase gives the adver-

sary two opportunities to cheat. Per the definition of covert security, any successful

cheating lets the adversary learn all private inputs and gives it complete control
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over the outputs. We can describe an offline/online protocol as composed of an

offline and an online phase. No matter in which phase the adversary tries to cheat,

it gains complete control in case of a successful cheating. Consequently, an adver-

sary can always cheat in that phase, where the detection probability is lower, and

still gain complete control. Therefore, the intuition tells us that the deterrence

factor of the composed protocol should be the minimum of the deterrence factors

of the offline and online phases. While the intuition is easy to grasp, we must

formally model and prove this composition.

In order to do so, we model offline/online protocols in a hybrid model. The

idea behind this model is that an online protocol is described in a setting where

the parties have access to an ideal functionality that captures the offline phase.

This modeling means that when called by the parties, the offline functionality

returns the correlated randomness as computed by the offline phase. Existing

composition theorems [13] show that the security of the online protocol holds even

if the ideal offline functionality is replaced by a concrete protocol that realizes the

functionality. Since we deal with covert security, we extend each ideal functionality

with a cheating opportunity for the adversary and a corresponding deterrence

factor. Then, the functionality can be replaced by a covert protocol realizing this

functionality with the exact same deterrence factor.

To answer the question of how the deterrence factor of the composed protocol

is defined when the offline and the online phases are covert, we start with the

following setting. Given an online protocol that uses an offline functionality with

deterrence factor 1, i.e., no successful cheating is possible, and is covertly secure

with deterrence factor ϵ1on. Then, our composition theorem states that the online

protocol is also covertly secure when using an offline functionality with deterrence

factor ϵ∗off < 1. Moreover, the new deterrence factor of the online protocol is defined

as ϵ∗on = min(ϵ1on, ϵ
∗
off). It follows that the composition theorem formally captures

our intuition. For instance, considering a covert offline protocol with a deterrence

factor of 50%, we can reduce the deterrence factor of the online protocol to 50%,

too, since the overall deterrence factor is the minimum of both.

We conclude our contribution of publication [96] by summarizing that we can

improve the overall efficiency of a covert offline/online protocol by reducing the

online phase’s security to covert, too, without lowering the overall security.

4.1.2. Publicly Verifiable Covert Security

In the previous section, we presented new techniques to improve the efficiency

of offline/online protocols in the covert security setting. In this section, we de-

tail our contribution to the publicly verifiable covert (PVC) security setting (cf.
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Appendix C). While the covert security setting allows honest parties to detect

malicious behavior, parties cannot transfer this knowledge to parties that did not

contribute to the protocol execution. Such a feature would increase the deterrent

effect since a party’s reputation can be damaged publicly. Therefore, Asharov and

Orlandi propose the notion of covert security with public verifiability [10]. The

notion extends the model of covert security by a third party called a judge, which

acts as an adjudicator in case one party blames another. In PVC, the judge is

defined as a non-interactive algorithm that obtains a proof of misbehavior from

a party and decides whether the claim is valid. If the proof is valid, the accused

party is considered malicious. Otherwise, if the proof is invalid, the accusing party

is malicious.

Our main contribution in [95] is a generic compiler from semi-honest to PVC se-

curity in the multiparty setting. We focus our presentation on input-independent

protocols, like the offline protocols described in the previous section, but we

can extend our techniques to input-dependent protocols using well-known tech-

niques [117, 140].

Transferring Knowledge About Cheating

The main technical challenge of PVC compared to covert security is to make

cheating publicly verifiable. In covert security, the parties can identify malicious

behavior. In PVC security, they must also be able to transfer this knowledge to

parties that did not contribute during the protocol execution. In order to transfer

this knowledge, parties must collect publicly verifiable evidence about cheating

during the execution and create a proof of misbehavior afterward. Parties can

send this proof of misbehavior to any third party who will be convinced about the

cheating if the proof is valid.

On a high level, we start with the same blueprint as used for covertly secure pro-

tocols based on cut-and-choose. In particular, parties (1) execute several instances

of a semi-honestly secure protocol, where all randomness is derived from random

seeds, (2) select randomly one instance, (3) open all other protocol executions by

revealing the random seeds, (4) recompute the opened instances to verify honest

behavior, and (5) continue computation with the remaining unopened instance if

all parties behaved honestly. We must solve two main challenges to add public

verifiability to the outlined protocol sketch. First, after detecting that a party

sent an incorrect message during the execution of one instance, we must allow the

accusing party to obtain publicly verifiable evidence about this. In particular, the

accusor must convince the judge that the incorrect message originates from the

accused party. We can solve the first challenge by requiring each party to sign
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the protocol transcripts. Since the accused party must have signed the transcript,

too, the judge is convinced that the message originates from the accused party

if the signature is valid. Second, we must prevent a scenario where a malicious

party aborts after learning it is caught before leaving evidence about it. In the

covert setting, honest parties can consider such an abort as cheating. However, in

the PVC setting, honest parties must also be able to create a proof of misbehav-

ior. As a judge, which is not part of the protocol execution, cannot tell whether

the accused party did not send a message or the accusing party did not provide

this message, we need to prevent this scenario. We call this feature prevention of

detection-dependent abort.

We first note that the naive approach of using a coin-tossing protocol does

not work, as a rushing adversary can abort after receiving messages from the

honest parties but before revealing its own randomness. In contrast, the watchlist

approach explained in Section 4.1.1 solves the challenge since the opened instances

are selected oblivious. However, as outlined before, this approach has a severe

drawback as the deterrence factor is bounded by 1/n, where n is the number of

parties.

We tackle this drawback by proposing a new mechanism to prevent detection-

dependent abort. On a high level, we combine the coin-tossing approach with

time-lock puzzles (TLP). This combination allows us to construct a compiler for

PVC with an arbitrarily high deterrence factor.

Verifiable Time-Lock Puzzle

For constructing a new mechanism against detection-dependent abort, we leverage

a cryptographic primitive called time-lock puzzle (TLP) [29, 148, 149, 173]. TLPs

provide a means to encrypt messages to the future. The idea behind this primitive

is that parties can encrypt a message by creating a TLP. Then, anyone can solve

the puzzle even without possessing a secret key. Instead of a key, a party must

solve the puzzle, which requires a parameterizable amount of computational work.

For instance, the RSW TLP [173] requires computing sequential squaring modulo

a composite integer, i.e., for a puzzle x ∈ ZN , the solution is y = x2T mod N .

It is conjectured that the solution cannot be obtained faster than performing T

sequential squaring operations if the prime factorization of N is unknown. The

parameter T is called the hardness parameter, as it defines how much work needs

to be done to solve the puzzle.

In order to encrypt a message s, the value x2T is multiplied by s. Following,

a puzzle is the tuple (x, s · x2T ). Note that there are two ways to accelerate the

generation of a puzzle. On the one hand, if the party knows the factorization
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of N , then it computes first α = 2T mod ϕ(N) and next xα mod N . On the

other hand, given a base puzzle of 1, i.e., p∗ = (x, h) where h = x2T , a party

can generate a puzzle for message s by sampling a random value r ∈ [N2] and

computing p = (xr, s · hr). We base our construction on the second approach to

hide the factorization of N from all parties.

A drawback of the RSW TLP is that every party must solve the puzzle inde-

pendently. The construction provides no means to transfer the knowledge about

the solution. To solve this issue, we look at a very related primitive called verifi-

able delay function (VDF) [37, 164, 199]. In particular, on a construction that is

also based on sequential squaring [199]. The primitive allows parties to evaluate

a VDF and create a proof that the output results from a VDF evaluation. In this

primitive, the evaluation is similar to solving a TLP because it requires computa-

tional work, e.g., sequential squaring. We take inspiration from this primitive and

integrate the proving technique into TLPs. Our new notion of a verifiable TLP

(VTLP) extends a TLP with the capability to transfer knowledge about a solved

puzzle. To be concrete, when solving a puzzle p, a party obtains the solution s

and a corresponding proof π. Then, s and π can be transferred to a third party,

which uses π to verify that s is the solution of puzzle p. The main advantage of

this approach is that the third party does not need to solve the puzzle again but

can verify a short proof, significantly improving efficiency.

Our publication [95] presents a concrete instantiation of a VTLP based on the

RSW TLP. We borrow the proof techniques from the VDF of Wesolowski [199].

On a high level, the proof comprises a succinct public-coin argument made non-

interactive using the Fiat-Shamir transformation, i.e., the challenge is computed

via a hash function. In more detail, given a puzzle (x, c), where c = s · x2T , the

solving algorithm of our VTLP outputs a solution s = c

x2T
and a proof π = x⌊2T /ℓ⌋,

where ℓ is the challenge value of the argument. Wesolowski show that π can be

computed in O(T/ log(T )) multiplications [199]. To verify the solution of a puzzle,

the verifier computes the same challenge value ℓ, sets r = 2T mod ℓ, and computes

h′ = πℓxr. Then, the solution s is valid if s = c
h′ , which can be verified without

performing the sequential squaring again.

Prevention of Detection-Dependent Abort

Before explaining our new compiler, we provide an intuition of using our new

VTLP primitive to prevent detection-dependent abort. The high-level idea is that

before learning which instances will be checked, all relevant evidence for cheating

is encrypted using a VTLP. Now, even if a malicious party aborts after learning

which instances will be checked, the relevant data to detect cheating is already
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encapsulated in a puzzle. The honest parties can solve the puzzle to obtain the

data. This data includes the random seeds used to derive the randomness during

the protocol instances. Here, we must pay attention to one crucial subtlety. Recall

that the cut-and-choose approach opens all but one instance and keeps the inputs

and outputs of the unopened instance confidential. Consequently, the puzzle must

not contain all random seeds but only those of the opened instances. We combine

the puzzle generation with a coin-tossing protocol to achieve this scenario. We

model this via an ideal functionality FPG, which obtains random coins and the

data for the puzzle, including all random seeds. Then, the functionality first

computes the unopened instance based on the random coins, discards all data

related to this instance, e.g., the random seeds, and finally generates a puzzle

containing the remaining data. To prevent parties from cheating during this phase,

we require this functionality to be instantiated by a maliciously secure protocol.

It seems counterintuitive to require a malicious protocol to achieve PVC since

a malicious protocol provides a higher security level. However, we stress that

the malicious protocol computes only a specific functionality instead of arbitrary

circuits. In particular, the complexity of the malicious protocol is independent

of the semi-honest protocol, which we compile to PVC. Consequently, we can

compile arbitrarily complex protocols by requiring only a specific functionality to

be maliciously secure.

PVC Compiler Description 3

From a high-level perspective, our compiler works in six phases, which are depicted

in Figure 4.1. Initially, all parties jointly execute the seed generation to set up seeds

from which the randomness in the semi-honest protocol instances is derived. Since

the security of a semi-honest protocol requires the randomness of every party to be

uniformly at random, we design the seed generation so that every party contributes

randomness to its own and all other parties’ seeds. If at least one party is honest,

the seed of every party is uniformly random, satisfying the requirement. Second,

the parties execute t instances of the semi-honest protocol πSH. By executing

several instances, the parties’ honest behavior can be later on checked in all but

one instance. Since checking reveals the confidential outputs of the other parties,

there must be one unchecked instance. The index of this instance is jointly selected

randomly in the third phase. Moreover, publicly verifiable evidence is generated

so an honest party can blame any malicious behavior afterward. To this end, we

first use the puzzle generation functionality FPG to generate a time-lock puzzle.

Next, each party signs all information required for the other parties to blame this

3This part is taken verbatim from [95] with slight adjustments.
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1) generate seeds

2) execute t times πSH

πSH πSH πSH · · · πSH πSH

3) select index & generate puzzle

4) honestly reveal information

abort
5) solve puzzle

6) check for misbehavior

Figure 4.1.: High-level depiction of our PVC compiler. The rounded boxes illus-
trate the different phases. A crosshatched phase signals that the phase
uses a maliciously secure protocol, and a dashed box denotes a semi-
honestly secure protocol.

party. In the fourth phase, the parties either honestly reveal secret information for

all but one semi-honest execution or abort. In the case of abort, the honest parties

execute the fifth phase. By solving the time-lock puzzle, the honest parties obtain

the required information to create a certificate about malicious behavior. Since this

phase must only be executed if a party aborts before revealing the information,

we call this the pessimistic case. We stress that no honest party is required to

solve a time-lock puzzle if all parties behave honestly. In the sixth phase, parties

use the information obtained in phase four or five and check for misbehavior. If

a party detects a cheating attempts, the party creates and broadcasts a proof of

misbehavior.

A corrupted party may cheat in two different ways in the compiled protocol.

Either the party inputs incorrect values into the puzzle generation functionality,

or the party misbehaves during executing πSH. The latter means that a party uses
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randomness different from that derived from the seeds generated at the beginning.

The first cheat attempt may be detected in two ways. In the optimistic exe-

cution, all parties receive the inputs to FPG and can verify that these values are

valid. Concretely, the inputs must match the commitments obtained during the

initial seed generation. In the pessimistic case, solving the time-lock puzzle reveals

the input to FPG. Note that if parties detect cheating in the optimistic case, they

must also solve the time-lock puzzle to generate a publicly verifiable certificate.

If all inputs to FPG are valid, an honest party can recompute the seeds used by

all other parties in an execution of πSH and re-run the execution. The resulting

transcript is compared with the one signed by all parties beforehand. If any party

misbehaves, an honest party can create a publicly verifiable certificate.

4.1.3. Efficient Verification of Proofs of Misbehavior

In this section, we detail the contribution presented in [94]. Herein, we take the

missing steps towards the envisioned scenario outlined at the beginning of Chap-

ter 4. Concretely, our contribution in [94] consists of four components. First, we

formally model the envisioned scenario and present a new security notion called fi-

nancially backed covert security (FBC). Our model includes the parties executing

the MPC protocol, a ledger entity responsible for managing coins, and a judging

party who controls deposits and adjudicates in case of detected cheating. Sec-

ond, we present transformations from publicly verifiable covert (PVC) protocols

to FBC protocols. Our transformations build on techniques to enable very efficient

verification of proofs of misbehavior. Many of these techniques can also be used

to improve existing PVC protocols. Third, we present an interactive protocol to

facilitate creating and verifying proofs of misbehavior for a new class of protocols.

This class comprises protocols without a public transcript. While no PVC protocol

without a public transcript is known, we create FBC protocols for this class by

leveraging the interactivity of the judge. The interactivity of the judging party

is in contrast to the judging algorithm of PVC protocols, where the algorithm is

non-interactive per definition. Hence, the interactive property allows us to apply

our new FBC notion to this class of protocols, too. Fourth, we implement our

judging party as a smart contract for Ethereum. We use our implementation to

perform benchmarks and show the practical relevance.

In the following, we highlight the first three parts of our contributions. But

first, we recall the envisioned scenario in the light of PVC, as introduced in the

last section, and highlight the shortcomings of existing PVC protocols.
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Envisioned scenario. We envision a scenario where parties perform private com-

putation, and the computation’s output defines a distribution of coins. A vivid

example of such a scenario is a poker game, where the outcome of the game de-

fines the party who gets all the coins. Besides a setting where the winner takes it

all, more sophisticated applications shall also be supported. To this end, a naive

approach is to combine blockchain functionalities with PVC protocols. In more de-

tail, parties deposit coins in a smart contract, perform a PVC protocol on private

inputs, and send the computation output to the smart contract. The contract then

distributes the coins according to the provided result. If a party detects malicious

behavior, it generates a proof of misbehavior and provides the proof to the smart

contract. The contract verifies the proof and burns the deposit of the malicious

party as a punishment. The combination of smart contracts and a PVC protocol

is an appealing candidate for achieving the envisioned scenario.

Shortcomings of PVC protocols. While appealing at first, existing PVC pro-

tocols inherit one shortcoming, which renders their use in the envisioned scenario

impractical. An important aspect of smart contract execution on a blockchain is

that parties must pay fees to execute a smart contract. Every operation is associ-

ated with a specific amount of fees; the more operations are executed, the higher

the execution fees. When a smart contract must verify a proof of misbehavior, a

party must pay fees for all operations required for the verification. Here comes

the shortcoming of existing PVC protocols in play, as these protocols require re-

executing an entire protocol instance to compare the recomputed with the signed

transcript. Based on this comparison, the contract can decide which party sent

the first incorrect message. While parties can perform the reexecution locally,

emulating an entire protocol inside a smart contract is prohibitively costly. There-

fore, we must design a new mechanism to allow a smart contract to perform a

proof-of-misbehavior verification with as few operations as possible.

Before presenting our techniques to achieve an efficient proof-of-misbehavior

verification, we provide details on our formal modeling. We capture the modeling

under our new notion of financially backed covert security.

Modeling of Financially Backed Covert Security

Our scenario comprises three types of entities. First, parties have secret inputs and

jointly perform the private computation. The parties’ goal is to distribute coins

according to the outcome of the computation. Second, we model the blockchain

functionality of maintaining a list of balances via a ledger functionality. Besides

storing the balances, the ledger captures the transfer of coins between parties and
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smart contracts. Third, we formally denote the smart contract as a judge. The

judge controls parties’ deposits, adjudicates in case of dispute, and distributes the

deposits according to the result. The parties interact with the ledger and the

judge to achieve their goal of distributing coins based on the outcome of a private

computation.

Next, we briefly state the sequence of actions taken by the parties. At the onset,

each party deposits coins in the judge smart contract by instructing the ledger

functionality to do so. Then, the parties perform the computation and check the

honest behavior of all other parties. To allow a party to detect malicious behavior,

we require the parties to run a covertly secure protocol. After the covert protocol

execution, the parties possess the outputs and forward them to the judge.4

We note that our construction must allow honest parties to detect cheating in

this step, i.e., if malicious parties send incorrect values to the judge, too. We

can achieve this by incorporating simple commitments. We slightly extend the

function that is computed by the covert protocol. Instead of outputting the result

y to every party, the function first generates n secret shares (y1, . . . , yn) such that

y = y1+. . .+yn, and then it generates commitments on these shares, i.e., for i ∈ [n]

(ci, di)← Commit(yi). The output of the extended function is (yi, di, {cj}j∈[n]) for
party Pi, i ∈ [n]. Then, the parties exchange signatures on the set of commitments

{cj}j∈[n]. Eventually, each party sends the set of signed commitments, its share yi,

and its decommitment value di to the judge so that everyone can reconstruct the

output.5

If a party aborts before signing the commitments, no party will learn the recon-

structed output, and all parties will consider this behavior an abort. In contrast,

if a party signs the commitments, waits to see all other output shares sent to the

judge, and refrains from revealing its own output share, this party is considered

malicious and punished by the judge. Similarly, if a party provides an incorrect

decommitment, then the judge identifies this cheating by trying to open the signed

commitments.

If no cheating was detected by all parties during the execution of the protocol,

the judge reconstructs the result y and distributes the deposits accordingly. Other-

wise, if an honest party detects cheating, a punishment protocol starts. While we

allow this protocol to be interactive, i.e., the accusing and the accused parties must

interact with the judge, our constructions for the settings with a public transcript

4The original motivation in our publication [94] differs from the motivation in this section.
Consequently, parties do not send the output values to the judge; thus, the construction in
[94] does not contain this step.

5Since a party signs the commitments only if it obtained the same as a result of the protocol,
it is actually enough if only one party sends the set of signed commitments.
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provide a non-interactive protocol. A non-interactive protocol allows the accusing

party to send a compact proof of misbehavior to the judge, who can efficiently

verify the proof without further interaction. Finally, in the pessimistic case, where

at least one party cheats, the judge burns the malicious party’s coins and returns

the honest parties’ deposits. To summarize, in the optimistic case, every party

must send two messages to the judge, the deposit and the protocol’s result, and

the pessimistic case includes a potentially interactive punishment protocol.

Security notion. We formally present a new notion called financially backed

covert security (FBC), which follows the notion of publicly verifiable covert se-

curity and adapts it to our model. An FBC protocol is a tuple (πcov,Blame, πpun),

where πcov is a covertly secure protocol, Blame is a non-interactive algorithm that

takes the transcript of a covert protocol execution and generates a compact proof

of misbehavior, and πpun is a potentially interactive punishment protocol between

the parties and the judge. Besides the requirement of πcov being covertly secure, we

require (πcov,Blame, πpun) to satisfy financial accountability and financial defama-

tion freeness. Intuitively, the financial accountability property requires that if an

honest party detects cheating, at least one corrupted party loses coins. The fi-

nancial defamation freeness property protects honest parties by requiring that the

probability of an honest party losing coins is negligible. Both properties are the

financial analog of PVC’s accountability and defamation freeness property, but

we are the first to present formal security games, which can be found in publica-

tion [94]. Our new notion of FBC allows us to formally analyze the security of our

constructions, which we present in the next section.

Constructing Financially Backed Covert Protocols

An FBC protocol must allow honest parties to generate a proof of misbehavior

in case cheating is detected. This requirement is similar to PVC protocol, and

analogously, FBC protocols require the prevention of detection-dependent abort.

In contrast, covert security does not require this property. Therefore, although the

FBC security notion requires πcov to be covertly secure only, we start building on

PVC protocols to inherit the prevention of detection-dependent abort property.

We further only consider PVC protocols that are built on the cut-and-choose

approach. While this requirement seems restrictive, all existing PVC protocols

follow the cut-and-choose approach. It is unknown whether PVC protocols can

be designed using a different approach. Recall that the cut-and-choose approach

builds on the idea of executing several instances and checking all but one of them

(cf. Section 4.1.1). Additionally, the parties’ random choices during a protocol
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execution are deterministically derived from a random seed to allow parties to

check the honest behavior of other parties.6 Given the random seed, the party’s

input, and all incoming messages, the outgoing messages can be deterministically

recomputed. More formally, we define a party’s initial state as its input and a

random seed, i.e., state0 = (x, seed). Then, we define a round function roundk
which, given the previous state statek−1 and the set of all incoming message ink,

computes a new state statek and a set of outgoing messages outk of round k,

i.e., (statek, outk) := roundk(statek−1, ink). We use this abstraction to model

the deterministic behavior of every party in each round of each of the several

protocol instances executed due to the cut-and-choose approach. During the open

phase, the initial states are revealed, which enables the parties to recompute the

entire protocol instance.7 Based on the highlighted observations, we show how

to generate compact proofs of misbehavior to facilitate efficient verification. We

distinguish between the cases where parties possess a common public transcript

and those without a public transcript.

Protocol with public transcript. We know from the previous section on PVC

protocols that parties exchange signed protocol transcripts to gather verifiable ev-

idence, but more is needed to verify misbehavior efficiently. Our protocols aim to

allow the judge to decide on cheating by recomputing the round function round

for only a single party and a single round. This single step means a drastic im-

provement as the judge must compute the round function for every round and

every party in existing PVC protocols. To this end, parties additionally exchange

hashes of all intermediate states and sign the set of all state hashes. The idea of

this step is to allow honest parties to identify the earliest round function that was

computed incorrectly. Then, the judge must recompute only this one, given the

previous state and the incoming messages. Since the state hashes and the tran-

script are signed, the judge is convinced that the accused party computed round

based on these inputs. After providing the intuition of our central insight, we take

a closer look at the generation of a proof of misbehavior and its verification.

A party uses the blame algorithm after the protocol execution to detect mali-

cious behavior and generate a compact proof of misbehavior. In the setting where

parties possess a public transcript, the punishment protocol is non-interactive.

Non-interactivity means the protocol consists of only a single message from an

6Using a pseudorandom generator (PRG) allows a party to obtain an unlimited amount of
pseudorandomness. Hence, the number of random bits is not limited.

7In the input-independent setting, where a party’s initial state contains only the random seed,
we can reveal the initial states of all parties. In the input-dependent setting, we use the
technique explained in Section 4.1.1 and open only t− 1 of t simulated parties per real party.
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honest party to the judge, who verifies the proof of misbehavior without further

interaction. The generated proof of misbehavior depends on the actual misbehav-

ior of the malicious party, i.e., in which protocol step the malicious party tried to

cheat. A malicious party can misbehave in the following steps. First, a party can

try to prevent honest parties from learning the initial state. Recall that the initial

state can be derived, for instance, from a signed commitment and corresponding

signed decommitment. Due to the prevention of detection-dependent abort, a ma-

licious party cannot withhold the decommitment after learning which instances

will be checked. It can only provide an incorrect decommitment, which results in

a failed opening attempt. Since both values are signed, an honest party can use

these values to create a proof of misbehavior. In this case, the judge tries to open

the commitment and detects misbehavior if it fails. Second, a party can send an

incorrect message during a protocol instance. The blame algorithm emulates the

entire protocol execution based on the initial states of all parties and compares

the computed transcript with the signed transcript. If the algorithm identifies a

discrepancy, it outputs the first incorrect message together with the state and the

incoming message of the round function to compute the correct message. Note

that the malicious party signs the states and all messages. Thus, the proof of mis-

behavior contains the signed inputs to the round function and the signed incorrect

message. The judge recomputes the specified round function on the provided in-

puts and compares the result with the signed message. By recomputing a single

round function, the judge detects the cheating attempt. Third, a malicious party

can modify its internal state during an execution. While state changes due to

the round function are valid, other modifications of the state are cheating. Since

the parties exchange signed hashes of the intermediate state, the blame algorithm

identifies such an invalid state. The proof of misbehavior is similar to the previous

case, i.e., it contains the data to allow the recomputation of a single round func-

tion and the signed incorrect state. The judge recomputes the round function and

compares the new state with the signed one. In all cases, the judge must perform

signature verification and only a single round function computation or a single

opening of a commitment.

Given a public transcript, our construction supports input-independent and

input-dependent protocols. For input-independent protocols, the cut-and-choose

approach opens all parties of an opened instance. Opening all parties allows

the blame algorithm to recompute the entire protocol transcript. Therefore, it

is enough for the parties to exchange message hashes instead of the message in

plain. The blame algorithm and the judge compare the hashes of the recomputed

message with the signed hashes to detect misbehavior. Depending on the message

size, this could reduce the communication complexity. For input-dependent pro-
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tocols, we cannot open all parties since the private inputs must be kept secret.

Therefore, the blame algorithm cannot recompute the entire protocol transcript.

Instead, it assumes the message of the unopened parties to be correct. To use mes-

sages of unopened simulated parties, the parties must exchange the whole message

instead of the hash during the protocol execution. Note that all existing PVC

protocols provide one of these variants of a public transcript.

Protocol without public transcript. The construction presented above shrinks

the computational work of the judge to the amount of computing a single round

of the underlying semi-honest protocol. Additionally, the punishment protocol is

non-interactive. We achieve these two properties by providing publicly verifiable

evidence about the protocol transcript and the internal states. While both proper-

ties are desirable, they come at the cost of increasing communication complexity.

Therefore, we present a construction of an FBC protocol that builds on a semi-

honestly secure protocol without a public transcript in the following.8 While doing

so, we maintain the low amount of computation required by the judge but require

an interactive punishment protocol. Hence, we trade better communication com-

plexity in the optimistic case, where all parties behave honestly, against additional

rounds of interaction in the pessimistic case, where the judge adjudicates alleged

misbehavior.

We again base our construction on a PVC protocol to inherit the prevention

of detection-dependent abort. However, no PVC protocol exists that supports

the absence of a public transcript. Moreover, it also needs to be clarified how to

construct such a PVC protocol, as the judge algorithm of PVC is restricted to

be non-interactive, in contrast to the judge entity of FBC, which is part of an

interactive punishment protocol. Nevertheless, we can easily take a PVC proto-

col with a public transcript, as used in our construction above, and remove the

requirement that each party broadcast messages. In this setting, parties still send

signed messages to the intended receiver, and for simplicity, we also require that

the hashes of internal states are broadcasted (see remark in Footnote 8). To allow

parties to detect cheating, we require all parties’ initial states to be revealed for

an opened instance. This disclosure enables parties to recompute the semi-honest

instance and to compare the recomputed message and initial states with the re-

ceived data. Note that due to the lack of a public transcript, we cannot assume

the message from specific parties to be correct and, hence, require that the initial

state of all parties be revealed. Consequently, our transformation only works for

8In this section, we present the idea of removing a public transcript. The same techniques can
be applied to remove the exchange of internal state hashes, further reducing communication
complexity. We refer to publication [94] in Appendix D for more details.
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input-independent protocols, but not for the input-dependent settings.

Given the initial state of all parties in a semi-honest instance, parties can emulate

the protocol execution to identify potential misbehavior. More concretely, parties

recompute the protocol based on the revealed initial states and compare the result

with the messages and internal state hashes received during the real execution.

Note that although the parties do not share a common public transcript, every

party receives messages intended for it. While a party cannot check the correctness

of a message received by another party, it can check the message with itself as the

receiver. If a discrepancy of messages or internal states is detected, the party

identifies a potential misbehavior. Note that this is only a potential misbehavior,

as the accused party might have received an incorrect message from another party

in some previous round. At this point, the checking party cannot be sure who

cheated, but it knows that at least some party behaved maliciously. In order to

identify the first cheating, every party must check for malicious behavior, and only

the accusation of the earliest message in the protocol execution will be considered.

To this end, the punishment protocol consists of two phases. During the first

phase, every party can submit an accusation. Then, in the second phase, only

the earliest accusation of misbehavior is considered. If an honest party makes an

accusation, then it can be certain that some malicious party will be punished in

the end. It is not mandatory that the accused party is malicious, as this party

might have received an incorrect message earlier, but then the accused honest

party sends an earlier accusation in the first phase. Note that a malicious party

can also send an accusation aiming to create the earliest accusation. However,

either the accused party is honest, in which case our protocol guarantees that the

honest party can successfully defend against the claim and the accusing party is

considered malicious, or the accused party is also malicious, in which case one of

the malicious parties is punished.

After identifying the earliest accusation, the second phase of the punishment

protocol adjudicates the accusation. In this phase, the judge must decide if the

accused party behaved incorrectly during the protocol execution or if the accusa-

tion is unfounded. We consider the case where the accuser claims that the accused

party sent an incorrect message in round k (the case of a faulty internal state is

analogous). Here, the major challenge is that the accuser cannot provide verifiable

data to the judge to recompute roundk(statek−1, ink) and resolve the dispute. In

particular, the accuser has no signature on the set of incoming messages ink of

the accused party. Nevertheless, both parties have an entire history of messages

that were recomputed during the identification of misbehavior. The accuser sends

its history of messages up to round k to the judge, and the accused party must

respond whether it agrees with the history. We distinguish both cases. If the
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accused party agrees, then the judge uses the provided messages to recompute

roundk. This mechanism allows the judge to settle the dispute immediately, the

same way as in our previous construction. In the other case, where the accused

party disagrees with the suggested history, they perform a binary search to iden-

tify the first message they disagree with. Since this procedure is an interactive

protocol, we call it a bisection protocol [56]. During this subprotocol, the history

is divided into two halves in each round to narrow down the disagreement to a

single message. Note that all messages are sent to the judge. However, the judge

must only perform simple operations during the step, e.g., adjusting the search

window and maintaining timeout intervals. If any party does not respond in time,

this party is considered malicious and the punishment protocol stops. After the bi-

section subprotocol is finished, the parties identify the first message they disagree

on. Per definition, they have agreed on all the messages before. Let the message in

doubt be an outgoing message of party Pj in round k′ (Pj can be any party of the

protocol). Then, given all incoming messages, on which both parties agreed, and

the internal state, the judge can recompute roundk′ of party Pj. Recall that the

parties exchanged signatures on all internal state hashes after the execution. Thus,

due to its recomputation, the accuser can provide the internal state matching the

hash. By computing the single round function roundk′ , the judge can check which

party provided an incorrect message history and punish the malicious party.

In total, we trade additional interaction in the punishment protocol against less

communication during the execution of the semi-honest protocol instances. Due

to the lack of a public transcript, the accusing and the accused parties first need to

agree on a message history. Then, the judge can resolve the dispute by recomputing

a single protocol step. The amount of computation required by the judge to solve

the dispute is basically the same as in the setting with a public transcript.

4.2. Related Work

At the beginning of this chapter, we provide an overview of different approaches

for privacy-preserving smart contract execution. Moreover, we present references

for solutions based on trusted execution environments, zero-knowledge proofs, and

fully homomorphic encryption. Therefore, we focus on MPC-based solutions in

the following. Additionally, we give an overview of MPC protocols related to

our techniques, i.e., covert and publicly verifiable covert security and MPC with

financial instruments.
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Private smart contracts via MPC. Enigma [215] achieves private smart con-

tract execution, reduced on-chain storage cost, and better scalability via MPC.

To this end, Enigma combines an existing blockchain with an off-chain network

consisting of MPC nodes. These MPC nodes are responsible for carrying out pri-

vate computation, maintaining a distributed database, and taking over expensive

computations. Enigma uses publicly auditable SPDZ [20] to perform computation.

Auditable MPC is an extension of maliciously secure MPC, i.e., privacy and cor-

rectness holds against malicious adversaries. This is in contrast to our solutions,

which consider covert adversaries. The idea of auditable MPC is to create an audit

trail during the computation so that a third party can verify the correctness of

the result. The verification of correctness is also possible even if all computing

parties are corrupted. However, auditable MPC also requires at least one honest

party for guaranteeing privacy. The verification process of auditable MPC requires

recomputing the entire circuit, which is prohibitively expensive for automatic ver-

ification by a smart contract. In contrast, our constructions specifically facilitate

verification of proofs of misbehavior via a smart contract. To this end, our solu-

tion leverages the one-honest-party assumption that is anyway mandatory for our

construction and auditable MPC to ensure privacy.

Hawk [132] provides a compiler that turns smart contracts into cryptographic

protocols with additional privacy guarantees. However, Hawk relies on a central-

ized facilitating manager. Although the manager cannot break correctness due to

the use of zero-knowledge proofs, it receives the private inputs of the users and,

thus, must be trusted to ensure privacy. While [132] states that the manager can

be equipped with a trusted execution environment (TEE) to remove this trust as-

sumption, incorporating TEEs adds strong hardware assumptions. The follow-up

works zkHawk [16] and V-zkHawk [17] replace the trusted manager with an MPC

protocol. Both works optimized the operations executed within the MPC proto-

col to make the computation more efficient. [16] mentioned that the maliciously

secure general-purpose SPDZ protocol [7, 78] can be used to instantiate the MPC

protocol. We deem our techniques for covert and publicly verifiable covert security

also applicable to realize the MPC protocol with improved efficiency.

The Eagle protocol [19] combines outsourced MPC [118] with insured MPC [21]

to achieve privacy-preserving smart contract execution. Outsourced MPC facili-

tates a setting where clients provide inputs to a set of servers that perform the

computation. This setting enables lightweight clients or clients to go offline during

the computation. Eagle motivates the use of outsourced MPC via the latter argu-

ment. Insured MPC [21] provides fair output delivery with financial penalties. If a

corrupted party aborts during the evaluation of the private smart contract, it will

be financially punished. The punishment is achieved by allowing honest parties
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to post a challenge on-chain to start a timeout by when the corrupted party must

respond. Note that Insured MPC builds on a maliciously secure MPC protocol.

Therefore, any cheating attempt of corrupted servers is detected except with neg-

ligible probability, and thus, an incorrect message can be considered as an abort.

The main difference between Eagle and our solutions is the considered adversary

setting. While [19] builds on protocols that consider malicious adversaries, we

focus on the covert security setting. Additionally, Eagle considers a setting where

clients provide inputs to a set of servers who perform the execution. In our work,

we take the scenario where the parties that posses private inputs also perform the

computation.

Covert security. Covert security was initially studied by Aumann and Lindell [13].

[13] presents a two-party protocol based on garbled circuits [207]. The protocol

builds on a semi-honestly secure protocol and uses the cut-and-choose approach to

enable honest parties to detect malicious behavior. Goyal et al. [107] presents the

first multiparty covertly secure protocol. [107] is also based on the garbling tech-

niques adapted to the multiparty setting using techniques from Beaver et al.[24].

Additionally, Goyal et al. also use the cut-and-choose technique. Subsequently,

the covert security model was considered by a line of work, including [110, 111,

165]. All these works are based on the cut-and-choose approach and either improve

the general-purpose covertly secure protocols or apply the covert security model

to specific functionalities, e.g., private set intersection [111], oblivious polynomial

evaluation [110]. Additionally, implementations of covertly secure protocols are

provided (e.g., [165]).

Damg̊ard et al. presented the first generic compiler from semi-honest to covert

security [73]. Their compiler works for the honest majority setting and achieves a

fixed deterrence factor of 1/4. Lindell et al. [140] combined the famous IPS com-

piler [117] and the covert security setting. On the one hand, [140] uses a covertly

secure protocol as the inner protocol, thus achieving better asymptotic complexity.

On the other hand, Lindell et al. show modifications of the IPS compiler to achieve

covert security in the dishonest majority setting from an information-theoretically

secure honest majority outer protocol and a semi-honestly secure dishonest ma-

jority inner protocol.

A range of research papers further considered the covert security setting. Damg̊ard

et al. [74] and Damg̊ard et al. [75] adapted the maliciously secure SPDZ [78] pro-

tocol to the covert security setting and provided implementations. Kamara et

al. [123] used the covert setting in realizing efficient server-aided secure function

evaluation. Zeng et al. [210] propose a framework for oblivious transfer in the

covert security setting.
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Lindell first realized that a range of maliciously secure protocols based on the

cut-and-choose approach achieve covert security by reducing the statistical security

parameter [139]. [139] also presents an optimized two-party garbling protocol for

malicious and covert security.

Mohassel and Riva [156] introduced a new security notion, a strengthened vari-

ant of covert security. In more detail, they combine covert security with the idea of

input-dependent abort [115] or limited leakage of [113, 155]. In their notion, called

covert security with input-dependent abort, correctness always holds, and only pri-

vacy breaks with probability 1 − ϵ, where ϵ is the deterrence factor. Moreover, a

privacy breach leaks only a single bit to the adversary.

The following works also combined the covert security setting with other security

models. Kolesnikov et al. [130] combined the dual-execution model of [113, 155]

with covert security to achieve a “continuum of cost-security trade-offs” [130] in

the two-party setting. Küpçü and Mohassel [136] combined a covertly secure two-

party protocol with a trusted arbiter to add fairness guarantees.

Asharov et al. [9] present OT extension protocols in the active and covert security

setting.

Choudhouri et al. [64] analyzed the round complexity of covertly secure proto-

cols. Moreover, they compared the round complexity of these protocols depending

on the deterrence factor.

Publicly verifiable covert security. The publicly verifiable covert security (PVC)

setting was introduced by Asharov and Orlandi [10]. The idea behind this notion

is to extend covert security with a mechanism allowing honest parties to transfer

knowledge about cheating to third parties. Even if these parties are not present

during the computation, they can be convinced about misbehavior. [10] introduced

the notion and presented a two-party protocol satisfying PVC security. Kolesnikov

and Malozemoff [129] and Hong et al. [112] proposed improvements to the two-

party protocol of [10].

Damg̊ard et al. [77] presented the first black-box compiler from semi-honest to

PVC security. [77] focused on the two-party setting and presented an informal

extension to the multi-party setting. The drawback of their multiparty compiler

is a limited deterrence factor of 1/n, where n is the number of parties, or a higher

deterrence factor at the cost of multiple sequential protocol executions.

Our compiler presented in Section 4.1.2 is the first fully formalized generic mul-

tiparty compiler from semi-honest to PVC security. The primary novel technique

to achieve PVC in the multiparty setting is using time-lock puzzles (TLP). Con-

current and independent of our work, Scholl et al. [176] also proposed a multiparty

compiler for PVC, and Scholl et al. incorporated TLP, too. The main difference
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is the creating and solving of the TLPs. While our compiler computes one TLP

for all parties inside an actively secure MPC protocol, [176] requires every party

to create one puzzle, resulting in n different puzzles. Note that [176] also requires

an actively secure MPC protocol, although no TLP is created inside the circuit.

In both compilers, the circuit size computed by the actively secure protocol is

independent of the semi-honest protocol size. As a result of the different puzzle

creations, the parties in our protocol must solve only one puzzle, while the par-

ties in their construction must solve all n puzzles. See our publication [95] in

Appendix C for a more detailed comparison.

Attema et al. [11] presented a generic compiler transforming semi-honest to PVC

protocol in the honest majority setting. Their compiler follows the same blueprint

as ours and [176] but avoids TLP due to the honest majority setting.

Liu et al. [144] presented the first constant-round protocol for private function

evaluation (PFE) with PVC security. In the PFE setting, one party possesses a

function f , the other or both parties possess private inputs xA and xB, and the

parties learn at most the output f(xA, xB) but nothing beyond. In particular, the

other party does not learn the function f and the first party’s input.

Similar to the combination of dual execution and covert security as proposed by

Kolesnikov et al. [130], Liu et al. [143] combined the dual execution model [113,

155] with PVC. This combination strengthens PVC, as the adversary learns only

1 bit of information in case of successful cheating.

Duan et al. [86] presented the notion of security against an honorific adversary.

This type of adversary may deviate from the protocol description but fear to dam-

age its reputation publicly. Therefore, in a protocol where cheating attempts may

be detected, and evidence about the attempts are present, this type of adversary

refrains from cheating. Duan et al. introduced an independent party called an

auditor, which assists in detecting cheating. In contrast, the publicly verifiable

covert security setting [10] also allows the transfer of knowledge about cheating to

third parties but does not require an auditing party.

MPC with financial mechanism. As stated above, insured MPC [21] combined

MPC with distributed ledgers. However, the motivation behind this work is to

realize fair output delivery, i.e., corrupted parties that learn the output and prevent

honest parties from knowing the output are financially punished.

Besides [21], the idea of combining MPC with cryptocurrencies to integrate

financial penalties for aborting parties was considered by a line of work (e.g., [5, 6,

26, 133, 134, 135]). While these protocols combine MPC and blockchain as we do,

their focus is on achieving a variant of fairness, and we focus on attaining private

smart contract execution.
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Similar to our work presented in Section 4.1.3, Zhu et al. [213] combined covert

security with financial punishments. They present a two-party garbling protocol

and achieve an efficient verification of proofs of misbehavior via a smart contract.

Since their protocol is tailored to the two-party garbling setting, the judge only

needs to verify the garbling process, which is a non-interactive algorithm. In

contrast, our work [94] applies to multiparty protocols and solves challenges that

come up when the judge must verify interactive protocols.
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Anonymous credentials provide cryptographic means to increase the privacy of in-

dividuals and, thus, play an important role in combination with blockchain tech-

nology in the realm of self-sovereign identities (SSI). Such a credential scheme

allows an issuer to generate credentials for users, who then can use the credentials

to provide verifiable claims to third parties, e.g., to prove authorized access to

a web service. During this process, anonymous credentials provide two essential

properties. First, the unlinkability property guarantees that verifiers cannot link

two disclosures of credentials of the same identity. Second, the selective disclo-

sure property enables users to reveal only parts of their credentials, i.e., specific

attributes, instead of all information. Both properties provide important privacy

features for digital identities. The selective disclosure property makes anonymous

credentials particularly suitable for SSI, as it equips the user with the power to

control the amount of data revealed. Thus, anonymous credentials are an attrac-

tive building block towards putting control over identities to the users instead

of the service providers as envisioned by the concept of SSI. Besides anonymous

credentials, blockchain technology is an appealing building block for SSI due to

its decentralized nature. More concretely, blockchains provide decentralized and

tamper-proof storage for public metadata like decentralized identifiers, informa-

tion about the scheme used to create the credentials, and revocation lists. The

decentralized nature matches the goal of SSI, which is to remove the data and trust

from centralized service providers. The combination of anonymous credentials and

blockchain technology is demonstrated by the Hyperledger Indy project [114].

One of the most prominent solutions for anonymous credentials is the BBS+

signature scheme [12, 187]. Abstractly speaking, an issuer generates a credential

by blindly signing a set of attributes. Then, the signature holder can use zero-

knowledge proofs to prove the possession of a valid signature on specific attributes.

The suitability of BBS+ stems from several appealing features. First, BBS+

allows the issuer to create a signature on a large set of attributes while keeping the

credentials’ size constant. Second, there exist efficient protocols for creating blind

signatures [12, 187] and, third, the existence of efficient zero-knowledge proofs
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that support the selective disclosure of attributes [12]. The prominence of BBS+

is evident by recent research [85, 187], industrial implementations [150, 153, 191],

standardization efforts by the W3C Verifiable Credentials Group and IETF [28,

146], and the usage in further applications [12, 48, 49, 53, 61].

We briefly recall the details of the BBS+ signature scheme and refer to the

Preliminaries 2.5 for a full formal definition. A signature on a set of message

{mℓ}ℓ∈[k] is a tuple (A, e, s), where e, s are random nonces from Zp for prime p and

A = (g1 · hs
0 · Πℓ∈[k]h

mℓ
ℓ )

1
x+e for x being the secret key. g1 ∈ G1 is a generator and

{hℓ}ℓ∈{0,...,k} are random elements in G1. To verify a signature under a public key

gx2 , the verifier uses a bilinear map e : G1 ×G2 → GT and checks if e(A, gx2 · ge2) =
e(g1 · hs

0 · Πℓ∈[k]h
mℓ
ℓ , g2) for g2 being a generator of G2.

As defined above, the scheme is designed for a single signer, which poses the

risk of a single point of failure. Concretely, a single party possessing the secret

key x constitutes an attractive target for an adversary. When the adversary suc-

cessfully corrupts the signer, it has complete control over the secret key. Such

corruption is a severe scenario, allowing the adversary to create valid credentials

for arbitrary attributes. Moreover, the maliciously generated credentials look like

honestly created ones from the verifiers’ perspective.

To mitigate such a single point of failure, we can resort to multiparty compu-

tation (MPC) to realize the signing task. More concretely, instead of allowing a

single party to create credentials, we split the secret key x into a set of n shares, i.e.,

x1, . . . , xn, distribute the shares to n different parties, and require a subset of all

parties to jointly create credentials. The size t of the minimum number of required

signers is called the threshold, and the concept of distributing a cryptographic task

between multiple parties is called threshold cryptography. The critical aspect of

threshold cryptography is that no subset of less than t parties can perform the

cryptographic task at hand, i.e., creating valid credentials in our use case. Conse-

quently, instead of corrupting only a single signer as in the traditional setting, the

adversary must corrupt t parties in the threshold setting. To realize the signing

algorithm of BBS+, we envision an MPC protocol tailored to this cryptographic

task. The advantage of using a tailored protocol instead of general-purpose MPC

is improved efficiency since the protocol can exploit the specific structure of the

problem.

5.1. Our Contribution

In this thesis, we aim to apply the decentralization paradigm of blockchain tech-

nology to new components paired with blockchains. To this end, we distribute the
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issuance of anonymous credentials, which are combined with blockchains in the

context of SSI. We present our contribution in the following publication, which

can be found in Appendix E.

[93] S. Faust, C. Hazay, D. Kretzler, L. Rometsch, and B. Schlosser. Non-Interactive

Threshold BBS+ From Pseudorandom Correlations. Cryptology ePrint Archive,

Paper 2023/1076. https://eprint.iacr.org/2023/1076. 2023. Part of this

thesis.

Concretely, we present a t-out-of-n threshold BBS+ signing protocol, which

allows the issuing of anonymous credentials in a distributed manner. We build our

construction on the offline/online model, which we have already seen in Chapter 4.

While the offline phase is input-independent and, thus, provides a preprocessing

phase, the online phase comprises the actions taken after the message to be signed

is available. Designing an efficient online phase enables fast response time upon a

signature request. In constructing our offline phase, we use a recently introduced

trend to build precomputation material based on pseudorandom correlations. The

advantage of these correlations stems from the existence of primitives that allow the

setup of correlations with sublinear communication complexity in the number of

correlated tuples. Then, we leverage the precomputation material to design a non-

interactive online phase, i.e., the signers respond to a signature request without

interaction among themselves. Our scheme is the first threshold signature scheme

to simultaneously achieve sublinear communication complexity in the offline phase

and non-interactivity during the online phase.

In the remaining part of this section, we first highlight the challenges of thresh-

oldizing the BBS+ signing algorithm. Then, we present our main results in a

top-down approach, i.e., we start presenting our online phase, which builds on

precomputation material, and then explain how this material is computed in the

offline phase.

5.1.1. Challenges of Thresholdizing the BBS+ Signing

Algorithm

To thresholdize a cryptographic task, we first secret share the secret information,

e.g., the secret key x. Typically, we use additive secret sharing or Shamir’s secret

sharing [178]. The first one works by sampling n random elements under the con-

straint that
∑

i∈[n] xi = x and is suitable for the n-out-of-n case, i.e., all n parties

must contribute to perform the cryptographic task. In contrast, Shamir’s secret

sharing enables fixing an arbitrary 1 ≤ t ≤ n for a t-out-of-n access structure.

We present our ideas for additive sharing for simplicity, but our construction, as
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presented in [93], also supports a flexible t. Both types of sharing allow the share-

holders to perform linear operations on their shares locally. For instance, let [a]

and [b] denote secret shared values a and b, then the parties can compute a secret

sharing of [a+b] = [a]+[b] by locally adding up their shares, i.e., party Pi computes

ai + bi. In contrast to linear operations, non-linear operations like multiplications

require interaction between the parties and, hence, are comparatively way more

expensive than linear operations. Therefore, thresholdizing cryptographic tasks

with non-linear operations is much more complicated than distributing linear op-

erations.

The BBS+ signing algorithm, as introduced at the beginning of this section

and formally stated in 2.5, contains one non-linear operation in computing the

inverse of x + e, where x is the secret key and e being a random nonce. More

concretely, the inverse is within the exponent, i.e., for some element M ∈ G1,

we must compute M
1
y , where y = x + e. Note that y is secret-shared between

n parties, as x is secret-shared, and e must be secret-shared, too, to prevent a

corrupted party from biasing the randomness. To compute M
1
y without revealing

the value y in clear, Bar-Ilan and Beaver [18] present a simple but elegant way.

First, the parties separately open the value B = Ma and δ = a · y for a random

secret shared value a, where opening means that each party sends its share to every

other party. Then, each party can locally compute the inverse of δ to compute

the final result as B
1
δ = (Ma)

1
a·y = M

a
a·y = M

1
y . Note that revealing the value δ

does not break the privacy of y since it is perfectly hidden by the random value

a. However, the computation of δ = a · y is still a non-linear operation requiring

interaction between the parties. An important observation is that this operation

only depends on the random values a and e and the secret key x. In particular,

the calculation is independent of the message to sign. This fact allows us to move

the computation in the offline phase and, hence, remove the expensive non-linear

operation from the online phase. As a result, we show how to construct a non-

interactive online phase in the following section.

5.1.2. Building a Non-Interactive Online Phase

Requirements on the preprocessing. Now, we show how to design a non-

interactive online phase from specific correlations. In the next section, we ex-

plain how to compute the required correlations as part of the offline phase from

efficiently generatable correlations. First, we recall the BBS+ signing algorithm.

A signature on a set of messages {mℓ}ℓ∈[k] is a three-tuple (A, e, s), where e, s ∈ Zp

are two random nonces and A = (g0 · hs
0 · Πℓ∈[k]h

mℓ
ℓ )

1
x+e . For computing such a

signature, we consider the secret key x and the nonces e, s to be secret-shared,
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i.e., signer Pi possesses xi, ei, si such that
∑

i∈[n] xi = x and the same holds for e

and s. Additionally, to apply the trick of the Bar-Ilan and Beaver inversion pro-

tocol [18], we require a secret-shared random value a, i.e., Pi possesses ai. Next,

we observe that we can compute A as the product of M
1

x+e

1 and M
s

x+e

2 , where

M1 = (g1 · Πℓ∈[k]h
mℓ
ℓ ) and M2 = h0. Note that for M1, we only have the inversion

of x+ e in the exponent, and for M2, we must compute s · (x+ e)−1. To apply the

inversion trick to both cases, we define two secret-shared masked values δ and α,

where δ = a(x + e) and α = a · s. We can use the same random mask a in both

terms since s and x + e are independent and random due to the randomness of

e and s. Summarizing, we require the precomputation to provide to party Pi for

(i ∈ [n]) a tuple (ai, ei, si, δi, αi) ∈ Z5
p which satisfy the following correlations

δ =
∑

i∈[n]

δi = a(x+ e), α =
∑

i∈[n]

αi = as

for a =
∑

i∈[n]

ai, e =
∑

i∈[n]

ei, s =
∑

i∈[n]

si.
(5.1)

Note that all correlations are independent of the message and, thus, can be com-

puted in the offline phase. We call the tuple (ai, ei, si, δi, αi) a presignature. Next,

we describe the actions required to compute a valid signature without interaction

between the signers given these presignatures.

From presignatures to signatures. The online phase of our distributed signing

protocol is non-interactive because the signers do not interact with each other.

We consider a client-server setting where a client requests a signature from a

set of signers. This setting matches the blind signing required for anonymous

credentials. While we present the non-blind signing here, the protocol can be

extended straightforwardly. We refer to our publication [93] for further details.

The signing request sent by the client includes the set of messages to be signed,

i.e., {mℓ}ℓ∈[k]. Then, each signer uses a presignature to respond with a partial

signature. Finally, the client aggregates all partial signatures to a valid signature.

To create a partial signature, a signer Pi first computes M ′
1 = (g1 · Πℓ∈[k]h

mℓ
ℓ )ai

and M ′
2 = hαi

0 . Then, a partial signature is the tuple (Ai, δi, ei, si), where Ai =

M ′
1 ·M ′

2 and (ai, ei, si, δi, αi) is the consumed presignature. Note that the secret

key is included in the partial signature via the shares δi, a sharing of a(x+e). The

idea behind this partial signature is that the client locally inverts δ =
∑

i∈[n] δi =

a(x+e), analogously to the Bar-Ilan and Beaver trick. By taking the product of all

Ai’s to the power of δ−1, the a value vanishes. Since we took h0 to the power of α,
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the s value remains. More concretely, a client reconstructs δ, e, and s by summing

up the shares and then computing A = (Πi∈[n]Ai)
1
δ = ((g1 ·Πℓ∈[k]h

mℓ
ℓ )a ·has

0 )
1

a(x+e) =

(g1 · hs
0 ·Πℓ∈[k]h

mℓ
ℓ )

1
x+e . This calculation yields a valid signature (A, e, s). Since the

signature has the same form as in the single-signer setting, we can use the same

verification algorithm. We finally stress the non-interactivity of our setting, as the

signers do not need to communicate with each other in the online phase. There is

only a request by the client followed by responses from the signers. This pattern

is the minimal interaction required by a client-server setting.

We achieve the non-interactive online phase by requiring a tailored set of corre-

lations (cf. Equation (5.1)). In the next section, we show how the signers set up

these correlations during the offline phase.

5.1.3. Constructing an Offline Phase from Pseudorandom

Correlation

Computing presignatures from cross-products. The offline phase aims to pro-

vide presignatures as defined in Equation (5.1) to every signer. We first observe

that the secret sharings of e, s, and a can be defined by every signer locally sam-

pling its share, e.g., Pi samples ei, and then we define e, s, and a as the sum of

the shares, e.g., e =
∑

i∈[n] ei. This sampling is straightforward and requires no

interaction between the signers. In contrast, we require interaction to set up secret

sharings of δ = a(x + e) and α = a · s. Recall that x is the secret-shared secret

key. We observe that

α = a · s
= (a1 + . . .+ an) · (s1 + . . .+ sn)

= a1 · s1 + . . .+ a1 · sn + . . .+ an · s1 + . . .+ an · sn ,

i.e., we can express the product of two secret-shared values as the sum of multi-

plications of two secret shares. While every party Pi can locally compute ai · si,
parties Pi and Pj for j ̸= i must interact to compute ai · sj and aj · si. We call

the multiplications of two secret shares of different parties the cross-products or

cross-terms. The same observation holds for δ = a(x + e) = a · x + a · e since δ

consists of two multiplications of secret-shared values. One approach to compute

the cross-terms is to use a multiplication protocol or a multiplicative-to-additive

share conversion protocol (e.g., [23, 83, 105], and references within [14]). The idea

of these protocols is to compute the multiplication and return additive shares.

Given these additive shares, every party can locally sum up the additive shares of
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all cross-products to obtain an additive sharing of α and δ.

Multiplicative-to-additive share conversions for the product of two random val-

ues can also be expressed via oblivious linear evaluations (OLEs). Intuitively,

OLEs are two-party correlations providing (x, y) to one party and (v, w) to the

other, where x, v and w are random elements and y = v · x + w. By rearranging

the equation, we get y − w = v · x, i.e., y and w are additive shares of the multi-

plication v · x. Since the values of the cross-products are random shares, we can

use OLE to transform the cross-products into additive shares. More concretely,

each pair of party (Pi, Pj) requires an OLE correlation for transforming each of

the cross-products aisj, ajsi, aiej, and ajei. The cross-products aixj and ajxi are

exceptional cases since the secret key shares are fixed for all presignatures, while

e, s, and a are fresh random values each time. To fix the secret key shares for

all correlation outputs, we utilize vector OLE (VOLE). VOLE is similar to OLE

but outputs (x, y⃗) to P1 and (v⃗, w⃗) to P2 with y⃗ = v⃗ · x + w⃗, i.e., v⃗, w⃗, and y⃗ are

vectors while x is a constant scalar. Hence, a VOLE correlation provides many

correlations yk = vk · x+ wk for k ∈ |y⃗|, where x is fixed.

Computing cross-products in sublinear communication. Computing multipli-

cations of additively shared values is possible via multiplication protocols (e.g. [83,

105]) in linear communication complexity. In contrast, Boyle et al. [42, 46, 47] show

how to generate OLE and VOLE correlations, which we have seen to be analo-

gous to multiplicative-to-additive share conversions for the product of two random

values, in sublinear communication complexity. They introduce a new crypto-

graphic primitive called pseudorandom correlation generator (PCG) and present

constructions to generate pseudorandom OLE and VOLE correlations under vari-

ants of the learning parity with noise assumption. Due to the advantage of PCGs

over multiplication protocol in terms of communication complexity, we build our

precomputation phase on this primitive. In more detail, a PCG consists of two

algorithms, Gen and Expand, and realizes a correlation, e.g., OLE or VOLE. The

Gen algorithm takes as input a security parameter and potential input parame-

ters, which depend on the realized correlation. For instance, the VOLE correlation

fixes a scalar, provided as input to the algorithm. Given the inputs, Gen generates

two short seeds, which are distributed to two parties. Then, each party locally

evaluates the expansion algorithm Expand on its seed. This algorithm outputs a

large batch of tuples that satisfy the correlation. For instance, considering a PCG

for the VOLE correlation, the first party computes (x, y⃗) = Expand(seed0) and

the second one obtains (v⃗, w⃗) = Expand(seed1). Note that each party can locally

evaluate the expansion algorithm without interaction with the other party. In con-

trast, the seed generation algorithm is either executed by a trusted dealer or via a
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distributed protocol, depending on the use case. Even in the distributed setting,

the communication is sublinear in the number of obtained correlations since the

parties must set up short seeds only.

Security-wise, PCGs provide two properties. Intuitively, the pseudorandom Y-
correlated output property states that the outputs of the expansion algorithm

look pseudorandom under the constraint that they satisfy the correlation Y and

the security property states the no party can learn the output of the other party

even when knowing its own seed. Due to the benefit of requiring only sublinear

communication, PCGs are an appealing candidate for realizing the OLE and VOLE

correlations required by our offline phase. However, when using this primitive, we

encounter some challenges.

Black-box use of pseudorandom correlation generators. Intuitively, the chal-

lenges arise from using PCGs in a multiparty setting where we consider a malicious

adversary. Prior work presents definitions only for passive adversaries [46, 47].

First, we must allow parties to obtain the same outputs in several PCG instances

in the multiparty setting. To illustrate this feature, recall that we use the PCGs,

for instance, to compute the cross-products of as, i.e., ai · sj, ai · sk, and so on

for i, j, k being different values. In this scenario, we require the ai value to be the

same in both cross-products. Therefore, party Pi must obtain the same in both

PCG instances corresponding to these cross-products. We account for this feature

by adding a programmability property to the definition of PCGs. This extension

follows the definition of [46, 47] and allows parties to specify input parameters to

the seed generation. Then, the outputs of the expansion algorithms are determin-

istically derived from these parameters. This derivation allows the output to be

programmed in several instances. Next, we account for a malicious adversary by

giving the adversary the power to define its input parameters. This setting is in

contrast to prior definitions, which sample the inputs of the adversary at random

and, thus, consider the passive adversary setting. Finally, we identify a missing

piece in the definitional framework when using PCGs in a black-box way in our

offline phase. We add a key indistinguishability property stating that the adver-

sary cannot learn any information about the other party’s input parameters, even

knowing its own seed. This property is necessary to treat PCGs in a black-box

way within the security proof of our offline phase. We pack all these properties to-

gether in our final definition of a reusable PCG. In our publication [93], we present

a PCG construction by slightly adapting prior work and prove that it fulfills our

new definition.
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Psuedorandom correlation functions Besides considering PCGs, we also apply

our new insights to pseudorandom correlation functions (PCFs). This primitive

was recently introduced by Boyle et al. [45] and extends the idea of PCGs. While

PCGs expand the seeds to an entire batch of correlation tuples simultaneously,

PCFs allow the parties to evaluate on public input to obtain only a single correla-

tion tuple. Conceptually, this reduced the storage complexity as parties can obtain

correlation tuples on the fly instead of storing them after the one-time expansion.

We extend the definitional framework of PCFs analogously to the definition of

PCGs and present instantiations of our offline phase on both PCGs and PCFs.

While conceptually more advanced, PCFs lack concretely efficient implementa-

tions. Therefore, we present a thorough evaluation of our offline phase based on

PCGs. We refer to [93] for more details on our evaluation and benchmarks.

5.2. Related Work

Anonymous credentials were first introduced by Chaum in 1985 [60]. More than a

decade later, in 2001, Camenish and Lysyanskaya proposed the first fully anony-

mous credential scheme [54]. Subsequently, a numerous theoretical and practical

work emerged (e.g., [55, 67, 70, 106, 108], and references within [121]). In 2006,

Au et al. [12] introduced the BBS+ signature scheme named after the group signa-

ture scheme of Boneh, Boyen, and Shacham [38]. Recently, Tessaro and Zhu [187]

showed that the BBS+ signature scheme is also secure when removing the s value.

The distributing of signing algorithms was already considered more than 35

years ago by Desmedt [81]. After early results [76, 147, 179] the use of threshold

signature scheme to secure cryptographic wallets of blockchains renewed the inter-

est in threshold signatures [39, 58, 83, 84, 102]. Especially threshold ECDSA is a

widely studied topic (e.g., [1, 33, 58, 59, 83, 84], and references within [14]).

The BBS+ signing algorithm was first distributed by Gennaro et al. [103] and

Doerner et al. [85]. While [103] focused on threshold issuance of the BBS group

signature scheme, their techniques can also be applied to the issuance of BBS+ sig-

nature. In contrast, [85] directly proposed a threshold protocol for issuing BBS+

signatures in an anonymous credential scheme. Similar to our approach, Gennaro

et al. and Doerner et al. build on the idea of the inversion protocol of Bar-Ilan

and Beaver [18]. While we use OLE and VOLE correlations computed from PCGs

to realize multiplications of secret shares, both use multiplication protocols. [103]

incorporates a two-round multiplication protocol based on a linearly homomorphic

encryption scheme, and [85] uses a two-round protocol based on oblivious transfer.

Consequently, the response to a signing request requires interaction between the
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signers in both protocols, which is in contrast to our construction. Since parts of

their protocols are message-independent, we can consider these steps as an offline

phase. This modeling allows their protocol to split into an interactive offline and

non-interactive online phase. While the round complexity of the online phase in

this model is identical to our construction, the communication complexity of the

offline phase is linear. In contrast, our protocol achieves a non-interactive online

and an offline phase with sublinear communication complexity. Our advantages

come at the cost of an additional assumption, e.g., a variant of the LPN assump-

tion, and increased computational requirements, both due to the use of PCGs.

Wong et al. [201] presented another threshold BBS+ protocol. Their work fo-

cuses on providing strong robustness, which allows parties to obtain a valid sig-

nature even if some parties stop responding and other parties join during the

computation. In order to achieve strong robustness, their construction builds on a

linearly homomorphic encryption scheme with threshold decryption. The resulting

construction takes four rounds of communication between the servers. In contrast,

our online protocol takes only two rounds and follows the request and response

communication pattern. Note that our online protocol requires the client to send

the signer set to the servers, who prepare partial signatures corresponding to the

signer set. This form of synchronization, called a roll call in [201], is not required

by the construction by Wong et al. [201].

Sonnino et al. [182] proposed a threshold anonymous credential scheme, called

Coconut, based on the Pointcheval-Sanders (PS) signature scheme [167]. Subse-

quently, Rial and Piotrowska presented a follow-up of Coconut [172]. In contrast

to the BBS+ signing algorithm, the PS signing algorithm consists only of linear op-

erations. Therefore, Coconut achieves a non-interactive online phase without pre-

computation. On the downside, although Coconut also supports multi-attribute

credentials, the public and private key size grows linearly with the number of at-

tributes. In contrast, BBS+ keys always have a constant size. Additionally, BBS+

is more popular than the PS signature scheme. The popularity becomes evident

by the standardization efforts highlighted in the motivation of this chapter.

The main building blocks used in our offline phase are pseudorandom correlation

generators (PCGs) and functions (PCFs). PCGs were recently introduced by Boyle

et al. [42] and further refined and extended by [36, 43, 44, 46, 47, 69, 170]. The

research on PCFs was initiated by Boyle et al. [45] and continued by [2, 43, 50,

162]. Further, some work used these primitives to increase the efficiency of general-

purpose MPC [82] or tailored MPC protocol [1, 131]. Specifically, Abram et al.[1]

presents a threshold ECDSA protocol based on a PCG, and Kondi et al. [131] uses a

PCF for realizing two-party deterministic Schnorr signing. [1] specifies a PCG that

outputs correlations tailored to the ECDSA signature while we build our offline
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phase on black-box PCGs/PCFs for OLE and VOLE correlations. Additionally,

[1] presents an n-out-of-n protocol instead of supporting a flexible threshold as in

our construction. Kondi et al.[131] introduce a new primitive called discrete log

PCF to realize a deterministic nonce generation in the Schnorr signing algorithm.

The protocol works only in the two-party setting. Both constructions [1, 131]

require communication per presignature. Therefore, they either require linear

communication in the offline phase or an interactive online phase. This trade-off

is in contrast to our scheme, which achieves both properties simultaneously.
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In this thesis, we contributed to the research on scalability and private smart

contract execution for blockchains. Additionally, we applied the decentralization

paradigm to the issuing of anonymous credentials. Next, we point out interesting

directions for future research in these fields.

Instantiating scalability solution over Bitcoin. In Chapter 3, we presented

a new solution, called POSE, for improving the scalability of smart contract-

supported blockchains. Our POSE system consists of three types of parties. Op-

erators possess trusted execution environments (TEEs) that are responsible for

smart contract execution. Users provide inputs to smart contracts, and a single

manager is responsible for managing the system, e.g., keeping track of all regis-

tered operators and contracts and maintaining balances for all POSE contracts.

We realize this manager via an on-chain smart contract. Realizing the manager via

a smart contract has the advantage that no additional trust assumption is made.

The downside of this approach is that we can use POSE only for blockchains that

support smart contracts.

A potential direction for future research is to adapt our POSE system so that

it can also be instantiated over blockchains without smart contract support, e.g.,

Bitcoin. There are two direct positive effects when realizing POSE over Bitcoin.

First, we can open our POSE system to another large user base, as Bitcoin is still

the blockchain with the highest market capitalization at the time of writing [137].

Second, by combining Bitcoin with POSE, we can extend the supported capabil-

ities of Bitcoin with the execution of arbitrary smart contracts. This extension

would increase the expressiveness of the Bitcoin system.

The main challenge in combining Bitcoin with POSE is to realize the manager

differently. One approach is to move the responsibility of managing the system

to the TEEs. This approach includes the TEEs checking for on-chain challenges,

the number of deposited coins, and more. To perform all these checks, the TEEs

must be aware of all blockchain data. Since no on-chain manager exists, we cannot

apply the same synchronization mechanism as in the current POSE system. Con-

sequently, the TEEs must either verify the entire blockchain or the system must

build on a new synchronization mechanism. On the one hand, it is an interest-
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ing research question to explore whether TEEs can verify the entire blockchain

state. On the other hand, developing a new synchronization mechanism to verify

blockchain data efficiently might be worthwhile.

Privacy via maliciously secure multiparty computation. In Chapter 4, we pre-

sented a general-purpose MPC protocol to facilitate private smart contract ex-

ecution. For all the presented protocols, we considered the covert and publicly

verifiable covert (PVC) security setting and integrated mechanism to facilitate au-

tomatic verification of proofs of misbehavior within smart contracts. The initial

idea of covert security was to lower the security guarantees of the malicious se-

curity setting slightly to facilitate more efficient protocols. With more research

on general-purpose MPC protocols in the malicious security setting, the efficiency

overhead compared to covert protocols diminished. Consequently, using mali-

ciously secure protocols becomes more and more attractive. However, maliciously

secure protocols do not provide built-in mechanisms to verify malicious behavior

publicly. Therefore, an interesting research question is whether we can leverage

our techniques used for covert and PVC protocols and design maliciously secure

MPC protocols that allow a smart contract to decide on accused misbehavior.

Such protocols would facilitate private smart contract execution using MPC in the

malicious security setting.

To this end, two approaches are good starting points. First, Baum et al. [20]

presented the idea of publicly auditable MPC. In this setting, the parties produce

an audit trail during the protocol computation, and afterward, any third party can

verify the correctness of the result. The verification is even possible if all parties

were corrupted during the computation. In contrast to correctness, privacy breaks

if all parties are corrupted. Therefore, to achieve private smart contract execution,

we must assume at least one honest party. Since this assumption is mandatory,

we might be able to leverage the assumption for more efficient verification. In the

publicly auditable SPZD protocol presented by Baum et al. [20], the verification

requires recomputing the entire computation circuit. As this is prohibitively ex-

pensive for automatic verification within a smart contract, an interesting question

is whether we can exploit the assumption of at least one honest party to improve

the efficiency of the verification.

A second potential direction is the line of research on identifiable abort initially

studied in [116] (see also [22, 66] and references within). Since a cheating attempt

in the malicious security setting is always detected except with negligible prob-

ability, such an attempt can also be considered an abort of the cheating party.

Therefore, techniques from protocols with identifiable abort could be helpful to

identify the cheating party. An open question in this direction is how to transfer
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the knowledge of an abort in a publicly verifiable way such that a smart contract

can verify an accusation.

Improved pseudorandom correlations generation. In Chapter 5, we presented a

tailored MPC protocol to distribute the creation of BBS+ signatures, a prominent

solution for realizing anonymous credentials. Our main building blocks inside our

protocol are pseudorandom correlations generated by pseudorandom correlation

generators (PCGs) or functions (PCFs). These primitives were recently intro-

duced by Boyle et al. [42] and [45]. Since then, the primitive was already used

to improve the communication complexity of threshold signature schemes (e.g.,

ECDSA [1] and Schnorr [131]) and general-purpose MPC based on authenticated

garbling [82]. These works show the potential of PCGs and PCFs. However, these

primitives are still in their infancy and can be improved in multiple directions.

First, existing constructions are limited to simple correlations, e.g., OLE, VOLE,

OT tuples, and multiplication triples. Building constructions for other correlations

would further increase the range of applications or improve existing use cases. For

instance, our protocol in Chapter 5 builds on OLE and VOLE correlations, pro-

viding additive shares of multiplications. A correlation that provides Shamir-style

shares of multiplications would allow us to define the signer set on the client side,

increasing the client’s flexibility. Second, while PCGs and PCFs provide sublin-

ear communication complexity, their computation and storage complexity are too

high for practical use. For instance, the key size for an OLE PCF based on the

construction of Boyle et al. [45] is over 2 TB for reasonable parameters. Due to

their high potential, we deem further research on PCGs and PCFs as an interesting

research direction.
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[204] K. Wüst, L. Diana, K. Kostiainen, G. Karame, S. Matetic, and S. Capkun. “Bit-

contracts: Adding Expressive Smart Contracts to Legacy Cryptocurrencies”. In:

IACR Cryptol. ePrint Arch. (2019), p. 857.
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A. POSE: Practical Off-chain Smart
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In this chapter, we present the following publication with minor changes.
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Abstract. Smart contracts enable users to execute payments depending on complex pro-
gram logic. Ethereum is the most notable example of a blockchain that supports smart
contracts leveraged for countless applications including games, auctions and financial prod-
ucts. Unfortunately, the traditional method of running contract code on-chain is very
expensive, for instance, on the Ethereum platform, fees have dramatically increased, ren-
dering the system unsuitable for complex applications. A prominent solution to address
this problem is to execute code off-chain and only use the blockchain as a trust anchor.
While there has been significant progress in developing off-chain systems over the last years,
current off-chain solutions suffer from various drawbacks including costly blockchain inter-
actions, lack of data privacy, huge capital costs from locked collateral, or supporting only
a restricted set of applications.
In this paper, we present POSE—a practical off-chain protocol for smart contracts that
addresses the aforementioned shortcomings of existing solutions. POSE leverages a pool
of Trusted Execution Environments (TEEs) to execute the computation efficiently and
to swiftly recover from accidental or malicious failures. We show that POSE provides
strong security guarantees even if a large subset of parties is corrupted. We evaluate our
proof-of-concept implementation with respect to its efficiency and effectiveness.

1 Introduction

More than a decade ago, Bitcoin [47] introduced the idea of a decentralized cryptocurrency, mark-
ing the advent of the blockchain era. Since then, blockchain technologies have rapidly evolved
and a plethora of innovations emerged with the aim to replace centralized platform providers
by distributed systems. One particularly important application of blockchains concerns so-called
smart contracts, complex transactions executing payments that depend on programs deployed to
the blockchain. The first and most popular blockchain platform that supported complex smart
contracts is Ethereum [58]. However, Ethereum still falls short of the decentralized “world com-
puter” that was envisioned by the community [51]. For example, contracts are replicated among
a large group of miners, thereby severely limiting scalability and leading to high costs. As a
result, most contracts used in practice in the Ethereum ecosystem are very simple: 80% of pop-
ular contracts consist of less than 211 instructions, and almost half of the most active contracts
are simple token managers [49]. More recently proposed computing platforms in permissionless
decentralized settings (e.g., [1,34]) suffer from similar scalability limitations.

In recent years, numerous solutions have been proposed to address these shortcomings of
blockchains, one of the most promising being so-called off-chain execution systems. These pro-
tocols move the majority of transactions off-chain, thereby minimizing the costly interactions
with the blockchain. A large body of work has explored various types of off-chain solutions in-
cluding most prominently state-channels [46,26,22], Plasma [52,37] and Rollups [48,5], which are



actively investigated by the Ethereum research community. Other schemes use execution agents
that need to agree with each other [60,59], rely on incentive mechanisms [36,57], or leverage
Trusted Execution Environments (TEEs) [20,25]. A core challenge that arises while designing
off-chain execution protocols is to handle the possibility of parties who stop responding, either
maliciously or accidentally. Without countermeasures, this may cause the contract execution to
stop unexpectedly, which violates the liveness property. Despite major progress towards achiev-
ing liveness in a off-chain setting, current solutions come with at least one of these limitations:
i participating parties need to lock large amounts of collateral; ii costly blockchain interac-
tions are required at every step of the process or at regular intervals; and finally iii the set of
participants and the lifetime need to be known beforehand, which limits the set of applications
supported by the system. Additionally, existing solutions often iv do not support keeping the
contract state confidential, which is required, e.g., for eBay-style proxy auctions [9] and games
such as poker. We refer the reader to Table 2 for an overview on related work and to Section 10
for a detailed discussion.

Addressing all of these limitations in one solution while guaranteeing liveness is highly chal-
lenging. Currently, there are two ways to address the risks of unresponsive parties. The first
approach is to require collateral, i.e., parties have to block large amounts of money, which is used
to disincentivize malicious behavior and to compensate parties in case of premature termination
(cf. i ). Since the amount of collateral depends on the number of participants and the amount
of money in the contract, both must be fixed for the whole lifetime of the contract. To ensure
payout of the collateral, the lifetime of the contract must be fixed as well (cf. iii ). The second
approach is to store contract state on the blockchain to enable other parties to resume execution.
However, this is both expensive and leads to long waiting times due to frequent synchronization
with the blockchain (cf. ii ). Further, if the contract state needs to be confidential, and hence,
is not publicly verifiable, verifying the correctness of the contract execution is harder (cf. iv ).
Realizing a system tackling all these challenges in a holistic way could pave the way towards the
envisioned “world computer”. We will further elaborate on the specific challenges in Section 3.

Our goals and contributions. We present POSE, a novel off-chain execution framework for smart
contracts in permissionless blockchains that overcomes these challenges, while achieving correct-
ness and strong liveness guarantees. In POSE, each smart contract runs on its own subset of
TEEs randomly selected from all TEEs registered to the network. One of the selected TEEs is
responsible for the execution of a smart contract.

However, as the system hosting the executing TEE may be malicious (e.g., the TEE could
simply be powered off during contract execution), our protocol faces the challenge of dealing with
malicious operator tampering, withholding and replaying messages to/from the TEE. Hence, the
TEE sends state updates to the other selected TEEs, such that they can replace the executing
TEE if required. This makes POSE the first off-chain execution protocol with strong liveness
guarantees. In particular, liveness is guaranteed as long as at least one TEE in the execution pool
is responsive. Due to this liveness guarantee, there is no inherent need for a large collateral in
POSE (cf. i ). The state remains confidential, which allows POSE to have private state (cf. iv ).
Furthermore, POSE allows participants to change their stake in the contract at any time. Thus,
POSE supports contracts without an a-priori fixed lifetime and enables the set of participants to
be dynamic (cf. iii ). Above all, POSE executes smart contracts quickly and efficiently without
any blockchain interactions in the optimistic case (cf. ii ).

This enables the execution of highly complex smart contracts and supports emerging appli-
cations to be run on the blockchain, such as federated machine learning. Thus, POSE improves
the state of the art significantly in terms of security guarantees and smart contract features. To
summarize, we list our main contributions below:

2



– We introduce POSE, a fast and efficient off-chain smart contract execution protocol. It pro-
vides strong guarantees without relying on blockchain interactions during optimistic execu-
tion, and does not require large collaterals. Moreover, it supports contracts with an arbitrary
contract lifetime and a dynamic set of users. An additional unique feature of POSE is that
it allows for confidential state execution.

– We provide a security analysis in a strong adversarial model. We consider an adversary
which may deviate arbitrarily from the protocol description. We show that POSE achieves
correctness and state privacy as well as strong liveness guarantees under static corruption,
even in a network with a large share of corrupted parties.

– To illustrate the feasibility of our scheme, we implement a prototype of POSE using ARM
TrustZone as the TEE and evaluated it on practical smart contracts, including one that can
merge models for federated machine learning in 238ms per aggregation.

2 Adversary Model

The goal of POSE is to allow a set of users to run a complex smart contract on a number of
TEE-enabled systems. Note, that POSE is TEE-agnostic and can be instantiated on any TEE
architecture adhering to our assumptions, similar to, e.g., FastKitten [25]. In order to model
the behavior and the capabilities of every participant of the system, we make the following
assumptions:

A1: We assume the TEE to protect the enclave program, in line with other TEE-assisted blockchain
proposals [63,25,20,17,64,43]. Specifically:

A1.1: We assume the TEE to provide integrity and confidentiality guarantees. This means that
the TEE ensures that the enclave program runs correctly, is not leaking any data, and is not
tampering with other enclaves. While our proof of concept is based on TrustZone, our design
does not depend on any specific TEE. In practice, the security of a TEE is not always flawless,
especially regarding information leaks. However, plenty of mitigations exist for the respective
commercial TEEs; hence, we consider the problem of information leakage from any specific TEE,
as well as TEE-specific vulnerabilities in security services, orthogonal to the scope of this paper.
We discuss some mitigations to side-channel attacks to TrustZone, as well as the possible grave
consequences of a compromised or leaking TEE for the executed smart contract, in Section 7.2.
A1.2: We further assume the adversaries to be unable to exploit memory corruption vulnerabili-
ties in the enclave program. This could be ensured using a number of different approaches, e.g.,
by using memory-safe languages, by deploying a run-time defense like CFI [11], or by proving
the correctness of the enclave program using formal methods. The existence of these defenses
can be proven through remote attestation (cf. A3).

A2: We assume the TEE to provide a good source of randomness to all its enclaves and to have
access to a relative clock according to the GlobalPlatform TEE specification [32].
A3: We assume the TEE to support secure remote attestation, i.e., to be able to provide un-
forgeable cryptographic proof that a specific program is running inside of a genuine, authentic
enclave. Further, we assume the attestation primitive to allow differentiation of two enclaves
running the same code under the same data. Note that today’s industrial TEEs support remote
attestation [3,6,8,35,56].
A4: We assume the TEE operators, i.e., the persons or organizations owning the TEE-enabled
machines, to have full control over those machines, including root access and control over the
network. The operators can, for instance, provide wrong data to an enclave, delay the transmission
of messages to it, or drop messages completely. The operators can also completely disconnect
an enclave from the network or (equivalently) power off the machine containing it. However, as
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stated in A1.1, the operators cannot leak data from any enclave or influence its computation in
any way besides by sending (potentially malicious) messages to it through the official software
interfaces.
A5: We assume static corruption by the adversary. More precisely, a fixed fraction of all operators
is corrupted while an arbitrary number of users can be malicious (including the case where they
all are). We model each of the malicious parties as byzantine adversaries, i.e., they can behave
in arbitrary ways.
A6: We assume the blockchain used by the parties to satisfy the following standard security
properties: common prefix (ignoring the last γ blocks, honest miners have an identical chain
prefix), chain quality (blockchain of honest miner contains significant fraction of blocks created
by honest miners), and chain growth (new blocks are added continuously). These properties imply
that valid transactions are included in one of the next α blocks and that no valid blockchain
fork of length at least γ can grow with the same block creation rate as the main chain. We deem
protection against network attacks (e.g., network partition attacks), which violate these standard
properties, orthogonal to our work.

3 Design

POSE is a novel off-chain protocol for highly efficient smart contract execution, while provid-
ing strong correctness, privacy, and liveness guarantees. To achieve this, POSE leverages the
integrity and confidentiality guarantees of TEEs to speed up contract execution and make sig-
nificantly more complex contracts practical3. This is in contrast to executing contracts on-chain,
where computation and verification is distributed over many parties during the mining process.
POSE supports contracts with arbitrary lifetime and number of users, which includes complex
applications like the well-known CryptoKitties [2]. We elaborate more on interaction between
contracts in Appendix B. Our protocol involves users, operators and a single on-chain smart
contract. Users aim to interact with smart contracts by providing inputs and obtaining outputs
in return. Operators own and manage the TEE-enabled systems and contribute computing power
to the POSE network by creating protected execution units, called enclaves, using their TEEs.
These enclaves perform the actual state transitions triggered by users. A simple on-chain smart
contract, which we call manager, is used to manage the off-chain enclave execution units. In the
optimistic case, when all parties behave honestly, POSE requires only on-chain transactions for
the creation of a POSE contract as well as the locking and unlocking of user funds. The smart
contract execution itself is done without any on-chain transactions.

3.1 Architecture Overview

Figure 1 illustrates the high-level working of POSE. Before contract creation, there is already a
set of enclaves that are registered with the on-chain manager contract. The registration process
is explained in detail in Section 5.5. To create a POSE contract, a user will initialize a contract
creation with the manager (Step 1), which includes a chosen enclave—out of the registered set—
to execute the off-chain contract creation. In Step 2, the chosen creator enclave will setup the
execution pool for the given smart contract. In Figure 1, the pool size is set to three; thus, the
creator enclave will randomly select three enclaves from the set of all enclaves registered in the
system (Step 3). In Step 4, the creator enclave will submit the finalized contract information
to the manager. This includes the composition of the execution pool, i.e., a selected executor

3 We design POSE without depending on any specific TEE implementation. In Section 7.2, we discuss
the implications of using ARM TrustZone to realize our scheme.
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Fig. 1. Exemplary overview how POSE contracts are created (in blue) and executed (in green).

enclave, which is responsible for executing the POSE contract, as well as the watchdogs, ensuring
availability. We elaborate on this in-depth in Section 5.5. In Step 5, another user can now call the
new contract by directly contacting the executor. Finally, for Step 6, the executor will execute
the user’s contract call and distribute the resulting state to the watchdog enclaves, which confirm
the state update. See Section 5.5 for a detailed specification of the execution protocol. If one
of the enclaves stops participating (e.g., due to a crash), the dependent parties can challenge
the enclave on the blockchain (see Section 5.5). The dependent party can either be the user
awaiting response from the executor or the executor waiting for the watchdogs’ confirmation.
For example, if the executor stops executing the contract, the executor is challenged by the user.
A timely response constitutes a successful state transition as requested by the user. Otherwise,
if the current executor does not respond, one of the watchdogs will fill in as the new executor.
This makes POSE highly available, as long as at least one watchdog enclave is dependable; thus,
avoiding the need for collateral to incentivize correct behavior. Further, POSE supports private
state, as the state is only securely shared with other enclaves.

3.2 Design Challenges

We encountered a number of challenges while designing POSE. We briefly discuss them below.

Protection against malicious operators. POSE’s creator, executor, and watchdogs are protected
in isolated enclaves running within the system, which is itself still under control of a potentially
malicious operator. Hence, operators can provide arbitrary inputs, modify honest users’ messages,
execute replay attacks, and withhold incoming messages. Moreover, the system and its TEE (i.e.,
enclaves) can be turned off completely by its operator. In order to protect honest users from
malicious operators, we incorporate several security mechanisms. While malicious inputs and
modification of honest users’ messages can easily be prevented using standard measures like a
secure signature scheme, preventing withholding of messages is more challenging. One particular
reason is that for unreceived messages, an enclave cannot differentiate between unsent and stalled
messages by the operator. Hence, we incorporate an on-chain challenge-response procedure, which
provides evidence about the execution request and the existence of a response to the enclave.

Achieving strong liveness guarantees. We enable dependent parties to challenge unresponsive
operators via the blockchain. The challenged operators either provide valid responses over the
blockchain that dependent parties can use to finalize the state transition, or they are dropped
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from the execution pool. In case an executor operator has been dropped, we use the execution
pool to resume the execution; this requires state updates to be distributed to all watchdogs. With
at least one honest operator in the execution pool, the pool will produce a valid state transition.
Our protocol tolerates a fixed fraction of malicious operators as stated in our adversary model
(cf. Section 2). By selecting the pool members randomly, we guarantee with high probability that
at least one enclave—controlled by an honest operator—is part of the execution pool. We show
in Section 7.1 that our protocol achieves strong liveness guarantees.

Synchronization with the blockchain. Some of the actions taken by an enclave depend on blockchain
data, e.g., deposits made by clients. Hence, it is crucial to ensure that the blockchain data avail-
able to an enclave is consistent and synchronized with the main chain. As an enclave does not
necessarily have direct access to the (blockchain) network, it has to rely on the blockchain data
provided by the operator. However, the operator can tamper with the blockchain data and, e.g.,
withhold blocks for a certain time. Thus, a major challenge is designing a synchronization mech-
anism that (i) imposes an upper bound on the time an enclave may lag behind the main chain,
(ii) prevents an operator from isolating an enclave onto a fake side-chain, and (iii) ensures cor-
rectness and completeness of the blockchain data provided to the enclave, without (iv) requiring
the enclave to validate or store the entire blockchain. We present our synchronization mechanism
addressing these challenges in Section 5.4.

Reducing blockchain interactions. Our system aims to minimize the necessary blockchain inter-
actions to avoid expensive on-chain computations. In the optimistic scenario, the only on-chain
transactions necessary are the contract creation and the transfer of coins. The transfer transac-
tions can also be bundled to further reduce blockchain interactions. Note that the virtualization
paradigm known from state channels [26] can be applied to our system. This enables parties to
install virtual smart contracts within existing smart contracts, and hence, without any on-chain
interactions at all. In the pessimistic scenario, i.e., if operators fail to provide valid responses,
they have to be challenged, which requires additional blockchain interactions.

Support of private state. To support private state of randomized contracts, careful design is
required to avoid leakage. While the confidentiality guarantees of TEEs prevent any data leakage
during contract execution, our protocol needs to ensure that an adversary cannot learn any
information except the output of a successful execution. In particular, in a system where the
contract state is distributed between several parties, we need to prevent the adversary from
performing an execution on one enclave, learning the result, and exploiting this knowledge when
rolling back to an old state with another enclave. This is due to the fact that a re-execution may
use different randomness or different inputs resulting in a different output. We prevent these
attacks by outputting state updates to the users only if all pool members are aware of the new
state. Moreover, by solving the challenge of synchronization between enclaves and the blockchain,
we prevent an adversary from providing a fake chain to the enclave, in which honest operators
are kicked from the execution pool. Such a fake chain would allow an attacker to perform a
parallel execution. While results of the parallel (fake) execution cannot affect the real execution,
they can prematurely leak private data, e.g. the winner in a private auction.

4 Definitions & Notations

In the following, we introduce the cryptography primitives, definition, and notations used in the
POSE protocol.
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Cryptographic primitives. Our protocol utilizes a public key encryption scheme (GenPK ,
Enc,Dec), a signature scheme (GenSig ,Sign,Verify), and a secure hash function H(·). All mes-
sages sent within our protocol are signed by the sending party. We denote a message m signed
by party P as (m;P ). The verification algorithm Verify(m′) takes as input a signed message
m′ := (m;P ) and outputs ok if the signature of P on m is valid and bad otherwise. We identify
parties by their public keys and abuse notation by using P and P ’s public key pkP interchange-
ably. This can be seen as a direct mapping from the identity of a party to the corresponding
public key.

TEE. We comprise the hardware and software components required to create confidential and
integrity-protected execution environments under the term TEE. An operator can instruct her
TEE to create new enclaves, i.e., new execution environments running a specified program. We
follow the approach of Pass et al. [50] to model the TEE functionality. We briefly describe
the operations provided by the ideal functionality formally specified in [50, Fig. 1]. A TEE
provides a TEE .install(prog) operation which creates a new enclave running the program prog .
The operation returns an enclave id eid . An enclave with id eid can be executed multiple times
using the TEE .resume(eid , inp) operation. It executes prog of eid on input inp and updates the
internal state. This means in particular that the state is stored across invocations. The resume
operation returns the output out of the program. We slightly deviate from Pass et al. [50] and
include an attestation mechanism provided by a TEE that generates an attestation quote ρ over
(eid , prog). ρ can be verified by using method VerifyQuote(ρ). We consider only one instance E
running the POSE program per TEE. Therefore, we simplify the notation and write E(inp) for
TEE .resume(eid , inp).

Blockchain. We denote the blockchain by BC and the average block time by τ . A block is
considered final if it has at least γ confirmation blocks. Throughout the protocol description in
Section 5.5, enclaves consider only transactions included in final blocks. Finally, we define that
any smart contact deployed to the blockchain is able to access the current timestamp using the
method BC.now and the hash of the most recent 265 blocks [7] using the method BC.bh(i) where
i is the number of the accessed block. These features are available on Ethereum.

5 The POSE Protocol

The POSE protocol considers four different roles: a manager smart contract deployed to the
blockchain, operators that run TEEs, enclaves that are installed within TEEs, and users that
create and interact with POSE contracts. In the following, we will shortly elaborate on the on-
chain smart contract and the program executed by the enclaves, explain the POSE protocol, and
finally explain further security mechanisms that are omitted in the protocol description.

5.1 Manager

We utilize an on-chain smart contract in order to manage the POSE system’s on-chain inter-
actions. We call this smart contract manager and denote it by M . On the one hand, M keeps
track of all registered POSE enclaves. This enables the setup of an execution pool whenever
an off-chain smart contract instance is created. On the other hand, it serves as a registry of all
POSE contract instances. M stores parameters about each contract to determine the instance’s
status. We denote the tuple describing a contract with identifier id as M id . In particular, the
manager stores the creator enclave (creator), a hash of the program code (codeHash), the set
of enclaves forming the execution pool (pool), a total amount of locked coins (balance), and a
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counter of withdrawals (payouts). We set the field creator to ⊥ after the creation process has
been completed to identify that a contract is ready to be executed. Moreover, for both executor
and watchdog challenges, the contract allocates storage for a tuple containing the challenge mes-
sage (c1Msg resp. c2Msg), responses (c1Res resp. c2Res), and the timestamp of the challenge
submission (c1Time resp. c2Time). A non-empty field c1Time resp. c2Time signals that there
is a running challenge.

Every POSE enclave maintains a local version of the manager state extracted from the
blockchain data it receives from the operator when being executed. This enables all enclaves
to be aware of on-chain events, e.g., ongoing challenges.

5.2 POSE Program

All enclaves registered within the system run the POSE program that enforces correct execution
and creation of POSE contracts. In practice, the POSE program’s source code will be publicly
available, e.g., in a public repository, so that the community can audit it. Our protocol ensures
that all registered enclaves run this code using remote attestation (cf. Section 5.5: Enclave regis-
tration). We present methods required for the execution protocol in Program 1 and defer methods
for the contract creation to the full version of this paper [31].

Whenever an enclave is invoked, it synchronizes itself with the blockchain network and receives
the relevant blockchain data in a reliable way (cf. Section 5.4). This way, the POSE program has
access to the current state of the manager. In order to support arbitrary contracts, we define a
common interface in Section 5.3 that is used by the POSE program to invoke contracts.

Enclaves running the POSE program only accept signed messages as input. The public keys
of pool members for signature verification are derived from the synchronized blockchain data.
According to our adversary model (cf. Section 2), the adversary cannot read or tamper messages
originating from honest users or the enclave itself. Further, the contracts themselves keep track of
already received execution requests and do not perform state transitions for duplicated requests.
(cf. Section 5.3). This prevents replay attacks against both, executive and watchdog enclaves.

5.3 POSE Contracts

Although our system supports the execution of arbitrary smart contracts, the contracts need
to implement a specific interface (cf. Program 2). This allows any POSE enclave to trigger the
execution without knowing details about the smart contract functionality. Upon an execution
request from some user, the POSE enclave provides the user’s identity U , blockchain data BC, the
description of the user’s request, move, and the request hash, h, to the smart contract’s method
nextState. The smart contract first processes the relevant blockchain data and marks the current
length of the blockchain as processed. This feature is mainly used to enable smart contracts to deal
with money, i.e., to detect on-chain deposits and withdrawals. We elaborate on the processing of
blockchain data in Section 5.4, and on the money mechanism of the POSE system in Appendix E.
Note that double spending within a contract is prevented due to sequential processing of any
execution request, and double spending of on-chain payouts is prevented by the mechanism
explained in Appendix E. After the blockchain data is processed, nextState executes the move
requested by the user and updates the state accordingly. Method update takes state new and
hash h (for preventing replay attacks) as input and sets new as the contract state. This includes
the length of the blockchain that is marked as processed. Further, the smart contract provides
method getState. If called with flag = all , it returns the whole smart contract state. Otherwise,
if called with flag = pub, it returns only the public state. In order to prevent replay attacks, each
smart contract maintains a list with the hashes of already received execution requests, Rec. In
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Program 1: POSE Program (execution) executed by enclave T

Upon invocation with input blockchain data BC, store BC.
Upon receiving m := (execute, id , r,move;U), do:

1. If M id .pool [0] ̸= T or T id
wait ̸= ∅, return (bad).

2. Execute Cid .nextState(U,BC,move, H(m)).
3. Store T id

wait = M id .pool and hid = H(m), set c = Enc(Cid .getState(all); key
id) and return

(update, id , c, hid ;T ).

Upon receiving m := (update, id , c, h;T ′), do:

1. If T ′ ̸= M id .pool [0] or T /∈M id .pool , return (bad).
2. Define state = Dec(c; key id) and call Cid .update(state, h).
3. Return (confirm, id , h;T ).

Upon receiving {mi := (confirm, id , hi;Ti)}i, do:

1. If M id .pool [0] ̸= T or T id
wait = ∅, return (bad).

2. Set T id
wait = T id

wait ∩M id .pool .
3. For each mi do:

– If hi ̸= hid or Ti /∈ T id
wait , skip mi.

– Otherwise remove Ti from T id
wait .

4. If T id
wait ̸= {T}, return (bad). Otherwise, set T id

wait = ∅, state := Cid .getState(pub) and return
(ok, id , state, hid ;T ).

Program 2: Interface of a contract C executed within a POSE enclave

Function: nextState(U,BC,move, h)
Function: update(new, h)
Function: getState(flag)

case of duplicated requests, i.e., h ∈ Rec, both the nextState method and the update method, do
not perform any state transition. Instead, they interpret the request as a dummy move that has
no effect on the state. If executed successfully, the nextState method adds the executed request
to Rec, i.e., Rec = Rec ∪ {h}. As Rec is part of the state, it is updated by the update method as
well. While it might seem counter intuitive to overwrite the list of received requests, this feature
is required to ensure that all enclaves are aware of the same transition history; even if an executor
distributes a state update to just a subset of watchdogs before getting kicked 4.

We consider the initial state of a smart contract to be hard-coded into the smart contract
description. If an enclave creates a new smart contract instance, the initial state is automatically
initialized. A contract state additionally contains a variable to store the highest block number
of the already processed blockchain data. This variable is used to detect which transactions of
received blockchain data have already been handled.

4 In practice, the state update removes at most the last element from the request history; a fact that
can be exploited to reduce the size of state updates.
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5.4 Synchronization

As some of the actions taken by an enclave depend on blockchain data, e.g., deposits to the
contract, it is crucial to ensure that the blockchain state available to a registered enclave E is
consistent and synchronized with the main chain. In particular, blocks that are considered final
by some party, will eventually be considered final by all parties. We design a synchronization
mechanism that allows E to synchronize itself without having to validate whole blocks. Note that
E has access to a relative time source according to our adversary model (see Section 2).

Upon initialization, E receives a chain of block headers BCH of length γ+1. Note that the first
block p of BCH can be considered final since it has γ confirmation blocks. First, E checks that
BCH is consistent in itself and sets its own clock to be the one of the latest block’s timestamp.
Second, E signs block p as blockchain evidence that needs to be provided to the manager. The
registration mechanism (cf. Section 5.5) uses this evidence to ensure that E has been initialized
with a valid sub-chain of the main-chain up to block p. Further, the registration mechanism
checks that p is at most τonslack blocks behind the current one; τonslack needs to account for the
confirmation blocks and the fact that transactions are not always mined immediately. Via this
parameter, we can set an upper bound to the time τoffslack an enclave may lag behind; τoffslack

additionally considers potential block variance and the fact that miners have some margin to set
timestamps. In the following, we call τoffslack slack 5. Clients that want a contract execution to
capture on-chain effects, e.g., deposits, wait until the enclave considers the corresponding block
as final, even when being at slack.

Once successfully initialized, E synchronizes itself with the blockchain. Whenever a registered
enclave is executed throughout the protocol, it receives the sub-chain of block headers BCH′ that
have been mined since the last execution. E checks that BCH′ is a valid successor of BCH where
blocks in BCH that have not been final may change. Further, E checks that the latest block
in BCH′ is at most τvariance behind the own clock; τvariance captures the variance in the block
creation time and the fact that miners have some margin to set timestamps. When receiving a
block that is before the own clock, the clock is adjusted.

Finally, we need to prevent an operator from isolating its enclave by setting up a valid
sidechain with manipulated timestamps. To this end, we require the operators to periodically
provide new blocks to E even if E does not need to take any action. In particular, we require
that the operator provides at least L blocks within time τp where τp accounts for potential block
time variances. The system is secure as long as the attacker cannot mine L blocks within time
τp while the honest miners can. Hence, the selection of τp and L has some implications on the
fraction of adversarial computing power that can be tolerated by the system. Since 2018, an
interval of 50 (100, 200, 300) blocks took at most 33 (28, 26, 25) seconds per block [10], which
might all be reasonable choices for L and

τp
L . As the average block time is around 13 seconds [4],

the adversary gets 2 − 3 times more time to mine the blocks of its sidechain. This means that
the system can tolerate adversarial fractions from a third (when instantiated with L = 300 and
τp = 25 · L) to a forth (when instantiated with 50 and 33 · L).

While the above techniques allow an enclave to synchronize itself, the enclave does not have
access to the block data, yet. Instead of requiring enclaves to validate whole blocks, we require
operators to filter the relevant transactions and provide them to the enclave while enabling the
enclaves to check correctness and completeness of the received data itself. For the latter, we
introduce incrTxHash, a hash maintained by the manager and all initialized enclaves that is
based on all relevant transactions. Whenever the manager receives a relevant transaction tx, it

5 We can reduce the slack assuming an absolute source of time realized via trusted NTP servers, cf. [20],
by enabling the enclave to check if she was invoked with the most recent block headers up to some
variance of the timestamps.
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updates incrTxHash, such that incrTxHashi+1 is defined as

H(incrTxHashi || tx.data || tx.sender || tx.value)

where tx.data is the raw data of tx, tx.sender denotes the creator of tx, and tx.value contains
the amount of any deposits or withdrawals. Whenever enclaves are invoked with new blocks,
operators additionally provide all relevant transactions. This way, enclaves can re-compute the
new incremental hash and compare the result to the on-chain value of incrTxHash. In order to
verify that the on-chain incrTxHash is indeed part of the main chain, operators additionally
provide a Merkle proof showing that incrTxHash is part of the state tree. The proof can be
validated using the state root, which is part of the block headers provided to the enclaves.
This way, enclaves can ensure that operators have not omitted or manipulated any relevant
transactions.

5.5 Protocol Description

In this section, we dive into a detailed description of our protocol. We present 1) enclave regis-
tration, 2) contract creation, 3) contract execution, and 4) the challenge-response parts of our
protocol. The POSE program running inside the operators’ enclaves is stated in Section 5.2. For
the sake of exposition, we extracted the validation steps performed by the manager on incoming
messages into Program 3 in Appendix C. Further, we elaborate in Appendix E on the coin flow
within the protocol.

Enclave registration. Operator O controlling some TEE unit can contribute to the POSE system
by instructing his TEE to create a new POSE enclave EO. The protected execution environment
EO needs to be initialized with the POSE program presented in Section 5.2. During the creation
of EO, an asymmetric key pair (pkO, skO) is generated. The secret key skO is stored inside
the enclave and hence is only accessible by the POSE program running in EO. The public key
pkO is returned as output to the operator. Furthermore, operator O uses the TEE to produce
an attestation ρO stating that the freshly generated enclave EO runs the POSE program and
controls the secret key corresponding to pkO.

6

Finally, O sends the latest γ + 1 block headers BCH together with the relevant blockchain
data to the enclave which validates the consistency of the block headers and completeness
of the blockchain data (cf. Section 5.4) and returns a blockchain evidence ρBCO , i.e., a signed
tuple containing the blockhash and the number of the latest final block known to the en-
clave. After operator O created a new POSE enclave EO, O can register EO by sending m :=
(register, EO, ρO, ρBCO ;O) to manager M . M verifies that ρO is a valid attestation and that ρBCO
refers to a block on the blockchain known to M that is not older than τonslack blocks. If the check
holds and the signature of the operator is valid, i.e., Verify(m) = ok, M adds EO (identified by
its public key pkO) to the set of registered enclaves, i.e., M.registered := M.registered ∪ {EO}.
This procedure ensures that all registered enclaves run the POSE program and that the secret
key skO remains private. Hence, re-attesting enclaves during later protocol steps is not needed.

Contract creation. The creation protocol is initiated by a user U who wants to install a new
smart contract, with program code code, into the POSE system. We outline the protocol in the
following and provide a full explanation and specification in the full version of this paper [31].

6 An attestation mechanism can be designed based on a chain of trust, where the TEEs manufac-
turer’s public key represents the root. This way a smart contract knowing a list of public keys can
verify an attestation quote without further interaction. We omit further details about the practical
implementation and refer the reader to [50].
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U picks an arbitrary registered enclave EC and sends a creation initialization to M containing
H(code) and EC . The managerM allocates a new contract tuple with a fresh identifier id . Next, U
sends a creation request, containing code, to EC which randomly selects n enclaves for the contract
execution pool and samples a symmetric pool key. The generated information is distributed in
a confidential way to all pool enclaves, which install a new smart contract with code code and
confirm the installation to EC . Finally, EC signs a creation confirmation, which is submitted to
M that marks the contract as created.

If the contract is not created within a certain time, U starts a creation challenge. If any pool
member does not respond to EC timely, EC starts a pool challenge (cf. Section 5.5).

User: U Executer: E
(:= Mid .pool[0])

Watchdog: W
(∈ Mid .pool \ E)

On input (id,move)
r ∈R {0, 1}κ

m = (execute, id,
r,move;U)

Finalize current and pending
executions or challenges corresponding to id.

pre := TE(BC,m).

(pre)

confW := TW (BC, pre)
If confW = (bad, ·), abort.

(confW )

After time δ2off , res = TE(BC, {confW }).
If res = (bad), res = WatchdogChallenge(pre).

res = (ok, id, state, h;TE)

In time δ1off after sending m:

If res has not been received, Verify(res) = bad or h ̸= H(m),
execute res := ExecutiveChallenge(m).

If res = (bad) and Mid .pool ̸= ∅, restart execution with same r.

Fig. 2. Detailed execution protocol.

Contract execution. The execution protocol is initiated by a user U who wants to execute an
existing smart contract, identified by id , with input move. The protocol is specified in Figure 2.
Program 1 specifies the parts of the POSE program that are relevant for the contract execution.

To trigger the execution, U sends an execution request to operator E controlling the executor
enclave EE , the first enclave in the contract pool stored at M . EE executes the request and
securely propagates the new state to all other pool members, called watchdogs. If any watchdog
does not confirm in time, it is challenged by E (cf. Challenge-Response). Eventually, EE receives
confirmations from all watchdogs or the unresponsive watchdogs are kicked out of the pool.
Either way, EE outputs the new public state to U . We want to stress that this way no party
gets to know the result of an update before all pool members agree on the update. If E does not
respond in time, it is challenged by U (cf. Challenge-Response). If E does not respond to the
challenge, it is kicked from the pool by U . The next enclave in the pool, E ′E , takes over as the
new executor. At this point, the new executor might be on a different state than the other pool
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members, since E ′E might have received the previous state update but some other pool members
not, or vice versa.

Our system automatically ensures that all enclaves share the same contract state after the
next successful execution, in which E ′E distributes its state to the other enclaves. Let us call the
previous incompletely distributed update update and the new updated initiated by E ′E update ′.
In case E ′E has received update, update ′ is a successor of update, and hence, covers both updates.
This way, a watchdog that updates to update ′ essentially contains both executions, update and
update ′. In case E ′E has not received update but the other watchdogs have, E ′E either propagates
the update already known to the watchdogs, i.e., update = update ′, or a concurrent one, i.e.,
update ̸= update ′. For the former, the watchdogs interpret the update as a dummy update
without any effect as the corresponding execution request is already within their list of received
request hashes (cf. Section 5.3). For the latter, the update of the watchdogs is overwritten by
the one of the executive enclave. As update has been incomplete, and hence, produced no public
output, it is safe to overwrite this update. To produce a public output for update, all pool enclaves
including E ′E would have to confirm update.

Finally, U can just submit the previous execution request with the same random nonce r to
E ′E . In case the enclave has already seen this request, it is interpreted as empty dummy move
which prevents a duplicated execution.

Challenge-response. If any party does not receive a timely response to its messages during the off-
chain execution, it challenges the receiver on-chain. Therefore, all operators need to monitor the
blockchain for any on-chain challenges. We will elaborate on the timeouts (δ†⋆), where † ∈ {0, 1}
and ⋆ ∈ {off , on}, which define the notion of timely in Appendix D. In particular, we describe the
relation between δ1∗ and δ2∗. The challenge-response procedure is executed in all of the following
cases.

(a) The creator enclave has not responded to the user within time δ1off during the contract
creation protocol.

(b) At least one pool enclave has not responded to the creator enclave within time δ2off during
the contract creation protocol.

(c) The executor enclave has not responded to the user within time δ1off during the contract
execution protocol.

(d) At least one watchdog enclave has not responded to the executor enclave within time δ2off
during the contract execution protocol.

Since (a) is conceptually identically to (c) and (b) to (d), we present the executor challenge (c)
and the watchdog challenge (d) in Figure 3 and Figure 4. The specifications of (a) and (b) are
provided in the full version of this paper [31].

For the executor challenge as shown in Figure 3, suppose user U has not received a result
from the executor enclave EE within time δ1off , then, U starts the challenge-response protocol.
To this end, U sends the execution request to the manager M who verifies the validity of the
message (cf. Program 3). If all checks hold, M stores the challenge message and then starts
timeout δ1on by storing the current timestamp. As soon as the challenge message is recorded on-
chain, the operator of the executor enclave EE extracts the execution request from the challenge
and starts the execution. Performing the execution request is identical to the standard execution
as described in Section 5.5. However, the operator prioritizes challenges over off-chain execution
requests to avoid getting kicked. Additionally, if EE already performed the state update and
state propagation, the operator may use the already obtained result as response. Either way,
if the operator sends a response message in time, the manager M checks the validity of the
message and whether or not it matches the stored challenge. If all checks succeed, M stores the
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User: U Manager: M Executer: E
(:= Mid .pool[0])

m
m = (execute, id,

n,move;U)

If Validate(1,m;Mid ) = bad, discard.

Set Mid .c1Msg = m, Mid .c1Time = BC.now and Mid .c1Res = ⊥.

(m)

Handle m like a message directly received by U
until receiving res = (ok, . . . ) from TE ,

but priortize it above other pendinging executions.

res = (ok, id,
state, h;TE)

If Validate(2, res;Mid ) = bad, discard.

Set Mid .c1Msg = ⊥, Mid .c1Time = ⊥ and Mid .c1Res = res.

(res)
(res)

If (res) has not been received

within time δ1on after sending m.

(finalize, 1, id)

If Validate(3;Mid ) = bad, discard.

Remove Mid .pool[0] from Mid .pool and set Mid .c1Time := ⊥.

(bad)

Fig. 3. Detailed executor challenge protocol.

result and removes the challenge message. This finalizes the challenge procedure. If the operator
does not send a valid response in time δ1on , user U sends message finalize to M . This triggers
the manager to kick EE from the execution pool of this contract and assign the next enclave
in the list as the new executor enclave, if possible. Then, if the pool is not empty, U restarts
the execution. As M only accepts a response if the operator executed the challenged request
correctly, the described procedure ensures that there is either a consistent state transition or EE
is kicked from the execution pool, hence, ensuring liveness as long as there remains one active
operator.

Since the executor enclave EE is dependent on the confirmation message from all watchdog
enclaves, it is necessary to allow EE to challenge the watchdog enclaves as well (Figure 4). In
this case, the executor enclave acts as the challenger and all watchdog enclaves need to provide a
confirmation message as response. At the end of this challenge-response protocol, all unresponsive
watchdog enclaves are removed from the execution pool. The executor enclave then continues
performing the execution with all confirmations obtained during this procedure. Again, M only
accepts responses if the watchdog executed the state update correctly, hence, ensuring that a
watchdog either performs the correct state update or is kicked from the pool.

5.6 Security Remarks

To keep the protocol description compact, we omitted some security features from the specifica-
tion, which we explain in this section.

Allowing unrestricted execution requests comes with the problem that malicious users can
send requests whose execution takes a disproportional amount of time, e.g., due to infinite loops.
If the execution time exceeded the boundaries defined by the on-chain timeouts, malicious users
could exploit this behavior to kick honest operators from an execution pool. This operator denial
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Executor: E Manager: M Watchdog: W
(∈ Mid .pool \ E)

(pre)
pre = (update,
id, c, h;TE)

If Validate(4, pre;Mid ) = bad, discard.

Otherwise, set Mid .c2Msg := pre, Mid .c2Msg := BC.now, and Mid .c2Res := ⊥.

(pre)

confW := TW (BC, pre)
If confW = (bad, ·), abort.

confW := (confirm,
id, h;TW )

If Validate(5, confW ;Mid ) = bad, discard.

Otherwise, add confW to Mid .c2Res.

At time δ2on after sending pre.

(finalize, 2, id)

If Validate(6;Mid ) = bad, discard.

Let Tok := {T ∈ Mid .pool : (· · · ;T ) ∈ Mid .c2Res}.
Set Mid .pool := Tok ∪ Mid .pool[0], and Mid .c2Time := ⊥.

res = TE(BC,Mid .c2Res)

(res)

Fig. 4. Detailed watchdog challenge protocol.

of service attack harms the liveness property of the system. In order to mitigate the vulnerability,
we introduce an upper bound to the computation complexity of a single contract execution. Once
the bound is reached, the executor enclave stops executing and reverts the state but still provides
a valid output. The timeouts in the system are set such that an honest operator cannot be kicked
from an execution pool even if an execution takes the maximum amount of computation. The
same applies to update and creation requests, where failed creations return a fail confirmation
that can be submitted to the manager instead of the creation confirmation. A fail confirmation
triggers the manager to mark the contract as crashed. Note that the POSE system still supports
the execution of arbitrary complex smart contracts as the timeouts and hence the upper bounds
can be set arbitrarily high (cf. Appendix D). Additionally, all contracts of an operator are
executed and challenged independently, and thus, contracts do not block each other.

While we have assumed that all operators run only one POSE enclave, multiple enclaves can
be created in practice. This enables the opportunity of a sybil attack, where a malicious operator
generates multiple POSE enclaves to increase its share in the system and hence harm the liveness
property. This attack can be mitigated by forcing an operator to deposit funds at each enclave
registration and which will be paid back to the operator only if she behaves honestly. We note
that this deposit is independent of any contract and its parties. Now, such an attack is directly
linked to financial loss. See Section 6 for more discussions about incentives and fees.

In order to enhance privacy, neither users nor operators send inputs or respectively execution
results in clear. Instead, users encrypt inputs using hybrid encryption based on the public key
of the executor enclave. Additionally, users specify a symmetric key in their execution request,
which is used to encrypt the result of the execution when sent back to the user. This way, inputs
and results are private and cannot be eavesdropped by a malicious operator.
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The term griefing denotes attacks where an adversary forces an honest party to interact with
the blockchain in order to generate financial damage to this party. Especially when blockchain
transactions require high fees, such attacks pose serious vulnerabilities. In regards to challenges
within the POSE protocol, we mitigate the attack surface for griefing attacks by incorporating
a mechanism in the manager that fairly splits the fees for challenge and response between the
challenger and the challenged party. The same mechanism can be used for the contract creation
process.

An adversary executing a clogging attack sends many transactions to the system to prevent
honest users from issuing transactions. In the context of POSE, an off-chain clogging attack
results in honest clients making an on-chain challenge to ensure that their requests will be
processed. Hence, a successful clogging attack has to be performed on-chain. For the on-chain
challenge, our system inherits the vulnerabilities of the underlying blockchain.

6 Extensions

We simplified some protocol steps in order to make the protocol description more compact and
easier to understand. We discuss the most important extensions and their benefits in this section.

Contract & operator lifecycle. A mechanism that releases enclaves from their execution duty can
be integrated. This allows operators to voluntarily withdraw their enclaves from an execution
pool. On the one hand, terminated contracts can be closed, which releases all pool enclaves from
their execution duty. On the other hand, it enables to withdraw a single enclave and exchanging it
by a randomly chosen replacement enclave. Additionally, a replacement strategy is also applicable
to the scenarios in which enclaves are kicked. The latter extension reduces the chance of a contract
crash, the event in which no more operator remains. We stress that these extensions can easily be
achieved by adding the functionality to our POSE program and the manager. In case a contract
is idle for a long time, an extension may be implemented that allows operators to hibernate their
respective enclave. The enclave state can be stored on disk by encrypting it with a key that
is kept alive in the hibernating enclave; thus, only requiring minimal overhead in memory. The
POSE program ensures freshness by synchronizing with the blockchain; thus, preventing rollback
attacks.

Incentives. Although POSE provides security not only against rational but also byzantine ad-
versaries, it is beneficial to introduce incentives for operators to join the system and act hon-
estly. Moreover, operators can be compensated for on-chain transactions. Such incentives can be
achieved by introducing execution fees paid by the users to the operators. We expect these fees
to be significantly lower than Ethereum transaction fees since replication of computation is only
required among a small pool. Additionally, registration fees for operators can be used to mitigate
the risk for sybil attacks. By mitigating these attacks and due to the random assignment of
enclaves to contract pools, operators can only actively enforce centralization at high cost.

Efficiency improvements. Instead of propagating each contract invocation, a more fine-grained
distinction based on the action can be added. In particular, a simple state retrieval must not be
propagated. In order to improve the efficiency of the manager, messages and responses are not
stored persistently. Instead, only their hashes are stored and the actual data is propagated via
events. Moreover, the total on-chain transactions can be reduced by letting the executor enclave
challenge only the unresponsive watchdog enclaves.
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7 Security Analysis

In this section, we present security considerations of POSE based on the adversary model stated
in Section 2.

7.1 Protocol Security

For the sake of brevity, we present the full security analysis of our POSE protocol including
formal theorems in Appendix A. Here, we provide an intuition of our security guarantees.

The POSE protocol satisfies correctness, ϵ-liveness and state privacy.

(1) Intuitively, correctness means that an adversary cannot influence the smart contract exe-
cution within an enclave such that the result is invalid according to the contract logic. Our
creation protocol ensures that all enclaves of a pool store the correct contract code. The TEE
security guarantees and the POSE code ensure that each enclave executes the stored code cor-
rectly. Finally, the synchronization mechanism guarantees that each enclave is up-to-date with
the blockchain up to some slack, τoffslack . This ensures that on-chain transactions are considered

by the smart contract execution, at least after time τoffslack .
(2) The ϵ−liveness property states that every contract execution will eventually be processed
with probability ϵ, unless the contract crashes and prevents any further execution. Let n be the
number of enclaves in the system, m be the number of malicious enclaves and s be the pool size,
then it holds that ϵ = 1−Πs−1

i=0 (
m−i
n−i ) > 1− (mn )s. We achieve these high liveness guarantees by

enabling the contract execution to proceed even if only one operator out of a randomly selected
pool is honest. Our protocol ensures that honest operators cannot be forced out of the pool.
(3) State privacy ensures that an adversary cannot obtain additional information about a con-
tract state besides what she learns from the results of contract executions alone. The integrity
guarantees of the TEE protect the state of the contract against the TEE’s operator during com-
putation and at rest. During transit, the state is hidden via encryption. Additionally, our protocol
ensures that each contract execution producing an observable result is final. This ensures that
the execution cannot be reverted to a state in which a previously published output contains
private data that should not have been leaked.

7.2 Architectural Security

We further examine the architectural security of enclaves. The case of a user or TEE operator
going offline by turning off their machine is covered in the protocol security (cf. Section 7.1);
here we focus on parties that follow the protocol, trying to gain an unfair advantage in various
ways.

The adversary might try to perform a memory corruption attack on the client used by users
to interact with the executor (e.g., to send inputs). To mitigate this risk, the software should be
implemented in a memory-safe language, like Python or Rust, and be open source so that it can
be easily inspected.

A malicious TEE operator can also try mounting a memory-corruption or a side-channel
attack on its TEE. As mentioned in A1.1, we assume that the TEE protects the confidentiality
of the enclave and prevents leakage. However, in practice, cache-based side-channel attacks have
been successfully demonstrated also on ARM processors [44]. While we want to stress that our
ARM TrustZone-based implementation is a research prototype and the design is TEE-agnostic,
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the risk of these attacks can be mitigated by making the TEE opt-out of shared caches and
flush private caches upon context switch, as proposed in [19]. Alternatively, a more advanced
TEE design can be used [24,19,16]. Moreover, if the enclave code has an exploitable memory-
corruption vulnerability, it is possible to mount a memory-corruption attack against it. One way
to mitigate this risk, and hence, realize our assumption A1.2, is to use a memory-safe language
for our smart contracts (in our case, Lua), or to deploy a run-time mitigation (like CFI [11]).
Yet, in practice, an adversary might still be able to compromise an enclave. In this case, only the
contracts of this enclave are affected. The consequences depend on the role of the enclave: for an
executor enclave, the adversary gets full control over the contract; for a watchdog enclave, the
adversary can only break state privacy.

Finally, an adversary might build a malicious smart contract with the goal of compromising
secrets owned by other contracts or blocking an enclave by entering into an infinite loop. We
mitigate against the first scenario by ensuring that only one smart contract is executing at any
given time in an enclave, so that no foreign plain text secrets are present in memory at any
point during contract execution. In case of multiple enclaves running on the same system, the
TEE is isolating enclaves from each other such that no contract can tamper with another (cf.
assumption A1.1). To handle infinite loops, we leverage a Lua sandbox [14], which interrupts
the execution of the Lua code after a predetermined number of instructions has been issued and
disables access to unsafe functions and modules.

8 Implementation

In order to evaluate POSE, we implemented a prototype for the manager and the enclaves,
which uses TrustZone for the enclaves themselves and Lua as the smart contract programming
language. We open source our prototype implementation to foster future research in this area7.
We describe each of them in the following.

Manager. For the manager we use an Ethereum smart contract written in Solidity, which we will
refer to as manager in the following. Even if this implementation is based on Ethereum, we note
that our design can be realized on any blockchain supporting rich smart contracts. The manager
keeps a list of all registered enclaves in the network as well as a list of all deployed contracts,
including their public information, e.g., the address of the current executor. As mentioned in the
protocol described in Section 5.5, the manager provides functions to register an enclave, create a
new POSE contract, deposit or withdraw money, and functions to challenge the current executor
or any of the watchdogs. To synchronize all participants, every time a challenge related function
was called it will throw an appropriate Solidity event.

Enclaves. The contract creator, executor, and watchdogs are enclaves running in a TEE. As our
protocol is TEE-agnostic and all commercial TEEs exceed smart contracts’ on-chain requirements
on memory/computational-power capabilities significantly, we chose to use ARM TrustZone [15]
for our prototype. TrustZone features a traditional programming model (OS, and user-space
applications with standard library), and the Open Portable Trusted Execution Environment (OP-
TEE) OS [42] already supports a large fraction of standard functionality, and hence, does not force
us to reimplement this for the contract execution environment. TrustZone supports two execution
modes: secure world and normal world. The system’s memory can be freely distributed among
these worlds. The secure world is an trusted OS which is completely independent from the normal
OS, which in our case is Linux. Code running in the secure world is called a Trusted App (TA). A

7 https://github.com/AppliedCryptoGroup/PoseCode
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TAmay only communicate with the normal world via shared memory regions, which are explicitly
allocated as such. We implement the POSE enclaves as TAs. Computations in the secure world
have native performance; yet, switching between worlds has a constant but negligible overhead
(in our tests around 449µs). TrustZone does not impose memory limits for secure world. While we
leverage the traditional TrustZone concept, recent versions add support for a S-EL2 hypervisor
to allow multiple strongly isolated enclaves that allows POSE to scale better on these platforms.
Most basic cryptographic functions are provided by the OP-TEE TA library, such as AES and
TLS. Note that TrustZone itself does not standardize a remote attestation implementation itself,
but industry [3,6,8] and OP-TEE implementations exist8. Remote attestation can also be used
to prove a certain set of software defenses is active in the enclave. In our prototype, we leveraged
OP-TEE’s remote attestation functionality to attest the enclave after setting up the runtime. To
leverage this feature, the POSE enclave requests a signed attestation report from the attestation
PTA (Pseudo Trusted App), essentially a kernel module of the OP-TEE OS in secure world.
The keys for signing the attestation report are derived using hardware device information and
stored persistently after generation (using Secure Storage, or ”Trusted Storage”, as defined by
GlobalPlatform’s TEE Internal Core API specification).

To properly interact with the Ethereum-based manager, we also adapted and deployed an
Ethereum wallet for embedded devices [13], enabling the enclaves to create ECDSA signatures,
Keccak hashes, handle encoding, and create transactions to call the manager. For POSE con-
tracts, we use the scripting language Lua [53]. It is a well-established, fast, powerful, yet simple
language written in C. Lua as well as the enclave itself allow arbitrary computation. We ported
the Lua interpreter to run inside the TA, by stripping out operations unsupported by the TA,
such as file access. After each execution step, the enclave returns to the normal world while
keeping the contract’s Lua session alive. When the normal world receives an input from a user, it
invokes the TA with these inputs to continue the Lua execution. To update the enclave runtime,
different approaches are possible in practice, e.g., the manager could announce an update and
all outdated enclaves would shut themselves down after a timeout. Honest operators then would
incrementally trigger an enclave replacement during the timeout period.

9 Evaluation

This section examines POSE regarding complexity and performance. In the following, we will
report absolute performance numbers and discuss these in relation to Ethereum itself, but also
compare to existing works based on TEEs, namely FastKitten and Bitcontracts. FastKitten has a
highly similar set of tested smart contracts, so a comparison can put our numbers in perspective.
For Bitcontracts, we reimplemented Quicksort with the same experiment setup. Note, that the
smart contracts can still be implemented differently, and the performance and the TEE differ.

Complexity. Running a POSE contract in the benign case, i.e., if all involved enclaves respond,
requires exactly two blockchain interactions for the setup. Each user of a contract also needs one
blockchain interaction each time the user deposits or withdraws money regarding the contract.
However, as POSE does not require a fixed collateral for the setup, the money transactions do
not inherently prevent the contract from execution—except the specific contract demands it.
Otherwise, when either the executor or any watchdog fails to respond, each challenge requires
two blockchain interactions. The delay incurred by our challenge protocol is dominated by the
on-chain transactions. This holds also for other off-chain solutions, e.g., state-channels [46,26,22],
Plasma [52,37], Rollups [48,5] and FastKitten [25]. For instance, the time it takes for an honest

8 https://github.com/OP-TEE/optee_os/pull/5025
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Method
Cost

Gas USD

registerEnclave 175 910 13.23
initCreation 198 436 14.91
finalizeCreation 79 545 5.98
deposit 37 255 2.80
withdraw 36 997 2.78

challengeExecutor 54 654 4.11
executorResponse 51 478 3.87
executorTimeout 53 327 4.01
challangeWatchdogsCreation 231 286 17.38
challengeWatchdog 131 362 9.87
watchdogResponse 36 257 2.72
watchdogTimeout 52 142 3.92

simple Ether transfer* 21 000 1.58
create CryptoKitty* 250 000 18.78

Table 1. Cost of executing the POSE manager. The USD costs were estimated based on the prices (Gas
to GWei and ETH to USD) on May. 8, 2022 [27,21]. *For comparison, these are the costs of popular
operations on Ethereum.

executor to kick a watchdog is 325s on average. We discuss timeout parameters and the challenge
delay more thoroughly in Appendix D. In the worst-case, a malicious operator does not respond
to the off-chain messages but to the challenges in every execution step, which would effectively
reduce POSE’s execution speed beneath that of the blockchain. However, such an attack requires
continuous blockchain interactions from the malicious party and hence entails costs for every
execution step (cf. Section 9 “Manager”).

Test setup. We deployed a test setup with our prototype implementation for performance mea-
surements. The test setup consists of five devices. For the enclaves we deployed three Raspberry
Pi 3B+ with four cores running at 1.4GHz. These are widely available and cheap devices that
support ARM TrustZone. As state updates are small (just the delta to the previous state) and
watchdogs receive and process the state updates in parallel, we do not expect an increase of
the pool size to significantly influence the evaluation. Further, we used ganache-cli (6.10.2) to
emulate a Ethereum blockchain in our local network, which runs the Solidity contract that imple-
ments the manager. Finally, a fifth device emulates multiple users by simply sending out network
requests to both the manager and enclave operators, which are all connected via Ethernet LAN.

Manager. As the POSE manager is implemented as an Ethereum smart contract, interactions
with it incur some costs in the form of Gas. The costs of all implemented methods of the Solidity
contract are listed in Table 1. The first five methods are used for benign POSE contract execution.
The second part of the table shows methods that are required for challenges, including the
response and timeout methods to resolve them. In terms of storage, each additionally registered
enclave will require 64 bytes and each contract 288 bytes + (pool size × 32 bytes) of on-chain
storage.

Contract execution. To measure and demonstrate the efficiency of POSE contract execution,
we implemented three applications as Lua code in our test setup. All time measurements are
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averaged over 100 runs. Regardless of the used contract, setting up an executor or watchdog
enclave with a Lua contract takes 189ms. Creating an attestation report for the enclave takes
another 367ms with OP-TEE’s built-in remote attestation using a one-line dummy contract. For
our biggest contract, Poker, the attestation takes 377ms, resulting in a total setup time of 566ms.
In contrast, FastKitten needs 2s for enclave setup. Note that FastKitten needs an additional
blockchain interaction. Multiple contracts run by a single operator are executed in parallel,
including network communication. Thus, the number of enclaves, contracts and transactions a
single operator can process depends on the operator’s hardware. As modern servers CPUs feature
128 cores [23], and servers often feature multiple CPUs, we do not expect parallel execution to
affect performance significantly. However, to prevent overload, the number of pools an operator
participates in can be limited.
Rock paper scissors. This is an implementation of the popular game with two players. Unlike
traditional smart contracts, we can leverage POSE’s private state to simply store each player’s
input, instead of having to use much more complex multi-round commitments. The resulting
smart contract is 27 lines of code (LoC). Disregarding the delay caused by human players, the
execution time of one round with two user inputs is 32ms. In comparison, FastKitten only needs
12ms, but is also running on a much more powerful machine. In contrast, executing this game on
Ethereum would take around 5 minutes for each round (20 confirmation blocks, 15s block time
each).
Poker. We have also implemented Poker as a multi-party contract running over multiple rounds.
Note that in POSE, the poker game can be implemented as an ongoing cash game table, i.e.,
players may join or leave the table at any time, as contracts in POSE do not have to be finite.
Each round consists of three phases each requiring an input from all users. The resulting smart
contract is 209 lines of code (LoC). We execute the contract with five players who have their
deposit ready at the start, with a total execution time of 199ms (vs. 45ms in FastKitten, but
again, on a more powerful machine). Playing this game on Ethereum would take 5 minutes per
player input.
Federated Machine Learning. For this application, users can submit locally trained models, which
will be aggregated to a single model by the contract. Any user can then request the new model
from the contract. For our measurements, each user trained a convolutional neural network
consisting of 431 080 individual weights on the MNIST handwritten digits dataset [62]. For ag-
gregation, the contract averages every existing weight with the corresponding weight sent by
the user. The smart contract itself is only 5 LoCs, as we load the existing weights separately.
Each aggregation took 238ms, which demonstrates the efficiency of POSE. Trying to execute the
same function on Ethereum, for each aggregation, storage of the weights alone would exceed 1
billion gas (assuming 4 bytes float per weight) and the calculation over 3.4 million gas (8 gas per
weight).
Quicksort. We have also implemented Quicksort to sort a hardcoded input array of 2048 random
integers, as done in Bitcontracts [59]. The resulting smart contract is 29 lines of code (LoC). The
total execution time of the contract is 20ms. Compared to the 6ms in Bitcontracts, we use a less
powerful machine (Bitcontracts uses an AWS T2.micro instance with a recent Intel processor at
3.3Ghz), while our performance measurement also includes additional steps like context switches
and the setup of the enclave runtime. Executing this Quicksort contract on Ethereum would cost
around 6.5 million gas.

Watchdog state updates. When an executor operator has been dropped, a watchdog takes over
execution. For this to work, state changes are distributed to the watchdogs. Storing the current
state and restoring it on a watchdog takes 17ms for the poker contract (averaged over 100 runs,
corrected for network latency), which also has the biggest state among the ones we implemented.
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Ethereum [58] ✓ ✗ O(n) ✓

MPC [40,41,39] ✗ ✓ O(1) ✗

State Channels [46,26,22] ✗ ✗ O(1) ✗

VM-based [36,60,59] ✗ ✗ O(n) ✓

Ekiden [20] ✗ ✓ O(n) ✗

FastKitten [25] ✗ ✓ O(1) ✗

POSE ✓ ✓ O(1) ✓

Table 2. Overview of related work, n is #transactions.

Enclave teardown. After an executor enclave is not expecting further inputs and finished the
smart contract execution, the execution environment has to be cleaned up for the next smart
contract, i.e., cryptographic secrets and the smart contract in the shared memory need to be
zeroed. This takes 25ms.

10 Related Work

Ethereum [58] is the most prominent decentralized cryptocurrency with support for smart con-
tract execution. However, it is suffering from very high transaction costs and data used by smart
contracts is inherently public.

Hawk [38] aims for improving the privacy by automatically creating a cryptographic proto-
col from a high-level program in order to allow computation on private data without disclosing
it. However, this complex cryptographic layer further decreases performance of the system and
increases costs. Similarly, approaches based on Multiparty Computation (MPC) [40,41,39] dis-
tribute the computation between multiple parties such that no party can access the cleartext
data. These approaches have substantial overhead in performance, communication and collateral
required.

One approach to alleviate the complexity limitation are state channels [46,26,22], which enable
parties to lock some funds on the blockchain, execute complex contracts off-chain, and finally
commit the results of the contract to the blockchain. This is efficient if all parties agree on the
results; otherwise, the dispute can be solved on-chain, which takes longer and is more expensive.

Arbitrum [36] represents a smart contract as a virtual machine (VM), which is executed
privately by a number of “managers”. After execution, if all managers agree on the result of the
computation, this result can be simply signed and committed to the blockchain, without the need
to perform the computation on chain. In case managers disagree, a bisection algorithm is used
to compare subsets of the execution on chain and find which is the first instruction on which
the managers disagree, then punish the malicious manager(s). Hence, as long as at least one
manager is honest, the correct result is computed. While computationally efficient, this on-chain
protocol is still relatively expensive, so Arbitrum also includes financial incentives to encourage
the managers to behave. The managers have full access to the VM’s data, so confidentiality
is broken if even one manager is malicious. Unlike Arbitrum, POSE does not require multiple
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parties to execute the smart contract: the watchdog enclaves just need to acknowledge the new
states, unless the executor enclave fails.

ACE [60] and Bitcontracts [59] are similar to Arbitrum, but they allow the results of contract
executions to be approved by a configurable quorum of service providers, not necessarily all of
them. Unlike POSE, ACE does not support private state and requires on-chain communication
per contract invocation. Although the transaction is computed off-chain, the invocation and the
result are registered on-chain. Further, Arbitrum and ACE require changes to the blockchain
infrastructure, hence, they are harder to deploy in practice.

Ekiden [20] is also an off-chain execution system that leverages TEE-enabled compute nodes
to perform computation and regular consensus nodes that interact with a blockchain. The major
drawback of Ekiden is that it requires every computation step to retrieve its initial status from
the blockchain, and it only supports input from one client at a time. Moreover, the atomic
delivery of the output of each step requires to wait for publication of the updated state before
the output is made available to the client. Hence, any highly interactive protocol with multiple
participants (e.g., a card game) would incur significant delays between turns just to wait for
the blockchain. The paper evaluates on a fast blockchain, Tendermint, but does not quantify its
latency for interactive protocols on mainstream blockchains like Ethereum. The Oasis Network
uses an updated version of Ekiden [30]; yet, this version still requires to store state on the
blockchain after each call.

FastKitten [25] also leverages TEEs to perform off-chain computation. It assumes a rational
attacker model, with financial incentives to convince all participants to follow the protocols. If
they all do, the communication happens directly between the TEE and them, thus dispensing
with the high latency due to blockchain roundtrips. However, FastKitten only supports contracts
with a predefined list of participants and a limited lifespan. It also requires the TEE operator
to deposit as much as every participant combined as collateral. POSE lifts those restrictions: it
enables long-lived smart contracts with an unknown set of participants and requires no collateral
from the TEE owners. Further, POSE achieves strong liveness guarantees in the presence of
byzantine adversaries, while FastKitten assumes a rational adversary.

ROTE [45] is an approach to detect rollback attacks on TEEs by storing a counter on other
TEEs. This approach is similar to the watchdog enclaves used in POSE to ensure that execution
of a smart contract continues. However, unlike POSE, ROTE can only detect rollback attacks,
but cannot prevent malicious operators from withholding the state. SlimChain [61] primarily
aims at reducing on-chain storage, while still requiring blockchain interactions to store state
commitments. Further, the paper does not address storage nodes crashing, which would lead to
a liveness violation. Pointproofs [33] proposes a new vector commitment scheme to reduce the
storage requirements on blockchain validators. Although validators do not need to store all values
of a smart contract, once a transaction provides these values, the execution is still performed
on-chain. In contrast, POSE works entirely off-chain in the optimistic case and ensures liveness.

Chainspace [12] proposes an entirely new distributed ledger platform focusing on sharding
combined with a directed acyclic graph structure, while POSE extends established blockchains
(e.g., Ethereum). ResilientDB [54] proposes a consensus protocol that clusters validators’ geo-
location to minimize network overheads. In contrast, POSE is a off-chain execution protocol
for smart contracts. Hyperledger Fabric Private Chaincode [29] requires trust in handling the
encryption key by the client or an admin; thus, we deem it not applicable to permissionless
blockchains, targeted by POSE. Hyperledger Private Data Objects [18], an alternative to Private
Chaincode, requires periodic blockchain interactions to store the state on-chain. This slows exe-
cution on contract calls to the speed of the blockchain, unlike POSE, which executes contracts
entirely off-chain in the optimistic case. Hyperledger Avalon [28] can outsource workloads to TEE
enclaves. However, these workloads have to be self-contained, and thus, interactions by partic-
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ipants still require on-chain transactions, while POSE can run interactive contracts completely
off-chain (e.g., Poker).

11 Conclusion

Smart contracts have become an indispensable tool in the era of blockchains; yet, current ap-
proaches suffer from various shortcomings. In this paper, we introduce POSE, a novel off-chain
execution protocol that addresses all of these shortcomings to enable much more versatile smart
contracts. We showed POSE’s security and demonstrated its feasibility with a prototype imple-
mentation.
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A Protocol Security

We analyze the security of our protocol under the assumption of an IND-CPA secure encryption
scheme, an EU-CMA secure signature scheme and a collision resistant hash function in the
following. We present definitions of correctness, ϵ-liveness and state privacy.

A.1 Correctness

We define a state update as the evaluation of a transition function f , which receives as inputs a
user U , a user input move and a copy of the blockchain BC. The correctness property states that
each state update evaluates the transition function as defined by the contract code with valid
inputs, i.e., U is the (potentially malicious) client triggering the transition, move the input of U

and BC a valid copy of the blockchain that is at most τoffslack behind the main chain.

Claim (Correctness). POSE satisfies correctness.

We first note that according to our adversary model, a corrupted operator may delete any
message intended for her enclave or generated from her enclave. However, the correct execution
of the POSE program inside the enclave cannot be influenced. When an operator creates a POSE
enclave, the registration process ensures that the new enclave indeed runs the POSE program.
To this end, our protocol utilizes the TEE attestation mechanism, which generates a verifiable
statement that the enclave is running a specific program. Upon registration with the manager M ,
M checks the validity of the attestation statement as well as the blockchain evidence, the signed
hash and number of the latest block known to the enclave. M only registers the enclave in the
system if the new enclave is running the POSE program and is not further behind than maximally
τoffslack . Finally, the TEE integrity and confidentiality guarantees ensure that a malicious operator
cannot modify the enclave’s code, tamper with its state or access its private data, in particular,
its signature keys.

During the creation of a contract, the pool enclaves attest the code of the installed contract
to the creation enclave. The creator checks that the code is consistent with the hash stored in
the manager before signing a creation confirmation. Hence, it is not possible, without breaking
the EU-CMA security of the signature scheme or the collision resistance of the hash function,
to create a valid creation confirmation for a contract with different code than specified by the
creation request.
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Next, contract state updates can only be triggered by invoking the executor enclave with an
execution request or invoking a watchdog enclave with an update request. The correctness of the
latter is reduced to the correctness of the former. To see this, we observe that any update request
to a watchdog enclave requires to be signed by the executor enclave. Clearly, the executor enclave
only signs updates corresponding to its own executions. Therefore, an adversary cannot forge
incorrect update request without breaking the unforgeability of the signature scheme. Also, the
executor enclave can only issue a new state update if all watchdogs confirmed the previous one.
Hence, it is not possible to tamper with the order in which the update requests are provided to
a watchdog enclave. As stated before, the TEE integrity guarantees ensure the correct execution
of the program code and hence the correct execution of the smart contract. It follows that a state
update can only be achieved by providing inputs to the executor enclave. The executor enclave re-
ceives a signed message containing the action move from user U and the relevant blockchain data
from its operator. In Section 5.4, we describe how our protocol achieves secure synchronization
between the executor enclave and the blockchain. In particular, the synchronization mechanism
ensures that the blockchain data accepted by an enclave is correct and complete in regard to a
correct blockchain copy that is at most τoffslack behind the main chain. This guarantees that BC,
represented by the received blockchain data, is a synchronized copy of the current blockchain.
In order to protect inputs by honest users U , move needs to be signed by U . This means an
adversary cannot tamper with the input without breaking the signature scheme.

Finally, we note that each POSE enclave maintains a list of received messages. Since an honest
user randomly selects a fresh nonce for each execution request, replay attacks can be detected
and prevented by any executor enclave.

A.2 Liveness

The liveness property states that every contract execution initiated by an honest user U will
eventually be processed with high probability. For a successful execution, a valid execution re-
sponse is given by the executor. Unsuccessful execution can only happen in case of a contract
crash. In this event, the contract execution halts and neither honest nor malicious users can per-
form successful contract executions anymore. We emphasize that the pool size can be set such
that crashes happen only with negligible probability. In particular, for ϵ-liveness, the probability
of a crash is bounded by 1− ϵ.

Claim (ϵ-Liveness). Let n be the total number of enclaves in the system, m be the number
of malicious operators’ enclaves and s be the contract pool size. POSE satisfies ϵ-liveness for
ϵ = 1−Πs−1

i=0 (
m−i
n−i ) > 1− (mn )s.

Whenever user U sends an execution request to the executor enclave EE , U either directly
receives a response or U challenges EE via the manager M . If EE does not respond within some
predefined timeout, it will be kicked out of the execution pool and one of the watchdog enclaves
takes over the executor role. User U can now trigger the execution again by interacting with the
new executor enclave. During execution, the executor enclave EE requires confirmations from
all watchdog enclaves in order to produce a valid result. However, watchdog enclaves cannot
stall the execution forever, as EE is able to challenge them via the manager. All unresponsive
watchdog enclaves will be kicked out of the execution pool—the confirmations from the remaining
watchdogs suffice to create a result. We stress that all timeouts are defined in Appendix D with
great care to ensure that honest operators have enough time to respond. For example, the timeout
for the executor challenge is sufficient to allow the executor enclave to challenge the watchdog
enclaves twice; once for a currently running off-chain execution and once for the challenged
on-chain execution. Although POSE guarantees that honest operators’ enclaves will never be
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Fig. 5. Cumulative probabilities of no contracts crashing w. large number of POSE contracts for different
pool sizes s and adversary shares m, “s/m”.

kicked, there is a small probability that an execution pool consists only of malicious operators’
enclaves. If all enclaves are kicked out of the execution pool, the contract execution crashes.
Let n be the number of total registered enclaves, m denote the number of enclaves controlled
by malicious operators, and s the execution pool size. The probability of a crash is equal to the
probability that only malicious operators’ enclaves are within an execution pool. This is bounded
by ϵ = 1−Πs−1

i=0 (
m−i
n−i ) > 1− (mn )s. Hence, POSE achieves ϵ-liveness.

Assuming a total of n = 100 registered enclaves and m = 70 of them are controlled by
malicious operators. Even in this setting with a large share of malicious operators, POSE achieves
liveness with ϵ > 92% for a pool size of just 7. If only half of the operators are malicious, i.e.,
m = 50, POSE achieves liveness with ϵ > 99% for the same pool size of 7. For m = 10 malicious
operators, a pool size of only 3 yields a liveness with ϵ > 99%. For the same scenario of 10%
malicious operators and assuming 40 millions contracts running in POSE, the pool size of 11
results in a probability of more than 99% that there is no crash at all in the whole system. See
Fig. 5 for an illustration of the probability of no crashes depending on the number of contracts
for different pool sizes.

A.3 State Privacy

The state privacy property says that the adversary cannot obtain additional information about
a contract state besides what she learns from the results of contract executions alone.

Claim (State Privacy). POSE satisfies state privacy.

The smart contract’s state is maintained by the enclaves within the execution pool. According
to our adversary model (see Section 2), the TEE provides confidentiality guarantees, i.e., the
execution of an enclave does not leak any data. Hence, the smart contract’s state is hidden from
the adversary, even if the enclave’s operator is corrupted. The only point in time when information
about the contract’s state is revealed is at the end of the execution protocol. However, the data
provided as a result contains only public state and hence does not reveal anything about the

29



private state. During the execution protocol, the executor enclave propagates the new state to
all watchdog enclaves. However, the transferred data is encrypted using an IND-CPA secure
encryption scheme. The security of the scheme guarantees that an adversary seeing the message
cannot extract information from it. While an enclave only publishes outputs after successful
executions, we need to show that each produced output is final. In particular, a succeeding
executor must not be able to revert to a state in which a published output should not have been
produced. To this end, the state of the executor enclave producing a particular output needs
to be replicated among all other enclaves before revealing the actual output. This property is
achieved by the state propagation mechanism of POSE. An enclave only returns an output if
all enclaves in the pool confirm the corresponding state update. The EU-CMA secure signature
scheme guarantees unforgeability of the confirmations. Hence, each confirmation guarantees that
the corresponding enclave has updated its state correctly. Further, the correctness property of
our protocol (cf. Section A.1) ensures an enclave is always executed with a correct blockchain
copy; thus, is always aware of the correct pool composition. This means an output can only be
returned if the whole pool received the corresponding state update.

B Supported Contracts

POSE supports contracts with a dynamic set of users of arbitrary size and an unrestricted
lifetime. The timeouts need to be set reasonable with respect to the expected execution time
of the contracts to allow the execution of complex contracts and to prevent denial of service
attacks at the same time. Interaction between POSE contracts can be realized by letting the
TEE of the calling contract instruct its operator to request an execution of the second contract
via the respective executive operator and wait for the response. We deem the exact specification,
e.g., enforce an upper bound on (potentially recursive) external calls to guarantee timely request
termination, an engineering effort. Calls from POSE contracts to on-chain contracts can be
supported similarly to our payout concept (Appendix E).

C Further Protocol Blocks

To keep the specification of the POSE protocol in the main body simple and compact, we have
excluded the formal specification of the creation process and the validation algorithms. In this
section, we present the validation algorithms. For the formal specification of the creation process,
we refer the reader to the full version of the paper [31].

All of the different messages sent to the manager throughout the protocol need to be validated
with several checks. In order to keep the description compact, we did not include the validation
steps in the protocol figures but extracted them into a validation algorithm specified in Program 3.
The algorithm is invoked with an counter specifying the checks that should be performed, an
optional message that should be checked and the contract state tuple maintained by the manager.
The validation returns ok if all requirements are satisfied and M can continue executing and bad

if M should discard the received request.

D Timeouts

Our protocol incorporates several timeouts δ∗off , which define until when an honest user or op-
erator expects a response to a request, and δ∗on , which define until when the manager expects
a response to a challenge. These timeouts have to be selected carefully s.t. each honest party
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Program 3: Algorithm Validate

The validation algorithm performs the following checks. If input C = ⊥, the parsing of a
message fails or any require is not satisfied, the algorithm outputs bad. Otherwise, it outputs ok.

– On input (1,m;C), parse m to (execute, id , ·, ·;U). Require that C.creator = ⊥,
C.c1Time = ⊥ and Verify(m) = ok.

– On input (2, res;C), parse res to (ok, id , ·, h;T ). Require that C.creator = ⊥,
H(C.c1Msg) = h, C.c1Time + δ1on > BC.now , Verify(res) = ok and C.pool [0] = T .

– On input (3;C), require that C ̸= ⊥, C.creator = ⊥, Cc1Msg ̸= ⊥ and
C.c1Time + δ1on ≤ BC.now .

– On input (4, pre;C), parse pre to (update, id , c, h;T ). Require that C.creator = ⊥,
C.c2Time = ⊥, C.pool [0] = T and Verify(pre) = ok.

– On input (5, conf ;C), parse conf to (confirm, id , h;Ti) and C.c2Msg to (·, ·, ·, h′; ·). Require
that C.creator = ⊥, C.c2Time + δ2on > BC.now , Verify(conf ) = ok, h = h′ and T ∈ C.pool .

– On input (6;C), require that C.creator = ⊥, C.c2Time ̸= ⊥ and C.c2Time + δ2on ≤ BC.now .

has the chance to answer each message and challenge before the respective timeout expires. In
this section, we elaborate on the requirements on the timeouts. We neglect message transmission
delays and also assume that each challenge sent to the manager will directly be received by all
operators (already before it is included into a final block)9. We recall the maximum blockchain
delay which is defined as δBC = α · τ (cf. 2 and 4). The off-chain propagation timeout δ2off de-
scribes the time an execution or creation operator maximally waits for a confirmation from the
(other) pool members. It needs to be larger than the maximal update respectively installation
time of a contract. Timeout δ2on ≥ δ2off +δBC describes the maximal time after which M expects a
response to any watchdog challenge, either during creation or execution. The off-chain execution
timeout δ1off describes the maximal time a user waits for a response to an execution request. Note
that there might be a running execution and both running and new execution might require a
watchdog challenge. In case watchdogs are dropped in the process of such a challenge, the ex-
ecutor needs to be able to notify its enclave about the new pool constellation, and hence, wait
until the finalization of the challenge is within a final block. This takes additional time ∆ = τ · γ
(cf. 4). Hence, δ1off needs to be high enough to enable the challenged executor to perform two

contract executions and run two watchdog challenges each taking up to time δ2on + δBC + ∆.
We elaborate on maximal execution, update, and installation times of contracts in Section 5.6.
Finally, δ1on ≥ δ1off +δBC defines the maximal time after which M expects a response to an execu-
tion challenge. As the creation is comparable to the execution, we set the timeouts for off-chain
creation and creation-challenge accordingly. The timeouts are the upper bound of the delay that
can be enforced by malicious operators by withholding messages. To decrease the delays in prac-
tice, our implementation incorporates dynamic timeouts. Such a timeout is initially set to match
an optimistic scenario where all operators answer directly. Only if the executor signals that a
watchdog is not responding, the timeout is increased. For example, δ1on is initially set by the
manager just high enough to allow the executor to perform the execution offline and to send one
on-chain transaction. This on-chain transaction is either the response or a watchdog challenge.
In case the executor creates a watchdog challenge, this triggers the manager to increase the δ1on
timeout for the executor. Similarly, the timeout δ1on is increased by the manager if any watchdog
is not responding and the executor sends a transaction that kicks this watchdog. The increased

9 We could also add twice the max. message delay to each off-chain timeout and the blockchain confir-
mation time ∆ = τ · γ to each on-chain timeout.
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timeout allows the executor to provide the kick transaction together with enough confirmation
blocks to its enclave to finalize the execution. This dynamic timeout mechanism still allows the
executor to respond in time even if a watchdog is not responding, but at the same prevents the
executor to stall execution to the maximum although the watchdogs have already responded.
While the executor still can create a watchdog challenge to increase the delay, this attack is
costly as the executor needs to pay for the on-chain transaction. The value of the off-chain time-
out δ1off is handled similarly. The client only needs to account for watchdog challenges in the
previous execution if there is a running on-chain challenge. If there are no running challenges,
a client can decrease δ1off to δBC plus two times the time for the TEE to execute and update a
contract. If the executor is unresponsive, the client submits its executor challenge much earlier.
We give a concrete evaluation for the case of Ethereum, as this is the platform on which our
implementation works. Let α = 20 be the number of blocks until a transaction is included in
the blockchain in the worst case, and αavg = 10 in the average case. Further, we consider the
block creation time to be τ = 44s per block in the worst case and τavg = 15s in the average
case10. Finally, we assume that blocks are final, when they are confirmed by γ = 15 successive
blocks. Since the network delay and the computation time of enclaves are at most just a few
seconds, which is insignificant compared to the time it requires to post on-chain transactions,
we neglect these numbers for simplicity in the following example. In case the executor (resp. a
watchdog) is not responding, it is challenged by the the client (resp. the executor). The creation
of such a challenge takes αavg ·τavg = 150s on average. In what follows, due to the dynamic time-
out mechanism, the on-chain timeout for both, executor challenge (δ1on) and watchdog challenge
(δ2on), is initially set to α · τ = 880s. For on-chain timeouts, we need to consider the worst-case
parameters to allow honest operators to respond timely in every situation. While a dishonest
operator can delay up to the defined timeout, an honest operator responds, and hence, finalizes
the challenge in 150s on average. In case the challenged operator gets kicked, the (next) executor
enclave needs to provide the kick transaction together with enough confirmation blocks to its
enclave to finalize the execution. This takes (αavg + γ) · τavg = 375s on average. For executor
challenges, it can happen that the executor submits a watchdog challenge during the timeout
period. In this case, which can happen at most twice, the timeout is increased by 880s. If the
challenged watchdog does not reply, and consequently is kicked from the pool, the timeout is
increased by (α + γ) · τ = 1540s. Note, this worst case is very costly to provoke, and in the
general case, an honest executor can finalize the kick of the watchdog in 375s.

E Coin Flow

The POSE protocol supports the off-chain execution of smart contracts that deal with coins,
e.g., games with monetary stakes. To this end, we provide means to send coins to and receive
coins from a contract. In this section, we explain the mechanisms that enable the transfer of
money and the intended coin flow of POSE contracts. In order to deposit money to a POSE
contract, identified by id , a user U sends a message (deposit, id , amount ;U) with amount coins
to M . Upon receiving a deposit message, M checks whether a contract with identifier id exists
and validates the signature, i.e., M id ̸= ⊥ and Verify(deposit, id , amount ;U) = ok. If the
checks hold, M increases the contract balance M id .balance by amount . As deposits are part of
blockchain data that are provided by the operator to an enclave (cf. 5.4) and the enclave forwards

10 For setting α and αavg , we consider a transaction to be included into the blockchain after at most
20 resp. 10 blocks according to [55]. To determine τ , we analyzed the Ethereum history via Google-
BigQuery and identified that since 2018 every interval of 20 blocks took at most 44s per block. For
τavg , we take the avg. parameter for Ethereum (cf. https://etherscan.io/chart/blocktime).
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the data to the nextState function of the contract Cid , U is ensure that Cid processes the deposit
once the corresponding block is final. However, it is upon to the application logic to decide how
deposits are processed. A contract C can transfer coins to users by outputting withdrawals as part
of the public state. It is upon the application logic to decide how and when coins are transferred
to the users. For example, a game can issue withdrawals once the winner has been determined
or leave the coins locked for another round unless a user explicitly requests a withdrawal via
a contract execution. However, once a withdrawal has been issued, the coins are irreversible
transferred. Technically, contract C with identifier id maintains a list of all unspent withdrawals
{amount i, Ui} and a counter payouts for the number of spent payouts. Each public state returned
by C contains a payout, a signed message m := (withdraw, id , payouts, {amount i, Ui}; EE) where
EE is the executor enclave of the contract. This message can be sent toM to spent all withdrawals
within the payout. M checks the validity of the payout, i.e., Verify(m) = ok, EE = M id .pool [0],
and payouts = M id .payouts. If the checks hold, M transfers coins to the users according to the
withdrawal list {amount i, Ui}. Finally, M sets M id .payouts := payouts + 1 and M id .balance :=
M id .balance−sum, where sum is the sum of all withdrawals. Once C processes a final block with
a payout transaction, it updates its list of unspent withdrawals {amount i, Ui} accordingly and
increments payouts by 1.This mechanism ensures that a malicious user can neither double spent
withdrawals nor prevent an honest user from withdrawing his coins—as long as the contract
remains live. Note that for each value of payouts, only one payout can be submitted successfully,
and a contract only issues a payout for the next value of payouts once it has processed a final
block containing the current value of payouts. As the contract removes already spent withdrawals
from the list, double-spending of any withdrawal is prevented. Although a payout temporarily
invalidates all other payouts for the same payouts, and hence, might invalidate same withdrawals,
the unspent withdrawals will be included in each payout of the incremented payouts and spent
with the next payout submission.
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B. Putting the Online Phase on a
Diet: Covert Security From
Short MACs

In this chapter, we present the following publication with minor changes.
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Abstract. An important research direction in secure multi-party computation (MPC) is
to improve the efficiency of the protocol. One idea that has recently received attention is to
consider a slightly weaker security model than full malicious security – the so-called setting
of covert security. In covert security, the adversary may cheat but only is detected with
certain probability. Several works in covert security consider the offline/online approach,
where during a costly offline phase correlated randomness is computed, which is consumed
in a fast online phase. State-of-the-art protocols focus on improving the efficiency by
using a covert offline phase, but ignore the online phase. In particular, the online phase
is usually assumed to guarantee security against malicious adversaries. In this work, we
take a fresh look at the offline/online paradigm in the covert security setting. Our main
insight is that by weakening the security of the online phase from malicious to covert,
we can gain significant efficiency improvements during the offline phase. Concretely, we
demonstrate our technique by applying it to the online phase of the well-known TinyOT
protocol (Nielsen et al., CRYPTO ’12). The main observation is that by reducing the MAC
length in the online phase of TinyOT to t bits, we can guarantee covert security with a
detection probability of 1 − 1

2t
. Since the computation carried out by the offline phase

depends on the MAC length, shorter MACs result in a more efficient offline phase and
thus speed up the overall computation. Our evaluation shows that our approach reduces
the communication complexity of the offline protocol by at least 35% for a detection rate
up to 7

8
. In addition, we present a new generic composition result for analyzing the security

of online/offline protocols in terms of concrete security.

Keywords: Multi-Party Computation (MPC) · Covert Security · Offline/Online · Deterrence
Composition

1 Introduction

Secure multi-party computation (MPC) allows a set of distrusting parties to securely compute
an arbitrary function on private inputs. While originally MPC was mainly studied by the cryp-
tographic theory community, in recent years many industry applications have been envisioned in
areas such as machine learning [28], databases [34], blockchains [2] and more [3, 1]. One of the
main challenges for using MPC protocols in practice is their huge overhead in terms of efficiency.
Over the last decade, tremendous progress has been made both on the protocol side as well as
the engineering level to move MPC protocols closer to practice [17, 14, 26, 27, 6, 12, 32].

Most efficient MPC protocols work in the honest-but-curious setting. In this setting, the ad-
versary must follow the protocol specification but tries to learn additional information from the
interaction with the honest parties. A much stronger security notion is to consider malicious secu-
rity, where the corrupted parties may arbitrarily deviate from the specification in order to attack



the protocol. Unfortunately, however, achieving malicious security is much more challenging and
typically results into significant efficiency penalties [26, 19].

An attractive middle ground between the efficient honest-but-curious model and the costly
malicious setting is covert security originally introduced by Aumann and Lindell [5]. As in ma-
licious security, the adversary may attack the honest parties by deviating arbitrarily from the
protocol specification but may get detected in this process. Hence, in contrast to malicious se-
curity such protocols do not prevent cheating, but instead de-incentivize malicious behavior as
an adversary may fear getting caught. The latter may lead to reputational damage or financial
punishment, which for many real-world settings is a sufficiently strong countermeasure against
attacks. Moreover, since covert security does not need to prevent cheating at the protocol level, it
can lead to significantly improved efficiency. Let us provide a bit more detail on how to construct
covert secure protocols.

The cut-and-choose technique. In a nutshell, all known protocols with covert security amplify the
security of a semi-honest protocol by applying the cut-and-choose technique. In this technique, the
semi-honest protocol is executed t times where t−1 of the executions are checked for correctness
via revealing their entire private values. The remaining unchecked instance stays hidden and
thus can be used for computing the output. Since in the protocol the t − 1 checked instances
are chosen uniformly at random, any cheating attempt is detected with probability at least t−1

t ,
which is called the deterrence factor of the protocol and denoted by ϵ. The overhead of the
cut-and-choose approach is roughly a factor t compared to semi-honest protocols due to the
execution of t semi-honest instances.

The offline/online paradigm. An important technique to construct efficient MPC protocols is to
split the computation in an input independent offline phase and an input dependent online phase.
The goal of this approach is to shift the bulk of the computational effort to the offline phase
such that once the private inputs become available the evaluation of the function can be done
efficiently. To this end, parties pre-compute correlated randomness during the offline phase, which
is consumed during the online phase to speed up the computation. Examples for offline/online
protocols are SPDZ [17], authenticated garbling [35, 36] and the TinyOT approach [31, 29, 10, 22].

While traditionally the offline/online paradigm has been instantiated either in the honest-
but-curious or malicious setting, several recent works have considered how to leverage the of-
fline/online approach to speed-up covert secure protocols [14, 16, 20]. The standard approach
is to take a covertly secure offline phase and combine it with a maliciously secure online phase.
Since the offline phase is most expensive, this results into a significant efficiency improvement.
Moreover, since the offline phase is input independent, it is particularly well suited for the cut-
and-choose approach used for constructing covert secure protocols. In contrast to the offline
phase, for the online phase we typically rely on a maliciously secure protocol. The common belief
is that the main efficiency bottleneck is the offline phase, and hence optimizing the online phase
to achieve covert security (which is also more challenging since we need to deal with the private
inputs) is of little value. In our work, we challenge this belief and study the following question:

Can we improve the overall efficiency of a covertly secure offline/online protocol by relaxing the
security of the online phase to covert security?

1.1 Contribution

Our main contribution is to answer the above question in the affirmative. Concretely, we show
that significant efficiency improvements are possible by switching form a maliciously secure online
phase to covert security.
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To this end, we introduce a new paradigm to achieve covert security. Instead of amplify-
ing semi-honest security using cut-and-choose, we start with a maliciously secure protocol and
weaken its security. In malicious security, successful cheating of the adversary is only possible
with negligible probability in the statistical security parameter. For protocol instantiations, this
parameter is typically set to 40. The core idea is to show that in the setting of covert security, we
can significantly reduce the value of the statistical security parameter without losing in security.
We are the first to describe this new method of achieving covert security by weakening malicious
security.

For achieving covert security of already efficient online protocols, the naive cut-and-choose
approach is not a viable option due to its inherent overhead. In contrast, our approach is par-
ticularly interesting for these protocols. In addition, we observe that for several offline/online
protocols, a reduction to covert security in the online phase reduces the amount of precomputa-
tion required. This results in an overall improved efficiency.

To illustrate the benefits of our paradigm, we apply it to the well-known TinyOT [31] protocol
for two-party computation for boolean circuits based on the secret-sharing approach. This proto-
col is a good benchmark for oblivious transfer (OT)-based protocols and hasn’t been considered
before for the covert setting. The original TinyOT protocol consists of a maliciously secure offline
and online phase where MACs ensure the correctness of the computation performed during the
online phase. While the efficiency of the offline phase can be improved by making this phase
covertly secure using the cut-and-choose approach, we apply our paradigm to the online phase to
gain additional efficiency improvements. Our insight is that instead of using 40-bit MACs, which
is typically done for an actively secure online phase, using t-bits MACs results in a covertly
secure online phase with deterrence factor 1− 1

2t . We formally prove the covert security of this
online protocol.

As touched on earlier, shortening the MAC length of the TinyOT online phase has a direct
impact on the computation overhead carried out in the offline phase. In particular, the size of the
oblivious transfers that need to be performed depend on the MAC length and thus this number
can be reduced. Concretely, we compare the communication complexity of a cut-and-choose-
based offline phase for different choices of MAC lengths. We can show that the communication
complexity of the offline protocol reduces by at least 35% for a deterrence factor up to 7

8 .
While we chose the TinyOT protocol for demonstrating our new paradigm, we can apply

our techniques also for other offline/online protocols in the two- and multi-party case, e.g.,
[29, 10, 22, 35, 36].

As a second major technical contribution, we show that the combination of a covert offline and
covert online phase achieves the same deterrence factor as a covert offline phase combined with an
active online phase. We show this result in a generic way by presenting a deterrence replacement
theorem. Intuitively, when composing a covertly secure offline phase with a covertly secure online
phase, the deterrence factor of the composed protocol needs to consider the worst deterrence
of both phases. This is easy to see, since the adversary can always try to cheat in that phase
where the detection probability is smaller. While easy at first sight, the formalization requires a
careful analysis and adds restrictions on the class of protocols for which such composition can
be shown. By applying our deterrence replacement theorem, we show for offline/online protocols
that the overall detection probability is computed as the minimum of the detection probability
of the offline phase and the detection probability of the online phase.

While this result was proven by Aumann and Lindell [5] for a weak notion of covert security,
the failed-simulation formulation, we are the first to formally present a proof in the strongest
setting of covert security which is also mostly used in the literature. The definitional framework
of the failed-simulation formulation and the one of all of the stronger notions are fundamentally
different. In particular, the failed-simulation formulation relies on the ideal functionality defined
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for the malicious setting but allows for failed simulations. The stronger notions define a covert
ideal functionality explicitly capturing the properties of the covert setting, i.e., the possible
cheating attempts of the adversary. For this reason, it is not straightforward to translate the
proof techniques from the failed-simulation formulation to the stronger notions.

1.2 Related Work

Short MACs. Hazay et al. [23] also considered short MAC keys for TinyOT, but in the context
of concretely efficient large-scale MPC in the active security setting with a minority of honest
parties. The main idea of their work is to distribute secret key material between all parties such
that the security is based on the concatenation of all honest parties’ keys. In contrast, we achieve
more efficient covert security and the security is based on each party’s individual key.

TinyOT extensions. In the two-party setting, the TinyOT protocol is extended by the TinyTa-
bles [15] and the MiniMac [18] protocols. The former improves the online communication com-
plexity by relying on precomputated scrambled truth tables. The precomputation of these works
is based on the offline phase of TinyOT. Therefore, we believe that our techniques can be applied
to the TinyTables protocol as well. We focus in our description on the original TinyOT protocol
to simplify presentation.

The MiniMac protocol uses error correcting codes for authentication of bit vectors and is in
particular interesting for “well-formed” circuits that allow for parallelization of computation. The
sketched precomputation of MiniMac is based on the SPDZ-precomputation [17]. In the SPDZ
protocol, MACs represent field elements instead of binary strings as in TinyOT. Therefore, it is
not straight-forward to apply our techniques to the MiniMac protocol. We leave it as an open
question if our techniques can be adapted to this setting.

Larraia et al. and Burra et al. [29, 10] show how to extend TinyOT to the multi-party setting.
Our paradigm can be applied to these protocols as well as to the precomputation of [22].

Authenticated garbling. The authenticated garbling protocols [35, 36, 25, 37] achieve constant
round complexity and active security by utilizing an authenticated garbled circuit. For authenti-
cation, the protocols rely on a TinyOT-style offline phase. Hence, we believe that our approach
can improve the efficiency of the authenticated garbling protocols as well (when moving to the
setting of covert security).

Arithmetic computation. The family of SPDZ protocols [17, 14, 26, 27, 13] provide means to
perform multi-party computation with active security on arithmetic circuits. Damg̊ard et al. [14]
have already considered the covert setting but only reduced the security of the offline phase
to covert security. As already mentioned above in the context of MiniMac, we leave it as an
interesting open question to investigate if our approach can be translated to the arithmetic
setting of the SPDZ family in which MACs are represented as field elements.

Pseudorandom Correlation Generators. Recently, pseudorandom correlation generators (PCGs)
were presented to compute correlated randomness with sublinear communication [7, 8, 9]. While
this is a promising approach, efficient constructions are based on variants of the learning par-
ity with noise (LPN) assumption. These assumptions are still not fully understood, especially
compared to oblivious transfer which is the base of TinyOT.
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1.3 Technical Overview

Notions of covert security. The notion of covert security with ϵ-deterrence factor was proposed
by Aumann and Lindell in 2007 [5], who introduced a hierarchy of three different variants. The
weakest variant is called the failed-simulation formulation, the next stronger is the explicit cheat
formulation (ECF) and the strongest variant is the strong explicit cheat formulation (SECF). The
last is also the most widely used variant of covert security. In the failed-simulation formulation,
the adversary is able to cheat depending on the honest parties’ inputs. This undesirable behavior
is prevented in the stronger variants. In the ECF notion, the adversary learns the inputs of the
honest parties even if cheating is detected. Finally, SECF prevents the adversary from learning
anything in case cheating is detected.

In this work, we introduce on a new notion that lies between ECF and SECF. We call it
intermediate explicit cheat formulation (IECF) (cf. Section 2), where we let the adversary learn
the outputs of the corrupted parties even if cheating is detected. This is a strictly stronger
security guarantee than ECF, where the adversary also learns the inputs of the honest parties.
Our new notion captures protocols where an adversary learns its own outputs (which may depend
on honest parties inputs) before the honest parties detect cheating. However, we emphasize that
the adversary cannot prevent detection by the honest parties. In particular, it must make its
decision on whether to cheat or not before learning its outputs. Moreover, notice that in case
when the adversary does not cheat, it would anyway learn these outputs, and hence IECF is only
a very mild relaxation of the SECF notion.

Composition of covert protocol. Composition theorems allow to modularize security proofs of
protocols and thus are tremendously useful for protocol design. Aumann and Lindell presented
two sequential composition theorems for protocols in the covert security model [5]. One for the
failed-simulation formulation and one for the (S)ECF. In the following, we focus on the later
theorem since these notions are closer to the IECF notion. The composition theorem presented
in [5] allows to analyze the security of a protocol in a hybrid model where the parties have access
to hybrid functionalities. In more detail, the theorem states that a protocol that is covertly secure
with deterrence factor ϵ in a hybrid model where parties have access to a polynomial number
of functionalities, which themselves have deterrence factors, then the protocol is also secure
if the hybrid functionalities are replaced with protocols realizing the functionalities with the
corresponding deterrence values. Note that the theorem states that a composed protocol using
subprotocols instead of hybrid functionalities has the same deterrence factor as when analyzed
with (idealized) hybrid functionalities.

Aumann and Lindell’s theorem is very useful to show security of a complex protocol. Unfor-
tunately, however, the theorem of Aumann and Lindell does not make any statement how the
deterrence factor of hybrid functionalities influences the deterrence factor of the overall proto-
col. Instead, the deterrence factor of the overall protocol has to be determined depending on
the concrete deterrence factors of the hybrid functionalities. We are looking for a composition
theorem that goes one step further. In particular, we develop a theorem that allows to analyze
a protocol’s security and its deterrence factor in a simple model where no successful cheating in
hybrid functionalities is possible, i.e., a deterrence factor of ϵ = 1. Then, the theorem should help
deriving the deterrence factor of the composed protocol when cheating in hybrid functionalities
is possible with a fixed probability, i.e., ϵ < 1.

Deterrence replacement theorem. Our deterrence replacement theorem fills the aforementioned
gap (cf. Section 3). Let Hy1 and Hy2 be two hybrid worlds. In Hy1 an offline functionality exists
with deterrence factor 1. In Hy2 the same offline functionality has deterrence factor ϵ∗off . Our
theorem states that a protocol, which is covertly secure with deterrence factor ϵon in Hy1, is
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covertly secure with deterrence factor ϵ∗on := Min(ϵon, ϵ
∗
off) in Hy2. While we have to impose some

restrictions on the protocols that our theorem can be applied on, practical offline/online protocols
[17, 31, 35, 36] fulfill these restrictions or can easily be adapted to do so. The main benefit of our
theorem is to simplify the analysis of a protocol’s security by enabling the analysis in a model
where successful cheating in the offline functionality does not occur. In addition, our theorem
implies that the deterrence factor of the online phase can be as low as the deterrence factor of
the offline phase without any security loss.

Achieving covert security. Most covertly secure protocols work by taking a semi-honest secure
protocol and applying the cut-and-choose technique. In contrast, we present a new approach to
achieve covert security where instead of amplifying semi-honest security, we downgrade malicious
security. Our core idea is to obtain covert security by reducing the statistical security parameter
of a malicious protocol.

As highlighted in the contribution, reducing the security of the online phase to covert has
the potential to improve the efficiency of the overall protocol execution. This improvement does
not come from a speed-up in the online phase, in fact the online phase can become slightly less
efficient, but from lower requirements on the offline phase. Using the cut-and-choose approach to
get a covertly secure online phase incurs an overhead to the semi-honest protocol that is linear
in the number of executed instances. This overhead might exceed the efficiency gap between
the semi-honest and the malicious protocol rendering the cut-and-choose-based covert offline
phase significantly less efficient than the malicious online phase. In this case, the overhead of the
online phase can vanish the gains of the faster offline phase. In contrast, our approach comes
with a small constant overhead to the malicious protocol such that the overall efficiency gain
is preserved. This makes our approach particularly interesting for actively secure protocols that
are already very efficient such as information-theoretic online protocols, e.g., the online phase of
TinyOT [31].

The TinyOT protocol. We illustrate the benefit of our new paradigm for achieving covert security
by applying it to the maliciously secure online phase of TinyOT [31]. We start with a high-level
overview of TinyOT.

The TinyOT protocol is a generic framework for computing Boolean circuits based on the
secret sharing paradigm for two-party computation. The protocol splits the computation into
an offline and an online phase. In the offline phase, the parties compute authenticated bits
and authenticated triples. For instance, the authentication of a bit x known to a party A is
achieved by having the other party B hold a global key ∆B, a random t-bit key K[x], and
having A hold the bit x and a t-bit MAC M [x] = K[x] ⊕ x · ∆B. In the online phase, parties
evaluate the circuit with secret-shared wire values where each share is authenticated given the
precomputed data. Due to the additive homomorphism of the MACs, addition gates can be
computed non-interactively. For each multiplication gate, the parties interactively compute the
results by consuming a precomputed multiplication triple. At the end of the circuit evaluation,
a party learns its output, i.e., the value of an output wire, by receiving the other party’s share
on that wire. The correct behavior of all parties is verified by checking the MACs on the output
wire shares.

Covert online protocol. The authors of TinyOT showed that successfully breaking security of
the online phase is equivalent to guessing the global MAC key of the other party. In this work,
we translate this insight to the covert setting. In particular, we show that the online phase of
a TinyOT-like protocol with a reduced MAC length of t-bits implements covert security with a
deterrence factor of 1− ( 12 )

t (cf. Section 4).
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The resulting protocol can be modified with small adjustments to achieve all known notions
of covert security. In particular, the unmodified version of TinyOT implements a variant of covert
security in which the adversary learns the output of the protocol, and, only then, decides on its
cheating attempt. We achieve the IECF, i.e., the notion in which the adversary always learns the
output of the corrupted parties, even in case of detected cheating, by committing to the outputs
bits and MACs before opening them. Due to the commitments, the adversary needs to decide
first if it wants to cheat and only afterwards it learns the output. However, since the adversary
receives the opening on the commitment of the honest party first, it learns the output even if it
committed to incorrect values or refuses to open its commitment, both of which are considered
cheating. Finally, in order to achieve the SECF, we have to prevent the adversary from inserting
incorrect values into the commitment. We can do so by generating the commitments as part of
the function whose circuit is evaluated. Only after the parties checked both, correct behavior
throughout the evaluation and correctness of the received outputs, i.e., the commitments, the
parties exchange the openings of the commitments. This way, we ensure that the adversary only
receives its output if it behaved honestly or cheated successfully which fulfills the SECF.

In this work, we focus on the IECF. On one hand, we assess the IECF to constitutes a minor
loss of security compared to the SECF. This is due to the fact that we are in the security-with-
abort setting, implying that the honest parties already approve the risk of giving the adversary
its output while not getting an output themselves. On the other hand, the efficiency overhead
of the IECF compared to the weaker variant of covert achieved by the unmodified protocol just
consists out of a single commit-and-opening step accounting for 48 bytes per party (if instantiated
via a hash function and with 128 bit security). In contrast, the SECF requires generating the
commitments as part of the circuit which incurs a much higher efficiency overhead. Therefore,
we assess the protocol achieving the IECF notion to depict a much better trade-off between
efficiency overhead and security loss than the other notions.

Evaluation. Our result shows that we can safely reduce the security level of the online phase
without compromising on the security of the overall protocol. As we show in the evaluation
section (cf. Section 5), this improves the efficiency of the overall protocol. Concretely, the main
improvements come from savings during the offline phase since using our techniques the online
phase gets less demanding by relying on shorter MACs. We quantify these improvements by
evaluating the communication complexity of the offline phase depending on the length of the
generated MACs. More precisely, when using an actively secure online phase, the MAC length
needs to be 40 Bits, while for achieving covert security, we can set the length of the MACs to a
significantly lower value t. This results into a deterrence factor of 1− 1

2t . Our evaluation shows
that we can reduce the communication complexity of the offline protocol by at least 35% for a
deterrence factor of up to 7

8 .

2 Covert Security

A high-level comparison between the notions of covert security presented by Aumann and Lin-
dell [5] is stated in Section 1.3. Next, we present details about the explicit cheat formulation
(ECF) and the strong explicit cheat formulation (SECF). Afterwards, we present our new notion
which lies strictly between the ECF and the SECF.

The ECF and the SECF consider an ideal functionality where the adversary explicitly sends
a cheati command for the index i of a corrupted party to the functionality which then decides
if cheating is detected with probability ϵ. In the ECF, the adversary learns the honest parties’
inputs even if cheating is detected, which is prevented by the SECF. In addition, the adversary
can also send a corruptedi or aborti command, which is forwarded to the honest parties. The
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corruptedi command models a blatant cheat option, where the adversary cheats in a way that
will always be detected, and the aborti command models an abort of a corrupted party. Later,
Faust et al. [20] proposed to extract the identifiable abort property as it can be considered
orthogonal and of independent interest (cf. [24]). For the covert notion, this means that if a
corrupted party aborts, the ideal functionality only sends abort to the honest parties instead of
aborti for i being the index of the aborting party.

In the following, we present a new notion for covert security called the intermediate explicit
cheat formulation (IECF). We follow the approach of [20] and present our notion without the
identifiable abort property. In addition, we clean up the definition by merging the blatant cheat
option, where cheating is always detected, with the cheat attempt that is only detected with a
fixed probability. To this end, if the adversary sends the cheat-command, we allow the adversary
to specify any detection probability between the deterrence factor and 1. Furthermore, we en-
able the adversary to force a cheating detection or abort even if the ideal functionality signals
undetected cheating. This additional action does not provide further benefit to the adversary
and thus does not harm the security provided by our notion. Since the decision solely depends
on the adversary, the change also does not restrict the adversary.

Finally, and most important, our notion allows the adversary to learn the outputs of the
corrupted parties but nothing else if cheating is detected. Therefore, it lies between the ECF,
where the adversary learns the inputs of all parties even if cheating is detected, and the SECF,
where the adversary learns nothing if cheating is detected. Since our notion is strictly between
the ECF and the SECF, we call it the IECF.

Next, we present the IECF in full details in the following and state the difference to the SECF
afterwards.
Intermediate explicit cheat formulation. As in the standalone model, the notions are defined
in the real world/ideal world paradigm. This means, the security of a protocol is shown by
comparing the real-world execution with an ideal-world execution. In the real world, the parties
jointly compute the desired function f using a protocol π. Let n be the number of parties and
let f : ({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, . . . , fn) is the function computed by π. We define
for every vector of inputs x̄ = (x1, . . . , xn) the vector of outputs ȳ = (f1(x̄), . . . , fn(x̄)) where
party Pi with input xi obtains the output fi(x̄). During the execution of π, the adversary Adv
can corrupt a subset I ⊂ [n] of all parties. We define REALπ,Adv(z),I(x̄, 1κ) as the output of the
protocol execution π on input x̄ = (x1, . . . , xn) and security parameter κ, where Adv on auxiliary
input z corrupts parties I. We further specify OUTPUTi(REALπ,Adv(z),I(x̄, 1κ)) to be the output
of party Pi for i ∈ [n].

In contrast, in the ideal world, the parties send their inputs to the uncorruptible ideal func-
tionality F which computes function f and returns the result. Hence, the computation in the
ideal world is correct by definition. The security of π is analyzed by comparing the ideal-world
execution with the real-world execution. The ideal world in covert security is slightly changed
compared to the standard model of secure computation. In particular, in covert security, the ideal
world allows the adversary to cheat, and cheating is detected at least with some fixed probability
ϵ which is called the deterrence factor. Let ϵ : N→ [0, 1] be a function. The execution in the ideal
world in our IECF notion is defined as follows:

Inputs: Each party obtains an input, where the ith party’s input is denoted by xi. We assume
that all inputs are of the same length and call the vector x̄ = (x1, . . . , xn) balanced in this case.
The adversary receives an auxiliary input z. In case there is no input, the parties will receive
xi = ok.

Send inputs to ideal functionality: Any honest party Pj sends its received input xj to
the ideal functionality. The corrupted parties, controlled by ideal world adversary S, may either
send their received input, or send some other input of the same length to the ideal functionality.
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This decision is made by S and may depend on the values xi for i ∈ I and the auxiliary input z.
Denote the vector of inputs sent to the ideal functionality by x̄. In addition, S can send a special
cheat or abort message w.

Abort options: If S sends w = abort to the ideal functionality as its input, then the ideal
functionality sends abort to all honest parties and halts.

Attempted cheat option: If S sends w = (cheati, ϵi) for i ∈ I and ϵi ≥ ϵ, the ideal
functionality proceeds as follows:

1. With probability ϵi, the ideal functionality sends corruptedi to all honest parties. In addition,
the ideal functionality computes (y1, . . . , yn) = f(x̄) and sends (corruptedi, {yj}j∈I) to S.

2. With probability 1− ϵi, the ideal functionality sends undetected to S along with the honest
parties’ inputs {xj}j /∈I . Then, S sends output values {yj}j /∈I of its choice for the honest
parties to the ideal functionality. Then, for every j /∈ I, the ideal functionality sends yj
to Pj . The adversary may also send abort or corruptedi for i ∈ I, in which case the ideal
functionality sends abort or corruptedi to every Pj for j /∈ I.

The ideal execution ends at this point. Otherwise, if no w equals abort or (cheati, ·) the ideal
execution proceeds as follows.

Ideal functionality answers adversary: The ideal functionality computes (y1, . . . , yn) =
f(x̄) and sends yi to S for all i ∈ I.

Ideal functionality answers honest parties: After receiving its outputs, the adversary
sends abort, corruptedi for some i ∈ I, or continue to the ideal functionality. If the ideal function-
ality receives continue then it sends yj to all honest parties Pj (j /∈ I). Otherwise, if it receives
abort resp. corruptedi, it sends abort resp. corruptedi to all honest parties.

Outputs: An honest party always outputs the message it obtained from the ideal functional-
ity. The corrupted parties output nothing. The adversary S outputs any arbitrary (probabilistic
polynomial-time computable) function of the initial inputs {xi}i∈I , the auxiliary input z, and
the messages obtained from the ideal functionality.

We denote by IDEALCϵ
f,S(z),I(x̄, 1

κ) the output of the honest parties and the adversary in the
execution of the ideal model as defined above, where x̄ is the input vector and the adversary S
runs on auxiliary input z.

Definition 1 (Covert security - intermediate explicit cheat formulation). Let f, π, and
ϵ be as above. A protocol π securely computes f in the presence of covert adversaries with
ϵ-deterrence if for every non-uniform probabilistic polynomial-time adversary Adv in the real
world, there exists a non-uniform probabilistic polynomial-time adversary S for the ideal model
such that for every I ⊆ [n], every balanced vector x̄ ∈ ({0, 1}∗)n, and every auxiliary input
z ∈ {0, 1}∗:

{IDEALCϵ
f,S(z),I(x̄, 1

κ)}κ∈N
c≡ {REALπ,Adv(z),I(x̄, 1κ)}κ∈N

The SECF notions follows the IECF notion with one single change. Instead of sending
(corruptedi, {yj}j∈I) to S in case of detected cheating, the ideal functionality only sends (corruptedi).
This means that in the SECF the ideal adversary does not learn the output of corrupted parties
in case cheating is detected.

3 Offline/Online Deterrence Replacement

Offline/online protocols split the computation of a function f into two parts. In the offline
phase, the parties compute correlated randomness independent of the actual inputs to f . In the
online phase, the function f is computed on the private inputs of all parties while the correlated
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randomness from the offline phase is consumed to accelerate the execution. When considering
covert security, the adversary may cheat in both the offline and the online phase. The cheating
detection probability might differ in these two phases. Intuitively, the deterrence factor of the
overall protocol needs to consider the worst-case detection probability. This is easy to see, since
the adversary can always choose to cheat during that phase where the detection probability is
smaller.

While the above is easy to see at a high level, the outlined intuition needs to be formally
modeled and proven. We take the approach of describing offline/online protocols within a hybrid
model. This means, the offline phase is formalized as a hybrid functionality to which the adversary
can signal a cheat attempt. This hybrid functionality is utilized by the online protocol during
which the adversary can cheat, too. We formally describe the hybrid model in Section 3.1.

Next, we present our offline/online deterrence replacement theorem in Section 3.2. Let πon

be an online protocol that is covertly secure with deterrence factor ϵon while any cheat attempt
during the offline phase is detected with probability ϵoff = 13. Then, our theorem shows that
if the detection probability during the offline phase is reduced to ϵ′off < 1, πon is also covertly
secure with a deterrence factor of ϵ′on = min(ϵon, ϵ

′
off). This means, the new deterrence factor is

the minimum of the detection probability of the old online protocol, in which successful cheating
during the offline phase is not possible, and the detection probability of the new offline phase.
Intuitively, our theorem quantifies the effect on the deterrence factor of the online protocol when
replacing the deterrence factor of the offline hybrid functionality with a different value. This is
why we call Theorem 1 the deterrence replacement theorem.

The main purpose of our theorem is to allow the analysis of the security of an online protocol
in a simple setting where ϵoff = 1. Since in this setting cheating during the offline phase is always
detected, the security analysis and the calculation of the online deterrence factor ϵon are much
simpler. Once the security of πon has been proven in the hybrid world, in which the offline phase
is associated with deterrence factor 1, and ϵon has been determined, our theorem allows to derive
security of πon in the hybrid world, in which the offline phase is associated with deterrence factor
ϵ′off , and determines the deterrence factor to be ϵ′on = min(ϵ′off , ϵon).

While the effect of deterrence replacement was already analyzed by Aumann and Lindell [5]
for a weak variant of covert security, we are the first to consider deterrence replacement in a widely
adopted and strong variant of covert security. We discuss the relation to [5] in Appendix B.

3.1 The Hybrid Model

We consider a hybrid model to formalize the execution of offline/online protocols. Within such
a model, parties exchange messages between each other but also have access to hybrid func-
tionalities F1, . . . ,Fℓ. These hybrid functionalities work like trusted parties to compute specified
functions. The hybrid model is thus a combination of the real model, in which parties exchange
messages according to the protocol description, and the ideal model, in which parties have access
to an idealized functionality.

A protocol in a hybrid model consists of standard messages sent between the parties and
calls to the hybrid functionalities. These calls instruct the parties to send inputs to the hybrid
functionality, which delivers back the output according to its specification. After receiving the
outputs from the hybrid functionality, the parties continue the execution of the protocol. When
instructed to send an input to the hybrid functionality, all honest parties follow this instruction
and wait for the return value before continuing the protocol execution.

3 Covert security with deterrence factor 1 can be realized by a maliciously secure protocol as shown by
Asharov and Orlandi [4].
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The interface provided by a hybrid functionality depends on the security model under consid-
eration. Since we deal with covert security, the adversary is allowed to send special commands,
e.g., cheat, to the hybrid functionality. In case the functionality receives cheat from the adver-
sary, the functionality throws a coin to determine whether or not the cheat attempt will be
detected by the honest parties. The detection probability is defined by the deterrence factor of
this functionality. We use the notation Fϵ

f to denote a hybrid functionality computing function
f with deterrence factor ϵ. The notation of a (Fϵ1

f1
, . . . ,Fϵℓ

fℓ
)-hybrid model specifies the hybrid

functionalities accessible by the parties.
The hybrid model technique is useful to modularize security proofs. Classical composition

theorems for passive and active security [11] as well as for covert security [5] build the foundation
for this proof technique. Informally, these theorems state that if a protocol π is secure in the
hybrid model where the parties use a functionality Ff and there exists a protocol ρ that securely
realizes Ff , then the protocol π is also secure in a model where Ff is replaced with ρ.

3.2 Our Theorem

We start by assuming an online protocol πon that realizes an online functionality Fϵon
fon

in the F1
foff

-
hybrid world. This means the deterrence factor of πon is ϵon and the deterrence factor of the offline
functionality is 1 which means that every cheating attempt in the offline phase will be detected.
Next, our theorem states that replacing the deterrence factor 1 of the offline hybrid functionality
with any ϵ′off ∈ [0, 1] results in a deterrence factor of the online protocol of ϵ′on = min(ϵon, ϵ

′
off),

i.e., the minimum of the previous deterrence factor of the online protocol and the new deterrence
of the offline hybrid functionality.

Formally, we model the composition of an offline and an online phase via the hybrid model. Let
foff : ({⊥}j /∈I , {xoff

i }i∈I) → (yoff1 , . . . , yoffn ) be an n-party probabilistic polynomial-time function
representing the offline phase, where I denotes the set of corrupted parties. We model the offline
functionality in such a way that the honest parties provide no input, the adversary may choose
the randomness used by the corrupted parties and the functionality produces outputs which
depend on the randomness of the corrupted parties and further random choices. The n-party
probabilistic polynomial-time online function is denoted by fon : (x1, . . . , xn) → (yon1 , . . . , yonn ).
We use the abbreviation Fϵoff

off and Fϵon
on for Fϵoff

foff
and Fϵon

fon
.

Our composition theorem puts some restrictions on the online protocol πon that we list below
and discuss in more technical depth in Appendix A. First, we require that Fϵ

off is called only once
during the execution of πon and this call happens at the beginning of the protocol before any other
messages are exchanged. Second, we require that if Fϵ

off returns corruptedi to the parties, then
πon instructs the parties to output corruptedi. Practical offline/online protocols [17, 31, 35, 36]
either directly fulfill theses requirements or can easily be adapted to do so. We are now ready to
formally state our deterrence replacement theorem.

Theorem 1 (Deterrence replacement theorem). Let foff and fon be n-party probabilistic
polynomial-time functions and πon be a protocol that securely realizes Fϵon

on in the F1
off-hybrid model

according to Definition 1, where foff , fon and πon are defined as above. Then, πon securely realizes

Fϵ′on
on in the Fϵ′off

off -hybrid model according to Definition 1, where ϵ′on = min(ϵon, ϵ
′
off).

Remarks. Our theorem focuses on the offline/online setting where only a single hybrid function-
ality is present. Nevertheless, it can be extended to use additional hybrid functionalities with
fixed deterrence factors. In addition, we present our theorem for the intermediate explicit cheat
formulation to match the definition given in Section 2. We emphasize that our theorem is also
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applicable to the strong explicit cheat formulation. For this variant of covert security, our the-
orem can also be extended to consider an offline hybrid functionality that takes inputs from all
parties, in contrast to the definition of the offline function we specified above.

Proof sketch. We present a proof sketch together with the simulator here and defer the full
indistinguishability proof to the full version of the paper [21].

On a high level, we prove our theorem by constructing a simulator S for the protocol πon in

the Fϵ′off
off -hybrid world. In the construction, we exploit the fact that πon is covertly secure in the

F1
off -hybrid world with deterrence factor ϵon, which means that a simulator S1 for the Fϵon

on -ideal
world exists. Next, we state the full simulator description.

0. Initially, S calls S1 to obtain a random tape used for the execution of Adv.

1. In the first step, S receives the messages sent from Adv to Fϵ′off
off , i.e., a set of inputs for

the corrupted parties {xoff
i }i∈I together with additional input from the adversary m ∈

{⊥, abort, (cheati, ϵi)}, where i ∈ I and ϵi ≥ ϵ′off . S distinguishes the following cases:
(a) If m ∈ {⊥, abort}, S sends {xoff

i }i∈I and m to S1 and continues the execution exactly

as S1. The latter is done by forwarding all messages received from S1 to Adv or Fϵ′on
on

and vice versa.
(b) If m = (cheatℓ, ϵℓ) for some ℓ ∈ I, S samples dummy inputs {x̂on

i }i∈I for the corrupted

parties, sends {x̂on
i }i∈I together with (cheatℓ, ϵℓ) to Fϵ′on

on and distinguishes the following
cases:
i. If Fϵ′on

on replies (corruptedi, {ŷoni }i∈I), S computes the probabilistic function
foff : ({⊥}i/∈I , {xoff

i }i∈I) → (ŷoff1 , . . . , ŷoffn ) using fresh randomness, sends
(corruptedi, {ŷoffi }i∈I) to Adv and returns whatever Adv returns.

ii. Otherwise, if Fϵ′on
on replies (undetected, {xon

j }j /∈I), S sends undetected to Adv and gets
back the value y defined as follows:

– If y ∈ {abort, corruptedℓ} for ℓ ∈ I, S sends y to Fϵ′on
on and returns whatever Adv

returns.
– If y = {yoffj }j /∈I with yoffj ∈ {0, 1}∗ for j /∈ I, S interacts with Adv to simulate

the rest of the protocol. To this end, S takes xon
j as the input of the honest

party Pj and yoffj as Pj ’s output of the offline phase for every j /∈ I. When the
protocol ends with an honest party’s output yonj for j /∈ I, S forwards these

outputs to Fϵ′on
on and returns whatever Adv returns. Note that yonj can also be

abort or corruptedℓ for ℓ ∈ I.

Recall that due to first restriction on πon, the call to the hybrid functionality Fϵ′off
off is the first

message sent in the protocol. Via this message, the adversary Adv decides if it sends cheat to
the hybrid functionality or not. Since this message is the first one, the cheat decision depends
only on the adversary’s code and its random tape. The cheat decision is equally distributed in
the hybrid and the ideal world, as it depends only on the random tape and input of Adv which
is the same in the ideal world and in the hybrid world.

In the ideal world, the hybrid functionality is simulated by the simulator S and hence S gets
the message of Adv. Depending on Adv’s decision to cheat, S distinguishes between two cases.

On the one hand, in case the adversary does not cheat, S internally runs S1 for the remaining
simulation. Since the case of no cheating might also appear in the F1

off -hybrid world, S1 is able
to produce an indistinguishable view in the ideal world. We formally show via a reduction to the
assumption that πon is covertly secure in the F1

off -hybrid world that the views are indistinguishable
in this case.

12



On the other hand, in case the adversary tries to cheat, S cannot use S1. This is due to the

fact that the scenario of undetected cheating can occur in the Fϵ′off
off -hybrid world, while it cannot

happen in the F1
off -hybrid world. Thus, S needs to be able to simulate undetected cheating which

is not required from S1. Instead of using S1, S simulates the case of cheating on its own. To this
end, S asks the ideal functionality whether or not cheating is detected. If cheating is detected,
the remaining simulation is mostly straightforward. One subtlety we like to highlight here is that

S needs to provide the output values of the corrupted parties of Fϵ′off
off to Adv. S obtains these

values by computing the offline function foff . Since this function is independent of the inputs of
honest parties, S is indeed able to compute values that are indistinguishable to the values in the
hybrid world execution.

If cheating is undetected, S needs to simulate the remaining steps of πon. Note that if cheating
is undetected, S obtains the inputs of the honest parties from the ideal functionality. Moreover,
the adversary provides to S the potentially corrupted output values of the hybrid functionality
for the honest parties. Now, S knows all information to act exactly like honest parties do in the
hybrid world execution and therefore the resulting view is indistinguishable as well.

We finally give the idea about the deterrence factor of πon in the Fϵ′off
off -hybrid world. We

know that cheating during all steps after the call to the hybrid functionality is detected with
probability ϵon. This is due to the fact that πon is covertly secure with deterrence factor ϵon in
the F1

off -hybrid world. Now, any cheat attempt in the hybrid functionality is detected only with
probability ϵ′off . Since the adversary can decide when he wants to cheat, the detection probability

of πon in the Fϵ′off
off -hybrid world is ϵ′on = min(ϵon, ϵ

′
off).

4 Covert Online Protocol

In this section, we demonstrate the applicability of our new paradigm to achieve covert security.
To this end, we construct a covertly secure online phase for the TinyOT protocol [31]. We
refer to Section 1.3 for the intuition and high-level idea of TinyOT. Here, we present the exact
specification of our covertly secure online protocol. We present our protocol in a hybrid world
where the offline phase is modeled via a hybrid functionality and show its covert security under
the intermediate explicit cheat formulation (IECF) (cf. Definition 1) in the random oracle model.

In the following, we first present the notation we use to describe our protocol. Then, we
state the building blocks of our protocol, especially, an ideal commitment functionality and the
offline functionality, which are both used as hybrid functionalities. Next, we present the exact
specification of our two-party online protocol and afterwards prove its security.

We remark that we focus on the two-party setting, since this setting is sufficient to show
applicability and the benefit of our paradigm. Nevertheless, we believe our protocol can easily be
extended to the multi-party case following the multi-party extensions of TinyOT ([29, 10, 22, 36]).

Notation. We use the following notation to describe secret shared and authenticated values. This
notation follows the common approach in the research field [31, 17, 35, 36]. For covert security
parameter t, both parties have a global key, ∆A resp. ∆B, which are bit strings of length t. A bit
x is authenticated to a party A by having the other party B hold a random t-bit key, K[x], and
having A hold the bit x and a t-bit MAC M [x] = K[x] ⊕ x · ∆B. We denote an authenticated
bit x known to A as ⟨x⟩A which corresponds to the tuple (x,K[x],M [x]) in which x and M [x]
is known by A and K[x] by B. A public constant c can be authenticated to A non-interactively
by defining ⟨c⟩A := (c, c ·∆b, 0

κ). Authenticated bits known to B are authenticated and denoted
symmetrically.
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A bit z is secret shared by having A hold a value x and B hold a value y such that z =
x ⊕ y. The secret shared bit is authenticated by authenticating the individual shares of A and
B, i.e., by using ⟨x⟩A and ⟨y⟩B. We denote the authenticated secret sharing (⟨x⟩A, ⟨y⟩B) =
(x,K[x],M [x], y,K[y],M [y]) by ⟨z⟩ or ⟨x|y⟩.

Observe that this kind of authenticated secret sharing allows linear operations, i.e., addition
of two secret shared values as well as addition and multiplication of a secret shared value with a
public constant. In order to calculate ⟨γ⟩ := ⟨α⟩⊕⟨β⟩ with ⟨α⟩ = ⟨aA|aB⟩, ⟨β⟩ = ⟨bA|bB⟩, parties
compute the authenticated share of γ of A as ⟨cA⟩A := (aA⊕bA,K[aA]⊕K[bA],M [aA]⊕M [bA]).
The authenticated share of γ of B, ⟨cB⟩B, is calculated symmetrically. It follows that ⟨γ⟩ = ⟨cA|cB⟩
is an authenticated sharing of α ⊕ β. In order to calculate ⟨γ⟩ := ⟨α⟩ ⊕ β for a public constant
β and α defined as above, parties first create authenticated constants bits ⟨β⟩A and ⟨0⟩B and
define ⟨β⟩ := ⟨β|0⟩. In order to calcualte ⟨γ⟩ := ⟨α⟩ · β for a public constant β and α defined as
above, parties set ⟨γ⟩ := ⟨α⟩ if b = 1 and ⟨γ⟩ := ⟨0|0⟩ if b = 0.

Finally, we use the notation [n] to denote the set {1, . . . , n}. We consider any sets to be
ordered, e.g., {xi}i∈[n] := [x1, x2, . . . , xn], and for a set of indices I = {xi}i∈[n] we denote the
i-th element of I as I[i]. Note, that M [x] always denotes a MAC for bit x and we only denote
the i-th element for sets of indices which we denote by I.

Ideal commitments. The protocol uses an hybrid commitment functionality FCommit that is spec-
ified as follows:

Functionality FCommit: Commitments

The functionality interacts with two parties, A and B.

– Upon receiving (Commit, xP ) from party P ∈ {A,B}, check if Commit was not received
before from P . If the check holds, store xP and send (Committed, P ) to party P̄ ∈ {A,B}\
P .

– Upon receiving (Open) from party P ∈ {A,B}, check if Commit was received before from
P . If the check holds, send (Open, P, xP ) to party P̄ ∈ {A,B} \ P .

Offline functionality. The online protocol uses an hybrid offline functionality Fϵ
foff

to provide
authenticated bits and authenticated triples. Function foff is defined as follows.

Functionality foff : Precomputation

The function receives inputs by two parties, A and B. W.l.o.g., we assume that if any party
is corrupted it is A. The function is parametrized with a number of authenticated bits, n1, a
number of authenticated triples n2 and the deterrence parameter t.
Inputs: A provides either input ok or (∆A, {ri,K[si],M [ri]}i∈[n1+3·n2]) where ∆A,K[·],M [·]
are t-bit strings and ri is a bit for i ∈ [n1 + 3 · n2]. An honest A will always provide input ok.
B provides input ok.
Computation: The function calculates authenticated bits and authenticated shared triples
as follows:

– Sample ∆B ∈R {0, 1}t. Do the same for ∆A if not provided as input.
– For each i ∈ [n1+3 ·n2], sample si ∈R {0, 1}. If not provided as input, sample ri ∈R {0, 1}

and K[si],M [ri] ∈R {0, 1}t. Set K[ri] := M [ri] ⊕ ri · ∆B and M [si] := K[si] ⊕ si · ∆A.
Define ⟨ri⟩A := (ri,K[ri],M [ri]) and ⟨si⟩B = (si,K[si],M [si]).

14



– For each i ∈ [n2], set j = n1 + 3 · i and define x := rj ⊕ (rj−1 ⊕ sj−1) · (rj−2 ⊕ sj−2),
K[x] := K[sj ], and M [x] := K[x] ⊕ x ·∆A and ⟨x⟩B := (x,K[x],M [x]). Then, define the
multiplication triple ⟨αi⟩ := ⟨rj−2|sj−2⟩, ⟨βi⟩ := ⟨rj−1|sj−1⟩, and ⟨γi⟩ := ⟨rj |x⟩.

Output: Output global keys (∆A, ∆B), authenticated bits {(⟨ri⟩A, ⟨si⟩B)}i∈[n1], and authen-
ticated shared triples {(⟨αi⟩, ⟨βi⟩, ⟨γi⟩)}i∈[n2], and assign A and B their respective shares, keys
and macs.

We present a protocol instantiating Fϵ
foff

in the full version of the paper [21].

Online protocol. The online protocol works in four steps. First, the parties obtain authenticated
bits and triples from the hybrid offline functionality. Second, the parties secret share their inputs
and use authenticated bits to obtain authenticated shares of the inputs wires of the circuit.
Third, the parties evaluate the boolean circuit on the authenticated values. While XOR-gates are
computed locally, AND-gates require communication between the parties and the consumption
of a precomputed authenticated triple for each gate. Finally, in the output phase each party
verifies the MACs on the computed values to check for correct behavior of the other party. If no
cheating was detected, the parties exchange their shares on the output wires to recompute the
actual outputs.

We modified the original TinyOT online phase in two aspects. First, the original TinyOT
protocol uses one-sided authenticated precomputation data, e.g., one-sided authenticated triples
where the triple is not secret shared but known to one party. In contrast, we focus on a simplifica-
tion [35] where the authenticated triples are secret shared among all parties. This allows us to use
a single two-sided authenticated triple for each AND gate instead of two one-sided authenticated
triples with additional data. Second, we integrate commitments in the output phase. In detail,
the parties first commit on their shares for the output wires together with the corresponding
MACs and only afterwards reveal the committed values. By using commitments, the adversary
needs to decide first if it wants to cheat and only afterwards it learns the output. However, since
the adversary can commit on incorrect values, it still can learn its output even if the honest
parties detect its cheating afterwards. We show the security of this protocol under the IECF of
covert security.

To prevent the adversary from inserting incorrect values into the commitment, the generation
of the commitments can be part of the circuit evaluation. By checking the correct behavior of
the entire evaluation, honest parties detect cheating with the inputs to the commitments with a
fixed probability. This way, we can achieve the strong explicit cheat formulation (SECF). Since
computing the commitments as part of the circuit reduces the efficiency, we opted for the less
expensive protocol.

Protocol Πon: TinyOT-style online protocol

The protocol is executed between parties A and B and uses of a hash function H (modeled
as non-programmable random oracle), the hybrid commitment functionality FCommit, and the
hybrid covert functionality F1

foff
, in the following denoted as Foff . foff is instantiated with the

same public parameters as the protocol. When denoting a particular party with P , we denote
the respective other party with P̄ .
Public parameters: The deterrence parameter t and the number of input bits and output
bits per party n1. A function f({x(i,A)}i∈[n1], {x(i,B)}i∈[n1]) = ({z(i,A)}i∈[n1], {z(i,B)}i∈[n1])
with x(∗,A), x(∗,B), z(∗,A), z(∗,B) ∈ {0, 1} and a boolean circuit C computing f with n2 AND
gates. {z(i,A)}i∈[n1] resp. {z(i,B)}i∈[n1] is the output of A resp. B. The set of indices of input
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wires resp. output wires of each party P ∈ {A,B} is denoted by I inP resp. IoutP . Without loss
of generality, we assume that the wire values are ordered in topological order.

Inputs: A has input bits {x(i,A)}i∈[n1] and B has input bits {x(i,B)}i∈[n1].

Pre-computation phase:

1. Each party P ∈ {A,B} defines ordered sets MP
P := ∅, MP

P̄
:= ∅, sends (ok) to Foff

and receives its shares of ({(⟨r(i,A)⟩A, ⟨r(i,B)⟩B)}i∈[n1], {(⟨αj⟩, ⟨βj⟩, ⟨γj⟩)}j∈[n2]). If Foff , returns
m ∈ {abort, corruptedP̄ }, P outputs m and aborts.

Input phase:

2. For each i ∈ [n1], each party P ∈ {A,B} sends d(i,P ) := x(i,P ) ⊕ r(i,P ). Then, the parties
define ⟨x(i,A)⟩ := ⟨r(i,A)|0⟩⊕d(i,A) and ⟨x(i,B)⟩ := ⟨0|r(i,B)⟩⊕d(i,B) For each party P ∈ {A,B}
and each j ∈ [n1] with i := I inP [j], the parties assign ⟨x(j,P )⟩ to ⟨wi⟩.

Circuit evaluation phase:

3. Repeat till all wire values are assigned. Let j be the smallest index of an unassigned wire.
Let l and r be the indices of the left resp. right input wire of the gate computing wj . Dependent
on the gate type, ⟨wj⟩ is calculated as follows:

– XOR-Gate: ⟨wj⟩ := ⟨wl⟩ ⊕ ⟨wr⟩
– AND-Gate: For the i-th AND gate, the parties define (⟨α⟩, ⟨β⟩, ⟨γ⟩) := (⟨αi⟩, ⟨βi⟩, ⟨γi⟩),

calculate ⟨e⟩ = ⟨eA|eB⟩ := ⟨α⟩ ⊕ ⟨wl⟩ and ⟨d⟩ = ⟨dA|dB⟩ := ⟨β⟩ ⊕ ⟨wr⟩, open e and d by
publishing eA, eB, dA, dB respectively, and compute ⟨wj⟩ := ⟨γ⟩ ⊕ e · ⟨wr⟩ ⊕ d · ⟨wl⟩ ⊕ e · d.
Further, each party P ∈ {A,B} appends (M [eP ],M [dP ]) to MP

P and ((K[eP̄ ] ⊕ eP̄ ·
∆P ), (K[dP̄ ]⊕ dP̄ ·∆P )) toMP

P̄
.

Output phase:

4. Party P ∈ {A,B} computesM1
(P,P ) := H(MP

P ) andM1
(P,P̄ )

= H(MP
P̄
) and sendsM1

(P,P ).

5. Each party P ∈ {A,B}, upon receiving M1
(P̄ ,P̄ )

, verifies that M1
(P̄ ,P̄ )

= M1
(P,P̄ )

. If not,

P outputs corruptedP̄ and aborts. Otherwise, P computesM2
(P,P ) := H({M [wP

i ]}i∈Iout
P̄
), and

sends (Commit, ({wP
i }i∈Iout

P̄
,M2

(P,P ))) to FCommit.

6. Upon receiving, (Committed, P̄ ) from FCommit, P sends (Open) to FCommit.
7. Each party P ∈ {A,B}, upon receiving (Opened, P̄ , ({wP̄

i }i∈Iout
P
,M2

(P̄ ,P̄ )
)) from FCommit,

re-defines MP
P̄

:= {K[wP̄
i ] ⊕ wP̄

i · ∆P }i∈Iout
P

and verifies that M2
(P̄ ,P̄ )

= H(MP
P̄
). If not, P

outputs corruptedP̄ and aborts. Otherwise, P outputs {wP
i ⊕ wP̄

i }i∈Iout
P
.

Handle aborts:

8. If a party P does not receive a timely message before executing Step 6, it outs abort and
aborts. If a party P does not receive a timely message after having executed Step 6, it outputs
corruptedP̄ and aborts.

Security. Intuitively, successful cheating in the context of the online protocol is equivalent to
correctly guessing the global key of the other party. Let us assume A is corrupted. It is evident
that A can only behave maliciously by flipping the bits sent during the evaluation phase and
the output phase – flipping a bit during the input phase is not considered cheating as the
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adversary, A, is allowed to pick its input arbitrarily. For each of those bits, there is a MAC check
incorporated into the protocol. Hence, A needs to guess the correct MACs for the flipped bits
(A knows the ones of the unflipped bits) in order to cheat successfully. As a MAC M [bA] for a
bit bA known to A is defined as K[bA]⊕ bA ·∆B, a MAC M̃ [b̃A] of a flipped bit b̃A is correct iff

M̃ [b̃A] = M [bA]⊕∆B = K[bA]⊕ (bA⊕ 1) ·∆B. It follows that A has to guess the global key of B
and apply it to the MACs of all flipped bits in order to cheat successfully. As the global key has
t bits, the chance of guessing the correct global key is 1

2t . It follows that the deterrence factor ϵ
equals 1− 1

2t . More formally, we state the following theorem and prove its correctness in the full
version of the paper [21]:

Theorem 2. Let H be a (non-programmable) random oracle, t ∈ N, and ϵ = 1 − 1
2t . Then,

protocol Πon securely implements Fϵ
f (i.e., constitutes a covertly secure protocol with deterrence

factor ϵ) in the presence of a rushing adversary according to the intermediate explicit cheat
formulation as defined in Definition 1 in the (Foff ,FCommit)-hybrid world.

On the usage of random oracles. As explained above, successful cheating is equivalent to guessing
the global key of the other party. However, a malicious party can also cheat inconsistently, i.e.,
it guesses different global keys for the flipped bits, or even provide incorrect MACs for unflipped
bits. In this case, the adversary has no chance of cheating successfully, which needs to be detected
by the simulator. As the simulator only receives a hash of a all MACs, it needs some trapdoor to
learn the hashed MACs and check for consistency. To provide such a trapdoor, we model the hash
function as a random oracle. The requirement of a random oracle can be removed if the parties
send all MACs in clear instead of hashing them first. However, this increases the communication
complexity.

Another alternative is to bound the deterrence parameter t such that the simulator can try out
all consistent ways to compute the MACs of flipped bits, i.e., each possible value for the guessed
global key, hash those and compare them to the received hash. In this case, it is sufficient to
require collision resistance of the hash function. As the number of possible values for the global
key grows exponentially with the deterrence parameter t, i.e., 2t, this approach is only viable if
we bound t. Nevertheless, the probability of successful cheating also declines exponentially with
t, i.e., 1

2t . Hence, for small values of t, the simulator runs in reasonable time.

5 Evaluation

In Section 4, we showed the application of our new paradigm to achieve covert security on the
example of the TinyOT online phase. By shortening the MAC length in the online phase, we also
reduced the amount of precomputation required from the offline phase. In order to quantify the
efficiency gain that can be achieved by generating shorter MACs, we compare the communication
complexity of a covert offline phase generating authenticated bits and triples with short MACs
to the covert offline phase generating bits and triples with long MACs.

The offline protocol. To the best of our knowledge, there is no explicit covert protocol for the
precomputation of TinyOT-style protocols. Therefore, we rely on generic transformations from
semi-honest to covert security based on the cut-and-choose paradigm, similar to the transforma-
tions proposed by [16, 20, 33]. However, semi-honest precomputation protocols do not consider
authentication of bits and triples, since semi-honest online protocols do not need authentication.
Hence, it is necessary to first extend the semi-honest protocol to generate MACs, and then, apply
the generic transformation. We first specify a semi-honest protocol to generate authenticated bits
and triples as well as the covert protocol that can be derived via the cut-and-choose approach.
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Both protocols are presented in the full version of the paper [21]. Then, we take the resulting
covert protocol to evaluate the communication complexity for different MAC lengths.

ϵ # triples
λ-bit MACs

(state-of-the-art)
Short MACs

(our approach) Improvement

1
2

10K 531 333 37,19%
100K 5 211 3 258 37,47%
1M 52 011 32 508 37,50%
1B 52 000 011 32 500 008 37,50%

3
4

10K 1 062 677 36,24%
100K 10 422 6 617 36,51%
1M 104 022 66 017 36,54%
1B 104 000 022 66 000 017 36,54%

7
8

10K 2 124 1 374 35,29%
100K 20 844 13 434 35,55%
1M 208 044 134 034 35,57%
1B 208 000 044 134 000 034 35,58%

Table 1: Concrete communication complexity of the covert offline phase generating the precom-
putation required for a maliciously secure TinyOT online phase (as applied by state-of-the-art)
and a covertly secure TinyOT online phase (our approach). As the offline phase is covertly secure,
the overall protocol’s security level is the same in both approaches. Communication is reported
in kB per party.

Evaluation results. The communication complexity of each party is determined as follows. Let κ
be the computational security parameter, λ be the statistical security parameter, t be the cut-
and-choose parameter (which results in a deterrence factor ϵ = 1 − 1

t ), M be the length of the
generated MACs, n1 be the number of authenticated bits required per party, n2 be the number
of authenticated triples, COT be the communication complexity of one party for performing κ
base oblivious transfers with κ-bit strings twice, once as receiver and once as sender, CCommit be
the size of a commitment and COpen be the size of an opening to a κ-bit seed. Then, each party
needs to send C bits with C equal to

(t+ 1) · CCommit + t · (COT + COpen + n2 · (3 + κ− 1) + (n1 + 2 · n2) · (M − 1))

In our approach, M is defined such that t = 2M . In the classical approach with a maliciously
secure online phase M is fixed to equal λ. This yields an absolute efficiency gain of G bits with
G equal to

t · (n1 + 2 · n2) · (λ−M)

In the following, we set κ = 128, λ = 40, COT = (2+κ) · 256 according to [30], CCommit = 256
and COpen = 2 ·κ according to a hash-based commitment scheme. Further, we fix n1 = 256. This
yields the communication complexity depicted in Table 1. For deterrence factors up to 7

8 , our
approach reduces the communication per party by at least 35%. As a reduction of the security
of the online phase to the level of the offline phase does not affect the overall protocol’s security,
as shown in Section 3.2, this efficiency improvement is for free.
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A Discussion of Constraints on Online Protocol

In this section, we discuss the constraints on the online protocol used in our theorem. These con-
straints emerged from technical issues and it is unclear how to prove our deterrence replacement
theorem in a more generic setting. Recall that in our proof S uses the simulator S1 which exists
since πon is covertly secure in the F1

off -hybrid world.
First, the hybrid functionality Foff needs to be called directly at the beginning. This enables

the simulator S to react to the adversary’s cheating decision in the offline phase, i.e., its input
to Foff , right at the start of the simulation. More specifically, S uses the black-box simulator
S1 in case the adversary does not cheat and simulates on its own in case there is a cheating
attempt. If there would be protocol interactions before the call to Foff , S would have to decide
whether it simulates this interactions itself or via S1. This means that the adversary’s input to
Foff could require S to change its decision, e.g., require S to simulate the following steps itself
while S initially used S1 for the earlier steps. This leads to a problem as S uses S1 in a black-box
way, and hence, can only use it for all or none of the protocol steps. Rewinding does not solve
the problem as a change in the simulation of the steps before the call to Foff can influence the
adversary’s input to Foff , and hence, S’s decision to simulate the steps afterwards based on S1
or not.

Second, we require that in case Foff outputs corrupted, the protocol πon instructs the parties
to output corrupted as well. This is due to some subtle detail in the security proof. As S1 runs in
a world, in which cheating in the offline phase is not possible, S1 does not know how to deal with
undetected cheating. Further, we treat the protocol πon in a black-box way. Due to these facts,
the only way for S to simulate the case of undetected cheating is to follow the actual protocol.
To do so in a consistent way, S has to get the input of the honest parties. Hence, S has to notify
the ideal covert functionality Fϵon

on about the cheating attempt in the offline phase. In case of

detected cheating, Fϵ′on
on sends corrupted to the honest parties and thus the honest parties output

corrupted in the ideal world. In order to achieve indistinguishability between the ideal world and
the real world, πon needs to instruct the honest parties to output corrupted in the real world, too.

Finally, we emphasize that known offline/online protocols (SPDZ [17], TinyOT [31], authen-
ticated garbling [35, 36]) either directly fulfill the aforementioned requirements or can easily be
adapted to do so.

B Comparison of Theorem 1 with [5]

Aumann and Lindell [5] presented a sequential composition theorem for the (strong) explicit cheat
formulation. The theorem shows that a protocol π that is covertly secure in an (Fϵ1

1 , . . . ,Fϵp(n)

p(n) )-

hybrid world with deterrence factor ϵπ, i.e., parties have access to a polynomial number of func-
tionalities F1, . . . ,Fp(n) with deterrence factor ϵ1, . . . , ϵp(n), respectively, is also covertly secure
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with deterrence ϵπ if functionality Fi is replaced by a protocol πi that realizes Fi with deter-
rence factor ϵi for i ∈ {1, . . . , p(n)}. This theorem allows to analyze the security of a protocol
in a hybrid model and replace the hybrid functionalities with subprotocols afterwards. Aumann
and Lindell already noted that the computation of the deterrence factor ϵπ needs to take all
the deterrence factors of the subprotocols into account. However, the theorem does not make
any statement about how the individual deterrence factors influence the deterrence factor of the
overall protocol and neither analyzes the effect of changing some of the deterrence factors ϵi.

Out theorem takes on step further and addresses the aforementioned drawbacks. In particular,
it allows to analyze the security of a protocol in a simple hybrid world, in which the hybrid
functionality is associated with deterrence factor 1. As there is no successful cheating in the
hybrid functionality, a proof in this hybrid world is expected to be much simpler. The same
holds for the calculation of the overall deterrence factor. Once having proven a protocol to be
secure in the simple hybrid world, our theorem allows to derive the security and the deterrence
factor of the same protocol in the hybrid world, in which the offline phase is associated with
some smaller deterrence factor, ϵ′ ∈ [0, 1].
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Abstract. Covert security has been introduced as a compromise between semi-honest
and malicious security. In a nutshell, covert security guarantees that malicious behavior
can be detected by the honest parties with some probability, but in case detection fails all
bets are off. While the security guarantee offered by covert security is weaker than full-
fledged malicious security, it comes with significantly improved efficiency. An important
extension of covert security introduced by Asharov and Orlandi (ASIACRYPT’12) is pub-
lic verifiability, which allows the honest parties to create a publicly verifiable certificate
of malicious behavior. Public verifiability significantly strengthen covert security as the
certificate allows punishment via an external party, e.g., a judge.
Most previous work on publicly verifiable covert (PVC) security focuses on the two-party
case, and the multi-party case has mostly been neglected. In this work, we introduce a
novel compiler for multi-party PVC secure protocols with no private inputs. The class
of supported protocols includes the preprocessing of common multi-party computation
protocols that are designed in the offline-online model. Our compiler leverages time-lock
encryption to offer high probability of cheating detection (often also called deterrence
factor) independent of the number of involved parties. Moreover, in contrast to the only
earlier work that studies PVC in the multi-party setting (CRYPTO’20), we provide the
first full formal security analysis.

Keywords: Covert Security · Multi-Party Computation · Public Verifiability · Time-Lock Puz-
zles

1 Introduction

Secure multi-party computation (MPC) allows a set of n parties Pi to jointly compute a function
f on their inputs such that nothing beyond the output of that function is revealed. Privacy
of the inputs and correctness of the outputs need to be guaranteed even if some subset of the
parties is corrupted by an adversary. The two most prominent adversarial models considered in
the literature are the semi-honest and malicious adversary model. In the semi-honest model, the
adversary is passive and the corrupted parties follow the protocol description. Hence, the adver-
sary only learns the inputs and incoming/outgoing messages including the internal randomness
of the corrupted parties. In contrast, the adversarial controlled parties can arbitrarily deviate
from the protocol specification under malicious corruption.

Since in most cases it seems hard (if not impossible) to guarantee that a corrupted party
follows the protocol description, malicious security is typically the desired security goal for the
design of multi-party computation protocols. Unfortunately, compared to protocols that only
guarantee semi-honest security, protection against malicious adversaries results into high over-
heads in terms of communication and computation complexity. For protocols based on distributed



garbling techniques in the oblivious transfer (OT)-hybrid model, the communication complex-
ity is inflated by a factor of s

log |C| [26], where C is the computed circuit and s is a statistical

security parameter. For secret sharing-based protocols, Hazay et al. [15] have recently shown a
constant communication overhead over the semi-honest GMW-protocol [13]. In most techniques,
the computational overhead grows with an order of s.

In order to mitigate the drawbacks of the overhead required for malicious secure function
evaluation, one approach is to split protocols into an input-independent offline and an input-
dependent online phase. The input-independent offline protocol carries out pre-computations
that are utilized to speed up the input-dependent online protocol which securely evaluates the
desired function. Examples for such offline protocols are the circuit generation of garbling schemes
as in authenticated garbling [25, 26] or the generation of correlated randomness in form of
Beaver triples [4] in secret sharing-based protocols such as in SPDZ [11]. The main idea of this
approach is that the offline protocol can be executed continuously in the background and the
online protocol is executed ad-hoc once input data becomes available or output data is required.
Since the performance requirements for the online protocol are usually much stricter, the offline
part should cover the most expensive protocol steps, as for example done in [25, 26] and [11].

A middle ground between the design goals of security and efficiency has been proposed with
the notion of covert security. Introduced by Aumann and Lindell [3], covert security allows the
adversary to take full control over a party and let her deviate from the protocol specification in
an arbitrary way. The protocol, however, is designed in such a way that honest parties can detect
cheating with some probability ϵ (often called the deterrence factor). However, if cheating is
not detected all bets are off. This weaker security notion comes with the benefit of significantly
improved efficiency, when compared to protocols in the full-fledged malicious security model.
The motivation behind covert security is that in many real-world scenarios, parties are able to
actively deviate from the protocol instructions (and as such are not semi-honest), but due to
reputation concerns only do so if they are not caught. In the initial work of Aumann and Lindell,
the focus was on the two-party case. This has been first extended to the multi-party case by
Goyal et al. [14] and later been adapted to a different line of MPC protocols by Damg̊ard et al.
[9].

While the notion of covert security seems appealing at first glance it has one important short-
coming. If an honest party detects cheating, then she cannot reliably transfer her knowledge to
other parties, which makes the notion of covert security significantly less attractive for many ap-
plications. This shortcoming of covert security was first observed by Asharov and Orlandi [2], and
addressed with the notion of public verifiability. Informally speaking, public verifiability guaran-
tees that if an honest party detects cheating, she can create a certificate that uniquely identifies
the cheater, and can be verified by an external party. Said certificate can be used to punish
cheaters for misbehavior, e.g., via a smart contract [29], thereby disincentivizing misbehavior.

Despite being a natural security notion, there has been relatively little work on covert security
with public verifiability. In particular, starting with the work of Asharov and Orlandi [2] most
works have explored publicly verifiable covert security in the two-party setting [19, 16, 29, 10].
These works use a publicly checkable cut-and-choose approach for secure two-party computation
based on garbled circuits. Here a random subset of size t− 1 out of t garbled circuits is opened
to verify if cheating occurred, while the remaining unopened garbled circuit is used for the
actual secure function evaluation. The adversary needs to guess which circuit is used for the final
evaluation and only cheat in this particular instance. If her guess is false, she will be detected.
Hence, there is a deterrence factor of t−1

t .
For the extension to the multi-party case of covert security even less is known. Prior work

mainly focuses on the restricted version of covert security that does not offer public verifiabil-
ity [14, 8, 20, 9]. The only work that we are aware of that adds public verifiability to covert
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secure multi-party computation protocols is the recent work of Damg̊ard et al. [10]. While [10]
mainly focuses on a compiler for the two-party case, they also sketch how their construction can
be extended to the multi-party setting.

1.1 Our Contribution

In contrast to most prior research, we focus on the multi-party setting. Our main contribution
is a novel compiler for transforming input-independent multi-party computation protocols with
semi-honest security into protocols that offer covert security with public verifiability. Our con-
struction achieves a high deterrence factor of t−1

t , where t is the number of semi-honest instances
executed in the cut-and-choose protocol. In contrast, the only prior work that sketches a solution
for publicly verifiable covert security for the multi-part setting [10] achieves ≈ t−1

nt , which in
particular for a large number of parties n results in a low deterrence factor. [10] states that the
deterrence factor can be increased at the cost of multiple protocol repetitions, which results into
higher complexity and can be abused to amplify denial-of-service attacks. A detail discussion of
the main differences between [10] and our work is given in Section 6. We emphasize that our
work is also the first that provides a full formal security proof of the multi-party case in the
model of covert security with public verifiability.

Our results apply to a large class of input-independent offline protocols for carrying out pre-
computation. Damg̊ard et al. [10] have shown that an offline-online protocol with a publicly
verifiable covert secure offline phase and a maliciously secure online phase constitutes a publicly
verifiable covert secure protocol in total. Hence, by applying our compiler to a passively secure
offline protocol and combining it with an actively secure online protocol, we obtain a publicly
verifiable covert secure protocol in total. Since offline protocols are often the most expensive part
of the secure multi-party computation protocol, e.g., in protocols like [28] and [11], our approach
has the potential of significantly improving efficiency of multi-party computation protocols in
terms of computation and communication overhead.

An additional contribution of our work (which is of independent interest) is to introduce
a novel mechanism for achieving public verifiability in protocols with covert security. Our ap-
proach is based on time-lock encryption [24, 22, 21, 5], a primitive that enables encryption of
messages into the future and has previously been discussed in the context of delayed digital cash
payments, sealed-bid auctions, key escrow, and e-voting. Time-lock encryption can be used as a
building block to guarantee that in case of malicious behavior each honest party can construct a
publicly verifiable cheating certificate without further interaction. The use of time-lock puzzles
in a simulation-based security proof requires us to overcome several technical challenges that do
not occur for proving game-based security notions.

In order to achieve efficient verification of the cheating certificates, we also show how to
add verifiability to the notion of time-lock encryption by using techniques from verifiable delay
functions [6]. While our construction can be instantiated with any time-lock encryption satisfying
our requirements, we present a concrete extension of the RSW time-lock encryption scheme. Since
RSW-based time-lock encryption [24, 22] requires a one-time trusted setup, an instantiation
of our construction using the RSW-based time-lock encryption inherits this assumption. We
can implement the one-time trusted setup using a maliciously secure multi-party computation
protocol similar to the MPC ceremony used, e.g., by the cryptocurrency ZCash.

1.2 Technical Overview

In this section, we give a high-level overview of the main techniques used in our work. To this
end, we start by briefly recalling how covert security is typically achieved. Most covert secure
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protocols take a semi-honest protocol and execute t instances of it in parallel. They then check
the correctness of t − 1 randomly chosen instances by essentially revealing the used inputs and
randomness and finally take the result of the last unopened execution as protocol output. The
above requires that (a) checking the correctness of the t−1 instances can be carried out efficiently,
and (b) the private inputs of the parties are not revealed.

In order to achieve the first goal, one common approach is to derandomize the protocol, i.e., let
the parties generate a random seed from which they derive their internal randomness. Once the
protocol is derandomized, correctness can efficiently be checked by the other parties. To achieve
the second goal, the protocol is divided into an offline and an online protocol as described above.
The output of the offline phase (e.g., a garbling scheme) is just some correlated randomness. As
this protocol is input-independent, the offline phase does not leak information about the parties’
private inputs. The online phase (e.g., evaluating a garbled circuit) is maliciously secure and
hence protects the private inputs.

Public verifiability. To add public verifiability to the above-described approach, the basic idea
is to let the parties sign all transcripts that have been produced during the protocol execution.
This makes them accountable for cheating in one of the semi-honest executions. One particular
challenge for public verifiability is to ensure that once a malicious party notices that its cheating
attempt will be detected it cannot prevent (e.g., by aborting) the creation of a certificate proving
its misbehavior. Hence, the trivial idea of running a shared coin tossing protocol to select which
of the instances will be checked does not work because the adversary can abort before revealing
her randomness and inputs used in the checked instances. To circumvent this problem, the
recent work of Damg̊ard et al. [10] proposes the following technique. Each party locally chooses a
subset I of the t semi-honest instances whose computation it wants to check (this is often called
a watchlist [18]). Next, it obliviously asks the parties to explain their execution in those instances
(i.e., by revealing the random coins used in the protocol execution). While this approach works
well in the two-party case, in the multi-party case it either results in a low deterrence factor or
requires that the protocol execution is repeated many times. This is due to the fact that each
party chooses its watchlist independently; in the worst case, all watchlists are mutually disjoint.
Hence, the size of each watchlist is set to be lower or equal than t−1

n (resulting in a deterrence
factor of t−1

nt ) to guarantee that one instance remains unchecked or parties repeat the protocol
several times until there is a protocol execution with an unchecked instance.

Public verifiability from time-lock encryption. Our approach avoids the above shortcomings by
using time-lock encryption. Concretely, we follow the shared coin-tossing approach mentioned
above but prevent the rushing attack by locking the shared coin (selecting which semi-honest
executions shall be opened) and the seeds of the opened executions in time-lock encryption. Since
the time-lock ciphertexts are produced before the selection-coin is made public, it will be too
late for the adversary to abort the computation. Moreover, since the time-lock encryption can be
solved even without the participation of the adversary, the honest parties can produce a publicly
verifiable certificate to prove misbehavior. This approach has the advantage that we can always
check all but one instance of the semi-honest executions, thereby significantly improving the
deterrence factor and the overall complexity. One may object that solving time-lock encryption
adds additional computational overhead to the honest parties. We emphasize, however, that the
time-lock encryption has to be solved only in the pessimistic case when one party aborts after
the puzzle generation. Moreover, in our construction, the time-lock parameter can be chosen
rather small, since the encryption has to hide the selection-coin and the seeds only for two
communication rounds. See section 6 for a more detailed analysis of the overhead introduced by
the time-lock puzzle generation and a comparison to prior work.
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Creating the time-lock encryption. There are multiple technical challenges that we need to address
to make the above idea work. First, current constructions of time-lock encryption matching our
requirements require a trusted setup for generating the public parameters. In particular, we need
to generate a strong RSA modulus N without leaking its factorization, and produce a base-
puzzle that later can be used for efficiency reasons. Both of these need to be generated just once
and can be re-used for all protocol executions. Hence, one option is to replace the trusted setup
by a maliciously secure MPC similar to what has been done for the MPC ceremony used by
the cryptocurrency ZCash. Another alternative is to investigate if time-lock puzzles matching
the requirements of our compiler can be constructed from hidden order groups with public
setup such as ideal class groups of imaginary quadratic fields [7] or Jacobians of hyperelliptic
curves [12]. An additional challenge is that we cannot simply time-lock the seeds of all semi-
honest protocol executions (as one instance needs to remain unopened). To address this problem,
we use a maliciously secure MPC protocol to carry out the shared coin-tossing protocol and
produce the time-lock encryptions of the seeds for the semi-honest protocol instance that are
later opened. We emphasize that the complexity of this step only depends on t and n, and is in
particular independent of the complexity of the functionality that we want to compute. Hence,
for complex functionalities the costs of the maliciously secure puzzle generation are amortized
over the protocol costs 3.

2 Secure Multi-Party Computation

Secure computation in the standalone model is defined via the real world/ideal world paradigm.
In the real world, all parties interact in order to jointly execute the protocol Π. In the ideal
world, the parties send their inputs to a trusted party called ideal functionality and denoted
by F which computes the desired function f and returns the result back to the parties. It is
easy to see that in the ideal world the computation is correct and reveals only the intended
information by definition. The security of a protocol Π is analyzed by comparing the ideal-world
execution with the real-world execution. Informally, protocol Π is said to securely realize F if
for every real-world adversary A, there exists an ideal-world adversary S such that the joint
output distribution of the honest parties and the adversary A in the real-world execution of Π is
indistinguishable from the joint output distribution of the honest parties and S in the ideal-world
execution.

We denote the number of parties executing a protocol Π by n. Let f : ({0, 1}∗)n → ({0, 1}∗)n,
where f = (f1, . . . , fn), be the function realized by Π. For every input vector x̄ = (x1, . . . , xn)
the output vector is ȳ = (f1(x̄), . . . , fn(x̄)) and the i-th party Pi with input xi obtains output
fi(x̄).

An adversary can corrupt any subset I ⊆ [n] of parties. We further set REALΠ,A(z),I(x̄, 1
κ)

to be the output vector of the protocol execution of Π on input x̄ = (x1, . . . , xn) and security
parameter κ, where the adversary A on auxiliary input z corrupts the parties I ⊆ [n]. By
OUTPUTi(REALΠ,A(z),I(x̄, 1

κ)), we specify the output of party Pi for i ∈ [n].

2.1 Covert Security

Aumann and Lindell introduced the notion of covert security with ϵ-deterrence factor in 2007 [3].
We focus on the strongest given formulation of covert security that is the strong explicit cheat
formulation, where the ideal-world adversary only learns the honest parties’ inputs if cheating is

3 Concretely, for each instantiation we require two exponentiations and a small number of symmetric
key encryptions. The latter can be realized using tailored MPC-ciphers like LowMC [1].
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undetected. However, we slightly modify the original notion of covert security to capture realistic
effects that occur especially in input-independent protocols and are disregarded by the notion
of [3]. The changes are explained and motivated below.

As in the standard secure computation model, the execution of a real-world protocol is com-
pared to the execution within an ideal world. The real world is exactly the same as in the
standard model but the ideal model is slightly adapted in order to allow the adversary to cheat.
Cheating will be detected by some fixed probability ϵ, which is called the deterrence factor. Let
ϵ : N→ [0, 1] be a function, then the execution in the ideal model works as follows.

Inputs: Each party obtains an input; the ith party’s input is denoted by xi. We assume that
all inputs are of the same length. The adversary receives an auxiliary input z.

Send inputs to trusted party: Any honest party Pj sends its received input xj to the
trusted party. The corrupted parties, controlled by S, may either send their received input, or
send some other input of the same length to the trusted party. This decision is made by S and
may depend on the values xi for i ∈ I and auxiliary input z. If there are no inputs, the parties
send oki instead of their inputs to the trusted party.

Trusted party answers adversary: If the trusted party receives inputs from all parties,
the trusted party computes (y1, . . . , ym) = f(w̄) and sends yi to S for all i ∈ I.

Abort options: If the adversary sends abort to the trusted party as additional input (before
or after the trusted party sends the potential output to the adversary), then the trusted party
sends abort to all the honest parties and halts. If a corrupted party sends additional input
wi = corruptedi to the trusted party, then the trusted party sends corruptedi to all of the honest
parties and halts. If multiple parties send corruptedi, then the trusted party disregards all but
one of them (say, the one with the smallest index i). If both corruptedi and abort messages are
sent, then the trusted party ignores the corruptedi message.

Attempted cheat option: If a corrupted party sends additional input wi = cheati to the
trusted party (as above: if there are several messages wi = cheati ignore all but one - say, the
one with the smallest index i), then the trusted party works as follows:

1. With probability ϵ, the trusted party sends corruptedi to the adversary and all of the honest
parties.

2. With probability 1 − ϵ, the trusted party sends undetected to the adversary along with the
honest parties inputs {xj}j /∈I . Following this, the adversary sends the trusted party abort or
output values {yj}j /∈I of its choice for the honest parties. If the adversary sends abort, the
trusted party sends abort to all honest parties. Otherwise, for every j /∈ I, the trusted party
sends yj to Pj .

The ideal execution then ends at this point. Otherwise, if no wi equals aborti, corruptedi or cheati,
the ideal execution continues below.

Trusted party answers honest parties: If the trusted party did not receive corruptedi,
cheati or abort from the adversary or a corrupted party then it sends yj for all honest parties Pj

(where j /∈ I).
Outputs: An honest party always outputs the message it obtained from the trusted party.

The corrupted parties outputs nothing. The adversary S outputs any arbitrary (probabilistic)
polynomial-time computable function of the initial inputs {xi}i∈I , the auxiliary input z, and the
received messages.

We denote by IDEALCϵ
f,S(z),I(x̄, 1

κ) the output of the honest parties and the adversary in the
execution of the ideal model as defined above, where x̄ is the input vector and the adversary S
runs on auxiliary input z.

Definition 1 (Covert security with ϵ-deterrent). Let f,Π, and ϵ be as above. Protocol Π is
said to securely compute f in the presence of covert adversaries with ϵ-deterrent if for every non-
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uniform probabilistic polynomial-time adversary A for the real model, there exists a non-uniform
probabilistic polynomial-time adversary S for the ideal model such that for every I ⊆ [n], every
balanced vector x̄ ∈ ({0, 1}∗)n, and every auxiliary input z ∈ {0, 1}∗:

{IDEALCϵ
f,S(z),I(x̄, 1

κ)}κ∈N
c≡ {REALΠ,A(z),I(x̄, 1

κ)}κ∈N

Notice that the definition of the ideal world given above differs from the original definition
of Aumann and Lindell in four aspects. First, we add the support of functions with no private
inputs from the parties to model input-independent functionalities. In this case, the parties send
ok instead of their inputs to the trusted party. Second, whenever a corrupted party aborts, the
trusted party sends abort to all honest parties. Note that this message does not include the index
of the aborting party which differs from the original model. The security notion of identifiable
abort [17], where the aborting party is identified, is an independent research area, and is not
achieved by our compiler. Third, we allow a corrupted party to abort after undetected cheating,
which does not weaken the security guarantees.

Finally, we allow the adversary to learn the output of the function f before it decides to
cheat or to act honestly. In the original notion the adversary has to make this decision without
seeing the potential output. Although this modification gives the adversary additional power, it
captures the real world more reliably in regard to standalone input-independent protocols.

Covert security is typically achieved by executing several semi-honest instances and checking
some of them via cut-and-choose while utilizing an
unchecked instance for the actual output generation. The result of the semi-honest instances
is often an input-independent precomputation in the form of correlated randomness, e.g., a gar-
bled circuit or multiplication triples, which is consumed in a maliciously secure input-dependent
online phase, e.g., the circuit evaluation or a SPDZ-style [9] online phase. Typically, the precom-
putation is explicitly designed not to leak any information about the actual output of the online
phase, e.g., a garbled circuit obfuscates the actual circuit gate tables and multiplication triples
are just random values without any relation to the output or even the function computed in the
online phase. Thus, in such protocols, the adversary does not learn anything about the output
when executing the semi-honest instances and therefore when deciding to cheat, which makes
the original notion of covert security realistic for such input-dependent protocols.

However, if covert security is applied to the standalone input-independent precomputation
phase, as done by our compiler, the actual output is the correlated randomness provided by
one of the semi-honest instances. Hence, the adversary learns potential outputs when executing
the semi-honest instances. Considering a rushing adversary that learns the output of a semi-
honest instance first and still is capable to cheat with its last message, the adversary can base
its decision to cheat on potential outputs of the protocol. Although this scenario is simplified
and there is often a trade-off between output determination and cheating opportunities, the
adversary potentially learns something about the output before deciding to cheat. This is a
power that the adversary might have in all cut-and-choose-based protocols that do not further
process the output of the semi-honest instances, also in the input-independent covert protocols
compiled by Damg̊ard et al. [10].

Additionally, as we have highlighted above, the result of the precomputation typically does
not leak any information about an input-dependent phase which uses this precomputation. Hence,
in such offline-online protocols, the adversary has only little benefit of seeing the result of the
precomputation before deciding to cheat or to act honestly.

Instead of adapting the notion of covert security, we could also focus on protocols that first
obfuscate the output of the semi-honest instances, e.g., by secret sharing it, and then de-obfuscate
the output in a later stage. However, this restricts the compiler to a special class of protocols but
has basically the same effect. If we execute such a protocol with our notion of security up to the
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obfuscation stage but without de-obfuscating, the adversary learns the potential output, that is
just some obfuscated output and therefore does not provide any benefit to the adversary’s cheat
decision. Next, we only have to ensure that the de-obfuscating is done in a malicious or covert
secure way, which can be achieved, e.g., by committing to all output shares after the semi-honest
instances and then open them when the cut-and-choose selection is done.

For the above reasons, we think it is a realistic modification to the covert notion to allow the
adversary to learn the output of the function f before she decides to cheat or to act honestly.
Note that the real-world adversary in cut-and-choose-based protocols does only see a list of
potential outputs but the ideal-world adversary receives a single output which is going to be the
protocol output if the adversary does not cheat or abort. However, we have chosen to be more
generous to the adversary and model the ideal world like this in order to keep it simpler and
more general. For the same reason we ignore the trade-off between output determination and
cheating opportunities observed in real-world protocols.

In the rest of this work, we denote the trusted party computing function f in the ideal-world
description by FCov.

2.2 Covert Security with Public Verifiability

As discussed in the introduction Asharov and Orlandi introduced to notion of covert security
with ϵ-deterrent and public verifiability (PVC) in the two-party setting [2]. We give an extension
of their formal definition to the multi-party setting in the following.

In addition to the covert secure protocol Π, we define two algorithms Blame and Judge. Blame
takes as input the view of an honest party Pi after Pi outputs corruptedj in the protocol execution
for j ∈ I and returns a certificate Cert, i.e., Cert := Blame(viewi). The Judge-algorithm takes as
input a certificate Cert and outputs the identity idj if the certificate is valid and states that party
Pj behaved maliciously; otherwise, it returns none to indicate that the certificate was invalid.

Moreover, we require that the protocol Π is slightly adapted such that an honest party Pi

computes Cert = Blame(viewi) and broadcasts it after cheating has been detected. We denote
the modified protocol by Π ′. Notice that due to this change, the adversary gets access to the
certificate. By requiring simulatability, it is guaranteed that the certificate does not reveal any
private information.

We now continue with the definition of covert security with ϵ-deterrent and public verifiability
in the multi-party case.

Definition 2 (Covert security with ϵ-deterrent and public verifiability in the multi-
party case (PVC-MPC)). Let f,Π ′,Blame, and Judge be as above. The triple (Π ′,Blame, Judge)
securely computes f in the presence of covert adversaries with ϵ-deterrent and public verifiability
if the following conditions hold:

1. (Simulatability) The protocol Π ′ securely computes f in the presence of covert adversaries
with ϵ-deterrent according to the strong explicit cheat formulation (see Definition 1).

2. (Public Verifiability) For every PPT adversary A corrupting parties Pi for i ∈ I ⊆ [n], there
exists a negligible function µ(·) such that for all (x̄, z) ∈ ({0, 1}∗)n+1 the following holds:
If OUTPUTj(REALΠ,A(z),I(x̄, 1

κ)) = corruptedi for j ∈ [n] \ I and i ∈ I then:

Pr[Judge(Cert) = idi] > 1− µ(n),

where Cert is the output certificate of the honest party Pj in the execution.
3. (Defamation Freeness) For every PPT adversary A corrupting parties Pi for i ∈ I ⊆ [n],

there exists a negligible function µ(·) such that for all (x̄, z) ∈ ({0, 1}∗)n+1 and all j ∈ [n]\ I:
Pr[Cert∗ ← A; Judge(Cert∗) = idj ] < µ(n).
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3 Preliminaries

3.1 Communication Model & Notion of Time

We assume the existence of authenticated channels between every pair of parties. Further, we
assume synchronous communication between all parties participating in the protocol execution.
This means the computation proceeds in rounds, where each party is aware of the current round.
All messages sent in one round are guaranteed to arrive at the other parties at the end of this
round. We further consider rushing adversaries which in each round are able to learn the messages
sent by other parties before creating and sending their own messages. This allows an adversary
to create messages depending on messages sent by other parties in the same round.

We denote the time for a single communication round by Tc. In order to model the time, it
takes to compute algorithms, we use the approach presented by Wesolowski [27]. Suppose the
adversary works in computation modelM. The model defines a cost function C and a time-cost
function T . C(A, x) denotes the overall cost to execute algorithm A on input x. Similar, the
time-cost function T (A, x) abstracts the notion of time of running A(x). Considering circuits as
computational model, one may consider the cost function denoting the overall number of gates
of the circuit and the time-cost function being the circuit’s depth.

Let S be an algorithm that for any RSA modulus N generated with respect to the security
parameter κ on input N and some element g ∈ ZN outputs the square of g. We define the time-
cost function δSq(κ) = T (S, (N, g)), i.e., the time it takes for the adversary to compute a single
squaring modulo N .

3.2 Verifiable Time-Lock Puzzle

Time-lock puzzles (TLP) provide a mean to encrypt messages to the future. The message is kept
secret at least for some predefined time. The concept of a time-lock puzzle was first introduced by
Rivest et al. [24] presenting an elegant construction using sequential squaring modulo a composite
integer N = p · q, where p and q are primes. The puzzle is some x ∈ Z∗

N with corresponding

solution y = x2T . The conjecture about this construction is that it requires T sequential squaring
to find the solution. Based on the time to compute a single squaring modulo N , the hardness
parameter T denotes the amount of time required to decrypt the message. (See Section 3.1 for
a notion of time.)

We extend the notion of time-lock puzzle by a verifiability notion. This property allows a
party who solved a puzzle to generate a proof which can be efficiently verified by any third party.
Hence, a solver is able to create a verifiable statement about the solution of a puzzle. Boneh et
al. [6] introduced the notion of verifiable delay functions (VDF). Similar to solving a TLP, the
evaluation of a VDF on some input x takes a predefined number of sequential steps. Together
with the output y, the evaluator obtains a short proof π. Any other party can use π to verify
that y was obtained by evaluating the VDF on input x. Besides the sequential evaluation, a VDF
provides no means to obtain the output more efficiently. Since we require a primitive that allows
a party using some trapdoor information to perform the operation more efficiently, we cannot
use a VDF but start with a TLP scheme and add verifiability using known techniques.

We present a definition of verifiable time-lock puzzles. We include a setup algorithm in the
definition which generates public parameters required to efficiently construct a new puzzle. This
way, we separate expensive computation required as a one-time setup from the generation of
puzzles.

Definition 3. Verifiable time-lock puzzle (VTLP) A verifiable time-lock puzzle scheme over some
finite domain S consists of four probabilistic polynomial-time algorithms (TL.Setup,TL.Generate,
TL.Solve,TL.Verify) defined as follows.
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– (pp) ← TL.Setup(1λ, T ) takes as input the security parameter 1λ and a hardness parameter
T , and outputs public parameter pp.

– p← TL.Generate(pp, s) takes as input public parameters pp and a solution s ∈ S and outputs
a puzzle p.

– (s, π)← TL.Solve(pp, p) is a deterministic algorithm that takes as input public parameters pp
and a puzzle p and outputs a solution s and a proof π.

– b := TL.Verify(pp, p, s, π) is a deterministic algorithm that takes as input public parameters
pp, a puzzle p, a solution s, and a proof π and outputs a bit b, with b = 1 meaning valid and
b = 0 meaning invalid. Algorithm TL.Verify must run in total time polynomial in log T and
λ.

We require the following properties of a verifiable time-lock puzzle scheme.

Completeness For all λ ∈ N, for all T , for all pp ← TL.Setup(1λ, T ), and for all s, it holds
that

(s, ·)← TL.Solve(TL.Generate(pp, s)).

Correctness For all λ ∈ N, for all T , for all pp ← TL.Setup(1λ, T ), for all s, and for all
p← TL.Generate(pp, s), if (s, π)← TL.Solve(p), then

TL.Verify(pp, p, s, π) = 1.

Soundness For all λ ∈ N, for all T , and for all PPT algorithms A

Pr


TL.Verify(pp, p′, s′, π′) = 1

s′ ̸= s

pp← TL.Setup(1λ, T )
(p′, s′, π′)← A(1λ, pp, T )
(s, ·)← TL.Solve(pp, p′)


 ≤ negl(λ)

Security A VTLP scheme is secure with gap ϵ < 1 if there exists a polynomial T̃ (·) such that for
all polynomials T (·) ≥ T̃ (·) and every polynomial-size adversary (A1,A2) = {(A1,A2)λ}λ∈N
where the depth of A2 is bounded from above by T ϵ(λ), there exists a negligible function µ(·),
such that for all λ ∈ N it holds that

Pr


b← A2(pp, p, τ)

(τ, s0, s1)← A1(1
λ)

pp← TL.Setup(1λ, T (λ))
b

$← {0, 1}
p← TL.Generate(pp, sb)


 ≤

1

2
+ µ(λ)

and (s0, s1) ∈ S2.

Although our compiler can be instantiated with any TLP scheme satisfying Definition 3, we
present a concrete construction based on the RSW time-lock puzzle [24]. We leave it to further
research to investigate if a time-lock puzzle scheme matching our requirements, i.e., verifiability
and efficient puzzle generation, can be constructed based on hidden order groups with public
setup such as ideal class groups of imaginary quadratic fields [7] or Jacobians of hyperelliptic
curves [12]. Due to the public setup, such constructions might be more efficient than our RSW-
based solution.

In order to make the decrypted value verifiable we integrate the generation of a proof as intro-
duced by Wesolowski [27] for verifiable delay functions. The technique presented by Wesolowski
provides a way to generate a small proof which can be efficiently verified. However, proof genera-
tion techniques from other verifiable delay functions, e.g., presented by Pietrzak [23] can be used
as well. The approach of Wesolowski utilizes a function bin, which maps an integer to its binary
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representation, and a hash function Hprime that maps any string to an element of Primes(2k). The
set Primes(2k) contains the first 22k prime numbers, where k denotes the security level (typically
128, 192 or 256).

The TL.Setup-algorithm takes the security and hardness parameter and outputs public pa-
rameter. This includes an RSA modulus of two strong primes, the number of sequential squares
corresponding to the hardness parameter, and a base puzzle. The computation can be executed
efficiently if the prime numbers are know. Afterwards, the primes are not needed anymore and
can be thrown away. Note that any party knowing the factorization of the RSA modulus can
efficiently solve puzzles. Hence, the TL.Setup-algorithm should be executed in a trusted way.

The TL.Generate-algorithm allows any party to generate a time-lock puzzle over some secret
s. In the construction given below, we assume s to be an element in Z∗

N . However, one can use a
hybrid approach where the secret is encrypted with some symmetric key which is then mapped
to an element in Z∗

N . This allows the generator to time-lock large secrets as well. Note that the
puzzle generation can be done efficiently and does not depend on the hardness parameter T .

The TL.Solve-algorithm solves a time-lock puzzle p by performing sequential squaring, where
the number of steps depend on the hardness parameter T . Along with the solution, it outputs a
verifiable proof π. This proof is used as additional input to the TL.Verify-algorithm outputting
true if the given secret was time-locked by the given puzzle.

We state the formal definition of our construction next.

Construction Verifiable Time-Lock Puzzle

TL.Setup(1λ, T ):

– Sample two strong primes (p, q) and set N := p · q.
– Set T ′ := T /δSq(λ).
– Sample uniform g̃

$← Z∗
N and set g := −g̃2( mod N).

– Compute h := g2
T ′

, which can be optimized by reducing 2T
′
module ϕ(N) first.

– Set Z := (g, h).
– Output (T ′, N, Z).

TL.Generate(pp, s):

– Parse pp := (T ′, N, Z) and Z := (g, h).

– Sample uniform r
$← {1, . . . , N2}.

– Compute g∗ := gr and h∗ := hr.
– Set c∗ := h∗ · s mod N .
– Output p := (g∗, c∗).

TL.Solve(pp, p):

– Parse pp := (T ′, N, Z) and p := (g∗, c∗).

– Compute h := g∗2
T ′

( mod N) by repeated squaring.
– Compute s := c∗

h
mod N as the solution.

– Compute ℓ = Hprime(bin(g
∗)|| ⋆ ||bin(s)) ∈ Primes(2k) as the challenge.

– Compute π = g∗⌊2
T ′

/ℓ⌋ as the proof.
– Output (s, π).

TL.Verify(pp, p, s, π):

– Parse pp := (T ′, N, Z).
– Parse p := (g∗, c∗).
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– Compute ℓ = Hprime(bin(g
∗)|| ⋆ ||bin(s)) ∈ Primes(2k) as the challenge.

– Compute r = 2T
′

mod ℓ.
– Compute h′ = πℓg∗r.
– Compute s′ := c∗

h′ .
– If s = s′, output 1, otherwise output 0.

The security of the presented construction is based on the conjecture that it requires T ′

sequential squarings to solve a puzzle. Moreover, the soundness of the proof generation is based on
the number-theoretic assumption that it is hard to find the ℓ-th root modulo an RSA modulus N
of an integer x /∈ {−1, 0,+1} where ℓ is uniformly sampled from Primes(2k) and the factorization
of N is unknown. See [27] for a detailed description of the security assumption.

3.3 Commitment

Our protocol makes use of an extractable commitment scheme which is computationally binding
and hiding. For ease of description, we assume the scheme to be non-interactive. We will use
the notation (c, d) ← Commit(m) to commit to message m, where c is the commitment value
and d denotes the decommitment or opening value. Similarly, we use m′ ← Open(c, d) to open
commitment c with opening value d to m′ = m or m′ = ⊥ in case of incorrect opening. The
extractability property allows the simulator to extract the committed messagem and the opening
value d from the commitment c by using some trapdoor information.

Such a scheme can be implemented in the random oracle model by defining Commit(x) =
H(i, x, r) where i is the identity of the committer, H : {0, 1}∗ → {0, 1}2κ is a random oracle and

r
$← {0, 1}κ.

3.4 Signature Scheme

We use a signature scheme (Gen,Sign,Verify) that is existentially unforgeable under chosen-
message attacks. Before the start of our protocol, each party executes the Gen-algorithm to
obtain a key pair (pk, sk). While the secret key sk is kept private, we assume that each other
party is aware of the party’s public key pk.

3.5 Semi-Honest Base Protocol

Our compiler is designed to transform a semi-honest secure n-party protocol with no private
input tolerating n−1 corruptions,ΠSH, that computes a probabilistic function (y1, . . . , yn)← f(),
where yi is the output for party Pi, into a publicly verifiable covert protocol,ΠPVC, that computes
the same function. In order to compile ΠSH, it is necessary that all parties that engage in the
protocol ΠSH receive a protocol transcript, which is the same if all parties act honestly. This
means that there needs to be a fixed ordering for the sent messages and that each message needs
to be sent to all involved parties 4.

We stress that any protocol can be adapted to fulfill the compilation requirements. Adding
a fixed order to the protocol messages is trivial and just a matter of specification. Furthermore,
parties can send all of their outgoing messages to all other parties without harming the security.
This is due to the fact, that the protocol tolerates n−1 corruptions which implies that the adver-
sary is allowed to learn all messages sent by the honest party anyway. Note that the transferred
messages do not need to be securely broadcasted, because our compiler requires the protocol to
produce a consistent transcript only if all parties act honestly.

4 This requirement is inherent to all known publicly verifiable covert secure protocols.
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3.6 Coin Tossing Functionality

We utilize a maliciously secure coin tossing functionality Fcoin parameterized with the security
parameter κ and the number of parties n. The functionality receives oki from each party Pi for

i ∈ [n] and outputs a random κ-bit string seed
$← {0, 1}κ to all parties.

Functionality Fcoin

Inputs: Each party Pi with i ∈ [n] inputs oki.

– Sample seed
$← {0, 1}κ.

– Send seed to A.
• If A returns abort, send abort to all honest parties and stop.
• Otherwise, send seed to all honest parties.

3.7 Puzzle Generation Functionality

The maliciously secure puzzle generation functionality FPG is parameterized with the computa-
tional security parameter κ, the number of involved parties n, the cut-and-choose parameter t
and public TLP parameters pp. It receives a coin share ri, a puzzle randomness share ui, and the
seed-share decommitments for all instances {dij}j∈[t] as input from each party Pi. FPG calculates
the random coin r and the puzzle randomness u using the shares of all parties. Then, it generates
a time-lock puzzle p of r and all seed-share decommitments expect the ones with index r. In the
first output round it sends p to all parties. In the second output round it reveals the values locked
within p to all parties. As we assume a rushing adversary, A receives the outputs first in both
rounds and can decide if the other parties should receive the outputs as well.

The functionality FPG can be instantiated with a general purpose maliciously secure MPC-
protocol such as the ones specified by [9] or [28].

Functionality FPG

Inputs: Each party Pi with i ∈ [n] inputs (ri, ui, {dij}j∈[t]), where ri ∈ [t], ui ∈ {0, 1}κ, and
dij ∈ {0, 1}κ.

– Compute r :=
∑n

i=1 r
i mod t and u :=

⊕n
i=1 u

i.
– Generate puzzle p← TL.Generate(pp, (r, {dij}i∈[n],j∈[t]\r)) using randomness u.
– Send p to A.
• If A returns abort, send abort to all honest parties and stop.
• Otherwise, send p to all honest parties.5

– Upon receiving continue from each party, send (r, {dij}i∈[n],j∈[t]\r) to A.
• If A returns abort or some party does not send continue, send abort to all honest parties

and stop.
• Otherwise, send (r, {dij}i∈[n],j∈[t]\r) to all honest parties.

4 PVC Compiler

In the following, we present our compiler for multi-party protocols with no private input from
semi-honest to publicly verifiable covert security. We start with presenting a distributed seed

5 The honest parties receive p or abort in the same communication round as A.
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computation which is used as subprotocol in our compiler. Next, we state the detailed description
of our compiler. Lastly, we provide information about the Blame- and Judge-algorithm required
by the notion of publicly verifiable covert security.

4.1 Distributed Seed Computation

The execution of the semi-honest protocol instances ΠSH within our PVC compiler requires each
party to use a random tape that is uniform at random. In order to ensure this requirement, the
parties execute several instances of a distributed seed computation subprotocol ΠSG at the begin-
ning. During this subprotocol, each party Ph selects a uniform κ-bit string as private seed share
seed(1,h). Additionally, Ph and all other parties get uniform κ-bit strings {seed(2,i)}i∈[n], which
are the public seed shares of all parties. The randomness used by Ph in the semi-honest protocol
will be derived from seedh := seed(1,h)⊕ seed(2,h). This way seedh is distributed uniformly. Note
that if protocol ΠSH is semi-malicious instead of semi-honest secure then each party may choose
the randomness arbitrarily and there is no need to run the seed generation.

As the output, party Ph obtains its own private seed, commitments to all private seeds, a
decommitment for its own private seed, and all public seed shares. We state the detailed protocol
steps next. The protocol is executed by each party Ph, parameterized with the number of parties
n and the security parameter κ.

Protocol ΠSG

(a) Commit-phase
Party Ph chooses a uniform κ-bit string seed(1,h), sets (ch, dh) ← Commit(seed(1,h)), and
sends ch to all parties.

(b) Public coin-phase
For each i ∈ [n], party Ph sends ok to Fcoin and receives seed(2,i).
Output
If Ph has not received all messages in the expected communication rounds or any seed(2,i) = ⊥,
it sends abort to all parties and outputs abort.
Otherwise, it outputs (seed(1,h), dh, {seed(2,i), ci}i∈[n]).

4.2 The PVC Compiler

Starting with a n-party semi-honest secure protocol ΠSH we compile a publicly verifiable covert
secure protocol ΠPVC. The compiler works for protocols that receive no private input.

The compiler uses a signature scheme, a verifiable time-lock puzzle scheme, and a commitment
scheme as building blocks. Moreover, the communication model is as defined in Section 3.1. We
assume each party generated a signature key pair (sk, pk) and all parties know the public keys of
the other parties. Furthermore, we suppose the setup of the verifiable time-lock puzzle scheme
TL.Setup was executed in a trusted way beforehand. This means in particular that all parties
are aware of the public parameters pp. We stress that this setup needs to be executed once
and may be used by many protocol executions. The hardness parameter T used as input to the
TL.Setup-algorithm needs to be defined as T > 2 · Tc, where Tc denotes the time for a single
communication round (see Section 3.1). In particular, the hardness parameter is independent of
the complexity of ΠSH.

From a high-level perspective, our compiler works in five phases. At the beginning, all parties
jointly execute the seed generation to set up seeds from which the randomness in the semi-honest
protocol instances is derived. Second, the parties execute t instances of the semi-honest protocol
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ΠSH. By executing several instances, the parties’ honest behavior can be later on checked in
all but one instance. Since checking reveals the confidential outputs of the other parties, there
must be one instance that is unchecked. The index of this one is jointly selected in a random
way in the third phase. Moreover, publicly verifiable evidence is generated such that an honest
party can blame any malicious behavior afterwards. To this end, we use the puzzle generation
functionality FPG to generate a time-lock puzzle first. Next, each party signs all information
required for the other parties to blame this party. In the fourth phase, the parties either honestly
reveal secret information for all but one semi-honest execution or abort. In case of abort, the
honest parties execute the fifth phase. By solving the time-lock puzzle, the honest parties obtain
the required information to create a certificate about malicious behavior. Since this phase is only
required to be executed in case any party aborted before revealing the information, we call this
the pessimistic case. We stress that no honest party is required to solve a time-lock puzzle in
case all parties behave honestly.

A corrupted party may cheat in two different ways in the compiled protocol. Either the party
inputs decommitment values into the puzzle generation functionality which open the commit-
ments created during the seed generation to ⊥ or the party misbehaved in the execution of ΠSH.
The later means that a party uses different randomness than derived from the seeds generated
at the beginning.

The first cheat attempt may be detected in two ways. In the optimistic execution, all parties
receive the inputs to FPG and can verify that opening the commitments is successful. In the
pessimistic case, solving the time-lock puzzle reveals the input to FPG. Since we do not want
the Judge to solve the puzzle itself, we provide a proof along with the solution of the time-lock
puzzle. To this end, we require a verifiable time-lock puzzle as modeled in Section 3. Even in the
optimistic case, if an honest party detects cheating, the time-lock puzzle needs to be solved in
order to generate a publicly verifiable certificate.

If all decommitments open the commitments successfully, an honest party can recompute the
seeds used by all other parties in an execution of ΠSH and re-run the execution. The resulting
transcript is compared with the one signed by all parties beforehand. In case any party misbe-
haved, a publicly verifiable certificate can be created. For the sake of exposition, we compress the
detection of malicious behavior and the generation of the certificate into the Blame-algorithm.

The protocol defined as follows is executed by each honest party Ph.

Protocol ΠPVC

Public input: All parties agree on κ, n, t,ΠSH and pp and know all parties’ public keys {pki}i∈[n].
Private input: Ph knows its own secret key skh.

Distributed seed computation:
We abuse notation here and assume that the parties execute the seed generation protocol from
above.

1. For each instance j ∈ [t] party Ph interacts with all other parties to receive

(seed
(1,h)
j , dhj , {seed(2,i)j , cij}i∈[n])← ΠSG

and computes seedhj := seed
(1,h)
j ⊕ seed

(2,h)
j .

Semi-honest protocol execution:

2. Party Ph engages in t instances of the protocol ΠSH with all other parties. In the j-th instance,
party Ph uses randomness derived from seedhj and receives a transcript and output:

(transj , y
h
j )← ΠSH.
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Create publicly verifiable evidence:

3. Party Ph samples a coin share rh
$← [t], a randomness share uh $← {0, 1}κ, sends the message

(rh, uh, {dhj }j∈[t]) to FPG and receives time-lock puzzle p as response.
4. For each j ∈ [t], Party Ph creates a signature σh

j ← Signskh(dataj), where the signed data is
defined as

dataj := (h, j, {seed(2,i)j }i∈[n], {cij}i∈[n], p, transj).

Ph broadcasts its signatures and verifies the received signatures.

Optimistic case:

5. If any of the following cases happens
– Ph has not received valid messages in the first protocol steps in the expected communi-

cation round.
– FPG returned abort, or
– any other party has sent abort

party Ph broadcasts and outputs abort.
6. Otherwise, Ph sends continueh to FPG, receives (r, {d∗ij }i∈[n],j∈[t]\r) as response and calculates

(m, cert) := Blame(viewh)

where viewh is the view of Ph.
If cert ̸= ⊥, broadcast cert and output corruptedm. Otherwise, Ph outputs yh

r .

Pessimistic case:

7. If FPG returned abort in step 6, Ph solves the time-lock puzzle

((r, {d∗ij }i∈[n],j∈[t]\r), π) := TL.Solve(pp, p)

and calculates
(m, cert) := Blame(viewh)

where viewh is the view of Ph.
If cert ̸= ⊥, broadcast cert and output corruptedm. Otherwise, output abort.

4.3 Blame-Algorithm

Our PVC compiler uses an algorithm Blame in order to verify the behavior of all parties in
the opened protocol instances and to generate a certificate of misbehavior if cheating has been
detected. It takes the view of a party as input and outputs the index of the corrupted party in
addition to the certificate. If there are several malicious parties the algorithm selects the one
with the minimal index.

Algorithm Blame

On input the view view of a party which contains:

– public parameters (n, t)

– public seed shares {seed(2,i)j }i∈[n]

– shared coin r
– private seed share commitments and decommitments {cij , dij}i∈[n],j∈[t]\r
– additional certificate information

({pkj}i∈[n], {dataj}j∈[t], π, {σi
j}i∈[n],j∈[t])
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do:

1. Calculate seed
(1,i)
j := Open(cij , d

i
j) for each i ∈ [n], j ∈ [t] \ r.

2. Let M1 := {(i, j) ∈ ([n], [t] \ r) : seed
(1,i)
j = ⊥}. If M1 ̸= ∅, choose the tuple (m, l) ∈ M1

with minimal m and l, prioritized by m, compute (·, π) := TL.Solve(pp, p), if π = ⊥, set
cert := (pkm, dataj , π, r, {dij}i∈[n],j∈[t]\r, σ

m
l ) and output (m, cert).

3. Set seedij := seed
(1,i)
j ⊕ seed

(2,i)
j for all i ∈ [n] and j ∈ [t] \ r.

4. Re-run ΠSH for all j ∈ [t] \ r by simulating the view of all other parties: In the j-th instance
simulate all parties Pi with randomness seedij for i ∈ [n] and receive (trans′j , ·).

5. Let M2 := {j ∈ [t]\ r : trans′j ̸= transj}. If M2 ̸= ∅, determine the minimal index m such that
Pm is the first party that has deviated from the protocol description in an instance l ∈ M2.
If Pm has deviated from the protocol description in several instances l ∈ M2, choose the
smallest such l. Then, set cert := (pkm, datal, {dil}i∈[n], σ

m
l ) and output (m, cert).

6. Output (0,⊥).

4.4 Judge-Algorithm

The Judge-algorithm receives the certificate and outputs either the identity of the corrupted
party or ⊥. The execution of this algorithm requires no interaction with the parties participating
in the protocol execution. Therefore, it can also be executed by any third party which possesses
a certificate cert. If the output is pkm for m ∈ [n], the executing party is convinced that party
Pm misbehaved during the protocol execution. The Judge-algorithm is parameterized with n, t,
pp, and ΠSH.

Algorithm Judge(cert)

Inconsistency certificate:
On input cert = (pkm, data, π, r, {dij}i∈[n],j∈[t]\r, σ

m
l ) do:

– If Verifypkm(data;σm
l ) = ⊥, output ⊥.

– Parse data to (m, l, ·, {cil}i∈[n], p, ·).
– If TL.Verify(pp, p, (r, {dij}i,j), π) = 0 output ⊥.
– If r = l, output ⊥.
– If Open(cml , dml ) ̸= ⊥, output ⊥. Else output pkm.

Deviation certificate:
On input cert = (pkm, data, {dil}i∈[n], σ

m
l ).

– If Verifypkm(data;σm
l ) = ⊥, output ⊥.

– Parse data to (m, l, {seed(2,i)l }i∈[n], {cil}i∈[n], ·, transl).
– Set seed

(1,i)
l ← Open(cil, d

i
l) for each i ∈ [n]. If any seed

(1,i)
l = ⊥, output ⊥.

– Set seedil := seed
(1,i)
l ⊕ seed

(2,i)
l for each i.

– Simulate ΠSH using the seeds seedil as randomness of party Pi and get result (trans′l, ·).
– If trans′l = transl, output ⊥. Otherwise, determine the index m′ of the first party that has

deviated from the protocol description. If m ̸= m′, output ⊥. Otherwise, output pkm.

Ill formatted: If the cert cannot be parsed to neither of the two above cases, output (⊥).
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5 Security

In this section, we show the security of the compiled protocol described in Section 4. To this end,
we state the security guarantee in Theorem 1 and prove its correctness in the following.

Theorem 1. Let ΠSH be a n-party protocol, receiving no private inputs, which is secure against
a passive adversary that corrupts up to n− 1 parties. Let the signature scheme (Gen,Sign,Verify)
be existentially unforgeable under chosen-message attacks and let the verifiable time-lock puzzle
scheme TL be secure with hardness parameter T > 2 · Tc. Let (Commit,Open) be an extractable
commitment scheme which is computationally binding and hiding. Then protocol ΠPVC along with
algorithms Blame and Judge is secure against a covert adversary that corrupts up to n−1 parties
with deterrence ϵ = 1 − 1

t and public verifiability according to definition 2 in the (Fcoin,FPG)-
hybrid model. 6

Proof. We prove security of the compiled protocol ΠPVC by showing simulatability, public veri-
fiability, and defamation freeness according to Definition 2 separately.

5.1 Simulatability

In order to prove that ΠPVC meets covert security with ϵ-deterrent, we define an ideal-world
simulator S using the adversary A in a black-box way as a subroutine and playing the role of
the parties corrupted by A when interacting with the ideal covert-functionality FCov.

The simulator and the proof that the joint distribution of the honest parties’ outputs and
the view of A in the ideal world is computationally indistinguishable from the honest parties’
outputs and the view of A in the real world are given in the full version of the paper.

5.2 Public Verifiability

We first argue that an adversary is not able to perform what we call a detection dependent abort.
This means that once an adversary learns if its cheating will be detected, it can no longer prevent
honest parties from generating a certificate.

In order to see this, note that withholding valid signatures by corrupted parties in step 4
results in an abort of all honest parties. In contrast, if all honest parties receive valid signatures
from all other parties in step 4, then they are guaranteed to obtain the information encapsulated
in the time-lock puzzle, i.e., the coin r and the decommitments of all parties {dij}i∈[n],j∈[t]\r.
Either, all parties jointly trigger the puzzle generation functionality FPG to output the values
or in case any corrupted party aborts, an honest party can solve the time-lock puzzle without
interaction. Thus, it is not possible for a rushing adversary that gets the output of FPG in step 6
first, to prevent the other parties from learning it at some time as well. Moreover, the adversary
also cannot extract the values from the puzzles before making the decision if it wants to continue
or abort, as the decision has to be made in time smaller than the time required to solve the
puzzle. Thus, the adversary’s decision to continue or abort is independent from the coin r and
therefore independent from the event of being detected or not.

Secondly, we show that the Judge-algorithm will accept a certificate, created by an honest
party, expect with negligible probability. Assume without loss of generality that some malicious
party Pm has cheated, cheating has been detected and a certificate (blaming party Pm) has been
generated. As we have two types of certificates, we will look at them separately.

6 See section 3.1, for details on the notion of time and the communication model.
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If an honest party outputs an inconsistency certificate, it has received an inconsistent commitment-
opening pair (cml , dml ) for some l ̸= r. The value cml is signed directly by Pm and dml indirectly via
the signed time-lock puzzle p. Hence, Judge can verify the signatures and detect the inconsistent
commitment of Pm as well. Note that due to the verifiability of our time-lock construction, the
Judge-algorithm does not have to solve the time-lock puzzle itself but just needs to verify a given
solution. This enables the algorithm to be executed efficiently.

If an honest party outputs a deviation certificate, it has received consistent openings for all
j ̸= r from all other parties, but party Pm was the first party who deviated from the specification
of ΠSH in some instance l ∈ [t] \ r. Since ΠSH requires no input from the parties, deviating from
its specification means using different randomness than derived from the seeds generated at the
beginning of the compiled protocol. As Pm has signed the transcript transl, the private seed-
commitments of all parties {cil}i∈[n], the public seeds {seed(2,i)}i∈[n], and the certificate contains
the valid openings {dil}i∈[n], the Judge-algorithm can verify that Pm was the first party who
misbehaved in instance l the same way the honest party does. Note that it is not necessary for
Judge to verify that j ̸= r, because the certificate generating party can only gain valid openings
{dil}i∈[n] for j ̸= r.

5.3 Defamation Freeness

Assume, without loss of generality, that some honest party Ph is blamed by the adversary. We
show defamation freeness for the two types of certificates separately via a reduction to the security
of the commitment scheme, the signature scheme and the time-lock puzzle scheme.

First, assume there is a valid inconsistency certificate cert∗ blaming Ph. This means that there
is a valid signatures of Ph on a commitment c∗hj and a time-lock puzzle p∗ that has a solution

s∗ which contains an opening d∗hj such that Open(c∗hj , d∗hj ) = ⊥ and j ̸= r. As Ph is honest, Ph

only signs a commitment c∗hj which equals the commitment honestly generated by Ph during the

seed generation. We call such a c∗hj correct. Thus, c∗hj is either correct or the adversary can forge
signatures. Similar, Ph does only sign the puzzle p∗ received by FPG. This puzzle is generated on
the opening value provided by all parties. Since Ph is honest, correct opening values are inserted.
Therefore, the signed puzzle p∗ either contains the correct opening value or the adversary can
forge signatures. Due to the security guarantees of the puzzle, the adversary has to either provide
the correct solution s∗ or can break the soundness of the time-lock puzzle scheme. To sum it up,
an adversary creating a valid inconsistency certificate contradicts to the security assumptions
specified in Theorem 1.

Second, assume there is a valid deviation certificate cert∗ blaming Ph. This means, there is a
protocol transcript trans∗j in which Ph is the first party that has sent a message which does not

correspond to the next-message function of ΠSH and the randomness, seedhj used by the judge

to simulate Ph. As Ph is honest, either trans∗ or seedhj needs to be incorrect. Also, Ph does not
create a signature for an invalid trans∗. Thus, trans∗ is either correct or the adversary can forge

signatures. The seedhj is calculated as seedhj := seed
(1,h)
j ⊕ seed

(2,h)
j . The public seed seed

(2,h)
j

is signed by Ph and provided directly. The private seed of Ph is provided via a commitment-

opening pair (chj , d
h
j ), where c

h
j is signed by Ph. As above, c

h
j and seed

(2,h)
j are either correct or the

adversary can forge signatures. Similar, dhj is either correct or the adversary can break the binding

property of the commitment scheme. If the certificate contains correct (trans∗j , c
h
j , d

h
j , seed

(2,h)
j )

the certificate is not valid. Thus, when creating an accepting cert∗, the adversary has either broken
the signature or the commitment scheme which contradicts to the assumption of Theorem 1.

⊓⊔
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6 Evaluation

6.1 Efficiency of our Compiler

In Section 4, we presented a generic compiler for transforming input-independent multi-party
computation protocols with semi-honest security into protocols that offer covert security with
public verifiability. We elaborate on efficiency parameters of our construction in the following.

The deterrence factor ϵ = t−1
t only depends on the number of semi-honest protocol executions

t. In particular, ϵ is independent of the number of parties. This property allows for achieving
the same deterrence factor for a fixed number of semi-honest executions while the number of
parties increases. Our compiler therefore facilitates secure computation with a large number of
parties. Furthermore, the deterrence factor grows with the number of semi-honest instances (t),
similar to previous work based on cut-and-choose (e.g., [3, 2, 10]). Concretely, this means that for
only five semi-honest instances, our compiler achieves a cheating detection probability of 80%.
Moreover, the semi-honest instances are independent of each other and, hence, can be executed
in parallel. This means, that the communication and computation complexity in comparison to a
semi-honest protocol increases by factor t. However, our compiler preserves the round complexity
of the semi-honest protocol. Hence, it is particularly useful for settings and protocols in which
the round complexity constitutes the major efficiency bottleneck. Similarly, the requirement of
sending all messages to all parties further increases the communication overhead by a factor of
n− 1 but does not affect the round complexity. Since this requirement is inherent to all known
publicly verifiable covert secure protocols, e.g., [10], these protocols incur a similar communication
overhead.

While our compiler requires a maliciously secure puzzle generation functionality, we stress that
the complexity of the puzzle generation is independent of the cost of the semi-honest protocol.
Therefore, the relative overhead of the puzzle generation shrinks for more complex semi-honest
protocols. One application where our result may be particular useful is for the preprocessing
phase of multi-party computation, e.g., protocols for generating garbled circuits or multiplication
triples. In such protocols, one can generate several circuits resp. triples that are used in several
online instances but require just one puzzle generation.

For the sake of concreteness, we constructed a boolean circuit for the puzzle generation func-
tionality and estimated its complexity in terms of the number of AND-gates. The construction
follows a naive design and should not constitute an efficient solution but should give a first
impression on the circuit complexity. We present some intuition on how to improve the circuit
complexity afterwards.

We utilize the RSW VTLP construction described in Section 3.2 with a hybrid construction,
in which a symmetric encryption key is locked within the actual time-lock puzzle and is used
to encrypt the actual secret. Note that the RSW VTLP is not optimized for MPC scenarios.
Since our compiler can be instantiated with an arbitrary VTLP satisfying Definition 3, any
achievements in the area of MPC-friendly TLP can result into an improved puzzle generation
functionality for our compiler. To instantiate the symmetric encryption operation, we use the
LowMC [1] cipher, an MPC-friendly cipher tailored for boolean circuits.

Let n be the number of parties, t being the number of semi-honest instances, κ denoting the
computational security parameter, and N represents the RSA modulus used for the RSW VTLP.
We use the notation |x| to denote the bit length of x. The total number of AND-gates of our
naive circuit is calculated as follows:
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(n− 1) · (11|t|+ 22|N |+ 12)

+ nt · (4|t|+ 2κ+ 755)

+ 192|N |3 + 112|N |2 + 22|N |

It is easy to see that the number of AND-gates is linear in both n and t. The most expensive
part of the puzzle generation is the computation of two exponentiations required for the RSW
VTLP, since the number of required AND-gates is cubic in |N | for an exponentiation. However,
we can slightly adapt our puzzle generation functionality and protocol to remove these exponen-
tiations from the maliciously secure puzzle generation protocol. For the sake of brevity, we just
give an intuition here.

Instead of performing the exponentiations gu and hu required for the puzzle creation within
the puzzle generation functionality, we let each party Pi input a 0-puzzle consisting of the two
values gi = gui and hi = hui . The products of all gi respectively hi are used as g∗ and h∗ for
the VTLP computation. Since we replace the exponentiations with multiplications, the number
of AND-gates is quadratic instead of cubic in |N |.

Note that this modification enables a malicious party to modify the resulting puzzle by
inputting a non-zero puzzle. Intuitively, the attacker can render the puzzle invalid such that no
honest party can create a valid certificate or the puzzle can be modified such that a corrupted
party can create a valid certificate defaming an honest party. Concretely, one possible attack is
to input inconsistent values gi and hi, i.e., to use different exponents for the two exponentiations.
As such an attack must be executed without knowledge of the coin r, it is sufficient to detect
invalid inputs and consider such behavior as an early abort. To this end, parties have to provide
ui to the puzzle generation functionality and the functionality outputs u = Σ ui, g

∗ and h∗ in
the second output round together with the coin and the seed openings. By comparing if g∗ = gu

and h∗ = hu, each party can check the validity of the puzzle. Finally, we need to ensure that
a manipulated puzzle cannot be used to create an inconsistency certificate blaming an honest
party. Such false accusation can easily be prevented, e.g., by adding some zero padding to the
value inside the puzzle such that any invalid puzzle input renders the whole puzzle invalid.

6.2 Comparison with Prior Work

To the best of our knowledge, our work is the first to provide a fully specified publicly verifi-
able multi-party computation protocol against covert adversaries. Hence, we cannot compare to
existing protocols directly. However, Damg̊ard et al. [10] have recently presented two compilers
for constructing publicly verifiable covert secure protocols from semi-honest secure protocols in
the two-party setting, one for input-independent and one for input-dependent protocols. For the
latter, they provide an intuition on how to extend the compiler to the multi-party case. How-
ever, there is no full compiler specification for neither input-dependent nor input-independent
protocols. Still, there exist a natural extension for the input-independent compiler, which we can
compare to.

The major difference between our input-independent protocol and their input-independent
protocol, is the way the protocols prevent detection dependent abort. In the natural extension
to Damg̊ard et al. [10], which we call the watchlist approach in the following, each party inde-
pendently selects a subset of instances it wants to check and receives the corresponding seeds
via oblivious transfer. The transcript of the oblivious transfer together with the receiver’s ran-
domness can be used by the receiver to prove integrity of its watchlist to the judge; similar to
the seed commitments and openings used in our protocol. The watchlists are only revealed after
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each party receives the data required to create a certificate in case of cheating detection, i.e.,
the signatures by the other parties. Once a party detects which instances are checked, it is too
late to prevent the creation of a certificate. Our approach utilizes time-lock puzzles for the same
purpose.

In the watchlist approach, all parties have different watchlists. For t semi-honest instances
and watchlists of size s ≥ t

n , there is a constant probability Pr[bad] that no semi-honest instance
remains unwatched which leads to a failure of the protocol. Thus, parties either need to choose
s < t

n and hence ϵ = s
t < 1

n or run several executions of the protocol. For the latter, the
probability of a protocol failure Pr[bad] and the expected number of protocol runs runs are
calculated based on the inclusion-exclusion principle as follows:

Pr[bad] = 1−
∑t

k=1(−1)(k−1) ∗
(
t
k

)
∗ (∏s−1

j=0(t− j − k))n

∏s−1
j=0(t− j))n

= 1−
t∑

k=1

(−1)(k−1) ·
(
t

k

)
·
(
(t− k)! · (t− s)!

(t− k − s)! · t!

)n

runs = Pr[bad]−1

Setting the watchlist size s ≥ t
n such that there is a constant failure probability has the

additional drawback that the repetition can be abused to amplify denial-of-service attacks. An
adversary can enforce a high failure probability by selecting its watchlists strategically. If s ≥

t
(n−1) and n− 1 parties are corrupted, the adversary can cause an error with probability 1 which

enables an infinite DoS-attack.
This restriction of the deterrence factor seems to be a major drawback of the watchlist

approach. Although our approach has an additional overhead due to the puzzle generation,
which is independent of the complexity of the transformed protocol and thus amortizes over the
complexity of the base protocols, it has the benefit that it immediately supports an arbitrary
deterrence factor ϵ. This is due to the fact that the hidden shared coin toss determines a single
watchlist shared by all parties. In Table 1, we display the maximal deterrence factor of our
approach ϵ in comparison to the maximal deterrence factor of the watchlist approach without
protocol repetitions ϵ′ for different settings. Additionally, we provide the number of expected
runs required to achieve ϵ in the watchlist approach with repetitions.
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n t
Our approach Watchlist approach

ϵ ϵ′ or runs

2

2 1/2 - 2

3 2/3 1/3 3

10 9/10 4/10 10

3

2 1/2 - 4

4 3/4 1/4 16

10 9/10 3/10 100

5
2 1/2 - 16

6 5/6 1/6 1296

Table 1. Maximal deterrence factor or expected number of runs of the watchlist approach in comparison
to our approach.
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D. Financially Backed Covert
Security

In this chapter, we present the following publication with minor changes.
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Abstract. The security notion of covert security introduced by Aumann and Lindell
(TCC’07) allows the adversary to successfully cheat and break security with a fixed prob-
ability 1− ϵ, while with probability ϵ, honest parties detect the cheating attempt. Asharov
and Orlandi (ASIACRYPT’12) extend covert security to enable parties to create publicly
verifiable evidence about misbehavior that can be transferred to any third party. This
notion is called publicly verifiable covert security (PVC) and has been investigated by mul-
tiple works. While these two notions work well in settings with known identities in which
parties care about their reputation, they fall short in Internet-like settings where there are
only digital identities that can provide some form of anonymity.
In this work, we propose the notion of financially backed covert security (FBC), which
ensures that the adversary is financially punished if cheating is detected. Next, we present
three transformations that turn PVC protocols into FBC protocols. Our protocols provide
highly efficient judging, thereby enabling practical judge implementations via smart con-
tracts deployed on a blockchain. In particular, the judge only needs to non-interactively
validate a single protocol message while previous PVC protocols required the judge to em-
ulate the whole protocol. Furthermore, by allowing an interactive punishment procedure,
we can reduce the amount of validation to a single program instruction, e.g., a gate in
a circuit. An interactive punishment, additionally, enables us to create financially backed
covert secure protocols without any form of common public transcript, a property that
has not been achieved by prior PVC protocols.

Keywords: Covert Security · Multi-Party Computation (MPC) · Public Verifiability ·
Financial Punishment

1 Introduction

Secure multi-party computation (MPC) protocols allow a set of parties to jointly compute an ar-
bitrary function f on private inputs. These protocols guarantee privacy of inputs and correctness
of outputs even if some of the parties are corrupted by an adversary. The two standard adversar-
ial models of MPC are semi-honest and malicious security. While semi-honest adversaries follow
the protocol description but try to derive information beyond the output from the interaction,
malicious adversaries can behave in an arbitrary way. MPC protocols in the malicious adversary
model provide stronger security guarantees at the cost of significantly less efficiency. As a middle
ground between good efficiency and high security Aumann and Lindell introduced the notion of
security against covert adversaries [3]. As in the malicious adversary model, corrupted parties
may deviate arbitrarily from the protocol specification but the protocol ensures that cheating is
detected with a fixed probability, called deterrence factor ϵ. The idea of covert security is that
adversaries fear to be detected, e.g., due to reputation issues, and thus refrain from cheating.

Although cheating can be detected in covert security, a party of the protocol cannot trans-
fer the knowledge about malicious behavior to other (external) parties. This shortcoming was



addressed by Asharov and Orlandi [2] with the notion of covert security with public verifiability
(PVC). Informally, PVC enables honest parties to create a publicly verifiable certificate about
the detected malicious behavior. This certificate can subsequently be checked by any other party
(often called judge), even if this party did not contribute to the protocol execution. The idea
behind this notion is to increase the deterrent effect by damaging the reputation of corrupted
parties publicly. PVC secure protocols for the two-party case were presented by [2, 17, 25, 15].
Recently, Damg̊ard et al. [9] showed a generic compiler from semi-honest to publicly verifiable
covert security for the two-party setting and gave an intuition on how to extend their compiler
to the multi-party case. Full specifications of generic compilers from semi-honest to publicly ver-
ifiable covert security for multi-party protocols were presented by Faust et al. [13] and Scholl et
al. [19].

Although PVC seems to solve the shortcoming of covert security at first glance, in many
settings PVC is not sufficient; especially, if only a digital identity of the parties is known, e.g.,
in the Internet. In such a setting, a real party can create a new identity without suffering from a
damaged reputation in the sequel. Hence, malicious behavior needs to be punished in a different
way. A promising approach is to use existing cryptocurrencies to directly link cheating detection
to financial punishment without involving trusted third parties; in particular, cryptocurrencies
that support so-called smart contracts, i.e., programs that enable the transfer of assets based
on predefined rules. Similar to PVC, where an external judge verifies cheating by checking a
certificate of misbehavior, we envision a smart contract that decides whether a party behaved
maliciously or not. In this setting, the task of judging is executed over a distributed blockchain
network keeping it incorruptible and verifiable at the same time. Since every instruction executed
by a smart contract costs fees, it is highly important to keep the amount of computation per-
formed by a contract small. This aspect is not solely important for execution of smart contracts
but in all settings where an external judge charges by the size of the task it gets. Due to this
constraint, we cannot straightforward adapt PVC protocols to work in this setting, since detec-
tion of malicious behavior in existing PVC protocols is performed in a naive way that requires
the judge to recompute a whole protocol execution.

Related work. While combining MPC with blockchain technologies is an active research area
(e.g., [18, 5, 1]) none of these works deal with realizing the judging process of PVC protocols
over a blockchain. The only work connecting covert security with financial punishment thus
far is by Zhu et al. [25], which we describe in a bit more detail below. They combine a two-
party garbling protocol with an efficient judge that can be realized via a smart contract. Their
construction leverages strong security primitives, like a malicious secure oblivious transfer for the
transmission of input wires, to ensure that cheating can only occur during the transmission of
the garbled circuit and not in any other part of the two-party protocol. By using a binary search
over the transmitted circuit, the parties narrow down the computation step under dispute to a
single circuit gate. This process requires O(log(|C|)) interactions, where |C| denotes the circuit
size, and enables the judge to resolve the dispute by recomputing only a single circuit gate.

While the approach of Zhu et al. [25] provides an elegant way to reduce the computational
complexity of the judge in case cheating is restricted to a single message, it falls short if multiple
messages or even a whole protocol execution is under dispute. As a consequence, their con-
struction is limited in scalability and generality, since it is only applicable to two-party garbling
protocols, i.e., neither other semi-honest two-party protocols nor more parties are supported.

Generalizing the ideas of [25] to work for other protocol types and the multi-party case requires
us to address several challenges. First, in [25] the transmitted garbled circuit under dispute is the
result of the completely non-interactive garbling process. In contrast, many semi-honest MPC
protocols (e.g., [14, 4]) consist of several rounds of interactions that need to be all considered
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during the verification. Interactivity poses the challenge that multiple messages may be under
dispute and the computation of messages performed by parties may depend on data received
in previous rounds. Hence, verifications of messages need to consider local computations and
internal states of the parties that depend on all previous communication rounds. This task is far
more complex than verifying a single public message. Second, supporting more than two parties
poses the challenge of resolving a dispute about a protocol execution during which parties might
not know the messages sent between a subset of other parties. Third, the transmitted garbled
circuit in [25] is independent of the parties private inputs. Considering protocols where parties
provide secret inputs or messages that depend on these inputs, requires a privacy-preserving
verification mechanism to protect parties’ sensitive data.

1.1 Contribution

Our first contribution is to introduce a new security notion called financially backed covert se-
curity (FBC). This notion combines a covertly secure protocol with a mechanism to financially
punish a corrupted party if cheating was detected. We formalize financial security by adding
two properties to covert security, i.e., financial accountability and financial defamation freeness.
Our notion is similar to the one of PVC; in fact, PVC adds reputational punishment to covert
security via accountability and defamation freeness. In order to lift these properties to the fi-
nancial context, FBC requires deposits from all parties and allows for an interactive judge. We
present two security games to formalize our introduced properties. While the properties are close
to accountability and defamation freeness of PVC, our work for the first time explicitly presents
formal security games for these security properties, thereby enabling us to rigorously reason
about financial properties in PVC protocols. We briefly compare our new notion to the security
definition of Zhu et al. [25], which is called financially secure computation. Zhu et al. follow the
approach of simulation-based security by presenting an ideal functionality for two parties that
extends the ideal functionality of covert security. In contrast, we present a game-based security
definition that is not restricted to the two-party case. While simulation-based definitions have the
advantage of providing security under composition, proving a protocol secure under their notion
requires to create a full simulation proof which is an expensive task. Instead, our game-based
notion allows to re-use simulation proofs of all existing covert and PVC protocols, including
future constructions, and to focus on proving financial accountability and financial defamation
freeness in a standalone way.

We present transformations from different classes of PVC protocols to FBC protocols. While
we could base our transformations on covert protocols, FBC protocols require a property called
prevention of detection dependent abort, which is not always guaranteed by a covert protocol.
The property ensures that a corrupted party cannot abort after learning that her cheating will
be detected without leaving publicly verifiable evidence. PVC protocols always satisfy prevention
of detection dependent abort. So, by basing our transformation on PVC protocols, we inherit
this property.

While the mechanism utilized by [25] to validate misbehavior is highly efficient, it has only
been used for non-interactive algorithms so far, i.e, to validate correctness of the garbling process.
We face the challenge of extending this mechanism over an interactive protocol execution while
still allowing for efficient dispute resolution such that the judge can be realized via a smart
contract. In order to tackle these challenges, we present a novel technique that enables efficient
validation of arbitrary complex and interactive protocols given the randomness and inputs of all
parties. What’s more, we can allow for private inputs if a public transcript of all protocol messages
is available. We utilize only standard cryptographic primitives, in particular, commitments and
signatures.
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We differentiate existing PVC protocols according to whether the parties provide private in-
puts or not. The former protocols are called input-dependent and the latter ones input-independent.
Input-independent protocols are typically used to generate correlated randomness. Further, all
existing PVC protocols incorporate some form of common public transcript. Input-dependent
protocols require a common public transcript of messages. In contrast, for input-independent
protocols, it is enough to agree on the hashes of all sent messages. While it is not clear, if it is
possible to construct PVC protocols without any form of public transcript, we construct FBC
protocols providing this property. We achieve this by exploiting the interactivity of the judge,
which is non-interactive in PVC. Based on the above observations, we define the following three
classes of FBC protocols, for which we present transformations from PVC protocols.

Class 1: The first class contains input-independent protocols during which parties learn hashes
of all protocol messages such that they agree on a common transcript of message hashes.

Class 2: The second class contains input-dependent protocols with a public transcript of mes-
sages. In contrast to class 1, parties may provide secret inputs and share a common view on
all messages instead of a common view on hashes only.

Class 3: The third class contains input-independent protocols where parties do not learn any
information about messages exchanged between a subset of other parties (cf. class 1). As
there are no PVC protocol fitting into this class, we first convert PVC protocols matching
the requirements of class 1 into protocols without public transcripts and second leverage an
interactive punishment procedure to transform the resulting protocols into FBC protocols
without public transcripts. Our FBC protocols benefit from this property since parties have
to send all messages only to the receiver and not to all other parties. This effectively reduces
the concrete communication complexity by a factor depending on the number of parties. In
the optimistic case, if there is no cheating, we get this benefit without any overhead in the
round complexity.

For each of our constructions, we provide a formal specification and a rigorous security anal-
ysis; the ones of the second class can be found in the full version of this paper. This is in contrast
to the work of [25] which lacks a formal security analysis for financially secure computation. We
stress that all existing PVC multi-party protocols can be categorized into class 1 and 2. Addi-
tionally, by combining any of the transformations from [9, 13, 19], which compile semi-honest
protocols into PVC protocols, our constructions can be used to transform these protocol into
FBC protocols.

The resulting FBC protocols for class 1 and 2 allow parties to non-interactively send evidence
about malicious behavior to the judge. As the judge entity in these two classes is non-interactive,
techniques from our transformations are of independent interest to make PVC protocols more
efficient. Since, in contrast to class 1 and 2, there is no public transcript present in protocols of
class 3, we design an interactive process involving the judge entity to generate evidence about
malicious behavior. For all protocols, once the evidence is interactively or non-interactively cre-
ated, the judge can efficiently resolve the dispute by recomputing only a single protocol message
regardless of the overall computation size. We can further reduce the amount of validation to a
single program instruction, e.g., a gate in a circuit, by prepending an interactive search procedure.
This extension is presented in the full version of this paper.

Finally, we provide a smart contract implementation of the judging party in Ethereum and
evaluate its gas costs (cf. Section 8). The evaluation shows the practicability, e.g., in the three
party setting, with optimistic execution costs of 533 k gas. Moreover, we show that the dispute
resolution of our solution is highly scalable in regard to the number of parties, the number of
protocol rounds and the protocol complexity.

4



1.2 Technical Overview

In this section, we outline the main techniques used in our work and present the high-level ideas
incorporated into our constructions. We start with on overview of the new notion of financially
backed covert security. Then, we present a first attempt of a construction over a blockchain and
outline the major challenges. Next, we describe the main techniques used in our constructions
for PVC protocols of classes 1 and 2 and finally elaborate on the bisection procedure required
for the more challenging class 3.

Financially backed covert security. We recall that, a publicly verifiable covertly secure (PVC)
protocol (πcov,Blame, Judge) consists of a covertly secure protocol πcov, a blaming algorithm
Blame and a judging algorithm Judge. The blaming algorithm produces a certificate cert in case
cheating was detected and the judging algorithm, upon receiving a valid certificate, outputs the
identity of the corrupted party. The algorithm Judge of a PVC protocol is explicitly defined
as non-interactive. Therefore, cert can be transferred at any point in time to any third party
that executes Judge and can be convinced about malicious behavior if the algorithm outputs the
identity of a corrupted party.

In contrast to PVC, financially backed covert security (FBC) works in a model where parties
own assets which can be transferred to other parties. This is modelled via a ledger entity L.
Moreover, the model contains a trusted judging party J which receives deposits before the start
of the protocol and adjudicates in case of detected cheating. We emphasize that the entity J ,
which is a single trusted entity interacting with all parties, is not the same as the algorithm Judge
of a PVC protocol, which can be executed non-interactively by any party. An FBC protocol
(π′

cov,Blame′,Punish) consists of a covertly secure protocol π′
cov, a blaming algorithm Blame′

and an interactive punishment protocol Punish. Similar to PVC, the blaming algorithm Blame′

produces a certificate cert′ that is used as an input to the interactive punishment protocol.
Punish is executed between the parties and the judge J . If all parties behave honestly during the
execution of π′

cov, J sends the deposited coins back to all parties after the execution of Punish.
In case cheating is detected during π′

cov, the judge J burns the coins of the cheating party.

First attempt of an instantiation over a blockchain. Blockchain technologies provide a convenient
way of handling monetary assets. In particular, in combination with the execution of smart
contracts, e.g., offered by Ethereum [23], we envision to realize the judging party J as a smart
contract. A first attempt of designing the punishment protocol is to implement J in a way, that
the judge just gets the certificate generated by the PVC protocol’s blame algorithm and executes
the PVC protocol’s Judge-algorithm. However, the Judge-algorithm of all existing PVC protocols
recomputes a whole protocol instance and compares the output with a common transcript on
which all parties agree beforehand. As computation of a smart contract costs money in form of
transaction fees, recomputing a whole protocol is prohibitively expensive. Therefore, instead of
recomputing the whole protocol, we aim for a punishment protocol that facilitates a judging party
J which needs to recompute just a single protocol step or even a single program instruction,
e.g., a gate in a circuit. The resulting judge becomes efficient in a way that it can be practically
realized via a smart contract.

FBC protocols with efficient judging from PVC protocols. In this work, we present three transfor-
mations from PVC protocols to FBC protocols. Our transformations start with PVC protocols
providing different properties which we use to categorize these protocols into three classes. We
model the protocol execution in a way such that every party’s behavior is deterministically de-
fined by her input, her randomness and incoming messages. More precisely, we define the initial
state of a party as her input and some randomness and compute the next state according to the
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state of the previous round and the incoming messages of the current round. Our first two trans-
formations build on PVC protocols where the parties share a public transcript of the exchanged
messages resp. message hashes. Additionally, parties send signed commitments on their interme-
diate states to all parties. The opening procedure ensures that correctly created commitments
can be opened – falsely created commitments open to an invalid state that is interpreted as an
invalid message. By sending the internal state of some party Pm for a single round together with
the messages received by Pm in the same round to the judging party, the latter can efficiently
verify malicious behavior by recomputing just a single protocol step. The resulting punishment
protocol is efficient and can be executed without contribution of the cheating party.

Interactive punishment protocol to support private transcripts. Our third transformation com-
piles input-independent PVC protocols with a public transcript into protocols where no public
transcript is known to the parties. The lack of a public transcript makes the punishment protocol
more complicated. Intuitively, since an honest party has no signed information about the mes-
sage transcript, she cannot provide verifiable data about the incoming message used to calculate
a protocol step. Therefore, we use the technique of an interactive bisection protocol which was
first used in the context of verifiable computing by Canetti et al. [6] and subsequently by many
further constructions [16, 20, 25, 11]. While the bisection technique is very efficient to narrow
down disagreement, it was only used for non-interactive algorithms so far. Hence, we extend this
technique to support also interactive protocols. In particular, in our work, we use a bisection
protocol to allow two parties to efficiently agree on a common message history. To this end,
both parties, the accusing and the accused one, create a Merkle tree of their emulated message
history up to the disputed message and submit the corresponding root. If they agree on the
message history, the accusation can be validated by reference to this history. If they disagree,
they perform a bisection search over the proposed history that determines the first message in
the message history, they disagree on, while automatically ensuring that they agree on all pre-
vious messages. Hence, the judge can verify the message that the parties disagree on based on
the previous messages they agree on. At the end of both interactions, the judge can efficiently
resolve the dispute by recomputing just a single step.

2 Preliminaries

We start by introducing notation and cryptographic primitives used in our construction. More-
over, we provide the definition of covert security and publicly verifiable covert security in the full
version of this paper.

We denote the computational security parameter by κ. Let n be some integer, then [n] =
{1, . . . , n}. Let i ∈ [n], then we use the notation j ̸= i for j ∈ [n]\{i}. A function negl(n) : N→ R
is negligible in n if for every positive integer c there exists an integer n0 such that ∀n > n0 it
hols that negl(n) < 1

nc . We use the notation negl(n) to denote a negligible function.
We define REALπ,A(z),I(x̄, 1κ) to be the output of the execution of an n-party protocol π exe-

cuted between parties {Pi}i∈[n] on input x̄ = {xi}i∈[n] and security parameter κ, where A on aux-
iliary input z corrupts parties I ⊂ {Pi}i∈[n]. We further specify OUTPUTj(REALπ,A(z),I(x̄, 1κ))
to be the output of party Pj for j ∈ [n].

Our protocol utilizes a signature scheme (Generate,Sign,Verify) that is existentially unforge-
able under chosen-message attacks. We assume that each party executes the Generate-algorithm
to obtain a key pair (pk, sk) before the protocol execution. Further, we assume that all public
keys are published and known to all parties while the secret keys are kept private. To simplify
the protocol description we denote signed messages with

〈
x
〉
i
instead of (x, σ := Signski(x)). The
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verification is therefore written as Verify(
〈
x
〉
i
) instead of Verifypki(x, σ). Further, we make use of

a hash function H(·) : {0, 1}∗ → {0, 1}κ that is collision resistant.
We assume a synchronous communication model, where communication happens in rounds

and all parties are aware of the current round. Messages that are sent in some round k arrive
at the receiver in round k + 1. Since we consider a rushing adversary, the adversary learns
the messages sent by honest parties in round k in the same round and hence can adapt her
own messages accordingly. We denote a message sent from party Pi to party Pj in round k of

some protocol instance denoted with ℓ as msg
(i,j)
(ℓ,k). The hash of this message is denoted with

hash
(i,j)
(ℓ,k) := H(msg

(i,j)
(ℓ,k)).

A Merkle tree over an ordered set of elements {xi}i∈[N ] is a labeled binary hash tree, where
the i-th leaf is labeled by xi. We assume N to be an integer power of two. In case the number of
elements is not a power of two, the set can be padded until N is a power of two. For construction
of Merkle trees, we make use of the collision-resistant hash function H(·) : {0, 1}∗ → {0, 1}κ.

Formally, we define a Merkle tree as a tuple of algorithms (MTree,MRoot,
MProof,MVerify). Algorithm MTree takes as input a computational security parameter κ as
well as a set of elements {xi}i∈[N ] and creates a Merkle tree mTree. To ease the notation, we will
omit the security parameter and implicitly assume it to be provided. Algorithm MRoot takes as
input a Merkle tree mTree and returns the root element root of tree mTree. Algorithm MProof
takes as input a leaf xj and Merkle tree mTree and creates a Merkle proof σ showing that xj is
the j-th leaf in mTree. Algorithm MVerify takes as input a proof σ, an index i, a root root and a
leaf x∗ and returns true iff x∗ is the i-the leaf of a Merkle tree with root root.

A Merkle Tree satisfies the following two requirements. First, for each Merkle tree mTree cre-
ated over an arbitrary set of elements {xi}i∈[N ], it holds that for each j ∈ [N ] :
MVerify(MProof(xj ,mTree), j,MRoot(mTree), xj) = true. We call this property correctness. Sec-
ond, for each Merkle tree mTree with root root := MRoot(mTree) created over an arbitrary set
of elements {xi}i∈[N ] with security parameter κ it holds that for each polynomial time algo-
rithm adversary A outputting an index j∗, leaf x∗ ̸= xj∗ and proof σ∗ the probability that
MVerify(σ∗, j∗,MRoot(mTree), x∗) = true is negl(κ). We call this property binding.

3 Financially Backed Covert Security

In the following, we specify the new notion of financially backed covert security. This notion
extends covert security by a mechanism of financial punishment. More precisely, once an honest
party detects cheating of the adversary during the execution of the covertly secure protocol,
there is some corrupted party that is financial punished afterwards. The financial punishment
is realized by an interactive protocol Punish that is executed directly after the covertly secure
protocol. In order to deal with monetary assets, financially backed covertly secure protocols
depend on a public ledger L and a trusted judge J . The former can be realized by distributed
ledger technologies, such as blockchains, and the latter by a smart contract executed on the
said ledger. In the following, we describe the role of the ledger and the judging party, formally
define financially backed covert security and outline techniques to prove financially backed covert
security.

3.1 The Ledger and Judge

An inherent property of our model is the handling of assets and asset transfers based on predefined
conditions. Nowadays, distributed ledger technologies like blockchains provide convenient means
to realize this functionality. We model the handling of assets resp. coins via a ledger entity
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denoted by L. The entity stores a balance of coins for each party and transfers coins between

parties upon request. More precisely, L stores a balance b
(t)
i for each party Pi at time t. For the

security definition presented in Section 3.2, we are in particular interested in the balances before

the execution of the protocol π, i.e., b
(pre)
i , and after the execution of the protocol Punish, i.e.,

b
(post)
i . The balances are public such that every party can query the amount of coins for any party
at the current time. In order to send coins to another party, a party interacts with L to trigger
the transfer.

While we consider the ledger as a pure storage of balances, we realize the conditional transfer
of coins based on some predefined rules specified by the protocol Punish via a judge J . In
particular, J constitutes a trusted third party that interacts with the parties of the covertly
secure protocol. More precisely, we require that each party sends some fixed amount of coins
as deposit to J before the covertly secure protocol starts. During the covertly secure protocol
execution, the judge keeps the deposited coins but does not need to be part of any interaction.
After the execution of the covertly secure protocol, the judge plays an important role in the
punishment protocol Punish. In case any party detects cheating during the execution of the
covertly secure protocol, J acts as an adjudicator. If there is verifiable evidence about malicious
behavior of some party, the judge financially punishes the corrupted party by withholding her
deposit. Eventually, J will reimburse all parties with their deposits except those parties that
have been proven to be malicious. The rules according to which parties are considered malicious
and hence according to which the coins are reimbursed or withhold need to be specified by the
protocol Punish.

Finally, we emphasize that both entities the ledger L and the judge J are considered trusted.
This means, the correct functionality of these entities cannot be distorted by the adversary.

3.2 Formal Definition

We work in a model in which a ledger L and a judge J as explained above exist. Let π′ be an
n-party protocol that is covertly secure with deterrence factor ϵ. Let the number of corrupted
parties that is tolerated by π′ be m < n and the set of corrupted parties be denoted by I. We
define π as an extension of π′, in which all involved parties transfer a fixed amount of coins, d, to
J before executing π′. Additionally, after the execution of π′, all parties execute algorithm Blame
which on input the view of the honest party outputs a certificate and broadcasts the generated
certificate – still as part of π. The certificate is used for both proving malicious behavior, if
detected, and defending against being accused for malicious behavior.

After the execution of π, all parties participate in the protocol Punish. In case honest parties
detected misbehavior, they prove said misbehavior to J such that J can punish the malicious
party. In case a malicious party blames an honest one, the honest parties participate to prove
their correct behavior. Either way, even if there is no blame at all, all honest parties wait to
receive their deposits back, which are reimbursed by J at the end of the punishment protocol
Punish.

Definition 1 (Financially backed covert security). We call a triple
(π,Blame,Punish) an n-party financially backed covertly secure protocol with deterrence fac-
tor ϵ computing some function f in the L and J model, if the following security properties are
satisfied:

1. Simulatability with ϵ-deterrent: The protocol π (as described above) is secure against
a covert adversary according to the strong explicit cheat formulation with ϵ-deterrent and
non-halting detection accurate.
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2. Financial Accountability: For every PPT adversary A corrupting parties Pi for i ∈ I ⊂
[n], there exists a negligible function µ(·) such that for all (x̄, z) ∈ ({0, 1})n+1 the following
holds:
If for any honest party Ph ∈ [n] \ I it holds that
OUTPUTh(REALπ,A(z),I(x̄, 1κ)) = corrupted∗ 3, then ∃m ∈ I such that:

Pr[b(post)m = b(pre)m − d] > 1− µ(κ),

where d denotes the amount of deposited coins per party.
3. Financial Defamation Freeness: For every PPT adversary A corrupting parties Pi for

i ∈ I ⊂ [n], there exists a negligible function µ(·) such that for all (x̄, z) ∈ ({0, 1})n+1 and
all j ∈ [n] \ I the following holds:

Pr[b
(post)
j < b

(pre)
j ] < µ(κ).

Remark: For simplicity, we assume that the adversary does not transfer coins after sending the
deposit to J . This assumption can be circumvented by restating financial accountability such
that the sum of the balances of all corrupted parties (not just the ones involved in the protocol)
is reduced by d.

3.3 Proving Security of Financially Backed Covert Security

Our notion of financially backed covert security (FBC) consists of three properties. The simu-
latability property requires the protocol π, which augments the covertly secure protocol π′, to be
covertly secure as well. This does not automatically follows from the security of π′, in particular
since π includes the broadcast of certificates in case of detected cheating. Showing simulatabil-
ity of π guarantees that the adversary does not learn sensitive information from the certificates.
Showing that a protocol π satisfies the simulatability property is proven via a simulation proof. In
contrast, we follow a game-based approach to formally prove financial accountability and finan-
cial defamation freeness. To this end, we introduce two novel security games, ExpFA and ExpFDF,
in the following. Although these two properties are similar to the accountability and defamation
freeness properties of PVC, we are the first to introduce formal security games for any of these
properties. While we focus on financial accountability and financial defamation freeness, we note
that our approach and our security games can be adapted to suit for the security properties of
PVC as well.

Both security games are played between a challenger C and an adversary A. We define the
games in a way that allows us to abstract away most of the details of π. In particular, we
parameterize the games by two inputs, one for the challenger and one for the adversary. The
challenger’s input contains the certificates {certi}i∈[n]\I of all honest parties generated by the
Blame-algorithm after the execution of π while the adversary’s input consists of all malicious
parties’ views {viewi}i∈I . By introducing the certificates as inputs to the game, we can prove fi-
nancial accountability and financial defamation freeness independent from proving simulatability
of protocol π.

Throughout the execution of the security games, the adversary executes one instance of the
punishment protocol Punish with the challenger that takes over the roles of all honest and trusted
parties, i.e., the honest protocol parties Ph for h /∈ I, the judge J , and the ledger L. To avoid
an overly complex challenger description, we define those parties as separated entities that can

3 We use the notation corrupted∗ to denote that the output of Ph is corruptedi for some i ∈ I. We stress
that i does not need to be equal to m of the financial accountability property.
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be addressed by the adversary separately and are all executed by the challenger: {Ph}h∈[n]\I ,
J, and L. In case any entity is supposed to act pro-actively and does not only wait to react to
malicious behavior, the entity is invoked by the challenger. Communication between said entities
is simulated by the challenger. The adversary acts on behalf of the corrupted parties.

Financial accountability game. Intuitively, financial accountability states that whenever any
honest party detects cheating, there is some corrupted party that loses her deposit. Therefore,
we require that the output of all honest parties was corruptedm for m ∈ I in the execution of
π. If this holds, the security game executes Punish as specified by the FBC protocol. Before
the execution of Punish, the challenger asks the ledger for the balances of all parties and stores

them as {b(prePunish)i }i∈[n]. Note that prePunish denotes the time before Punish but after the whole
protocol already started. This means, relating to Definition 1, the security deposits are already
transferred to J , i.e., bprePunishi = bprei − d. After the execution, the challenger C again reads the

balances of all parties storing them as {b(post)i }i∈[n] . If b
(post)
m = b

(prePunish)
m + d for all m ∈ I, i.e.,

all corrupted parties get their deposits back, the adversary wins and C outputs 1, otherwise C
outputs 0. A protocol satisfies the financial accountability property as stated in Definition 1 if
for each adversary A running in time polynomial in κ the probability that A wins game ExpFA

is at most negligible, i.e., if Pr[ExpFA(A, κ) = 1] ≤ negl(κ).

Financial defamation freeness game. Intuitively, financial defamation freeness states that an
honest party can never lose her deposit as a result of executing the Punish protocol. The security
game is executed in the same way as the financial accountability game. It only differs in the
winning conditions for the adversary. After the execution C checks the balances of the honest

parties. If b
(post)
h < b

(prePunish)
h +d for at least one h ∈ [n]\I, the adversary wins and the challenger

outputs 1, otherwise C outputs 0. A protocol satisfies the financial defamation freeness property
as stated in Definition 1 if for each adversary A running in time polynomial in κ the probability
that A wins game ExpFDF is at most negligible, i.e. if Pr[ExpFDF(A, κ) = 1] ≤ negl(κ).

4 Features of PVC Protocols

We present transformations from different classes of publicly verifiable covertly secure multi-party
protocols (PVC) to financially backed covertly secure protocols (FBC). As our transformations
make use of concrete features of the PVC protocol (e.g., the exchanged messages), we cannot
use the PVC protocol in a block-box way. Instead, we model the PVC protocol in an abstract
way, stating features that are required by our constructions. In the remainder of this section, we
present these features in detail and describe how we model them. We note that all existing PVC
multi-party protocols [9, 13, 19] provide the features specified in this section.

4.1 Cut-and-Choose

Although not required per definition of PVC, a fundamental technique used by all existing PVC
protocols is the cut-and-choose approach that leverages a semi-honest protocol by executing t
instances of the semi-honest protocol in parallel. Afterwards, the views (i.e., input and random-
ness) of the parties is revealed in s instances. This enables parties to detect misbehavior with
probability ϵ = s

t . PVC protocols can be split into protocols where parties provide private inputs
and those where parties do not have secret data. While cut-and-choose for input-independent
protocols, i.e., those where parties do not have private inputs, work as explained on a high
level before, the approach must be utilized in such a way that input privacy is guaranteed for
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input-dependent protocols. However, for both classes of protocols, a cheat detection probability
of ϵ = s

t can be achieved. We elaborate more on the two variants and provide details about them
in the full version of this paper.

4.2 Verification of Protocol Executions

An important feature of PVC protocols based on cut-and-choose is to enable parties to verify
the execution of the opened protocol instances. This requires parties to emulate the protocol
messages and compare them with the messages exchanged during the real execution. In order to
emulate honest behavior, we need the protocol to be derandomized.

Derandomization of the protocol execution. In general, the behavior of each party during some
protocol execution depends on the party’s private input, its random tape and all incoming mes-
sages. In order to enable parties to check the behavior of other parties in retrospect, the actions
of all parties need to be made deterministic. To this end, we require the feature of a PVC protocol
that all random choices of a party Pi in a protocol instance are derived from some random seed
seedi using a pseudorandom generator (PRG). The seed seedi is fixed before the beginning of the
execution. It follows that the generated outgoing messages are computed deterministically given
the seed seedi, the secret input and all incoming messages.

State evolution. Corresponding to our communication model (cf. Section 2), the internal states
of the parties in a semi-honest protocol instance evolve in rounds. For each party Pi, for i ∈ [n],
and each round k > 0 the protocol defines a state transition computeRoundik that on input

the previous internal state state
(i)
(k−1) and the set of incoming messages {msg

(j,i)
(k−1)}j ̸=i computes

the new internal state state
(i)
(k) and the set of outgoing messages {msg

(i,j)
(k) }j ̸=i. Based on the

derandomization feature, the state transition is deterministic, i.e., all random choices are derived
from a random seed included in the internal state of a party. Each party starts with an initial
internal state that equals its random seed seedi and its secret input xi. In case no secret input is
present (i.e., in the input-independent setting) or no message is sent, the value is considered to
be a dummy symbol (⊥). We denote the set of all messages sent during a protocol instance by
protocol transcript. Summarizing, we formally define

state
(i)
(0) ← (seedi, xi)

{msg
(j,i)
(0) }j∈[n]\{i} ← {⊥}j∈[n]\{i}

(state
(i)
(k), {msg

(i,j)
(k) }j∈[n]\{i})← computeRoundik(state

(i)
(k−1), {msg

(j,i)
(k−1)}j∈[n]\{i}).

Protocol emulation. In order to check for malicious behavior, parties locally emulate the protocol
execution of the opened instances and compare the set of computed messages with the received
ones. In case some involved parties are not checked (e.g., in the input-dependent setting), the
emulation gets their messages as input and assumes them to be correct. In this case, in order to
ensure that each party can run the emulation, it is necessary that each party has access to all
messages sent in the opened instance (cf. Section 4.4).

To formalize the protocol emulation, we define for each n-party protocol π with R rounds
two emulation algorithms. The first algorithm emulatefullπ emulates all parties while the second
algorithm emulatepartπ emulates only a partial subset of the parties and considers the messages of
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all other parties as correct. We formally define them as

({msg
(i,j)
(k) }k,i,j ̸=i, {state(i)(k)}k,i)← emulatefullπ ({state(i)(0)}i) and

({msg
(i,j)
(k) }k,i,j ̸=i, {state(̂i)(k)}k,̂i)← emulatepartπ (O, {state(̂i)(0)}î, {msg

(i∗,j)
(k) }k,i∗,j ̸=i∗)

where k ∈ [R], i, j ∈ [n], î ∈ O and i∗ ∈ [n] \O. O denotes the set of opened parties.

4.3 Deriving the Initial States

As a third feature, we require a mechanism for the parties of a PVC protocol to learn the initial
states of all opened parties in order to perform the protocol emulation (cf. Section 4.2). Since
PVC prevents detection dependent abort, parties learn the initial state even if the adversary
aborts after having learned the cut-and-choose selection. Existing multi-party PVC protocols
provide this feature by either making use of oblivious transfer or time-lock puzzles as in [9] resp.
[13, 19]. We elaborate on these protocols in the full version of this paper.

To model this behavior formally, we define the abstract tuples initDatacore and initDataaux as
well as the algorithm deriveInit. initDatacore(i) represents data each party holds that should be signed
by Pi and can be used to derive the initial state of party Pi in a single protocol instance (e.g., a
signed time-lock puzzle). initDataaux(i) represents the additional data all parties receive during the
PVC protocol that can be used to interpret initDatacore(i) (e.g., the verifiable solution of the time-
lock puzzle). Finally, deriveInit is an algorithm that on input initDatacore(i) and initDataaux(i) derives
the initial state of party Pi (e.g., verifying the solution of the puzzle). Instead of outputting an
initial state, the algorithm deriveInit can also output bad or ⊥. The former states that party Pi

misbehaved during the PVC protocol by providing inconsistent data. The symbol ⊥ states that
the input to deriveInit has been invalid which can only occur if initDatacore(i) or initDataaux(i) have
been manipulated.

Similar to commitment schemes, our abstraction satisfies a binding and hiding requirement,
i.e., it is computationally binding and computationally hiding. The binding property requires
that the probability of any polynomial time adversary finding a tuple (x, y1, y2) such that
deriveInit(x, y1) ̸= ⊥, deriveInit(x, y2) ̸= ⊥, and deriveInit(x, y1) ̸= deriveInit(x, y2) is negligi-
ble. The hiding property requires that the probability of a polynomial time adversary finding for
a given initDatacore a initDataaux such that deriveInit(initDatacore, initDataaux) ̸= ⊥ is negligible.

4.4 Public Transcript

A final feature required by PVC protocols of class 1 and 2 is the availability of a common public
transcript. We define three levels of transcript availability. First, a common public transcript of
messages ensures that all parties hold a common transcript containing all messages that have
been sent during the execution of a protocol instance. Every protocol can be transformed to
provide this feature by requiring all parties to send all messages to all other parties and defining
a fixed ordering on the sent messages – we consider an ordering of messages by the round they
are sent, the index of the sender, and the receiver’s index in this sequence. If messages should
be secret, each pair of parties executes a secure key exchange as part of the protocol instance
and then encrypts messages with the established keys. Agreement is achieved by broadcasting
signatures on the transcript, e.g., via signing the root of a Merkle tree over all message hashes
as discussed in [13] and required in our transformations. Second, a common public transcript of
hashes ensures that all parties hold a common transcript containing the hashes of all messages
sent during the execution of a protocol instance. This feature is achieved similar to the transcript
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of messages but parties only send message hashes to all parties that are not the intended receiver.
Finally, the private transcript does not require any agreement on the transcript of a protocol
instance.

Currently, all existing multi-party PVC protocols either provide a common public transcript
of messages [9, 13] or a common public transcript of hashes [19]. However, [9] and [13] can be
trivially adapted to provide just a common public transcript of hashes.

5 Building Blocks

In this section, we describe the building blocks for our financially backed covertly secure protocols.
In the full version of this paper, we show security of the building blocks and that incorporating
the building blocks into the PVC protocol does not affect the protocol’s security.

5.1 Internal State Commitments

To realize the judge in an efficient way, we want it to validate just a single protocol step instead
of validating a whole instance. Existing PVC protocols prove misbehavior in a naive way by

allowing parties to show that some other party Pj had an initial state state
(j)
(0). Based on the

initial state, the judge recomputes the whole protocol instance. In contrast to this, we incorporate

a mechanism that allows parties to prove that Pj has been in state state
(j)
(k) in a specific round

k where misbehavior was detected. Then, the judge just needs to recompute a single step. To
this end, we require that parties commit to each intermediate internal state during the execution
of each semi-honest instance in a publicly verifiable way. In particular, in each round k of each
semi-honest instance ℓ, each party Pi sends a hash of its internal state to all other parties using

a collision-resistant hash function H(·), i.e., H(state
(i)
(ℓ,k)). At the end of a protocol instance each

party Ph creates a Merkle tree over all state hashes, i.e., sTreeℓ := MTree({hash(i)(ℓ,k)}k∈[R],i∈[n]),

and broadcasts a signature on the root of this tree, i.e.,
〈
MRoot(sTreeℓ)

〉
h
.

5.2 Signature Encoding

Our protocol incorporates signatures in order to provide evidence to the judge J about the
behavior of the parties. Without further countermeasures, an adversary can make use of signed
data across multiple instances or rounds, e.g., she could claim that some message msg sent in
round k has been sent in round k′ using the signature received in round k. To prevent such
an attack, we encode signed data by prefixing it with the corresponding indices before being
signed. Merkle tree roots are prefixed with the instance index ℓ. Message hashes are prefixed
with ℓ, the round index k, the sender index i and the receiver index j. Initial state commitments
(initDatacore(ℓ,i)) are prefixed with ℓ and the index i of the party who’s initial state the commitment
refers to. The signature verification algorithm automatically checks for correct prefixing. The
indices are derived from the super- and subscripts. If one index is not explicitly provided, e.g.,
in case only one instance is executed, the index is assumed to be 1.

5.3 Bisection of Trees

Our constructions make heavily use of Merkle trees to represent sets of data. This enables parties
to efficiently prove that chunk of data is part of a set by providing a Merkle proof showing that
the chunk is a leaf of the corresponding Merkle tree. In case two parties disagree about the data
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of a Merkle tree which should be identical, we use a bisection protocol ΠBS to narrow down
the dispute to the first leaf of the tree on which they disagree. This helps a judging party to
determine the lying party by just verifying a single data chunk in contrast to checking the whole
data. The technique of bisecting was first used by Canetti et al. [6] in the context of verifiable
computing. Later, the technique was used in [16, 20, 11].

The protocol is executed between a party Pb with input a tree mTreeb, a party Pm with input
a tree mTreem and a trusted judge J announcing three public inputs: rootj , the root of mTreej
as claimed by Pj for j ∈ {b,m}, and width, the width of the trees, i.e., the number of leaves. The
protocol returns the index z of the first leaf at which mTreeb and mTreem differentiate, the leaf
hashmz at position z of mTreem, and the common leaf hash(z−1) at position z − 1. The latter is
⊥ if z = 1. Let node(mTree, x, y) be the node of a tree mTree at position x of layer y – positions
start with 1. The protocol is executed as follows:

Protocol Bisection ΠBS

1. J initializes layer variable y := 1, position variable x := 1, last agreed hash hasha := ⊥, and
depth := ⌈log2(width)⌉+ 1

2. All parties repeat this step while y ≤ depth:
(a) Both Pj (for j ∈ {b,m}) send hashj := node(mTreej , x, y) and σj := MProof(hashj ,mTreej)

to J .
(b) If MVerify(hashj , x, rootj , σj) = false (for j ∈ {b,m}), J discards the message from Pj .
(c) If y = depth, J keeps hashb and hashm and sets y = y + 1.
(d) If y < depth and hashb = hashm, J sets x = (2 · x) + 1 and y = y + 1.
(e) If y < depth and hashb ̸= hashm, J sets x = (2 · x)− 1 and y = y + 1.

3. If hashb = hashm

– J sets z := x+ 1 and hash(z−1) := hashb.
– Pm sends hashmz := node(mTreem, z, depth) and σ := MProof(hashmz ,mTreem) to J .
– If MVerify(hashmz , z, root, σ) = false, J discards. Otherwise J stores hashmz .

4. If hashb ̸= hashm

– J sets z := x and hashmz := hashm. If z = 1, J sets hash(z−1) := ⊥, and the protocol jumps
to step 5.

– Pm sends hash(z−1) := node(mTreem, z− 1, depth) and σ := MProof(hash(z−1),mTreem) to J .
– If MVerify(hash(z−1), z − 1,mTreem, σ) = false, J discards. Otherwise, J keeps hash(z−1).

5. J announces public outputs z, hashmz and hash(z−1).

6 Class 1: Input-Independent with Public Transcript

Our first transformation builds on input-independent PVC protocols where all parties possess a
common public transcript of hashes (cf. Section 4.4) for each checked instance. Since the parties
provide no input in these protocols, all parties can be opened. The set of input-independent
protocols includes the important class of preprocessing protocols. In order to speed up MPC
protocols, a common approach is to split the computation in an offline and an online phase.
During the offline phase, precomputations are carried out to set up some correlated randomness.
This phase does not require the actual inputs and can be executed continuously. In contrast, the
online phase requires the private inputs of the parties and consumes the correlated randomness
generated during the offline phase to speed up the execution. As the online performance is more
time critical, the goal is to put as much work as possible into the offline phase. Prominent
examples following this approach are the protocols of Damg̊ard et al. [10, 8] and Wang et al. [21,
22, 24]. Input-independent PVC protocols with a public transcript can be obtained from semi-
honest protocols using the input-independent compilers of Damg̊ard et al.[9] and Faust et al. [13].
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In order to apply our construction to an input-independent PVC protocol, πpp, we require πpp

to provide some features presented in Section 4 and to have incorporated some of the building
blocks described in Section 5. First, we require the PVC protocol to be based on the cut-and-
choose approach (cf. Section 4.1). Second, we require the actions of each party Pi in a protocol
execution to be deterministically determined by a random seed (cf. Section 4.2). Third, we re-
quire that all parties learn the initial states of all other parties in the opened protocol instances
(cf. Section 4.3). To this end, the parties receive signed data (e.g., a commitment and decom-
mitment value) to derive the initial states of the other parties. Fourth, parties need to commit
to their intermediate internal states during the protocol executions in a publicly verifiable way
(cf. Section 5.1). Finally, all signed data match the encoded form specified in Section 5.2.

In order to achieve the public transcript of hashes and the commitments to the intermediate
internal states, parties exchange additional data in each round. Formally, whenever some party

Ph in round k of protocol instance ℓ transitions to a state state
(h)
(ℓ,k) with the outgoing messages

{msg
(h,i)
(ℓ,k)}i∈[n]\{h} , then it actually sends the following to Pi:

(msg
(h,i)
(ℓ,k), {hash

(h,j)
(ℓ,k) := H(msg

(h,j)
(ℓ,k))}j∈[n]\{h,i}, hash

(h)
(ℓ,k) := H(state

(h)
(ℓ,k)))

Let O denote the set of opened instances. We summarize the aforementioned requirements
by specifying the data that the view of any honest party Ph includes. It contains signed data to
derive the initial state of all parties for the opened instances (1a), a Merkle tree over the hashes
of all messages exchanged within a single instance for all instances (1b), a Merkle tree over the
hashes of all intermediate internal states of a single instance for all instances (1c), and signatures
from each party over the roots of the message and state trees (1d):

{(
〈
initDatacore(i,ℓ)

〉
i
, initDataaux(i,ℓ))}ℓ∈O,i∈[n], (1a)

{mTreeℓ}ℓ∈[t] := {MTree({hash(i,j)(ℓ,k)}k∈[R],i∈[n],j ̸=i)}ℓ∈[t], (1b)

{sTreeℓ}ℓ∈[t] := {MTree({hash(i)(ℓ,k)}k∈[R],i∈[n])}ℓ∈[t] (1c)

{
〈
MRoot(mTreeℓ)

〉
i
}i∈[n],ℓ∈[t] and {

〈
MRoot(sTreeℓ)

〉
i
}i∈[n],ℓ∈[t]. (1d)

We next define the blame algorithm that takes the specified view as input and continue with
the description of the punishment protocol afterwards.

The blame algorithm. At the end of protocol πpp, all parties execute the blame algorithm Blamepp

to generate a certificate cert. The resulting certificate is broadcasted and the honest party finishes
the execution of πpp by outputting cert. The certificate is generated as follows:

Algorithm Blamepp

1. Ph runs state
(i)

(ℓ,0) = deriveInit(initDatacore(i,ℓ), initData
aux
(i,ℓ)) for each i ∈ [n], ℓ ∈ O. Let B be the set of

all tuples (ℓ, 0,m, 0) such that state
(m)

(ℓ,0) = bad. If B ̸= ∅, goto step 4.
2. Ph emulates for each ℓ ∈ O the protocol executions on input the initial states from all par-

ties to obtain the expected messages and the expected intermediate states of all parties, i.e.,
({msg

(i,j)

(ℓ,k)}k∈[R],i∈[n],j ̸=i, {state(i)(ℓ,k)}k,i,j) := emulatefull({state(i)(ℓ,0)}i∈[n]).

3. Let B be the set of all tuples (ℓ, k,m, i) such that H(msg
(m,i)

(ℓ,k) ) ̸= hash
(m,i)

(ℓ,k) or H(state
(m)

(ℓ,k)) ̸=
hash

(m)

(ℓ,k) – where hash
(m,i)

(ℓ,k) and hash
(m)

(ℓ,k) are extracted from mTreeℓ or sTreeℓ respectively. In case
of an incorrect state hash, set i = 0.
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4. If B = ∅ Ph outputs cert := ⊥. Otherwise, Ph picks the tuple (ℓ, k,m, i) from B with the smallest
ℓ, k, m, i in this sequence, sets k′ := k − 1 and defines variables as follows – variables that are
not explicitly defined are set to ⊥.

(Always): ids := (ℓ, k,m, i)

initData := (
〈
initDatacore(ℓ,m)

〉
m
, initDataaux(ℓ,m))

rootstate :=
〈
MRoot(sTreeℓ)

〉
m

rootmsg :=
〈
MRoot(mTreeℓ)

〉
m

(If k > 0): stateout := (hash
(m)

(ℓ,k),MProof(hash
(m)

(ℓ,k), sTreeℓ))

msgout := (hash
(m,i)

(ℓ,k) ,MProof(hash
(m,i)

(ℓ,k) ,mTreeℓ))

(If k > 1): statein := (state
(m)

(ℓ,k′),MProof(H(state
(m)

(ℓ,k′)), sTreeℓ))

Min := {(msg
(j,m)

(ℓ,k′),MProof(H(msg
(j,m)

(ℓ,k′)),mTreeℓ))}j∈[n]

5. Output cert := (ids, initData, rootstate, rootmsg, statein,Min, stateout,msgout).

The punishment protocol. Each party Pi (for i ∈ [n]) checks if cert ̸= ⊥. If this is the case, Pi

sends cert to J pp. Otherwise, Pi waits till time T to receive her deposit back. Timeout T is set
such that the parties have sufficient time to submit a certificate after the execution of πpp and
Blamepp. The judge J pp is described in the following. The validation algorithms wrongMsg and
wrongState and the algorithm getIndex can be found in the full version of this paper. We stress
that the validation algorithms wrongMsg and wrongState don’t need to recompute a whole pro-
tocol execution but only a single step. Therefore, J pp is very efficient and can, for instance, be
realized via a smart contract. To be more precise, the judge is execution without any interaction
and runs in computation complexity linear in the protocol complexity. By allowing logarithmic
interactions between the judge and the parties, we can further reduce the computation complex-
ity to logarithmic in the protocol complexity. This can be achieved by applying the efficiency
improvement described in the full version of this paper.

Judge J pp

Initialization: The judge has access to public variables n, t, T and the set of parties {Pi}i∈[n].
Further, it maintains a set cheaters initially set to ∅. Prior to the execution of πpp, J pp has received
d coins from each party Pi.

Proof verification: Wait until time T1 to receive ((ℓ, k,m, i), initData,
〈
rootstate(ℓ)

〉
m
,〈

rootmsg
(ℓ)

〉
m
, statein,Min, stateout, (hash, σ)) and do:

1. If Pm ∈ cheaters, abort.
2. Parse initData to (

〈
initDatacore(ℓ,m)

〉
m
, initDataaux(ℓ,m)) and set state0 =

deriveInit(initDatacore(ℓ,m), initData
aux
(ℓ,m)). If Verify(

〈
initDatacore(ℓ,m)

〉
m
) = false or state0 = ⊥, abort. If

state0 = bad, add Pm to cheaters and stop.
3. If Verify(

〈
rootstate(ℓ)

〉
m
) = false or Verify(

〈
rootmsg

(ℓ)

〉
m
) = false, abort.

4. If i = 0 and wrongState(state0, statein, stateout,Min, root
state
(ℓ) , rootmsg

(ℓ) , ℓ, k,m) = true, add Pm to
cheaters.

5. If i > 0, MVerify(hash, getIndex(k,m, i), rootmsg
(ℓ) , σ) = true and

wrongMsg(state0, statein, hash,Min, , root
state
(ℓ) , rootmsg

(ℓ) , ℓ,m, k, i) = true, add Pm to cheaters.

Timeout: At time T1, send d coins to each party Pi /∈ cheaters.
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6.1 Security

Theorem 1. Let (πpp, ·, ·) be an n-party publicly verifiable covert protocol computing function
f with deterrence factor ϵ satisfying the view requirements stated in Eq. (1a)-(1d). Further, let
the signature scheme (Generate,Sign,Verify) be existentially unforgeable under chosen-message
attacks, the Merkle tree satisfies the binding property and the hash function H be collision re-
sistant. Then the protocol πpp together with algorithm Blamepp, protocol Punishpp and judge J pp

satisfies financially backed covert security with deterrence factor ϵ according to Definition 1.

We formally prove Theorem 1 in the full version of this paper.

7 Class 3: Input-Independent with Private Transcript

At the time of writing, there exists no PVC protocol without public transcript that could be
directly transformed into an FBC protocol. Moreover, it is not clear, if it is possible to con-
struct a PVC protocol without a public transcript. Instead, we present a transformation from an
input-independent PVC protocol with public transcript into an FBC protocol without any form
of common public transcript. As in our first transformation, we start with an input-independent
PVC protocol πpvc

3 that is based on cut-and-choose where parties share a common public tran-
script. Due to the input-independence, all parties of the checked instances can be opened. How-
ever, unlike our first transformation, which utilizes the public transcript, we remove this feature
from the PVC protocol as part of the transformation. We denote the protocol that results by
removing the public transcript feature from πpvc

3 by π3. Without having a public transcript, the
punishment protocol becomes interactive and more complicated. Intuitively, without a public
transcript it is impossible to immediately decide if a message that deviates from the emulation
is maliciously generated or is invalid because of a received invalid messages. Note that we still
have a common public tree of internal state hashes in our exposition. However, the necessity of
this tree can also be removed by applying the techniques presented here that allow us to remove
the common transcript.

In order to apply our construction to a protocol π3, we require almost the same features of
π3 as demanded in our first transformation (cf. Section 6). For the sake of exposition, we outline
the required features here again and point out the differences. First, we require π3 to be based
on the cut-and-choose approach (cf. Section 4.1). Second, we require the actions of each party
Pi in a semi-honest instance execution to be deterministically determined by a random seed (cf.
Section 4.2). Third, we require that all parties learn the initial states of all other parties in the
opened protocol instances (cf. Section 4.3). To this end, the parties receive signed data (e.g., a
commitment and decommitment value) to derive the initial states of the other parties. Fourth,
parties need to commit to their intermediate internal states during the protocol executions in a
publicly verifiable way (cf. Section 5.1). Finally, all signed data match the encoded form specified
in Section 5.2.

In contrast to the transformation in Section 6 we no longer require from protocol π3 that the
parties send all messages or message hashes to all other parties. Formally, whenever some party

Ph in round k of protocol instance ℓ transitions to a state state
(h)
(ℓ,k) with the outgoing messages

{msg
(h,i)
(ℓ,k)}i∈[n]\{h}, then it actually sends the following to Pi:

(
〈
msg

(h,i)
(ℓ,k)

〉
h
, hash

(h)
(ℓ,k) := H(state

(h)
(ℓ,k)))

Let O be the set of opened instances. We summarize the aforementioned requirements by
specifying the data that the view of any honest party Ph after the execution of π3 includes. The

17



view contains data to derive the initial state of all parties which is signed by each party for each
party and every opened instance, i.e.,

{(
〈
initDatacore(i,ℓ)

〉
j
, initDataaux(i,ℓ))}ℓ∈O,i∈[n],j∈[n], (2a)

a Merkle tree over the hashes of all intermediate internal states of a single instance for all
instances, i.e.,

{sTreeℓ}ℓ∈[t] := {MTree({hash(i)(ℓ,k)}k∈[R],i∈[n])}ℓ∈[t], (2b)

signatures from each party over the roots of the state trees, i.e.,

{
〈
MRoot(sTreeℓ)

〉
i
}i∈[n],ℓ∈[t] (2c)

and the signed incoming message, i.e.,

M := {
〈
msg

(i,h)
(ℓ,k)

〉
i
}ℓ∈[t],k∈[R],i∈[n]\{h}. (2d)

The blame algorithm. At the end of protocol π3, all parties first execute an evidence algorithm
Evidence to generate partial certificates cert′. The partial certificate is a candidate to be used for
the punishment protocol and is broadcasted to all other parties as part of π3. In case the honest
party detects cheating in several occurrences, the party picks the occurrence with the smallest
indices (ℓ, k,m, i) (in this sequence). The algorithm to generate partial certificates Evidence is
formally described as follows:

Algorithm Evidence

1. Ph runs state
(i)

(ℓ,0) = deriveInit(initDatacore(i,ℓ), initData
aux
(i,ℓ)) for each i ∈ [n], ℓ ∈ O. Let B be the set of

all tuples (ℓ, 0,m, 0) such that state
(m)

(ℓ,0) = bad. If B ̸= ∅, goto step 4.
2. Ph emulates for each ℓ ∈ O the protocol executions on input the initial states from all par-

ties to obtain the expected messages and the expected intermediate states of all parties, i.e.,
({m̃sg

(i,j)

(ℓ,k)}k∈[R],i∈[n],j ̸=i, {state(i)(ℓ,k)}k,i,j) := emulatefull({state(i)(ℓ,0)}i∈[n]).

3. Let B be the set of all tuples (ℓ, k,m, h) such that msg
(m,h)

(ℓ,k) ̸= m̃sg
(m,h)

(ℓ,k) or H(state
(m)

(ℓ,k)) ̸= hash
(m)

(ℓ,k)

– where msg
(m,h)

(ℓ,k) and hash
(m)

(ℓ,k) are taken fromM or sTreeℓ respectively. In case of an invalid state,
set h = 0.

4. Pick the tuple (ℓ, k,m, i) from B with the smallest ℓ, k, m, i in this sequence. If k > 0 set

msgout :=
〈
msg

(m,i)

(ℓ,k)

〉
m
. Otherwise, set msgout := ⊥.

5. Output partial certificate (ids,msgout).

Since π3 does not contain a public transcript of messages, parties can only validate their own
incoming message instead of all messages as done in previous approaches. Hence, it can happen
that different honest parties generate and broadcast different partial certificates. Therefore, all
parties validate the incoming certificates, discard invalid ones and pick the partial certificate cert′

with the smallest indices (ℓ, k,m, i) (in this sequence) as their own. If no partial certificate has
been received or created, parties set cert′ := ⊥.

Finally, each honest party executes the blame algorithm Blamesp to create the full certifi-
cate that is used for both, blaming a malicious party and defending against incorrect accusa-
tions. As in this scenario the punishment protocol requires input of accused honest parties, the
blame algorithm returns a certificate even if no malicious behavior has been detected, i.e., if
cert′ = ⊥. The final certificate is generated by appending following data from the view to the
certificate: {(

〈
initDatacore(i,ℓ)

〉
j
, initDataaux(i,ℓ))}ℓ∈O,i∈[n],j∈[n] (cf. Eq 2a), {sTreeℓ}ℓ∈[t] (cf. Eq 2b), and

{
〈
MRoot(sTreeℓ)

〉
i
}i∈[n],ℓ∈[t] (cf. Eq 2c). All the appended data is public and does not really need
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to be broadcasted. However, in order to match the formal specification, all parties broadcast their
whole certificate. If cert′ ̸= ⊥, the honest party outputs in addition to the certificate corruptedm.

To ease the specification of the punishment protocol in which parties derive further data from
the certificates, we define an additional algorithm mesHistory that uses the messages obtained
during the emulation (m̃sg)4 to compute the message history up to a specific round k′ (inclusively)
of instance ℓ. We structure the message history in two layers. For each round k∗ < k′, parties
create a Merkle tree of all messages emulated in this round. These trees constitute the bottom
layer. On the top layer, parties create a Merkle tree over the roots of the bottom layer trees. This
enables parties to agree on all messages of one round making it easier to submit Merkle proofs
for messages sent in this round. The message history is composed of the following variables:

{mTreeroundk∗ }k∗∈[k′] := {MTree({H(m̃sg
(i,j)
(ℓ,k∗))}i∈[n],j ̸=i)}k∗∈[k′]

mTreek′ := MTree({MRoot(mTreeroundk∗ }k∗∈[k′])

rootmsg
k′ := MRoot(mTree)

Additionally, if cert′ ̸= ⊥, parties compute the following:

(Always): initData := (
〈
initDatacore(ℓ,m)

〉
m
, initDataaux(ℓ,m))

rootstate :=
〈
MRoot(sTreeℓ)

〉
m

(If k > 0): stateout := (hash
(m)
(ℓ,k),MProof(hash

(m)
(ℓ,k), sTreeℓ))

(If k > 1): statein := (state
(m)
(ℓ,k′),MProof(H(state

(m)
(ℓ,k′)), sTreeℓ))

({mTreeroundk∗ }k∗∈[k′],mTreek′ , rootmsg
k′ ) := mesHistory(k′, ℓ)

σk′ := MProof(MRoot(mTreeroundk′ ),mTreek′))

Min := {(m̃sg
(j,m)
(ℓ,k′),MProof(H(m̃sg

(j,m)
(ℓ,k′)),mTreeroundk′ ))}j∈[n]

The punishment protocol. The main difficulty of constructing a punishment protocol Punishsp

for this scenario is that there is no publicly verifiable evidence about messages like a common
transcript used in the previous transformations. Hence, incoming messages required for the com-
putation of a particular protocol step cannot be validated directly. Instead, the actions of all
parties need to be validated against the emulated actions based on the initial states. This leads
to the problem that deviations from the protocol can cause later messages of other honest parties
to deviate from the emulated ones as well. Therefore, it is important that the judge disputes the
earliest occurrence of misbehavior.

We divide the punishment protocol Punishsp into three phases. First, the judge determines
the earliest accusation of misbehavior. To this end, if cert ̸= ⊥ all parties start by sending tuple
ids from cert to J sp and the judge selects the tuple with the smallest indices (ℓ, k,m, i). This
mechanism ensures that either the first malicious message or malicious state hash received by an
honest party is disputed or the adversary blames some party at an earlier point. To look ahead,
if the adversary blames an honest party at an earlier point, the punishment will not be successful
and the malicious blamer will be punished for submitting an invalid accusation. If the adversary
blames another malicious party, either one of them will be punished. This mechanism ensures
that if an honest party submits an accusation, a malicious party will be punished, even if it is
not the honest party’s accusation that is disputed.

4 Formally, parties need to re-execute the emulation, as we do not allow them to use any data not
included in the certificate.
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If there has not been any accusation submitted in the first phase, J sp reimburses all parties.
Otherwise, J sp defines a blamer Pb, the party that has submitted the earliest accusation, and an
accused party Pm. Pb either accuses misbehavior in the initial state, the first round, or in some
later round. For the former two, misbehavior can be proven in a straightforward way, similar to
our first construction. For the latter, Pb is supposed to submit a proof containing the hash of a
tree of the message history up to the disputed round k. Pm can accept or decline the message
history depending on whether the tree corresponds to the one emulated by Pm or not. If the tree
is accepted, the certificate can be validated as in previous scenarios, with the only difference that
incoming messages are validated with respect to the submitted message history tree instead of the
common public transcript. In case any party does not respond in time, this party is considered
maliciously and is financially punished.

If the message history is declined, the protocol transitions to the third phase. Parties Pb and
Pm together with J sp execute a bisection search in the message history tree to find the first
message they disagree on (cf. Section 5.3). By definition they agree on all messages before the
disputed one – we call these messages the agreed sub-tree. At this step, J sp can validate the
disputed message of the history tree (not the one disputed in the beginning) the same way as
done in previous constructions with the only difference that incoming messages are validated
with respect to the agreed sub-tree.

The number of interactions is logarithmic while the computation complexity of the judge is
linear in the protocol complexity. We can further reduce the computation complexity to be loga-
rithmic in the protocol complexity while still having logarithmic interactions using the efficiency
improvements described in the full version of this paper. The judge is defined as follows:

Protocol Punishsp

Phase 1: Determine earliest accusation

1. If cert ̸= ⊥, Ph sends ids := (ℓ, k,m, i) taken from cert to J sp which stores (ℓ, k,m, i, h).
2. J sp waits till time T to receive message (ℓ, k,m, i) from parties Pb for b ∈ [n]. If no accusations

have been received, J sp sends d coins to each party at time T . Otherwise, J sp picks the smallest
tuple (ℓ, k,m, i, b) (ordered in this sequence), sets k′ := k − 1 and continues with Phase 2.

Timeout: If its Pj ’s turn for j ∈ {b,m} and Pj does not respond with a valid message, i.e., one that is
not discarded, in time, Pj is considered malicious and J sp terminates by sending d coins to all parties
but Pj .

Phase 2: First evidence

3. If k < 2, Pb sends (initData, rootstate, stateout,
〈
msg

(m,i)

(ℓ,k)

〉
m
) taken from cert to J sp

(a) J sp parses initData to (
〈
initDatacore(ℓ,m)

〉
m
, initDataaux(ℓ,m)) and sets state0 =

deriveInit(initDatacore(ℓ,m), initData
aux
(ℓ,m)). If Verify(

〈
initDatacore(ℓ,m)

〉
m
) = false or state0 = ⊥,

J sp discards. If state0 = bad, J sp terminates by sending d coins to all parties but Pm.
(b) If Verify(

〈
rootstate(ℓ)

〉
m
) = false, J sp discards.

(c) If i = 0 and wrongState(state0,⊥, stateout, ∅, rootstate(ℓ) ,⊥, ℓ, k,m) = false, J sp discards.

(d) If i > 0, Verify(
〈
msg

(m,i)

(ℓ,k)

〉
m
) = false or wrongMsg(state0,⊥, H(msg

(m,i)

(ℓ,k) ), ∅, rootstate(ℓ) ,⊥, ℓ,m, k, i) =
false, J sp discards.

(e) J sp terminates by sending d coins to all parties but Pm.

4. Otherwise, Pb sends (rootstate, statein, stateout,
〈
rootstate(ℓ)

〉
m
, rootmsg, rootroundk′ ,

σk′ ,Min,msgout) taken from cert to J sp.

(a) Pm executes mesHistory(k − 1, ℓ). Let r̃oot
msg

be the root of the emulated message history
tree. If rootmsg ̸= r̃oot

msg
Pm sends r̃oot

msg
to J sp. Otherwise, Pm sends (⊥).

(b) If r̃oot
msg

received by Pm does not equal ⊥, J sp jumps to phase 3.
(c) J sp checks that Verify(

〈
rootstate(ℓ)

〉
m
) = true and MVerify(rootroundk′ , k′, rootmsg, σk′) = true and

discards otherwise.
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(d) If i = 0 and wrongState(⊥, statein, stateout,Min, root
state
(ℓ) , rootroundk′ , ℓ, k,

m) = false, J sp discards.

(e) If i > 0, Verify(
〈
msg

(m,i)

(ℓ,k)

〉
m
) = false or wrongMsg(state0, statein, H(msg

(m,i)

(ℓ,k) ),Min, , root
state
(ℓ) ,

rootroundk′ , ℓ,m, k, i) = false, J sp discards.
(f) J sp terminates by sending d coins to all parties but Pm.

Phase 3: Dispute the message tree

5. Parties Pb, Pm and J sp run bisection sub-protocol ΠBS on the top-level tree. Pb’s input is the
tree with root rootmsg; Pm’s the one with root r̃oot

msg
. J sp announces public inputs rootmsg and

width of rootmsg, width := k′. The output is the first round they disagree on k2, the agreed hash
rootroundk′

2
of leaf with index k′

2 := k2− 1 and the hash rootround(b,k2)
of leaf with index k2 as claimed by

Pm.
6. Parties Pm, Pb and J sp run bisection sub-protocol ΠBS on the low-level tree. Both, Pm and Pb

take as input mTreeroundk2
from their certificate. J sp announces public inputs rootround(b,k2)

and the
width of the low level tree width′n× (n− 1). The output is the index x of the first message they
disagree on and the hash of this message hashx as claimed by Pm. The index of the sender of the
disputed message is m2 := ⌈ x

n−1
⌉ and the index of the receiver i2 = x mod (n − 1) if m2 > (x

mod (n− 1)) and i2 := (x mod (n− 1)) + 1 otherwise.
7. Party Pb define variables as follows – variables that are not explicitly defined are set to ⊥.

(Always): initData2 := (
〈
initDatacore(ℓ,m2)

〉
m
, initDataaux(ℓ,m2))

rootstate :=
〈
MRoot(sTreeℓ)

〉
m

(If k2 > 1): state2in := (state
(m2)

(ℓ,k′
2)
,MProof(H(state

(m2)

(ℓ,k′
2)
), sTreeℓ))

M2
in := {(msg

(j,m2)

(ℓ,k′
2)

,MProof(H(msg
(j,m2)

(ℓ,k′
2)

),mTreeroundk′
2

))}j∈[n]

and sends (initData2,
〈
MRoot(sTreeℓ)

〉
m
, state2in,M2

in) to J sp.

8. J sp parses initData2 to (
〈
initDatacore(ℓ,m2)

〉
m
, initDataaux(ℓ,m2)

) and sets state
(m2)

(0) :=

deriveInit(initDatacore(ℓ,m2)
, initDataaux(ℓ,m2)

). If Verify(
〈
rootstate(ℓ)

〉
m
) = false, Verify(

〈
initDatacore(ℓ,m2)

〉
m
) =

false or state
(m2)

(0) ∈ {⊥, bad}, J sp discards.

9. If wrongMsg(state
(m2)

(0) , state2in, hashx,M2
in, root

state
(ℓ) , rootroundk′

2
, ℓ,m2, k2, i2) = false, J sp discards.

10. J sp terminates by sending d coins to all parties but Pm.

7.1 Security

Theorem 2. Let (πpvc
3 ,Blamepvc, Judgepvc) be an n-party publicly verifiable covert protocol com-

puting function f with deterrence factor ϵ satisfying the view requirements stated in Eq. (2).
Further, πpvc

3 generates a common public transcript of hashes that is only used for Blamepvc and
Judgepvc. Let π3 be a protocol that is equal to πpvc

3 but does not generate a common transcript and
instead of calling Blamepvc executes the blame procedure explained above (including execution of
Evidence and Punishsp). Further, let the signature scheme (Generate,Sign,Verify) be existentially
unforgeable under chosen-message attacks, the Merkle tree satisfies the binding property, the hash
function H be collision resistant and the bisection protocol ΠBS be correct. Then, the protocol
π3, together with algorithm Blamesp, protocol Punishsp and judge J sp satisfies financially backed
covert security with deterrence factor ϵ according to Definition 1.

We formally prove Theorem 2 in the full version of this paper.
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8 Evaluation

In order to evaluate the practicability of our protocols, i.e., to show that the judging party can be
realized efficiently via a smart contract, we implemented the judge of our third transformation
(cf. Section 7) for the Ethereum blockchain and measured the associated execution costs. We
focus on the third setting, the verification of protocols with a private transcript, since we expect
this scenario to be the most expensive one due to the interactive punishment procedure. Further,
we have extended the transformation such that the protocol does not require a public transcript
of state hashes.

Our implementation includes the efficiency features described in the full version of this paper.
In particular, we model the calculation of each round’s and party’s computeRound function as
an arithmetic circuit and compress disputed calculations and messages using Merkle trees. The
latter are divided into 32-byte chunks which constitute the leave of the Merkle tree. The judge
only needs to validate either the computation of a single arithmetic gate or the correctness of a
single message chunk of a sent or received message together with the corresponding Merkle tree
proofs. The proofs are logarithmic in the size of the computation resp. the size of a message.
Messages are validated by defining a mapping from each chunk to a gate in the corresponding
computeRound function.

In order to avoid redundant deployment costs, we apply a pattern that allows us to deploy the
contract code just once and for all and create new independent instances of our FBC protocol
without deploying further code. When starting a new protocol instance, parties register the
instance at the existing contract which occupies the storage for the variables required by the new
instance, e.g., the set of involved parties. Further, we implement the judge to be agnostic to the
particular semi-honest protocol executed by the parties – recall that our FBC protocol wraps
around a semi-honest protocol that is subject to the cut-and-choose technique. Every instance
registered at the judge can involve a different number of parties and define its own semi-honest
protocol. This means that the same judge contract can be used for whatever semi-honest protocol
our FBC protocol instance is based on, e.g., for both the generation of Beaver triples and garbled
circuits. Parties simply define for each involved party and each round the computeRound function
as a set of gates, aggregate all gates into a Merkle tree and submit the tree’s root upon instance
registration.

Table 1: Costs for deployment, instance reg-
istration and optimistic execution.

Protocol steps n
Cost

Gas USD

Deployment 4 775 k 639.91

New instance 2 287 k 38.41
New instance 3 308 k 41.30
New instance 5 351 k 47.05
New instance 10 458 k 61.43

Honest execution 2 178 k 23.92
Honest execution 3 224 k 30.07
Honest execution 5 316 k 42.38
Honest execution 10 546 k 73.14

Gates: Number of gates in the circuit of each
computeRound function.
Chunks: Number of chunks in each message.
R: Number of communication rounds.
n: Number of parties.

Table 2: Worst-case execution costs.

Gates Chunks R n
Cost

Gas USD

10 10 10 3 1 780 k 238.58
1 000 10 10 3 2 412 k 323.25
1M 10 10 3 3 512 k 470.55
1B 10 10 3 4 782 k 640.75
1T 10 10 3 6 182 k 828.35

10 10 10 3 1 785 k 239.14
100 100 10 3 2 086 k 279.61

1 000 1 000 10 3 2 422 k 324.55

100 10 10 3 2 081 k 278.91
100 10 10 4 2 223 k 297.86
100 10 10 7 2 442 k 327.29
100 10 10 10 2 659 k 356.34
100 10 10 50 4 764 k 638.35

100 10 3 3 1 878 k 251.65
100 10 10 3 2 074 k 277.88
100 10 100 3 2 403 k 322.04
100 10 1 000 3 2 834 k 379.79
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We perform all measurements on a local test environment. We setup the local Ethereum
blockchain with Ganache (core version 2.13.2) on the latest supported hard fork, Muir Glacier.
The contract is compiled to EVM byte code with solc (version 0.8.1, optimized on 20 runs). As
common, we measure the efficiency of the smart contracts via its gas consumption – this metric
directly translates to execution costs. Further, we estimate USD costs based on the prices (gas
to ETH and ETH to USD) on Aug. 20, 2021 [12, 7]. For comparison, a simple Ether transfer
costs 21,000 gas resp. 2,81 USD.

In Table 1, we display the costs of the deployment, the registration of a new instance and the
optimistic execution without any disputes. The costs of these steps only depend on the number of
parties. In Table 2, we display the worst-case costs of a protocol execution for different protocol
parameters, i.e., complexity of the computeRound functions, message size, communication rounds
and number of parties. In order to determine the worst-case costs, we measured different dispute
patterns, e.g., disputing sent messages or disputing gates of the computeRound functions, and
picked the pattern with the highest costs. The execution costs, both optimistic and worst case,
incorporate all protocol steps, incl. the secure funding of the instance. We exclude the derivation
of the initial seeds as this step strongly depends on the underlying PVC protocol.

In the optimistic case, the costs of executing our protocol are similar to the ones of [25]. The
authors report a gas consumption of 482 k gas while our protocol consumes between 465 k and
1M gas, depending on the number of parties – recall that the protocol of [25] is restricted to
the two-party setting. This overhead in our protocol when considering more than two parties is
mainly introduced by the fact that [25] does assume a single deposit while our implementation
requires each party to perform a deposit.

Unfortunately, we cannot compare worst-case costs directly, as the protocol of [25] validates
the consistency of a fixed data structure, i.e., a garbled circuit, while our implementation validates
the correctness of the whole protocol execution. In particular, [25] performs a bisection over the
garbled circuit while we perform two bisections, first over the message history and then over the
computation generating the outgoing messages; such a message might for example be a garbled
circuit. Further, [25] focuses on a boolean circuit, while we model the computeRound function
as an arithmetic circuit – as the EVM always stores data in 32-byte words, it does not make
sense to model the function as a boolean circuit. Although not directly comparable, we believe
the protocol of [25] to be more efficient for the special case of a two-party garbling protocol, as
the protocol can exploit the fact that a dispute is restricted to a single message, i.e., the garbled
circuit, and the data structure of this message is fixed such that the dispute resolution can be
optimized to said data structure.

Our measurements indicate that the worst-case costs of each scenario are always defined by a
dispute pattern that does not dispute a message chunk but a gate of the computeRound functions.
This is why the message chunks have no influence on the worst-case execution costs. Of course,
this observation might be violated if we set the number of chunks much higher than the number
of gates. However, it does not make sense to have more message chunks than gates because each
message chunk needs to be mapped to a gate of the computeRound function defining the value
of said chunk.

Both, the number of rounds and the number of parties increase the maximal size of the
disputed message history and, hence, the depth of the bisected history tree. As the depth of the
bisected tree grows logarithmic in the tree size, our protocol is highly scalable in the number of
parties and rounds.

Finally, we note that we understand our implementation as a research prototype showing the
practicability of our protocol. We are confident that additional engineering effort can further
reduce the gas consumption of our contract.
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Abstract. The BBS+ signature scheme is one of the most prominent solutions for real-
izing anonymous credentials. Its prominence is due to properties like selective disclosure
and efficient protocols for creating and showing possession of credentials. Traditionally, a
single credential issuer produces BBS+ signatures, which poses significant risks due to a
single point of failure.
In this work, we address this threat via a novel t-out-of-n threshold BBS+ protocol. Our
protocol supports an arbitrary security threshold t ≤ n and works in the so-called pre-
processing setting. In this setting, we achieve non-interactive signing in the online phase
and sublinear communication complexity in the number of signatures in the offline phase,
which, as we show in this work, are important features from a practical point of view. As it
stands today, none of the widely studied signature schemes, such as threshold ECDSA and
threshold Schnorr, achieve both properties simultaneously. To this end, we design specifi-
cally tailored presignatures that can be directly computed from pseudorandom correlations
and allow servers to create signature shares without additional cross-server communication.
Both our offline and online protocols are actively secure in the Universal Composability
model. Finally, we evaluate the concrete efficiency of our protocol, including an implemen-
tation of the online phase and the expansion algorithm of the pseudorandom correlation
generator (PCG) used during the offline phase. The online protocol without network la-
tency takes less than 15ms for t ≤ 30 and credentials sizes up to 10. Further, our results
indicate that the influence of t on the online signing is insignificant, < 6% for t ≤ 30, and
the overhead of the thresholdization occurs almost exclusively in the offline phase. Our
implementation of the PCG expansion is the first considering correlations between more
than 3 parties and shows that even for a committee size of 10 servers, each server can
expand a correlation of up to 216 presignatures in about 600 ms per presignature.

Keywords: Threshold Signature · BBS+ · Pseudorandom Correlation Functions · Pseudoran-
dom Correlation Generators

1 Introduction

Anonymous credentials schemes, as introduced by Chaum in 1985 [32] and subsequently refined
by a line of work [33, 56, 26, 27, 22, 24, 25, 10, 73], allow an issuing party to create creden-
tials for users, which then can prove individual attributes about themselves without revealing
their identities. The essential properties these schemes satisfy are unlinkability, ensuring that
verifiers cannot link two disclosures of credentials of the same identity, and selective disclosure,
allowing parties to decide which individual attributes of their credentials to disclose. The former
makes anonymous credentials a useful privacy tool on the web, allowing clients to authenticate



themselves for access to web-based services while preventing service providers from gathering
information about the client’s usage patterns. The latter makes anonymous credentials an essen-
tial building block for self-sovereign identity frameworks, as it enables clients to not only take
responsibility for storing their credentials but also to filter the disclosure of their credentials.

The BBS+ signature scheme [5, 23] named after the group signature scheme of Boneh, Boyen,
and Shacham [11] is one of the most prominent solutions for realizing anonymous credential
schemes. Abstractly speaking, a BBS+ signature over a set of attributes constitutes creden-
tials, and the holder of such a credential can prove possession of individual attributes using
efficient zero-knowledge protocols. BBS+ signatures are particularly suited for anonymous cre-
dentials because of their appealing features, including the ability to sign an array of attributes
while keeping the signature size constant, efficient protocols for blind signing, and efficient zero-
knowledge proofs for selective disclosure of signed attributes (without having to reveal the sig-
nature). The importance of BBS+ is illustrated by the renewed attention in the research com-
munity [67, 42], several industrial implementations [68, 57, 58], ongoing standardization efforts
by the W3C Verifiable Credentials Group and IETF [9, 55], and adaption in further real-world
applications [5, 34, 20, 21, 23].

In traditional credential systems, the credential issuer who is in possession of the signing key
constitutes a single point of failure. A powerful and widely adapted tool mitigating such a single
point of failure is to distribute the cryptographic task (e.g., [53, 46, 54, 43, 65, 30, 29, 49, 50,
2, 31, 35] and many more) via so-called threshold cryptography. Here, the cryptographic key is
shared among a set of servers such that any subset of t servers can produce a signature, while
the underlying signature scheme remains secure even if up to t − 1 servers are corrupted. The
thresholdization of digital signature schemes comes with significant overhead in computation,
communication, and round complexity. This is particularly the case for randomized signature
schemes, where a random secret nonce has to be generated among a set of servers. In the signing
protocol, this nonce is then used together with the shared key to produce the signature. Con-
cretely, for BBS+ signing, we require a distributed protocol to compute the exponentiation of
the inverse of the secret key added to the random nonce securely.

The straightforward approach to compute the inverse is based on the inversion protocol
by Bar-Ilan and Beaver [7] and requires server interaction. In order to strengthen the protec-
tion against failure and corruption, we assess it as likely for servers to be located in different
jurisdictional and geographic regions. In such a setting, any additional communication round
involves a significant performance overhead. Therefore, an ideal threshold BBS+ scheme has a
non-interactive signing phase that enables servers to respond to signature requests without any
cross-server interaction.

A popular approach in secure distributed computation to cope with the high complexities
of protocols is to split the computation into an input-independent offline and input-dependent
online phase [39, 59, 69, 70]. The offline phase provides precomputation material, which in the
setting of a digital signature scheme is called presignatures [44]. These presignatures are produced
during idle times of the system and facilitate an efficient online phase. In recent years, Boyle
et al. [14, 17, 18] put forth a novel concept to generate precomputation material called pseu-
dorandom correlation-based precomputation (PCP). The main advantage of this concept is the
generation of precomputation material in sublinear communication complexity in the amount
of generated precomputation material. Recently, this technique also attracted interest for use
in threshold signature protocols [2, 51]. In PCP, precomputed values are generated by a pseu-
dorandom correlation generator (PCG) or a pseudorandom correlation function (PCF). These
primitives include an interactive setup phase where short keys are generated and distributed.
Then, in the evaluation phase, every party locally evaluates on its key and a common input. The
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outputs look pseudorandom but still satisfy some correlation, e.g., oblivious linear evaluation
(OLE), oblivious transfer (OT), or multiplication triples.

1.1 Contribution

We propose a novel t-out-of-n threshold BBS+ signature scheme in the offline-online model with
an arbitrary security threshold t ≤ n. The centerpiece of our protocol is the design of specifically
tailored presignatures that can be directly instantiated from PCG or PCF evaluations and can
be used by servers to create signature shares without any additional cross-server communication.
This way, our scheme simultaneously provides a non-interactive online signing phase and an
offline phase with sublinear communication complexity in the number of signatures. Thus, our
protocol is the first threshold BBS+ signature scheme with non-interactive signing. Even for the
widely studied signature schemes ECDSA and Schnorr, no threshold protocol exists that achieves
both features simultaneously. Moreover, we are the first to present a PCG/PCF-based protocol
that supports t-out-of-n threshold, while previous protocols support only n-out-of-n. We formally
analyze the static security of all our protocols in the Universal Composability framework under
active corruption.

We present two instantiations of the offline phase, one based on PCGs and one based on PCFs.
Conceptually, PCFs are better suited than PCGs for preprocessing signatures as PCFs allow
servers to compute presignatures only when needed. In contrast, PCGs require the generation
of a large batch of presignatures at once that need to be stored on the server side. Nevertheless,
existing PCG constructions provide better efficiency than PCF constructions. Therefore, we
present protocols for both primitives.

Unlike prior work using silent preprocessing in the context of threshold signatures [2], we
use the PCG and PCF primitive in a black-box way, allowing for a modular treatment. In
this process, we identify several issues in using the primitives in a black-box way, extend the
definitional frameworks accordingly, and prove the security of existing constructions under the
adapted properties.

On a practical level, we provide an extensive evaluation of our protocol, including an im-
plementation and experimental evaluation of the online phase and the seed expansion of the
PCG-based offline phase. Since state-of-the-art PCF constructions lack concrete efficiency, we
focus our evaluation on the PCG-based preprocessing. Given preprocessed presignatures, the
total runtime of the online signing protocol is below 13.595 ms plus one round trip time of
the slowest client-server connection for t ≤ 30 signers and message arrays of size k ≤ 10. Our
benchmarks show that the influence of the number of signers on the runtime of the online pro-
tocol is minimal; increasing the number of signers from 2 to 30 increases the runtime by just
1.14% − 5.52% (for message array sizes between 2 and 50). Further, our results show that the
cost of thresholdization occurs almost exclusively in the offline phase; a threshold signature on a
single message array takes 7.536 ms in our protocol, while a non-threshold signature, including
verification of the received signature, takes 7.248 ms; ignoring network delays which are the same
in both settings. Our implementation of the PCG seed expansion is the first to consider more
than 3 parties. In our benchmarks, we extend batches of up to 216 presignatures for 2 ≤ n ≤ 10
parties in both the n-out-of-n and the t-out-of-n setting. Even when considering the t-out-of-10
setting and batches of 216 presignatures, the computation time per signature is roughly 600 ms.
Our results show that the computation cost increases linearly with the number of parties and
superlinear with the size of the presignature batches. However, our complexity analysis shows
that the PCG key size and the communication of a distributed key generation protocol grow
sublinear, leading to a trade-off between communication and computation complexity.
We summarize our contribution as follows:
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– We propose the first threshold BBS+ scheme with a non-interactive online signing phase.
– Our scheme simultaneously achieves non-interactive online signing and sublinear communi-

cation in the offline phase. This combination is not achieved by the widely studied threshold
protocols for ECDSA and Schnorr.

– We extend the definitional framework of PCGs and PCFs by introducing the notion of
(strong) reusability for both primitives.

– We specify two instantiations for the offline phase, one based on PCGs and one based on
PCFs.

– We prove the static security of our protocols in the Universal Composability framework with
active corruption.

– We provide an evaluation of the whole protocol with the PCG-based precomputation.
– We provide an implementation and evaluation of the online phase and the PCG-based offline

phase’s seed expansion.

For the sake of presentation, we focus the main body on PCGs and present the definition of
reusable PCFs and the PCF-based offline phase in the Appendix.

1.2 Technical Overview

BBS+ signatures. Let G1,G2, and GT be groups of prime order p with generators g1 ∈ G1 and
g2 ∈ G2 and let map e : G1 × G2 → GT be a bilinear paring. A BBS+ signature on a message

array {mℓ}ℓ∈[k] is a tuple (A, e, s) with A = (g1 ·hs
0 ·
∏

ℓ∈[k] h
mℓ

ℓ )
1

x+e for random nonces e, s ∈R Zp,

secret key x ∈ Zp and a set of random elements {hℓ}ℓ∈[0..k] in G1. To verify under public key gx2 ,
check if e(A, gx2 · ge2) = e(g1 · hs

0 ·
∏

ℓ∈[k] h
mℓ

ℓ , g2) (see Appendix A for a formal description).

Distributed inverse calculation. The main difficulty in thresholdizing the BBS+ signature algo-
rithm comes from the signing operation requiring the computation of the inverse of x+s without
leaking x. This highly non-linear operation is expensive to be computed in a distributed way.
Similar challenges are known from other signature schemes relying on exponentiation (or a scalar
multiplication in additive notion) of the inverse of secret values, e.g., ECDSA [6, 29, 2, 72, 13].

The typical approach (cf. [7]) to compute M
1
y for a group element M and a secret shared y is

to separately open B = Ma and δ = a · y for a freshly shared random a. The desired result can

be reconstructed by computing M
1
y = B

1
δ .

Since δ is the product of two secret shared values, it still is a non-linear operation requiring
interaction between the parties. Nevertheless, as δ is independent of the actual message, several
such values can be precomputed in an offline phase. As explained next, a similar, yet more
involved, approach can be applied to the BBS+ protocol, allowing an efficient, non-interactive
online signing based on correlated precomputation material.

The threshold BBS+ online protocol. We describe a simplified, n-out-of-n version of our threshold
BBS+ protocol. Assume a BBS+ secret key x, elements {hℓ}ℓ∈[0..k] in G1, a random blinding
factor a ∈ Zp and n servers, each having access to a preprocessed tuple (ai, ei, si, δi, αi) ∈ Z5

p, in
the following called presignatures, such that

δ =
∑

i∈[n]

δi = a(x+ e),
∑

i∈[n]

αi = as

for a =
∑

i∈[n]

ai, e =
∑

i∈[n]

ei, s =
∑

i∈[n]

si.
(1)
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To sign a message array {mℓ}ℓ∈[k], each server computes Ai := (g1 ·
∏

ℓ∈[k] h
mℓ

ℓ )ai · hαi
0 and

outputs a partial signature σi := (Ai, δi, ei, si). This allows the receiver of the partial signatures
to reconstruct δ, e and s and compute

A = (
∏

i∈[n]

Ai)
1
δ = ((g1 ·

∏

ℓ∈[k]

hmℓ

ℓ )a · has
0 )

1
a(x+e)

such that the tuple (A, e, s) constitutes a valid BBS+ signature. Each signature requires a new
preprocessed tuple to prevent straightforward forgeries.

The specialized layout of our presignatures allows us to realize a non-interactive signing pro-
cedure. In contrast, using plain multiplication triples, as often done in multi-party computation
protocols [8, 39], would require one additional round of communication. Further, our online pro-
tocol provides active security at a low cost. This is achieved by verifying the received signatures
and works since the presignatures are created securely.

The preprocessing protocol. An appealing choice for instantiating the preprocessing protocol is to
use pseudorandom correlation generators (PCG) or functions (PCF), as they enable the efficient
generation of correlated random tuples. More precisely, PCGs and PCFs allow two parties to
expand short seeds to fresh correlated random tuples locally. While the distributed generation
of the seeds requires more involved protocols and typically relies on general-purpose multi-party
computation, the seed size and the communication complexity of the generating protocols are
sublinear in the size of the expanded correlated tuples [14, 17].

The correlated pseudorandom presignatures required by our online signing procedure are
specifically tailored to the BBS+ setting (cf. (1)). For these specific presignatures, there exist
no tailored PCG or PCF constructions. Instead, we show how to obtain these presignatures
from simple correlations. Specifically, we leverage oblivious linear evaluation (OLE) and vector
oblivious linear evaluation (VOLE) correlations. For both of these correlations, there exist PCG
and PCF constructions [14, 17, 18, 19, 36, 60, 15]. An OLE tuple is a two-party correlation,
in which party P1 gets random values (a, u) and party P2 gets random values (s, v) such that
a · s = u+ v. A VOLE tuple provides the same correlation but fixes s over all tuples computed
by the particular PCG or PCF instance. In these tuples, we call a and s the input value of party
P1 and P2. Further, the PCGs/PCFs used by our protocol provide a so-called reusability feature,
allowing parties to fix the input values over several PCG/PCF instances. This feature enables
parties to turn two-party into multi-party correlations as shown by [19, 2, 3]. It is achieved
by extending the definitions with the ability of both parties to provide parameters to the key
generation.

For computing the product of two secret shared values, a and s, the parties use OLE corre-
lations. Let α =

∑
i∈[n] ai ·

∑
j∈[n] sj , where ai and si are known to party Pi. Only aisi can be

locally computed by Pi. For all cross terms aisj for i ̸= j, the parties use OLE correlations to
get an additive share of that cross term, i.e., aisj = ui,j + vi,j . By adding aisi to the sum of all
additive shares ui,j and vj,i, party Pi obtains an additive share of α. Note that the ai value must
be the same for all cross terms, so we require the OLE PCG/PCF to provide the reusability
feature. This allows party Pi to use the same input value ai in all OLE correlations for the cross
terms aisj with j ̸= i.

Using PCGs/PCFs in a black-box way. Pseudorandom correlation generators (PCGs) and pseu-
dorandom correlation functions (PCFs) are introduced in [14] and [18]. Concrete constructions of
both primitives for simple correlations, such as VOLE, are presented in a line of work including
[14, 17, 16, 19, 18, 36, 60]. In our work, we aim to deal with PCGs/PCFs in a black-box way
such that we can instantiate our protocols with arbitrary constructions as long as they fulfill our
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requirements. These requirements include supporting VOLE and OLE correlations, the active
security setting, and the opportunity to reuse inputs, as emphasized above. A first step towards
black-box usage of PCGs was taken by [17]. This work defines an ideal functionality for correlated
randomness, which they show can be instantiated by PCGs. However, the definition does not
support reusing inputs to PCGs.

[17] and [18] lay the foundation of the reusability property for PCGs and PCFs. However, their
definitions consider passive security only and are unsuitable for black-box usage. Therefore, we
introduce new notions called reusable PCG and reusable PCF, which capture the active security
setting and permit black-box use.

Identical to prior definitions of PCGs and PCFs, our primitives consist of a key generation
Gen and an expansion algorithm Expand or evaluation algorithm Eval. The reusability feature
allows both parties to specify an input to the key generation, which is used to derive the corre-
lation tuples. Additionally, our reusable primitives must satisfy four properties. Three of these
properties are stated by [17] and [18], two of which we slightly modified. Our new insight is
the requirement of the key indistinguishability property, which we specifically introduce to cover
malicious parties. The key indistinguishability property states that the adversary cannot learn
information about the honest party’s input to the key generation, even if the corrupted party
chooses its input arbitrarily. This property makes our notion suitable for the active security
setting.

We present reusable PCG constructions for VOLE and OLE correlations and prove that the
VOLE PCF construction by Boyle et al. [18] fulfills our new definition. Additionally, we present
an extension of this construction for OLE correlations.

The t-out-of-n setting. So far, we discussed a setting where n-out-of-n servers must contribute
to the signature creation. However, in many use cases, we need to support the more flexible
t-out-of-n setting with t ≤ n. In this setting, the secret key material is distributed to n servers,
but only t must contribute to the signing protocol. A threshold t ≤ n improves the flexibility
and robustness of the signing process, as not all servers must be online.

The typical approach in the t-out-of-n setting is to share the secret key material using Shamir’s
secret sharing [64] instead of an additive sharing as done above. While additive shares are recon-
structed by summation, Shamir-style shares must be aggregated using Lagrange interpolation,
either on the client or server side. In this work, we reconstruct on the server side due to technical
details of our precomputation protocols. Note that prior threshold signature schemes leveraging
PCF/PCGs (e.g., [2, 51]) achieve only n-out-of-n, in contrast to a flexible t-out-of-n setting.

On a technical level, the challenge for client-side reconstruction is due to (V)OLE correlations
providing us with two-party additive sharings of multiplications, e.g., ui,j + vi,j = aisj . For a
product of two additively shared values a ·s, we can rewrite the product as

∑
i∈[n] ai ·

∑
i∈[n] si =∑

i∈[n]

∑
j∈[n] aisj =

∑
i∈[n]

∑
j∈[n] ui,j + vi,j . Here, ui,j and vi,j can be interpreted as additive

shares of the product. These additive shares are sufficient for the n-out-of-n setting. However,
it is unclear how (V)OLE outputs can be transformed to Shamir sharing of a · s required for
t-out-of-n with client reconstruction.

We, therefore, incorporate a share conversion mechanism from Shamir-style shared key ma-
terial into additively shared presignatures on the server side. Our mechanism consists of the
servers applying the corresponding Lagrange interpolation directly to the outputs of the VOLE
correlation. More precisely, as described above, each party Pi gets additive shares of the cross
terms aixj and ajxi for every other party Pj . Here, xℓ denotes the Shamir-style share of the
secret key belonging to party Pℓ. Let ci,j be the additive share of aixj , then party Pi multiplies
the required Lagrange coefficient Lj,T to this share and Li,T to cj,i, where T is the set of t
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signers. The client provides the set of servers as part of the signing request to enable the servers
to compute the interpolation.

1.3 Related Work

Most related to our work are the works by Gennaro et al. [47] and Doerner et al. [42], proposing
threshold protocols for the BBS+ signing algorithm. While [47] focuses on a group signature
scheme with threshold issuance based on the BBS signatures, their techniques can be directly
applied to BBS+. [42] presents a threshold anonymous credential scheme based on BBS+. Both
schemes compute the inverse using classical techniques of Bar-Ilan and Beaver [7]. Moreover, they
realize the multiplication of two secret shared values by multiplying each pair of shares. While
[47] uses a three-round multiplication protocol based on an additively homomorphic encryption
scheme, [42] integrates a two-round OT-based multiplier. Although the OT-based multiplier
requires a one-time setup, both schemes do not use precomputed values per signing request. This
is in contrast to our scheme but at the cost of requiring several rounds of communication during
the signing. Parts of their protocols are independent of the message that will be signed; thus,
in principle, these steps can be moved to a presigning phase. In this case, the signing phase is
non-interactive, but on the downside, the communication complexity of the presigning phase has
linear complexity. In contrast, our protocol achieves both a non-interactive online phase and an
offline phase with sublinear complexity. In addition, both works [47, 42] consider a security model
tailored to the BBS+ signature scheme while we show security with respect to a more generic
threshold signature ideal functionality.

In the non-threshold setting, Tessaro and Zhu [67] show that short BBS+ signatures, where
the signature consists only of A and e, are also secure under the q-SDH assumption. Their results
suggest removing s to reduce the signature size to one group element and a scalar. Like prior
proofs of BBS+, their security proof in the standard model incurs a multiplicative loss. However,
they present a tight proof in the Algebraic Group Model [45]. We discuss the impact of their
work on our evaluation in Appendix N.

Another anonymous credential scheme with threshold issuance, called Coconut, is proposed
by Sonnino et al. [66] and the follow-up work by Rial and Piotrowska [63]. Their scheme is based
on the Pointcheval-Sanders (PS) signature scheme, which allows them to have a non-interactive
issuance phase without coordination or precomputation. We emphasize that the PS signature
scheme is less popular than BBS+ and not subject to standardization efforts. The security of PS
and Coconut is based on a modified variant of the LRSW assumption introduced in [62]. This
assumption is interactive in contrast to the q-Strong Diffie-Hellman assumption on which the
security of BBS+ is based. While PS and Coconut also support multi-attribute credentials, the
secret and public key size increases linearly in the number of attributes. In BBS+, the key size
is constant. Further, PS and, therefore, the Coconut scheme relies on Type-3 pairings, while our
scheme can be instantiated with any pairing type. The security of Coconut was not shown under
concurrent composition while our scheme is analyzed in the Universal Composability framework.

Like our work, [2] and [51] leverage pseudorandom correlations for threshold signatures.
[2] presents an ECDSA scheme, while [51] focuses on Schnorr signatures. [2] constructs a tai-
lored PCG generating ECDSA- presignatures while our scheme uses existing VOLE and OLE
PCGs/PCFs in a black-box way and combines the OLE and VOLE correlations to BBS+ pres-
ignatures. Further, in contrast to our work, [2] presents an n-out-of-n protocol without a flexible
threshold. [51] introduces the new notion of a discrete log PCF and constructs a two-party pro-
tocol based on this primitive. In contrast to our work, [51] captures only the 2-out-of-2 setting.
Both schemes [2, 51] require additional per-presignature communication. Depending on the phase
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this communication is assigned to, the schemes either have linear communication in the offline
phase or require two rounds of communication in the online phase.

2 Preliminaries

Throughout this work, we denote the security parameter by λ ∈ N, the set {1, . . . , k} as [k], the
set {0, 1, . . . , k} as [0..k], the number of parties by n and a specific party by Pi. The set of indices
of corrupted parties is denoted by C ⊊ [n] and honest parties are denoted by H = [n] \ C. We
denote vectors of elements via bold letters, e.g., a, and the i-th element of a vector a by a[i].

We model our protocol in the Universal Composability (UC) framework by Canetti [28]. We
refer to Appendix B for a brief introduction to UC. In our constructions, we denote by Z the
UC environment and use sid and ssid to denote session and subsession identifier. We model a
malicious adversary corrupting up to t− 1 parties. We consider static corruption and a rushing
adversary. Our protocols are in the synchronous communication model.

We make use of a bilinear mapping following the definition of [12, 11]. A bilinear mapping
is described by three cyclic groups (G1,G2,GT ) of prime order p, generators g1 ∈ G1, g2 ∈ G2,
and a pairing e : G1 × G → GT . We call e a bilinear map iff it can be computed efficiently,
e(ua, vb) = e(u, v)ab for all (u, v, a, b) ∈ G1 × G2 × Zp × Zp, and e(g1, g2) ̸= 1 for all generators
g1 and g2. We refer to [12] for a more formal specification.

3 Reusable Pseudorandom Correlation Generators

In this section we introduce our definition of reusable PCGs, extending the definition of pro-
grammable PCGs from [17] and [19]. We argue why existing constructions for PCGs satisfy our
new definition in Appendix D. The extended definitional framework for PCFs and the PCF-based
instantiation of the precomputation are stated in Appendix E and G.

In a nutshell, pseudorandom correlation generators allow two parties to generate a large
amount of correlated randomness from short seeds. They are useful in many two- and multi-party
protocols in the offline-online-model [39, 59, 69, 70]. Examples for frequently used correlations
are oblivious linear evaluations, oblivious transfer and multiplication triples.

Our modifications and extensions of the definitions of [16] and [19] reflect the challenges we
faced when using PCGs as black-box primitives in our threshold BBS+ protocol. We present
our definition and highlight these challenges and changes in the following. We note that Boyle
et al. [17] presents an ideal functionality for corruptible, correlated randomness which can be
instantiated by PCGs. While this simulation-based notion allows to abstract from concrete PCG
constructions, their ideal functionality does not cover the reusability feature required in our
setting. Therefore, we present a suitable game-based definition.

3.1 Definition

As mentioned above, a PCF/PCG realizes a target correlation Y. For some correlations, like
VOLE, parts of the correlation outputs are fixed over all outputs. In the example of VOLE,
where the correlation is v = as+ u over some ring R, the s value is fixed for all tuples.

Additionally, in a multi-party setting, we like PCG/PCF constructions that allow parties
to obtain the same values for parts of the correlation output in multiple instances. Concretely,
assume party Pi evaluates one VOLE PCG/PCF instance with party Pj and one with party
Pk. Pi evaluates the PCG/PCF to (ai,j , ui,j) for the first instance and (ai,k, ui,k) for the second
instance. Here, we want to give party Pi the opportunity to get ai,j = ai,k when applied on
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the same input. This property is necessary to construct multi-party correlations from two-party
PCG/PCF instances.

To formally model the abovementioned properties, we define a target correlation as a tuple of
probabilistic algorithms (Setup,Y), where Setup takes two inputs and creates a master key mk.
These inputs enable fixing parts of the correlation, e.g., the fixed value s in VOLE correlations,
and obtaining the same values over multiple instances, e.g., by fixing to the same values s in
multiple VOLE correlations. Algorithm Y uses the master key to sample correlation outputs.

Finally, we follow [16, 19] and require a target correlation to be reverse-sampleable to facil-
itate a suitable definition of PCGs. In contrast to [17, 19], our definition of a target correlation
explicitly considers the reusability of values over multiple invocations.

Definition 1 (Reverse-sampleable target correlation with setup). Let ℓ0(λ), ℓ1(λ) ≤
poly(λ) be output length functions. Let (Setup,Y) be a tuple of probabilistic algorithms, such that
Setup on input 1λ and two parameters ρ0, ρ1 returns a master key mk; algorithm Y on input 1λ

and mk returns a pair of outputs (y
(i)
0 , y

(i)
1 ) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ).

We say that the tuple (Setup,Y) defines a reverse-sampleable target correlation with setup
if there exists a probabilistic polynomial time algorithm RSample that takes as input 1λ,mk, σ ∈
{0, 1}, y(i)σ ∈ {0, 1}ℓσ(λ) and outputs y

(i)
1−σ ∈ {0, 1}ℓ1−σ(λ), such that for all σ ∈ {0, 1}, for all

mk,mk′ in the range of Setup for arbitrary but fixed input ρσ the following distributions are
statistically close:

{(y0, y1)|(y0, y1) $← Y(1λ,mk)}

{(y0, y1)|(y′0, y′1)
$← Y(1λ,mk′),

yσ ← y′σ, y1−σ ← RSample(1λ,mk, σ, yσ)}.

Given the definition of a reverse-sampleable correlation with setup, we define our primitive
called reusable PCG (rPCG).

The security properties in the original notion of programmable PCGs assumes randomly
selected seeds that are inserted into the key generation. This reflects a passive or semi-honest
setting in which the adversary cannot deviate from the protocol description such that the seeds
are indeed random. We are interested in the active security setting, where an adversary can
insert arbitrary seeds into the key generation. Therefore, we propose the notion of reusable
pseudorandom correlation generators.

Definition 2 (Reusable pseudorandom correlation generator (rPCG)). Let (Setup,Y)
be a reverse-sampleable correlation with setup which has output length functions ℓ0(λ), ℓ1(λ),
let λ ≤ η(λ) ≤ poly(λ) be the sample size function. Let (PCG.Genp,PCG.Expand) be a pair of
algorithms with the following syntax:

– PCG.Genp(1
λ, ρ0, ρ1) is a probabilistic polynomial-time algorithm that on input the security

parameter 1λ and reusable inputs ρ0, ρ1 outputs a pair of keys (k0, k1).
– PCG.Expand(σ, kσ) is a deterministic polynomial-time algorithm that on input σ ∈ {0, 1} and

key kσ outputs yσ ∈ {0, 1}ℓσ(λ)×η(λ), i.e. an array of size η(λ) with elements being bit-strings
of length ℓσ(λ).

We say (PCG.Genp,PCG.Expand) is a reusable pseudorandom correlation generator (rPCG)
for (Setup,Y), if the following conditions hold:
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– Programmability. There exist public efficiently computable functions ϕ0, ϕ1, such that for
all ρ0, ρ1 ∈ {0, 1}∗

Pr




(k0, k1)
$← PCG.Genp(1

λ, ρ0, ρ1)

(x0, z0)← PCG.Expand(0, k0),

(x1, z1)← PCG.Expand(1, k1)

:
x0 = ϕ0(ρ0)

x1 = ϕ1(ρ1)


 ≥ 1− negl(λ).

– Pseudorandom Y-correlated outputs. For every non-uniform adversary A of size poly(λ)
it holds that ∣∣∣∣Pr[Exp

pr-g
A (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Exppr-gA (λ) is as defined in Figure 1.
– Security. For each σ ∈ {0, 1} and non-uniform adversary A of size poly(λ), it holds that

∣∣∣∣Pr[Exp
sec-g
A,σ (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Expsec-gA,σ (λ) is as defined in Figure 1.
– Key indistinguishability. For any σ ∈ {0, 1} and non-uniform adversary A = (A0,A1),

it holds

Pr[Expkey-ind-gA,σ (λ) = 1] ≤ 1

2
+ negl(λ)

for all sufficiently large λ, where Expkey-ind-gA,σ is as defined in Figure 1.

3.2 Correlations

Our OLE correlation of size N over a finite field Fp is given by z1 = x0 · x1 + z0, where
x0,x1, z0, z1 ∈ FN

p . Moreover, we require x0 and x1 being computed by a pseudorandom generator
(PRG). Formally, we define the reverse-sampleable target correlation with setup (SetupOLE,YOLE)
of size N over a field Fp as

mk = (ρ0, ρ1)← SetupOLE(1
λ, ρ0, ρ1) ,

((F0(ρ0), z0), (F1(ρ1), z1))← YOLE(1
λ,mk) such that

z0
$← FN

p and z1 = F0(ρ0) · F1(ρ1) + z0 ,

(2)

where F0, F1 being pseudorandom generators (PRG). Note that while the Setup algorithm for
our OLE and VOLE correlation essentially is the identity function, the algorithm might be more
complex for other correlations. The reverse-sampling algorithm is defined such that

(F1(ρ1), F0(ρ0) · F1(ρ1) + z0)← RSampleOLE(1
λ,mk, 0, (F0(ρ0), z0)) and

(F0(ρ0), z1 − F0(ρ0) · F1(ρ1))← RSampleOLE(1
λ,mk, 1, (F1(ρ1), z1)).

Our VOLE correlation is the same as OLE but the value x1 is a fixed scalar in Fp, i.e.,
z1 = x0 · x1 + z0. We formally define the reverse-sampleable target correlation with setup
(SetupVOLE,YVOLE) of size N over field Fp as

mk = (ρ, x1)← SetupVOLE(1
λ, ρ, x1) ,

((F (ρ), z0), (x1, z1))← YVOLE(1
λ,mk) such that

z0
$← FN

p and z1 = F0(ρ0) · x1 + z0 ,

(3)
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Exppr-gA (λ) :

b
$← {0, 1}, N ← η(λ), (ρ0, ρ1)← A0(1

λ)

mk
$← Setup(1λ, ρ0, ρ1)

(k0, k1)
$← PCG.Genp(1

λ, ρ0, ρ1)

if b = 0 then (y0,y1)
$← Y(1λ,mk)

else yσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}
b′ ← A1(1

λ,y0,y1), return b′ = b

Expkey-ind-gA,σ (λ) :

b
$← {0, 1}, ρσ ← A0(1

λ)

ρ
(0)
1−σ, ρ

(1)
1−σ

$← {0, 1}∗, ρ1−σ ← ρ
(b)
1−σ

(k0, k1)← PCG.Genp(1
λ, ρ0, ρ1)

b′ ← A1(1
λ, kσ, ρ

(0)
1−σ) return b′ = b

Expsec-gA,σ (λ) :

b
$← {0, 1}, N ← η(λ), (ρ0, ρ1)← A0(1

λ)

mk
$← Setup(1λ, ρ0, ρ1), (k0, k1)

$← PCG.Genp(1
λ, ρ0, ρ1)

yσ
$← PCG.Expand(σ, kσ)

if b = 0 then (y1−σ)← PCG.Expand(1− σ, k1−σ)

else y1−σ ← RSample(1λ,mk, σ,yσ)

b′ ← A1(1
λ,y0,y1), return b′ = b

Fig. 1: Security games for reusable PCGs.

where F being a pseudorandom generator (PRG). The reverse-sampling algorithm is defined
such that (x1, F (ρ) · x1 + z0)← RSampleVOLE(1

λ,mk, 0, (F (ρ), z0)) and (F (ρ), z1 − F (ρ) · x1)←
RSampleVOLE(1

λ,mk, 1, (x1, z1)).
We state PCG constructions realizing these definitions of OLE and VOLE correlations in

Appendix D.

4 Threshold Online Protocol

In this section, we present our threshold BBS+ protocol. This protocol yields a signing phase
without interaction between the signers and a flexible threshold parameter t.

We show the security of our protocol against a malicious adversary statically corrupting up
to t − 1 parties in the UC framework. We show that our scheme implements a modification of
the generic ideal functionality for threshold signature schemes introduced by Canetti et al. [29].
We deliberately chose the generic threshold signature functionality by Canetti et al. [29] over
a specific BBS+ functionality such as the one used in [42]. Proving security under a generic
threshold functionality enables our threshold BBS+ protocol to be used whenever a threshold
signature scheme is required (e.g., for the construction of a more complex protocol such as an
anonymous credential system). We present the ideal functionality and discuss the changes with
respect to the original version in Appendix H.

Our protocol uses precomputation to accelerate online signing. An intuitive description of the
precomputation used is given in Section 1.2. We formally model the precomputation by describing
our protocol in a hybrid model where parties can access a hybrid preprocessing functionality FPrep.
Using a hybrid model allows us to abstract from the concrete instantiation of the preprocessing
functionality. We present concrete instantiations of FPrep in Section 5 and Appendix G.
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4.1 Ideal Preprocessing Functionality

The preprocessing functionality consists of two phases. First, the Initialization phase samples a
private/public key pair. Second, the Tuple phase provides correlated tuples upon request. In the
second phase, the output values of the honest parties are reverse sampled, given the corrupted
parties’ outputs. To explicitly model the Tuple phase as non-interactive, we require the simulator
to specify a function Tuple during the Initialization. This function defines the corrupted parties’
output values in the Tuple phase and is computed first to reverse sample the honest parties’
outputs.

Functionality FPrep

The functionality FPrep interacts with parties P1, . . . , Pn and ideal-world adversary S. The
functionality is parameterized by a threshold parameter t. During the initialization, S provides
a tuple function Tuple(·, ·, ·)→ Z5

p.
Initialization. Upon receiving (init, sid) from all parties,

1. Sample the secret key sk
$← Zp.

2. Send pk = (gsk2 ) to S. Upon receiving (ok,Tuple(·, ·, ·)) from S, send pk to every honest
party.

Tuple. On input (tuple, sid, ssid, T ) from party Pi where i ∈ T , T ⊆ [n] of size t do:

– If (ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T ) is stored, send (ai, ei, si, δi, αi) to Pi.
Else, compute (aj , ej , sj , δj , αj) ← Tuple(ssid, T , j) for every corrupted party Pj where j ∈
C ∩ T . Next, sample a, e, s

$← Zp and tuples (aj , ej , sj , δj , αj) over Zp for j ∈ H ∩ T such
that

∑

ℓ∈T
aℓ = a

∑

ℓ∈T
eℓ = e

∑

ℓ∈T
sℓ = s

∑

ℓ∈T
δℓ = a(sk+ e)

∑

ℓ∈T
αℓ = as

(4)

Store (sid, ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T ) and send (sid, ssid, ai, ei, si, δi, αi) to honest party
Pi.

Abort. On input (abort, sid) from S, send abort to all honest parties and halt.

4.2 Online Signing Protocol

Next, we formally state our threshold BBS+ protocol. We refer the reader to the technical
overview in Section 1.2 for a high-level description of our protocol. Further, we discuss extensions
for anonymous credentials systems, blind signing and efficiency improvements in Appendix C.

Construction 1: πTBBS+

We describe the protocol from the perspective of an honest party Pi.
Public Parameters. Number of parties n, maximal number of signatures N , size of message arrays
k, security threshold t, a bilinear mapping tuple (G1,G2,GT , p, g1, g2, e) and randomly sampled G1

elements {hℓ}ℓ∈[0..k]. Let Verifypk(·, ·) be the BBS+ verification algorithm as defined in Appendix A.
KeyGen.
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– Upon receiving (keygen, sid) from Z, send (init, sid) to FPrep and receive pk in return.
– Upon receiving (pubkey, sid) from Z output (pubkey, sid,Verifypk(·, ·)).

Sign. Upon receiving (sign, sid, ssid, T ,m = {mℓ}ℓ∈[k]) from Z with Pi ∈ T and no tuple (sid, ssid
mod N , ·) is stored, perform the following steps:

1. Send (tuple, sid, ssid mod N , T ) to FPrep and receive tuple (ai, ei, si, δi, αi).
2. Store (sid, ssid,m) and send (sid, ssid, T , Ai := (g1 ·

∏
ℓ∈[k] h

mℓ
ℓ )ai · hαi

0 , δi, ei, si) to each party
Pj ∈ T .

3. Once (sid, ssid, T , Aj , δj , ej , sj) is received from every party Pj ∈ T \ {Pi},
(a) compute e =

∑
ℓ∈T eℓ, s =

∑
ℓ∈T sℓ, ϵ =

(∑
ℓ∈T δℓ

)−1
, and A = (Πℓ∈T Aℓ)

ϵ.
(b) If Verifypk(m, (A, e, s)) = 1, set out = σ = (A, e, s). Otherwise, set out = abort. Then, output

(sig, sid, ssid, T ,m, out).

Verify. Upon receiving (verify, sid,m = {mℓ}ℓ∈[k], σ,Verifypk′(·, ·)) from Z output
(verified, sid,m, σ,Verifypk′(m, σ)).

Remark. While we simplified our UC model to capture the scenario where every signer obtains
the final signature, we expect real-world scenarios to have a dedicated client which is the only
party to obtain the signature. In the latter case, the signers send the partial signature in Step 2
only to the client and Steps 3a and 3b are performed by the client. We stress that in both cases
the communication follows a request-response pattern which is the minimum for MPC protocols.
Moreover, note that the (tuple, ·, ·, ·)-call to FPrep does not involve additional communication
when being instantiated based on PCGs or PCFs as done in this work. Using such an instanti-
ation, the (tuple, ·, ·, ·)-call is realized by local evaluation of the PCF or local expansion of the
PCG so that no interaction between the parties is needed.

Theorem 1. Assuming the strong unforgeability of BBS+, protocol πTBBS+ UC-realizes Ftsig in
the FPrep-hybrid model in the presence of malicious adversaries controlling up to t− 1 parties.

The proof is given in Appendix I.

5 PCG-based Threshold Preprocessing Protocol

We state our threshold BBS+ signing protocol in Section 4 in a FPrep-hybrid model. Now, we
present an instantiation of the FPrep functionality using pseudorandom correlation generators
(PCGs). In particular, our πPCG

Prep protocol builds on PCGs for VOLE and OLE correlations. The
resulting protocol consists of an interactive Initialization and a non-interactive Tuple phase,
consisting only of the retrieval of stored PCG tuples and additional local computation.

Our preprocessing protocol consists of four steps: the first three are part of the Initialization
phase, and the fourth one builds the Tuple phase. First, the parties set up a secret and corre-
sponding public key. For the BBS+ signature scheme, the public key is pk = gx2 , while the secret
key is sk = x, which is secret-shared using Shamir’s secret sharing. This procedure constitutes
a standard distributed key generation protocol for a DLOG-based cryptosystem. Therefore, we
abstract from the concrete instantiation of this protocol and model the key generation as a hybrid
functionality FKG. Second, the parties set up the keys for the PCG instances. The protocol uses
two-party PCGs, meaning each pair of parties sets up required instances. We model the PCG
key generation as a hybrid functionality FPCG

Setup. Third, every party expands the local seeds to the
required OLE- and VOLE-correlations and store them in their storage. The fourth step consti-
tutes the Tuple phase and is executed by every party in the signer set T of a signing request.

13



In this phase party Pi generates (ai, ei, si, δi, αi), where the values fulfill correlation (4). For a
signing request with ssid, Pi takes the ssid-th component of the previously expanded correlation
vectors a, e and s denoted by ai, ei, si. Note that the ai values constitute an additive secret
sharing of a and the same holds for e and s (cf. (4)). Then,

∑
ℓ∈T αℓ = as can be rewritten as

as =
∑

ℓ∈T aℓ ·
∑

j∈T sj =
∑

ℓ∈T
∑

j∈T aℓsj . Each multiplication aℓsj is equal to the additive
shares of an OLE correlation, i.e., c1 − c0 = aℓsj . The parties use the stored OLE correlations
that were expanded in the third step. Note that the parties use again the ssid-th component of
the vectors to get consistent values. Finally, party Pi locally adds aisi and the outputs of its
PCG expansions to get an additive sharing of as. The same idea works for computing δi such
that

∑
ℓ∈T δℓ = a(sk+ e) = ask+ ae. Note that while the values a, e, s are fresh random values

for each signing request, sk is fixed. Therefore, the parties use VOLE correlations to compute
ask instead of OLE correlations.

Note that party Pi uses PCG instances for computing additive shares of aisj and aisℓ for
two different parties Pj and Pℓ. Since ai must be the same for both products, we use reusable
PCGs so parties can fix ai over multiple PCG instances. Based on these two requirements, our
protocol relies on strong reusable PCGs defined in Section 3.

Key Generation Functionality We abstract from the concrete instantiation of the key generation.
Therefore, we state a very simple key generation functionality for discrete logarithm-based cryp-
tosystems similar to the functionality of [71]. The functionality describes a standard distributed
key generation for discrete logarithm-based cryptosystems and can be realized by [48, 71] or the
key generation phase of [29] or [42].

Functionality FKG

The functionality is parameterized by the order of the group from which the secret key is
sampled p, a generator for the group of the public key g2, and a threshold parameter t. The
key generation functionality interacts with parties P1, . . . , Pn and ideal-world adversary S.
Key Generation. Upon receiving (keygen, sid) from every party Pi and
(corruptedShares, sid, {skj}j∈C) from S:

1. Sample random polynomial F ∈ Zp[X] of degree t−1 such that F (j) = skj for every j ∈ C.
2. Set sk = F (0), pk = gsk2 , skℓ = F (ℓ) and pkℓ = gskℓ2 for ℓ ∈ [n].
3. Send (sid, ski, pk, {pkℓ}ℓ∈[n]) to every party Pi.

Setup Functionality The setup functionality gets random values, secret key shares, and partial
public keys as input from every party. Then, it first checks if the secret key shares and the partial
public keys match and next generates the PCG keys using the random values. Finally, it returns
the generated PCG keys to the parties.

In order to provide modularity, we abstract from concrete instantiation by specifying this
functionality. Nevertheless, FSetup can be instantiated using general-purpose MPC or tailored
protocols similar to distributed seed generation protocols from prior work [19, 2]. We leave a
formal specification of a tailored protocol as future work.

Functionality FPCG
Setup

Let (PCGVOLE.Genp,PCGVOLE.Expand) be an rPCG for VOLE correlations and let
(PCGOLE.Genp,PCGOLE.Expand) be an rPCG for OLE correlations. The setup functionality
interacts with parties P1, . . . , Pn.
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Setup. Upon receiving (setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)ℓ }ℓ∈[n]) from every party Pi:

1. Check if gskℓ2 = pk
(i)
ℓ for every ℓ, i ∈ [n]. If the check fails, send abort to all parties.

Else, compute for (Pk, Pj) with k, j ∈ [n], k ̸= j:

(a) (kVOLE
i,j,0 , kVOLE

i,j,1 )← PCGVOLE.Genp(1
λ, ρ

(i)
a , skj),

(b) (k
(OLE,1)
i,j,0 , k

(OLE,1)
i,j,1 )← PCGOLE.Genp(1

λ, ρ
(i)
a , ρ

(j)
s ), and

(c) (k
(OLE,2)
i,j,0 , k

(OLE,2)
i,j,1 )← PCGOLE.Genp(1

λ, ρ
(i)
a , ρ

(j)
e ).

2. Send keys (sid, {kVOLE
i,j,0 , kVOLE

j,i,1 , k
(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 , k

(OLE,2)
j,i,1 }j∈[n]\i) to party Pi for i ∈

[n].

PCG-based Preprocessing Protocol In this section, we formally present our PCG-based prepro-
cessing protocol in the (FKG,FPCG

Setup)-hybrid model.

Construction 2: πPCG
Prep

Let (PCGVOLE.Genp,PCGVOLE.Expand) be an rPCG for VOLE correlations and let
(PCGOLE.Genp,PCGOLE.Expand) be an rPCG for OLE correlations.
We describe the protocol from the perspective of Pi.
Initialization. Upon receiving input (init, sid), do:

1. Send (keygen, sid) to FKG.

2. Upon receiving (sid, ski, pk, {pk(i)ℓ }ℓ∈[n]) from FKG, sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e ∈ {0, 1}λ and send

(setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)ℓ }ℓ∈[n]) to FPCG

Setup.

3. Upon receiving (sid, kVOLE
i,j,0 , k

VOLE
j,i,1 , k

(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 ,

k
(OLE,2)
j,i,1 )j ̸=i from FPCG

Setup, compute and store for every j ∈ [N ] \ {i}:
(a) (ai, c

VOLE
i,j,0 ) = PCGVOLE.Expand(0, k

VOLE
i,j,0 ),

(b) (ski, c
VOLE
j,i,1 ) = PCGVOLE.Expand(1, k

VOLE
j,i,0 ),

(c) (ai, c
(OLE,1)
i,j,0 ) = PCGOLE.Expand(0, k

(OLE,1)
i,j,0 ),

(d) (si, c
(OLE,1)
j,i,1 ) = PCGOLE.Expand(1, k

(OLE,1)
j,i,1 ),

(e) (ai, c
(OLE,2)
i,j,0 ) = PCGOLE.Expand(0, k

(OLE,2)
i,j,0 ), and

(f) (ei, c
(OLE,2)
j,i,1 ) = PCGOLE.Expand(1, k

(OLE,2)
j,i,1 ).

4. Output pk.

Tuple. Upon receiving input (tuple, sid, ssid, T ), compute:

5. Let ai = ai[ssid], ei = ei[ssid], si = si[ssid], c
VOLE
(i,j,0) = cVOLE

(i,j,0)[ssid], c
VOLE
(j,i,1) = cVOLE

(j,i,1)[ssid], c
(OLE,d)
(i,j,0) =

c
(OLE,d)
(i,j,0) [ssid] and c

(OLE,d)
(j,i,1) = c

(OLE,d)
(j,i,1) [ssid] for j ∈ T \ {i} and d ∈ {1, 2}.

6. Compute

δi = ai(ei + Li,T ski) +
∑

j∈T \{i}

(
Li,T cVOLE

j,i,1 − Lj,T cVOLE
i,j,0 + c

(OLE,2)
j,i,1 − c

(OLE,2)
i,j,0

)

7. Compute αi = aisi +
∑

j∈T \{i}

(
c
(OLE,1)
j,i,1 − c

(OLE,1)
i,j,0

)

8. Output (sid, ssid, ai, ei, si, δi, αi).

Theorem 2. Let PCGVOLE be an rPCG for VOLE correlations and let PCGOLEbe an rPCG for
OLE correlations. Then, protocol πPCG

Prep UC-realizes FPrep in the (FKG,FPCG
Setup)-hybrid model in the

presence of malicious adversaries controlling up to t− 1 parties.
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We state our simulator, a proof sketch and the full indistinguishability proof in Appendix J,
K, and L.

6 Evaluation

In the following, we present the evaluation of the online and the offline phase of our proto-
col. As [67] published an optimization of the BBS+ signature scheme concurrent to our work,
we repeat our evaluation for an optimized version of our protocol and present the results in
Appendix N.

Parameters. In the following, we denote the security parameter by λ, the number of servers by n,
the security threshold by t, the size of the signed message arrays by k, the number of generated
precomputation tuples by N , the order of the elliptic curve’s groups G1 and G2 by p and assume
PCGs based on the Ring LPN problem with static leakage and security parameters c and τ , i.e.,
the Rc-LPNp,τ assumption.3 This assumption is common to state-of-the-art PCG instantiations
for OLE correlations [19].

6.1 Online, Signing Request-Dependent Phase

We evaluate the online, signing request-dependent phase by implementing the protocol, running
benchmarks, and reporting the runtime and the communication complexity. For comparison, we
also implement and benchmark the non-threshold BBS+ signing algorithm. We open-source our
prototype implementation to foster future research in this area.4

Implementation and experimental setup. Our implementation and benchmarks of the online
phase are written in Rust and based on the BLS12 381 curve.5 Note, since the BLS12 381 curve
defines an elliptic curve, we use the additive group notation in the following. This is in contrast
to the multiplicative group notation used in the protocol description. Our code, including the
benchmarks and rudimentary tests, comprises 1,400 lines. We compiled our code using rustc
1.68.2 (9eb3afe9e).

For our benchmarks, we split the protocol into four phases: Adapt (Steps 6 and 7 of protocol
πPCG
Prep), Sign (Step 2 of πTBBS+), Reconstruct (Step 3a of πTBBS+) and Verify (Step 3b of πTBBS+).

Adapt and Sign are executed by the servers. Reconstruct and Verify are executed by the client.
Together, these phases cover the whole online signing protocol. The runtime of our protocol is
influenced by the security threshold t and the message array size k. We perform benchmarks for
2 ≤ t ≤ 30 and 1 ≤ k ≤ 50. The range for parameter t is chosen to provide comparability with
[42] and we deem k ≤ 50 a realistic setting for the use-cases of credential certificates. Moreover,
both ranges illustrate the trend for increasing parameters. The influence of the total number of
servers n is insignificant to non-existent. Our benchmarks do not account for network latency,
which heavily depends on the location of clients and servers. Network latency, in our protocol,
incurs the same overhead as in the non-threshold setting. It can be incorporated by adding the
round-trip time of messages up to 2KB over the client’s (slowest) server connection to the total
runtime. As the online phase of our protocol is non-interactive, we benchmark servers and clients
individually. We execute all benchmarks on a single machine with a 14-core Intel Xeon Gold 5120
CPU @ 2.20GHz processor and 64GB of RAM. We repeat each benchmark 100 times to account
for statistical deviations and report the average. For comparability, we report the runtime of
basic arithmetic operations in Table 1 in Appendix M.

3 For 128-bit security and N = 220, [19] reports (c, τ) ∈ {(2, 76), (4, 16), (8, 5)}.
4 https://github.com/AppliedCryptoGroup/NI-Threshold-BBS-Plus-Code
5 We have used [4] for all curve operations.
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Experimental Results. We report the results of our benchmarks in Figure 2. These results reflect
our expectations as outlined in the following. The Adapt phase transforming PCF/PCG outputs
to signing request-dependent presignatures involves only field operations and is much faster than
the other phases for small t. The runtime increase for larger t stems from the number of field
operations scaling quadratically with the number of signers. Signers have to compute a LaGrange
coefficient for each other signer. The computation of the LaGrange coefficient scales with t as
well. The Sign phase requires the servers to compute k + 2 scalar multiplications in G1, each
taking 100 times more time than the slowest field operation (cf. Appendix M). The Reconstruct
phase involves a single G1 scalar multiplication, field operations, and G1 additions, depending
on the threshold t. The scalar multiplication, being responsible for more than 90% of the phase’s
runtime for t ≤ 30, dominates the cost of this phase. The Verify phase requires the client to
compute two pairing operations, a single scalar multiplication in G2, k+1 scalar multiplications
G1, and multiple additions in G1 and G2. The pairing operations and the scalar multiplication
in G2 are responsible for the constant costs visible in the graph. The scalar multiplications in G1

cause the linear increase. The influence of G1 and G2 additions is insignificant because they take
at most 1.4% of scalar multiplication in G1. The Total runtime mainly depends on the size of the
signed message array due to the scalar multiplications in the signing and verification step. The
number of signers, t, has only a minor influence on the online runtime; increasing the number
of signers from 2 to 30 increases the runtime by 1.14% − 5.52%. Following, the online protocol
can essentially tolerate any number of servers as long as the preprocessing, which is expected to
scale worse, can be instantiated efficiently for the number of servers and the storage complexity
of the generated preprocessing material does not exceed the servers’ capacities (cf. Section 6.2).

To measure the overhead of thresholdization, we compare the runtime of our online protocol
to the runtime of signature creation in the non-threshold setting in Figure 3. The overhead of
our online protocol consists only of a single scalar multiplication in G1, assuming that clients
also verify received signatures in the non-threshold setting. This observation reflects our protocol
pushing all the overhead of the distributed signing to the offline phase.

Communication complexity. The client has to send one signing request of size (k · ⌈log p⌉) + (t ·
⌈log n⌉) bits to each of the t selected servers. By deriving the signer set via a random oracle,
we can reduce the size of the request to (k · ⌈log p⌉). Each selected server has to send a partial
signature of size (3⌈log p⌉+ |G1|). In case of the BLS12 381 curve, ⌈log p⌉ equals 381 bits whereas
|G1| equals 762 bits. Parties can also encode G1 elements with 381 bits by only sending the x-
coordinate of the curve point and requiring the sender to compute the y-coordinate itself.

Note that our UC functionality models a scenario where every signer obtains the final signa-
ture. Therefore, the partial signatures are sent to all other signers. However, by incorporating
a dedicated client into the model, the signers can send the partial signatures only to the client.
While we expect this to be sufficient for real-life settings, it makes the model messier. We em-
phasize that this request-response behavior is the minimum interaction for MPC protocols. As
there is no interaction between the servers, this setting is referred to as non-interactive in the
literature [29, 2].

6.2 Offline, Signing Request-Independent Phase

For the offline, signing request-independent phase, we focus on the PCG-based precomputation as
PCFs lack efficient instantiations. We compute the communication complexity of the distributed
seed generation, the storage complexity of the generated seeds and expanded tuples, and com-
putation complexity of the seed expansion phase. We further implement the seed expansion of
the PCGs (Step 3 of protocol πPCG

Prep), run benchmarks and report the runtime.
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Fig. 2: The runtime of individual protocol phases (a)-(d) and the total online protocol (e). The
Adapt phase, describing Steps 5 and 6 of protocol πPrep, and the Reconstruct phase, describing
Step 3a of πTBBS+, depend on security threshold t. The Sign phase, describing Step 2 of πTBBS+,
and the signature verification, describing Step 3b of πTBBS+, depend on the message array size
k.
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Fig. 3: The total runtime of our online protocol compared to plain, non-threshold signing with
and without signature verification in dependence of k. The number of signers t is insignificant
(cf. Figure 2e).
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Experimental setup. Our implementation6 and benchmarks are written in Go. Our code, includ-
ing the benchmarks and rudimentary tests, comprises 5 467 lines. We compiled our code using
go 1.21.3. Again, we execute all benchmarks on machines with a 14-core Intel Xeon Gold 5120
CPU @ 2.20GHz processor and 64GB of RAM. Due to the complexity of the benchmarks and
the high amount of repetition within a single protocol run, we execute the benchmarks for each
choice of parameters just once.

The runtime of the seed expansion is influenced by the number of parties n, the number
of generated precomputation tuples N and the Module Ring LPN security parameters (c, τ).
For security parameters we fix c = 4 and τ = 16 which corresponds to 128-bit security [19].
We compute over a cyclotomic ring as proposed by [19] and fix the prime p to be the order
of the BLS12 381 curve. Our tests have shown that this choice of parameters yields the best
performance of the possible choices for the same security level. For the number of parties, we
consider 2 ≤ n ≤ 10.7 Further, we consider both the t-out-of-n setting and the n-out-of-n setting
as the latter has tremendous potential for optimization as discussed below. For the number of
generated triples, we consider N ∈ [211, . . . , 216]. For scenarios with less parties, we also consider
N ∈ [217, 218, 219].

Our benchmarks cover the seed expansion phase of all required PCGs (Step 3 of πPCG
Prep). As

our PCG instantiations compute over a ring, they also return ring elements each representing
an array of N field elements. For example, for a batch of N OLE correlations a · b = c + d
(a,b, c,d ∈ ZN

p ), the PCG actually returns four degree-N polynomials A · B = C + D. By
choosing the ring appropriately (cf. [19]), each polynomial can be split into N independent OLE
correlations over Zp. This step does not need to happen in a batch but can be done individually.
We report the computation time of the PCG seed expansion, yielding the ring elements, and the
time to split a single OLE correlation over Zp from a ring element, separately.

n-out-of-n vs. t-out-of-n. The runtime of the seed expansion strongly depends on whether we
consider a t-out-of-n or a n-out-of-n setting. To understand this dependency, recall the basic
concepts of PCGs (cf. PCG constructions in Appendix D). Parties first compute the desired
correlation with sparse polynomials as input values. Then, they expand these preliminary sparse
correlations to real random correlations by applying an LPN-based randomization. In our pro-
tocol, parties do this for each individual OLE- or VOLE-correlation and then combine the real
correlations to get the final precomputation tuples. However, in a real implementation parties
can first combine the sparse correlations and then apply the LPN-based randomization, effec-
tively reducing the amount of randomization operations. In the t-out-of-n setting, the signer set
is only known during the online phase, i.e., after the randomization step. As the combination
itself largely depends on the signer set, parties can only perform the combination steps that
are independent of the set. In the n-out-of-n setting, the signer set is already known during the
offline phase, i.e., every party has to sign. Parties can therefore perform most of the combinations
before randomization. More precisely, in the n-out-of-n setting, each party has to perform six
randomizations and split five polynomials, while in the t-out-of-n setting each party performs
3 + 4 · (n− 1) randomizations and splits just as many polynomials.

Experimental results. In Figure 4 and Figure 5, we display the computation time per signature
of the PCG expansion in the n-out-of-n setting and the t-out-of-n setting. The computation time
per signature increases superlinear with the number of signatures (note that the x-axis has a
logarithmic scale) and linear with the number of parties n. This is due to the fact that the seed
expansion requires multiplication of degree-N polynomials. We perform the multiplication via

6 https://github.com/leandro-ro/Threshold-BBS-Plus-PCG
7 The only prior work implementing the seed expansion [2] is restricted to n ∈ {2, 3}.
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the Fast Fourier Transformation which scales superlinear with the degree of the polynomial. Both
graphs show that the runtime increases with the number N . Nevertheless, as the correlations
are expanded from small keys, a large batch size N benefit from the sublinear communication
complexity in N of a distributed seed generation.

We further benchmarked the computation time to extract one of N field elements from a
degree-N polynomial. The results range from 0.1ms for N = 211 to 8.6ms for N = 219 . This step
essentially represents a polynomial evaluation executed via the Horner’s method which explains
the linear increase in the computation time.
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Fig. 4: Computation time of the seed expansion of all required PCGs in the n-out-of-n setting
for different committee sizes (n ∈ {2, . . . , 10}) dependent on the number of generated precompu-
tation tuples N .
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Fig. 5: Computation time of the seed expansion of all required PCGs in the t-out-of-n setting for
different committee sizes (n ∈ {2, . . . , 10}) dependent on the number of generated precomputa-
tion tuples N .

Complexity analysis. Existing fully distributed PCG constructions for OLE-correlations [19, 2]
do not separate between the PCG seed generation and the PCG evaluation phase. Instead,
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they merge both phases into one distributed protocol. These distributed protocols make use of
secret sharing-based general-purpose MPC protocols optimized for different kinds of operations
(binary [59], field [39, 38], or elliptic curve [37]) as well as a special-purpose protocol for the
computation of a two-party distributed point function (DPF) presented in [19]. As the PCG-
generated preprocessing material utilized in [2] shows similarities to the material required by our
online signing protocol, we derive a distributed PCG protocol for our setting from theirs and
analyze the communication complexity accordingly. The analysis yields that the communication
complexity of a PCG-based preprocessing instantiating our offline protocol is dominated by

26(ncτ)2 · (logN + log p) + 8n(cτ)2 · λ · logN

bits of communication per party.
Instead of merging the PCG setup with the PCG evaluation in one setup protocol, it is also

possible to generate the PCG seeds first, either via a trusted party or another dedicated protocol,
and execute the expansion at a later point in time, e.g., when the next batch of presignatures is
required. In this scenario, each server stores seeds with a size of at most

log p+ 3cτ · (⌈log p⌉+ ⌈logN⌉)
+2(n− 1) · cτ · (⌈logN⌉ · (λ+ 2) + λ+ ⌈log p⌉)
+4(n− 1) · (cτ)2 · (⌈log 2N⌉ · (λ+ 2) + λ+ ⌈log p⌉)

bits if the PCGs are instantiated according to [19].
When instantiating the precomputation with PCGs, servers must evaluate all of the PCGs’

outputs at once. The resulting precomputation material occupies

log p ·N · (3 + 6 · (n− 1))

bits of storage. In [2], the authors report N = 94 019 as a reasonable parameter for a PCG-based
setup protocol. In [19], the authors base their analysis on N = 220 = 1048 576. To efficiently
apply Fast Fourier Transformation algorithms during the seed expansion, it is necessary to choose
N such that it divides p− 1. Figure 6 reports the storage complexity depending on the number
of servers n for different N . Note that the dependency on the number of servers n stems from
the fact that we support any threshold t ≤ n. In a n-out-of-n settings, servers execute Steps 6
and 7 of πPCG

Prep during the preprocessing, and hence, only store log p · 5N bits of preprocessing
material.

The computation cost of the seed expansion is dominated by the ones of the PCGs for OLE
correlations. In [19], the authors report the computation complexity of expanding a seed of
an OLE PCG to involve at most N(ct)2(4 + 2⌊log(p/λ)⌋) PRG operations and O(c2N logN)
operations in Zp. In our protocol, each server Pi has to evaluate 4 OLE-generating PCGs for
each other server Pj ; one for each cross term (ai · ej), (aj · ei), (ai · sj), and (aj · si). It follows
that the seed expansion in our protocol is dominated by

4 · (n− 1) · (4 + 2⌊log(p/λ)⌋) ·N · (cτ)2

PRG evaluations and O(nc2N logN) operations in Zp.

6.3 Comparison to [42]

Independently of our work, [42] presented the first t-out-of-n threshold BBS+ protocol. This
protocol incorporates a lightweight setup independent of the number of generated signatures but
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Fig. 7: Runtime of the signing protocol of [42] compared to the network adjusted runtime of our
signing protocol in the LAN and WAN setting.

requires an interactive signing protocol. In contrast, our scheme offers a trade-off that provides
an efficient, non-interactive online phase at the cost of a more complex offline phase. This trade-
off aims to minimize the time it takes to answer a signing request. To show that our online
phase’s efficiency indeed benefits from the costly preprocessing, we compare our online signing
phase to their interactive signing protocol.8 We stress that the advantage of our online phase
comes at the cost of a significantly more complex offline phase. However, our online phase is inde-
pendent of the concrete instantiation of the offline phase. In particular, less memory-consuming
but more communication-intensive instantiations, e.g., based on oblivious transfer or somewhat
homomorphic encryption, are also possible.

As our implementation, their implementation is in Rust and based on the BLS12 381 curve.
When comparing the benchmarking machines, G1 and G2 scalar multiplications are 20 − 30%
faster on our machine, while signature verifications are 20% faster on their machine. Although
not explicitly stated, the numbers strongly indicate the choice k = 1 in [42]; the reported runtime
of non-threshold BBS+ signing is slightly larger than three G1 scalar multiplications. Due to the
interactivity of their protocol, their benchmarks incorporate network delays for different settings
(LAN, WAN). We add network delays to our results to compare our benchmarks to theirs. All
machines used in their evaluation are Google Cloud c2d-standard-4 instances. In the LAN setting,
all instances are located at the us-east1-c zone. [40] reports a LAN latency of 0.146 ms for this
zone. We add a delay of 0.3 ms to our results. In the WAN setting, the first 12 instances in their
benchmarks are located in the US, while other machines are in Europe or the US. According
to [52], we add 100 ms to our results for t < 13 and 150 ms for t ≥ 13.

In Figure 7, we compare the runtime, including latency, of our online signing protocol to the
runtimes reported in [42] for the LAN and the WAN setting. The graphs show that our protocol

8 We thank the authors of [42] for sharing concrete numbers of their evaluation.
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outperforms the one of [42] in both settings for every number of servers. The only exception is
the runtime for t = 2 in the WAN setting. This exception seems caused by an unusually low
connection latency between the first two servers and the client in [42]. The overhead of [42] is
mainly caused by the two additional rounds of cross-server interaction. This overhead rises with
the number of servers as each server has to communicate with each other servers and is especially
severe in the WAN setting.

Due to the high efficiency and non-interactivity of our online phase, our protocol is more
suited for settings where servers have a sufficiently long setup interval and storage capacities to
deal with the complexity of the preprocessing phase. On the other hand, the protocol of [42] is
more suited for use cases with more lightweight servers, especially in a LAN environment where
the network delay of the additional communication is less significant.
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A The BBS+ Signature Scheme

Let k be the size of the message arrays, G = (G1,G2,GT , p, g1, g2, e) be a bilinear mapping tuple
and {hℓ}ℓ∈[0..k] be random elements of G1. The BBS+ signature scheme is defined as follows:

– KeyGen(λ): Sample x
$← Z∗

p, compute y = gx2 , and output (pk, sk) = (y, x).

– Signsk({mℓ}ℓ∈[k] ∈ Zk
p): Sample e, s

$← Zp, compute A := (g1 ·hs
0 ·
∏

ℓ∈[k] h
mℓ

ℓ )
1

x+e and output

σ = (A, e, s).
– Verifypk({mℓ}ℓ∈[k] ∈ Zk

p, σ): Output 1 iff e(A, y · ge2) = e(g1 · hs
0 ·
∏

ℓ∈[k] h
mℓ

ℓ , g2)

The BBS+ signature scheme is proven strong unforgeable under the q-strong Diffie Hellman
(SDH) assumption for pairings of type 1, 2, and 3 [5, 23, 67]. Intuitively, strong unforgeability
states that the attacker is not possible to come up with a forgery even for messages that have
been signed before. We refer to [67] for further details.

Optimized scheme of Tessaro and Zhu [67] Concurrently to our work, Tessaro and Zhu showed
an optimized version of the BBS+ signatures, reducing the signature size. In their scheme, the

signer samples only one random value, e
$← Zp, computes A := (g1 ·

∏
ℓ∈[k] h

mℓ

ℓ )
1

x+e , and outputs

σ = (A, e). The verification works as before, with the only difference that the term hs
0 is removed.

Note that if the first message m1 is sampled randomly, then the short version is equal to the
original version. While we describe our protocol in the original BBS+ scheme by Au et al. [5],
we elaborate on the influence of [67] on our evaluation in Appendix N.

B Universal Composability Framework ([28])

We formally model and prove the security of our protocols in the Universal Composability frame-
work (UC). The framework was introduced by Canetti in 2001 [28] to analyze the security of
protocols formally. The universal composability property guarantees the security of a protocol
holds even under concurrent composition. We give a brief intuition and defer the reader to [28]
for all details.

Like simulation-based proofs, the framework differentiates between real-world and ideal-world
execution. The real-world execution consists of n parties P1, . . . , Pn executing protocol π, an
adversary A, and an environment Z. All parties are initialized with security parameter λ and a
random tape, and Z runs on some advice string z. In this work, we consider only static corruption,
where the adversary corrupts parties at the onset of the execution. After corruption, the adversary
may instruct the corrupted parties to deviate arbitrarily from the protocol specification. The
environment provides inputs to the parties, instructs them to continue the execution of π, and
receives outputs from the parties. Additionally, Z can interact with the adversary.
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The real-world execution finishes when Z stops activating parties and outputs a decision bit.
We denote the output of the real-world execution by REALπ,A,Z(λ, z).

The ideal-world execution consists of n dummy parties, an ideal functionality F , an ideal
adversary S, and an environment Z. The dummy parties forward messages between Z and F ,
and S may corrupt dummy parties and act on their behalf in the following execution. S can also
interact with F directly according to the specification of F . Additionally, Z and S may interact.
The goal of S is to simulate a real-world execution such that the environment cannot tell apart
if it is running in the real or ideal world. Therefore, S is also called the simulator.

Again, the ideal-world execution ends when Z outputs a decision bit. We denote the output
of the ideal-world execution by IDEALF,S,Z(λ, z).

Intuitively, a protocol is secure in the UC framework if the environment cannot distinguish
between real-world and ideal-world execution. Formally, protocol π UC-realizes F if for every
probabilistic polynomial-time (PPT) adversary A there exists a PPT simulator S such that for
every PPT environment Z

{REALπ,A,Z(1
λ, z)}λ∈N,z∈{0,1}∗ = {IDEALF,S,Z(1

λ, z)}λ∈N,z∈{0,1}∗ .

C Anonymous Credentials and Blind Signing

Our online protocol defined in Section 4.2 describes a threshold variant of the BBS+ signature
scheme. Since anonymous credentials are one prominent application of BBS+ signatures, we
elaborate on this application in the following.

BBS+ signatures can be used to design anonymous credential schemes as follows. To receive
a credential, a client sends a signing request to the servers in the form of a message array, which
contains its public and private credential information. Public parts of the credentials are sent
in clear, while private information is blinded. The client can add zero-knowledge proofs that
blinded messages satisfy some predicate. These proofs enable the issuing servers to enforce a
signing policy even though they blindly sign parts of the messages. Given a credential, clients
can prove in zero-knowledge that their credential fulfills certain predicates without leaking their
signature.

Our scheme must be extended by a blind-signing property to realize the described blueprint.
Precisely, we require a property called partially blind signatures [1]. This property prevents the
issuer from learning private information about the message to be signed.

To transform our scheme into a partially blind signature scheme, we follow the approach of [5].
Let {mℓ}ℓ∈[k] be the set of messages representing the client’s credential information. Without
loss of generality, we assume that mk is the public part. In order to blind its messages, the
client computes a Pedersen commitment [61] on the private messages: C = hs′

0 ·
∏

ℓ∈[k−1] h
mℓ

ℓ

for a random s′ and a zero-knowledge proof π that C is well-formed, i.e., that the client knows
(s′, {mℓ}ℓ∈[k−1]). The client sends (T , C, π,mk) and potential zero-knowledge proofs for signing
policy enforcement to the servers. Each server Pi for i ∈ T replies with (Ai = (g1 · C · hmk

k )ai ·
hαi
0 , δi, ei, si). The client computes e, s, and A as before but outputs signature (A, e, s∗ = s′ + s)

which yields a valid signature.
As the blinding mechanism and the resulting signatures are equivalent in the non-threshold

BBS+ setting, we can use existing zero-knowledge proofs for policy enforcement and credential
usage from the non-threshold setting [5, 23, 67].
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D Reusable PCG Constructions

In this section, we present constructions of reusable PCGs for VOLE and OLE correlations
according to the definitions provided in Section 3 together with the required building blocks and
security assumptions. The constructions are derived from the one of [19].

Notation Let R be a ring. For two column vectors u = (u1, . . . , ut) ∈ Rt and v = (v1, . . . , vt) ∈
Rt, we define the outer sum u ⊞ v be the vector (ui + vj)i,j∈[t] ∈ Rt2 . Similar, we define the

outer product (or tensor product) u⊗v to be (ui ·vj)i,j∈[t] ∈ Rt2 . The inner product of two t-size

vectors ⟨u,v⟩ is defined as
(∑

i∈[t] ui · vi
)
∈ R.

Ring Module LPN Assumption The following definition of the Module Ring LPN assumption
introduced by [19] is taken almost verbatim from the original [19, Definition 3.2] but adapted to
our notation.

Definition 3. Module-LPN
Let c ≥ 2 be an integer, let R = Zp/F (X) for a prime p and degree-N polynomial F (X) ∈

Zp[X] and let τ ∈ N be an integer. Further, let HWR,τ denote the distribution of “sparse poly-
nomials” over R obtained by sampling τ noise positions α ← [N ]τ and τ payloads β ← (Z∗

p)
τ

uniformly at random and outputting e(X) :=
∑

i∈[τ ] β[i] · Xα[i]−1. Then, for R = R(λ),m =

m(λ), τ = τ(λ), we say the Rc-LPNR,m,τ problem is hard if for every nonuniform polynomial-
time distinguisher A, it holds that

|Pr[A({(a(i), ⟨a(i), e⟩+ f (i))}i∈[m]) = 1]

−Pr[A({(a(i), u(i))}i∈[m]) = 1]| ≤ negl(λ)

where the probabilities are taken over a(1), . . . ,a(m) ← Rc−1, u(1), . . . , u(m) ← R, e ←
HWc−1

R,τ , f
(1), . . . , f (m) ← HWR,τ .

Distributed Sum of Point Functions (DSPF) We use distributed sum of functions. The definition
is taken partially verbatim from [19, 2] but adapted to our notation.

Definition 4 (Distributed Sum of Point Functions). Let G be an Abelian group, N, τ be
positive integers, fα,β : [N ] → G be a sum of τ point functions, parametrized for α ∈ [N ]τ

and β ∈ Gτ , such that fα,β(x) = 0 +
∑

(i∈[τ ] s.t. α[i]=x) β[i]. A 2-party distributed sum of point

functions (DSPF) with domain [N ], codomain G, and weight τ is a pair of PPT algorithms
(DSPF.Gen,DSPF.Eval) with the following syntax.

– DSPF.Gen takes as input the security parameter 1λ and a description of the sum of point
functions fα,β, specifically, the special positions α ∈ [N ]τ and the non-zero elements β ∈ Gτ .
The output is two keys (K0,K1).

– DSPF.Eval takes as input a DPF key Kσ, index σ ∈ {0, 1} and a value x ∈ [N ], outputting
an additive share vσ of fα,β(x).

A DSPF should satisfy the following properties:

– Correctness. For every set of special positions α ∈ [N ]τ , set of non-zero elements β ∈ Gτ

and element x ∈ [N ], we have that

Pr[v0 + v1 = fα,β(x)|(K0,K1)← DSPF.Gen(1λ, α, β),

vσ ← DSPF.Eval(Kσ, σ, x) for σ ∈ {0, 1}] = 1
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– Security. There exists a PPT simulator S such that, for every corrupted party σ ∈ {0, 1},
set of special positions α ∈ [N ]τ and set of non-zero elements β ∈ Gτ , the output of S(1λ, σ)
is computationally indistinguishable from

{Kσ|(K0,K1)← DSPF.Gen(1λ, α, β)}

We denote the execution of DSPF.Eval(Kσ, σ, x) for every x ∈ [N ], i.e. the evaluation over
the whole domain [N ], by DSPF.FullEval(Kσ, σ).

PCG constructions. The OLE construction is derived from [19, Fig. 1]. However, we extend
it by the reusability feature by deriving the sparse polynomials normally sampled in PCG.Gen
by applying a random oracle on seeds provided as input to the programmable key generation
PCG.Genp.

Construction 3: Reusable PCG for YR
OLE

Let λ be the security parameter, τ = τ(λ) be the noise weight, c ≥ 2 the compression factor, p = p(λ)
a modulus, N = N(λ) a degree, and Rp = Zp[X]/F (X) be a ring for a degree-N F (X) ∈ Zp[X].
Further, let (DSPF.Gen,DSPF.Eval) be a FSS scheme for sums of τ2-point functions with domain [2N ]
and range Zp. Finally, let H : {0, 1}λ → ([N ]τ × (Z∗

p)
τ )c be a random oracle.

Correlation: The target correlation YR
OLE over ring Rp is defined as

mk = (ρ0, ρ1)← SetupROLE(1
λ, ρ0, ρ1)

((x0, z0), (x1, z1))← YR
OLE(1

λ,mk) such that

x0 = F0(ρ0), x1 = F1(ρ1), z0
$← Rp, z1 = x0 · x1 − z0

(xσ, x0 · x1 − zσ)← RSampleROLE(1
λ,mk, σ, (xσ, zσ)) where

x0 = F0(ρ0),x1 = F1(ρ1)

with F0 and F1 being PRGs. As proposed by [19], Rp can be constructed to be isomorphic to N copies
of Zp. This allows the direct transformation of one OLE over Rp into N independent OLEs over Zp.
Public Input: Random Rc−LPN polynomials a2, . . . ac ∈ Rp, defining the vector a = (1, a2, . . . , ac).
PCG.Genp(1

λ, ρ0, ρ1):

1. Compute {(αi
σ, β

i
σ)}i∈[c] ← H(ρσ) for σ ∈ {0, 1} where each αi

σ ∈ [N ]τ and each βi
σ ∈ (Z∗

p)
τ .

2. For i, j ∈ [c], sample FSS keys (K
(i,j)
0 ,K

(i,j)
1 )

$← DSPF.Gen(1λ, αi
0 ⊞ αj

1, β
i
0 ⊗ βj

1).

3. For σ ∈ {0, 1}, define kσ = ({(αi
σ, β

i
σ)}i∈[c], {K(i,j)

σ }i,j∈[c]).
4. Output (k0, k1).

PCG.Expand(σ, kσ):

5. Parse kσ as ({(αi
σ, β

i
σ)}i∈[c], {K(i,j)

σ }i,j∈[c]).
6. For i ∈ [c], define (over Zp) the degree < N polynomial:

eiσ(X) =
∑

k∈[τ ]

βi
σ[k] ·Xαi

σ [k]

and compose all eiσ (for i ∈ [c]) to a length-c vector eσ.

7. For i, j ∈ [c], compute u
i+c(j−1)
σ ← DSPF.FullEval(σ,K

(i,j)
σ ) and view this as a degree < 2N

polynomial. Compose all ui
σ (for i ∈ [c2]) to a length-c2 vector vσ mod F (X).

8. Compute xσ = ⟨a, eσ⟩ mod F (X) and zσ = ⟨a⊗ a,vσ⟩ mod F (X).
9. Output (xσ, zσ).

From the previous construction, we derive a VOLE construction in a straight-forward way.
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Construction 4: Reusable PCG for YR
VOLE

Let λ be the security parameter, τ = τ(λ) be the noise weight, c ≥ 2 the compression factor, p = p(λ)
a modulus, N = N(λ) a degree, and Rp = Zp[X]/F (X) be a ring for a degree-N F (X) ∈ Zp[X].
Further, let (DSPF.Gen,DSPF.Eval) be a FSS scheme for sums of τ point functions with domain [N ]
and range Zp. Finally, let H : {0, 1}λ → ([N ]τ × (Z∗

p)
τ )c be a random oracle.

Correlation: The target correlation YR
VOLE over ring Rp is defined as

mk = (ρ, x)← SetupROLE(1
λ, ρ, x)

((y, z0), (x, z1))← YR
OLE(1

λ,mk) such that

y = F (ρ), z0
$← Rp, z1 = x · y − z0

(x, x · F (ρ)− z0)← RSampleRVOLE(1
λ,mk, 0, (F (ρ), z0))

(F (ρ), x · y − z1)← RSampleRVOLE(1
λ,mk, 1, (x, z1))

with F being a PRG. As proposed by [19], Rp can be constructed to be isomorphic to N copies of Zp.
This allows the direct transformation of one VOLE over Rp into N independent VOLEs over Zp.
Public Input: Random Rc−LPN polynomials a2, . . . ac ∈ Rp, defining the vector a = (1, a2, . . . , ac).
PCG.Genp(1

λ, ρ0, ρ1):

1. Parse ρ1 as x and compute {(αi, βi)}i∈[c] ← H(ρ0) where x ∈ Z∗
p, each αi ∈ [N ]τ and each

βi ∈ (Z∗
p)

τ .

2. For i ∈ [c], sample FSS keys (Ki
0,K

j
1)

$← DSPF.Gen(1λ, αi, x · βi).
3. For σ ∈ {0, 1}, define kσ = (ρσ, {Ki

σ}i∈[c]).
4. Output (k0, k1).

PCG.Expand(σ, kσ):

5. If σ = 0, parse k0 as (ρ0, {Ki
0}i∈[c]) and compute {(αi, βi)}i∈[c] ← H(ρ0) where each αi ∈ [N ]τ

and each βi ∈ (Z∗
p)

τ . Then, for i ∈ [c], define (over Zp) the degree < N polynomial:

ei(X) =
∑

k∈[τ ]

βi[k] ·Xαi[k]

and compose all ei (for i ∈ [c]) to a length-c vector e.
6. If σ = 1, parse k1 as (x, {Ki

1}i∈[c]).
7. For i ∈ [c], compute ui

σ ← DSPF.FullEval(σ,Ki
σ) and view the result as a degree < N polynomial.

Compose all ui
σ (for i ∈ [c]) to a length-c vector vσ mod F (X).

8. Compute zσ = ⟨a,vσ⟩ mod F (X).
9. If

– σ = 0, compute y = ⟨a, e⟩ mod F (X) and output (y, z0)
– σ = 1, output (x, z1).

Security. We state the following Theorems:

Theorem 3. Assume the Rc-LPNRp,1,τ assumption holds and that DSPF is a secure instantia-
tion of a distributed sum of point functions. Then, Construction 3 is a secure reusable PCG for
OLE correlations over Rp in the random oracle model.

Theorem 4. Assume the Rc-LPNRp,1,τ assumption holds and that DSPF is a secure instantia-
tion of a distributed sum of point functions. Then, Construction 4 is a secure reusable PCG for
VOLE correlations over Rp in the random oracle model.
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In the following, we provide a proof sketch for Theorem 3. A proof sketch for Theorem 4
follows in a straight-forward way.

Proof. To show that Construction 3 is a secure reusable PCG, we need to show programmability,
pseudorandom Y-correlated outputs, security and key indistinguishability.

Programmability can be shown, by defining ϕσ as a function, that first computes {(αi
σ, β

i
σ)}i∈[c] ←

H(ρσ), expands these to eσ ∈ Rc
p as done in the PCG.Expand algorithm, and then outputs ⟨a, eσ⟩.

Pseudorandom Y-correlated outputs can be shown via a sequence of games. First, we replace
the PRG Fσ in Y by ϕσ. As the random oracle ensures that the secrets e∗∗ are sampled uniformly
at random, indistinguishability can be shown via a reduction to the Rc-LPNRp,1,τ assumption.
Next, we skip the DSPF key generation and full evaluation during the expansion. Instead, we
directly sample z0 ∈R Rp and define z1 = x0 · x1 − z0. Here, indistinguishability can be shown
analogously to the correctness proof in [19]. Note that in the previous game for every i, j ∈ [c],
it holds that

ei0(X) · ej1(X) =
∑

k,l∈[τ ]

βi
0[k] · βj

1[l] ·Xαi
0[k]·αj

1[l].

Therefore, parties can obtain an additive sharing of this product by fully evaluating the (i, j)-th

DSPF instance. It follows that u
i+c(j−1)
0 + u

i+c(j−1)
1 = ei0(X) · ej1(X), and hence, v = e0 ⊗ e1.

This observation yields the following relation of the outputs:

z0 + z1 = ⟨a⊗ a,v0 + v1⟩ = ⟨a⊗ a, e0 + e1⟩
= ⟨a, e0⟩ · ⟨a, e1⟩ = x0 · x1

As the correlation of (x0, x1, z0, z1) is the same in both games, the computation of x0 and x1

remains untouched, and the DSPF implies that each zσ is individually pseudorandom, both games
are computationally indistinguishable. In the resulting game, the challenger executes the exact
same steps independent of the coin b. Therefore, it follows that any adversary wins the final game
with probability exactly 1

2 which implies that any adversary wins the original security game with
probability at most 1

2 + negl.

As RSampleROLE executes the same steps as the forward sampling YR
OLE, security can be shown

analogously to the pseudorandom Y-correlated outputs property.
Key indistinguishability follows from the security property of the DSPF scheme via a se-

quence of game hops. We replace one by one the DSPF-keys in kσ with ones produced by the
DSPF-simulator. Indistinguishability between games can be proven via reductions to the security
property of the DSPF scheme. Finally, we remove in one more game the PCG key generation and
the assignment of ρ1−σ as both steps become redundant. The final game is completely indepen-
dent of the choice of b such that the success probability of A is exactly 1

2 which shows that the
success probability of A in the initial game is at most 1

2 + negl(λ).

E Reusable Pseudorandom Correlation Function

On a high level, a pseudorandom correlation function (PCF) allows two parties to generate a
large amount of correlated randomness from short seeds. PCF extends the notion of a pseudo-
random correlation generator (PCG) in a similar way as a pseudorandom function extends a
pseudorandom generator. While a PCG generates a large batch of correlated randomness during
one-time expansion, a PCF allows the creation of correlation samples on the fly.

A PCF consists of two algorithms, Gen and Eval. The Gen algorithm computes a pair of
short keys distributed to two parties. Then, each party can locally evaluate the Eval algorithm
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using its key and public input to generate an output of the target correlation. One example
of such a correlation is the oblivious linear evaluation (OLE) correlation, defined by a pair of
random values (y0, y1) where y0 = (a, u) and y1 = (s, v) such that v = as+ u. Other meaningful
correlations are oblivious transfer (OT) and multiplication triples.

PCFs are helpful in two- and multi-party protocols, where parties first set up correlated
randomness and then use this data to speed up the computation [41, 2, 51].

This section presents our definition of reusable PCFs, extending the definition of programmable
PCFs from [18]. Furthermore, we state constructions of reusable PCFs and argue why they satisfy
our new definition in Appendix F.

Our modifications and extensions of the definition [18] reflect the challenges we faced when
using PCFs as black-box primitives in our threshold BBS+ protocol. We present our definition
and highlight these challenges and changes in the following.

E.1 Definition

Similar to PCGs, PCFs realize a target correlation Y. While PCFs output single correlation
outputs instead of a bunch of correlation as PCGs, we need to slightly adapt the definition of a
target correlation. We emphasize the modification in the following.

We formally define a target correlation as a tuple of probabilistic algorithms (Setup,Y),
where Setup takes two inputs and creates a master key mk. These inputs enable fixing parts of
the correlation, e.g., the fixed value s. Algorithm Y uses the master key and an index i to sample
correlation outputs. The index i helps to sample the same value if one of the Setup inputs is
identical for multiple invocations. The input i is not necessary for correlations for PCGs since
the output of PCG expansion is a bunch of correlation. For PCFs, the output of the evaluation
is a single correlation tuple. Thus, we need the index i to sample the same value if one of the
Setup inputs is identical for multiple PCF invocations.

Definition 5 (Reverse-sampleable and indexable target correlation with setup). Let
ℓ0(λ), ℓ1(λ) ≤ poly(λ) be output length functions. Let (Setup,Y) be a tuple of probabilistic algo-
rithms, such that Setup on input 1λ and two parameters ρ0, ρ1 returns a master key mk; algorithm

Y on input 1λ, mk, and index i returns a pair of outputs (y
(i)
0 , y

(i)
1 ) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ).

We say that the tuple (Setup,Y) defines a reverse-sampleable and indexable target correlation
with setup if there exists a probabilistic polynomial time algorithm RSample that takes as input

1λ,mk, σ ∈ {0, 1}, y(i)σ ∈ {0, 1}ℓσ(λ) and i, and outputs y
(i)
1−σ ∈ {0, 1}ℓ1−σ(λ), such that for all

σ ∈ {0, 1}, for all mk,mk′ in the range of Setup for arbitrary but fixed input ρσ, and all i ∈ {0, 1}∗
the following distributions are statistically close:

{(y(i)0 , y
(i)
1 )|(y(i)0 , y

(i)
1 )

$← Y(1λ,mk, i)}

{(y(i)0 , y
(i)
1 )|(y′(i)0 , y

′(i)
1 )

$← Y(1λ,mk′, i),

y(i)σ ← y′(i)σ , y
(i)
1−σ ← RSample(1λ,mk, σ, yσ, i)}.

Given the definition of a reverse-sampleable and indexable correlation with setup, we define
our primitive called strong reusable PCF (srPCF). Our definition builds on the definition of a
strong PCF of Boyle et al. [18] and extends it by a reusability feature. Note that [18] presents
a separate definition of this reusability feature for PCFs, but this property also affects the
other properties of a PCF. Therefore, we merge these definitions. Additionally, the reusability
definition of Boyle et al. works only for the semi-honest setting, while our definition covers
malicious adversaries. The crucial point to cover malicious adversaries is to allow the corrupted
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party to choose an arbitrary value as its input to the key generation. Our definitions give this
power to the adversary, while the definitions of Boyle et al. use randomly chosen inputs.

A PCF must fulfill two properties. First, the pseudorandomness property intuitively states
that the joint outputs of the Eval algorithm are computationally indistinguishable from outputs
of the correlation Y. Second, the security property intuitively guarantees that the PCF output of
party P1−σ is indistinguishable from a reverse-sampled value. Indistinguishability holds even if
the adversary corrupts party Pσ and learns its key. Hence, this property provides security against
an insider.

Similarly to the notions of weak and strong PRFs, there exist the notions of weak and strong
PCFs. For a weak PCF, we consider the Eval algorithm to be executed on randomly chosen
inputs, while for a strong PCF, we consider arbitrarily chosen inputs. Boyle et al. [18] showed
a generic transformation from a weak to a strong PCF using a hash function modeled as a
programmable random oracle. In Appendix F, we present constructions for weak srPCFs, which
then yield strong srPCFs based on the transformation of Boyle et al.

A PCF needs to meet two additional requirements to satisfy the reusability features. First, an
adversary cannot learn any information about the other party’s input used for the key generation
from its own key. This is modeled by the key indistinguishability property and the corresponding
game in Figure 10. In the game, the challenger samples two random values and uses one for the
key generation. Then, given the corrupted party’s key and the random values, the adversary has
to identify which of the two random value was used. Second, two efficiently computable functions
must exist to compute the reusable parts of the correlation from the setup input and the public
evaluation input. Formally, we state the definition of a strong reusable PCF next.

Definition 6 (Strong reusable pseudorandom correlation function (srPCF)). Let (Setup,Y)
be a reverse-sampleable and indexable correlation with setup which has output length functions
ℓ0(λ), ℓ1(λ), and let λ ≤ η(λ) ≤ poly(λ) be an input length function. Let (PCF.Gen,PCF.Eval) be
a pair of algorithms with the following syntax:

– PCF.Gen(1λ, ρ0, ρ1) is a probabilistic polynomial-time algorithm that on input the security
parameter 1λ and reusable inputs ρ0, ρ1 outputs a pair of keys (k0, k1).

– PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input σ ∈ {0, 1}, key
kσ and input value x ∈ {0, 1}η(λ) outputs a value yσ ∈ {0, 1}ℓσ(λ).

We say (PCF.Gen,PCF.Eval) is a strong reusable pseudorandom correlation function (srPCF) for
(Setup,Y), if the following conditions hold:

– Strong pseudorandom Y-correlated outputs. For every non-uniform adversary A of size
poly(λ) asking at most poly(λ) queries to the oracle Ob(·), it holds

∣∣∣∣Pr[Exp
s-pr
A (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Exps-prA (λ) is as defined in Figure 8.
– Strong security. For each σ ∈ {0, 1} and non-uniform adversary A of size poly(λ) asking

at most poly(λ) queries to oracle Ob(·), it holds
∣∣∣∣Pr[Exp

s-sec
A,σ (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Exps-secA,σ (λ) is as defined in Figure 9.
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Exps-prA (λ) :

(ρ0, ρ1)← A0(1
λ)

mk← Setup(1λ, ρ0, ρ1)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)
Q = ∅
b

$← {0, 1}
b′ ← AOb(·)

1 (1λ)
if b = b′return 1
else return 0

O0(x) :

if (x, y0, y1) ∈ Q :
return (y0, y1)

else :

(y0, y1)← Y(1λ,mk, x)

Q = Q∪ {(x, y0, y1)}
return (y0, y1)

O1(x) :

for σ ∈ {0, 1} :
yσ ← PCF.Eval(σ, kσ, x)

return (y0, y1)

Fig. 8: Strong pseudorandom Y-correlated outputs of a PCF.

– Programmability. There exist public efficiently computable functions f0, f1, such that for
all x ∈ {0, 1}η(λ) and all ρ0, ρ1 ∈ {0, 1}∗

Pr




(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

(a, c)← PCF.Eval(0, k0, x),

(b, d)← PCF.Eval(1, k1, x)

:
a = f0(ρ0, x)

b = f1(ρ1, x)


 ≥ 1− negl(λ).

– Key indistinguishability. For any σ ∈ {0, 1} and non-uniform adversary A = (A0,A1),
it holds

Pr[Expkey-indA,σ (λ) = 1] ≤ 1

2
+ negl(λ)

for all sufficiently large λ, where Expkey-indA,σ is as defined in Figure 10.

Exps-secA,σ(λ) :

(ρ0, ρ1)← A0(1
λ)

mk← Setup(1λ, ρ0, ρ1)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

b
$← {0, 1}

b′ ← AOb(·)
1 (1λ, σ, kσ)

if b = b′return 1
else return 0

O0(x) :

y1−σ ← PCF.Eval(1− σ, k1−σ, x)

return y1−σ

O1(x) :

yσ ← PCF.Eval(σ, kσ, x)

y1−σ ← RSample(1λ,mk, σ, yσ, x)

return y1−σ

Fig. 9: Strong security of a PCF.
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Expkey-indA,σ (λ) :

b
$← {0, 1}

ρ
(0)
1−σ, ρ

(1)
1−σ

$← {0, 1}∗

ρ1−σ ← ρ
(b)
1−σ

ρσ ← A0(1
λ)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

b′ ← A1(1
λ, kσ, ρ

(0)
1−σ, ρ

(1)
1−σ)

if b′ = b return 1
else return 0

Fig. 10: Key Indistinguishability of a reusable PCF.

E.2 Correlations

Here, we state the correlations required for our PCF-based precomputation protocol (cf. Ap-
pendix G.2). As these correlations differ slightly from the correlations required by our PCG-based
offline phase (cf. Section 5), we state them in the following for completeness.

Our OLE correlation over ring R is given by c1 = ab+ c0, where a, b, c0, c1 ∈ R. Moreover, we
require a and b being computed by a weak pseudorandom function (PRF). Formally, we define
the reverse-sampleable and indexable target correlation with setup (SetupOLE,YOLE) over ring R
as

(k, k′)← SetupOLE(1
λ, k, k′) ,

((Fk(i), u), (Fk′(i), v))← YOLE(1
λ, (k, k′), i) such that

v = Fk(i) · Fk′(i) + u ,

(5)

where u
$← R, u ∈ R and F being a (PRF) with key k, k′. Note that while the Setup algorithm

for our OLE and VOLE correlation essentially is the identity function, the algorithm might
be more complex for other correlations. The reverse-sampling algorithm is defined such that
(Fk′(i), Fk(i)·Fk′(i)+u)← RSampleOLE(1

λ, (k, k′), 0, (Fk(i), u), i) and (Fk(i), v−Fk(i)·Fk′(i))←
RSampleOLE(1

λ, (k, k′), 1, (Fk′(i), v), i).
Our VOLE correlation is the same as OLE but the value b is fixed over multiple correla-

tion samples, i.e., c⃗1 = a⃗b + c⃗0, where each correlation sample contains one component of the
vectors. We formally define the reverse-sampleable and indexable target correlation with setup
(SetupVOLE,YVOLE) over ring R as

(k, b)← SetupVOLE(1
λ, k, b) ,

((Fk(i), u), (b, v))← YVOLE(1
λ, (k, b), i) such that

v = Fk(i) · b+ u ,

(6)

where u
$← R, b, v ∈ R and F being a weak pseudorandom function (PRF) with key k. Note that

b is fixed over all correlation samples, while u and v are not. The reverse-sampling algorithm is
defined such that

(b, Fk(i) · b+ u)← RSampleVOLE(1
λ, (k, b), 0, (Fk(i), u), i) and

(Fk(i), v − Fk(i) · b)← RSampleVOLE(1
λ, (k, b), 1, (b, v), i).
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We state PCF constructions realizing these definitions of OLE and VOLE correlations in
Appendix F. The VOLE PCF construction is taken from [18], and the OLE PCF follows a
straightforward adaptation of the VOLE PCF.

F Reusable PCF Constructions

This sections presents construction of reusable PCFs for VOLE and OLE correlations as defined
in Section 3.2. We first present the reusable PCF for VOLE and then for OLE.

The VOLE construction heavily builds on the constructions of [18], which provides only
weak PCF. However, Boyle et al. presented a generic transformation from weak to strong PCF
using a programmable random oracle. This transformation is also straightforwardly applicable
to reusable PCFs. Therefore, we state a weak reusable PCF in the following and emphasize that
this construction can be extended to a strong reusable PCF in the programmable random oracle
model.

The following construction is taken from [18, Fig. 22]. It builds on a weak PRF F and a
function secret sharing for the multiplication of F with a scalar.

Construction 5: Reusable PCF for YVOLE

Let F = {Fk : {0, 1}η → R}k∈{0,1}λ be a weak PRF and FFS = (FFS.Gen,FFS.Eval) an FSS scheme

for {c · Fk}c∈R,k∈{0,1}λ with weak pseudorandom outputs. Let further ρ0 ∈ {0, 1}λ, ρ1 ∈ R.

PCF.Genp(1
λ, ρ0, ρ1):

1. Set the weak PRF key k ← ρ0 and b← ρ1.
2. Sample a pair of FSS keys (KFFS

0 ,KFFS
1 )← FFS.Gen(1λ, b · Fk).

3. Output the keys k0 = (KFFS
0 , k) and k1 = (KFFS

1 , b).

PCF.Eval(σ, kσ, x): On input a random x:

– If σ = 0:
1. Let c0 = −FFS.Eval(0,KFFS

0 , x).
2. Let a = Fk(x).
3. Output (a, c0).

– If σ = 1:
1. Let c1 = FFS.Eval(1,KFFS

1 , x).
2. Output (b, c1).

Theorem 5. Let R = R(λ) be a finite commutative ring. Suppose there exists an FSS scheme
for scalar multiples of a family of weak pseudorandom functions F = {Fk : {0, 1}η → R}k∈{0,1}λ .
Then, there is a reusable PCF for the VOLE correlation over R as defined in Appendix E.2, given
by Construction 5.

Proof. Boyle et al. showed in their proof of [18, Theorem 5.3] that Construction 5 satisfies pseu-
dorandom YVOLE-correlated outputs and security. Although we slightly adapted our definition to
consider reusable inputs, their argument still holds. Further, it is easy to see that programma-
bility holds for functions f0(ρ0, x) = Fρ0

(x) and f1(ρ1, x) = ρ1. Finally, key indistinguishability
follows from the secrecy property of the FSS scheme. The secrecy property states that for every
function f of the function family, there exists a simulator S(1λ) such that the output of S is
indistinguishable from the FSS keys generated correctly using the FFS.Gen-algorithm.

To briefly sketch the proof of key indistinguishability, we define a hybrid experiment, where
inside the PCF key generation, we use S to simulate FSS keys. These simulated FSS keys are
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used inside the PCF key, which is given to A1. We can show via a reduction to the FSS secrecy
that the original Expkey-ind game is indistinguishable from the hybrid experiment. For the hybrid
experiment, it is easy to see that the adversary can only guess bit b′ since the simulated PCF key

is independent of ρ
(0)
1−σ, ρ

(1)
1−σ and hence also independent of b. It follows that Pr[Expkey-indA,σ (λ) =

1] ≤ 1
2 + negl(λ).

G PCF-based Threshold Preprocessing Protocol

In this section, we state the PCF-based instantiation of FPrep. As it is conceptually very similar
to the PCG-based instantiation in Section 5, we omit a detailed description and intuition here.
We refer the reader to Section 5 for an intuition and a detailed description.

Our protocol πPCF
Prep builds on reusable PCFs for VOLE and OLE correlations. As ssid, which

is used to evaluate the PCFs, is provided by the environment, we require strong reusable PCFs.

G.1 Setup Functionality

The setup functionality is identical to FPCG
Setup just that the functionality generates PCF keys

instead of PCG keys. For the sake of completeness, we formally state FPCF
Setup next.

Functionality FPCF
Setup

Let (PCFVOLE.Gen,PCFVOLE.Eval) be an srPCF for VOLE correlations and let
(PCFOLE.Gen,PCFOLE.Eval) be an srPCF for OLE correlations. The setup functionality
interacts with parties P1, . . . , Pn and ideal-world adversary S.
Setup:

Upon receiving (setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)ℓ }ℓ∈[n]) from every party Pi send (setup) to

S and do:

1. Check if gskℓ2 = pk
(i)
ℓ for every ℓ, i ∈ [n]. If the check fails, send abort to all parties and S.

Else, compute for every pair of parties (Pi, Pj):

(a) (kVOLE
i,j,0 , kVOLE

i,j,1 )← PCFVOLE.Gen(1
λ, ρ

(i)
a , skj),

(b) (k
(OLE,1)
i,j,0 , k

(OLE,1)
i,j,1 )← PCFOLE.Gen(1

λ, ρ
(i)
a , ρ

(j)
s ), and

(c) (k
(OLE,2)
i,j,0 , k

(OLE,2)
i,j,1 )← PCFOLE.Gen(1

λ, ρ
(i)
a , ρ

(j)
e ).

2. Send keys (sid, kVOLE
i,j,0 , kVOLE

j,i,1 , k
(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 , k

(OLE,2)
j,i,1 )j ̸=i to every party Pi.

G.2 PCF-based Preprocessing Protocol

In this section, we formally present our PCF-based preprocessing protocol in the (FKG,FSetup)-
hybrid model.

Construction 6: πPCF
Prep

Let (PCFVOLE.Gen,PCFVOLE.Eval) be an srPCF for VOLE correlations and let
(PCFOLE.Gen,PCFOLE.Eval) be an srPCF for OLE correlations.
We describe the protocol from the perspective of Pi.
Initialization. Upon receiving input (init, sid), do:

1. Send (keygen, sid) to FKG.

37



2. Upon receiving (sid, ski, pk, {pk(i)ℓ }ℓ∈[n]) from FKG, sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e ∈ {0, 1}λ and send

(setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)ℓ }ℓ∈[n]) to FSetup.

3. Upon receiving (sid, kVOLE
i,j,0 , k

VOLE
j,i,1 , k

(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 ,

k
(OLE,2)
j,i,1 )j ̸=i from FSetup, output pk.

Tuple. Upon receiving input (tuple, sid, ssid, T ), compute:

4. for j ∈ T \ {i}:
(a) (ai, c

VOLE
i,j,0 ) = PCFVOLE.Eval(0, k

VOLE
i,j,0 , ssid),

(b) (ski, c
VOLE
j,i,1 ) = PCGVOLE.Expand(1, k

VOLE
j,i,1 ),

(c) (ai, c
(OLE,1)
i,j,0 ) = PCFOLE.Eval(0, k

(OLE,1)
i,j,0 , ssid),

(d) (si, c
(OLE,1)
j,i,1 ) = PCFOLE.Eval(1, k

(OLE,1)
j,i,1 , ssid),

(e) (ai, c
(OLE,2)
i,j,0 ) = PCFOLE.Eval(0, k

(OLE,2)
i,j,0 , ssid), and

(f) (ei, c
(OLE,2)
j,i,1 ) = PCFOLE.Eval(1, k

(OLE,2)
j,i,1 , ssid).

5. δi = ai(ei + Li,T ski) +
∑

j∈T \{i}

(
Li,T cVOLE

j,i,1 − Lj,T cVOLE
i,j,0 + c

(OLE,2)
j,i,1 − c

(OLE,2)
i,j,0

)

6. αi = aisi +
∑

j∈T \{i}

(
c
(OLE,1)
j,i,1 − c

(OLE,1)
i,j,0

)

Finally, output (sid, ssid, ai, ei, si, δi, αi).

Theorem 6. Let PCFVOLE be an srPCF for VOLE correlations and let PCFOLE be an srPCF
for OLE correlations as defined in Appendix E.2. Then, protocol πPCF

Prep UC-realizes FPrep in the
(FKG,FSetup)-hybrid model in the presence of malicious adversaries controlling up to t−1 parties.

The proof works analogously to the proof of Theorem 2, which is presented in Appendix L.
Therefore, we omit the proof of Theorem 6 for the sake of conciseness.

H Ideal Threshold Signature Functionality

In this section, we state our ideal threshold functionality Ftsig on which we base our security
analysis of the online protocol (cf. Theorem 1). The functionality is presented in the universal
composability (UC) framework and we refer the reader to Appendix B for a brief introduction
into the UC framework and its notation. Ftsig is a modification of the functionality proposed by
Canetti et al. [29]. First, we allow the parties to specify a set of signers T during the signing
request. This allows us to account for a flexible threshold of signers instead of requiring all
n parties to sign. Second, we model the signed message as an array of messages. This change
accounts for signature schemes allowing signing k messages simultaneously, such as BBS+. Third,
we remove the identifiability property, the key-refresh, and the corruption/decorruption interface.
The key-refresh and the corruption/decorruption interface are not required in our scenario as we
consider a static adversary in contrast to the mobile adversary in [29]. Fourth, we allow every
party to sign only one message per ssid. Finally, at the end of the signing phase, honest parties
might output abort instead of a valid signature. This modification is due to our protocol not
providing robustness or identifiable abort.

Next, we state the full formal description of our threshold signature functionality Ftsig.
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Functionality Ftsig

The functionality is parameterized by a threshold parameter t. We denote a set of t parties
by T . For a specific session id sid, the sub-procedures Signing and Verification can only be
executed once a tuple (sid,V) is recorded.
Key-generation.

1. Upon receiving (keygen, sid) from some party Pi, interpret sid = (. . . ,P), where P =
(P1, . . . , Pn).
– If Pi ∈ P, send to S and record (keygen, sid, i).
– Otherwise ignore the message.

2. Once (keygen, sid, i) is recorded for all Pi ∈ P, send (pubkey, sid) to the adversary S and
do:
(a) Upon receiving (pubkey, sid,V) from S, record (sid,V).
(b) Upon receiving (pubkey, sid) from Pi ∈ P, output (pubkey, sid,V) if it is recorded. Else

ignore the message.

Signing.

1. Upon receiving (sign, sid, ssid, T ,m = (m1, . . . ,mk)) with T ⊆ P, from Pi ∈ T and no
tuple (sign, sid, ssid, ·, ·, i) is stored, send to S and record (sign, sid, ssid, T ,m, i).

2. Upon receiving (sign, sid, ssid, T ,m = (m1, . . . ,mk), i) from S, record
(sign, sid, ssid, T ,m, i) if Pi ∈ C. Else ignore the message.

3. Once (sign, sid, ssid, T ,m, i) is recorded for all Pi ∈ T , send (sign, sid, ssid, T ,m) to the
adversary S.

4. Upon receiving (sig, sid, ssid, T ,m, σ, I) from S, where I ⊆ T \ C, do:
– If there exists a record (sid,m, σ, 0), output an error.
– Else, record (sid,m, σ,V(m, σ)), send (sig, sid, ssid, T ,m, σ) to all Pi ∈ T \ (C ∪I) and

send (sig, sid, ssid, T ,m, abort) to all Pi ∈ T ∩ I.

Verification.

Upon receiving (verify, sid,m = (m1, . . . ,mk), σ,V ′) from a party Q, send the tuple
(verify, sid,m, σ,V ′) to S and do:
– If V ′ = V and a tuple (sid,m, σ, β′) is recorded, then set β = β′.
– Else, if V ′ = V and less than t parties in P are corrupted, set β = 0 and record

(sid,m, σ, 0).
– Else, set β = V ′(m, σ).

Output (verified, sid,m, σ, β) to Q.

I Proof of Theorem 1

This section presents the proof of our online protocol, i.e., Theorem 1.

Proof. We construct a simulator S that interacts with the environment and the ideal functionality
Ftsig. Since the security statement for UC requires that for every real-world adversary A, there
is a simulator S, we allow S to execute A internally. In the internal execution of A, S acts
as the environment and the honest parties. In particular, S forwards all messages between its
environment and A. The adversary A creates messages for the corrupted parties. These messages
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are sent to S in the internal execution. Note that this scenario also covers dummy adversaries,
which just forward messages received from the environment. An output of S indistinguishable
from the output of A in the real-world execution is created by simulating a protocol transcript
towards A that is indistinguishable from the real-world execution and outputting whatever A
outputs in the simulated execution. Since the protocol πTBBS+ is executed in the FPrep-hybrid
model, S impersonates the hybrid functionality FPrep in the internal execution.

We start with presenting our simulator S.
Simulator S

KeyGen.

1. Upon receiving (init, sid) from corrupted party Pj , send (keygen, sid) on behalf of Pj to
Ftsig.

2. Upon receiving (pubkey, sid) from Ftsig simulate the initialization phase of FPrep to get pk.

In particular, sample sk
$← Zp and send pk = gsk2 to A.

3. Upon receiving (ok,Tuple(·, ·, ·)) from A, send (pubkey, sid,Verifypk(·, ·)) to Ftsig.

Sign.

1. Upon receiving (sign, sid, ssid, T ,m = {mℓ}ℓ∈[k], i) from Ftsig for honest party Pi, sim-
ulate the tuple phase of FPrep to get (ai, ei, si, δi, αi) for Pi. Then, compute (Ai :=
(g1 ·

∏
ℓ∈[k] h

mℓ

ℓ )ai · hαi
0 , δi, ei, si) and send it to the corrupted parties in T in the internal

execution.
2. Upon receiving (sign, sid, ssid, T ,m) from Z to corrupted party Pj , send message to Pj in

the internal execution an do:
(a) Upon receiving (tuple, sid, ssid, T ) on behalf of FPrep from corrupted party Pj with

j ∈ T return (aj , ej , sj , δj , αj)← Tuple(ssid, T , j) to Pj .

(b) Forward (sign, sid, ssid, T ,m, j) to Ftsig and define an empty set Îj = ∅ of honest
parties that received signature shares from corrupted party Pj .

(c) Upon receiving (sid, ssid, T ,m, A′
j,i, δ

′
j,i, e

′
j,i, s

′
j,i) from Pj to honest party Pi in the

internal execution, add Pi to Îj .
3. Upon receiving (sign, sid, ssid, T ,m) from Ftsig, do:

– Use tuple (aj , ej , sj , δj , αj) to compute honestly generated (Aj , δj , ej , sj) for Pj ∈
T ∩ C. Compute honestly generated signature σ = (A, e, s) as honest parties do using
(Aℓ, δℓ, eℓ, sℓ) for Pℓ ∈ T .

– For each honest party Pi recompute signature σi obtained by Pi as honest parties do
by using A′

j,i, δ
′
j,i, e

′
j,i, s

′
j,i for Pj ∈ T ∩ C.

– We define set I of honest parties that obtained no or an invalid signature. First set,
I = (T \C)\(⋂j∈T ∩C Îj), i.e., add all honest parties to I that did not receive signature
shares from all corrupted parties in T . Next, compute I = I ∪{i : σi ̸= σ}, i.e., add all
honest parties that obtained a signature different to the honestly generated signature.
If there exists σi ̸= σ such that Verifypk(m, σi) = 1 and (sig, sid, ssid, ·,m, σi, ·) was
not sent to Ftsig before, output fail and stop the execution.

– Finally, send (sig, sid, ssid, T ,m, σ, I) to Ftsig.

Verify. Upon receiving (verify, sid,m, σ,Verifypk′(·, ·)) from Ftsig check if

– Verifypk′(·, ·) = Verifypk(·, ·) ,
– (sig, sid, ssid, ·,m, σ, ·) was not sent to Ftsig before
– Verifypk(m, σ) = 1.

If the checks hold, output fail and stop the execution.

40



Lemma 1. If simulator S does not outputs fail, protocol πTBBS+ UC-realizes Ftsig in the FPrep-
hybrid model in the presence of malicious adversaries controlling up to t− 1 parties.

Proof. If the simulator S does not outputs fail, it behaves precisely as the honest parties in
real-world execution. Therefore, the simulation is perfect, and no environment can distinguish
between the real and ideal worlds.

Lemma 2. Assuming the strong unforgeability of BBS+, the probability that S outputs fail is
negligible.

Proof. We show Lemma 2 via contradiction. Given a real-world adversary A such that simulator
S outputs fail with non-negligible probability, we construct an attacker B against the strong
unforgeability (SUF) of BBS+ with non-negligible success probability. B simulates the protocol
execution towards A like S except the following aspects:

1. During the simulation of the initialization phase of FPrep, instead of sampling sk
$← Zp

and computing pk = gsk2 , B returns pk∗ obtained from the SUF-challenger. Since the SUF-
challenger samples the key exactly as the simulator S, this step of the simulations is indis-
tinguishable towards A.

2. During the Sign phase, upon receiving (sign, sid, ssid, T ,m, i) from Ftsig for honest party Pi,
the computation of signature shares of the honest parties is modified as follows:
– Request the signing oracle of the SUF-game on message m to obtain signature σ =

(A, e, s). This signature is forwarded to Ftsig on receiving (sign, sid, ssid, T ,m) from Ftsig.
– Compute (aj , ej , sj , δj , αj) ← Tuple(ssid, T , j) and (Aj , ej , sj) according to the protocol

specification for every corrupted party Pj ∈ T ∩ C.
– Sample random index k

$← T \ C.
– For all honest parties except Pk sample random signature share, i.e., ∀Pi ∈ (T \C)\{Pk} :

(Ai, δi, ei, si)
$← (G1,Zp,Zp,Zp).

– For Pk sample random δk
$← Zp and compute ek = e−∑ℓ∈T \{k} eℓ, sk = s−∑ℓ∈T \{k} sℓ,

and

Ak =
A

∑
ℓ∈T δℓ

∏
ℓ∈T \{k} Aℓ

.

It is easy to see that ei and si are sampled at random by both, S and B. Moreover, δi is a share
of a(sk+ e) in the simulation by S and since the random value a works as a random mask,
it has the same distribution as in the simulation by B. Finally, the Ai values yield a valid
signature in B. Therefore, the simulation of the Sign phase of B and S are indistinguishable
to A.

Finally, B needs to provide a strong forgery to the SUF-challenger. Here, we use the fact that
S outputs fail with non-negligible probability either in the Sign or the Verify phase. As the
interaction of B with A is indistinguishable, B outputs fail with non-negligible probability as
well. Whenever B outputs fail, it forwards the pair (m∗, σ∗) obtained in the Sign or Verify
phase to the SUF-challenger.

It remains to show that B successfully wins the SUF-game. In order to be a valid forgery, it
must hold that (1) Verifypk∗(m

∗, σ∗) = 1 and (2) (m∗, σ∗) was not returned by the signing oracle
before. (1) is trivially true, since B only outputs fail if this condition holds. For (2), we note
that A has never seen σ∗ as output from Ftsig, since B checks that (sig, sid, ssid, ·,m∗, σ∗, ·) was
not sent to Ftsig before. However, it might happen that B obtained σ∗ as response to a signing
request for message m∗ without forwarding it the to Ftsig (this happens if the environment does
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not instruct all parties in T to sign). Since the signing oracle samples e and s at random from
Zp, the probability that σ∗ was returned by the signing oracle is ≤ q

p , where q is the number
of oracle requests and p is the size of the field. While q is a polynomial, p is exponential in the
security parameter. Thus, the probability that σ∗ hits an unseen response from the signing oracle
is negligible in the security parameter. It follows that (m∗, σ∗) is a valid forgery and B wins the
SUF-game.

Since this contradicts the strong unforgeability of BBS+, it follows that the probability that
S outputs fail is negligible.

Combining Lemma 1 and Lemma 2 concludes the proof of Theorem 1.

J Simulator for PCG-based Preprocessing

Here, we state our simulator for proving security of our PCG-based preprocessing. Formally, the
security is stated in Theorem 2. We provide a proof sketch of our indistinguishability argument
in Appendix K and state the full proof in Appendix L.

Simulator for Preprocessing S

Without loss of generality, we assume the adversary corrupts parties P1, . . . , Pt−1 and parties
Pt, . . . , Pn are honest. S internally uses adversary A.
Initialization.

1: • Upon receiving (keygen, sid) on behalf of FKG from corrupted party Pj ,
send (init, sid) on behalf of corrupted Pj to FPrep. Then, wait to receive
(corruptedShares, sid, {skj}j∈C) from A.

2: • Upon receiving pk from FPrep, set pkj = g
skj
2 for j ∈ C and compute pki =

(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1 )
)1/Li,T

, where T := C ∪ {i}, for every honest party Pi. Then,

send (sid, skj , pk, {pkℓ}ℓ∈[n]) to every corrupted party Pj .

• Upon receiving (setup, sid, ρ
(j)
a , ρ

(j)
s , ρ

(j)
e , sk′j ,

{pk(j)ℓ }ℓ∈[n]) on behalf of FPCG
Setup from every corrupted party Pj , check that pk

(j)
ℓ = pkℓ

and g
sk′j
2 = pkj for j ∈ C and ℓ ∈ [n]. If any check fails, send (abort, sid) to FPrep.

Otherwise sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e and a dummy secret key share ŝki for every honest

party Pi and simulate the computation of FPCG
Setup (i.e., compute all the PCG keys using

the values received from the corrupted parties and the values sampled for the honest
parties).

3: • Send keys (sid, kVOLE
j,ℓ,0 , kVOLE

ℓ,j,1 , k
(OLE,1)
j,ℓ,0 , k

(OLE,1)
ℓ,j,1 , k

(OLE,2)
j,ℓ,0 , k

(OLE,2)
ℓ,j,1 )ℓ ̸=j to every corrupted

party Pj .
• Send (ok,Tuple(·, ·, ·)) to FPrep, where Tuple(ssid, T , j) computes (aj , ej , sj , δj , αj) for
corrupted party Pj exactly as Pj computes its tuple in the protocol description.
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First, expand for every ℓ ∈ T \ {j}:

(aj , c
VOLE
j,ℓ,0 ) = PCGVOLE.Expand(0, k

VOLE
j,ℓ,0 ) ,

(skj , c
VOLE
ℓ,j,1 ) = PCGVOLE.Expand(1, k

VOLE
ℓ,j,0 ) ,

(aj , c
(OLE,1)
j,ℓ,0 ) = PCGOLE.Expand(0, k

(OLE,1)
j,ℓ,0 ) ,

(sj , c
(OLE,1)
ℓ,j,1 ) = PCGOLE.Expand(1, k

(OLE,1)
ℓ,j,1 ) ,

(aj , c
(OLE,2)
j,ℓ,0 ) = PCGOLE.Expand(0, k

(OLE,2)
j,ℓ,0 ) ,

(ej , c
(OLE,2)
ℓ,j,1 ) = PCGOLE.Expand(1, k

(OLE,2)
ℓ,j,1 ) .

Next, set aj = aj [ssid], ej = ej [ssid], sj = sj [ssid], c
VOLE
(j,ℓ,0) = cVOLE

(j,ℓ,0)[ssid], cVOLE
(ℓ,j,1) =

cVOLE
(ℓ,j,1)[ssid], c

(OLE,d)
(j,ℓ,0) = c

(OLE,d)
(j,ℓ,0) [ssid] and c

(OLE,d)
(ℓ,j,1) = c

(OLE,d)
(ℓ,j,1) [ssid] for ℓ ∈ T \ {j} and

d ∈ {1, 2} and compute

αj = ajsj +
∑

ℓ∈T \{j}
c
(OLE,1)
ℓ,j,1 − c

(OLE,1)
j,ℓ,0 ,

δj = aj(Lj,T skj + ej)

+
∑

ℓ∈T \{j}

(
Lj,T c

VOLE
ℓ,j,1 − Lℓ,T c

VOLE
j,ℓ,0 + c

(OLE,2)
ℓ,j,1 − c

(OLE,2)
j,ℓ,0

)
.

Tuple. Upon receiving (tuple, sid, ssid, T ) from Z on behalf of corrupted party Pj , forward
message (tuple, sid, ssid, T ) to A and output whatever A outputs.

K Indistinguishability Proof Sketch of Theorem 2

We prove indistinguishability between the ideal-world execution and the real-world execution via
a sequence of hybrid experiments. We start with Hybrid0 which is the ideal-world execution and
end up in Hybrid7 being identical to the real-world execution. By showing indistinguishability
between each subsequent pair of hybrids, it follows that the ideal and real-world execution are
indistinguishable. In particular, we show indistinguishability between the joint distribution of the
adversary’s view and the outputs of the honest parties in Hybridi and Hybridi+1 for i = 0, . . . , 6.
In the following we sketch the proof outline and defer the full proof to Appendix L.
Hybrid1: In this hybrid experiment, we inline the description of the simulator S, the ideal func-
tionality FPrep and the outputs of the honest parties. Since this is only a syntactical change, the
distribution is identical to the one of Hybrid0.
Hybrid2: Instead of sampling the secret key sk at random from Zp, we sample a random polynomial
F (x) ∈ Zp[X] of degree t−1 such that F (j) = skj for every j ∈ C. The secret key is then defined
as sk = F (0).

Note that the adversary knows only t− 1 shares of the polynomial which give no information
about sk. This is due to the information-theoretically secrecy of Shamir’s secret sharing. It follows
that Hybrid1 and Hybrid2 are perfectly indistinguishable.
Hybrid3: In this hybrid, we change the way honest parties’ secret key shares are defined. Instead
of sampling random dummy key shares, we derive the key shares from the polynomial introduced
in the last hybrid. In more detail, the key share of honest party Pi is computed as ski = F (i).
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This change effects the PCG key generation as the dummy key share is replaced by ski for honest
party Pi.

To show indistinguishability between Hybrid2 and Hybrid3, we reduce to the key indistin-
guishability property of the PCGVOLE primitive. More specifically, we introduce a sequence of
intermediate hybrids where we only change the secret key of a single honest party in each step.
Hybrid4: In this hybrid, we change the computation of the honest party Pi’s public key share pki.

Instead of interpolating pki it is defined as pki = gski2 . As both ways are equivalent, Hybrid4 is
perfectly indistinguishable from Hybrid3.
Hybrid5: In this hybrid, we make the sampling of the honest parties’ outputs of the tuple phase
explicit. To this end, we compute the tuple values in two steps. First, we sample values for ai, ei
and si, then we compute αi and δi. For sampling, we distinguish between two cases. (1) For every
pair of two honest parties (Pi, Pℓ) the values are sampled from YVOLE and YOLE. (2) For every
pair of one honest party Pi and one corrupted party Pj , we use the reverse-sampling algorithm
of the correlations to compute the correlation outputs of the honest party. We illustrate the idea
for ai, si and αi in the following.

After simulating the PCG key generation of FPCG
Setup, the experiment computes once and stores

for every i, ℓ ∈ ([N ] \ C) with i ̸= ℓ:

((ai, c
(OLE,1)
i,ℓ,0 ), ·) ∈ YOLE(1

λ, (ρ(i)a , ρ(ℓ)s ), [N ]) ,

(·, (si, c(OLE,1)
ℓ,i,1 )) ∈ YOLE(1

λ, (ρ(ℓ)a , ρ(i)s ), [N ]) ,

and for every i ∈ ([N ] \ C), j ∈ ([N ] ∩ C):

(ai, c
(OLE,1)
i,j,0 )← RSampleOLE(1

λ, (ρ(i)a , ρ(j)s ), 0, (sj , c
(OLE,1)
i,j,1 ), [N ])

(si, c
(OLE,1)
j,i,1 )← RSampleOLE(1

λ, (ρ(j)a , ρ(i)s ), 1, (aj , c
(OLE,1)
j,i,0 ), [N ]) ,

where (aj , c
(OLE,1)
j,i,0 ) = PCGOLE.Expand(0, k

(OLE,1)
j,i,0 ) and (sj , c

(OLE,1)
i,j,1 ) = PCGOLE.Expand(1, k

(OLE,1)
i,j,1 ).

Then, during the tuple phase, for every j ∈ T \ {i} let ai = ai[ssid], si = si[ssid], c
(OLE,1)
i,j,0 =

c
(OLE,1)
i,j,0 [ssid], and c

(OLE,1)
j,i,1 = c

(OLE,1)
j,i,1 [ssid] and compute

αi = aisi +
∑

ℓ∈T \{i}
c
(OLE,1)
ℓ,i,1 − c

(OLE,1)
i,ℓ,0 .

Similar process is done for the computation of δi and ei. A straightforward calculation shows
that resulting tuple values satisfy correlation (4). Note that the reverse-sampling and the cor-
relation sampling outputs uniform correlation outputs and hence the correlation is identically
distributed as in Hybrid4. It follows that the view of the environment is indistinguishable in
Hybrid4 and Hybrid5.
Hybrid6: Now, we replace the sampling of correlation outputs for calculating honest parties’ tuples
(cf. case (1) of previous hybrid) with the expansion of the PCG keys, i.e., instead of using outputs
of the YVOLE and YOLE correlations, we run the PCGVOLE and PCGOLE expansions. For running
the PCG expansions, we use the keys obtained during the simulation of FPCG

Setup in step (2).
Indistinguishability between Hybrid5 and Hybrid6 can be shown via reductions to the pseudo-

random YVOLE-correlated output property of the PCGVOLE primitive and to the pseudorandom
YOLE-correlated output property of the PCGOLE primitive, respectively. More precisely, a series
of intermediate hybrids can be introduce, where in each hop only a single correlation output is
replaced by the output of PCG expansions.
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Hybrid7: Finally, we replace the reverse-sampling in case (2) of Hybrid5 with the PCG expansion.
The indistinguishability between Hybrid6 and Hybrid7 can be shown via a reduction to the security
property of the rPCGs.

Hybrid7 is the real-world execution, which concludes the proof.

L Full Indistinguishability Proof of Theorem 2

In this section, we provide the full indistinguishability proof of Theorem 2. The simulator is given
in Appendix J.
Hybrid0: The initial experiment Hybrid0 denotes the ideal-world execution where simulator S is
interacting with the corrupted parties, ideal functionality FPrep and internally runs real-world
adversary A.
Hybrid1: In this hybrid, we inline the description of the simulator S, the ideal functionality FPrep

and the outputs of the honest parties. Since this is only a syntactical change, the joint distribution
of the adversary’s view and the output of the honest parties is identical to the one of Hybrid0. We
state Hybrid1 as the starting point, and emphasize only on the changes in the following hybrids.

Hybrid1

Without loss of generality, we assume the adversary corrupts parties P1, . . . , Pt−1 and parties
Pt, . . . , Pn are honest. S internally uses adversary A.
Initialization.

1: • Upon receiving (keygen, sid) on behalf of FKG from corrupted party Pj , store
(init, sid, Pj). Then, wait to receive (corruptedShares, sid, {skj}j∈C) from A.
• Upon receiving (init, sid) from every honest party, sample the secret key sk

$←
Zp and set pk = gsk2 . Further, set pkj = g

skj
2 for j ∈ C and compute pki =

(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1 )
)1/Li,T

, where T := C ∪ {i}, for every honest party Pi.

2: • Send (sid, skj , pk, {pkℓ}ℓ∈[n]) to every corrupted party Pj .

• Upon receiving (setup, sid, ρ
(j)
a , ρ

(j)
s , ρ

(j)
e , sk′j ,

{pk(j)ℓ }ℓ∈[n]) on behalf of FPCG
Setup from every corrupted party Pj , check that pk

(j)
ℓ = pkℓ

and g
sk′j
2 = pkj for j ∈ C and ℓ ∈ [n]. If any check fails, honest parties output abort.

Otherwise sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e and a dummy secret key share ŝki for every honest

party Pi and simulate the computation of FPCG
Setup (i.e., compute all the PCG keys using

the values received from the corrupted parties and the values sampled for the honest
parties).

3: • Send keys (sid, kVOLE
j,ℓ,0 , kVOLE

ℓ,j,1 , k
(OLE,1)
j,ℓ,0 ,

k
(OLE,1)
ℓ,j,1 , k

(OLE,2)
j,ℓ,0 , k

(OLE,2)
ℓ,j,1 )ℓ ̸=j to every corrupted party Pj .

• Store (ok,Tuple(·, ·, ·)), where Tuple(ssid, T , j) computes (aj , ej , sj , δj , αj) for corrupted
party Pj exactly as Pj computes its tuple in the protocol description.
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First, expand for every ℓ ∈ T \ {j}:

(aj , c
VOLE
j,ℓ,0 ) = PCGVOLE.Expand(0, k

VOLE
j,ℓ,0 ) ,

(skj , c
VOLE
ℓ,j,1 ) = PCGVOLE.Expand(1, k

VOLE
ℓ,j,0 ) ,

(aj , c
(OLE,1)
j,ℓ,0 ) = PCGOLE.Expand(0, k

(OLE,1)
j,ℓ,0 ) ,

(sj , c
(OLE,1)
ℓ,j,1 ) = PCGOLE.Expand(1, k

(OLE,1)
ℓ,j,1 ) ,

(aj , c
(OLE,2)
j,ℓ,0 ) = PCGOLE.Expand(0, k

(OLE,2)
j,ℓ,0 ) ,

(ej , c
(OLE,2)
ℓ,j,1 ) = PCGOLE.Expand(1, k

(OLE,2)
ℓ,j,1 ) .

Next, set aj = aj [ssid], ej = ej [ssid], sj = sj [ssid], c
VOLE
(j,ℓ,0) = cVOLE

(j,ℓ,0)[ssid], cVOLE
(ℓ,j,1) =

cVOLE
(ℓ,j,1)[ssid], c

(OLE,d)
(j,ℓ,0) = c

(OLE,d)
(j,ℓ,0) [ssid] and c

(OLE,d)
(ℓ,j,1) = c

(OLE,d)
(ℓ,j,1) [ssid] for ℓ ∈ T \ {j} and

d ∈ {1, 2} and compute

αj = ajsj +
∑

ℓ∈T \{j}
c
(OLE,1)
ℓ,j,1 − c

(OLE,1)
j,ℓ,0 ,

δj = aj(Lj,T skj + ej)

+
∑

ℓ∈T \{j}

(
Lj,T c

VOLE
ℓ,j,1 − Lℓ,T c

VOLE
j,ℓ,0 + c

(OLE,2)
ℓ,j,1 − c

(OLE,2)
j,ℓ,0

)
.

• The honest parties Pt, . . . , Pn output pk.

Tuple.

– Upon receiving (tuple, sid, ssid, T ) from Z on behalf of corrupted party Pj , forward mes-
sage (tuple, sid, ssid, T ) to A and output whatever A outputs.

– Upon receiving (tuple, sid, ssid, T ) from Z on behalf of honest party Pi, if
(sid, ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T ) is stored, output (sid, ssid, ai, ei, si, δi, αi). Otherwise,
compute (aj , ej , sj , δj , αj)← Tuple(ssid, T , j) for every corrupted party Pj where j ∈ C∩T
and sample a, e, s

$← Zp and tuples (ai, ei, si, δi, αi) over Zp for i ∈ H ∩ T such that

∑

ℓ∈T
aℓ = a

∑

ℓ∈T
eℓ = e

∑

ℓ∈T
sℓ = s

∑

ℓ∈T
δℓ = a(sk+ e)

∑

ℓ∈T
αℓ = as

Store (sid, ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T ) and honest party Pi outputs
(sid, ssid, ai, ei, si, δi, αi).

Hybrid2: In this hybrid, we change the sampling of the secret key sk. Instead of sampling sk in
step 1 from Zp, we sample a random polynomial F ∈ Zp[X] of degree t− 1 such that F (j) = skj
for every j ∈ C. Further, we define sk = F (0). Since the polynomial is of degree t−1, t evaluation
points are required to fully determine F (x). As the adversary knows only t− 1 shares, it cannot
learn anything about sk. In detail, for every sk′ ∈ Zp there exists a t-th share that defined the
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polynomial F (x) such that F (x) = sk′. It follows that the views of the adversary are distributed
identically and hence Hybrid2 and Hybrid3 are perfectly indistinguishable.
Hybrid3: Next, we use the polynomial F (x) sampled in step 1 to determine the honest parties’
secret key shares. In particular, for every honest party Pi the experiment samples ski = F (i). The
secret key shares {ski}i∈H are then used for the simulation of FPCG

Setup instead of the dummy key
shares. In particular, the correctly sampled key shares of the honest parties are used as input to
PCGVOLE.Gen whenever a secret key share of the honest party is used. Since the experiment does
not use the dummy key shares at all after these changes, we remove them completely. Note that
the sampling of the honest parties’ key shares and the generation of the PCG keys are exactly
as in the real-world execution.

Indistinguishability between Hybrid2 and Hybrid3 can be shown via a series of reductions to
the key indistinguishability property of the VOLE PCG. We briefly sketch the proof outline in
the following. We define intermediate hybrids Hybrid2,ℓ,k for ℓ ∈ {0, . . . , n− (t− 1)} and k ∈ [n],
which only differ in the honest parties’ key shares that are used in the generation of the VOLE
PCG keys. Recall that for every party Pℓ we generate a VOLE PCG for every other party Pk,
where Pℓ uses its secret key shares as input. We define Hybrid2,ℓ,k such that the key shares derived
from polynomial F (x) are used for the first ℓ honest parties in all VOLE PCG instances and for
the (ℓ + 1)-th honest party in the VOLE PCG instances with the first k other parties. For all
other VOLE PCG instances, the dummy key shares are used for the honest parties’ key shares.

Note that Hybrid2,0,0 = Hybrid2 and Hybrid2,n−(t−1),n = Hybrid3. To show indistinguishability
between Hybrid2,ℓ,k and Hybrid2,ℓ,k+1 for every ℓ ∈ {0, . . . , n − (t − 1)}, we make a reduction to
the key indistinguishability property of the VOLE PCG. In particular, we construct an adversary
Akey−ind from a distinguisher Dℓ which distinguishes between Hybrid2,ℓ,k and Hybrid2,ℓ,k+1. Upon

receiving the shares of the corrupted parties in the hybrid execution, Akey−ind forwards the key
share of the k + 1-th corrupted party to the security game. Then, the security game samples

two possible key shares for the ℓ-th honest party ρ
(0)
1 , ρ

(1)
1 , uses one of them in the VOLE PCG

key generation and sends the key k1 for the corrupted party and ρ
(0)
1 to Akey−ind. Next, Akey−ind

continues the simulation of hybrid Hybrid2,ℓ,k or Hybrid2,ℓ,k+1 by sampling the polynomial F (x)

using the corrupted key shares and ρ
(0)
1 . Since ρ

(0)
1 is a random value in Zp, F (x) is also a random

polynomial. Finally, Akey−ind uses k1 as the output of the simulation of FSetup.

If k1 was sampled using ρ
(0)
1 , then the simulated experiment is identical to Hybrid2,ℓ,k+1 and

otherwise it is identical to Hybrid2,ℓ,k. It is easy to see that a successful distinguisher between
these two hybrids allows to easily win the key indistinguishability game. Since we assume the
VOLE PCG to satisfy the key indistinguishability property, this leads to a contradiction. Thus,
the two hybrids are indistinguishable.
Hybrid4: In this hybrid, we derive the honest parties public key shares pki from the secret key
shares ski instead of interpolating them from pk and the corrupted shares. More precisely, in
Hybrid3 the public key share of honest party Pi was computed as

pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1 )
)1/Li,T

,

where T := C ∪ {i}. In Hybrid4 the public key share is instead computed as pki = gski2 . We show
that both definitions are equivalent.
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To this end, note that sk =
∑

ℓ∈T Lℓ,T skℓ for every set T of size t, pk = gsk2 and pkj = g
skj
2

for j ∈ C. Using this equation we get for T = C ∪ {i}

pki =

(
pk

pk
L1,T
1 · . . . · pkL1,T

t−1

)1/Li,T

⇔ pki =

(
gsk2

g
L1,T sk1
2 · . . . · gL1,T skt−1

2

)1/Li,T

⇔ pki =

(
g
∑

ℓ∈T Lℓ,T skℓ
2

g
L1,T sk1
2 · . . . · gL1,T skt−1

2

)1/Li,T

⇔ pki =
(
g
Li,T ski
2

)1/Li,T

⇔ pki = gski2

As public key shares are equivalent in both hybrids, the view of the adversary is identical
distributed. Hence, Hybrid3 and Hybrid4 are perfectly indistinguishable.
Hybrid5: In this hybrid, we derive the sampling the honest parties’ outputs of the tuple phase from
correlation samples and reverse sampling. To this end, we distinguish two cases. (1) For every
pair of honest parties (Pi, Pℓ), the values are sampled from YVOLE and YOLE. (2) For every pair
of one honest party Pi and one corrupted party Pj , we take the output of Pj ’s PCG expansion
and reverse-sample the output of the honest party. More specifically, after simulating the PCG
key generation of FPCG

Setup, the experiment computes once and stores for every i, ℓ ∈ ([N ] \ C) with
i ̸= ℓ:

((ai, c
VOLE
i,ℓ,0 ), ·) ∈ YVOLE(1

λ, (ρ(i)a , skℓ)), [N ]) ,

(·, (ski, cVOLE
ℓ,i,1 )) ∈ YVOLE(1

λ, (ρ(ℓ)a , ski), [N ]) ,

((ai, c
(OLE,1)
i,ℓ,0 ), ·) ∈ YOLE(1

λ, (ρ(i)a , ρ(ℓ)s ), [N ]) ,

(·, (si, c(OLE,1)
ℓ,i,1 )) ∈ YOLE(1

λ, (ρ(ℓ)a , ρ(i)s ), [N ]) ,

((ai, c
(OLE,2)
i,ℓ,0 ), ·) ∈ YOLE(1

λ, (ρ(i)a , ρ(ℓ)e ), [N ]) ,

(·, (ei, c(OLE,2)
ℓ,i,1 )) ∈ YOLE(1

λ, (ρ(ℓ)a , ρ(i)e ), [N ]) ,

and for every i ∈ ([N ] \ C), j ∈ ([N ] ∩ C):

(ai, c
VOLE
i,j,0 )← RSampleVOLE(1

λ, (ρ(i)a , skj), 0, (skj , c
VOLE
i,j,1 ), [N ])

(ski, c
VOLE
j,i,1 )← RSampleVOLE(1

λ, (ρ(j)a , ski), 1, (aj , c
VOLE
j,i,0 ), [N ]) ,

(ai, c
(OLE,1)
i,j,0 )← RSampleOLE(1

λ, (ρ(i)a , ρ(j)s ), 0, (sj , c
(OLE,1)
i,j,1 ), [N ])

(si, c
(OLE,1)
j,i,1 )← RSampleOLE(1

λ, (ρ(j)a , ρ(i)s ), 1, (aj , c
(OLE,1)
j,i,0 ), [N ]) ,

(ai, c
(OLE,2)
i,j,0 )← RSampleOLE(1

λ, (ρ(i)a , ρ(j)e ), 0, (ej , c
(OLE,2)
i,j,1 ), [N ])

(ei, c
(OLE,2)
j,i,1 )← RSampleOLE(1

λ, (ρ(j)a , ρ(i)e ), 1, (aj , c
(OLE,2)
j,i,0 ), [N ]) ,
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where

(aj , c
VOLE
j,i,0 ) = PCGVOLE.Expand(0, k

VOLE
j,i,0 ) ,

(skj , c
VOLE
i,j,1 ) = PCGVOLE.Expand(1, k

VOLE
i,j,1 ) ,

(aj , c
(OLE,1)
j,i,0 ) = PCGOLE.Expand(0, k

(OLE,1)
j,i,0 ) ,

(sj , c
(OLE,1)
i,j,1 ) = PCGOLE.Expand(1, k

(OLE,1)
i,j,1 ) ,

(aj , c
(OLE,2)
j,i,0 ) = PCGOLE.Expand(0, k

(OLE,2)
j,i,0 ) ,

(ej , c
(OLE,2)
i,j,1 ) = PCGOLE.Expand(1, k

(OLE,2)
i,j,1 ) ,

Then, during the tuple phase, for every j ∈ T \ {i} let ai = ai[ssid], ei = ei[ssid], si =

si[ssid], c
VOLE
i,j,0 = cVOLE

i,j,0 [ssid], cVOLE
j,i,1 = cVOLE

j,i,1 [ssid], c
(OLE,1)
i,j,0 = c

(OLE,1)
i,j,0 [ssid], c

(OLE,1)
j,i,1 = c

(OLE,1)
j,i,1 [ssid], c

(OLE,2)
i,j,0 =

c
(OLE,2)
i,j,0 [ssid], and c

(OLE,2)
j,i,1 = c

(OLE,2)
j,i,1 [ssid] and compute according to the protocol specification

αi =aisi +
∑

ℓ∈T \{i}
c
(OLE,1)
ℓ,i,1 − c

(OLE,1)
i,ℓ,0

δi =ai(ei + Li,T ski)

+
∑

ℓ∈T \{i}

(
Li,T c

VOLE
ℓ,i,1 − Lℓ,T c

VOLE
i,ℓ,0 + c

(OLE,2)
ℓ,i,1 − c

(OLE,2)
i,ℓ,0

)
.

We show that the resulting tuple outputs satisfy the same correlation as before. In particular,
we show

∑
ℓ∈T αℓ = as and

∑
ℓ∈T δℓ = a(sk + e), where a =

∑
ℓ∈T aℓ =

∑
ℓ∈T F

ρ
(ℓ)
a
(x), e =∑

ℓ∈T eℓ =
∑

ℓ∈T F
ρ
(ℓ)
e
(x) and s =

∑
ℓ∈T sℓ =

∑
ℓ∈T F

ρ
(ℓ)
s
(x). First, we show

∑
ℓ∈T αℓ = as:

∑

ℓ∈T
αℓ =

∑

ℓ∈T


aℓsℓ +

∑

k∈T \{ℓ}
(c

(OLE,1)
k,ℓ,1 − c

(OLE,1)
ℓ,k,0 )




=
∑

ℓ∈T
aℓsℓ +

∑

ℓ∈T

∑

k∈T \{ℓ}

(
c
(OLE,1)
k,ℓ,1 − c

(OLE,1)
k,ℓ,0

)

=
∑

ℓ∈T
aℓsℓ +

∑

ℓ∈T

∑

k∈T \{ℓ}

(
F
ρ
(k)
a

(x) · F
ρ
(ℓ)
s
(x)
)

=
∑

ℓ∈T
aℓsℓ +

∑

ℓ∈T

∑

k∈T \{ℓ}
aksℓ

=
∑

ℓ∈T

∑

k∈T
aksℓ =

∑

ℓ∈T
ak
∑

k∈T
sℓ

= as
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Next, we show
∑

ℓ∈T δℓ = a(sk+ e):

∑

ℓ∈T
δℓ =

∑

ℓ∈T


aℓ(Lℓ,T skℓ + eℓ) +

∑

k∈T \{ℓ}
Lℓ,T c

VOLE
k,ℓ,1 − Lk,T c

VOLE
ℓ,k,0 + c

(OLE,2)
k,ℓ,1 − c

(OLE,2)
ℓ,k,0




=
∑

ℓ∈T
aℓ(Lℓ,T skℓ + eℓ) +

∑

ℓ∈T

∑

k∈T \{ℓ}
Lℓ,T c

VOLE
k,ℓ,1 − Lℓ,T c

VOLE
k,ℓ,0 + c

(OLE,2)
k,ℓ,1 − c

(OLE,2)
k,ℓ,0

=
∑

ℓ∈T
aℓ(Lℓ,T skℓ + eℓ) +

∑

ℓ∈T

∑

k∈T \{ℓ}
Lℓ,T akskℓ + akeℓ

=
∑

ℓ∈T
aℓ(Lℓ,T skℓ + eℓ) +

∑

ℓ∈T

∑

k∈T \{ℓ}
ak(Lℓ,T skℓ + eℓ)

=
∑

ℓ∈T

∑

k∈T
ak(Lℓ,T skℓ + eℓ)

=
∑

k∈T

∑

ℓ∈T
ak(Lℓ,T skℓ + eℓ)

=
∑

k∈T
ak
∑

ℓ∈T
(Lℓ,T skℓ + eℓ)

=
∑

k∈T
ak

(∑

ℓ∈T
Lℓ,T skℓ +

∑

ℓ∈T
eℓ

)

= a(sk+ e)

As the tuple values of the honest parties still satisfy the same correlation as in Hybrid4, Hybrid4
and Hybrid5 are indistinguishable. Note that the reverse-sampling and the correlation sampling
outputs uniform correlation outputs and hence the correlation is identically distributed as in
Hybrid4.
Hybrid6: In this hybrid, we replace the correlation sampling of values of a pair of honest parties

with PCG expansions (cf. case (1) of Hybrid5). For example, instead of sampling ((ai, c
VOLE
i,ℓ,0 ), ·) ∈

YVOLE(1
λ, (ρ

(i)
a , skℓ), [N ]), party Pi computes

(ai, c
VOLE
i,ℓ,0 ) = PCGVOLE.Expand(0, k

VOLE
i,ℓ,0 ). The same change is applied to all VOLE and OLE

correlations.
Indistinguishability can be shown via a series of reductions to the pseudorandom YVOLE- and

YOLE-correlated output property of the PCGs. In more detail, we construct a sequence of hybrid
experiments where only a single correlation sampling is replaced by a PCG expansion. Then, in
the reduction to the pseudorandom correlated output property, in case the challenge bit is 0, the
reduction simulates the hybrid where the output is sampled from the correlation, and in case the
challenge bit is 1, the output is the PCG expansion. A distinguisher between any pair of hybrid
experiments in the sequence helps to construct a successful adversary against the pseudorandom
correlated output property. We conclude that Hybrid5 and Hybrid6 are indistinguishable under
the assumption of reusable PCGs.
Hybrid7: Finally, we replace the reverse-sampling in case (2) of Hybrid5 with the corresponding
PCG expansion. For instance, instead of computing

(ai, c
VOLE
i,j,0 )← RSampleVOLE(1

λ, (ρ(i)a , skj), 0, (skj , c
VOLE
i,j,1 ), [N ])

the honest party computes

(ai, c
VOLE
i,j,0 ) = PCGVOLE.Expand(0, k

VOLE
i,j,0 ).
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The same change is applied for all other reverse-sampling algorithms.
Analog to the indistinguishability between Hybrid5 and Hybrid6, we can show indistinguisha-

bility between Hybrid6 and Hybrid7 via a sequence of hybrid experiments. In each hybrid one
reverse sampling is replaced by the PCG expansion. Indistinguishability between adjacent hy-
brids is reduced to the security property of the PCG. Since the only change between two adjacent
hybrids is the fact whether the correlation output of an honest party is reverse-sampled given
the output of a corrupted party or taken as the PCG expansion, it is easy to see that a dis-
tinguisher between these hybrids can be used to construct a successful adversary against the
security property.

We end up in Hybrid7 where all correlation outputs and reverse-sampling outputs are replaced
by PCG expansions. As this hybrid does not use any reverse-sampling anymore, we can get rid
of the tuple function Tuple.

Now, Hybrid7 is identical to the real-world execution which concludes the proof.

M Benchmarks of Basic Arithmetic Performance

We report the runtime of basic arithmetic operations in Table 1. The presented numbers might
help the reader to assess the performance of system used for benchmarking and provides details
for comparisons.

Table 1: Runtime of basic arithmetic operations in the BLS12 381 curve on our evaluation ma-
chine. The bit-size of the curve’s group order p is 255. The error terms report standard deviation.

Operation Time

Zp addition 5.092 ns ±1.049 ns
Zp multiplication 32.045 ns ±1.556 ns
Zp inverse 2.713 µs ±101.973 ns
G1 addition 1.102 µs ±48.571 ns
G2 addition 3.668 µs ±96.867 ns
G1 scalar multiplication 279.146 µs ±14.763 µs
G2 scalar multiplication 0.952 ms ±0.04 µs
Pairing 2.403 ms ±56.976 µs

N Evaluation Considering [67]

Concurrently to our work, Tessaro and Zhu [67] proposed and proved security of a more compact
BBS+ signature scheme removing the nonce s, and hence, reducing the signature size by one
element in Zp. The proposed extension translates to our protocol in a straight-forward way as
follows. We do no longer need public parameter h0. The preprocessing protocol does not generate
the shares si or αi. When answering a signing request, the servers compute Ai differently, i.e.,
Ai := (g1 ·

∏
ℓ∈[k] h

mℓ

ℓ )ai , and do not send si. The reconstruction of a signature ignores s

and outputs the tuple (A, e). When verifying a signature, parties now check if e(A, y · ge2) =
e(g1 ·

∏
ℓ∈[k] h

mℓ

ℓ , g2). In the following we call the described protocol the lean version of our
protocol.

For us, their optimization has the advantage of removing the necessity of the α values com-
puted during the preprocessing and the computation of the gsi and gs term in the signing and
verification process. In order to quantify the benefits of this optimization, we have repeated the
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evaluation presented in Section 6 for the lean version of our protocol and report the changes
here.

Online, Signing Request-Dependent Phase. For the online phase, we have implemented the lean
version of the protocol and executed benchmarks. The scope of the implementation and the setup
of our benchmarks remains unchanged. The results of our benchmarks are reported in Figure 11.
The comparison to the non-threshold protocol, also optimized according to [67], is displayed in
Figure 12. The size of signing requests does not change in the lean version of our protocol. The
size of partial signatures sent by the servers reduces to (2⌈log p⌉+ |G1|).
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Fig. 11: The runtime of individual phases (a)-(d) and the total online protocol (e) in the protocol
version optimized according to [67]. The Adapt phase, describing Steps 5 and 6 of protocol πPrep,
and the Reconstruct phase, describing Step 3a of πTBBS+, depend on security threshold t. The
Sign phase, describing Step 2 of πTBBS+, and the signature verification, describing Step 3b depend
on the message array size k.

Offline, Signing Request-Independent Phase. For the offline phase, we derive the benchmarks
for the lean version of our protocol from the original one. To this end, we have measured the
execution time of the expansion steps that are removed by the lean version and deduct them
from the total runtime. The results are displayed in Figure 14 and Figure 15. In the n-out-of-n
setting of the lean version, each party performs four randomization and splits three polynomials.
In the t-out-of-n setting, each party performs 2 + 3 · (n − 1) randomizations and splits just as
many polynomials. The time to extract one of the N field elements from a degree-N polynomial
remains unchanged.
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Fig. 12: The total runtime of the lean version of our online protocol in comparison to plain,
non-threshold signing (also optimized according to [67]) with and without signature verification
in dependence of the size of the message array k. As depicted in Figure 11e, the influence of the
number of signers t is insignificant. We choose t = 10.
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Fig. 13: Storage complexity of the preprocessing material in the lean version of our protocol
required for N ∈ {98 304, 1 048 576} signatures depending on the number of servers n.
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Fig. 14: Computation time in the lean version of our protocol of the seed expansion of all required
PCGs in the n-out-of-n setting for different committee sizes (n ∈ {2, . . . , 10}) dependent on the
number of generated precomputation tuples N .
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Fig. 15: Computation time in the lean version of our protocol of the seed expansion of all required
PCGs in the t-out-of-n setting for different committee sizes (n ∈ {2, . . . , 10}) dependent on the
number of generated precomputation tuples N .

The communication complexity of a distributed PCG-based preprocessing protocol instantiat-
ing the offline, signing request-independent phase of the lean version of our protocol is dominated
by a factor of

13(ncτ)2 · (logN + log p) + 4n(cτ)2 · λ · logN.

In case, the preprocessing decouples seed generation from seed evaluation, servers have to
store seeds with a size of at most

log p+ 2cτ · (⌈log p⌉+ ⌈logN⌉)
+2 · (n− 1) · cτ · (⌈logN⌉ · (λ+ 2) + λ+ ⌈log p⌉)
+2(n− 1) · (cτ)2 · (⌈log 2N⌉ · (λ+ 2) + λ+ ⌈log p⌉)

bits. The expanded precomputation material occupies

log p · (1 +N · (2 + 4 · (n− 1)))

bits of storage. In Figure 13, we report the concrete storage complexity of the preprocessing
material of the lean version of our protocol when instantiating the with N ∈ {98 304, 1 048 576}
and p = 255 according to the BLS12 381 curve used by our implementation.

The computation cost of the seed expansion is still dominated by the ones of the PCGs for
OLE correlations. However, we do no longer need the OLE-generating PCGs for the cross terms
ai · sj , and aj · si. It follows that the computation complexity of the seed expansion in the lean
version of our protocol is dominated by

2 · (n− 1) · (4 + 2⌊log(p/λ)⌋) ·N · (ct)2

PRG evaluations and O(nc2N logN) operations in Zp.
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