
Eigenvalue Optimization with respect
to Shape-Variations in Electromagnetic

Systems

Vom Fachbereich Mathematik
der Technischen Universität Darmstadt

zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

genehmigte

Dissertation

von

Christine Eva Herter, M. Sc.

aus Heppenheim

Referent: Prof. Dr. Winnifried Wollner
Korreferent: Prof. Dr. Sebastian Schöps
Tag der Einreichung: 22.05.2024
Tag der mündlichen Prüfung: 16.09.2024

Darmstadt 2024
D 17



Eigenvalue Optimization with respect to Shape-Variations in Electro-
magnetic Systems

Accepted doctoral thesis by Christine Eva Herter, M.Sc.

Darmstadt, Technische Universität Darmstadt

Date of thesis defense: September 16, 2024
Year of publication on TUprints: 2024

Please cite this document as/ Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-287835
URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/28783

This document is provided by/ Dieses Dokument wird bereitgestellt von:
TUprints, E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

This work is licensed under a Creative Commons License/ Diese Veröf-
fentlichung steht unter folgender Creative Commons Lizenz:
CC BY-SA 4.0 International
https://creativecommons.org/licenses/

ii



Acknowledgments

In the past five years, I met various people who supported me with my thesis and
influenced my life in many ways. First and foremost, I would like to thank my su-
pervisor Winnifried Wollner. After supervising my master thesis, he gave me the
chance to continue working as a PhD knowing that I was more a computational
engineer than a mathematician. He supported me a lot and was always really
patient. I am thankful for the time he spend discussing about mathematical
problems and the implementation. Also, he gave me the possibility to travel to
several conferences for presenting my research and networking to people, which
I really enjoyed.

Furthermore, I want to thank my co-supervisor Sebastian Schöps for his ideas
and discussions regarding the application part. Besides, I would like to thank
Stefan Ulbrich, who already supported me during my studies in Computational
Engineering as professorial mentor, and Christian Stinner. Both accepted to be
part of the examination committee for my thesis.

I thank all the colleagues from the AG Optimization at TU Darmstadt, where I
worked the first three years of my PhD. I have many great memories of this time -
all the group lunches (Blitz friday), nice discussions during coffee-cookie-meetings
and all the great activities beyond work, such as going to Boulder and Running,
Boardgame and Doppelkopf nights as well as Kleinwalsertal. In this context, I
would like to thank Oli, who was my biggest emotional support, knowing all the
struggles which I had. Moreover, I thank Fred, who was a great office mate,
and Oliver, for many nice coffee breaks and always an open ear, especially in the
end of the dissertation. Also, both proofread parts of my thesis. I thank the
colleagues from GSC with whom I enjoyed the exchange during the salad days
and cake meetings. I thank the colleagues from TEMF who had a workplace
for me while visiting Darmstadt in the last months of my PhD, especially to
Anna for the discussions about cavities and proofreading parts of my thesis, and
Timon, who was also proofreading parts of my thesis.

iii



Further, I thank my colleagues in Hamburg who welcomed me kindly. I thank
my office mate Lena for all the discussions, coffee breaks, moral support whenever
it was needed, and for proofreading parts of the thesis. I also thank Jule for being
a good friend, having so many good conversations, always an infectious good
mood and proofreading parts of the thesis. I also remember here good times
beyond work, such as going to Boulder, discovering Hamburg and the working
week in Borgwedel. Many thanks to Nicolai, sharing the experience moving to
another city for the PhD and all the good discussions (preferred by a good coffee
or Sushi), Steffi for her jokes in the right moments, and all the others for the
discussions and the constructive feedback for my thesis.

Finally, I want to thank my family as well as my friends at home for all their
support from a distance whenever it was needed, my friends in Hamburg and
Pierre, who helped me a lot clearing my mind in stressful moments.

iv



Zusammenfassung

Diese Arbeit beschäftigt sich mit der Freiformoptimierung eines Eigenwertpro-
blems abhängig von kleinen Formvariationen, um die optimale Geometrie in
elektromagnetischen Systemen zu finden. Die Arbeit ist motiviert durch die Ka-
vitäten eines Teilchenbeschleunigers, welche sensibel gegenüber kleiner Verfor-
mungsänderungen sind. Wir formulieren ein optimales Steuerungsproblem, das
wir durch die gemischte Variationsformulierung des normierten zeitharmonischen
Maxwell-Eigenwertproblems von Kikuchi beschränken. Dabei kontrollieren wir
die Verformung des Gebietes durch Gebietstransformationen.

Darüber hinaus sind wir an der Lösung des Optimierungsproblems interessiert.
Dafür berechnen wir zunächst mithilfe des adjungierten Kalküls die Ableitung des
reduzierten Kostenfunktionals für ein verallgemeinertes Eigenwertoptimierungs-
problem. Anschließend wenden wir diesen Ansatz auf das konkrete Optimierungs-
problem an, welches wir durch das Maxwell-Eigenwertproblem beschränken, und
diskutieren zwei Optimierungsverfahren zur Lösung des Problems. Wir betrach-
ten zum einen ein Gradientenverfahren und zum anderen ein gedämpftes inverses
Broyden-Fletcher-Goldfarb-Shanno (BFGS)-Verfahren, wobei wir bei letzterem
die positive Definitheit für die Operatoren beweisen, die den Hesse-Operator
des reduzierten Kostenfunktionals approximieren. Wir validieren diese Metho-
den anhand numerischer Beispiele, um die Funktionalität ihrer Implementierung
zu zeigen. Dabei diskutieren wir zunächst den Einfluss der Regularitätsparame-
ter, die wir für das Optimierungsproblem verwenden. Außerdem untersuchen wir
den Einfluss des gewählten Ziel-Eigenwertes auf die Verformung der betrachteten
Gebiete.

Abschließend diskutieren wir die Erweiterung dieses Ansatzes auf praktische
Probleme, wie zum Beispiel einer Kavität eines Teilchenbeschleunigers, die die
Motivation dieser Arbeit war. Wir zeigen Ergebnisse zu zweidimensionalen Ka-
vitäten und erweitern diesen Ansatz auf dreidimensionale Probleme.
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Abstract

In this thesis, we consider a freeform optimization problem of eigenvalues by
means of shape-variations with respect to small deformations in order to find
the optimal geometry in electromagnetic systems. This is motivated by the
application of a particle accelerator cavity. We formulate an optimal control
problem constrained by the mixed variational formulation by Kikuchi of the
normalized time-harmonic Maxwell eigenvalue problem. By applying the method
of mappings, we control the deformation of the domain.

Moreover, we are interested in solving the optimization problem. Therefore,
we first calculate the derivative of the reduced cost functional for a generalized
eigenvalue optimization problem using the adjoint calculus. Then, we apply this
approach to the considered freeform optimization problem constrained by the
Maxwell eigenvalue problem. In order to solve this problem, we discuss two op-
timization methods. Here, we consider a gradient method and a damped inverse
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, where we prove the posi-
tive definiteness of the operators which approximate the Hessian of the reduced
cost functional for the latter. Further, we validate these methods on numerical
examples to demonstrate the functionality of their implementation. We discuss
the influence of the regularity parameters and a chosen target value on the opti-
mization methods and on the final deformation of the considered domains.

Finally, we discuss the extension of this approach to more realistic problems,
such as a particle accelerator cavity, which was the motivation of this thesis. We
present results on two-dimensional cavity domains and the extend this approach
to three-dimensional problems.
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CHA PTER 1
Introduction

Shape optimization has its application in numerous crucial fields in engineering
and industry. In the last decades, it inspired deep mathematical theories and
had an intense development. One goal of shape optimization is to optimize
the produced components from the early stages of design, so that they fulfill
and optimize their intended purpose. The rise of computational power and the
development of advanced mathematical programming methods made shape as
well as topology optimization a very popular discipline in many scientific fields,
e.g., structural mechanics, including civil engineering or architecture or in fluid
mechanics, see [5].

In this thesis, we consider an eigenvalue optimization with shape-variations
in electromagnetic systems, such as particle accelerator cavities. The general
goal of an accelerator is to propel charged particles at high speed, close to the
speed of light, to smash them either onto a target or against other particles
circulating in the opposite direction. Physicists study these collisions to probe
the world of the infinitely small. One famous example of a particle collider is
the Large Hadron Collider from the CERN [1] which is, with 27 km rings of
superconducting magnets, the longest and most powerful accelerator.

One crucial component of these accelerators is the cavity, which is respon-
sible for the acceleration of particles. So-called superconducting Radio Fre-
quency (RF) particle accelerator cavities are used to transfer energy to a charged
particle beam by applying an electric field. Cavities excite electromagnetic fields
of various frequencies. For each frequency, there exists a corresponding electric
field, a so-called eigenmode, which varies in its shape, see [9].
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Chapter 1. Introduction

The goal of superconducting RF cavities is to achieve an acceleration mode,
which accelerates the particles inside the cavity forward. The most relevant
acceleration eigenmode is the fundamental Transverse Magnetic (TM) mode.
The shape of the TM010-mode, also called π-mode, is shown in Figure 1.1. The

Figure 1.1. Electric field of the TM010, also called π-mode

electromagnetic field distribution and resonating frequency of various modes in
superconducting cavities are sensitive to small geometric deformations and their
effectiveness is mainly determined by their geometry. Therefore, it is common to
tune the achieved eigenfrequencies to derive a more precise electric field for the
acceleration. A freeform optimization allows us to find the optimal geometry.
For a detailed description of cavities as well as their associated components, we
refer to the paper about superconducting TESLA cavities [12] and also to [36,46].

1.1. Eigenvalue Optimization for Electromagnetic
Cavities

Since RF cavities highly depend on their exact shape, the optimization of the
shape is of deep interest and has already been studied a lot in the past. In
this context, a wide research area is the optimization with respect to several
parameters of the geometry of the concerning cavity. This area is mainly a
field of applied engineering and contains essentially numerical studies. For the
optimization, a common way is to compute the directional derivatives of the cost
function with respect to the considered parameters. Depending on the number
of parameters and the size of the design space, the computation of the gradient
can get very costly. One way to deal with this problem is to use gradient-
free methods, see, e.g., [43, 69, 70], where evolutionary algorithms are used to
solve multi-objective shape optimization problems, and [90], where a stochastic
setting is used. Another way is the optimization with gradient-based methods.
One example is the computation of the derivatives of stiffness and mass matrices
with respect to geometric changes which are closely related to the computation
of shape derivatives, see, e.g., in [113].

2



1.1. Eigenvalue Optimization for Electromagnetic Cavities

In all the mentioned references, the deformation of a cavity always depends on
certain parameters defining the geometry of the domain. The motivation of this
thesis is to allow a shape-deformation in every direction to achieve the optimal
shape. Therefore, we consider a freeform optimization problem. Compared to
parameter optimization, the freeform optimization is more costly in computation
of the derivatives because the number of unknowns increases. To handle this
problem, we consider the approach of adjoint calculus which is well-explained
for optimization problems subject to partial differential equations (PDEs), see,
e.g., [59].

In [78], it is explained that the origin of the approach of adjoint calculus
lies in the Pontryagin’s principle and the practical use with perspective of the
Lagrange multipliers is introduced in [33]. The adjoint method has already been
applied to many applications of control problems as well as shape and topology
optimization problems, e.g., in the domain of structural optimization of solid
bodies, see [4, 6–8], or in fluid mechanics, see, e.g., [54,62]. Further, optimization
problems where the functionals depend on the eigenvalues are studied in, e.g., [67]
and discussed in [101]. Moreover, this work is inspired by [58, 92], where the
adjoint calculus is done for elliptic eigenvalue problems.

In the context of the optimization of Maxwell’s eigenvalue problem, the ad-
joint method has already been applied for optimization with respect to certain
parameters, see, e.g., [3]. In the authors work [57], we introduce adjoint calcu-
lus in order to solve a freeform optimization problem constrained by Maxwell’s
eigenvalue problem. In this thesis, we explain this approach in more detail. We
use adjoint calculus to obtain the reduced gradient for a generalized eigenvalue
optimization problem. Furthermore, we apply this approach to the freeform op-
timization problem constrained by Maxwell’s eigenvalue problem with respect to
shape-variations in order to find the optimal shape of a considered domain, e.g.,
a cavity domain.

Based on this approach, we are able to compute the first derivatives of the
considered problem. One strategy to solve this kind of optimization problem is a
line search method, where in each iteration a search direction and a step length is
computed, see, e.g., [40, 84, 103]. In this thesis, we consider two well-known line
search methods, a gradient method and a quasi-Newton’s method, namely an
inverse damped BFGS method. We expect a better convergence on the second
method, see [89]. The origin of the damping step is shown in [89], which we
extend from the finite-dimensional to the infinite-dimensional setting. Further,

3



Chapter 1. Introduction

in the origin, the damping is applied to the classical BFGS method. In this
thesis, we show that a damping is also applicable to the inverse BFGS method.

The eigenvalue optimization with respect to shape-variations is closely related
to the context of shape optimization. For the computation of shape derivatives in
PDE-constrained optimization, we refer to [41,52,99]. For the adjoint approach,
we require the differentiability of the control-to-state operator associated with
Maxwell’s eigenvalue problem in a sufficiently strong topology. Therefore, we
need to take into account that the results depend on a shape-variation. This
variation can be expressed by the method of mappings, see, e.g., [79, 80], and is
based on kinematic statements from continuum mechanics. The method of map-
pings is already applied to several shape optimization problems to derive Fréchet
derivatives with respect to shape-variations. For example, we refer to [42], where
properties of Fréchet differentiability are derived in the context of Navier-Stokes
problems. For the analysis of a linear elasticity eigenvalue problem without
domain mapping, we refer to [44]. In this thesis, we assume continuity and
differentiability in order to apply adjoint calculus for the considered freeform op-
timization problem constrained by Maxwell’s eigenvalue problem depending on
a domain mapping.

The mathematical model for high frequency electromagnetic fields is the fol-
lowing eigenvalue problem solving Maxwell’s equations

∇× (∇× E) = k2E in Ω,

∇ · E = 0 in Ω,

E × n = 0 on ∂Ω,

(1.1)

in a bounded domain Ω. Here, E describes the electric field, k is the wave
number and n is the outward normal to the domain, see [60]. Historically, the
attempts to solve such Maxwell’s eigenvalue problems suffered from so-called
spurious modes that disturbed the searched eigenmodes. In particular, by using
the finite element discretization with Lagrange elements, problems arise chiefly
for three-dimensional problems. Moreover, spurious modes appear by ignoring
the divergence-free constraint, i.e.,

∇ · E = 0.

A method invented between 1975 and 1980 by Weiland [107,108], the so called
finite integration technique (FIT), could completely avoid the problem of spuri-
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1.2. Contribution

ous modes. The drawback of this method is the price of going back to a finite
difference scheme. Real cavities have, next to their smooth inner surfaces, spe-
cial points with fine structural details, e.g., at a coupling loop for feeding in
the RF power. This strong variations of scale favour the use of finite element
methods against finite difference schemes. It is also possible to avoid spurious
modes by the use of the finite element method. In the paper [9], two methods
are well discussed. The first method is a penalty method introduced in [72],
which uses a variational formulation neglecting the divergence-free constraint.
The discretization of the electric field is represented by ordinary node based el-
ements. A penalization shifts the spurious eigenfrequencies to the right of the
desired part of the spectrum. The other introduced method to avoid spurious
modes is a mixed variational formulation which includes the divergence-free con-
straint. The components of the electric field are discretized by edge elements, e.g.,
Nédélec elements, whereas the variational term of the divergence-free constraint
is discretized by node based elements. By using edge elements, the computed
approximated eigenmodes are naturally split into curl-free and (in a discrete
sense) divergence-free modes. Hence, these elements ensure proper subspaces
of the space of the electric field. For more details of edge elements, we refer
to [77, 105]. Here, the advantages and disadvantages of these elements are in-
tensely discussed. Furthermore, for edge elements in context of cavity shapes,
we refer to [29,34,105].

In this thesis, we consider a mixed variational formulation, namely the formu-
lation introduced by Kikuchi [65] which distinguishes in its discretization between
the electric field and the divergence-free space, see [83]. It is clear that the matrix
of the discretized problem is simpler to solve in case of node based elements or ne-
glecting the divergence-free constraint in comparison with the mixed formulation.
Nevertheless, we choose the mixed formulation because in an optimization loop,
a particular eigenvalue needs to be selected automatically. With this setting, we
ensure the selection of a physical eigenvalue which is no spurious solution.

1.2. Contribution

This work focuses on the eigenvalue optimization with respect to shape-variations
in electromagnetic systems. The contributions of this thesis are the following.

In Chapter 3, we discuss a suitable variational formulation for the eigenvalue
optimization problem and state the concrete formulation with domain mapping.

5



Chapter 1. Introduction

Furthermore, we show the Fŕechet differentiability of the functions concerning
the domain mapping in order to compute the derivatives of the domain dependent
Maxwell eigenvalue problem.

Based on a normalization of the eigenfunctions, local uniqueness of the solu-
tion allows us to derive adjoint formulas for the derivatives of the eigenvalues
with respect to domain variations. We compute the derivatives for a generalized
eigenvalue problem and apply this approach to the concrete Maxwell eigenvalue
optimization problem. The results and formulation have been announced by the
author in [57]. In this thesis, we explain this approach in detail, see Section 4.1.

To solve freeform optimization problems, we consider two optimization meth-
ods, namely a gradient and a damped inverse BFGS method. For the latter,
we prove the preservation of the positive definiteness property of the operator,
which updates in every iteration to approximate the Hessian of the reduced cost
functional. With this property, we ensure that the curvature condition is fulfilled.
The proof can be found in Section 4.2.

A further contribution is the implementation and simulation of the considered
freeform optimization problem constrained by Maxwell’s eigenvalue problem with
respect to shape-variations. All computations base on the finite element library
deal.II [10, 11]. Here, the author fixed bugs concerning the provided mixed
finite element system. Moreover, the optimization is implemented within the
optimization library DOpElib [49]. Here, the author extended the framework for
PDE optimization problems for eigenvalue optimization problems. Moreover, the
author fixed bugs in the BFGS method and extended the method to an inverse
damped BFGS method, which we use for the numerical examples in this thesis.

In Section 4.4, we demonstrate the functionality of the extension of the library,
the implementation of the damped inverse BFGS method as well as the compu-
tation of the derivatives using adjoint calculus, we show numerical examples on
simple geometries. In this context, we study the regularization parameters of
the cost functional and the influence of different target values in the objective
functional on the domain deformation.

We extend the optimization to more realistic geometries, such as two-
dimensional cavity domains and three-dimensional geometries. The numerical
results are stated in Chapter 5.

6



1.3. Outline

1.3. Outline

This thesis is structured as follows. After the introduction, we continue with
the preliminaries of this thesis in Chapter 2. In detail, we introduce shortly the
theory of functional analysis in Section 2.1. For the computation of the defor-
mation gradient and its derivative, we introduce the needed matrix algebra in
Section 2.2. We shortly treat the theory of eigenvalues in Section 2.3. Further-
more, we consider definitions of differentiability of operators in Banach spaces
in Section 2.4. Afterwards, in Section 2.5, we explain reduced problems and the
theory of adjoint calculus in context of PDE constrained optimization problem.
In Section 2.6 we treat optimality conditions. We conclude this chapter with
explaining a general descent method for unconstrained optimization problems in
Section 2.7.

In Chapter 3, we discuss the theory of Maxwell’s eigenvalue problem. For that,
we consider the time-harmonic Maxwell eigenvalue problem and discuss shortly
two different variants of variational formulations of this problems regarding the
occurrence of so-called spurious modes in Section 3.1. Further, in Section 3.2,
we formulate the introduced variational formulation of the previous section de-
pending on a domain mapping. Hence, we define the deformation gradient and
distinguish between the function spaces of H0(curl) and H1

0 . In Section 3.3, we
discuss the existence and properties of eigenvalues and associated eigenfunctions
of Maxwell’s eigenvalue problem.

Chapter 4 deals with the eigenvalue optimization. In order to compute the re-
duced gradient, we discuss the adjoint calculus in Section 4.1. First, we consider
the derivatives for a general eigenvalue problem depending on a domain mapping.
Afterwards, we compute the derivatives for the concrete Maxwell eigenvalue op-
timization problem. In order to solve the considered problem, we introduce two
optimization methods in Section 4.2. On the one hand, we discuss a gradient
method. On the other hand, we treat a quasi-Newton method, to be precise a
damped inverse BFGS method, to increase the convergence rate. Here, we show
the concrete methods applied on the considered eigenvalue optimization prob-
lem. Afterwards, we consider the discretization of Maxwell’s eigenvalue problem
in Section 4.3, where we use a mixed finite element method (FEM) to discretize
the function spaces. Here, we discretize the H1

0 (Ω)-space with Lagrange ele-
ments and the H0(curl; Ω) with Nédélec elements. We conclude this section with
the matrix formulation of the discretized Maxwell eigenvalue problem and by
mentioning some implementation details, i.e., about the library deal.II and

7



Chapter 1. Introduction

its hurdles with mixed finite elements as well as saddle point problems and the
eigenvalue solver library SLEPc which we use for solving this kind of problems.
In Section 4.4, we conclude this chapter with numerical results. We show so-
lutions of the optimization problem on two simple geometries, i.e., a rectangle
with free boundaries, in Section 4.4.1, and a quarter circle with fixed edges, in
Section 4.4.2. Here, we compare the optimization methods which we introduced
in the previous section and observe the influence of regularization parameters of
the considered cost functional and various target values on the domain deforma-
tion. Finally, in Section 4.4.3, we conclude this section by a discussion of the
obtained numerical results.

In Chapter 5, we present discuss the extension of approach to more realistic
problems. We present results of eigenvalue optimization on two-dimensional
planar cavity domains, in Section 5.1. First, we show results of the optimization
of a 1-cell cavity in Section 5.1.1. Afterwards, we consider a 5-cell cavity model in
Section 5.1.2. Here, we optimize the first eigenvalue to a target value by using the
damped inverse BFGS method. In Section 5.2, we extend the approach to three-
dimensional geometries. Here, we show numerical results of the optimization on
a cuboid in Section 5.2.1 and an optimization example of cylindrical geometry in
Section 5.2.2.

In Chapter 6, we conclude this thesis and discuss open questions for the anal-
ysis and for the application. In Appendix A.1, we show a documentation of the
extension for eigenvalue optimization problems of the PDE optimization soft-
ware DOpElib. Furthermore, we treat a concrete example of the implementation
of Maxwell’s eigenvalue optimization problem with domain mapping. Moreover,
in Appendix A.2, we show further numerical solutions tables of the optimization
examples for completion.
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CHA PTER 2
Preliminaries

In this thesis, we consider optimization problems constrained by an eigenvalue
problem. To be able to analyze and discuss this kind of problems, we introduce
in Section 2.1 the functional analysis background. Further, in Section 2.2, we
consider some basic matrix algebra which we need for the computation of the do-
main mapping and its derivatives. In Section 2.3, we treat the eigenvalue theory,
which we use in Section 3.3 to show the existence of eigenvalues and associated
eigenvectors in cavity problems. Further, in Section 2.4, we introduce the dif-
ferent concepts of differentiability of operators in Banach spaces. Moreover, we
consider the optimality theory for optimization problems with PDE-constraints
in infinite dimensional spaces. Therefore, we treat in Section 2.5 the theory of
reduced problems and adjoint calculus in context of PDE optimization prob-
lems. Further, we consider optimality conditions in Section 2.6 and conclude
this chapter with an introduction to unconstrained optimization in Section 2.7.

2.1. Functional Analysis

In this section, we introduce the functional analytical background which we need
for this thesis. First, we consider Banach and Hilbert spaces in Section 2.1.1. In
the context of PDE optimization, we do not necessarily have classical solutions.
Therefore, we introduce in Section 2.1.2 the Sobolev spaces. By using these
spaces and functional analysis, there exist a satisfactory solution theory which
provides a suitable framework to derive optimality conditions. For the theory
of Banach and Hilbert spaces as well as Sobolev spaces, we refer to [59, 81, 93].
To later on formulate and discuss Maxwell’s eigenvalue problem, we introduce

9



Chapter 2. Preliminaries

vector functions with curl and divergence. For this theory and more details, we
refer to [24,76]

2.1.1. Banach and Hilbert Spaces

Definition 2.1 (Norm, Banach space). Let X be a real vector space.

1. A mapping ∥ · ∥ : X 7→ [0,∞) is a norm on X, if

a) ∥u∥ = 0 ⇔ u = 0 ∀u ∈ X,
b) ∥λu∥ = |λ| ∥u∥ ∀u ∈ X,λ ∈ R,
c)∥u+ v∥ ≤ ∥u∥+ ∥v∥ ∀u, v ∈ X.

2. A normed real vector space X is called (real) Banach space if it is complete,
i.e., if every Cauchy sequence (un) has a limit u ∈ X, more precisely, if
limm,n→∞ ∥um − un∥ = 0 then there is u ∈ X with limn→∞ ∥un − u∥ = 0.

Example 2.2. Let Ω ⊂ R be open. For a multi-index α = (α1, . . . , αn) ∈ Nn
0 we

define its order by |α| :=∑n
i=1 αi and associate the |α|-th order partial derivative

at x by

Dαu(x) :=
∂|α|u

∂xα1
1 . . . ∂xαn

n
(x).

We define
Ck(Ω) = {u ∈ C(Ω): Dαu ∈ C(Ω) for |α| ≤ k}.

For Ω ⊂ Rn open and bounded, let

Ck(Ω̄) = {u ∈ Ck(Ω): Dαu has a continuous extension to Ω̄ for |α| ≤ k}.

Then the spaces Ck(Ω̄) are Banach spaces with the norm

∥u∥Ck(Ω̄) :=
∑

|α|≤k

∥Dαu∥C(Ω̄).

Definition 2.3. Two normed vector spaces X,Y are called isometric, if there is
a linear bijection L : X → Y such that ∥L(x)∥ = ∥x∥ for every x ∈ X.

Definition 2.4 (Inner product, Hilbert space). Let H be a real vector space.

10



2.1. Functional Analysis

1. A mapping (·, ·) : H ×H 7→ R is an inner product on H, if

a) (u, v) = (v, u) ∀u, v ∈ H,
b) for every v ∈ H, the mapping u ∈ H 7→ (u, v) is linear,

c) (u, u) ≥ 0 ∀u ∈ H and (u, u) = 0⇔ u = 0.

2. A vector space H with inner product (·, ·) and associated norm

∥u∥ :=
√

(u, u)

is called Pre-Hilbert space.

3. A Pre-Hilbert space (H, (·, ·)) is called Hilbert space if it is complete under
its norm ∥u∥ :=

√
(u, u).

Example 2.5. Let ∅ ≠ Ω ⊂ Rn be open and bounded. Then (C(Ω̄), (·, ·)L2) is a
Pre-Hilbert space with the L2-inner product

(u, v)L2 =

∫

Ω
u(x)v(x)dx.

Theorem 2.6 (Cauchy-Schwarz Inequality). Let H be a Pre-Hilbert space. Then
the Cauchy-Schwarz inequality holds

|(u, v)| ≤ ∥u∥∥v∥ ∀u, v ∈ H.

Definition 2.7. A Hilbert (or, more generally, a Banach) space X is called
separable if it contains a countable dense subset. That is, there exists Y = {xi ∈
X : i ∈ N} ⊂ X such that

∀x ∈ X, ∀ε > 0: ∃y ∈ Y ∥x− y∥X < ε.

Example 2.8. For bounded Ω the space C(Ω̄) is separable.

Definition 2.9. Let H be a Hilbert space. We say that two elements x and y

of H are orthogonal if (x, y) = 0. For any subspace M of H, we define the
orthogonal complement by

M⊥ = {x ∈ H| (x, y) = 0∀y ∈M}.

For the following Projection Theorem, we refer to [93, Theorem 6.26].

11
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Theorem 2.10 (Projection Theorem). Let H be a Hilbert space and let M be a
closed subspace of H. Then every u ∈ H has a unique decomposition u = v +w,
where v ∈M and w ∈M⊥.

Linear partial differential operators define linear mappings between function
spaces. We recall the definition of linear operators.

Definition 2.11 (Linear operator). Let X,Y be normed real vector spaces with
norms ∥ · ∥X , ∥ · ∥Y .

1. A mapping A : X → Y is called linear operator if it satisfies

A(λu+ µv) = λAu+ µAv ∀u, v ∈ X, λ, µ ∈ R.

The range of A is defined by

R(A) := {y ∈ Y : ∃x ∈ X : y = Ax}

and the null space of A by

N(A) := {x ∈ X : Ax = 0}.

2. A linear mapping L : X → Y is called bounded if there is a constant C such
that ∥Lx∥ ≤ C∥x∥ for all x ∈ X.

3. An operator L : X → Y is sequentially continuous at a point x ∈ X if,
whenever xn ∈ X is a sequence such that xn → x, we have L(xn)→ L(x).

Theorem 2.12. Let X,Y be normed real vector spaces with norms ∥ · ∥X , ∥ · ∥Y .
Let L : X → Y be a linear mapping.

1. If L is sequentially continuous at the origin, it is continuous at every x ∈ X.

2. L is sequentially continuous if and only if it is bounded.

The set of all bounded linear mappings forms a vector space. Taking the
smallest possible constant in Definition 2.11, then this quantity gives us a measure
of the size of a linear mapping. By that, the following theorem is motivated.

Theorem 2.13. Let X,Y be normed real vector spaces with norms ∥ · ∥X , ∥ · ∥Y .
By L(X,Y ) we denote the space of all linear operators A : X → Y that are

12
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bounded in the sense that

∥A∥X,Y := sup
∥u∥X=1

∥Au∥Y <∞.

L(X,Y ) is a normed space with the operator norm ∥ · ∥X,Y .

Theorem 2.14. If Y is a Banach space then L(X,Y ) is a Banach space.

If Y is a Banach space, any operator A ∈ L(X,Y ) is determined uniquely by
its action on a dense subspace.

Theorem 2.15. Let X be a normed space, Y be a Banach space and let U ⊂ X
be a dense subspace. Then for all A ∈ L(U, Y ), there exists a unique extension
Ã ∈ L(X,Y ) with Ã|U = A. For this extension, there holds ∥Ã∥X,Y = ∥A∥U,Y .

Definition 2.16 (Linear functionals, dual space).

1. Let X be a Banach space. A bounded linear operator u∗ : X → R, i.e.,
u∗ ∈ L(X,R) is called a bounded linear functional on X.

2. The space X∗ := L(X,R) of linear functionals in X is called dual space of
X and is (by Theorem 2.14) a Banach space with the operator norm

∥u∗∥ := sup
∥u∥X=1

|u∗(u)|.

3. We use the notation
⟨u∗, u⟩X∗,X := u∗(u).

⟨·, ·⟩X∗,X is called dual pairing of X∗ and X.

The dual space of a Hilbert space is isometric to the space itself. This result
is known as the Riesz Representation Theorem.

Theorem 2.17 (Riesz Representation Theorem). The dual space H∗ of a Hilbert
space H is isometric to H itself. More precisely, for every v ∈ H the linear
functional u∗ defined by

⟨u∗, u⟩H∗,H := (v, u)H ∀u ∈ H

13
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is in H∗ with norm ∥u∗∥H∗ = ∥v∥H . Vice versa, for any u∗ ∈ H∗ there exists a
unique v ∈ H such that

⟨u∗, u⟩H∗,H = (v, u)H ∀u ∈ H

and ∥u∗∥H∗ = ∥v∥H . In particular, a Hilbert space is reflexive.

Definition 2.18. Let X,Y be Banach spaces. Then for an operator A ∈ L(X,Y )

the dual operator A∗ ∈ L(Y ∗, X∗) is defined by

⟨A∗v, u⟩X∗,X = ⟨v,Au⟩Y ∗,Y ∀v ∈ Y ∗, u ∈ X.

It holds that ∥A∗∥Y ∗,X∗ = ∥A∥X,Y .

2.1.2. Sobolev Spaces

For the theory for PDEs, we replace the classical function space Ck(Ω̄) by the
Sobolev space W k,p(Ω), which consists of all functions u ∈ Lp(Ω) that possess
(weak) partial derivatives Dαu ∈ Lp(Ω) for |α| ≤ k. The so-called p-Lebesgue
space Lp(Ω) is complete under the Lp-norm, where

∥u∥Lp(Ω) =

(∫

Ω
|u(x)|pdx

)1/p

, p ∈ [1,∞),

∥u∥L∞(Ω) = ess sup
x∈Ω

|u(x)| (= sup
x∈Ω
|u(x)| for u ∈ C(Ω)).

The Lp-norm can be extended to Lebesgue measurable functions. Therefore, we
introduce the σ-algebra on Rn.

Definition 2.19 (σ-Algebra). A collection S ⊂ P(Rn)of subsets of Rn is called
σ-algebra on R if

1. ∅,Rn ∈ S,
2. A ∈ S implies Rn \A ∈ S,
3. If (Ak)k∈N⊂S then

⋃∞
k=1Ak ∈ S.

A measure µ : S → [0,∞] is a mapping with the following properties:

1. µ(∅) = 0.

14



2.1. Functional Analysis

2. If (Ak)k∈N ⊂ S is a sequence of pairwise disjoint sets then

µ

( ∞⋃

k=1

Ak

)
=

∞∑

k=1

µ(Ak) σ-additivity.

It holds the following theorem for the σ-algebra of Lebesgue measurable sets
with corresponding Lebesgue measure.

Theorem 2.20. There exists the σ-algebra Bn of Lebesgue measurable sets on Rn

and the Lebesgue measure µ : Bn → [0,∞] with the properties:

1. Bn contains all open sets (and thus all closed sets).

2. µ is a measure on Bn.
3. If B is any ball in Rn then µ(B) = |B|, where |B| is the volume of B.

4. If A ⊂ B with B ∈ Bn and µ(B) = 0 then A ∈ Bn and µ(A) = 0. This
means that (Rn,Bn, µ) is a complete measure space.

The sets A ∈ Bn are called Lebesgue measurable.

If some property holds for all x ∈ R \ N with N ⊂ Bn, µ(N) = 0, then we
say that it holds almost everywhere (a.e.). A function is Lebesgue measurable
by the following definition.

Definition 2.21. We say that f : Rn → [−∞,∞] is Lebesgue measurable if

{x ∈ Rn : f(x) > α} ∈ Bn ∀α ∈ R.

Now, we extend the Lp-norm to Lebesgue measurable functions. For this and
for further details, as well as the definitions of Lebesgue integrals to the literature,
we refer to, e.g., [59, Section 1.2.2].

Definition 2.22. Let Ω ∈ Bn. We define for p ∈ [1,∞) the seminorm

∥u∥Lp(Ω) :=

(∫

Ω
|u(x)|pdx

)1/p

and
∥u∥L∞(Ω) := ess sup

x∈Ω
|u(x)| := inf{α ≥ 0 : µ({|u| > α}) = 0}.

15
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Now, for 1 ≤ p ≤ ∞ we define the spaces

Lp(Ω) := {u : Ω→ R Lebesgue measurable : ∥u∥Lp(Ω) <∞}.

These spaces are not normed because there exist measurable
functions u : Ω→ R, u ̸= 0, with ∥u∥Lp = 0. By the following Lemma,
we define Lp(Ω) = Lp(Ω)/ ∼ as the space of equivalence classes of a.e. identical
functions, equipped with the norm ∥ · ∥Lp . With that, we define

Lploc(Ω):={u : Ω→ R Lebesgue measurable : u ∈ Lp(K) for all K ⊂ Ω compact}

and set Lp
loc(Ω) := L

p
loc(Ω)/ ∼, with the equivalence relation

f ∼ g : ⇐⇒ ∥f − g∥Lp(Ω) = 0 ⇐⇒ f = g a.e..

For Lebesgue spaces, it holds the following lemma.

Lemma 2.23. For all u, v ∈ Lp(Ω), p ∈ [1,∞], we have

∥u− v∥Lp = 0 ⇔ u = v a.e.

Theorem 2.24 (Fischer-Riesz). The spaces Lp(Ω), p ∈ [1,∞], are Banach
spaces. The space L2(Ω) is a Hilbert space with inner product

(u, v)L2 :=

∫

Ω
uvdx.

Lemma 2.25 (Hölder inequality). Let Ω ∈ Bn. Then for all p ∈ [1,∞] we have
with the dual exponent q ∈ [1,∞] satisfying 1

p + 1
q = 1 for all u ∈ Lp(Ω) and

v ∈ Lq(Ω) the Hölder inequality

uv ∈ L1(Ω) and ∥uv∥L1 ≤ ∥u∥Lp∥v∥Lq .

Now we can characterize the dual space of Lp-spaces.

Theorem 2.26. Let Ω ∈ Bn, p ∈ [1,∞) and q ∈ (1,∞] the dual exponent satis-
fying 1

p + 1
q = 1. Then the dual space (Lp(Ω))∗ can be identified with Lq(Ω) by

16



2.1. Functional Analysis

means of the isometric isomorphism

u ∈ Lq(Ω) 7→ u∗ ∈ (Lp(Ω))∗,where ⟨u∗, v⟩(Lp)∗,Lp :=

∫

Ω
u(x)v(x)dx.

Lemma 2.27. Let Ω ⊂ Rn be open and f ∈ L1
loc(Ω) with

∫

Ω
f(x)φ(x)dx = 0 ∀φ ∈ C∞

c (Ω).

Then f = 0 a.e.

Now, we introduce the definition of weak derivatives.

Definition 2.28. Let Ω ⊂ Rn be open and let u ∈ L1
loc(Ω). If there exists a

function w ∈ L1
loc(Ω) such that
∫

Ω
wφdx = (−1)|α|

∫

Ω
uDαφdx, ∀φ ∈ C∞

c (Ω), (2.1)

then Dαu := w is called the α-th weak partial derivative of u.

Remark 2.29.
1. By Lemma 2.27, Definition 2.28 determines the weak derivative Dαu ∈
L1
loc(Ω) uniquely.

2. The weak derivative is consistent with the classical derivative.

Definition 2.30 (Ck,β-boundary and Lipschitz-boundary). Let Ω ⊂ Rn be open
and bounded. We say that Ω has a Ck,β- boundary, k ∈ N0 ∪ {∞}, 0 ≤ β ≤ 1, if
for any x ∈ ∂Ω there exists r > 0, l ∈ {1, . . . , n}, σ ∈ {−1,+1}, and a function
γ ∈ Ck,β(Rn−1) such that

Ω ∩B(x; r) = {y ∈ B(x; r) : σyl < γ(y1, . . . , yl−1, yl+1, . . . , yn)},

where B(x; r) denotes the open ball around x with radius r. We call the
C0,1−boundary also Lipschitz-boundary.

The Gauß-Green Theorem is then the following.

Theorem 2.31 (Gauß-Green Theorem). Let Ω ⊂ Rn be open and bounded with
Lipschitz-boundary and the normal vector n exists for x ∈ ∂Ω a.e.. Then for
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all u, v ∈ C1(Ω̄)

∫

Ω
uxi(x)v(x)dx = −

∫

Ω
u(x)vxi(x)dx+

∫

∂Ω
u(x)v(x)ni(x)dS(x),

where ni is the i-th component of the outward normal vector.

Now, we introduce Sobolev spaces, which are subspaces W k,p(Ω) of
functions u ∈ Lp(Ω), for which the weak derivatives Dαu, |α| ≤ k, are in Lp(Ω).

Definition 2.32 (Sobolev spaces). Let Ω ⊂ Rn be open. For k ∈ N0, p ∈ [1,∞],
we define the Sobolev space W k,p(Ω) by

W k,p(Ω) = {u ∈ Lp(Ω): u has weak derivatives Dαu ∈ Lp(Ω) for all |α| ≤ k}

equipped with the norm

∥u∥Wk,p(Ω) :=


∑

|α|≤k

∥Dαu∥pLp




1/p

, p ∈ [1,∞),

∥u∥Wk,∞(Ω) :=
∑

|α|≤k

∥Dαu∥L∞(Ω).

Remark 2.33.
1. For p = 2 we define Hk(Ω) := W 2,k(Ω). We note that W 0,p(Ω) = Lp(Ω)

for p ∈ [1,∞].

2. Weak partial derivatives will also be denoted by uxi , uxixj , . . ..

3. For u ∈ H1(Ω) we set

∇u(x) =



ux1(x)

...
uxn(x)


 .

Further, the following density results hold.

Theorem 2.34. Let Ω ⊂ Rn be open. Then the following holds.

1. The set C∞(Ω)∩W k,p(Ω), k ∈ N0, 1 ≤ p <∞, is dense in W k,p(Ω). Hence,
W k,p(Ω) is the completion of {u ∈ C∞(Ω): ∥u∥Wk,p < ∞} with respect to
the norm ∥ · ∥Wk,p .
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2. If Ω is a bounded domain with Lipschitz-boundary then C∞(Ω̄) is dense in
W k,p(Ω), k ∈ N0, 1 ≤ p <∞.

Weak differentiability does not necessarily ensure continuity. We have for
examples with Ω := B(0; 1) and u(x) := ∥x∥−β that

u ∈W 1,p(Ω) ⇔ β <
n− p
p

.

Theorem 2.35. Let Ω ⊂ Rn be open, k ∈ N0, and p ∈ [1,∞]. Then W k,p(Ω) is
a Banach space. Moreover, the space Hk(Ω) = W k,2(Ω) is a Hilbert space with
inner product

(u, v)Hk(Ω) =
∑

|α|≤k

(Dαu,Dαv)L2(Ω).

Definition 2.36. Let Ω ⊂ Rn be open. For k ∈ N0, p ∈ [1,∞], we denote by

W k,p
0 (Ω)

the closure of C∞
c (Ω) in W k,p(Ω). The space is equipped with the same norm as

W k,p(Ω) and is a Banach space. The space Hk
0 (Ω) =W k,2

0 (Ω) is a Hilbert space.

Remark 2.37. W k,p
0 (Ω) contains exactly all u ∈ W 1,p(Ω) such that Dαu = 0

for |α| ≤ k − 1 on ∂Ω with an appropriate interpretation of the traces Dαu|∂Ω.

Theorem 2.38. We assume that Ω ⊂ Rn is open and bounded with Lipschitz-
boundary. Then for all p ∈ [1,∞] there exists a unique bounded linear operator

T : W 1,p(Ω)→ Lp(∂Ω)

such that
Tu = u|∂Ω ∀u ∈W 1,p(Ω) ∩ C(Ω).

Here, ∥T∥W 1,p(Ω),Lp(∂Ω) depends only on Ω and p. Tu is called the trace of u on
∂Ω.

The semi-norm

|u|Hk(Ω) :=


∑

|α|=k

∥Dαu∥2L2




1/2
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defines an equivalent norm on the Hilbert space Hk
0 (Ω) and it holds Poincaré’s

inequality.

Theorem 2.39 (Poincaré’s inequality). Let Ω ⊂ Rn be open and bounded. Then
there exists a constant C > 0 with

|u|Hk(Ω) ≤ ∥u∥Hk(Ω) ≤ C|u|Hk(Ω) ∀u ∈ Hk
0 (Ω). (2.2)

For the embedding of Sobolev spaces, we refer to [59, Section 1.2.2.9].
We define

H1
0 (Ω) := {v|v ∈ H1(Ω), v|∂Ω = 0}. (2.3)

The dual space of the Hilbert space H1
0 is denoted by H−1(Ω) and characterized

by the following theorem.

Theorem 2.40. For the space H−1(Ω), Ω ⊂ Rn open, the following holds

H−1(Ω) =



v ∈ H

1
0 (Ω) 7→ (f0, v)L2 +

n∑

j=1

(f j , vx)L2 : f
j ∈ L2(Ω)



 .

Furthermore, for f ∈ H−1(Ω), it holds that

∥f∥H−1 = min








n∑

j=0

∥f j∥2L2




1
2

: ⟨f, v⟩H−1,H1
0

= (f0, v)L2 +
n∑

j=1

(f j , vxj )L2 , f j ∈ L2(Ω)



 .

2.1.3. Vector Functions with Curl or Divergence

We extend the L2(Ω) inner product to vector functions of the dimension d, where
d = {2, 3}. We suppose that

u = (u1, u2)
T ∈ (L2(Ω))2 or u = (u1, u2, u3)

T ∈ (L2(Ω))3,

and

v = (v1, v2)
T ∈ (L2(Ω))2 or v = (v1, v2, v3)

T ∈ (L2(Ω))3,
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where u and v are assumed to have the same dimension. Then, the (L2(Ω))d-
inner product is then defined by

(u, v) =

∫

Ω

d∑

j=1

uj v̄j dx.

We denote the gradient, which is an operator from C∞
0 (Ω)′ to (C∞

0 (Ω)′)d by

∇u =




∂u
x1
...
∂u
xd


 .

In the following, we define the curl and divergence. In a domain Ω ⊂ R3, the
curl operator for three-dimensional vector functions u ∈ (C∞

0 (Ω)′)3 is defined by

∇× u d=3
=

(
∂u3
∂x2
− ∂u2
∂x3

,
∂u1
∂x3
− ∂u3
∂x1

,
∂u2
∂x1
− ∂u1
∂x2

)T

.

By applying Definition 2.28 to each component of the curl, it holds that

(∇× u, φ) = (u,∇× φ) ∀ φ ∈ (C∞
0 (Ω))3. (2.4)

Further, in a domain Ω ⊂ R2, the curl operator for two-dimensional vector
functions u ∈ (C∞

0 (Ω)′)2 is a scalar and defined by

∇× u d=2
=

∂u2
∂x1
− ∂u1
∂u2

.

The curl operator for a given differentiable scalar function φ ∈ C∞
0 (Ω)′ is defined

by

∇× φ d=2
=

(
∂φ

∂x2
,
∂φ

∂x1

)T

.

To define the divergence operator in a domain Ω ⊂ Rd, let u ∈ (C∞
0 (Ω)′)d. The

operator is defined by

∇ · u =

d∑

i=1

∂ui
∂xi

.
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By applying Definition 2.28 to each component of the divergence, we see that

(∇ · u, φ) = −(u,∇ · φ) ∀ φ ∈ (C∞
0 (Ω))d. (2.5)

With the weak definition of the derivative, we obtain

∇× (∇p) = 0 ∀ p ∈ C∞
0 (Ω)′,

∇ · (∇× u) = 0 ∀ u ∈ (C∞
0 (Ω)′)3.

Now, we introduce the function space H(curl; Ω) which is of central impor-
tance in the context of Maxwell’s equations. First, we define the space of three-
dimensional vector functions with curl in L2 by

H(curl; Ω) := {u|u ∈ (L2(Ω))3,∇× u ∈ (L2(Ω))3}, (2.6)

equipped with the norm

∥u∥H(curl; Ω) =
(
∥u∥2(L2(Ω))3 + ∥∇ × u∥2(L2(Ω))3

) 1
2
. (2.7)

In the two-dimensional case, we define vector functions with curl in L2 by

H(curl; Ω) := {u|u ∈ (L2(Ω))2, ∇× u ∈ L2(Ω)}, (2.8)

equipped with the norm

∥u∥H(curl; Ω) =
(
∥u∥2(L2(Ω))2 + ∥∇ × u∥2L2(Ω)

) 1
2
. (2.9)

We denote the space of functions in H(curl; Ω) with vanishing tangential trace
by

H0(curl; Ω) = {u ∈ H(curl; Ω); u× n = 0 on ∂Ω} . (2.10)

For more details of this function spaces and density results, we refer to [24, 76].
In order to show the surjectivity of the div operator, we introduce the de Rham
complex,

R
id−→ H1(Ω)

∇−→ H(curl; Ω) ∇×−→ H(div; Ω) ∇·−→ L2(Ω)
0−→ {0},

where we refer for details as well as the definition of the H(div; Ω) space to [76].
The main property of this complex is the coincidence of ranges and kernels of
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consecutive operators. We assume a bounded, simply connected domain Ω. Then
the following identities hold.

ker(∇) = R,
ker(∇×, H(curl; Ω)) = ∇H1(Ω),

ker(∇·, H(div; Ω)) = ∇×H(curl; Ω),

L2(Ω) = ∇ ·H(div; Ω).

From that it follows that the div operator is surjective. It holds that

∇× (∇w) = 0 ∀w ∈ H1(Ω),

∇ · (∇× u) = 0 ∀u ∈ H(curl; Ω).
(2.11)

2.2. Matrix Algebra

For the computation of the inverse of the deformation tensor and its deriva-
tives, which we consider in this thesis, we introduce some basics of matrix
algebra, which is stated in [45, Chapter 3]. We define the transposed of a
matrix A ∈ Rm×n, with elements aij , by

AT = (aji),

for i = 1, . . . ,m and j = 1, . . . , n. We denote that

Aij = (aij).

We note that (AT )T = A. Furthermore, we call a square matrix A ∈ Rn×n

symmetric, if for all elements i, j

aij = aji.

Furthermore, we need the computation of the determinant of the deformation
tensor for two-dimensional and three-dimensional square matrices. For a 2 × 2

matrix

A =

[
a11 a12
a21 a22

]
,
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the corresponding determinant is defined by

det(A) = a11a22 − a12a21.

Now, let A be a 3× 3 matrix

A =



a11 a12 a13
a21 a22 a23
a31 a32 a33


 .

For the computation of the 3 × 3 matrix, we define determinants of the 2 × 2

submatrices, which are called minors or complementary minors of the associated
element, and can be extended to (n−1)×(n−1) submatrices of an n×n matrix,
for n ≥ 2. The minor associated with the aij element is defined by

det(A−(i)(j)),

where A−(i)(j) denotes the submatrix that is formed from A by removing the i-th
row and the j-th column. The sign corresponding to aij is (−1)i+j .

We express the determinant in terms of determinants of submatrices as

det(A) = a11(−1)1+1 det

([
a22 a23
a32 a33

])

+ a12(−1)1+2 det

([
a21 a23
a31 a33

])

+ a13(−1)1+3 det

([
a21 a22
a31 a32

])
.

By that, we define the cofactor of aij as

a(ij) = (−1)i+j det(A−(i)(j)).

By that, the adjugate of a matrix A ∈ Rn×n is defined by

adj(A) = (a(ji)) = (a(ij))
T .
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For example, the adjugate for a 2× 2 matrix is

adj(A) =

[
a22 −a12
−a21 a11

]
.

For a matrix A ∈ Rn×n, with n ≥ 2 and a nonzero determinant, the inverse
matrix is defined by

A−1 =
1

det(A)
adj(A).

Finally, let A ∈ Rn×n be a nonsingular square matrix. The determinant of the
inverse matrix is

det(A−1) = (det(A))−1,

and so det(A) = 0 if and only if A is singular.

2.3. Eigenvalue Theory

In the following, we define eigenvalues and eigenfunctions. For details, we refer
to [76, Chapter 2.2.5].

Definition 2.41. A function u ∈ H, where H is a Hilbert-space and a scalar
λ ∈ C are respectively an eigenfunction and corresponding eigenvalue of an op-
erator A : H → H if

Au = λu and u ̸= 0.

For a general compact operator A, we cannot conclude that there exist eigen-
values and eigenvectors without further conditions on A. An important case in
electromagnetism occurs when A is self-adjoint.

Definition 2.42. An operator A : H → H is self-adjoint if

(Au, v)H = (u,Av)H ∀ u, v ∈ H.

We further introduce the Fredholm alternative.

Lemma 2.43 (Fredholm alternative). Let B : x → H be a bounded linear op-
erator where H is a Hilbert space. Suppose B = I + A, where A is a compact
operator and I is the identity operator. Then either
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1. The homogeneous equation Bu = 0 has only the trivial solution u = 0 in
H. In this case, for every f ∈ H, the inhomogeneous equation Bu = f has
a unique solution depending on f , or

2. The homogeneous equation Bu = 0 has exactly p linearly independent so-
lutions for some finite integer p > 0.

2.4. Differentiability

In this section we introduce the different concepts of differentiability of operators
in Banach spaces. For the theory of differentiability of this section, we refer
to [59, 96]. First, we introduce the semi-differentiability. The limit does not
need to fulfill any linearity or continuity assumptions, and the variation is only
performed along a fixed positive direction.

Definition 2.44 (Semi-differentiability). Let X,Y be Banach spaces and
let D ⊆ X be an open subset. Then the map F : D → Y is called semi-
differentiable at the point x ∈ D if for all h ∈ X, there exists y(x, h) ∈ Y

such that
lim
t→0
t>0

F (x+ th)− F (x)
t

= dF (x, h).

In this case we write F ′(x)h = dF (x, h) to denote the semi-derivative of F at the
point x with respect to the direction h. If F is semi-differentiable at every x ∈ V,
where V ⊂ D is open, then F is called semi-differentiable in V .

Remark 2.45. This concept is also known as directional differentiability. In this
case we should name F ′(x)h = dF (x, h) the directional derivative of F in the
direction h. An example of a directionally differentiable function is shown in
Figure 2.1.

An extended notion of differentiability of operators between Banach spaces is
given in the following. For details, we refer again to [59].

Definition 2.46 (Gâteau and Fréchet differentiability). Let F : u ⊂ X → Y be
an operator with Banach spaces X,Y and U ̸= ∅ open.

1. F is called Gâteau differentiable at x ∈ U if F is directionally differentiable
at x and the directional derivative F ′(x) : X ∋ h 7→ dF (x, h) ∈ Y is bounded
and linear, i.e., F ′(x) ∈ L(X,Y ).
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x x+ th

F

F ′(x)h

Figure 2.1. A directionally differentiable function

2. F is called Fréchet differentiable at x ∈ U if F is Gâteau differentiable and
the following approximation condition holds:

∥F (x+ h)− F (x)− F ′(x)h∥Y = o(∥h∥X) for ∥h∥X → 0.

3. If F is Gâteau/Fréchet differentiable at every x ∈ V, V ⊂ U open, then F

is called Gâteau-/Fréchet-differentiable in V .

Further, the following rules hold.

1. For Fréchet differentiable operators the chain rule H(x) = G(F (x)) holds.
F,G are Fréchet differentiable at x and F (x), respectively. H is Fréchet
differentiable at x with

H ′(x) = G′(F (x))F ′(x).

2. The sum rule holds for Fréchet- and Gâteaux differentials.

3. If F is Gâteaux differentiable on a neighborhood of x and F ′ is continuous
at x then F is Fréchet differentiable at x.

4. If F : X ×Y → Z is Fréchet differentiable at (x, y) then F (·, y) and F (x, ·)
are Fréchet differentiable at x and y, respectively. These derivatives are
called partial derivatives and denoted by Fx(x, y) and Fy(x, y), respectively.
Since F is Fréchet differentiable it holds that

F ′(x, y)(hx, hy) = Fx(x, y)hx + Fy(x, y)hy.
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5. If F is Gâteaux differentiable in a neighborhood V of x, then for all h ∈ X
with {x+ th : t ∈ [0, 1]} ⊂ V, the following holds

∥F (x+ h)− F (x)∥Y ≤ sup
0<t<1

∥F ′(x+ th)h∥Y .

If t ∈ [0, 1] 7→ F ′(x+ th)h ∈ Y is continuous, then

F (x+ h)− F (x) =
∫ 1

0
F ′(x+ th)hdx,

where the Y -valued integral is defined as a Riemann integral.

The following important theorem, see [59, Theorem 1.4.1], shows that e(q, u) = 0

defines a locally continuously Fréchet differentiable control-to-state map q 7→ u(q)

when e(q, u) = 0 where e : Q × U → Z is continuous Fréchet differentiable and
eu(q, u) ∈ L(Y,Z) has a bounded inverse.

Theorem 2.47 (Implicit Function Theorem). Let X,Y, Z be Banach spaces
and let F : G → Z be a continuously Fréchet differentiable map from an open
set G ⊂ X × Y to Z. Let (x, y) ∈ G be such that F (x, y) = 0 and that
Fy(x, y) ∈ L(Y,Z) has a bounded inverse.

Then there exists an open neighborhood UX(x) × UY (y) ⊂ G of (x, y) and a
unique continuous function w : UX(x)→ Y such that

1. w(x) = y,

2. for all x ∈ UX(x) there exists exactly one y ∈ UY (y) with F (x, y) = 0,

namely y = w(x).

Moreover, the mapping w : UX(x)→ Y is continuously Fréchet differentiable with
derivative

w′(x) = Fy(x,w(x))
−1Fx(x,w(x)).

If FG → Z is m-times continuously Fréchet differentiable then also
w : UX(x)→ Y is m-times continuously Fréchet differentiable.

Definition 2.48 (Gradient). If Q is a Banach space, we denote Q∗ its dual
space. The Fréchet derivative of an operator G : X → Y between Banach spaces
is denoted by G′ : X → L(X,Y ), where L(X,Y ) are the bounded linear operators
A : X → Y . In particular, the derivative of a real-valued function f : Q → R is
denoted by f ′ : Q→ Q∗.

28



2.5. Reduced Problem and Adjoint Calculus

In case of a Hilbert space Q, the gradient ∇Qf : Q→ Q is the Riesz represen-
tation of f ′, i.e.,

(∇Qf(w), v)Q = ⟨f ′(w), v⟩Q∗,Q ∀v ∈ Q.

2.5. Reduced Problem and Adjoint Calculus

In optimization with PDE constraints, there are two common ways to formu-
late optimality conditions and solve the eigenvalue optimal control problem, the
sensitivity approach and the approach of adjoint calculus, see [59]. In the sensi-
tivity approach all directional derivatives have to be computed. In the context
of shape optimization, problems have a large number of variables which makes
this approach very costly. Thus, computing the derivatives of the reduced cost
function with the adjoint approach is more efficient in computations.

In the adjoint approach for PDE optimization problems, we consider the opti-
mization problem

min
(q,u)

J(q, u), s.t. e(q, u) = 0, (q, u) ∈ Xad, (2.12)

where we define u as the state variable and q as the control variable, respectively.
Further, let X = Q×U . The objective function is defined as J : Q×U → R and
the PDE constraint e : Q×U → Z is an operator between Banach spaces. We call
this operator the state equation. We define Xad as a nonempty closed set which
collects additional constraints on the control q and state u. Additionally, to com-
pute the derivatives, we assume J and e to be continuously Fréchet-differentiable.
For each q ∈ Q, we assume that the state equation e(q, u) = 0 admits a (locally)
unique solution u = u(q) with a solution operator q 7→ u(q). With the assump-
tion that e′u(q, u(q)) ∈ L(Q,U) is continuously invertible, the Implicit Function
Theorem (2.47) ensures that u(q) is continuously differentiable.

Using these assumptions, we compute the derivative u(q) by differentiating the
equation e(q, u(q)) = 0 with respect to q. From the chain rule, it follows that

e′u(q, u(q))u
′(q) + e′q(q, u(q)) = 0.

Inserting u(q) in (2.12), we obtain the reduced problem

min
q
j(q) := J(q, u(q)) s.t. q ∈ Qad := {q ∈ Q| (q, u(q)) ∈ Xad}. (2.13)

29



Chapter 2. Preliminaries

To formulate the derivatives via adjoint calculus, we formally define the La-
grangian L : Q× U × Z∗ → R of the reduced problem (2.13) by

L(q, u, z) = J(q, u)− ⟨e(q, u), z⟩Z,Z∗ .

By the definition of u(q), it holds that

j(q) = L(q, u(q), z).

Further, taking z = z(q), we compute the derivative j′(q) as

j′(q) = L′q(q, u(q), z(q)) + L′u(q, u(q), z(q)) ◦ u′(q) + L′z(q, u(q), z(q)) ◦ z′(q).

Because we choose u = u(q) it holds that

L′z(q, u(q), z(q)) = e(q, u) = 0.

Equivalently, we define the adjoint equation by using z = z(q) to solve

e′u(q, u(q), z(q)) = 0.

In more detail, z = z(q) is the solution of the equation

L′u(q, u(q), z(q)) = J ′
u(q, u(q))− e′u(q, u(q), z(q))∗z = 0.

With the choice of z(q) it holds that

j′(q) = L′q(q, u(q), z(q)) = J ′
q(q, u(q))− e′q(q, u(q))∗z(q).

The sign of the multiplier z is arbitrary, i.e., we could also have used the La-
grangian

J(q, u) + ⟨e(q, u), z⟩

to obtain z with the opposite sign.

The whole approach to obtain j′(q) is summarized by the following three steps:

1. The State Problem: We solve the state problem

e(q, u) = 0

to get u = u(q) ∈ U .
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2. The Adjoint Problem: We solve the adjoint problem

e′u(q, u)
∗z = J ′

u(q, u)

to get z = z(q) ∈ Z∗.

3. The Gradient: After computing the state solution u and the adjoint solu-
tion z, we obtain the derivative of the reduced cost functional by computing

j′(q) = J ′
q(q, u)− e′q(q, u)∗z.

Now, utilizing standard Lagrange techniques, see, e.g., [18, 102], we com-
pute the Q-gradient ∇Qj(q) by inverting the Riesz isomorphism, i.e., solv-
ing

(∇Qj(q), δq)Q = j′(q)δq ∀δq ∈ Q.

In contrast to the sensitivity approach, the biggest advantage of the adjoint
approach is that we do not need the operator u′(q) ∈ L(Q,U). We only require
the vector u′(q)∗J ′

q(q, u(q)) ∈ Q∗.

2.6. Optimality Conditions

All efficient optimization methods to solve the infinite-dimensional problem
stated in (2.12) are based on first order optimality conditions (or Karush-Kuhn-
Tucker (KKT) conditions), see [59]. We consider the general problem

min
q∈Q

J(q) s.t. q ∈ Qad, (2.14)

where Q is a Banach space, J : Q→ R is Gâteaux-differentiable and Qad ⊂ Q is
nonempty, closed and convex. With that, the following theorem holds.

Theorem 2.49. Let Q be a Banach space and Qad ⊂ Q be nonempty and convex.
Furthermore, let J : V → R be defined on an open neighborhood of Qad. Let q̄ be
a local solution of (2.14) at which J is Gâteaux-differentiable. Then the following
optimality conditions holds:

q̄ ∈ Qad, ⟨J ′(q̄), q − q̄⟩Q∗,Q ≥ 0 ∀q ∈ Qad. (2.15)
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1. If J is convex on Qad, (2.15) is necessary and sufficient for global optimal-
ity.

2. If, in addition, J is strictly convex on Qad, then there exists at most one
solution of (2.14), or, equivalently, of (2.15).

3. If Q if reflexive, Qad is closed and convex, and J is convex and continuous
with

lim
q∈Qad,∥q∥Q→∞

J(q) =∞,

then there exists a (global = local) solution of (2.14).

Now, we consider a general nonlinear problem of the form

min
(q,u)∈Q×U

J(q, u) s.t. e(q, u) = 0, q ∈ Qad. (2.16)

By the Implicit Function Theorem 2.47, we ensure that the mapping
u ∈ V 7→ u(q) ∈ U is continuous Fréchet differentiable with the following assump-
tions.

Assumption 2.50.
1. Qad ⊂ Q is nonempty, convex and closed.
2. J : Q× U → R and e : Q× U → Z are continuously Fréchet differentiable

and Q,U,Z are Banach spaces.
3. For all q ∈ V in a neighborhood V ⊂ Q of Qad, the state equation
e(q, u) = 0 has a unique solution u = u(q) ∈ U .

4. e′u(q, u(q)) ∈ L(U,Z) has a bounded inverse for all q ∈ V ⊃ Qad.

Let Assumption 2.50 hold for (2.16). With it, we consider the reduced problem

min
q∈Q

j(q) := J(q, u(q)) s.t. q ∈ Qad, (2.17)

where V ∋ u 7→ u(q) ∈ U is the solution operator of the state equation. If
Assumption 2.50 holds for (2.16), we can formulate the following theorem which
can be proved with Theorem 2.49, see [59].

Theorem 2.51. Let Assumption 2.50 hold. If q is a local solution of the reduced
problem stated in (2.17) then q satisfies the variational inequality

q ∈ Qad and ⟨j′(q), q − q⟩Q∗,Q ≥ 0 ∀ q ∈ Qad.
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The adjoint representative of the derivative is given by

j′(q) = J ′
q(q, u(q))− e′q(q, u(q))∗z(q), (2.18)

where the adjoint state z(q) ∈ Z∗ solves the adjoint equation

e′u(q, u(q))
∗z = J ′

u(q, u(q)). (2.19)

The Lagrangian associated with (2.16) is

L : Q× U × Z∗ → R, L(q, u, z) = J(q, u) + ⟨z, e(q, u)⟩Z∗,Z .

The representation (2.18) of j′(q) yields the following corollary of Theorem 2.51.

Corollary 2.52. Let (q, u) be an solution of (2.16) and let Assumption 2.50
hold. Then there exists an adjoint state (or Lagrange multiplier) z ∈ Z∗ such
that the following optimality conditions hold

e(q, u) = 0, (2.20)

eu(q, u)
∗z = −J ′

u(q, z), (2.21)

q ∈ Qad, ⟨J ′
q(q, u) + e′q(q, u)

∗z, q − q⟩Q∗,Q ≥ 0 ∀q ∈ Qad. (2.22)

The optimality conditions are represented with the Lagrangian in the compact
form

L′z(q, u, z) = 0, (2.23)

L′u(q, u, z) = 0, (2.24)

q ∈ Qad, ⟨L′q(q, u, z), q − q⟩Q∗,Q ≥ 0, ∀ q ∈ Qad. (2.25)

2.7. Unconstrained Optimization

For the theory of global convergence, we first introduce unconstrained optimiza-
tion problem of the form

min
q∈Q

j(q),

where Q is a real Banach space and j : Q → R is continuously Fréchet-
differentiable. By that, the first optimality condition for a local minimum q̄ ∈ Q
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is that q̄ satisfies
j′(q̄) = 0,

see [59, Chapter 2.2.1]. A global convergent class of methods are descent meth-
ods. The general idea is shown in Algorithm 2.1.

Algorithm 2.1 General descent method
Input: Choose initial point q0 ∈ Q.

For k = 1, . . . , kmax do
If j′(qk) = 0 then

STOP
Choose a descent direction dk ∈ Q : ⟨j′(qk), dk⟩Q∗,Q < 0.
Choose a step size tk > 0 such that j(qk + tkd

k) < j(qk).
Set qk+1 := qk + tkd

k.
k ← k + 1.

To prove global convergence, additional requirements on the quality of the
descent direction and the step sizes need to be fulfilled.

1. Admissibility of the search directions:

⟨j′(qk), dk⟩Q∗,Q

∥dk∥Q
k→∞−→ 0 =⇒ ∥j′(qk)∥Q∗

k→∞−→ 0.

This means that if the slopes along the directions dk become smaller
and smaller then the steepest possible slopes have to become smaller and
smaller.

2. Admissibility of the step sizes:

j(qk + tkd
k) < j(qk) ∀k

and j(qk + tkd
k)− j(qk) k→∞−→ 0 =⇒ ⟨j′(qk), dk⟩Q∗,Q

∥dk∥Q
k→∞−→ 0.

(2.26)
This means that if the j-decreases become smaller and smaller then the
slopes along the dk have to become smaller and smaller.

With these two conditions, we can prove global convergence, see [59, Theorem
2.2].

Theorem 2.53. Let j : Q → R be continuously Fréchet-differentiable and
(qk), (dk), (tk) be generated by Algorithm 2.1. We assume that (dk) and (tk)
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are admissible and that (j(qk)) is bounded below. Then Algorithm 2.1 converges,
i.e.,

lim
k→∞

j′(qk) = 0.

To this end, there are two open questions:
• How can we check in practice if a search direction is admissible or not?
• How can we compute admissible step sizes?

For the first question is provided by the following Lemma:

Lemma 2.54. If the search directions (dk) satisfy the angle condition

⟨j′(qk), dk⟩Q∗,Q ≤ −η∥j′(qk)∥Q∗∥dk∥Q

then they are admissible.
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CHA PTER 3
Theory of Maxwell’s Eigenvalue

Problem

The aim of this chapter is to study the obtained Maxwell eigenvalue problem
and it is structured as follows. In Section 3.1, we introduce Maxwell’s equations
[73–75]. The theory is also well discussed in the literature, see, e.g., [60,76]. We
establish the time-harmonic formulation of Maxwell’s equations which describe
the electromagnetic field in RF cavities. For further literature on the time-
harmonic case, we refer to [65]. Additionally, for the concrete context of the
theory of electromagnetic fields in RF cavities, we refer to [23,36,46,76].

In order to control the change of the domain, we introduce a domain mapping
in Section 3.2. The mapping bases on the method of mappings, which was mainly
introduced in [79, 80], and on kinematic statements from continuum mechanics.
In the theory of continuum mechanics, a material body can be identified with
different parts of space at different moments in time, and is simultaneously the
carrier of the physical process, see [53]. For the domain mapping, we refer to [68].
The method of mappings is also well known in the context of shape optimization
and shape derivatives. It is suitable for deriving rigorous Fréchet derivatives with
respect to shape-variations. For example, in [42] the method of mappings is used
to derive properties of Fréchet differentiability of the state as well as for an object
function w.r.t. domain variations in context of Navier-Stokes problems. Besides
the domain mapping, we introduce the mapping of the function spaces of H1

in Section 3.2.1, and of H(curl) in Section 3.2.2. By that, we ensure that the
transformed functions have an appropriate and well-defined gradient, curl and
divergence. For the details and specific properties of the function spaces, we refer
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to [35,76]. We apply the introduced mapping on the Maxwell eigenvalue problem
and show the domain dependent formulation in Section 3.2.3. Furthermore, we
calculate the Fréchet derivatives of the functions concerning the domain mapping
and show the derivatives of the domain depending Maxwell eigenvalue problem
with respect to the displacement.

In Section 3.3, we discuss, based on [76, Chapter 4] and [23], a proper formu-
lation of the time-harmonic Maxwell eigenvalue problem depending on a domain
mapping, under which it has a unique solution. We also present the required
uniqueness results, which we need for the further analysis in the two remaining
sections.

3.1. Maxwell’s Eigenvalue Problem

Maxwell’s equations were formulated by various scientists and collected by James
Clerk Maxwell to describe the phenomena of electromagnetism. The equations
were published first in 1861 in [73]. Further, the final mathematical formulation
of Maxwell’s equations is stated in [74] and the whole summary of Maxwell’s
work is published in [75]. The theory of Maxwell is also well discussed in [60,76],
from where we state the main aspects of this section.

The formulation in form of a system of partial differential equations (PDEs)
is the following

∇× E = −∂B
∂t
, (Faraday’s Law)

∇×H =
∂D

∂t
+ J, (Ampere’s Law)

∇ ·D = ρ, (Coulomb’s Law)

∇ ·B = 0, (Absence of free magnetic poles)

where E describes the electric field, D the electric displacement, H the magnetic
field and B the magnetic induction. These fields arise in the presence of static
electric charges, whose distribution is given by the density function ρ, and flow
of electric charges, i.e., currents, described by the vector density function J . The
quantities with their corresponding units are given in Table 3.1. Faraday’s law
gives the relation between the time variation of the magnetic induction field and
the circulation of the electric field. Ampere’s law defines the effect of transport
and displacement currents on the circulation of the magnetic field. Coulomb’s
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Physical quantity symbol unit
Electric field E V/m
Magnetic field H A/m
Electric displacement D As/m2

Magnetic induction B Vs/m2

Current density J A/m2

Charge density ρ C/m3

Table 3.1. Table of physical quantities of Maxwell’s equations

law gives the effect of the charge density on the electric displacement. The last
law describes the absence of free magnetic poles. For the completeness of the
system material laws relate the fields E and H with the flux quantities to D and
B and the current density J , see [76].

In this thesis, we consider the domain of a particle accelerator cavity Ω ⊂ Rd,
where d = {2, 3}, to be open, bounded, simply connected and Lipschitz con-
tinuous. Further, we apply linear, isotropic, non-dispersive, non-permanent-
magnetic constitutive laws, which are a good approximation in many cases for
high-frequency problems, i.e.,

B = µH, J = σE, D = εE, (3.1)

where ε is the electric permittivity, µ the magnetic permeability and σ the
conductivity. Since we consider isotropic media, these quantities are positive,
bounded scalar functions of the position. Inside the cavity, we assume vac-
uum. The cavity walls are made of superconducting material (lossless, closed
structures), where the electromagnetic fields resonate with specific eigenmodes.
Additionally, we assume the cavity to be source-free, i.e., no currents are applied
and no charges are present. Hence, we assume the electromagnetic field to be
time-harmonic, i.e., for an angular frequency ω ≥ 0, we express the fields as

E(r, t) = R{E(r) exp−iωt},
H(r, t) = R{H(r) exp−iωt},

(3.2)

where R(·) denotes the real part of the complex expression it is applied to.
With that and (3.1), we obtain the classical formulation of Maxwell’s eigenvalue
problem by eliminating H: Find the wave number k := ω

√
µ0ε0 ∈ R with
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constants µ0, ε0 and E ̸= 0 such that

∇× (∇× E) = k2E in Ω,

∇ · E = 0 in Ω,

E × n = 0 on ∂Ω.

(3.3)

The boundary condition E×n = 0 is called Perfectly Electric Conducting (PEC)
boundary condition where n is the outward normal to the domain of interest. It
prescribes zero tangential electric field on the conducting walls.

In context of particle colliders, we are interested in the propagation or excita-
tion of electromagnetic waves. For a given k, only certain frequencies ω will be
allowed. The fields divide themselves in two distinct categories, i.e., transverse
magnetic (TM) and transverse electric (TE). To achieve an acceleration of the
particles, TE is unsuitable because there does not exist a electrical component
in longitudinal direction, i.e., it holds Ez = 0 everywhere. For that reason, the
field needs to be TM. In that case, it holds Bz = 0 everywhere and the boundary
condition is Ez|S = 0. In electron or proton linear accelerators, the most cavities
are derived from a cylindrical or pillbox cavity. In a cylindrical geometry, it is
possible to compute the TM and TE modes analytically. Here, the nomenclature
of the TMmnp modes is defined as follows. The subscript m ∈ N is the number
of full period variations in ω of the field components, n ∈ N is the number of the
axial field component in the radial direction in the range 0 < r ≤ Rc, excluding
r = 0 and where Rc is the radius of the cylinder. Further, p ∈ N is the number
of half period variations in z of the fields. For details, we refer to [60,104].

Clearly, (3.3) is an eigenvalue problem for the real eigenvalue λ = k2. In order
to numerically solve this problem, we need to formulate a variational formulation.
One possible variational formulation of the problem formulation stated in (3.3) is
the formulation by Kikuchi, to find an eigenvalue λ and an associated eigenvector
u ∈ H0(curl; Ω), which is a non-trivial electric field (u = E) with u ̸= 0, and
ψ ∈ H1

0 (Ω), such that

(∇× u,∇× v)Ω + (∇ψ, v)Ω = λ(u, v)Ω ∀ v ∈ H0(curl; Ω),

(u,∇φ)Ω = 0 ∀ φ ∈ H1
0 (Ω).

(3.4)

This formulation was introduced in 1987, see [65] and can also be found in [23].
Here, (·, ·)Ω =

∫
Ω dx denotes the scalar product over the domain Ω.
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In practice, a more common and simplified formulation of Maxwell’s eigenvalue
problem is to consider the symmetric variational problem of finding non-trivial
pairs u ∈ H0(curl; Ω) and λ ∈ R, such that

(∇× u,∇× v)Ω = λ(u, v)Ω ∀ v ∈ H0(curl; Ω). (3.5)

We justify the choice of the formulation by Kikuchi (3.4) instead of the common
formulation (3.5) by the aspect, that in the (3.5), the curl operator has a large
null space regarding to the divergence condition

∇ · E = 0.

In (3.5), we cannot ensure that this space is removed from the H0(curl; Ω)-space.
In contrast, (3.4) removes the concerning null space and guarantees with the di-
vergence constraint to get rid of these so-called spurious modes by guaranteeing
that λ = 0 is no longer a permissible solution. Then, the only solution corre-
sponding to the λ = 0 is the trivial one E = 0.

An alternative way is to consider (3.5) in a constructed divergence-free space
by using the Helmholtz decomposition, which we will discuss in Section 3.3. Both
formulations, (3.4) and the one using the Helmholtz decomposition, are similar.
In the first, we enforce the divergence-free space by an additional constraint
whereas we construct directly a divergence-free space in the latter.

3.2. Domain Mapping

In this section, we study kinematics which describe the motion and deformation
of domains, in order to describe Maxwell’s eigenvalue problem dependent on a
domain mapping. For the theory of kinematics, we refer to [28, 53] and for the
mapping in the function spaces H1 and H(curl), we refer to [76].

We introduce two different coordinate systems, namely the Lagrangian coor-
dinates x̂ in a reference domain Ω̂ (also known as material coordinates), and the
Eulerian coordinates x in a physical (or current) domain Ωq. Here, q : Ω̂ → Rd

describes the domain change from the reference domain to the physical domain
by a deformation Ωq = (I + q) Ω̂, where Ω̂,Ωq ⊂ Rd with d = {2, 3}. Further, I
denotes the d× d identity matrix.
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Definition 3.1 (Domains). We denote
1. Ω̂: the reference/non-deformed configuration,
2. Ωq: the physical/deformed configuration.

Furthermore, if q = 0, then Ω̂ = Ωq is the reference configuration.

Remark 3.2. It is common, that problems described of solids/elasticity are usu-
ally described in the Lagrangian system. Therefore, we stay in the Lagrangian
configuration.

In the following, we introduce a domain mapping, which transforms the refer-
ence domain Ω̂ to the physical domain Ωq. We assume the reference domain Ω̂

to be a bounded Lipschitz domain. To map between these two domains, we
introduce the displacement q by the following definition.

Definition 3.3 ((Lagrangian) Description of the displacement field). We define
the displacement q by

q : x̂→ q(x̂) = x(x̂)− x̂. (3.6)

It relates a particle’s position in the reference configuration x̂ to its corresponding
position in the physical configuration x.

In order to define Qad, we introduce the two key quantities, which we require
to study the changes of size and shape of a body. These quantities are the
deformation gradient DFq and the deformation determinant Jq. Therefore, we
define the deformation.

Definition 3.4 (Deformation). We define the transformation of a point x̂ ⊂ Ω̂

to a point x ⊂ Ωq by
x = Fq(x̂) = q(x̂) + x̂. (3.7)

The function Fq : R
d → Rd is known as deformation. We represent the deformed

configuration with Ωq = Fq(Ω̂).

We show the deformation applied on a reference domain Ω̂ to a physical
domain Ωq in Figure 3.1. With that, the definition of the deformation gradi-
ent is the following.

Definition 3.5 (Deformation gradient). Let x̂ be a point in the reference configu-
ration Ω̂ and, let x be a point in the current configuration. Further, we assume Fq
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Figure 3.1. Definition of the deformation Fq.

to be differentiable. Then, we define the deformation gradient DFq in terms of q
by

DFq(x̂) = ∇̂Fq(x̂) = I + ∇̂q(x̂), (3.8)

where I denotes the d× d identity matrix, i.e., (DFq)ij =
∂(Fq)i
∂x̂j

.

Moreover, we define the determinant of the deformation Jq ∈ R, also known
as Jacobi determinant, by the following definition.

Definition 3.6 (Jacobi determinant). Let DFq be a deformation gradient as
defined in (3.8). Then

Jq(x̂) = det(DFq(x̂)) (3.9)

is the Jacobi determinant. Assuming that Jq(x̂) ̸= 0 for all x̂ ⊂ Ω̂, the Jacobi
determinant relates volume changes between infinitesimal reference and current
domains ∫

Ωq

dx =

∫

Ω̂
Jqdx̂. (3.10)

Remark 3.7 (Properties of DFq and Jq). The following properties for DFq

and Jq hold.

1. The determinant Jq characterizes the volume ratio.

2. We preserve the orientation of Fq with assuming Jq > ε > 0. This assump-
tion is a restriction to q.

3. We physically do not allow negative volumes Jq < 0 and also not Jq = 0.
For the latter DFq would not be invertible.

4. For DFq = I, it follows that Jq = 1. In this case, the domain is not
deforming.
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5. For Jq = 1 with possibly DFq ̸= I, the volume does not change and a
motion is called isochoric.

6. For Jq > 1, it follows that the domain is growing and for Jq < 1

(and Jq > 0), it follows that the domain is shrinking.

In the following, we assume that the shapes of the domain can be described
with a set of admissible transformations Fad by

Oad =
{
Fq(Ω̂) : Fq ∈ Fad

}
.

The admissible domains Ωq ∈ Oad can be interpreted as images of Ω̂ under
suitable transformations Fq : R

d → Rd. By this we tacitly assume Fad to be
chosen such that Fq : Ω̂→ Fq(Ω̂) is invertible and Fq(Ω̂) is a bounded Lipschitz
domain. We require that

Fq ∈W 1,∞(Ω̂)d, F−1
q ∈W 1,∞(Fq(Ω̂))

d.

Since we will be working with the control q our above requirements on Fad can
be asserted considering a suitable admissible domain for the controls, we define

Qad = {q ∈W 1,∞(Ω̂)d : F−1
q ∈W 1,∞(Fq(Ω̂))

d,

Ωq is a bounded Lipschitz domain,

essinf
x∈Ω̂ Jq > ε > 0}.

(3.11)

3.2.1. Domain Mapping of the Function Space H1

To transform a scalar function p̂ ∈ H1(Ω̂) to a scalar function p ∈ H1(Ωq), we
consider the non-degenerate mapping

Fq : Ω̂→ Fq(Ω̂) = Ωq,

introduced in (3.7), with the associated Jacobian DFq(x̂), x̂ ∈ Ω̂ ⊂ Rd. For the
scalar function p̂, the mapping F is defined by

p = Fq(p̂) = p̂ ◦ F−1
q (3.12)

which is an isomorphism from H1(Ω̂) to H1(Ωq) because of the bijectivity of
the transformation. By applying the chain rule it holds that for a mapping of a
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gradient of the function p̂ to p it holds that

∇p = DF−T
q ∇̂p̂.

The same mapping approach is used in the construction of parametric
H1-conforming finite element (FE).

3.2.2. Domain Mapping of the Function Space H(curl)

For the mapping from the function space H(curl; Ω̂) to H(curl; Ωq), it follows
from Stokes’ Theorem, that tangential continuity is required. A proper mapping
can be preserved by applying the so-called covariant Piola mapping. For details
we refer to [31,76] and [94].

Definition 3.8 (Covariant Piola mapping). Let Ω̂ ⊂ Rn and Fq be the non-
degenerate mapping (3.7) from Ω̂ onto Ωq = Fq(Ω̂), and let û ∈ H0(curl; Ω̂). The
covariant Piola mapping is defined by

u = Fcurl
q (û) = DFq(x̂)

−T û ◦ F−1
q ∈ H(curl; Ωq). (3.13)

Because of the bijectivity of the transformation, the covariant Piola mapping
is an isomorphism of H(curl; Ω̂) onto H(curl; Ωq). It preserves tangential traces
and thus the tangential continuity of the H(curl)-spaces. For the curl of those
functions it holds in the three-dimensional case

∇× u ◦ Fq = J−1
q DFq∇̂ × û,

and in the two-dimensional case it holds

∇× u ◦ Fq = J−1
q ∇̂ × û.

The same mapping approach is used in the construction of parametric
H(curl)-conforming FE.

3.2.3. Maxwell’s Eigenvalue Problem with Domain Mapping

Now, we apply the introduced transformation rules from the previous subsec-
tions to consider the variational formulations (3.4) and (3.5) depending on the
domain mapping. By applying (3.10) for the domain integration, and (3.12)
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and (3.13) for the function spaces H1
0 (Ω) and H0(curl), we obtain the follow-

ing integration formulas. Let û, v̂ ∈ H0(curl; Ω̂) and u, v ∈ H0(curl; Ωq), as well
as ψ̂, φ̂ ∈ H1

0 (Ω̂) and ψ,φ ∈ H1
0 (Ωq) be corresponding functions defined by the

mappings Fq and Fcurl
q , respectively. Together with the properties for the defor-

mation gradient and the Jacobi determinant, we are able to define the following
scalar products on L2(Ω̂) depending on q ∈ Qad. We are able to rewrite the
terms in the weak form on the reference domain. Therefore, we define for the
notation for the physical domain

a(q;u, v) := (∇× u,∇× v)Ωq
, (3.14)

b(q;ψ, v) := (∇ψ, v)Ωq
, (3.15)

m(q;u, v) := (u, v)Ωq
, (3.16)

and for the reference domain

â(q; û, v̂)
d=2
:=
(
J−1
q · ∇̂ × û, ∇̂ × v̂

)
Ω̂
, (3.17)

â(q; û, v̂)
d=3
:=
(
J−1
q ·DFq ∇̂ × û,DFq ∇̂ × v̂

)
Ω̂
, (3.18)

b̂(q; ψ̂, v̂) :=
(
Jq ·DF−T

q ∇̂ψ̂,DF−T
q v̂

)
Ω̂
, (3.19)

m̂(q; û, v̂) :=
(
Jq ·DF−T

q û,DF−T
q v̂

)
Ω̂
, (3.20)

where we differentiate for the curl-equation between the two-dimensional case
(3.17), and the three-dimensional case (3.18). We see directly the equivalence
between (3.14) and (3.17) by considering the weak form of the two-dimensional
curl-curl equation, i.e.,

(∇× u,∇× v)Ωq

d=2
=

∫

Ωq

(∇× u,∇× v) dx

=

∫

Ω̂
Jq

(
J−1
q ∇̂ × û, J−1

q ∇̂ × v̂
)

dx̂

=

∫

Ω̂
J−1
q

(
∇̂ × û, ∇̂ × v̂

)
dx̂

=
(
J−1
q · ∇̂ × û, ∇̂ × v̂

)
Ω̂
.
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For three-dimensional problems, it holds equivalence between (3.14) and (3.18).
The weak form is

(∇× u,∇× v)Ωq

d=3
=

∫

Ωq

(∇× u,∇× v) dx

=

∫

Ω̂
Jq

(
J−1
q DFq ∇̂ × û, J−1

q DFq∇̂ × v̂
)

dx̂

=

∫

Ω̂
J−1
q

(
DFq ∇̂ × û,DFq ∇̂ × v̂

)
dx̂

=
(
J−1
q ·DFq ∇̂ × û,DFq ∇̂ × v̂

)
Ω̂
.

For the integration over the variational form of the divergence-free constraint,
we consider equivalence between (3.15) and (3.19), i.e.,

(∇ψ, v)Ωq
=

∫

Ωq

(∇ψ, v) dx

=

∫

Ω̂
Jq

(
DF−T

q ∇̂ψ̂,DF−T
q v̂

)
dx̂

=
(
Jq ·DF−T

q ∇̂ψ̂,DF−T
q v̂

)
Ω̂
.

Finally, for the right-hand side of the variational formulation, we receive the
equivalence of (3.16) and (3.20), i.e.,

(u, v)Ωq
=

∫

Ωq

(u, v) dx

=

∫

Ω̂
Jq
(
DF−T

q û,DF−T
q v̂

)
dx̂

=
(
Jq ·DF−T

q û,DF−T
q v̂

)
Ω̂
.

The induced norm on L2(Ωq) is

∥u∥L2(Ωq) =
√

(u, u)Ωq . (3.21)

We recall that the variational formulations of Maxwell’s eigenvalue problem,
i.e., (3.4) and (3.5), are

(∇× u,∇× v)Ωq + (∇ψ, v)Ωq = λ(u, v)Ωq ∀ v ∈ H0(curl; Ωq),

(u,∇φ)Ωq = 0 ∀ φ ∈ H1
0 (Ωq),

(3.22)
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and,
(∇× u,∇× v)Ωq = λ(u, v)Ωq ∀ v ∈ H0(curl; Ωq), (3.23)

on the physical domain Ωq. Or, in short form, with

k(q;u, ψ, v, φ) := a(q;u, v) + b(q;ψ, v) + b(q;φ, u),

we obtain for (3.22)

k(q;u, ψ, v, φ) = λm(q;u, v) ∀ v ∈ H0(curl; Ωq), (3.24)

and for (3.23)

a(q;u, v) = λm(q;u, v) ∀ v ∈ H0(curl; Ωq). (3.25)

By the previously discussed transformations, (3.24) is, together with

k̂(q; û, ψ̂, v̂, φ̂) := â(q; û, v̂) + b̂(q; ψ̂, v̂) + b̂(q; φ̂, û),

equivalent to
k̂(q; û, ψ̂, v̂, φ̂) = λm̂(q; û, v̂) (3.26)

and (3.25) is equivalent to

â(q; û, v̂) = λm̂(q; û, v̂), (3.27)

for all v̂ ∈ H0(curl; Ω̂) and for all φ̂ ∈ H1
0 (Ω̂), with û = (F curl

q )−1(u),
where û ∈ H0(curl; Ω̂), and ψ̂ = F−1

q (ψ), with ψ̂ ∈ H1
0 (Ω̂). Conversely,

also finding û, ψ̂ of (3.26) and (3.27) is equivalent to finding u = Fcurl
q (û),

where û ∈ H0(curl; Ω̂), and ψ = Fq(ψ̂), where ψ̂ ∈ H1
0 (Ω̂), solving (3.24)

and (3.25).

3.2.4. Fréchet Differentiability of the Domain Mapping

In this section, we formulate the Fréchet derivatives of the domain mapping
concerning Maxwell’s eigenvalue problem. Therefore, we consider the regularity
assumptions on the domain transformations which we introduced in beginning
of Section 3.2. Let Ω̂ ⊂ Rd be a bounded Lipschitz domain. The admissible
domain of controls is defined as in (3.11). For the case that Jq > ε is small
enough, we can ensure that Fq(Ω̂) is a bounded Lipschitz domain and with that,
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there exists a linear bounded extension operator W 1,∞(Ω̂)→W 1,∞(Rd) for a
bounded Lipschitz domain Ω̂. Taking these assumptions, we prove the Fréchet
differentiability from W 1,∞(Ω̂) to L∞(Ω̂) of all important functions concerning
the domain mapping in the following lemma.

Lemma 3.9. Let Ω̂ ⊂ Rd be a bounded Lipschitz domain and q ∈ Qad. Then the
functions

f1, f4, f5, f6 : (Fad, ∥ · ∥W 1,∞(Ω̂))→ L∞(Ω̂)d×d,

f2, f3 : (Fad, ∥ · ∥W 1,∞(Ω̂))→ L∞(Ω̂),

where
f1(q) = DFq = ∇̂q + I,

f2(q) = Jq = det(DFq),

f3(q) = (det(DFq))
−1,

f4(q) = DF−T
q ,

f5(q) = det(DFq) ·DF−T
q ,

f6(q) = (det(DFq))
−1 ·DFq,

are continuously Fréchet differentiable in the direction δq ∈ Q =W 1,∞(Ω̂)d with
the following derivatives:

f1(q)
′δq = ∇̂δq,

For f2(q), we differentiate between the two-dimensional and the three-dimensional
case. By that, we obtain for d = 2

f2(q)
′δq

d=2
= (DFq)11 · (∇̂δq)22 + (DFq)22 · (∇̂δq)11
− (DFq)21 · (∇̂δq)12 − (DFq)12 · (∇̂δq)21,

and for d = 3

f2(q)
′δq

d=3
= (∇̂δq)11 · det((DFq)−(1)(1)) + (DFq)11 · (det(DFq)−(1)(1))

′
qδq

+ (∇̂δq)12 · det((DFq)−(1)(2)) + (DFq)12 · (det(DFq)−(1)(2))
′
qδq

+ (∇̂δq)13 · det((DFq)−(1)(3)) + (DFq)13 · (det(DFq)−(1)(3))
′
qδq,
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where (DFq)−(i)(j) are the minors of the deformation gradient DFq. Further, we
obtain the derivatives

f3(q)
′δq =

−1
J2q

J′qδq,

f4(q)
′δq = (det(DFq))

−1 · adj(q)′δq + −1
J2q

J′qδq · adj(q),

f5(q)
′δq = f2(q)

′δq · f4(q) + f2(q) · f4(q)′δq,

f6(q)
′δq =

−1
J2q

J′qδq ·DFq + (det(DFq))
−1 · ∇̂δq,

where for d = 2, it holds for the derivative of the adjugate that

adj(q)′δq
d=2
=

(
(∇̂δq)22 −(∇̂δq)12
−(∇̂δq)21 (∇̂δq)11

)
,

and for d = 3, we obtain

adj(q)′δq
d=3
=




+det((DFq)−(1)(1))
′δq − det((DFq)−(1)(2))

′δq +det((DFq)−(1)(3))
′δq

− det((DFq)−(2)(1))
′δq +det((DFq)−(2)(2))

′δq − det((DFq)−(2)(3))
′δq

+det((DFq)−(3)(1))
′δq − det((DFq)−(3)(2))

′δq +det((DFq)−(3)(3))
′δq




T

.

Proof. Since for all q ∈ Qad, we have f2(q) > 0 a.e.. With that, we know that
F′
q = DFq is invertible a.e. on Ω̂. The differentiability of the formula for the

derivatives now follows from elementary point wise arguments.

Finally, we compute the derivatives of the domain dependent Maxwell eigen-
value problem (3.22). The derivative of a′q(q; (u, ψ), (z, ϕ))δq is for d = 2

a′q(q;u, z)δq
d=2
=

∫

Ω̂

−1
J2q

J′qδq
(
∇̂ × u, ∇̂ × z

)
dx̂, (3.28)

whereas for d = 3, we obtain

a′q(q;u, z)δq
d=3
=

∫

Ω̂

−1
J2q

J′qδq
(
DFq ∇̂ × u,DFq ∇̂ × z

)
dx̂

+

∫

Ω̂

1

Jq

(
DF′

qδq ∇̂ × u,DFq ∇̂ × z
)
dx̂

+

∫

Ω̂

1

Jq

(
DFq ∇̂ × u,DF′

qδq ∇̂ × z
)
dx̂.

(3.29)
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The remaining derivatives are independent of the dimension. We obtain

b′q(q; z, ψ)δq =

∫

Ω̂
J′qδq

(
DF−T

q z,DF−T
q ∇̂ψ

)
dx̂

+

∫

Ω̂
Jq

(
(DF−T

q )′δq z,DF−T
q ∇̂ψ

)
dx̂

+

∫

Ω̂
Jq

(
DF−T

q z, (DF−T
q )′qδq ∇̂ψ

)
dx̂,

(3.30)

and
m′

q(q;u, z)δq =

∫

Ω̂
J′qδq · (DF−T

q u,DF−T
q z)dx̂

+

∫

Ω̂
Jq · ((DF−T

q )′qδq u,DF−T
q z)dx̂

+

∫

Ω̂
Jq · (DF−T

q u, (DF−T
q )′qδq z)dx̂.

(3.31)

3.3. Existence of Eigenvalues and associated
Eigenfunctions

In this section, we discuss the existence and properties of eigenvalues and eigen-
functions of the Maxwell eigenvalue problem in a cavity domain Ωq. This is
already well discussed in [76, Chapter 4.7], and we summarize the main results
to get a better understanding of the problem.

First, we introduce a suitable function space to guarantee divergence-free solu-
tions of (3.3). Therefore, we consider the same assumptions made in Section 3.1,
i.e., we assume a bounded, simply connected Lipschitz domain and a current den-
sity of J = 0 in the cavity resonator. Additionally, we assume that the electric
field u is a real-valued function and the parameters µ = µ0, ε = ε0 are real-
valued constants. We assume that H0(curl; Ωq) be a real Hilbert space. Hence,
all further functions we deal with are real-valued and all constants will be real.
Moreover, we apply the domain mapping, which we introduced in Section 3.2.
With that, we try to solve the problem of finding u ∈ H0(curl; Ωq) such that

(∇× u,∇× v)Ωq − λ(u, v)Ωq = (F, v)Ωq ∀ v ∈ H0(curl; Ωq). (3.32)

We call values for λ, which do not have a unique solution, cavity eigenvalues
(or resonances) of Ωq. By computing these eigenvalues, we consider, equivalent
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to (3.23), the following problem formulation

(∇× u,∇× v)Ωq = λ(u, v)Ωq ∀ v ∈ H0(curl; Ωq), (3.33)

to find non-trivial pairs u ∈ H0(curl; Ωq) and λ ∈ R. For the analysis of this
problem, we introduce the Helmholtz decomposition.

Lemma 3.10 (Helmholtz decomposition). The space ∇H1
0 (Ωq) is a closed sub-

space of H0(curl; Ωq), and we may write

H0(curl; Ωq) = Xq
0 ⊕∇H1

0 (Ωq),

where

Xq
0 = {u ∈ H0(curl; Ωq)|(u,∇ψ)Ωq = 0 ∀ ψ ∈ H1

0 (Ωq)}. (3.34)

By using the Helmholtz decomposition, it is possible to write any solution of
the problem stated in (3.33) as

u = u0 +∇ψ, where u0 ∈ Xq
0 , ψ ∈ H1

0 (Ωq).

By choosing v = ∇φ in (3.33), and noting that ∇×(∇φ) = 0, see (2.11), it holds
for all φ ∈ H1

0 (Ωq) that

λ(∇ψ,∇φ)Ωq = 0 ∀ φ ∈ H1
0 (Ωq).

This equation is true if either λ = 0 or (∇ψ,∇φ)Ωq = 0. In case that λ ̸= 0

and with choosing φ = ψ, we see that ∇ψ = 0. By vanishing Dirichlet boundary
conditions, we have that ψ = 0. In case that λ = 0, we get from (3.33) that
u0 ∈ Xq

0 satisfies
(∇× u0,∇× v)Ωq = 0 ∀ v ∈ Xq

0 .

Remark 3.11. Drawback of this formulation is that the divergence-free condi-
tion contained in the definition of Xq

0 is in general difficult to implement. This is
well discussed, e.g., in [65]. For that reason, we use the mixed formulation (3.22)
for the implementation.

52



3.3. Existence of Eigenvalues and associated Eigenfunctions

We mention here, regarding an outlook to future analysis of this problem,
that the space Xq

0 , defined in (3.34), has useful properties. It has a compact
embedding into (L2(Ωq))

3, see [106], and, because of this compactness property,
there exists the following Friedrichs inequality, see [76, Corollary 4.8].

Corollary 3.12 (Friedrichs inequality). Suppose that Ωq is a bounded, simply
connected, Lipschitz domain with boundary ∂Ωq. Then there is a constant C
such that for every u ∈ Xq

0

∥u∥(L2(Ωq))d ≤ C
(
∥∇ × u∥(L2(Ωq))N

)
(3.35)

for N = 1 if d = 2 and N = 3 for d = 3.

This inequality shows, that the curl-curl bilinear form is coercive on Xq
0 .

Further, it is proved that this space removes the null-space of the curl from
H0(curl; Ωq). We know that the solution λ = 0 of (3.33) has an infinite multi-
plicity. The corresponding eigenfunctions are u0 = ∇ψ for ψ ∈ H1

0 (Ωq) and are
called spurious modes. These eigenfunctions are physically not relevant. Thus
any scheme for using (3.33) to compute resonances must be able to identify the
eigenfunctions corresponding to λ = 0 and either only compute those for λ ̸= 0

or else compute all eigenpairs for (3.33) and reject those for λ = 0. To obtain
only physical solutions of problem stated in (3.33), we can assume that λ ̸= 0 and
we see that (3.33) may be written as either the mixed formulation by Kikuchi
(3.22), i.e.,

(∇× u,∇× v)Ωq + (∇ψ, v)Ωq = λ(u, v)Ωq ∀ v ∈ H0(curl; Ωq),

(u,∇φ)Ωq = 0 ∀ φ ∈ H1
0 (Ωq),

or as the problem of finding u0 ∈ Xq
0 , u0 ̸= 0, and λ ∈ R, such that

(∇× u0,∇× v)Ωq = λ (u0, v)Ωq ∀ v ∈ Xq
0 . (3.36)

By choosing v = u0 and applying the Friedrichs inequality (3.35), it holds

λ =
(∇× u0,∇× u0)Ωq

(u0, u0)Ωq

> 0.
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With that, the following existence results of eigenvalues and eigenfunctions of
the problem stated in (3.33) and their properties hold. For details, we refer
to [76, Theorem 4.18]. By that, we define the eigenvalues and eigenfunctions of
the problem stated in (3.36), where Qad is the space we defined in Section 3.2.

Definition 3.13 (Definition of eigenvalues and eigenfunctions for Maxwell’s
eigenvalue problem stated in (3.36)). Let q ∈ Qad be arbitrary. Then λ is
called an eigenvalue of the state equation (3.36) if there exists a nontrivial weak
solution u to the system stated in (3.36), i.e., 0 ̸= u ∈ Xq

0 and it holds that

(∇× u,∇× v)Ωq = λ(u, v)Ωq ∀ v ∈ Xq
0 (3.37)

In this case, the function u is called an eigenfunction to the eigenvalue λ.

For the solutions of (3.37), we obtain the following properties.

Theorem 3.14 (Existence and properties of eigenvalues and eigenfunctions for
Maxwell’s eigenvalue problem). Let q ∈ Qad be arbitrary. The solutions of the
eigenvalue problem stated in (3.37) have the following properties:

1. Corresponding to the eigenvalue λ = 0 there is an infinite family of eigen-
functions u = ∇p for any p ∈ H1

0 (Ωq).
2. There is an infinite discrete set of eigenvalues λj , j = 0, 1, 2, . . . and corre-

sponding uj ∈ Xq
0 , uj ̸= 0, such that

a) Equation (3.33) is satisfied
b) 0 < λ0 ≤ λ1,≤ . . . ,
c) limj→∞ λj =∞,
d) uj is orthogonal to ul in the inner product (·; ·)L2(Ωq) if j ̸= l.

Proof. See [76, Theorem 4.18].
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CHA PTER 4
Optimization of Eigenvalue

Problems

In this chapter, we consider an eigenvalue optimization problem in context of
time-harmonic Maxwell’s equations. In Section 4.1, we use adjoint calculus,
which we introduced in Section 2.5 for PDE optimization problems, to obtain
derivatives of the reduced eigenvalue optimization problem. The approach of ad-
joint calculus was already applied for specific eigenvalue optimization problems,
such as in application of micro structures, see [101], and for elliptic eigenvalue
problems, see [58,92]. The author introduced this approach for Maxwell’s eigen-
value problems in [57] and shows the details in the following section, which is
divided in two parts. In Section 4.1.1, we formulate the adjoint calculus for a
general eigenvalue optimization problem. Then, in Section 4.1.2, we apply this
approach to the specific optimization problem constrained by the time-harmonic
Maxwell eigenvalue problem.

In Section 4.2, we introduce optimality conditions and two optimization meth-
ods in order to solve reduced optimization problems. In Section 4.2.1, we
discuss the reduced gradient method, where we refer for details to [40, 84].
In order to obtain better convergence, we introduce a damped inverse Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) method in Section 4.2.2. For the clas-
sical BFGS, we refer to [40, 84, 103] and for the damping, we refer to [89]. We
conclude this section by applying these methods to eigenvalue optimization prob-
lems in Section 4.2.3.
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In Section 4.3, we discuss the discretization of Maxwell’s eigenvalue prob-
lem. We explain the choice for Mixed FEM using Nédélec elements for the
discretization of the electric field, based on a discussion seen in [9]. By that,
we justify why we take the divergence-free constraint into account. Afterwards,
we shortly introduce the FEM with the Lagrange, see Section 4.3.1, as well as
the Nédélec elements, see Section 4.3.2 and show the matrix formulation of the
problem, see Section 4.3.3. For the FE in context of Maxwell’s equations, we
refer to [24, 76]. We conclude this section by explaining some implementation
details in Section 4.3.4. Here we introduce the usage of the library deal.II and
its hurdles with Mixed Finite Elements as well as saddle point problems and the
eigenvalue solver library SLEPc which we use for solving this kind of problems.

In Section 4.4, we conclude this chapter by showing the functionality of the
introduced optimization methods on numerical examples. We compare the intro-
duced optimization methods on two computational domains. First, we obtain a
freeform optimization on a rectangle with free boundaries, see Section 4.4.1. Sec-
ond, we optimize a domain of a quarter circle with fixed edges, see Section 4.4.2.
In both settings, we optimize the first eigenvalue of Maxwell’s eigenvalue prob-
lem to a certain target value. We show mesh independent convergence of the
optimization methods. Further, we compare the solutions regarding iteration
steps and accuracy. Moreover, we discuss the influence on the choice of regular-
ization parameters concerning the optimal shape. We conclude this section by a
conclusion of the numerical results in Section 4.4.3.

4.1. Adjoint Calculus

In this section, we apply the theory of adjoint calculus for PDE constraint opti-
mization, which we introduced in Section 2.5, to eigenvalue optimization prob-
lems in order to obtain derivatives of the reduced problem and formulate opti-
mality conditions. Therefore, we consider the general eigenvalue optimization
problem in Section 4.1.1 and the concrete time-harmonic Maxwell eigenvalue
problem in Section 4.1.2.

4.1.1. Adjoint Calculus for General Eigenvalue Problems

Let Xad ⊂ X := Qad × R × U be a non-empty closed set, which collects ad-
ditional constraints on the control q. Here Qad is the set of admissible con-
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trols and U is the space of eigenfunctions. In the example considered in Sec-
tion 4.1.2, it is U = H0(curl; Ωq) × H1

0 (Ωq) and functions can be decomposed
as u = (u, ψ) and δu = (δu, δψ). We select an appropriate eigenvalue and con-
sider the generalized eigenvalue optimization problem

min J(q; λ)

s.t. k(q;u, δu) = λm(q;u, δu) ∀ δu ∈ U,

(m(q;u,u)− 1) δλ = 0 ∀ δλ ∈ R,
(q, λ,u) ∈ Xad.

(4.1)

We assume the cost functional J : Q × R → R to be continuously Fréchet-
differentiable on Qad × R and the forms k,m : Q×U×U→ R are linear in
the second and third argument. Moreover, m is assumed to be symmetric
with respect to the last two arguments. Further, they are both differentiable
on Qad ×U×U. Here, differentiability on Qad is to be understood in terms of
sufficiently regular perturbations δq ∈ Q̃ such that smallness of δq implies that
the forms k,m remain well-defined.

For each q ∈ Qad, we assume that the eigenvalue problem k(q, u) = λm(q, u)

admits a sequence λ0 ≤ λ1 ≤ . . . of real eigenvalues. To apply adjoint calculus,
we assume that, after normalization, the selected eigenvalue is simple. By that,
it follows that the eigenvalue and eigenfunction pair (λ,u) is locally unique. The
selection rule, e.g., λ = λ0 is understood implicitly defining a solution operator

S : Qad → R×U

by defining
q 7→ S(q) = (λ(q),u(q)) = (λ,u)

to be the particularly chosen eigenvalue-eigenfunction pair. With the help of the
solution operator, we define the reduced problem

min
q∈Q

j(q) := J(q, λ(q),u(q))

s.t. q ∈ Qad :=
{
q ∈ Q| (q, λ(q),u(q)) ∈ Xad

}
.

(4.2)

We can now utilize standard Lagrange techniques, see, e.g., [18,102], to obtain a
representation of the derivative j′(q) ∈ Q∗ and the Q-gradient ∇Qj(q) ∈ Q. To
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this end, we introduce the Lagrangian

L : Qad × (R×U)× (R×U)

of problem stated in (4.2) as

L(q, (λ,u), (µ, z)) = J(q, λ)− k(q;u, z) + λm(q;u, z) + µ (m(q;u,u)− 1) (4.3)

where the adjoint is, same as the state, a pair including

(µ, z) = (µ(q), z(q)) ∈ R×U,

with the adjoint state z ∈ U and the multiplier for the normalization of the eigen-
function condition µ . To compute the derivative of the reduced cost functional,
we follow the three steps described in Section 2.5:

1. The state problem: We recover the state equation (eigenvalue/eigen-
function) by computing the derivatives of the Lagrangian with respect to
the Lagrange multipliers component-wise for all (δµ, δz) ∈ R×U

0 = L′(µ,z)(q, (λ,u), (µ, z))(δµ, δz)
= L′z(q, (λ,u), (µ, z))δz + L′µ(q, (λ,u), (µ, z))δµ,

(4.4)

where
L′z(q, (λ,u), (µ, z))δz = −k(q;u, δz) + λm(q;u, δz)

L′µ(q, (λ,u), (µ, z))δµ = δµ (m(q;u,u)− 1) ,
(4.5)

using linearity of k,m in the last argument. Thus, solving (4.4) is equivalent
to solving the equations

k(q;u, δz) = λm(q;u, δz), (4.6)

(m(q;u,u)− 1) δµ = 0. (4.7)

These equations are exactly the state eigenvalue problem (4.6) and the
normalization of the concerning solution of the eigenvector (4.7). By solving
these equations, we obtain the state solution of (4.2), i.e.,

(λ,u) = (λ(q),u(q)) ∈ R×U.
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2. The adjoint problem: Similar to the state problem, we obtain
the adjoint state by computing the derivatives component-wise for
all (δλ, δu) ∈ R×U

0 = L′(λ,u)(q, (λ,u), (µ, z))(δλ, δu)
= L′u(q, (λ,u), (µ, z)) δu+ L′λ(q, (λ,u), (µ, z)) δλ,

(4.8)

with

L′u(q, (λ,u), (µ, z)) δu = −k(q; δu, z) + λm(q; δu, z)

− 2µm(q;u, δu),

L′λ(q, (λ, u), (µ, z))δλ = J ′
λ(q, λ) δλ+ δλm(q;u, z),

where we use the linearity of k,m in the last two arguments and symmetry
of m. Similar to the state problem, we solve the adjoint problem stated
in (4.8) by solving each equation separately, namely

k(q; δu, z) + 2µm(q;u, δu) = λm(q; δu, z), (4.9)

J ′
λ(q, λ) δλ = −δλm(q;u, z). (4.10)

Setting µ = 0 and considering variations in δu, we see that z solves the
adjoint eigenvalue problem

k(q; δu, z) = λm(q; δu, z) ∀ δu ∈ U.

Variations in δλ yield a normalization of the adjoint eigenfunction

m(q;u, z) = −J ′
λ(q, λ).

3. The gradient: After computing the state solution (λ,u) and the adjoint
solution (µ, z) of (4.2), we obtain the derivative for all δq ∈ Q̃ of the
reduced cost functional by computing

j′(q)δq = L′q(q; (λ,u), (µ, z)) δq
= J ′

q(q, λ)δq − k′q(q;u, z) δq + λm′
q(q;u, z) δq,

taking into account that µ = 0. Assuming Q̃ ⊂ Q to be dense and j′(q)

to be extendable to a functional on Q, and not just on Q̃, we can compute
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the Q-gradient ∇Qj(q) by inverting the Riesz isomorphism, i.e., solving

(∇Qj(q), δq)Q = j′(q)δq ∀δq ∈ Q.

4.1.2. Adjoint Calculus for Maxwell’s Eigenvalue Problem

Similar to the adjoint calculus of the generalized eigenvalue optimization prob-
lem, which we introduced in the previous subsection, we assume the particular
eigenvalue λ to be simple. By using the notations (3.14),(3.15),(3.16), we consider
the optimization problem constrained by Maxwell’s eigenvalue problem stated in
(3.22), i.e., we want to find

(q, λ, (u, ψ)) ∈ Qad ×R× (H0(curl; Ωq)×H1
0 (Ωq))

as solution of the problem

min J(q, λ)

s.t. a(q;u, δu) + b(q; δu, ψ) = λm(q;u, δu) ∀ δu ∈ H0(curl; Ωq),

b(q;u, δψ) = 0 ∀ δψ ∈ H1
0 (Ωq),

δλ (m(q;u, u)− 1) = 0 ∀ δλ ∈ R,

(4.11)

where the state variables u = u(q) and ψ = ψ(q) depend on the control q. We
define the corresponding adjoint variables by

(µ, (z, ϕ)) ∈ R× (H0(curl; Ωq)×H1
0 (Ωq)).

By defining the notation

k(q; (u, ψ), (δu, δψ)) = a(q;u, δu) + b(q; δu, ψ) + b(q;u, δψ),

the Lagrangian of the eigenvalue optimization problem for the admissible set Qad

L : Qad × (R× (H0(curl; Ωq)×H1
0 (Ωq)))× (R× (H0(curl; Ωq)×H1

0 (Ωq)))

of problem stated in (4.11) is

L(q, (λ, (u, ψ)), (µ, (z, ϕ))) =J(q, λ)−k(q; (u, ψ), (z, ϕ)) + λm(q;u, z)

+ µ (m(q;u, u)− 1) .
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With the directions

(δµ, (δz, δϕ)) ∈ (R× (H0(curl; Ωq)×H1
0 (Ωq))),

(δλ, (δu, δψ)) ∈ (R× (H0(curl; Ωq)×H1
0 (Ωq))),

δq ∈ Qad,

we compute the derivative of the reduced cost functional of Maxwell’s eigenvalue
problem with the three steps, mentioned in Section 4.1.1.

1. The state problem: We solve the state problem of Maxwell’s eigenvalue
problem

k(q; (u, ψ), (δz, δϕ)) = λm(q;u, δz),

(m(q;u, u)− 1) δµ = 0.
(4.12)

which is similar to solving Maxwell’s eigenvalue problem and a normal-
ization of the eigenvector solution u. By that, we achieve the state
solution (λ, (u, ψ)).

2. The adjoint problem: We solve the adjoint problem of for Maxwell’s
eigenvalue problem by solving the following equations

k(q; (δu, δψ), (z, ϕ)) + 2µm (q;u, δu) = λm (q; δu, z) ,

J ′
λ(q, λ) δλ+ δλm (q;u, z) = 0.

The system has a solution for µ = 0. In this case, the problem is similar
to the transposed eigenvalue problem

k(q; (δu, δψ), (z, ϕ)) = λm (q; δu, z) , (4.13)

with a normalization of adjoint eigenvector z dependent on the state solu-
tion (λ, u) by

J ′
λ(q, λ) = −m (q;u, z) . (4.14)

By that, we obtain the adjoint solution µ, (z, ϕ) with µ = 0.

3. The gradient: After computing the state solution (λ, (u, ψ)) and the ad-
joint solution (µ, (z, ϕ)) of (4.11), we obtain the derivative for all δq ∈ Q̃
of the reduced cost functional, similar to the generalized eigenvalue opti-
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mization problem, see Section 4.1.1, by computing

j′(q)δq = L′q(q, (λ, (u, ψ)), (µ, (z, ϕ))) δq
= J ′

q(q, λ)δq − k′q(q; (u, ψ), (z, ϕ)) δq
+ λm′

q(q;u, z) δq − µ(m(q;u, u)− 1)′q δq,

using the derivatives (3.28),(3.29), (3.30),(3.31), the notation

k′q(q; (u, ψ), (z, ϕ)) δq = a′q(q;u, z) δq + b′q(q; z, ψ) δq + b′q(q;u, ϕ) δq.

Further, we take into account that µ = 0 and by that, we obtain

j′(q)δq = J ′
q(q, λ)δq − k′q(q; (u, ψ), (z, ϕ)) δq + λm′

q(q;u, z) δq. (4.15)

Assuming Q̃ ⊂ Q to be dense and j′(q) to be extendable to a functional
on Q, and not just on Q̃, we can compute the Q-gradient ∇Qj(q) by in-
verting the Riesz isomorphism, i.e., solving

(∇Qj(q), δq)Q = j′(q)δq ∀δq ∈ Q. (4.16)

4.2. Optimization Methods

In this section, we introduce two optimization methods utilizing a line search
strategy to solve problems of the form

min
q∈Q

j(q), (4.17)

where Q is a Hilbert space and j : Q→ R is continuously Fréchet differentiable.
We define the gradient of the reduced cost functional j at qk by using the Riesz
representation, which we introduced in Theorem 2.17. With that, we want to
find ∇Q j(q

k) ∈ Q satisfying

(∇Q j(q
k), d)Q = j′(qk)d ∀ d ∈ Q. (4.18)

For an optimization method with line search strategy, we compute a
direction dk and search along this direction a lower function value starting from
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the current iterate qk. This new iterate is given by

qk+1 = qk + tkd
k, (4.19)

where tk is the step size. The convergence of a line search method depends on a
good choice of the direction dk and the step size tk, see Section 2.7.

We establish a gradient method in Section 4.2.1, and an inverse damped BFGS
method in Section 4.2.2. Both methods require the direction chosen as a descent
direction

(∇Q j(q
k), dk)Q ≤ 0.

The exact step size tk ∈ R of the chosen direction can be computed by solving
the minimization problem

tk = argmin
t>0

j(qk + tdk). (4.20)

Solving the exact solution of (4.20) is often expensive and in general not neces-
sary. With a line search, the method generates a limited number of trial step
sizes until on find an approximate minimum of (4.20).

It is well-known that gradient methods are stable but really slow in runtime. To
increase the performance, we introduce an inverse damped BFGS method. This
is a quasi-Newton method which can have an improved convergence rate. In
literature, it is shown that a damping update for the classical BFGS ensures the
positive definiteness of the operator of the approximated hessian of the reduced
cost functional, see, e.g., [89]. In this thesis, we show that it is also possible
to apply a damping update to the inverse BFGS method to ensure convergence
of the inverse method. We show that the curvature condition is fulfilled which
guarantees the positive definiteness of the inverse operator, in Lemma 4.5. For
the theory, we refer to [40,84,103], where gradient as well as Newton and quasi-
Newton methods are well explained.

4.2.1. Gradient Method

In the Hilbert space setting, we can choose Q∗ = Q and ⟨·, ·⟩Q∗,Q = (·, ·)Q by the
Riesz Representation Theorem 2.17, according to [59, Section 2.2]. With that, it
holds that dk = −∇Q j(q

k) is the direction of steepest descent with

j′(qk)dk = (∇Q j(q
k), dk)Q = −∥∇Q j(q

k)∥2Q ≤ 0.
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Further, if j′(qk)dk = 0, it holds that ∇Q j(q
k) = 0. Thus, the necessary condi-

tions for a minimizer are fulfilled. The steepest descent is an admissible search
direction. To guarantee an admissible step size in the sence of (2.26), we consider
the Armijo condition. For details, we refer to [59, Section 2.2.1.1].

Definition 4.1 (Armijo Condition). Let dk be a descent direction of j at qk.
Then, we choose the maximum tk ∈ {1, 12 , 14 , . . . } for which

j(qk + tkd
k)− j(qk) ≤ γtk(∇Q j(q

k), dk)Q. (4.21)

This condition means that the reduction in j should be proportional to both,
the step length tk and the directional derivative ⟨∇Q j(q

k), dk⟩. Now, we show
the existence of the Armijo step sizes and admissibility of step sizes, where we
refer for the proofs to [59, Lemma 2.2. and Lemma 2.3].

Lemma 4.2. Let j′ be uniformly continuous on

Nρ
0 = {q + d : j(q) ≤ j(q0), ∥d∥Q ≤ ρ}

for some ρ > 0. Then, for every ε > 0, there exists δ > 0 such that for all qk ∈ Q
with j(qk) ≤ j(q0) and all dk ∈ Q that satisfy

(∇Qj(q
k), dk)Q

∥dk∥Q
≤ −ε,

there holds

j(qk + tdk)− j(qk) ≤ γt(∇Qj(q
k), dk)Q t ∈ [0, δ/∥dk∥Q].

Lemma 4.3. Let j′ be uniformly continuous on

Nρ
0 =

{
q + d : j(q) ≤ j(q0), ∥d∥Q ≤ ρ

}

for some ρ > 0. We consider the general descent method from Algorithm 2.1,
where (tk) is generated by the Armijo rule and the descent directions dk are chosen
such that they are not too short in the following sense:

∥dk∥Q ≥ ϕ
(
−(∇Q j(q

k), dk)Q
∥dk∥Q

)
, (4.22)
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where ϕ : [0,∞) → [0,∞) is monotonically increasing and satisfies ϕ(t) > 0 for
all t > 0. Then the step sizes (tk) are admissible.

Hence, the Armijo Condition (4.21) guarantees together with (4.22) that the
step sizes (tk) are admissible. With that, it is possibly to apply the global
convergence result of Theorem 2.53. In Algorithm 4.1, we consider the gradient
method, where we choose the direction of steepest descent as search direction.
For the choice of step sizes, we apply the Armijo condition.

Algorithm 4.1 Gradient method

Input: Let q0 ∈ Q be an initial guess for the control. We choose the parameter
kmax ∈ N, and γ ∈ (0, 0.5) for the Armijo Condition (4.21).
For k = 1, . . . , kmax do

If ∇Qj(q
k) = 0 then

STOP
dk = −∇Q j(q

k).
Choose tk > 0 with Armijo condition (4.21).
qk+1 = qk + tkd

k.
k ← k + 1.

4.2.2. Damped Inverse BFGS Method

Another method to solve the reduced optimization problem stated in (4.2) is
a damped inverse BFGS method, which is named for its discoverers Broyden,
Fletcher, Goldfarb, and Shanno and is one of the most famous quasi-Newton
methods. These methods, similar to the steepest descent method, require only
the gradient of the objective function which gets updated in every iteration.
Quasi-Newton methods are sometimes more efficient than the classical Newton’s
method, because the second derivatives are not required. The computation of the
second derivative is in many cases very costly or not even possibly. In contrast,
quasi-Newton methods only require the gradient of the objective function which
is sufficient to produce superlinear convergence. For the theory and more details
to quasi-Newton methods, and specifically the BFGS method, can be found in,
e.g., [84, 89,109].

The classical Newton approximation computes the search direction by solving
the problem

∇2
Q j(q

k)dk = −∇Q j(q
k), (4.23)
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where ∇Q j(q
k) ∈ Q and ∇2

Q j(q
k) ∈ L(Q;Q) are the gradient and Hessian of the

reduced cost functional at iteration k. Similar to finite dimensional problems,
the computation of the Hessian, or the inverse Hessian to avoid its inversion
in the computation step of the search direction, has a big computational ef-
fort. The idea of the inverse BFGS method is to replace the inverse Hessian
by an operator Bk : Q→ Q which approximates the inverse Hessian. However,
to guarantee that the resulting directions dk are descent directions, positivity of
the operators Bk needs to be maintained. The computation step for the search
direction is then given by

dk = −Bk∇Q j(q
k).

The inverse BFGS method is derived from the classical BFGS method by applying
the so called Sherman-Morrison-Woodbury formula. For details, we refer to [84].

Further, equivalently to finite dimensional problems, we ensure that by updat-
ing the operator Bk+1 : Q→ Q fulfills the Secant Equation

Bk+1d̃
k = yk, (4.24)

where yk = ∇Qj(qk+1) − ∇Qj(qk) and d̃k = tkd
k = qk+1 − qk, illustrated in

Figure 4.1. The operator Bk+1 is not uniquely determined by the secant equation.

qk+1 qk

∇j(q)
∇2j(qk)(q − qk) +∇j(qk)

Bk+1(q
k)

Figure 4.1. Secant equation
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If Q = Rn, one possible update formula is the inverse BFGS update for any v ∈ R

Bk+1v = Bkv +
(d̃k −Bky

k)(d̃k, v) + d̃k(d̃k −Bky
k, v)

(d̃k, yk)

− d̃k (d̃
k −Bky

k, yk)

(d̃k, yk)2
(d̃k, v),

(4.25)

where the operator Bk is a symmetric positive definite (spd) matrix and which
will be revised or updated in every iteration. The generalized update formula
for Bk+1 ∈ L(Q,Q) to Hilbert spaces yields that for any p ∈ Q it holds

(p,Bk+1p)Q = (p,Bkp)Q +
(p, d̃k −Bky

k)Q(d̃
k, p)Q + (p, d̃k)Q(d̃

k −Bky
k, p)Q

(d̃k, yk)Q

− (p, d̃k)Q
(d̃k −Bky

k, yk)Q

(d̃k, yk)2Q
(d̃k, p)Q,

(4.26)
where the operator Bk is spd. Similar to the finite dimensional case, this operator
will be revised or updated in every iteration.

In the following, we consider the curvature condition which is necessary to
guarantee that it follows from Bk is positive definite, it remains that Bk+1 is
positive definite, see [84]. This can be asserted by the curvature condition

⟨yk, d̃k⟩ > 0. (4.27)

In general, it is satisfied by using a line search procedure which fulfills the so-
called Wolfe, also known as Powell-Wolfe, conditions

j(qk + tkd
k) ≤ j(qk) + γtk(∇Q j(q

k), dk)Q (4.28)

(∇Q j(q
k + tkd

k), dk)Q ≥ η(∇Q j(q
k), dk)Q (4.29)

with parameters 0 < γ < η < 1, see [84]. The first condition (4.28) is the
Armijo Condition (4.21) which ensures a sufficient decrease of the function j(q).
For quasi-Newton methods, this condition is not enough to ensure a reason-
able progress. It is satisfied for sufficient small values of tk, but it does not
avoid unacceptable short values of tk. The second condition (4.29) ensures that
the algorithm makes a reasonable progress. In general, the Wolfe Conditions
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(4.28),(4.29) ensure the curvature condition (4.27) and the therein resulting pos-
itive definiteness of Bk+1.

In Remark 3.7, we introduced properties of the deformation tensor DFq and
its determinant Jq, which need to be fulfilled. In particular, to ensure that
the deformation tensor stays invertible in the optimization progress, we need to
ensure the positiveness of Jq. Therefore, we will later apply a barrier term in the
regularization functional, i.e.,

−β
∫

Ω̂
ln(Jq − ε),

with β, ε > 0, to the cost functional, see (4.35). In some cases, it happens
that applying this barrier term has the consequence, that the mentioned Wolfe
Conditions (4.28) and (4.29) end up with a non-feasible line search. One pos-
sibility to fix this problem and to guarantee the fulfilling of the curvature con-
dition, is to modify the line search to ensure feasibility. An alternative is to
implement a damping step which substitutes the second condition of the Wolfe
Conditions (4.29) and fulfills the Curvature Condition (4.27).

That such a damping update fulfills the Curvature Condition, is already proven
for the classical (non-inverse) BFGS method in finite-dimensional optimization,
see, e.g., [84]. In the following, we show that a damping update fulfills the Curva-
ture Condition also for the inverse method in infinite dimensional optimization.
The damping was already introduced for an update for the Hessian approxima-
tion by [89]. Here, we show that an analogous approach can be utilized for the
approximation of the inverse Hessian. Hence, we define the damping update as
follows.

Definition 4.4 (Damping for inverse BFGS method). Let Bk be given and spd.
Further, let

qk+1 = qk + tkd
k,

d̃k = tkd
k = qk+1 − qk,

and yk = ∇Qj(q
k+1)−∇Qj(q

k).

Then the inverse BFGS damping is given by

d̃k = θkd̃
k + (1− θk)Bky

k,
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where θk ∈ R is defined as

θk =





1 if (yk, d̃k)Q ≥ 0.2(yk, Bky
k)Q,

0.8
(yk, Bky

k)Q

(yk, Bkyk)Q − (d̃k, yk)Q
else.

In the following lemma, we show that the damping step ensures that positive
definiteness of Bk is sufficient to assert positive definiteness of Bk+1.

Lemma 4.5. Let d̃k, yk be given and assume that B0 ∈ L(Q,Q) is a symmetric,
positive definite operator. Then the damping of Definition 4.4 ensures that it
holds that ⟨yk, d̃k⟩ > 0 for the BFGS Update (4.26). By induction Bk, and thus
Bk+1, remains positive definite.

Proof. First, we verify the claim, that ⟨yk, d̃k⟩ > 0 is sufficient to assert positive
definiteness of Bk+1. The proof of this is almost analog to the finite dimensional
case, see, e.g., [103]. To this end, let p ∈ Q\{0}, then the update formula asserts

(p,Bk+1p)Q = (p,Bkp)Q +
(p, d̃k −Bky

k)Q(d̃
k, p)Q + (p, d̃k)Q(d̃

k −Bky
k, p)Q

(d̃k, yk)Q

− (p, d̃k)Q
(d̃k −Bky

k, yk)Q

(d̃k, yk)2Q
(d̃k, p)Q

By expanding the second and third summand, it equals to

= (p,Bkp)Q + 2
(p, d̃k)2Q − (p,Bky

k)Q(p, d̃
k)Q

(d̃k, yk)Q

− (p, d̃k)2Q
(d̃k, yk)Q − (Bky

k, yk)Q

(d̃k, yk)2Q

Again, expanding and re-sort terms provides

= (p,Bkp)Q +
(p, d̃k)2Q

(d̃k, yk)Q

− 2
(p,Bky

k)Q(p, d̃
k)Q

(d̃k, yk)Q
+ (p, d̃k)2Q

(Bky
k, yk)Q

(d̃k, yk)2Q
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By adding ± (Bky
k,p)2Q

(yk,Bkyk)Q
, we obtain

= (p,Bkp)Q +
(p, d̃k)2Q

(d̃k, yk)Q
−

(Bky
k, p)2Q

(yk, Bkyk)Q

+
(Bky

k, p)2Q
(yk, Bkyk)Q

− 2
(p,Bky

k)Q(p, d̃
k)Q

(d̃k, yk)Q
+ (p, d̃k)2Q

(Bky
k, yk)Q

(d̃k, yk)2Q

where we consider by binomial formula

= (p,Bkp)Q +
(p, d̃k)2Q

(d̃k, yk)Q
−

(Bky
k, p)2Q

(yk, Bkyk)Q

+ (Bky
k, yk)Q

[
(Bky

k, p)Q
(Bkyk, yk)Q

− (p, d̃k)Q

(d̃k, yk)Q

]2
.

Under the assumed sign condition, only the third summand can be negative,
using a square root B1/2

k of the positive definite operator Bk, see, e.g., [71], and
Cauchy-Schwarz inequality, we obtain

(p,Bk+1p)Q ≥ (p,Bkp)Q +
(p, d̃k)2Q

(d̃k, yk)Q
−

(Bky
k, p)2Q

(yk, Bkyk)Q

≥ ∥B1/2
k p∥2Q +

(p, d̃k)2Q

(d̃k, yk)Q
−
∥B1/2

k yk∥2Q∥B
1/2
k p∥2Q

∥B1/2
k yk∥2Q

≥
(p, d̃k)2Q

(d̃k, yk)Q
≥ 0.

Now, either, B1/2
k p and B1/2

k yk are linear independent, then the second inequality
coming from Cauchy-Schwarz inequality is strict, or there is some t ̸= 0 such that

B
1/2
k p = tB

1/2
k yk

and then

(p, d̃k)2Q

(d̃k, yk)Q
=

(B
−1/2
k B

1/2
k p, d̃k)2Q

(d̃k, yk)Q
= t2

(B
−1/2
k B

1/2
k yk, d̃k)2Q

(d̃k, yk)Q
= t2

(yk, d̃k)2Q

(d̃k, yk)Q
> 0

implies positive definiteness of Bk+1.
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Now, it remains to show that (yk, d̃
k)Q > 0. In the case θ = 1, clearly

(yk, d̃k)Q ≥ 0.2(yk, Bky
k)Q > 0.

Otherwise, it is

(yk, d̃k) = (yk, θkd̃
k + (1− θk)Bky

k)Q

= 0.8
(yk, Bky

k)Q

(yk, Bkyk)Q − (yk, d̃k)Q
(yk, d̃k)Q

+

(
1− 0.8

(yk, Bky
k)Q

(yk, Bkyk)Q − (yk, dk)Q

)
(yk, Bky

k)Q

= 0.8
(yk, Bky

k)Q

(yk, Bkyk)Q − (yk, d̃k)Q
(yk, d̃k)Q

+
(yk, Bky

k)Q − (yk, d̃k)Q − 0.8(yk, Bky
k)Q

(yk, Bkyk)Q − (yk, d̃k)Q
(yk, Bky

k)Q

=
(yk, Bky

k)Q ·
(
0.8(yk, d̃k)Q − (yk, d̃k)Q + 0.2(yk, Bky

k)Q

)

(yk, Bkyk)Q − (yk, d̃k)Q

=
(yk, Bky

k)Q ·
(
−0.2(yk, d̃k)Q + 0.2(yk, Bky

k)Q

)

(yk, Bkyk)Q − (yk, d̃k)Q

= 0.2(yk, Bky
k)Q > 0.

Thus the assertion is shown.

With that, we conclude that the damping step for the inverse BFGS method
ensures the positive definiteness of the operator Bk+1. To globalize this method,
we check in every iteration, if the computed direction is a descent direction

(∇Q j(q
k), dk)Q < 0. (4.30)

If (4.30) is not fulfilled, then we take a descent direction step instead. The
complete damped inverse BFGS method with globalization step (4.30) is shown
in Algorithm 4.2.

Remark 4.6. Note, that to assert global convergence, of course a check of the
angle between dk and∇Qj(q

k), see Lemma 2.54, could be added in the algorithm.
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Algorithm 4.2 Damped inverse BFGS method

Input: Let q0 ∈ Q be an initial guess for the control and the initial inverse
Hessian approximation be B0 ∈ L(Q,Q) (spd). We choose the parameter
kmax ∈ N, and γ ∈ (0, 0.5) for the Armijo Condition (4.21).
For k = 1, . . . , kmax do

If ∇Qj(q
k) = 0 then

STOP
Compute search direction dk = −Bk∇Q j(q

k).
If ∇Q j(q

k)Q d
k < 0 then

Set dk = −∇Q j(q
k).

Compute tk with Armijo Condition (4.21).
Set qk+1 = qk + tkd

k.
If Curvature Condition (4.27) is not fulfilled then

Damping Update by means of Definition 4.4.
Compute Bk+1 by means of (4.26).
k ← k + 1.

However, in our numerical tests convergence to near stationarity was achieved
without such safeguards.

4.2.3. Methods applied to Optimization of Maxwell’s Eigenvalue
Problem

In this subsection, we explain how we apply the gradient as well as the BFGS
method, which we introduced in the previous two sections, to the considered
Maxwell eigenvalue optimization problem. In order to numerical solve this prob-
lem, we consider the discrete Maxwell eigenvalue problem stated in (4.32) and we
use the following termination criteria implemented in the DOpElib-library [49].

Definition 4.7 (Termination Criteria). The optimization methods applied to the
optimization problem of Maxwell’s eigenvalue problem will terminate, if one of
the following cases holds:

1. it ≥ itmax,

2. ∥∇Q j(q
k)∥ < TOL2

global and ∥∇Q j(q
k)∥ < TOL2 · ∥∇Qj(q

0)∥,
with itmax,TOLglobal,TOL > 0, where itmax ∈ N is the maximum number of
iterations, TOLglobal ∈ R is the global tolerance, TOL ∈ R is a relative tolerance.
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Algorithm 4.3 Gradient method for optimization of Maxwell’s eigenvalue prob-
lem
Input: Choose initial q0.

While Termination criteria 4.7 not fulfilled do
1. Solve the state eigenvalue problem and normalize u as in (4.12) to

obtain the state solution (λ, (u, ψ)).

2. Solve the transposed eigenvalue problem stated in (4.13) and normalize
z with (4.14) to obtain the adjoint solution (µ, (z, ϕ)).

3. Compute ∇Q j(q
k) with (4.15) and (4.16) using the state and adjoint

solution.

4. Compute a search direction dk = −∇Q j(q
k).

5. Compute tk with line search satisfying Armijo condition (4.28).

6. Update qk+1 = qk + tkd
k.

7. Set k ← k + 1

The gradient method, see Section 4.2.1, applied to the eigenvalue optimization
problem is shown in Algorithm 4.3. The input parameters is a given control vec-
tor q0. Until we fulfill the termination criteria, we solve in a first step the state
eigenvalue problem and normalize the state eigenvector as in (4.12), in order to
achieve the state solution of the problem. The second step of the method is to
solve the adjoint problem, which is in the considered case to solve the trans-
posed eigenvalue problem and to normalize the adjoint eigenvector as in (4.13)
and (4.14). With the solutions of the state and adjoint problem, we compute the
gradient of the reduced cost functional by computing the derivative of the re-
duced cost functional Equation (4.15) and the Riesz representation (4.16) in the
third step. In the fourth and fifth step, we compute the a search direction as well
as the step size, similar to Algorithm 4.1. After updating the iterate qk+1 and an
increasing the iteration number, we iterate until we fulfill one of the termination
criteria.

The damped inverse BFGS method, see Section 4.2.2, applied to the eigenvalue
optimization problem is shown in Algorithm 4.4. The input parameters are a
given control vector q0 and an initial approximation matrix B0.
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Algorithm 4.4 Damped inverse BFGS method for optimization of Maxwell’s
eigenvalue problem
Input: Choose initial q0 and B0 spd.

While Termination criteria 4.7 not fulfilled do
1. Solve the state eigenvalue problem and normalize u as in (4.12) to

obtain the state solution (λ, (u, ψ)).

2. Solve the transposed eigenvalue problem stated in (4.13) and
normalize z with (4.14) to obtain the adjoint solution (µ, (z, ϕ)).

3. Compute ∇Q j(q
k) with (4.15) and (4.16) using the state and adjoint

solution.

4. Compute a search direction dk = −Bk∇ j(qk).

5. If (∇Q j(q
k), dk)Q > 0 then

dk = −∇Q j(q
k).

6. Compute tk with line search satisfying Armijo condition (4.28).

7. Update qk+1 and yk = ∇Qj(q
k+1)−∇Qj(q

k).

8. If curvature condition is not fulfilled then
Apply damping step of Definition 4.4

9. Compute Bk+1 with the update formula, see (4.26).

10. Set k ← k + 1

The operator Bk is never stored but the action Bk∇Qj(q
k) is evaluated using

the recursive definition of Bk given by the update formula. To this end, the
functions d̃, Bky

k ∈ Q and the scalars (d̃k, yk)Q and (d̃k−Bky
k, yk) are stored. To

avoid arbitrary increase in memory usage, the implementation allows to specify
the number m of previous iterates to be kept. The recursive definition then
uses the definition Bk−m = B0, where by default we choose B0 = 1/αI where I
denotes the identity onQ. Hence, the BFGS method guarantees fast convergence,
see [51, Theorem 5.2], [63, Theorem 2.5].

The first three steps of the method are similar to the steps of the gradient
method. With the therein computed gradient, the method is similar to Algo-
rithm 4.2. We compute a search direction in the fourth step and check in the
fifth step, if the search direction is a descent direction. Otherwise, we choose the
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negative gradient as search direction. Further, we compute the step size with
the Armijo condition, update the iterates and apply the damping Definition 4.4
if the curvature condition (4.27) is not satisfied. The final step is to update the
matrix Bk to Bk+1.

4.3. Discretization of Maxwell’s Eigenvalue Problem

In the literature, solving Maxwell’s eigenvalue problem in cavities is already
investigated. The divergence-free condition of the space X0, introduced in (3.34),
is very difficult to implement because of finding an appropriate finite dimensional
subspace of X0. There are in general three ways to approximate the space of this
problem. The first way, and common in engineering, is to neglect the divergence-
free constraint, to shift the eigenspace and to filter the physical eigensolutions
from the spurious solutions afterwards. Since the number of spurious solutions
is not predictable, it is disadvantageous in context of eigenvalue optimization.

Furthermore, there are two other methods for the approximation of Maxwell’s
eigenvalue problem, which are well explained in [9]. One of these methods is
to solve the problem is using a penalty method which neglects the divergence
free constraint and uses common linear and quadratic node-based finite elements
for the field values. The idea of the penalty method is to consider the problem
finding a solution (λ, u) ∈ R×H(curl; Ωq), where u ̸= 0 such that

(∇× u,∇× ψ) + s(∇ · u,∇ · ψ) = λ(u, ψ), ∀ψ ∈ H(curl; Ωq), (4.31)

where s is a positive, usually small, parameter, see also [24, 65, 72]. It is clear
that a solution of the original variational formulation is a solution of (4.31).
However, (4.31) can have solutions other than those of the original problem. For
many years, researchers tried this penalty-function approach of constrained min-
imization to numerically solve Maxwell’s eigenvalue problem, since it is easy to
implement. For simple computational domains, this approach has a good per-
formance rate, but in general, this approach is a mere fix now being the therein
occurring spurious eigenmodes shifted far into the visible spectrum. They are
dependent on a user-defined parameter which specifies how strongly the diver-
genceless condition is imposed. Hence, this approach is not suitable for the
eigenvalue optimization, which we consider in this thesis. For more details to
this method, we refer to [37–39].
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The third method, also explained in [9], is a mixed formulation, such as (4.32),
with linear and quadratic finite edge elements, e.g., the elements of Nédélec [83],
for the field values and corresponding node-based finite elements for the Lagrange
multiplier. For a further mixed formulation, we refer to [26]. This approach
avoids the so-called spurious modes which would appear without the divergence-
free condition and guarantees the convergence of the finite element solutions to
the solutions of the original problem.

In the first two described approaches, the divergence-free condition for the
electric field is not treated properly and causes the appearing of spurious modes.
For that reason, we solve (4.32) by using a mixed finite element method. The use
of mixed elements avoids the problem of spurious solutions. An other advantage
of these elements is that, in contrast to the method of modification of the classical
elements, also problems modeled with different media could be solved without
any modification. We refer to [76] for the analysis of Nédélec’s elements which
is based on a special theory of mixed methods developed by Boffi et.al., see
[21,22,25,27] and also by Kikuchi, see [64–66], or by utilization of discrete analogs
of compactness arguments to derive the theory.

In the following, we formulate the discretized variational formulation of
Maxwell’s eigenvalue problem by Kikuchi (3.4) with the mixed FEM in order to
solve it numerically. For a detailed explanation, we refer to [23,76]. The formula-
tion by Kikuchi lives in the Sobolev spaces H1(Ω) and H(curl; Ω) and the aim of
the method is to replace the infinite-dimensional space X by a finite-dimensional
subspace Xh, where X is for example H1(Ω) or H(curl; Ω). To construct these
spaces, we first discretize the computational domain Ω by a mesh Ωh, i.e., a
finite non-overlapping subdivision into elements Ti of a simple geometry. The
discretization is called admissible, if the following properties hold.

1. The elements are non-overlapping, i.e.,

interior(Ti) ∩ interior(Tj) = ∅ for i ̸= j.

2. The discretization Ωh is a covering of Ω, i.e.,
⋃

Ti∈Ωh

Ti = Ω.

3. The intersection of two different elements is either empty, a vertex, an edge
or a face of both elements.
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Remark 4.8. For the discretization, the classical elements are typically triangles
or quadrilaterals, for two-dimensional domains, and tetrahedral or hexahedral,
for three-dimensional domains. In this thesis, we consider exclusively quadri-
lateral and hexahedral elements because the FE software deal.II deals mainly
with these elements.

By that, we define the fixed FE space Xh by a sequence of finite-dimensional
subspaces XT , i.e.,

Xh := {vh ∈ X : vh|T ∈ XT }.

The interpolation operators πh, rh, wh and P0,h map from suitable subspaces

U ⊂ H1(Ω), V ⊂ H(curl; Ω), W ⊂ H(div; Ω), Z ⊂ L2(Ω),

into the appropriate finite element spaces. The continuous as well as their dis-
crete subspaces, together with interpolation operators, are linked by the de Rham
diagram, see Figure 4.2. The de Rham diagram is of central importance to the
analysis, e.g., one can show the existence of an approximate Helmholtz decom-
position similar to the continuous one introduced in Lemma 3.10. For the de
Rham diagram and more details, we refer to [76].

H1(Ω) H(curl; Ω) H(div; Ω) L2(Ω)

∪ ∪ ∪ ∪

U V W Z

Uh Vh Wh Zh

Vertex Edge Face Volume

πh

∇

rh

∇×

wh

∇·

P0,h

∇ ∇× ∇·

Figure 4.2. Discrete De Rham Diagram

For the discretization of Maxwell’s eigenvalue problem, e.g., (3.4), we distin-
guish between the different spaces. Therefore, we treat finite elements of two
different families of elements. A proper discretization of the H1(Ω)-space,

Uh ⊂ H1(Ω),

77



Chapter 4. Optimization of Eigenvalue Problems

is achieved by using node-based Lagrange elements, see, e.g., [24]. For the dis-
cretization of the H(curl; Ω)-space,

Vh ⊂ H(curl; Ω),

we introduce a second family of elements, the edge-based Nédélec elements, see
[82, 83]. Both families of elements satisfy the discrete de Rham diagram, see
Figure 4.2, and will be introduced shortly in the following subsections.

With that, the discretized variational formulation of (3.4) is to find an
eigenvalue λh and a non-trivial electric field uh ∈ Vh with uh ̸= 0, and ψh ∈ Uh,
such that

(∇× uh,∇× vh)Ωh
+ (∇ψh, vh)Ωh

= λh(uh, vh)Ωh
∀ vh ∈ Vh,

(uh,∇φh)Ωh
= 0 ∀ φh ∈ Uh.

(4.32)

4.3.1. Finite Element Approximation of H1
0 (Ω)

For the discretization of the scalar potential space H1
0 (Ω), we consider a con-

forming approximation by using scalar Lagrange finite elements provided by the
deal.II library. This element yields the finite element space of continuous,
piecewise polynomials of degree p in each coordinate direction. The library uses
tensor product polynomials based on one-dimensional Lagrange polynomials with
equidistant (degree up to 2), Gauss-Lobatto (starting from degree 3), or given
support points. For implementation details, we refer to [10, 11]. This element
is H1(Ω) conforming and unisolvent. For details, we refer to [76, Lemma 6.9
and Lemma 6.10]. In Figure 4.3, we show two- (a) and three-dimensional (b)
first-order Lagrange elements. Further, for a bounded subdomain K̂ ⊂ Ω̂ to a
bounded subdomain K ⊂ Ωq, e.g., a mapping from a discretized finite element
reference domain to a discretized finite element domain, it holds the same trans-
formation rules as for the function space of H1(Ω) introduced in Section 3.2.1.
In this case the shape functions Ni on a general cell K are obtained from the
reference shape functions N̂i on the reference element K̂ by the pull-back

Ni(x) =
(
N̂i ◦ F−1

)
(x).
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(a) Two-dimensional (b) Three-dimensional

Figure 4.3. First order Lagrange elements

4.3.2. Finite Element Approximation of H0(curl; Ω)

In case of an FE approximation of the space of H0(curl; Ω), conventional finite
element basis functions give rise to spurious solutions because they not guaran-
tee the required tangential continuity. This property is automatically satisfied by
edge elements. The approximation of H0(curl; Ω) requires that degrees of free-
dom corresponding to the tangential traces match for the H(curl; Ω)-conforming
discretizations. In this thesis, we use the edge-based Nédélec elements due to [83],
introduced, e.g., in [24, 76]. For the implementation in deal.II, we refer to the
library [10, 11], and a report [98], which introduces the basis for the implemen-
tation, i.e., Nédélec’s H(curl; Ω)-conforming finite element method of first type.
There are several families of Nédélec. We refer to [83] for the first, and to [82]
for the second kind. In Figure 4.4, we show two- (a) and three-dimensional (b)
lowest-order Nédélec elements. The edge element space has exactly the same con-
tinuity requirements as the function space H0(curl; Ω). The element is curl con-
forming and unisovlent, see [76, Theorem 6.5]. Furthermore, in case of H0(curl)-
conforming subspaces, e.g., a Finite Element space discretized with Nédélec el-
ements, the curl-conforming Piola mapping, introduced in Section 3.2.2, holds.
The element shape functions Ni(x) on the element H0(curl; Ωq) ⊃ K = Fq(K̂),
with K̂ ⊂ H0(curl; Ωq), are obtained from the reference shape functions by

Ni(x) =
(
DF−T

q N̂i

)
◦ F−1

q (x).
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(a) Two-dimensional (b) Three-dimensional

Figure 4.4. Lowest order Nédélec elements

4.3.3. Matrix Formulation

With the given weak formulation we construct a sequence of finite dimensional
subsets Uh ⊂ H0(curl;Ω) and Vh ⊂ H1

0 (Ω). We construct these discrete spaces
with sets of basis functions

Uh = span{φh
i }nU

i=1 dimUh = nU ,

Vh = span{vhi }nV
i=1 dimVh = nV .

We express and test the solution field with basis functions

uh =

nU∑

i=1

uhi φ
h
i ∈ Uh ψh =

nV∑

j=1

ψh
j v

h
j ∈ Vh

with unknown coefficients uhi , i = 1, . . . , nU and ψh
j , j = 1, . . . , nV . In terms of

basis functions we formulate the discrete weak formulation of Maxwell’s eigen-
value problem stated in (4.32) to

nU∑

j=1

uhj (∇× φh
j ,∇× φh

i ) +

nV∑

k=1

ψh
k (∇vhk , φh

i ) = λh

nU∑

j=1

uhj (φ
h
j , φ

h
i ) ∀i = 1, . . . , nU ,

nU∑

j=1

uhj (φ
h
j ,∇vhl ) = 0 ∀l = 1, . . . , nV .
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We obtain the algebraic system of equations in the form
(
A BT

B 0

)(
u

ψ

)
= λ

(
M 0

0 0

)(
u

ψ

)
, (4.33)

where we denote the discrete eigenvalue by λ = λh. The finite element matrices
A ∈ RnU×nU , B ∈ RnU×nV and M ∈ RnU×nU are

(A)ji := a(φh
i , φ

h
j ) =

∫

Ω
(∇× φh

i ,∇× φh
j )dx,

(B)ki := b(φh
i , v

h
k ) =

∫

Ω
(φh

i ,∇vhk )dx,

(M)kl := m(φh
l , φ

h
k) =

∫

Ω
(φh

l , φ
h
k)dx,

and the coefficient vectors are

(u)i := uhi , u ∈ RnV ,

(ψ)i := ψh
i , ψ ∈ RnU .

The matrix K ∈ R(nU+nV )×(nU+nV ),

K =

(
A BT

B 0

)
,

is known as stiffness matrix and the matrix M ∈ R(nU+nV )×(nU+nV ),

M =

(
M 0

0 0

)
,

is called mass matrix. Hence, the generalized eigenvalue problem has the form

Kx = λMx, (4.34)

with x = (u, ψ)T
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4.3.4. Implementation Details

4.3.4.1. Mixed Finite Elements

In this thesis, we use the open source and C++-based FE-library deal.II [10,11]
to numerically solve the considered problems. The library constructs discretized
domains and trial functions. We implement the weak formulation of the problem
including initial and boundary conditions. By that, the library generates a dis-
crete system of equations. Further, the library provides a class of FESystem which
combines mixed problems containing different classes of FE. The implementation
of Nédélec elements in the deal.II library is well explained in [98].

Since open source libraries lives from the on-working developers and re-
searchers, the implementation with this kind of software is challenging due to
fact that it is not always tested into the finest detail and therefore, it is not free
of bugs. As a difficulty of this research, the software development is always a
hurdle. The construction of a Mixed Finite Element by FESystem enables the
usage of a Mixed FEM. While working on this dissertation, we fixed a bug in
deal.II and correct the method of using a mixed formulation including Nédélec
and Lagrange elements. Moreover, the code got tested with several mapping and
eigenvalue solver tests, such that we achieve the correct eigensolutions.

4.3.4.2. Saddle Point Problems and Eigenvalue Solver

In Section 4.3.3, we showed the matrix formulation of the discretized Maxwell
eigenvalue problem (4.34). This formulation has the form of a saddle point
problem, i.e., the following properties hold.

1. A is symmetric: A = AT ,
2. The symmetric part of A, H = 1

2(A+AT ) is positive semidefinite,
3. (BT )T = B,
4. the lower right matrix is a zero matrix (and thus symmetric and positive

semidefinite).
Furthermore, the considered problem leads to a large sparse system of equa-
tions. This kind of problems are also called equilibrium equations, see, e.g., [100]
and Karush-Kuhn-Tucker first order optimality conditions, see [84] for precise
definitions, and for historical notes, see, e.g., [50].

Since the considered eigenvalue problems are large and sparse, we use an iter-
ative solver for numerical solutions. Therefore, and for more details of solvabil-

82



4.3. Discretization of Maxwell’s Eigenvalue Problem

Table 4.1. Eigenvalue solver for the optimization
Solver

A Subspace iteration
B Krylov Schur
BS Krylov Schur with adjusted shift

ity of saddle point problems, we refer to [19] and the therein mentioned litera-
ture. Large-scale saddle point problems occur in many areas of computational
science and engineering. Some few are constrained optimization [48, 110, 111],
electromagnetism [30, 87, 88], mixed finite element approximations of elliptic
PDEs [31, 32, 91] and optimal control [16, 17, 20]. The whole field of solving
these large-scale saddle point problems is big and a separate topic. For eigen-
value solvers in electromagnetic cavities, we refer to [9], where various algorithms
to solve Maxwell’s eigenvalue problem stated in (4.32) are compared with each
other, i.e., a subspace iteration, a block Lanczos algorithm, implicitly restarted
Lanczos algorithm and a Jacobi-Davidson algorithm.

In this thesis, we use the SLEPc-library [55,56] for the eigenvalue problem com-
putation which bases on PETSc-library [13–15], a Portable, Extensible Toolkit for
Scientific Computation. The usage of eigenvalue solver for saddle point problems
is challenging. In the end, the for the most examples suitable eigenvalue solvers
for the considered Maxwell eigenvalue problems (4.12) as well as (4.13) and (4.14)
are the subspace iteration solver as well as the Krylov Schur method. We apply
the from the libraries provided shift-invert spectral transformation as well as the
Richardson solver and the Cholesky preconditioner.

First, we tested all examples with the subspace iteration solver, which was
suitable for the first iterations. However, in not every optimization example,
this solver is suitable for the whole optimization process. The eigenvalue solver
fails during the optimization using the BFGS method for different reasons, e.g.,
because of an indefinite matrix or some problems occur intern with the LU fac-
torization. In these examples, we fixed this problem by using the Krylov-Schur
method instead. Moreover, a suitable eigenvalue shift at the start of the opti-
mization can turn out badly because the eigenvalue problem changes during the
optimization and the initial shift becomes not suitable.

In the examples, we name the finally used solver shown in Table 4.1. For details
to the taken parameters in the methods, we refer to Appendix A.1. Further,
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for literature for the subspace iteration with shift-and-invert strategy, we refer
to [86,97].

4.4. Numerical Examples of Freeform Optimization for
Maxwell’s Eigenvalue Problem

In this section, we validate the introduced optimization methods from Section 4.2
by showing examples of freeform optimization problems constrained by Maxwell’s
eigenvalue problem. In the following, we consider an optimization of the first
eigenvalue λ, assumed to be simple, to a target value λ∗. For the optimization,
let us consider the functional

J(λ) :=
1

2
|λ− λ∗|2,

where λ, λ∗ ∈ R. Further, we add some regularization terms to the objective
functional. We apply a quadratic penalty regularization using the H1-norm to
guarantee the existence of q and ∇q. In addition, the deformation gradient DFq,
defined in (3.8), needs to be invertible and its determinant to be non-negative. To
ensure this, we apply a barrier term enforcing Jq = det(DFq) ≥ ε for some ε > 0.
By that, we define the regularization functional as

R(q) :=
α

2

(
∥q∥2 + ∥∇q∥2

)
− β

∫

Ω̂
ln(Jq − ε) dx̂, (4.35)

where ∥ · ∥ is the usual L2-norm on Ω̂ with regularization parameters α, β ∈ R+.
We remark here, that in general the choice of α has influence on the convexity
of the problem. For that reason, by increasing α, we expect a speed up of the
optimization process in the sense of reducing the number of iterations until the
method terminates. The barrier term is necessary to guarantee a non-negative Jq
but it also changes the optimization problem itself.

The derivative of the regularization functional with respect to q is

R′
q(q)δq =α ((q, δq) + (∇q,∇δq))− β

∫

Ω̂

1

Jq − ε
J′qδq dx̂.

For all numerical examples, it is ε = 10−4 and we consider the Eigen-
value Optimization Problem (4.11) with added regularization functional, i.e.,
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4.4. Numerical Examples of Freeform Optimization

find u ∈ H0(curl; Ωq) with u ̸= 0 and ψ ∈ H1
0 (Ωq) by solving

min J(q, λ) := J(λ) +R(q)

s.t. a(q;u, δu) + b(q; δu, ψ) = λm(q;u, δu) ∀ δu ∈ H0(curl; Ωq),

b(q;u, δψ) = 0 ∀ δψ ∈ H1
0 (Ωq),

δλ (m(q;u, u)− 1) = 0 ∀ δλ ∈ R,

(4.36)

with
a(q;u, δu) := (∇× u,∇× δu)Ωq

,

b(q; δu, ψ) := (∇ψ, δu)Ωq
,

m(q;u, δu) := (u, δu)Ωq
.

In the following, we show solutions of the optimization problem on two simple
geometries, i.e., a rectangle with free boundaries and a quarter circle with fixed
edges, in order to validate the code. We compare the optimization processes be-
tween the damped inverse BFGS method from Algorithm 4.4 with the gradient
method from Algorithm 4.3 with respect to the number of iteration steps and
accuracy of the solutions. We determine that the BFGS method provides better
convergence results, what we expect and already discussed in Section 4.2. Fur-
thermore, we investigate the influence of the regularization parameters on the
concerning optimal shape, accuracy on different refinement levels and element
orders. Aside from that, we consider the impact of the choice of the target value
on the domain deformation.

To solve the considered optimization problem numerically, we use the PDE
optimization library DOpElib [49] which bases on the FE library deal.II [10,11].
For the mesh refinement and the used finite elements, we use the classes provided
by deal.II. For all examples, we use a global refinement. For details, we refer
to the library.

In the context of this thesis, we extended the DOpElib library for eigenvalue
optimization problems. We show the documentation of the extension to eigen-
value optimization problems in Appendix A.1. In the previous sections of this
chapter, we introduced a gradient method in Algorithm 4.3 and a damped inverse
BFGS method in Algorithm 4.4 for the considered Maxwell eigenvalue optimiza-
tion problem. Within this thesis, we extended the DOpElib library by latter.
The approximated Hessian matrices can get very costly in memory because of
their size and missing sparsity. Instead of fully storing all matrices, we use a
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limited-memory BFGS (L-BFGS) method, where we save only a few vectors that
represent the approximated Hessian implicitly. In all examples, we use 40 stored
vectors. For details for this method, we refer to [84, Chapter 7.2].

Further, we additionally use the SLEPc- as well as the PETSc-library for solving
the containing eigenvalue problems. For the differentiation of the used eigenvalue
solver, we name them in the solution tables in the column EVS and refer to
Table 4.1. For some comments on the implementation, we refer to Section 4.3.4.2,
for more details for the parameters used there, we refer to Appendix A.1 and for
an overview of the used library versions to Table A.2.

4.4.1. Rectangle with Free Boundaries

We consider the Freeform Optimization Problem (4.36) with an initial rectangu-
lar domain

Ω̂ =
[
0,
π

3

]
×
[
0,
π

2

]
,

see Figure 4.5, where we allow freeform deformation on the whole domain. With

π
3

π
2

x

y

Ω̂

Figure 4.5. Rectangle Geometry

the assumptions to the time-harmonic Maxwell eigenvalue problem in Section 3.1,
the initial domain can be interpreted as a rectangular wave guide. For this
domain, it is possible to compute the eigenvalues for some particular cases, and
also the eigenmode, analytically, see [60]. With that, it is possible to check the
convergence of the eigenvalue solver.

For given dimensions a, b > 0, there exists two separated sets of solutions, the
Transverse Magnetic (TM) and the Transverse Electric (TE) modes, according
to the behavior of the electric or magnetic field in the longitudinal direction.
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Moreover, the cutoff frequency is defined by

ωmn =
π√
µ0ε0

·
√
m2

a2
+
n2

b2
, (4.37)

with constants µ0, ε0 and where m and n cannot both be zero. In this example,
it is a = π

3 and b = π
2 . Further, we are interested in the optimization of the

eigenvalue which is determined by the frequency.

In the examples, we solve the considered optimization problems on different
refinement levels and two different choices of element orders, either lowest order
Nédélec elements and first order Lagrange elements, or first order Nédélec ele-
ments and second order Lagrange elements. This has an impact on the number of
degrees of freedom (DoFs). We will name the different choices as settings. We ob-
serve that, for the first 7 eigenvalues, with increasing the refinement level as well
as the element order, the numerical solutions, using the subspace iteration (A),
converge to the exact solutions, see Table 4.2.

Table 4.2. Exact and computed first 7 eigenvalues of the initial rectangle domain
varying the DoFs by using different refinement levels (ref.) and varying the order of
Lagrange (Lagr.) and Nédélec (Néd.) elements using the subspace iteration eigenvalue
solver (A).

DoFs ref. Lagr. Néd. λ1 λ2 λ3 λ4 λ5 λ6 λ7

387 2 2 1 4.00205 9.00461 13.0067 16.1204 19.4537 19.4537 19.4537
387 3 1 0 4.05166 9.11624 13.1679 16.8382 25.9544 37.8859 40.3212
1411 3 2 1 4.00013 9.00029 13.0004 16.0082 25.0085 36.0184 36.0899
1411 4 1 0 4.01287 9.02895 13.0418 16.2067 25.2356 36.465 37.0525
5389 4 2 1 4.00001 9.00002 13 16.0005 25.0005 36.0012 36.0059
5389 5 1 0 4.00321 9.00723 13.0104 16.0515 25.0587 36.1158 36.261
20995 5 2 1 4 9 13 16 25 36.0001 36.0004

exact solution 4 9 13 16 25 36 36

In the following, we optimize the first eigenvalue λ = λ1, which is clearly sim-
ple, to a target value λ∗. This results in a domain change. First, we compare the
gradient method from Algorithm 4.3 with the BFGS method from Algorithm 4.4.
In all tables of this section, we show the numerical initial eigenvalue before op-
timization, named by λ0. In all settings, we show the number of iterations (it.),
the eigenvalue after termination λit, the value of the cost functional J and the
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relative residual of the reduced gradient of the cost functional

rrel =
√
∥∇Qj(qit)∥√
∥∇Qj(q0)∥

.

Further, we indicate the maximum and minimum values of the determinant of
the deformation gradient, which provide information about the domain change.
For Jq = 1, the volume of the domain stays the same. Values Jq > 1 indicate a
growth, whereas values Jq < 1 indicate a shrinkage of the domain, see Remark 3.7.

First, we consider an initial example and compare the optimization methods.
From there, we vary the regularization parameters and study their influence on
the deformation of the domain. In general, we see that the BFGS method con-
verges faster than the gradient method. For that reason, we show results for the
initial example with different convergence tolerances. Afterwards, we investigate
the influence of the choice of different target values λ∗ on the deformation of the
domain by using the BFGS method.

4.4.1.1. Comparison of the Optimization Methods with Variation of
Regularization Parameters

In this subsection, we compare the BFGS method and the gradient method
regarding the convergence and we study the influence of the varying the
regularization parameters α and β in the same context. Therefore, we choose
the target value λ∗ = 3.8 and the parameters for the optimization methods are
shown in Table 4.3.

Table 4.3. Parameters for the optimization on the rectangle domain

BFGS method gradient method
(Algorithm 4.4) (Algorithm 4.3)

itmax 100 1000
TOLglobal 10−5 10−5

TOL 10−5 10−5

Armijo Condition
line itmax 10 10
γ 0.1 0.1
ρ 0.1 0.1
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Initial Example: Comparison with α = 10−3 and β = 10−5

Table 4.4 shows results of the freeform optimization with regularization param-
eters α = 10−3, β = 10−5. In (a), we observe that the BFGS method from
Algorithm 4.4 terminates after 15 iterations in every setting. The method con-
verges in all cases to the chosen target value λ∗. The cost functional value J
is in all cases smaller than 3.6 · 10−7 and rrel converges in every case to values
smaller than 3.45 · 10−6. The minimum values of the determinant of the defor-
mation gradient Jq are between 1.030 and 1.053, and the maximum values are
between 1.053 and 1.058.

In (b), we view the results of the gradient method. In every setting, the
method terminates after the maximum number of iterations, with only exception
of the example with 387 DoFs, refinement level 3 as well as lowest order Nédélec
elements and first order Lagrange elements. Here, the method terminates after 30
iterations and converges to λ30 = λ∗. In all other settings, the eigenvalue after
termination is λ1000 = 3.80001. The cost functional J is in all cases smaller
than 4.07 · 10−7 and decreases with finer meshes and also with a higher order
of elements. The relative residual of the gradient rrel is in most settings smaller
than 1.35 · 10−5.

Figure 4.6 shows the deformation of the rectangle corresponding to the exam-
ple of Table 4.4, where the optimal solution of the BFGS method is illustrated
in (a) and the optimal solution of the gradient method is illustrated in (b). The
figures show the upper half of the rectangle. The shape of the deformed domain
is in both cases similar. In case of optimization with the BFGS method, we
obtain a minimally greater deformation on the top than after optimization with
the gradient method. Moreover, the shape of the deformed rectangle is after
optimization a little bit more curved in the middle part of the domain.

In case of the BFGS method, the results seem to be mesh-independent, the
number of iterations is in every setting 15. In case of the gradient method, we
can not make a statement yet, because the method stopped after the maximum
number of iterations in almost every setting. The runtime of both optimization
methods is mainly dependent on the number of eigenvalue solver calls. In
each iteration, we solve once the state eigenvalue problem and once the adjoint
eigenvalue problem. Therefore, in this example, the BFGS method is definitely
faster than the gradient method, as we expected.
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Table 4.4. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−3, β = 10−5

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient of
the cost functional rrel as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 15 3.8 1.128e-07 3.44e-06 1.030 1.057 A
387 3 1 0 4.052 15 3.8 3.522e-07 5.499e-06 1.031 1.054 A
1411 3 2 1 4.000 15 3.8 1.081e-07 3.923e-06 1.042 1.058 A
1411 4 1 0 4.013 15 3.8 1.752e-07 5.818e-06 1.053 1.055 A
5389 4 2 1 4.000 15 3.8 1.265e-07 6.084e-06 1.047 1.055 A
5389 5 1 0 4.003 15 3.8 1.381e-07 6.012e-06 1.053 1.053 A
20995 5 2 1 4.000 15 3.8 1.265e-07 6.085e-06 1.051 1.055 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 1000 3.80001 1.904e-07 1.309e-05 1.020 1.049 A
387 3 1 0 4.052 30 3.8 4.065e-07 9.659e-05 1.048 1.055 A
1411 3 2 1 4.000 1000 3.80001 1.836e-07 1.340e-05 1.032 1.049 A
1411 4 1 0 4.013 1000 3.80001 2.306e-07 1.196e-05 1.047 1.049 A
5389 4 2 1 4.000 1000 3.80001 1.831e-07 1.340e-05 1.041 1.049 A
5389 5 1 0 4.003 1000 3.80001 1.946e-07 1.304e-05 1.048 1.049 A
20995 5 2 1 4.000 1000 3.80001 1.831e-07 1.341e-05 1.045 1.050 A

Demonstration of the BFGS method
In Table 4.5, we show the functionality of the BFGS Method from Algorithm 4.4,
exemplary on the initial example with the setting of 20995 DoFs, a discretization
of the domain with Nédélec elements of order 1, Lagrange elements of order 2
and refinement level 5. The method stopped after 15 iteration steps. The ta-
ble shows the computed eigenvalue after each iteration λit, the value of the cost
functional J , the relative residual of the reduced gradient rrel, the number of line
search steps (l.s.), if the damping step has been carried out as well as the mini-
mum and maximum value of the determinant of the deformation gradient Jq. The
table displays the convergence of the eigenvalue λit to the target value λ∗ = 3.8.
In this example, the damping step was carried out in the first 6 iterations as well
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(a) BFGS method from Algorithm 4.4 (b) Gradient method from Algorithm 4.3

Figure 4.6. Comparison of the optimization methods regarding to the deformed rect-
angle domain after freeform optimization with target value λ∗ = 3.8 and regulariza-
tion parameters α = 10−3 and β = 10−5. The figure shows the upper half of the
domain, the solution of the lower half is symmetric to the upper part. The deforma-
tion is scaled by a factor of 10.

as in iteration 12 to 14. It also shows the change of the deformation as can seen
based on the values for Jq up to the final maximum value 1.055.

Influence of increasing the parameter α
In order to investigate the influence of α, we first increase α to 10−2. Table 4.6 in-
dicates the corresponding results. In (a), we see that the BFGS method from Al-
gorithm 4.4 takes 9 to 11 iterations in every setting. With higher number of DoFs,
the number of iterations remains 9. The difference between the target value λ∗
and the eigenvalue after the last iteration λit has a difference about 5 · 10−5. The
cost functional J is in all cases smaller than 10−6 and the method converges in
every setting with rrel smaller than 10−7.

Furthermore, (b) shows the results of the gradient method from Algorithm 4.3.
In contrast to the initial example, where α = 10−3, the method converges here
in every setting to rrel smaller than 10−5. The number of iterations varies, but
seems to stay similar with the number of DoFs high enough. The values for λit,
the cost functional and the minimum and maximum value of the determinant of
the deformation gradient Jq are comparable to the results of the BFGS method.

Increasing α again, now to α = 10−1, has the consequence that the BFGS
method converges in every setting after 7 iterations. The gradient method con-
verges to the desired termination tolerance, the number of iterations varies again
regarding the choice of lowest order Nédélec elements and first order Lagrange
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Table 4.5. Freeform optimization steps of the BFGS method from Algorithm 4.4 on a
rectangle domain with target value λ∗ = 3.8 and regularization parameters α = 10−3

and β = 10−5. The chosen refinement level is 5, the number of DoFs is 20995. La-
grange elements of order 2 and Nédélec elements of order 1 are used. The table
shows the results of each iteration with the first (numerical) eigenvalue after each
iteration λit, the number of line search steps (l.s.) and if a damping step has been
carried out as well as the minimum and maximum value of the determinant of the
deformation gradient Jq.
It. λit J rrel l.s. damping Jq,min Jq,max

0 4 2.0e-02 1 - - 1 1
1 3.91852 7.02392e-03 5.77674e-01 5 yes 1.01789 1.01951
2 3.82679 3.58976e-04 1.26861e-01 4 yes 1.03951 1.04332
3 3.78714 8.30135e-05 6.02336e-02 3 yes 1.05016 1.05541
4 3.7909 4.16852e-05 4.26706e-02 3 yes 1.04769 1.05406
5 3.79625 7.27752e-06 1.76422e-02 2 yes 1.04769 1.05266
6 3.80067 4.25193e-07 3.11648e-03 2 yes 1.04947 1.05474
7 3.80047 2.93789e-07 2.19684e-03 1 no 1.05016 1.05537
8 3.80022 1.80904e-07 1.00124e-03 1 no 1.05122 1.05625
9 3.80014 1.56216e-07 6.28121e-04 1 no 1.05157 1.0564
10 3.80013 1.42751e-07 5.70674e-04 1 no 1.05148 1.05606
11 3.80011 1.32559e-07 5.12433e-04 1 no 1.05106 1.05535
12 3.80008 1.29592e-07 3.64495e-04 5 yes 1.05107 1.05536
13 3.79999 1.26622e-07 5.70519e-05 4 yes 1.05109 1.05538
14 3.8 1.26571e-07 3.74452e-05 4 yes 1.05109 1.05538
15 3.8 1.26459e-07 6.08468e-06 3 no 1.05109 1.05538

elements. In constrast, the number of iterations stays stable at 278 by using first
order Nédélec elements and second order Lagrange elements. In both methods,
the difference between the target value λ∗ and the eigenvalue after the last it-
eration λit increases again, now to a difference about 5 · 10−4. Moreover, the
minimum and maximum value of the determinant of the deformation gradient Jq
are similar to the previous examples, whereas the values of the cost functional
increase by a factor of 10. For the results for α = 10−1 and β = 10−5, we refer
to Table A.4 in Appendix A.2.1.

Influence of decreasing the parameter α
Now, we investigate the influence of decreasing α to 10−4 and keeping β = 10−5.
The results are shown in Table 4.7, where (a) indicates that the number of
iterations until convergence in the BFGS method increases up to 39 and stays
the same for meshes of at least 1411 DoFs. In (b), the table shows that
the gradient method terminates in every setting after 1000 iterations with a
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Table 4.6. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−2, β = 10−5

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient of
the cost functional rrel as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 9 3.80005 4.933e-06 3.186e-07 1.021 1.050 A
387 3 1 0 4.052 10 3.80007 7.775e-06 1.852e-06 1.049 1.056 A
1411 3 2 1 4.000 9 3.80005 4.836e-06 3.389e-07 1.033 1.050 A
1411 4 1 0 4.013 11 3.80006 5.497e-06 1.155e-07 1.048 1.050 A
5389 4 2 1 4.000 9 3.80005 4.829e-06 4.305e-07 1.042 1.050 A
5389 5 1 0 4.003 9 3.80005 4.992e-06 9.733e-07 1.049 1.049 A
20995 5 2 1 4.000 9 3.80005 4.829e-06 4.325e-07 1.046 1.050 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 171 3.80005 4.939e-06 9.972e-06 1.020 1.049 A
387 3 1 0 4.052 24 3.80007 7.781e-06 8.332e-06 1.048 1.055 A
1411 3 2 1 4.000 215 3.80005 4.841e-06 9.960e-06 1.032 1.049 A
1411 4 1 0 4.013 39 3.80006 5.503e-06 9.892e-06 1.047 1.049 A
5389 4 2 1 4.000 215 3.80005 4.835e-06 9.964e-06 1.041 1.049 A
5389 5 1 0 4.003 171 3.80005 4.998e-06 9.922e-06 1.048 1.048 A
20995 5 2 1 4.000 215 3.80005 4.835e-06 9.967e-06 1.045 1.049 A

relative residual around 1.3 · 10−5, except in case of the example with 387 DoFs,
refinement level 3 and lowest order Nédélec elements as well as first order
Lagrange elements. Here, the method terminates after 33 iterations. For both
methods, the eigenvalue after the last iteration λit. is in every setting equal to
the target value λ∗. Moreover, the maximum values of the determinant of the
deformation gradient Jq increase for the BFGS method up to 1.118, whereas
it stays around 1.055 for the gradient method. The values for the latter are
similar to the values we obtained in the previous examples. Decreasing α

further to 10−5 stabilizes the number of iterations using the BFGS method to
38 iterations in every setting. We notice that the value for Jq increases, e.g.,
in the last setting from maximum values 1.100 to 1.187. The gradient method

93



Chapter 4. Optimization of Eigenvalue Problems

Table 4.7. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−4, β = 10−5

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 28 3.8 -8.012e-07 9.265e-06 1.052 1.096 A
387 3 1 0 4.052 15 3.8 -7.024e-07 9.154e-06 1.076 1.078 A
1411 3 2 1 4.000 38 3.8 -8.522e-07 5.787e-06 1.083 1.102 A
1411 4 1 0 4.013 38 3.8 -9.004e-07 5.049e-06 1.102 1.118 A
5389 4 2 1 4.000 38 3.8 -8.499e-07 8.020e-06 1.093 1.102 A
5389 5 1 0 4.003 39 3.8 -8.385e-07 9.670e-06 1.092 1.097 A
20995 5 2 1 4.000 38 3.8 -8.497e-07 8.051e-06 1.097 1.100 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 1000 3.8 -2.845e-07 1.346e-05 1.020 1.049 A
387 3 1 0 4.052 33 3.8 -3.312e-07 9.997e-06 1.048 1.055 A
1411 3 2 1 4.000 1000 3.8 -2.822e-07 1.376e-05 1.032 1.049 A
1411 4 1 0 4.013 1000 3.8 -2.966e-07 1.233e-05 1.047 1.049 A
5389 4 2 1 4.000 1000 3.8 -2.821e-07 1.379e-05 1.041 1.049 A
5389 5 1 0 4.003 1000 3.8 -2.857e-07 1.340e-05 1.048 1.049 A
20995 5 2 1 4.000 1000 3.8 -2.821e-07 1.378e-05 1.045 1.050 A

does not improve with this choice of regularization parameters. For details, we
refer to Table A.5.

Influence of decreasing the parameter β
Now, coming back to the initial example, where we chose the regularization
parameters α = 10−3 and β = 10−5, we investigate the influence of β on the
optimization methods. Table 4.8 shows results after decreasing β to 10−8. In (a),
the table indicates that the change of β has nearly no influence on the number of
iterations for the BFGS method compared to the initial example. Furthermore,
table (b) shows the results for the gradient method. Here, the method converges
after 25 to 26 iterations in every setting. In comparison, the initial example
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terminated in almost every setting after the maximal number of iterations, which
we set to itmax = 1000. In both methods, the difference between the eigenvalue
after the last iteration λit and the target value λ∗ is in every setting between 10−5

and 0. The values of the determinant of the deformation gradient Jq stay similar
to the values of the initial example and the values for the cost functional are less
than 5 · 10−7.

By keeping β = 10−8 and decreasing α to 10−4, see Table A.6, or 10−5, see
Table A.7, the BFGS method converges after 13 to 15 iterations in all settings. It
has almost no influence on the value of Jq and the eigenvalue converges in every
setting to the target value λ∗. The gradient method converges in both examples
again after 25 to 26 iterations in every setting. Moreover, the eigenvalue after
the last iteration λit is equal to the target value λ∗, the values of the reduced
cost functional shrink by decreasing β and the values for the determinant of the
deformation gradient Jq stay similar to the ones in the initial example.

Table A.8 shows results for β = 10−8 and increasing α to 10−2, and Table A.9
shows results for increasing α further to 10−1, respectively. In both subtables (a),
we observe for the BFGS method that the number of iterations until convergence
decreases down to 9 for α = 10−2 and 7 for α = 10−1, respectively. The gradient
method, see each in (b), converges for 10−2 after 25 iterations in every setting.
By increasing α to 10−1 the number of iterations increases to at least 344 for
every setting. In both methods, the difference between the eigenvalue after the
last iteration λit and the target value λ∗ increases from 10−5 to more than 5·10−4

by increasing α. For the values of the determinant of the deformation gradient
Jq we do not observe any change.

Influence of increasing the parameter β
In the following, we investigate the influence of increasing β to 10−3 on the
optimization methods. The results are shown in Table 4.9. In (a), we observe
that the BFGS method stops after the maximum number of iterations, which
we set to 100 with rres varying between 7 · 10−5 and 10−3. We identify that the
values of Jq,min and Jq,max increase up to 1.812 and 1.91 for the last setting. This
implies an increase in volume of the domain. Besides that, the gradient method,
see (b), terminates in every setting after the maximum number of iterations with
a relative residuum higher than 10−3 and a difference between the eigenvalue λit
and the target value λ∗ is about 10−5. The values of Jq,min and Jq,max are
around 1.065.
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Table 4.8. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−3, β = 10−8

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 13 3.80001 5.563e-07 8.762-06 1.017 1.054 A
387 3 1 0 4.052 10 3.80001 7.659e-07 8.597e-06 1.050 1.057 A
1411 3 2 1 4.000 15 3.8 5.350e-07 6.796e-06 1.034 1.055 A
1411 4 1 0 4.013 15 3.8 6.081e-07 5.678e-06 1.049 1.051 A
5389 4 2 1 4.000 15 3.8 5.383e-07 5.704e-06 1.043 1.053 A
5389 5 1 0 4.003 15 3.8 5.558e-07 5.664e-06 1.051 1.051 A
20995 5 2 1 4.000 15 3.8 5.382e-07 5.382e-07 1.048 1.053 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 25 3.80001 5.268e-07 9.895e-06 1.020 1.049 A
387 3 1 0 4.052 26 3.80001 8.019e-07 7.749e-06 1.048 1.055 A
1411 3 2 1 4.000 25 3.80001 5.167e-07 9.788e-06 1.032 1.049 A
1411 4 1 0 4.013 26 3.80001 5.849e-07 6.575e-06 1.047 1.049 A
5389 4 2 1 4.000 25 3.80001 5.161e-07 9.781e-06 1.041 1.049 A
5389 5 1 0 4.003 25 3.80001 5.328e-07 9.906e-06 1.048 1.048 A
20995 5 2 1 4.000 25 3.80001 5.161e-07 9.780e-06 1.045 1.049 A

By fixing β = 10−3 and decreasing α to 10−4, see Table A.10, and 10−5, see
Table A.11, the BFGS method stops again after the maximum number of itera-
tions, see (a) each. The value of the determinant of the deformation gradient Jq
increases and varies a lot in these settings. For the last setting, we obtain a
maximum value of 3.23. Moreover, with these choices of parameters, the gradi-
ent method terminates after the maximal number of iterations with a relative
residual larger than 10−3, see (b) each. For both choices of α, the maximum
value of the determinant of the deformation gradient is 1.066.

Finally, by keeping β = 10−3 and increasing α to 10−2, see Table A.12,
and α = 10−1, see Table A.13, the BFGS method terminates for the first choice
of parameters with an inconsistent number of iterations between 21 and 79 with
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Table 4.9. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−3, β = 10−3

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 100 3.80139 -8.058e-04 4.311e-03 1.91504 2.0232 B
387 3 1 0 4.052 100 3.79999 -8.663e-04 7.572e-05 2.562 2.595 A
1411 3 2 1 4.000 100 3.79961 -8.179e-04 1.170e-03 2.019 2.059 B
1411 4 1 0 4.013 100 3.80003 -7.296e-04 4.923e-04 1.851 2.011 B
5389 4 2 1 4.000 100 3.79987 -7.694e-04 5.344e-04 1.934 1.934 B
5389 5 1 0 4.003 100 3.79974 -5.509e-04 1.026e-03 1.504 1.692 B
20995 5 2 1 4.000 100 3.8009 -5.433e-04 3.002e-03 1.812 1.910 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 1000 3.80003 -9.702e-05 1.327e-03 1.061 1.065 A
387 3 1 0 4.052 1000 3.79953 -1.048e-04 1.352e-03 1.074 1.075 A
1411 3 2 1 4.000 1000 3.80004 -9.673e-05 1.366e-03 1.063 1.065 A
1411 4 1 0 4.013 1000 3.80001 -9.872e-05 1.172e-03 1.067 1.068 A
5389 4 2 1 4.000 1000 3.80004 -9.671e-05 1.369e-03 1.064 1.065 A
5389 5 1 0 4.003 1000 3.80003 -9.721e-05 1.315e-03 1.066 1.066 A
20995 5 2 1 4.000 1000 3.80004 -9.6711-05 1.369e-03 1.064 1.065 A

a difference between the eigenvalue λit and the target value λ∗ of about 2 · 10−4

and the maximum value of the determinant of the deformation gradient is up
to 1.115. In contrast, for α = 10−1 the method results in good values with a
convergence after 7 to 8 iterations with values of the determinant of the defor-
mation gradient around 1.05. However, the difference between the eigenvalue λit
and the target value λ∗ is at least 3.7 · 10−4. The gradient method, see (b)
each, terminates for both choices of α after the maximum number of iterations.
With increasing α, also the difference between the eigenvalue λit and the target
value λ∗ increases. The residua for α = 10−2 are in the range of 10−3 and,
for α = 10−1, they are in the range of 2.5 · 10−5, respectively. The values of the
determinant of the deformation gradient of the first choice of α are around 1.063,
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whereas for the second around 1.053. The values for the latter are closer to the
ones of the initial example.

Conclusion of the variation of the regularization parameters
In general, the BFGS method provides better results than the gradient method.
For the BFGS method, we observe that this example converges to the desired
termination tolerance by choosing β ≥ 10−5 or β = 10−3, α ≥ 10−2. For other
combinations of parameter α and β, the method stops after the maximum number
of iterations. Additionally, in these cases, we observe a significant increase of the
values of Jq. This indicates an enormous growth of the corresponding domain.
Furthermore, we notice that an increase of the parameter α means a reduction of
the number of iterations until the method terminates. This holds for a decrease of
the parameter β as well. Besides reducing the number of iterations, increasing α
also influences the difference between the eigenvalue after the last iteration and
the target value, which increases. In the context of eigenvalue optimization in an
electromagnetic setting, where we wish to obtain accurate frequencies, we would
not decide to chose an α as large as possible. Here, the optimized eigenvalue
is not exactly the target value. We have to weigh up between the speed of
the method and the accuracy of the eigenvalue. Moreover, the influence of the
parameter β is stronger the smaller the choice of α. By taking α ≥ 10−3, a choice
of β between 10−5 and 10−8 does not have much influence on the optimization
results. Finally, we conclude that for the BFGS method the choice of parameters
of our initial example, where α = 10−3 and 10−5, is already a good choice for
the method.

We observed that the gradient method does not converge in the most exam-
ples. Nevertheless, we obtain convergence of the method in several settings.
We observe the convergence of the gradient method mainly for the choice
of β = 10−8 and the number of iterations stays between 25 and 26 iterations
for a choice of α ≤ 10−2. Furthermore, we notice that increases of β lead to a
slight increase in the values of Jq. Finally, even with obtaining convergence for
the gradient method, we prefer the BFGS method because it performs better in
general.

Visualization of the variation of the regularization parameters
After the discussion of the influence of the regularization parameters for the
BFGS method from Algorithm 4.4 and the gradient method from Algorithm 4.3,
we visualize the deformed domains after the last iteration for the setting
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with 20995 DoFs, refinement level 5 and the choice of first order Nédélec ele-
ments and second order Lagrange elements. Figure 4.7 shows the results for the
BFGS method and Figure 4.8 for the gradient method, respectively.

The influence of the regularization parameters on the BFGS method can be
clearly seen in the solution figure. Taking the initial example with a choice of
regularization parameters α = 10−3 and β = 10−5, we observe that the main
deformation is the contraction in the vertical center of the domain. This defor-
mation of the domain runs through the examples taking β = 10−5 or β = 10−8.
In these cases, the parameter α influences for β = 10−5 the width of the domain
and, in both cases, the smoothness of the boundaries. Moreover, taking β = 10−3

shows that the regularization part of the barrier term has an high impact on the
deformation for the case where α = 10−1. Here, the domain change behaves sim-
ilar to the ones by taking a smaller choice for β. In the other cases, we observe
that the domain deforms more, the smaller the choice of α. This is consistent
with the numerical examples of the discussion above.

In contrast, the influence of the regularization parameters on the gradient de-
scent method has less impact on the deformation. Similar to the BFGS method,
the main deformation of the examples with the choice of β = 10−5 or β = 10−8

is the contraction in the vertical center of the domain. Taking β = 10−3 has
the consequence that the domain expands on the vertical center except for the
choice α = 10−1. Here, the domain deformation behaves as in the examples
with taking smaller β.
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Figure 4.7. Influence of the regularization parameters regarding to the deformed
rectangle after freeform optimization using the Damped Inverse BFGS method with
target value λ∗ = 3.8. The chosen refinement level is 5, the number of DoFs is 20995
and Lagrange elements of order 2 and first order Nédélec elements are used. The first
(numerical) eigenvalue before optimization is λ0 = 4.0.

100



4.4. Numerical Examples of Freeform Optimization

0 0.0275Control Vector q

β

10−3 10−5 10−8

α

10
−
1

10
−
2

10
−
3

10
−
4

10
−
5

Figure 4.8. Influence on the regularization parameters regarding to the deformed
rectangle after freeform optimization using the gradient method with target value
λ∗ = 3.8. The chosen refinement level is 5, the number of DoFs is 20995 and Lagrange
elements of order 2 and first order Nédélec elements are used. The first (numerical)
eigenvalue before optimization is λ0 = 4.0.
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4.4.1.2. BFGS Method with reduction of the termination tolerance

In most of the previous examples, we observe that the gradient method runs out of
the chosen maximum number of iterations whereas the BFGS method converges
in a few iteration steps. Now, we show the possibility for the BFGS method
to reach higher accuracy in sense of a decreasing tolerance for the termination
criteria exemplary on the initial example. Therefore, we keep the settings from
Table 4.3 with the exception of changing the tolerances TOLglobal and TOL. In
these examples, we use the subspace iteration in order to solve the concerning
eigenvalue problems. Table 4.10 shows results of the initial example using the
BFGS method with varying the choices of termination tolerances, namely

(a) TOLglobal = TOL = 10−5 (initial example),

(b) TOLglobal = TOL = 10−7,

(c) TOLglobal = TOL = 10−8.

We remember the initial example with a tolerance 10−5, see (a), where the
method terminates after 15 iterations in every setting with an eigenvalue λit
equal to λ∗. In (b), we observe that the method converges for a tolerance 10−7

in every setting but the required number of iterations varies. It seems that with
a higher number of DoFs and with the choice of first order Nédélec elements and
second order Lagrange elements, the number of iterations stabilizes. In (c) the
method converges in mostly every setting to the required tolerance, except for the
setting with 5389 DoFs, lowest order Nédélec elements and first order Lagrange
elements, as well for the setting with 1411 DoFs, first order Nédélec elements and
second order Lagrange elements. Here, it stopped after the maximum number of
iterations. Similar to (b), it seems that with a higher number of DoFs and with
the choice of first order Nédélec elements and second order Lagrange elements,
the number of iterations stabilizes. Furthermore, values of the cost functional J
as well as the minimum and maximum values of the determinant of the defor-
mation gradient Jq converge against the same values, see (b) compared with (c).
Figure 4.9 shows the deformed upper half of the rectangle domain for the choice
of termination tolerances of 10−5 in (a) and 10−7 in (b). The deformation in both
examples behaves similar. In (a) the deformation in the upper corners is slightly
stronger than in (b). Moreover, the alignment of the displacement vectors in the
lower part of the domain are slightly different.

102



4.4. Numerical Examples of Freeform Optimization

Table 4.10. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 by using the BFGS method from Algorithm 4.4
with regularization parameters α = 10−3 and β = 10−5 and varying the tolerances
of the termination criteria TOLglobal and TOL. The tables show results varying the
DoFs of the mesh, the refinement level (ref.), the order of Lagrange (Lagr.) and
Nédélec (Néd.) elements. The initial first (numerical) eigenvalue is given by λ0.
We show the eigenvalue λit after termination of the method and the resulting value
of the cost functional J , the relative residual of the gradient of the cost functional
as well as the minimum and maximum value of the determinant of the deformation
gradient Jq and the used eigenvalue solver EVS.

(a) TOLglobal = TOL = 10−5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 15 3.8 1.128e-07 3.44e-06 1.030 1.057 A
387 3 1 0 4.052 15 3.8 3.522e-07 5.499e-06 1.031 1.054 A
1411 3 2 1 4.000 15 3.8 1.081e-07 3.923e-06 1.042 1.058 A
1411 4 1 0 4.013 15 3.8 1.752e-07 5.818e-06 1.053 1.055 A
5389 4 2 1 4.000 15 3.8 1.265e-07 6.084e-06 1.047 1.055 A
5389 5 1 0 4.003 15 3.8 1.381e-07 6.012e-06 1.053 1.053 A
20995 5 2 1 4.000 15 3.8 1.265e-07 6.085e-06 1.051 1.055 A

(b) TOLglobal = TOL = 10−7

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 69 3.8 1.087e-07 6.554e-08 1.031 1.054 A
387 3 1 0 4.052 47 3.80001 3.201e-07 6.622e-08 1.055 1.060 A
1411 3 2 1 4.000 68 3.8 1.018e-07 9.680e-08 1.040 1.054 A
1411 4 1 0 4.013 49 3.8 1.492e-07 5.870e-08 1.053 1.054 A
5389 4 2 1 4.000 47 3.8 1.013e-07 4.380e-08 1.047 1.054 A
5389 5 1 0 4.003 67 3.8 1.129e-07 7.175e-07 1.053 1.053 A
20995 5 2 1 4.000 47 3.8 1.013e-07 3.914e-08 1.051 1.054 A

(c) TOLglobal = TOL = 10−8

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 69 3.8 1.087e-07 <1.0e-08 1.031 1.054 A
387 3 1 0 4.052 57 3.80001 3.201e-07 <1.0e-08 1.055 1.060 A
1411 3 2 1 4.000 100 3.8 1.018e-07 3.448e-08 1.040 1.054 A
1411 4 1 0 4.013 58 3.8 1.492e-07 <1.0e-08 1.053 1.054 A
5389 4 2 1 4.000 69 3.8 1.013e-07 <1.0e-08 1.047 1.054 A
5389 5 1 0 4.003 100 3.8 1.129e-07 3.481e-07 1.053 1.053 A
20995 5 2 1 4.000 65 3.8 1.013e-07 <1.0e-08 1.051 1.054 A
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(a) TOL = 10−5 (b) TOL = 10−7

Figure 4.9. Comparison the tolerance of the termination criteria of the deformed
rectangle domain after freeform optimization with BFGS method with target value
λ∗ = 3.8 and regularization parameters α = 10−3 and β = 10−5. The solution is
symmetric to the lower half.

4.4.1.3. Influence of the Choice of the Target Value λ∗ on the Domain
Deformation

In the following examples, we compare the influence of the choice of the
target value λ∗ on the deformation of the rectangle domain. To this
end, we consider the initial example with the choice of regularization
parameters α = 10−3 and β = 10−5, the settings from Table 4.3 with termination
tolerances TOLglobal = TOL = 10−7. In these examples, we use the subspace
iteration in order to solve the concerning eigenvalue problems. In the following,
we consider two different refinement levels and a discretization with first order
Nédélec elements and second order Lagrange elements. With that, we vary the
target value λ∗ to 3.95, 4.05 and 4.20 and observe its influence on the domain
deformation. The results are shown in Table 4.11 and visualized in Figure 4.10.

For all choices of the target value λ∗, the BFGS method converges with the
chosen termination criteria. The target values λ∗ = 3.8 and 3.95 are smaller than
the eigenvalue of the initial eigenvalue λ0 = 4. Here, we expect the same direction
of deformation. Since the analytical first eigenvalue of a rectangle domain depend
on the smallest value of width or hight, we expect in our example an shrinkage of
the width (x-direction) and a growth of the height (y-direction). In both cases,
the number of iterations is for both settings 47 and the eigenvalue after the last
iteration λit is equal to λ∗. Comparing the minimum and maximum value of the
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(a) λ∗ = 3.8

(c)λ∗ = 4.05

(b) λ∗ = 3.95

(d)λ∗ = 4.2

Figure 4.10. Deformation of a rectangle domain regarding a freeform optimization by
using the BFGS method of Algorithm 4.4 with varying the chosen target value λ∗ with
regularization parameters α = 10−3 and β = 10−5 and the tolerance of termination
criteria of TOLglobal = TOL = 10−7. The chosen refinement level is 5, the number
of DoFs is 20995. Lagrange elements of order 2 and Nédélec elements of order 1 are
used and the initial first (numerical) eigenvalue is λ0 = 4.
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Table 4.11. Comparison of λ∗ on the domain deformation of a freeform op-
timization on a rectangle domain by using the BFGS method from Algo-
rithm 4.4 for α = 10−3 and β = 10−5 and the tolerance of termination criteria
of TOLglobal = TOL = 10−7. The initial first (numerical) eigenvalue is λ0 = 4.
DoFs ref. Lagr. Néd. λ∗ it. λit. J rrel Jq,min Jq,max

5389 4 2 1 3.8 47 3.8 1.013e-07 4.380e-08 1.047 1.054
20995 5 2 1 3.8 47 3.8 1.013e-07 3.914e-08 1.051 1.054
5389 4 2 1 3.95 47 3.95 -1.382e-07 1.535e-07 1.016 1.016
20995 5 2 1 3.95 47 3.95 -1.382e-07 1.541e-07 1.016 1.016
5389 4 2 1 4.05 48 4.05 2.368e-08 1.461e-07 0.993 0.996
20995 5 2 1 4.05 38 4.05 2.370e-08 2.187e-07 0.993 0.994
5389 4 2 1 4.2 30 4.1999 6.919e-07 9.559e-08 0.960 0.969
20995 5 2 1 4.2 30 4.1999 6.912e-07 9.737e-08 0.960 0.964

determinant of the deformation gradient Jq, we observe that the optimization
to the target value λ∗ = 3.8 has a greater influence on the domain deformation
than optimizing to λ∗ = 3.95. In the first case, it is Jq,max = 1.054 and in the
second case, it is Jq,max = 1.016, which means that in both cases the volume
of the domain grows. It is expected that the greater difference between the
initial eigenvalue and the target value impacts a greater deformation than the
smaller one. The visualization of the two examples are shown in Figure 4.10 (a)
and (b). It indicates that in (a) the rectangle expands on the top and bottom of
the domain, what results a shrinkage in x-direction and a growth in y-direction.
In (b) the deformation is in general much smaller than in (a) and is constantly
growing in every direction. This results, that (a) fulfills our expectations to the
domain change whereas the deformation in (b) is so small that we cannot make
any statement to the deformation of the domain.

The choice of a target values λ∗ = 4.05 or 4.2 is larger than the initial eigen-
value. For λ∗ = 4.05, the method converges after 48 or 38 iterations and the
eigenvalue after the last iteration is equal to the target value. For λ∗ = 4.2, it
converges after 30 iterations for both settings. Here, the difference between the
eigenvalue after the last iteration λit and the target value is 10−4. Comparing the
minimum and maximum value of the determinant of the deformation gradient Jq,
the supposition is confirmed. For the first case, it is Jq,max = 0.996 or 0.994 and
for the second case, it is Jq,max = 0.969 or 0.964. The volumes of the domains
shrink and also, the closer to the initial value to the target value, the closer is
the value of the determinant equal to 1. The visualization of the deformation of
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the domain of these examples is shown in Figure 4.10 (c) and (d). In both cases,
the domain shrinks in y-direction and grows in x-direction. This is an opposite
behavior to (a). Further, we expect this behavior of domain change because by
increasing the first eigenvalue, we expect a growth of the smaller side length.
Moreover, the deformation in (d) is larger than in (b) as expected, because the
difference of the target value to the initial value was bigger in this case.

4.4.2. Quarter Circle with Fixed Edges

In Section 4.4.1, we validated the code for the optimization methods from Al-
gorithms 4.3 and 4.4 to solve the considered Maxwell’s eigenvalue optimization
problem depending on a domain mapping (4.36) on a simple freeform rectangle
domain. In the following, we consider a more complicated setting. Now, the
computational domain is a quarter circle with a radius π to verify if the code
also works on curved edges. Furthermore, we increase the number of DoFs to ob-
tain more precise results and fix boundaries on the domain by setting q = 0, see
Figure 4.11. We show the results of various optimization examples to optimize
the first eigenvalue λ = λ1 to a chosen target value λ∗. For the methods, we use
the settings shown in Table 4.12.

π

π

fixed boundary with q = 0

x

y

Ω̂

Figure 4.11. Quarter Circle Geometry

Similar to the examples on the rectangle, we show the first numerical eigen-
value before optimization, i.e. λ0, which gets more precise by increasing the
number of DoFs, which we increase by a higher refinement level of the mesh or
by increasing the order of elements. In all these settings, we show the number
of iterations (it.), the first eigenvalue after termination λit, the value of the cost
functional J and rrel. Further, we indicate the maximum and minimum values of
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Table 4.12. Parameters for the optimization on the quarter circle
BFGS method gradient method
(Algorithm 4.4) (Algorithm 4.3)

itmax 100 1000
TOLglobal 10−6 10−6

TOL 10−6 10−6

Armijo condition
line itmax 10 10
γ 0.1 0.1
ρ 0.1 0.1

the determinant of the deformation gradient, which provides information about
the domain change. Again, we consider various settings, which optimize this
eigenvalue to a target value λ∗.

In an initial example, we compare the gradient method from Algorithm 4.3 with
the BFGS method from Algorithm 4.4. We note that, similar to the examples
on the rectangle domain, that the gradient method converges really slow. Hence,
we focus then on the BFGS method and show results on the influence of the
regularization parameters on the deformation of the domain. Afterwards, we
investigate the influence of the choice of different target values λ∗.

4.4.2.1. Comparison of the Optimization Methods

In the following, we compare the BFGS method from Algorithm 4.4 with the
gradient method from Algorithm 4.3 on the considered quarter circle domain.

Initial Example: Comparison with α = 10−4 and β = 10−6

We choose for the initial example the regularity parameters α = 10−4

and β = 10−6. Table 4.13 shows results of the optimization, where (a) shows
the results after optimization with the BFGS method and (b) the results of the
gradient method. The BFGS method converges after 7 iterations for every set-
ting with a relative residual of the reduced gradient smaller than 4.2 · 10−6 with
exception of the first setting, where the relative residual 9.8 · 10−6. The mini-
mum and maximum values of the determinant of the deformation gradient Jq is
between 1.002 and 1.004. In comparison to that terminates the gradient method
in every setting after the maximum number of iterations, which is set to 1000,
with a relative residual bigger than 1.5 · 10−4. Here, the minimum and maxi-
mum values of the determinant of the deformation gradient Jq is between 0.998
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Table 4.13. Results of a freeform optimization on a quarter circle domain with fixed
edges and target value λ∗ = 0.92 and regularization parameters α = 10−4, β = 10−6.
The tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 7 0.920028 3.827e-07 9.843e-06 1.002 1.004 A
4035 3 2 1 0.9467 7 0.920022 2.409e-07 3.063e-06 1.003 1.004 A
4035 4 1 0 0.9468 7 0.920022 2.483e-07 4.159e-06 1.003 1.004 A
15737 4 2 1 0.9455 7 0.920021 2.172e-07 3.016e-06 1.003 1.003 A
15737 5 1 2 0.9456 7 0.920021 2.190e-07 2.966e-06 1.003 1.003 A
62211 5 2 1 0.9453 7 0.92002 2.114e-07 3.097e-06 1.003 1.003 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 1000 0.920027 3.954e-07 1.501e-04 0.998 1.000 A
4035 3 2 1 0.9467 1000 0.920022 2.540e-07 1.776e-04 0.999 1.000 A
4035 4 1 0 0.9468 1000 0.920022 2.613e-07 1.777e-04 0.999 1.000 A
15737 4 2 1 0.9455 1000 0.920021 2.303e-07 1.860e-04 0.999 1.000 A
15737 5 1 0 0.9456 1000 0.920021 2.322e-07 1.861e-04 1.000 1.000 A
62211 5 2 1 0.9453 1000 0.92002 2.246e-07 1.883e-04 1.000 1.000 A

and 1.00. In both settings, the difference between the eigenvalue after the last
iteration λit and the target value λ∗ is bigger than 2 · 10−5 and the values of the
cost functional are smaller than 4 · 10−6.

Figure 4.12 visualizes the deformation of the quarter circles after optimization
with both methods with the chosen regularization parameters for the refinement
level 5, 62212 DoFs and a discretization of the domain with Lagrange elements
of order 2 and Nédélec elements of order 1. After both optimization methods,
the quarter circle is deformed by pulling apart the corners on the transition from
the circular arc to the edges. Further, at the top right, the quarter circle is com-
pressed. The difference between the deformations is, that in (a) the deformation
on the transition from the circular arc to the edged is a little stronger than in (b),
whereas the compression at the top right is minimal stronger in (b) than in (a).
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(a) BFGS method from Algorithm 4.4 (b) Gradient method from Algorithm 4.3

Figure 4.12. Comparison of the reduced optimization methods regarding to the de-
formed quarter circle domain after freeform optimization with target value λ∗ = 0.92
and regularization parameters α = 10−4, β = 10−6. The chosen refinement level is 5,
the number of DoFs is 62211. Lagrange elements of order 2 and Nédélec elements of
order 1 are used and the initial first (numerical) eigenvalue is λ0 = 0.945255.

4.4.2.2. Comparison of Regularization Parameters on the BFGS Method

Compared to the BFGS method is the gradient method really slow in runtime.
Furthermore, we obtain a better convergence results with the BFGS method.
For that reason, we focus on the BFGS method in the following and refer to
some selected results of the gradient method to Appendix A.2.2.

Influence of increasing the parameter α
In the following, we investigate in the influence of α on the deformation of the
domain. Table 4.14 shows results of the optimization problem by increasing α
to 10−3 and keeping β. The method converges after 5 or 6 iterations to an
eigenvalue λit with a difference to the target value λ∗ bigger than 2 · 10−4 and
a relative residual of the reduced gradient varies between 10−4 and 10−6. The
values for the determinant of the deformation gradient Jq are between 0.998
and 1. The domain deformation is almost negligible.

Influence of decreasing the parameter α
Now, we investigate the influence of decreasing the parameter α to 10−5 on the
optimization results which we show in Table 4.15. In every setting, the number of
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Table 4.14. Results of a freeform optimization on a quarter circle domain with fixed
edges by using the BFGS method from Algorithm 4.4 with target value λ∗ = 0.92
and regularization parameters α = 10−3, β = 10−6. The tables show results varying
the DoFs of the mesh, the refinement level (ref.), the order of Lagrange (Lagr.) and
Nédélec (Néd.) elements. The initial first (numerical) eigenvalue is given by λ0. We
show the eigenvalue λit after termination of the method and the resulting value of the
cost functional J , the relative residual of the gradient of the cost functional as well as
the minimum and maximum value of the determinant of the deformation gradient Jq
and the used eigenvalue solver EVS.

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 5 0.920286 6.859e-05 4.517e-06 0.9982 1.0002 A
4035 3 2 1 0.9467 6 0.920231 3.028e-06 2.263e-06 0.9986 1.000 B
4035 4 1 0 0.9468 5 0.920232 3.105e-06 1.034e-04 0.9992 0.9999 A
15737 4 2 1 0.9455 6 0.920221 2.775e-06 1.953e-06 0.9993 1.0000 B
15737 5 1 0 0.9456 6 0.920222 2.795e-06 1.738e-06 0.9995 1.0000 B
62211 5 2 1 0.9453 6 0.920218 2.714e-06 1.892e-06 0.9995 0.9999 A

Table 4.15. Results of a freeform optimization on a quarter circle domain with fixed
edges by using the BFGS method from Algorithm 4.4 with target value λ∗ = 0.92
and regularization parameters α = 10−5, β = 10−6. The tables show results varying
the DoFs of the mesh, the refinement level (ref.), the order of Lagrange (Lagr.) and
Nédélec (Néd.) elements. The initial first (numerical) eigenvalue is given by λ0. We
show the eigenvalue λit after termination of the method and the resulting value of the
cost functional J , the relative residual of the gradient of the cost functional as well as
the minimum and maximum value of the determinant of the deformation gradient Jq
and the used eigenvalue solver EVS.

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 14 0.920002 -1.679e-07 5.107e-05 1.043 1.046 B
4035 3 2 1 0.9467 14 0.920001 -1.811e-07 2.987e-05 1.032 1.039 A
4035 4 1 0 0.9468 14 0.92 -1.805e-07 3.015e-05 1.034 1.035 A
15737 4 2 1 0.9455 14 0.92 -1.777e-07 4.541e-05 1.030 1.033 A
15737 5 1 2 0.9456 14 0.92 -1.770e-07 4.741e-05 1.031 1.031 A
62211 5 2 1 0.9453 14 0.92 -1.783e-07 4.417e-05 1.031 1.032 A

iterations is 14 and the difference between the eigenvalue of the last iteration λit
and the target value λ∗ is between 0 and 2 · 10−6. The relative residua of the
reduced gradient are between 5.1 · 10−5 and 4.7 · 10−5. The determinant of the
deformation gradient Jq has values around 1.03 which means that the domain
grows. For the results of this example solved with the gradient method, we
refer to Table A.14. Here, the method stopped after the maximum number of
iterations with an eigenvalue equal to the target value. The relative residual of
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the reduced gradient is in every setting bigger than 2 · 10−4 and values of the
determinant of the deformation gradient are close to 1 in every setting.

For the BFGS method, decreasing α to 10−6 has the consequence that the
number of iterations until convergence varies depending on the DoFs on the
mesh. For the 159 DoFs it takes 31 iterations, whereas for 4035 DoFs it takes 18,
for 15737 Dofs 21 and for 62211 DoFs 27 iterations. Moreover the difference
between λit and λ∗ are in the range of 10−6. The relative residua of the reduced
gradient of the cost functional vary between 10−4 and 7.8 · 10−5 and the values
of Jq vary between 1.028 and 1.381 which is compared to the previous examples
a big variation. For the same parameters, the gradient method does not achieve
better results compared to the previous example. Again, it stopped for every
setting after the maximum number of iterations, where the difference between λit
and λ∗ increases to 10−6 and the range for the relative residual of the reduced
gradient stays the same. For the example with α = 10−3 and β = 10−6, we refer
to Table A.15.

Influence of increasing the parameter β
Now, we come back to the initial example and and investigate the influence of
increasing the parameter β, i.e., we set α = 10−4 and β = 10−5. Table 4.16 shows
that the BFGS method converges for each setting after 9 iterations except for the
coarsest mesh. Here, it takes 10 iterations. The difference between the eigenvalue
after the last iteration λit and the target value λ∗ is between 10−5 for the coarsest
mesh and decreases to less than 3 · 10−6 for the finer ones. The relative residual
of the reduced gradient is between 1.2 · 10−4 and 5 · 10−5 which is an increase
compared to the previous examples. Furthermore, the values for the determinant
of the deformation gradient converge for finer meshes to about 1.25. In case of
the gradient method, we obtain similar values for λit. The relative residual is
greater than 10−3 for every setting after the termination of the method after the
maximum number of iterations, see Table A.16.

It turns out that taking β = 10−5 and decreasing α again to 10−5 and 10−6

giving no better results, see Table A.17 (a) and (b), respectively. Here, the BFGS
method stops in every setting after the maximum number of iterations with a
relative residual greater than 10−4 which is a debasement to the previous results.

By keeping β = 10−5 and increasing α to 10−3 the method converges after 6
iterations for every setting, the relative residual of the reduced gradient is in
every case smaller than 1.8 · 10−6 and the values for Jq are about 1.003. It is
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Table 4.16. Results of a freeform optimization on a quarter circle domain with fixed
edges by using the BFGS method from Algorithm 4.4 with target value λ∗ = 0.92
and regularization parameters α = 10−4, β = 10−5. The tables show results varying
the DoFs of the mesh, the refinement level (ref.), the order of Lagrange (Lagr.) and
Nédélec (Néd.) elements. The initial first (numerical) eigenvalue is given by λ0. We
show the eigenvalue λit after termination of the method and the resulting value of the
cost functional J , the relative residual of the gradient of the cost functional as well as
the minimum and maximum value of the determinant of the deformation gradient Jq
and the used eigenvalue solver EVS.

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 10 0.920011 -1.792e-06 5.080e-05 1.038 1.041 A
4035 3 2 1 0.9467 9 0.920003 -1.841e-06 7.350e-05 1.035 1.043 A
4035 4 1 0 0.9468 9 0.920003 -1.838e-06 7.207e-05 1.037 1.039 A
15737 4 2 1 0.9455 9 0.92 -1.846e-06 1.019e-04 1.036 1.040 A
15737 5 1 0 0.9456 9 0.92 -1.845e-06 9.853e-05 1.037 1.038 A
62211 5 2 1 0.9453 9 0.919999 -1.847e-06 1.124e-04 1.034 0.139 A

noticeable that the difference between λit and λ∗ increases in comparison to
the other settings, i.e., it increases to 2 · 10−4. For the results of this choice of
parameters, we refer to Table A.17 (c).

Influence of decreasing the parameter β
Finally, we consider the initial example and decrease the parameter β to 10−7.
Table 4.17 shows that the method converges in every setting after 6 iterations
with a relative residual of the reduced gradient smaller than 3 · 10−5. Here, the
difference between λit and λ∗ is in every setting, except the coarsest one, less
than 2.5 · 10−5. The values of Jq are between 0.999 and 1.

Keeping β = 10−7 and varying α has the following influences and are shown in
Table A.18. By decreasing α to 10−5, see in (a), the number of iterations increases
the from the previous example to 7 to 9. Decreasing α again to 10−6, see (b),
the number of iterations increases again. Now it is for the most settings 12.
Furthermore, decreasing α decreases the difference between λit and λ∗. For the
first case, it is 4 · 10−6 and for the second, it is less than 2 · 10−6. Moreover,
it is Jq about 1.003 for the first choice of α and between 1.004 to 1.019 for the
second. Further, with the choice of α = 10−6, the method takes 7 to 12 iterations.
The values for the relative residual of the reduced gradient increase compared to
taking α = 10−4 and by that, we do not obtain better results than before. It as
a minimal increasing impact to the values of Jq.
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In contrast, increasing α to 10−3, see (c), results that the number of itera-
tions until the method converges differs between 5 and 12. Also the difference
between λit and λ∗ differs between 2·10−4 for coarse meshes and 10−5 and less for
the finer ones. Moreover, the relative residual of the reduced gradient differs be-
tween the range of 10−4 and 10−6. The values for Jq are between 0.998 and 1.018.

Table 4.17. Results of a freeform optimization on a quarter circle domain with fixed
edges by using the BFGS method from Algorithm 4.4 with target value λ∗ = 0.92 and
regularization parameters α = 10−4 and β = 10−7. The tables show results varying
the DoFs of the mesh, the refinement level (ref.), the order of Lagrange (Lagr.) and
Nédélec (Néd.) elements. The initial first (numerical) eigenvalue is given by λ0. We
show the eigenvalue λit after termination of the method and the resulting value of the
cost functional J , the relative residual of the gradient of the cost functional as well as
the minimum and maximum value of the determinant of the deformation gradient Jq
and the used eigenvalue solver EVS.

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 6 0.998169 4.555e-07 2.904e-05 0.998 1.000 A
4035 3 2 1 0.9467 6 0.920024 3.052e-07 1.743e-05 0.999 1.000 A
4035 4 1 0 0.9468 6 0.920024 3.130e-07 2.398e-05 0.999 0.999 A
15737 4 2 1 0.9455 6 0.920023 2.798e-07 1.671e-05 0.999 0.999 A
15737 5 1 0 0.9456 6 0.920023 2.817e-07 1.851e-05 0.999 1.000 A
62211 5 2 1 0.9453 6 0.920022 2.736e-07 1.661e-05 0.999 1.000 A

Conclusion of the variation of the regularization parameters
The variation of the regularization parameters results similar results to those we
observed for the rectangle domain in Section 4.4.1. By increasing α, we reduce
the number of iterations until the method converges. Moreover, the difference
between the eigenvalue after the last iteration and the target value increases
minimally. Again, for a choice of α ≤ 10−5 and the choice β = 10−5, the method
stops after the maximum number of iterations. Here, the values of Jq increase
from a general value near 1 to values up to 1.615. Further, decreasing the param-
eter β causes a decrease of the number of iterations. In general, the parameter β
influences the difference between the obtained eigenvalues and the target value
less than the parameter α.

Visualization of the variation of the regularization parameters
After the discussion of the influence of the regularization parameters on the BFGS
method from Algorithm 4.4, we visualize the deformed domains in Figure 4.13
after the last iteration for the setting with 62211 DoFs, refinement level 5 and
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the choice of first order Nédélec elements and second order Lagrange elements.
The influence of the regularization parameters on the BFGS method can be
clearly seen in the solution figure. Taking the initial example with a choice of
the parameters

• α = 10−4 and β = 10−6,
the quarter circle is deformed by pulling apart the edge of the circular arc. A
similar deformation field exists for the choices

• α = 10−3 and β = 10−5

• α = 10−5 and β = 10−7.
This deformation mainly remains for

• α = 10−3 and β = 10−6,
• α = 10−4 and β = 10−7

Here, additionally, there is a small compression at the top right.
A constant deformation over the whole round part of the quarter circle by

pulling apart the circular arc at the top right, we obtain for the parameter com-
binations

• α = 10−3 and β = 10−7,
• α = 10−4 and β = 10−5,
• α = 10−5 and β = 10−6,
• α = 10−6 and β = 10−7,

where for the second and third combination, the deformation in the top right is
the biggest. The settings with the biggest deformations are with the parameters

• α = 10−5 and β = 10−5,
• α = 10−6 and β = 10−5,
• α = 10−6 and β = 10−6.

Here, the quarter circle is deformed strongly on the top right, whereas the corners
on the transition from the circular arc to the edges remain non-deformed. The
biggest deformations obtain the examples with the smallest α and biggest β. The
visualization of the domain matches with the expectations of the discussion of
the variation of the regularization parameters.
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Figure 4.13. Influence of the regularization parameters regarding to the deformed
quarter circle after optimization using the BFGS method with target value λ∗ = 0.92.
The chosen refinement level is 5, the number of DoFs is 62211 and Lagrange elements
of order 2 and first order Nédélec elements are used. The first (numerical) eigenvalue
before optimization is λ0 = 0.9453.
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4.4.2.3. Influence of the Choice of the Target Value λ∗ on the Domain
Deformation

In this subsection, we compare the influence on the choice of target value λ∗ on
the deformation on the quarter circle domain. We consider the initial example
solved with the BFGS method from Algorithm 4.4 with the choice of regulariza-
tion parameter α = 10−4 and β = 10−6 and the chosen refinement level 5, 62211
DoFs as well as a discretization with Nédélec elements of order 1 and Lagrange
elements of order 2. The first (numerical) eigenvalue is λ0 = 0.945. The target
value λ∗ in the initial example is 0.92 and the results are shown in Table 4.13
and the visualization of the deformed domain is shown in Figure 4.12.

In the following, we consider examples, where we optimize to various target
values, namely 1.00, 0.95, 0.94 and 0.90 and study their influence on the defor-
mation of the domain. The results are shown in Table 4.18 and visualized in
Figure 4.14. We observe that the method converges after 7 iterations for every
choice of λ∗. The difference of the eigenvalue after the last iteration λit and
the target value is smaller, the closer the target value is chosen from the initial
value λ0, i.e.,

• for λ∗ = 1.00, the difference is 4 · 10−5,

• for λ∗ = 0.95, the difference is 1 · 10−5,

• for λ∗ = 0.94, the difference is 0,

• and for λ∗ = 0.90, the difference is 4 · 10−5.

Furthermore, the relative residua are smaller by a closer chosen target value. Fig-
ure 4.14 (a) shows the deformation for λ∗ = 1.0. The quarter circle is deformed
by a compression of the corners on the transition from the circular arc to the
edges. Further, at the top right, the quarter circle pulls apart. The deformation
in (b) for λ∗ = 0.95 is similar. Again, the quarter circle is deformed by a com-
pression of the corners on the transition from the circular arc to the edges and at
the top right, the quarter circle pulls apart. Compared to the previous example,
the deformation decreases, which we expect because the target value of (b) is
closer to the initial eigenvalue. In (c), we see the deformation for λ∗ = 0.94. The
quarter circle pulls apart at the complete circular arc. Finally, (d) shows the
deformation for λ∗ = 0.9. The quarter circle is deformed by pulling apart at the
corners on the transition from the circular arc to the edges. Further, at the top
right, the quarter circle deforms by compression. The deformation is the inverse
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of the deformation of (a) and (b), where, in contrary to this setting, the target
value is higher than the initial eigenvalue.

Table 4.18. Comparison of λ∗ on the domain deformation of a freeform optimiza-
tion on a quarter circle domain with fixed edges by using the BFGS method from
Algorithm 4.4 using subspace iteration with α = 10−4 and β = 10−6. The chosen
refinement level is 5, the number of DoFs is 62211. Lagrange elements of order 2
and Nédélec elements of order 1 are used and the initial first (numerical) eigenvalue
is λ0 = 0.9453.

λ∗ it. λit. J rrel Jmin Jmax

1.00 7 0.99996 1.358e-06 4.295e-05 1.00288 1.00369
0.95 7 0.94999 4.136e-09 1.507e-06 1.00385 1.00417
0.94 7 0.94000 -1.520e-08 3.215e-06 1.00378 1.00398
0.90 7 0.90004 7.995e-07 2.784e-05 1.00263 1.00263

4.4.3. Conclusion of the Numerical Examples

In this section, we showed several examples of freeform optimization problems
constrained by Maxwell’s eigenvalue problem. We compared the BFGS method
from Algorithm 4.4 with the gradient method from Algorithm 4.3 on a rectangle
and a quarter circle domain. There, we studied the influence of the regularization
parameters as well as the target value λ∗ on the domains.

In both domains, we started showing optimization results on an initial
example with specified regularization parameters. We observed in both cases a
faster convergence of the BFGS method independent on the chosen setting for
the mesh. The method converged after 15 iterations for the rectangle domain
and after 7 iterations for the quarter circle domain, respectively. In contrast,
the gradient method did not converge in both examples. It stopped after the
maximum number of iterations, which we set to 1000.

Influence of the regularization parameters
We studied the influence of regularization parameters α and β. Here, we com-
pared their influence on the rectangle domain on both methods, whereas we
focused for the quarter circle domain on the BFGS method and restricted to
some selected examples for the gradient method to the Appendix. For all choices
of regularization parameters, the BFGS method converged faster than the gradi-
ent method. Further, the obtained results, where the methods converged, are in
almost every setting independent of the refinement level of the mesh. In several
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(a) λ∗ = 1.00

(c)λ∗ = 0.94

(b) λ∗ = 0.95

(d)λ∗ = 0.90

Figure 4.14. Variation of λ∗ using the BFGS method from Algorithm 4.4 on quarter
circle with fixed edges with α = 10−6 and β = 10−7. The chosen refinement level is 5,
the number of DoFs is 62211. Lagrange elements of order 2 and Nédélec elements of
order 1 are used and the initial first (numerical) eigenvalue is λ0 = 0.9453.
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cases, we observe minimal difference between the element orders of the finite
elements. The only case where we cannot conclude mesh independence was for
the rectangle example with a choice of α = 10−2 and β = 10−3.

As we expected, increasing the parameter α, and by that the influence of
the penalty regularization, on the rectangle domain ensured that the number of
iterations decreases in both methods. For the gradient method, this holds true
with a restriction that the chosen parameter β is small enough. We obtained
same results for the quarter circle domain using the BFGS method. In both
cases, this increased the difference between the eigenvalue and the target value.
We observed that the choice of β also influences, until some limit, the number of
iterations. When decreasing β, we observed a decrease in the number of iterations
as well. In the rectangle examples, this is also valid when utilizing the gradient
method. We conclude that the choice of β influences on the problem itself. A
choice of β too large even ensures that the methods do not converge anymore.

For all examples, we visualized the deformation of the optimized domains.
We observed that a too-large choice for β combined with a too-small choice
for α has an high impact on the domain deformation. Compared with the
numerical results, these are the examples, where the methods did not converge
after the maximum number of iterations. In these cases, the regularization was
not chosen strongly enough.

Influence of the choice of the target value
Another study was the influence of the target value λ∗ concerning the influence on
the domain change. Here, we obtained the expected results from both examples.
The values of Jq showed that the greater the difference between the target value
and the initial eigenvalue, the greater the difference of the resulting values to 1.
Furthermore, the choice of a smaller or bigger target value than the initial value
also influences the value of Jq. The target value decides on which part the
domain gets stretched or compressed. Also, depending on the strength of the
domain change, the solution changes in accuracy.
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In the previous chapter, we introduced an optimization problem constrained by
the Maxwell eigenvalue problem depending on a domain mapping (4.36). In Sec-
tion 4.1, we computed the gradient of the reduced cost functional with adjoint
calculus. Furthermore, we discussed in Section 4.2 two optimization methods
applied on the considered eigenvalue optimization problem, i.e., a damped in-
verse BFGS method in Algorithm 4.4 and a gradient method in Algorithm 4.3.
Moreover, we verified both methods on simple geometries in Section 4.4. Here,
we concluded that the BFGS method is more suitable in order to solve eigenvalue
optimization with respect to shape-variations in electromagnetic systems.

A resulting application is an electromagnetic cavity which is responsible for
the acceleration of particles in a particle collider which we already discussed
in Chapter 1. Now, the challenge is to transfer our approach to more realistic
applications. We have to make several adjustments to this, which we discuss in
this chapter.

First, we need to solve the considered optimization problem on more complex
geometries. Therefore, we consider in Section 5.1 two-dimensional planar ex-
amples of cavity domains. Here, we optimize the first eigenvalue the domain of
a 1-cell cavity on several regularization parameters and verify the influence of
some target values close the considered eigenvalue on the domain change. More-
over, we verify how an other boundary condition for q influences the solution and
the resulting deformation of the domain. Afterwards, we show results on a even
more complex domain, a 5-cell cavity domain, inspired by a cavity model seen
in [36].
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A further extension toward to more realistic examples is, of course, three-
dimensional domains. We extend our approach to three-dimensional problems
and conclude this chapter by showing optimization results on a cuboid as well as
a first example of a cylinder in Section 5.2.

5.1. Numerical Examples of Two-Dimensional Cavities

In this section, we present the results of eigenvalue optimization on two-
dimensional planar cavity domains. We consider the optimization on a 1-cell as
well as a 5-cell cavity, inspired by the numerical example of [36, Chapter 6.4] on a
model for the Superconducting-DArmstadt-LINear-ACcelerator (S-DALINAC),
see [2]. The starting design is a so-called low β cavity design, where the cells get
longer in order to take into account the increasing speed of the particle bunch.
The geometry is described with the parameters shown in Table 5.1, and the initial
domain of the 1-cell cavity (a) and the 5-cell cavity (b) is shown in Figure 5.1.
For the considered 1-cell cavity, we use the parameters of the first cell.

Riris

Reqa2

b2

b1

a1

l

Figure 5.1. Geometry of a Cavity.

Table 5.1. Cavity design parameters for the different cells, see [36]. All dimensions
are given in mm.

Cavity Shape Parameter Cell 1 Cell 2 Cell 3 Cell 4 Cell 5
Equator radius Req 43.44542 43.44542 43.44542 43.44542 43.44542
Iris radius Riris 16.5627 16.5627 16.5627 16.5627 16.5627
Horizontal half axis at iris a1 3.2 3.7184 4.32 5.0208 5.8336
Vertical half axis at iris b1 3.0592 3.0592 3.0592 3.0592 3.0592
Horizontal half axis at equator a2 21.98 25.54076 29.673 34.48662 40.06954
Vertical half axis at equator b2 23.82352 23.82352 23.82352 23.82352 23.82352
Length L 25.18 29.25916 33.993 39.50742 45.90314
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5.1. Numerical Examples of Two-Dimensional Cavities

The meshes of the geometries are created with GMSH [47] and shown in Fig-
ure 5.2. For all examples, we use the settings of Table 5.2 and we set ε = 10−4.

(a) 1-cell Cavity (b) 5-cell Cavity

Figure 5.2. Meshes of the Cavites

Table 5.2. Settings for the BFGS method from Algorithm 4.4 for optimization on
cavities

BFGS method from Algorithm 4.4
itmax 100
TOLglobal 10−7

TOL 10−7

Armijo Condition
line itmax 10
γ 0.1
ρ 0.1

To solve the eigenvalue problems during the optimization process, we use the
SLEPc library. For details on the settings, we refer to Appendix A.1. In Table A.3,
we name the concrete shifts of the solver and in Table A.2, the used library
versions.

5.1.1. 1-Cell Cavity

In the following, we optimize the first eigenvalue λ of a 1-cell cavity to a target
value λ∗ using the BFGS method from Algorithm 4.4. In several examples,
we observe the influence of the regularization parameters and the choice of the
target value on the domain deformation as well as the results of the optimization.
Moreover, we consider an example of a variation of the boundary condition.
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5.1.1.1. Comparison of Regularization Parameters

For first computational results, we fix the left- and right-hand sides of the domain
by setting q = 0 on the corresponding boundaries. By remembering the results
of Section 4.4, we obtain good results for a choice of β ≤ 10−5 and for α = 1. By
varying the parameters, we observe that the behavior of the optimization method
is similar to the previous examples, see Table 5.3. By increasing α to 1000, we
speed up the method. For all examples, we apply the Krylov Schur eigenvalue
solver (B). For details, we refer to Table A.1.

5.1.1.2. Influence of the Choice of the Target Value λ∗ on the Domain
Deformation

By keeping the previous boundary condition and setting the regularization pa-
rameters to α = 1 and β = 10−5, we study the influence of the variation of the
target value λ∗ on the domain deformation. The results are shown in Table 5.4.
Here, the BFGS method converges in all cases after 13 to 17 iterations. We ob-
serve that choosing a smaller target value compared to the first eigenvalue results
in the growth of the domain. We conclude this on the values of the determinant
of the deformation gradient Jq. Values bigger than 1 mean a volume growth,
whereas values smaller than 1 mean a volume shrink. Furthermore, a bigger dif-
ference to the first eigenvalue results in a bigger deformation. Moreover, a bigger
target value influences the domain change to shrink. Again, a bigger difference
results in a bigger deformation. A visualization of the deformed domains is shown
in Figure 5.3, where we observe exactly this phenomenon. The deformation is
demonstrated on the upper half of the domain. The lower half is symmetric.

5.1.1.3. Variation of Boundary Condition for the Deformation

In freeform optimization, the whole domain is able to deform in every direction.
Sometimes, e.g., in applications for cavities, one is interested in just optimizing
parts of the domain. In this last numerical example for 1-cell cavities, we show
results for a variation of the boundary condition by the choice of regularization
parameters α = 1 and β = 10−5. Here, we fix all parts of the boundary which
do not contain the equator of the cavity, by setting q = 0 on these places.
We observe, that the method converges after 18 iterations for this choice of
parameters, whereas in the previous example it terminated after 15 iterations
for the same choice of regularization parameters. Furthermore, we obtain that
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Table 5.3. Results of a freeform optimization using the BFGS method from Algo-
rithm 4.4 varying α and β on a 1-cell Cavity with fixed Riris on left-hand and right-
hand side and target value λ∗ = 1650. The initial first (numerical) eigenvalue is given
by λ0. We show the eigenvalue λit after termination of the method and the result-
ing value of the cost functional J , the relative residual of the gradient of the cost
functional as well as the minimum and maximum value of the determinant of the
deformation gradient Jq.

(a) α = 10, β = 10−5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max

2893 0 1 0 1660.77 15 1650 1.880e-07 5.008e-08 1.00504 1.00523
11023 0 2 1 1655.15 15 1650 4.293e-08 3.583e-08 1.00235 1.00240
11023 1 1 0 1653.28 15 1650 1.741e-08 3.154e-08 1.00147 1.00162
43363 2 1 0 1653.75 15 1650 2.273e-08 3.255e-08 1.00169 1.00171

(b) α = 1, β = 10−5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max

2893 0 1 0 1660.77 15 1650 1.869e-08 5.008e-08 1.00504 1.00523
11023 0 2 1 1655.15 15 1650 4.245e-09 3.583e-08 1.00235 1.00240
11023 1 1 0 1653.28 15 1650 1.711e-09 3.154e-08 1.00147 1.00162
43363 2 1 0 1653.75 15 1650 2.239e-09 3.255e-08 1.00169 1.00171

(c) α = 0.1, β = 10−5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max

2893 0 1 0 1660.77 20 1650 1.764e-09 4.754e-08 1.00500 1.00518
11023 0 2 1 1655.15 19 1650 3.763e-10 6.277e-08 1.00234 1.00239
11023 1 1 0 1653.28 19 1650 1.416e-10 4.015e-08 1.00147 1.00161
43363 2 1 0 1653.75 19 1650 1.897e-10 4.583e-08 1.00169 1.00170

(d) α = 0.1, β = 10−7

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max

2893 0 1 0 1660.77 15 1650 1.881e-08 5.008e-08 1.00504 1.00523
11023 0 2 1 1655.15 15 1650 4.298e-09 3.583e-08 1.00235 1.00240
11023 1 1 0 1653.28 15 1650 1.744e-09 3.154e-08 1.00147 1.00162
43363 2 1 0 1653.75 15 1650 2.273e-08 3.255e-08 1.00169 1.00171

(e) α = 1000, β = 10−7

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max

2893 0 1 0 1660.77 11 1650 1.881e-05 3.902e-08 1.005020 1.00520
11023 0 2 1 1655.15 11 1650 4.298e-06 <1.000e-08 1.00235 1.00239
11023 1 1 0 1653.28 11 1650 1.744e-09 <1.000e-08 1.00147 1.00161
43363 2 1 0 1653.75 11 1650 2.277e-08 <1.000e-08 1.00169 1.00171
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Table 5.4. Comparison of λ∗ on the domain deformation of a freeform optimization
on a 1-cell Cavity with fixed Riris on the left and right hand side by using the BFGS
method from Algorithm 4.4 with regularization parameters α = 1, β = 10−5. The
chosen refinement level is 2, the number of DoFs is 43363. Lagrange elements of
order 1 and lowest order Nédélec elements are used and the initial first (numerical)
eigenvalue is λ0 = 1653.75.

λ∗ it. λit. J rrel Jq,min Jq,max

1640 17 1640 3.077e-08 5.425e-08 1.00627 1.00633
1650 15 1650 2.239e-09 3.255e-08 1.00169 1.00171
1660 13 1660 6.373e-09 6.155e-08 0.99717 0.99720
1670 15 1670 4.220e-08 2.103e-08 0.99272 0.99279
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(a) λ∗ = 1640

(b)λ∗ = 1660

(c) λ∗ = 1650

(d)λ∗ = 1670

Figure 5.3. Variation of λ∗ using BFGS method on a 1-cell Cavity with fixed Riris on
left-hand and right-hand side with regularization parameters α = 1, β = 10−5. The
chosen refinement level is 2, the DoFs are 43363. Lagrange elements of order 1 and
lowest order Nédélec elements are used and the initial first (numerical) eigenvalue
is λ0 = 1653.75. The figures show the upper half of the domain.
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the values of Jq vary slightly. In the setting with 43363 DoFs, it varies about a
difference of 10−4. In Figure 5.4, the deformation of the considered boundary
part is visualized in comparison with the example where we choose the iris axis
to be the free boundary. Moreover, it is clearly also possible to vary the target
value λ∗ for this problem setting. Here, we refer to results for the same choice of
regularization parameters in Table A.19. These results show no new insights.
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(a) Fixed Boundary on the Iris Axis (b) Free Boundary on the Iris Axis

Figure 5.4. Comparison of boundaries of freeform optimization with target value λ∗ =
1650 using the BFGS method from Algorithm 4.4 on a 1-cell cavity with regularization
parameters α = 1 and β = 10−5. The chosen refinement level is 2, the number of DoFs
is 43363. Lagrange elements of order 1 and lowest order Nédélec elements are used
and the initial first (numerical) eigenvalue is λ0 = 1653.75.

Table 5.5. Results of a freeform optimization on a 1-cell cavity with fixed Riris on the
left and right hand side and with fixed axes at the irises with target value λ∗ = 1650
and regularization parameters α = 1 and β = 10−5. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq.
DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max

2893 0 1 0 1660.77 18 1650 2.038e-08 < 1.0e-08 1.00539 1.00564
11023 0 2 1 1655.15 18 1650 1.856e-09 < 1.0e-08 1.00156 1.00173
11023 1 1 0 1653.28 18 1650 4.609e-09 < 1.0e-08 1.0025 1.00256
43363 2 1 0 1653.75 18 1650 2.427e-09 < 1.0e-08 1.0018 1.00182
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5.1.2. 5-Cell Cavity

Now, we extend the optimization domain to a 5-cell cavity, i.e., Figure 5.2 (b),
and optimize the first eigenvalue. Table 5.6 shows the results after the opti-
mization to a target value λ∗ = 6017 with regularization parameters α = 100

and β = 10−6. By a discretization with 22103 DoFs or higher, the BFGS method
converges after 16 iterations. For a setting with 5438 DoFs, it takes 12. The
values of Jq are slightly smaller than 1, which means that we obtain a small
shrinkage of the domain.

Table 5.6. Results of a freeform optimization with target value λ∗ = 6017 using the
BFGS method from Algorithm 4.4 with α = 100 and β = 10−6 on a 5-cell cavity with
fixed Riris on the left and right hand side. The initial first (numerical) eigenvalue is
given by λ0. We show the eigenvalue λit after termination of the method and the
resulting value of the cost functional J , the relative residual of the gradient of the
cost functional as well as the minimum and maximum value of the determinant of the
deformation gradient Jq.

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
5438 0 1 0 6018.47 12 6017 1.728e-10 7.846e-07 0.99998 0.99999 B
22103 0 2 1 6022.89 16 6017 2.691e-09 9.067e-07 0.99987 0.99999 B
22103 1 1 0 6021.91 16 6017 1.878e-09 7.243e-07 0.99993 0.99998 B
86723 2 1 0 6024.65 16 6017 4.532e-09 9.520e-07 0.99991 0.99998 BS

Figure 5.5. Deformation of a 5-cell cavity with fixed Riris on left-hand and right-
hand side after optimization of the first eigenvalue to target value λ∗ = 6017 us-
ing the BFGS method from Algorithm 4.4 with regularization parameters α = 100
and β = 10−6. The chosen refinement level is 2, the number of DoFs is 86723. La-
grange elements of order 1 and lowest order Nédélec elements are used.
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5.2. Eigenvalue Optimization on Three-Dimensional
Domains

In this section, we show the results of extending our approach to three-
dimensional domains. For the examples, we use the settings of Table 5.7 and
we set ε = 10−4.

Table 5.7. Settings for the BFGS method from Algorithm 4.4 for optimization on
three-dimensional domains.

BFGS method from Algorithm 4.4
itmax 100
TOLglobal 10−5

TOL 10−5

Armijo Condition
line itmax 10
γ 0.1
ρ 0.1

5.2.1. Cuboid

In the following, we optimize the cuboid domain

Ω̂ =
[
0,
π

2

]
×
[
0,
π

3

]
×
[
0,
π

5

]
, (5.1)

where we allow deformation on the whole domain. We optimize the
eigenvalue λ ≈ 13 to two different target values, namely λ∗ = 12.5 and 13.5.
We validate the results by a short variation of regularization parameters, i.e.,

• α = 10−2 and β = 10−5 in Table 5.8,
• α = 10−1 and β = 10−5 in Table 5.9,
• α = 10−1 and β = 10−6 in Table 5.10,
• α = 10−2 and β = 10−6 in Table 5.11.

We observe that the results behave similarly those on two-dimensional domains,
which we discussed in detail in Section 4.4 and Section 5.1. The parameter α
influences the speed of the convergence by means of the number of iterations.
Moreover, decreasing β stabilizes the number of iterations regarding the chosen
settings. The number of iterations varies slightly depending on the different set-
tings concerning the DoFs. We remark here that the three-dimensional numerical

129



Chapter 5. Applications

(a) λ∗ = 12.5 (b) λ∗ = 13.5

Figure 5.6. Deformation of the cuboid with variation of λ∗.

results are computed on relative coarse meshes. By further refinements, we ex-
pect further stabilization regarding the number of iterations. The computation
of three-dimensional fine meshes is costly because the number of DoFs increases
immensely. For an outlook on finer meshes, we recommend extending the compu-
tation to parallel computing. Nevertheless, we observe that all results converge
to the chosen termination criteria. The difference between the eigenvalue after
the last iteration λit and the target value λ∗ increases slightly by increasing α.
Again, this is similar to the obtained two-dimensional results.

In Figure 5.6, we show the deformed cuboid after optimization for 33525 DoFs,
by a chosen refinement level 4 as well as first order Lagrange and lowest or-
der Nédélec elements. In (a), we show the cuboid for λ∗ = 12.5 and in (b),
for λ∗ = 13.5. To obtain a better view to the behavior of the domain, we fur-
ther show deformation fields of the y- and z-cross sections after optimization
in Figures 5.7 and 5.8. The deformation behaves similar to the results of the
two-dimensional rectangle. By optimizing the eigenvalue to a smaller target
value λ∗ = 12.5, the domain grows, whereas a larger value, i.e. λ∗ = 13.5, results
in the contrary. Here, the domain shrinks. Also, the obtained values for the de-
formation gradient after optimization Jq are slightly larger than 1 for λ∗ = 12.5

and smaller than 1 for λ∗ = 13.5. This is consistent with our observations.

130



5.2. Eigenvalue Optimization on Three-Dimensional Domains

Table 5.8. Results of a freeform optimization on a on a cuboid varying the target
value λ∗ and with regularization parameters α = 10−2 and β = 10−5. The tables show
results varying the DoFs of the mesh, the refinement level (ref.), the order of Lagrange
(Lagr.) and Nédélec (Néd.) elements. The initial first (numerical) eigenvalue is given
by λ0. We show the eigenvalue λit after termination of the method and the resulting
value of the cost functional J , the relative residual of the gradient of the cost functional
as well as the minimum and maximum value of the determinant of the deformation
gradient Jq and the used eigenvalue solver EVS.

(a) λ∗ = 12.5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
800 2 1 0 13.8610 11 12.5 1.265e-05 3.487e-06 1.0175 1.0177 B
4860 2 2 1 13.0067 14 12.5 2.099e-06 6.669e-06 1.0022 1.0354 B
4860 3 1 0 13.1679 15 12.5 3.781e-06 3.806e-06 1.0069 1.0195 B
33525 3 2 1 13.0004 14 12.5 2.045e-06 9.460e-06 1.0026 1.0174 B
33525 4 1 0 13.0418 14 12.5 2.423e-06 5.453e-06 1.0036 1.0071 B

(b) λ∗ = 13.5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
800 2 1 0 13.8610 14 13.5 2.075e-07 4.839e-06 1.0025 1.0106 B
4860 2 2 1 13.0067 11 13.5 2.179e-06 6.987e-06 0.9687 0.9971 B
4860 3 1 0 13.1679 15 13.5 1.043e-06 6.228e-06 0.9911 0.9966 B
33525 3 2 1 13.0004 15 13.5 2.230e-06 3.497e-05 0.9840 0.9979 B
33525 4 1 0 13.0418 16 13.5 1.895e-06 1.074e-06 0.9944 0.9978 B
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Table 5.9. Results of a freeform optimization on a cuboid varying the target value λ∗
and with regularization parameters α = 10−1 and β = 10−5. The tables show results
varying the DoFs of the mesh, the refinement level (ref.), the order of Lagrange (Lagr.)
and Nédélec (Néd.) elements. The initial first (numerical) eigenvalue is given by λ0.
We show the eigenvalue λit after termination of the method and the resulting value
of the cost functional J , the relative residual of the gradient of the cost functional
as well as the minimum and maximum value of the determinant of the deformation
gradient Jq and the used eigenvalue solver EVS.

(a) λ∗ = 12.5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
800 2 1 0 13.8610 10 12.5002 1.308e-04 9.220e-06 1.0174 1.0732 B
4860 2 2 1 13.0067 10 12.5001 2.278e-05 5.773e-06 1.0027 1.0359 B
4860 3 1 0 13.1679 8 12.5001 4.009e-05 7.134e-06 1.0073 1.0189 B
33525 3 2 1 13.0004 9 12.5001 2.220e-05 7.648e-06 1.0012 1.0175 B
33525 4 1 0 13.0418 8 12.5001 2.611e-05 8.897e-07 1.0038 1.0067 B

(b) λ∗ = 13.5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
800 2 1 0 13.8610 7 13.5000 2.739e-06 2.468e-06 1.0025 1.0106 B
4860 2 2 1 13.0067 9 13.4999 2.004e-05 1.259e-05 0.9673 0.9975 B
4860 3 1 0 13.1679 21 13.4999 9.222e-06 8.433e-06 0.9914 0.9965 B
33525 3 2 1 13.0004 8 13.4999 2.052e-05 8.126e-06 0.9838 0.9988 B
33525 4 1 0 13.0418 8 13.4999 1.733e-05 8.727e-06 0.9947 0.9969 B

132



5.2. Eigenvalue Optimization on Three-Dimensional Domains

Table 5.10. Results of a freeform optimization on a cuboid varying the target value λ∗
and with regularization parameters α = 10−1 and β = 10−6. The tables show results
varying the DoFs of the mesh, the refinement level (ref.), the order of Lagrange (Lagr.)
and Nédélec (Néd.) elements. The initial first (numerical) eigenvalue is given by λ0.
We show the eigenvalue λit after termination of the method and the resulting value
of the cost functional J , the relative residual of the gradient of the cost functional
as well as the minimum and maximum value of the determinant of the deformation
gradient Jq and the used eigenvalue solver EVS.

(a) λ∗ = 12.5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
800 2 1 0 13.8610 9 12.5002 1.312e-04 3.290e-06 1.0174 1.0732 B
4860 2 2 1 13.0067 9 12.5001 2.296e-05 1.483e-07 1.0026 1.036 B
4860 3 1 0 13.1679 8 12.5001 4.033e-05 7.134e-06 1.0073 1.0189 B
33525 3 2 1 13.0004 12 12.5001 2.237e-05 8.344e-06 1.0011 1.0174 B
33525 4 1 0 13.0418 10 12.5001 2.630e-05 6.973e-06 1.0039 1.0067 B

(b) λ∗ = 13.5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
800 2 1 0 13.8610 7 13.4999 2.805e-06 2.468e-06 1.0025 1.0106 B
4860 2 2 1 13.0067 10 13.4999 1.986e-05 4.456e-06 0.9677 0.9970 B
4860 3 1 0 13.1679 8 13.4999 9.102e-06 8.218e-06 0.9913 0.9965 B
33525 3 2 1 13.0004 8 13.4999 2.034e-05 8.126e-06 0.9836 0.9990 B
33525 4 1 0 13.0418 8 13.4999 1.716e-05 8.728e-06 0.9947 0.9969 B
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Table 5.11. Results of a freeform optimization on a cuboid varying the target value λ∗
and with regularization parameters α = 10−2 and β = 10−6. The tables show results
varying the DoFs of the mesh, the refinement level (ref.), the order of Lagrange (Lagr.)
and Nédélec (Néd.) elements. The initial first (numerical) eigenvalue is given by λ0.
We show the eigenvalue λit after termination of the method and the resulting value
of the cost functional J , the relative residual of the gradient of the cost functional
as well as the minimum and maximum value of the determinant of the deformation
gradient Jq and the used eigenvalue solver EVS.

(a) λ∗ = 12.5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
800 2 1 0 13.8610 11 12.5 1.309e-05 3.079e-06 1.0177 1.0745 B
4860 2 2 1 13.0067 14 12.5 2.279e-06 8.976e-06 1.0015 1.0356 B
4860 3 1 0 13.1679 15 12.5 4.024e-06 3.8066e-06 1.0069 1.0195 B
33525 3 2 1 13.0004 15 12.5 2.220e-06 6.260e-06 0.9985 1.0173 B
33525 4 1 0 13.0418 14 12.5 2.615e-06 5.477e-06 1.0036 1.0071 B

(b) λ∗ = 13.5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
800 2 1 0 13.8610 12 13.5 2.741e-07 7.023e-06 1.0025 1.0106 B
4860 2 2 1 13.0067 11 13.5 2.004e-06 7.003e-06 0.9687 0.9971 B
4860 3 1 0 13.1679 15 13.5 9.229e-07 6.096e-06 0.9914 0.9964 B
33525 3 2 1 13.0004 10 13.5 2.053e-06 3.624e-05 0.9840 0.9980 B
33525 4 1 0 13.0418 16 13.5 1.734e-06 9.177e-06 0.9947 0.9968 B
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(a) λ∗ = 12.5

(b) λ∗ = 13.5

Figure 5.7. Cross-section y-axis of the deformation of a cuboid after optimization
using the BFGS method from Algorithm 4.4 with regularization parameters α = 10−2

and β = 10−5. The chosen refinement level is 4, the number of DoFs is 33525.
Lagrange elements of order 1 and lowest order Nédélec elements are used.
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(a) λ∗ = 12.5

(b) λ∗ = 13.5

Figure 5.8. Cross-section z-axis of the deformation of a cuboid domain after
optimization using the BFGS method from Algorithm 4.4 with regularization
parameters α = 10−2 and β = 10−5. The chosen refinement level is 4, the number of
DoFs is 33525. Lagrange elements of order 1 and lowest order Nédélec elements are
used.
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5.2.2. Cylinder

In the context of particle collider, a pill-box is a particular case of interest, i.e.,
a cylindrical cavity. The extension to three-dimensional domains with curved
boundaries is challenging because a good approximation of the domain requires
a high resolution on the domain. Here, by the approximation of the domain
with FE, the problem becomes very large. In the following, we show a first
optimization example of a cylinder with radius r = 1 and length l = 10. We
fix the left and right hand side of the cylinder by fixing q = 0. Table 5.12 shows
the results of the optimization of the first eigenvalue to the target value λ∗ = 4.
Here, the chosen regularization parameters are α = 10−6 and β = 10−4.

Table 5.12. Results of a freeform optimization to a target value λ∗ = 4 with regulariza-
tion parameters α = 10−6 and β = 10−4 using the BFGS method from Algorithm 4.4
on on a cylinder with radius r = 1 and length l = 10. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq.

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max

25044 2 1 0 3.66322 14 4 2.970e-04 2.874e-06 0.99644 0.99989
189284 3 1 0 3.53257 14 4 4.189e-04 4.290e-06 0.99631 0.99888

The method converges after 14 iterations in every setting. The value of Jq is
between 0.996 and 0.999 which means a shrinkage of the domain. This will be
confirmed by considering the deformation of the domain, shown as a cross-section
in Figure 5.10. The domain shrinks in the middle part of the cylindrical domain.
In Figure 5.9, we show the three-dimensional domain of the cylinder before and
after optimization.
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(a) Initial Cylinder

(b) Optimized Cylinder

Figure 5.9. Domain of the cylinder before and after optimization.
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Figure 5.10. Cross-section of the deformation of a cylinder after optimization of the
first eigenvalue to target value λ∗ = 4 using the BFGS method from Algorithm 4.4
with regularization parameters α = 10−6 and β = 10−4. The chosen refinement level
is 3, the number of DoFs is 189284. Lagrange elements of order 1 and lowest order
Nédélec elements are used.
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Conclusion and Outlook

6.1. Conclusion

In this thesis, we considered an eigenvalue optimization problem with respect
to shape-variations in electromagnetic systems motivated by particle accelera-
tor cavities, such as superconducting TESLA cavities, see [12, 36, 46]. For a
suitable problem formulation, we discussed the theory of Maxwell’s eigenvalue
problem in Chapter 3. Because of the context of particle accelerator cavities,
we considered a time-harmonic formulation. In order to solve the considered
problem, we discussed variants of possible variational formulations of this prob-
lems regarding the occurrence of so-called spurious modes. We decided to take
the mixed formulation by Kikuchi even if this enlarges the problem by taking
the divergence-free condition into account. Using this approach, we obtained
a mixed saddle point problem formulation preventing that the obtained solu-
tions are physical solutions. Afterwards, we formulated the Maxwell eigenvalue
problem depending on a domain mapping, where we distinguished between the
function spaces of H0(curl) and H1

0 . We concluded Chapter 3 by a discussion of
the existence and properties of eigenvalues and associated eigenfunctions of the
domain-dependent Maxwell eigenvalue problem.

In Chapter 4, we analyzed an eigenvalue optimization constrained by the pre-
viously considered Maxwell eigenvalue problem. First, we discussed the approach
of adjoint calculus for general eigenvalue optimization problems. Afterwards, we
applied adjoint calculus to the concrete problem. In order to solve this optimiza-
tion problem, we discussed two optimization methods, a gradient method and a
damped inverse BFGS method. For the latter, we proved the preservation of the
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positive definiteness property of the updating operator which ensures that the
curvature condition is fulfilled. Furthermore, we discussed a proper discretization
of the Maxwell eigenvalue problem by using a mixed FEM, where we discretized
the H1

0 (Ω)-space with Lagrange elements and the H0(curl; Ω) with Nédélec ele-
ments. Moreover, we pointed out to some details on the implementation, which
solved the eigenvalue problem. We made some comments to the hurdles by using
mixed FEM and on the eigenvalue solver applied to the considered saddle point
problem.

The main contribution of this thesis is the implementation and simulation of
the considered freeform optimization problem constrained by Maxwell’s eigen-
value problem with respect to shape-variations. All computations base on the fi-
nite element library deal.II [10,11] and are implemented within the optimization
library DOpElib [49]. In the context of this thesis, we extended the framework for
PDE optimization problems of the DOpElib library for eigenvalue optimization
problems. In order to validate the implementation and the mentioned approach,
we presented numerical results of eigenvalue optimization problems on simple
geometries with different refinement levels and finite element orders, where we
also considered curved domains, in Section 4.4. Finally, we concluded Chapter 4
by a discussion of the obtained numerical results. First, we compared the two
considered optimization methods regarding convergence and the influence of the
regularization parameters on the methods and, also, on the deformation of the
domain after optimization. Second, we validated the influence of a change of the
target value in the cost functional to which we optimize the considered eigen-
value. As expected, the BFGS method converges faster than gradient method
with a suitable choice of regularization parameters.

In Chapter 5, we concluded this thesis with a discussion of necessary extensions
to more realistic applications. Numerical examples were presented using the
damped inverse BFGS method on two-dimensional planar cavity geometries for
a validation of the approach on more complex and detailed geometries. We
showed solutions on 1-cell and 5-cell cavity geometries, based on a model seen
in [36]. Finally, we showed numerical examples in three-dimensional geometries,
such as a cuboid and a cylinder.
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6.2. Outlook

Let us consider some open questions for future research and investigations. In
Chapter 3, we computed the Fréchet derivatives by assuming differentiability for
the time-harmonic Maxwell eigenvalue problem depending on a domain map-
ping. One possible investigation is the analysis of the considered problem. To
this, one needs to extend the proofs for the continuity as well as for differentiabil-
ity of eigenvalues and associated eigenfunctions in the context of linear elasticity
problems in [44] to the context of Maxwell’s eigenvalue problem. Doing that, we
could use the properties discussed in Chapter 3 to show continuity. In detail,
we could prove the sequential continuity and local Lipschitz continuity of the
eigenvalues with respect to control variations in the domain mapping. Further,
with help of a sign convention for the eigenfunctions, we should be able to prove
continuity of the eigenfunctions and the differentiability of the eigenvalues and
associated eigenfunctions. In detail, one has to show semi-differentiability of
the first eigenvalue and with that, we could prove Fréchet-differentiability of the
considered problem. For the proofs of the analysis for problems depending on
a domain mapping, we refer to [42], where Fréchet differentiability is proved in
context of Navier-Stokes and the Boussinesq equations. The analysis is based on
the assumption of simple eigenvalues. In the application of particle accelerator
cavities, this is sufficient because the acceleration frequencies are in general sim-
ple. From a mathematical perspective, an extension to semi-simple eigenvalue it
would be conceivable but unnecessary for the application.

Further, there are many tasks for the extension of this approach to more real-
istic problems. In Chapter 5, we showed numerical examples on two-dimensional
planar cavities as well as on a three-dimensional cuboid and cylinder. By com-
puting on three-dimensional domains, the system of equations enlarges fast by
the increasing number of DoFs. We expect that an extension of parallel com-
puting is necessary in order to save runtime. Another geometry of interest is a
three-dimensional cavity domain.

In our numerical examples, we just considered the optimization of a certain
eigenvalue to a target value. In the optimization process, we did not check if
the obtained eigenvalue stays at the same position in the optimization process.
Here, an eigenvalue tracking could be useful because if we optimize the accel-
eration frequency we want guarantee that it is still the acceleration frequency
after optimization. The tracking of eigenvalues is already done in the context
of accelerator cavities, e.g., see [36, 46, 61] and could be applied to our freeform
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optimization problem. By the consideration of more quantities of interest on
the application, several extensions are conceivable, e.g., field flatness and cavity
tuning. For these quantities, we refer, e.g., to [36,85,112].

It is also conceivable to optimize a spectrum of eigenvalues. By a computation
of more than one eigenvalue, it is possible that we have reconsider the choice of
eigenvalue solver. Until now, in all numerical examples, the choice of eigenvalue
solver is chosen by the assumption of solving just one eigenvalue at a time.
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Appendix

A.1. Optimization of Eigenvalue Problems in DOpElib

In this thesis, the examples of the optimization of eigenvalue problems are imple-
mented with the DOpElib-library [49], based on the FE library deal.II [10,11].
The implementations are tested for deal.II version 9.4.0. The utilization
of the DOpElib-library allows an easy implementation and numerical solving of
PDE problems

a(u, ψ) = 0 ∀ ψ ∈ V,

with some appropriate space V , and PDE optimization problems of the form

min J(q, u)

s.t. a(q;u, ψ) = 0 ∀ ψ ∈ V,
a ≤ q ≤ b,
g(q, u) ≤ 0,

where u is a FE-function and q is either a FE-function or some fixed number of
parameters, J(·, ·) is the cost functional, a and b are constraint bounds for the
control q, and g(·) is some control or state constraint.
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During this thesis, we extended the library to solve eigenvalue optimization
problems of the form

min J(q, λ)

s.t. k(q;u, ψ) = λm(q;u, ψ) ∀ ψ ∈ V,
m(q;u, u) = 1;

(A.1)

where (λ, u) denotes the eigensolution with the eigenvalue λ and the
eigenvector u. Further, k(·; ·, ·) and m(·; ·, ·) denote the stiffness and mass matrix.

In the following, we describe the extension of the library. With the Lagrangian

L(q, (λ, u), z) = J(q, (λ, u))− k(q, u)(z) + λm(q, u)(z)

= J(q, (λ, u))− ã(q, (λ, u))(z),

where ã(q, (λ, u))(z) = k(q, u)(z) − λm(q, u)(z), we formulate the optimality
(KKT) system

ã′u(q, u, z)(ϕ) = J ′
u(q, u)(ϕ)

ã′q(q, u)(χ, z) = J ′
q(q, u)(χ)

ã(q, u)(ψ) = 0

with u = (λ, u)T and z = (µ, z)T .
In PDE optimization, the state is a vector. In contrary, the state of an eigen-

value optimization problem consists of one or more eigenvalues and their associ-
ated eigenfunctions. Therefore, define a vector for the eigenvalues and a vector
containing the eigenfunctions, i.e.,

std::vector<double> uvals_,
std::vector<StateVector<VECTOR>> uvecs_.

We define the adjoint solutions similarly, i.e.,

std::vector<double> zvals_,
std::vector<StateVector<VECTOR>> zvecs_.

A.1.1. Extension and Implementation Details

Problem Container
To save the complete problem description in a common data format and to
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pass data between the objects, the library contains container, named by their
problem type. For the structure of eigenvalue optimization problems, we add a
container called eigenvalueproblemcontainer.h to the library. This container
contains the data, i.e., the semilinear forms k(·)(·) (ElementMatrix), m(·)(·)
ElementMassMatrix. and a target functional J(·), which describe the problem
and builds the element right-hand side (ElementRhs).

Space-time Handler
To numerically solve the problem on require a space-time handler which han-
dle all dofs in space and time. In the eigenvalue optimization with Maxwell’s
equation, we utilize a mixed finite element discretiziation with Lagrange and
Nédélec elements. Therefore, we need to differentiate between two different kinds
of boundary conditions. We apply these conditions in the space-time handler.
More concrete, we added the case for mixed finite elements by using the function

VectorTools::interpolate_boundary_values(...)

for the Lagrange elements and the curl-conforming (perfect electrical conductor)
boundary conditions

VectorTools::project_boundary_values_curl_conforming_l2(...)

for the Nédélec elements.

Integrator
The library contains several integrator routines which computes integrals over
a given triangulation. The original class integrator.h computes the matrix
corresponding to the linearized equation. To integrate over a triangulation of a
generalized eigenvalue problem, we need a calculation of two matrices, namely
the stiffness and the mass matrix. Therefore, we extend the class integrator.h.
There, the function

void ComputeMassMatrix(PROBLEM &pde, MATRIX &matrix)

integrates over the mass matrix, where the stiffness matrix is computed in the
function

void ComputeMatrix(PROBLEM &pde, MATRIX &matrix),

similary to the function in the original class.

Reduced Problem
We extend the library with the class eigenvaluereducedproblem.h which im-
plicitly solve the reduced optimization problem whenever it is required. For
algorithmic aspects, we refer to [18]. This class is an abstraction which contains
methods to solve the reduced problem by solving intern the eigenvalue problem.
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It returns the function values and derivatives of the reduced functional by using
adjoint calculus. The reduced problem class consists the method to compute the
reduced gradient (ReducedGradient) by applying a Newton solver. The settings
of this solver for the optimization in this thesis are shown in Table A.1.

Table A.1. Settings of the Newton solver for the optimization on rectangle (R), quar-
ter circle (C), 1-cell cavity (1C), 5-cell cavity (5C), cuboid (CU) and cylinder (CY)
domains

R, C, 1C 5C,CU,CY
maximal number of linesearch steps 8 8
reduction rate for the linesearch damping parameter 0.9 0.9
global tolerance for the newton iteration 10−12 10−8

maximal number of newton iterations 100 100
minimal newton reduction 0.1 0.1
relative tolerance for the newton iteration 10−10 10−6

Reduced Optimization Methods
The library contains also several optimization algorithms to solve reduced opti-
mization problems where the PDE, or eigenvalue problem, constraint has been
eliminated as explained above. For the numerical examples, we implemented the
BFGS method from Algorithm 4.4 in the class

reduceddampedbfgsalgorithm.h.

Further, we compared this method with the gradient method from Algorithm 4.3,
which is implemented in the class

reducedgradientalgorithm.h.

Problemdata
We extended the library by the problemdata eigenvaluestateproblem and
eigenvalueadjointproblem which is similar to the ’standard’ stateproblem/
adjointproblem with appropriate extension for the ElementMassMatrix or
ElementMassMatrix_U.

Eigenvalue Solver
In order to solve generalized eigenvalue problems, we use SLEPc-library based
on the PETSc-library, more details in Table A.2. Within the deal.II-library, a
wrapper to the SLEPc-library exists and contains some basis eigenvalue solver
with basic settings. An example is class eigenvalue_solver_lapack.h, where
we used the wrapper to use the in SLEPc implemented LAPACK solver. For some
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Table A.2. Libraries for the eigenvalue optimization with DOpElib used for the
results of this thesis
library version
deal.ii 9.4.0 FE-library [10,11]
PETSc 3.18.5 Portable Extendable Toolkit for Scientific Computations

[55,56,95]
SLEPc 3.18.2 Scalable Library for Eigenvalue Problem Computations

[13–15]

basic tests, this works well. Nevertheless, for more flexibility, we interfaced some
eigenvalue solver independently from the wrapper class.

For the numerical examples of this thesis, we use either the subspace
iteration (A) or the Krylov Schur (B) eigenvalue solver, provided by SLEPc. We
apply a shift-invert spectral transformation with the target shifts shown in Ta-
ble A.3. A target magnitude is chosen equally. The tolerance for the eigenvalue
solver is set to 10−5. The eigenvalue solver applies a Richardson solver and the
Cholesky preconditioner. For the numerical examples in Section 4.4, we use the
default properties of the SLEPc- and PETSc-libraries, whereas in the Chapter 5,
we set the relative convergence tolerance of the Richardson Krylov solver to 10−5

and allow this method to automatically determine optimal scaling at each iter-
ation to minimize the 2-norm of the preconditioned residual. Furthermore, the
eigenvalue solver classes contain a normalization method for the eigenfunctions.

Table A.3. Shift parameter for the eigenvalue solver
Example Solver Shift
Rectangle Subspace Iteration (A) 4
Rectangle Krylov Schur (B) 4
Rectangle Krylov Schur (BS) 3.8

Quarter Circle Subspace Iteration (A) 0.9
Quarter Circle Krylov Schur (B) 0.9
Quarter Circle Krylov Schur (BS) 0.94
1-Cell Cavity Krylov Schur (B) 1650
5-Cell Cavity Krylov Schur (B) 6000
5-Cell Cavity Krylov Schur (BS) 6024

Cuboid Krylov Schur (B) 13
Cylinder Subspace Iteration (A) 2
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A.1.2. Implementation Details to Maxwell’s Eigenvalue
Optimization Problem

In the numeric examples in Section 4.4 and Chapter 5, we consider an eigenvalue
optimization problem of the form: Find λi, ui, such that

min J(λi, q)

s.t. Kui = λiMui in Ωq,

∥ui∥Ωq = 1

of a domain Ωq and where K,M are the stiffness and mass matrix, respectively.

The mixed finite elements for the state are defined in a FESystem with Nédélec-
elements to discretize the H0(curl)-space and Lagrange elements to discretize the
H1

0 -space:

FESystem<DIM> state_fe(FE_Q<DIM>(order_lagr), 1,
FE_Nedelec<DIM>(order_ned),1).

For the control we use Lagrange-elements:

FE<DIM> control_fe(FE_Q<DIM>(order_lagrange), 2).

In the examples, the choice of element order is either

order_lagr = 1 and order_ned = 0, or

order_lagr = 2 and order_ned = 1.

In the localpde.h, we implement all functions needed for the compua-
tion of the reduced state, adjoint and gradient. For the state and adjoint
solution, we need an eigenvalue computation. Therefore, we implement the
ElementMatrix and ElementMassMatrix of our problem. The ElementMatrix_Q
and ElementMassMatrix_Q consist of the derivatives of the associated matrix
with respect to the control variable q. Further, the ControlElementEquation
and ControlElementMatrix implement the inner product associated to the con-
trol space to invert the respective Riesz mapping.

For the domain mapping, introduced in Section 3.2, we implement in
functions.h subroutines for the deformation gradient with respect to the control
variable q
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Tensor<2,DIM> deformation_tensor_(Tensor<2,DIM>)
double determinante_(Tensor<2,DIM>)
Tensor<2,DIM> adjunkte_(Tensor<2,DIM>)
Tensor<2,DIM> transpose_(Tensor<2,DIM>)
Tensor<2,DIM> adjunkte_transposed_(Tensor<2,DIM>)
Tensor<2,DIM> inverse_(Tensor<2,DIM>)
Tensor<2,DIM> inverse_transpose_(Tensor<2,DIM>)

and the required derivatives

double determinante_DF_dq_(Tensor<2,DIM> ,Tensor<2,DIM>)
double determinante_DF_inv_dq_(Tensor<2,DIM>,Tensor<2,DIM>)
Tensor<2,DIM> DF_inv_T_dq_(Tensor<2,DIM>,Tensor<2,DIM>)
Tensor<2,DIM> DF_inv_dq_(Tensor<2,DIM>,Tensor<2,DIM>).

In the class localfunctional.h , we implement all information regarding the
ReducedCostfunctional. We split the cost functional in two parts. The first
part is the evaluation of the algebraic value of the cost functional. This is done in
the function AlgebraicValue. And second, for the regularization terms, we need
the evaluation of a domain integral. This is computed in ElementValue. To han-
dle this, we determine the type of the cost functional by "domain algebraic".
Further, for the optimization process, the method ElementValue_Q is imple-
mented for the computation of the reduced gradient.
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A.2. Further Numerical Solution Tables

A.2.1. Rectangle with Free Boundaries

Table A.4. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−1, β = 10−5

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 7 3.80054 5.224e-05 2.417e-06 1.019 1.049 A
387 3 1 0 4.052 7 3.80067 8.131e-05 7.379e-06 1.048 1.055 A
1411 3 2 1 4.000 7 3.80053 5.124e-05 2.683e-06 1.032 1.049 A
1411 4 1 0 4.013 7 3.80056 5.802e-05 3.583e-06 1.047 1.049 A
5389 4 2 1 4.000 7 3.80053 5.117e-05 2.704e-06 1.041 1.049 A
5389 5 1 0 4.003 7 3.80054 5.284e-05 2.907e-06 1.048 1.049 A
20995 5 2 1 4.000 7 3.80053 5.117e-05 2.704e-06 1.045 1.050 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 278 3.80054 5.224e-05 9.538e-06 1.020 1.049 A
387 3 1 0 4.052 350 3.80067 8.131e-05 9.672e-06 1.048 1.055 A
1411 3 2 1 4.000 278 3.80053 5.124e-05 9.529e-06 1.032 1.049 A
1411 4 1 0 4.013 300 3.80056 5.802e-05 9.479e-06 1.047 1.049 A
5389 4 2 1 4.000 278 3.80053 5.117e-05 9.528e-06 1.041 1.049 A
5389 5 1 0 4.003 281 3.80054 5.284e-05 9.762e-06 1.048 1.048 A
20995 5 2 1 4.000 278 3.80053 5.117e-05 9.522e-06 1.045 1.049 A
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A.2. Further Numerical Solution Tables

Table A.5. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−5, β = 10−5

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 38 3.8 -2.037e-06 8.388e-06 1.109 1.189 B
387 3 1 0 4.052 38 3.8 -1.403e-06 7.410e-06 1.109 1.132 B
1411 3 2 1 4.000 38 3.8 -2.128e-06 8.418e-06 1.169 1.202 B
1411 4 1 0 4.013 38 3.8 -1.369e-06 8.713e-06 1.107 1.123 B
5389 4 2 1 4.000 38 3.8 -2.048e-06 8.456e-06 1.178 1.192 B
5389 5 1 0 4.003 38 3.8 -2.834e-06 9.904e-06 1.249 1.281 B
20995 5 2 1 4.000 38 3.8 -2.048e-06 8.456e-06 1.182 1.187 B

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 1000 3.8 -3.320e-07 1.348e-05 1.020 1.0492 A
387 3 1 0 4.052 55 3.8 -4.051e-07 9.955e-06 1.048 1.055 A
1411 3 2 1 4.000 1000 3.8 -3.288e-07 1.381e-05 1.032 1.049 A
1411 4 1 0 4.013 1000 3.8 -3.493e-07 1.237e-05 1.047 1.049 A
5389 4 2 1 4.000 1000 3.8 -3.286e-07 1.382e-05 1.041 1.049 A
5389 5 1 0 4.003 1000 3.8 -3.338e-07 1.344e-05 1.048 1.049 A
20995 5 2 1 4.000 1000 3.8 -3.286e-07 1.382e-05 1.054 1.050 A
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Table A.6. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−4, β = 10−8

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 13 3.8 5.568e-08 3.188e-06 1.014 1.059 A
387 3 1 0 4.052 15 3.8 8.681e-08 1.368e-06 1.052 1.061 B
1411 3 2 1 4.000 14 3.8 5.456e-08 6.696e-06 1.034 1.058 A
1411 4 1 0 4.013 15 3.8 6.126e-08 2.108e-06 1.051 1.053 B
5389 4 2 1 4.000 15 3.8 5.455e-08 9.292e-07 1.046 1.058 A
5389 5 1 0 4.003 15 3.8 5.642e-08 1.220e-06 1.056 1.057 A
20995 5 2 1 4.000 15 3.8 5.455e-08 9.401e-07 1.052 1.058 B

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 25 3.8 5.239e-08 9.896e-06 1.020 1.049 A
387 3 1 0 4.052 26 3.8 8.155e-08 7.746e-06 1.048 1.055 A
1411 3 2 1 4.000 25 3.8 5.138e-08 9.789e-06 1.032 1.049 A
1411 4 1 0 4.013 26 3.8 5.818e-08 6.572e-06 1.047 1.049 A
5389 4 2 1 4.000 25 3.8 5.132e-08 9.782e-06 1.041 1.049 A
5389 5 1 0 4.003 25 3.8 5.299e-08 9.907e-06 1.048 1.048 A
20995 5 2 1 4.000 25 3.8 5.131e-08 9.780e-06 1.045 1.049 A
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A.2. Further Numerical Solution Tables

Table A.7. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−5, β = 10−8

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 13 3.8 5.329e-09 7.454e-06 1.013 1.060 A
387 3 1 0 4.052 15 3.8 8.405e-09 9.111e-07 1.053 1.062 B
1411 3 2 1 4.000 14 3.8 5.213e-09 7.044e-06 1.034 1.059 B
1411 4 1 0 4.013 15 3.8 5.957e-09 1.531e-06 1.055 1.058 B
5389 4 2 1 4.000 14 3.8 5.211e-09 9.974e-06 1.046 1.060 A
5389 5 1 0 4.003 15 3.8 5.390e-09 9.976e-07 1.056 1.057 B
20995 5 2 1 4.000 15 3.8 5.208e-09 7.111e-07 1.053 1.060 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 25 3.8 4.944e-09 9.897e-06 1.020 1.049 A
387 3 1 0 4.052 26 3.8 7.786e-09 7.746e-06 1.048 1.055 A
1411 3 2 1 4.000 25 3.8 4.846e-09 9.789e-06 1.032 1.049 A
1411 4 1 0 4.013 26 3.8 5.506e-09 6.572e-06 1.047 1.049 A
5389 4 2 1 4.000 25 3.8 4.840e-09 9.782e-06 1.041 1.049 A
5389 5 1 0 4.003 25 3.8 5.002e-09 9.907e-06 1.048 1.048 A
20995 5 2 1 4.000 25 3.8 4.839e-09 9.781e-06 1.045 1.049 A
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Table A.8. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−2, β = 10−8

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 9 3.80005 5.269e-06 5.214e-07 1.019 1.049 A
387 3 1 0 4.052 10 3.80007 8.192e-06 3.375e-06 1.048 1.055 A
1411 3 2 1 4.000 9 3.80005 5.168e-06 9.175e-07 1.032 1.049 A
1411 4 1 0 4.013 9 3.80006 5.850e-06 6.211e-07 1.047 1.049 A
5389 4 2 1 4.000 9 3.80005 5.162e-06 9.620e-07 1.041 1.050 A
5389 5 1 0 4.003 9 3.80005 5.330e-06 7.144e-07 1.005 1.049 A
20995 5 2 1 4.000 9 3.80005 5.162e-06 9.683e-07 1.045 1.050 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 26 3.80006 5.270e-06 6.815e-6 1.020 1.049 A
387 3 1 0 4.052 26 3.80007 8.194e-06 8.365e-05 1.048 1.055 A
1411 3 2 1 4.000 26 3.80005 5.169e-06 6.746e-06 1.032 1.049 A
1411 4 1 0 4.013 26 3.80006 5.851e-05 7.118e-06 1.047 1.049 A
5389 4 2 1 4.000 26 3.80005 5.163e-06 6.742e-06 1.041 1.049 A
5389 5 1 0 4.003 26 3.80006 5.330e-06 6.834e-06 1.048 1.048 A
20995 5 2 1 4.000 26 3.80005 5.162e-06 6.741e-06 1.045 1.049 A
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A.2. Further Numerical Solution Tables

Table A.9. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−1, β = 10−8

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 7 3.80054 5.257e-05 2.413e-06 1.019 1.049 A
387 3 1 0 4.052 7 3.80067 8.172e-05 7.367e-06 1.048 1.055 A
1411 3 2 1 4.000 7 3.80053 5.156e-05 2.680e-06 1.032 1.049 A
1411 4 1 0 4.013 7 3.80057 5.836e-05 3.577e-06 1.047 1.049 A
5389 4 2 1 4.000 7 3.80053 5.150e-05 2.699e-06 1.041 1.049 A
5389 5 1 0 4.003 7 3.80054 2.9030e-06 5.317e-05 1.048 1.048 A
20995 5 2 1 4.000 7 3.80053 5.149e-05 2.700e-06 1.045 1.050 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 344 3.80054 5.257e-05 9.385e-06 1.019 1.049 A
387 3 1 0 4.052 394 3.80067 8.172e-05 9.495e-06 1.048 1.055 A
1411 3 2 1 4.000 344 3.80053 5.156e-05 9.386e-06 1.032 1.049 A
1411 4 1 0 4.013 347 3.80057 5.836e-05 9.829e-06 1.047 1.049 A
5389 4 2 1 4.000 344 3.80053 5.150e-05 9.388e-06 1.041 1.049 A
5389 5 1 0 4.003 344 3.80054 5.317e-05 9.470e-06 1.048 1.048 A
20995 5 2 1 4.000 344 3.80053 5.149e-05 9.385e-06 1.045 1.049 A

155



Appendix A. Appendix

Table A.10. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−4, β = 10−3

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 100 3.79974 -2.393e-03 4.400e-04 4.012 13.748 BS
387 3 1 0 4.052 100 3.79984 -2.063e-03 2.450e-04 2.063 3.732 B
1411 3 2 1 4.000 100 3.79975 -2.006e-03 3.559e-04 2.485 3.661 B
1411 4 1 0 4.013 100 3.80102 -1.235e-03 5.001e-03 2.582 3.009 B
5389 4 2 1 4.000 100 3.79957 -1.241e-03 1.113e-03 2.622 2.780 B
5389 5 1 0 4.003 100 3.799 -2.277e-03 2.178e-03 11.576 12.424 B
20995 5 2 1 4.000 100 3.79923 -1.361e-03 2.865e-03 2.963 3.232 B

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 1000 3.80003 -9.971e-05 1.343e-03 1.061 1.066 A
387 3 1 0 4.052 1000 3.79952 -1.078e-04 1.350e-03 1.075 1.075 A
1411 3 2 1 4.000 1000 3.80004 -9.941e-05 1.381e-03 1.063 1.066 A
1411 4 1 0 4.013 1000 3.8 -1.015e-04 1.190e-03 1.068 1.068 A
5389 4 2 1 4.000 1000 3.80004 -9.939e-05 1.384e-03 1.064 1.066 A
5389 5 1 0 4.003 1000 3.80003 -9.990e-05 1.331e-03 1.066 1.066 A
20995 5 2 1 4.000 1000 3.80004 -9.939e-05 1.384e-03 1.065 1.066 A
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A.2. Further Numerical Solution Tables

Table A.11. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−5, β = 10−3

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 100 3.79961 -1.944e-03 7.788e-04 3.800 3.936 B
387 3 1 0 4.052 100 3.79965 -2.884e-03 3.755e-04 1.079 6.984 B
1411 3 2 1 4.000 100 3.80053 -1.401e-03 3.317e-03 2.876 3.605 B
1411 4 1 0 4.013 100 3.80072 -5.028e-03 1.210e-03 4.960 6.768 B
5389 4 2 1 4.000 100 3.79911 -1.328e-03 3.159e-03 2.854 3.009 B
5389 5 1 0 4.003 100 3.80028 -2.024e-03 2.011e-03 3.408 3.986 B
20995 5 2 1 4.000 100 3.80018 -1.463e-03 1.724e-03 2.872 3.010 B

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 1000 3.80003 -9.999e-05 1.345e-03 1.061 1.066 A
387 3 1 0 4.052 1000 3.79952 -1.081e-04 1.350e-03 1.075 1.075 A
1411 3 2 1 4.000 1000 3.80003 -9.968e-05 1.383e-03 1.063 1.066 A
1411 4 1 0 4.013 1000 3.8 -1.017e-04 1.192e-03 1.068 1.068 A
5389 4 2 1 4.000 1000 3.80003 -9.966e-05 1.386e-03 1.064 1.066 A
5389 5 1 0 4.003 1000 3.80002 -1.002e-04 1.332e-03 1.066 1.066 A
20995 5 2 1 4.000 1000 3.80003 -9.966e-05 1.385e-03 1.065 1.066 A

157



Appendix A. Appendix

Table A.12. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−2, β = 10−3

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 35 3.79988 -1.105e-04 6.667e-06 1.089 1.127 A
387 3 1 0 4.052 21 3.79989 -1.156e-04 4.620e-06 1.104 1.115 A
1411 3 2 1 4.000 69 3.79988 -1.103e-04 5.567e-06 1.090 1.108 A
1411 4 1 0 4.013 22 3.79988 -1.117e-04 3.070e-06 1.095 1.098 A
5389 4 2 1 4.000 79 3.79988 -1.103e-04 3.602e-06 1.089 1.098 A
5389 5 1 0 4.003 36 3.79988 -1.107e-04 6.220e-06 1.091 1.093 A
20995 5 2 1 4.000 68 3.79988 -1.103e-04 7.510e-06 1.088 1.094 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 1000 3.80011 -7.480e-05 1.246e-03 1.054 1.063 A
387 3 1 0 4.052 1000 3.79954 -7.993e-05 1.415e-03 1.070 1.072 A
1411 3 2 1 4.000 1000 3.80012 -7.459e-05 1.293e-03 1.058 1.063 A
1411 4 1 0 4.013 1000 3.80008 -7.597e-05 1.064e-03 1.064 1.065 A
5389 4 2 1 4.000 1000 3.80012 -7.458e-05 1.296e-03 1.060 1.063 A
5389 5 1 0 4.003 1000 3.80011 -7.493e-05 1.233e-03 1.063 1.063 A
20995 5 2 1 4.000 1000 3.80012 -7.458e-05 1.296e-03 1.062 1.063 A

158



A.2. Further Numerical Solution Tables

Table A.13. Results of a freeform optimization for the first eigenvalue on a rectangle
domain with target value λ∗ = 3.8 and regularization parameters α = 10−1, β = 10−3

for the tolerance of the termination criteria of TOLglobal = TOL = 10−5. The
tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel . Jq,min Jq,max EVS
387 2 2 1 4.002 8 3.80037 1.080e-05 2.806e-08 1.031 1.054 A
387 3 1 0 4.052 7 3.80051 3.188e-05 9.300e-06 1.055 1.060 A
1411 3 2 1 4.000 8 3.80037 1.011e-05 2.907e-08 1.040 1.053 A
1411 4 1 0 4.013 8 3.8004 1.484e-05 4.272e-08 1.053 1.054 A
5389 4 2 1 4.000 8 3.80037 1.007e-05 2.978e-08 1.047 1.054 A
5389 5 1 0 4.003 8 3.80038 1.122e-05 3.243e-08 1.053 1.053 A
20995 5 2 1 4.000 8 3.80037 1.006e-05 2.962e-08 1.050 1.054 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
387 2 2 1 4.002 1000 3.80037 1.080e-05 3.715e-05 1.030 1.053 A
387 3 1 0 4.052 1000 3.80051 3.189e-05 2.176e-05 1.055 1.060 A
1411 3 2 1 4.000 1000 3.80036 1.011e-05 3.820e-05 1.040 1.053 A
1411 4 1 0 4.013 1000 3.8004 1.485e-05 3.307e-05 1.053 1.054 A
5389 4 2 1 4.000 1000 3.80036 1.007e-05 3.830e-05 1.047 1.054 A
5389 5 1 0 4.003 1000 3.80037 1.122e-05 3.692e-05 1.053 1.053 A
20995 5 2 1 4.000 1000 3.80036 1.007e-05 3.829e-05 1.050 1.054 A
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A.2.2. Quarter Circle with Fixed Edges

Table A.14. Results of a freeform optimization on a quarter circle domain with fixed
edges by using the gradient method from Algorithm 4.3 with target value λ∗ = 0.92
and regularization parameters α = 10−5, β = 10−6. The tables show results varying
the DoFs of the mesh, the refinement level (ref.), the order of Lagrange (Lagr.) and
Nédélec (Néd.) elements. The initial first (numerical) eigenvalue is given by λ0. We
show the eigenvalue λit after termination of the method and the resulting value of the
cost functional J , the relative residual of the gradient of the cost functional as well as
the minimum and maximum value of the determinant of the deformation gradient Jq
and the used eigenvalue solver EVS.
DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 1000 0.92 -2.118e-08 1.716e-04 0.998 1.000 A
4035 3 2 1 0.9467 1000 0.92 -2.626e-08 2.003e-04 0.999 1.000 A
4035 4 1 0 0.9468 1000 0.92 -2.594e-08 2.006e-04 0.999 1.001 A
15737 4 2 1 0.9455 1000 0.92 -2.675e-08 2.093e-04 0.999 1.000 A
15737 5 1 0 0.9456 1000 0.92 -2.667e-08 2.094e-04 1.000 1.000 A
62211 5 2 1 0.9453 1000 0.92 -2.685e-08 2.117e-04 1.000 1.000 A
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A.2. Further Numerical Solution Tables

Table A.15. Results of a freeform optimization on a quarter circle domain with fixed
edges and target value λ∗ = 0.92 and regularization parameters α = 10−6, β = 10−6.
The tables show results varying the DoFs of the mesh, the refinement level (ref.), the
order of Lagrange (Lagr.) and Nédélec (Néd.) elements. The initial first (numerical)
eigenvalue is given by λ0. We show the eigenvalue λit after termination of the method
and the resulting value of the cost functional J , the relative residual of the gradient
of the cost functional as well as the minimum and maximum value of the determinant
of the deformation gradient Jq and the used eigenvalue solver EVS.

(a) BFGS method from Algorithm 4.4

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 31 0.919999 -1.005e-06 7.816e-05 1.164 1.176 A
4035 3 2 1 0.9467 18 0.919997 -8.793e-07 1.088e-04 1.123 1.152 A
4035 4 1 0 0.9468 18 0.919997 -9.020e-07 1.028e-04 1.028 1.142 A
15737 4 2 1 0.9455 21 0.919997 -1.005e-06 8.504e-05 1.337 1.381 A
15737 5 1 2 0.9456 21 0.919998 -1.006e-06 8.695e-05 1.351 1.358 A
62211 5 2 1 0.9453 27 0.919997 -1.012e-06 8.469e-05 1.342 1.364 A

(b) Gradient method from Algorithm 4.3

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 1000 0.919998 -6.290e-08 1.741e-04 0.998 1.000 A
4035 3 2 1 0.9467 1000 0.919998 -5.432e-08 2.028e-04 0.999 1.000 A
4035 4 1 0 0.9468 1000 0.919998 -5.470e-08 2.031e-04 0.999 1.000 A
15737 4 2 1 0.9455 1000 0.919990 -5.249e-08 2.118e-04 0.999 1.000 A
15737 5 1 0 0.9456 1000 0.919998 -5.258e-08 2.120e-04 1.000 1.000 A
62211 5 2 1 0.9453 1000 0.919998 -5.203e-08 2.142e-04 1.000 1.000 A

Table A.16. Results of a freeform optimization on a quarter circle domain with fixed
edges by using the gradient method from Algorithm 4.3 with target value λ∗ = 0.92
and regularization parameters α = 10−4 and β = 10−5. The tables show results
varying the DoFs of the mesh, the refinement level (ref.), the order of Lagrange
(Lagr.) and Nédélec (Néd.) elements. The initial first (numerical) eigenvalue is
given by λ0. We show the eigenvalue λit after termination of the method and the
resulting value of the cost functional J , the relative residual of the gradient of the
cost functional as well as the minimum and maximum value of the determinant of the
deformation gradient Jq and the used eigenvalue solver EVS.
DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 1000 0.92001 -4.825e-07 1.561e-03 1.002 1.004 A
4035 3 2 1 0.9467 1000 0.920004 -5.340e-07 1.821e-03 1.003 1.003 A
4035 4 1 0 0.9468 1000 0.920004 -5.308e-07 1.823e-03 1.003 1.004 A
15737 4 2 1 0.9455 1000 0.920003 -5.391e-07 1.903e-03 1.003 1.003 A
15737 5 1 0 0.9456 1000 0.920003 -5.383e-07 1.904e-03 1.003 1.003 A
62211 5 2 1 0.9453 1000 0.920002 -5.399e-07 1.924e-03 1.003 1.003 A
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Table A.17. Results of a freeform optimization varying the regularization parameters
α and β by using the BFGS method from Algorithm 4.4 on a quarter circle domain
with fixed edges and target value λ∗ = 0.92. The tables show results varying the DoFs
of the mesh, the refinement level (ref.), the order of Lagrange (Lagr.) and Nédélec
(Néd.) elements. The initial first (numerical) eigenvalue is given by λ0. We show
the eigenvalue λit after termination of the method and the resulting value of the cost
functional J , the relative residual of the gradient of the cost functional as well as the
minimum and maximum value of the determinant of the deformation gradient Jq and
the used eigenvalue solver EVS.

(a) α = 10−5 and β = 10−5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 63 0.92002 -1.327e-05 8.882e-05 1.459 1.495 A
4035 3 2 1 0.9467 100 0.919973 -1.218e-05 1.486e-04 1.268 1.336 B
4035 4 1 0 0.9468 100 0.919981 -1.227e-05 2.668e-04 1.302 1.314 BS
15737 4 2 1 0.9455 100 0.919973 -1.209e-05 2.095e-04 1.276 1.308 A
15737 5 1 0 0.9456 100 0.919953 -1.180e-05 1.442e-03 1.253 1.267 A
62211 5 2 1 0.9453 100 0.919953 -1.180e-05 1.44203 1.253 1.267 A

(b) α = 10−6 and β = 10−5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 100 0.919938 -3.308e-05 1.109e-03 1.554 1.615 B
4035 3 2 1 0.9467 100 0.920088 -3.306e-05 3.436e-03 1.482 1.547 B
4035 4 1 0 0.9468 100 0.919555 -3.115e-05 9.538e-03 1.465 1.476 B
15737 4 2 1 0.9455 100 0.919868 -2.696e-05 3.184e-03 1.400 1.419 A
15737 5 1 0 0.9456 100 0.920065 -3.278e-05 2.919e-03 1.479 1.485 B
62211 5 2 1 0.9453 100 0.919868 -2.696e-05 3.184e-03 1.400 1.419 A

(c) α = 10−3 and β = 10−5

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 6 0.920272 3.793e-06 1.125e-06 1.0020 1.0040 A
4035 3 2 1 0.9467 6 0.920214 2.388e-06 1.381e-06 1.0030 1.0036 A
4035 4 1 0 0.9468 6 0.920218 2.461e-06 1.626e-06 1.0029 1.0036 A
15737 4 2 1 0.9455 6 0.920204 2.153e-06 1.633e-06 1.0032 1.0034 A
15737 5 1 0 0.9456 6 0.920205 2.171e-06 1.701e-06 1.0032 1.0035 A
62211 5 2 1 0.9453 6 0.920201 2.096e-06 1.652e-06 1.0033 1.0034 A
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A.2. Further Numerical Solution Tables

Table A.18. Results of a freeform optimization varying the regularization parameters
α and β by using the BFGS method from Algorithm 4.4 on a quarter circle domain
with fixed edges and target value λ∗ = 0.92. The tables show results varying the DoFs
of the mesh, the refinement level (ref.), the order of Lagrange (Lagr.) and Nédélec
(Néd.) elements. The initial first (numerical) eigenvalue is given by λ0. We show
the eigenvalue λit after termination of the method and the resulting value of the cost
functional J , the relative residual of the gradient of the cost functional as well as the
minimum and maximum value of the determinant of the deformation gradient Jq and
the used eigenvalue solver EVS.

(a) α = 10−5 and β = 10−7

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 9 0.920004 3.831e-08 4.089e-05 1.002 1.004 A
4035 3 2 1 0.9467 7 0.920005 2.427e-08 1.012e-04 1.002 1.003 A
4035 4 1 0 0.9468 9 0.920003 2.485e-08 3.740e-05 1.003 1.003 A
15737 4 2 1 0.9455 7 0.920004 2.188e-08 7.823e-05 1.003 1.003 A
15737 5 1 0 0.9456 7 0.920004 2.208e-08 9.096e-05 1.003 1.003 A
62211 5 2 1 0.9453 7 0.920004 2.130e-08 6.969e-05 1.003 1.003 A

(b) α = 10−6 and β = 10−7

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 7 0.92 -6.003e-09 1.825e-05 1.004 1.006 B
4035 3 2 1 0.9467 12 0.920002 -1.365e-08 7.669e-05 1.016 1.019 A
4035 4 1 0 0.9468 7 0.919998 -6.361e-09 8.983e-05 1.004 1.005 A
15737 4 2 1 0.9455 12 0.920002 -1.383e-08 8.217e-05 1.017 1.018 A
15737 5 1 0 0.9456 12 0.920001 -1.296e-08 2.562e-05 1.015 1.015 A
62211 5 2 1 0.9453 12 0.920001 -1.393e-08 8.456e-05 1.017 1.018 B

(c) α = 10−3 and β = 10−7

DoFs ref. Lagr. Néd. λ0 it. λit. J rrel Jq,min Jq,max EVS
1059 3 1 0 0.9518 5 0.920288 4.574e-06 6.746e-05 0.998 1.000 A
4035 3 2 1 0.9467 6 0.920232 3.077e-06 2.487e-06 0.9984 1.000 A
4035 4 1 0 0.9468 5 0.920234 3.154e-06 1.018e-04 0.999 1.000 A
15737 4 2 1 0.9455 6 0.920223 2.822e-06 2.158e-06 0.999 1.000 A
15737 5 1 0 0.9456 5 0.920221 2.842e-06 1.144e-04 0.999 0.999 B
62211 5 2 1 0.9453 6 0.920220 2.760e-06 2.093e-06 1.000 1.000 B
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A.2.3. 1-Cell Cavity

Table A.19. Comparison of λ∗ on the domain deformation of a freeform optimization
on a 1-cell Cavity with fixed Riris on left-hand and right-hand side and with fixed
axes at the irises by using the BFGS method from Algorithm 4.4 with regularization
parameters α = 1, β = 10−5. The chosen refinement level is 2, the number of DoFs
is 43363. Lagrange elements of order 1 and lowest order Nédélec elements are used
and the initial first (numerical) eigenvalue is λ0 = 1653.75.

λ∗ it. λit. J rrel Jmin Jmax

1650 18 1650 2.427e-09 < 1.0e-08 1.00180 1.00182
1640 18 1640 3.330e-08 4.410e-08 1.00662 1.00670
1660 18 1660 6.889e-09 1.163e-08 0.99698 0.99702
1670 18 1670 4.587e-08 4.002e-08 0.99220 0.99230
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