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Abstract 

The increasing availability of large amounts of valuable data and the development of ever more 

powerful machine learning (ML) algorithms enable ML systems to quickly and independently 

identify complex relationships in data. As a result, ML systems not only generate new knowledge, 

but also offer significant potential to augment human capabilities and assist decision makers in 

challenging tasks. 

In high-risk areas such as aviation or healthcare, humans retain final decision-making 

responsibility, but will increasingly collaborate with ML systems to improve decision-making 

processes. However, since ML systems rely on statistical approaches, they are susceptible to error, 

and the complexity of modern algorithms often renders the output of ML systems opaque to 

humans. While initial approaches from the field of explainable artificial intelligence (XAI) aim to 

make the output of ML systems more understandable and comprehensible to humans, current 

research investigating the impact of ML systems on human decision makers is limited and lacks 

approaches on how humans can improve their capabilities through collaboration to make better 

decisions in the long run. To fully exploit the potential of ML systems in high-risk areas, both 

humans and ML systems should be able to learn from each other to enhance their performance in 

the context of collaboration. Furthermore, it is essential to design effective collaboration that 

considers the unique characteristics of ML systems and enables humans to critically assess system 

decisions. This dissertation comprises five published papers that use a mixed-methods study, two 

quantitative experiments and two qualitative design science research (DSR) studies to explore the 

collaboration and bilateral influences between humans and ML systems in decision-making 

contexts within high-risk areas from three perspectives: (1) the human perspective, (2) the ML 

system perspective, and (3) the collaborative perspective. 

From a human perspective, this dissertation examines how humans can learn from ML systems in 

collaboration to enhance their own capabilities and avoid the risk of false learning due to 

erroneous ML output. In a mixed-methods study, radiologists segmented 690 brain tumors in MRI 

scans supported by either high-performing or low-performing ML systems, which provided 

explainable or non-explainable output design. The study shows that human decision makers can 

learn from ML systems to improve their decision performance and confidence. However, incorrect 

system outputs also lead to false learning and pose risks for decision makers. Explanations from 

the XAI field can significantly improve the learning success of radiologists and prevent false 
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learning in the case of incorrect ML system output. In fact, some radiologists were even able to 

learn from mistakes made by low-performing ML systems when local explanations were provided 

with the system output. This study provides first empirical insights into the human learning 

potential in the context of collaborating with ML systems. The finding that explainable design of 

ML systems enables radiologists to identify erroneous output may facilitate earlier adoption of 

explainable ML systems that can improve their performance over time. 

The ML system perspective, on the other hand, examines how ML systems must be designed to 

respond flexibly to changes in human problem perception and their dynamic deployment 

environment. This allows the systems to also learn from humans and ensures reliable system 

performance in dynamic collaborative environments. Through 15 qualitative interviews with data 

science and ML experts in the context of a DSR study, challenges for the long-term deployment of 

ML systems are identified. The results show that the requirements for flexible adaptation of 

systems in long-term use must be established in the early phases of the ML development process. 

Tangible design requirements and principles for ML systems that can learn from their 

environment and humans are derived for all phases of the CRISP-ML(Q) process model for the 

development and deployment of ML models. Implementing these principles allows ML systems to 

maintain or even improve their performance in the long run despite occurring changes, thus 

creating the prerequisites for a sustainable lifecycle of ML systems. 

Finally, the collaborative perspective examines how the collaboration between humans and ML 

systems should be designed to account for the unique characteristics of ML systems, such as error 

proneness and opacity, as well as the cognitive biases that are inherent to human decision making. 

In this context, pilots were provided with different ML systems for the visual detection of other 

aircraft in the airspace during 222 recorded flight simulations. The experiment examines the 

influence of different ML error types and XAI approaches in collaboration, and shows that an 

explainable output design can significantly reduce ML error-induced pilot trust and performance 

degradation for individual error types. However, processing explanations from the XAI field 

increases the pilot’s mental workload. While ML errors erode the trust of human decision makers, 

a DSR study is conducted to derive design principles for acceptance-promoting artifacts for 

collaboration between humans and ML systems. Finally, the last part of the analysis shows how 

cognitive biases such as the IKEA effect cause humans to overvalue the results of collaboration 

with ML systems when a high level of personal effort is invested in the collaboration. The findings 

provide a broad foundation for designing effective human-AI collaboration in organizations, 

especially in high-risk areas where humans will be involved in decision making for the long term. 

Overall, the papers show how by designing effective collaboration, both humans and ML systems 

can benefit from each other in the long run and enhance their own capabilities. The explainable 

design of ML system outputs can serve as a catalyst for the adoption of ML systems, especially in 
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high-risk areas. This dissertation defines novel requirements for the collaboration between 

humans and ML systems and provides guidance for ML developers, scientists, and organizations 

that aspire to involve both human decision makers and ML systems in decision-making processes 

and ensure high and robust performance in the long term. 
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Abstract (German version) 

Die zunehmende Verfügbarkeit großer Mengen an wertvollen Daten und die Entwicklung immer 

leistungsfähiger Algorithmen im Bereich des maschinellen Lernens (ML) erlauben es ML-

Systemen auch komplexe Zusammenhänge in Daten schnell und eigenständig zu erkennen. 

Hierdurch können ML-Systeme nicht nur neues Wissen generieren, sondern bieten insbesondere 

großes Potential, menschliche Fähigkeiten zu erweitern und Entscheidungsträger auch bei 

anspruchsvollen Tätigkeiten zu unterstützen.1 

In Hochrisikobereichen wie der Luftfahrt oder dem Gesundheitswesen trägt der Mensch die finale 

Entscheidungsverantwortung, wird allerdings zunehmend mit ML-Systemen kollaborieren, um 

Entscheidungsprozesse zu verbessern. Da ML-Systeme jedoch auf statistischen Ansätzen 

beruhen, sind sie fehleranfällig und die Komplexität moderner Algorithmen lässt ML-

Systemausgaben für den Menschen oft undurchsichtig erscheinen. Während erste Ansätze aus 

dem Forschungsfeld der erklärbaren künstlichen Intelligenz (XAI) bereits darauf abzielen ML-

Systemausgaben für den Menschen verständlicher und nachvollziehbarer zu gestalten, greift die 

aktuelle Forschung, die den Einfluss von ML-Systemen auf den menschlichen 

Entscheidungsträger untersucht, zu kurz. Es fehlt an Ansätzen, die es dem Menschen ermöglichen, 

seine Fähigkeiten durch die Kollaboration zu erweitern, um langfristig bessere Entscheidungen 

zu treffen. Um das Potential von ML-Systemen in Hochrisikobereichen ausschöpfen zu können, ist 

es erforderlich, dass sowohl der Mensch als auch das System voneinander lernen können. Auf 

diese Weise kann die Leistungsfähigkeit beider Parteien im Rahmen der Kollaboration verbessert 

werden. Darüber hinaus muss eine effektive Zusammenarbeit gestaltet werden, die die 

besonderen Eigenschaften von ML-Systemen berücksichtigt und dem Menschen erlaubt 

Systementscheidungen kritisch zu hinterfragen. Die vorliegende Dissertation umfasst fünf 

veröffentlichte Beiträge, die mittels einer Mixed-Methods-Studie, zwei quantitativen 

Experimenten und zwei qualitativen Design Science Research (DSR) Studien die Kollaboration 

und bilateralen Einflüsse zwischen Mensch und ML-System im Kontext von Entscheidungen in 

 
1 Im Sinne einer verbesserten Lesbarkeit wird in diesem Text das generische Maskulinum verwendet. Dies schließt 

explizit Personen aller Geschlechteridentitäten ein.  
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Hochrisikobereichen aus drei Perspektiven untersuchen: der (1) Mensch-, (2) ML-System- und (3) 

Kollaborationsperspektive.   

Im Rahmen der Mensch-Perspektive wird untersucht, wie der Mensch von ML-Systemen in der 

Kollaboration lernen kann, um seine eigenen Fähigkeiten auszubauen und Risiken für falsches 

Lernen durch fehlerhafte ML-Systemausgaben vermieden werden. In einer Mixed-Methods Studie 

segmentieren Radiologen 690 Hirntumore in MRT-Bildern unter Einbezug leistungsstarker oder 

leistungsschwacher ML-Systeme, die ein erklärbares oder nicht-erklärbares Design für 

Systemausgaben bereitstellen. Die Studie offenbart, dass menschliche Entscheidungsträger von 

ML-Systemen lernen können, um ihre Entscheidungsperformance und -sicherheit zu verbessern. 

Im Falle von fehlerhaften Systemausgaben führt dies jedoch auch zu falschem Lernen und birgt 

ein Risiko für den Entscheidungsträger. Erklärungen aus dem XAI-Bereich können den Lernerfolg 

der Radiologen signifikant verbessern und verhindern falsches Lernen im Falle inkorrekter ML-

Systemausgaben. Tatsächlich können einige Radiologen sogar von Fehlern leistungsschwacher 

ML-Systeme lernen, wenn mit den Systemausgaben lokale Erklärungen bereitgestellt werden. Die 

Studie liefert erste empirische Erkenntnisse zum menschlichen Lernpotential im Rahmen der 

Kollaboration mit ML-Systemen. Die Erkenntnis, dass erklärbares Design von ML-Systemen 

Radiologen befähigt, fehlerhafte Ausgaben zu identifizieren, kann eine frühere Adoption von 

erklärbaren ML-Systemen, die ihre Leistungsfähigkeit über die Zeit ausbauen können, 

ermöglichen. 

Die ML-Systemperspektive untersucht hingegen, wie ML-Systeme entwickelt werden müssen, 

sodass diese flexibel auf Änderungen in der Problemwahrnehmung des Menschen und ihrer 

dynamischen Umgebung reagieren können. Dies erlaubt den Systemen auch vom Mensch zu 

lernen und stellt eine zuverlässige Leistungsfähigkeit der Systeme in dynamischen 

Kollaborationsumgebungen sicher. Mittels 15 qualitativer Interviews mit Data Science und ML-

Experten im Rahmen einer DSR-Studie werden Herausforderungen für den langfristigen Einsatz 

von ML-Systemen identifiziert. Die Ergebnisse verdeutlichen, dass bereits in frühen Phasen im 

ML-Entwicklungsprozess Voraussetzungen für die flexible Anpassung der Systeme im realen 

Langzeiteinsatz geschaffen werden müssen. Es werden konkrete Designanforderungen und 

Designprinzipien für ML-Systeme, die von ihrer Umgebung und dem Menschen lernen können, für 

alle Phasen des CRISP-ML(Q) Prozessmodells für die Entwicklung und den Einsatz von ML-

Systemen abgeleitet. Die Umsetzung dieser Prinzipien erlaubt ML-Systemen ihre Performance 

auch langfristig trotz auftretender Veränderungen zu erhalten oder sogar zu verbessern und 

schafft damit die Voraussetzungen für einen nachhaltigen Lebenszyklus von ML-Systemen.  

Abschließend untersucht die (3) Kollaborationsperspektive, wie die Zusammenarbeit von Mensch 

und ML-System gestaltet sein sollte, um die speziellen Eigenschaften wie Fehleranfälligkeit und 

Undurchsichtigkeit von ML-Systemen, aber auch kognitive Verzerrungen, die beim menschlichen 
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Entscheidungsträger auftreten zu berücksichtigen und vorteilhaft in die Kollaboration 

einzubeziehen. Hierbei werden Piloten für 222 aufgezeichnete Flugsimulationen verschiedene 

ML-Systeme zur visuellen Detektion anderer Flugzeuge im Luftraum bereitgestellt. Das 

Experiment untersucht den Einfluss verschiedener ML-Fehlertypen und XAI-Ansätze in der 

Kollaboration und zeigt, dass erklärbares Design ML-fehlerbedingte Vertrauens- und 

Leistungseinbrüche für einzelne Fehlertypen signifikant reduzieren kann. Allerdings erhöht die 

Verarbeitung der Erklärungen die mentale Arbeitslast der Piloten. Während ML-Fehler das 

Vertrauen von menschlichen Entscheidungsträgern schädigen, werden in einer DSR-Studie 

zudem Designprinzipien für akzeptanzfördernde Artefakte für die Zusammenarbeit von Mensch 

und ML-System abgeleitet. Abschließend wird im letzten Teil der Analyse gezeigt wie kognitive 

Verzerrungen wie der IKEA-Effekt verursachen, dass Menschen die Ergebnisse der Kollaboration 

mit ML-Systemen mehr wertschätzen, wenn ein hohes Maß an eigenem Aufwand in die 

Kollaboration eingebracht wurde. Die Erkenntnisse bieten ein breites Fundament für die 

Gestaltung wirkungsvoller Kollaboration in Organisationen und insbesondere 

Hochrisikobereichen, wo Menschen auch langfristig in die Entscheidungsfindung eingebunden 

sein werden. 

Übergreifend zeigen die Studien, wie über die Gestaltung effektiver Kollaboration sowohl 

Menschen als auch ML-Systeme langfristig voneinander profitieren und ihre eigenen Fähigkeiten 

verbessern können. Dabei kann erklärbares Design von ML-Systemausgaben als Katalysator für 

die Adoption von ML-Systemen insbesondere in Hochrisikobereichen dienen. Diese Dissertation 

definiert neue Ansprüche für die Kollaboration von Mensch und ML-System und bietet 

Orientierung für ML-Entwickler, Wissenschaftler und Organisationen, die sowohl menschliche 

Entscheidungsträger als auch ML-Systeme in Entscheidungsprozesse einbeziehen und eine 

langfristig hohe Leistungsfähigkeit sicherstellen möchten.
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1. Introduction 

1.1 Overarching Motivation 

As the application areas for the use of artificial intelligence (AI) are becoming ever more diverse 

and the technology is increasingly demonstrating its disruptive potential (e.g., Benbya et al., 2021, 

2024; Berente et al., 2021; Jordan & Mitchell, 2015), it is essential to expand our understanding of 

the mutual impact between humans and AI systems in collaboration (e.g., Abdel-Karim et al., 2023; 

Alavi et al., 2024; Benbya et al., 2021; Gaube et al., 2023; Pumplun et al., 2023). Today, AI has even 

found its way into high-risk environments such as healthcare or aviation, supporting tasks 

previously performed by human experts (e.g., Lebovitz et al., 2022; Reyes et al., 2020; Rudin, 2019; 

Shen et al., 2019; Sutton et al., 2020). However, due to the great risks associated with decisions in 

high-risk areas, AI systems are primarily used to augment human capabilities as support systems, 

which requires humans and AI systems to collaborate for decision making (e.g., Jha & Topol, 2016; 

Lebovitz et al., 2022; Meskó & Görög, 2020). In this context, the European Aviation Safety Agency 

(EASA) recently announced that it aims to approve AI systems for human cognitive assistance in 

decision making for civil aviation by 2025 (European Union Aviation Safety Agency, 2023) and 

there are already multiple certified AI solutions on the market to support medical diagnostics in 

radiology (e.g., Benjamens et al., 2020; Radboud University Medical Center, 2023). For instance, 

AI systems have been developed to assist physicians by analyzing medical imaging data to 

diagnose cancer, strokes, and other abnormalities (e.g., Calisto et al., 2021; Cheng et al., 2016; 

Gaube et al., 2023; Jussupow et al., 2021; Lebovitz et al., 2021; Pumplun et al., 2023), achieving 

diagnostic accuracy which exceeds that of human experts in certain scenarios (e.g., McKinney et 

al., 2020; Shen et al., 2019). 

The capabilities of modern applications in the field of AI are based on machine learning (ML), 

which is also known as a “general-purpose technology” (Brynjolfsson & Mitchell, 2017). ML-based 

systems can independently recognize patterns in large datasets and make predictions for new 

data based on the correlations learned (Brynjolfsson & Mitchell, 2017; Russell & Norvig, 2021). In 

the case of generative AI (GenAI), advanced ML approaches are used to generate new data based 

on learned patterns (Benbya et al., 2024; Dwivedi et al., 2023; Teubner et al., 2023). Contrary to 

traditional information systems, ML systems possess the ability to learn autonomously from 

examples, eliminating the need for solution instructions created by humans (Samuel, 1959). This 
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ability empowers ML systems to discover new solutions that humans may not find and thus 

provide complementary knowledge (Fügener et al., 2022; Mitchell, 1997). However, ML systems 

rely on statistical patterns, are highly inscrutable, and remain prone to errors (Berente et al., 

2021; Russell & Norvig, 2021). In the context of human-AI collaboration, the probabilistic nature 

and complexity of modern ML systems pose significant challenges, as end users struggle to 

comprehend the underlying mechanisms through which these systems arrive at their output 

(Diakopoulos, 2016; Lebovitz et al., 2022; Reyes et al., 2020; Rudin, 2019). Due to these unique 

characteristics of ML systems, they are often viewed as “black boxes” (Adadi & Berrada, 2018; 

Brasse et al., 2023; Guidotti et al., 2018; Rudin, 2019). To address this issue, the research stream 

of explainable AI (XAI) explores methods and develops explanations that aim to render ML output 

more human-understandable (Arrieta et al., 2020; Guidotti et al., 2018; Miller, 2019). In addition, 

the recently agreed EU AI Act also requires that end users of ML systems must be able to 

understand and interpret the systems’ characteristics and outputs (European Commission, 2023; 

Panigutti et al., 2023; Sovrano et al., 2022). 

Especially in high-risk environments, the use of ML systems requires that decision makers not 

only critically question the ML output, but also do not lose their own skills and experience 

performance degradation over time (e.g., Fügener et al., 2021; Goddard et al., 2012; Jussupow et 

al., 2021). Several studies have already shown the significant impact of ML systems on end users’ 

decision-making processes and capabilities (e.g., Abdel-Karim et al., 2023; Fügener et al., 2021; 

Gaube et al., 2023; Jussupow et al., 2021; Lebovitz et al., 2022). In this context, recent research 

emphasizes the importance of exploring how ML systems can not only support human decision 

makers but also enhance their ability to learn from these systems and improve their performance 

(e.g., Abdel-Karim et al., 2023; Gaube et al., 2023; Pumplun et al., 2023; Sturm, Koppe, et al., 2021). 

This also applies vice versa. In the context of collaborative decision making, it is crucial to 

acknowledge that both humans and ML systems should not be perceived as static entities. Thus, 

the system design should not only promote human learning but also allow ML systems to learn 

from and adapt to their dynamic environment to maintain or potentially improve performance 

over time (e.g., Grønsund & Aanestad, 2020; Jourdan et al., 2021; Sculley et al., 2015; Studer et al., 

2021; Stumpf et al., 2009; Sturm, Gerlach, et al., 2021). 

This dissertation seeks to explore the multifaceted challenges inherent in collaboration between 

humans and ML systems. Specifically, it aims to uncover strategies to ensure that both humans 

and ML systems can continuously improve their capabilities and performance through 

collaboration, with a focus on further promoting effective teamwork.  
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1.2 Overarching Research Questions  

The safe and sustainable deployment of ML systems within high-risk environments requires a 

symbiotic relationship between responsible human decision makers and ML systems, one where 

collaboration not only yields successful decision outcomes but also promotes long-term mutual 

growth and enhancement. To ensure that both parties benefit from collaboration, both humans 

and ML systems must continuously evolve in order to prevent a decline in performance, while also 

working effectively as a team. I thus consider the (1) human, (2) ML system, and (3) collaborative 

perspective of human-AI collaboration in this dissertation.  

In recent years, research in the field of human-AI collaboration has focused on the risks that arise 

for the human decision maker (e.g., Fügener et al., 2021; Jussupow et al., 2021). A notable concern 

is, for example, the tendency for humans to overly rely on ML recommendations, accepting them 

without questioning them critically—a phenomenon known as automation bias (Goddard et al., 

2012). This poses a particular risk due to the systems’ susceptibility to errors (Berente et al., 2021; 

Russell & Norvig, 2021). However, ML systems also hold substantial promise for professionals 

operating in high-risk environments: By independently identifying patterns in data (Brynjolfsson 

& Mitchell, 2017; Russell & Norvig, 2021), ML systems can discover knowledge that augments 

human capabilities (Fügener et al., 2022; Sturm, Koppe, et al., 2021). This offers the potential for 

humans to learn from ML systems in order to improve their own capabilities. However, the 

complexity of ML systems leaves their outputs opaque (Berente et al., 2021; Lebovitz et al., 2022; 

Russell & Norvig, 2021). While research has shown that explanations from the XAI field enhance 

human capabilities in assessing ML system performance (Jussupow et al., 2021; Lebovitz et al., 

2021) and promote trust (Benbya et al., 2021; Glikson & Woolley, 2020), the potential of ML 

systems and XAI approaches to facilitate human learning remains unexplored. Instead of risking 

performance degradation due to human-AI collaboration (e.g., Fügener et al., 2021; Goddard et al., 

2012), current research calls for studies to explore how ML systems can promote human learning 

(Abdel-Karim et al., 2023; Gaube et al., 2023; Pumplun et al., 2023). 

Within the human perspective of the analysis, I aim to combine findings from the field of human-

AI collaboration, XAI and educational research to enhance our understanding of whether and how 

humans can actually learn from ML systems and how explanations from the field of XAI affect 

learning outcomes. This novel approach could enable human decision makers to benefit from 

collaboration with ML systems in high-risk environments and I thus pose the following first, 

overarching research question (RQ): 

RQ1: In order to enhance human performance, how can the human decision maker learn from the 

ML system? 
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However, performance-related challenges that arise during human-AI collaboration are not 

exclusive to human decision makers. Long-term deployment can also negatively affect the 

performance of the ML systems (Jourdan et al., 2021; Rudin & Wagstaff, 2014; Salama et al., 2021; 

Sculley et al., 2015). ML system performance is highly dependent on the quantity and quality of 

data describing the problem at hand and used for training (Grover et al., 2018; Smith, 2020). While 

ML systems are trained on static datasets, the human perception of the problem may change 

during deployment (Russell & Norvig, 2021; Sculley et al., 2015), or other shifts in the dynamic 

deployment environment may lead to a change in data distribution, risking a degradation in 

system performance (Jourdan et al., 2021; Sculley et al., 2015; Sturm, Gerlach, et al., 2021). It is 

important that ML systems learn through feedback from humans, for example, if they have 

incorrectly assessed the quality of a component, but also if humans want to share new findings 

about component defects.  

While research increasingly addresses the need for continuous auditing and altering activities to 

adjust systems to dynamic changes in human problem perceptions or the deployment 

environment, it focuses on approaches such as human-in-the-loop (e.g., Amershi et al., 2019; 

Grønsund & Aanestad, 2020; Stumpf et al., 2009; Sturm, Koppe, et al., 2021). However, existing 

human-in-the-loop approaches to provide human feedback do not cover the various dynamics in 

the environment that can weaken the performance of ML systems in the long term. Moreover, 

these approaches take effect only after deployment and do not explain how ML systems need to 

be designed and developed to flexibly respond to shifts in data and problem perception, thus 

making them easier to maintain. Information Systems (IS) research recognizes this challenge and 

calls for methods to continuously maintain or even improve the performance of ML systems over 

time (e.g., Audzeyeva & Hudson, 2016; Grønsund & Aanestad, 2020). In addition, it is crucial to 

prevent a decay in accuracy and to maintain or even enhance performance over time for the 

adoption of ML systems in high-risk environments (Huyen, 2022). To further advance the 

development of ML systems that can flexibly respond to dynamic changes and learn from their 

environment and the human decision maker, I pose the following research question (RQ): 

RQ2: In order to enhance ML system performance, how can the ML system learn from the human 

decision maker and the dynamic environment in which it is deployed? 

In addition to ensuring that both parties—humans and ML systems—benefit from collaboration, 

it is critical that they can work together effectively as a team to ensure high performance in 

collaborative decision making. While research initially viewed the use of ML systems primarily as 

a tool to augment human capabilities, the increasing capacity for autonomy in ML systems has led 

to a shift toward speaking of collaboration (e.g., Berente et al., 2021; Schuetz & Venkatesh, 2020), 

in which both humans and ML systems contribute in independent roles to pursue a common goal 

or perform a common task (e.g., McNeese et al., 2018; Siemon, 2022; Zercher et al., 2023). The 
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deployment of ML systems as team members presents new challenges for collaborative decision 

making, which requires further investigation (Seeber et al., 2020). For example, human-AI 

teaming raises new questions about the trust of human decision makers, especially in the face of 

conflicting or erroneous ML advice (e.g., McNeese et al., 2021; Seeber et al., 2020; Zercher et al., 

2023). Machine teammates will further influence human cognitive biases in decision making (e.g., 

Balakrishnan et al., 2021; Seeber et al., 2020), and the adoption of autonomous ML systems poses 

challenges to user acceptance (e.g., Berente et al., 2021; Pumplun et al., 2021). To facilitate 

effective teaming of decision makers and ML systems, it is essential to enhance our understanding 

of emerging biases and develop systems that leverage them while fostering trust and acceptance. 

Therefore, I pose the following RQ: 

RQ3: In order to enhance collaborative performance, how can a human decision maker and an ML 

system effectively work as a team? 

1.3 Structure of the Dissertation 

Addressing the three RQs outlined, this dissertation comprises five research papers that have 

been published in various peer-reviewed outlets as presented in Table 1. The following section 

summarizes research methodologies and findings of the five papers and describes how they 

contribute to the objectives of this dissertation. 

Paper A addresses the first RQ by exploring whether and how humans can learn from 

collaborating with ML-based decision support systems (DSSs) to enhance their performance and 

decision-making confidence over time. In this mixed-methods study, radiologists segmented 690 

brain tumors in collaboration with explainable vs non-explainable ML-based decision support 

systems (DSSs) that were either high- vs low-performing. The quantitative results of the 

experiment show that decision makers can learn from ML systems, but they can also acquire 

incorrect knowledge. Explainable ML output design improves learning outcomes and can prevent 

false learning. In some cases, radiologists were even able to learn from the errors of ML systems 

when the output was made explainable. Addressing several calls for research (e.g., Asatiani et al., 

2021; Grønsund & Aanestad, 2020; Sturm, Gerlach, et al., 2021), paper A empirically demonstrates 

that collaboration with ML systems can promote human learning in the context of a high-risk 

application area and that explainable output design improves potential learning outcomes. The 

findings pave the way for early adoption strategies of explainable ML systems and link the value 

of explanations from the XAI domain to explanations used in education. 

Paper B examines the system perspective (RQ2) of human-AI collaboration. Following a design 

science research (DSR) approach, challenges for the performance of ML systems in long-term 

deployment are identified based on qualitative interviews with data science and ML experts. The 
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paper further derives design requirements (DRs) and principles (DPs), structured along the cross 

industry standard process model for the development of machine learning applications with 

quality assurance methodology (CRISP-ML(Q)), that can guide the development and deployment 

of ML systems which are able to learn from human decision makers and adapt to changes in their 

dynamic deployment environment. This allows ML systems to be maintained and flexibly adapted 

during deployment to ensure robust model performance over the long term. In particular, this 

holistic approach extends existing human-in-the-loop approaches, which are applied only after 

deployment, although important development steps in earlier phases already influence the ability 

of ML systems to learn from, e.g., the dynamic problem perception of human decision makers. 

Table 1: List of publications included in this dissertation 

RQ1 

Human 

perspective 

Paper A 

Ellenrieder, S., Kallina, E. M., Pumplun, L., Gawlitza, J. F., Ziegelmayer, S., & 

Buxmann, P. (2023). Promoting Learning Through Explainable 

Artificial Intelligence: An Experimental Study in Radiology. 2  In 

Proceedings of the 44th International Conference on Information Systems 

(ICIS), Hyderabad, India. VHB-Rating3: A. 

RQ2 

ML system 

perspective 

Paper B 

Ellenrieder, S., Jourdan, N., Biegel, T., Cassoli, B. B., Metternich, J., & 

Buxmann, P. (2023). Toward the Sustainable Development of Machine 

Learning Applications in Industry 4.0. In Proceedings of the 31st 

European Conference on Information Systems (ECIS), Kristiansand, Norway. 

VHB-Rating: A. 

RQ3 

Collaborative 

perspective 

Paper C 

Ellenrieder, S., Ellenrieder, N., Hendriks, P., & Mehler, M. F. (2024). Pilots 

and Pixels: A Comparative Analysis of Machine Learning Error Effects 

on Aviation Decision Making. 4  In Proceedings of the 32nd European 

Conference on Information Systems (ECIS), Paphos, Cyprus. VHB-Rating: A. 

Paper D 

Ellenrieder, S., Mehler, M. F., & Turan Akdag, M. (2023). Design for 

Acceptance and Intuitive Interaction: Teaming Autonomous Aerial 

Systems with Non-experts. In Proceedings of the 27th Pacific Asia 

Conference on Information Systems (PACIS), Nanchang, China. VHB-Rating: 

C. 

Paper E 

Mehler, M. F.*, Ellenrieder, S.*, & Buxmann, P. (2024). The Influence of 

Effort on the Perceived Value of Generative AI: A Study of the IKEA 

Effect. In Proceedings of the 32nd European Conference on Information 

Systems (ECIS), Paphos, Cyprus. VHB-Rating: A. 

*shared first authorship 

 
2 Awarded with the ICIS 2023 Best Paper Award in Honor of TP Liang. 
3 The latest VHB Publication Media Rating 2024 is selected as the preferred source for assessing the quality of peer-

reviewed papers and articles for my doctoral study program by the Technical University of Darmstadt.  
4 Awarded with the Claudio Ciborra First Runner Up Award. 
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From a collaborative perspective (RQ3), the increasing autonomy of ML systems, their remaining 

susceptibility to error, as well as human cognitive biases in decision making, present several 

challenges and opportunities to design effective collaboration, which are investigated by papers 

C, D, and E. However, the existing research that examines the impact of ML systems on human 

decision makers does not distinguish between the different types of ML errors. Paper C explores 

how different types of errors—false positives (FPs) and false negatives (FNs)—of ML systems 

affect the performance, trust, and mental workload of decision makers, aiming to design systems 

aligned with error management theory (EMT). In an online experiment, pilots are provided with 

222 recordings of flight simulations and different ML system variants that output FPs and FNs for 

detecting other aircraft in the airspace, with either an explainable or non-explainable output 

design. The study shows how both types of errors negatively affect the performance and trust of 

decision makers in high-risk areas. Explainable output design can mitigate these negative effects 

in terms of performance and trust, especially for FPs, but increases the mental workload of pilots 

in the case of FPs. The results can be used as a guide for the optimization of the sensitivity and 

explainability of the ML system in relation to the application area and the needs of the end user. 

In addition to the risk of erroneous behavior, the increasing degree of autonomy poses new 

challenges for human-AI collaboration and barriers to the acceptance of ML systems. At the same 

time, however, it increasingly enables non-experts to work with this complex technology by 

reducing the need for human supervision. Again, in the context of aviation, Paper D presents a 

DSR study that builds on qualitative interviews with drone pilots and aviation experts to derive 

DRs and DPs for artefacts that enable teaming of autonomous systems and non-experts and 

further promote technology acceptance. The study also shows that established design guidelines 

for improving explainability in human-AI collaboration need to be reconsidered with increasing 

autonomy and use by non-experts. The increasing level of autonomy not only changes the roles in 

human-AI collaboration, but also risks affecting how humans perceive the value of the solutions 

created. Paper E examines the bias in collaboration, where people overvalue collaboratively 

created solutions when a lot of their own effort went into them. The results of an online 

experiment provide a basis for rethinking current deployment strategies for the use of AI, as in 

some cases the effort that humans put into collaboration is essential to appreciate the results. The 

study suggests that meaningful collaboration to accomplish joint tasks may be advantageous over 

task splitting and automation due to cognitive biases. 

To explore how both humans and ML systems can learn from collaboration and work effectively 

as a team, different methodologies and theoretical backgrounds are applied. Paper A is a mixed-

methods study that includes both quantitative results from a clinical lab experiment and 

qualitative insights from interviews and think-aloud protocols with radiologists. Papers B and D 

are DSR studies based on qualitative expert interviews. Papers C and E employ a quantitative 
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approach in the context of two online experiments. To investigate human learning potential in 

collaboration, study A builds on Hunt’s (2003) learning theory. Paper B is based on the extended 

CRISP-ML(Q) process model (Studer et al., 2021) to derive requirements for ML systems that can 

learn from human decision makers for system maintenance after deployment. Paper C draws on 

the error management theory (Haselton & Nettle, 2006) to examine the impact of different ML 

error types on collaboration and align systems accordingly to minimize the costs incurred by the 

decision maker. Paper D uses the unified theory of acceptance and use of technology (UTAUT) as 

the kernel theory (Venkatesh et al., 2003) in the DSR approach to derive DRs and DPs for system 

design that promote user acceptance. Finally, paper E builds upon the cognitive bias known as the 

IKEA effect (Norton et al., 2012) and examines the influence of human effort on the perceived 

value of collaboratively developed solutions.  

The research papers under discussion are detailed in Chapters 3 through 7. Preceding this, 

Chapter 2 provides a comprehensive description of the research context and summarizes the 

relevant theoretical background. To conclude, Chapter 8 reflects on the theoretical and practical 

contributions of the research papers, and outlines avenues for future research. Figure 1 offers a 

schematic overview of the structure of the dissertation. 

 

Figure 1: Outline of the dissertation 
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In addition to the research papers presented in this dissertation, I also contributed to the 

following peer-reviewed publications and journal submissions during my time as a Ph.D. 

candidate. However, they are not included in this dissertation. 

 
• Wagner, L.*, Ellenrieder, S.*, Mayer, L., Müller, C., Bernhard, L., Kolb, S., Harb, F., Jell, A., 

Berlet, M., Feussner, H., Buxmann, P., Knoll, A., & Wilhelm, D. (2024). Robotic Scrub Nurse 

as Mind Reader: Anticipating Required Surgical Instruments Based on Real-Time 

Laparoscopic Video Analysis. Communications Medicine 4(1), 156, 

https://doi.org/10.1038/s43856-024-00581-0. 

*shared first authorship 

• Buxmann, P., & Ellenrieder, S. (2024). U    k    AI’  P                              

as the Catalyst. Weizenbaum Journal of the Digital Society 4(1), 

https://doi.org/10.34669/WI.WJDS/4.1.7. 

• Gräf, M., Mehler, M., & Jourdan, S. (2024) Crisis Management in the Metaverse: 

Designing Virtual Worlds for Real-World Resilience. In Proceedings of the 45th 

International Conference on Information Systems (ICIS), Bangkok, Thailand. VHB-Ranking: 

A. 

• Unzicker, D., Mehler, M., Kammholz, L., Sturm, T., Jourdan, S., & Buxmann, P. (2024). All 

Eyes on the Reviewer: Understanding the Impact of GenAI on Mental Workload and 

Performance in Code Reviews. In Proceedings of the 45th International Conference on 

Information Systems (ICIS), Bangkok, Thailand. VHB-Ranking: A. 

• Gräf, M., Mehler, M., & Ellenrieder, S. (2024). AI Strategy in Action: A Case Study on 

Make-or-Buy for AI-based Services. In Proceedings of the 28th Pacific Asia Conference on 

Information Systems (PACIS), Ho Chi Minh City, Vietnam. VHB-Ranking: C. 

• Mehler, M., Ellenrieder, S., Turan Akdag, M., Wagner, A., Benbasat, I. (2023). How to 

Survey: A Framework for Developing Cross-Sectional Surveys. In Proceedings of the 

44th International Conference on Information Systems (ICIS), Hyderabad, India. VHB-

Ranking: A. 

• Ellenrieder, S., Jourdan, N., & Reuter-Oppermann, M. (2023). Delivery Drones - Just a 

Hype? Towards Autonomous Air Mobility Services at Scale. In Proceedings of the 56th 

Hawaii International Conference on System Sciences (HICSS), Maui, USA. VHB-Ranking: B. 

• Gräf, M., Zöll, A., Wahl, N., Ellenrieder, S., Hager, F., Sturm, T., & Vetter, O. A. (2023). 

Designing the Organizational Metaverse for Effective Socialization. In Proceedings of 

the 27th Pacific Asia Conference on Information Systems (PACIS), Nanchang, China. VHB-

Ranking: C. 

• Joglekar, S.; Ellenrieder, S.; and Reuter-Oppermann, M., Unlocking Solver Potential: A 

Framework for Analysis and Inter-Comparison of Optimisation Solvers (2023). In 
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Proceedings of the 34th Australasian Conference on Information Systems (ACIS), Wellington, 

New Zealand.  
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2. Research Context  

 

This chapter lays the foundation for this dissertation by outlining the research context and 

relevant theories for the included papers. First, an overview of AI and ML, XAI and human-AI 

collaboration is given and the current state of research is described. Theories on human learning, 

technology acceptance and biases in human-AI collaboration are then presented. 

2.1 Artificial Intelligence and Machine Learning  

As early as the 1950s, AI research set itself the goal of developing machines that are capable of 

performing tasks that require human intelligence (McCarthy et al., 2006; Rai et al., 2019). While a 

large number of new definitions have emerged over the years, the concept of an intelligent agent 

that can perceive and act upon their environment has become established in the IS field (Benbya 

et al., 2021; Berente et al., 2021; Russell & Norvig, 2021; Schuetz & Venkatesh, 2020). Intelligent 

agents enable AI systems to perform cognitive functions “that we associate with human minds, 

such as perceiving, reasoning, learning, interacting with the environment,  problem solving, 

decision-making, and even demonstrating creativity” (Rai et al., 2019, p. 3). Initially, the field 

pursued rule-based approaches (Russell & Norvig, 2021), but today’s modern applications are 

primarily based on statistical machine learning approaches (Brynjolfsson & Mitchell, 2017). This 

shift has overcome the challenge that humans often cannot describe their own decision-making 

rules (Brynjolfsson & Mitchell, 2017; Fügener et al., 2021). 

ML, as the data-driven subfield of AI, utilizes learning algorithms that independently recognize 

patterns in large datasets. Subsequently, trained ML models can apply learned patterns to new 

data to make predictions, offer decision recommendations, classify data, or trigger further actions 

(Mitchell, 1997; Russell & Norvig, 2021). In the context of GenAI, sophisticated ML techniques are 

employed to create new data by utilizing identified patterns (Benbya et al., 2024; Dwivedi et al., 

2023; Teubner et al., 2023). Since ML models independently find solutions to problems, there is 

no longer a need for human solution instructions in the form of code (Samuel, 1959). Moreover, 

this approach allows for the discovery of new solutions and thus the generation of knowledge that 

is complementary to human knowledge (Fügener et al., 2022; Sturm, Gerlach, et al., 2021). Driven 

by rapid developments in the ML field, applications have transitioned into real-world use in 
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various organizations (e.g., Benbya et al., 2021; Lebovitz et al., 2021; McKinsey & Company, 2023), 

and ML systems can sometimes match or even surpass the performance of human experts in task 

execution (e.g., McKinney et al., 2020; Shen et al., 2019). This makes the use of ML increasingly 

attractive for high-risk environments such as healthcare or aviation (Lebovitz et al., 2021; 

Pumplun et al., 2023; Rudin, 2019; Sambasivan et al., 2021). 

However, specific characteristics of ML systems pose challenges for real-world deployment and, 

in particular, collaboration with human decision makers: Since ML learning algorithms are based 

on statistical approaches, ML-based systems are inherently probabilistic and remain susceptible 

to errors (Berente et al., 2021; Russell & Norvig, 2021). Furthermore, these approaches can lead 

to inconsistent system behavior (Amershi et al., 2019; Schuetz & Venkatesh, 2020), which is a 

particular problem due to the inscrutability of the systems (Asatiani et al., 2021; Berente et al., 

2021; Rudin, 2019). The complexity of modern ML models makes the inner workings of the 

models and their outcomes incomprehensible to human decision makers and, in addition, models 

cannot provide reasoning for their decisions (Diakopoulos, 2016; Rudin, 2019). This is often 

referred to as a “black-box” problem (Adadi & Berrada, 2018; Castelvecchi, 2016; Guidotti et al., 

2018). 

Despite the inherent risks, ML systems have been successfully explored and deployed in high-risk 

areas of application, including radiology. A well-known example of the use of ML in radiology is 

the detection, classification and segmentation of tumors in medical images (e.g., Calisto et al., 

2021; Lebovitz et al., 2021; McKinney et al., 2020; Pumplun et al., 2023; Silva & Ribeiro, 2011). In 

the case of a detection model, two types of errors can occur: The ML system falsely detects a tumor 

in a healthy patient—a false positive—or the system fails to detect an existing tumor—a false 

negative error (Goutte & Gaussier, 2005; Padilla et al., 2020; Silva & Ribeiro, 2011). The medical 

example clearly shows how significant the implications of ML errors are in high-risk 

environments. However, ML developers can influence the rates of both error types by setting the 

confidence threshold of the system, choosing to reduce the rate of one error type at the expense 

of the other (Padilla et al., 2020). The confidence threshold determines the minimum level of 

confidence necessary for a model’s detections to be recognized as valid (Asatiani et al., 2021; 

Sculley et al., 2015; Sturm, Gerlach, et al., 2021). Reducing the confidence threshold increases the 

ML system’s sensitivity and reduces FNs, but can increase the rate of FPs. Conversely, increasing 

the confidence threshold decreases sensitivity, reducing FPs but increasing the rate of FNs 

(Padilla et al., 2020; Wenkel et al., 2021).  

Setting the confidence threshold is just one decision in the iterative development process of ML 

systems, which encompasses several phases (Sambasivan et al., 2021; Wirth & Hipp, 2000). 

Initially, the problem to be solved must be identified, and system requirements defined. Based on 

these requirements, data and metadata that best describe the real-world problem are collected 
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and analyzed. This is followed by data cleaning, preprocessing, feature extraction, and selection 

to build meaningful datasets. The parameters of selected learning algorithms can then be trained 

based on a partial data set (Wirth & Hipp, 2000). Using various performance metrics and held-out 

test data, an offline evaluation of the trained models typically follows (Jourdan et al., 2021). If the 

predefined requirements are met, the model can then be deployed to production (Wirth & Hipp, 

2000). Although well-known process models like the popular CRISP-DM model end with the 

deployment phase (Wirth & Hipp, 2000), new process models like CRISP-ML(Q) (Studer et al., 

2021) and various research studies indicate the need for continuous monitoring and maintenance 

of ML systems in real-world deployment to maintain performance over the long term (Asatiani et 

al., 2021; Sculley et al., 2015; Sturm, Gerlach, et al., 2021). ML systems are trained and often 

evaluated on static datasets but are deployed in dynamic environmental conditions. For example, 

human perception of a problem may change (Russell & Norvig, 2021), or other causes may lead 

to deviations that negatively affect the performance of the ML system (Jourdan et al., 2021; Sculley 

et al., 2015; Sturm, Gerlach, et al., 2021). IS research has also recognized the need for continuous 

auditing and altering activities to maintain the performance and value of ML applications over the 

long term (e.g., Asatiani et al., 2021; Grønsund & Aanestad, 2020; Sturm, Gerlach, et al., 2021). 

While the focus is on integrating human feedback after deployment through, for example, human-

in-the-loop approaches (e.g., Grønsund & Aanestad, 2020; Stumpf et al., 2009), there is still a lack 

of comprehensive guidance on how ML systems must be developed throughout all phases to be 

able to learn from humans and the dynamic environment over time and respond to changes to 

maintain or even improve their performance—a requirement that is paramount for the use of ML 

in high-risk environments and for promoting sustainable ML lifecycles. 

2.2 Explainable AI 

As described above, the complexity of modern ML systems renders their outcomes opaque, 

creating what is commonl  referre  to as the “black-box” problem (Asatiani et al., 2021; Berente 

et al., 2021; Rudin, 2019). For human decision makers, collaboration with modern ML systems 

poses a major challenge due to this lack of explainability (Arrieta et al., 2020; Lebovitz et al., 2022; 

Meske et al., 2022; Reyes et al., 2020). To address this issue, the research field of XAI has emerged 

at the intersection of human-computer interaction, computer science, and social science (Arrieta 

et al., 2020). XAI approaches primarily aim to make the decision-making processes and results of 

ML systems more understandable to humans (Adadi & Berrada, 2018; Arrieta et al., 2020; Meske 

et al., 2022). This is achieved by providing explanations that offer reasoning for system decisions, 

thereby improving the explainability of the outputs (Meske et al., 2022; Miller, 2019). The terms 

explainability, interpretability, and transparency are often used interchangeably (Meske et al., 

2022; Pumplun et al., 2023). However, in this dissertation, I adhere to the distinction that 
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transparent ML systems are inherently understandable to humans due to their underlying 

models, such as decision trees, which do not require additional explanations to be comprehensible 

(Panigutti et al., 2023; Pumplun et al., 2023; Rosenfeld & Richardson, 2019). Interpretability is 

closely aligned with the concept of explainability. Yet, while interpretability focuses on how easily 

users can predict an ML system’s output as inputs and parameters change, explainability enables 

humans to understand the underlying mechanisms of ML systems through explanations (Arrieta 

et al., 2020; Meske et al., 2022; Panigutti et al., 2023; Pumplun et al., 2023; Reyes et al., 2020; 

Rosenfeld & Richardson, 2019). Thus, explainable systems allow humans to understand why ML 

systems make certain decisions (Arrieta et al., 2020; Guidotti et al., 2018). 

Three categories of explanations can be distinguished in the XAI field: Firstly, model explanations, 

which provide meta-information about the underlying ML model, the system’s development, and 

its performance (Cai et al., 2019; Diakopoulos, 2016; Meske et al., 2022; Pumplun et al., 2023). 

Secondly, global explanations, which can enhance the overall understanding of the system by 

clarifying, for example, the influence of individual features on the ML system’s decision making 

process (e.g., Ghorbani et al., 2019). Lastly, local explanations are designed to improve the 

comprehension of local outputs from an ML system, for instance, by detailing pixel contributions, 

providing uncertainty estimates, or conducting sensitivity analyses (Guo et al., 2017; Pumplun et 

al., 2023). 

Explanations in the XAI field are developed for various purposes: Initially, ML developers were 

the primary target group, as an understanding of the inner workings of ML systems is crucial for 

identifying flaws and thus for the improvement of the systems. Furthermore, explanations may be 

necessary for AI regulators to test and certify systems (Bhatt et al., 2020; Meske et al., 2022). On 

December 9, 2023, a political consensus on the AI Act was achieved between the European 

Parliament and the Council which imposes strict obligations on the transparency and 

explainability of high-risk AI systems (European Commission, 2023). Although the AI Act does not 

directly enforce the use of XAI methods, it demands that users who are responsible for overseeing 

the systems must be able to understand the system’s characteristics and correctly interpret its 

output (Panigutti et al., 2023; Sovrano et al., 2022). It is noteworthy that the AI Act places 

particular emphasis on end users as the intended recipients of the information embedded in, for 

instance, explanations from the XAI field. Similar requirements have been proposed in practice: 

The European Aviation Safety Agency (EASA) published a concept paper in March 2024 that 

requires safety-related ML applications in aviation to meet high explainability requirements. 

EASA emphasizes that not only software developers, but also operational users of ML applications, 

such as flight crews, have a need for explainability. In this context, explainability should not only 

improve understanding of the decisions made by ML systems for the operational users, but also 

contribute to building trust (European Union Aviation Safety Agency, 2024). IS research has also 
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increasingly dealt with the impact of explanations on the human decision maker as the end user 

in recent years (e.g., Asatiani et al., 2021; Gaube et al., 2023; Pumplun et al., 2023). In this context, 

it is important to consider the often limited prior knowledge of end users regarding ML and to 

avoid providing overly complex explanations (Adadi & Berrada, 2018; Bhatt et al., 2020; Meske et 

al., 2022), which can be challenging as explanations are usually statistical in nature (Bhatt et al., 

2020). 

The positive impact of explanations from the XAI field on human decision makers has been 

demonstrated in recent studies (e.g., Gaube et al., 2023; Jussupow et al., 2021; Lebovitz et al., 

2021). For example, explainable design allows for better system evaluation by humans (e.g., 

Jussupow et al., 2021; Lebovitz et al., 2021), improved trust building (Benbya et al., 2021; Schuetz 

& Venkatesh, 2020), more effective communication with the system (Kane et al., 2021), and recent 

studies even suggest the potential of explanations to promote human learning (Abdel-Karim et al., 

2023; Gaube et al., 2023; Jussupow et al., 2021; Lebovitz et al., 2021; Meske et al., 2022). However, 

the provision of explanations introduces additional information into the decision-making process, 

which—despite all the mentioned advantages—can also have a negative impact, as it requires 

additional cognitive resources (e.g., Lebovitz et al., 2022; Pumplun et al., 2023). Moreover, 

explanations can cause adjustments to mental models, potentially leading to biased decisions 

(Bauer et al., 2023). Nonetheless, the use of explainable ML systems holds great potential for 

human decision makers. Particularly, the potential of explanations to promote human learning is 

of great relevance for the current research on the use of ML systems for decision support in high-

risk areas, as humans will continue to bear responsibility in the long term—a research area that 

remains under-explored and will be examined in this dissertation. 

2.3 Human-AI Collaboration  

While AI systems were initially developed with the goal of assisting humans in performing tasks 

and augmenting human capabilities (e.g., Brynjolfsson & McAfee, 2014; Maedche et al., 2019), the 

increasing autonomy and performance of modern algorithms (e.g., Berente et al., 2021; Schuetz & 

Venkatesh, 2020) has led to research that now speaks of human-AI collaboration (e.g., Fügener et 

al., 2021; Mirbabaie et al., 2022; Vössing et al., 2022). In the context of human-AI collaboration, 

both humans and AI pursue a common goal and perform joint tasks in independent roles (e.g., 

McNeese et al., 2018; Siemon, 2022; Vössing et al., 2022; Zercher et al., 2023). For this definition, 

it is no longer sufficient for AI systems to simply act as digital assistants, for example, scheduling 

meetings based on email requests to improve the performance of individuals or human teams in 

the workplace (e.g., Maedche et al., 2019; Seeber et al., 2020). When humans and AI systems 

collaborate, often referred to as human-AI teaming (e.g., Gurney et al., 2022; McNeese et al., 2018; 

Seeber et al., 2020; Zercher et al., 2023), AI systems have the ability to engage in complex problem-
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solving and decision-making processes as team partners (Maedche et al., 2019; Seeber et al., 

2020), taking on tasks that previously required human intelligence, such as diagnosing diseases 

like cancer (e.g., Lebovitz et al., 2022; McKinney et al., 2020; Vössing et al., 2022). 

This view has already been adopted in practice for the classification of AI systems in high-risk 

areas such as aviation. In its recently published AI Roadmap 2.0, the EASA divides AI applications 

in aviation into three levels. Level 1 AI systems are used to cognitively support and augment 

humans, while Level 2 AI systems collaborate with humans, also referred to here as human-AI 

teaming. Level 2 AI systems can already select and execute actions automatically but are 

supervised by humans who retain final decision-making authority and responsibility. At Level 3, 

systems are given full authority to make and execute decisions without supervision, also referred 

to as advanced automation (European Union Aviation Safety Agency, 2023, 2024). 

Due to technological advancements and changing role distributions, existing knowledge about 

human-computer interaction in the context of AI needs to be reconsidered and expanded, creating 

new avenues for future research (e.g., Maedche et al., 2019; Seeber et al., 2020). For example, 

Seeber et al. (2019) provide a comprehensive overview of the challenges and opportunities for 

the design of socio-technical systems that emerge in the context of human-AI collaboration. 

Characteristics such as the error-proneness and lack of transparency and explainability of AI 

systems (e.g., Adadi & Berrada, 2018; Berente et al., 2021) affect, for instance, how humans 

develop trust in AI (Glikson & Woolley, 2020; Gurney et al., 2022; Vössing et al., 2022) and their 

acceptance of the technology (e.g., Berente et al., 2021; Pumplun et al., 2021). In addition, Fügener 

et al. (2021) point out that humans have difficulty assessing their own capabilities, which makes 

them poor delegators when working with AI systems. Overall, IS research is divided with respect 

to the impact of AI systems on the human decision maker. Studies have shown that collaboration 

with AI systems can indeed lead to better performance and that humans can improve their 

decision making as a result (e.g., Abdel-Karim et al., 2023; Gaube et al., 2023), while others point 

to risks to reasoning and the potential loss of unique knowledge in decision makers (Fügener et 

al., 2021; Jussupow et al., 2021). In this dissertation, I aim to expand our understanding of the 

impact of AI systems on human decision makers, with a focus on high-risk domains such as 

healthcare and aviation. In particular, the potential for humans to learn and improve through 

collaboration with AI systems, as well as the effects of characteristics such as error-proneness and 

the explainability of system output on trust, cognitive biases, technology acceptance, and mental 

workload, will be explored. 

2.4 Theoretical Foundations 

In what follows, the theoretical foundations that are applied to explore the human, system, and 

collaborative perspectives on human-AI collaboration are presented. In order to analyze whether 
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and how humans can learn from ML systems, I rely on Hunt’s (2003) theory of human learning. 

Error management theory, on the other hand, is applied to analyze how the error rates of ML 

systems should be biased in order to minimize the costs incurred by the decision maker. In 

addition, I describe the unified theory of acceptance and use of technology, which serves as a 

kernel theory to derive DRs and DPs that promote technology acceptance for highly autonomous 

ML systems. Finally, the IKEA effect is used to investigate the extent to which the human effort 

invested in collaboration leads to an overvaluation of the solutions developed. 

2.4.1 Learning Theories  

Aiming to describe and understand the complex process of human learning, various learning 

theories have emerged over the years (e.g., Chase & Simon, 1973; Hunt, 2003; Miller, 1956). 

Human learning encompasses the absorption, processing, and storage of information into short-

term and long-term memory (Gagné, 1970). According to Miller’s (1956) learning theory, humans 

cluster related bits of information into so-called chunks of information during the learning process. 

Only when an individual manages to recognize and establish connections between new and 

existing chunks from long-term memory, can they acquire new skills or expand existing ones, 

thereby changing their behavioral potential (Chase & Simon, 1973; Miller, 1976). More modern 

learning theories, like that of Hunt (2003), define learning in general as the acquisition and 

retention of new knowledge in human memory. To measure learning, therefore, a change in 

knowledge must be observed. Unfortunately, knowledge is an intangible asset for which there is 

no standardized measurement method (Sveiby, 1997). Many studies in both educational research 

and IS research fields that aim to measure learning, therefore, investigate changes in behavior 

(e.g., Abdel-Karim et al., 2020; Calisto et al., 2021; Regueras et al., 2009). However, these studies 

do not distinguish between changes in knowledge—also referred to as behavioral potential—and 

behavior, although not every change in knowledge results in a change in behavior (Hunt, 2003). 

This is particularly true in high-risk application areas, where the consequences of incorrect 

decisions are severe. Here, it is important for decision makers to consider how confident they are 

that their decision is correct (Hunt, 2003). The question of how certain a person must be about a 

belief for it to guide behavior is referred to in this context as the boundary problem (Quine, 1987). 

Building on these insights, Hunt (2003) proposes an epistemetric method to measure changes in 

knowledge and thus learning. In addition to measuring behavior (i.e., performance measurement), 

this method also captures the certainty with which a person possesses knowledge. For the 

effective acquisition and storage of knowledge, explanations that include necessary contextual 

information and facilitate the integration of new information into existing knowledge are 

considered essential by educational research (Crowley & Siegler, 1999; Fender & Crowley, 2007). 

Yet, unanswered in this context is the question of whether explanations from the XAI field can also 
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serve to support the integration of information provided by ML systems, to promote human 

learning in human-AI collaboration. Paper A investigates the impact of ML systems and XAI 

approaches on human learning, applying the epistemetric method proposed by Hunt (2003). 

2.4.2 Error Management Theory 

While human decision making is inherently biased, there are also impulses from research to 

incorporate bias into “humanly engineered systems” (Haselton & Nettle, 2006). In this context, 

Haselton and Nettle (2006) introduce the error management theory, which posits that in 

decisions made under uncertainty where the costs of different types of errors—FNs and FPs—are 

asymmetric over evolutionary time, the system should be biased to prefer the less costly error 

type. Taking this bias into account during system development can reduce the overall costs by 

minimizing the more costly error type. In order to avoid more costly errors, it is also accepted that 

the overall frequency of errors may increase (Green & Swets, 1966; Johnson et al., 2013). Natural 

selection has caused human decision making to adapt over evolutionary time to make predictable 

errors that avoid particularly costly mistakes (Haselton & Nettle, 2006; Johnson et al., 2013). 

Introducing such a bias thus aligns the system with human psychology (Haselton & Nettle, 2006). 

However, in order to bias systems according to EMT and decide on feasible system decision 

strategies under uncertainty, it is necessary to understand the different costs of errors and why 

decision makers react to each type of error differently (Swets et al., 2000). Especially in high-risk 

areas, where the consequences of wrong decisions are severe, many studies investigate which 

type of error is preferable. For example, Arkes & Mellers (2002) conducted a survey among 

students to determine whether they were less inclined to accept FPs (false convictions) or FNs 

(false acquittals) of people who had been charged with serious crimes. The authors found that 

there was a clear bias, and the majority of participants accepted a higher rate of FNs, thereby 

acquitting the guilty (Arkes & Mellers, 2002). Swets et al. (2000) demonstrated that introducing 

a system bias regarding different error types can improve the accuracy of medical diagnoses in 

the collaboration between physicians and DSSs. While it is usually easy to consider FNs as more 

severe compared to FPs (e.g., overlooking a tumor compared to a false over-detection) in high-

risk application areas, it is also relevant to assess the costs of FPs on the human decision maker 

(Luce & Kahn, 1999). This allows for biasing systems according to EMT and understanding the 

impact of both error types on the decision maker and collaborative decision performance 

(Haselton & Nettle, 2006; Wardle & Pope, 1992). A system that is overly sensitive and produces a 

large number of FPs can also result in costs if decision makers stop using the system. While EMT 

can generally be applied to decisions under uncertainty (Haselton & Nettle, 2006), it becomes 

particularly relevant for ML systems used in collaboration with human decision makers. Research 

often aims to improve the accuracy of ML systems (Roy et al., 2022). However, it is important to 
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acknowledge that even highly accurate ML systems are susceptible to errors (Russell & Norvig, 

2021). Therefore, it is crucial to also consider strategies for error management. Although the 

technical implementation of favoring one type of error, as described in Section 2.1, is 

straightforward for ML systems, IS research investigating the impact of erroneous ML systems on 

the human decision maker has not yet distinguished between the different types of errors that 

can occur (e.g., Abdel-Karim et al., 2020; Jussupow et al., 2021; Pumplun et al., 2023), and we know 

little about the cost that both types of errors incur for the human decision maker. In this context, 

it is also important to consider the integration of approaches from the XAI area and their impact 

on the costs of different ML error types. Paper C conducted an experimental study with pilots to 

investigate the costs related to performance, trust, and mental workload caused by different ML 

error types which provides as broad foundation to design ML systems in line with EMT for 

collaboration with human decision makers. 

2.4.3 Unified Theory of Acceptance and Use of Technology 

Although the deployment of ML systems in high-risk areas such as medical diagnostics offers great 

potential to improve decisions, the adoption of these systems in practice remains low. One factor 

hindering adoption is the low ML acceptance by decision makers such as physicians (e.g., Pumplun 

et al., 2021). For successful human-AI collaboration, it is accordingly essential that advice given 

by ML systems is considered and that there is acceptance for the technology among end users. The 

UTAUT model is a theoretical approach that aids in comprehending the factors that influence 

technology acceptance and subsequent usage behavior (Venkatesh et al., 2003). Furthermore, the 

UTAUT model can be used to target potential users who are less inclined to adopt a technology 

(Venkatesh et al., 2003, 2016). Based on eight prominent theories explaining individual 

technology acceptance, Venkatesh et al. (2003) developed the UTAUT model, which includes four 

key constructs (see Figure 2) that serve as direct determinants of usage intention and behavior. 

Performance expectancy generally refers to the belief of individuals that utilizing a particular 

system will enhance their job performance. Effort expectancy concerns the perceived ease 

associated with the use of the technology or system. This expectancy plays a crucial role at the 

initial stages of adoption, although its impact tends to diminish as users become more accustomed 

to the technology. Moreover, the intention to adopt and use a new technology is influenced by 

social influence, which is the perception of an individual regarding the expectations of important 

others that they should adopt the new technology. This determinant is particularly relevant at the 

beginning of technology usage when the user’s experience is limited. Lastly, facilitating conditions 

relate to the individual’s belief in the availability of necessary organizational and technical 

support systems to facilitate the use of the technology (Brown & Venkatesh, 2005; Venkatesh et 

al., 2003, 2012). 
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Figure 2: The UTAUT model with its four direct determinants of user acceptance and usage 
behavior (Venkatesh et al., 2003) 

In addition to these core constructs, the UTAUT model also identifies four key moderators of the 

effects of these constructs on usage intention and behavior: gender, age, experience, and 

voluntariness of use. These moderators help to explain the variability in technology adoption and 

use across different user groups and contexts (Venkatesh et al., 2003, 2016). While the UTAUT 

model was derived based on data from employees in organizations and serves to predict 

behavioral intentions to use a technology by professionals (Venkatesh et al., 2003), the extended 

UTAUT2 is applicable in a consumer context (Venkatesh et al., 2012). Since this work investigates 

the technology acceptance of ML systems by decision makers in organizations, such as pilots and 

radiologists, UTAUT is applied accordingly. Paper D uses the UTAUT model as a kernel theory to 

derive DRs and DPs that promote technology acceptance for collaboration with highly 

autonomous ML systems. 

2.4.4 Cognitive Biases  

When exploring human-AI collaboration, it is critical to acknowledge that humans do not always 

think and act rationally (Das & Teng, 1999; Kahnemann, 2012). Cognitive biases lead to systematic 

deviations from rational decisions, resulting in individuals not processing all information in 

decision-making processes, being influenced by emotions and prejudices in their interpretations, 

or applying heuristics to make quicker decisions (Arnott, 2006; Das & Teng, 1999; Kahnemann, 

2012). To date, research has identified numerous cognitive biases and developed different 

taxonomies (e.g., Arnott, 2006; French et al., 2023). For example, the anchoring bias causes people 

to give more weight to information that is provided first than to information that is provided later 

(Ahsen et al., 2019; French et al., 2023; Kahnemann, 2012). The overconfidence bias, on the other 

hand, causes people to overestimate their knowledge and ability to solve difficult or novel 

problems (Arnott, 2006; Odean, 1998). Moreover, people tend to attribute positive outcomes to 

themselves and negative ones to others, known as the self-serving bias (Mezulis et al., 2004; Miller 



2 Research Context 21 

& Ross, 1975), and the status quo bias can lead to the rejection of new technologies to avoid 

change (Kim & Kankanhalli, 2009). Research has shown that cognitive biases can also occur when 

collaborating with AI systems. Balakrishnan et al. (2021) demonstrated this for the example of 

the status quo bias, which impairs the acceptance of AI-based assistance systems, and Ahsen et al. 

(2024) for the example of weighted information provision by classification algorithms in the 

assessment of mammograms by radiologists. 

One cognitive bias that has not yet been studied in the context of human-AI collaboration and that 

can significantly affect the perceived value of collaboratively created solutions is the so-called 

IKEA effect (Norton et al., 2012). The potential for AI systems to automate tasks and reduce human 

effort in accomplishing common tasks and goals (Berente et al., 2021; Brynjolfsson & Mitchell, 

2017; Russell & Norvig, 2021) carries the risk that task outcomes and generated solutions will not 

be full   alue , as fin ings from ps chological an  beha ioral research ha e shown that “labour 

lea s to lo e” (Norton et al., 2012). The IKEA effect suggests that people overvalue objects into 

whose assembly or creation they have invested a lot of their own effort (Mochon et al., 2012; 

Norton et al., 2012). Named after the Swedish manufacturer whose products often require 

significant customer effort in final assembly, this effect has been demonstrated for a variety of 

physical products, such as preparing food, assembling cardboard boxes, and creating clothing and 

pictures (e.g., Dohle et al., 2014; Ling et al., 2020; Mochon et al., 2012; Norton et al., 2012; Radtke 

et al., 2019). In fact, objects in which a great deal of personal effort has been invested are valued 

even more highly than identical objects created by experts (Norton et al., 2012). Although the 

IKEA effect has been established for the creation of many physical objects (e.g., Dohle et al., 2014; 

Norton et al., 2012), it is unknown how human effort in collaboration with AI systems will 

influence the perceived value and appreciation of the created content and solutions. In addition, 

characteristics of AI systems such as lack of transparency and explainability (Arrieta et al., 2020; 

Berente et al., 2021) make it difficult for human decision makers to assess the impact of their own 

efforts in collaboration. Understanding the impact of human effort invested in collaborating with 

AI systems on the valuation of the content and solutions produced is essential for designing future 

collaboration and effective teamwork between humans and AI systems, and this cognitive bias is 

therefore explored in more detail in paper E. 

 



3 Paper A: Promoting Learning Through Explainable Artificial Intelligence: An Experimental Study in 
Radiology 

22 

3. Paper A: Promoting Learning Through Explainable Artificial 
Intelligence: An Experimental Study in Radiology 

Title 

Promoting Learning Through Explainable Artificial Intelligence: An Experimental Study in 

Radiology 

Authors 

Ellenrieder, Sara; Kallina, Emma M.; Pumplun, Luisa; Gawlitza, Joshua F.; Ziegelmayer, Sebastian; 

and Buxmann, Peter 

Publication Outlet 

Proceedings of the 44th International Conference of Information Systems (ICIS), Hyderabad, India, 

2023 

Awarded with the Best Paper Award in Honor of TP Liang 

Abstract 

The deployment of machine learning (ML)-based decision support systems (DSSs) in high-risk 

environments such as radiology is increasing. Despite having achieved high decision accuracy, 

they are prone to errors. Thus, they are primarily used to assist radiologists in their decision 

making. However, collaborative decision making poses risks to the decision maker, e.g. 

automation bias and long-term performance degradation. To address these issues, we propose 

combining findings of the research streams of explainable artificial intelligence and education to 

promote human learning through interaction with ML-based DSSs. We provided radiologists with 

explainable vs non-explainable decision support that was high- vs low-performing in a between-

subject experimental study to support manual segmentation of 690 brain tumor scans. Our results 

show that explainable ML-based DSSs improved human learning outcomes and prevented false 

learning triggered by incorrect decision support. In fact, radiologists were able to learn from 

errors made by the low-performing explainable ML-based DSS. 
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3.1 Introduction 

The increasing availability of large amounts of data and improved computational power have led 

to rapid improvements in the field of artificial intelligence (AI), especially in the data-based 

subfield of machine learning (ML). As a result, ML-based decision support systems (DSSs) are 

increasingly used in practice today (McKinsey Global Institute, 2021), supporting tasks that were 

previously performed exclusively by human experts (Shen et al., 2019). This development 

includes, in particular, high-risk environments such as aviation or healthcare (Lebovitz et al., 

2021; Maedche et al., 2019; Sutton et al., 2020). In the field of radiology, multiple clinical ML-based 

DSSs have recently entered the market (Radboud University Medical Center, 2023) and, in several 

cases, these systems can outperform expert radiologists in decision accuracy (e.g., Shen et al., 

2019). While ML-based DSSs theoretically could automate decision making (e.g., Brynjolfsson & 

Mitchell, 2017), this is unlikely in the medical domain due to the complexity of the decisions and 

the stakes of this high-risk environment (Jha & Topol, 2016). Instead, it is likely that ML-based 

DSSs will support physicians in specific tasks resulting in collaborative human-ML decision 

making. 

Despite the significant improvements of ML systems in recent years, they remain prone to errors 

(Brynjolfsson & Mitchell, 2017; Russell & Norvig, 2016). During collaborative human-ML decision 

making in radiology, it is thus essential that the physician is able to detect these instances of error 

(Goddard et al., 2012). However, this poses various challenges (Fügener et al., 2021; Riedl, 2019): 

Knowledge degradation or effects like the automation bias (the tendency of humans to over-rely 

on automated systems, even when presented with contradictory information or evidence; 

Goddard et al., 2012) might mislead physicians to excessively rely on the ML-based DSS, blindly 

accepting the s stem’s outputs without consulting their own judgment (Fügener et al., 2021; 

Goddard et al., 2012). In addition, it is a major concern that ML-generated advice could lead 

physicians to develop false beliefs (Goddard et al., 2012) and the performance of these experts 

could degrade in the long term (Fügener et al., 2021). Especially in the medical domain, it is critical 

that physicians retain and query their own judgment, so that they are able to detect and reject 

incorrect system recommendations in the future (Lebovitz et al., 2021). While several research 

efforts aim at improving the capabilities of ML models by integrating human feedback through 

human-in-the-loop concepts (e.g., Asatiani et al., 2021; Grønsund & Aanestad, 2020; Sturm, 

Gerlach, et al., 2021), the impact of ML-generated advice on the physician as the decision maker 

itself is still underexplored, and research now calls for future studies (e.g., Gaube et al., 2023).  

Despite their risks, ML-based DSSs offer great potential for human decision makers such as 

radiologists: Instead of risking a degradation in knowledge and thus performance (Fügener et al., 

2021), we argue that the emphasis should shift towards designing ML-based DSSs in a manner 
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that allows human decision makers to learn from the provided information. ML models recognize 

patterns based on data and can therefore find solutions to problems on their own (Brynjolfsson 

& Mitchell, 2017; Russell & Norvig, 2016). In doing so, ML models can offer solutions that humans 

would not find and contribute knowledge that is complementary to that of humans (e.g., Fügener 

et al., 2022). Enabling radiologists to learn from the information provided will likely improve their 

performance over time, or at least prevent degradation (Abdel-Karim et al., 2020; Gaube et al., 

2023). This novel perspective is in clear need for future research (e.g., Gaube et al., 2023; Pumplun 

et al., 2023): Whilst the research area around explainable artificial intelligence (XAI) aims at 

increasing the explainability of ML-generated output through explanations of the mechanisms 

underlying the models and thus might enable learning, this is rarely done with the aim to train the 

human end user in the task itself and more for purposes of making ML more understandable to 

system developers (Arrieta et al., 2020; Bhatt et al., 2020; Guidotti et al., 2018; Miller, 2019). Since 

educational research suggests that explanations are critical for effective human learning (Crowley 

& Siegler, 1999; Fender & Crowley, 2007), the study at hand aims at combining and expanding the 

findings of these two research streams to explore human learning through the interaction with 

ML-based DSSs. We therefore also address the question of whether explanations from the field of 

XAI, being statistical in nature and provided by a machine, can serve a similar purpose as 

explanations used in education. Rethinking how we design and provide ML-based DSSs would 

further allow us to align ongoing developments with the Sustainable Development Goals (SDGs) 

defined by the United Nations (Goralski & Tan, 2020; United Nations, 2015). Early achievement of 

education-related goals, such as high-quality education, can be supported by systems that 

promote human learning and can be scaled and deployed across countries. 

Several experimental studies in radiology assessed the impact of ML-based DSSs on physicians in 

diagnosing various cancer types and diseases (Asatiani et al., 2021; Grønsund & Aanestad, 2020; 

Sturm, Gerlach, et al., 2021). However, these approaches lack a full representation of the 

dependencies between the design of explainable ML-based DSSs, the performance of the systems, 

and the individual learning process of a human decision maker. Thus, it is unclear whether a 

learning process has taken place that affects the accuracy of a diagnosis and the certainty with 

which it was posed and how these complex processes are intertwined. Moreover, the sparse 

research on learning in collaboration with ML systems primarily considers decisions that are 

either correct or incorrect (e.g., Abdel-Karim et al., 2020; Gaube et al., 2023; Jussupow et al., 2021). 

However, this only considers a subset of the many real-world use cases where decisions can also 

gradually improve or worsen due to the influence of decision support.  

To unravel the full potential of ML-based DSSs to foster human learning, we thus pose the 

following research questions (RQs): In the context of radiology, (1) can the interaction with ML-
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based DSSs promote learning of human decision makers to improve their performance over time, 

and (2) can explainable design of ML-based DSSs improve potential learning outcomes? 

We investigate both RQs in an experimental study with radiologists who are tasked to segment 

brain tumors in multimodal magnetic resonance imaging (MRI) scans. By providing different 

variants of ML-based DSSs for the segmentation of brain tumors, we explore the impacts of high- 

vs low-performing ML-based decision support, as well as of explainable vs non-explainable design 

of ML-based decision support on the human decision maker. While little attention has been paid 

to the quantitative measurement of human learning progress in previous research, we obtain both 

qualitative and quantitative data to measure the learning progress of physicians. Overall, the 

results of this study offer empirical insights about how explainability can promote learning from 

high-performing ML-based decision support and prevent false learning in the case of low-

performing support (i.e., prevents the learning of incorrect decisions). Research as well as practice 

can draw insights from the results of this study for the development of future ML-based DSSs and 

related artifacts to promote human learning. 

3.2 Theoretical Background 

This section begins by outlining ML in general, as well as application areas for ML-based DSSs for 

medical diagnosis and requirements for explainable ML systems from the field of XAI. This is 

followed by a summary of findings from psychology and educational research on human learning. 

Lastly, we combine both research streams and derive our study objective. 

3.2.1 Machine Learning 

While early AI-enabled systems were built on rule-based approaches (Russell & Norvig, 2016), 

modern AI primarily relies on statistical machine learning approaches (Brynjolfsson & Mitchell, 

2017). ML algorithms–a sub-category of AI–have the ability to learn from data by deriving 

patterns on their own. Once trained, the resulting model can apply these patterns to new data to 

make predictions (Brynjolfsson & Mitchell, 2017; Mitchell, 1997; Russell & Norvig, 2016). This 

allows ML models to independently find solutions to problems, rather than requiring a human 

developer to provide instructions in the form of code (Samuel, 1959). Because ML models can 

independently find solutions based on data, they can generate new knowledge that humans may 

not have (Asatiani et al., 2021; Grønsund & Aanestad, 2020; Sturm, Gerlach, et al., 2021). However, 

the performance of ML models is highly dependent on the data provided, and since ML models 

rely on statistical patterns, they are prone to errors. This is a serious problem since the inner 

workings of ML models are often not comprehensible for humans due to their complexity and the 

use of large amounts of training data (Diakopoulos, 2016; Rudin, 2019). In other words, it is 

difficult for humans to understand why ML models make certain predictions based on the data 
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provided. The lack of explainability, as well as the potential for erroneous output are unique to 

ML-based systems and the main reasons that are preventing the adoption of the technology in 

many high-risk fields such as medical diagnostics (Lebovitz et al., 2021). 

3.2.2 ML-based Decision Support Systems for Medical Diagnostics 

The prediction capabilities of ML models enable ML-based systems to perform tasks that were 

previously exclusively performed by humans (Maedche et al., 2019; Rai et al., 2019). However, 

medical decision making remains a very complex field with severe consequences for errors. Thus, 

human decision makers (e.g., radiologists) are unlikely to be replaced in the near future, but 

instead they will be supported by ML systems in the form of ML-based DSSs (Jha & Topol, 2016). 

In practice, the output of ML-based DSSs is usually considered as a form of diagnostic advice that 

can either be accepted or rejected by the clinician who retains the final decision power (van 

Leeuwen et al., 2021). Especially in radiology, many ML-based DSSs are already deployed in 

practice and over 200 AI-based software products are available that have been European 

Conformity (CE) marked or cleared by the Food and Drug Administration (FDA) for clinical use in 

Europe and the United States, respectively (Radboud University Medical Center, 2023). In this 

context, the analysis of image data is a frequent component (Meskó & Görög, 2020) and ML 

algorithms are already performing with a high level of accuracy (e.g., Jiang et al., 2017). Several 

ML-based DSSs and prototypes have been developed and tested for radiology, focusing on such 

areas as diagnosing breast cancer, strokes, or alerting physicians to the detection of other 

abnormalities on CT images (Calisto et al., 2021; Gaube et al., 2023; Pumplun et al., 2023). Other 

application areas include the segmentation of abnormal regions on mammogram images, 

classification of lesions on ultrasound regions, and the segmentation of tumors on MRI scans 

(Lebovitz et al., 2021). 

3.2.3 Explainable Design of ML Systems  

As a response to the increasing complexity of ML models, the research field of XAI has emerged at 

the intersection of human-computer interaction, computer science, and social science. XAI aims 

at developing ML system outputs or interpretations that are understandable for humans (Arrieta 

et al., 2020; Miller, 2019). This is achieved by providing explanations about the processes 

underlying ML system decisions to make them more tangible, such as the considered features and 

their respective impact on the decision (Arrieta et al., 2020; Guidotti et al., 2018). Explanations 

serve as an interface between humans and ML systems that allow humans to comprehend the 

decision process better (Miller, 2019). Today, various explanatory approaches for the technical 

implementation of XAI exist (Pumplun et al., 2023). Model explanations provide meta information 

about the ML model and its development (Diakopoulos, 2016), while global explanations help 
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users understand the importance of particular features for the overall decision making process 

(Ghorbani et al., 2019). Local explanations aim to improve understanding of specific ML system 

outputs, e.g., through pixel assignments, uncertainty estimates, or sensitivity analyses (Guo et al., 

2017; Pumplun et al., 2023). However, these explanations are statistical in nature and are 

different from explanations that are easily understood by the general population (Bhatt et al., 

2020). 

Explanations can serve different purposes: Oftentimes, they aim at supporting data scientists or 

developers in understanding ML model behavior during development or are required to pass 

certain quality assurance tests (Bhatt et al., 2020; Meske et al., 2022). Recently, information 

systems (IS) research has examined the use of explanations to improve the interaction between 

human end users, who often have little technical ML knowledge, and ML systems (Asatiani et al., 

2021; Gaube et al., 2023; Pumplun et al., 2023). In this case, it is crucial to consider the needs and 

technical pre-knowledge of the end user (Meske et al., 2022) to avoid the presentation of overly 

complex explanations (Adadi & Berrada, 2018). In the healthcare context, it is crucial to provide 

explanations that are understandable to physicians as the primary end users to support medical 

decision making (Adadi & Berrada, 2018; Bhatt et al., 2020). 

3.2.4 Promoting Human Learning Through Machine Learning Systems 

Increased explainability is likely to have several positive effects on human-ML interactions. End 

users are, for example, more confi ent to follow the ML s stem’s a  ice an  maintain their  omain 

expertise when the explainability of the ML system is high (Asatiani et al., 2021; Strich et al., 2021; 

Van den Broek et al., 2021). While XAI further offers the possibility to increase the ability of 

humans to evaluate ML system performance (Jussupow et al., 2021; Lebovitz et al., 2021), build 

up trust (Benbya et al., 2021), and communicate in a more effective way with the system (Kane et 

al., 2021), studies have also suggested that opportunities for learning arise (Abdel-Karim et al., 

2020; Gaube et al., 2023; Lebovitz et al., 2021). These learning opportunities arise because ML 

models can independently find new solution approaches to problems and thus generate new 

knowledge that can be complementary to human knowledge (Fügener et al., 2022). Unfortunately, 

the use of ML is also fraught with risks and decision makers may lose the ability to find their own 

solutions or false learning occurs if incorrect advice is provided, risking a performance 

degradation in the long-run (Fügener et al., 2021). Providing explanations to make ML advice 

more human understandable bears the potential to change cognitive processes of humans and 

thus their beliefs (Bauer, von Zahn, et al., 2021). This could enable human decision makers to 

better understand advice given by an ML-based DSS and detect incorrect advice to avoid 

performance degradation. Nevertheless, the explanations from the field of XAI differ from 
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conventional explanations such as those found in the field of education. How well these arguments 

provided by machines are accepted needs to be researched. 

Recent experimental studies in the field of radiology began to evaluate the impact of ML-based 

DSSs on the decision making of physicians (Abdel-Karim et al., 2020; Calisto et al., 2021; Gaube et 

al., 2023; Jussupow et al., 2021; Pumplun et al., 2023). Gaube et al. (2023), for example, evaluate 

the impact of fully correct, explainable AI-advice on human decision making. Jussupow et al. 

(2021) also take incorrect advice into account but do not explore the impact of explainable 

support. However, both and similar studies in the field assume that ML advice as well as the final 

human decisions are either right (correct) or wrong (incorrect) (Abdel-Karim et al., 2020; Calisto 

et al., 2021; Gaube et al., 2023; Jussupow et al., 2021; Pumplun et al., 2023). Accepting an ML 

recommendation that contradicts the physician’s own judgment would thus require the physician 

to fully revise their decision, e.g., changing the diagnosis for a lung disease of a patient to having 

no lung disease (e.g., Abdel-Karim et al., 2020; Jussupow et al., 2021). In practice, however, 

diagnostic decisions require a more gradual evaluation such as the segmentation of tumor tissue 

in medical images instead of simply detecting whether a tumor exists or not. Since the results of 

the dichotomous experiments are only applicable to a small subset of the complex decisions which 

radiologists are required to make in the clinical practice, it is essential that we increase our 

understanding of more gradual diagnostic judgements in practice. Furthermore, such judgements 

are likely to indicate human learning through a gradual increase or decrease in performance. 

The impact of explainable ML-base  DSSs on the ph sician’s  ecision making–and thus human 

learning–is largely unexplored. For instance, to the best of our knowledge, no previous research 

investigated whether explainability can reduce false learning from incorrect ML advice. It is a 

critical challenge to understand how ML-based DSSs should be designed to achieve positive 

progress in learning for human decision makers such as physicians. 

3.2.5 Human Learning 

Human learning is a complex process that generally involves the acquisition of information 

through various means such as sensory perception, experience, and instruction. This information-

processing conception may include both short- and long-term storage of information (Gagné, 

1970). However, it is a challenge to clearly define human learning at its core as well as to establish 

a metric by which human learning can be measured. (Miller, 1956) studied the amount of 

information that humans can receive, process, and retrieve. According to Miller (1956), learning 

comprises the organization of bits of information into familiar units, termed chunks of 

information. Chase and Simon (1973) later developed the chunking theory, which states that 

learning occurs through the accumulation of chunks in long-term memory. Domain experts 

recognize the familiarity of chunks and establish links to these chunks in their short-term 
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memory. This recognition of familiar chunks can then lead to skill development and thus a 

mo ification of a person’s beha ioral potential (Chase & Simon, 1973; Miller, 1976). Based on 

these traditional theories, learning can be defined as the process of acquiring and retaining 

knowledge in memory (Hunt, 2003). Nevertheless, Hunt (2003) emphasized that a clear 

distinction between behavioral potential, known as knowledge, and behavior must be made. In 

contrast to knowledge, which is an invisible and intangible asset for which no measurement 

standard exists (Sveiby, 1997), performance or behavior can be directly observed and thus 

measured (Hunt, 2003; Sveiby, 1997). Many studies that aim to observe learning therefore 

measure behavior with different performance-based metrics (e.g., Calisto et al., 2021; Regueras et 

al., 2009). These studies do not distinguish between knowledge and behavior which is inaccurate 

for many situations because not every change in knowledge leads to a behavior change (Hunt, 

2003). When measuring learning progress, especially in a high-risk environment such as medical 

diagnostics, we should distinguish between a person A who comes to an incorrect diagnosis but 

feels highly uncertain about it and thus might be reluctant to provide it and a person B who is very 

certain that an incorrect diagnosis is correct and would therefore repeatedly make decisions 

based on this false belief (cf. Hunt, 2003). Thus, it is essential to determine the type of knowledge 

that leads to behavior change and hereby distinguish between belief and knowledge. A crucial 

element of a person’s knowle ge is the certaint  with which the  possess it (Hunt, 2003; Quine, 

1987). Quine (1987) defines this question of how certain a person’s belief must be for it to qualif  

as usable, behavior-guiding knowledge as the boundary problem. In addition, the certainty with 

which a person possesses knowledge also has a positive impact on the capability to retain that 

knowledge. Building on the traditional definition of human learning (Chase & Simon, 1973; Miller, 

1976) and the definition of usable knowledge (Quine, 1987), Hunt (2003) proposes an 

epistemetric method that assesses behavior not only by measuring performance (e.g., the 

correctness of an answer), but further through taking a person’s certaint  into account through 

measuring how sure a person is about a decision. This method of measuring human learning 

captures the qualit  of people’s real-life performance, as it depends on both the knowledge they 

hold and the confidence with which they possess it (Hassmen & Hunt, 1994; Hunt, 2003). Our 

study aims at measuring whether novice radiologists can learn from ML-based DSSs in the context 

of tumor segmentation. Therefore, we will measure the acquisition of knowledge. Due to the high-

stake environment in which we conduct the experiment, it is crucial to distinguish between 

behavior and knowledge. Thus, we selected the method proposed by Hunt (2003) and captured 

not onl  the changes in the ra iologists’ performance but also in their self-assessed decision 

confidence. 

Explanations are considered crucial for effective human learning since they provide necessary 

context, background, and understanding to process and integrate new pieces of information into 
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existing knowledge. It is not surprising that multiple studies suggest that explanations are 

associated with learning progress (Crowley & Siegler, 1999; Fender & Crowley, 2007). For 

instance, if explanations are provided for the demonstration of new problem-solving strategies, 

the ability to transfer strategies to novel problems improves (Brown & Kane, 1988).  

3.2.6 Hypothesizing Human Learning Through Interaction With ML-based DSSs 

Our study links explanations in the context of human learning to the XAI field by exploring the 

impact of increasing explainability of ML-based DSSs on the learning of human decision makers. 

In line with previous studies suggesting that correct AI-generated decision support can in general 

improve the performance of human decision makers (Fügener et al., 2021; Gaube et al., 2023), we 

formulate H1: Small learning gains can be achieved by interacting with non-explainable high-

performing (NEHP) ML-based DSSs. Despite mixed evidence on the effects of providing 

explanations or related measures such as certainty on human performance (cf. Fügener et al., 

2021), XAI studies suggest that they affect human beliefs (Bauer, von Zahn, et al., 2021) whilst 

educational research emphasizes that explanations are critical for effective human learning 

(Fender & Crowley, 2007). Increasing the explainability of ML-based DSSs through explanations 

should therefore lead to greater learning progress. Thus, we propose H2: Large learning gains can 

be achieved by interacting with explainable high-performing (EHP) ML-based DSSs.  

Incorrect, or in general low-performing ML-based decision support poses a great risk if decision 

makers fail to detect system errors (Goddard et al., 2012; Jussupow et al., 2021) risking a 

performance degradation (Fügener et al., 2021). Since non-explainable system advice is less 

interpretable for human decision makers–implying less opportunity to detect errors in the 

decision process (Arrieta et al., 2020)–we formulate H3: False learning is promoted through the 

interaction with non-explainable low-performing (NELP) ML-based DSSs. Improving the 

explainability of ML-based DSSs will likely increase the ability of human decision makers to detect 

errors (e.g., Sculley et al., 2015). This, in turn, is likely to reduce false learning, resulting in H4: 

False learning is reduced through the interaction with explainable low-performing (ELP) ML-based 

DSSs. 

3.3 Methodology 

To understand whether ML-based DSSs can impact human learning in the context of medical 

decision making, we designed an experimental setup in which radiologists were asked to segment 

tumors in MRI scans, before and after receiving decision support. Each radiologist received one of 

four different types of ML-based DSSs, i.e. a combination of high- vs low-performing and 

explainable vs non-explainable support. We followed a mixed-method study design: Besides 

obtaining quantitative, performance-based metrics during the experiment (supported by 
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subjective ratings of decision confidence), we collected qualitative data through think-aloud 

protocols and interviews. In-depth interviews with two experienced radiologists provided the 

necessary domain knowledge to design and validate the experimental setup with clinical expertise 

in advance. 

3.3.1 Empirical Context 

During pre-study interviews with experienced radiologists, we discussed which task would be 

most suitable for measuring gradual changes in decision performance and confidence as a result 

of learning progress in this setting (cf. Hunt, 2003). The radiologists recommended the 

segmentation of tumors in MRI scans due to their highly challenging nature, especially for novice 

physicians. Segmentations are particularly challenging for images that contain multiple areas that 

require interpretation such as a scan showing a brain tumor with perifocal edema 5 . Water-

sensitive sequences of MRI scans often result in large, signal-rich areas around the tumors, 

potentially obscuring the actual, significantly smaller tumor (Unterberg et al., 2004). In such cases, 

it is highly challenging to distinguish the tumor from the surrounding perifocal edema (Lebovitz 

et al., 2021). An example of a high-grade glioma (a high-malignant brain tumor) which shows a 

perifocal edema is provided in Figure 3, along with its segmentation on the right-hand side: Red 

indicates the segmentation of the necrotic, non-enhancing, whilst yellow marks the Gadolinium 

(GD)-enhancing tumor (Bakas et al., 2017; Kaggle, 2020; Menze et al., 2015). The edema is colored 

green. For this example, the optimal segmentation of the tumor core would be the selection of only 

the yellow and red areas, without including any of the green areas. 

  

Figure 3: Exemplary MRI scan of a high-grade glioma with edema in FLAIR sequence (Bakas et al., 
2017; Kaggle, 2020; Menze et al., 2015) 

Based on insights from our pre-study interviews, we decided to select the segmentation of low-

grade gliomas in contrast-enhanced T1 sequences (T1CE) and high-grade gliomas in T2 fluid 

attenuated inversion recovery (FLAIR) sequences (Figure 3 is an example of these) as the 

experimental task. MRI scans and corresponding segmentations, which served as the ground truth 

for the analysis of the data collected in the experiment, were taken from the BraTS20 dataset. All 

 
5 Because of the limited space available in the skull and the often rapid growth of brain tumors, water retention occurs 

around the tumors, which leads to a so-called perifocal edema (Unterberg et al., 2004). 
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gliomas in the BraTS 2020 dataset have been manually annotated and the segmentations are 

approved by experienced neuro-radiologists (Bakas et al., 2017; Kaggle, 2020; Menze et al., 2015). 

3.3.2 Research Design 

The following section outlines the overall research design by first providing a brief overview of 

the general study procedure before detailing the design of the segmentation tool including the 

ML-based DSSs and the general experimental setup. Then, we describe which data was collected 

as well as the statistical methods used to test our experimental hypothesis. The research design 

was iteratively developed and pre-tested in collaboration with two experienced radiologists, 

mainly through pre-study interviews and consultations. 

 

Figure 4: Procedure of the study, which includes pre- and post-experimental interviews (gray), and 
the segmentation tasks within the experiment (blue) 

Study Procedure. The study procedure, outlined in Figure 4, was constant across all participants. 

Prior to the experimental part of the study, the experimenter conducted a short interview with 

the participant to collect informed consent and personal information as well as to determine the 

participant’s experience in general radiology, brain tumors, image segmentation, and diagnostics 

supported by ML-based DSSs.  

Throughout each round of the experiment, each radiologist was instructed to complete five 

manual tumor segmentations on MRI scans, i.e. the initial (a) and final (e) segmentation of a 

reference case without decision support and three diagnostically similar segmentation cases (b-

d) with ML-based decision support in between (diagnostically similar refers to cases that require 

similar segmentation considerations as the reference case). The performance of the reference case 

was used to evaluate whether the segmentation accuracy of the participant changed through the 

segmentation of similar cases with decision support. The intermittent cases with ML-based 

decision support provided the participants with the opportunity to segment similar tumors with 

support through the ML-based DSS.  Then, they could apply the gained knowledge–if learning had 

occurred–to the final reference case. In addition, we asked participants about their confidence in 

their segmentations of the tumors. We measured the difference in accuracy and confidence 

between the initial (a) and final segmentation (e) of the reference case to represent learning. 

Overall, a total of three experimental rounds were performed by all participants (i.e. 15 

segmentations), with two rounds containing the segmentation of five similar high-grade gliomas 
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and one round containing five similar low-grade gliomas. All participants received the same MRI 

scans for tumor segmentation. 

To identify similar cases for the design of the experiment, a team of researchers and an 

experienced radiologist grouped diagnostically similar cases together, using clinical knowledge 

and the information provided in the BraTS20 dataset. To further validate the results and to 

perform a manipulation check (Aronow et al., 2019), the procedure concluded with semi-

structured interviews.  

In the following, the between-subject study design, as shown in Figure 5, is described. To gather 

a baseline assessment, each experimental round started with a reference case (Figure 5 (a)) 

without any form of decision support. For the segmentation of the similar cases (steps (b), (c) and 

(d) in Figure 5), the participants were randomly assigned to one of four different types of ML-

based decision support with varying levels of performance and explainability to test our 

hypotheses H1 to H4. The different types of ML-based DSSs are described in the Experimental 

Setup section. Once assigned to a group, participants received the same form of ML-based decision 

support for all cases (b-d) and rounds of the experiment. Since this between-subject study design 

allowed for an independent evaluation of the impact of each form of decision support, it enabled 

an unbiased comparison of the impact of the performance and explainability aspects of the ML-

base  DSS on the participant’s learning beha ior. 

Experimental Setup. Each case was presented and completed through a digital interface: The 

interface included an MRI scan series of a tumor and the participants were able to scroll through 

the scan along three axes. While all tumors could be analyzed in a 3D viewer, the segmentation 

task was performed on a single predetermined 2D plane to reduce the technical complexity of the 

segmentation task as well as to reduce the overall time required for tumor segmentation. For the 

creation of the interface, we used the interactive software application ITK-SNAP 3.6.0 which 

provides an intuitive user interface for segmenting structures in 3D medical images (Yushkevich 

et al., 2006). ITK-SNAP enabled participants to draw a polygon along the tumorous area for fast 

and easy manual segmentation. For the three similar cases (b-d), the ML-based decision support 

was provided as a semi-transparent overlay on top of the MRI scan which could be switched on 

and off by participants during review of the scan and segmentation of the tumorous area. 

Four different types of ML-based DSSs were defined to test hypotheses H1 to H4, respectively: 

non-explainable high-performing (NEHP), explainable high-performing (EHP), non-explainable 

low-performing (NELP), and explainable low-performing (ELP). The ML-based decision support 

variants are constructed through Accuracy- and Explainability Manipulation: 

Accuracy Manipulation. Different from prior IS studies in the field of medical decision making (e.g., 

Jussupow et al., 2021; Pumplun et al., 2023), this study focuses on gradual performance changes 
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(vs the impact of completely correct or incorrect decision support). The ML-based DSS was either 

high- or low-performing, with regards to correctly outlining the tumor core. The high-performing 

ML-based DSSs (NEHP and EHP) provided correct advice for >90% of the tumorous area, thus 

slightly outperforming prevailing clinical practice (e.g., Jiang et al., 2017). For the low-performing 

support (NELP and ELP), we reduced the accuracy below <50% so that large portions of tumor 

were not detected and large portions of healthy tissue were incorrectly classified as tumor. 

 

Figure 5: Between-subject experimental study design for segmentation of brain tumors and 
different designs of ML-based DSSs 

Explainability Manipulation. The design of our explainable ML-based DSSs (EHP and ELP) is based 

on the guide for the development of explainable ML-based DSSs by Pumplun et al. (2023) that has 

been validated through an evaluative study with radiologists. In the explainable decision support 

conditions, the radiologist is provided with local explanations in form of a confidence heatmap 

and an uncertainty estimate for the ML-base  DSS’s classification of the tumor area. Both methods 

aim to increase the comprehensibility of the ML advice to enable radiologists to evaluate the 

s stem’s performance (cf. Pumplun et al., 2023). The heatmap  isualizes the ML mo el’s 

confidence for each pixel of the image in three discrete levels: pixels with high confidence for 
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tumorous tissue are colored red, while areas with high confidence for healthy tissue are colored 

green. Areas with generally low confidence for either class are colored yellow, signifying 

uncertainty of the underlying ML model. The uncertainty estimate, i.e. the average confidence of 

pixels classified as belonging to the tumor, was displayed above the brain scan. Both explainability 

features are exemplary visualized in Figure 5 (b), EHP and ELP. The non-explainable ML-based 

DSSs (NEHP and NELP) use a uniform color for all pixels indicated to be tumorous and do not 

provide an uncertainty estimate, as also shown in Figure 5 (b). 

Data Collection. Throughout the experiment, think-aloud protocols were recorded (Van Someren 

et al., 1994). Think-aloud protocols have proven to be highly valuable in IS research as a method 

to collect qualitative data to study decision making and support systems (e.g., Amershi et al., 2019; 

Sculley et al., 2015), especially for medical decision making (e.g., Jussupow et al., 2021). Besides 

qualitative data, quantitative data was collected during each step of the process (a-e). Participants 

were asked about their confidence in their segmentation of the tumor, i.e. its correctness. This 

decision-making confidence was assessed using a 5-point Likert scale, ranging from “not sure at 

all” to “extremel  sure” as proposed by Hunt (2003). For each experimental round, the change in 

decision confidence between the initial and final segmentation of the reference case was derived 

(see Figure 5), i.e. the delta in decision confidence. 

Furthermore, the accuracy of the initial and final segmentation of the reference case was assessed 

by calculating the intersection over union (IoU). The IoU is the most commonly used standard 

performance measure for semantic segmentation tasks (Rahman & Wang, 2016; Rezatofighi et al., 

2019). This performance measure evaluates the similarity between a segmentation (predicted or 

manually annotated) for a region A and the ground-truth region B, thus defined as the size of the 

intersection (A∩B) divided by the union (A∪B) of the two regions (Rahman & Wang, 2016). 

While participants manually segmented area A, the ground-truth area B was taken from the 

BraTS20 dataset which provides segmentations that are approved by experienced neuro-

radiologists (example in Figure 3) (Bakas et al., 2017; Kaggle, 2020; Menze et al., 2015). The delta 

IoU between the initial (a) and final (e) reference case was calculated to measure the change in 

performance in the following way: 

∆ 𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑜𝑠𝑡

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛𝑝𝑜𝑠𝑡
−

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑟𝑒

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛𝑝𝑟𝑒
=

𝐴 ∩ 𝐵𝑝𝑜𝑠𝑡

𝐴 ∪ 𝐵𝑝𝑜𝑠𝑡
−

𝐴 ∩ 𝐵𝑝𝑟𝑒

𝐴 ∪ 𝐵𝑝𝑟𝑒
   

As elaborated in the previous section, we used both, the delta in decision confidence and 

performance (IoU delta), as equally weighted proxies for our dependent variable of learning, as 

recommended by Hunt (2003). To conclude each trial, a semi-structured interview was conducted 

to gain qualitative insights into the individual learning progress and to perform a manipulation 

check, ensuring that participants were aware of the ML-based decision support and, if present, 

local explanations (Aronow et al., 2019). Participants were asked to describe their experience 
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with the ML-based DSS and evaluate how helpful they perceived the given support. The interview 

guideline was developed in accordance with (Sarker et al., 2013) to collect all necessary 

information while allowing participants to freely share their experiences from the study.  

Data Analysis. Interviews and think-aloud protocols were audio recorded and transcribed after 

stu   completion. A content anal sis was performe  to e aluate an  structure the participants’ 

statements (Weber, 1990), utilizing the coding process recommended by (Saldana, 2021). The 

process included attribute, descriptive as well as pattern coding for retrieving descriptive data 

from the recor ing, as well as insights into the participants’ interaction success an  challenges 

with the ML-based DSSs. Quantitative data - i.e. performance and decision confidence data - was 

analyzed in SPSS V29. Following an initial data analysis, t-tests for each group and an analysis of 

variance (ANOVA) were conducted to test the impact of different types of ML-based DSSs on the 

performance and confidence of radiologists (Girden, 1992; Tabachnick & Fidell, 2006). 

Participants and Execution Statistics. The application of ML-based DSSs in medical diagnostics 

will increase in the coming  ears, thus influencing the future working en ironment of to a ’s 

novice physicians. Additionally, ML-based DSSs supporting medical diagnostics are primarily 

beneficial for physicians with a higher probability for diagnostic errors (Shen et al., 2019). Our 

pre-study interviews showed that brain tumor segmentations are more challenging for novice 

physicians, thus providing a greater opportunity to learn and improve. As a result, we primarily 

recruited novice physicians as study participants to evaluate the impact of ML-based decision 

support on learning progress. The experiment was conducted between December 2022 and 

March 2023 at different clinics with radiology departments in Germany. In total, our study 

included 42 participants (20 female, 22 male), of whom 18 were novice physicians with less than 

a year of clinical experience (8 medical interns in their first year and 10 residents with less than 

a year of experience), 16 novice physicians with 1-3 years of clinical experience, and 8 physicians 

with more than 3 years of experience. All participants work in hospitals in the radiology 

department at the time of the experiment. Overall, 630 segmentations were obtained throughout 

the experiment and therefore N = 126 full rounds (step a-e) completed to measure a delta in IoU-

based performance and decision confidence. Participants were randomly assigned equally to 

different ML-based DSS groups (NNEHP = 33, NEHP = 30, NNELP = 30, NELP = 33) and required an 

average of 6:43 minutes (min = 5:02 minutes; max = 13:24 minutes) to complete a full round of 

the experiment (five segmentations). Including pre- and post-experimental interviews, the total 

experiment lasted between 20 and 40 minutes. Three physicians had to pause between two 

rounds of the experiment, due to medical emergencies at the clinic. 
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3.4 Results 

The following section begins by showing the impact of interacting with the different types of ML-

based DSSs on the learning progress before comparing the results between groups. Drawing on 

these insights, we further explore the influence of prior experience on the learning potential 

offered by different ML-based DSSs. For this between-subject study design, four different variants 

of ML-based DSSs were presented, namely NEHP, EHP, NELP and ELP decision support. Paired t-

tests (Stone, 2010) are conducted to assess the impact of each ML-base  DSS t pe an  Cohen’s   

is reported as a measure of the effect size (Cohen, 2013). Due to the sample size of 30 or more for 

each group, the normal distribution of obtained deltas in IoU performance and decision 

confidence can be assumed, so that paired t-tests can be applied as a robust measure (Stone, 

2010). We select p < 0.05 as our significance threshold. 

  

Figure 6: Measured deltas of pre- and post-experiment IoU-based performance and decision 
confidence 

Physicians that interacted with the NEHP ML-based DSS improved their segmentation 

performance in the reference case (M = 0.14; SD = 0.12). Paired t-tests showed significant effects 

both for IoU (t(32) = 6.569, p < 0.001, d = 1.14) as well as for decision confidence (M = 0.61; SD = 

0.56; t(32) = 6.266, p < 0.001, d = 1.09). These results suggest that learning gains can be achieved 

through the interaction with NEHP ML-based DSS, supporting H1. 

In line with H2, we observed larger improvements in performance and decision confidence for 

the participants that interacted with EHP ML-based DSS for the segmentation of similar brain 

tumors. IoU based segmentation performance increased significantly by M = 0.27 (SD = 0.16), 

t(29) = 9.252, p < 0.001 with a large effect size, d = 1.69. The average decision confidence increased 

by M = 1.30 (SD = 0.75, t(29) = 9.497, p < 0.001), also showing a large effect size (d = 1.73). As a 

result, we conclude that H2 is supported and EHP decision support led to increased learning. 

The changes in performance (M = -0.22; SD = 0.14) and decision confidence (M = -1.10; SD = 0.76) 

of the group that received the NELP ML-based DSS showed a significant degradation 

(performance: t(29) =  -8.875, p < 0.001, d = -1.62; decision confidence: (t(29) = -7.940, p < 0.001, 
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d = -1.45). These findings support H3 and the assumption that false learning is promoted by 

interacting with NELP decision support. 

To test H4, the fourth group of physicians interacted with ELP ML-based DSS. Surprisingly, 

interacting with ELP ML-based DSS led to a small improvement of IoU in the final reference case 

segmentation (M = 0.08; SD = 0.18). While the improvement in segmentation performance (t(32) 

= 4.742, p < 0.001, d = 0.83) is significant and of large effect size, the decision confidence did only 

marginally significantly increase (M = 0.27; SD = 0.11, t(32) = 2.502, p = 0.09). We conclude that 

explainability in interactions with low-performing decision support does not only reduce false 

learning (as suggested in H4) but even leads to a small learning gain. Overall, H1, H2, H3 and H4 

are supported by the results.  

Next, we conducted a one-way ANOVA (p < 0.05) to compare the groups and assess differences in 

the effects of providing explainable and non-explainable, low- and high-performing ML-based 

DSSs on performance and decision confidence of novice radiologists. 

Segmentation Performance. First, homogeneity of variances for delta IoU performance scores 

was asserte  using Le ene’s test which showe  that equal  ariances coul  be assume  (base  on 

the mean value: p = 0.059; based on the median: p = 0.092). The ANOVA revealed that changes in 

IoU performance differed statistically significant for the different forms of ML-based DSSs 

pro i e  in the learning en ironment, F(3, 122) = 76.705, p < 0.001 with effect size η² = 0.654. 

Tukey post-hoc analysis revealed a significant positive difference (p < 0.001) between delta IoU 

scores of the groups with NEHP and EHP ML-based DSS (difference of means EHP-NEHP: 0.1303, 

95%-CI[0.0443, 0.2164]) as well as NELP and ELP ML-based DSS (ELP-NELP: 0.3070, 95%-

CI[0.2209, 0.3930]). Interestingly, the Tukey post-hoc analysis showed no significant difference 

(p = 0.309) of delta IoU scores between the group receiving NEHP ML-based DSS and the group 

receiving ELP ML-based DSS (NEHP-ELP: 0.0560, 95%-CI[-0.0279, 0.1400]). These results show 

that improving the explainability of a low-performing ML-based DSS has the same learning 

outcome as a non-explainable ML-based DSS with higher accuracy.  

Decision Confidence. Before conducting the second ANOVA to evaluate the impact of providing 

different forms of ML-based DSSs on decision confidence of physicians, the homogeneity of 

 ariances for obtaine  confi ence scores was teste  using Le ene’s test. Equal  ariances for the 

delta in decision confidence could be assumed (based on the mean value: p = 0.741; based on the 

median: p = 0.648). The ANOVA showed that changes in decision confidence of physicians differed 

significantly between the four groups F(3, 122) = 67.396, p < 0.001, η² = 0.624. A Tuke  post-hoc 

analysis revealed that explainability of ML-based DSS leads to significant differences (p < 0.001) 

in changes in decision confidence (EHP-NEHP: 0.694, 95%-CI[0.25, 1.14]),  (ELP-NELP: 1.373, 

95%-CI[0.93, 1.82]). The groups that received NEHP ML-based DSS or ELP ML-based DSS show 



3 Paper A: Promoting Learning Through Explainable Artificial Intelligence: An Experimental Study in 
Radiology 

39 

no significant (p = 0.190) differences in their changes of decision confidence (NEHP-ELP: 0.333, 

95%-CI[-0.10, 0.77]). The results of both ANOVAs suggest that explainability has a major impact 

on the learning potential that decision makers can derive from interacting with ML-based DSSs 

(H1 vs H2 and H3 vs H4). In addition, the explainability of low-performing support was able to 

prevent false learning (i.e. reduce decision confidence and performance, H4).  

Prior Experience. Base  on the ra iologists’ answers (on a 5-point Likert scale) regarding prior 

clinical experience in the field of brain tumors during the pre-experimental interviews, they were 

clustere  into an experience  (N = 58 roun s, Likert scale rating ≥3) an  a non-experienced group 

(N = 68 rounds, Likert scale rating <3). The Levene test showed that homogeneity of variances for 

obtained absolute values of delta IoU performance scores (p = 0.232) and decision confidence (p 

= 0.127) could be assumed. An ANOVA revealed that the absolute values of change in decision 

confidence across all variants of decision support, differed significantly between the experienced 

and non-experience  groups, F(1, 124) = 8.3221, p = 0.005, η² = 0.063. While non-experienced 

novice physicians on average strongly adapted their decision confidence between the initial (a) 

and final (e) segmentation of reference cases (M = 1.06; SD = 0.644), experienced radiologists 

showed a lower absolute adaption of their decision confidence (M = 0.73; SD = 0.653). However, 

the standard deviation in both groups is relatively high. In addition, the absolute deltas in 

segmentation performance were smaller for physicians with prior experience, but do only 

marginally significantly differ with F(1, 124) = 3.338, p = 0.070, η² = 0.026, between the non-

experienced (M = 0.20; SD = 0.13) and the experienced (M = 0.16; SD = 0.15) group. 

A Qualitative Post-Experimental Evaluation. The think-aloud protocols and post-experimental 

interviews confirmed that the manipulations of ML-based DSS explainability and performance 

were successful. All participants stated that AI advice was taken into account and participants 

receiving EHP or ELP support reported explainability features correctly and described how they 

were considered. In addition, both variants of the high-performing ML-based decision support 

received better performance ratings by the physicians.  

Multiple physicians that interacted with explainable ML-based DSSs tried to interpret what the 

underlying reasons for uncertainty of the systems were. Accordingly, one physician (with brain 

tumor experience) receiving ELP ML-based decision support attempted to evaluate whether 

his/her own uncertainty was matched by that of the AI: "Those are really difficult cases, especially 

due to the blurriness in the area where the edema occurs. It was difficult for me to see where the 

boundaries of the tumor are. [...] But if we come back to the edema, I noticed that the AI is also 

uncertain here and highlights large areas–yes–rather yellowish. And especially around the core of 

the tumor. This is where the difficulty lies in demarcating edema and tumor, but edema doesn't 

actually belong to it. So, it does make sense that the AI is uncertain but not entirely correct here. I 

would then segment [....] and here I would delineate the area from the tumor, even if it was not 
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classified as green–so no tumor." Several radiologists confirmed that they perceived that they 

made learning progress, although some found it difficult to describe exactly what was learned: “I 

definitely learned something. […] I think it’s difficult to say what exactly I learned because it’s not 

like learning vocabularies, but I would say I improved my skills in differentiating between healthy 

and non-healthy tissue.” In a  ition to skill impro ement, confi ence in one’s  ecisions was often 

explicitly perceived as something that changed as a result of interacting with the EHP ML-based 

DSS: “It has been a long time since I’ve dealt with brain tumors in any way. But this tool has refreshed 

my knowledge which I had a bit blurred in my memory. At least I feel more confident, I would say.” 

3.5 Discussion 

With the increasing use of ML-based DSSs in radiology (Radboud University Medical Center, 

2023), collaborative human-AI decision making will become part of the daily clinical routine of 

radiologists worldwide. While much effort is spent to improve system performance and 

incorporate human feedback through human-in-the-loop concepts (e.g., Grønsund & Aanestad, 

2020), little is still known about the impact of ML-based DSSs on the human decision maker (e.g., 

Gaube et al., 2023; Pumplun et al., 2023). Despite concerns that the use of ML-based DSSs will 

result in a degradation in the performance of radiologists as human decision makers (cf. Fügener 

et al., 2021), opportunities for human learning may arise (e.g., Abdel-Karim et al., 2020). Current 

research on the matter is scarce and only considers a subset of real-world decisions (e.g., Abdel-

Karim et al., 2020; Gaube et al., 2023; Pumplun et al., 2023) whilst not fully representing the 

dependencies between explainable design, system performance, and the individual human 

learning process. Our experimental study sheds light on the underexplored area of the impact that 

the design and performance of ML-based DSSs have on human learning in the context of brain 

tumor segmentation. We provided radiologists with explainable vs non-explainable decision 

support that was high- vs low-performing in a between-subject study design. This examined 

whether radiologists are able to learn from the–highly or less correct–knowledge provided by the 

system, as well as the impact of explainability on these learning outcomes. In addition to 

qualitative data, we obtained quantitative data on the learning progress of radiologists. 

Our study contributes to theory in multiple aspects: First, it demonstrates that high-performing 

ML-based DSSs are capable of improving the performance and decision confidence of radiologists 

and thus foster human learning (cf. H1 and H2). However, low-performing decision support that 

is presented in a non-explainable manner resulted in significant false learning outcomes, i.e. 

worse performance and decision confidence (H3). These findings demonstrate the significant 

impact that ML-based DSSs can have on the human decision maker. We hope to encourage 

scholars to consider this important aspect in future studies that poses great opportunities as well 

as risks to human-DSS teams. Through enriching this discussion with empirical evidence, we can 
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unlock opportunities to improve the design and development of ML-based artifacts that will have 

a major impact on various IS research studies. Our findings might be especially informative for 

scholars interested in extending human-in-the-loops concepts through considering human 

learning opportunities as further detailed below. 

Second, our findings contribute to the growing XAI research stream by adding to the goals that 

can be achieved through explainable system design: Explanations that increase the explainability 

of high-performing ML-based DSSs boost the learning potential for human decision makers (H2). 

The significant positive impact of explainability on human learning suggests that increasing the 

explainability of ML-based DSSs may be more beneficial than further increasing their accuracy. 

Ensuring a high level of explainability for ML-generated advice is even more important if the ML-

based DSS is rather low-performing: Whilst low-performing and non-explainable DSSs lead to 

false learning and reduced accuracy (H3), we show that this can be significantly reduced (H4) and 

in many cases even prevented through increasing the explainability of the ML-based DSS. In 

addition to detecting false advice, some radiologists were even able to achieve learning gains with 

low-performing, but explainable ML-based DSSs. This astonishing result is of great importance for 

the design of ML-based artifacts and future ML adoption strategies. Understanding how harmful 

effects of ML-based DSSs on physicians (such as false learning) can be prevented is likely to 

decrease adoption barriers in high-risk areas. By demonstrating that human decision makers can 

learn from mistakes, even when made by an ML-based DSSs, we provide a new basis for future 

transdisciplinary research.  

Third, our quantitative measurement method empirically demonstrates human learning–a rarity 

in this research area. Since confidence and performance behave differently in learning 

environments, this two-sided method to measure learning is essential and can reveal gradual 

changes in knowledge, which a pure performance-based measurement does not allow for. We 

offer scholars from the field of ML-based DSSs to adopt our approach to examine how their 

systems impact performance and decision confidence (and thus learning) of human decision 

makers. In the context of this study, we were able to link the value of explanations from the XAI 

domain with the value of explanations from educational research. In doing so, we show that 

existing theories of human learning need to be extended with respect to ML and our approach 

provides a common basis to align research from the fields of educational research, psychology, 

human-computer interaction, and XAI in a transdisciplinary endeavor. 

Fourth, the results show that while ML-based decision support offers benefits to decision makers 

with different levels of experience and can be broadly deployed, learning outcomes decline 

slightly as experience increases. These results indicate that studies in human learning and XAI 

need to consider who the relevant end users are and that prior experience will have an impact on 

study outcomes and should therefore be captured as a control variable.  
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In addition to theoretical contributions, the study provides practical contributions. First, the 

proposed design of explainable ML-based DSSs for tumor segmentation can be used as a blueprint 

for the development of clinical systems that aim to support physicians effectively and at low risk. 

Second, as false learning can be prevented for low-performing but explainable ML-based DSSs, 

earlier adoption of the technology in high-stake environments might become possible: When 

implementing ML systems, there is often a chicken-and-egg problem, as there is not enough data 

to achieve sufficient accuracy during training, and real-world data can only be collected after 

deployment. Since explainable advice does reduce the risk of false learning, explainable ML-based 

DSSs can–in some cases–be adopted earlier and increase their accuracy over time. When human 

experts are involved in the decision making process, explainability of ML-based DSS may have a 

greater impact on adoption than performance. In addition, we hope to inspire organizations that 

want to enable continuous learning among their employees or provide quality education to 

achieve the SDGs to explore and adopt novel approaches such as those presented in this study.  

The following paragraph will discuss the limitations of our study. Although the experiment was 

based on real medical cases and diagnostic findings, we only provided the 3D MRI brain scans to 

the ph sicians. The ph sicians  i  not know the patients’ me ical histor  (e.g., smoking, famil  

history) and therefore had to rely solely on the images. In addition, we pre-selected specific 

difficult patient cases for tumor segmentation. However, in real medical decision making, patients 

may suffer from more visible tumors or multiple diseases, and physicians may gather more 

information through face-to-face consultations. Nevertheless, since we used the same cases for all 

experiments and only manipulated the explainability and performance of the ML-based DSS, we 

see validity in the results. In addition, the validity of our results is supported by the collaborative 

development of the study design with experienced radiologists, as well as by the feedback we 

received from participants in the post-experimental interviews. Lastly, although some results on 

the impact of ML-based DSSs on human learning can be generalized to other high-risk 

environments, such as pilots in aviation, biases may occur due to individual challenges in different 

decision making environments.  

We encourage future research to apply the results of the study to other application areas. 

Building on our findings, future studies should further investigate how explanations from the field 

of XAI should be designed and presented to the end user to best support learning. In addition, 

stu ies on the  esign of these explanations shoul  in estigate the impact of the en  user’s prior 

knowledge. That humans in general can learn something from mistakes, even if they are made by 

an AI, is an exciting result of this study. Therefore, we conclude by calling for future research to 

investigate how explanations should be designed so that decision makers can not only easily 

identify errors made by AI, but also learn from them. 
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3.6 Conclusion 

In this paper, we proposed four hypotheses to explore if the interaction with ML-based DSSs can 

promote human learning and which impact explainability has on potential learning outcomes. We 

developed four ML-based DSSs which are either high- vs low-performing and explainable vs non-

explainable to support radiologists in segmenting brain tumors in MRI scans in an experimental 

study. We evaluated quantitative results on segmentation performance and decision confidence 

of radiologists as well as qualitative data gained through think-aloud protocols. The evaluation 

revealed that interaction with high-performing ML-based DSSs fostered human learning, with 

higher explainability enhancing this effect. In addition, explainability prevented false learning 

triggered by low-performing ML-based decision support. Interestingly, radiologists were even 

able to learn from errors made by the low-performing explainable ML-based DSS. These findings 

provide guidance for the future development of ML-based DSSs, that are particularly beneficial to 

the human decision maker and provide the opportunity to make even better decisions in the 

future, especially in high-risk areas such as radiology. 
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As the level of digitization in industrial environments increases, companies are striving to 

improve efficiency and resilience to unplanned disruptions through the development of machine 

learning (ML)-based applications. Still, sustainable deployment and operation beyond proofs-of-

concept is a challenging and resource-intensive task in dynamic enviroments such as industry 4.0, 

often impeding practical adoption in the long term and thus sustainable ML product development. 

In this work, we systematically identify these challenges based on the CRISP-ML process model 

phases by applying a design science research approach. To this end, we conducted 15 interviews 

with data science practitioners in industry 4.0. Following a qualitative content analysis, design 

requirements and design principles for the development and sustainable long-term deployment 

of ML systems are derived to address identified challenges such as robustness to, and 

management of data drift caused by time-dependencies and machine/product differences, 

missing metadata, interfaces to other IT systems, expectation management, and MLOps 

guidelines. 
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4.1 Introduction 

Machine learning (ML)-based applications increasingly transcend from academia to operationally 

used applications in a multitude of industry sectors. Nevertheless, sustainable deployment and 

operation of ML-based applications beyond proofs-of-concept and prototypes is a challenging and 

resource-intensive task with various possibilities of project failure. Especially the long-term 

operation of ML applications poses several difficulties that are often not considered in academic 

research such as decaying accuracy due to the dynamic nature of the environment and the usage 

by non-experts (Jourdan et al., 2021; Rudin & Wagstaff, 2014; Salama et al., 2021). Still, long-term 

operation is paramount to justify investments in the development of ML applications and to 

maximize the benefits that ML offers (McKinsey Global Institute, 2021; Vela et al., 2022). In 

addition to economic reasons, sustainable product development also requires that the value of a 

product, such as an ML application, which has consumed large amounts of resources during its 

development, be maintained over time (Klöpffer, 2003; van Wynsberghe, 2021). 

Due to the rising levels of digitization in today's factories, industry 4.0 related applications have 

received significant attention in this context (Fahle et al., 2020; Wuest et al., 2016). Information 

technologies such as the Internet of Things (IoT) and the interconnectivity of industry 4.0 

transform manufacturing lines into cyber-physical systems (CPS), which yield large amounts of 

data (Cassoli et al., 2022). Moreover, industry 4.0 related processes such as manufacturing 

operations are vital parts of their respective companies' value streams and naturally consume 

large amounts of resources, yielding high optimization potential (Wuest et al., 2016). Thus, 

companies in industry 4.0 strive to use the available data to improve effectiveness, efficiency and 

the resilience of their operations against unplanned disturbances to gain competitive advantages. 

However, in 2021, a study focusing on the manufacturing industry in Germany showed that two-

thirds of ML applications developed in the participating companies did not surpass the concept 

development and prototyping stage, which hints at a significant untapped potential in the industry 

(Metternich et al., 2021). Overall, ML applications in the scope of industry 4.0 provide a 

particularly interesting context for our study because, first, ML applications offer high potential 

in this sector and ongoing investments already call for long-term operation (McKinsey Global 

Institute, 2021), second, frequent changes occur especially in manufacturing processes (Jourdan 

et al., 2021) and third, operators that use ML applications in this context usually do not have ML 

knowledge (Wuest et al., 2016), thus posing special challenges for long-term deployment. In this 

study, we refer to the specific context of industry 4.0 and can thus investigate how ML applications 

should be designed to enable long-term deployment in dynamic environments, which in turn has 

applications in different industries. 
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Information systems (IS) research on ML applications in organizations also shifted focus to long-

term deployment of ML applications and calls for continuous auditing and altering activities for 

adapting ML models to dynamic changes in problem perception. While several studies highlight 

the need for continuous maintenance of ML applications after they have been deployed, the 

integration of human feedback as a solution for model adaptation continues to be a focus of 

attention (e.g., Asatiani et al., 2021; Grønsund & Aanestad, 2020; Sturm, Gerlach, et al., 2021). 

However, previous research still thinks too short and intervenes only during the deployment 

phase of ML, which in practice is often too late to smoothly adapt ML applications to dynamic 

changes. Many system properties, which are of central importance for the later adaptation of the 

models, are already determined and implemented in early project phases of ML application 

development. Thus, we see the need for a holistic approach that takes all phases of ML 

development and deployment into account and provides clear guidance on how to design ML 

applications that support the goal of long-term deployment in any ML project, especially in 

industry 4.0. If ML applications continue to be designed in a way that makes future adaptation 

difficult, there is a risk that large investments in this area will continue to be associated with little 

long-term impact. We aim to provide guidance in how to develop ML applications that provide the 

flexibility and adaptability required for long-term use in dynamic environments. Therefore, we 

are interested in the predominant technical and organizational challenges of sustainable ML 

implementation and use the context of industry 4.0 to ask how future research as well as 

practitioners that aim at designing, developing and deploying ML applications can address these 

challenges, leading to the following research questions (RQs):  

In the context of industry 4.0, (RQ1) which challenges impede the sustainable development and 

deployment of ML systems, and (RQ2) how should ML systems be designed to overcome those 

challenges in order to ensure sustainable long-term deployment? 

To address our two research questions, we apply a design science research (DSR) approach that 

allows us to structure the given problem and derive design requirements and principles in order 

to conceptualize suggested solutions (Kuechler & Vaishnavi, 2008). We start with reviewing the 

popular Cross Industry Standard Process for Data Mining (CRISP-DM) (Wirth & Hipp, 2000) and 

the more recent CRISP-ML (Studer et al., 2021) for project management of ML applications in 

industrial settings, focusing on sustainability and long-term operation support to derive a 

structure for further analysis. As the main contribution of this study, semi-structured interviews 

are conducted with 15 data science and machine learning practitioners in the industry 4.0 sector. 

Challenges identified in these interviews are structured according to the CRISP-ML model and 

respective solution approaches to avoid these pitfalls and ensure for sustainablility of ML 

applications are derived as design requirements and design principles to ensure ML applications 

have a long-term impact on industry and society. While many ML projects use the DSR approach, 
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in the future we would like to enable these projects to incorporate sustainability considerations 

and maintain the long-term value of their ML application, into which large amounts of resources 

have been poured during development. 

4.2 Related Work 

The following section provides an overview of the characteristics of ML and the corresponding 

process models that structure ML development projects. In addition, related studies that explore 

the need for continuous adaptation of ML applications in dynamic environments are presented. 

4.2.1 Definition of ML and Process Models for Structuring ML Projects 

Today, artificial intelligence (AI) and especially ML as a subfield of AI is deployed in various 

industries. In general, ML is defined as an approach that uses learning algorithms to derive 

patterns from data in order to build models that can solve real-world problems (Brynjolfsson & 

Mitchell, 2017; Mitchell, 1997; Russell & Norvig, 2016). In addition, different forms of ML have 

emerged of which supervised, unsupervised and reinforcement learning are the most common 

ones (Russell & Norvig, 2016). Regardless of the ML form chosen, ML applications use their 

algorithms to derive solutions to problems based on the data provided. Conversely, this means 

that the developers of ML systems no longer derive solutions to real-world problems themselves 

but describe problems based only on data, which is a significant difference from traditional (non-

ML) information systems (Mitchell, 1997; Russell & Norvig, 2016). Due to those unique 

characteristics, the development of ML systems requires a different approach than the 

development of non-ML systems. 

Process models such as CRISP-DM (Wirth & Hipp, 2000) provide guidance and structure to 

projects developing data mining or machine learning applications. CRISP-DM structures 

respective projects into six consecutive phases (see Figure 7). In the Business Understanding 

phase, the project's business problem is identified and described by relevant performance metrics 

and requirements. On this basis, related data mining goals are derived. Relevant available data 

and meta-data sources are analyzed and characterized during the Data Understanding phase. The 

Data Preparation phase involves data cleaning, preprocessing, feature extraction, and selection to 

build useful datasets for the following stages. In the subsequent Modeling phase, machine learning 

algorithms are applied, primarily involving model selection and parameters training. The 

Evaluation phase typically relies on offline evaluation using held-out test data and suitable 

performance metrics (Jourdan et al., 2021). If the model fulfills the requirements defined in 

Business Understanding, it is subsequently deployed to production in the last phase (Deployment) 

(Wirth & Hipp, 2000). 



4 Paper B: Toward the Sustainable Development of Machine Learning Applications in Industry 4.0 48 

 

Figure 7: Qualitative comparison of the CRISP-DM (Wirth and Hipp, 2000) model phases to the 
more recent CRISP-ML (Studer et al., 2021), which provides the structure for the categorization of 

challenges and derived design requirements. 

The CRISP-DM model assumes that most of the described process, including the final evaluation, 

is performed offline using static datasets. Furthermore, it does not provide specific guidance for 

the time after the model is deployed to production. Thus, it does not cover the whole life cycle of 

an ML application. If a problem occurs after model deployment, a data scientist is expected to fix 

it. Here, a potential flaw becomes obvious: In dynamic environments which can be seen in 

industry 4.0, changes in data distributions are to be expected and should thus be addressed 

preemptively. Not addressing this issue risks performance degradation over time, which leads to 

false predictions and could cause errors in subsequent systems as well as diminishing trust of the 

application’s users (Asatiani et al., 2021; Yin et al., 2019). 

More recently, CRISP-ML has been proposed as a successor to CRISP-DM, intended to fix the 

aforementioned and other shortcomings (Studer et al., 2021). As one of the core contributions, 

CRISP-ML adds Monitoring & Maintenance as the last phase of the process model, where risks of 

model degradation in a changing environment are continually assessed, theoretically enabling the 

deployment of a model in a dynamic environment. The Monitoring & Maintenance task has strong 

connections to the concepts of DevOps and the more recent MLOps, as it touches both, data science 

as well as IT infrastructure related topics. The problems addressed by MLOps have first been 

mentioned by Sculley et al. (2015), where special kinds of technical debt are described that are 

unique to ML projects in contrast to classical software engineering projects. MLOps instruments 

aim at the standardization and streamlining of machine learning life cycle management (Treveil 

et al., 2020). Common elements of MLOps cover aspects related to automating, monitoring, 

testing, managing, and maintaining machine learning models and adjacent code in production 

through specialized tooling and design patterns (Lakshmanan et al., 2020). In addition to adding 

Monitoring & Maintenance, CRISP-ML merges Business Understanding and Data Understanding 

into a single phase, arguing that they are strongly intertwined in practice as business objectives 

can be derived or changed based on the available data. While CRISP-ML provides a feasible 

structure for ML projects to integrate post-deployment ML system adaptation activities, it does 

not provide detailed guidance for sub-processes or system requirements. We draw upon CRISP-

ML to structure the results of the expert interviews and the derived design requirements in the 

phases of the model, with the goal of addressing this distinct lack of guidance. 
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4.2.2 Sustainable Long-term Deployment of ML Systems 

In general, ML can be deployed to solve real-world problems and a set of data is required that 

represents this problem for training and testing of the ML model (e.g., Russell & Norvig, 2016).  

Model performance strongly depends on the data quantity and quality (Grover et al., 2018; Smith, 

2020). Thus, the data used for ML models must be a good representation of the actual problem at 

hand (Mitchell, 1997). However, once an ML model is deployed, human perception of a problem 

may change (Russell & Norvig, 2016) or other factors lead to deviating conditions, risking model 

performance degradation in the long run (Sculley et al., 2015; Sturm, Gerlach, et al., 2021). 

Typically, this is caused by a shift or non-stationarity of the data and/or label distribution between 

the data used to train the model and the data available during inference in practical operation 

(Žliobaitė, 2010). In industry 4.0 applications, non-stationarity may be caused by various dynamic 

conditions such as tool and machine wear, changes in product configurations and material 

properties, changes in upstream processes, changes in factory layout and machine placement, 

differences in operator preferences and training, seasons, and time of day, environmental 

conditions such as temperature or humidity, sensor degradation, and data transmission problems 

(Jourdan et al., 2021). Current IS research on ML applications in organizations also highlights the 

need for continuous auditing and altering activities to maintain the performance and value of ML 

applications (e.g., Asatiani et al., 2021; Grønsund & Aanestad, 2020; Sturm, Gerlach, et al., 2021). 

Multiple studies argue, for example, on the importance of continuously integrating human 

fee back when ML s stems are  eplo e  so that these mo els remain aligne  with humans’ 

dynamically changing understanding of the problem at hand (e.g., Grønsund & Aanestad, 2020; 

Russell & Norvig, 2016; Stumpf et al., 2009). Such human-in-the-loop patterns allow ML systems 

to adapt to end users after being deployed in an organization. Closely linking ML systems and end 

users through collaborative interaction is seen as beneficial for accomplishing a specific task in 

the moment, as well as increasing the s stem’s accurac  o er the long term (e.g., Stumpf et al., 

2009). Sturm et al. (2021) refer to activities related to adapting ML systems to the dynamically 

changing perception of a problem as reconfiguration of ML systems. Reconfiguration of ML 

systems may require multiple activities such as adapting criteria for data selection, the learning 

algorithm itself or settings of hyperparameters (e.g., Amershi et al., 2019; Sculley et al., 2015; 

Sturm, Gerlach, et al., 2021) and is often described as crucial for continuously ensuring good ML 

performance (Amershi et al., 2019; Sculley et al., 2015). In addition, an economic life cycle 

assessment of products, such as ML systems, also requires a positive trade-off of all incurred costs 

and economic benefits throughout the entire life cycle (Klöpffer, 2003). We argue that ML systems 

which by their nature consume large amounts of energy and human resources during 

development, should allow for a long-term deployment to continuously maintain and provide 
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value. However, in the past ML systems in industry 4.0 have often not progressed beyond the 

concept development and prototyping stage (Metternich et al., 2021).  

IS research recognizes this challenge and calls for methods to continuously adapt ML systems 

after their deployment (e.g., Audzeyeva & Hudson, 2016; Grønsund & Aanestad, 2020). However, 

solution approaches only intervene after a developed system has been deployed and are not 

sufficient to ensure ML systems provide the required adaptability for long-term deployment in 

dynamic environments such as industry 4.0. Van Wynsberghe (2021) further defines that 

sustainable AI requires a change in the entire lifecycle of AI products. We address this research 

call and see the need for a holistic approach that provides clear guidance on how to support long-

term development throughout all stages of ML development and deployment. To do so, we aim to 

identify relevant challenges for the long-term operation of ML systems in the context of industry 

4.0 and provide design requirements and principles to enable a sustainable deployment of ML 

applications. 

4.3 Research Methodology 

4.3.1 Design Science Research Approach 

We apply a DSR approach to address challenges for the sustainable long-term deployment of ML 

applications in industry 4.0. As DSR projects are feasible to find solutions for real-world problems, 

it allows us to ensure practical relevance as well as scientific rigor (Kuechler & Vaishnavi, 2008).  

The general design cycle according to Kuechler and Vashnavi (2008) is structured into five distinct 

phases: awareness of the problem, suggestion, development, evaluation and conclusion. Our study 

focuses on the first two phases to identify key challenges, derive design requirements and 

instantiate a solution by formulating design principles. Within the awareness of the problem phase, 

we combine theoretical input from ML process models with non-theoretical input from experts, 

thus linking abstract theoretical knowledge with context-specific practical knowledge of industry 

4.0 in an interplay (Kuechler & Vaishnavi, 2008; Meth et al., 2015). Based on semi-structured 

expert interviews, challenges for the development and the sustainable long-term deployment of 

ML applications in industry 4.0 are identified and general design requirements to address these 

challenges are derived. In the second phase (suggestion), we synthesize the results from the first 

phase of our DSR approach to develop design principles for solution instantiation. Gregor & 

Hevner (2013) define three levels of DSR contribution types ranging between specific, limited and 

less mature knowledge to abstract, complete and mature knowledge. While situated 

implementations of artifacts are classified as Level 1 contributions, operational design principles 

and constructs are considered Level 2 contributions, which can be further developed into design 

theories as Level 3 contributions. We thus provide a Level 2 contribution by transforming abstract 
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and practical knowledge on long-term deployment of ML applications into operational design 

principles. 

4.3.2 Semi-structured Expert Interviews 

In this study, we conduct multiple expert interviews to gain practical insights into challenges that 

arise with the development and long-term deployment of ML models. We further discuss potential 

solution approaches that are feasible for implementation in continuously evolving industry 4.0 

environments. We formulated a semi-structured interview guideline according to Sarker et al. 

(2013). The semi-structured interview guideline comprises all relevant questions to identify 

challenges during all phases of the CRISP-ML process model while allowing interviewees to freely 

share further insights and experiences. Overall, 15 data science and machine learning experts of 

industry 4.0 start-ups, SMEs, and large companies were interviewed, as shown in Table 2. In 

addition to the goal of bringing in extensive experience from various companies, experts fill both 

internal corporate roles as managers and data scientists as well as external consulting roles for 

ML in industry 4.0, or work as managers of software providers that offer software for ML 

applications in industry 4.0. All interviewees are involved in ML projects in both the development 

and deployment phases and therefore allow us to take our holistic approach and highlight the 

interrelationships of ML system design and long-term deployment in industry. While ML is being 

deployed in various industries today, we ensured that all interviewees are familiar with the 

development and deployment of ML models for industry 4.0 applications. Even though most ML 

applications in this sector have only emerged in the past decade, we were able to interview seven 

ML experts with more than 15 years of experience. Moreover, 13 interviewees had at least five 

years of experience in ML development for industry 4.0. All of the participants have already 

provided expert knowledge to various ML development teams prior to our study. In addition to 

general experience in ML development in industry 4.0, a majority of the participants 

(IP1,2,4,5,10,11,13,14) possess expertise in manufacturing quality control in the automotive and 

aerospace sectors. IP 8 and 9 also bring extensive experience in chemical product manufacturing 

to the study. IP 3 and 12 primarily gained experience in condition monitoring of machinery plants. 

After addressing interviewee-related questions to gain insights into their prior experience, 

current position, and the industries they have been working in, we provided the participants with 

an overview of the CRISP-DM and CRISP-ML process model. We then inquired whether the 

presented process models fit the interviewee's current approach of structuring ML projects 

within their respective companies. Subsequently, in the main part of the expert interviews, we 

walked through the CRISP-ML phases and specifically asked the interviewees, how these phases 

are usually implemented in their projects. In each phase, we investigated whether there is already 

consideration regarding reliability and long-term deployment and which specific challenges arose 
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in past projects in this regard. Interviews were conducted from February to April 2022 via video 

call. After mutual agreement, all interviews were recorded and transcribed using the software 

Amberscript2. On average, an interview lasted 52 minutes, and we were able to reach theoretical 

saturation during the last three interviews so that no further challenge was mentioned by the 

remaining interviewees (Flick, 2004). 

Table 2: Overview of interviewee symbols and corresponding industry roles 

Company Internal External 

Data Scientist: ML Service 
Provider 

Consultant: Operations and 
Industrial ML 

Manager: Industrial ML 
Software Provider  

IP1, IP2 IP7, IP8, IP9, IP10, IP11, IP12, 
IP13, IP14, IP15 

IP3, IP4, IP5, IP6, IP7, IP8, IP9, 
IP10 

 

To evaluate and categorize the qualitative data gained through the interviews, we performed a 

content analysis (Myers & Newman, 2007; Weber, 1990). We applied an iterative multi-cycle 

coding process that comprised two coding cycles following the principles of Saldana (2021). 

During the first cycle, two types of coding were used. First, attribute coding allowed us to obtain 

relevant, descriptive information regarding the participants and their respective organizations. 

Descriptive coding was used next to identify challenges and solution approaches in the 

participants' statements. The second cycle covered pattern coding, which allowed us to build 

clusters of similar challenges but especially solution approaches for which we defined a large 

number of factors throughout the first cycle. In addition, a multi-researcher triangulation was 

applied. Two authors and one research assistant performed both coding cycles independently and 

derived an initial framework of identified challenges and the CRISP-ML process model (Saldana, 

2021). Before we merged the coding results of the researchers after each interview, the number 

of matching codes was derived which resulted in an average value of 74.2 %. Afterwards, all 

results were compared and discussed, and the final framework was derived based on this data 

analysis which further ensured rigor and trustworthiness. 

4.4 Results 

Within the following section, the challenges that were identified during the expert interviews are 

presented, combined with insights on possible solution approaches that practitioners use to 

address them. We use the aforementioned categories based on the CRISP-ML process model for 

categorization. The results are summarized in Table 3. A number of challenges may occur in 

several phases of the process model. In the following, we assign these challenges to the phases 

where they were most often mentioned by the interviewed experts. 
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4.4.1 Challenges for Long-term Operation of ML Systems in Industry 4.0 

The majority of interviewees saw the CRISP-ML process model as relatively close to the way they 

internally structure machine learning projects, even though, at the same time, most of the 

interviewees have only heard about the predecessor (CRISP-DM) prior to the interview. In 

addition, a number of interviewees (IP1,4,8,12,13,14,15) mentioned that CRISP-ML, compared to 

CRISP-DM, fits real projects better, as the additional Monitoring and Maintenance phase is crucial 

for practical deployment. However, interviewees also argued that the practical implementation of 

this phase is still rare, due to lacking standard solutions and the general novelty character of ML 

applications in the industry 4.0 sector. For example, an interviewee explained, “Our ML 

development pretty much follows the CRISP-DM process model. But if I’m honest, we're primarily 

concerned with delivering models, and processes become – let’s say - less standardized after 

deployment. So we really need something like a monitoring and maintenance phase, but right now I 

would say we rather intervene in emergencies only" (IP9). 

Business and Data Understanding. A frequently mentioned challenge (IP1,4,5,9,10,11), is the 

expectation management of the shareholders, especially of customers who are not familiar with 

ML and data science. This challenge may manifest in two very distinct ways, with customers either 

having unrealistic expectations about the possible performance achievements of ML models 

(IP5,12,13,15), especially given the available data basis in their use case, or customers being 

extremely skeptical regarding the use of ML models, not trusting their performance. In the latter 

case, the usage of either simple or otherwise explainable ML algorithms is seen as a possible 

solution approach. The alignment of sales and engineering departments is named as another 

problem in this context as it is hard but critical to align business goals with the uncertainty of ML 

development, especially regarding specific levels of application performance (IP12). Specifying 

requirements with respect to robustness is also named as a challenge by the interviewees. A set 

of operating conditions the application needs to handle must be identified as well as different 

operating modes of the machine or production line (IP2,6,11). In this context, the integration of 

domain knowledge is seen as crucial. An interviewee stated, “We still face this problem that our 

customers ask us to develop ML systems that should solve all their problems at once, but at the same 

time it is quite hard for them to define under which conditions this system will be operated in one, 

two or five years” (IP11). A fundamental and often encountered problem during Business and Data 

Understanding is missing meta-data in the form of time-series annotations related to, e.g., 

maintenance activities or machine breakdowns (IP1,3,4,5,6,8,12,13). This data is crucial for data 

analysis and for the training of supervised ML models. Thus, an alternative approach is the usage 

of unsupervised ML algorithms, which is not suitable in all use case scenarios though. Further 

problems with meta-data include privacy issues if the data can be connected to the performance 

of specific employees (IP12). Poor data quality is another issue (IP11,12,13). At the same time, 
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interviewees describe the achievable solution quality as mostly dependent on data quality, 

quantity, and variety (IP4,5,12). Interviewees note that it is hard to estimate the quantity and 

variety of data at the beginning of the project (IP1,4,6,11,13) and that a first analysis is usually 

done with smaller datasets. Analysis frequently reveals that more data is needed for a given 

problem than available (IP1,4,5,6,11,12,13,15), often leading to the cancellation of a project. 

Interesting events such as machine breakdowns or product defects are usually rare in a dataset 

(IP5,6,10,15). Furthermore, time dependencies such as seasonality are described as problematic 

as these usually require an increasing amount of data to be modeled but are a key aspect for long-

term operation (IP5,6,11,12,13). One interviewee explained, “Whatever challenge we face, in the 

end it’s always about data. Before development, we often don’t know what we need or we do not have 

the data needed and in the end data drifts and other changes kind of force us to reconsider if our 

trained models are still useful” (IP5). 

Data Preparation. While the Data Preparation phase itself is a frequently mentioned general 

challenge as it takes a significant portion of the total project time, it was not specifically mentioned 

as impeding the sustainability or long-term operation of the ML models by the interviewees.    

Modeling. Interviewees see the tradeoff between simple and complex ML models as a particular 

challenge during the modeling phase. While complex models such as deep neural networks may 

provide high capacities to model complicated functions, they are often more prone to overfitting, 

which is detrimental to their robustness (IP4,11,15). It was further mentioned that those simpler 

models should be preferred if it has no impact on performance or lower performance is acceptable 

for the given use case as they commonly provide better explainability (IP5,6,8,10) and “customer 

acceptance is much better for simple and interpretable models” (IP6). Such a model selection 

strateg  is referre  to as  ccam’s razor which was explicitl  mentione  b  two experts (IP11,15). 

Interviewees further mentioned that model-agnostic techniques for explainable AI may be used 

to provide explainability of complex models. However, they increase overall system complexity 

and the results are often hard to interpret in practice (IP8,10). Besides that, one interviewee 

mentioned that they almost “exclusively use unsupervised approaches in manufacturing projects, 

because labeled data is rarely available in sufficient quality and quantity”, and target variables such 

as fault types may change over time (IP4). A frequently mentioned general challenge related to 

modeling (IP2,4,5,11,13), is the scalability of models to different instances of machines or 

production lines. It is indicated, that even if a customer utilizes multiple instances of the exact 

same machine or production line, a model that was trained on data of either one of the instances 

or a held-out instance on a test bench, does not perform well if deployed to other instances, as the 

data distribution already differs too strongly. Possible reasons are sensor placement, differences 

in manufacturing processes as well as human operator preferences. This problem is described as 

especially severe in predictive maintenance applications which are strongly dependent on the 
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machine specifics (IP5,9,13,15). Possible strategies for mitigation of this problem include 

transfer-learning or fine-tuning of a trained model using smaller datasets of the target machine or 

production line (IP9,13). 

Evaluation. While most interviewees mention that evaluation of the ML models is commonly 

performed using an offline held-out test set it is often noted that this kind of evaluation is not 

sufficient for real-world applications. Interviewees suggested that the model's robustness needs 

to be explicitly tested, by focusing on edge cases in the input data, which can be found using 

statistical analysis of the datasets (IP2,5,6,11). Test cases might then be generated using Monte-

Carlo simulation or design of experiments (IP2,6). In addition to this offline evaluation, an 

interviewee mentioned “For us, it is crucial to evaluate the model before and after deployment and 

we were surprised how many problems can only be revealed after deployment. You simply cannot 

detect all these issues with a static test dataset beforehand” (IP4). Corresponding issues include 

data quality problems and non-stationarity of the data that was not noticed during development 

(IP1,13). If possible, a pre-existing application for the use case or frequent manual checks should 

be run in parallel in the test phase for output validation (IP9,10,14,15).  

Deployment. During deployment, primarily organizational and IT infrastructure-related 

challenges were mentioned by the interviewees. In the scope of this study, they are of special 

interest, as these are typically issues that do not arise in academic work but are crucial for 

practitioners. Especially challenging is the interfacing of the application to various subsystems or 

data acquisition devices (IP5,6,11,13). An interviewee explained “You know, we follow all these 

theoretical guidelines, but once you get close to deploy such ML systems, it is always a mess. Hundreds 

of different systems must interface with our application. It’s exhausting and I don't see our customers 

taking on this task and better yet doing it repeatedly on their own with their current setup” (IP11). 

A possible solution approach can be the usage of standardized interfaces such as Open Platform 

Communications - Unified Architecture (OPC-UA). Furthermore, it is critical to automate and 

document the deployment process in such a way that it is repeatable in the monitoring and 

maintenance phase (IP2,5), building on the principles of DevOps and MLOps. This issue was 

emphasized in the case of deployment on edge devices. 

Monitoring and Maintenance. As Monitoring and Maintenance is a key phase of the CRISP-ML 

model with regard to sustainable deployment, the majority of mentioned challenges are of this 

category. Most interviewees agreed that this phase is paramount for long-term deployment, as 

“ML models only provide value in situations that are shown in the dataset” (IP2). In this context, an 

interviewee referred to deployed ML models as “only ever meta-stable” (IP12). When something 

changes or the data distribution is non-stationary, the performance of the ML model will most 

likely strongly degrade and the model requires updating (IP1,4,5,6,9,10,11,12,13,14,15). Four, 

often experienced sources of change were mentioned in the interviews: Sensor drift (IP1,4,5,6), 
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seasonalities or time dependencies not identified during development (IP5,11,15), changes in the 

configuration of the machine or the product (IP1,3,12,13) and network or hardware problems 

that render their respective data sources invalid or non-available (IP6,12). This yields two 

additional challenges: The detection of a change, as well as the adjustment of the processing 

pipeline, i.e., updating of the model, because drifts and changes impact sensor data which is used 

as an input for the ML model in operation. 

A number of interviewees mentioned that it is primarily important to monitor the properties of 

the input data (IP2,6,8). Statistical measures can be used to capture properties of the training data 

that are then compared to the live data during operation. Suitable measures include distribution 

distance metrics or simple thresholds. The complexity of the monitoring task rises with the 

number of data sources. Automatic checks within the processing pipeline are often used to detect 

the described changes. In addition to the input data, it was mentioned that the model error rate 

should be monitored too, as monitoring of the input data is only a proxy to this quantity 

(IP1,2,11,14). An interviewee mentioned “Even though it is still a challenging task, we are already 

able to partially automate some monitoring activities. But if we want to update a model, this is a 

manual and often tedious task and we really need to improve this” (IP2). In addition to issues related 

to data science or machine learning, interviewees describe several challenges that relate to IT 

infrastructure in this phase. Model updates can be a challenging task since it requires access to 

datasets, training infrastructure, and the deployed model which often runs on an edge device. 

While cloud computing solutions such as Microsoft Azure or Amazon Web Services (AWS) offer 

standardized pipelines for data collection, management, model training, and cloud deployment, 

edge deployment is still an issue. In this context, data security and privacy are seen as additional 

challenges (IP5,6,11,12,13) that prevent customers from relying on cloud solutions. If automatic 

deployment is not an option, data scientists require physical access to the computing devices. 

Again, the interviewees indicated that a large variety of data sources to a model and thus 

connected subsystems increase complexity. Extensive logging during operation is therefore 

important to quickly analyze application errors and find their root causes (IP1,6). Although 

challenging, Monitoring and Maintenance of ML models is seen as a viable addition to the business 

model of ML solution providers as mentioned both by manufacturing company internal and 

external interviewees (IP1,6,8,10,11,12,13,14,15) as it “provides a constant revenue stream 

whereas, you know, for this prior development process, we usually agree on project-based fixed-term 

work and payment” (IP15). At the same time, this may provide another challenge, as Monitoring 

and Maintenance activities are often not covered by the initial development contracts. Multiple 

interviewees stated that robustness and sustainable, long-term use of ML applications have only 

recently become a focus of their work, as the productive usage of ML applications has only slowly 

become a reality in the last years and the number of deployed models is still relatively small 
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(IP1,12,14,15). An associated challenge that was mentioned by the interviewees is the lack of a 

standard / best-practice solution for Monitoring and Maintenance of ML applications in industrial 

environments (IP1,2,6,12,14).  A manager of a large ML software provider stated “Never change a 

running system – that’s something I hear quite often from our customers in this context and it’s really 

slowing us down. I’m convinced that we will provide services to maintain ML systems in the future, 

but to do that we need to reduce the complexity of these systems. […] So I advocate for future projects 

to keep ML system maintenance in mind from the beginning and consider that in, yeah, pretty much 

every future system design” (IP13). 

4.4.2 Deriving Design Requirements and Principles for a Solution Instantiation 

Following the identification of challenges through expert interviews, we derive solution 

approaches as design requirements and structure them along the CRISP-ML process model. 

Overall, we pose nine requirements that address challenges mentioned by interviewees as 

outlined in Table 3. First, uncertainty that is often associated with ML development projects, 

raises concerns of customers and customer expectation management remains a challenge today. 

To align expectations, address data privacy concerns and integrate domain knowledge in the very 

beginning of ML development, we propose DR1: Collaboratively align system requirements with 

stakeholders. Second, data preparation remains a tedious process and especially labeling of data 

requires significant resources which would also be required for future retraining of algorithms as 

a reconfiguration activity for long-term use of ML systems. Algorithms from the field of 

unsupervised learning that do not require labeled data for training were mentioned as feasible to 

ease this process. We therefore propose DR2: Use unsupervised ML algorithms, if possible. Third, 

variances in operating conditions and other influencing factors should be considered from the 

outset to cope with future data shifts or time dependencies. To ensure robustness of models in 

the long term and ensure necessary data variety, we propose DR3: Design for a comprehensive 

range of operating conditions and their boundaries. Fourth, while performance of ML systems was 

not mentioned as a major challenge by any of the interviewees, explainabilty of models and 

limitations in capacity were often seen as a challenge for developers that hinders maintenance of 

models in the future and further risks customer acceptance. A trade-off is seen between simple, 

explainable models and complex models with potentially higher performance. We thus 

recommen  to follow  ccam’s razor  uring mo el selection an  resort to simpler mo els if the 

use case allows for it, while resorting to explicit techniques for explainable AI if complex models 

are required. This yields DR4: Use simple models and explainable AI-techniques. 
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Table 3: Challenges and corresponding solution approaches identified as design requirements 

 

Fifth, to allow for scalability of ML systems to e.g. other machines or plants in industry 4.0 

environments or cope with varying operating conditions, ML models require adaption in the 

future. We therefore propose DR5: Use transfer learning techniques such as domain adaptation. 

Sixth, non-stationarities in data often cause offline model performance evaluations to deviate 

from evaluations conducted after deployment. To detect declining model performance in time 

during operation before models are no longer usable, we propose DR6: Continuously and 

frequently evaluate model performance. The deployment of ML systems often involves a difficult 

and time consuming process of integration and interfacing with IT systems to access the required 

data streams. To ensure continuous development of ML systems and maintain their value over 

time, models will be deployed regularly during the Monitoring & Maintenance phase of CRISP-ML 

and this process should be as simple and automated as possible. MLOps and DevOps were 
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mentioned as promising solution approaches to closely link machine learning related continuous 

development activities and IT operations of organizations in industry 4.0. We thus propose DR7: 

Maximize use of standardized interfaces, and DR8: Maximize automation of testing and deployment, 

e.g. through MLOps and DevOps techniques. Lastly, transfer learning techniques can be used to 

adapt ML systems after deployment (see DR5 for the Modeling phase) to cope with data drifts, 

time dependencies, configuration changes or any other aberrant conditions. However, 

organizations in industry 4.0 that want to leverage ML systems over longer periods of time need 

to continuously monitor input data and model performance to decide when system updates are 

needed. Therefore, we propose DR9: Monitor model confidence and input data using statistical 

measures. 

Following the derivation of general design requirements, we formulated overarching action-

oriented design principles as outlined in Figure 8. DPs are assigned to specific DRs which were 

derived from the identified challenges. However, as suggested by Hevner et al. (2004), design 

principles can serve on the one hand as an actionable blueprint for e.g. a prototypical 

implementation of ML artefacts, but on the other hand can also be used as testable hypotheses for 

future research work. In addition, DPs support an holistic approach to ML system development 

and deployment that closely links all phases of the CRISP-ML process model. To address the core 

problem of ML applications being deployed in dynamic environments such as industry 4.0, where 

problem perception and other operating conditions may continuously change, ML applications 

require flexibility to be deployed in and adapted to varying conditions. We therefore propose 

DP1: Continuously provide ML applications with sufficient training and testing data that covers all 

relevant operating conditions and evaluative capabilities to verify both databases are aligned with 

real-world dynamics. To detect deviating conditions which could lead to a declining performance 

of ML models over time, systems require self-monitoring capabilities and human-machine 

interfaces that allow system operators to understand emerging discrepancies. To address these 

challenges, we propose DP2: Provide ML applications with continuous mechanism that detects data 

drifts or changes in the certainty of the model and capabilities to transparently present these 

dynamics to the responsible system user. Besides the adaption to dynamic environmental 

conditions, ML systems that required large resources for development, should allow for scalability 

to maximize the provided value over time. Therefore, by building on techniques from the domain 

adaptation area, we propose DP3: Provide ML applications with capabilities that allow for scaling 

their area of operation and adapt them to dynamic environmental changes. In the past, much 

attention was paid to the development of complex algorithms to maximize ML model 

performance. However, our interview study showed that model performance was of less interest 

and the explainability of models has emerged as a major challenge today, on the one hand for 

customer acceptance but also in the long run for the maintenance of ML systems. Oftentimes, 
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maintenance or reconfiguration activities (e.g. retraining of ML models) will be performed by 

people other than the original system developers. We therefore propose DP4: Provide ML 

applications with capabilities to meet defined performance while resorting to simple models to 

ensure that decisions are presented in a way that is understandable to the responsible system user. 

Although monitoring and maintenance of ML systems has only recently become a focal point in 

many industry 4.0 projects, related activities such as retraining and deployment of updated 

models should be performed frequently in the future. To facilitate this process, automation and 

user support are of key interest. We therefore derive DP5: Provide ML applications with 

mechanisms for automatic testing and deployment and provide features that, if necessary, alert the 

responsible system user. Interviewees frequently mentioned the tedious process of integrating ML 

systems into the existing IT landscape of industry 4.0 environments. Scalability as well as the 

continuous integration of newly acquired data streams should become a key capability of ML 

systems to allow for a more sustainable long-term deployment which further supports customer 

acceptance. Thus, ML projects should strive for standardized interfaces to easen this process and 

we propose DP6: Build ML applications upon standardized interfaces for maximum compatibility 

and use simple ML models to facilitate the definition and integration of evolving data requirements. 

 

Figure 8: Design principles for ML applications suitable for long-term deployment in dynamic 
environments 
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4.5 Discussion and Conclusion 

Due to the increasing availability of data in the industry 4.0 sector, ML applications slowly 

transcend from academia to practical applications. However, the level of adoption and actual 

reliance on these applications is still low and questions about reliability, sustainable long-term 

use and robustness remain largely unanswered. Research on ML applications in organizations 

highlight the need for continuous auditing and altering activities to enable ML systems to provide 

long-term value (e.g., Asatiani et al., 2021; Grønsund & Aanestad, 2020; Sturm, Gerlach, et al., 

2021). We follow a DSR approach to identify which challenges impede practitioners in the 

sustainable long-term deployment of ML in the context of real-world industry 4.0 applications 

with a focus on monitoring and maintenance of ML systems and thus address RQ1. The identified 

challenges cover most phases in the lifecycle of an ML model, starting with the initial project 

specifications and ending with the continuous monitoring and maintenance. Semi-structured 

expert interviews were performed and besides challenges, corresponding solution approaches 

were inductively derived and transformed into tangible design requirements for ML system to 

support long-term operation. In addition, action-oriented design principles were formulated that 

link all phases of development and deployment to support a holistic approach, thus addressing 

RQ2. IS researchers and ML system developers can use DRs and DPs derived in this study for 

guidance in how to design ML systems that allow for a more sustainable long-term use and 

maintain their value over time. As suggested by (Kuechler & Vaishnavi, 2008), we will continue 

our DSR approach by instantiating an ML system as a suggested solution within an industry 4.0 

environment based on our DPs. Consequently, we will evaluate the extent to which the 

consideration of our DPs supports the adaption of our ML system to dynamic environmental 

changes by simulating long-term deployment through various data drifts. Feedback will be 

incorporated into several design cycles. 

The presented research yields several contributions for academia as well as practitioners. First, 

we provide a structured overview of the challenges currently hindering long-term deployment of 

ML systems in dynamic environments such as industry 4.0. On the one hand, it is crucial to 

understand and contextualize these challenges in order to align research work more closely with 

the needs of practitioners. On the other hand, this deeper understanding enables us to redesign 

the way we develop ML applications today to ensure sustainable long-term use. Second, we extend 

research on sustainable ML which primarily focuses on sustainable use cases for ML to sustainable 

ML product development that focuses on maintaining the value of ML applications over time. 

Broad applicability of the provided challenge-design-requirement framework in the industry 4.0 

sector creates a common starting point for targeted design of sustainable IS artifacts in the future. 

Finally, our study addresses the call for future work in IS research on adapting ML systems to 

dynamic changes in problem perception (e.g., Grønsund & Aanestad, 2020). We extend that call 
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for research by showing the multitude of potential challenges in dynamic environments such as 

industry 4.0 and provide a holistic approach that considers all phases of ML system development 

and deployment. Furthermore, the derived DRs and DPs provide a basis for future research in the 

field of sustainable long-term deployment of ML as well as clear guidance for researchers and 

practicitioners to integrate sustainability into the core of every ML system and to create 

acceptance for resource-intensive technology development that enables the efficiency of 

industrial processes to keep pace with the rapid developments in the interconnected world and 

to secure competitive advantages in the long term. 

At the same time, this study faces limitations that need to be considered when using the results. 

First, the number of interviewees is limited, which may bias the results towards certain subsectors 

of industry 4.0. However, due to the vast experience, diversity and internationality of the 

interviewees, we are confident in the validity of the results of the study. Second, due to the 

qualitative nature of this study, the severity of the challenges cannot be easily quantified and thus 

the challenges cannot be prioritized. Lastly, the derived DRs and DPs have not yet been evaluated. 

This study yields ample opportunities for future work, both regarding the limitations of the study 

itself as well as in addressing the identified challenges and derived DRs and DPs. While we plan to 

implement and test the DRs and DPs in a prototype ML application as part of a follow-up study, 

we also invite future research to evaluate our design guidelines in a wide variety of dynamic 

environments. Moreover, it is to be expected that challenges will differ to a certain degree, 

depending on the specific industry that is analyzed, which should be examined in separate studies 

to refine DRs and DPs. While derived DRs and DPs can support and facilitate the process of 

maintaining an ML application over time, organizations still need to provide an infrastructure for 

adapting ML models to, for example, data drifts, and train their workforce in MLOps and DevOps 

techniques, as well as in new areas of research such as domain adaptation.  

Interestingly, lacking performance of existing ML algorithms was never mentioned as a challenge 

during the interviews, thereby highlighting the importance of holistic research that focuses on 

integration and long-term deployment of ML in contrast to focusing on optimizing benchmark 

dataset scores or developing more complex algorithms.  
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Despite immense improvements in machine learning (ML)-based decision support systems 

(DSSs), these systems are still prone to errors. For use in high-risk environments such as aviation 

it is critical, to find out what costs the different types of ML error cause for decision makers. Thus, 

we provide pilots holding a valid flight license with explainable and non-explainable ML-based 

DSSs that output different types of ML errors while supporting the visual detection of other 

aircraft in the vicinity in 222 recorded scenes of flight simulations. The study reveals that both 

false positives (FPs) and false negatives (FNs) detrimentally affect pilot trust and performance, 

with a more pronounced effect observed for FNs. While explainable ML output design mitigates 

some negative effects, it significantly increases the mental workload for pilots when dealing with 

FPs. These findings inform the development of ML-based DSSs aligned with Error Management 

Theory to enhance applications in high-stakes environments. 
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5.1 Introduction 

Advances in machine learning (ML) have driven the development of increasingly sophisticated 

ML-based decision support systems (DSS) that enable human decision makers to gain valuable 

insights in complex situations, ultimately improving their ability to make more informed and data-

driven decisions (e.g., Berente et al., 2021; Jussupow et al., 2021; Sturm et al., 2023). As ML-based 

DSSs have demonstrated remarkable capabilities, at times surpassing human experts in specific 

tasks (e.g., Shen et al., 2019), these systems are now increasingly being adopted in high-stakes 

environments (Lebovitz et al., 2022; Maedche et al., 2019; Sutton et al., 2020). While the potential 

of ML-based DSSs in healthcare has been explored for some time (Gaube et al., 2021; Jha & Topol, 

2016; Jussupow et al., 2021), their potential is also gaining recognition in aviation, with the 

European Union Aviation Safety Agency (EASA) taking a proactive step by releasing an artificial 

intelligence (AI) roadmap in May 2023, outlining the goal of securing official approval for ML-

based systems to assist human decision makers in aviation operations by 2025 (European Union 

Aviation Safety Agency, 2023).  

Nevertheless, there is a concern that decision makers may hesitate to adopt approved ML-based 

DSSs and utilize the provided advice (e.g., Sturm et al., 2023) or that their use may introduce 

additional risks (Fügener et al., 2021; Riedl, 2019). For example, the increasing complexity of ML 

algorithms poses a significant challenge as it often renders the output of these algorithms 

incomprehensible for humans (e.g., Arrieta et al., 2020; Berente et al., 2021; Castelvecchi, 2016). 

In addition, even high-performing ML-based systems are prone to errors (Russell & Norvig, 2021), 

which presents a substantial concern for practical applications. Decision makers, such as pilots, 

may fail to recognize limitations of the model and consequently erroneous system output 

(Jussupow et al., 2021) or their trust in ML-based decision support systems erodes (Gurney et al., 

2022), potentially causing them to exclude these systems from their decision making processes. 

Overall, there is a need to focus on efficient error management to ensure that these systems can 

positively contribute to safety-critical decisions in aviation and other high-stake environments 

(cf. Green & Swets, 1966). Emerging approaches from the field of explainable AI (XAI), for 

instance, aim to make the system’s output more understandable for human decision makers 

(Arrieta et al., 2020; Reyes et al., 2020), with studies showing that this aids in recognizing 

erroneous output (Abdel-Karim et al., 2020).  

However, existing research primarily addresses the general impact of incorrect support without 

further differentiating error types and predominantly examines the effects on decision makers’ 

accuracy and performance (Abdel-Karim et al., 2020; Gaube et al., 2023). Nevertheless, the 

differentiated examination of the costs of different ML error types on the decision maker is of 

crucial importance, since ML developers must determine the sensitivity of the systems and with 
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this design choice have a significant influence on which ML error type will occur more frequently 

and which less frequently (Wenkel et al., 2021). Existing research cannot yet provide ML 

developers with efficient error management guidance for the different types of ML errors in 

detection models, which are widely used for decision support in high-stake domains (e.g., 

Jussupow et al., 2021; Lebovitz et al., 2021). To provide guidance, a more in-depth examination of 

the effects of different types of errors and their associated costs on the decision maker is required. 

For example, there is a significant difference between an ML-based DSS in aviation falsely 

detecting an aircraft in vicinity when the airspace is actually clear–a false positive (FP) error–

versus failing to detect an existing aircraft in vicinity and not alerting the pilot–a false negative 

(FN) error. Both t pes of errors can impact pilots’ performance and trust. Moreover, explanations 

from the XAI field can assist in error detection (Abdel-Karim et al., 2023, 2020; Gaube et al., 2023; 

Pumplun et al., 2023; Sturm, Gerlach, et al., 2021) but may also increase cognitive resources 

required for information processing (Pumplun et al., 2023), potentially affecting mental workload. 

In addition, XAI approaches could have different effects for different types of errors. There is a 

lack of knowledge about the costs incurred on the decision maker for different types of errors and 

whether and how XAI approaches mitigate negative effects. In addition, this knowledge is crucial 

for ML developers who want to adhere to the Error Management Theory (EMT), which states that 

systems should be biased in a way that minimizes the type of error associated with the greatest 

long-term costs (Green & Swets, 1966; Haselton & Nettle, 2006; Johnson et al., 2013). To enable 

the design of ML-based DSSs in line with EMT in the future, our study integrates theories and 

approaches from error management, human-AI interaction, and XAI to address the following 

research questions:  

In the context of General Aviation, (1) how do FP and FN errors caused by ML-based DSSs affect the 

performance, trust and perceived mental workload of human decision makers, and (2) can the 

explainable design of ML-based DSSs have a positive effect on the costs incurred? 

We investigate these research questions through an online experiment with pilots holding valid 

flight licenses. To conduct the experiment, we initially recorded various flight scenes in a crowded 

airspace using the Microsoft Flight Simulator and developed six different variants of ML-based 

decision support to support pilots in visually detecting other aircraft in the vicinity. These ML-

based DSSs challenge decision makers with different error types and levels of explainability. 

Overall, the following ML-based DSSs were developed: a non-explainable false negative (NEFN), 

an explainable false negative (EFN), a non-explainable error-free (NEEF), an explainable error-

free (EEF), a non-explainable false positive (NEFP), and an explainable false positive (EFP) ML-

based DSS. We collect quantitative data on the pilots’ performance, mental workload, and system 

trust, analyzing differences between the groups. This research offers insights into the costs 

associated with different types of ML errors and provides a foundation for developing future ML-
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based DSSs in line with EMT. By conducting this experiment with real-world pilot participants, we 

aim to contribute valuable knowledge to enhance the deployment of ML-based DSSs in aviation 

and other high-stake domains. 

5.2 Theoretical Background 

The following section offers a conceptual overview of ML and its application in decision support. 

It further outlines error types, along with insights from the XAI domain to render ML results 

comprehensible to users. Lastly, the section examines how ML systems affect user performance, 

trust, and mental workload before hypotheses for human-AI interaction with erroneous ML-based 

DSSs are derived. 

5.2.1 Machine Learning  

The fundamental principle of ML involves the use of algorithms that can independently find 

patterns in data, allowing them to solve problems without the need for providing explicit solutions 

or decision rules (Brynjolfsson & Mitchell, 2017; Russell & Norvig, 2021). Once trained, these 

algorithms can recognize patterns, classify data, make predictions, or take actions based on the 

data they have been exposed to (Mitchell, 1997; Russell & Norvig, 2021). Since ML algorithms 

derive solutions on their own without using human-coded instructions (Samuel, 1959), they can 

generate insights that are complementary to human knowledge (Fügener et al., 2022). While this 

pro i es opportunities to boost  ecision makers’ performance (e.g., Abdel-Karim et al., 2020; 

Gaube et al., 2023), challenges arise with the use of ML-based DSSs. ML models are based on 

statistical patterns and are susceptible to errors. This is particularly problematic given the often 

opaque nature of these models that hinders humans to understand why and how decisions are 

made (Berente et al., 2021; Rudin, 2019). As a result, the lack of interpretability and the potential 

for unpredictable outputs are major obstacles preventing the widespread use of ML-based 

systems in high-risk areas such as healthcare or aviation (Lebovitz et al., 2021). Therefore, instead 

of automating decisions, ML-based systems should primarily be used as decision support systems 

that assist human decision makers (European Union Aviation Safety Agency, 2023; Jha & Topol, 

2016). Nevertheless, there is a risk in collaborative decision making that decision makers such as 

pilots may fail to detect system errors, and their performance may deteriorate (Fügener et al., 

2021; Jussupow et al., 2021), or they may not consider system advice (Sturm et al., 2023). 

5.2.2 ML Error Types and Error Management Theory 

Detection models, which are commonly deployed in high-risk environments (Lebovitz et al., 

2021), have the ability to categorize data into classes. In medical decision making such an ML-

based DSS could, for example, advise a radiologist whether the tissue on a scan is tumorous or 
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healthy (Pumplun et al., 2023). In the context of decision making in aviation, ML models could use 

image data to detect if other aircraft are in close proximity. Although ML-based DSSs have 

improved significantly in recent years (Shen et al., 2019), they are still error-prone (Mitchell, 

1997; Russell & Norvig, 2021). In the case of detection models, two types of errors can occur here, 

namely FPs and FNs (Goutte & Gaussier, 2005; Padilla et al., 2020). An FP occurs when the system 

classifies data as belonging to the positive class when it should have actually been classified as 

belonging to the negative class (Padilla et al., 2020), e.g., falsely detecting an aircraft in an empty 

airspace. An FN occurs when the system incorrectly classifies data as belonging to the negative 

class (Swets et al., 2000), e.g., not detecting an aircraft in the surrounding airspace. The given 

example shows that the implications of these error types are significant, especially in high-risk 

environments (Luce & Kahn, 1999). While improving accuracy of ML-based DSSs has remained in 

the focus in recent years (e.g., Roy et al., 2022), research has also shown that it is still critical to 

understand the implications of ML errors for efficient error management (Johnson et al., 2013). 

Benefits and costs of correct and incorrect decisions need to be understood in order to judge 

which type of error is preferable to the other (Swets et al., 2000). 

ML developers can prioritize reducing the rate of one error type over the other through adjusting 

the confidence threshold of a model and thus changing its sensitivity (Padilla et al., 2020). The 

confidence threshold is a critical value that sets the minimum confidence level required for a 

mo el’s  etection to be  eeme   ali  (Wenkel et al., 2021). To increase sensitivity of the ML 

model, the confidence threshold is lowered and FNs are reduced. However, increasing sensitivity 

can increase the rate of FPs. On the other hand, decreasing sensitivity and thus raising the 

confidence threshold leads to a higher occurrence of FNs but might reduce the rate of FPs. From 

a technical perspective, it is thus easy to influence which of the different types of errors occurs 

more frequently when deploying an ML-based DSS (Padilla et al., 2020). 

From the error management perspective, on the other hand, complex questions about the costs of 

the different error types need to be answered before the sensitivity of such systems should be 

adjusted (Swets et al., 2000). Once it is accepted that errors can occur, it is necessary to 

understand why people and especially responsible decision makers react differently to different 

types of errors (Haselton & Nettle, 2006). In this context, Haselton and Nettle (2006) introduce 

the Error Management Theory (EMT) for judgments under uncertainty, which states that if the 

costs of false negati e an  false positi e errors are as mmetric o er e olutionar  time, “humanl  

engineered s stems” shoul  be biase  to make the less costl  errors. While intro ucing this bias 

may result in a higher error rate overall, it minimizes the more costly error and therefore 

minimizes the overall cost as well (Green & Swets, 1966; Johnson et al., 2013). In addition, the 

introduction of this bias into systems follows human psychology, which states that adaptations in 

decision making have evolved through natural selection to make predictable mistakes (Haselton 
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& Nettle, 2006). Therefore, it is crucial to fully understand the costs of error in real-world 

scenarios (Johnson et al., 2013). Often, in high-risk environments, it is easy to assess that FNs (e.g., 

overlooking an aircraft in nearby airspace) pose the greater risk. Nevertheless, it is a great 

concern to understand the psychological costs of FPs as well (Luce & Kahn, 1999) in order to fully 

assess the costs and implement a meaningful system bias in terms of EMT (Haselton & Nettle, 

2006; Wardle & Pope, 1992) for ML-based DSSs. For example, an overly sensitive ML system that 

detects an infinite number of non-existent aircraft in the airspace will not add value to a pilot in 

the long run and thus comes at a large cost as well. IS research, which recently explored the impact 

of incorrect ML-based decision support on the decision maker, does not differentiate between the 

different types of errors and thus cannot improve our understanding of these different error costs 

or solely focus on the impact of incorrect ML-based DSSs on human performance (e.g., Jussupow 

et al., 2021; Pumplun et al., 2023). 

5.2.3 Explainable Design of ML Systems  

While ML models are becoming more and more complex, the field of XAI has emerged to address 

arising challenges. The primary aim of XAI is to render ML system outputs and interpretations 

understandable for humans (Arrieta et al., 2020; Miller, 2019). This can aid data scientists or 

developers in error detection and improvement of ML model performance, be necessary for legal 

or regulatory compliance, or enhance the interaction between end users and ML systems (Bhatt 

et al., 2020; Pumplun et al., 2023; Reyes et al., 2020). To do so, explanations are provided that 

inform about the inner workings of ML systems, shedding light on factors such as the considered 

features and their respective impact on the ML decision making process (Arrieta et al., 2020; Bhatt 

et al., 2020). Presently, various technical approaches to XAI exist and three explanation categories 

can be defined (Pumplun et al., 2023): First, model explanations offer meta-information about the 

ML development process and the ML model itself (Cai et al., 2019). Second, global explanations 

aid users in grasping the importance of specific features for the decision of the ML model 

(Ghorbani et al., 2019). Lastly, local explanations aim to enhance human understanding of specific 

ML system outputs, for example, through confidence estimates (Guo et al., 2017; Pumplun et al., 

2023).  

However, research in the IS field is now focusing on the impact that especially local explanations 

have on the interaction between end users and ML systems (e.g., Fügener et al., 2021; Pumplun et 

al., 2023). Here it is particularly important that the explanations are presented in such a way that 

the end user, who often has little or no knowledge of ML, can understand them (Bhatt et al., 2020). 

Improved explainability can lead to several positive outcomes such as fostering user confidence 

in following ML system recommendations while maintaining their domain expertise (Asatiani et 

al., 2021; Strich et al., 2021). Moreover, XAI offers the potential for human decision makers to 
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improve performance (e.g., Gaube et al., 2023), build up trust (Benbya et al., 2021), learn from the 

knowledge provided by the ML system (Abdel-Karim et al., 2020) and detect instances of ML error 

(e.g., Fügener et al., 2021). In this context, however, it is important to keep in mind that end users 

must make some cognitive effort to understand the explanations offered and to take them into 

account in their decision making process (Arrieta et al., 2020; Pumplun et al., 2023), especially 

since they are statistical in nature (Bhatt et al., 2020). 

5.2.4 Collaborative Decision Making: Performance, Trust, and Mental Workload  

IS research to date is divided on the impact of ML-based DSSs on human performance. There are 

studies that show that people make better decisions and improve their performance with the help 

of ML-based DSSs (e.g., Abdel-Karim et al., 2020; Gaube et al., 2023).. Nevertheless, ML errors thus 

pose a risk to the overall decision performance (Fügener et al., 2021; Jussupow et al., 2021). While 

higher explainability can help human decision makers to recognize ML errors (e.g., Fügener et al., 

2021), previous studies do not show what influence different types of errors have on performance 

and which types of errors are more easily detected by humans. 

Since ML-based DSSs are prone to errors (e.g., Berente et al., 2021), end users need to evaluate 

when to adopt or reject system advice, and well-calibrated trust is thus a critical aspect for 

successful human-AI interaction (Gurney et al., 2022). The concept of trust within the research 

field of IS and in relation to the use of technology has been extensively studied (Glikson & Woolley, 

2020; McKnight et al., 2011; Thiebes et al., 2021). Trust is characterize  as a part ’s rea iness to 

be open to potential risks from the actions of another, with the expectation that the latter will act 

in a wa  that is important to the trustor, regar less of the trustor’s abilit  to o ersee or control 

the other party (Mayer et al., 1995). While this definition of trust was primarily used to describe 

interactions between individuals, research has also applied this concept of trust to the interplay 

between humans and technologies in recent years (Glikson & Woolley, 2020; Gurney et al., 2022; 

McKnight et al., 2011). For example, Gurney et al. (2022)  efine trust in AI as “the  egree to which 

a person feels that they can rely on the AI to reduce vulnerability and/or uncertainty in a given 

situation or instance” (Gurney et al., 2022), p.23). For measuring trust in technology, functionality, 

reliability, and helpfulness should be considered (McKnight et al., 2011). Functionality pertains to 

the belief in a technolog ’s capabilit  to accomplish a task for which it was  esigne . Reliabilit  is 

the belief in a technology’s consistent and stable operation, enhancing trust in its performance. 

Helpfulness is the belief that the technology offers meaningful assistance to users, aiding them in 

reaching their objectives (McKnight et al., 2011). Although it is obvious that errors in ML systems 

can have a negative impact on trust, we know little about the extent to which FNs and FPs differ 

in their influence. 
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For humans to achieve a certain level of performance on a task, mental workload is required. 

Mental workload has widely been studied in psychology and is often defined as the costs incurred 

by an individual while accomplishing a task at a certain performance level (Hart & Staveland, 

1988; Sweller et al., 1998). The concept of mental workload is critical for system designers, as 

humans are unable to perform tasks accurately and reliably with all available resources and 

maintain high performance without incurring physical, mental, or emotional costs such as fatigue, 

stress, or accidents (Hart, 2006; Liu & Wickens, 1994; Xi et al., 2023). While the concept of mental 

workload was initially given great importance in the aviation sector (Hart, 2006), rapid 

technological progress in many areas relating to information systems has made it necessary to 

take mental workload into account in order to realize productivity and efficiency benefits. Today, 

system designers aim to understand how to design and refine systems to ensure their intended 

benefits remain unaffected by excessive workloads during operation. Nevertheless, as the 

complexity or difficulty of a task grows, the perceived workload also intensifies. If this surpasses 

the acceptable level, it will result in a decline in performance (Xi et al., 2023). Research in the field 

of XAI has also recognized that the inclusion of explanations for ML output–besides the benefits–

can also incur costs, as additional information needs to be considered in the decision making 

process, which requires cognitive resources (e.g., Pumplun et al., 2023). In addition to the 

influence of explanations on the mental workload, we argue that the influence of different types 

of errors (FNs and FPs) on the mental workload should also be investigated in order to understand 

which costs are associated with ML errors and how we can design explainable ML systems that 

minimize overall costs in the sense of EMT. 

5.2.5 Hypothesizing Human Interaction With Erroneous ML-based DSSs 

While prior research has already provided important insights into the impact of incorrect ML-

based DSSs on human performance (e.g., Jussupow et al., 2021; Fügener et al., 2021), there is a 

lack of knowledge regarding the influence of different error types. In line with previous findings, 

we hypothesize that incorrect (FP and FN) ML-based DSSs will negatively affect not only the 

performance but also the trust of decision makers such as pilots and pose H1: Interaction with 

incorrect ML-based DSSs is associated with lower levels of decision maker performance and trust. In 

addition, we hypothesize that omissions (FNs) have a more substantial impact on pilots than over-

detections (FPs) and propose H1.1: This negative effect of erroneous ML-based DSSs is larger for 

FNs compared to FPs.  

Research has also shown that explainability of ML-based DSSs output, achieved through local 

explanations, affects user trust (Benbya et al., 2021; de Zoeten et al., 2023; Glikson & Woolley, 

2020) and decision maker performance (e.g., Abdel-Karim et al., 2020). Building on these findings, 

we anticipate that the decline in trust will be less severe when local explanations are provided 
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and propose H2: Lower levels of decision maker performance and trust that results from interaction 

with incorrect ML-based DSSs can be improved through explainability. In addition, local 

explanations for ML output can be pro i e  for FPs but not for FNs, thereb  increasing the pilot’s 

capability to interpret system advice that contains FPs and we thus pose that H2.1: This positive 

effect of explainability is larger for FPs compared to FNs. 

Explanations for outputs of ML-based DSSs are typically complex and statistical in nature (Bhatt 

et al., 2020), demanding that decision makers, such as pilots in our study, expend additional 

cognitive effort for processing the information (Lebovitz et al., 2022; Pumplun et al., 2023), 

potentially affecting their mental workload. We therefore propose H3: Interacting with 

explainable ML-based DSSs is associated with higher levels of mental workload. As the occurrence 

of FPs increases the amount of information provided to the pilot, we hypothesize that H3.1: This 

negative effect of increased mental workload is larger for FPs compared to FNs. 

5.3 Methodology 

To understand the impact of the different types of errors and the explainability of the ML output 

on the decision maker, we invited pilots (who hold a valid flight licence) to participate in an online 

experiment. During the experiment, we showed the pilots a video of a challenging flight scene and 

provided a certain variant of decision support to help the pilots visually identify other aircraft in 

airspace. This particular task and the designs of the decision support systems were derived in pre-

study interviews with three experienced commercial pilots. 

5.3.1 Empirical Context 

The three experienced pilots from our pre-study interviews indicated that they see great potential 

to incorporate ML-based systems into aviation decision making, particularly in the general 

aviation sector. Here, the pilot’s sole decision is often relied upon, instead of relying on redundant 

instruments. In general aviation, which includes private and recreational flying, pilots commonly 

operate under visual flight rules (VFR), if weather conditions are clear enough. In VFR conditions, 

pilots are required to rely on visual reference for maintaining control and navigating the aircraft. 

Pilots may use navigation aids, however, not all aircraft are equipped with such systems to 

support situational awareness. Thus, it is paramount for collision avoidance that pilots see and 

avoid other aircraft, helicopters, parachutes, animals etc. in vicinity and maintain visual 

separation from them (Civil Aviation Safety Authority, 2023). In addition, it is mandatory to report 

all incidents that led to unexpected close proximity of aircraft in flight, also known as airprox or 

near miss. Airprox boards and aviation safety agencies regularly publish these reports (Civil 

Aviation Safety Authority, 2023), which outline the safety risks that can be associated with visual 

see and avoid tactics under VFR conditions (e.g., UK Airprox Board, 2021). Based on these insights 
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from pre-study interviews and airprox reports, we decided to select the visual detection of other 

aircraft in vicinity during flight under VFR conditions as an appropriate and challenging task for 

our experiment, for which we provide different variants of ML-based decision support. 

To analyze and understand the failure modes of visual detection systems in real-world scenarios, 

we implemented and trained a state-of-the-art object detection model on real flight scenes from 

the Amazon Prime Air Airborne Object Tracking (AOT) Challenge dataset. The dataset was 

released in 2021 and features 164 hours of labelled flight sequences showing in-flight encounters 

with other aircraft, helicopters, birds and drones, captured by two aircraft that were equipped 

with high-resolution cameras (Amazon Prime Air, 2021). We choose the recently proposed 

YOLOv86 object detection model for implementation as it achieves state-of-the-art performance 

on detection tasks with high computational efficiency. The object detector was trained to 

recognize airplanes and helicopters on a subset of the dataset. It reaches a final precision7 of 96% 

and recall2 of 77% for the class airplanes for the YOLOv8 default threshold. The failure modes of 

the trained detector were consequently evaluated on a test split of the dataset. Object detector 

neural networks provide confidence scores for their detections and as described in Section 2.2, a 

confidence threshold must be selected, at which a detection from the neural network is considered 

a relevant, real object (aircraft or helicopter) in the application context. The choice of the 

threshold is a significant design decision as it influences the error behavior of the application with 

low thresholds allowing more FPs and high thresholds yielding more FNs (Wenkel et al., 2021). 

Table 4 outlines the percentage decrease in FPs and increase in FNs as the confidence threshold 

of the trained object detection model is increased, highlighting the relevance of understanding the 

costs of both error types to determine an appropriate confidence threshold and thus bias the ML-

based DSS. 

 

Table 4: Changes in FPs and FNs for increasing the confidence thresholds of the YOLOv8 model 
trained on the AOT dataset from 20% to 40%, 40% to 60%, and 60% to 80% 

Confidence threshold: 20% → 40% 40% → 60% 60% → 80% 

∆% 𝐹𝑃 - 35% - 56% - 99% 

∆% 𝐹𝑁 + 3% + 5% + 21% 

5.3.2 Study Procedure and Data Collection  

The overall experimental design was iteratively improved and pre-tested with three experienced 

pilots and one IS researcher. All participants (N = 74) in our experiment followed the same study 

procedure and were tasked to visually detect and count aircraft encounters in different flight 

 
6 https://github.com/ultralytics/ultralytics 
7 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃 =  

𝑇𝑃

𝑇𝑃+𝐹𝑃
; 𝑟𝑒𝑐𝑎𝑙𝑙 𝑅 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
 with true positive (TP) 
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sequences. They first read an introduction regarding VFR and airprox incidents and watched an 

exemplary flight sequence showing crowded airspace to get used to the field of view from the 

cockpit of the Cessna 172 from which the flight scene was recorded using Microsoft Flight 

Simulator (MSFS) 2020 40th Anniversary Edition (Microsoft Flight Simulator, 2023). They were 

then randomly split into two groups, one of which received explainable ML-based DSSs and the 

other non-explainable DSSs (a design description is provided in the following section). Pilots were 

given a brief description of how each DSS would detect and indicate to the pilot other aircraft in 

the airspace. Each pilot interacted sequentially with three systems in a randomized order that 

outputted either fully correct support, FPs, or FNs under the assigned output design requirements. 

After watching one flight scene and interacting with one variant of ML-based DSS, each pilot 

reported which aircraft they visually detected and individually completed the surveys described 

below. 

 
Figure 9: Design and procedure of the between-subject online experiment for detecting aircraft in 

vicinity with different variants of erroneous ML-based DSSs 

Next, they completed a NASA Task Load Index (NASA-TLX) (Hart & Staveland, 1988) 

questionnaire which has widely been applied to measure mental workload of pilots in aviation 

(Hart, 2006), but has also proven highly valuable in IS research (e.g., Dang et al., 2020; Xi et al., 

2023). The multidimensional rating scale NASA-TLX comprises six bipolar dimensions, namely 

mental demand, physical demand, temporal demand, performance, effort and frustration level, to 

assess the cost to a decision maker of performing a task at a given level of performance (Hart & 

Staveland, 1988). While the original NASA-TLX allows system users to rate all dimensions of 
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mental workload on a 0 to 100 scale, research later adopted a 7-point Likert scale and suggested 

to exclude physical demand as a dimension of mental workload when it becomes negligibly small 

(Chen et al., 2009; Dang et al., 2020). We followed these suggestions when implementing the 

NASA-TLX questionnaire.  

Next, the pilots received a report if the ML-based DSS has made any errors and additional 

information about the type of error that occurred before system trust was assessed through a 

third questionnaire. This ensures that decision makers are aware of whether errors are made, in 

order to measure their impact on trust. Pilots were asked to assess trust in the technology along 

three dimensions, namely functionality, reliability and helpfulness on a 7-point Likert scale as 

proposed by (McKnight et al., 2011). Finally, demographic data was requested, as well as previous 

experience in flight hours, type of flight license, a personal risk assessment on airprox incidents, 

and attitude toward the use of AI. 

5.3.3 Experimental Setup 

To test our hypotheses, six different ML-based DSSs were developed. In pre-study interviews, 

pilots argued that flight sequences from the AOT dataset could not be used for an online 

experiment with real pilots because all video data consists of grayscale images and colored 

footage would be necessary for a realistic setup. Thus, we selected appropriate aircraft encounters 

from the AOT dataset and recreated them with a group of pilots in a multiplayer session in 

Microsoft Flight Simulator (Microsoft Flight Simulator, 2023) to simulate crowded airspace in 

traffic patterns around Frankfurt-Egelsbach Airport (ICAO-Code: EDFE) and Phoenix Goodyear 

Airport (ICAO-Code: KGYR). All video data was recorded from the cockpit of a Cessna 172 in MSFS 

and two to three additional aircraft were present in all scenes. Next, all images of a flight scene 

were labelled in accordance with the following design guidelines: 

Explainability Manipulation: To assess the impact that explainability of erroneous ML output has 

on the decision maker, two different levels of explainability of the ML-based DSSs were defined. 

First, a non-explainable decision support design was developed which only displays bounding 

boxes around detected aircraft without further information. All bounding boxes are colored in 

magenta which is commonly used to display system managed information in cockpits, as 

exemplary shown in Figure 10. Second, a more explainable decision support design was 

developed in accordance with the design guideline by (Pumplun et al., 2023) which aims at 

minimizing the cogniti e effort in uce  an  EASA’s recentl  publishe  concept paper that aims to 

guide the development of explainable ML applications in aviation: “Assuming that the decisions, 

actions, or diagnoses provided by an AI-based system may not always be fully reliable, the AI-based 

system should compute a level of confidence in its outputs” (European Union Aviation Safety Agency, 

2024, p. 92). The explainable variants of ML-based decision support thus provide a local 
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explanation by indicating a confidence score of the ML model for each detected aircraft. More 

complex explanations from the XAI field were explicitly excluded because pilots need to make 

quick decisions under time pressure, and interpreting complex, statistical outputs is 

disadvantageous in this context. While many studies on ML image analysis in high-risk 

environments use a color scale (from green to red) to display varying confidence scores to the end 

user (e.g., Pumplun et al., 2023), pilots in pre-study interviews have strongly discouraged this 

design to avoid violating common color coding conventions for cockpit design 8 . Instead, we 

decided that for pixels assigned to the aircraft class with low confidence, the corresponding 

bounding box would be displayed in a low color density, while all detections made with high 

confidence would have a magenta bounding box with high color density. 

 

Figure 10: Exemplary MSFS2020 scene with detected aircraft in magenta bounding box (NEEF) 

Sensitivity Manipulation: To assess the costs incurred to the decision maker in case of erroneous 

ML-advice, we selected three levels of sensitivity for the development of ML-based DSSs. First, an 

ML-based DSS with a low confidence threshold which did not detect all aircraft in vicinity (a false 

negative). Second, an ML-based DSS with an optimal threshold (control group–error-free support 

cannot be guaranteed in real-world use) which provides error-free decision support and detects 

all aircraft in vicinity. Lastly, an ML-based DSS with a high confidence threshold which challenges 

the decision maker with a false positive, thus detecting a non-existing aircraft in vicinity.  

Overall, our explainability and sensitivity manipulation results in three levels of sensitivity and 

two levels of explainability. Therefore, six different ML-based DSSs were developed, namely a non-

explainable false negative (NEFN), an explainable false negative (EFN), a non-explainable error-

free (NEEF), an explainable error-free (EEF), a non-explainable false positive (NEFP), and an 

explainable false positive (EFP) ML-based DSS (as shown in Figure 9). 

 
8 According to the color convention by the Federal Aviation Administration, red, amber and yellow are used for alerting 

flight crew (FAR §25.1322e) to non-normal conditions. Other aircraft detected in airspace but not falling within the 
specified minimum distances do not warrant an alert requiring immediate action. Therefore, this color selection is 
waived and all bounding boxes are colored in magenta using different color densities. 
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5.3.4 Data Analysis and Pilot Statistics  

Quantitative data was analyzed using SPSS V29. Subsequently, an analysis of variance (ANOVA) 

was conducted to examine the differences of the NEFN, EFN, NEEF, EEF, NEFP and EFP ML-based 

DSS on pilots’ performance, trust, an  mental workloa  (Girden, 1992; Tabachnick & Fidell, 2006). 

The online experiment was conducted between July and September 2023. Overall, 222 flight 

scenes were watched by 74 pilots. The pilots were randomly divided into two groups, one of which 

received explainable ML-based decision support and the other non-explainable ML-based 

decision support. Each pilot interacted with three systems in a randomized order that outputted 

either fully correct support, FPs, or FNs under the assigned output design requirements (NNEFN = 

39, NEFN = 35, NNEEF = 39, NEEF = 35, NNEFP = 39, NEFP = 35). All pilots hold valid flight licenses (LAPL, 

PPL, CPL, ATPL, MPL, SPL, TMG, UL flight licenses were reported), have accumulated an average 

of 2322.61 flight hours before the experiment, and required an average of 13:26 minutes to 

complete the experiment. Overall, 9.46% of participating pilots were female and 90.54% were 

male, reflecting the low percentage of women in the aviation industry (Bartels, 2018). 

5.4 Results 

In the following section, the quantitative results of the online experiment are presented and then 

 iscusse . Mental workloa  (Cronbach’s alpha 0.903) an  trust (Cronbach’s alpha 0.934) of pilots 

was measured with multiple items and dimensions of the NASA-TLX were weighted equally. We 

performed an explorative data analysis and tested for homogeneity of variances before 

conducting a one-way ANOVA (p < .05) to examine the groups and assess differences in the effects 

of presenting different variants of the ML-based decision support. Given that each group has a 

sample size of more than 30, it is reasonable to assume a normal distribution for the obtained 

quantitative data (Stone, 2010). Homogeneit  of  ariances was asserte  using Le ene’s Test 

which showe  that equal  ariances coul  not be assume  (Le ene’s Test, p < .05) and we thus 

performed a robust Welch-ANOVA and Games-Howell post-hoc tests. 

The Welch-ANOVA, as outlined in Table 5, revealed that performance differed statistically 

significant for pilots interacting with different design variants of ML-based decision support. 

Games-Howell post-hoc anal sis further outlines that pilots’ performance is significantl  (p < 

.001) lower in groups interacting with non-explainable decision support variants that output FNs 

or FPs (difference of means NEFP-NEEF: -0.795, 95%-CI[-1.00, -0.59] and NEFN-NEEF), which 

supports performance related statements of H1. In addition, pilots incorrectly included both types 

of errors in their decision making to the same extent for non-explainable ML-based DSSs (NEFN 

and NEFP). Thus, H1.1 is not supported by the results of erroneous and non-explainable ML-based 

DSSs. Nevertheless, overlooking an aircraft (FN) compared to detecting a non-existent aircraft in 
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the airspace (FP) is associated with worse risks in real-world application. In addition, the pilots 

were either completely correct in their assessment or made the same mistakes as the system. 

Table 5: Performance, mental workload and trust assessment following interaction with ML-based 
DSSs and results of the conducted Welch-ANOVA 

ML-based 
DSS 

N Performance (0/1) 

Mean | Std 

NASA-TLX* 

Mean | Std 

Trust* 

Mean | Std 

NEFP 39 0.08 | 0.27 4.17 | 0.77 4.52 | 0.89 

NEEF 39 0.87 | 0.34 4.15 | 0.82 5.78 | 0.56 

NEFN 39 0.08 | 0.27 4.18 | 0.87 2.24 | 1.28 

EFP 35 0.66 | 0.48 5.21 | 1.39 5.61 | 0.59 

EEF 35 0.91 | 0.28 4.45 | 0.91 5.81 | 0.67 

EFN 35 0.11 | 0.32 4.49 | 1.01 3.14 | 0.89 

Welch-
ANOVA 

 F(5, 99.55) = 66.11, 
p < .001, η² = 0.561 

F(5, 99.68) = 98.36, 
p < .001, η² = 0.125 

F(5, 99.34) = 3.89,    
p = .003, η² = 0.732 

*7-point Likert scale 

In addition, the post-hoc analysis reveals that explainable design of ML-based decision support 

significantly (p < .001) reduced the performance decrease for FPs (difference of means EFP-NEFP: 

0.580, 95%-CI[0.31, 0.85]), which shows that H1.1 is at least supported for explainable ML-based 

DSSs and supports performance related statements in H2. However, explainable design does not 

significantly reduce the performance decrease caused by FNs (difference of means EFN-NEFN: 

0.037, 95%-CI[-0.17, 0.24] and thus, the positive impact of explainability is larger for FPs (which 

supports H2.1).  

Besi es performance, pilots’ trust further differed significantly between groups receiving 

different variants of ML-based DSSs. For non-explainable design of the decision support, post-hoc 

analysis reveals that trust significantly (p < .001) decreases for both error types (difference of 

means NEFP-NEEF: -1.263, 95%-CI[-1.76, -0.77] and NEFN-NEEF: -3.538, 95%-CI[-4.20, -2.88]) 

which supports trust related statements of H1 for non-explainable design. In addition, trust 

decreases significantly (p < .001) more if pilots are challenged with FNs compared to FPs 

(difference of means NEFN-NEFP: -2.276, 95%-CI[-3.01, -1.54]) which supports H1.1.  
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Table 6: Hypotheses testing and results from the online experiment 

Hypothesis Decision 
Support Variant 

Games-Howell p Outcome 

H1: Incorrect ML-based DSS → 
Performance and trust 
decrease 

NEFP vs NEEF Performance: p < .001 

Trust: p < .001 

Supported for FPs 

NEFN vs NEEF Performance: p < .001  

Trust: p < .001 

Supported for FNs 

H1.1: Performance and trust 
decrease FNs > FPs 

NEFN vs NEFP Performance: p > .05 

Trust: p < .001 

Not supported for 
performance*; 

Supported for trust 

H2: Explainable, incorrect ML-
based DSS → Reduces 
performance and trust 
decrease 

EFP vs NEFP Performance: p < .001 

Trust: p < .001 

Supported for FPs 

EFN vs NEFN Performance: p > .05 

Trust: p = .009 

Performance: Not 
supported for FNs 

Trust: Supported for FNs 

H2.1: Reducing performance 
and trust decrease FPs > FNs 

EFP vs EEF Performance: p > .05 

Trust: p > .05 

Supported for 
performance and trust 

EFN vs EEF Performance: p < .001 

Trust: p < .001 

H3: Explainable, incorrect ML-
based DSS → Mental workload 
increase  

H3.1: Mental workload 
increase: FPs > FNs 

EFP vs NEFP p = .004 H3: Supported for FPs; 

Not supported for FNs  

 

H3.1: Supported 
EFN vs NEFN p > .05 

* The magnitude of the performance drop is similar if the criticality of FNs and FPs is rated equally. 

Post-hoc analysis further shows that the loss in trust can be significantly reduced through 

explainability (difference of means EFP-NEFP: 1.095, 95%-CI[0.59, 1.60]) for FPs (p < .001) and 

FNs (p = .009) (EFN-NEFN: 0.899, 95%-CI[0.15, 1.64]) which supports trust related statements of 

H2. In addition, for the explainable design, no significant (p = .772) difference in trust is observed 

for the group receiving FPs in the output compared to the error-free variant (EFP-EEF: -0.200, 

95%-CI[-0.64, 0.24], while it remains significant (p < .001) for the group receiving FNs compared 

to the error-free variant, which supports trust related statements of H2.1. 

The Welch-ANOVA confirmed that mental workload differed significantly between treatment 

groups. We further assessed the impact of explainability by comparing treatment groups receiving 

explainable vs. non-explainable ML-based decision support through a post-hoc analysis. Results 

outlined that mental workload did significantly (p = .004) increase for pilots that received 

explainable ML-based decision support and were confronted with false positive errors compared 

to the non-explainable ML-based DSS, (EFP-NEFP: 1.03, 95%-CI[0.25, 1.83]). For error-free 

support variants (p = .701) and support variants that outputted FNs (p = .718), no significant 

difference in the mental workload for explainable output design was found. Thus, H3 is only 

supporte  for FPs an  explainable  esign poses a negati e impact on pilots’ mental workloa  for 
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ML-based decision support that erroneously outputs FPs. However, it does not impact mental 

workload in case of error-free output or FNs which thus supports H3.1. 

5.5 Discussion 

In recent years, ML-based systems have exhibited exceptional performance, offering significant 

potential for applications in high-stake environments such as aviation (European Union Aviation 

Safety Agency, 2023). Particularly under VFR conditions, ML-based DSSs could enhance the early 

and reliable detection and tracking of other aircraft in crowded airspace. However, the inherent 

susceptibility of ML systems to errors (Berente et al., 2021) poses risks for decision makers 

(Fügener et al., 2021; Jussupow et al., 2021). Current research on the impact of erroneous ML 

recommendations on decision making is limited, lacking a distinction between types of errors, 

namely false positives and false negatives, and therefore fails to offer an exhaustive analysis of the 

costs associated with each. Our study addresses this gap by examining the effects of FPs and FNs 

on the performance, trust, and perceived workload of pilots, aiming to inform future ML-based 

DSS design in line with Error Management Theory (RQ1). In addition, we explore how explainable 

ML design influences pilot interaction and the associated costs, again differentiating between 

error types (RQ2). To this end, we developed six variants of an ML-based DSS, featuring 

explainable and non-explainable designs, and providing either FP, FN, or error-free support to aid 

74 pilots during an online experiment in detecting other aircraft in 222 recorded flight scenes that 

were recorded in MSFS2020.  

Our study makes several theoretical contributions. Firstly, we empirically establish a significant 

performance decline of pilots when interacting with incorrect ML-based DSS outputs for both 

types of errors–FPs and FNs–in detecting the correct number of aircraft in the airspace (H1 – 

Performance). Contrary to our hypothesis, pilots were unable to discern more FPs compared to 

FNs when interacting with non-explainable ML-based DSSs (H1.1 – Performance). While the 

amount of deviation (+/-) was identical for both error types, our results highlight the impact each 

error type has on decision making performance. Our findings underscore the necessity for a 

qualitative evaluation of the individual risks associated with FPs and FNs in the development of 

ML-based DSSs. This is critical as there are significant implications whether too many (FPs) or too 

few (FNs) aircraft are detected, illustrating the importance of EMT in design considerations.  

Furthermore, our results regarding trust demonstrate that both types of errors lead to a 

significant loss of trust (H1 – Trust), with this loss being substantially greater in the case of FNs 

(H1.1 – Trust). This  emonstrates the nee  for a “humanl  engineere  bias” (Haselton & Nettle, 

2006) b  a justing the s stem’s confi ence threshol  an  thus its sensiti it . It further 

emphasizes the importance of trust management for the development of ML-based DSSs. Finally, 

the differential loss of trust between error types highlights the need to investigate the different 
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effects of each error type for ML-based DSSs. This differentiation is crucial for the development of 

systems that not only effectively support collaborative human-AI decision making but also 

maintain their human trust in ML-based systems. 

Secondly, our study reveals that an explainable design of ML-based DSS output positively 

influences the detection of FPs and significantly mitigates the resulting loss of trust (H2 – FP). 

Conversely, providing explanations for FNs does not lead to a significant improvement in error 

detection by pilots, although it still reduces the trust deficit (H2 – FN). Overall, explanations from 

the field of XAI have a significantly greater, positive effect on the costs of FPs compared to FNs 

(H2.1). This distinction is again of crucial importance for the design of systems according to the 

principles of EMT. The goals pursued by XAI research become increasingly important as we bias 

ML systems towards FPs and thereby develop more sensitive systems. Our results integrate error 

management research with the XAI research area and illustrate that a combined view is essential 

to best support human decision makers and minimize the impact of erroneous output. The results 

argue not only for the inclusion of explainability features in the design of ML-based DSSs, but also 

for a differentiated approach to dealing with different ML error types. 

Thirdly, the results from the online experiment indicate that the mental workload of pilots 

significantly increases with the provision of local explanations for ML outputs in the case of FPs, 

but not for FNs (H3 and H3.1). The presence of FPs leads to an increased amount of information 

that pilots must process under time pressure, which is exacerbated by explainable design as pilots 

have to interpret additional data, such as confidence scores. Our study thus exposes a trade-off 

that future research on developing explainable ML-based DSSs should consider: XAI approaches 

can enhance the detection of FPs and reduce loss of trust for FPs compared to FNs. This could lead 

ML developers to bias systems towards favoring the occurrence of FPs over FNs and thus develop 

sensitive ML-base  DSSs. Howe er, this approach, ma  jeopar ize the  ecision maker’s mental 

workload, particularly when additional explanations are included. This highlights the complex 

balancing act required in designing ML-based DSSs that need to be sensitive enough to be effective 

without overburdening the human decision maker. 

In addition, we provide several practical contributions. Firstly, our trained YOLOv8 object 

detector and the output design implemented in MSFS flight scenes serves as a blueprint for the 

development of explainable ML-based cockpit systems that aid pilots in detecting other aircraft 

under VFR conditions. This design incorporates pilot requirements gathered from pre-study 

interviews and is further validated by feedback obtained through free-text fields in our online 

experiment, confirming the s stem’s utilit  and user-frien liness from the pilots’ perspecti e. 

Secondly, our study provides a basis for new adoption strategies for ML-based DSSs in high-stake 

environments. Our results suggest that in scenarios with low mental workload, sensitive but 

explainable ML-based DSSs can be deployed early, as they enable better detection of FPs and thus 
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re uce the risk of performance  egra ation an  loss of trust on the  ecision maker’s si e. Thir l , 

our research emphasizes the critical importance of distinguishing between different types of 

errors for practical application. Organizations aiming to ensure that complex ML-based DSSs are 

taken into consideration by decision makers over the long term, should adjust the sensitivity of 

these systems based on end user needs and risks associated with the different error types.  

5.6 Limitations and Future Research Directions 

Our study, while offering valuable insights, is not without its limitations. The number of 

participating pilots was limited, and the pilots reviewed the flight scenarios via video recordings 

rather than through real-time testing in flight simulators and long-term effects of the different 

ML-based DSSs cannot be explored through this study. Additionally, the pilots focused solely on 

the detection of other aircraft, whereas actual flight demands simultaneous management of 

multiple tasks. Despite this, we believe our results hold validity, as experienced pilots selected 

and recorded the flight scenes. However, there is a risk that the measured costs incurred on pilots 

may be significantly higher in real-world applications. Moreover, our participant demographics 

reflect the persistently low representation of women among pilots in the industry, which we 

acknowledge as a limitation. When designing future ML systems, the requirements of female pilots 

must be taken into account just as much as those of their male colleagues. Future research should 

undertake a combined investigation into how explanations from the field of XAI ought to be 

designed, dependent on the sensitivity of ML-based DSSs, to foster an optimal cost trade-off for 

decision makers. In this context, the impact of global explanations to further improve 

explainability should be considered and special emphasis should be placed on the examination of 

mental workload in high-stake environments. Building on our findings, guidelines for ML 

developers should be established, delineating how ML systems should be biased according to the 

principles of EMT to minimize the overall costs incurred by different ML error types. Furthermore, 

the results should be validated in real flight simulators, and the requirements should be tested 

with a more diverse group of pilots over a longer period of time to ensure that the findings are 

robust and applicable across a broader demographic spectrum. Overall, this study provides 

exciting insights into the effects of different ML error types (FPs and FNs) on pilots and can serve 

as a basis for aligning the development of ML-based DSSs more closely with the needs of decision 

makers in the future.  
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In recent years, rapid developments in artificial intelligence (AI) and robotics have enabled 

transportation systems such as delivery drones to strive for ever-higher levels of autonomy and 

improve infrastructure in many industries. Consequently, the significance of interaction between 

autonomous systems and humans with little or no experience is steadily rising. While acceptance 

of delivery drones remains low among the general public, a solution for intuitive interaction with 

autonomous drones to retrieve packages is urgently needed so that non-experts can also benefit 

from the technology. We apply a design science research approach and develop a mobile 

application as a solution instantiation for both challenges. We conduct one expert and one non-

expert design cycle to integrate necessary domain knowledge and ensure acceptance of the 

artifact by potential non-expert users. The results show that teaming of non-experts with complex 

autonomous systems requires rethinking common design requirements, such as ensuring 

transparency of AI-based decisions. 
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6.1 Introduction 

Rapid advances in the field of robotics and artificial intelligence (AI) boosted the development of 

autonomous transportation systems in recent years. In particular drones, also known as 

unmanned aerial systems (UAS) or unmanned aerial vehicles (UAVs), offer a promising solution 

for low-emission, autonomous transportation of various goods and multiple successful test flights 

have already been conducted to deliver several medications, vaccines or even defibrillators to 

people in need (Krey, 2018; Scott & Scott, 2017). For example, during test flights in Sweden in 

December 2021, a drone successfully transported an automated external defibrillator (AED) to a 

71-year-old who suffered an out-of-hospital cardiac arrest. A bystander quickly administered 

cardiopulmonary resuscitation using the AED before emergency medical services arrived, saving 

the patient's life (Hicks, 2022). Besides applications in healthcare, drone service providers and 

manufacturers strive to offer existing services in other industries today and food or general parcel 

deliveries have been tested by global players such as Amazon PrimeAir (Amazon, 2016) and 

Google Wing (Levin, 2016) as well as entrepreneurial startups (Giones & Brem, 2017; 

Heunemann, 2022). In addition to expanding application areas, the increasing autonomy of 

transportation systems such as delivery drones enables scalability and may also allow 

inexperienced individuals to use these technologies to their own advantage in the future (Hicks, 

2022; Moshref-Javadi & Winkenbach, 2021; Pasztor & Ferek, 2021). 

However, even if delivery drone systems are operated autonomously to allow for large scale 

operations that provide value to the general public, humans still need to interact with these 

systems to retrieve parcels and take advantage of the benefits that a modern drone delivery 

network can offer. In this case, the human does not control the drone and many decision-making 

powers are transferred to the drone system. Nevertheless, interaction is still required and 

effective teaming between the human and the autonomous system is thus critical to success 

(McNeese et al., 2019, 2021). In many growing application areas of delivery drones, this will lead 

to untrained humans with little or no knowledge of AI, robotics or autonomous systems to interact 

and team up with autonomous drones with increasing frequency in the upcoming years. Besides 

being non-experts, studies show that people oftentimes oppose the use of drones in general and 

acceptance of this technology remains a major societal challenge today (Eißfeldt et al., 2020; 

Eißfeldt & End, 2020; Rice et al., 2018). The research field of human-autonomy teaming, which 

has grown in recent years as machines have become more capable, is already investigating how 

attributes such as situational awareness (Demir et al., 2017; Endsley, 2018) or trust (McNeese et 

al., 2019, 2021) influence effective teaming between humans and autonomous systems. 

Nonetheless, research in the field of human-autonomy teaming (McNeese et al., 2021) and human-

drone collaboration (Dolata & Aleya, 2022) calls for further work and we aim to take a step 

forward by providing guidance on how to implement this special form of interaction in real-world 
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use cases and, in particular, to consider the role of non-experts in this context to enable scalability 

and foster acceptance in the future. Hence, we aim to answer the following research question: In 

the context of autonomous delivery drones, how should a mobile application be designed to promote 

the acceptance and use of autonomous delivery services and to enable non-experts to interact 

intuitively in such human-autonomy teams? 

We apply a design science research (DSR) approach to develop a mobile application that enables 

non-expert users to interact with autonomous drone systems in order to safely retrieve a delivery 

and thus have access to modern service offerings. While intuitive interaction design is a focus of 

the design project, we specifically aim to increase acceptance of autonomous delivery drone 

technology among non-experts. We follow the approach of Kuechler & Vaishnavi (2008) and 

perform two design cycles, an expert and a non-expert design cycle to derive design requirements 

(DRs) and principles (DPs) that are structured along the unified theory of acceptance and use of 

technology (UTAUT) model (Venkatesh et al., 2003) and instantiate a solution in form of a mobile 

app prototype afterwards. The implementation of our artifact in the form of an app allows to 

provide access to autonomous transport systems to a wide range of end users and in particular to 

non-experts (Pitt et al., 2011). Within the first expert design cycle, semi-structured interviews are 

performed with experts that work at different drone manufacturers as well as delivery drone 

pilots to incorporate the necessary domain knowledge. Based on the interview results, DRs and 

DPs are instantiated in a click prototype and evaluated in expert focus groups. After analyzing the 

results of the expert design cycle, a non-expert design cycle explores how non-expert users of 

different ages and experience evaluate the instantiated solution to derive a final design that 

incorporates domain knowledge and satisfies the needs of end users while fostering acceptance 

of autonomous delivery drones. Overall, we focus on fully autonomous drones with vertical take-

off and landing (VTOL) capabilities because they offer great flexibility in adjusting their trajectory 

and have been successfully deployed in real-world delivery flights with non-experts in the past 

(e.g., Hicks, 2022). Focusing on fully autonomous drones allows us to explore the interaction 

between non-experts and autonomous systems without risking interference of other human 

intermediators such as human pilots.  

6.2 Theoretical Background 

The following section reviews existing research in human-autonomy teaming and shows how our 

study aims to extend this relatively young area of research. In addition, the UTAUT model, which 

is used as the kernel theory in our DSR approach, is outlined. 
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6.2.1 Interaction for Human–Autonomy Teaming 

The field of human-machine interaction has grown considerably in recent years, leading to the 

emergence of multiple sub-fields. Today, research on human-machine interaction also covers the 

fields of human-machine teaming as well as human-autonomy teaming. In general, this research 

stream explores interactions between a human and a machine working in interdependent roles 

to achieve a common goal (McNeese et al., 2021, 2018). However, in the case of human-autonomy 

teaming, the machine has the ability and authority to make decisions independently and is not 

supervised in those decisions by the human (Demir et al., 2017; Endsley, 2018; McNeese et al., 

2018). The latter area of research has received less attention in the past because limited machine 

capabilities did not allow for the required level of autonomy. However, autonomous machines will 

be increasingly used in the coming years and research in the area of human-autonomy teaming 

will increase in practical relevance (Bradshaw et al., 2004; McNeese et al., 2019). McNeese et al. 

(2021) argue that we need to rethink human-machine interaction if humans and machines do not 

interact as supervisors and subordinates anymore. The authors state that we are currently at an 

inflection point, which is why we need to transfer concepts from the field of human-machine 

interaction and insights from teams that have exclusive human members into the field of human-

autonomy teaming. They conducted an experiment to analyze the role of trust in human-

autonomous teams, and also studied the context of remotely piloted aircraft operating in the role 

of autonomous team members. Here, the aircraft interacts with, but is not controlled by, the 

human team member (McNeese et al., 2021). A study by Yuan Zhang & Jessie Yang (2017) showed 

that uncertainty in human-autonomy teams will lead to a higher perceived workload and those 

teams will, in general, be able to perform fewer tasks at the same time. Modeling team interactions 

and incorporating human cognition into the design of the autonomous agent are crucial aspects 

to be considered for effective human-autonomy teaming in dynamic environments (Gutzwiller et 

al., 2018; Klein et al., 2004; Parasuraman et al., 2000). While some studies exist that explore the 

impact of characteristics such as trust (McNeese et al., 2019, 2021) or situational awareness 

(Demir et al., 2017; Endsley, 2018) on human-autonomy teaming and thus already allow 

researchers to draw new insights from empirical work, research calls for additional work 

(McNeese et al., 2021). Rapid developments in the field of autonomous systems reinforce the need 

for research to also address the implementation of such human-autonomy teams. Furthermore, 

the higher level of autonomy should especially enable non-experts to use such systems in the 

future.  

6.2.2 Designing Human–Drone Collaboration 

As for autonomous systems, delivery drones have already shown great potential to improve 

logistic networks in various industries today (e.g., Mao et al., 2019; Scott & Scott, 2017). However, 
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many use cases require non-experts to interact with these autonomous systems in the future, and 

the general public remains opposed to the use of drones as a means of transportation (Eißfeldt et 

al., 2020; Eißfeldt & End, 2020; Rice et al., 2018). Intuitive interaction for non-experts that further 

promotes acceptance of this technology is urgently needed to make the benefits of delivery drones 

accessible to the general public (Ellenrieder et al., 2023). In addition, interacting with a drone as 

an autonomous agent provides special challenges due to the physical embodiment of the agent in 

an autonomously controlled, flying object (e.g., McNeese et al., 2019, 2021). While the IS 

community is primarily concerned with the advantages and disadvantages of various drone 

applications, there is a lack of approaches to designing human-drone collaboration (Dolata & 

Aleya, 2022). To address this shortcoming, Dolata & Aleya (2022) propose a taxonomy of 

dimensions and characteristics that are relevant for designing human-drone collaboration. 

However, they do not provide requirements for the design of artifacts in this field. We preselect 

outdoor delivery flights in the propose  context  imension, untraine  operator’s skillset in the 

social dimension, single drone flights that interact with one human in the mutual interactions 

dimension and lastly fully autonomous drones with light to heavy payload in the technical 

component dimension (Dolata & Aleya, 2022). Other characteristics such as unidirectional or 

bidirectional communication between drone and human will be defined in the design cycles. The 

taxonomy outlines that social and organizational aspects must be considered for the design of 

human-drone collaboration instead of solely focusing on technical requirements. While Dolata & 

Ale a (2022) alrea   argue that the operator’s skillset (expert  s non-expert) is a relevant social 

dimension for the design of human-drone collaboration (Alex & Vijaychandra, 2016; Allen & 

Mazumder, 2020; Dolata & Aleya, 2022), the   o not mention the influence of the operator’s 

acceptance of the technolog  or the operator’s en ironment. Howe er, existing research primaril  

targets the use of drones for emergency operations which is associated with higher levels of 

acceptance (Aydin, 2019). In the context of our paper, we aim to bridge the gap between non-

experts and autonomous drones by providing clear design requirements that combine domain 

knowledge from experts with user requirements from non-experts and promote acceptance of the 

technology. 

6.2.3 Unified Theory of Acceptance and Use of Technology 

The UTAUT model was derived in 2003 by Venkatesh et al. (2003) and is useful for understanding 

which factors affect acceptance of a technology and thus influence the likelihood of success for 

that technology. In addition, the model can be used to derive strategies for targeting potential 

users who are less inclined to adopt the new technology (Venkatesh et al., 2003, 2016). 

Performance expectancy, effort expectancy, social influence and facilitating conditions are the 

four core determinants of intention and usage that are considered in the UTAUT model, as 
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pictured in Figure 11 (Venkatesh et al., 2003). In general, the performance expectancy of users 

can be defined as the extent to which a person believes that using the system will help them 

improve their job performance. In addition to performance expectancy, effort expectancy also has 

a significant influence at the beginning of use, but it decreases over time. Effort expectancy is 

defined as the degree of ease that is associated with using the technology or system. In addition, 

social influence affects the intention to use a new technology and is defined as the extent to which 

an individual perceives that significant others believe that he or she should use the new 

technology. Social influence is also found to be significant in the beginning when experience is still 

low. Lastly, facilitating conditions are defined as the extent to which a person believes that 

resources such as organizational and technical infrastructure are in place to support the use of 

the system (Brown & Venkatesh, 2005; Venkatesh et al., 2003, 2012). 

 

Figure 11: The UTAUT model with its four direct determinants of user acceptance and usage 
behavior (Venkatesh et al., 2003) 

 
The relationship between these four independent variables and the dependent variables of 

behavioral intention and usage are moderated by gender, age, experience and voluntariness of 

use (Venkatesh et al., 2003, 2016). Venkatesh et al. (2003) showed, for example, that the effect of 

performance expectancy is stronger for men and younger workers while social influence has a 

stronger effect on women, older workers and those with less experience. The unified theory of 

acceptance and use of technology will serve as a kernel theory in our DSR approach. The UTAUT 

model has proven to be particularly useful compared to other technology acceptance models 

because it directly incorporates social influences, which are currently considered one of the 

biggest challenges facing the drone industry (e.g., Eißfeldt et al., 2020; Tan et al., 2021). In 

addition, we decided to use UTAUT instead of the extended UTAUT2 model (Venkatesh et al., 

2012) since constructs such as price value and experience and habit of the UTAUT2 model are not 

feasible for our use case. Non-experts do not hold prior drone experience or regularly interact 

with fully autonomous systems and the current tradeoff of perceived benefits of drones and costs 

cannot be compared as costs are expected to decrease significantly in the future as the autonomy 
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level increases and economies of scale can be realized through mass production of autonomous 

drones in the future.  

6.3 Design Science Research Approach 

We apply a design science research approach by Kuechler & Vaishnavi (2008) to develop a mobile 

application that enables non-experts to interact with autonomous drone systems in human-

autonomy teams while fostering acceptance of this technology. We contribute to the growing 

science of design for IT artifacts by deriving DRs and DPs for human-autonomous drone teams as 

well as creating and evaluating the instantiated solution in multiple design cycles in this study. 

The general design cycle as defined by Kuechler & Vaishnavi (2008) comprises five distinct 

phases, namely awareness of the problem, suggestion, development, evaluation and conclusion. We 

perform two design cycles (as outlined in Figure 12), an expert design cycle and a non-expert 

design cycle to ensure the instantiated solution is built on domain knowledge and fosters 

acceptance by end users. Thus, we performed 10 semi-structured expert interviews within the 

awareness of the problem phase from which we derived initial DRs and overarching action-

oriented DPs during the suggestion phase of the first design cycle. We formulated a semi-

structured interview guideline according to Sarker et al. (2013) which addressed all independent 

variables of the UTAUT model and allowed interviewees to freely share their experiences and 

ideas. At the beginning of each interview, we outlined the use case of delivering parcels with 

autonomous VTOLs to the general public, most of whom can be defined as non-experts in drone 

technology. Afterwards, we collected interviewee-related information such as their current 

position and prior experience in the drone industry. We then asked experts to share their opinions 

and insights on why drone acceptance remains low and what risks the general public typically 

sees with test flights before discussing how experts envision a solution approach in the form of a 

mobile application that would allow non-experts to interact with these systems. 
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Figure 12: DSR project structure (cf. Kuechler & Vaishnavi, 2008) including expert, non-expert and 
mixed design cycles. This study focuses on the cycles highlighted in grey. 

Experts work in different areas within the drone industry and provide in-depth knowledge on 

safety-related aspects of drone deliveries as well as current AI-based capabilities of (partially) 

autonomous drone systems. We followed a theoretical sampling approach and initially invited 

drone pilots (E1 - E3) to our inter iews to gain insights from to a ’s users who alrea   interact 

with drones. Drone pilots, who still control some processes manually today, are already preparing 

for their new role in the coming years, in which they will primarily monitor a fleet of autonomous 

drones and intervene only in exceptional situations. Thus, they enriched this study with real-

world experiences with the challenges of human-autonomy teaming. However, drone pilots 

mentioned that interfaces to guide interaction between drones and end users are usually designed 

for pilots and the design of interfaces for non-experts is still a research and development (R&D) 

topic in many companies. Thus, we invited experts (E4 - E8) from R&D and product development 

departments of different drone manufacturers in the second round. Our focus on autonomous 

delivery drones is associated with special risks since drones are required to carry payload and 

transfer parcels from the drone to the non-expert. A payload specialist (E9) was thus invited for 

an interview once we identified these risks. Lastly, we invited a drone program manager (E10) 

who gained prior experience in R&D as well as drone customer service and operations 

management to ensure all relevant information was being obtained. The program manager 

confirmed the derived DRs and no additional DRs were identified during the last interview. 

Although the civilian delivery drone industry is relatively young, seven out of ten respondents, 

already had five or more years of experience in this industry. Interviews were conducted from 

April to August 2022 via online meetings and recorded following mutual agreement. Interviews 

lasted 58 minutes on average and were subsequently transcribed.  
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Table 7: Roles of expert interview participants 

Case Work Title/ Area of Expertise Years of Experience  

E1 Drone Pilot 6 years 

E2 Drone Pilot 5 years 

E3 Drone Pilot 3 years 

E4 R&D, Drone Manufacturer 5 years 

E5 Product Development, Drone Manufacturer 2 years 

E6 Product Development, Supplier Drone Technology 9 years 

E7 Product Development, Supplier Drone Technology 5 years 

E8 Product Development, Drone Manufacturer 11 years 

E9 Payload Specialist 4 years 

E10 Program Manager, Drone Manufacturer 12 years 

 

We performed a content analysis according to Weber (1990) for the evaluation of the qualitative 

data gained and conducted two coding cycles that comprised descriptive and pattern coding 

(Saldana, 2021). Following the suggestion phase, we developed mock-ups of a suggested solution 

instantiation using the wireframing tool Balsamiq which considered all derived DRs and DPs 

during the development phase (Balsamiq, 2022). All experts listed in Table 7 were invited to a 

focus group study that lasted 78 minutes to evaluate the prototypical implementation of the DRs 

and DPs. Following an analysis of the focus group study results, a second design cycle to involve 

potential non-expert users was conducted and initial DPs were refined before a clickable 

prototype was developed using Figma (Figma, 2022). For evaluation of the non-expert design 

cycle, we conducted a combined exploratory and confirmatory focus group study which is 

outlined in detail in the evaluation section (Tremblay et al., 2010). Overall, experts that 

participated in the first design cycle did not participate in the second design cycle. Our focus group 

studies aim at obtaining in-depth understanding of how a selected group of individuals evaluates 

the artifact (O.Nyumba et al., 2018) in terms of promoting acceptance and intention to use the 

technology. The approach allows us to refine our design principles iteratively before obtaining a 

statistically representative sample of a broader population in the final and still outstanding mixed-

expert and non-expert design cycle. The three non-expert focus groups, which were conducted in 

October 2022, lasted for 66 minutes on average to ensure all DRs, DPs and instantiated prototype 

features were evaluated in detail. Audio recordings of all sessions were transcribed afterwards. 

We applied a mixed content analysis in accordance with Morgan & Scannell (1998) to obtain both 

qualitative and quantitative information in our focus group studies. We allowed for a maximum 

of eight participants for non-expert groups because they may require a different amount of 

explanations which becomes difficult to manage in larger groups or leads to the formation of 
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subgroups that have independent discussions (Krueger, 2014). Following the expert and non-

expert design cycle, results were discussed and summarized during the conclusion phase and we 

prepared the outstanding final design cycle for which more information is provided in the outlook 

on future research.  

6.4 Results 

The following section describes the results collected and synthesized in all phases of the design 

cycles. For the derivation of the DRs and DPs, the focus is on the inductively obtained results from 

the expert interviews. Subsequently, the final prototype is presented, which already integrates 

the feedback from the expert evaluation, before the results of the non-expert focus group 

evaluation are outlined. 

6.4.1 Awareness of the Problem 

As stated in the introduction and background section of this study, current information systems 

(IS) research examines what challenges arise and need to be addressed in the area of human-

autonomy teaming (e.g., Gutzwiller et al., 2018; Parasuraman et al., 2000). Autonomous aircraft, 

which can be a physical embodiment of an autonomous agent, recently received attention from 

this research stream (McNeese et al., 2021). To advance this research, we address the specific 

design of human interaction with autonomous delivery drones. In doing so, we consider two 

specific aspects that we identified in expert interviews as key challenges for practical applications 

in the coming years, namely: the interaction of non-experts with complex, autonomous drone 

systems and the low acceptance of this technology among non-experts (E1,3,4,5,8,9,10). In terms 

of the relevance of the topic, one interviewee stated: “What we’ve seen in rapid technology 

development is quite impressive. But in the past, when we conducted test flights, only trained people 

interacted with our drones to, for example, retrieve a package. That’s definitely going to change now 

as we look to grow our drone fleet in many different areas and the drone has more and more 

capabilities” (E2). Many use cases of drone delivery services require non-experts to interact with 

drone systems even though they do not control actions of the drone such as its movement in 

airspace (E3,4,6,8,9). Thus, interaction should work without much effort and should not require 

any prior knowledge (E5,7,9). While this poses a great challenge, an interviewee also argued that 

“bringing drones closer to the general public may finally help us to foster acceptance” (E7). Raising 

awareness of the benefits of drone technology in modern urban areas and areas with poor 

infrastructure is a key task that providers of these services have addressed in previous pilot 

projects (E2,3,10). Delivery flights directly to customers now offer the possibility of“first-hand 

experience” (E4) and it will be particularly important at the outset to create a convenient 

experience for the end user here (E1,5). Several interviewees argued that deriving and following 
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design suggestions from drone experts will be key due to the complexity of the systems and the 

associated safety risk if used incorrectly (E1,2,6,9). Bringing together the requirements of experts 

and non-experts for the interaction of autonomous drone systems and translating them into a 

common design proposal represents a core challenge that we address in this study. One 

interviewee even stated: “Systems in aviation have actually always been operated by experts. 

However, with increasing autonomy, people will have to interact with more and more systems 

themselves in the future, and it will be our goal to find solutions in close cooperation between experts 

and people without prior knowledge” (E10). 

6.4.2 Suggestion 

To ensure our artifact fosters acceptance of autonomous delivery drones among non-expert users, 

we structure the derivation of design requirements along the four independent variables of our 

kernel theory the UTAUT model, namely performance expectancy, effort expectancy, social 

influence, and facilitating conditions (Venkatesh et al., 2003). Figure 13 provides an overview of 

all derived design requirements. All sub-requirements were derived based on challenges or 

solution approaches that were explicitly mentioned by the experts and could be identified during 

the coding process. 

Performance expectancy is defined as the extent to which a person believes that using the 

system will enhance their job performance. It has the highest impact on the intention to use a 

technology as shown by (Venkatesh et al., 2003). Multiple interviewees argued that acceptance 

for delivery drones remains low, primarily because the general public is unaware of the benefits 

drones can offer in terms of delivery times and emissions (E1,2,4,10). “We need to get to the point 

where we are really transparent about the positive impact that this technology could have. People 

need to be able to critically question what the advantages or disadvantages of delivery by a drone 

are – especially if it’s not manually controlled” (E8). Apart from the performance characteristics of 

this autonomous means of transport, non-experts are usually not familiar with the process that 

will be followed during delivery and what interaction is required (E2,3). An interviewee further 

stated: “Users must understand that it is not just autonomous drone features that they can rely on. 

It is also their active participation in the interaction that influences the overall performance.” (E1). 

We therefore propose (DR1) Highlight improved performance characteristics: Interacting 

with the app should increase performance expectancy and reassure users that the capabilities of 

autonomous drones will improve delivery performance. Sub-requirements include (DR1.1) 

providing information on delivery time, emissions, and costs, (DR1.2) a performance comparison 

with all applicable other modes, and (DR1.3) providing a forecast of the delivery process to the 

end user, including upcoming interactions. 
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Figure 13: Design requirements derived from expert interviews 

Effort expectancy is defined by the ease of use of the system. The determinant was found to be 

especially significant during the first temporal use (Tremblay et al., 2010). Multiple interviewees 

argued that effort expectancy will be one of the key challenges in teaming up non-experts with 

autonomous systems (E3,5,6,7). In addition, one interviewee argued: “There are so many 

preconceptions about how complicated it is to control an autonomous system because the systems 

are so complex now. But non-experts won’t control our drone systems. Rather, they will only interact 

with the system in certain situations.” (E10). To ensure intuitive use, the possibilities for the end 

user to shape the interaction with the autonomous system should be limited (E1,6,8,10). The non-

expert user must be prepared for every interaction and, if possible, feel reminded of already 

familiar environments and tasks (E4,6,8). Drone pilots and others who interact with drones in the 

aviation industry must undergo a knowledge assessment to obtain the required licenses. While in 

the case of autonomous drones, no special skills are required, a self-assessment is still beneficial 

to strengthen the user’s confi ence that no skills are required that they do not possess (E1,2). We 

therefore propose (DR2) Enable effortless interaction: The app should enable intuitive 

interaction with autonomous drones to reduce complexity and maximize perceived ease of use. 

Respective sub-requirements ensure that (DR2.1) the design of the artifact reminds the user of 
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familiar delivery applications, (DR2.2) user options for shaping the interaction are minimized, 

and (DR2.3) emerging interactions are communicated to the user early on. 

Social influence is defined as the extent to which the user perceives that significant others believe 

that he or she shoul  use the new s stem. User beha ior is thus influence  b  the user’s belief in 

how a technology may enhance his or her status in his or her social system (Venkatesh et al., 

2003). An interviewee described the current situation as follows: “If you have, say, an electric car. 

You would probably be proud and talk about it with neighbors and friends. However, drone 

technology is known to be used by the military, and people are often biased toward civilian 

applications as well, especially in urban areas. In our pilot test flights, we realized that sharing 

experiences between communities had the most positive effect. In fact, people were even excited after 

learning about the positive experiences and improved infrastructure of similar communities.” (E1). 

First and foremost, respondents mentioned that an app needs to connect users with each other to 

convey that the technology is already being used by a variety of similar users, especially non-

experts. This can reduce the fear of rejection by the social environment and has already been 

experienced as beneficial during real test flights (E1,2,3,9,10). In addition to encouragement from 

the social environment, it is important to convey to the user the contribution they can make to 

society by choosing a low-emission mode of transport. Highlighting the contribution to emissions 

targets can further encourage users to share their experiences with others (E4,10). We therefore 

propose (DR3) Communicate social acceptance: The app should communicate to the user that 

the use of autonomous drones is gaining social acceptance and supports societal goals such as 

achieving the SDGs. Corresponding sub-requirements define (DR3.1) to provide information 

about other users within the app user’s social s stem an  (DR3.2) to enable experience sharing 

among users. In addition, (DR3.3) the artifact should clearly demonstrate how users can 

contribute to emission goals or other social goals by using the new technology. 

Facilitating conditions are defined as the extent to which a person believes that an 

organizational and technical infrastructure is in place to support the use of the technology. If 

facilitating conditions are supporting the use of a technology, the user would have a positive 

perception of behavioral control (Venkatesh et al., 2003). While this could also involve available 

resources or compatibility issues, facilitating conditions for human-autonomy interaction are 

rather understood in the context of behavioral control to address questions such as: How much 

control should the human have and how much autonomy should the drone have? In the 

interviews, the experts argued that the facilitating conditions should first be determined by 

experts to ensure safety (E1,2,4,5,6,8). However, they also mentioned that input from non-experts 

will be crucial to ensure that users feel comfortable and can interact with the technology without 

being overwhelmed (E2,5,8,10). A drone pilot further stated: “As a drone pilot, I already feel 

comfortable letting the system make certain decisions on its own. However, I would like to receive 



6 Paper D: Design for Acceptance and Intuitive Interaction: Teaming Autonomous Aerial Systems with 
Non-experts 

95 

information about why the system reacts in a certain way. We should also provide easy-to-

understand feedback to people who have no prior knowledge. […] And even if I’m monitoring multiple 

drones at once, I always want to be able to abort a mission. This decision should remain possible for 

every user in every planned interaction.” (E2). In addition, the experts made it clear that the app 

must offer the possibility of requesting help from experts (E6,7). It is difficult to define in advance 

all the situations that may occur in the real world during the interaction between a non-expert 

and the autonomous drone system. In all safety-critical interactions such as the acceptance of a 

dropped package, the user should therefore be provided with decision support and the 

opportunity to provide feedback (E1,8,9,10). Thus, we propose (DR4) Provide safe interaction 

control: The app should allow the user to access the necessary infrastructure to safely control the 

interaction with the autonomous delivery system. The sub-requirements specify (DR4.1) that 

bidirectional feedback should be possible that is transparent but understandable to users. In 

addition, (DR4.2) decision support should be provided for all safety-related interactions, (DR4.3) 

with the final decision-making authority to enter or exit an interaction remaining with the human. 

6.4.3 Deriving Design Principles 

Before the development of a solution instantiation, we derive design principles in accordance with 

(Gregor et al., 2020) which provide the basis for all features that are integrated into our artifact. 

To promote informed decisions about the use of the emerging technology, non-expert users 

should understand what autonomous delivery drones can offer in terms of performance metrics 

such as delivery times or emissions, and what impact this will have on the social environment of 

users (see DR1 and DR3). We thus define DP1: For an intuitive mobile application to inform and 

encourage, the user should be able to evaluate the emissions-related environmental impact of the 

autonomous transportation system and compare the system’s performance with other 

transportation modalities to assess whether the user’s performance expectations are being met. The 

user's effort to perform a given task in cooperation with the autonomous drone system depends 

on the provided guidance and preparation, which must be explicitly designed for non-experts (see 

DR2 and DR4). We therefore derive DP2: For an intuitive mobile application to guide the user 

throughout the interactive process, the user should be able to inform and prepare for all upcoming 

decision-making activities to avoid frustration and overwhelm. While respondents frequently 

mentioned that a non-expert will not control the delivery drone system, the ability to actively 

shape the interaction between the human and autonomous system will become a key 

characteristic (see DR1, DR2, and DR4). Thus, we propose DP3: For an intuitive mobile 

application to support and enable active engagement of the user, the application should mediate 

feedback between the autonomous system and end user and provide decision support to the user for 

initiating or aborting interactive processes. Even though users do not supervise the autonomous 
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system, the experts see ensuring situational awareness as highly relevant to user-friendliness and 

safety (see DR2 and DR4). We propose DP4: For an intuitive mobile application to ensure 

situational awareness of the user for safe collection of deliveries, the user should be able to access 

the current and upcoming operational status of the autonomous drone system in a transparent 

manner without having to navigate through menus. Finally, according to experts, user acceptance 

is strongly influenced by the social acceptance of the technology by the general public. In addition 

to the exchange between the user and other users from his/her social environment, the offer of 

support by trained, human experts can also promote acceptance (see DR3 and DR4). We therefore 

derive DP5: For an intuitive mobile application to promote usage and relationship building, users 

in the same neighborhood should be able to connect, share experiences and provide external human 

support for human-autonomy interaction. 

6.4.4 Development 

In the first step, we derived design features (DFs) based on the defined requirements and 

principles and used Balsamiq to build a sketched artifact in form of a mobile application 

(Balsamiq, 2022). Following an expert evaluation, we then developed the clickable prototype in 

Figma as pictured in Figure 14 (Figma, 2022). This version of the artifact allows us to vividly 

present how the interaction between users and the autonomous delivery drone system is 

designed within our non-expert design cycle. The artifact primarily aims to allow non-experts to 

test DFs on their own smartphone and get a realistic sense of the interaction possibilities and 

challenges. Two scenarios are selected to provide some insights into the suggested solution 

instantiation. The first scenario requires the user to accept the technology and directly interact 

with it following this decision in the second scenario. The left screenshot of the click prototype in 

Figure 14 shows a scenario that occurs before the user selects the desired mode of transport for 

a delivery (DF2). 

The performance features are shown below a familiar shopping cart display (DF1). As a 

gamification element, the user is also offered a small quiz (DF3, DF11) to playfully test and extend 

his or her drone knowledge and find out what knowledge and skills are required. To give the 

feeling of two-way communication in all scenarios, the user can write with a human drone expert 

in the chat (DF10) and receives regular updates from a small drone icon (DF5). In the figure on 

the right, which shows a scenario shortly before the drone drops the goods, these interaction 

options are also available. In addition, the user is shown the entire delivery process to prepare 

him or her for the interaction at an early stage (DF4). To increase situational awareness, an AI-

assisted bird’s-eye view allows the user to understand what the autonomous system can detect 

(DF7). Experts explained that even for pure interaction, it will be crucial to understand that the 

drone detects e.g. objects and with what degree of certainty. Detected objects such as a feasible 
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drop location and the human itself are marked by a 2D-bounding box and a certainty for object 

detection is provided below. In the interaction panel at the bottom of the right screenshot (DF6), 

the user can only pause or permanently cancel the interaction. Further design options are only 

made available in the appropriate interaction phase and are grayed out beforehand to prepare the 

user in advance for future interactions. Finally, the user can access the community platform within 

this panel to get support from their social circle or share experiences (DF9). 

 

 

Design Features 

DF1: Performance comparison 

      1.1 Delivery characteristics 

      1.2 Regional goal achievement 

DF2: Means of transport selection 

DF3: Capability self-assessment  

DF4: Operational phases forecast 

DF5: Proactive drone messenger 

DF6: Interaction control panel 

DF7: AI-enhanced bird view 

DF8: Navigation  

DF9: Community platform  

      9.1 Regional flight history 

      9.2 Milestone overview 

      9.3 Community FAQs 

      9.4 Community messenger 

DF10: Expert support 

DF11: Gamification 

Figure 14: Instantiated solution for teaming non-experts with autonomous drone delivery systems 
and respective design features (icons made by Freepik, Pixel Perfect and Satawatdesign from 

Flaticon, 2022) 

6.4.5 Evaluation and Discussion of Results 

The instantiation of derived DPs in the form of the clickable prototype was evaluated through 

three focus groups that were conducted in October 2022 with potential non-expert users 

(Tremblay et al., 2010). Participants with extensive experience with drones, such as using drones 

for filming, were excluded from the focus groups to ensure evaluation by non-experts. In addition, 

participants had to be at least 18 years old. During the exploratory phase, we gathered insights 

into the participants’ attitu es towar   eli er   rones an  the use of autonomous s stems as well 

as their knowledge base. After a brief introduction about delivery drones and the collection of 

personal data, we presented a video of a drone delivery and showed how our artifact would shape 

the interactive process using an Apple iPhone12. Non-experts could then click independently 

through the functions of our prototype. We aimed to understand how non-experts evaluate and 

interact with our artifact in terms of performance and effort expectancy, as well as social influence 
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and facilitating conditions. Finally, we gained insights into how non-experts evaluate derived DPs 

and interaction with the prototype in order to assess whether the artifact promotes acceptance 

and use of the emerging technology. Our sample with N = 22 participants (50% male, 50% female) 

represents the group of potential users ranging between 19 and 81 years. All participants owned 

a smartphone and reported familiarity with delivery apps. Overall, participants indicated a low 

level of experience with drone technology (on a 7-point Likert scale) as shown in Table 8. 

After a brief introduction to the use of delivery drones as a means of transportation, the majority 

of participants in all focus groups expressed concerns, such as privacy risks and the risk of 

accidents. Several participants stated that they would feel watched if drones flew over private 

property. In addition, concerns arose regarding noise pollution. However, during the simulated 

delivery, participants also expressed excitement and quickly engaged with the artifact themselves. 

When we asked participants what they liked most about the app, they all mentioned its intuitive 

use: “I don’t really have an idea how such drones work, but this is like ordering something on 

Amazon.” (P3G2), “it is easy to use” (P6G1), “I feel like I always know what to do next” (P3G3). Effort 

expectancy was assessed to be low overall and several participants mentioned that the self-

assessment was very helpful before beginning the delivery process. In addition, the majority of 

the participants see the bird-eye view in which the drone camera footage is shared as generally 

beneficial to “understand what the drone can see and is doing” (P4G2). Nevertheless, when we 

asked participants to tell us about what they disliked most about the app, they mainly complained 

about the features that aim to increase the transparency of AI-based decisions and display e.g., 

with which certainty the drone currently detects objects: “This is just confusing. The drone says it 

detects me with 93 something percent certainty. What does this mean now? Can it see me now or 

not? […] And then there is also nothing I can do about it. I would prefer the system to only tell me 

things it is sure about.” (P6G3). While participants mentioned that they need more information to 

understand this data, it also became clear that sharing this information in such a human-

autonomy team is not very helpful because non-experts cannot interpret this information and act 

on it by, for example, taking control of the drone system. In addition, such statements clearly show 

why it is crucial to involve both experts and non-experts to design any collaboration between 

complex, autonomous systems and non-experts. During the first design cycle, experts have 

repeatedly emphasized that it is important to be able to evaluate the reliability of a system. Even 

if the user no longer actively controls the system, this would be helpful for creating trust. This 

view is influenced by the experts’ previous experience of system-human interaction, which is 

strongly characterized by human control over the system. However, evaluation by non-experts in 

the second design cycle shows that known design principles for human-autonomy teaming need 

to be revised. 
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Table 8: Non-expert focus group study sample 

 Group 1 (G1) Group 2 (G2) Group 3 (G3) 

# of Participants (P) 8 8 6 

Age 
 

25     36                                 81 

 

22     29.5                         53 

 

19                 25.5               32 

Gender (m/f) 62.5% / 37.5% 37.5% / 62.5% 50.0% / 50.0% 

Prior Drone 
Experience 

Mean: 1.2 SD: 0.43 Mean: 1.5 SD: 0.50 Mean: 1.8 SD: 0.69 

 
The proactive drone messenger, symbolized by a small drone icon sending messages, was rated 

as encouraging and helpful in providing needed information at the right time. However, non-

experts pointed out that they need to be fully focused as soon as direct interaction with the drone 

system becomes necessary. The number of short messages received via the drone messenger 

should be kept to a minimum in these situations. All participants mentioned that they need a 

performance comparison to make an informed decision about the optimal means of transport. 

Since they considered different benefits such as faster delivery times or lower emissions to be 

more important, the comparison of performance characteristics should therefore also be 

individualized and adapted to the goals of the users. In addition, participants wished the app 

communicated more clearly that their presence was expected during delivery, as they cannot 

predict what interaction will be required before they need to make the decision for or against 

drone delivery. While only a minority of the participants indicated they saw “no need to share 

something like this with their social network” (P5G2), many participants said they were concerned 

about disturbing their neighbors with delivery drones and it would be good to know if this 

technology was already being used in their region. In addition, participants indicated that they 

would share their experiences with the drone app with family and friends, resulting in a positive 

overall assessment of the community platform features. 

Many participants argued that intention to use increased following the interaction with the 

prototype. Participants stated that gaining more knowledge on drones and to be able to better 

assess effort and performance expectancy were primary reasons. This finding is supported by 

other studies which showed a positive correlation between public drone knowledge and 

acceptance of the emerging technology (Aydin, 2019; Eißfeldt et al., 2020). Relationships in the 

UTAUT model are moderated by gender, age, experience, and voluntariness of use (Venkatesh et 

al., 2003). While we only consider voluntary use by non-experienced users, we observed and 

gathered qualitative insights into the impact of gender and age. Older participants indicated that 

they were hesitant to use the new technology primarily because they expected “a lot of effort” 

(P3G2) during the delivery process and were unsure if the app would support them sufficiently to 

complete their tasks. Lower familiarity with delivery apps was also cited as an influencing factor. 
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Younger study participants, on the other hand, reported that they enjoy testing out new 

technologies and have little fear of being overwhelmed. While a majority of female participants 

expressed concern about whether their social environment would support the use of delivery 

drones, this statement was only made by one male, older study participant. Apart from 

perceptions of social influence, no other gender differences were found. 

While our study focuses on delivery drones, we derived general design principles for non-experts 

to interact with any autonomous transportation system and discussed these principles in our 

focus group studies following the demonstration of the artifact. DP1, which aims to inform the 

user on the s stem’s performance an  en ironmental impact an  encourage use, was o erall 

found to be “very important” (P1G1), “crucial for such new technologies that I haven’t tested out 

before” (P4G1), the “primary reason I would decide to use it” (P2G3). However, participants 

disagreed on whether they primarily wanted persuasive arguments or preferred neutral 

information that required individual interpretation. DP2, which aims to guide the user in all 

interaction and decision-making activities and enable intuitive use, was evaluated to make users 

feel “comfortable” (P4G3) and like they “have done it before” (P5G1). However, non-experts 

strongly argued that intuitiveness depends on their level of knowledge and insights that might be 

helpful to a drone pilot were found to be confusing such as displaying the certainty in object 

detection tasks. DP3 and DP5, which state that the app should be equipped with functions for 

communication and relationship building, can provide autonomous systems “with a human 

component” (P1G3). Overall, the communicative form of interaction was perceived by the study 

participants as very easy and pleasant. However, individual participants stated that they would 

not contact expert support early on because they “did not want to ask stupid questions” (P5G1). 

While experts described this service as particularly safety-critical, the support could also be 

labeled as ordinary customer service to lower this inhibition threshold. Regarding DP4, which 

aims to increase situational awareness, participants emphasized that they were primarily focused 

on the current interaction an  therefore the bir ’s e e  iew was particularl  helpful.   erall, DP4 

was rated as “absolutely necessary” (P2G3). Some participants further argued that the app should 

dynamically adapt to situations to improve situational awareness and one participant said: “I tried 

this app for the first time. When I interact with the drone, I want to know what’s going on at that 

second. I can't check all the other things at that moment, like the upcoming process stages” (P5G3). 

In addition to these insights into the lively discussion about the suitability of derived DPs, Table 9 

highlights other identified design aspects that found wide acceptance during the focus group 

study. In addition, opportunities for further improvement of the artifact are shown which will be 

addressed during the upcoming third design cycle. 
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Table 9: Results of focus group discussions by non-experts on derived design principles 

Design Principles Identified Design Aspects with 
High User Acceptance  

Identified Opportunities for 
Improvement 

DP1: Inform and 
encourage use 

• Providing neutral information 
on emissions and performance 

• Comparison with other 
transport modalities 

• Customization to personal 
performance goals 

• Avoiding persuasion to use the 
technology (e.g., remove drone 
icon with proactive usage 
prompt) 

DP2: Guide interaction • Relying on familiar delivery 
application design 

• Early communication of 
upcoming interactive events 
that require user action 

• Minimization of information 
about system functions that are 
be on  the user’s control  

• Clear communication of the 
autonomy level of the drone 

DP3: Support active 
engagement  

• Receiving regular messages 
from the system, even if no 
interaction is required 

• Suggest user interactions that 
are structured in a meaningful 
way according to the time 
sequence 

• Minimization of system messages 
in situations that require high 
cognitive effort 

DP4: Ensure situational 
awareness and safety 

• Transparently displaying a 
summary of the delivery 
process 

• Making the perspective of the 
autonomous system 
understandable to the user (e.g., 
bird eye view) 

• Identification of situations that 
may require the system to have 
final/shared decision-making 
authority, rather than always 
relying on the user (e.g., complete 
failure of the user, detected 
unauthorized use by minors) 

DP5: Promote 
relationship building 

• Sharing their own successes in 
using technology and learning 
from others 

• Ensuring that only users with 
sufficient competence offer their 
support to other users in the 
community area 

 
Finally, we asked participants if they considered the drone to be a team member. Participants 

found it “weird” (P4G3) to consider an object as a team member. Even though the drone makes 

many decisions on its own, participants rather viewed it as “a supporting tool” (P8G2). 

Nevertheless, one participant stated: “I wouldn’t say that the drone was my team partner, but I 

wouldn’t call our delivery guy my team partner either. So, it can also be more due to the task. If I 

work very well with someone regularly, I develop a team feeling over time. If a drone brought me my 

daily newspaper every morning, I might develop – yeah - something like a team feeling after a while. 

For example, my son has such a vacuum cleaner robot and even gives it a name. I find that strange, 

but here you could perhaps already see the robot as a team partner” (P7G1). Although it is not 

expected to be a viable business model to deliver printed daily newspapers by drones, this 

statement clearly shows that human-autonomy teams will have to develop over a longer time and 

also that the developed artifact will fulfil many goals only after a longer period of use. 

The qualitative evaluation of the artifact is very feasible to iteratively revise DPs and improve 

interface design. However, for the final and outstanding third design cycle, our evaluation strategy 
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primarily aims to obtain quantitative data from a larger sample of potential non-expert users and 

experts to rigorously test the joint value of derived DPs. In addition, we designed an artifact for 

fully autonomous VTOL drones to deliver parcels. While some DRs and DPs, such as DR1 and DR3, 

can be applied to the design of artifacts for semi-autonomous drones that interact with non-expert 

users, DR4 would require adaptation for such use cases. This also applies to all DPs which guide 

the interaction in human-autonomy teams.  

6.5 Conclusion, Limitations, and Directions for Future Research 

Due to technological advances in the fields of robotics and artificial intelligence, many systems 

reach for higher and higher levels of autonomy today. Especially delivery drone technology has 

matured in recent years and a variety of civilian use cases that also foster the creation of 

sustainable cities have emerged. To enable non-experts with little to no knowledge of autonomous 

systems such as drones, to also benefit from the emerging technology, we apply a DSR approach 

to derive a solution instantiation in two consecutive expert and non-expert design cycles. We are 

responding to the call to expand the growing research field of human-autonomy teaming 

(McNeese et al., 2021) by addressing implementation in the context of a real-world use case. We 

develop a mobile application for non-experts to safely and intuitively interact with autonomous 

delivery drones and promote acceptance and use of the technology, thus addressing our research 

question. Following the second design cycle, we plan a final mixed design cycle with experts and 

non-experts to test the app in a real-world experiment.  

Our study provides several theoretical contributions. First, we present a methodological 

approach that allows non-experts and experts to be involved in the design process on an equal 

basis and without mutual interference during the initial derivation of DRs and DPs and initial 

evaluation. This approach creates a common ground for future research which aim to make 

complex autonomous systems accessible to the general public. Incorporating domain knowledge 

and translating it into a design intuitive enough to be understood by non-experts remains a major 

challenge in many growing research areas, and we provide a foundation on which targeted future 

research can be built. Second, our study demonstrates an approach that not only places user 

satisfaction at the center of the design process but also promotes general technology acceptance. 

Many AI-based technologies are viewed controversially, and drone technology research is just one 

example that can benefit from this approach. Third, we provide several insights on human-

autonomy teaming in the context of non-expert use which goes beyond existing research. We 

show that the interaction of non-experts with autonomous systems requires an iterative design 

approach and many existing design requirements need to be reconsidered for human-autonomy 

teams as already suggested by (McNeese et al., 2021). To provide a concrete example, the 

transparency features of AI-based autonomous system decisions were found to be rather 
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unhelpful, because users have too little background knowledge of AI, have to trust system 

decisions, and can no longer control systems. These findings pave the way for transferring and 

adapting knowledge from the human-machine interaction domain to human-autonomy teaming. 

Fourth, we contextualize general DPs and develop a solution instantiation for non-experts to 

interact with autonomous systems. Thus, we contribute by guiding researchers and IS designers 

on how to design easily understandable artifacts that interface with autonomous systems. Lastly, 

we outline how UTAUT can be applied as a kernel theory in the DSR approach to develop artifacts 

for human-AI teaming. Practical insights from experts confirm the impact of all constructs of 

UTAUT on the intention to use autonomous delivery drones. While UTAUT has been shown to be 

very suitable, we have also identified factors, such as privacy, that have not yet been adequately 

addressed by the theory and provide a basis for further research.  

This step toward implementing human-autonomy teams in a real-world application also holds 

several practical contributions. First, our solution instantiation vividly demonstrates how broad 

the application area of delivery drones can be if the autonomy level is sufficient to allow 

interaction with non-experts and thus the general population. Second, iteratively derived DRs and 

DPs also clearly show how important it is to involve this new end user group in the development 

work of manufacturers and service providers at an early stage. With our study, we also call on the 

industry to address the challenges in the area of human-autonomy teaming. While the drone 

industry has already identified this challenge (Ellenrieder et al., 2023), it is expected that this topic 

will also become more relevant in other industries as autonomy levels increase. Lastly, the civil 

drone industry can build on the knowledge gained and use our artifact as a basis to develop 

optimal solutions tailored to different use cases and drone types. In the upcoming third design 

cycle, drone manufacturers and service providers will have the opportunity to test our artifact to 

transfer the results into practice. 

However, our contributions are also subject to limitations. The number of semi-structured expert 

interviews is limited and results may be biased toward popular fields of application such as 

deliveries in the healthcare sector. In addition, we focus on the specific use case of parcel delivery 

by VTOL drones which offer a high degree of flexibility in adapting to human actions and the 

applicability of our DRs, DPs and the developed artifact cannot be guaranteed for all drone types 

and application domains. Moreover, it is important to note that qualitative research results were 

obtained in this study and statistically significant results will have to be added through follow-up 

stu ies. Lastl , focus group participants’ opinions were obtaine  after a  emonstration of the 

technology at the prototype stage. Interaction with large delivery drones that appear to move self-

 irecte  in the airspace is likel  to ha e an impact on participants’ subjecti e assessment in the 

real world. Both, the contributions and limitations of this study provide a broad spectrum for 

future research. Besides obtaining statistically significant results, it will be of great relevance to 
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conduct experiments under real conditions and refine design principles in the future. While 

acceptance of delivery drone technology can be fostered through targeted artifact design, future 

research and practice will need to take further approaches to ensure that this technology can 

continue to improve infrastructures and make future cities more sustainable. Delivery drones 

have evolved rapidly in recent years, and this application domain has provided a great context for 

our and previous studies investigating human-autonomy teams. We encourage future research to 

apply the findings to other autonomous and especially semi-autonomous systems. While UTAUT 

served as a feasible kernel theory to design our artifact for human-autonomy teaming, we see a 

need for future research to extend this model by also incorporating privacy aspects that arise for 

all levels of system autonomy. Lastly, drone technology has rapidly improved in recent years and 

poses many opportunities to improve e.g., infrastructure and access to healthcare services. 

However, their actual impact on the sustainability of future cities remains controversial, and 

several delivery drone programs have been discontinued in recent years. Future research should 

critically discuss sustainability aspects of the technology, and research on the design of human-

autonomy interaction should focus precisely on the application areas that have a major impact on 

sustainability. 
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Abstract 

While the use of generative artificial intelligence (GenAI) aims to automate human tasks, 

psychology research shows how crucial human effort is for the appreciation of the final results. 

The so-calle  “IKEA effect” refers to the increase   aluation in i i uals attribute to self-created 

products. However, the potential implications of this effect for GenAI have remained unexplored. 

This study delves into the presence of the IKEA effect in GenAI, specifically focusing on image 

creation. Through an online experiment involving 174 participants in Germany, we observed that 

participants valued images higher if more human effort was invested during collaborative co-

creation with GenAI. Our findings indicate a significant presence of the IKEA effect, although 

existing GenAI research primarily focuses on the automation of processes. This discovery 

emphasizes the importance of understanding user psychology and also offers valuable insights 

for designing and leveraging GenAI applications. 
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7.1 Introduction 

Cognitive biases have been shown to influence decision-making in various instances (e.g., Hristov 

et al., 2022; Ni et al., 2019), including the IKEA effect, which states that people tend to value self-

assembled physical objects more than identical objects that were assembled by others (Norton et 

al., 2012). Attributing a higher perceived value to objects into which personal effort has been 

poured during development or assembling already significantly impacts how companies shape 

customer experiences today (Franke et al., 2010). Adidas, for instance, enables their customers to 

customize clothing through their online platform (Adidas, 2023). Similar design choices for 

customers are offered by the popular backpack brand Fjällräven (Fjällräven, 2023), and Build-A-

Bear provides customers with the chance to design stuffed animals online and even participate in 

the stuffing process at their physical stores (Build-A-Bear, 2023). As a result, customers are 

evolving into active co-creators rather than merely passive consumers of products (Mochon et al., 

2012).  

Advancements in data availability, training techniques, and scale of model parameters have made 

Generative Artificial Intelligence (GenAI) models more versatile, capable, and applicable to a wide 

range of tasks and domains such as text or image creation (Dwivedi et al., 2023). Recent industry 

reports show that modern GenAI promises to automate tasks that currently consume 60 to 70 

percent of emplo ees’  ail  work hours. This heightene  potential for technical automation 

primaril  stems from the a  ancements in GenAI’s proficiency in comprehending natural 

language—a critical requirement for tasks constituting 25 percent of the overall work hours 

(McKinsey & Company, 2023). The automation goals pursued with the use of intelligent 

technologies are a paradox with the trend of allowing customers to participate in the product 

development process. 

While the primary goals of the deployment of (generative) AI are the automation of tasks and 

minimization of human effort to successfully accomplish tasks (Berente et al., 2021; Brynjolfsson 

& Mitchell, 2017; Russell & Norvig, 2021), challenges for the success of this technology arise as 

ps cholog  an  beha ioral research has alrea   taught us that “labour lea s to lo e” (Norton et 

al., 2012). While many studies have proven the IKEA effect for physical objects such as origami, 

food, or furniture (e.g., Dohle et al., 2014; Ling et al., 2020; Mochon et al., 2012; Norton et al., 2012), 

we see a clear lack of research for non-physical objects or content in general. Thus, we do not yet 

understand to what extent the IKEA effect also affects the perceived value of non-physical goods. 

At the same time, the research stream of human-AI collaboration investigates how humans and 

intelligent machines can work together synergistically to enhance problem-solving and decision-

making processes (e.g., Asatiani et al., 2021; Sculley et al., 2015; Sturm, Gerlach, et al., 2021; Sturm, 

Koppe, et al., 2021). However, several unique challenges and characteristics make it uncertain 
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whether and how the IKEA effect could manifest. In previous research on the IKEA effect, humans 

could always estimate what activity and skill was needed to assemble or create goods such as 

furniture or food. Missing transparency (often known as black box behavior) in the AI algorithms 

increases the difficulty of comprehending how the AI makes decisions or creates results (Bauer, 

Hinz, et al., 2021; Dwivedi et al., 2023). It is also unclear which influence humans have on the 

results through prompting and how the AI processes human inputs; only the results can be 

evaluated (Dwivedi et al., 2023; OpenAI, 2023).  

In this context, it is crucial to understand the impact that the takeover of human tasks by AI will 

have on the perceived value of the final results. Regarding the IKEA effect, it can be assumed that 

the perceived value of AI-generate  content an  users’ behavioral intention to use GenAI tools 

increase, especially when they have the opportunity to put effort into the collaboration. Thus, we 

seek to answer the following research questions: (1) Does human effort invested in collaboration 

with generative AI promote overvaluation of AI-generated solutions, and (2) does this heightened 

perceived value also increase the behavioral intention to use GenAI technology? 

To answer these research questions, we conducted an online experiment with 174 people who 

interacted with GenAI tools to perform work tasks with a high vs low level of effort in the 

collaborative creation of content. We hereby assess the impact that effort poured into the 

collaboration with the AI has on the perceived value of the generated content and the behavioral 

intention to use the technology. We contribute to research by examining how humans and AI 

should collaborate in the future to value the content created through collaboration. The results of 

our online experiment reveal that the IKEA effect is prevalent in the collaborative creation of 

content by humans and GenAI. Humans tend to overvalue AI-generated content if effort is invested 

into collaboration with the technology. Future research can build on this study to derive design 

guidelines for GenAI tools and strategies for human-AI collaboration that ensure users value 

results. 

7.2 Theoretical Background 

The following section outlines the unique characteristics of GenAI. It then provides an overview 

of cognitive biases, focusing on the IKEA effect and its impact on the perceived value of self-

created objects so we can hypothesize the impact of the IKEA effect on human-AI collaboration 

afterward. 

7.2.1 Artificial Intelligence 

Berente et al. (2021) describe AI as the frontier of emerging technologies that is focused on human 

intelligence for complex decision-making. There are several subcategories of AI, such as machine 
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learning (ML), which are learning algorithms that recognize patterns in data to make decisions or 

predictions (Brynjolfsson & Mitchell, 2017; Mitchell, 1997; Russell & Norvig, 2021). Or, more 

recentl , the a  ances in GenAI such as ChatGPT, Google’s Bar , or other Large Language Mo els 

(LLMs), which differ from ML in creating new data from recognized patterns and not only analyze 

existing data (Dwivedi et al., 2023; Teubner et al., 2023). However, these language models are not 

the only novelty in this area. AI image creation tools like Stable Diffusion, Dall-E 2, or Midjourney 

also prove the capabilities of AI as generated images are very realistic and appealing (Göring et 

al., 2023). The use of ChatGPT is currently being discussed in radiology (Rao et al., 2023), for 

cybersecurity (Prasad et al., 2023), and in a wide range of business areas. Although such systems 

can already facilitate work today, especially in the future (Dwivedi et al., 2023), caution must be 

taken that jobs are not destroyed and that users accept the outcomes of AI. 

AI is characterized, in particular, by the three properties autonomous, inscrutable, and self-

learning (Berente et al., 2021). In addition, the potential for bias in training data, the ownership 

of the training data as well as the output, and the potential of wrong outputs are concerns in GenAI 

(Lund et al., 2023). In particular, the “black box” characteristic of AI makes it  ifficult for humans 

to follow the decision of AI and thus understand and adapt the given output (Bauer, Hinz, et al., 

2021). This characteristic remains applicable in GenAI as well (Dwivedi et al., 2023). The research 

stream on human-AI collaboration investigated the influence of machines and humans working 

together (e.g., Bo acı et al., 2024; Fügener et al., 2022). It was shown that humans want to decide 

rationall  but often cannot, e.g.,  ue to a misju gment of the task’s  ifficult  (Fügener et al., 2022). 

The research also shows that people are reluctant to perform simple tasks and enjoy demanding 

tasks themselves, which makes delegation to AI problematic (Fügener et al., 2022). In addition, it 

was demonstrated that when the results of decisions differ between humans and AI, people have 

different approaches to dealing with it. For example, experienced physicians tend to ignore AI 

advice, while novice physicians question their own decisions and are less satisfied with the AI 

system (Jussupow et al., 2021). It is also essential that human knowledge is not lost in the 

interaction between humans and AI but should be actively incorporated into decision-making 

(Fügener et al., 2021). Hence, there should be a focus on developing systems that allow humans 

and AI to work together rather than AI exclusively reaching final decisions (Abdel-Karim et al., 

2020). 

7.2.2 Cognitive Bias 

Humans often deviate from optimal decisions since always thinking and acting rationally is 

impossible. This is due to several factors: People usually cannot process the entire amount of 

information or do not have it available; when processing the information, incorrect conclusions 

can be drawn, for example, due to interpretation influenced by emotions or existing prejudices; 
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or heuristics are used when making quick decisions (Kahnemann, 2012). These influences on 

rational decisions are called cognitive biases. They can be grouped into four categories: First, 

information and perception biases can occur, such as the anchoring bias, which refers to the 

tendency to rely on the first information that comes to mind when making decisions (Kahnemann, 

2012). Second, decision biases exist, such as the overconfidence bias, which is the tendency to 

o erestimate one’s own ju gment. It lea s to a misplace  sense of certaint  in  ecision-making, 

making decisions riskier (Odean, 1998). In addition, social and emotional biases are prevalent, 

such as the self-ser ing bias, which is the ten enc  to make  ecisions that benefit one’s own 

interests (Miller & Ross, 1975). Lastly, technology and change biases affect decisions, such as the 

status quo bias, which describes the tendency to prefer the current state of affairs and resist 

change. This can lead to rejecting new technologies, ideas, or practices even if they offer 

improvements (Kim & Kankanhalli, 2009). 

Especially in IS research, there is a lot of literature on cognitive biases in decision-making (e.g., 

Hristov et al., 2022; Ni et al., 2019) or biases in the adoption of emerging technologies (e.g., 

Balakrishnan et al., 2021; Frank et al., 2023; Piehlmaier, 2022). For example, Phillips-Wren et al. 

(2019) show that overconfidence bias is an inhibitor in adopting and using decision aids. 

However, Piehlmaier (2022) finds that overconfident investors are more likely to use Robo 

advisors. In consumer adoption, another exemplary bias, the negativity bias, is evident (Frank et 

al., 2023) or individuals do not always choose the best algorithm for their decisions (Dietvorst & 

Bharti, 2020). In addition, Kim and Kankanhalli (2009) illustrate that user resistance to 

information systems is related to status quo bias. Similarly, Balakrishnan et al. (2021) show status 

quo bias as a factor in accepting AI-powered voice assistance. Furthermore, a focus on 

organizations can often be found. In this regard, Ni et al. (2019) show that anchoring bias occurs 

in a corporate context when making decisions using a BI system. More generally, Hristov et al. 

(2022) show what possible cognitive biases occur within decisions about performance 

management systems. Once biases are known, they can be prevented or exploited to force rational 

or reasonable decisions.  

7.2.3 Understanding the IKEA Effect 

One bias that can be best categorized as a decision bias and is widely studied to explore the impact 

of user participation on the success of products or services is the so-called IKEA effect. The IKEA 

effect states that people value objects higher if they assemble or create them on their own (Norton 

et al., 2012). Norton et al. (2012) named this phenomenon after the Swedish manufacturer whose 

products are particularly likely to involve a high level of assembly effort. Higher effort means a 

person must invest more work in a task (see Marsh et al., 2022). While the IKEA effect is 

unsurprising for some products such as art, studies have demonstrated the IKEA effect for a 
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variety of physical objects such as food, Lego, clothing, or simple IKEA cardboard boxes (e.g., Dohle 

et al., 2014; Ling et al., 2020; Mochon et al., 2012; Norton et al., 2012; Radtke et al., 2019). In fact, 

the value of self-created objects is estimated even higher than the value of objects created by 

experts (Norton et al., 2012) and the IKEA effect also remains prevalent in collaborative creation 

(Marsh et al., 2022). In addition, the effort that goes into the creation of the objects does not have 

to be associated with fun for consumers to overvalue their creations (Mochon et al., 2012; Norton 

et al., 2012). However, successfully completing a task is necessary for the IKEA effect to emerge 

(Norton et al., 2012). 

E i ence that “labour lea s to lo e” (Norton et al., 2012) can also be derived from the success of 

past product launches. When instant cake mixes were introduced to minimize the manual labor 

required for baking, the initial success failed as the preparation of a cake was now perceived as 

too simple. The recipes were changed so that the addition of eggs was required. Although other 

influences may have been at work here, the subsequent adoption success is often attributed to the 

IKEA effect, as the customer puts additional work into the product (Norton et al., 2012; Shapiro, 

2004). Today, multiple companies take advantage of the IKEA effect to shape customer experience 

by providing opportunities to customize and create products online through configurators, tool-

kits and choice menus (Franke et al., 2010). Therefore, customers can increasingly be described 

as co-creators instead of passive recipients of goods (Mochon et al., 2012). Providing ideas, 

thoughts, feelings, and, most importantly, actions to participate in the co-creation process leads 

to a higher perceived value, which has been shown to increase the willingness to pay (WTP) for 

these products (Mochon et al., 2012; Norton et al., 2012). 

Although the bias has been successfully demonstrated in many studies (e.g., Dohle et al., 2014; 

Ling et al., 2020; Marsh et al., 2022; Norton et al., 2012), uncertainty exists regarding the actual 

cause. Psychology and behavioral research suggest three primary mechanisms that cause the 

IKEA effect: (a) signal of competence, (b) effort justification, and (c) ownership (Marsh et al., 

2018). First, self-created objects can express the competence of the creator and can be used as a 

trophy to show off, increasing the perceived value of the object for the creator (Mochon et al., 

2012). Second, within the concept of effort justification, creations reflect the investment of effort 

rather than signal competence (Norton et al., 2012). Thus, the increased value of a created object 

may reflect the effort invested. Lastly, the creation of an object can lead to ownership claims in 

some scenarios or promote the sense of ownership of the person who created the object 

(Kanngiesser et al., 2010; Marsh et al., 2022). Since people tend to place a higher value on their 

personal belongings compared to equivalent items that they do not own, this can further enhance 

the IKEA effect (Kahneman et al., 1990). Nevertheless, there is disagreement about the underlying 

mechanisms and it remains difficult to adequately explain the IKEA effect (Marsh et al., 2018).  



7 Paper E: The Influence of Effort on the Perceived Value of Generative AI: A Study of the IKEA Effect 111 

A related research stream can also be found in the area of mass customization (MC), where 

customers are provided with easy-to-use configurators to design products themselves online, 

which are then produced by the manufacturer (Franke et al., 2010; Ling et al., 2020). Research on 

MC toolkits, however, is based on two assumptions: firstly, that preference fit is the essential 

benefit for customers, while design effort represents costs for the customer and should therefore 

be kept to a minimum (Franke et al., 2010; Randall et al., 2007). These two goals are consequently 

in conflict with each other, and MC toolkits should balance them optimally to gather enough 

information from customers to customize products according to their preferences while keeping 

the effort low. However, the IKEA effect contradicts these assumptions, suggesting that regardless 

of personal preferences, effort alone leads to a perceived increase in value (Norton et al., 2012). 

The so-calle  “I  esigne  it m self” effect has also been shown in the context of MC toolkits, 

indicating that a feeling of accomplishment arises from creating a self-designed product, 

challenging the existing concept (Franke et al., 2010). While it is important in research on virtual 

co-creation tools for customers to contribute their own preferences in the development process, 

the IKEA Effect also occurs independently of this, even with simple products like IKEA cardboard 

boxes (Norton et al., 2012). 

Furthermore, to the best of our knowledge, the IKEA effect has only been studied for physical 

products (e.g., Dohle et al., 2014; Norton et al., 2012) even though labor can also be invested into 

the creation of non-physical products or general content. In addition, the IKEA effect has been 

explored by comparing if people value their own creations more than similar objects created by 

others. However, the creation of physical as well as non-physical objects and content can also be 

performed by machines. Thus, we are interested if this will affect the perceived value of the results 

and whether the human effort involved in creating content or objects through extensive 

prompting will continue to be of great importance in the future.  

7.2.4 Hypothesizing the IKEA Effect in Human-AI Collaboration 

Our study combines insights from psychology on the IKEA effect (e.g., Norton et al., 2012; Radtke 

et al., 2019) with the research fields of human-AI collaboration in the context of GenAI and 

suggests that contrary to current efforts to replace human activities by GenAI (Dwivedi et al., 

2023; Teubner et al., 2023), humans need to contribute effort to collaborative development in 

order to fully value results (e.g., Marsh et al., 2022). Although the black box nature of GenAI makes 

it difficult for humans to assess how much of an impact they have on the final outcome and how 

the AI works (Berente et al., 2021; Dwivedi et al., 2023; Lund et al., 2023), we hypothesize that the 

IKEA effect will occur, increasing WTP as shown in other IKEA effect studies on physical products 

(e.g., Liu et al., 2023; Marsh et al., 2022; Norton et al., 2012). Norton et al. (2012) showed, for 

example, that the WTP for origami symbols was significantly higher for self-created symbols 
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compared to ones created by experts. In addition to studies showing that WTP increases for self-

made objects, Walasek et al. (2017) further demonstrated that the price at which one would sell 

self-made products (in this case, assembling various science kits) is also significantly higher 

compared to the identical objects assembled by someone else. The fact that effort can increase 

WTP has already been shown for various physical products (e.g., Marsh et al., 2022; Walasek et 

al., 2017) and can also apply to content collaboratively created with GenAI if a lot of personal effort 

has been put into the collaboration. Moreover, a debate on WTP for GenAI arose with the 

introduction of ChatGPT (Capgemini, 2023), which we hope to contribute to. Thus, we propose: 

H1: Willingness to pay for AI-generated solutions increases when effort is put into collaborating with 

generative AI. 

Other studies have also shown that people often find it difficult to describe why they prefer a self-

created product over the same product created by someone else and that this is often described 

as a personal feeling of liking or appreciating the self-created product or solution more (Dohle et 

al., 2014; Liu et al., 2023; Norton et al., 2012). Since we expect personal feelings to arise even with 

solutions that can be created by GenAI, such as images or texts, we propose: 

H2: Appreciation for AI-generated solutions increases when effort is put into collaborating with 

generative AI. 

Although research around the IKEA effect measures the perceived value of self-created products 

through WTP or abstract constructs such as Liking, Niceness, or Appreciation (e.g., Dohle et al., 

2016; Liu et al., 2023; Norton et al., 2012), marketing and IS research proposes four dimensions 

that are positively associated with the overall perceived value, namely quality value, emotional 

value, value-for-money and social value (Turel et al., 2007). To measure whether the perceived 

value of AI-generated solutions increases as a result of investing effort, we build on the hypotheses 

of Turel et al. (2007). Within the realm of service-oriented marketing, research has demonstrated 

that superior quality assessments contribute to greater overall value (Baker et al., 2002; Brady & 

Robertson, 1999). Second, emotional components such as joy can enhance the formation of an 

overall value that individuals perceive, and third, users are price sensitive when evaluating the 

trade-off value-for-money (Turel et al., 2007). Lastly, individuals have the potential to improve 

their self-concept through the utilization of modern technologies, such as GenAI. This is because 

such technology can be perceived as cutting-e ge an  inno ati e, thereb  signaling the user’s 

affiliation with a specific social class (Schewe & Dillon, 1978). Thus, social value is also positively 

associated with the overall perceived value (Turel et al., 2007). Consistent with the IKEA effect 

(Norton et al., 2012), we propose that overvaluation of AI-generated solutions occurs when 

humans invest effort in collaborative development. This results in a higher perceived value (H3) 
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which is driven by quality value (H3.a), emotional value (H3.b.), value-for-money (H3.c), and 

social value (H3.d): 

H3: Perceived value of AI-generated solutions increases when effort is put into collaborating with 

generative AI. 

H3.a: Quality value of AI-generated solutions increases when effort is put into collaborating 

with generative AI. 

H3.b: Emotional value of AI-generated solutions increases when effort is put into collaborating 

with generative AI. 

H3.c: Value-for-money of AI-generated solutions increases when effort is put into collaborating 

with generative AI. 

H3.d: Social value of AI-generated solutions increases when effort is put into collaborating with 

generative AI. 

Based on this, Turel et al. (2007) demonstrated–without reference to the IKEA effect–that higher 

perceived value is a key determinant of behavioral usage intentions. They conclude that only if 

the benefits of a technology are clear, it will be utilized. Similarly, Kamtarin (2012) demonstrated 

that perceived value as a positive effect on online purchase intention. As we expect that people 

perceive a higher value of content generated through the interaction with GenAI, they will learn 

about the benefits and thus have a higher intention to reuse it. Therefore, we hypothesize that 

with a higher perceived value of AI-generated content, behavioral usage intentions for generative 

AI will increase: 

H4: Behavioral intention to use generative AI increases when effort is put into collaborating with the 

technology.  

7.3 Methodology 

To answer our research question of whether the IKEA effect increases the perceived value of 

content created in collaboration with GenAI tools, such as ChatGPT or Stable Diffusion, we 

conducted an experiment, which is often utilized in IS research on human-AI collaboration (e.g., 

Fügener et al., 2022) as well as IKEA studies (e.g., Norton et al., 2012). Our goal is to investigate 

whether the IKEA effect exists for GenAI, meaning that people overvalue AI-generated content 

when they have put their own effort into a collaborative development process. We defined our 

target group as (working) individuals in Germany who might use GenAI now or in the future for 

their daily life/ work. 
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7.3.1 Research Design and Measures 

For the experiment, we developed two tasks to collaboratively generate content with AI: one task 

where participants had to generate a text about a company mission statement for a drone start-

up in the healthcare sector using ChatGPT and one task where the participants had to generate an 

image for advertising sustainably packaging apples using Stable Diffusion. GenAI can be used to 

create different types of content such as audio, code, images, text, simulations and videos. IKEA 

studies have already shown that the IKEA effect can occur with physical objects when creating 

pictures (Raghoebar et al., 2017). We decided to choose images and text for the overall design of 

the experiment because, firstly, both are content that humans can generate without the addition 

of technology and it is easier to assess the effort and value of the end result without specialist 

knowledge. Secondly, there are powerful solutions for generating both types of content on the 

market that are already widely used in everyday professional life. We have explicitly excluded 

code here, as functionality and lean implementation are the main focus when generating code and 

individual preferences are often given less importance. For both tasks we created an IKEA group, 

which allowed participants to put effort into the collaboration with the AI, and a control group 

respectively, which was confronted with the final results of the GenAI tools immediately after 

reading the problem definition. Participants were randomly assigned to the IKEA group for one 

task and then assigned to the control group for the other task. Therefore, each participant solved 

one task (image or text) for the IKEA group and the other task for the control group. Task I (text) 

and task II (image) and thus the sequence of participation in the IKEA and control group were 

randomized in order for each participant. The interaction part for the IKEA group of both tasks 

was structured the same (see Figure 15a).  

First, participants were given the assignment, and then they were given a first, poor fitting output 

from the respective AI. Then, they were asked to adapt it which requires effort and were given 

four input options—two of them suggested improvements in relation to the problem definition, 

and the other two did not. Exemplary input options for the second round of the image task are 

provided in Figure 15b. The next output would better fulfil the problem definition but would still 

miss some crucial details. Thus, the participants could improve the output again. If they chose one 

option that did not make sense, they failed the attention check and were excluded from the 

experiment. Overall, they adapted the output three times until a final output was given. In 

addition, both tasks (text and image generation) were implemented in a version where no input 

selection for iteratively adapting the output was possible for the control group. Instead, the 

identical, final AI output was shown to the participants immediately after reading the problem 

definition. All images and text excerpts provided to participants throughout the experiment were 

created with Stable Diffusion and ChatGPT respectively, and pre-selected for this experiment by 

IS researchers to ensure equal experimental conditions for all participants. 
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The questionnaire was set up with Unipark, a survey tool emphasizing privacy and allowing us to 

include many different types of questions. After agreeing to a privacy policy and reading their 

rights according to GDPR, the experiment started with information on the task. Then, the 

participants were randomly assigned to one of the two groups for Task I. After each task, the 

participants were asked follow-up questions to measure the IKEA effect. We chose to leverage 

existing constructs and therefore conducted a structure  literature re iew on the “IKEA effect” 

following (Brocke et al., 2009). Consequently, we first defined the review scope. Here, we focus on 

research methods, especially their used constructs to measure the IKEA effect. Our goal is to 

summarize them. The organization is conceptual and the perspective neutral. Our audience are 

general and specialized scholars, and our coverage is representative. In the second step, we 

conceptualized the topic by reading some general literature on the IKEA effect (e.g., Marsh et al., 

2022; Norton et al., 2012). Here, we also set our inclusion criteria—a quantitative study was 

conducted with a measurement of the IKEA effect; and exclusion criteria—no measurement of the 

IKEA effect. Third, we conducted the literature search. To remain as broad as possible and also 

inclu e papers, especiall  from IS, we use  the search term “IKEA effect” in Web fScience an  AIS 

eLibrary. This resulted in 133 and 122 papers, respectively, with one duplicate. We also conducted 

a backward search to find the first paper and especially the definition of the IKEA effect (resulting 

in 247 publications) and a forward search which resulted in one additional paper (Turel et al., 

2007). Fourth, we analyzed and synthesized the literature by first excluding all papers which did 

not include a quantitative measurement of the IKEA effect according to their title and abstract, 

resulting in 33 papers. We then carefully extracted the constructs used in the papers to measure 

the IKEA effect.  
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Example task:  

You asked the AI to adjust the image and focus 
only on one type of fruit. The AI generated the 
following image: 

 

 

 

 

 

 

 

Again, you can further modify the image. Please 
specify how you want the AI to change the 
image. 
Please select the most suitable customization for 
your company and use case. 

a. “Please a   a  itional  egetables to the 
image.” 

b. “Please make it explicit that the plastic 
is rec clable.”  

c. “Please cut the apples.”  

d. “Please generate less plastic b  not 
packaging the apples in i i uall .”  

Figure 15: a) Experimental setup for the image task and b) example task with AI collaboration. 
Participants followed the same procedure for the text generation task. 

This resulte  in measuring the willingness to pa  (one item “Are  ou willing to pa  for the output 

of the AI? If  es, how much?”; Norton et al., 2012; Marsh et al., 2022; Liu et al., 2023), the 

appreciation (one item on a 7-point Likert scale: “How much  o  ou appreciate the AI-generated 

output?”; Ra tke et al., 2019), the percei e   alue (four constructs each four to fi e items on a 7-

point Likert scale; e.g., “The qualit  of the AI-generate  output is con incing.”; Turel et al., 2007), 

and the behavioral intention to use the technology (two items on a 7-point Likert scale; e.g., 

“Assuming that I ha e access to this GenAI, I woul  use it in the future.”; Turel et al., 2007). In 

addition, the effort is measured to prove effort manipulation between the groups was successful 

(one item on a 7-point Likert scale: “How much effort  i   ou in est in creating the output with 

GenAI?”; Raghoebar et al., 2017). We adapted the constructs slightly to our context and translated 

them into German. Finally, the demographic data (age and gender) and control variables (AI 

experience (five items on a 7-point Likert scale, e.g., “Compare  to most people, I know more about 

AI”) following (Flynn & Goldsmith, 1999) and AI attitude (seven items on a 7-point Likert scale, 

e.g., “A majorit  of societ  will benefit from AI in the future”) following Schepman & Rodway, 

(2020)) were asked. In addition, we ensured privacy, chose high-quality constructs, and 

randomized the options for the participants to prevent common method bias (CMB). Also, during 

the experiment, validity was ensured by using existing constructs and testing the survey and 



7 Paper E: The Influence of Effort on the Perceived Value of Generative AI: A Study of the IKEA Effect 117 

reliability by using multi-item constructs if possible. In addition, we will check for both later in 

the analysis. 

7.3.2 Data Collection and Sample 

Before administering the experiment, we conducted a pretest with four experienced IS 

researchers. We changed some wording to make the questions easier to understand and improved 

some spelling mistakes. In addition, we asked three potential participants from our target group 

to review the experiment to get insights into unclear task descriptions and improvements. 

Afterwards, our target group was contacted through Prolific, a market research institute, and paid 

to participate in our experiment 16 €/hr. We therefore calculated the sample size following the 

formula that assuming the effect is small (d = 0.35), we require 72 participants to show the effect 

at 90% for both groups. Thus, we contacted 200 people in our target group, assuming that at least 

10% would fail the attention check and choose an option to improve the text or image that does 

not make sense. 

Overall, the experiment was expected to take 15 minutes, and the participants required, on 

average, 9:34 minutes. 26 participants failed the attention check and were excluded. Other data 

was not excluded as the attention check was comprehensive enough, every question was marked 

as mandatory and no straight-liners were detected. Thus, we had a final sample size of 174 

participants from Germany, of whom 89 were assigned to the IKEA group and 85 to the control 

group for the text task and vice versa for the image task. In our sample, most participants (n = 

128) were between 18 and 33 years old (74%), 32 participants were between 34 and 44 years old 

(18%) and the rest above 45. The gender was more balanced. We had 87 females, 84 males, and 

three participants identifying as divers. 68 participants are working full-time, 40 part-time, 5 are 

not in paid work (e.g., homemaker or retired) and 15 are unemployed but job-seeking. The other 

participants did not reveal their working status. Finally, participants reported an average prior AI 

experience (measured with five items on a 7-point Likert scale, Cronbach’s alpha = .932) of 4.07 

(SD = 1.45) and an average attitude towards AI (measured with seven items on a 7-point Likert 

scale, Cronbach’s alpha = .874) of 5.19 (SD = 1.27). 

7.4 Data Analysis and Results 

We begin with checking the effort manipulation because only a perceived increase of effort can 

cause the IKEA effect (Mochon et al., 2012; Norton et al., 2012). For both tasks, the participants 

were asked about their own perceived effort (on a 7-point Likert scale) in creating the text and 

the image. Regarding the task of creating a company mission statement for a start-up in the 

healthcare sector using ChatGPT, the effort manipulation was not successful, as the IKEA group 

perceived the effort of the collaboration through four rounds of prompting was only slightly 
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higher on average (M = 2.77, SD = 1.06) than the control group (M = 2.68, SD = 1.15), t(169.02)9 = 

-0.56, p = .290, with an effect size of d = 0.08, indicating a very small effect. The effort manipulation 

regarding the image creation for advertising sustainably packaging apples using Stable Diffusion 

on the other hand was successful, as the IKEA group reported significant higher perceived effort 

on average (M = 3.14, SD = 1.22) than the control group (M = 2.52, SD = 1.17), t(170.81) = 3.41, p 

< .001, with an effect size of d = 0.52, indicating a medium effect. Thus, in the following, we will 

only present the results of the image creation task for which effort manipulation was successful 

and not the text creation task. 

To assess convergent validity, we evaluated that all latent variables are above the recommended 

threshol  of .5 for a erage  ariance extracte  (AVE) an  composite reliabilit  an  Cronbach’s 

alpha exceeded the threshold of .7 (Hair et al., 2017). Table 10 further outlines that all item 

loadings surpass the threshold of .7 and all constructs fulfil reliability and convergent validity. 

Table 10: Assessment of reliability and convergent validity (values are 1.000 for one-dimensional 
constructs) 

 Factor Loadings Composite 
Reliability 

AVE         ’  Alpha 

Perceived Effort .768-.839 .785 .647 .850 

Appreciation 1.000 1.000 1.000 1.000 

Quality Value .926-.968 .971 .894 .963 

Emotional Value .829-.921 .946 .779 .938 

Value-for-Money .879-.943 .951 .830 .950 

Social Value .761-.849 .891 .671 .894 

Behavioral 
Intention to Use 

.948-.955 .950 .905 .938 

 

The results of our discriminant validity analysis are shown in Table 11. We verified that the square 

root of AVE (pictured on the diagonal; is 1.000 for one-dimension constructs) is greater than the 

interconstruct correlations (Gefen et al., 2000) and thus conclude that all constructs indicate 

sufficient discriminant validity (Fornell & Larcker, 1981). 

First, homogeneit  of  ariances was asserte  using Le ene’s test. If equal  ariances coul  be 

assumed, unpaired t-tests were performed to test for differences between the IKEA group that 

invested effort into collaboration through the selection of appropriate prompts and the control 

 
9 As shown later, we first performe  Le ene’s test for homogeneit  of  ariances. If homogeneit  of  ariances 
cannot be assured, instead of a t-test a robust Welch test is performed. To ensure significant p-values the 
degrees of freedom are automatically adapted in the Welch test. 
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group. Otherwise, Welch tests were performed. Due to the sample size of 30 or more for each 

group, the normal distribution of the data obtained can be assumed so that unpaired t-tests can 

be used as a robust measure (Stone, 2010). 

Table 11: Discriminant validity 

 Apprecia-
tion 

Quality 
Value 

Emotional 
Value 

Value-for- 

Money 

Social Value Behavioral 
Intention to 

Use 

Appreciation 1.000      

Quality Value .871 .945     

Emotional 
Value 

.801 .856 .882    

Value-for-
Money 

.694 .744 .762 .911   

Social Value .519 .526 .574 .524 .819  

Behavioral 
Intention to 
Use 

.713 .657 .713 .661 .600 .952 

 

H1: Willingness to pay. We found a significant difference in WTP (yes or no) for the group that 

collaboratively created images through prompting and the control group, t(172) = 3.98, p < .001, 

d = 0.48. While this effect is of small size, we further explored differences in the WTP for a monthly 

license. The results showed that the average price (in Euro) participants were willing to pay was 

significantly higher in the group that iteratively interacted with GenAI (M = 18.58, SD = 62.58) 

compared to the control group (M = 5.01, SD = 10.68), t(172) = 2.02, p = .045 with an effect size of 

d = 0.30, indicating a medium effect. Thus, we conclude that H1 is supported by the findings of 

this study, and WTP for images generated by AI is significantly higher if effort is invested into 

collaborating with the GenAI. 

H2: Appreciation. As shown by Norton et al. (2012), it is to be expected that with higher effort, 

the appreciation or liking of created objects increases. The findings of this study show that this 

bias also applies to the collaborative creation of content, such as images with a GenAI. Participants 

of the IKEA group reported a significantly higher average appreciation of the final image (M = 4.88, 

SD = 1.35) than the control group (M = 3.71, SD = 1.60), t(172) = 5.18, p < .001, with an effect size 

d =0.79, indicating a medium effect, even though they evaluated the same image. Therefore, we 

successfully demonstrated the IKEA effect in our online experiment, and the result supports H2. 

H3: Perceived value. While appreciation or liking of an object or content would rather be 

described as a personal feeling, perceived value, which is a key determinant for behavioral 
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intentions, can be measured more objectively through four constructs (quality, emotional, value-

for-money, and social value) as proposed by Turel et al. (2007). We first examine H3.a through 

H3.d before deriving an overall assessment of whether perceived value increases with effort. 

H3.a: Quality value. Participants of the IKEA group report a significantly higher quality value for 

the generated solution (M = 4.77, SD = 1.32) than the control group (M = 3.70, SD = 1.55), t(172) 

= 4.90, p < .001. In addition, this effect is d = 0.74, indicating a medium effect. We thus conclude 

that H3.a is supported, and the quality value of an AI-generated solution increases if effort is put 

into collaborative creation.  

H3.b: Emotional value. Besides the quality value, participants of the IKEA group further reported 

a significantly higher emotional value, which they attached to the created final image (M = 4.94, 

SD = 1.19) than the control group (M = 3.76, SD = 1.40), t(169.71) = 5.97, p < .001, d = 0.91, 

indicating a large effect. This finding supports H3.b and the emotional value significantly 

increased with effort in our experiment. 

H3.c: Value-for-money. We further asked all participants how they would rate the value-for-

money if a monthly license would cost 15 euros. Value-for-money received significantly better 

ratings by the IKEA group (M = 4.46, SD = 1.48) than the control group (M = 3.50, SD = 1.48), 

t(171.61) = 4.29, p < .001, d = 0.65, indicating a medium effect which supports H3.c.  

H3.d: Social value. Lastly, the social value of the created solution was assessed. Participants of 

the IKEA group attributed a significantly higher social value to their creation (M = 4.21, SD = 1.23) 

than the control group (M = 3.72, SD = 1.26), t(171.95) = 2.80, p = .006, d = 0.39, indicating a small 

effect. Therefore, in conclusion, we can say that the social value has also increased with effort, and 

the finding thus supports H3.d.  

Table 12: Hypotheses testing 

Hypothesis t-Value p-Value      ’    Outcome 

H1: Effort—WTP 2.02 .045 0.30 Supported 

H2: Effort—Appreciation 5.18 < .001 0.79 Supported 

H3: Effort—Perceived Value - - - Supported by 
H3.a - H3.d 

H3.a: Effort—Quality Value 4.90 < .001 0.74 Supported 

H3.b: Effort—Emotional Value 5.97 < .001 0.91 Supported 

H3.c: Effort—Value-for-Money 4.29 < .001 0.65 Supported 

H3.d: Effort—Social Value 2.80 .006 0.39 Supported 

H4: Effort—Behavioral Intention to Use 3.88 < .001 0.59 Supported 
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Since all four core determinants of perceived value are significantly higher for the IKEA group that 

invested effort in generating the image with the AI, we conclude that perceived value increases 

with effort, and H3 is supported. 

H4: Behavioral intention to use. Perceived value is seen as a driver for the adoption of a system 

or a general technology (e.g., Turel et al., 2007). We therefore examined if the behavioral intention 

to use the technology (GenAI for image creation) increases if participants put effort into 

collaborating with the technology. Interestingly, the behavioral intention to use GenAI also 

significantly increased for the IKEA group and thus with effort (M = 4.95, SD = 1.52) compared to 

the control group (M = 4.08, SD = 1.45), t(170.49) = 3.88, p < .001, d = 0.59, indicating a medium 

effect. We thus conclude that H4 is supported. 

7.5 Discussion 

Previous research on the IKEA effect does not address whether the IKEA effect can also be 

observed for non-physical content and, in particular, GenAI. Especially as the results of AI are 

unpredictable and, to some extent, cannot be generated by humans in the same way (Berente et 

al., 2021; Dwivedi et al., 2023), findings from the literature are not transferable. With our 

experiment, we aim to determine if the IKEA effect can be found in order to be considered in the 

design and adoption of AI systems. Although AI seeks to automate processes, customer experience 

strategies of companies such as Adidas show that the contribution of effort by the customer or 

end user is essential so that collaboration produces valuable results, solutions, or products. 

In order to determine the IKEA effect in collaborative content creation with GenAI, we divided our 

online experiment participants into two groups. The IKEA group was able to co-create solutions 

in an iterative development process that required human effort using the AI tool. In contrast, the 

control group received the generated AI solution immediately. Participants were randomly 

assigned to one of the two groups (IKEA or control group) for the image task and then assigned to 

the other group for the text task. The tasks were presented in a way that both groups received the 

identical final output, regardless of whether the task was solved for the IKEA or the control group. 

Unfortunately, we did not notice any difference in effort in the text generation task, which led to 

the IKEA effect not being evident, a finding that has also been made for physical products (Mochon 

et al., 2012; Norton et al., 2012). Based on feedback from the participants, we assume that the 

difference between the effort collaborating with AI and receiving the final output was not 

observed here is simply due to the fact that it is significantly more exhausting for humans to read 

and evaluate texts than images. Therefore, we focused our evaluation on the image generation 

task where effort manipulation was successful. 



7 Paper E: The Influence of Effort on the Perceived Value of Generative AI: A Study of the IKEA Effect 122 

Various methods can be found in the literature to measure the IKEA effect. One of the most popular 

is the measurement of the WTP. We found a strong significant difference between the IKEA and 

the control group, so that H1 is supported. Thus, we can explain to a certain degree that the WTP 

for tools like ChatGPT is so high, because people can invest effort in the collaboration and create 

their own output. Likewise, we can assume H2—the appreciation of the output since a significant 

difference exists in the fact that the participants prefer the final version, where they themselves 

have invested more effort in the development process. We believe this can be due to the labor 

invested, causing either a signal of competence, effort justification, or feelings of ownership. 

Finally, we measured the perceived value of generated content through the four constructs: 

quality value, emotional value, value-for-money, and social value proposed by Turel et al. (2007). 

Also, these four constructs show a significant difference between the IKEA and the control group, 

so we can answer our first research question with human effort invested in collaboration with 

GenAI increases the perceived value of AI-generated solutions. Furthermore, RQ2, whether 

perceived value also increases the behavioral intention to use GenAI technology can be confirmed 

with H4. The behavioral intention to use GenAI tools, as in our example Stable Diffusion, can thus 

increase over time if the IKEA effect is exploited. 

7.5.1 Contributions 

With our experiment, we are able to make several theoretical contributions: First, by confirming 

the hypotheses, we can show that the IKEA effect can occur not only for physical products such as 

origami, food, or furniture (e.g., Dohle et al., 2014; Ling et al., 2020; Mochon et al., 2012; Norton et 

al., 2012), but also for content produced by GenAI. As (generative) AI has unique characteristics 

(Bauer, Hinz, et al., 2021; Dwivedi et al., 2023), this effect is not self-evident. However, a sufficient 

difference in perceived effort must exist for the IKEA effect to manifest in using GenAI. The IKEA 

effect only occurs when people perceive that they have achieved and contributed to something. 

This can most likely also be generalized to former AI use and leads to our second theoretical 

contribution. With the ability of GenAI to create new content instead of solely making decisions, 

we show with our findings that human-AI collaboration needs to be rethought, and we add to the 

goals that should be pursued in human-AI collaboration. Humans now find themselves in a new 

role: Rather than just receiving final content or decisions, they can participate in the outcome and 

co-develop the result with their input. While it remains unclear what effect a prompt has on the 

output of GenAI, we show that collaboration is essential for human end users to value results. 

Here, new XAI approaches may gain importance, which face new challenges, especially with 

regard to image generation for example. This also changes the way humans are considered in 

research: With regard to the black box character, it is important to explore how humans can 

cooperate with AI although they may not fully understand the functionality. Even though bias is 
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often perceived as negative, thirdly, we believe that the IKEA effect can also be leveraged. To 

increase the value of the outcome for users, they could be integrated artificially into the process. 

The IKEA effect can be utilized by developing suitable interfaces and interaction opportunities.  

Furthermore, our research offers practical contributions: First, we can find a higher WTP and 

behavioral intention to use for GenAI with human participation. This can be exploited by the 

providers of such services. It may also explain to some extent the high WTP for the monthly license 

of ChatGPT and the rapidly growing number of users. Therefore, (generative) AI providers should 

adapt strategies of customizing from brands like Adidas and Build-A-Bear instead of exclusively 

selling automation solutions to customers. These remain necessary for many tasks, especially 

when monotonous or dangerous tasks can be substituted. Still, also due to legal reasons, creative 

work or decisions in high-stakes environments are likely to remain with humans in the 

foreseeable future. But our findings are also valuable for the users of GenAI. Organizations 

planning to implement such solutions should primarily choose tasks that require collaborative 

approaches. Otherwise, employees might fear losing their jobs and the acceptance of these 

solutions could decrease significantly. By exploiting the IKEA effect, we anticipate the opposite: In 

collaboration between humans and machines, the perceived value of the end product increases so 

that the behavioral intention to use increases, which can lead to higher acceptance. Finally, we can 

recommend potential users of GenAI to give it a try and discover new ways of facilitating work by 

contributing to and shaping the outcome of AI. 

7.5.2 Limitations and Future Research 

While our study has added surprising insights into the realm of the IKEA effect in the context of 

GenAI, a few limitations must be acknowledged and further provide a basis for future research. 

First, the online experiment was conducted exclusively with German participants, and respective 

cultural norms, attitudes, and experiences may influence individual perceptions and biases. In 

addition, the majority of participants were between 18 and 33 years old, and the results on the 

IKEA effect may not be transferable to children and older people. While the results are thus 

relevant for most of the current users of GenAI, it is still interesting to understand how and 

whether the IKEA effect affects human-AI collaboration at  ifferent stages of users’ li es. Secon , 

our experimental design did not allow participants to have a “real” interaction with Stable 

Diffusion. While this was intentionally done to ensure uniformity in the results across participants 

and to trigger the IKEA effect, it is worth noting that the interaction was simulated. Nevertheless, 

the feedback from participants indicates that they believed they were indeed interacting with an 

actual GenAI, which speaks to the validity of our design. Third, the experiment focused on image 

generation. The realm of GenAI spans far beyond image creation, including outputs like code, 

music, etc. The occurrence of the IKEA effect in these contexts poses a topic for future research. 
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Lastly, while the phenomenon of the IKEA effect was observed in the context of GenAI, the reasons 

for its occurrence remain unclear. Previous research on the IKEA effect has pointed to factors like 

the signal of competence, effort justification, and feelings of ownership as potential underlying 

causes. Also, simple factors such as the amount of time spent on a task could influence the 

perceived effort. Future research could delve deeper into understanding the specifics of why this 

effect is manifested, especially in the context of AI-generated content. In addition, future research 

should investigate whether the IKEA effect, in the context of GenAI, varies across different 

cultures. Moreover, our findings underline the potential influence of the IKEA effect on user 

perceptions. Future research should focus on how this effect can be factored into the design of 

GenAI tools. Incorporating psychological insights might enhance the perceived value of AI-

generated solutions and human-AI collaboration in the future. In conclusion, we encourage 

scholars to build on this work, further unraveling the intricate relationship between humans and 

GenAI. 
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8. Discussion of Contributions and Conclusion 

To effectively use ML systems to augment human capabilities and enhance decision making in 

high-risk domains such as healthcare or aviation, challenges in collaboration between ML systems 

and human decision makers must be overcome (e.g., Fügener et al., 2022; Lebovitz et al., 2022; 

Maedche et al., 2019; Seeber et al., 2020). It is crucial to recognize that humans will remain an 

integral part of the decision-making chain in high-risk domains, and it is increasingly important 

to develop an understanding of the impact of ML systems on human decision makers (e.g., Gaube 

et al., 2023; Jussupow et al., 2021; Lebovitz et al., 2021; Maedche et al., 2019; Seeber et al., 2020). 

In this context, research calls for exploring novel approaches on how humans can learn from ML 

systems (e.g., Abdel-Karim et al., 2023, 2020; Gaube et al., 2023; Pumplun et al., 2023; Sturm, 

Gerlach, et al., 2021), which can generate new knowledge during training (e.g., Brynjolfsson & 

Mitchell, 2017; Fügener et al., 2021). In addition, research should consider not only humans as 

learners, but also the ML systems themselves, which are trained on static datasets and therefore 

must continuously adapt to dynamic problem perceptions and deployment environments (e.g., 

Asatiani et al., 2021; Sculley et al., 2015; Sturm, Gerlach, et al., 2021; Sturm, Koppe, et al., 2021). 

However, there is a lack of guidance on how to design ML systems that can continuously learn to 

maintain or even improve their performance. Finally, characteristics such as error-proneness, 

inscrutability, and shifting roles in collaboration with the increasing autonomy of ML systems 

pose significant challenges for effective teaming between humans and ML systems (e.g., Berente 

et al., 2021; McNeese et al., 2018; Seeber et al., 2020; Vössing et al., 2022). 

This dissertation aims to expand our understanding of the learning potential and effective 

collaboration between humans and ML systems by examining these research gaps from three 

perspectives: (1) the human, (2) the ML system, and (3) the collaborative perspective. The 

theoretical and practical contributions of the five papers included in this dissertation are 

discussed below. Future research directions and limitations are provided in the respective papers. 

8.1 Theoretical Contributions 

Paper A addresses RQ1 and explores whether human decision makers, such as radiologists, can 

learn from collaborating with ML systems, thus responding to several research calls (e.g., Abdel-

Karim et al., 2023, 2020; Gaube et al., 2023; Lebovitz et al., 2021; Pumplun et al., 2023; Sturm, 

Gerlach, et al., 2021). The mixed-methods study demonstrates that radiologists can improve their 

performance and decision confidence through collaboration with high-performing ML systems. 

However, the study also shows that collaboration with low-performing ML systems poses the risk 

of false learning, which can lead to a decline in the performance of human decision makers. Paper 

A can serve as a basis for expanding human-in-the-loop concepts (e.g., Fügener et al., 2021; 
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Grønsund & Aanestad, 2020; Seidel et al., 2018; Sturm, Koppe, et al., 2021) and informs about both 

opportunities and risks for decision makers. In addition, the study contributes to the growing XAI 

research stream (e.g., Bauer, Hinz, et al., 2021; Lebovitz et al., 2022; Miller, 2019; Pumplun et al., 

2023; Reyes et al., 2020) by showing how explainable output design of ML systems can 

significantly improve learning outcomes and prevent false learning in the case of incorrect system 

output. Interestingly, some radiologists were even able to learn from the ML systems’ mistakes if 

they were presented in an explainable manner. The findings pave the way for the development of 

new adoption strategies for ML systems in high-risk domains by preventing harmful effects on the 

decision maker through explainable output design. In addition, the study adds to the goals that 

should be pursued with XAI methods and links the value of explanations in educational research 

(Crowley & Siegler, 1999; Fender & Crowley, 2007) with explanations from the XAI field (Bhatt et 

al., 2020; Meske et al., 2022). Finally, the study shows that the results are broadly applicable, as 

both highly experienced and novice radiologists can learn from ML systems, and only a small 

decrease in learning success is observed with increasing experience. Consequently, XAI research 

should prioritize the identification of individual end user needs and consider their prior 

experience. 

Paper B turns to the ML system perspective, addressing RQ2. The DSR study investigates how ML 

systems should be designed and developed along the CRISP-ML(Q) process model (Studer et al., 

2021) to flexibly adapt to changes in their environment and learn from new insights and changing 

problem perceptions of human decision makers after deployment (e.g., Asatiani et al., 2021; 

Grønsund & Aanestad, 2020; Sturm, Gerlach, et al., 2021). This enables maintaining ML system 

performance and addresses several IS research calls (e.g., Grønsund & Aanestad, 2020; Sturm, 

Gerlach, et al., 2021). The study identifies challenges for the long-term use of ML systems and 

underscores the need for continuous system maintenance. Based on this, design requirements 

and principles for all phases of the CRISP-ML(Q) process are derived, serving as a blueprint for 

the development of sustainable ML systems suitable for long-term use. The holistic approach also 

shows that it is not sufficient to intervene only after an ML system has been deployed. Instead, 

continuous learning of ML systems and adaptation to the problem perception of human decision 

makers requires that these needs be considered early in the ML system development process. This 

study thus provides a further basis for the expansion of human-in-the-loop approaches, that 

intervene only after deployment, although future changes in human problem perception should 

also be taken into account during the development of ML systems. 

Papers C to E address RQ3 and offer several theoretical contributions for the design of effective 

human-ML system collaboration. Paper C provides insights into how different types of errors (FNs 

and FPs) of ML systems affect human decision makers. Previous research has examined the impact 

of erroneous output from ML systems on humans, but has not differentiated between error types 
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(e.g., Abdel-Karim et al., 2020; Fügener et al., 2021; Jussupow et al., 2021; Lebovitz et al., 2022). 

Here, paper C provides new insights, showing that both types of errors negatively affect decision 

maker performance and trust, but that these negative effects are more severe for FNs in the 

context of the experiment. Providing explanations from the XAI field to improve the explainability 

of ML system output can mitigate these effects, particularly for FPs. At the same time, however, 

the mental workload of decision makers increases when processing additional information 

provided by explanations. By illustrating the cost to the human decision maker of different ML 

errors, this can serve as a basis for aligning ML systems according to error management theory to 

minimize the most costly error type (Haselton & Nettle, 2006; Johnson et al., 2013). The findings 

further indicate that a trade-off must be found in the sensitivity and explainability of ML systems 

to enable effective and high-performing collaboration without overburdening the human decision 

maker. Paper D further highlights how the increasing autonomy of ML systems also enables non-

experts to safely and intuitively collaborate with the technology, contributing to the growing 

research field of human-autonomy teaming (e.g., McNeese et al., 2021, 2018; Seeber et al., 2020; 

Zercher et al., 2023). The study also underscores the need to rethink the design requirements for 

the explainability of ML systems at increasing levels of autonomy and collaboration with non-

experts. Finally, acceptance issues for human-ML collaboration remain a significant challenge 

(Pumplun et al., 2021; Seeber et al., 2020). In this context, paper D shows how the iterative, user-

centered design of ML artifacts based on the UTAUT theory can promote end-user acceptance. 

Paper E extends the findings on the impact of the level of autonomy of ML systems on the success 

of collaboration, clarifying that people who invest effort in the collaborative generation of content 

perceive a higher value in the created solutions. Known as the IKEA effect (e.g., Norton et al., 

2012), the influence of effort invested in creation on perceived value has been demonstrated for 

a variety of physical products (e.g., Dohle et al., 2014; Ling et al., 2020; Mochon et al., 2012; Norton 

et al., 2012). The study shows that despite the unique characteristics of (generative) ML systems 

(Bauer, Hinz, et al., 2021; Dwivedi et al., 2023), the effort that people put into collaboration is also 

essential for valuing solutions and content developed in collaboration with ML systems. The IKEA 

effect should be considered when designing collaboration between humans and ML systems to 

ensure that the results are appreciated and utilized. Ultimately, the results demonstrate why 

designing effective collaboration is preferable to an automation approach in certain areas. 

Overall, the papers in this dissertation extend our understanding of the impact of ML systems on 

human decision makers and how this can be effectively leveraged in collaboration by focusing on 

the explainability of ML systems and the potential for both humans and ML systems to learn from 

each other through collaboration in the long term. The findings provide a broad foundation for 

designing more effective collaboration between humans and ML systems and lowering the 

barriers to adoption of ML systems, even in high-risk areas. 
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8.2 Practical Contributions 

The five papers included in this dissertation provide not only theoretical, but also practical 

contributions that enable organizations to design ML systems and their collaboration with 

humans to make better decisions in the long run. In addition, a foundation is laid to enable 

continuous improvement of both humans and ML systems through collaboration. 

Paper A addresses RQ1 and demonstrates how the deliberate use of explainable design in ML 

systems can enable human decision makers to learn from these systems and recognize ML errors. 

Using tumor segmentation in radiology as an example, the study provides a blueprint for the 

design of an ML-based DSS that can significantly improve learning outcomes for radiologists 

during collaboration and prevent false learning by providing local output explanations. ML 

developers can build on the design and insights to develop ML systems that can be adopted by 

organizations in high-risk areas at an earlier stage: While insufficient accuracy often prevents the 

adoption of ML systems in fields such as healthcare or aviation due to the severe consequences of 

incorrect decisions, real data can only be collected after deployment to improve performance over 

time. Our study shows how this chicken-and-egg problem can be overcome in practice by using 

explainable design to enable human decision makers to detect ML errors and thus allow for early, 

low-risk adoption in practice. In addition to developing early adoption approaches for explainable 

ML systems, organizations can use the insights to strategically deploy ML systems to create new 

learning opportunities for their human members. For example, ML systems could be used 

specifically as a training tool for novice employees for tasks that require humans in the decision-

making chain in the long term. 

Beyond the learning potential for humans in collaboration, Paper B addresses the need for ML 

systems to learn from humans and their dynamic environments over time in order to maintain or 

even improve their performance. In response to RQ2, Paper B outlines the challenges for the long-

term deployment of ML systems. These challenges illustrate why many ML systems remain in the 

prototype phase and ML projects often fail in long-term deployment (e.g., Deloitte, 2020; 

Metternich et al., 2021). However, the long-term deployment of ML systems is crucial for a 

sustainable ML lifecycle, as the development process is often associated with high resource 

consumption (Klöpffer, 2003; van Wynsberghe, 2021). The derived DRs and DPs for developing 

and operating ML systems that are adaptive and can continuously learn from their environment 

provide organizations with guidance for more sustainable ML system development. Paper B also 

shows that it is essential for organizations to consider future changes, e.g., in human problem 

perception or environmental conditions that the systems will be exposed to, even in the early 

development phases of ML systems. In addition, the challenge-design-requirement framework 

presented can help organizations ensure that ML systems can maintain their performance, 
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enabling safe deployment even in high-risk areas, and that the competitive advantages associated 

with the use of ML systems can be leveraged over the long term. 

Papers C, D, and E, on the other hand, offer several practical contributions for designing effective 

collaboration between humans and ML systems. Paper C demonstrates the impact of different ML 

error types on the performance, trust, and mental workload of human decision makers. The study 

emphasizes that explanations for ML output can mitigate performance and trust degradation in 

the case of FPs, but also notes that additional explanations can lead to an increase in mental 

workload. Organizations can use these insights to optimize the sensitivity of ML systems to 

minimize the frequency of more costly ML errors (FPs vs FNs), depending on the task and end-

user needs. This also allows the introduction of early adoption approaches in high-risk 

environments: Especially in situations with low mental workload, sensitive and explainable ML 

systems can be deployed early, as FPs are better recognized and the risk of performance 

degradation and loss of trust is significantly reduced. Ultimately, the study provides a blueprint 

for developing an explainable ML-based cockpit system that can assist pilots in detecting other 

aircraft, and whose design can be used by organizations and decision makers in the general 

aviation field. The increasing level of autonomy of ML systems (e.g., Berente et al., 2021; McNeese 

et al., 2018) also enables collaboration with non-experts. Paper D presents DRs and DPs for the 

design of an artifact for human-autonomy teaming in the aviation industry and involves non-

experts as a user group in an iterative design process. The findings inform ML developers and 

organizations that want to deploy ML systems in collaboration with non-experts about how to 

adapt approaches to improve explainability depending on the user group and level of autonomy. 

Furthermore, the DRs and DPs address the acceptance problems in the ML field (e.g., Pumplun et 

al., 2021; Seeber et al., 2020) and show how the design of an artifact can be leveraged as an 

acceptance-promoting interface between humans and ML systems. In addition, paper E provides 

practical suggestions for effective human-ML system collaboration and demonstrates that people 

rate the perceived value of collaboratively generated content significantly higher when a lot of 

personal effort is invested in the collaboration. The study also finds a significantly higher WTP for 

ML systems that require a high amount of personal effort on the part of the user to collaborate. 

Providers of ML systems and services can use these insights to develop new collaboration 

strategies that increase their customers’ WTP. Moreover, the study shows that organizations 

should use ML systems for task areas that require collaborative work to improve the valuation of 

the created solutions. This approach may also be advantageous over an automation approach in 

some areas. 

Overall, the papers in this dissertation provide practical guidance on how to design ML systems 

so that both humans and ML systems can learn from each other in collaboration. The approaches 
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presented, especially from the XAI domain, allow human decision makers to benefit from the 

collaboration and facilitate the development of low-risk early adoption strategies for ML systems. 

8.3 Concluding Remarks 

The deployment of ML systems in high-risk areas has the potential to support human decision 

makers in a variety of complex tasks to improve decision performance. However, it is essential to 

deepen the understanding of the mutual influence between ML systems and human decision 

makers in order to implement effective collaboration (e.g., Abdel-Karim et al., 2023; Gaube et al., 

2023; Jussupow et al., 2021; Lebovitz et al., 2021; Maedche et al., 2019; Pumplun et al., 2023; 

Seeber et al., 2020). This dissertation includes a mixed-methods study, two qualitative DSR 

studies, and two quantitative online experiments in the contexts of healthcare, aviation, and 

industry 4.0 to investigate the potentials and risks that arise in the collaboration between humans 

and ML systems. A key objective is to explore the potential for mutual learning to enhance the 

capabilities and skills of both parties in the collaboration. In this context, approaches from the XAI 

field are examined, and the developed design frameworks provide guidance for incorporating the 

findings on learning potential, the influence of explainability, and occurring cognitive biases 

advantageously in the design of ML systems and in their collaboration with humans. In addition 

to identifying learning potential, the study also shows how XAI approaches can significantly 

reduce the risks posed to human decision making by the unique characteristics of ML systems, 

such as inscrutability and opacity (Asatiani et al., 2021; Berente et al., 2021; Lebovitz et al., 2022). 

Based on the findings, avenues for future research can be derived. While the papers already 

present specific suggestions for future research, overarching directives for future research for the 

three perspectives considered in this dissertation are outlined in the following. First, the human 

perspective (RQ1) shows that humans can learn from ML systems and that explanations from the 

XAI field can improve learning outcomes and prevent false learning. Future research can build on 

these findings to expand our understanding of the potential of XAI approaches for end users and 

to develop concrete design guidelines for explanations that promote human learning. While 

papers A and C provide local explanations for end users such as radiologists and pilots to improve 

explainability, future research should also incorporate global and model explanations (Pumplun 

et al., 2023; Rai et al., 2019). The development of design guidelines for XAI approaches should also 

take into account the area of application and the user’s prior knowledge, and explore how the 

collaboration experience can be customized for the end user’s individual learning needs. 

Ultimately, insights into the influence of ML systems and their explainability on cognitive 

processes in decision making need to be expanded (Abdel-Karim et al., 2023; Bauer, Hinz, et al., 

2021). The experiments on human learning in this dissertation focus primarily on the influence 
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on short-term memory. Future research should build on this to investigate the influence of long-

term collaboration with ML systems in this context. 

Second, from an ML system perspective (RQ2), a holistic approach was presented that identifies 

challenges and associated DPs for all phases of the ML system development process to enable 

long-term deployment and maintenance of ML systems that can learn from humans and their 

environment. This approach shows that human-in-the-loop concepts (e.g., Grønsund & Aanestad, 

2020; Seidel et al., 2018) should be expanded, as the prerequisites for flexible adaptability in 

deployment must be created in the early development stages of systems, and current concepts 

that focus exclusively on ongoing operations fall short. Furthermore, it is important for future 

research to investigate how human problem perception changes and how dynamic changes in the 

ML system environment affect system performance, in order to define future system 

requirements more proactively. In addition, the future design of interfaces will be central to 

informing human decision makers about changes that may affect system performance, and 

enabling them to provide continuous feedback to ML systems in the context of collaboration. 

From a collaborative perspective (RQ3), it was shown that ML errors can lead to performance and 

trust losses on the part of the human decision maker. Although explainable output design can 

mitigate these effects, it is important to develop strategies for rebuilding trust after an ML system 

error and to explain what led to the error. In addition, appropriate measures should be derived 

that enable humans and ML systems to learn from each other’s occasional incorrect decisions. 

Furthermore, the mental workload of end users should be increasingly taken into account in the 

development of explainable ML systems and in the selection of suitable use cases in organizations. 

IS researchers should investigate what types and complexities of tasks are suitable for 

collaboration with ML systems, and how and what kind of explanations for the output can be 

provided without overburdening the decision maker. How to adapt and provide explanations for 

ML performance depending on the situation should also be explored in future research. Moreover, 

non-experts, who will increasingly use ML systems without domain or ML knowledge in the 

coming years, should also be considered as an end-user group. Finally, this dissertation shows 

that cognitive biases affect not only the collaboration with ML systems, but also the valuation of 

jointly generated solutions. Future research is needed to further explore the causes of these 

cognitive biases and how they can be beneficially incorporated into collaboration. 

In high-risk sectors, organizations often face challenges when adopting ML systems. In this 

dissertation, I aim to lay the groundwork for the safe and reliable deployment of this technology 

by deepening our understanding and promoting effective collaboration between humans and ML 

systems. In particular, I want to highlight the significant benefits that explainable ML systems offer 

to end users. It is my intention that this work will inspire further research into the role of 
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explainability as a catalyst for the wider adoption of ML systems, ensuring that these technologies 

not only meet technical expectations, but are also closely aligned with end-user needs.
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