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Abstract 

In today’s world, artificial intelligence (AI) permeates almost all areas of human life. Modern AI 

supports us both in our leisure time (e.g., built into applications on our smartphones that 

recommend music we may like, recognize people in pictures, or act as digital assistants) and in 

our work (e.g., by automating tasks or creating analyses, predictions, or almost perfectly 

formulated texts). For organizations, AI, particularly instances of AI built with the data-based 

learning approach of machine learning (ML), also unlocks entirely new possibilities. Such ML 

systems can, for instance, be integrated into organizational processes to achieve efficiency gains 

by automating (parts of) tasks or to elevate decision-making quality by provisioning information. 

Furthermore, as the examples above illustrate, ML also enables the creation of novel kinds of 

products and services. The associated entrepreneurial opportunities unveiled by the latest 

technological advancements in the field of ML are correspondingly diverse and numerous, 

offering enormous potential for exploitation through suitable business models. A business model 

is an activity system that illustrates the logic of how an organization conducts business, i.e., how 

it creates value through the creation of its products and services, how it delivers this value to its 

customers, and how it ultimately captures value for itself, e.g., in the form of profits. 

However, at the same time, the challenges that accompany the integration of ML into the business 

models of organizations exhibit similar diversity and also differ from those posed by other digital 

technologies. Therefore, the existing literature underscores that organizations wishing to harness 

the power of ML to drive their business models must carefully consider the peculiarities of the 

technology to be able to benefit in the long term. Yet, the state of existing research on the actual 

implementation of the various facets of ML-driven business models is sparse and lacks insights 

into their alignment with the particularities of ML. To expand this understanding in both academia 

and practice, this dissertation incorporates five papers that successively investigate ML-driven 

business models along the three business model dimensions of value creation, value delivery, and 

value capture. It examines both the ML-induced challenges that arise in each of these dimensions 

and the opportunities unlocked by ML, elaborating on their influences on the business logic of 

organizations from the perspective of the respective dimension of the business model. 

First, two studies address the dimension of ML-driven value creation. The creation of ML systems 

requires experts from various disciplines to collectively reflect on the organization’s existing 

knowledge (e.g., when making sense of data), which can lead to the creation of additional 

knowledge (e.g., through insights into inefficiencies in routines). Moreover, their data-based 

learning enables ML systems to generate knowledge in a way that complements the strengths of 

humans and thus to uniquely contribute to knowledge creation and revision in organizations. 

Existing literature on organizational learning hence regards productive ML systems as a new type 

of learner alongside humans. Yet, the potential for learning during ML development efforts, which 

include interactions of interdisciplinary groups of experts and (prototypical) ML systems, has to 

date remained largely unexplored. The first associated study therefore illuminates the beneficial 

learning processes that the creation of ML systems can stimulate. It also highlights the resulting 
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human knowledge as a valuable additional by-product that can contribute to the knowledge base 

of the organization and thus to its long-term success. The second study examines a downside of 

the data-based learning approach of ML: the need for extensive experimentation during ML 

development. This runs counter to the demand of conventional business processes for efficiency 

and exploiting existing strengths, and organizations must allocate their limited resources between 

the two approaches, creating tensions during ML development that can take various forms in 

different structural approaches. Building on the theoretical foundation of organizational 

ambidexterity, the study identifies these tensions and corresponding tactics that organizations 

can employ to alleviate the tensions, depending on their manifestation, and facilitate ML-driven 

value creation. 

Next, the dissertation discusses the second dimension, ML-driven value delivery. A particular 

problem in this context is that ML systems are often highly complex, making them and their 

outputs incomprehensible to humans. If they cannot use them due to a lack of understanding, 

customers of ML-driven business models may thus fail to benefit from the value the business 

model intends to deliver (i.e., the ML system or its outputs). Therefore, the literature on 

explainable AI contains approaches that can provide users of ML systems with explanations that 

disclose their inner workings and the reasoning behind their decisions. Yet, thus far, these 

approaches have lacked a focus on distinct user groups and their specific requirements of the 

system. Especially lay users have often been neglected in previous studies. However, fostering the 

lay users’ understanding is critical if they are to incorporate the output of ML systems in their 

decision-making to benefit from the products and services of ML-driven business models. Hence, 

the third study in this dissertation follows a design science research process and presents an 

approach to elaborate the requirements specific to the users of ML systems. On this basis, the 

study further derives design principles for designing ML systems that provide user-centric 

explanations and thereby enhance value delivery. 

Finally, two more studies shed light on the third dimension of ML-driven value capture. In pursuit 

of their own goals, organizations must align all components of their business model to enable the 

capture of value, e.g., the reaping of profits from their business model in the long term. Only 

creating valuable solutions and supplying them to customers does not guarantee value capture 

for the organization, as the decade-long search of Twitter (now X) for a suitable way to profit from 

its unique offering and massive user base illustrates. With the current literature yielding little 

clarity on the nature of ML-driven business models, the fourth study in this dissertation aims to 

create a fundamental understanding of the business model components that organizations must 

align for successful value capture. Specifically, the resulting taxonomy offers insights into the 

components of ML-driven business models and is supplemented by archetypes that represent 

structural compositions of ML-driven business models commonly found in practice. Building on 

these findings, the fifth study investigates the question of how organizations seeking to profit from 

ML-driven business models can successfully realize them, which is under-researched in today’s 

scientific literature as well. Realizing business models is an inherently dynamic and iterative 

process. In the case of ML-driven business models, the particularities of ML systems further 

complicate the effort, due (for instance) to the additional uncertainty stemming from the 

experimental character of ML development. Therefore, the study shows that organizations must 

build dynamic capabilities to be able to successfully realize ML-driven business models in the long 

term. Moreover, the study develops microfoundations (e.g., practices or processes) that empower 

the creation of the necessary dynamic capabilities, consequently contributing to the 

understanding of how organizations can successfully capture value sustainably from their ML-

driven business models. 
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The studies within this dissertation illustrate that organizations must consider the unique 

characteristics of ML when designing and implementing their ML-driven business models to 

achieve sustainable success. Specifically, they show that the effects of ML particularities, such as 

the need for extensive experimentation in ML development, can manifest themselves in all three 

dimensions of the business model and can be both inhibiting (e.g., through additional uncertainty 

in the realization of the business model) and value-adding (e.g., through stimulated learning 

processes). The studies further delineate how organizations can take these influences into 

account through appropriate responses. This dissertation thus represents an important step 

toward a holistic understanding of ML-driven business models, emphasizes the value of the 

business model perspective for investigating the influence of ML on the business logic of 

organizations, and yields contributions to strategic management, entrepreneurship, and 

information systems literature. Thereby, it provides fertile ground for future examinations of ML-

driven value creation, value delivery, and value capture against the backdrop of the high-level 

technological and entrepreneurial dynamism in the field of ML. 
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Abstract (German version) 

Nahezu alle Bereiche des menschlichen Lebens sind inzwischen von künstlicher Intelligenz (KI) 

durchdrungen. Moderne KI unterstützt uns sowohl in unserer Freizeit (z. B. in Form von 

Anwendungen auf unseren Smartphones, die uns Musik empfehlen, die uns gefallen könnte, die 

Personen auf Bildern erkennen, oder als digitale Assistenten fungieren), als auch bei unserer 

Arbeit (z. B. durch die Automatisierung von Aufgaben oder die Erstellung von Analysen, 

Vorhersagen, oder nahezu perfekt formulierten Texten). Für Organisationen eröffnet KI, 

insbesondere KI, die durch den datenbasierten Lernansatz des maschinellen Lernens (ML) 

geschaffen wird, ebenfalls gänzlich neue Möglichkeiten. So können solche ML-Systeme in 

Organisationsprozesse integriert werden, um Effizienzgewinne durch die autonome Erledigung 

von (Teilschritten von) Aufgaben zu realisieren oder die Qualität von Entscheidungen durch die 

Bereitstellung von Informationen zu verbessern. Darüber hinaus ermöglicht das ML jedoch auch 

die Erstellung völlig neuartiger Produkte und Dienstleistungen, wie die obigen Beispiele zeigen. 

Die unternehmerischen Chancen, die die jüngsten technologischen Entwicklungen im Bereich des 

MLs ermöglichen, sind dementsprechend vielfältig und zahlreich, und bieten ein enormes 

Potenzial für die Erschließung durch geeignete Geschäftsmodelle. Ein Geschäftsmodell wird dabei 

als ein System von Aktivitäten verstanden, welches die Logik veranschaulicht, wie eine 

Organisation ihre Geschäftstätigkeit ausübt, d. h. wie sie durch die Herstellung ihrer Produkte und 

Dienstleistungen Wert schöpft, wie sie diesen Wert an ihre Kunden liefert und wie sie letztlich 

Wert für sich selbst erfasst, z. B. in Form von Gewinnen. 

Gleichzeitig weisen aber die Herausforderungen, die mit der Integration von ML in die 

Geschäftsmodelle von Organisationen einhergehen, eine ähnliche Vielfalt auf und unterscheiden 

sich zudem von denen, die andere digitale Technologien mit sich bringen. Die existierende 

Literatur unterstreicht daher, dass Organisationen, die die Kraft des MLs als Antrieb für ihre 

Geschäftsmodelle nutzen möchten, die Eigenheiten der Technologie sorgsam berücksichtigen 

müssen, um langfristig profitieren zu können. Der Stand bestehender Forschung zur tatsächlichen 

Umsetzung der verschiedenen Facetten ML-getriebener Geschäftsmodelle ist jedoch spärlich und 

mangelt an Erkenntnissen zu deren Ausrichtung auf die Besonderheiten von ML. Um dieses 

Verständnis sowohl in der Wissenschaft als auch in der Praxis auszubauen, werden in dieser 

Dissertation in fünf Beiträgen ML-getriebene Geschäftsmodelle sukzessive entlang der drei 

Geschäftsmodell-Dimensionen Wertschöpfung, Wertlieferung, und Werterfassung untersucht. 

Dabei werden sowohl die ML-induzierten Herausforderungen, die in jeder dieser drei 

Dimensionen auftreten, als auch die von ML eröffneten Möglichkeiten betrachtet und deren 

Einfluss auf die Geschäftslogik von Organisationen aus der Perspektive der jeweiligen 

Geschäftsmodell-Dimension herausgearbeitet. 

Die vorliegende Dissertation befasst sich in zwei Studien zunächst mit der Dimension der ML-

getriebenen Wertschöpfung. Die Erstellung von ML-Systemen erfordert, dass Experten aus 

verschiedenen Disziplinen gemeinsam über vorhandenes Wissen der Organisation reflektieren 

(z. B. bei der Auswertung von Daten), was zur Erzeugung von zusätzlichem Wissen führen kann 
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(z. B. durch Erkenntnisse über Ineffizienzen in Routinen). Darüber hinaus können ML-Systeme 

durch ihr datenbasiertes Lernen auch Wissen auf eine Art und Weise generieren, die 

komplementär zu den Stärken von Menschen ist, und so zur Schaffung und Revision von Wissen 

in Organisationen beitragen. Während in der bestehenden Literatur über organisationales Lernen 

produktive ML-Systeme deshalb als neue Art Lerner neben dem Menschen angesehen werden, ist 

potenzielles Lernen während der ML-Entwicklung, welche Interaktionen von interdisziplinären 

Expertengruppen und (prototypischen) ML-Systemen umfasst, bislang weitgehend unerforscht 

geblieben. Die erste zugehörige Studie betrachtet daher die vorteilhaften Lernprozesse, die 

während der Erstellung von ML-Systemen angeregt werden können. Sie hebt weiterhin das 

daraus entstehende menschliche Wissen als wertvolles, zusätzliches Nebenprodukt hervor, 

welches zur Wissensbasis der Organisation und damit zu ihrem langfristigen Erfolg beitragen 

kann. Die zweite Studie beschäftigt sich mit einem Nachteil des datenbasierten Lernansatzes von 

ML: dem Bedarf nach umfangreichem Experimentieren während der ML-Entwicklung. Da dieser 

dem Bedarf konventioneller Geschäftsprozesse nach Effizienz und Ausnutzung vorhandener 

Stärken entgegensteht und Organisationen ihre limitierten Ressourcen zwischen den beiden 

Ansätzen aufteilen müssen, erzeugt er Spannungen während der ML-Entwicklung, die sich in 

verschiedenen strukturellen Ansätzen unterschiedlich ausbilden können. Die auf der 

theoretischen Grundlage der organisationalen Ambidextrie aufbauende Studie identifiziert diese 

Spannungen und führt zugehörige Taktiken an, die Organisationen anwenden können, um die 

Spannungen je nach Ausprägung zu mildern und die ML-getriebene Wertschöpfung zu 

erleichtern. 

Im Anschluss wird die Dimension der ML-getriebenen Wertlieferung diskutiert. Besonders 

problematisch ist in diesem Kontext, dass ML-Systeme häufig hochkomplex und somit die 

Systeme und ihre Ausgaben für Menschen unverständlich sind. Kunden von ML-getriebenen 

Geschäftsmodellen können deshalb Schwierigkeiten haben, einen Vorteil aus dem Wert (d. h. dem 

ML-System oder seinen Ausgaben) zu ziehen, den das Geschäftsmodell zu liefern beabsichtigt, 

wenn sie diesen aus mangelndem Verständnis nicht verwenden können. In der Literatur finden 

sich daher Ansätze der erklärbaren KI, die verwendet werden können, um Nutzende von ML-

Systemen mit Erklärungen auszustatten, die deren Funktionsweise und Begründungen für ihre 

Entscheidungen offenlegen. Allerdings mangelt es diesen Ansätzen bislang an Fokus auf 

verschiedene Gruppen an Nutzenden und deren individuelle Anforderungen an das System. 

Insbesondere Laien wurden in bisherigen Studien häufig vernachlässigt. Die Förderung des 

Verständnisses von Laien ist jedoch von entscheidender Bedeutung, wenn diese die Ausgabe von 

ML-Systemen in ihre Entscheidungsfindung einbeziehen und so von den Produkten und 

Dienstleistungen ML-getriebener Geschäftsmodelle profitieren sollen. Die dritte Studie in dieser 

Dissertation folgt daher einem designwissenschaftlichen Forschungsprozess und stellt einen 

Ansatz vor, die Anforderungen der Nutzenden von ML-Systemen gezielt herauszuarbeiten. Darauf 

basierend werden zudem Designprinzipien für die Gestaltung von ML-Systemen abgeleitet, die 

den Nutzenden maßgeschneiderte Erklärungen bereitstellen und somit die Wertlieferung 

fördern. 

Schließlich beleuchten zwei weitere Studien die Dimension der ML-getriebenen Werterfassung. 

Im Streben nach ihren eigenen Zielen müssen Organisationen alle Komponenten ihres 

Geschäftsmodells so ausrichten, dass sie die Erfassung von Wert, wie z. B. das langfristige Erzielen 

von Gewinnen aus ihrem Geschäftsmodell, ermöglichen. Die Entwicklung wertvoller Lösungen 

und deren Bereitstellung für Kunden garantiert keine Werterfassung für die Organisation selbst, 

wie die jahrzehntelange Suche von Twitter (jetzt X) nach einem geeigneten Weg, Gewinne aus 

seinem einzigartigen Angebot und seiner riesigen Basis an Nutzenden zu erzielen, verdeutlicht. 
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Da in der derzeitigen Literatur jedoch noch wenig Klarheit über die Beschaffenheit von ML-

getriebenen Geschäftsmodellen herrscht, soll in der vierten Studie dieser Dissertation ein 

grundlegendes Verständnis für die Geschäftsmodellkomponenten geschaffen werden, welche 

Organisationen für die erfolgreiche Werterfassung ausrichten müssen. Konkret bietet die 

resultierende Taxonomie Einblicke in die Komponenten von ML-getriebenen Geschäftsmodellen 

und wird durch Archetypen ergänzt, die häufig in der Praxis anzutreffende strukturelle 

Kompositionen von ML-getriebenen Geschäftsmodellen darstellen. Darauf aufbauend befasst sich 

die fünfte Studie mit der ebenfalls in der aktuellen wissenschaftlichen Literatur noch 

unzureichend erforschten Frage, wie Organisationen, die von ML-getriebenen Geschäftsmodellen 

profitieren möchten, diese erfolgreich realisieren können. Die Realisierung von 

Geschäftsmodellen ist ein inhärent dynamischer und iterativer Prozess. Im Fall von ML-

getriebenen Geschäftsmodellen wird dieser durch die Besonderheiten von ML-Systemen weiter 

erschwert, beispielsweise durch zusätzliche Ungewissheit, die sich aus dem experimentellen 

Charakter der ML-Entwicklung ergibt. Die Untersuchung zeigt, dass Organisationen daher 

dynamische Fähigkeiten aufbauen müssen, um ML-getriebene Geschäftsmodelle dennoch 

langfristig erfolgreich realisieren zu können. Darüber hinaus werden Mikrofundamente (z. B. 

Praktiken oder Prozesse) erarbeitet, welche den Aufbau der notwendigen dynamischen 

Fähigkeiten ermöglichen, und folglich zum Verständnis beigetragen, wie Organisationen 

nachhaltig erfolgreich Wert aus ihren ML-getriebenen Geschäftsmodellen erfassen können. 

Die in dieser Dissertation enthaltenen Studien verdeutlichen, dass Organisationen bei der 

Konzeption und Umsetzung ihrer ML-getriebenen Geschäftsmodelle für deren nachhaltigen 

Erfolg die einzigartigen Besonderheiten von ML berücksichtigen müssen. Sie zeigen dabei 

insbesondere auf, dass sich die Auswirkungen von ML-Besonderheiten, wie z. B. die 

Notwendigkeit umfangreicher Experimente in der ML-Entwicklung, in allen drei Dimensionen des 

Geschäftsmodells manifestieren, und dabei sowohl hemmend (z. B. durch zusätzliche 

Ungewissheit bei Realisierung des Geschäftsmodells), als auch wertstiftend auftreten können 

(z. B. durch angestoßene Lernprozesse). Die Studien erläutern außerdem, wie Organisationen 

diesen Einflüssen durch entsprechende Maßnahmen Rechnung tragen können. Diese Dissertation 

stellt somit einen wichtigen Schritt in Richtung eines ganzheitlichen Verständnisses von ML-

getriebenen Geschäftsmodellen dar, unterstreicht den Wert der Geschäftsmodellperspektive für 

Untersuchungen von ML-Einflüssen auf die Geschäftslogik von Organisationen, und liefert 

Beiträge zur Literatur in den Bereichen Strategic Management, Entrepreneurship, und 

Information Systems. Sie bietet damit einen fruchtbaren Boden für zukünftige Untersuchungen 

der ML-getriebenen Wertschöpfung, Wertlieferung, und Werterfassung vor dem Hintergrund der 

hohen technologischen und unternehmerischen Dynamik im Feld des MLs. 
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1 Introduction 

The creation of modern marvels such as self-driving vehicles, smartphones recognizing their 

owners’ faces, radiology tools that detect brain tumors in medical imaging, and digital assistants 

that can converse with humans in natural language have recently been made possible through the 

use of contemporary artificial intelligence (AI; e.g., Berente et al., 2021; Lebovitz et al., 2021; Stone 

et al., 2016). Machine learning (ML) in particular has enabled many of the radical innovations that 

increasingly find their way into both our work and personal lives (e.g., Benbya et al., 2020b; 

Berente et al., 2021; Lyytinen et al., 2021; Yoo, 2010). ML denotes a set of techniques for creating 

instances of AI by letting algorithms autonomously abstract patterns from relationships in data, 

and then use these patterns to make predictions for new data (e.g., Brynjolfsson & Mitchell, 2017; 

Mitchell, 1997; Russell & Norvig, 2021). We interact with systems created with ML when we use 

navigation software that helps us circumvent a currently forming traffic jam, when we analyze 

ML-generated weather forecasts or sales predictions for the upcoming month, or when we ask 

ChatGPT to create a few images of conversing robots for a work presentation. With these examples 

only scratching the surface of the ways in which ML systems can assist in value-adding activities 

or even automate processes (Jordan & Mitchell, 2015), organizations developing and exploiting 

the unique capabilities of ML systems may thus stand to profit immensely. 

1.1 Overarching Motivation 

ML systems not only possess unique capabilities for use in a variety of scenarios to improve an 

organization’s performance, e.g., by automating (parts of) processes or helping human experts 

make better decisions, but also unlock a plethora of entrepreneurial opportunities to offer novel 

products and services (e.g., Benbya et al., 2021; Chalmers et al., 2021; Davenport et al., 2020; 

Obschonka & Audretsch, 2020). In this regard, ML holds enormous potential for organizations to 

capitalize on, by either integrating ML into their existing business models to ideally exploit the 

strengths of the technology, or developing novel, unprecedented business models with ML at their 

core (e.g., Chalmers et al., 2021; Davenport et al., 2020; Townsend & Hunt, 2019). Some 

organizations do this with great success, whether by deeply embedding the technology into their 

internal processes, such as Uber in its software for managing drivers autonomously (Uber, 2024), 

by ubiquitously using the technology in almost all parts of their organization, such as Google 

(Burr, 2023), or by offering ML-based products and services, such as OpenAI with ChatGPT 

(OpenAI, 2022) or the German ML-based translation start-up DeepL, which, through its latest 

funding round, has recently reached a company valuation of over €1 billion and thus start-up 

unicorn status (DeepL, 2023). However, not all organizations see their ML endeavors succeed. On 

the contrary, many organizations fail to develop and deploy suitable ML systems or achieve 

business gains from their efforts (Gartner, 2024; Ransbotham et al., 2019). Yet, literature 

investigating the underlying reasons for stark contrasts in the success of organizations trying to 

realize business models employing ML systems remains scarce (e.g., Lange et al., 2021; Weber et 

al., 2022). To address this lack of research, this dissertation examines both the factors that make 
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ML endeavors unique as well as the business logic explicating the success of ML-infused 

organizations, providing guidance for scholars and practitioners alike. 

To this end, I argue that the business model view poses a suitable perspective from which to 

dissect the numerous influences that ML systems exert on organizations seeking to integrate them 

into their core business, as well as the organizations’ responses to these influences. In short, the 

business model concept describes the business logic of an organization, ranging from how the 

organization creates value through its products and services, through how it delivers value to its 

clients, to how it captures value for itself, e.g., in the form of profits, to pursue its goals and ensure 

its long-term survival (e.g., Osterwalder & Pigneur, 2010; Teece, 2010). Business model research 

is interdisciplinary in nature, spanning the strategic management, entrepreneurship, and 

information systems (IS) literatures (e.g., Steininger, 2019). In IS research in particular, the 

business model concept is seen as a “missing link” between strategy, processes, and information 

technology (IT; Veit et al., 2014). As such, it is often used to understand IT-induced changes in 

how organizations create, deliver, and capture value (e.g., Hartmann et al., 2016; Remane et al., 

2016). Regarding the topic at hand, when ML systems play a vital role in an organization’s 

business model, this dissertation conceptualizes it as an ML-driven business model (see Sections 

2.3, 6.2.1, and 7.2.1). Chapter 2 further elaborates on the business model perspective and its 

suitability for investigating the influence of ML on the business logic of organizations. 

The holistic approach of the business model perspective in regarding business value is 

particularly advantageous, as ML systems come with challenges that can permeate almost all parts 

of organizations implementing ML-driven business models and which differ from those of other 

digital technologies (e.g., Benbya et al., 2021; Berente et al., 2021). For instance, while the data-

based learning approach of ML systems empowers them with the capabilities to realize the 

aforementioned use cases and many more, it poses novel requirements for their successful 

development that organizations must meet (e.g., Amershi et al., 2019; Choudhury et al., 2021). 

Such unique challenges for ML-driven business models emerge in a variety of facets both within 

and external to the organization and pertain to such aspects as ethics, trust, security, labor, and 

business strategy (e.g., Faraj et al., 2018; Kellogg et al., 2020; Martin, 2019a; Stone et al., 2016). 

For example, as the patterns saved within ML systems are often incomprehensible to humans, 

relying on the system’s output could lead to organizations unwittingly targeting their advertising 

on the basis of a consumer’s medical condition, or excluding a candidate from employment 

decisions due to marital status (e.g., Asatiani et al., 2021; Martin, 2019a). Moreover, such issues 

can be exacerbated when the degree of agency of ML systems is increased, for instance, when 

shifting the locus of managerial control to ML, as in the case of Uber letting their ML-powered app 

manage and direct its enormous fleet of human drivers (e.g., Kellogg et al., 2020; Möhlmann et al., 

2021; Wiener et al., 2023). The next section delineates how the combination of ML-induced 

challenges and novel opportunities can affect different aspects of ML-driven business models, 

motivating the studies within this dissertation. Chapter 2 further expounds on the particularities 

of ML systems in the organizational context, and particularly on the need to revisit the business 

logic underlying ML-driven value creation, delivery, and capture. 

1.2 Research Questions 

For the purposes of this dissertation, the various investigated beneficial and obstructive effects of 

ML systems on the business logic of ML-infused organizations are categorized into three 

dimensions, namely, value creation, value delivery, and value capture. Notably, these three 

dimensions of the business model (see Section 2.2) are not neatly distinguishable from each other. 
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On the contrary, in a well-functioning business model, all three dimensions are inherently and 

inseparably interlinked, forming a coherent storyline explaining how the organization creates 

value, delivers it to customers, and ultimately captures value from its efforts (e.g., Al-Debei & 

Avison, 2010; Burström et al., 2021; Massa et al., 2017; Zott et al., 2011). These interdependencies 

become especially transparent in the examination of value capture, as an organization’s 

possibilities for generating revenue and profits largely depend on how it has configured the other 

components of its business model (e.g., Teece, 2010; Tidhar & Eisenhardt, 2020). Therefore, the 

three dimensions are not to be viewed as strictly separable, but instead as three interconnected 

focal sides from which to understand the logic underneath ML-driven value creation, value 

delivery, and value capture, respectively. 

First, regarding value creation, while responsible for many of ML’s strengths, the data-based 

learning approach of ML systems also complicates their creation. In particular, building ML 

systems requires not only ML-specific resources and expertise, but also new working practices 

that are specifically adapted to accommodate data-based learning, for instance, through fostering 

fast and iterative experimentation (e.g., Amershi et al., 2019; Baier et al., 2019; Choudhury et al., 

2021). Organizations must therefore take these difficulties into account when seeking to create 

value by developing ML systems. Yet, with many organizations currently ill-equipped to meet 

these demands, they may decide to reduce their investments into developing ML systems, for fear 

of wasting their valuable resources (e.g., Pumplun et al., 2019; Ransbotham et al., 2020; Sculley et 

al., 2015). This may prove to be a fatal fallacy, however, as recent research indicates that the 

learning performed by ML systems may also act as source of knowledge, stimulating learning 

processes in the organization (e.g., Argote et al., 2021; Balasubramanian et al., 2022; Sturm et al., 

2021b). ML development further requires experts from various disciplines to engage with their 

existing knowledge (e.g., Studer et al., 2021), e.g., when evaluating the collected data, who may 

thereby unearth new knowledge, e.g., by finding inefficiencies in their routines. Therefore, 

organizations evaluating their ML development efforts may be well advised to consider learning 

processes generating knowledge as a valuable by-product of ML-driven value creation that can 

contribute to their organizational learning and thus their long-term performance (e.g., Argote et 

al., 2021; March, 1991). To scrutinize these ML-induced influences, I ask: 

Research question 1 (RQ1): How do organizations create value, despite ML-induced difficulties, 

while exploiting the capabilities of ML in ML-driven business models? 

Second, concerning value delivery, a major obstacle to the successful provision of value generated 

with ML to the customer is the aforementioned difficulty of humans to understand the ML system 

and their outcomes. This incomprehensibility stems largely from the complexity of modern ML 

systems and can diminish or entirely negate the benefit they can convey to customers who do not 

want to use systems they do not understand (e.g., Asatiani et al., 2021; Barredo Arrieta et al., 2020; 

Faraj et al., 2018). Coupled with the fact that ML systems can sometimes create unexpected results 

that may lead to undesired outcomes (e.g., Benbya et al., 2020b; Benbya et al., 2021), organizations 

must find ways to ensure that their clients can leverage the potential value of their ML systems. 

To this end, organizations can utilize explainable AI (XAI) approaches to foster their ML system’s 

ability to disclose its inner workings and the reasoning leading to its decisions (e.g., Ågerfalk, 

2020; Rai, 2020; Rudin, 2019). To examine how organizations can incorporate XAI to ensure that 

their clients can benefit from the ML systems they provide, I ask: 

Research question 2 (RQ2): How do organizations deliver value by providing explanations for 

inherently incomprehensible ML systems and their output in ML-driven business models? 
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Third, with regard to value capture, organizations seeking to create and maintain competitive 

advantage and ultimately profit from ML systems must align all components of their ML-driven 

business model, to allow for their intended avenue for capturing value (e.g., Burström et al., 2021; 

Teece, 2010; Zott et al., 2011). However, the design of these components and their alignment 

proves difficult, with limited research available to offer guidance (Burström et al., 2021; Weber et 

al., 2022). As ML comes with capabilities and challenges unique to the technology (e.g., Benbya et 

al., 2021; Berente et al., 2021), the composition of ML-driven business models may consequently 

differ from other IT-related business models as well, thus meriting re-examination. Furthermore, 

the realization of successful business models has always been a difficult, multi-faceted, and 

iterative process (e.g., Schoemaker et al., 2018; Teece, 2018), and the particularities of ML may 

further complicate such endeavors, for instance, by adding another experimental component 

inherent in ML development (e.g., Choudhury et al., 2021; Studer et al., 2021). To investigate how 

organizations can nevertheless profit from ML-driven business models, I ask:  

Research question 3 (RQ3): How do organizations capture value by realizing ML-driven business 

models, and what constitutes these business models? 

1.3 Structure of this Dissertation 

To answer the RQs introduced above, this dissertation encompasses five research papers that 

peer-reviewed conference proceedings have published. This section summarizes the papers’ 

research approaches and contributions and illustrates the overall structure of the dissertation. 

Table 1 displays all five papers, which are referred to as papers A, B, C, D, and E throughout the 

dissertation. Paper A contributes to answering RQ1 by scrutinizing the learning processes that 

can occur when organizations develop ML systems. It thereby highlights the additional value that 

the resulting knowledge gains of the involved domain experts, acquired through learning 

processes stimulated during ML development, can bring to the organization. Paper B 

complements the contribution to answering RQ1 by illuminating how the requirements of ML 

development for extensive experimentation uniquely complicate ML-driven value creation. It 

further provides suitable tactics that enable organizations to satisfy the demands of ML for 

experimentation under the consideration of strategic choices, particularly regarding the 

organization’s structural set-up for ML development. Paper C proceeds to the topic of ML-driven 

value delivery (RQ2) with an examination of how organizations ensure that their customers can 

benefit from the potential value they aim to provide through their ML systems. Specifically, the 

paper studies how organizations can design their ML systems for this purpose by equipping them 

with explanations for the system’s behavior and its output that are tailored specifically to the 

users of the system. Next, paper D contributes to RQ3 by first dissecting the structural 

composition of ML-driven business models through which organizations can seek to profit in the 

long term and then highlighting the ML-driven business models commonly employed in practice. 

To further explicate ML-driven value capture, paper E elaborates on the particularities of ML 

systems hindering the realization of business models and explores the capabilities that empower 

organizations to nevertheless successfully realize and ultimately profit from their ML-driven 

business model. 
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Table 1. List of Publications Included in This Dissertation. 

RQ1: 

Value 

Creation 

Paper A 

Vetter, Oliver A., Sturm, Timo, Fecho, Mariska, & Buxmann, Peter (2023). 

Machine learning developments as stimuli for organizational 

learning. Proceedings of the 44th International Conference on 

Information Systems (ICIS). 

VHB Rating1: A 

Paper B 

Vetter, Oliver A., Pumplun, Luisa, & Koppe, Timo (2023). An 

ambidextrous perspective on machine learning development and 

operation: The nexus of tensions, organizational structure, and 

tactics. Proceedings of the 27th Pacific Asia Conference on Information 

Systems (PACIS). 

VHB Rating: C 

RQ2: 

Value 

Delivery 

Paper C 

Vetter, Oliver A., & Efremov, Alexander (2023). A user-centric 

approach to explainable AI in corporate performance management. 

Proceedings of the 27th Pacific Asia Conference on Information Systems 

(PACIS). 

VHB Rating: C; Honored with Best Complete Paper Runner-Up Award 

RQ3: 

Value 

Capture 

Paper D 

Vetter, Oliver A., Hoffmann, Felix, Pumplun, Luisa, & Buxmann, Peter 

(2022). What constitutes a machine-learning-driven business 

model? A taxonomy of B2B start-ups with machine learning at their 

core. Proceedings of the 30th European Conference on Information 

Systems (ECIS). 

VHB Rating: A 

Paper E 

Vetter, Oliver A., Mehler, Maren F., & Buxmann, Peter (2023). As much 

art as science – examining the realization of business models 

driven by machine learning through a dynamic capabilities 

perspective. Proceedings of the 31st European Conference on 

Information Systems (ECIS). 

VHB Rating: A 

 

These five studies are grounded on various theoretical foundations and employ several 

methodological approaches, for which Table 2 presents an overview. As little evidence exists on 

the topic of organizations realizing ML-driven business models to date, this dissertation relies 

heavily on explorative research approaches, which are particularly suitable for uncovering 

phenomena in areas of research largely uncharted thus far (e.g., Corbin & Strauss, 2015; Myers & 

Newman, 2007). More specifically, papers A, B, and E, are grounded in data from a plethora of 

interviews with industry experts knowledgeable on the respective focal subjects. In particular, 

semi-structured interview guidelines were employed for data collection, as they provide both 

guidance for the interviews and the freedom to improvise with spontaneous relevant questions, 

depending on the course the interview takes (Myers & Newman, 2007). In papers A and E, the 

 
1 The VHB Rating, published by the German Academic Association for Business Research (VHB), served as the preferred 

means of assessing the quality of research papers in my doctoral studies. Specifically, this dissertation refers to the 
VHB Publication Media Rating 2024, which constitutes the latest version of the rating at the time of writing. 
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collected data forms the basis for sense-making through qualitative content analysis (Hsieh & 

Shannon, 2005; Saldaña, 2015). For paper B, an ML-based analysis of the interview data 

complements a manual analysis, drawing methodological inspiration from computational 

grounded theory (e.g., Nelson, 2020). Paper C presents a design science study, well aligned with 

the goal of the investigation, to generate guidance on how organizations can design ML systems 

that address the need for explainability in practice (e.g., Gregor & Hevner, 2013). Finally, Paper D 

rounds out the insights on ML-driven business models with a taxonomy development approach, 

building on existing business model literature before integrating empirical data on ML-driven 

business models found in practice to specify and extend the taxonomy (Nickerson et al., 2013). 

Regarding their theoretical foundation, all papers discuss topics connected to ML-driven business 

models and are thus linked through the business model view, with paper E drawing on it and 

paper D adopting it as theoretical basis. Therefore, Section 2.2 describes the business model view 

in detail. Moreover, with business models encompassing a multitude of facets, and each paper 

illuminating a different one, they build on different theoretical foundations relevant to the 

research questions they are investigating. In particular, paper A is based on organizational 

learning, paper B on organizational ambidexterity, and paper E on dynamic capabilities. Section 

2.3 addresses the relevance of each of these theoretical foundations to the respective overarching 

research question, while elaborations on the theoretical foundations themselves appear in the 

respective papers.  

Table 2. Overview of Research Papers. 

Research Paper Research Approach Theoretical Foundation 

Paper A Qualitative content analysis Organizational learning 

Paper B ML-assisted content analysis Organizational ambidexterity 

Paper C Design science research - 

Paper D Taxonomy development Business model view 

Paper E Qualitative content analysis Dynamic capabilities 

 

Beyond the publications constituting this cumulative dissertation (see Table 1), I co-authored the 

following peer-reviewed papers during my doctoral studies at the Technical University of 

Darmstadt: 

• Fecho, Mariska, Wahl, Nihal, von Ahsen, Anette, & Vetter, Oliver A. (2024). Paving the way 

to a green future with artificial intelligence – exploring organizational adoption factors. 

Proceedings of the 57th Hawaii International Conference on System Sciences (HICSS), 821–

830. VHB Rating: B 

• Gräf, Miriam, Zöll, Anne, Wahl, Nihal, Ellenrieder, Sara, Hager, Florentina, Sturm, Timo, & 

Vetter, Oliver A. (2023). Designing the organizational metaverse for effective socialization. 

Proceedings of the 27th Pacific Asia Conference on Information Systems (PACIS). VHB 

Rating: C 

• Mehler, Maren F., & Vetter, Oliver A. (2023). How much are machine assistants worth? 

Willingness to pay for machine learning-based software testing. Proceedings of the 31st 

European Conference on Information Systems (ECIS). VHB Rating: A 
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All publications 2  included in this dissertation appear in Chapters 3 through 7. Furthermore, 

Chapter 2 defines important concepts and delineates the overarching theoretical background 

relevant to the dissertation as a whole. Finally, Chapter 8 contains the overarching contributions 

of this dissertation, avenues for future research, and concluding remarks.  

 

 
2 The papers have been slightly adapted from their originally published version to have a consistent layout throughout 

this dissertation. They are further written from the first-person plural (i.e., “we”) perspective, since co-authors 
contributed to each publication.  
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2 Research Context and Positioning of This Dissertation 

This chapter establishes the concepts that are fundamental to the five research papers that make 

up this cumulative dissertation. In particular, it details the terms “artificial intelligence,” 

specifically “machine learning,” and “business models,” and then elaborates on the need to revisit 

the value creation, value delivery, and value capture of organizations infused by ML.  

2.1 Artificial Intelligence and Machine Learning 

Many consider the origin of scholarly attention on artificial intelligence to be the 1955 proposal 

for the Dartmouth Summer Research Project on Artificial Intelligence, by McCarthy et al. (1955). 

The seminal conference on the topic one year later sparked a plethora of studies, as well as 

technological innovations in various fields such as education, healthcare, and transportation (e.g., 

Stone et al., 2016). However, despite the enormous amount of scientific literature to date, no 

universally agreed-upon definition of the term “artificial intelligence” exists, largely due to the 

challenge of defining what intelligence is (e.g., Russell & Norvig, 2021). Therefore, various 

research fields have brought forth definitions illuminating AI through different lenses. For 

instance, they may focus on the ability of AI to perform cognitive tasks similarly to humans (e.g., 

Benbya et al., 2020a; Brynjolfsson & Mitchell, 2017), or the ability to make sense of its 

environment by learning from data (e.g., Jordan & Mitchell, 2015; Castelvecchi, 2016). Russell and 

Norvig (2021) summarize AI as the study and creation of rational agents, i.e., agents aiming to 

attain the best expected outcome for a particular objective. Today, these agents may perform such 

tasks as perceiving, problem-solving, innovation, decision-making, or automating physical 

processes (e.g., Benbya et al., 2020a). AI’s performance in many of these tasks has been improving 

rapidly in recent years due to increasing availability of data and processing power, even 

overtaking human performance in some respects (e.g., Ågerfalk, 2020; Brynjolfsson & McAfee, 

2017). For instance, machines have become both better and faster at recognizing objects in 

images, and have also beaten the best human players of Go or poker (e.g., Brynjolfsson & McAfee, 

2017). 

Despite these outstanding achievements, today’s AI remains bound to the specific problem area it 

was developed for. Research distinguishes between this form of artificial narrow intelligence, 

which encompasses all instances of AI currently on the market, on the one hand, and artificial 

general intelligence (AGI) and artificial superintelligence on the other (e.g., Benbya et al., 2021). 

AGI denotes machines matching humans in general intelligence, including common sense and the 

ability to learn, reason, and plan. Scholars believe that once AGI exists, it might lead to the 

development of artificial superintelligence that far exceeds human performance and continually 

learns and improves, thus raising far-reaching ethical and philosophical arguments (Bostrom, 

2017). However, as the latter two categories remain theoretical, this dissertation focuses solely 

on the creation, delivery, and capture of value through narrow AI. The most popular technique for 

implementing instances of narrow AI is machine learning (e.g., Brynjolfsson & Mitchell, 2017; 

Jordan & Mitchell, 2015). While the early approaches to creating rule-based narrow AI, such as 



2 Research Context and Positioning of This Dissertation 9 

expert systems, required developers to hand-code desired behaviors into the machine, ML 

approaches allow systems to learn autonomously from given examples in the form of data (e.g., 

Russell & Norvig, 2021). ML algorithms achieve this capability by extracting patterns from 

datasets in a process called training, then storing the patterns in models for use in solving future 

instances of the given problem (e.g., Mitchell, 1997; Russell & Norvig, 2021). In this way, an ML 

algorithm might, for example, derive a rationale for predicting loan defaults from a dataset of past 

lending decisions, and save it in a model, e.g., a neural network. ML approaches that utilize models 

with multiple layers of computing elements (e.g., convolutional neural networks) are referred to 

as deep learning and often demand large amounts of data and processing power (e.g., Russell & 

Norvig, 2021). This category also encompasses generative AI, such as ChatGPT, GitHub Copilot, or 

DALL-E, which can be prompted to create new text, images, audio, or other media, and consists of 

deep learning models with billions of parameters (e.g., Benbya et al., 2024; Raisch & Fomina, 

2024). While the studies presented in this dissertation do not specifically consider generative AI, 

due to its recent emergence, I abstract their findings from specific types of ML to provide 

contributions across all forms of machine learning, which thus yield insights for generative AI as 

well. Moreover, as most contemporary instances of AI are based on ML (e.g., Brynjolfsson & 

Mitchell, 2017; Jordan & Mitchell, 2015), the term ML system denotes instances of AI implemented 

through the use of ML within this dissertation.  

The literature distinguishes three major types of ML (e.g., Mitchell, 1997; Russell & Norvig, 2021): 

supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, 

the ML algorithm is supplied with training data in the form of input-output pairs (i.e., labeled data) 

and derives a function that allows it to predict outputs from inputs. Unsupervised learning 

algorithms receive no information on the desired output (i.e., the labels), and derive patterns from 

the input without feedback. For example, while a supervised learning system might process a 

large labeled image dataset of pets and pastries to extract the patterns that allow it to recognize a 

puppy in an image, an unsupervised learning system could identify clusters of similar images 

within the same dataset without requiring the labels but would need a human to make sense of 

the clusters (e.g., Brynjolfsson & McAfee, 2017; Russell & Norvig, 2021). A reinforcement learning 

system gathers its own experience by interacting with a (real or simulated) environment and 

receiving rewards or punishments as outcomes of its actions. Then, aiming to maximize its 

rewards, it learns from this experience to inform future actions, for instance, learning which stock 

trades lead to gains, or which chess moves lead to victory (e.g., Dempster & Leemans, 2006; 

Russell & Norvig, 2021).  

ML enables the creation of IT systems with distinctive capabilities that can be of enormous value 

to individuals or organizations (e.g., Benbya et al., 2021; Brynjolfsson & McAfee, 2017; Jordan & 

Mitchell, 2015). Examples include the aforementioned image recognition systems for use in self-

driving cars, forecasting systems that predict the amount of electricity generated from renewable 

energies or future states of the stock market, as well as multi-purpose agents that can be 

interacted with in natural language like the modern marvels ChatGPT from OpenAI or Gemini 

from Google. Conversely, ML systems also exhibit some characteristics that differ from those of 

traditional, non-ML IT systems, which raise unique challenges for ML projects in organizations, 

affecting both the development of the systems and their implementation in the organization (e.g., 

Ågerfalk, 2020; Berente et al., 2021; Choudhury et al., 2021). As training ML systems involves 

them autonomously learning from the data they receive, the success of ML projects is often 

uncertain ex ante, and the development process entails a high degree of experimentation (e.g., in 

preparing suitable input data or adjusting model parameters; e.g., Amershi et al., 2019; Choudhury 

et al., 2021). While many types of non-ML IT systems benefit from agile development practices, 
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the extensive experimentation that ML development requires exacerbates the need for fast, 

iterative processes (e.g., Amershi et al., 2019; Studer et al., 2021). Additionally, ML systems in 

operation necessitate continuous maintenance to ensure their performance with current and 

future input data, causing the boundaries between ML development and operation to blur (e.g., 

Studer et al., 2021).  

Moreover, ML systems continue to pose challenges beyond their development that differ from 

those of traditional IT systems (e.g., Benbya et al., 2021; Berente et al., 2021). Berente et al. (2021) 

delineate the distinct characteristics of ML systems causing these unique challenges in three 

facets: autonomy, learning, and inscrutability. Autonomy denotes the capacity of ML to make 

decisions without requiring the input of human operators (e.g., Ågerfalk, 2020; Baird & Maruping, 

2021). ML systems can thus take over tasks from humans, even tasks previously held firmly in 

human grasp like processing natural speech (e.g., Schuetz & Venkatesh, 2020), and can 

intentionally complement, constrain, or entirely substitute for humans at work (Murray et al., 

2021). This previously unseen level of agency from IT systems blurs the line between human and 

machine capabilities and challenges assumptions about how humans and IT systems interact and 

produce outcomes (e.g., Schuetz & Venkatesh, 2020), promising both great potential and novel 

difficulties for the organizational processes of the future. Learning is the previously described 

ability of ML systems to automatically improve themselves by deriving patterns from data (e.g., 

Mitchell, 1997). However, with contemporary ML systems still belonging to the category of 

narrow AI, they require human experts to guide their learning process by framing the (business) 

problem to solve and interpreting the results (e.g., Seidel et al., 2020; Salovaara et al., 2019). As 

ML systems cannot react to scenarios for which they did not receive examples in their training 

process (in the form of data; e.g., Dennett, 2006), humans must engage with the learning aspect of 

ML, both when solving a new business problem and to ensure productive ML systems are 

continuously re-trained with all relevant scenarios. Inscrutability means that the statistical 

algorithms used in the creation of ML systems, such as neural networks, have exploded in 

complexity, due to ever-growing data and processing power availability, making them and their 

behavior incomprehensible to humans (e.g., Asatiani et al., 2021; Faraj et al., 2018). Therefore, 

decision-makers must take great care when choosing the use case and degree of autonomy of the 

ML system, especially as the self-learning systems can produce unexpected results (e.g., Benbya 

et al., 2020b). With the decisions of the ML system inscrutable to human experts, such unexpected 

results can lead to unanticipated consequences for organizations (e.g., Asatiani et al., 2021; 

Benbya et al., 2021), for instance, when an ML system considers a candidate’s marital status in 

making employment decisions (e.g., Martin, 2019a). Organizations must thus carefully consider 

the impact of these particularities of ML systems when seeking to benefit from their unique 

capabilities.  

2.2 Business Models 

The concept of business models has been at the center of a rapidly increasing amount of scientific 

work in recent years (DaSilva & Trkman, 2014; Massa et al., 2017). In essence, a business model 

delineates the business logic of an organization, illuminating how the organization creates value 

through its products or services, how it delivers said value to its customers, and how its revenue, 

costs, and profits are structured to allow for profitability and long-term survival (Teece, 2010). 

More briefly, “a business model describes the rationale of how an organization creates, delivers, 

and captures value” (Osterwalder & Pigneur, 2010, p. 14). To this end, it further explains how an 

organization “chooses to connect with factor and product markets” (Zott & Amit, 2008, p. 3). 
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Therefore, the business model explains how an organization not only achieves its goals through 

the creation of its products or services from its inputs but also how it integrates itself into a supply 

chain or value network to create economic value (Ritter & Lettl, 2018). Conceptualizations of the 

business model often illuminate the overarching business logic through the components making 

up an organization’s business model and the resulting relations between them (e.g., Al-Debei & 

Avison, 2010; Teece, 2010; Zott & Amit, 2010). As an example, Figure 1 depicts one such 

conceptualization that is regularly adopted in research (e.g., Weber et al., 2022), the Business 

Model Canvas by Osterwalder and Pigneur (2010), also immensely popular among practitioners 

(e.g., Bigelow & Barney, 2021). While the exact components differ between researchers, with 

Shafer et al. (2005) finding 42 different components within just twelve conceptualizations, most 

fall into four categories (Burkhart et al., 2011; Morris et al., 2005). Offering components express 

the nature of the product or service being created as well as how the organization delivers said 

offering to the customers. Market components describe the customers to whom the organization 

delivers said value, their characteristics and interaction requirements, as well as the 

organization’s position in the value chain. Internal components are the organization’s core 

competencies, delineating the capabilities or activities that make up the source of its competitive 

advantage, i.e., that enable its value creation. Economic components explain the organization’s 

logic for earning profits, i.e., for capturing value, and include the organization’s revenue model, 

cost structure, and ability to achieve margins. Moreover, regarding the relation between 

components, the literature exclusively considers business model components to be 

interdependent, meaning that changes in one component can induce changes in other components 

and vice versa (Burkhart et al., 2011). 

 

Figure 1. The Business Model Canvas as an Exemplary Conceptualization of Business Models and Their 
Components, With Added Categorization Into Value Creation, Delivery, and Capture (Adapted From 

Osterwalder and Pigneur, 2010, Strategyzer.com, CC BY-SA 3.0). 

https://strategyzer.com/
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The extensive literature on the topic has thus explored what a business model is and brought forth 

various definitions (e.g., Zott et al., 2011; Al-Debei & Avison, 2010; Casadesus-Masanell & Ricart, 

2010), has characterized constituting components and their interconnections (e.g., Osterwalder 

& Pigneur, 2010; Teece, 2010; Zott & Amit, 2010; Burkhart et al., 2011; Remane et al., 2016), and 

has further examined methods for developing novel innovative business models (e.g., Spieth et al., 

2014; Foss & Saebi, 2015), as well as many more topics. Yet, thus far, the concept still lacks 

consensus on its definition as well as conceptual clarity (Ritter & Lettl, 2018; Casadesus-Masanell 

& Ricart, 2010). The diversity of definitions is at least partly attributable to the fact that scholars 

from different literatures have examined business models from different subject-specific 

perspectives, resulting in the emergence of various interpretations of the term (Massa et al., 2017; 

Zott et al., 2011). For instance, the concept has gained traction in not only strategy (e.g., 

Casadesus-Masanell & Ricart, 2010; Teece, 2010), technology and innovation management (e.g., 

Leppänen et al., 2023; Massa & Tucci, 2014), entrepreneurship (e.g., Chalmers et al., 2021; George 

& Bock, 2011), and IS (e.g., Aubert & Chan, 2024; Böttcher et al., 2022; Hartmann et al., 2016) 

research but also further fields such as social entrepreneurship (e.g., Seelos & Mair, 2007) and 

environmental sustainability (e.g., Schaltegger et al., 2012). George and Bock (2011) note that “the 

academic literature on this topic is fragmented and confounded by inconsistent definitions and 

construct boundaries” (p. 83). While such definitional and conceptual ambiguity is not uncommon 

when scholars are developing novel concepts with wide-ranging applicability (see Zott et al., 

2011), the literature on business models has developed separately from strategy literature, 

despite their overlapping intent to explicate variations in firm performance (Lanzolla & Markides, 

2021; Porter, 2001; Zott et al., 2011). A debate exists in the strategic management literature on 

the value of the business model, with strategy scholars expressing concerns, e.g., that “the concept 

of a business model has no established theoretical grounding in economics or in business studies” 

(Teece, 2010, p. 174) and may merely be a re-interpretation of concepts already well-established 

in strategy literature (e.g., Arend, 2013; Bigelow & Barney, 2021). For instance, the internal 

resources and capabilities that organizations must manage and leverage for value creation in the 

business model perspective (e.g., Osterwalder & Pigneur, 2010) already appear at the core of the 

resource-based view (Barney, 1991; Helfat & Peteraf, 2003). Therefore, whether the business 

model is meaningfully distinct from existing strategy concepts remains an issue of debate (e.g., 

Prescott & Filatotchev, 2021), for which Bigelow and Barney (2021) provide a discussion of 

potential distinctions. While the authors doubt significant differences, they concede that the 

business model view may be particularly suitable for conveying strategy fundamentals to 

decision-makers engaged in complex and fast-changing environments, due to its overwhelming 

popularity among managers and entrepreneurs. Moreover, they argue that the concept may offer 

further advantages in highlighting the interdependencies within organizations as relevant factors 

explicating firm performance in empirical analyses (Bigelow & Barney, 2021). 

Other scholars are more optimistic about the value that the business model view can contribute 

to the strategy literature. Snihur and Eisenhardt (2022) even suggest that the business model 

might dethrone strategy as most important source of competitive advantage due to its strategic 

complexity and dynamism in comparison to the simpler, more static views of traditional strategy 

such as the resource-based view. Lanzolla and Markides (2021) posit that the attempt to establish 

the business model as a new concept may indeed have been futile but has also distracted scholars 

from more fruitful endeavors. They propose focusing instead on exactly the interdependencies 

between a business model’s activities, internal and external to the organization, that can provide 

a novel lens through which to examine strategy and contribute new theoretical insights (Lanzolla 

& Markides, 2021). Thus, while the business model perspective may or may not count as an 
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entirely new field, it relaxes some of the assumptions of traditional strategic management theories 

(e.g., the resource-based view or the positioning school), allowing the development of novel 

insights as an extension of strategy (Massa et al., 2017). In this regard, the business model can 

serve as the “webbing” between theories, allowing ideas from one theory to inspire aspects of 

other theories by providing a logical connection between them and their elements (e.g., modeling 

the value of resources as demand, thereby connecting the resource-based view and the demand-

side perspective; Ritter & Lettl, 2018; Burström et al., 2021). Additionally, in IS literature, the 

business model concept is regarded as the “missing link” connecting strategy, processes, and IT 

(Veit et al., 2014). The business model perspective is therefore well-suited to investigating and 

comprehending technological change from the business value side (Steininger, 2019). 

Consequently, it often serves as a lens in IS research to examine how novel IT affects existing 

business models or drives the creation of new ones (e.g., Bock & Wiener, 2017; Hartmann et al., 

2016; Spiegel, 2016). Thereby, IT can take different roles in business models, ranging from 

facilitating operations internally, mediating at the customer interface, or being the product itself, 

to a ubiquitous presence in all components of the business model (Steininger, 2019). In turn, the 

role that IT plays in the business model significantly influences the organization’s business logic 

(Steininger, 2019; Veit et al., 2014). The business model view can thus support examining not only 

how IT can be integrated into an organization and its departments but also, in particular, IT’s 

impact on how organizations create, deliver, and capture value. This dissertation therefore adopts 

the business model perspective due to both its suitability for investigating the interplay between 

IT and business logic and its interconnectivity with strategy theories. Moreover, the dissertation 

follows the definition of the term business model as an activity system with an organization at its 

core, which encompasses the focal organization’s internal and external activities and, through 

their interdependencies, links the organization’s value creation and delivery with value capture 

(e.g., Afuah, 2003; Hedman & Kalling, 2003; Lanzolla & Markides, 2021; Ritter & Lettl, 2018; 

Snihur & Eisenhardt, 2022; Teece, 2010; Zott & Amit, 2010). 

2.3 The Need to Revisit Value Creation, Delivery, and Capture with Machine Learning 

In the context of ongoing digitalization, advancements in IT, such as the ever-increasing 

availability of data or progress in data analytics, can profoundly change the business models of 

organizations, or enable the development of entirely new types of business models (e.g., 

Hartmann et al., 2016; Steininger, 2019; Veit et al., 2014). In this regard, ML in particular is 

unlocking an enormous variety of entrepreneurial opportunities for organizations (e.g., Chalmers 

et al., 2021; Obschonka & Audretsch, 2020). Consequently, their high level of disruptive potential 

is pressuring organizations to develop new or redesign their existing business models, or risk 

losing their competitive advantages to the growing number of ML-infused organizations, such as 

Alibaba, Amazon, Google, or Uber (e.g., Lee et al., 2019; Wamba-Taguimdje et al., 2020). In turn, 

organizations that integrate ML into their business models can expect improved firm performance 

through the abilities of ML systems, e.g., in automating and optimizing processes, informing and 

interacting with humans, or enabling the creation of entirely novel products and services (e.g., 

Benbya et al., 2020b; Benbya et al., 2021; Burström et al., 2021; Davenport et al., 2020; Wamba-

Taguimdje et al., 2020). For example, ML systems can enhance the productivity of legal 

professionals by assisting them with non-routine tasks (i.e., client-facing or creative work) and 

automating such routine tasks as analyzing contracts and conducting corresponding legal 

research (e.g., Armour & Sako, 2020). Different ML systems can aid engineers in developing novel 

materials (e.g., Correa-Baena et al., 2018) or support radiologists by detecting malignant nodules 

in computer tomography scans (e.g., Pumplun et al., 2023). Thereby, the ML system can take 
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various roles described in Section 2.2 (i.e., facilitator, mediator, outcome, or ubiquity; see 

Steininger, 2019) within or outside the organization’s structural boundaries, with some 

organizations utilizing the technology ubiquitously throughout their business model. For 

instance, Uber manages the entirety of its more than six-million-driver remote workforce through 

an ML-powered app that decides which routes to take and which passengers to pick up (Uber, 

2024). While the ML system is therefore essential to the success of the organization’s business 

model, it also begets distinct challenges. For instance, Uber must address its algorithmic 

management approach’s potentially negative effects on the drivers (e.g., incomprehensibility of 

the ML system and its decisions or lack of socialization at work) or risk adversarial action or 

increased driver turnover (Möhlmann et al., 2021; Wiener et al., 2023). When ML systems play an 

integral part in the business models of organizations, their unique characteristics (detailed in 

Section 2.1) significantly influence how organizations create, deliver, and capture value (e.g., 

Benbya et al., 2020a; Burström et al., 2021; Steininger et al., 2022). This dissertation 

conceptualizes such business models as ML-driven business models (see Sections 6.2.1 and 7.2.1). 

However, exactly how these ML influences manifest themselves is still largely uncertain, with 

many business models incorporating ML being nascent to date. Important current issues of 

organizations, regarding value creation, value delivery, and value capture with ML appear below, 

and respective studies in the following chapters investigate them in detail. 

Regarding an organization’s value creation with ML, the characteristics of ML systems pose 

requirements that must be taken into account during their development processes. For instance, 

the data-based learning approach of ML systems encourages fast development cycles with quick 

feedback mechanisms to identify and focus on suitable solutions (e.g., Amershi et al., 2019; 

Shearer, 2000). Moreover, ML systems often continue learning after their development (to the 

organization’s benefit) and therefore require continuous maintenance even after deployment, 

blurring the lines between their development and operation (e.g., Amershi et al., 2019; Studer et 

al., 2021). However, the aforementioned need of ML development for quick exploratory processes 

conflicts with the needs of conventional business processes to exploit the organization’s existing 

strengths (e.g., Gerbert et al., 2020; Pumplun et al., 2019), leading to tensions when creating ML 

systems as organizations must allocate their limited resources. Chapter 4 presents an in-depth 

examination of these tensions and potential alleviating tactics under the consideration of different 

structural set-ups for ML development. Beyond such challenges, the learning capability of ML 

systems can also prove uniquely valuable to organizations. Scholars currently assume that this 

capability merits seeing ML systems as a new type of learner alongside humans (e.g., Argote et al., 

2021; Sturm et al., 2021b) that can help organizations make sense of data from their environment 

(e.g., regarding competitors or customer responses) more easily and rationally than through 

humans alone (e.g., Benbya et al., 2021). Simultaneously, the new ML learners can also adversely 

affect learning processes occurring in organizations, e.g., by reducing the diversity in routines and 

background knowledge flowing into the organizational knowledge base (e.g., Balasubramanian et 

al., 2022). Organizations are well advised to let humans and ML systems learn in tandem, to 

complement and amplify their respective capabilities (e.g., Lyytinen et al., 2021). However, the 

literature on such joint learning has thus far focused on productive ML systems, leaving potential 

learning during ML development unexplored. Yet, as the creation of ML systems is a collaborative 

effort of experts from various disciplines who engage with their existing knowledge in collective 

sense-making and evaluation processes while interacting with data and prototypical ML systems 

(see, e.g., Studer et al., 2021), ML development may act as a unique field of interaction for potential 

learning driven by the experts’ encounters (Nonaka, 1994). The study that Chapter 3 details thus 

illuminates the various learning processes that are possible during the creation of ML systems. 
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With respect to value delivery, organizations must ensure that their customers can receive the 

value they create with the help of ML systems. In particular, the inscrutability of ML can constitute 

a significant hurdle in this endeavor, as for users to consider the output of ML systems in their 

decision-making and thus benefit from them, they must be able to understand both the systems 

and the reasoning for their output (e.g., Barredo Arrieta et al., 2020; Martin, 2019b). Otherwise, 

organizations may risk unexpected outcomes, such as problematic ethical implications (e.g., 

considering a candidate’s marital status for employment decisions or integrating race into 

decision-making on allocating city police forces; e.g., Benbya et al., 2021; Martin, 2019a). To 

counteract their inherent inscrutability, researchers have brought forth XAI approaches to reveal 

the inner workings of ML systems as well as the reasoning behind their output (e.g., Ågerfalk, 

2020; Rai, 2020; Rudin, 2019). However, to date, XAI research has largely focused on offering 

explanations to ML experts, while neglecting the user group that many ML-driven business 

models intend to deliver value to, namely lay users, who seek to benefit from the ML systems, e.g., 

by utilizing them in their decision-making (Ellenrieder et al., 2023; Gaube et al., 2023). To address 

this issue, Chapter 5 presents a design science study that develops an approach to designing ML 

systems in a way that fulfills the different needs for explainability of each of their user groups and 

specifically takes lay users, such as managers, into account.  

Last, concerning value capture, organizations must take all aforementioned particularities of ML 

into account when looking to create and maintain competitive advantage, and ultimately profit 

from the development of business models infused by the technology. As previously mentioned, an 

organization’s possibilities for value capture are strongly interleaved with the surrounding 

components of its business model (e.g., Teece, 2010; Tidhar & Eisenhardt, 2020), which can be 

seen in the struggle of many digital start-ups to capture value from their inherently difficult-to-

monetize value proposition (e.g., Steininger et al., 2022). It took Twitter (now X), for instance, over 

a decade to identify a suitable revenue model to sustainably profit from its massive user base 

(Mangalindan, 2010; Steininger et al., 2022). The structural composition in which all business 

model components are arranged and interconnected thereby determines an organization’s 

options to enhance its position in the market in relation to its competitors, to respond to 

disruption, and to enter new or defend existing markets (e.g., Snihur & Markman, 2023). 

Therefore, the taxonomic study in Chapter 6 scrutinizes the structural composition of ML-driven 

business models to lay the groundwork for a holistic investigation of how organizations can 

sustainably capture value with the help of ML. It sheds light on the components constituting ML-

driven business models (including, e.g., ML-specific value propositions and revenue models) and 

delineates business model archetypes commonly found in practice. Additionally, the realization 

of business models in general is a difficult and inherently uncertain process that requires 

entrepreneurs to experiment with elements of their business model (e.g., Burnell et al., 2023; 

Snihur & Eisenhardt, 2022), which might be further complicated by the uncertain and 

experimental nature of ML development (Amershi et al., 2019; Choudhury et al., 2021). 

Organizations seeking to establish and capture value from ML-driven business models in the long 

term may thus need to build new capabilities, e.g., due to the aforementioned ML-induced 

uncertainty, the heightened importance of ecosystems for ML-driven business models, or the high 

dynamism of their environment (e.g., Burström et al., 2021; Chalmers et al., 2021; Lange et al., 

2021; Steininger et al., 2022). In particular, dynamic capabilities play an integral part in 

developing business models in uncertain and dynamic environments (see Ricciardi et al., 2016; 

Schoemaker et al., 2018; Steininger, 2019; Teece, 2018). Therefore, an investigation of how 

organizations can build the necessary dynamic capabilities to realize ML-driven business models 

with (economic) success appears in Chapter 7 of this dissertation. 
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Abstract 

Organizational learning is a fundamental process that defines organizational behavior and 

thereby strongly influences organizational performance. As organizations increasingly adopt 

machine learning (ML) systems in their routines, the need to illuminate the impact of learning 

machines on organizational learning processes becomes increasingly urgent. In particular, due to 

their highly interdisciplinary and collaborative nature, ML developments—as organizations’ 

activities aimed at creating productively usable ML systems—may hereby represent an important 

but not yet well understood mechanism for fostering organizational learning. To explore how ML 

developments affect organizational learning processes, we interviewed 42 experts who are 

frequently involved in ML developments. Our findings suggest that ML developments can enhance 

organizational learning by stimulating a variety of organizational learning processes that generate 

a wealth of explicit and tacit knowledge in organizations. 
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3.1 Introduction 

Organizational learning lies at the heart of organizational behavior because it represents the 

process by which organizations continually (re)define their norms, innovations, and routines (e.g., 

Argote & Miron-Spektor, 2011; Levitt & March, 1988). Learning thereby enables organizations to 

effectively adapt to their environment, which is critical to their success and, if done wrong, can 

even jeopardize the organizations’ survival (e.g., Argote et al., 2021; Huber, 1991; March, 1991). 

Since organizations cannot learn on their own, they must rely on the learning of their members 

(e.g., Fang et al., 2010; March, 1991). Therefore, facilitating and effectively coordinating the 

individual learning processes and interactions of its members represent the key issue behind 

effective organizational learning, which has already spurred decades of research (great overviews 

exist such as, e.g., Argote et al., 2021; Argote & Miron-Spektor, 2011; Fiol & Lyles, 1985; Huber, 

1991). However, as human members have traditionally been the ones who learn in organizations, 

the limitations of human cognition have complicated organizational learning since its very 

beginnings (e.g., Levinthal & March, 1993; March, 2006, 2010; Simon, 1991). 

Hoping to overcome the limitations of human cognition, organizations are increasingly 

recognizing the great potential of information systems (IS) based on machine learning (ML) 

algorithms (e.g., Berente et al., 2021; Benbya et al., 2021). Such ML systems can learn 

autonomously by inferring patterns from data to create models for guiding behavior (e.g., Mitchell, 

1997; Russell & Norvig, 2021). Because of their ability to learn, recent research now also considers 

ML systems as a new type of organizational learner besides humans; that is, not just as another 

tool that only supports human learning (like traditional non-ML IS; e.g., Argote et al., 2021; Alavi 

& Leidner, 2001; Kane & Alavi, 2007), but rather as active learners that can contribute their own 

knowledge to organizational learning (e.g., Argote et al., 2021; Balasubramanian et al., 2022; 

Sturm et al., 2021b). Indeed, the great computational power of ML systems, which have already 

beaten the best human Go player, surpassed human capabilities in object recognition, and recently 

begun to revolutionize the way we write text, makes them increasingly appear as a panacea for 

improving organizational efficiency and effectiveness (e.g., Jordan & Mitchell, 2015; Lindebaum et 

al., 2020). 

Despite this great potential, many organizations struggle to create productive ML systems. As a 

result, many organizations are afraid to waste their scarce resources and reduce their funding for 

ML developments (e.g., Ransbotham et al., 2020; Sculley et al., 2015), which are typically project-

led efforts focused on developing ML systems for productive use (e.g., Amershi et al., 2019; Studer 

et al., 2021). While this may seem like an appropriate risk mitigation strategy at first glance, it 

may also become a fatal fallacy, as such ML developments may act as a powerful form of 

organizational learning: from data selection to ML model evaluation to knowledge sharing with 

ML systems (e.g., Amershi et al., 2019; Wirth & Hipp, 2000), the development and use of ML 

systems involves an interdisciplinary learning process among an organization’s domain experts, 

data scientists, and/or ML algorithms that would not otherwise occur (e.g., knowledge sharing 

sessions between data scientists and engineers to develop a predictive maintenance solution). 

Since ML developments require reflection on existing knowledge (e.g., through collective data 

exploration) and can enable new knowledge creation beyond the mere development of ML 

systems (e.g., insights into flaws in routines), they may have a significant impact on the use, 

extension, and retention of an organization’s knowledge. ML developments may therefore play a 

crucial role in facilitating and stimulating organizational learning. The discontinuity of ML 

developments may thus lead to a critical competitive disadvantage in the long run—even if an 

organization’s ML developments frequently fail to yield productive ML systems. 
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So far, however, the role of ML developments for organizational learning has been largely 

neglected by research. Unfortunately, research on the general impact of IS on organizational 

learning can only be of limited help, as existing studies primarily focus on the impact of IS use 

rather than IS development (e.g., Alavi & Leidner, 2001; Argote et al., 2021; Argote & Miron-

Spektor, 2011; Kane & Alavi, 2007) and naturally neglect the particularities of ML systems (e.g., 

involvement of data scientists and system functionality being defined primarily by data analysis 

rather than human-defined rules; Amershi et al., 2019; Brynjolfsson & Mitchell, 2017; Sturm et al., 

2021a). Only recently have a few scholars begun to explore the impact of productive ML systems 

as a new type of organizational learner on organizational learning (e.g., Argote et al., 2021; 

Balasubramanian et al., 2022; Lyytinen et al., 2021; Ransbotham et al., 2020; Sturm et al., 2021a, 

2021b). Yet, research that takes a broader view to include the impact of human learning processes 

that occur within ML developments on organizational learning is still lacking, leaving 

organizations without clear guidance. To help organizations better manage and grasp the value of 

their ML developments, we aim to explore the impact of ML developments on different 

organizational learning processes. We thus ask the following research question (RQ): How do ML 

developments affect organizational learning processes? 

To answer our RQ, we adopt a qualitative research approach that allows us to explore and 

synthesize the experiences of 42 experts who have been frequently involved in ML developments. 

Our findings suggest that ML developments can indeed contribute value to organizational 

learning. We further find that these contributions involve different learning processes depending 

on the ML development phase. Our result is a framework for how ML developments can stimulate 

different types of organizational learning processes. 

3.2 Theoretical Background 

We first introduce organizational learning, with a particular focus on Nonaka’s (1994) seminal 

work on the knowledge creation spiral. We then turn to the foundations of ML and the typical 

processes within ML developments that we revisit as a form of problem solving. Table 3 

summarizes the core concepts that we introduce in both subsections and which will act as a 

theoretical structure for our subsequent analysis. We conclude by crystallizing the need to revisit 

organizational learning in the context of ML developments. 
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Table 3. Core Knowledge Types and Core Learning and Problem-Solving Processes. 

Source Concept Definition Examples 

Nonaka 
(1994) 

Knowledge 
types 

Explicit knowledge: Knowledge that is 
codified in some form and easy to articulate. 

Manuals, standard operating 
procedures, and patents 

Tacit knowledge: Knowledge that is deeply 
rooted in personal experience and difficult 
to articulate. 

Riding a bike, playing an 
instrument, and dancing a 
choreography 

Learning 
processes 

Socialization (tacit to tacit): Integrating 
tacit knowledge by creating shared 
experiences. 

Apprenticeship, mentoring, and 
immersion in a community of 
practice 

Externalization (tacit to explicit): 
Codifying tacit knowledge into explicit 
knowledge. 

Capture personal experiences as a 
metaphor, a concept, or a story 

Combination (explicit to explicit): 
Integrating different explicit knowledge by 
combining documented concepts. 

Integrate rule sets, documents, 
and/or frameworks 

Internalization (explicit to tacit): Creating 
tacit knowledge by gaining personal 
experience with explicit knowledge. 

Apply textbook knowledge about 
skating, singing, and cooking to 
gain personal experience with it 

Basadur 
et al. 
(1982) 

Problem- 
solving 
processes 

Problem finding: Recognize and construct 
relevant problems. 

Identify and describe bottlenecks 
and decision-making flaws 

Problem solving: Search for adequate 
solutions by exploring potential solutions 
for given problems. 

Define quality requirements, test 
and compare solution candidates 

Solution implementation: Integrate 
selected solutions into organizational 
processes. 

Provide additional tools to 
accelerate a time-consuming 
process 

 

3.2.1 Organizational Learning 

Organizational learning is the process of gathering experience in some organizational context and 

deriving knowledge from that experience to guide future actions (e.g., Argote & Miron-Spektor, 

2011; Levitt & March, 1988; March, 2010; Nonaka, 1994). Experience thereby denotes one’s own 

or others’ unit of task performance (e.g., making decisions, observing others performing routines). 

Learners’ experiences are thus assumed to primarily contain recollections of chosen actions and 

their consequences, enriched with information about the context in which the actions took place 

(e.g., Argote et al., 2021; Argote & Miron-Spektor, 2011). Learners then learn from the available 

experience by inferring conclusions from it, attempting to generalize and reconcile the collected 

knowledge (e.g., decision rules, approaches to performing routines) with existing knowledge (e.g., 

Argote & Miron-Spektor, 2011; March, 2010). Thereby, learners can learn from others’ 

experiences either directly (e.g., by drawing conclusions from observing others’ actions) or 

indirectly by integrating others’ knowledge with their own knowledge (e.g., by integrating their 

own and others’ decision rules; e.g., Argote & Miron-Spektor, 2011; Nonaka, 1994). 

To further nuance organizational learning processes, Nonaka (1994) famously introduced the 

now seminal theory of the knowledge creation spiral. In his theory, Nonaka (1994) first introduces 

two core knowledge types (i.e., explicit and tacit knowledge) and then outlines four core learning 

processes that focus on integrating and converting between the two knowledge types (see also  
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Table 3 for an overview). First, explicit knowledge refers to knowledge that is codified or 

documented in some form, such as written or electronic documents, databases, or other tangible 

formats. Explicit knowledge can be easily articulated, shared, and accessed by others. Examples 

include textbooks, technical manuals, standard operating procedures, patents, and scientific 

articles. Second, tacit knowledge refers to knowledge that is difficult to articulate, codify, or 

transfer to others. This type of knowledge is often deeply rooted in an individual’s personal 

experience, intuition, and insights, and it may be difficult to formalize or explain in words. Tacit 

knowledge is typically acquired through personal experience, observation, and informal learning. 

For instance, tacit knowledge are skills like riding a bike, playing an instrument, and dancing a 

choreography as they involve a complex interplay of physical and mental abilities that are difficult 

to describe in words and thus hard to teach explicitly through written or spoken instructions. 

To optimize knowledge creation, Nonaka (1994) argues that organizations must enable a 

continuous conversion between both types of knowledge. To do so, Nonaka (1994) identified four 

iteratively connected processes: First, socialization involves the sharing and integration of tacit 

knowledge by creating shared experiences through social interaction, observation, and emulation. 

For instance, socialization includes learning from others through apprenticeship, mentoring, and 

immersion in a community of practice. By developing a shared understanding of a particular 

domain within a specific context, humans gather personal experience that helps them 

approximate others’ tacit knowledge. Second, externalization focuses on the transformation of 

tacit knowledge into explicit knowledge. By doing so, externalization can help facilitate the 

communication of tacit knowledge to some extent. For instance, this includes capturing personal 

experiences as a metaphor, a concept, or a story. Third, combination focuses on creating new 

explicit knowledge by integrating different explicit knowledge that already exists. Here, 

individuals synthesize different forms of explicit knowledge, such as rule sets, documents, and 

frameworks. Thereby, combination allows individuals to build on established knowledge to create 

new insights and perspectives. Fourth, internalization involves the transformation of explicit 

knowledge into tacit knowledge. By applying explicit knowledge to the particularities of specific 

contexts, individuals can gain a deeper understanding of the knowledge and its applications, and 

thereby develop new tacit knowledge based on the gathered experiences. For instance, a 

skateboarder can internalize textbook knowledge of a certain trick, by enriching the knowledge 

with their own related experience by trying the trick themselves.  

Nonaka (1994) theorizes the spiral of knowledge creation as an iterative process that 

continuously traverses all four learning processes, shifting between explicit and tacit knowledge. 

Because of the spiral’s iterative nature, effective organizational learning requires an organization 

to facilitate each of the four learning processes to enable well-functioning, mutually stimulating 

knowledge creation. 

3.2.2 Machine Learning Development 

The approach behind modern artificial intelligence (AI) that has driven recent breakthroughs 

(e.g., ChatGPT or AlphaGo) is the use of ML algorithms (e.g., Berente et al., 2021; Brynjolfsson & 

Mitchell, 2017). ML algorithms allow IS to derive patterns from data to create ML models that are 

then used to solve given problems (e.g., deriving a rationale for how to grant a loan; e.g., Mitchell, 

1997; Russell & Norvig, 2021). In doing so, ML resembles organizational learning: ML systems use 

experience (i.e., data capturing units of task performance) to infer conclusions from it (i.e., models 

of how to perform a task), thereby attempting to generalize and reconcile the contained 

knowledge (e.g., Sturm et al., 2021b). In contrast to traditional non-ML IS that were only able to 
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support human learning (e.g., emails, Zoom, or repositories supporting human knowledge 

exchange; e.g., Alavi & Leidner, 2001; Kane & Alavi, 2007), this enables ML systems to learn 

autonomously and contribute their own knowledge to organizations’ stock of knowledge (e.g., 

Argote et al., 2021; Sturm et al., 2021b). As a result, ML systems can be viewed as a new type of 

organizational learner besides humans (e.g., Balasubramanian et al., 2022; Ransbotham et al., 

2020; Sturm et al., 2021b). 

ML systems are realized through ML developments, which are project-led efforts to develop and 

deploy ML systems productively (e.g., Amershi et al., 2019; Studer et al., 2021). Such ML 

developments are typically a highly iterative and interdisciplinary practice involving a diverse set 

of collaborating domain and technical experts (e.g., Amershi et al., 2019; Wirth & Hipp, 2000). For 

example, developing an ML system for predicting wind turbine failures requires domain experts 

with knowledge of wind turbine behavior to help define the problem, and data scientists to 

perform analyses and translate them into a suitable solution, which must then be evaluated again 

by the domain experts. To coordinate this process, numerous process frameworks have been 

proposed for ML developments (e.g., CRISP-DM, SEMMA, and KDD) that are widely used in 

practice (e.g., Amershi et al., 2019; Azevedo & Santos, 2008; Martinez et al., 2021; Martínez-

Plumed et al., 2021). While these frameworks differ in their specific process steps, they share a 

common ground of key phases that resemble established phases of problem-solving processes as 

famously conceptualized by Basadur et al. (1982). Following this rationale, we can revisit these 

key phases for ML development contexts: 

ML developments typically begin with a problem finding phase, which focuses on articulating a 

relevant problem with data that a planned ML system is intended to solve. First, this requires 

experts to identify problems that are organizationally meaningful and adequate for ML systems 

to solve. This includes activities such as exploring business domains and available data to identify 

bottlenecks and flaws in organizational processes or practices. Second, once problems have been 

identified, experts need to create a concise and realistic representation of the identified problems. 

This includes activities such as exploring the availability of data, selecting a data sample that is a 

representative and comprehensive collection of exemplary problem instances, and preparing data 

to ensure high data quality (e.g., accuracy, completeness, timeliness, and consistency) and to 

develop additional variables to describe problem instances more holistically. The second phase of 

ML developments typically focuses on problem solving, which involves the search for ML models 

that adequately suit the identified problems. This first requires the organization to develop a 

shared understanding of what an appropriate ML model should entail. This includes activities 

such as defining baselines for evaluation metrics for when an ML model is good enough to be used, 

and clarifying transparency requirements for ML models (e.g., requiring highly transparent 

models such as decision trees). Second, once the requirements for appropriate ML models have 

been defined, experts search for possible ML models by creating and evaluating a variety of ML 

models, and identify the seemingly best ML model. This includes activities such as selecting ML 

algorithms, parameterizing ML algorithms, and training, testing, and comparing prototypical ML 

models. Lastly, the third phase focuses on solution implementation, which aims to integrate ML 

systems into organizational processes. This typically involves redesigning established processes 

to include ML systems and to design and sustain their emerging interplay with humans. For 

instance, this requires organizations to rethink how inputs and outputs of ML systems can be 

integrated to ensure effective workflows and how to adapt the role of involved humans. 

As ML developments are therefore a highly interdisciplinary process that involves collective 

reflection on given problems, potential solutions, and the integration of knowledge between 
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multiple human experts (and ML systems), organizations’ ML endeavors may not only impact 

organizational learning through productively used ML systems that now learn side-by-side with 

humans but also by the additional human learning processes that are stimulated by the processes 

entailed in ML developments. 

3.2.3 The Need to Revisit Organizational Learning in the Context of ML Developments 

For decades, researchers have analyzed the processes of human-driven organizational learning 

and how organizations can effectively coordinate these processes to improve organizational 

performance (e.g., Argote et al., 2021; Argote & Miron-Spektor, 2011; Fiol & Lyles, 1985; Huber, 

1991). However, with their ability to learn, ML systems increasingly participate as a new type of 

learner in organizational learning alongside humans (e.g., Ransbotham et al., 2020; Sturm et al., 

2021b). While research has recently recognized the importance of understanding ML’s impact on 

organizational learning (e.g., Argote et al., 2021; Balasubramanian et al., 2022; Berente et al., 2021; 

Sturm et al., 2021b), the few studies that exist focus only on the impact of ML systems that are 

already in productive use. While these studies provide crucial insights on how to effectively 

manage the resulting learning dynamics between humans and ML systems, this focus neglects the 

potential impact of the underlying ML development activities required to enable such productive 

ML systems in the first place. This is problematic because research that overlooks ML 

developments may thereby neglect a novel context of analytically-driven interactions between 

domain and technical human experts that are likely to offer new opportunities for stimulating 

organizational learning processes (e.g., human experts sharing their domain knowledge to 

prepare data for training and evaluating a planned ML system). Moreover, if organizations 

frequently fail to produce productively usable ML systems, they run the risk of misjudging the 

impact of reducing their ML developments, which may help them save scarce resources in the 

short term, but may become a fatal long-term fallacy if they thereby inhibit valuable 

organizational learning processes. While existing research emphasizes the need for further 

analysis of the impact of ML systems on organizational learning due to such consequences (e.g., 

Argote et al., 2021; Sturm et al., 2021b), research that also considers the impact of the preceding 

ML developments remains non-existent. As with existing ML research, research on the general 

impact of IS on organizational learning focuses mainly on IS use rather than IS development (e.g., 

Alavi & Leidner, 2001; Argote et al., 2021; Argote & Miron-Spektor, 2011; Kane & Alavi, 2007), 

and inherently neglects the particularities of ML developments (e.g., Amershi et al., 2019; 

Brynjolfsson & Mitchell, 2017; Sturm et al., 2021b)—also leaving us with limited help in 

unpacking the impact of ML developments. As a result, the current discussion runs the risk of 

being too narrowly focused, which can lead to ill-informed decisions for organizations. Hoping to 

contribute to broadening the perspective of the current discussion, we now turn to our study to 

analyze how ML development activities contain opportunities to stimulate different learning 

processes and thus can serve as important mechanisms to improve the long-term performance of 

organizations. 

3.3 Qualitative Research Methodology 

Due to the lack of research on organizational learning in ML developments, we pursued a 

qualitative research approach through interviews with professionals from various industries. 

Expert interviews are one of the most important data collection tools in research contexts that 

lack sufficient empirical evidence (Myers & Newman, 2007), allowing us to examine ML 

developments’ impacts on organizational learning in a wide variety of contexts. Our goal is to 
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develop a theoretical foundation for organizational learning processes involving humans and ML 

systems that occur during the different ML development phases. 

We conducted 42 in-depth semi-structured interviews with experts who are frequently involved 

in ML developments. Each interview was conducted online and lasted 55 minutes on average. The 

experts were recruited from our personal and professional networks, primarily through LinkedIn 

(Butts et al., 2015). To broaden the scope of our analyses and develop a more general theory, we 

interviewed experts from a variety of different industries between March 2021 and July 2022 

(Davison & Martinsons, 2016). In total, our experts’ experiences span 15 industries, with software 

(23.8%), manufacturing (11.9%), and telecommunication (11.9%) being the most represented. 

Most experts work for inter- or multinational organizations. To capture diverse perspectives on 

ML developments, we included both technology- and domain-oriented experts. Having worked on 

various ML developments over several years, the experts can offer a deep and diverse set of 

experiences. Table 4 provides an overview of the interviewed experts. 

Table 4. Overview of the Interviewed Experts. 

ID Position Sex Exp. Industry ID Position Sex Exp. Industry 

I1 Data scientist m 3 yr. Aviation I22 Data scientist m 12 yr. Trade 

I2 Data scientist w 6 yr. Software I23 Data scientist m 6 yr. Tourism 

I3 Data scientist m 8 yr. Software I24 Data scientist m 3 yr. Technical Testing 

I4 Domain expert m 5 yr. Software I25 Data scientist m 4 yr. Automotive 

I5 Data scientist w 6 yr. Healthcare I26 Data scientist w 8 yr. Software 

I6 Domain expert m 9 yr. Telecomm. I27 Domain expert w 6 yr. IT Consulting 

I7 Domain expert m 12 yr. Software I28 Manager m 6 yr. Telecomm. 

I8 Data scientist m 8 yr. E-Commerce I29 Manager m 7 yr. IT Consulting 

I9 Domain expert w 5 yr. Energy I30 Data scientist w 3 yr. Telecomm. 

I10 Domain expert m 6 yr. Automotive I31 Data scientist m 7 yr. Manufacturing 

I11 Data scientist m 7 yr. Software I32 Manager m 3 yr. Manufacturing 

I12 Data scientist m 5 yr. Automotive I33 Data scientist m 6 yr. Research 

I13 Domain expert m 4 yr. Automotive I34 Domain expert m 3 yr. Software 

I14 Data scientist m 3 yr. Healthcare I35 Data scientist m 3 yr. IT Consulting 

I15 Domain expert m 5 yr. Manufacturing I36 Manager w 5 yr. Infrastructure 

I16 Data scientist m 9 yr. Market Research I37 Data scientist m 2 yr. Manufacturing 

I17 Data scientist w 2 yr. Healthcare I38 Manager m 6 yr. Software 

I18 Domain expert m 4 yr. IT Consulting I39 Manager w 7 yr. Aviation 

I19 Data scientist m 7 yr. Manufacturing I40 Domain expert w 7 yr. Healthcare 

I20 Data scientist m 8 yr. Telecomm. I41 Manager m 5 yr. Software 

I21 Data scientist w 11 yr. Software I42 Domain expert m 10 yr. Telecomm. 

Note. Experience has been shortened to Exp. and Telecommunication to Telecomm. 

At the beginning of each interview, the interviewees were introduced to the topic and our RQ. The 

interview guide consisted of a series of open-ended questions and was divided into four sections: 

The first section aimed to familiarize the interviewees with the interview situation and to develop 

an understanding of the interviewees’ general expertise (i.e., descriptions of participants’ current 

position, past ML development experience, and current ML development involvement). The 
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subsequent three sections then focused on the three ML development key phases: Problem finding 

(i.e., how the interviewees identify appropriate problems and prepare related data), problem 

solving (i.e., how the interviewees train and evaluate ML models), and solution implementation 

(i.e., how ML systems are used productively in their organization). We used the guide as a basis 

for structuring our interviews according to the prepared questions, while also allowing for 

improvisation and spontaneous questions based on the particular course of the interview (Myers 

& Newman, 2007). After mutual consent, the interviews were recorded and transcribed to analyze 

the participants’ responses. For interview I13, we were only able to take notes instead of making 

a recording. 

As mentioned above, our goal is to identify learning processes that occur within ML developments. 

We analyzed the interview data by following the directed content analysis, which is appropriate 

for validating and extending existing theories (Hsieh & Shannon, 2005). An iterative multi-cycle, 

multi-researcher coding process with the following coding strategies was performed (Saldaña, 

2015): First, we employed attribute coding to select descriptive and essential information about 

participants’ characteristics. Second, we then utilized hypothesis coding to create primary codes 

according to the related literature of organizational learning. We used these primary codes, based 

on previous findings about human learning in organizations, as a structural framework to 

categorize the codes specific to the ML context that emerged in the following steps, including the 

codes externalization, combination, internalization, and socialization along each problem-solving 

phase (i.e., problem finding, problem solving, and solution implementation) of ML development. 

Third, we applied descriptive coding to uncover novel insights into learning processes during ML 

developments, which produced numerous subcodes for each primary code. Fourth, to make sense 

of the vast amount of codes and to remove redundant and irrelevant codes, we used pattern 

coding to integrate the identified codes into emergent themes that represent major subprocesses 

of the learning processes in the problem-solving phases (e.g., “tacit knowledge about relevant 

variables becoming more structured and externalized when reflecting on possible data for a given 

problem” was a code categorized into the theme “domain experts externalize their problem 

understandings” of the externalization processes in the problem finding phase). Each of us 

conducted these steps separately in each iteration, after which we intensively discussed our 

findings and synthesized commonalities into a shared code system to gradually develop a 

consensus on the codes. As part of the iterative process, we continued to collect new data to 

answer questions that arose during coding until no new insights emerged. As we observed no new 

insights in the final interviews, we noticed that we had reached theoretical saturation and stopped 

interviewing after the 42nd interview (Flick, 2004b). Finally, we formulated summaries (shown 

in Table 5) of the main themes and selected quotes from our experts that best represent the 

corresponding codes, which we describe below.  

3.4 Results 

Combining the four processes of Nonaka’s (1994) knowledge creation spiral with Basadur et al.’s 

(1982) problem-solving phases provides us with a fruitful structure for exploring the learning 

processes that occur within ML developments. Table 5 summarizes the learning processes we 

have identified as occurring in the three phases of ML development, which we now describe 

below. 
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Table 5. Identified Learning Sub-Processes in ML Developments. 

 
Problem finding 

Main stimulus: Data scientists 
Main learning focus: Problems 

Problem solving 
Main stimulus: Data scientists 
Main learning focus: Solutions 

Solution implementation 
Main stimulus: ML systems 

Main learning focus: Solutions 

Externalization 
(tacit → explicit) 

Domain experts 
externalize their problem 
understandings. 

Domain experts 
externalize their 
understanding of an 
adequate solution. 

Domain experts’ solutions 
get externalized by ML 
systems. 

Combination 
(explicit → explicit) 

Domain experts compare 
actual observed and 
expected problem 
behavior. 

Domain experts integrate 
insights of candidate 
solutions with their 
solutions. 

Domain experts integrate 
their solutions with those 
suggested by ML systems. 

Internalization 
(explicit → tacit) 

Domain experts 
experiment with newly 
discovered types of 
problem instances. 

Domain experts 
experiment with 
solutions suggested by 
data scientists. 

Domain experts 
experiment with solutions 
suggested by ML systems. 

Socialization 
(tacit → tacit) 

Domain experts share 
experiences and resolve 
conflicting problem 
understandings. 

Domain experts 
exchange their solutions 
and resolve uncovered 
conflicts. 

Domain experts share 
experiences and resolve 
conflicting solutions with 
ML systems. 

 

3.4.1 Problem Finding 

As detailed above, the problem finding phase of ML developments focuses on recognizing 

problems and constructing representations of those problems in data. During our interviews, it 

became apparent that data scientists serve as the main stimulus for the various learning processes 

that take place in this phase as they approach domain experts with derived data insights in 

different ways, which we describe below. 

Externalization: Our experts emphasized that at the beginning of ML developments, domain 

experts (experts with deep knowledge of the focused problem domain but without deep data 

science knowledge; e.g., bankers, engineers) and data scientists (experts with deep data science 

knowledge but without deep domain knowledge) typically begin by participating in knowledge 

sharing sessions. While these sessions aim to help the data scientists gain a rough understanding 

of the problem domain, our interviews revealed that these sessions involve more than just 

transferring the domain experts’ understanding of the problem to the data scientists. By having 

to articulate their often implicit understanding of problems to data scientists, who are typically 

laypeople in the given domain, domain experts are forced to reflect on their tacit knowledge of a 

problem and explain it in a simple and transparent way along explicit variables that can 

potentially be reflected in the data—an exercise that domain experts often only rarely have to 

perform in their day-to-day work in the domain, but which helps them better clarify their 

understanding to themselves and make it readily available to others (since their normal practice 

requires them only to act on the problem, but not to clearly explain their rationale for doing so): 

“We often start with the data collection and then a bunch of us get together, look at some 

documents, including data scientists, product managers, and some other people, to see what’s 

in there. Then we talk to the [domain experts] to learn what they need, what they want. And 

then we come together and decide what the desired data collection looks like. [...] And through 

that process, we often learn a lot more about the problem itself.” (I34) 
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The experts further emphasized that these articulations are then carefully documented during the 

sessions because they are needed for subsequent data preparation: 

“What exactly is the problem we focus on? What is the purpose of the project? What do we want 

to investigate in the first place? What do we want to predict somehow? That’s exactly what it 

means to initially try to understand the processes and to understand the problem correctly, and 

then to outline with the domain experts what kind of data we need.” (I17) 

“You first have to find out what problem is behind the data, so creating something like a 

documentation or something like that is an issue.” (I6) 

In this way, ML developments can help organizations clarify, express, and document critical tacit 

knowledge on the respective problem domain that has remained exclusive to individual experts, 

thereby making it accessible to others in the form of explicit knowledge. 

Combination: Our experts stated that, based on the understanding gained in the initial knowledge 

sharing sessions, data scientists then typically begin to explore and prepare the available data to 

progressively understand the data and improve data quality. In doing so, our experts explained 

that data scientists engage in an ongoing exchange with domain experts to clarify their 

understanding of why certain data characteristics may occur (e.g., data distributions, correlations, 

outliers). To do this, data scientists typically confront domain experts with their objective data 

descriptions, and possibly their own “lay” hypotheses, and ask for an explanation. This requires 

domain experts to reflect on their expected and the actual explicit problem behavior observed in 

the data and formulate a plausible explanation. To do this, domain experts often first explicate 

their reasoning of why certain problem behavior (and thus data characteristics) can occur, and 

then use these explanations to challenge the actual observed problem behavior. To this end, this 

process can help domain experts evaluate their understanding of the problem behavior: If their 

expected and the actual observed problem behaviors match, then this practice reinforces their 

correct understanding. If they differ, however, domain experts and data scientists typically engage 

in a mutual process of sensemaking, in which they gradually combine the domain experts’ 

explanations and the explicit results of the data scientists’ data analyses to extend or revise the 

domain experts’ understanding of the problem domain. In particular, an important case that can 

stimulate this process is when data scientists identify outliers in the data, forcing domain experts 

to explain and reflect on (ab)normal problem behavior that may have remained hidden to them: 

“When you’re monitoring an IoT device, you may realize at some point that some operations 

can be performed better or more efficiently and then you communicate this to [the domain 

experts], who have often not thought about it this way.” (I24) 

“We would preprocess the data and sit with the domain experts to show them what we are able 

to see in the data, and then ask them for explaining something that seems off. In doing so, we 

were sometimes able to detect that some of the regular maintenance they did was not useful. So 

they would learn a lot of things about the practices, something that they do, the norms, 

unexpectedly.” (I5) 

In this way, ML developments can help organizations evaluate, revise, and extend explicit 

knowledge by combining explicated domain knowledge with data insights. 

Internalization: Our experts further described that after being confronted with explicit data 

insights, domain experts often engage in further investigation to better understand problem 

instances they observed in the data but were unfamiliar with why they occur and how they 

behave—especially when the insights reflect anomalies in their domain. In doing so, domain 
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experts use the available insights to guide their own experimentation with previously unfamiliar 

problems to improve their understanding of them, unpacking the conditions under which they 

may occur and the consequences of dealing with them in different ways. In the process, domain 

experts gain new experience with novel problems observed in others’ experiences reflected in the 

data, which they can use to enrich their own experience and ultimately revise their established 

practices and develop new approaches to account for the novel problem instances (e.g., 

considering special cases in their day-to-day decision making that they may have overlooked so 

far): 

“We actually found a few things from the data and some of it just by looking at it, so it was just 

the analysis—and maybe the visualization, that was also very important. [...] And then, on the 

[domain expert] side, people said: oh, that’s interesting, we have to take a closer look at that.” 

(I4) 

“Through this data preparation, we can actually see where things are not working so well, 

where the data pipelines are incomplete, where business logic is being applied that should not 

actually be applied, where quality issues occur. That helps us data scientists, but on the other 

hand [...], of course, we feed this back to the responsible domain experts by reaching out to them 

like: ‘In this step, the process is not working as described. You should investigate in the process 

why this is the case.’” (I40) 

In this way, ML developments can help organizations foster the exploration of unusual 

experiences to diversify individuals’ tacit knowledge. 

Socialization: Finally, our experts also described how collective data analysis can foster 

socialization of experts into each other’s experiences and underlying rationales for performing 

routines and making decisions. The experts stated that, to ground their assumptions well, data 

scientists often reach out to more than one domain expert to gather multiple opinions about 

certain ambiguities in the data, with the goal of assessing whether there exists a consensus among 

domain experts. In doing so, data scientists confront multiple domain experts with data insights 

at the same time, which often stimulates discussions among the domain experts about the 

correctness of actual practices that can be observed in the data. This often reveals existing 

ambiguities and, in particular, inconsistencies between the approaches of domain experts—in the 

form of so-called “aha moments”—which in turn enable valuable consensus-building processes in 

ongoing discussions and evaluations (e.g., agreeing on compromises or defining exceptions). 

Especially when the domain experts come from different departments and thus base their 

reasoning on different organizational contexts and experiences, the stimulated socialization can 

help domain experts “look outside their ordinary box” and thereby reflect, revise, and extend their 

accumulated expertise: 

“Or what we also have quite often, which is always very, very exciting, when we have two case 

workers in a room and we look at an outlier, then one says, ‘Yes, yes, it’s clear, decision A was 

correct’. And the other one looks at the one with big eyes and says, ‘Nah, I would definitely go 

for B.’” (I9) 

In this way, ML developments can help organizations share and resolve complementary and 

conflicting tacit knowledge about the collectively faced problem domain. 
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3.4.2 Problem Solving 

The problem solving phase aims to build the ML systems that can best solve the problems 

represented in the prepared data. To this end, data scientists typically perform the training of ML 

models to propose candidate solutions, while domain experts are heavily involved in their 

evaluation to identify the seemingly best candidate. As in the problem finding phase, our 

interviews suggest that data scientists act as the main stimulus of involved organizational learning 

processes: Data scientists repeatedly approach domain experts to let them evaluate their derived 

candidates of ML models, which stimulates different learning processes that help domain experts 

gradually improve their understanding of adequate solutions, as follows. 

Externalization: Since data scientists lack a deep insight into the domain, our experts emphasize 

that domain experts are typically urged to articulate their perception of an adequate solution in 

an easy-to-understand manner to data scientists, allowing them to define and document the 

requirements that an ML system must meet to adequately solve a given problem. In this way, 

domain experts describe the requirements that seem most relevant to them, while data scientists 

act as a kind of translator between domain experts and ML algorithms (e.g., translating their 

understanding of described solution requirements into available data variables and quantifiable 

metrics that can be interpreted by ML algorithms). In addition, our experts highlight that data 

scientists expect domain experts to identify and correct anomalous learning by the ML systems 

when evaluating them, which typically requires them to justify and explain why they believe 

certain behavior of an ML model is inadequate for solving a problem: 

“You start with a very rudimentary model, maybe basic distinctions it can do. For example, for 

some sort of vision model, we started off with some basic classes [...] which you then show to the 

business to get their buy-in. Then, how do you need to fine tune it? What kind of granularity do 

you eventually need? This is where you need to involve the domain experts.” (I22) 

“Simply dealing with the situation or with the systems leads to the emergence of knowledge, i.e., 

a great deal of implicit knowledge is made explicit. [...] Often you have specialist departments 

that have been doing this and that all their lives and for them it is completely intuitive, so to 

speak, and they implicitly know how to do it. If you then build software from it or deal with the 

subject matter, then you have to do it all explicitly and it is discussed. By doing so, the knowledge 

becomes explicit and then usually ends up in some documentation.” (I29) 

In this way, ML developments can help organizations externalize and document tacit knowledge 

about existing perceptions of adequate problem solutions. 

Combination: Our experts described that, when analyzing data to build potential ML models, data 

scientists typically explore a variety of correlations that they hope may add a relevant piece to 

solving a given problem. In doing so, data scientists search for and evaluate potential (parts of) 

solutions that they aim to eventually capture in an ML model. For instance, data scientists of an 

online retailer might recognize drops in sales during world cup soccer matches and seek to 

incorporate according information into their ML model for sales prediction. Since these newly 

discovered correlations are not yet proven to represent causation, however, they must be 

thoroughly evaluated by domain experts attempting to integrate them with their existing solution 

descriptions. While this evaluation is often used for improving the input fed into the ML system, 

it can also yield novel explicit knowledge in the organization when domain experts deem the 

newly-discovered patterns to be promising (parts of) solutions and seek to combine them with 

their existing explicit knowledge to revise their standard practices. In particular, when data 

scientists experiment with ML approaches that may not be suitable for solving the problem (e.g., 
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due to being too complex or computationally intensive), they may be able to draw previously-

unnoticed connections from the iterative experimentation with the uncovered patterns (e.g., 

uncovering preferences of certain customer groups). Our experts emphasize that by reflecting on 

the adequacy of proposed patterns, domain experts often identify complementarities or 

discrepancies between their own rationales and the proposed solution patterns, allowing them to 

extend or detail their own solution approaches with additional aspects (e.g., adding new 

guidelines for handling exceptions or simplifications of their previous approach) or to identify 

and revise some of their potentially outdated or incorrect rationales: 

“For the marketing team, it was also interesting because they knew, for example, that their 

marketing campaign had an impact on sales, but they didn’t know how much of an impact. They 

were able to form an expectation that 30% off on shoes has more impact than 10% on hats. But 

they didn’t know for sure that this was really the case and only anticipated it as one is 10%, the 

other is 30%, and they guessed that people buy more shoes than hats. But we had the data to 

try to correlate this.” (I21) 

“Just because I’ve seen the three classes in the past doesn’t necessarily mean that a fourth one 

won’t come along. [...] So if there’s a fourth class that you can clearly see, hopefully you’ll notice 

that. And if there’s a class that you haven’t even had on your radar yet, you might notice that 

because something is classified differently than you think. So I think humans have to continue 

to keep that in mind if that’s relevant to their problem.” (I3) 

In this way, ML developments can help organizations evaluate, revise, and extend explicit 

knowledge by combining existing explicit knowledge with explicated insights into alternative 

solution approaches. 

Internalization: Our experts note that the problem solving phase can also encourage domain 

experts to adopt solution patterns proposed by the data scientists and experiment with them in 

their respective domain. For instance, when data scientists, while working on an ML system to 

predict machine breakdowns, notice that a specific combination of machine parameters 

significantly heightens the chance of a failure, the engineers (i.e., domain experts) may want to 

run suitable tests on the machine to better understand the cause of the breakdowns and the 

conditions of when they may appear. Such experimentation can guide domain experts towards 

forming new tacit knowledge they can use to refine and extend their own solution practices when 

handling future problem instances. Thereby, expanding on the insights gained through 

internalization in the problem finding phase, further domain knowledge may be unearthed 

through the continued occupation with the problem and corresponding solutions:  

“So in the beginning one store is compared with itself. Then, we can look how a particular item 

behaves in different stores, and then we can check how the whole market of this particular item 

behaves. And in each of these stages we use an algorithm to highlight what is not inline, and 

that is then manually reviewed again and, if necessary, either changed or sent back completely.” 

(I16) 

By exposing domain experts to potential data patterns, data scientists can also encourage them to 

think about the solution from a more pattern-driven perspective. Our experts report that domain 

experts often begin experimenting with the patterns to understand whether they can serve as 

(parts of) problem solutions, helping them to enrich their existing reasoning with unorthodox 

solution perspectives. For example, uncovered patterns can help to think about what other 

conditions might be considered to trigger a particular solution approach: 
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“Tinder is a good example. If you do not swipe—can you trap that as a signal? If you didn’t like 

him or her, how can you take that and feed it back to the system?” (I8) 

In this way, ML developments can help organizations create, revise, and extend tacit knowledge 

by initiating and guiding experimentation with externalized data patterns in new directions. 

Socialization: Our interviews reveal that in the process of finding appropriate solutions, data 

scientists often convene involved domain experts, ideally from different departments/areas, in 

knowledge sharing sessions, primarily to have domain experts collectively evaluate solution 

candidates proposed by data scientists. These sessions reflect opportunities for domain experts 

to meet with domain experts from the same or different areas to discuss how to appropriately 

solve a common problem. This allows domain experts to learn from each other through emergent 

discussions in which they share their perspectives on proposed solutions as well as their own best 

practices, fostering a culture free of silo thinking. For example, if data scientists are developing an 

ML system to provide sales reps with real-time advice about customers and are sharing emergent 

patterns that help close sales, the domain experts can share their own experiences of what works 

and what does not for them from different perspectives in the emergent discussion (e.g., sales reps 

and product engineers share their impressions of solutions). Our experts emphasize that these 

sessions can spark interactions among domain experts that can broaden each expert’s perspective 

by giving them insight into each other’s solution practices, help resolve conflicting approaches, 

and combine complementary approaches to gradually build consensus: 

“In the discussion about what these results mean and what we can do differently with them—

‘how can we rearrange our lines? How can we adapt our shift schedules? How can we better 

deploy our personnel?’—so the knowledge gain takes place in the discourse about the project 

results, so with the interpretation of the results or the intermediate results. As I said, we follow 

a phase model with different stop or go decisions along different iteration cycles. The discourse 

about the intermediate results along this development process is what represents the essential 

benefit for [the organization]—besides the fact that the final ML model improves something by 

X percentage points every day in operation afterwards.” (I42) 

In this way, ML developments can help organizations share tacit knowledge about solutions 

across departments and areas of expertise, helping to resolve potential conflicts and make 

complementary knowledge more accessible. 

3.4.3 Solution Implementation 

Once adequate ML systems are built, they are implemented into existing processes for productive 

use. With the emerging interactions between domain experts and developed ML systems when 

both operate in the same domain, our experts emphasized that ML systems act as the main 

stimulus for the learning processes of domain experts that occur in the solution implementation 

phase, enabled by the frequent confrontation of domain experts with the solution approaches 

generated and applied by the ML systems. 

Externalization: Our experts note that the developed ML systems can be used to continuously 

capture the tacit knowledge of domain experts: By tracking domain experts’ behavior in data (e.g., 

by recording their past decisions), ML systems can be enabled to continuously observe domain 

experts’ behavior, which allows the developed ML systems to mimic domain experts’ solution 

approaches and thereby approximate their applied tacit knowledge with patterns captured in ML 

models. Our experts underscore that this allows them to store in their ML systems knowledge that 

was previously held only in the hard-to-access mental models of individuals. Our experts further 
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emphasize that when organizations use transparent ML models (i.e., by using inherently 

transparent ML models (e.g., decision trees) or Explainable AI (XAI) methods) in their ML 

development, the use of the resulting ML systems allows them to externalize and disseminate the 

captured tacit knowledge of domain experts and thereby make it usable by other experts (e.g., 

who can now adopt other experts’ decision rules that are explicitly described in a decision tree). 

As a result, our experts underline that ML systems can facilitate the dissemination of existing 

domain knowledge to other members of the organization and protect this knowledge from loss 

(e.g., due to personnel turnover): 

“In the past, employees had a great deal of knowledge in their heads, which they then somehow 

managed via Excel lists and knew that they now had to calculate up/down again or something, 

that would flow into the models. And then, of course, it is no longer so dependent on the 

employees—that sounds bad now and probably also fuels the fears of one or the other 

employee—but it is definitely no longer so dependent on the employees.” (I10) 

In this way, ML developments can help organizations improve their continuous capture and 

documentation of domain experts’ tacit knowledge by approximating tacit knowledge with 

transparent ML systems. 

Combination: According to our experts, domain experts often learn by comparing and integrating 

their solution approaches with the ML systems’ approach and their provided explanations in their 

daily tasks (e.g., when faced with a problem instance, they may enrich their solution with the 

approach outlined and applied by a transparent ML system, such as an ML system that outlines 

effects of marketing campaign parameters it has observed and considered to derive its sales 

predictions). Yet, our experts stress that the intensity of this learning process depends on the 

relevance of the knowledge generated and the level of automation of the given use case. For 

example, while domain experts may see little value in learning about the rationale behind 

autonomously tagged images from an ML system, an ML system that predicts crash data for 

automotive product development may provide highly interesting information on how to stimulate 

secure new product design ideas. Our interviews show that when domain experts learn from the 

ML system in this way, they are trying to reconcile the new explicit knowledge created by the ML 

system with the explicit knowledge (e.g., descriptions of effective product designs) that already 

exists in their organization: 

“When the model makes a decision that the administrator can’t understand, there’s a lot of 

skepticism at first. [...] And it is very, very important to discuss this and then, I would say, in 98% 

of the cases, you generally come to a common denominator where the specialist department 

also says: ‘Yes, okay, you can see it that way, that makes sense.’” (I9) 

However, our experts caution that domain experts must remain critical in their evaluation of such 

confrontations by ML systems. Since ML systems can make erroneous predictions, domain experts 

must mitigate the risk of spreading erroneous ML-generated knowledge throughout the 

organization, which could otherwise replace correct human knowledge. Our experts therefore 

highlight the need for domain experts to continuously verify that ML systems’ proposed inputs 

are indeed based on causality: 

“Anyone who calls himself an expert must, of course, be capable of criticism and question these 

findings. [...] If I have a correlation, and I see it often enough... the more often you see it, the more 

you can at least believe that it’s stable. But that still doesn’t say anything about causality, 

because you should still think about common causes and things like that.” (I3) 
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In this way, ML developments can help organizations evaluate, revise, and extend explicit 

knowledge by combining existing explicit domain knowledge with carefully evaluated insights 

from ML systems. 

Internalization: Our experts emphasize that transparent ML systems (e.g., decision trees or 

applied XAI approaches) can provide domain experts with explicit rationales for how the ML 

systems would argue for performing certain routines, which can then trigger domain expert 

experimentation with these rationales. For example, when using ML systems to predict the 

effectiveness of security measures in a new product design, the ML system can supplement its 

estimated effectiveness of a given design with specific reasons for how it reached its decision. 

When the rationales differ from the domain experts’ own solution approaches, our experts find 

that the domain experts do not just naively adopt the rationales as new approaches, but typically 

begin to experiment with the rationales, testing their actual performance in different contexts 

(e.g., trying rules that the ML system would use in certain scenarios instead of their own 

approaches). In this way, the domain experts can gain new experiences guided by the ML systems’ 

approaches, which enables them to revise and extend their own solution approaches: 

“This happens very often. Especially through the description of causal relationships [through 

XAI approaches], anomalies or peculiarities are revealed that you had not considered before. 

This is very, very helpful and is really my be-all and end-all: If you can learn something new from 

it, then this can already bring you a lot further, because you can try this knowledge as an 

engineer in future cases and projects.” (I25) 

Yet, our experts caution that this process can also become vicious if the ML systems’ erroneous 

reasoning creeps slowly and unnoticed into the domain experts’ solutions as they interact with 

the ML systems and develop confidence in the veracity of the ML systems’ described rationales 

through repeated interactions rather than through reasoned justification based on comparison 

with their own domain knowledge: 

“The interaction is actually always a problem for me, because it can happen that people 

suddenly rest on it and say: ‘Yes, that thing is always right anyway, so I don’t do my job anymore.’ 

There’s the situation where you kind of say: ‘Okay, I just trust that thing and I always do what 

it says.’ [...] So it also works the other way around, that the model influences the human being. 

That also works. And to find out this interaction is very challenging. This is very, very 

problematic.” (I19) 

In this way, organizations can acquire new tacit knowledge as human experts (un)intentionally 

collect new experiences guided by the rationales offered by transparent ML systems. 

Socialization: Our experts underscore the importance of domain experts also learning about the 

tacit knowledge stored in non-transparent ML systems by observing the ML systems’ behavior. 

By observing how ML systems make decisions, domain experts can, over time, approximate to 

some extent the rationale used by the ML systems, thereby creating their own tacit knowledge 

from the experienced task performances by the ML systems, and thus gradually become socialized 

into the ML systems’ problem-solving behavior. For example, doctors who use a non-transparent 

ML system that suggests diagnoses for a while may learn to anticipate when and how the ML 

system is likely to reach certain conclusions and incorporate these heuristics into their own 

decision-making rationale. Our experts believe that this process is important, not only because it 

can help ensure the quality of the ML systems being used (as domain experts typically also judge 

the correctness of the approximated rationale of the ML system), but also because it requires 

domain experts to continually reflect on and question the correctness and currency of their own 
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rationales and to revise them when necessary. Once domain experts identify a mismatch between 

an ML system’s rationale and their own, our experts emphasize that domain experts then often 

engage in a collective sensemaking process in which domain experts reach out to other domain 

experts and data scientists to understand why there are conflicts between the ML systems’ 

rationale and their own and how to resolve them, with the goal of reaching a conclusion about 

which of the two rationales is better suited as an adequate solution or how to integrate both 

rationales to create a new superior solution, which typically involves intensive discussions 

between data scientists and domain experts and possible reconfigurations of affected ML systems: 

“The old veterans sit there, so to speak, who know exactly what is important—or think they 

know what is important—and they have to say: ‘Yes, it makes sense if the model says that if I 

now allow ten millimeters more forward displacement, it will have a positive effect on my bus 

acceleration’. So in the end, SHAP and LIME [i.e., XAI approaches] are used to discuss whether 

this prediction makes sense or not, whether the model itself makes sense or not. So that is then 

discussed. Together, locally.” (I25) 

“We do that [i.e., observing ML systems’ behavior], but we need time to do it, because to find 

these patterns is not so easy. You have to use these models at least one or two years in 

production to know some patterns, so that you can say: ‘Ok, this model works like this and we 

found this pattern.’” (I14) 

“Before we fully changed the approach to a machine leaning approach, there were two or three 

months where the [domain experts] would still predict the sales and the machine learning 

system would also predict the sales—and then there was a comparison. So, they would check, 

because they knew what they would come up with and they would maybe see if they are not 

right or that the model is not working well for this kind of campaign that we have and we would 

discuss it with them.” (I21) 

In this way, ML developments can help organizations share and resolve complementary and 

conflicting tacit knowledge between their human experts and ML systems. 

In sum, our experts reported a variety of learning processes stimulated by the confrontation of 

domain experts with data scientists and ML systems. These processes can provide several 

opportunities to contribute to the revision of existing and the creation of new explicit and tacit 

domain knowledge in the organization. With the need for domain experts to reflect on their own 

understanding of problems and adequate solutions, and to engage in mutual learning with others 

with whom they may not typically interact, the three phases of ML developments seem to provide 

powerful stimuli for the four key organizational learning processes. In particular, by confronting 

domain experts with the need to explain their understanding to non-experts (i.e., data scientists), 

to express and evaluate it in terms of clear data variables and patterns, and to resolve conflicts 

and experiment with the understandings and observations of others (e.g., other domain experts, 

data scientists, and even ML systems), ML developments can provide unique encounters for 

stimulating organizational learning. 

3.5 Discussion 

Organizational learning is a crucial process that lies at the heart of organizational behavior and is 

known to fundamentally control an organization’s performance (e.g., Argote et al., 2021; March, 

1991). As organizations should therefore be careful to optimize their organizational learning 

processes, decades of research have analyzed how organizations can increase their organizational 

learning effectiveness (e.g., Argote & Miron-Spektor, 2011; Huber, 1991). More recently, research 
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has recognized that ML systems can participate as a new type of organizational learner alongside 

humans, which can strongly influence organizational learning (e.g., Argote et al., 2021; Sturm et 

al., 2021b). So far, a handful of studies have explored how productive ML systems can contribute 

knowledge to organizational learning through learning dynamics that may emerge between 

humans and ML systems (i.e., Balasubramanian et al., 2022; Lyytinen et al., 2021; Ransbotham et 

al., 2020; Seidel et al., 2019; Sturm et al., 2021b). With our study, we aimed to explore not only 

how this human-AI interplay can change organizational learning, but how the preceding and 

continuous ML developments can stimulate different valuable types of learning processes among 

the human members of organizations, even when ML systems are not yet being used productively. 

To this end, our study offers several theoretical contributions. First, we add to the emerging 

discussion on the impact of ML on organizational learning (e.g., Argote et al., 2021; Seidel et al., 

2019). While existing work primarily focuses on the influence of productively deployed ML 

systems (e.g., Balasubramanian et al., 2022; Sturm et al., 2021b), our study shows that 

understanding the impact of ML on organizational learning can benefit from a more holistic 

perspective that considers not only the direct impact of ML systems by observing their mutual 

influence with human learners, but also takes into account the interactions between humans that 

are required to realize ML systems in the first place. In this sense, our study provides initial 

empirical evidence on how human-centered organizational learning processes unfold within ML 

developments, which we hope can provide a theoretical foundation for further research. 

Second, our study demonstrates that ML developments can, indeed, serve as an important 

mechanism for stimulating organizational learning. The sub-processes uncovered by our study 

show how ML development activities, even if they do not result in productive ML systems, can add 

value by initiating different learning processes for domain experts. Our interviews highlight that 

ML developments can thus act as a new kind of “field of interaction” (i.e., as proposed by Nonaka 

(1994) as an important learning mechanism driven by encounters) where domain experts, lay 

people (i.e., data scientists), and ML systems can meet to collectively share, reflect, and revise 

organizations’ domain knowledge. Since the stimulated learning processes do not only reside in 

ML developments, but domain experts are likely to disseminate their new knowledge to other 

parts of the organization when they return to their domain-specific departments (e.g., traders 

involved in developing a trading ML system applying their newly acquired knowledge in their 

trading activities and sharing it with other traders), our study suggests that the consequences of 

the identified learning processes may have a large impact on organizations’ knowledge stock in 

the long run. However, while our study confirms the existence of these processes, their actual 

consequences for organizational learning remain unknown and deserve further attention in 

future studies. Moreover, uncovering the conditions that benefit or harm the identified learning 

processes may also provide much-needed insights into how to effectively coordinate ML 

developments and their consequences for improving organizational learning. To this end, while 

our experts emphasized the positive side of ML developments as learning stimuli, it may be helpful 

to further understand if and how they can also turn vicious to (other) organizational learning 

processes, and act as an alternative, obstacle, or complement to other stimulating mechanisms 

(e.g., rotational programs, interorganizational partnerships; e.g., Argote et al., 2021; Nonaka, 

1994). 

Third, the uncovered processes highlight that ML developments involve two different types of 

stimuli depending on the ML development phase: the data scientists and the developed ML 

systems. By confronting domain experts with new insights, emerging ambiguities, needed 

explanations, and their generated hypotheses and models, the interaction of domain experts with 
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data scientists or ML systems provides opportunities for domain experts to substantially reflect 

on, revise, and articulate their knowledge. Our interviews show that these processes can help 

improve the availability and quality of organizations’ domain knowledge (e.g., by forcing the 

articulation of tacit knowledge, triggering the revision of outdated knowledge). This finding 

reflects a valuable observation, because a well-known major problem in organizational learning 

research is the scarcity of activities that enable reflection and substantial revision of conventional 

knowledge (e.g., the tendency to favor exploitation of known over exploration of unknown 

solutions (Levinthal & March, 1993) and lack of questioning the adequacy of established learning 

conditions and goals through “double-loop learning” (Argyris, 1976)). ML developments may thus 

serve as a useful new mechanism that organizations can deliberately use to promote such 

reflective and revisionist activities, thereby helping to liberate organizations from suboptimal or 

outdated conventional knowledge (see, e.g., Argote et al., 2021; Argyris, 1976; Levinthal & March, 

1993). While our study uncovers ML developments as a fruitful mechanism, research may greatly 

benefit from further studies on how organizations can effectively coordinate the interaction 

between domain experts, data scientists, and ML systems to integrate ML developments as a 

strategic element that fosters organization-wide domain knowledge. 

Fourth, our study shows how ML systems can affect different types of knowledge (i.e., explicit and 

tacit knowledge). In particular, the role of ML systems as carriers of tacit knowledge has recently 

received increasing attention in research, stressing the potential role of ML systems as tacit 

knowledge repositories that can help prevent certain knowledge losses (e.g., Hadjimichael & 

Tsoukas, 2019; Lebovitz et al., 2021). In line with this research, our study confirms that ML 

systems are used as tacit knowledge repositories across different domains and industries. 

Interestingly, our study shows that ML systems can further serve as a powerful tool for 

externalizing tacit knowledge (e.g., a decision tree that mimics and describes experts’ approaches) 

and as a stimulus for human learning of tacit knowledge. ML developments can thus provide an 

important mechanism to facilitate the management of tacit knowledge, which is known to be a 

difficult and tedious endeavor (e.g., Argote et al., 2021; Nonaka, 1994). Here, more research is 

needed to understand how organizations can effectively use ML systems to convert between tacit 

and explicit knowledge while avoiding losses and biases in the translation between humans’ 

and/or ML systems’ knowledge. 

From a practical perspective, our study emphasizes that organizations should be cautious about 

reducing investment in ML development, even if they repeatedly fail to develop ML systems for 

productive use. Since most “unsuccessful” ML developments still involve the first two phases of 

ML development (i.e., problem finding and solving), organizations may otherwise miss out on 

significant benefits that can result from the learning processes involved—and thus miss a 

powerful driver that can improve their long-term knowledge needed to differentiate themselves 

from their competitors. In addition, our interviews emphasize that organizations should ensure 

that domain experts are well integrated into ML developments. Only when domain experts have 

the opportunity to interact with and be confronted by the insights of data scientists and ML 

systems can domain experts bring new insights back to their domains and infuse the new 

knowledge into further organizational learning processes, thereby spreading gained knowledge 

throughout the organization. Finally, organizations should be keen to allocate additional time and 

resources to ML developments to allow space for domain experts’ analysis of insights and 

discussions that may not contribute to the development of the planned ML systems, but are 

focused on exploring potential process failures and resolving identified conflicts and ambiguities 

in existing knowledge. Otherwise, organizations may stifle valuable learning processes that may 
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ultimately prove to be more than just a nice-to-have byproduct, but an essential stimulus for vital 

performance gains in the long run. 

Of course, our study has several limitations. First, although our respondents cover a wide range 

of experiences across industries, roles, and ML use cases, there may still be data biases that we 

could not completely eliminate. Further qualitative and quantitative studies in different contexts 

may therefore help to uncover such biases and validate the applicability of the identified 

processes. Second, because we based our analyses exclusively on participants’ post-hoc 

descriptions, our findings can only consider the details that were remembered and deemed 

relevant by our participants. In particular, in-depth case studies of ML developments could help 

to provide complementary insights into the learning processes uncovered in our study that we 

were unable to observe in the interviews. Finally, while we attempted to capture experiences with 

different types of ML systems across different industries, domains, and roles of participants, the 

processes identified may vary depending on the ML system under development. Here, future 

research could help validate and contextualize the learning processes for ML developments of 

specific types of ML systems. 

Our study is only a first step in understanding the impact of ML developments on the crucial 

processes of organizational learning. As more research is needed to better understand how ML 

developments affect organizational learning and how ML developments can be used as a strategic 

means to improve organizational performance in the long run, we hope that our study itself can 

serve as a fruitful theoretical “stimulus” for future research to help rethink organizational learning 

theory in the era of AI.  
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Abstract 

Organizations from all industries have recently begun to develop and operate machine learning 

(ML) systems. While ML promises to improve an organization's effectiveness and efficiency, 

developing and operating ML systems remains challenging as these systems differ significantly 

from traditional software and require novel work practices that run counter to existing business 

processes. These conflicting demands create tension in the organization as resources to develop 

and operate ML systems are limited. Organizations thus seek to leverage scarce resources by 

employing a range of organizational structures and tailored tactics. To explore the interplay of 

organizational structures, tensions, and tactics, we conducted an explorative expert interview 

study informed by computational grounded theory methodology. We took an ambidextrous 

perspective to identify four central tensions and associated tactics employed within given 

organizational structures. Further, we found that organizations are moving from centralized and 

decentralized structures to hybrid ones to enable effective ML development and operation. 
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4.1 Introduction 

Machine learning (ML) has been on the rise in recent years and has become a buzzword in almost 

every industry. By automatically monitoring machine systems, detecting cyber-attacks, or 

intelligently handling customer inquiries, among other things, it promises to make organizations 

more effective, efficient, and potentially provide them with a competitive edge (Brynjolfsson & 

McAfee, 2017). As a result, many organizations feel pressured to develop and subsequently 

operate systems that are based on ML (e.g., Baier et al., 2019; Pumplun et al., 2019). At the heart 

of such ML systems are applicable models that are trained based on incoming data and learning 

algorithms (Mitchell, 1997; Russell & Norvig, 2016). In this regard, the development and 

operation process of ML systems differs significantly from that of conventional software systems, 

as it requires new competencies, for example, in the field of data science or data engineering (e.g., 

competencies on data cleansing, learning algorithm selection, data pipeline building; Amershi et 

al., 2019). Furthermore, the data-based learning approach implies that the development and 

commissioning of ML systems often has a highly experimental character, for example, in preparing 

the data or fine-tuning the model’s hyperparameters (Amershi et al., 2019; Choudhury et al., 

2021). 

At the same time, with the increasing relevance of ML systems, it is no longer just large software 

providers seeking to develop and operate such systems; organizations from a wide range of 

industries have begun to explore this new technology (Gerbert et al., 2020). Common to most of 

these organizations is that their experience and existing resources for developing and operating 

ML systems are scarce, and that previous working practices are inconsistent with the 

experimental nature of ML (e.g., Baier et al., 2019; Choudhury et al., 2021; Gerbert et al., 2020; 

Pumplun et al., 2019). In particular, the development and operation of ML systems require a shift 

toward more flexible, faster, and exploratory processes that may not align with existing 

conventional business processes (e.g., Gerbert et al., 2020; Pumplun et al., 2019). In other words, 

ML development requires organizations to engage in exploration activities (see March 1991). 

Conversely, conventional business processes inherently favor exploitation (e.g., Uotila et al., 

2008), for example, because it yields positive returns in a shorter period of time than exploration 

(e.g., Levinthal & March, 1993). As a result, there may be strong tensions as not only financial, 

human, and technical resources need to be allocated between the old and new workflows, but also 

changes in the way of working have to be implemented. A difficult task, as the organization and 

its members are often driven by day-to-day business and need to meet operational goals as well. 

As of now, most companies are still in the early stages of developing and operating ML systems 

and are struggling to resolve the tensions involved (van der Meulen & McCall, 2018; Ransbotham 

et al., 2019). Therefore, many organizations have been ineffective and inefficient in their ML 

development and operation to date, leading to significant delays in ML system deployment or even 

ML project failures (van der Meulen & McCall, 2018). Previous research on other technological 

innovations shows that organizations need to choose an organizational structure in the early 

stages of developing and operating an innovative technology (e.g., Haffke et al., 2017a; Sharma et 

al., 2014). According to Günther et al. (2017), an organizational structure is the system by which 

technical and human resources are organized into departments. In this context, there are two 

essential structural means to organize the organization and its units: The centralized structure, in 

which a competence center is entrusted with the development and commissioning of innovative 

technologies, and the decentralized structure, in which existing specialist departments are 

charged with these tasks (Haffke et al., 2017a; Sharma et al., 2014). Thus far, however, it is not 

known whether these structures are equally useful in the development and operation of ML 
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systems (Ransbotham et al., 2017). Moreover, the chosen structure can lead not only to a 

relaxation but also to an aggravation of tensions, as it can bring its own disadvantages. For 

example, employees in decentralized structures may be overwhelmed by the simultaneous 

management of the day-to-day business and new technological innovations (e.g., Davenport, 

2018; Gerbert et al., 2020; Sharma et al., 2014). Organizations must therefore give additional 

thought to how they can resolve these potentially increased tensions in the respective 

organizational structures. 

To date, little research in the field of ML has examined the tensions that arise in the development 

and operation of ML systems, how the choice of organizational structure affects such tensions, and 

what tactics organizations can pursue in their respective organizational structures to ensure 

successful ML projects. Few available studies deal specifically with the challenges encountered in 

developing and operating ML systems (e.g., Baier et al., 2019; Marabelli et al., 2021), but not the 

interplay of these challenges with organizational structures and possible tactics for addressing 

them. As a result, there is a lack of understanding of how organizational structures and tactics 

interact with each other and help resolve emerging tensions within the ML development and 

operation process. In order to provide organizations with helpful insights on how to ensure more 

successful ML projects, our study investigates the following research questions: 

(1) What organizational tensions arise during the development and operation of ML systems and 

how do they differ within different organizational structures? 

(2) How do organizations cope with these tensions effectively through tactics? 

To answer these questions, we conducted an explorative interview study inspired by grounded 

theory methodology. To analyze the interviews, we adopted an ambidextrous perspective, 

whereby ambidexterity is defined as an organization’s capability to manage opposing demands 

(Raisch & Birkinshaw, 2008). As the demand for fast and flexible exploratory processes in ML 

development stands opposed to the tendency of conventional business processes to focus on 

exploitative activities (e.g., Gerbert et al., 2020; Pumplun et al., 2019), our ambidextrous 

perspective provides helpful guidance to examine possible tensions and tactics within the ML 

development and operation process. This way, our study contributes to the success of future ML 

projects by providing insight into how tactics can be precisely aligned with tensions in 

organizational structures. 

4.2 Theoretical Background 

We first provide an overview of the current state of research concerning the development of ML 

systems from a technical and strategic perspective. Next, known organizational structures are 

described, and organizational ambidexterity is introduced as a meta-theoretical lens for our 

interview analysis. 

4.2.1 ML Development and Operation 

As a variety of organizations are developing and operating ML systems today (Gerbert et al., 

2020), it is important to understand the unique characteristics of ML for organizations to 

understand the tensions that arise. ML systems constitute a possible instance of artificial 

intelligence; that is, a field of research concerned with the development of intelligent machines 

(McCarthy, 2007). ML systems enable processes to be fulfilled that were otherwise reserved for 

humans, such as diagnosing illnesses, answering customer inquiries, or monitoring the 
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functioning of machines (e.g., Brynjolfsson & McAfee, 2017). In doing so, ML systems exhibit some 

characteristics that distinguish them from other forms of digital technologies. Berente et al. 

(2021) subsume these differentiating characteristics under the facets of learning, inscrutability, 

and autonomy, each of which uniquely complicates the implementation of ML systems in 

organizations. Technically, ML systems differ from conventional systems in that they are based on 

applicable models derived from data (Mitchell, 1997; Russell & Norvig, 2016). Learning, therefore, 

describes that these models are not programmed using explicit if-then rules but are trained using 

data and statistical learning algorithms (Amershi et al., 2019). When using ML systems, the models 

are, in turn, applied to new data, e.g., to perform classification or clustering (Mitchell, 1997; 

Russell & Norvig, 2016). As ML technologies are capable of processing large amounts of data while 

considering complex interactions between variables, they may uncover novel knowledge in the 

data that has previously been missed by domain experts (Agarwal & Dhar, 2014; Müller et al., 

2016). However, ML systems are incapable of reacting to environment states, which they have not 

been trained with (Dennett, 2006), and require human guidance for these interpretations (Seidel 

et al., 2020). Organizations must, therefore, carefully evaluate whether to let ML systems learn 

independently to glean novel insights in a truly exploratory manner or to involve domain experts 

for the ML system to remain more relevant to the domain in which it is embedded (van den Broek 

et al., 2021). The inscrutability of ML systems is caused by the increasingly complex statistical 

learning algorithms and ever-larger data sets that are being used to train models (e.g., neural 

networks), making them increasingly complicated and incomprehensible to humans (Meske et al., 

2022; Rudin, 2019). This is particularly problematic since these systems can produce unexpected 

outcomes (Benbya et al., 2020a), which can lead to unanticipated consequences within 

organizations (Benbya et al., 2021). Furthermore, employees who use ML systems in their 

decision-making process may even experience an increase in uncertainty because they lack 

explanations of the underlying reasoning for the ML output (Lebovitz et al., 2022). Implementing 

ML systems into organizations must, therefore, not necessarily lead to increases in efficiency, and 

corresponding projects must be carefully evaluated and managed. Lastly, autonomy denotes the 

capability of ML systems to perform actions without human intervention or human knowledge 

(Baird & Maruping, 2021), which allows them to complement, constrain, or replace humans at 

work (Murray et al., 2021). As ML systems are implemented in organizations, this shift of agency 

toward the machines can give rise to fears among ML-developing employees that their occupation 

will become obsolete (Vaast & Pinsonneault, 2021). 

The striking differences of these characteristics of ML systems and their impact on implementing 

organizations from other digital technologies suggest that developing and operating ML systems 

also poses unique managerial challenges. Indeed, to customize and reuse the models forming the 

core of ML systems, new skills need to be developed in the organization that differ from 

capabilities in prior software development (Amershi et al., 2019). In particular, integrating ML 

systems into the existing software landscape is complex due to their unpredictable, possibly 

erroneous outputs (Benbya et al., 2020a; Amershi et al., 2019). The development and operation 

of ML systems as a whole is strongly characterized by an experimental character. It is difficult to 

predict in advance how ML systems will work and what steps are required to train a high-

performance model (Amershi et al., 2019; Choudhury et al., 2021). A general ML development 

process is as follows (e.g., Shearer, 2000; Amershi et al., 2019): First of all, the business and data 

must be thoroughly understood, followed by the preparation of the data used to train the model. 

The third step is the creation of the model itself and its subsequent evaluation. The actual 

development concludes with the deployment step. After deployment, the ML system is operated 

by observing and maintaining the system behavior, possibly triggering further development 



4 Research Paper B: Creating Value Despite Machine-Learning-Induced Tensions 41 

cycles. Therefore, the operation of ML systems is part of the development process as well. Since 

all steps are iterative and typically performed multiple times, the clear boundaries between 

development and operations are becoming increasingly blurred (Amershi et al., 2019; Studer et 

al., 2021), again highlighting the need for flexible exploratory processes. 

4.2.2 Potential Organizational Structures 

ML systems are a strategic technological innovation that requires a transformation of 

organizational resources, their allocation, and ultimately that of the entire organizational 

structure (Pumplun et al., 2019). At a high level of abstraction, initial research is already 

addressing organizational alignment, strategy, and deployment of ML systems (e.g., Baier et al., 

2019; Jöhnk et al., 2020; Pumplun et al., 2019). However, a detailed consideration of potential 

organizational structures, their perils, and promises has so far been lacking. Basically, when 

developing and operating ML, organizations can choose whether they prefer the synergistic 

benefits of centralized organizational ML structures or whether an organically growing, 

decentralized structure is advantageous to them (Tallon et al., 2013). Some insights into these 

organizational design decisions can be derived from the research field of bimodal information 

technology (IT), which deals with the organizational structures that can be implemented to 

conduct IT projects. Organizations can either set up a divisionally separated bimodal IT for new 

projects or might choose to entrust existing IT or business units with the IT development (Haffke 

et al., 2017a). This discussion also occurs in the development of data-driven technologies such as 

analytics and the dissemination of their results throughout the organization. Sharma et al. (2014), 

for instance, call to investigate how existing organizational structures affect organizational 

members’ ability to generate data-based insights. Indeed, the optimal structure for developing 

analytics and disseminating its results is not obvious, as “multiple actors from different parts of 

the organi[z]ation” (Sharma et al., 2014, p. 435) need to collaborate intensely. Rigid organizational 

structures can constrain the required cross-disciplinary collaboration, which is why Günther et 

al. (2017) request for additional research examining how businesses can create flexible 

organizational structures to foster the required cooperation. Compared to analytics, when 

integrating ML systems, organizations face the additional challenge of not only having to 

distribute individual analytics results throughout the organization but systems that act and learn 

in an automated manner and must be integrated into the existing system landscape and 

maintained over time. For the development and operation of ML systems, it is thus still unclear 

which organizational structure is advantageous and how tensions within the chosen structure can 

be relieved through meaningful tactics. One perspective that can help better understand the 

tensions and approaches to resolving them in organizations is organizational ambidexterity, 

which is discussed in more detail below. 

4.2.3 Organizational Ambidexterity as a Meta-Theoretical Lens 

Demands within an organization constantly contradict each other to a certain extent, so tensions 

arise and trade-offs must be made (Gibson & Birkinshaw, 2004; Raisch & Birkinshaw, 2008). If 

one demand is fulfilled, the other may be neglected, complicating the simultaneous fulfillment of 

needs. This conflict is addressed under the theoretical concept of ambidexterity, which offers an 

approach to managing such tensions (Gibson & Birkinshaw, 2004; Raisch & Birkinshaw, 2008). 

Organizational ambidexterity is defined as “an organization’s ability to be aligned and efficient in 

its management of today’s business demands while simultaneously being adaptive to changes in 

the environment” (Raisch & Birkinshaw, 2008, p. 375). In this sense, only organizations that excel 
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in both areas can balance the tensions that arise between the demands of existing business and 

innovation (March, 1991). Although the tensions cannot be wholly eliminated, organizations can 

manage conflicting demands and reduce the tensions significantly by employing effective tactics 

to find a trade-off (Gibson & Birkinshaw, 2004; March, 1991; Raisch & Birkinshaw, 2008). As a 

result, organizations that embrace ambidexterity as a means can achieve better firm performance 

(Raisch & Birkinshaw, 2008). 

Ambidexterity has been investigated and specified in multiple studies. For instance, the conflicting 

demands of alignment and adaptability (Gibson & Birkinshaw, 2004), rigor and agility (Lee et al., 

2010), or exploration and exploitation (March, 1991) were examined. For our study, the concept 

of exploration versus exploitation is particularly relevant, as the need for exploration in ML 

development and operation (e.g., Gerbert et al., 2020; Pumplun et al., 2019) conflicts with the 

tendency of conventional business processes toward exploitation (e.g., Uotila et al., 2008). While 

exploitation deals with activities such as “refinement, choice, production, efficiency, selection, 

implementation, execution,” exploration refers to terms such as “search, variation, risk-taking, 

experimentation, play, flexibility, discovery, innovation” (March, 1991, p. 71). Exploration and 

exploitation thus form a bipolar relationship, however, they are not mutually exclusive but rather 

interdependent opposites in a duality (Putnam et al., 2016; Farjoun, 2010). Organizations looking 

to balance the trade-off may take various approaches, many of which can be subsumed under two 

ideal types of ambidexterity: structural and contextual (Raisch & Birkinshaw, 2008; O'Reilly & 

Tushman, 2013; Ossenbrink et al., 2019). Thereby, structural ambidexterity describes the 

simultaneous pursuit of both exploration and exploitation through separate structural units with 

different competencies that are held together by the common strategy of the organization 

(O’Reilly & Tushman, 2008). Contextual ambidexterity then denotes approaches that create a 

fostering environment for individual employees to decide for themselves when and how to 

allocate time and resources toward exploration or exploitation (Gibson & Birkinshaw, 2004). In 

practice, organizations choose which of the types to pursue based on a variety of reasons, for 

instance, the amount of identifiable new business opportunities or the required capabilities for 

seizing them (Ossenbrink et al., 2019). 

In the case of ML development and operations, the demand of the existing business is focused on 

efficiency and thus exploitation, while data-based learning requires experimental, novel, and 

exploratory processes, which can create strong tensions in the organization (Davenport, 2018). 

Organizational ambidexterity has played a role in many different streams of literature, including 

technological innovation, organizational adaptation, or organizational design (Raisch & 

Birkinshaw, 2008). Moreover, it has been adopted as a theoretical concept in studies on applying 

data-based technologies (e.g., Kowalczyk & Buxmann, 2015). This led us to apply organizational 

ambidexterity as a meta-theoretical lens for our study, especially since it dovetails with our 

empirical observations: “You have to choose a side. In that sense, of course, it’s a trade-off” (E09). 

4.3 Methodology 

To date, the existing literature offers little insight into answering the research questions of what 

tensions arise in the development and operation of ML and how these can be resolved within 

different organizational structures. Therefore, we conducted an explorative expert interview 

study (Bogner et al., 2009), which is a suitable methodology to address under-researched 

problems (Myers & Newman, 2007; Corbin & Strauss, 2015). Furthermore, to ensure rigor and 

structure in making sense of our data, we draw from grounded theory methodology to guide our 

interview study and apply principles of the methodology for our data collection and analysis 
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(Urquhart et al., 2010; Seidel & Urquhart, 2013). The application of grounded theory has gained 

popularity in recent years, especially to explore the impact of technological change (Birks et al., 

2013; Wiesche et al., 2017) as in the field of ML, e.g., to study ML adoption in healthcare (Lebovitz, 

2019). Grounded theory is not designed to test existing theories but aims to derive new theories 

from research data (Birks et al., 2013; Urquhart & Fernández, 2013).  

In general, grounded theory studies include several steps that enable a structured analysis of the 

data (Birks et al., 2013; Wiesche et al., 2017). After the subject and the field of research upon which 

the study is to be conducted are determined, data collection and analysis are performed. These 

follow an iterative process through which insights are gradually gained and expanded. In this 

regard, the selection of interview participants is not done in advance but is performed 

successively based on the preceding data and insights gained (i.e., theoretical sampling; Birks et 

al., 2013; Glaser & Strauss, 1967). The data collection is terminated as soon as theoretical 

saturation is reached (i.e., no further insights emerge from additional data). In order to establish 

the correspondence between reality, data, and the research field, the resulting grounded theory 

is integrated against the background of existing theoretical concepts (Glaser, 1978). 

4.3.1 Data Collection 

In-depth interviews are one of the most prevalent data sources in grounded theory studies 

(Charmaz & Belgrave, 2012). Since they offer insights into complex real-world contexts, we 

conducted interviews with experts, most of whom work at the management level and are 

responsible for integrating ML systems into the organization. All experts interviewed have 

profound experience in the development and operation of ML systems in a large number of 

projects and can thus report from a wealth of experience. We approached the experts through 

professional online networks and ongoing industrial collaborations. To counteract potential 

selection bias and in line with grounded theory methodology, we applied a theoretical sampling 

approach to decide on the interview participants successively based on prior data (Birks et al., 

2013; Glaser & Strauss, 1967). With this in mind, we interviewed experts from various 

organizations of different sizes and industries that follow different organizational structures for 

developing and operating ML systems. We laid a focus on acquiring experts from established, 

larger organizations, as initial interviews showed that it is particularly these organizations that 

have the personnel resources and structural granularity to actively address and openly decide on 

the presented conflict between centralization and decentralization. This also includes experts 

from consulting firms who have insights into a wide range of client companies. We continually 

added more questions to our interview guide to cover topics that emerged during the research 

process. For instance, the first interviews focused particularly on the ML development and 

operation process and associated challenges, while later interviews also discussed solutions to 

the identified tensions. The sampling process was terminated once we reached theoretical 

saturation and no new themes or relationships emerged within the newly collected interview 

data. We conducted two rounds of interviews, one from the end of 2019 to the first quarter of 

2020 and another in the first quarter of 2021. In total, we conducted sixteen in-depth interviews 

(see Table 6), which were recorded and transcribed to allow for detailed analysis. The interviews 

lasted an average of 55 minutes, resulting in 875 minutes of interview data. 
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Table 6. Study Participants Overview. 

ID Position Experience Organizational Size Industry 

E01 Senior Manager ML 8 yr. Very large Consulting 

E02 Managing Director ML 23 yr. Very large Consulting 

E03 Consultant ML 4 yr. Very large Software 

E04 ML Adoption Lead 20 yr. Very large Software 

E05 Product Manager ML 28 yr. Very large Software 

E06 Global Head of ML 13 yr. Very large Automotive 

E07 Product Manager ML 10 yr. Very large Automotive 

E08 Head of ML 17 yr. Very large Transport 

E09 Head of ML 6 yr. Large Software 

E10 Product Manager ML 7 yr. Large Software 

E11 Manager ML 11 yr. Medium Consulting 

E12 Head of ML 6 yr. Small Consulting 

E13 Head of ML 7 yr. Very large Aviation 

E14 ML Specialist 3 yr. Very large Automotive 

E15 Digital Transformation Manager 23 yr. Very large Insurance 

E16 Head of ML 21 yr. Very large Insurance 

Note. Very large: empl. > 1000/ rev. > 500M €, large: empl. > 250/ rev. > 50M €, 
 medium: empl. > 50/ rev. > 10M €, small: empl. ≤ 50/ rev. ≤ 10M €. 

In each interview, we used a semi-structured interview guide that included five sections: First, the 

purpose of the study and the interview process were explained to the participants to create a 

common understanding of the phenomena investigated. Second, we included questions about the 

ML development and operation process as well as the challenges encountered. Third, we asked 

about the organizational structure used in each case, whether there were alternatives to the 

chosen organizational structures, and what advantages and disadvantages they would have had. 

Fourth, we discussed possible alternative courses of action, solutions to the identified tensions, 

and asked about possible distinctions between tensions and tactics in different organizational 

structures. Lastly, we asked about success factors and potential competitive advantages from 

different approaches. 

4.3.2 Manual and ML-Based Data Analysis 

Throughout the whole analysis process of our explorative interview study, we followed the 

principles of grounded theory methodology to ensure a reproducible, structured analysis. In 

grounded theory studies, insights emerge from the codes that researchers derive from the data 

and are progressively synthesized and abstracted to a more conceptual level (Glaser, 1978). More 

recently, information systems (IS) research has called for supplementing this coding process with 

ML-based computational analysis to provide a highly exploratory perspective on the data that is 

largely independent of the experiences and attitudes of the researchers performing the coding 

(Baumer et al., 2017; Nelson, 2020). This endeavor is summarized under the term computational 

grounded theory, and allows to combine the high processing power of computer programs and the 

slower yet more comprehensive capabilities of humans (Baumer et al., 2017; Nelson, 2020). In 



4 Research Paper B: Creating Value Despite Machine-Learning-Induced Tensions 45 

order to capture ideas about themes and relationships within the data that emerge during the 

coding process, memo writing is conducted in parallel (Glaser, 1978). 

With this in mind, we based our coding process on the procedure suggested by Glaser (1978), 

iteratively jumping back and forth between the different coding stages. To perform the coding, we 

used the NVivo 12 software. Furthermore, we engaged in comprehensive memo writing 

throughout the whole process to capture ideas (e.g., in the form of various diagrams). To achieve 

rigor, we employed multi-researcher triangulation and discussed the ideas intensively among the 

authors and two further IS researchers (Carter et al., 2014). 

In the first step, we followed a mixture of human-led open coding and a computational approach 

to open coding. We began by going through the interview data line by line, assigning codes at the 

level of whole sentences, parts of sentences, and words to identify topics of interest (Glaser, 1978). 

In particular, we took a content-based approach and sought descriptive codes for the respective 

units. In addition to the manual open coding, we used ML-based natural language processing 

techniques to detach from existing mental models and analyze the data more exploratory in the 

sense of computational grounded theory (Nelson, 2020). The goal of such computer-assisted 

procedures is to condense unstructured interview data into easily interpretable lists of coherent 

words, making it easier to identify patterns in the text. Moreover, this procedure counteracts 

biases and inconsistencies in human interpretation that can typically occur when analyzing large 

amounts of text data (Nelson, 2020). We loaded the transcripts into a Jupyter Notebook in a 

Pandas DataFrame. We preprocessed the interview data by removing stop words and expressions 

that occur frequently but have no informative value (e.g., position designations) and stemmed the 

words using the snowball stemmer. Next, we used the Python scikit-learn library to implement 

two common approaches to analyzing text data: topic modeling and clustering. These approaches 

are used to detect topics in text data by evaluating the co-occurrence of words (Nelson, 2020). We 

performed topic modeling by implementing a Latent Dirichlet Allocation model and a non-

negative Matrix Factorization with 10 and 15 topics, respectively. Moreover, we clustered the data 

using a k-Means and a Mini Batch k-Means algorithm, both of which were run with 10 and 15 

clusters to be formed. The resulting lists of relevant words were subsequently reviewed and 

interpreted by the authors. This exploratory approach helped us identify topics in the qualitative 

data that would otherwise have been overlooked. For example, one of the ideas received through 

the non-negative Matrix Factorization (with ten topics) was characterized by the words: 

engineering, software, data, and science. This combination of words has led us to consider the 

necessary IT development disciplines (i.e., software engineering, data science) as a code in further 

analysis (see Tension 3).  

In the second step, we performed selective coding, in which the respective codes from open coding 

were grouped and traced back to common basic phenomena (Glaser, 1978). This step also 

included the codes achieved through the computer-assisted analysis. While creating the 

overarching categories, we considered ambidexterity theory as a meta-theoretical perspective. In 

grounded theory methodology, general theories can be identified as a meta-theoretical lens that 

– while not providing an exhaustive foundation for the study – can enrich understanding about 

the data (Glaser & Strauss, 1967) and help place findings in the context of existing theories 

(Urquhart et al., 2010). Following the principle of ambidexterity, we compared the codes to 

identify conflicting demands stemming from the integration of ML systems and conventional 

business processes and reveal associated tensions. In addition, we captured organizational 

structures that organizations follow to manage the respective tensions, as well as exploratory and 
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exploitative tactics beyond that. The resulting categories represent the core phenomena found in 

the data: the tensions, possible organizational structures, and tactics.  

Finally, the theoretical coding approach helped us to identify relationships among the categories. 

Thereby, theoretical coding relates the basic categories generated by selective coding to each 

other (Glaser, 1978). In this sense, the concrete relationships between organizational structures, 

tensions, and tactics were captured, particularly with respect to achieving ambidexterity for 

combinations of tensions in a given organizational structure. 

4.4 Results 

In the following, we first address the organizational structures that, according to the interviews, 

are often used by organizations to develop and operate ML systems. We then show the tensions 

organizations face in developing and operating ML systems, how they differ by organizational 

structure, and how organizations move toward hybrid structures over time by using appropriate 

tactics. 

Organizational Structures for ML Development and Operation 

The analysis of the interviews confirms that there are two main types of organizational structures 

in practice. They are subsumed under the umbrella terms centralized and decentralized structure. 

A centralized structure includes all formats in which a centralized unit is concerned with the 

development and operation of ML that operates largely independently of other organizational 

processes. The centralized unit thereby provides ML systems and corresponding services for the 

remaining units. This includes structures that are, e.g., designated by the terms AI center of 

excellence or AI competence center (E02, E03, E10, E13). The centralized structure allows 

organizations to achieve the required visibility of ML within the organization. It simplifies the 

specification of a central strategy for data, ML development, and its operation and paves the way 

to define corresponding processes uniformly (E01, E02, E03). In addition, the centralized 

structure allows organizations to pool ML expertise that has been limited to date: “With AI, it 

makes sense to start very centrally because ML development and operation still requires real niche 

skills. That means you build up a pool of experts to reach a critical mass.” (E02). 

While organizations with a centralized structure establish a standalone unit for ML development 

and operation, an organization with a decentralized structure locates developers in the 

respective business units where they work in multidisciplinary teams with domain experts to 

combine technical and business knowledge (e.g., specialists with an IT background). A 

decentralized structure, which may be referred to as silo-based (E01, E03, E09, E11, E12), grows 

rather passively from the bottom up and offers the advantage of being particularly fast and flexible 

(E01), less costly, and close to the knowledge of the respective business unit (E09). According to 

interviewee E12, this structure for the development and operation of ML systems is most evident 

in those organizations that are already very tech-savvy: “And the other approach is that it grows 

up from the bottom. That’s a bit rarer, but we see it in organizations that are already technically 

oriented.” (E12). 

Juggling Tensions and Tactics in ML Development and Operation 

Next, we adopted an ambidextrous perspective to identify competing demands during ML 

development and operation that can be represented as tensions. We examine how these tensions 

manifest in the given organizational structures and explain the tactics that organizations thus 
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adopt within the different structures to alleviate the resulting pressure. Finally, we describe how 

organizations shift toward hybrid structural approaches due to the respective chosen tactics. 

Figure 2 illustrates an overview of the concepts derived from the data. Due to the different 

demands imposed by the exploitative-oriented conventional business compared to the explorative 

requirements arising from ML systems, tensions emerge in organizations trying to develop and 

operate these systems. To enable ML development and operation despite these tensions, 

organizations adopt different organizational structures, i.e., centralized or decentralized 

structures. However, the chosen structure, in turn, necessitates the use of certain adapted tactics. 

Central settings are already much more aligned with the requirements stemming from 

experimental ML systems, so exploitation tactics (March, 1991) need to be employed in a 

complementary way. In the case of a decentralized structure, ML development and operation is 

already closely oriented toward business. Therefore, exploratory tactics (March, 1991) are used, 

which are intended to break away from daily routines. As a result, organizations move toward 

hybrid structures over time, allowing a compromise between the demands of exploratory ML 

processes and straightforward conventional business processes, respectively, providing an 

ambidextrous solution for more successful ML development and operation (E09, E11, E12). 

 

Figure 2. Ambidexterity in ML Development and Operation. 

Tension 1: Defining a Meaningful ML Use Case 

The first identified tension occurs in the early phase of the ML development process. To begin, an 

organization needs to identify a use case that it deems appropriate for applying ML systems (E15). 

The importance of use case selection is underscored by recent research (Jöhnk et al., 2020; 

Pumplun et al., 2019; Sturm et al., 2021c). However, the experts point out a problem that makes 

it difficult to identify meaningful use cases (E11, E15): “It’s always a game: Just because you find 

the use case in business doesn’t mean that there is data, and vice versa” (E11). Consequently, the 

technical requirements, e.g., in terms of data availability or algorithmic feasibility, may conflict 

with the demands posed by business, which can lead to a locking effect in ML development. 

Organizations must decide whether they prefer to drive the use case from the perspective of 

technical possibility (exploration) or take a problem-oriented approach (exploitation) and neglect 

technical realization for the time being (E13). 
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The experts also note that this tension can vary in the adopted organizational structure and can 

tend toward one pole or the other. More specifically, centralized units have a higher degree of 

thematic freedom in the development of ML use cases. However, they are more oriented toward 

the available data, algorithms, and technical infrastructure. In contrast, in decentralized 

structures, the focus is on the added value ML can bring to the business units: “In a decentralized 

organizational structure, you are much closer to your problems, which have to be solved anyway. I 

think, as a central unit you have more freedom [...] to think out-of-the-box and to generally consider 

what could be done in the first place.” (E09). In a decentralized structure, the developers of the ML 

systems have insights into the problems of the employees working for the business units or even 

face these problems themselves. Therefore, they are striving to help the employees within the 

business units to address their daily problems (E10). In contrast, centralized entities strongly 

encourage sharing about technical details (e.g., ML algorithms), which can lead to synergies and 

technology-driven ideas for new use cases (E10). As a result, the modes of thinking differ vastly 

between organizations pursuing a centralized structure compared to an organization with a 

decentralized approach: “In the central system, the use cases are based on the mindset: ‘I have these 

tools, let’s make a cycle out of them and we can drive’. And in the decentralized structure people think 

more like, ‘I need a cycle, so let’s do something to make a cycle’” (E10). 

According to the different priorities observed in the different organizational structures, the 

experts suggest different tactics to relax the tension. In a centralized setting, proposed tactics 

should translate into better targeting of the exploitation-oriented business side to prevent the 

development of ML systems that end up being rejected by end users (E12). While the specialists 

in the central unit usually know what is technically feasible, they should, therefore, proactively 

gather the requirements of the business units, e.g., in the form of interviews: “The easiest way to 

get purposeful use cases for the business is simply to go into the business units and interview them” 

(E11). In contrast, everyday routines and problems determine ML use cases in a decentralized 

structure. As a consequence, particularly innovative use cases might be overlooked, which would 

theoretically be possible from a technical point of view. Therefore, organizations with a 

decentralized setting should encourage business units to explore and think more out-of-the-box, 

for example, through workshops or open time during working hours (E09). 

Tension 2: Having the Required ML Knowledge 

Another issue that can arise against the backdrop of scarce resources is the availability of different 

focal points of knowledge. Especially in the phase of data preparation and modeling, ML 

development requires not only methodological knowledge of algorithms and technical subtleties 

but also domain-specific expertise to enable a deep understanding of underlying data and 

business processes (E13, E16). Yet, because resources are limited, the provision of ML and domain 

knowledge cannot occur without limits. Organizations must decide what kind of skills they want 

to invest in (E09, E11). 

Thereby, the availability and distribution of these types of knowledge varies in different 

organizational structures. Organizations that adopted a centralized structure bundle the scarce 

knowledge in ML and make it centrally available (E02). At the same time, this leads to ML 

knowledge being encapsulated from the domain knowledge of the business units (E15). In 

contrast, organizations that approach this problem in a decentralized manner have already 

combined ML and domain knowledge to a greater extent but will have limited ability to build 

specialized ML knowledge due to financial and time constraints. As a result, developers in a 

centralized setting may spend more time on technical training, sharing methodological 

knowledge, and implementing ML systems, while developers in a decentralized structure know 
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the domain better but lack the time and resources to pursue technical education: “In the 

decentralized case, you’re more likely to have missing knowledge on the methodology side and in the 

centralized you’re more likely to have missing knowledge on the domain side” (E09). 

To overcome the respective challenges in the organizational structure pursued, the experts 

suggest various tactics. First, there must be a regular and intensive exchange between the central 

unit and the business units in a central setting. This can be done in various ways, from formats 

that facilitate communication (e.g., weekly status calls, workshops, the inclusion of visualization 

experts; E01, E04) to structural collaboration or staff exchanges: “It is critical that the domain 

experts [...] and the technical methodological experts work closely together in a team. [...] And 

basically, it’s enough if you bring one domain expert into the entire development team or at least 

make him or her available for queries” (E11). Second, it may be useful to establish other measures 

that facilitate the central unit’s ability to better understand the more exploitation-oriented 

business. For example, data dictionaries can be implemented to record definitions, representation 

rules, and relationships between data objects (E01). In contrast, ML developers in decentralized 

settings do not lack domain knowledge but often fail to acquire detailed methodological 

knowledge. Since decentralized structures often grow from the bottom up, driven by individuals 

with initial technical experience (E12), the experts assume that it is necessary to offer ML training 

opportunities, ensure freedom for self-directed upskilling, and promote open exchange on 

technical topics across business units. This requires decision-makers to create the necessary 

space for their employees’ personal development and relieve them of other daily routine tasks to 

enable exploration (E04, E12, E09, E10). 

Tension 3: Develop Applicable ML Systems 

Another challenge is the deployment and subsequent operation of the ML model in a way that 

users can apply (e.g., Amershi et al., 2019). According to E02, organizations currently struggle to 

transition the initial proof of concept into an applicable, integrated software system: “I have a 

customer who builds proof of concepts very successfully. [...] But what they build are hacks. I can’t 

transfer them in any way into an industrialized form” (E02). To effectively deploy ML systems, two 

development disciplines must come together, both of which are limited in their personnel capacity 

and time: data science, which aims to create and optimize the models at the core of ML systems, 

and software engineering, which is concerned with the integration of the models into the system 

landscape (E14). Expert E09 sees this as a trade-off between how much capacity and time should 

be allocated in data science and how much in software engineering during an ML project. 

According to the experts, the concepts pursued in the different organizational structures for 

allocating resources vary significantly: In central units, data scientists are employed in particular, 

who deal with the statistical evaluation of the data and optimization of the algorithms (E09, E12): 

“My feeling is [...] that many problems still lie in the field of software engineering. And that 

competence centers almost only hire data scientists who actually don’t have a focus on computer 

science, but rather on mathematics or statistics” (E09). This is problematic since software 

engineering plays a critical role in the implementation of ML systems (E09). In contrast, the 

respective business units in a decentralized setting have a stronger focus on the future 

applicability of the ML systems due to their interdisciplinary composition: “When it is a 

decentralized structure, then we may not need dedicated software engineers. We will only need the 

data scientists. Because software engineers are anyway working there” (E10). 

Developers working in the respective business units have closer contact with the later users, see 

their requirements, and work in close exchange. There are several ways to prevent a central 
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structure from focusing only on doing exploratory data science and neglecting the integrability of 

ML models into existing software systems: First, the conventional business unit and respective IT 

should be involved in the early stages of ML development. To this end, a bridge position can be 

created between the central unit and the business unit, which is dedicated to promoting and 

taking over continuous communication and exchange to facilitate exploitation (E12). In addition, 

software engineers should be actively recruited and located in the central unit to build a standard 

software solution, e.g., by creating programming interfaces, designing data pipelines, or enabling 

model versioning (E02, E13, E14). In a more decentralized setting, all-rounders will more likely 

take over the development and operation of ML systems (E09). In many cases, they already have 

prior engineering knowledge and more intensive contact with the potential end-users. Therefore, 

in a decentralized structure, tactics should focus on providing advanced training in the direction 

of data science and, in particular, mathematical-statistical methods (E04, E12, E09, E10). Some 

research has started to discuss this topic under the notion of citizen data scientists, who might 

compensate for the lack of dedicated data scientists in the future (Benbya et al., 2020a). 

Furthermore, it is possible to leverage ML services and platforms with automated components, 

such as Google’s AI platform or Amazon’s AWS AI services, which offer pre-built user interfaces, 

managed ML workflows, or ready-to-use validation tools that require less in-depth mathematical 

knowledge (E08, E09). 

Tension 4: Timing the ML Deployment 

The fourth tension comprises the matter of when to make an ML system available to users and 

start the operational phase. Many organizations aim to deploy their ML systems as early as 

possible. This allows new training data to be collected and the model to be improved over time. 

However, early deployments of ML systems can lead to a loss of trust among users, as these 

systems can exhibit initially low accuracy: “A trade-off is always: When do you integrate something 

into the product, how long do you wait? [...] And the idea is always, the moment it’s out in the world, 

we can learn even more about it, and make the model better. […] But you have the problem that the 

benefit might be low in the beginning. And then, maybe, the business units don’t want to use it 

anymore” (E09). 

In a centralized approach, this issue is particularly pronounced given the strict separation of 

development and operation vs. application and less exchange between the respective units. 

Therefore, the experts state that, especially in a central setting, they must meet a minimum quality 

(e.g., 80% accuracy) of the ML model until it is released to the business units (E09, E10). 

Conversely, in a decentralized setting, the experts see more of an opportunity to deploy today 

since even if the model is of lower quality, there is always a contact person on site. In addition, the 

experts assume that there is a higher level of trust as developers and users work more closely 

together (E10). 

Therefore, especially in a centralized structure, it makes sense to set expectations for ML systems 

correctly from the beginning and actively communicate what can be expected from probabilistic 

ML systems to the business (E12). Therefore, users must be familiarized with ML systems and be 

aware that the system provided is still in its training process. For this purpose, it may be helpful, 

e.g., to create a test environment that can be accessed only by selected users who are aware that 

the ML system is still being improved (E01). This test environment could be operated until a 

minimum level of accuracy is reached by the ML system that justifies its use in a productive 

environment. According to interview participants, the tension between deploying the ML system 

today and tomorrow is less acute in a decentralized structure. Here, it makes sense to deploy ML 

systems earlier on to explore user behavior, collect data, and to leverage potentials quickly. 
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Indeed, sometimes a few percent improvements in process efficiency can lead to a positive return 

of ML, so it is not necessary to achieve high accuracy right at the start (E01). 

Progressing Toward Hybrid Structures 

Overall, it appears that the proposed tactics to alleviate tensions in the respective organizational 

structures induce a shift toward more hybrid organizational approaches (see Figure 2). While 

organizations in a centralized setting seek convergence of the otherwise loosely integrated central 

unit with the business (i.e., exploitation tactics), organizations taking a decentralized structure 

seek to gain more flexibility, methodological expertise, and focus on ML development and 

operation (i.e., exploration tactics). Consequently, organizations in a centralized environment 

primarily pursue exploitation tactics to better meet business demands, while decentralized 

organizations must become more exploratory to successfully develop and operate ML systems. 

Therefore, from an ambidextrous perspective, ML development and operation effectiveness can 

be achieved if a hybrid structure is pursued that satisfies both sides’ demands, ML-specific and 

business-specific. In line with this, the experts emphasize that organizations are evolving toward 

hybrid structures in the long term, or at least have the goal of doing so (E04, E09, E10, E12, E16). 

Thereby, hybrid structures can take a variety of different forms that fall on different points of the 

spectrum between centralized and decentralized structures (and thus between exploration and 

exploitation respectively). For example, interview participants describe a range of approaches, 

from temporary program structures, lab, or task force interventions (e.g., six months of leave in a 

lab) to permanent implementation of hub-and-spoke organizational structures that include 

multiple central units located closer to the respective business units (E01, E03, E04, E11, E16). 

Regardless of how long-term the approach may be, organizations with hybrid structures seek to 

foster talent and ideas, achieve the necessary attention within the organization, provide 

infrastructure independent of the existing IT, and enable flexible pathways for ML development 

and operation without losing sight of the ML systems’ business relevance (E01, E03, E04, E11, 

E16). 

4.5 Discussion 

The development and operation of ML systems differ significantly from the development and 

operation of prior software systems (Amershi et al., 2019). Realizing the development and 

operation of ML systems is non-trivial and requires new and specific competencies in 

organizations that already have to manage their scarce resources today. At present, most 

organizations are still in the early stages of ML development and are struggling to decide on the 

next steps to take. Despite previous research in IT innovation (e.g., Haffke et al., 2017a), the highly 

experimental development and operation of ML systems are still poorly understood. This study 

thus seeks to take a first step in identifying the relationship between organizational structures, 

tensions, and potential tactics that can contribute to successful ML projects. 

At a theoretical level, our study contributes to understanding how organizations approach ML 

development and operation and why they do so in particular ways. First, this research discusses 

organizational structures that are followed by organizations to develop ML systems (i.e., 

centralized, decentralized) and conceptualizes tensions emerging in different organizational 

structures. In this regard, we were able to identify four different tensions, namely (1) defining a 

meaningful ML use case, (2) having the required ML knowledge, (3) developing applicable ML 

systems, and (4) timing the ML deployment. Our results overlap with tensions described in the 

literature that arise on the side of ML-utilizing organizations, such as the tension between letting 
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an ML system learn autonomously and having domain experts guide its learning process (van den 

Broek et al., 2021; Seidel et al., 2020). The key driver behind this tension in development and 

operation, however, seems to be budgetary constraints rather than optimal ML learning processes 

(see tension 2). Interestingly, we found no evidence that the fear of being replaced by machines 

was strong enough in development and operation to create tensions. Vaast and Pinsonneault 

(2021) note that data scientists who are deeply involved in creating ML systems engage in identity 

work, continuously redefining their occupational identity, and thus alleviate the tensions 

stemming from the autonomy of ML systems. While this might explain the absence of these 

tensions during development and operation so far, the increasing capability of ML systems to take 

over tasks from knowledge workers (e.g., Faraj et al., 2018) might intensify them in the future. 

Longitudinal studies might therefore be appropriate to identify how improvements in ML 

capabilities change the arising tensions during development and operation. Second, we identify 

exploitation or exploration tactics that organizations utilize to alleviate tensions, and we further 

contextualize the notion of ambidexterity in the development and operation of ML. Thereby, our 

identified tactics stem from both the domain of structural ambidexterity (e.g., workshops or open 

time during working hours as tactics to alleviate tension 1) and the domain of contextual 

ambidexterity (e.g., a bridge position between the central unit and the business unit to alleviate 

tension 3), providing insights into how organizations integrate structural and contextual 

ambidexterity and thus contributing to ambidexterity research on such integrated approaches as 

called for by Ossenbrink et al. (2019). Our study shows that in the organizational structures 

centralized and decentralized, the discussed tensions each intensify in the direction of one of their 

two poles, putting pressure on organizations to employ tactics to balance the respective tensions: 

Organizations with a centralized setting are already oriented toward the explorative 

requirements for ML development and thus engage in exploitation activities to satisfy business 

process demands. Conversely, organizations with decentralized approaches are well-aligned with 

the business side and employ exploration tactics to meet the requirements of ML development 

and operation. Organizations may, therefore, achieve ambidexterity by targeting hybrid 

approaches to alleviate problematic poles of the tensions while minimizing their overall intensity. 

Thereby, hybrid structures can take various forms that lean toward more central or decentral 

structures and thus to the respective poles of the tensions. In this way, organizations may be able 

to attend to the competing demands of both sides of the exploitation-exploration duality, which 

promises superior long-term performance (Raisch & Birkinshaw, 2008; Smith & Lewis, 2011; 

Smith et al., 2011). In this regard, future research could examine which hybrid structures for the 

development and operation of ML can be developed in detail and how exactly organizations shift 

to these hybrid structures – thereby possibly answering a call for ambidexterity research on how 

organizations navigate the spectrum between exploration and exploitation over time (Schad et al., 

2017). Third, we contribute to IS research by applying computer-assisted analysis methods within 

an explorative interview study informed by grounded theory methodology. Our study shows how 

ML methods can be incorporated into IS studies to more effectively analyze qualitative data, 

provide additional avenues for exhaustive data exploration, and offer new insights that would 

otherwise be overlooked.  

Besides these theoretical contributions, our study provides guidance to practitioners who intend 

to develop and operate ML systems. It highlights several organizational structures that are 

routinely used in the development and operation of ML. Organizations seeking to deploy ML 

systems can be guided by these organizational structures and adapt their own structures 

accordingly, depending on their previous setup. Furthermore, the study helps organizations 

identify potential tensions in their organizational structures early on that may arise from differing 
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requirements of integrating ML systems and business-driven processes. In this context, the study 

also highlights concrete actions that organizations of a given structure can take to alleviate 

tensions. In particular, we show that organizations must be careful to consider the requirements 

of both sides, those of the more explorative ML systems development and operation and those of 

the more exploitative-oriented business. Consequently, the findings that emerge from this study 

can inform practitioners developing a longer-term ML strategy. They are essential to allocate 

resources wisely, e.g., for the structural design of an organization, especially when considering 

hybrid structural approaches, or for the reduction of tensions, for instance, by providing more 

freedom for self-directed upskilling in decentralized structures. As a result, this study provides 

more structure to the discussion revolving around ML development and operation in practice. 

As with any study, this study has limitations that necessitate further research. Our study follows 

an exploratory approach based on the analysis of qualitative interviews. While the interviews 

have provided us with a rich source of valuable information, a quantitative study might offer more 

insight into the generalizability of the derived concepts, or perhaps quantitative insights into the 

impact of tactics on the success of ML projects. Nonetheless, we are confident in the validity of our 

findings, as we carefully selected our experts using a theoretical sampling approach, which 

resulted in interviewing participants from organizations of different sizes and industries (Birks et 

al., 2013; Glaser & Strauss, 1967). Further studies could examine different organizational settings 

and investigate whether the tensions and tactics are prioritized differently under varying 

circumstances, such as at different points in ML development and operation. 

4.6 Conclusion 

Overall, our study takes a first step in showing how the arising tensions in the development and 

operation of ML systems can be theoretically conceptualized, whereas previous research has been 

a more technical discussion (Amershi et al., 2019; Studer et al., 2021). It contributes to an 

integrative perspective on ML development and operation guided by ambidexterity research. As 

results, we conceptualize four tensions that emerge during ML development and operation, which 

manifest differently depending on the adopted organizational structure. Furthermore, we shed 

light on the tactics that organizations use to alleviate tensions in particular structural settings and 

that ultimately drive organizations toward hybrid structural approaches and thus ambidexterity. 
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Abstract 

Machine learning (ML) applications have surged in popularity in the industry, however, the lack 

of transparency of ML-models often impedes the usability of ML in practice. Especially in the 

corporate performance management (CPM) domain, transparency is crucial to support corporate 

decision-making processes. To address this challenge, approaches of explainable artificial 

intelligence (XAI) provide solutions to reduce the opacity of ML-based systems. This design 

science study further builds on prior user experience (UX) and user interface (UI) focused XAI-

research, to develop a user-centric approach to XAI for the CPM field. As key results, we identify 

design principles in three decomposition layers, including ten explainability UI-elements that we 

developed and evaluated through seven interviews. These results complement prior research by 

focusing it on the CPM domain and provide practitioners with concrete guidelines to foster ML 

adoption in the CPM field. 
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5.1 Introduction 

Machine learning (ML) use in organizations has grown rapidly in recent years (Jordan & Mitchell, 

2015). In a study by McKinsey, 56% out of 1.843 participants from different industry fields 

reported using ML in at least one use case (Chui et al., 2021). One area in which organizations can 

stand to benefit from utilizing ML systems is corporate performance management (CPM), a 

company practice that deals with strategic and tactical activities, such as planning, budgeting, and 

forecasting. ML-based techniques have much potential for supporting humans in these tasks, 

especially in forecasting, as ML can learn from previous data and take outside effects into account 

(Makridakis et al., 2023). The opaque and abstract character of ML models is a significant obstacle, 

however, particularly for decision-making (Adadi & Berrada, 2018). This issue has given rise to 

the study area of explainable artificial intelligence (XAI), which aims to elaborate to users how ML 

models function or how a particular prediction was generated (Adadi & Berrada, 2018). Research 

has developed and evaluated XAI techniques to gain insights into ML models and algorithms in 

order to generate these explanations (Adadi & Berrada, 2018; Guidotti et al., 2019). 

Despite the potential of ML in forecasting use cases, the technology is rarely used in the CPM 

domain. For instance, in a study by McKinsey, ML had the lowest adoption rates in the CPM-related 

business functions of strategy and corporate finance at 7% and 6%, respectively (Chui et al., 

2021). Despite the research advances in the field of XAI, 34% of respondents in emerging 

economies and 44% in developed economies perceived the topic of explainability as a relevant 

risk when using ML (Chui et al., 2021). A possible reason for this gap could lie in the design of ML-

based systems. As shown by DARPAS’s XAI program, a high-quality user experience (UX) and user 

interface (UI) for XAI systems are crucial to foster user understanding (Gunning et al., 2021). 

Moreover, there is no one-size-fits-all strategy for XAI, as various users in different circumstances 

demand diverse solutions (Gunning et al., 2021). UX-/UI-centered research has therefore 

evaluated different user groups, motivations for explanations, and formulated design principles 

(see Laato et al., 2022; Liao et al., 2020). Yet, many studies focus on providing explanations to data 

scientists, which is why recent literature calls for matching XAI techniques with more lay users 

and their needs (Liao et al., 2020; Brennen, 2020). This lack of focus on the end users may explain 

the gap between the low current adoption of ML systems and their considerable potential in the 

CPM sector, as low usability might discourage non-data-scientists from adopting and using ML. In 

this study, we thus aim to provide CPM- and user-specific answers to the following research 

questions: 

Research question 1 (RQ 1): What are the goals of the user groups of ML-based CPM systems, and 

what kind of explanations do they require to achieve them? 

Research question 2 (RQ 2): How can an ML-based CPM system effectively and efficiently provide 

these explanations to the users? 

To answer these research questions, we follow the design science research process proposed by 

Peffers et al. (2006). Thereby, our study builds on preceding research concerning XAI techniques 

and their UX-/UI-centered design by developing and evaluating a user-centric approach to 

provide explanations in an existing ML-based CPM information system (CPM system) which is 

utilized in a forecasting use case and being developed by a European provider of enterprise 

service management solutions. To this end, we identify the goals and requirements of the user 

groups of the CPM system. We subsequently derive design principles (DPs) to meet these 

requirements in the UX, which we apply, refine, and evaluate through six interviews with 

management and CPM experts. With this study, we thus make important contributions to UX-/UI-



5 Research Paper C: Delivering Value Through Explainable Artificial Intelligence 56 

centered research for XAI systems by distinguishing and validating DP for distinct user groups of 

ML-based CPM systems. Furthermore, to our knowledge, this is the first study that elaborates DP 

for UX-/UI-design tailored specifically for users in the CPM context and their unique 

requirements. Thus, we provide scholars with fertile ground for future research on user-centric 

XAI approaches in the CPM or adjacent domains while offering guidelines to practitioners that 

they can utilize to bridge the gap between CPM experts unfamiliar with ML and the potential 

promised by ML-powered CPM systems. 

5.2 Theoretical Background 

This section first describes the business practice of CPM and then expands on the utilization of ML 

solutions for planning and forecasting, taking XAI approaches and UX/UI-centric research into 

consideration. 

5.2.1 Corporate Performance Management 

CPM has been described as a system combining management processes with corresponding 

business intelligence (BI) information systems (Miranda, 2004). BI information systems enable 

companies to collect and analyze the data enabling CPM practices (Miranda, 2004; Frolick & 

Ariyachandra, 2006). The objective of CPM is generally to support corporate decision-making in 

ensuring the company performs well in its success metrics, such as revenue or profit (Frolick & 

Ariyachandra, 2006). Because of its quantitative nature, CPM thus usually focuses on metrics that 

can be expressed in financial figures, such as revenue and profit, as overarching goals (Frolick & 

Ariyachandra, 2006). On a deeper level and depending on the company’s business model, CPM 

practitioners can also look into figures such as specific or aggregated sales numbers for a specific 

product or the costs a particular department generates (Frolick & Ariyachandra, 2006). There are 

different frameworks and approaches to summarizing the processes that make up the CPM of a 

company: generally, they all include processes for the planning, analysis, and monitoring of the 

predefined performance metrics (Richards et al., 2019; Frolick & Ariyachandra, 2006). 

In the context of CPM, planning can be described as the process of gathering relevant information 

for CPM decision-making, such as budget allocations (Rogers et al., 1999). This information is used 

to base strategies around them (Rogers et al., 1999). For this purpose, it is important to use 

internal and external information to predict how certain figures will perform in the future 

(Richards et al., 2019). This step of forecasting is essential to the planning process, and the correct 

execution can be a critical step to outperform the company’s competition (Frolick & Ariyachandra, 

2006). Extensive research has been done on different types of forecasting (Bontempi et al., 2013). 

This ranges from stock price prediction to the CPM-relevant use case of sales prediction 

(Pavlyshenko, 2019). In this study, we focus exclusively on use cases entailing the forecasting of 

business figures in the context of CPM. In practice, forecasting is often done in the form of a time 

series problem (Bontempi et al., 2013). This means a collection of historical data, all in the form 

of a time series, is used to predict future values based on these variables (Bontempi et al., 2013). 

There are different models and algorithms to transform the input variables into the desired output 

variables. Simple or advanced statistical methods, like forecasts, are often robust methods and 

offer their own advantages (Adya & Collopy, 1998; Makridakis et al., 2023; Spiliotis et al., 2019): 

They do not heavily rely on the amount and the quality of their input data and are also not very 

computation heavy because of the simplicity of their algorithms, making them the dominant 

methods for forecasting in the past. They do, however, also have some weaknesses, as they only 
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prescribe the input data and do not recognize causation, for instance (Barker, 2020). The rise of 

data availability and quality, together with an increase in readily and cheaply available 

computation power, laid the groundwork for ML-based approaches to these forecasting use cases 

(Makridakis et al., 2023). 

5.2.2 Explainable Artificial Intelligence for Forecasting 

ML can be described as the algorithmic generation of a model from provided data by extracting 

patterns within the data (Russell & Norvig, 2021). Most modern artificial intelligence (AI) systems 

are implemented using ML technologies (Brynjolfsson & Mitchell, 2017). Therefore, we use the 

term ML to refer to ML-based instances of AI in this study. Time series forecasting can be done 

with supervised learning, a subcategory of ML (Bontempi et al., 2013). This is due to the 

circumstance that historical data is used, which is regularly labeled (Bontempi et al., 2013). A good 

example is historical sales numbers, as the label would be the sales volume mapped to the date 

the sale was concluded (Ma & Fildes, 2021). There exists a lot of research on ML-based approaches 

to forecasting, mostly focusing on designing the right type of algorithm for the defined use cases. 

Prior research includes ML-based solutions for energy forecasting, sales forecasting, or other 

financial figures (Ghoddusi et al., 2019; Pavlyshenko, 2019; Wasserbacher & Spindler, 2022). This 

research shows that ML-based approaches can perform quite well in planning use cases. In recent 

years deep learning algorithms are starting to catch up or surpass traditional algorithms in terms 

of performance (Hewamalage et al., 2021). Deep learning refers to especially complicated ML 

techniques, often associated with models with multilayered circuit structures, which are referred 

to as artificial neural networks (Russell & Norvig, 2021). They also exacerbate one of the biggest 

disadvantages of ML: The actual or perceived lack of transparency and the lack of explainability 

(Gunning et al., 2021). This disadvantage has brought out another important aspect of ML, XAI, 

which will be a focus of our study (Adadi & Berrada, 2018). 

ML models are often described and perceived as a black box, and XAI tries to address this 

(Brennen, 2020). Therefore, XAI can be summarized as approaches seeking to explain aspects of 

ML-based systems to their users and stakeholders (Langer et al., 2021). For terminological clarity, 

we first describe the concepts of interpretability and explainability as understood within this 

paper. Interpretability can be defined as the grade to which the model and its predictions are 

interpretable to the user (Russell & Norvig, 2021). This means that based only on the inspection 

of the model, a human can derive the reasoning behind a certain output and could also predict the 

output for a different input. Linear regressions or decision trees are interpretable because the 

human can simply go along the tree with the respective input or calculate according to the 

regression parameters (Russell & Norvig, 2021). Following this definition, interpretability can 

only be achieved by choosing an interpretable algorithm. Examples of non-interpretable 

algorithms are deep learning algorithms due to their complex structure and the vast number of 

parameters and layers they use (Castelvecchi, 2016). They and other uninterpretable ML 

algorithms are commonly referred to as black box models or algorithms (Castelvecchi, 2016). In 

comparison to interpretability, explainability is not something inherent to the algorithm. It can be 

provided by posthoc processes, e.g., by another algorithm being trained on top of the model to be 

explained. This new algorithm is in itself interpretable but performs similarly to the one to be 

explained. Because the explanation occurs after the model is already trained, methods designed 

to provide explainability can also be described as posthoc techniques (Barredo Arrieta et al., 2020; 

Russell & Norvig, 2021). 
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Most posthoc techniques are model-agnostic, i.e., they can be applied posthoc on every type of ML 

model. These posthoc techniques themselves can be divided into two categories: Global and local 

techniques (Murdoch et al., 2019): Global techniques operate on a dataset level, providing 

explainability into global relations and patterns the model has learned. Local techniques operate 

on a prediction level, providing explainability into individual predictions. Barredo Arrieta et al. 

(2020) also provide further, not mutually exclusive, distinctions of posthoc techniques, such as 

explanations by simplification, feature relevance or simply visual explanations: Explanations by 

simplification generally try to extract rules based on how the model works and explain those rules 

to the users. Feature relevance refers to a wide array of explanations regarding the input variables 

of the model, i.e., the features. They use different approaches like game theory to learn how to 

explain the features, and afterward provide information on, e.g., the influence of the features on 

the model, the importance of the features to the model performance, or the interaction of the 

different features. Visual explanations in turn can be used to present the information gathered 

from the feature relevance techniques. As presented in this subsection, model-agnostic, posthoc 

techniques allow for abstraction from the utilized ML algorithms. Consequently, we focus the 

presented UX/UI approach on these to ensure the transferability of our results for most ML-based 

solutions.  

5.2.3 UX-focused XAI Research 

When designing a UX-focused approach, different aspects need to be kept in mind. First, it is 

important to provide explanations into adjacent fields in the ML-based systems, such as the model 

performance or the used data (Liao et al., 2020). This also motivates a more general approach in 

terms of looking at the whole UX of the ML-based system, instead of just the parts that are ML-

related in the narrow sense. Liao et al. (2020) provide key factors that influence user 

requirements and design recommendations. Among others, these include the motivation of the 

users to obtain explainability, the type of users in terms of, e.g., domain knowledge or prior 

experience with data science topics as well as their role in the ML-based system, and lastly the 

decision context in which the explanations are provided. Because of the focus on the forecasting 

use case and posthoc model-agnostic techniques, other factors identified, such as the data and 

algorithm type, are omitted for this study. In a data science-heavy domain, motivations for 

explainability can be divided into debugging the model, identifying biases, and building trust 

(Brennen, 2020). Liao et al. (2020) argue that the sheer volume of different contexts and user 

motivations makes it difficult to predefine general explainability needs. They, therefore, describe 

a question-driven approach to generating UX-Guidelines for ML-based systems. Focusing on 

strictly posthoc techniques, they aggregated explainability methods, which resulted in the 

addition of counterfactual explanations and example-based explanations to the list of 

explainability methods and techniques. They then built a question bank with questions that users 

of ML-based systems might have in terms of explainability (Liao et al., 2020). After considering a 

broader look of users on the ML-based system, they formulated ten question categories, which 

can be summarized as questions regarding input and output data of the ML-based system, 

performance of the ML model, “How”-questions concerning how the ML-based system and the ML 

model generate their predations, and questions concerning why specific values were or were not 

predicted as well as what could happen by differing parameters of the ML-based system. 

As discussed by Liao et al. (2020) it is important to consider the roles of the users. Meske et al. 

(2022) define five stakeholder groups in XAI systems, which can be divided into three groups 

based on their interaction with the ML-based system: The first group includes the three 
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stakeholder types of regulators, managers, and developers. It focuses on general regulatory 

certification, managing and controlling, and the responsibility for the development of the ML-

based system. The second group, named users, relates to the actual end users of the ML-based 

systems. The third group, individuals affected by ML-based decisions, refers to stakeholders who 

may have no direct interaction with the ML-based system but still experience the consequences 

of its deployment. Another aspect to consider while designing the UX of an ML-based system 

utilizing XAI is the quality metrics such an approach should adhere to. Meske et al. (2022) further 

discuss different personalized quality criteria, i.e., metrics that explanations should fulfill. They 

argue that explanations should generally be interpretable by the user, in a way that users should 

be able to comprehend them and that they seem plausible. Moreover, an important aspect is the 

effort required to get the explanations. Zhou et al. (2021) also discuss the clarity, broadness, 

simplicity, completeness, and soundness of explanations. Oh et al. (2018) evaluated their UX 

research via general usability metrics, such as the ease of use as well as the ease of learning the 

use, and more ML-specific metrics, such as the comprehensibility and the controllability of the 

ML-based system. Lastly, research also already provides several principles and guidelines for the 

design of the UX or UI in the context of XAI. Laato et al. (2022) recommend always considering 

visualizations. These types of recommendations were also provided in general UI research, to 

reduce the cognitive load of users and thereby increase usability satisfaction (Hu et al., 1999). 

Similarly, the use of coloring in the UI, when well combined with other UI elements, can be helpful 

(Hu et al., 1999). This is further emphasized when presenting business information, such as in 

CPM use cases (Bačić & Fadlalla, 2016). Storytelling and the right use of symbols can also be 

beneficial (Bačić & Fadlalla, 2016). To summarize, there are metrics for the general perception of 

the UX or UI, e.g., concerning the visualizations and general usability, as well as metrics specific to 

the explainability goal and the ML domain that evaluate if the provided explanations are 

understandable and actionable. Our work builds on these suggestions, specifying and validating 

them for users in the CPM field.  

5.3 Methodology 

For this study, we followed the design science research process proposed by Peffers et al. (2006), 

which is appropriate for research on applicable solutions to an existing problem. It includes the 

six phases problem identification and motivation (1), objectives of a solution (2), design and 

development (3), demonstration (4), evaluation (5), and communication (6). This process can be 

iterative and jump backs to any of the phases are possible. Design science in the IS domain can 

aim to deliver DPs that include prescriptive statements on how to perform activities to solve the 

problem (Gregor et al., 2020). They can have three different foci: First, they can aim to describe 

what users should be able to do with the artifact (principles about user activity). Second, they can 

aim to describe what features should be built into the artifact, such as requirements on a technical 

or functional level. And third, they combine the definitions of the first two fields, by describing, 

what users should be able to do with the artifacts as well as the features the artifact should possess 

(principles about user activity and an artifact) (Gregor et al., 2020). Further, DPs should address 

and define the actors involved in them, as well as the decomposition of the principle in a 

hierarchical manner due to the high complexity of IS (Gregor et al., 2020). The object of 

examination chosen for this study is an existing ML-based CPM system developed by a medium-

sized European supplier of enterprise service management software. The system allows for the 

creation of ML models to forecast business figures based on historical data and data from external 

providers. 
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The first phase, problem identification, and motivation consisted of literature research and one 

qualitative interview. The goals of the literature research were to gain knowledge on ML-based 

use cases for the CPM domain with a focus on forecasting, the possibilities of XAI, and the existing 

user-centered research concerning the adoption of XAI in ML-based systems. The results of the 

literature research are presented in the previous section of this work. To extend the results of the 

literature in terms of the CPM context, an initial interview with a CPM expert (IIC) was conducted. 

Following the guidelines for qualitative interviews, the interview allowed for flexibility and was 

confidential (Myers & Newman, 2007). The semi-structured interview aimed to refine the 

collected knowledge on the different user groups of ML-based CPM systems, as well as on the 

requirements they have in terms of explainability. The interview was transcribed with a content-

driven approach, excluding filler words and correcting obvious grammatical errors. Because 

assumptions regarding user groups and requirements were made before the interview, a directed 

content analysis approach was used (Hsieh & Shannon, 2005). The aforementioned assumptions 

were used as predefined codes in the following coding process as described by Saldaña (2009). 

The second phase, objectives of a solution, aims to define objectives, which the artifact in the form 

of the DPs will try to accomplish. To achieve this, the results of the literature research and the 

results of IIC were analyzed to first define the relevant user groups and their main goal in the ML-

based CPM system. Based on that, user group-specific requirements for explainability were 

derived. These included the knowledge that the users should gain from the explanations and also 

exemplary actions that users should be able to perform with the help of the provided explanations, 

with the latter focusing on decision-making actions. 

In the third phase, design and development, UX/UI-centric DPs for incorporating XAI into ML-

based CPM systems were created. To later demonstrate and evaluate the principles in the next 

phases, prototypical artifacts in the form of UI mock-ups were designed following the DPs. This 

phase can thus be split into two parts: the development of the DPs and the design of mock-ups. 

First, derived from the main goals and objectives, one DP was created for each user group. This 

principle addressed the general need to enable the user group to achieve this goal. Focusing on 

three user groups, this produced three DPs (DP 1 – DP 3). Based on the research done in phase 

one, explainability requirements were derived and assigned to the appropriate DP. This resulted 

in six explainability requirements (XRs; XR 1 – XR 6). Then, based on explainability techniques, 

ten explainability elements (XEs) were defined (XE 1 – XE 10), which were mapped according to 

their possibility of satisfying the explainability requirements. The definition of the XE contains the 

used explainability technique and some further meta-information. This includes the way in which 

the XE should provide its explanations and what kind of information should be provided alongside 

the technique. In a separate step, three general UX/UI DPs (UDPs) were formulated (UDP 1 – UDP 

3) based on prior research and practical guidelines provided by the company. After the principles 

and associated definitions were created, representative UI mock-ups were designed. For their 

creation, we first considered which XR the respective XE is aiming to fulfill and, therefore, which 

information the CPM system and thus the mock-up must convey, before elaborating on the 

presentation and visualization of the information. To allow for a fast and flexible design, they were 

created in Microsoft PowerPoint. For each XE, 2-3 mock-up alternatives were created using 

applicable UDPs to examine how the XE is perceived by the user groups (e.g., see Figure 4). The 

mock-ups used representative dummy data and information to illustrate how actual explanations 

would be provided via the XE. During this phase, we collaborated closely with both the ML 

development lead as well as the product owner of the examined CPM solution, involving them in 

multiple feedback loops. Especially the product owner had valuable insights on the requirements 
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and desires of the CPM clients of the company as well, which were incorporated into the DPs and 

the mock-ups. 

The fourth phase, demonstration, and the fifth phase, evaluation, were conducted in the same 

interview setting, and are thus covered together. First, an interview approach to evaluate the DPs 

was developed. Based on the research results, generic and specific metrics for an evaluation of the 

XE were defined. These focused on more general quality (GQ) metrics as well as on XAI-specific 

quality (XQ) metrics (see Section 5.2). The first part, therefore, concentrated on general UI quality 

requirements with the latter focusing on quality requirements in regard to the provided 

explanations. The evaluated quality metrics are the following: Easy interpretation, meaning that 

the process of interpreting the representation is without much effort (GQ 1); Intuitive 

interpretation, meaning that the process of interpreting the representation is possible without a 

lot of knowledge required (GQ 2); Easy-to-learn interpretation, meaning that the knowledge to 

interpret the representation can be easily gained (GQ 3); Satisfactory interpretation, meaning that 

the process of interpreting the representation leaves the interpreter in a satisfied state regarding 

his goal with the interpretation (GQ 4); Transparent presentation of the explanations, meaning 

that the representation provides all the expected information (GQ 5); Complete explanations, 

meaning that all the relevant explanations for the regarded use case were provided (XQ 1); 

Plausible explanations, meaning that the occurrence of the explanations makes sense and can be 

understood (XQ 2); Trust-building explanations, meaning that the explanations help the user 

understand the ML-approach in such a way that the user gains trust in it (XQ 3). Additionally, as 

each XE should help the users achieve their main goal by fulfilling the assigned XRs, specific quality 

metrics are defined for each XE/XR combinations: Knowledge measures (KMs) describe whether 

the XE presents the right knowledge, i.e., the right explanations to achieve the XR. Actionability 

measures (AMs) describe, whether based on the provided knowledge, decisions in connection 

with the XR can be made.  

Table 7. Overview of Interviewees for Mock-up Evaluation. 

Interviewee ID Role in organization User group 

IIC, IC 1 Management in a planning department Model creator 

IC 2 IT-Consulting for CPM solutions Model creator 

IC 3 Sales and presales for CPM solutions Model creator 

IM 1 Middle management Model user, data consumer 

IM 2 Upper management Model user, data consumer 

IM 3 Middle management Model user, data consumer 

 

The interviews were conducted with three CPM experts (IC 1 – IC 3) and three interviewees with 

management roles (IM 1 – IM 3). Table 7 shows their respective user role and their role in the 

organization. The CPM experts were asked to evaluate nine XEs and the management group eight 

XEs, according to the mapping of the XEs to their respective DPs (see Figure 3). Because of the 

similar XRs for the user group of model users and data consumers (see Section 5.4), the second 

interview round was used to evaluate both DP and the associated XE to XR couplings. We 

conducted all interviews according to the following structure: 1) The general context of the 

interview was established. The interviewer explained the general approach for the interview and 

the goals of the study and the interviewee provided further background on their knowledge 
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regarding CPM-systems and ML if necessary. 2) The interviewees were presented the user groups 

of ML-based CPM-systems, as well as the goals of the user groups, and which explainability 

requirements were derived from them. 3) The interviewees were guided through a fictional case 

study for ML-based forecasting of ice cream sales. This included a fictional management role for 

the interviewee, fictional decisions for which the ML-generated forecasts were needed, and how 

the ML-based CPM system would be used to generate a ML model as wells as predictions from the 

model. 4) The interviewees were guided through the evaluation methodology. For this, all the 

generic quality metrics were presented in the form of hypothetical statements and all the other 

steps taken in one evaluation iteration were explained. 5) The interviewees were iteratively asked 

to evaluate each of the XE represented by the mock-ups. In a first step, two or three slightly 

different mock-ups for the respective XE were presented to the interviewee in random order. 

After an alternative was shown, the interviewee was asked to signal when the next can be 

presented. If needed, the interviewer provided explanations on what was shown in the 

representation. The alternatives served to evaluate some of UI-focused DPs, as the mock-up 

alternatives generally displayed the same information but in a different way or on different 

aggregation levels. The interviewee noted the mock-up alternative which they liked best. 

Furthermore, the alternatives were used to convey that there is not one unique solution to use the 

XE. This way, they could evaluate the XE independent from a case where they did not like a 

particular illustration even though the provided information was fitting. Next, the interviewee 

rated the respective XE according to the generic and specific quality metrics. For this, we used a 

balanced Likert scale with five possible expressions (1) Strongly disagree; 2) Rather disagree; 3) 

Partially agree; 4) Rather agree and 5) Strongly agree) and instructed our interviewees to rate the 

XE from 1 to 5, with 3 being the midpoint (Likert, 1932). Depending on the results, the interviewer 

asked follow-up clarifying questions. All other qualitative comments by the interviewee were also 

recorded and transcribed. The evaluation was conducted by analyzing the quantitative 

assessment of the mock-ups via the Likert items and the qualitative comments and feedback 

provided by the interviewees. The refined results of this study are presented in the following 

section. 

The communication of the obtained results through this study concludes the design science 

research process to develop a user-centric approach to XAI in CPM systems. 

5.4 Results 

As literature has shown, XAI-based approaches to provide explainability should keep the users, 

their motivation, and the context in mind. This study, therefore, builds on the identified three user 

groups creators, end-users, and affected individuals of the ML-based systems or ML models 

(Meske et al., 2022). In order to account for the context of a forecasting process in a CPM system, 

we refine them as follows: By focusing the creator group onto ML models instead of the whole ML-

based system, our study defines the user group of model creators. They are in charge of creating, 

validating, and administrating ML models for different use cases. The model can be a standard 

statistical model or an ML model. Exemplary company roles are administrators or data 

engineers/scientists in the planning departments. Secondly, this work splits the end-users group 

into model users and data consumers. Model users utilize the created and deployed model to 

generate forecast data. They validate the generated data, may make some adjustments, and report 

them in the CPM system. Exemplary company roles are planners or business analysts. By using 

the model they create data, which in turn is used by the data consumers. Data consumers use the 

reported forecast data to evaluate the company’s plans and performance and make decisions 
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based on them. They may also choose to relay information to non-user individuals affected by the 

ML-generated decisions. Exemplary company roles are managers or other decision-makers. As 

non-user individuals affected by the decisions of the ML model in practice typically do not gain 

access to the CPM systems or its explanations, we could not derive meaningful DPs for this group 

and thus omitted it from this study. 

5.4.1 Design Principles and Derived Explainability Elements 

The DPs identified in this study are structured in three decomposition layers. Incorporating the 

main goals of the user groups, we first create three overarching DPs, one for every user group for 

which the ML system is designed. These are shown in Figure 3 and describe which user group is 

addressed and what the explanations should be able to accomplish to help the users achieve their 

goals through the ML-based CPM system. Next, as discussed in the Section 5.2, research has 

identified different requirements that users can have based on the questions they ask in the 

context of ML-based systems (e.g., Liao et al., 2020). Among them are questions relating to the 

input and output data of the ML-based system, the performance of ML models, how the ML models 

work, or how certain predictions are generated. Taking them, the CPM use case, and the IIC results 

into account, this study further identifies six XRs that ML-based systems must meet in order to 

satisfy the questions posed by the three user groups and to thus help them reach their goals. This 

resulted in the following XRs, which we mapped to the overarching DPs according to which user 

group’s demands they reflect, as shown in Figure 3: 

XR 1: Provide explanations to help understand and evaluate the input data. Users should know what 

kind of data was used, how big the data sample is, and how good the quality of the data is. While 

this is important for any kind of data analytics, it is crucial for ML models due to their lack of 

transparency. 

XR 2: Provide explanations to help understand and evaluate different ML models. Users should be 

able to see and understand the used ML algorithms, as well as the input and output data. 

XR 3: Provide explanations to help assess the influence of internal and external drivers. Drivers 

denote features that contain information on driving factors crucial for the decision-making 

process and can stem from internal or external sources. Statistically, this distinction is irrelevant, 

but from a business perspective the drivers should be separated, as companies usually are only 

able to adjust internal drivers (such as running marketing campaigns as opposed to the external 

temperature). 

XR 4: Provide explanations to help compare different models. This can include the comparison 

between different ML algorithms or other models, such as simple average functions. 

XR 5: Provide explanations to help assess the applicability of the ML models to different use cases. 

Use cases can be the same type of forecasting done with other data (such as a different region for 

a sales forecast) or other figures that could benefit from a similar approach. 

XR 6: Provide explanations to help understand and evaluate the predictions generated by the ML 

model. For this purpose, it should be explained which influencing factors were considered and 

how the prediction was generated. 
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Figure 3. Mapping of XE to XR and DP. 
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Based on the research on explainability techniques and refinement through our interviews, we 

furthermore formulate XEs, which can be described as representations and visualizations of 

generated explanations or other information in the UI. These are based on XAI techniques, but can 

also provide non-XAI- or even ML-related information. The provided mapping of the XEs to the 

XRs completes the third decomposition layer of our DPs. The XE are described in the following 

together with the measures utilized to evaluate how well the XE provides explanations to satisfy 

their respective XRs: 

XE 1: Provide insights on the size of the data sample, i.e., the data amount. This includes information 

on the number of used time series of the actual figure (e.g., previous sales numbers) and of the 

internal and external drivers. Further information can be provided on the timeframe of the time 

series and various metrics concerning the amount of data points (e.g., average amount of data 

points per timer series). To fulfill XR 1, the XE should help in evaluating the data amount (KM 1.1) 

and enable decision-making concerning the data amount, such as deciding whether the amount is 

enough or more data needs to be acquired (AM 1.1). Only for DP 2 and DP 3, to fulfill XR 1, the XE 

should further help in evaluating the time frame (KM 1.2). 

XE 2: Provide insights on the quality of the data. In this case, the quality can be evaluated by the 

amount of missing data points or anomalies per time series. To fulfill XR 1, the XE should help in 

evaluating the quality of the used data (KM 2.1) and enable decision-making concerning the data 

quality, such as deciding to improve the data quality further, exclude certain data series or data 

points, and many more possibilities (AM 2.1). 

XE 3: Provide insights on the general context of how the ML model will be applied. High-level 

information concerning the input data, output data, and transformation process in the form of an 

ML algorithm is provided. General information on the ML algorithm can be provided (e.g., the 

advantages and disadvantages of the used algorithm and a short summary of its functionality). In 

order to satisfy XR 2, the provided information should help in evaluating the correctness of the 

context (KM 3.2) and in making decisions concerning the correctness of the context (e.g., changing 

some of the context or keeping it as is) (AM 3.2). 

XE 4: Provide performance metrics for the model. These metrics can vary depending on the use 

case, but should generally give an indication of how well the model performs, i.e., how well the 

model predictions match the actual data of testing data set. To satisfy XR 2, the metrics should 

help in evaluating the model quality (KM 4.2) and in deciding whether the model is usable or 

needs further refining/should be discarded completely (AM 4.2). 

XE 5: Provide information on the influence of all internal and external drivers (features) used in the 

model on the predictions on a global level. This means that a selected feature’s influence on all the 

results of the model is shown, depending on the expression of this feature. To satisfy XR 3, the 

presented driver influence should help in evaluating the influence of the drivers in the model (KM 

5.3.1) and the driver-dependent biases (KM 5.3.2). Based on the explanations, decisions regarding 

the correctness of the feature influence can be made (e.g., use the driver, modify the feature 

selection, or discard the driver completely) (AM 5.3.1). Also, decisions can be made regarding the 

improvement of the features, such as paying external providers for better data on external drivers 

(AM 5.3.2). Only for DP 2 and DP 3, to fulfill XR 3, the XE should further help in evaluating the 

causal relationships of the drivers (KM 5.3.3) and enable decision-making regarding the usability 

of the model (AM 5.2). 
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Figure 4. Shown Mock-ups for XE 6. 

XE 6: Provide information on the influence of all internal and external drivers (features) used in the 

model on a selected prediction (local) generated by the model. This can be accomplished via 

different means, but generally, it should help evaluate why a certain value was predicted based 

on how the features are expressed. Figure 4 depicts the alternatives shown to interviewees, which 

compare the predicted values with the actual values in a chart. In the lower half, it shows bar 

charts on how different drivers influenced the selected data point, as indicated by the shaded 

column in the above chart. In order to satisfy XR 6, the explanations should help evaluate the local 

influence of drivers on the selected value (KM 6.6) and enable decision-making regarding the use 

of the forecast data (AM 6.6). Further, to satisfy XR 2, decisions should be facilitated regarding the 

usability of the ML model (AM 6.2). To satisfy XR 4 decisions should be able to be made in regard 

to the correctness of the importance of the drivers (such as using or not using the drivers) (AM 

6.3.1) and the improvement of the features, as described for XE 5 (AM 6.3.2). 

 

Figure 5. Shown Mock-ups for XE 7. 

XE 7: Provide information on the importance of the selected internal and external drivers (features) 

for the model’s performance. High importance means that the model would perform worse if this 

feature would not have been considered in the model. Figure 5 depicts the alternatives for XE 7, 

which show the importance of different drivers in a bar chart, with the bar width indicating the 

loss of a performance metric if the driver were not to be included in the model. To satisfy XR 3, 

the explanations should help evaluate the importance of drivers to the model (KM 7.3). Decision-

making concerning the correctness of the importance of the drivers (such as using or not using 

the drivers) (AM 7.3.1) and the improvement of the features, as described for XE 5 (AM 7.3.2) 
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should be possible. Only for DP 1 and DP 2, to satisfy XR 2, decision-making should be enabled in 

regard to the usability of the ML model (AM 7.2). 

 

Figure 6. Shown Mock-ups for XE 8. 

XE 8: Provide information for the interaction of the selected internal and external drivers (features). 

A high overall interaction suggests that the features correlate in such a way that they can describe 

patterns that would not be recognized if the drivers were used standalone. High interactions can 

therefore indicate the right combination of the features so that the model makes up “more than 

the sum of its parts”. Figure 6 displays the alternatives for XE 8, with the overall interaction of 

different drivers shown in the upper half as well as the interaction of a selected driver with the 

others in the lower half. The interaction is visualized via different variations of bar charts, with 

the bar width indicating the degree of interaction. To fulfill XR 3, the explanations should help in 

evaluating the relationship between different drivers (KM 8.3), facilitate decisions regarding the 

correctness of the drivers (AM 8.3.1) as described for XE 7, and the improvement of drivers (AM 

8.3.2) as described for XE 5 and XE 7. 

XE 9: Provide comparisons of different models. ML models could be compared with other models 

or other means of achieving a forecast, such as a simple moving average, which averages the actual 

data in a moving time window. Also, the actual data can be included to better assess the accuracy 

of the models. For a better comparison, the focus is on visualizing the forecasts of different models. 

To satisfy XR 2, the explanations should help evaluate the model quality (KM 9.2) and facilitate 

decisions regarding the usability of the model (AM 9.2) as described for XE4. To satisfy XR 4, the 

provided explanations should help compare different models in terms of quality (KM 9.4) and 

choose the appropriate model (AM 9.4). Only for DP 1 and DP 2, to satisfy XR 6, decision-making 

should be enabled in regard to the usability of forecast data (AM 9.6). 

XE 10: Provide examples of the model’s predictions based on different performance classifications. 

Classifications can be done based on the performance metrics and could show the best, medium, 

and worst time series in terms of performance. A time series in this case means a sub-dataset of 

the overall use case where the model is applied, e.g., different regions of a sales forecast. To satisfy 

XR 2, the explanations should help evaluate the model quality (KM 10.2) and make decisions 

regarding the usability of the model (AM 10.2) as described for XE 4 and XE 9. To achieve XR 5, 

the explanations should help evaluate the applicability of the model in the intended area (KM 

10.5) and enable decision-making regarding the selection of areas where the model will be applied 

(AM 10.5). 
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The following general UX/UI DPs were derived to analyze different guidelines based on the user 

needs: 

UDP 1: Use visualizations where necessary and possible. Especially if data can be illustrated in 

charts of various forms, it should be. 

UDP 2: Utilize color coding to better differentiate numbers or graphics. A good example is the 

indication of good or bad performance metrics based on an intuitive “street light” classification 

(Red for bad, yellow for medium, green for good). Other options include intensifying the display 

color of bars in bar charts. 

UDP 3: Abstract and aggregate information if necessary. Examples are the aggregation of big 

amounts of data into a standardized value or simply displaying continuous values in a normalized 

five-point illustration. 

These were regarded as guidelines subordinate to the importance of the information provided by 

the XE, so they were only applied when they seemed fitting. The main focus of these principles is 

to provide good usability. Based on the evaluation of prior research (see Section 5.2), data can be 

better understood when visualized. Further colors have the potential to make decision makings 

easier. Lastly, deriving inspiration from lots of web services or e-commerce tools used by lay 

users, this study proposes the use of aggregated five-point scales, similar to those used in rankings 

from, e.g., products on shopping sites. One point on the scale indicates a poor expression of the 

considered value, and five points indicate the opposite. 

5.4.2 Evaluation 

Each of the XE was discussed and evaluated with the experts using mock-ups of slightly different 

implementations of the XE as the basis for the discussion (e.g., with and without color-coding of 

the displayed metrics). For instance, the results of the evaluation of XE 7 (which aims to provide 

insights concerning the importance of the drivers for the model) are shown in Table 8, whereby 

the results from the CPM-expert group are in blue colors and the results from the Management 

group are red. IC 1, IM 2, and IM 3 chose the option with bar charts and no color coding, IC 2 with 

bar charts and color-coding, and IC 3 as well as IM 1 with five-point scales and color-coding. When 

asked to evaluate XE 7, IC 2 noted that the measurement of mean absolute error (MAE) increase 

when withholding the driver in the model as an indicator for the driver’s importance was 

interesting. All of the general metrics were evaluated with at least “rather agree”, with the 

exception of IC 1, who only partially agreed with GQ 4. The explainability-specific metrics all had 

a majority of at least “rather agree” and in the case of XQ 2 and XQ 3 a majority of “strongly agree”. 

IC 1 and IM 1 only partially agreed with the completeness of the explanations. All interviewees 

strongly agreed that the explanations help in evaluating the drivers. A majority strongly agreed 

that decisions based on these explanations could be made in terms of selecting the correct and 

important drivers. In terms of deciding on driver improvement actions a majority rather agreed. 

For the decisions concerning the model usability most of the Management-interviewees only 

partially agreed. IC 2 suggested a different color coding and was missing the data source for 

plausibility. IM 3 wanted a tooltip that explains what the MAE is. IM 1 mentioned the feature 

interaction effects that were shown in XE 8 but not to the Management-group. 

General feedback to the XE 7 mock-ups included that the color coding was helpful, but red, yellow, 

and green coloring could be a problem in terms of accessibility, as color-blind people would not 

be able to interpret them (IC 3). IC 2, as mentioned in most of the XEs individual evaluations, was 

missing the data sources for more plausibility. IC 2 also stated that because of their statistics and 
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mathematics background, their evaluations could be a little “nitpicky”. IC 2 suggested providing 

more explanations for the terms and metrics displayed in the XEs, as people with no statistics or 

data science background may not be able to understand them. IM 1 generally found all the 

information helpful but suggested layering it for example in the form of tooltips, so to allow the 

users to get the detailed information only if they need it. They stated that they mainly want to see 

an indication if something is good or bad at first glance. IM 2 also liked the XEs and emphasized 

the potential of combining them. IM 3 was positively surprised by the possibilities of what XAI 

technologies can accomplish. They also stated that it was difficult to evaluate the data amount and 

quality XEs because they are hard to understand for lay users. When they saw the following XEs 

they could also retroactively better understand the data-centric XEs. In order to answer the 

research questions, the general and XE-specific feedback and the overall evaluation results are 

discussed in the following. 

Table 8. Evaluation Results from the Interviews for XE 7. 

 

 

The general and explainability quality metrics were asked for every XE together with the XE-

specific knowledge and actionability metrics and were used to validate and refine both every XE 

on its own (as described in detail for XE 7 above) as well as the overarching UDP. In the following, 

we first qualitatively discuss the overall evaluation results and then elaborate on further insights 

that were not directly integrated into the XE, XR, and UDP detailed above. Regarding the 

evaluation of the explainability elements, it is important to note that because of the small sample 

size (n=3 in each interview group), the results should only be interpreted on an indicative level. 

Nonetheless, the XEs were generally well perceived in terms of helping to fulfill the explainability 

requirement that they were mapped to. In the first interview group, representing the model 

creators, in at least 85% of the cases the knowledge and actionability metrics, which aimed to 
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evaluate, whether the XE would help satisfy the XR, were evaluated as at least “rather agree”. In 

over 50% they were even evaluated with “strongly agree”. Even when XEs were not as well 

evaluated concerning the generic metrics, the interviewees still felt that they provide the right 

knowledge and help make decisions. The generic metrics were also rated with at least “rather 

agree” in over 80% of the cases and “strongly agree” in around 50% of the cases. The second 

interview group, representing the model users and data consumers, evaluated the XE with similar 

results. The knowledge metrics were evaluated with at least “rather agree” in over 90% of the 

cases (over 60% strongly agreed), and the actionability metrics in over 80% of the cases (over 

40% strongly agreed). The general metrics also showed good evaluation results of over 85% 

“rather agree” (over 30% strongly agreed). 

In the case of low-rated XEs, interviewees often felt that some information to understand the ML-

related metrics or terms was missing, complicating the use by lay users (e.g., IM 1 and 2 regarding 

XE 1 or IM 1, 2, and 3 in regards to XE 4). In some cases, the visualization of the charts was not 

optimal (e.g., IC 2 and IM 1 in regards to XE 5 or IC 1 regarding XE 8). One interviewee (IC 3) also 

emphasized the importance of providing data sources for all calculated metrics to make the 

explanations plausible. This was also proposed in research by Laato et al. (2022). Because this 

was not mentioned by the other interviewees, it should be implemented with caution, so as not to 

overload lay users with information. The possibility to “drill down” as proposed by Laato et al. 

(2022) to get the requested information on demand should be evaluated. In terms of the chosen 

mock-up alternatives the conclusion is not as clear: For XE 5, regarding the global driver influence, 

all interviewees chose the same option, and for XE 9, regarding the model comparisons, 5 out of 

6. The rest only had majorities in their respective interviewee groups in 7 out of 9 cases (IC) or 7 

out of 8 cases (IM). This further supports the assumption that the design of the XE should be user-

group specific. Based on the qualitative comments of the interviewees during the selection and 

afterward, it should be evaluated how the best features of the different options could be combined. 

Again, the often-suggested option of tooltips or “drill downs” should be evaluated, to 

accommodate different levels of details in one UI. Alternatively, things like color-coding which 

were better received by the Management interviewees could be made configurable in the ML-

based system, depending on the user utilizing them. The UX/UI-DPs should therefore be evaluated 

further, in a context where they could be applied depending on the user’s personal preference. In 

conclusion, the conceptualized DPs provide the right XEs to the identified XRs, as indicated by the 

generally favorable evaluation results of the KMs and AMs. While the evaluation results for the 

general and explainability-specific UX metrics were almost equally as well-rated, there is still 

some improvement potential for the UI design. More interactable explanations, such as tooltips 

for ML-related metrics and terms, could offer much potential, as well as the combination of the 

different XEs at the appropriate steps in the user journey. 

5.5 Discussion 

In order to contribute relevant knowledge to IS-research, design science studies should fall into 

one of three categories (Gregor & Hevner, 2013): Exaptation means that they extend existing 

knowledge to new problems. Improvement describes studies that develop new solutions to 

existing problems. Invention studies develop novel solutions for new problems. The user-centric 

approach developed in this work combines, refines, and focuses prior research to develop a 

solution to provide explainability in ML-based CPM systems. Therefore, it provides a new solution 

to a known problem, thus classifying it as an improvement work. 
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This study makes two major theoretical contributions. First, this work refines prior stakeholder 

and user groups identified by, e.g., Langer et al. (2021) and Meske et al. (2022) to a more ML 

model-focused level. In particular, it specializes the user groups for the CPM context, connects 

them with their respective XR, and thus invites future research in the CPM field to evaluate XAI 

approaches using our framework for CPM users. Within our framework, we follow Brennen 

(2020) and take the lay user groups model users and data consumers into account. Additionally, 

we encourage further studies to refine user groups of XAI systems for other contexts to lay the 

groundwork for research on the user-centric design of respective XAI approaches. Second, we 

provide DPs representing UX/UI building blocks that describe what kind of information should be 

displayed to the user, which can be used by scholars to inform future user-centric XAI research. 

Our DPs relate directly to our identified user groups following the advice of Liao et al. (2020) to 

consider user requirements to derive DPs. Through this study, we thus validate existing research 

on the UX/UI design of XAI approaches (e.g., Zhou et al., 2021; Oh et al., 2018; Laato et al., 2022) 

for the CPM field and refine CPM-specific design by centering our DPs around the CPM users and 

their requirements in particular. The positive evaluation by our lay user groups indicates that our 

XEs are suitable for providing explainability to these users in particular, following the suggestion 

of Brennen (2020). Moreover, our derived XR can be matched to the XAI questions in the UX-

centered research of Liao et al. (2020) with the exception of XR 6, which may therefore be specific 

to the CPM domain. However, our DPs contribute to XAI research not only in the CPM context. A 

plethora of similar forecasting use cases exist in other domains such as sales forecasting for supply 

chain management (e.g., Bi et al., 2022) or wind speed forecasting for power grid balancing (e.g., 

Yang & Chen, 2019) with model users similar to planners in the CPM context, for instance. As our 

DPs are tailored to provide explainability specifically to CPM users, we argue that they can apply 

to any domain with use cases sufficiently similar to the forecasting of business figures and user 

groups whose characteristics and goals align with those of the CPM user groups (e.g., data 

consumers that utilize the model predictions to support their decision-making processes, for 

instance for planning or performance monitoring purposes). In this regard, we invite future 

research to adopt our evaluation framework to validate and extend our DPs for contexts other 

than CPM. 

Additionally, we make two primary practical contributions with our study. First, organizations 

can utilize our developed evaluation framework to assess their ML-based CPM systems currently 

in use for their ability to provide explainability to their users. We invite practitioners to rethink 

whether their CPM systems are truly understood by users, especially lay users, and offer 

considerations on the requirements and evaluation criteria to be fulfilled to enhance user 

understanding. Second, our DPs can be used as concrete guidelines to foster explainability in 

practice when developing ML-based CPM systems by incorporating an XAI approach. Getting more 

explainability into ML-based solutions may help organizations build trust in the technology in 

CPM, as they provide knowledge that without them would be lost in the “black box”. By utilizing 

our user-centric approach, practitioners may therefore address the perceived risk of low 

explainability (see Chui et al., 2021) and thus foster the use and adoption of ML in the CPM domain.  

This study is not without limitations, however. First, although the technical possibilities of 

posthoc techniques and other aspects of ML or XAI were kept in mind, they were not evaluated in 

detail. Completely interpretable models were omitted from the start, and their potential for 

specific and small use cases should be determined, as the development of the conceptualized XEs 

could potentially come with a technical overhead. Secondly, while this study made a first step 

toward user-centric XAI design in CPM, its scope is too small for empirical validation of the 

identified XEs. Further quantitative studies could thus build on our evaluation framework to 
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refine and validate the XEs with a larger sample of CPM users from organizations of various sizes 

and industries. Lastly, the evaluation of the results was done via UI mock-ups for standalone XEs. 

As mock-ups are static, they cannot truly show the UX with interactive elements. Therefore, 

interactive explanations were largely omitted and could hold the potential for additional 

explanatory power to be unlocked by future research. 

5.6 Conclusion 

In this study, we followed the design science research process as presented by Peffers et al. (2006) 

to create UX/UI designs for the ML-based CPM system developed by a medium-sized supplier of 

enterprise service management software, which we evaluated and refined through six interviews 

with CPM and management experts from the firm. As results, we were able to derive DPs, which 

aim to provide explainability according to the user’s goals and requirements in order to facilitate 

knowledge exchange between users and ML-based CPM systems. To create our DPs, we, therefore, 

specified the user groups of ML-based CPM systems as model creators, model users, and data 

consumers and identified their respective goals. The DPs themselves consist of a three-layer 

decomposition structure. The highest levels (DP 1 – DP 3) describe the goals of the user groups 

on which the explanations should focus. The second layer derives more specific explainability 

requirements (XR 1 – XR 6), such as the need to describe data sample size and quality that can be 

connected to different DPs. Lastly, the explainability elements (XE 1 – XE 10) that deploy 

techniques from the field of XAI such as feature importance or simply present metadata, such as 

model performance metrics, to fulfill different XRs constitute the third level. Further, more 

general UX/UI-DPs are provided (UDP 1 – UDP 3). They suggest the use of visualization, color-

coding, and aggregations to point scores. The DPs are validated on an indicative level from 

interviews, for which we elaborate an evaluation framework. Our framework includes generic 

metrics concerning the UX/UI design, as well as XE-specific metrics, evaluating whether the right 

knowledge was provided and the right actions can be taken based on the explanations. The 

evaluation results show a high agreement of users with the defined quality metrics. Another 

finding from the interviews suggests that the same XE could be deployed with a user-group-

specific design to further enhance usability. Therefore, the DPs developed in our study offer first 

concrete guidelines for designing XAI approaches in CPM to practitioners while providing scholars 

with both a CPM-specific evaluation framework and user-specific DPs for future XAI approaches 

to be refined and expanded on through research in the CPM domain. 
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Abstract 

Artificial intelligence, specifically machine learning (ML), technologies are powerfully driving 

business model innovation in organizations against the backdrop of increasing digitalization. The 

resulting novel business models are profoundly shaped by ML, a technology that brings about 

unique opportunities and challenges. However, to date, little research examines what exactly 

constitutes these business models that use ML at their core and how they can be distinguished. 

Therefore, this study aims to contribute to an increased understanding of the anatomy of ML-

driven business models in the business-to-business segment. To this end, we develop a taxonomy 

that allows researchers and practitioners to differentiate these ML-driven business models 

according to their characteristics along ten dimensions. Additionally, we derive archetypes of ML-

driven business models through a cluster analysis based on the characteristics of 102 start-ups 

from the database Crunchbase. Our results are cross-industry, providing fertile soil for expansion 

through future investigations. 

 

Keywords: Business Models, Machine Learning, Artificial Intelligence, Taxonomy 
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6.1 Introduction 

The rapidly advancing digitalization is leading to more and more data being collected by 

organizations. In 2020, 64.2 zettabytes of data were generated or replicated worldwide – an 

amount ten times larger than in 2012, with no end to the growth in sight (IDC, 2021). The high 

availability of data has also fuelled another technological trend, the growing use of machine 

learning (ML) to support or automate organizational processes (Jordan & Mitchell, 2015). ML is a 

technology that can be used to implement instances of artificial intelligence (AI) by learning 

patterns based on data that can be applied to make predictions (Brynjolfsson & Mitchell, 2017; 

Mitchell, 1997; Russell & Norvig, 2021). This learning process (i.e., training) is largely 

independent of human influence and is thus highly experimental in character (Amershi et al., 

2019; Choudhury et al., 2021). ML fundamentally offers the potential to significantly change 

organizational processes and enable business models (BMs) in the business-to-business (B2B) 

segment that were previously inconceivable. For example, Salesforce utilizes ML in their Einstein 

solution to provide sales and marketing departments with insights and predictions to better 

understand their customers, drawn from past customer interactions (Salesforce, 2022). At the 

same time, the characteristics of ML hinder the creation of genuine business value for the 

organization from this technology (e.g., Burström et al., 2021). Harnessing the power of ML for an 

organization is therefore difficult to achieve and differs greatly from building BMs based on 

conventional technologies. Business model innovation (BMI) has always been a demanding and 

multi-faceted process, but ML exacerbates this challenge by adding another experimental 

component (Choudhury et al., 2021; Schneider & Spieth, 2013). Current research that might guide 

the development of ML-driven B2B-focused BMs, however, is in its infancy and is primarily 

focusing on specific use cases in dedicated domains, such as manufacturing (e.g., Burström et al., 

2021). 

In order to alleviate some of the complexity of ML-driven BMs and to establish a concise structure 

to guide researchers and practitioners in BMI, we aim to create an overarching taxonomy of B2B 

BMs enabled by ML technologies. Since established organizations often pursue multiple BMs 

whose boundaries become blurred, we focus particularly on start-ups whose core BM is still 

clearly discernible (Hartmann et al., 2016). More specifically, we focus on B2B start-ups due to 

the B2B segment’s high potential to benefit from ML technologies (MIT Technology Review 

Insights, 2018). Therefore, in the interest of a meaningful taxonomy on B2B BMs, we exclude BMs 

in business-to-consumer (B2C) markets due to a variety of differences to B2B BMs (e.g., in 

customer approach (Iankova et al., 2019), value creation for customers (Grewal et al., 2021), or 

influence of innovative services (Dotzel & Shankar, 2019)). To reveal how B2B start-ups operate 

their organization, we ask: 

Research question 1 (RQ1): What are the characteristics of start-up B2B BMs that use ML at their 

core along different dimensions, and how can they be combined into an overarching taxonomy? 

Research question 2 (RQ2): What are the ideal-typical archetypes of ML-driven B2B BMs based on 

recurring characteristics of start-ups that use ML at their core? 

According to Nickerson et al. (2013), taxonomies are artifacts that organize a set of objects 

according to their characteristics to help researchers and practitioners better comprehend 

complex domains. In relation to BMs, taxonomies serve to create a high-level abstraction of the 

BMs’ essences. By creating the taxonomy and deriving corresponding archetypes through a 

cluster analysis, we contribute to structuring the research field of ML-driven B2B BMs. In 

particular, we highlight relevant dimensions and characteristics by which ML-driven BMs can be 
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distinguished and thus provide other scholars a starting point to better define the object of 

organizational research and frame future studies. In addition, we provide practitioners with a 

clear overview and insights into archetypical BMs that they can use to develop new B2B BMs of 

their own in a more systematic way. In doing so, we support organizations in general, and start-

ups in particular, to better recognize trends in the market, innovate their own business, and 

differentiate themselves from competitors. 

The remainder of the paper is structured as follows: We start by describing research in the area 

of ML-driven BMs as well as existing taxonomies from the related field of data-driven BMs. We 

then discuss the methodology we adopted to develop the taxonomy and determine the archetypes 

of ML-driven B2B BMs. Finally, we present the resulting taxonomy and archetypes, discuss their 

value for theory and practice, and point to avenues for future research that can address limitations 

of this work. 

6.2 Theoretical Background 

In the following sections, we will present a brief overview of BM theory in the context of ML 

technologies and then report the current state of research on taxonomies related to ML-driven 

BMs. 

6.2.1 Machine-Learning-Driven Business Models   

The concept of BMs has received much attention by scholars in various literature streams such as 

e-commerce, strategy, or innovation management (Zott et al., 2011) and is to date considered a 

useful perspective for novel insights and further theory building in management literature (e.g., 

Lanzolla & Markides, 2021; Prescott & Filatotchev, 2021). In essence, a BM is a concept that 

illustrates the business logic of an organization and depicts how the organization creates and 

delivers value to customers as well as the associated architecture of revenue, costs, and profits 

(Teece, 2010). Various definitions of the term have been introduced and discussed in literature 

(Zott et al., 2011; Al-Debei & Avison, 2010; Casadesus-Masanell & Ricart, 2010). For the purpose 

of this research, we adopt the definition by Osterwalder and Pigneur (2010), which states that “a 

business model describes the rationale of how an organization creates, delivers, and captures 

value” (p. 14). BMs are often conceptualized through the components that constitute them, e.g., 

the value proposition or the revenue stream (e.g., Al-Debei & Avison, 2010; Teece, 2010; Zott & 

Amit, 2010; Remane et al., 2016). Many of the BM components described in literature can be 

categorized in four types of components present in most BM conceptualizations (Burkhart et al., 

2011): Offering factors, describing how the organization creates value for stakeholders; Market 

factors, detailing for whom value is created; Internal capability factors, describing activities and 

competences of the organization, and economic factors, including all economic-related aspects of 

the organization. 

In information systems (IS) research, the BM concept is seen as the missing link connecting 

business strategy, processes, and information technology (IT) (Veit et al., 2014). In turn, the recent 

trends of increasing availability of relevant data and technological advances in data analysis carry 

the potential to profoundly change existing BMs of organizations in the future (Veit et al., 2014) 

by forcing them to adapt their BMs to survive against globalized competition (Hanelt et al., 2015). 

While most organizations will certainly benefit from data and data analytics, some BMs go one 

step further and utilize data as their key resource, eventually becoming data-driven BMs (Schüritz 

& Satzger, 2016). For the term data-driven BM, we adhere to the definition of Hartmann et al. 



6 Research Paper D: Composition of Machine-Learning-Driven Business Models Enabling Value Capture 76 

(2016) as “a business model relying on data as a key resource” (p. 1385). AI, as “the science and 

engineering of making intelligent machines” (McCarthy, 2007, p. 2), offers the opportunity to 

leverage additional potential in the context of digitalization (Dingli et al., 2021). The most popular 

technology to realize AI systems is ML, which uses learning algorithms to derive patterns from 

observed data and saves them in ML models, which in turn can be used on new data to solve 

problems (Russell & Norvig, 2021). As ML is the foundation of most modern AI systems (Jordan & 

Mitchell, 2015; Brynjolfsson & Mitchell, 2017), we use the term ML to refer to ML-based instances 

of AI for terminological clarity throughout this paper. According to Hahn et al. (2020), ML-driven 

BMs are a subgroup of the previously introduced data-driven BMs due to their reliance on data, 

yet can be differentiated from the latter as they rely on ML as self-improving technology to draw 

applicable patterns from the data. The authors thus conceptualize a BM as ML-driven if it utilizes 

ML technologies in at least one of its BM components. Modern ML technologies urge organizations 

to reshape or develop entirely new BMs (Lee et al., 2019; Wamba-Taguimdje et al., 2020), as this 

technology significantly differs from other digital technologies and poses new challenges for 

organizations alongside diverse opportunities: First, ML technologies can complement, constrain, 

or substitute for humans at work (Murray et al., 2021). Second, being capable of human feats such 

as conversation, they blur the boundary between human and machine capabilities (Schuetz & 

Venkatesh, 2020). Third, the data-based learning approach not only renders ML technologies 

more complex and thus inscrutable but can also result in unexpected outcomes (Benbya et al., 

2020a). Given these striking differences from other digital technologies (Benbya et al., 2021) and 

considering that BMs will undergo ML-induced transformation (Burström et al., 2021), we argue 

that there is a need to study these new BMs driven by ML technologies. 

6.2.2 Taxonomies of Data-Driven Business Models 

Taxonomies are a widely used tool to analyze and represent complex systems and their 

interrelationships in a structured way. Through the holistic disclosure of the components of the 

system and its properties, different manifestations can be classified and compared with each other 

(Nickerson et al., 2013). As literature on ML-driven BM taxonomies is scarce, we draw on the 

broader field of data-driven BMs to identify transferable aspects. Table 9 summarizes the general 

and industry-specific taxonomies that exist to date. The illustration is based on the categorization 

by Dehnert et al. (2021), which we expanded to include new publications on data-driven BM 

taxonomies and the only taxonomy found on the subject of ML-driven BMs (marked in cursive). 

Among the added taxonomy papers are Woroch and Strobel (2021), who develop a data-driven 

BM in the context of the Internet of Things and Weking et al. (2020), who establish a taxonomy of 

industry 4.0 BMs enabled by the Internet of Things and smart factories among others. The 

taxonomy of Baecker et al. (2021) examines data-driven value creation within organizations and 

focuses on the required underlying data, the gained business value, and the approach to create it. 

Lastly, Anton et al. (2021) present the first available taxonomy of ML-driven BMs with a focus on 

start-ups in the energy sector. By examining how ML technologies shape BMs in this sector, they 

contribute to a better understanding of organizations that are implementing ML-driven BMs as 

the energy sector continues to transform. 
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Table 9. Classification of Existing Taxonomies Adapted From Dehnert et al. (2021). 

 General Industry-specific 

Data-driven 

business models 

Baecker et al. (2021); 

Dehnert et al. (2021); 

Woroch and Strobel (2021); 

Passlick et al. (2021); 

Bock and Wiener (2017); 

Naous et al. (2017); 

Hartmann et al. (2016); 

Engelbrecht et al. (2016); 

Schroeder (2016); 

Schüritz and Satzger (2016) 

Manufacturing: Weking et al. (2020); 

Logistics: Möller et al. (2020); 

Manufacturing: Müller and Buliga (2019); 

Urban: McLoughlin et al. (2019); 

E- Commerce: Dorfer (2016) 

ML-driven 

business models 

 Electric Power Industry: Anton et al. (2021) 

 

The preceding discussion shows that existing taxonomies cover primarily data-driven BMs. 

However, as mentioned in the previous section, these can not be immediately applied to ML-

driven BMs, as those utilize self-improving ML technologies (Hahn et al., 2020) that affect 

organizations differently (see Benbya et al., 2021). Nevertheless, only Anton et al. (2021) have 

studied ML-driven BMs to date, albeit specifically for the electric power industry. To the best of 

our knowledge, there is no cross-industry and thus universally applicable taxonomy for ML-

driven BMs yet – a gap we aim to bridge. 

6.3 Methodology 

To develop the taxonomy of ML-driven BMs, we utilize the development approach proposed by 

Nickerson et al. (2013). The method is well-accepted in IS research, having been used by several 

researchers for taxonomies in related fields (e.g., Anton et al., 2021; Dehnert et al., 2021; Möller 

et al., 2019; Remane et al., 2016). Taxonomies comprise a set of dimensions that, in turn, contain 

characteristics that can describe the objects under study (Nickerson et al., 2013). As a first step in 

the taxonomy development process, Nickerson et al. (2013) suggest specifying a meta-

characteristic as the “most comprehensive characteristic” (p. 343) that should reflect the purpose 

of the taxonomy, from which all other characteristics can be derived logically. Next, Nickerson et 

al. (2013) propose an iterative process to add, change, or subtract dimensions and characteristics 

during each iteration. The iterations can either be carried out as empirical-to-conceptual or as 

conceptual-to-empirical approaches. In the former, researchers analyze a subset of objects – such 

as real-world start-ups – to obtain their characteristics and group them into dimensions. 

Researchers following the conceptual-to-empirical approach conceptualize the dimensions and 

characteristics based on the researchers’ knowledge and existing literature and then examine 

real-world objects to revise the taxonomy. The iterative development process ends when all 

predefined ending conditions are met after an iteration. After four iterations of taxonomy 

development, we further conduct a cluster analysis to derive archetypal BMs from the studied 

start-ups based on their identified characteristics. 
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6.3.1 Taxonomy Development 

As previously stated, the meta-characteristic defines the purpose of the taxonomy, and for this 

research, we determined it as distinguishing elements of B2B-focused, ML-driven BMs. This wording 

best specifies our goal to identify the different essential components to reveal the core business 

logic behind ML-driven BMs while at the same time discerning distinctions between different 

instances found in reality. We decided to adhere to the eight objective (e.g., no new dimensions 

and characteristics added in the last iteration, at least one object is classified under every 

characteristic, all objects or a representative sample of objects has been examined) and five 

subjective (e.g., conciseness, robustness, extendibility) ending conditions proposed by Nickerson 

et al. (2013).  

We chose the conceptual-to-empirical approach for our first iteration. Because little research on 

ML-driven BMs was available, we turned to literature on general BMs as a starting point. A large 

volume of published works describes possible configurations of BMs (e.g., Al-Debei & Avison, 

2010; Hedman & Kalling, 2003; Osterwalder & Pigneur, 2010). As the Business Model Canvas by 

Osterwalder and Pigneur (2010) contains the majority of BM components discussed in literature 

(Passlick et al., 2021) and is additionally well-regarded in practice, we chose it as a starting point 

for the taxonomy. We drew from literature on data-driven and ML-driven BMs (see Table 9) to 

select the dimensions from the Business Model Canvas promising the highest discriminatory 

power for ML-driven BMs as starting dimensions, namely value proposition (which we split into 

value promise and key offering in the third iteration; see Möller et al., 2019), customer segment, 

channel, key resources, key activities, revenue stream. We supplemented these dimensions with 

aspects from data-driven BMs that are transferable to ML-driven BMs: We specified the dimension 

key resources into the more ML-relevant dimensions data source and data type (Engelbrecht et al., 

2016; Möller et al., 2020; Azkan et al., 2020; Hartmann et al., 2016). Similarly, we specified the 

dimension channel into the most relevant aspect for distinguishing ML-driven BMs: The 

deployment channel (Passlick et al., 2021).  

Since the taxonomy should not only be academically motivated but also consider emerging ML-

driven BMs in practice, we conducted the following three iterations in compliance with the 

empirical-to-conceptual approach. We employed the Crunchbase database for our data collection 

and searched it for suitable start-ups (Crunchbase, 2021). We focused exclusively on start-ups 

because the available population is larger compared to established organizations, and start-ups 

presumably have purer BMs that are not hampered by old legacy systems (Hartmann et al., 2016). 

In particular, start-ups possess only a single or small number of BMs, facilitating their analysis 

(Sabatier et al., 2010). Our search terms to browse Crunchbase were machine learning and 

artificial intelligence, which we used to search the start-ups’ tags as well as their short 

descriptions. We included the latter search term, since start-ups often operate under the more 

general buzzword artificial intelligence when referring to ML-based AI. We wanted to find start-

ups that struck a balance between being young enough to pursue a singular BM still while being 

old enough that we could omit organizations that went bankrupt quickly after launch. Therefore, 

we focused on start-ups founded in 2018 and 2019. Our search yielded a total of 2,057 start-ups. 

Due to the large dataset size, we followed the recommendations by Nickerson et al. (2013) and 

randomly selected subsamples for each iteration (see Möller et al., 2019; Möller et al., 2020). We 

removed and replaced all start-ups that went bankrupt, did not realize an ML-driven, B2B-focused 

BM, or did not have sufficient information in German or English on their homepages (see Remane 

et al., 2016; Täuscher & Laudien, 2018). The subsample sizes are 22 for the second and 40 for the 

third and fourth iteration, resulting in a data set of 102 start-ups, an excerpt of which can be found 
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in Appendix 1. Consistent with Hunke et al. (2019), we started with a smaller number of start-ups 

in the second iteration and subsequently included more entities, as we wanted to roughly identify 

dimensions and characteristics of ML-driven BMs first, while relying on more information to 

refine and elaborate the taxonomy in more detail in the later iterations. In each iteration, we 

analyzed the ML-driven BMs of the subsample for their characteristics. In particular, we checked 

whether these characteristics were consistent with the previously found taxonomy or whether 

additions, revisions, or deletions of characteristics or dimensions would improve the usefulness 

of the taxonomy. We gathered the required information about the BMs in our dataset from 

publicly available sources such as the start-up’s website, articles, blog entries, or other online 

presences. Because “gross elements of business models are often quite transparent” (Teece, 2010, 

p. 179), a start-up's BM can be inferred using such reliable public sources (see Hartmann et al., 

2016; Möller et al., 2019). We employed multi-researcher triangulation to ensure a high degree of 

objectivity (e.g., Hsieh & Shannon, 2005; Flick, 2004a). As few start-ups disclosed data on their 

revenue streams or utilized ML form, we derived the information for the corresponding 

dimensions with the help of pertinent literature and validated them empirically with the start-ups 

on which data was available. The taxonomy was finalized after the fourth iteration of the 

development process, as all ending conditions were met. 

6.3.2 Cluster Analysis 

We performed a cluster analysis on our dataset to derive information on which archetypes of ML-

driven BMs commonly appear in practice. Cluster analysis seeks to form groups of objects based 

on their similarities (Bailey, 1994), thus in our case, assembles the start-ups into archetypal BMs 

based on their similarity along the dimensions of the taxonomy. Regarding the design of our 

cluster analysis, we followed preceding research (Remane et al., 2016; Möller et al., 2019; Anton 

et al., 2021) and carried out the two-step procedure of Punj and Stewart (1983). The first step 

consists of the agglomerative hierarchical clustering algorithm of Ward’s minimum variance 

method (Ward, 1963). The procedure starts with every object being a separate cluster and then 

iteratively merging the two closest clusters based on the calculated distance between them 

(Eszergár-Kiss & Caesar, 2017). We used Euclidean distances as distance metric, as it is suitable 

for binary variables and Ward’s method is well defined for Euclidian distances (see Rencher, 

2002). The results of Ward’s method show that either a 6 or 7 cluster solution is optimal for our 

dataset. In the second step, we used the k-means partitional clustering method. The k-means 

algorithm finds a partition that minimizes the sum of squared distances between the empirical 

mean of each cluster and the objects in the respective cluster for an a priori defined number of 

clusters (Jain, 2010). We chose the 7 cluster solution for our final archetypes because it 

outperformed the 6 cluster solution both on the elbow curve and the Davies-Bouldin index 

(Davies & Bouldin, 1979). We implemented the data preparation and the k-means clustering in 

RapidMiner Studio, and the Ward’s method in Python using the library SciPy. 

6.4 Results 

In this section, we present our final taxonomy and the derived BM archetypes. 

6.4.1 Final Taxonomy 

The final taxonomy is shown in Table 10 and consists of ten dimensions, which in turn contain 

three to six different characteristics. Each of the 102 start-ups in our dataset is described by at 
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least one of the characteristics in each dimension. Following Nickerson et al. (2013), only 

dimensions in which ML-driven BMs differ are included in the taxonomy, as characteristics that 

are identical among all ML-driven BMs are of little use to a taxonomy due to their lack of 

discriminatory power (Anderberg, 1973). To be able to represent the large variety of BMs from 

our industry-overarching dataset, our dimensions allow BMs to exhibit more than one 

characteristic (see Hunke et al., 2019; Möller et al., 2020). The following paragraphs describe the 

identified dimensions and characteristics in depth. 

Table 10. Final Taxonomy, Visualized as a Morphological Box.  

Dimensions Characteristics 

Value promise 
Cost and time 

reduction 
Quality increase Insight increase Innovation increase 

Key offering 
Aggregation 
& filtering 

Information 
enrichment 

Detection Optimization Forecasting Generation 

Client influence 
on ML system 

No influence 
Selection of 

settings 
Feedback loop 

Development 
of model 

Ownership of 
model 

Customer 
segment 

Primary sector Secondary sector Tertiary sector Quaternary sector 

Key activity Consulting Data science 
Data sourcing 
& engineering 

Software 
engineering 

Hardware 
development 

ML form Supervised learning Unsupervised learning Reinforcement learning 

Deployment 
channel 

Edge 
On-premise 

software 
Hosted software Plug-in 

Data source Client data Provider data Publicly available data 

Data type Structured Semi-structured Unstructured 

Revenue model 
Pay-with-

data 
Subscription Pay-per-X Gain sharing One-time fee 

Note. To improve readability, we have removed the characteristic “unspecified.” 

The dimension value promise describes what type of value the BM creates for its clients and can 

take four different characteristics. Hereafter, the term client denotes an organization utilizing the 

services of an ML-driven BM. BMs characterized by the first characteristic cost and time reduction 

either replace human labor for menial tasks or assist humans in their work, thus allowing them to 

complete workflows more quickly or cost-efficiently. The quality increase characteristic denotes 

BMs that provide effectivity improvements for their client’s products, services, or processes, 

usually by supplementing them with some form of intelligent behavior. These BMs aim to modify 

their clients’ services to deliver better results or to offer additional, previously impossible or 

infeasible features, e.g., enriching video material with ML-generated metadata. Clients of BMs with 

the characteristic insight increase are supplied with ML-generated knowledge derived from data 

and designed to improve the client’s decision-making process either through faster or more 

informed decisions. The type of use case thereby determines the content of the provided 

information: Performance metrics calculated through ML methods might support clients in 

management decisions, while ML-created risk estimations might aid real estate investors in 

finding trustworthy debtors in their day-to-day operations. Lastly, innovation increase describes 

BMs with ML systems aiding the client in exploring previously uncharted territory. Providers aim 

to improve their clients’ search for innovation or novel inventions. An example from our dataset 
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is ML supporting pharmaceutical companies in their drug discovery process by suggesting 

possible solutions or identifying gaps in pre-existing knowledge. 

Another critical dimension for ML-driven BMs is the key offering, or in other words, the type of 

service they provide to their clients to create the previously described added value. Aggregation 

& filtering organizations provide their clients with an ML solution that analyzes large amounts of 

data, omits irrelevant data, and condenses the essential information into meaningful output 

values for the client organization. An example would be a system that screens job applications and 

highlights each candidate’s most relevant experiences for the position. Solutions with the 

information enrichment characteristic also analyze data but aim to expand the given data(set) with 

supplementary data. They either extend unstructured data with structured data (e.g., analyzing 

clinical images and displaying additional diagnostic information) or integrate information from 

complementary sources into the system (e.g., an ML system that crawls the social media sites of 

job applicants and derives their trustworthiness). Furthermore, the characteristic detection 

describes systems that continuously monitor data streams and alert the client when certain 

patterns or suspicious activities are detected. Prominent examples include credit fraud detection 

systems that raise alarms when credit cards are used irregularly or ML-based visual inspection 

systems that call attention to defective products. BMs with optimization offerings apply their ML 

systems to solve specific, well-defined problems that have a clear desired output but are 

challenging to solve with conventional methods. They may involve traditional optimization 

problems like scheduling or vehicle routing problems. However, the ML systems might also 

attempt to find the ideal candidate for a given job position or optimize the bidding process for E-

commerce advertisements by only bidding when individual clients are likely to buy (minimizing 

costs while maximizing the likelihood of sale). As the name suggests, forecasting organizations 

offer their clients glimpses into the future. They attempt to predict future states of given 

dependent variables by incorporating large amounts of data. Examples include predictive 

maintenance solutions which aim to predict when equipment will need maintenance or 

renewable electricity generation forecasting, which calculates future power production by 

analyzing weather data. Organizations represented by generation offer ML systems for tasks with 

high degrees of freedom that use input data to independently create complex, context-specific 

output that resembles the solution a human might have conceived. Chatbots are a prime example 

of a generation ML solution, answering user queries with solutions relevant to the user’s interests. 

Another exemplary generation system performs automated legal document generation, creating 

contracts based on tabular input data.  

The client influence on ML system dimension differentiates BMs based on the extent to which 

they individually adapt their ML systems to satisfy their clients’ needs, which is a double-edged 

sword. BMs can allow their clients different degrees of contribution, but the more influence clients 

have, the more difficult it generally becomes to scale the BM. This is because higher degrees of 

influence usually necessitate that ML models are (re-)trained individually for each client, which 

increases the effort of each sale. Possible characteristics start with clients having no influence at 

all. These clients either possess no ML knowledge of their own, do not want to draw on their ML 

resources, or implement a use case that can be fulfilled with a one-size-fits-all solution. With 

selection of settings, the clients still have minimal influence on the ML system but can alter certain 

predefined settings to cause changes in the system (e.g., a formality setting for a chatbot to adapt 

the system to different use cases). Feedback loop means that clients can evaluate the output of the 

ML system and feed their evaluation back into the system, which in turn learns from the additional 

data and corrects itself over time. To have more control over the finished system, clients might 

opt for a development of model organization. These organizations include their clients in the 
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development process either through a joint team, regular interactions, or platforms simplifying 

ML development. Lastly, organizations with the ownership of model characteristic hand the 

finished ML model over to their clients, who gain full access and can analyze the model, improve, 

or re-train it for other use cases.  

The dimension customer segment records the economic sector in which the target clients of the 

BM are allocated. According to the definition of Kenessey (1987), which is widely used today, a 

distinction can be made between four sectors: The primary sector supplies raw materials for a 

product and includes, among others, the harvesting of wood in forestry, fishing, or the generation 

of hydropower. The secondary sector is responsible for processing raw materials from the primary 

sector. It thus includes the manufacturing industry, craft production, and the energy industry, 

among others. The tertiary sector is comprised of all services provided by private organizations 

or government institutions such as transportation services, utilities, and wholesale or retail trade. 

The concept of the quaternary sector has gained in importance in the context of the transformation 

to an information society and subsumes all industries that deal with creating, processing, and 

selling information (data or knowledge). These include IT services and communications 

technology. Which sector a BM’s clients stem from greatly influences their available data and IT 

infrastructure. 

The dimension key activity describes “the most important things a company must do to make its 

business model work” (Osterwalder & Pigneur, 2010, p. 36). Naturally, the vast majority of ML-

driven BMs require data science as key activity. However, some organizations get by with minimal 

data science activities, for example, when the applied ML models are already very mature, like it 

is the case for computer vision solutions. Consulting indicates that conveying ML-related 

knowledge in close contact with the clients is essential for the BM. Data sourcing & engineering 

characterizes BMs that spend much time on gathering, curating, and supplying data in order to 

provide their services, as it might be the case for organizations offering insights on financial 

markets for which they need carefully curated data. The key activity software engineering is 

assigned to organizations whose ML solutions are embedded into highly complex software that 

must naturally be developed and maintained. Similarly, hardware development describes 

organizations that rely on and must develop complex physical devices to execute the output of 

their ML system, with computer-vision-powered robots being one example. 

Organizations can primarily apply three ML forms in their BM (Russell & Norvig, 2021), each with 

distinct capabilities and uses, as well as unique requirements regarding expertise and 

development. Supervised learning systems are given sets of input-output pairs and then learn a 

function that predicts the appropriate output, or label, when given new inputs. In unsupervised 

learning, the machine learns to find patterns in the input data without being given any explicit 

feedback. Lastly, in reinforcement learning, the system performs certain actions and is then given 

either rewards or punishments as feedback, which it uses to learn which actions lead to more 

rewards and alter its actions accordingly. 

How ML-driven BMs deliver added value through their products or services generally differs 

between four deployment channels. The channel edge means, that the BM’s ML system is run on 

physical devices that are often supplied as a product package. A Chatbot that is implemented on a 

special tablet for direct in-store customer interaction would be an example for deployment via 

edge. On-premise software, on the other hand, denotes ML systems that are run on the client’s 

network hardware, often on servers or in their cloud. Conversely, hosted software is executed on 

the BM’s hardware (thus increasing cloud provisioning costs), with their clients gaining access 

through a website or application programming interfaces (APIs). Lastly, plug-in ML solutions 
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integrate seamlessly into pre-existing software or platforms, with an example being a human 

agent augmentation plug-in for a contact center platform.  

The data required for running a BM’s specific ML solution can stem from three different data 

sources. Client data means the client either has pre-existing datasets with the information 

required or records new data to be used in the system. The ML models are thus either fully trained 

on client data or come as pre-trained models and are re-trained with client data. In contrast, BMs 

denoted by provider data sell their ML system along with their own supply of data for training and 

running the model. Furthermore, models can also utilize publicly available data, which any 

interested party can acquire from data platforms such as Kaggle (2021), from data vendors, or 

from other public sources. 

ML systems can require data in many different data types, which can be subsumed under three 

major categories (Sint et al., 2009; Abiteboul et al., 1999). Structured data denotes any type of data 

with an underlying structure, such as tabular data in a database. Unstructured data, on the 

contrary, does not exhibit an identifiable structure and includes images, video, audio, and free 

text. Semi-structured data has no separate, explicit description of its structure, yet it does 

demonstrate some structure within the data (e.g., e-mails consisting of subject, sender, and text). 

The type of data carries many implications for a BM: Each type necessitates different kinds of 

expertise within the BM and requires different preprocessing efforts for value creation. 

The revenue model dimension depicts how the BM generates revenue in order to cover costs and 

thrive as an organization. Since many start-ups withheld information on their revenue model until 

after a demo or sales talk, the characteristics are based on Schüritz et al. (2017), Osterwalder and 

Pigneur (2010), and Hartmann et al. (2016) and validated with cases from our dataset. In the case 

of pay-with-data, there is no cash flow from the client to the provider; instead, the client gives the 

provider access to their data in return for the service. Said data can then either be sold by the BM 

or be used to re-train existing or train future ML models. The characteristic subscription is 

assigned to organizations whose clients must pay a monthly fee to gain access to their services. 

The subscription rate may vary depending on the service level selected, with the possibility of 

offering a basic version of the service free of charge in a Freemium model. Pay-per-X denotes 

revenue models where the clients pay a dynamic fee based on performance measurements. These 

measures can range from the amount of input or output data requested to the occupied 

computational resources and can also include the number of utilized billable hours. Dynamic fees 

are also incorporated in gain sharing models; however, in this model, they are directly dependent 

on monetary success measures of the ML system. An exemplary fee, in this case, is a commission 

that depends on the value of a mediated contract (e.g., between employers and employees). Lastly, 

in one-time fee models, clients pay one time for the ML system and associated services (e.g., 

including maintenance services for the first few years). 

6.4.2 Business Model Archetypes 

Our cluster analysis grouped the 102 start-ups of our dataset into seven clusters that each 

contained 12 to 19 start-ups. Each cluster has a centroid for every characteristic, representing the 

distribution of BM characteristics in the respective archetype, depicted in Table 11. As 

characteristics are deliberately not mutually exclusive, the percentages in each dimension do not 

add up to 100%. Instead, they show how many start-ups in the archetype exhibit each 

characteristic. We omitted the characteristic unspecified from the analysis as it does not contribute 

to an archetype’s distinctness. Due to the high amount of unspecified ML forms (83%) and 
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revenue models (75%), we consequently decided to omit these dimensions as well (see Möller et 

al., 2019). Table 11 also shows the consistency between the Ward’s method and the k-means 

clustering for each archetype (see Anton et al., 2021; Möller et al., 2019). We analyzed the cluster 

centroids and validated them with the BMs contained in each archetype. The resulting 

descriptions for each archetype are presented in the following paragraphs and illustrated with 

archetypical examples from our dataset. 

Intelligence for services: Start-ups in this archetype provide opportunities to integrate ML-

enabled functionalities and intelligent behavior into their clients’ services. Clients thus benefit 

through their own services achieving superior results. Due to the focus on ML-driven 

enhancement of services, clients of this archetype typically stem from the tertiary or quaternary 

sector. The most common key offerings, information enrichment and optimization, are each used 

by 32% of start-ups in this archetype to improve the services of clients – however, which key 

offering a BM chooses largely depends on its client’s services, with cases of all key offerings 

existing in the sample. The majority of ML solutions in this archetype use unstructured data, with 

53% of start-ups utilizing their client’s data, 26% supplying their own data alongside their ML 

system, and 21% using publicly available data. An example for start-ups of this archetype is 

Bidnamic (2022), whose ML system supports retailers selling via search engine by calculating 

optimal prices for each individual product and search term. 

Automated sensing: This archetype contains BMs with ML systems that can interpret 

unstructured data quicker or cheaper than humans can. Often, their solutions are computer vision 

systems that might be deployed on a physical visual sensor, recording their surroundings and 

analyzing the gathered data. The conducted analysis depends on the key offering, with most 

systems (71%) focusing on information enrichment – extracting additional information from the 

data, and passing it on for further use. If BMs deploy their ML systems on complex edge devices, 

they must perform the necessary hardware development as key activity (21%). Not all start-ups 

in this cluster are computer-vision-based, but they all process a type of unstructured data. EAIGLE 

(2021), as archetypical BM, provides a computer vision solution for automated visitor sign-in, 

including visitor health screening. 

Robotic process automation: Robotic process automation uses software to imitate repetitive 

tasks that would otherwise be carried out by humans (Santos et al., 2020). Start-ups in this 

archetype automate routine workflows of their clients with ML systems to achieve cost and time 

reductions. The provided key offering depends primarily on the respective business process being 

automated, with detection (38%), optimization (31%), and aggregation & filtering (31%) being 

most common in our sample. In 54% of our cases, the data required for automating the workflows 

are structured data. Additionally, 62% of start-ups in this archetype perform extensive data 

sourcing & engineering tasks to reduce human labor as much as possible. In our dataset, start-ups 

in this archetype mainly serve the secondary and tertiary sectors. One example of such start-ups 

is Circuit Mind (2021), whose ML system automatically selects components and generates 

possible circuit schematics for electronics. 
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Table 11. Distribution of the Start-Ups’ Characteristics Within Each Archetype. 
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ML development partner: ML development partners work towards providing their clients with 

user-friendly access to the technology of ML. They can offer access to a variety of ML services and 

aid in developing ML systems that are specifically tailored to each client and their data. To achieve 

this high degree of individuality, BMs either provide a platform that does not require extensive 

ML-specific expertise for clients to develop their own ML models, or BMs conduct a collaborative 

development process. In the latter case, the start-up is often engaged in extensive consulting 

activities (42%) and can grant its clients different degrees of influence on the ML system as 

desired. Due to the focus on providing the technology without a specific business context, the 

target group of these start-ups is not limited to a specific sector. An archetypical example is AltaML 

(2021), with their ML experts working together with clients to realize ML solutions for various 

use cases. 

Constructive assistant: All organizations in this BM archetype offer generation ML solutions 

(100%), most of which are designed to achieve cost and time reductions for client organizations 

(81%). These ML systems are usually given instructions through unstructured data (75%) and 

then aim to create output in an unstructured data format that emulates the way a human would 

have completed the task. Chatbots are a prominent example of such solutions. Many use cases for 

these ML systems exist in cross-sectional functions or functions with contact to end consumers. 

Consequently, they are primarily offered to clients in the tertiary sector (50%) or are not sector-

specific. Lastly, users of constructive assistant solutions should not require experience with ML 

systems, so extensive integration efforts into comprehensive software systems through software 

engineering are often necessary (69%). These ML systems are delivered as plug-ins for software 

of other providers in 44% of cases. Scissero (2021) is an exemplary start-up, with ML software 

supporting legal departments by analyzing or suggesting drafts of legal documents. 

Internal business diagnostics & prediction: All start-ups of this archetype aim to support their 

clients’ decision-making processes by supplying relevant information about the respective client’s 

internal business activities. A software package that combines an IS with ML capabilities analyzes 

the client’s internal data and extracts essential facts for decision-makers. 50% of start-ups in the 

archetype additionally forecast measures to reduce uncertainty in decisions. The archetype 

focuses mainly on clients in the tertiary sector, and its ML systems primarily utilize structured 

(92%) client data available on internal processes (92%). Start-ups of this archetype integrate 

their ML technologies into ISs, so software engineering is often a key activity (82%). As an 

archetypical example, CognitOps (2021) utilizes client data to assist warehouse managers with 

operational decisions, e.g., in scheduling. 

Environmental diagnostics & prediction: Start-ups in this category also assist their clients’ 

decision-making processes through insight increases – usually through an aggregation & filtering 

key offering (88%) as well. However, unlike the archetype internal business diagnostics & 

prediction, they provide information on elements external to the client organization, such as 

financial markets or public opinion. This seemingly small distinction has further implications for 

BMs, distinguishing this archetype: Due to the high relevance of publicly available data (75%), 

sourcing data and setting up pipelines to provide curated data for the ML systems is essential for 

82% of the BMs. In 50% of cases, the incoming data is also unstructured, requiring interpretation. 

Start-ups in this archetype slightly favor targeting the tertiary sector (31%), or all of them with 

an ML solution for a cross-sectional function. Nevertheless, there are some with a focus on the 

secondary or quaternary sector, making this a widely diffused archetype. The example for this 

archetype, Sanctify Financial Technologies (2021), aids in asset management decisions by 

analyzing non-financial news articles on potential investments. 
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6.5 Conclusion, Limitations & Outlook 

To examine how ML technologies influence BMs of organizations, we use the methodical approach 

of Nickerson et al. (2013) to develop an industry-overarching taxonomy of ML-driven B2B BMs 

by analyzing a sample of 102 start-ups. The taxonomy describes possible characteristics of start-

ups along ten dimensions and addresses RQ 1. Moreover, we aggregate the start-ups into seven 

BM archetypes that represent designs commonly found in practice and thus address RQ 2. 

Our study provides several theoretical contributions. Literature has been calling for further 

taxonomic research related to data-driven BMs (e.g., Veit et al., 2014; Müller & Buliga, 2019; 

Omerovic et al., 2020). With ML giving rise to opportunities and challenges unique to the 

technology (Benbya et al., 2021) when transforming BMs (Björkdahl, 2020; Burström et al., 2021), 

we extend the discussion to ML-driven BMs. In this field, the presented taxonomy with the 

described dimensions and characteristics fosters a deeper understanding of the anatomy of ML-

driven BMs. It allows researchers to specify ML-driven BMs in a unified manner and distinguish 

them from each other. By standardizing the vocabulary in this topic area, we facilitate the 

scientific exchange between researchers and future work in the context of ML-driven BMs. Using 

a common language, new ideas can be objectified, and considerations can be shared among 

scientists to build a more profound theoretical understanding of ML-driven BMs. This allows 

further systematization of research in this field. Furthermore, the presented artifacts provide a 

basis for future taxonomic research. Researchers can validate or extend them for narrower scopes 

like specific application domains (see Anton et al., 2021), specifying and extending the dimensions 

and characteristics. Another contribution of our paper is the method-based identification of BM 

clusters and the subsequent derivation of archetypes of ML-driven BMs. The seven derived 

archetypes provide deeper insight into the structural composition of commonly implemented ML-

driven BMs. Additionally, our research also offers practical contributions, of which we focus on 

two: First, the taxonomy in combination with the archetypes of BMs offers a comprehensive 

overview of the market. Organizations and other stakeholders can benefit from this increased 

understanding by improving investment decisions or assessing their own as well as their 

competitors’ BMs. Second, practitioners can further benefit from our artifacts by using them as 

supporting tools for the conception of novel ML-driven BMs through the structured 

recombination of BM components (Bouwman et al., 2020), therefore employing our research 

results to facilitate BMI. 

As with every research, our study is subject to certain limitations. Despite the previously 

mentioned advantages, our focus on start-ups as a data basis excludes established organizations, 

leading to several consequences: In particular, the identified archetypes can only be transferred 

to established organizations to a limited extent, as these may already have higher resources and 

established structures in place and can offer different services accordingly. Further, the developed 

taxonomy may need to be adapted and expanded to reflect the specifics of established 

organizations, e.g., in terms of the key activities undertaken. Even though this would be a valuable 

line of further research, we are confident that the taxonomy stemming from the start-ups is 

broadly applicable to more mature organizations as well, as we have intentionally abstracted from 

specifics of start-ups within the taxonomy and kept dimensions and characteristics rather generic. 

Moreover, despite the methodical approach followed, many steps in the taxonomy development 

process required the researchers’ own judgment (Nickerson et al., 2013). Therefore, another 

group of researchers might encounter different dimensions and characteristics from this study. 

Similarly, archetypes may vary based on the chosen number of clusters, which in turn depends on 

the employed algorithm (see Mojena, 1977). Our dataset includes a large variety of ML-driven 
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BMs as per our purpose. However, aggregating them into a manageable number of distinct yet 

general archetypes is challenging, which can be seen in the consistency between algorithms of 

some clusters (see Table 11). Nevertheless, as taxonomies and archetypes are never perfect, they 

should instead be assessed based on whether they are useful (Nickerson et al., 2013; Remane et 

al., 2016); a quality revealed when researchers and practitioners start using them. 
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Abstract 

Machine learning (ML) technologies open up enormous potential to be unlocked through 

entrepreneurial activities in organizations, causing countless novel business models with ML at 

their core to emerge in the market. As ML technologies differ significantly from other digital 

technologies both in their characteristics and their effect on organizations, little is currently 

known about the complexities of the realization process for business models driven by ML and 

why only some organizations execute it successfully. By building on a qualitative study grounded 

on cross-industry insights from 20 expert interviews, this paper contributes to a greater 

understanding of the realization process by identifying ML-specific complications, before aiming 

to determine the underlying reasons for successful business model realization. We adopt a 

dynamic capabilities perspective and conceptualize eleven microfoundations that explicate how 

organizations build, implement, and transform business models driven by ML. 
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7.1 Introduction 

Machine learning (ML) unlocks possibilities to support or entirely automate processes within 

organizations (Jordan & Mitchell, 2015) and further provides powerful opportunities for 

entrepreneurship by enabling entirely new services and business models (Chalmers et al., 2021; 

Davenport et al., 2020). ML denotes a technology that can be utilized to create instances of 

artificial intelligence (AI) by allowing algorithms to learn patterns hidden within data and then 

make predictions for new data (Russell & Norvig, 2021; Brynjolfsson & Mitchell, 2017; Mitchell, 

1997). The novel business models with ML at their core are distinct from other types of business 

models enabled by information technologies (IT), as recent literature shows that ML not only 

opens up new possibilities for value proposition, but potentially impacts the overall business logic 

(as we will further discuss), e.g., by continuously learning with new data (e.g., Weber et al., 2022; 

Vetter et al., 2022). However, these studies have mostly examined the ideation of ML-driven 

business models, disregarding how organizations develop and realize them. Only little research 

extends beyond the ideation phase and covers the realization process of the broader category of 

business models enabled by data, focusing either on models of the development process (e.g., 

Hunke et al., 2017) or on the resources that are required for it (e.g., Lange et al., 2021). However, 

in fast-moving business environments, organizations need more than the ownership of expertise, 

processes, and resources to maintain sustainable competitive advantage (Teece, 2007). For 

instance, they must field a strategy that allows them to both defend their position in the market 

against competitors and contingencies (Casadesus-Masanell & Ricart, 2011). Following Teece 

(2018), we argue that an organization’s dynamic capabilities allow it to connect strategy and 

business models to navigate complex and fast-changing environments through the creation, 

realization, and refinement of business models (Teece, 2018; Winter, 2003); a process that is “as 

much art as science” (Schoemaker et al., 2018, p. 27). Complicating development of suitable 

business models further, ML exhibits some characteristics that differ significantly from other 

digital technologies and come interleaved with distinct managerial challenges within 

organizations (Benbya et al., 2021; Berente et al., 2021), e.g., due to their ability to supersede 

humans at work (Murray et al., 2021). Moreover, the development of ML is highly uncertain and 

experimental in character (Choudhury et al., 2021; Amershi et al., 2019). This is problematic as 

organizations failing to counteract ML-specific challenges while navigating dynamic business 

environments may fail to acquire and maintain competitive advantages. We thus deem dynamic 

capabilities a suitable lens to examine the realization process of business models driven by ML 

and pose the following research question: 

How do organizations build dynamic capabilities to empower their ML-driven business model 

realization process? 

To answer this question, we conduct an explorative study and investigate the microfoundations 

that substantiate the dynamic capabilities enabling the realization of business models shaped by 

ML. In doing so, we contribute to extant dynamic capability literature in the context of 

digitalization by verifying and expanding known microfoundations with ML-specific aspects and 

identifying new microfoundations emerging due to unique ML characteristics. Furthermore, by 

specifying these ML-specific dynamic capability microfoundations, we open up the field for future 

organizational research on entrepreneurial activities to capture value from ML technologies. 

Additionally, we inform practitioners on the effect of ML technologies on the organization and its 

business environment during business model realization and offer guidelines for practitioners on 

how to create dynamic capabilities that aid the ML-driven business model realization process. 
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Thereby, we support organizations in analyzing their present business model realization efforts 

and in building capabilities for future endeavors.  

7.2 Theoretical Background 

Next, we first present research on the development of business models with ML technologies at 

their core before covering the theoretical foundation of dynamic capabilities in the business 

model context. 

7.2.1 Realizing ML-Driven Business Models 

Researchers have put great emphasis on examining the business model concept, which depicts 

the business logic of an organization, including how it creates and delivers value to its clients, as 

well as the corresponding architecture of revenue, costs, and profits (Teece, 2010). Numerous 

definitions of the term exist in the literature (Al-Debei & Avison, 2010; Wirtz et al., 2016; Zott et 

al., 2011; Birkinshaw & Ansari, 2015), of which we adhere to the definition by Osterwalder and 

Pigneur (2010) for this study, which reads as follows: “A business model describes the rationale 

of how an organization creates, delivers, and captures value” (p. 14). The available 

conceptualizations of business models often consist of their constituting components, such as the 

value proposition or the revenue stream (e.g., Al-Debei & Avison, 2010; Zott & Amit, 2010; 

Remane et al., 2016). In information systems (IS) research, the business model is regarded as the 

missing link, acting as an intermediary between strategy, processes, and IT (Veit et al., 2014). 

Furthermore, the concept is seen as a useful lens for examining competitive advantage in 

management literature and is thus valuable in theory building to generate novel insights (e.g., 

Lanzolla & Markides, 2021; Prescott & Filatotchev, 2021).  

AI, which denotes “the science and engineering of making intelligent machines” (McCarthy, 2007, 

p. 2), enables organizations to leverage additional potential in the context of digitalization 

(Davenport et al., 2020; Dingli et al., 2021; Makridakis, 2017). With the large availability of data 

and advancements in data analytics, AI technologies have thus regained importance in recent 

years (Ågerfalk, 2020; Berente et al., 2021). As most modern AI systems have ML technologies at 

their core (Brynjolfsson & Mitchell, 2017; Jordan & Mitchell, 2015), we use the term ML to refer 

to ML-based instances of AI in this study for terminological clarity. While the unique opportunities 

unlocked by ML drive the development of new types of business models in organizations (Weber 

et al., 2022; Vetter et al., 2022; Wamba-Taguimdje et al., 2020), ML technologies also exhibit 

characteristics that differ considerably from other digital technologies, presenting ML-utilizing 

organizations with novel challenges (Benbya et al., 2021; Berente et al., 2021). First, the self-

learning algorithms utilized in ML to learn and improve automatically from data (Amershi et al., 

2019; Russell & Norvig, 2021) are incapable of reacting to environment states which they have 

not been trained with (Dennett, 2006) and require human guidance for framing the respective 

tasks and interpreting the results (Seidel et al., 2020; Salovaara et al., 2019). Second, ML systems 

can act autonomously (Berente et al., 2021; Baird & Maruping, 2021) and can even take over tasks 

previously firmly in human grasp (Schuetz & Venkatesh, 2020; Benbya et al., 2021). Lastly, 

modern ML systems have become increasingly complex, thus making their behavior inscrutable 

and difficult to understand for humans (Faraj et al., 2018; Asatiani et al., 2021). This is especially 

problematic as their introduction in organizations can create unexpected and unintended 

outcomes (Benbya et al., 2020b; Benbya et al., 2021) that can lead to a variety of ethical issues, 

e.g., discriminating ML systems which include inappropriate factors in their decision-making 
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(Martin, 2019a). With the behavior of many ML systems being inscrutable for humans, preventing 

such unforeseen ethical, legal and practical consequences proves difficult (Asatiani et al., 2021). 

Investigating how this variety of unique challenges affects the business model development 

process is thus part of this study. 

In light of the ongoing digitalization, IS researchers often utilize the business model concept to 

examine how advancements in IT, such as progress in big data and data analysis technologies, 

transform how established organizations create value and which novel types of ventures they 

enable (e.g., Hartmann et al., 2016; Steininger, 2019). For this study, we follow previous research 

and denote such business models as data-driven when they utilize data as a key resource 

(Hartmann et al., 2016). A subset of data-driven business models are ML-driven business models, 

which have infused at least one of their business model components with ML technologies (Vetter 

et al., 2022; Hahn et al., 2020). IS literature has thus far focused on the ideation of data-driven 

business models, largely disregarding how organizations develop and realize such business 

models and which strategies they employ (Lange et al., 2021; Wiener et al., 2020). Hunke et al. 

(2017) propose an innovation process depicting the major phases organizations must go through 

when developing data-driven business models and the tasks they must perform in each phase. 

Rashed and Drews (2021) differentiate the realization process into four pathways that 

established enterprises can take, depending on their data understanding and incentive for change, 

and elaborate corresponding implementation strategies. Similarly, Shollo et al. (2022) specify 

three ML value creation mechanisms through which organizations can reach their own 

organizational goals and present resources and conditions that must be met to shift between 

mechanisms. Finally, Lange et al. (2021) adopt the resource-based view of the firm (see Barney, 

1991) and present the resources necessary for different phases of the business model realization 

process, which they subsume under four capabilities, along with challenges and enablers to fully 

utilize the organization’s resources.  

7.2.2 Dynamic Capabilities for Digitalization 

However, assembling the resources and capabilities needed to achieve sustainable competitive 

advantage is only one part of business model development (Teece, 2018). While these operational, 

ordinary capabilities aid organizations in operating a business model efficiently, e.g., in following 

a specified manufacturing program, an organization’s overlying dynamic capabilities determine 

the success in creating, implementing, and transforming business models (Teece, 2018; Winter, 

2003; Ricciardi et al., 2016). In their seminal paper, Teece et al. (1997) define dynamic capabilities 

as the “ability to integrate, build, and reconfigure internal and external competencies to address 

rapidly-changing environments” (p. 516). While early dynamic capabilities research disputed 

whether they are indeed firm-specific as proposed by Teece et al. (1997) or common among 

organizations and whether they necessarily confer superior performance (e.g., Eisenhardt & 

Martin, 2000; Peteraf et al., 2013), recent literature proposes that dynamic capabilities may 

consist of both elements that are common across organizations and aspects that are idiosyncratic 

(Barreto, 2010; Yeow et al., 2018). We follow Yeow et al. (2018) in conceptualizing dynamic 

capabilities as both broad organizational capabilities and specific actions and in adopting, at the 

broad level, the three dynamic capability clusters, or higher-order capabilities, proposed by Teece 

(2007): sensing, seizing, and transforming (Teece, 2018). Each of the higher-order dynamic 

capabilities can be disaggregated into various second-order dynamic capabilities, or 

microfoundations (Teece, 2018), which represent the actions and processes enacted by 

individuals (including managers) within the organization, that build and maintain dynamic 
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capabilities (Vial, 2019; Helfat & Peteraf, 2015; Yeow et al., 2018). The strength of an 

organizations dynamic capabilities then determines how successfully it innovates and adapts to 

rapidly changing markets and technological progress (Di Stefano et al., 2014; Warner & Wäger, 

2019; Eisenhardt & Martin, 2000). Due to the highly disruptive and fast-changing nature of the 

digitalization in general, dynamic capabilities are seen as a suitable theoretical foundation to 

examine the mechanisms that enable organizations to engage in digitalization (Warner & Wäger, 

2019; Ellström et al., 2022; Vial, 2019). Currently, literature is thus calling for additional research 

on how organizations build dynamic capabilities to propel their digital transformation forward 

and which microfoundations exactly constitute these dynamic capabilities in practice (Vial, 2019). 

Furthermore, dynamic capabilities enable business models in the sense that they allow 

organizations to rapidly design, test, and revise novel and modified business models, while 

simultaneously being enhanced by the organizational flexibility allowed by the business model of 

the organization (Schoemaker et al., 2018; Teece, 2018), which is especially relevant for 

organizations operating in rapidly-changing, complex, and uncertain environments (Schoemaker 

et al., 2018). Given the disruptive potential of ML-driven business models in particular (Davenport 

et al., 2020; Chalmers et al., 2021; Townsend & Hunt, 2019), in combination with the unique 

managerial challenges posed by ML (see Section 7.2.1), we argue that dynamic capabilities are 

therefore a compelling perspective for investigating the determinants of successful ML-driven 

business model realization. As the allocation of dynamic capabilities into the three clusters 

proposed by Teece (2007) is widely accepted in the literature (Ellström et al., 2022; Yeow et al., 

2018; Warner & Wäger, 2019), we adopt it for this study and elaborate on the three groups in the 

context of realizing ML-driven business models in the following. 

Sensing is the “identification, development, codevelopment, and assessment of technological 

opportunities in relationship to customer needs” (Teece, 2014, p. 332). Sensing and shaping 

opportunities, as well as threats, is done through activities involving scanning, creation, learning, 

and interpretive activities, which need to be embedded into suitable organizational routines 

(Teece, 2007). Organizations must be aware of the ecosystem surrounding them, including 

customer needs and technological possibilities, as well as the structural evolution of markets and 

likely competitor responses (Teece, 2007) to be able to manage market uncertainty and detect 

opportunities (Teece, 2009). This dynamic capability is especially relevant for organizations with 

digital technologies deeply embedded in their strategy (Yeow et al., 2018), as it enables 

recognizing and understanding unexpected trends in fast-changing environments to be able to 

adapt accordingly (Warner & Wäger, 2019). 

Seizing denotes the “mobilization of resources to address needs and opportunities, and to capture 

value from doing so” (Teece, 2014, p. 332). Once an opportunity is sensed by an organization, it 

must be addressed through new products, processes, services, or a combination of these, to 

ensure the value capture through appropriate investments (Teece, 2007). As the outcomes of such 

investment decisions are often highly uncertain, organizations must develop strong decision-

making and evaluation abilities that foster innovation (Teece, 2007). When incumbent 

organizations are introduced to new technologies, they often experience a gap between the 

configuration of ordinary capabilities present in their organization and the optimal configuration 

required to fully utilize the technology (Karimi & Walter, 2015), necessitating seizing capabilities 

to incorporate the technology into the organization to allow capturing value from corresponding 

opportunities (Ellström et al., 2022). 

Transforming is the “continued renewal” (Teece, 2014, p. 332) of the organization’s business 

model along with its resource base. Organizations must retain their ability to reconfigure their 
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assets and organizational structures as their size grows and market and technologies change to 

maintain evolutionary fitness and achieve sustained profitable growth (Teece, 2007). To sustain 

competitive advantage in dynamic environments, established routines need to be revamped 

constantly, which involves top management leadership skills, business model redesigns, and 

potentially even organizational restructuring for radical innovations (Teece, 2007; Helfat et al., 

2007). The transforming capability thus aids in aligning existing resources to new strategies as 

well as in building or accessing required new resources (Yeow et al., 2018). Consequently, with 

digital technologies and especially ML being relatively new and many organizations lacking the 

associated expertise and routines, transforming capabilities are crucial for organizations that 

pursue a strategy infused by these technologies and, therefore, must acquire the corresponding 

resources (Yeow et al., 2018; Rindova et al., 2016).  

7.3 Methodology 

To answer our research question, we carried out a qualitative expert interview study (Bogner et 

al., 2009; Gläser & Laudel, 2004). In contrast, some comparable studies on dynamic capabilities in 

established enterprises select case studies for their qualitative approach (e.g., Yeow et al., 2018; 

Mousavi et al., 2019), which allow for in-depth investigations of phenomena in few organizations 

that are exemplary for the respective topic (Sarker et al., 2012). However, as novel business 

models are volatile, their success difficult to determine in the first years, and their established 

processes and resources to draw data from typically scarce, we decided to rely on multiple 

perspectives on our topic stemming from various organizations. Therefore, we chose to conduct 

an expert interview study, a suitable approach for incorporating a wide range of expertise on ML-

driven value creation (e.g., Lange et al., 2021; Shollo et al., 2022) and an appropriate method for 

illuminating areas of research that have not yet been thoroughly explored (Corbin & Strauss, 

2015; Myers & Newman, 2007). For the interviews, we concentrated on experts from the fields of 

digital business and data science with insights into the technical aspects as well as the business 

aspects of realizing ML-driven business models. The experts were chosen from organizations of 

various sizes (including established enterprises and start-ups) and in different industries 

(including experts from consulting firms or accelerators with an overview of a wide range of client 

organizations) and recruited through LinkedIn and other networks. All selected organizations 

initiated ventures to realize their own ML-driven business models or advise their clients in 

respective endeavors. 

In total, we conducted 20 expert interviews in the third and early fourth quarter of 2022. Table 

12 shows a list of all interviewed experts, along with information on the corresponding 

organizations. Where applicable, we specified experience into time spent developing ML-driven 

business models and total time spent developing other types of digital business models in 

brackets, as ML-driven business models only recently gained popularity (Weber et al., 2022). 

Scope denotes whether the ML-driven business model was an entirely new, independent business 

model (New Business), developed out of an existing business model (Extension), or transformed 

from a previous business model (Transformation). The consulting firms in our sample mostly 

supported Transformation or Extension projects, yet could advise all scopes (Flexible). Interview 

E03 was conducted in person, and interview E17 over the phone, while all other expert interviews 

were held over the online conferencing tools Zoom or Microsoft Teams. All interviews lasted 

between 37 and 54 minutes with the exception of interview E03, which lasted 87 minutes due to 

the large amount of helpful anecdotes shared by the expert. The average duration of all interviews 

is 48 minutes. All expert interviews were either conducted in German or English. 
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Table 12. List of Interviewed Experts. 

ID Position Experience Industry Size Scope 

E01 Product Lead ML 8 yr. IT Services Large Extension 

E02 Co-Founder 3 yr. Software Small New Business 

E03 Managing Director 5 (12) yr. IT Services Small New Business 

E04 Co-Founder & CEO 6 (10) yr. IT Consulting Small Flexible 

E05 Global Head of ML 6 (17) yr. IT Services Very large Extension 

E06 ML Consultant 2 (5) yr. IT Consulting Small Flexible 

E07 Co-Founder & Head of ML 5 yr. IT Services Small New Business 

E08 Co-Founder 5 (10) yr. Software Small New Business 

E09 ML Consultant 5 (7) yr. ML Accelerator Small New Business 

E10 Director of ML Strategy 6 (11) yr. ML Initiative Medium Extension 

E11 Lead ML Product Manager 6 (21) yr. Software Very large Transformation 

E12 Co-Founder & CEO 2 yr. IT Consulting Small Flexible 

E13 Manager Digital CX 6 yr. Technology Very large Transformation 

E14 
Senior Data Scientist & 

Senior Consultant 
4 yr. & 

5 yr. 
Consulting Very large Flexible 

E15 Data Scientist 6 yr. Automotive Very large Transformation 

E16 Senior ML Consultant 3 yr. Consulting Very large Flexible 

E17 Senior ML Strategy Manager 4 (12) yr. Consulting Very large Flexible 

E18 Founder & Managing Director 4 yr. IT Services Small New Business 

E19 Co-Founder & CFO 3 (9) yr. IT Services Small New Business 

E20 Project Lead 6 yr. ML Accelerator Small New Business 

Note. Very large: empl. > 1000, large: empl. > 250, medium: empl. > 50, small: empl. ≤ 50. 

In preparation for the interviews, we created a semi-structured interview guideline (Myers & 

Newman, 2007). The interview guideline first contained introductory questions on the 

experiences of the interviewee and on the business models under study. It then progressed into 

thematic questions informed through extant research (Teece, 2007; Teece, 2018; Yeow et al., 

2018; Warner & Wäger, 2019; Leemann & Kanbach, 2022; Lange et al., 2021), revolving around 

each of the three dynamic capability clusters for ML-driven business model realization. We 

recorded and fully transcribed all interviews. Next, we carried out a content analysis of the 

interview data based on the transcripts, choosing an inductive approach to avoid imposing 

preconceived ideas on dynamic capability theory on the data and instead let dynamic capability 

microfoundations emerge from the data (Hsieh & Shannon, 2005; Mayring, 2007; Myers, 1997). 

More specifically, we followed Gioia et al. (2013) in our coding process. To perform the coding, we 

used the MAXQDA software. We went through the transcripts line by line and assigned codes to 

sentences or parts of sentences that described the respective units, preferably in informant terms. 

Next, we iteratively grouped these emerging first-order concepts into meaningful second-order 

concepts, representing dynamic capability microfoundations. Finally, we assigned the latter to 

aggregate dimensions corresponding to the three dynamic capabilities clusters. During the 

analysis, we employed multi-researcher triangulation to achieve rigor and a high degree of 

objectivity (e.g., Hsieh & Shannon, 2005; Carter et al., 2014). In total, we identified three 

microfoundations of sensing, four of seizing, and four of transforming dynamic capabilities (see 

Figure 7). Furthermore, various factors uniquely complicating the development of ML-driven 

business models emerged from the data, which we grouped into two aggregate dimensions based 

on where they manifest. We thus identified four complexities taking effect within the business 
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models themselves and three relating to dynamism in the organizations’ business environments, 

which we elaborate on in Section 7.4.1. 

7.4 Results 

In the following, we first address particularities unique to ML-driven business models and their 

business environments that complicate business model realization and intensify the need for 

dynamic capabilities. Next, we elaborate on how the examined ML-driven organizations built and 

utilized their dynamic capabilities during business model development, using the tripartite 

clustering by Teece (2007).  

7.4.1 Particularities of Realizing ML-Driven Business Models 

The analysis of the interview data confirms that there are various aspects complicating the 

realization process of ML-driven business models, evoked by the ML technology at their core, 

which we subsume under the categories environmental dynamism and business model 

complexities. 

Environmental dynamism delineates that both the technology of ML as well as the market 

surrounding corresponding business models are in constant flux. First, on the technological side, 

the speed at which new ML approaches are being developed is enormous (E11), even outpacing 

other digital technologies, according to the interviewees (E03, E18). Therefore, organizations and 

even start-ups that want to position themselves in the field of ML must build competencies for 

research and development from the start to avoid getting left behind (E03). The rapid releases of 

novel ML services additionally demand much more flexibility from organizations during the 

development process of business models: “So these classic [business model] planning processes, 

that’s very difficult – that’s usually obsolete very quickly. The world changes too quickly” (E18). 

Second, the experts note that for many ML solutions, the respective market is still nascent (E08, 

E18), following the hype evoked by successful ML proof-of-concept projects (E20). As the market 

is currently developing, the IT infrastructure around ML systems is becoming increasingly 

modular and organizations are moving to specialize in application areas or ML components (E08, 

E11, E15, E18). “There will be companies that try and cover the full spectrum of the machine learning 

flow [for one specific application area] – or you’ll get companies that do best in breed on one specific 

component” (E08). Thereby, the ever-growing product portfolio of the large cloud service 

providers enables the purchase of specific components of ML development, such as computing 

power or pre-trained ML models, lowering the entry barriers for organizations with limited 

resources of their own at the cost of operating expenditure (E16). Third, as ML models absorb 

information about the organization’s environment in the form of data, changes in the business 

environment not only become problematic due to the possibly negative effects of the changes, but 

additionally due to their impact on the ML model within the organization’s ML system (E14, E16). 

When changes occur, the arising technical problems of data drift (new data is unlike training data 

of ML system) and concept drift (interrelations within new data is unlike interrelations in training 

data) must be addressed, which requires humans to interpret the data and evaluate whether the 

business idea remains relevant and which technical changes are necessary to ensure the ML 

system learns the desired patterns (E08, E14, E16).  

Business model complexities denotes factors complicating business model realization from 

within the business model due to the unique effects of ML technologies. First, with ML being a 

general-purpose technology (see Brynjolfsson & McAfee, 2017), corresponding solutions can be 
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utilized across various different sectors and business functions (E03, E05, E19). ML-developing 

organizations must thus be able to recognize application opportunities for their ML systems 

across industries and organizational boundaries (E03). Second, ML start-ups are often very tech-

driven because of the high degree of required technical expertise in-house, frequently leading to 

some neglect of the business side (E09, E19). However, business expertise is elementary in 

developing business models, for instance, to quickly gather market feedback (E09). Additionally, 

ML solutions and their non-deterministic output require intensive engagement with the 

respective client to make them understand “how ML works and what they can do with it and where 

it really helps them” (E01), necessitating the building of expertise in sales and marketing (E01, 

E02). Third, while traditional digital solutions were separable into data and software, allowing 

the molding of standard processes into software (E10), that is no longer the case for ML 

approaches, in which data and software are inextricably connected (E08, E10, E12). This begets 

some technical challenges during development: Not only is data difficult and costly to acquire 

(E10, E12, E14, E17), but whether the process of abstracting information from data, storing it in 

an ML model, and then applying that in the real environment works and how well it works is 

difficult to ascertain in advance (E01, E07, E08, E10). Deploying an ML system to a new application 

area, therefore, not only requires retraining (E02, E10) but also extensive evaluation efforts (E06, 

E08, E10) that continue in the maintenance phase afterwards (E06). As one expert put it: “Mike 

Tyson said: ‘Everyone got a strategy until they get hit in the mouth.’ Your model is going to get hit in 

the mouth. What do you do with it when it does happen? How do you feed that into a system or [to] 

a person that can interpret that, update the model, get the new model, deploy it down so the next 

time it sees an exception, it can handle it?” (E08). The uncertain performance and the high 

retraining efforts when transferring ML systems between clients consequently make ML-driven 

business models very difficult to scale (E02, E07, E10). Fourth, ML systems have the capacity to 

highly individualize services to single end-consumers, e.g., in social media networks (E20), or to 

autonomously make high-impact decisions, e.g., in self-driving cars (E15). Coupled with their 

opacity (E15, E17), ML systems can cause more severe ethical ramifications than traditional 

software (E11, E14, E20). ML-driven organizations, therefore, need strong governance to foresee 

ethical issues early on when developing ML systems and to constantly review potential problems 

even after development to ensure operational safety (E14, E15) and data privacy (E11, E13, E15). 

7.4.2 Dynamic Capabilities for Realizing ML-Driven Business Models 

In what follows, we present the identified microfoundations explicating how organizations 

successfully realize ML-driven business models despite the unique challenges described in 

Section 7.4.1. Figure 7 gives an overview of the microfoundations that emerged from the data and 

the first order-concepts that informed them. Thereby, organizations first sense worthwhile 

opportunities via sensing, then design and commit to an appropriate business model via seizing, 

and lastly reconfigure the organization via transforming (Teece, 2018; see Warner & Wäger, 

2019). While the dynamic capabilities are thus used sequentially when realizing a new business 

model, organizations must sense and seize opportunities continuously and transform parts of the 

organization periodically for long-lasting success, with stronger dynamic capabilities leading to 

faster and closer alignment to customer needs (Teece, 2018).  
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Figure 7. Microfoundations of Dynamic Capabilities for Realizing ML-Driven Business Models Emergent From 
the Interview Data. 

Sensing 

Due to ML systems requiring large amounts of well-curated and current data, ML-driven business 

models can utilize their database to engage in data-driven sensing. By analyzing the available data 

manually or through automated processes, organizations can thereby gain insights into the 

characteristics and especially the needs of their customers (E01, E02, E05, E13, E16, E17). 

Through the organizations’ improved knowledge of their customers, they increase their capability 

for detecting opportunities to serve additional needs on the market. “[Name of former employer] 

always say that they get so much from data; they understand their target groups much better 

because they analyze massive amounts of data and, in fact, find many hidden fields” (E02). While the 

capacity for data-driven sensing is beneficial to various types of business models, “when you’re 

based around machine learning, [listening to data is] that much more important because that is 

driving how you win in the market. Also, your data is a form of stickiness with customers. I wouldn’t 
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stop using Spotify because I fed it huge amounts of data, and the machine learning algorithm knows 

what to recommend” (E05). Another microfoundation of organizations’ sensing capability for ML-

driven business model realization is reducing uncertainty inherent to ML development. Compared 

to traditional agile software development, where “you set an amount of story points or a certain 

view of what you’re going to do in the next sprint, and you know […] what you will get at the end [of 

that sprint]. You don’t have that from the machine learning point of view because there’s data in the 

equation” (E05). Therefore, ML development requires prolonged experimentation phases to 

ascertain the possibilities of the envisaged ML solution (E01, E02, E05, E14, E18). Agile principles 

known from other digital products (E04, E16) such as small, incremental development steps (E03, 

E13, E16) while embracing a fail-fast mindset, quickly testing many ideas and allowing ideas 

based on mismatched assumptions to fail early (E07, E13), aid in reducing ML-induced 

uncertainty during development as well. Moreover, as setting up a functioning ML model is 

difficult early on (E09, E13, E17, E20), ML-driven business models often co-innovate, working 

closely with pilot customers to test assumptions early and to gain access to the customer’s data 

(E03, E06, E09). While this laborious experimentation phase is considerably longer still for 

problems that are not yet well-solved, these cases also yield the most interesting ML solutions 

(E04, E18). The last sensing microfoundation, simultaneous ML and business model 

experimentation, describes organizations remaining adaptable with their business model in 

parallel to their technical experimentation (E05, E09, E14, E18). First, organizations are well-

advised to let the information derived from data also inform their business goals and to adapt 

their business model accordingly (E05, E19). “The data needs to guide you, and data is telling you 

about your business model and its effect in the market” (E05). Second, the question of which to 

develop first, business model or ML system, is “a bit of a hen and the egg question: […] Do you first 

spend a lot of time in making a business model because that takes resources as well or do you make 

a proof of concept?” (E14). Waiting for the experimentation phase is often not an option either, as 

the organization must prove the rentability of the idea to justify the high costs of ML development 

(E02, E09, E11, E13). Organizations should therefore jump back and forth between the two, 

continuously evaluating the fit between their business model idea and the results of the ML 

experimentation process (E02, E12, E14, E20). Thereby, these two learning processes amplify 

each other, giving rise to positive synergies between them (E09, E14, E19): “Along the process, 

often you can find that you’re able to do more things. You’re able to actually predict some other 

things that you didn’t think about at the start” (E14). Due to the characteristic of ML being 

applicable across sectors and functions, organizations can thus “recogniz[e] that the tool we have 

created can do much more than what we have done with it so far” (E03). Organizations may find 

their solutions to be applicable in new, previously unaddressed sectors (E03, E19) or discover 

that their ML system intended for use by end consumers unlocks the potential to lower costs when 

used internally (E18). The reverse of the latter is even more common: “We develop something for 

a specific section in the value chain – for example, for production, error management processes is a 

big topic for us – and then we suddenly realize our application has a lot of potential to be used in 

after sales“ (E18). 

Seizing 

Organizations seeking to capitalize on opportunities with their ML-driven business model 

realization process need the capacity to react to market or environment changes through 

continuous business model alignment. While all types of business models should be adapted 

regularly to reflect market conditions (E09, E11), being able to respond quickly to developments 

is especially critical for business models in rapidly changing markets such as the ML market (E03, 

E11). As dynamism in the market also enters ML products through data, causing data or concept 
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drift, the need for continuous alignment is further exacerbated: “It starts with an invoice template, 

which changes in some country because some additional information is necessary, and I have to learn 

to extract that too if I want to extract something. [And it ends] with the fact that suddenly we have 

to keep a distance of 2 meters, we all have to wear masks, and the life behavior has completely 

changed, and therefore certain business processes have completely changed” (E11). To enable fast 

business model adaptations, organizations may establish departments such as innovation labs to 

rapidly test hypotheses and business ideas, while simultaneously anchoring the process of 

industrializing and scaling promising ideas within parts of the organization as well, e.g., in an ML 

factory unit (E17, E20). The potential ethical issues arising from some ML solutions demand 

additional awareness and that organizations are quick to respond to new regulations and to adapt 

their business processes accordingly in a responsible manner (E04, E05, E06), which can be 

fostered through involving people with differing perspectives (E06). Another microfoundation 

fueling the seizing capability of organizations realizing ML-driven business models is their ability 

for common knowledge building among departments due to three reasons: First, for the 

development process of ML systems to run smoothly, it needs the involvement of experts with 

different skillsets and perspectives, such as data engineers, ML engineers, sales experts, and 

domain experts (E17, E20). To allow experts from the business side to give input during 

development, organizations must ensure that all employees across organizational structures have 

some understanding of ML technologies and how they function (E01, E02, E08, E11, E14, E19). 

Second, that shared technical understanding is also necessary beyond ML development. As the 

output of ML models is non-deterministic and often uncertain in advance (E01, see Section 7.4.1), 

ML-driven business models need highly tech-savvy sales experts to be able to explain the unique 

characteristics as well as their ramifications to clients (E02, E08, E11, E20). Such skilled sales also 

“have to be able to transport […] trust in the technology, because that has not been there until today” 

(E11). Third, a shared technical understanding sharpens the senses of all members of an 

organization for ML-specific issues (E10, E14, E18). Decisions made around a deployed ML system 

can unintentionally alter its results, e.g., in the visual inspection example of an expert, where 

“someone says ‘Hey, we’re going to install new lights’ or some other stuff, which at first has no direct 

dependency, but of course then maybe the image is influenced and then all of a sudden my model no 

longer works” (E10). As ML systems can not interpret their surroundings (see Section 7.4.1), the 

humans around them must thus possess an awareness of such issues and the technical 

understanding for reasonable interpretations and for requesting intervention if necessary (E10, 

E14). Moreover, with more members of an organization paying attention to the potential within 

their data, detecting promising ML use cases and exploiting synergies in data silos across 

departments becomes significantly easier (E14). Next, the unique properties of ML solutions 

further demand that corresponding business models engage in ML-specific customer relationships. 

Due to the technology’s complexity and the potential impacts of ML adoption, like ML taking over 

creative tasks from humans, solutions must be marketed with some finesse, laying a focus on 

communicating the added value of solutions and addressing both budget owners as well as 

experts with technical understanding (E01, E03, E08). To better understand how to approach and 

work with their customers, many ML start-ups in the B2B sector start with a consulting-oriented 

business model before transforming to a product- or service-based model (E03, E07, E08, E10, 

E12, E19). This not only helps them learn from the clients’ business problems but also from their 

data to enable improvements to the ML system (E07, E10). The consulting model further alleviates 

marketing challenges caused by the uncertainty of ML project outcomes: “The problem with 

machine learning, the failure rate for machining applications is still 60-70%, somewhere there. That 

failure rate needs to come down to like 20%, and then enough companies will start adopting this on 
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a scale that makes sense. And then once that happens, you will have people switch to understanding 

how to license the software and not need consultation behind it as well” (E08). Switching to product-

based business models is aspired by many ML start-ups due to the higher scalability and 

disruptive potential (E08, E17, E20), whereby keeping the ML model hidden within the system a 

secret and only providing and selling its generated solutions is promising to be the “holy grail” 

(E17) of approaches, allowing for the best monetization (E08, E17). The fourth seizing 

microfoundation identified in the interviews is intensive partnerships & ecosystem play. For 

development partners of ML-driven business models to be willing to give out their sensitive data 

for the ML development process, mutual trust and strong contractual agreements must be in place 

(E01, E16). Customers only enter such partnerships “if they know you as a provider or find you 

reputable and […] if they have sufficient need to do something in that area” (E01). Partnerships thus 

also help in knowing the customer and validating assumptions about the customer’s need (E01, 

E16). Furthermore, the high dynamism of the ML market coupled with the increasing modularity 

of cloud and ML services (see Section 7.4.1) amplifies the benefits of strong collaboration and joint 

learning through ecosystem play, especially for small and medium-sized enterprises (E17, E18). 

Organizations should thus rather strive to “build up many solutions [in a network] and see the 

strengths of them than acquire everything [themselves], [having] to build up a huge body of 

knowledge over many years. So I think I have to develop the ability to enter into this collaboration 

and say that ‘he won’t take away my water, he can support me’ and then I think you have to develop 

these joint business models” (E18). 

Transforming 

As ML-developing organizations experience influences of the technology across all departments 

(E11, E18), reconfiguring their structure towards organizational structures enabling ML 

innovation unlocks the full potential of ML. When developing novel ML business models within 

the organization, centralized teams are no longer recommended due to the resulting gap between 

domain experts and the ML team (E07, E16, E18). More suitable configurations include the hub-

and-spoke model, which pools ML expertise in a hub that closely cooperates with experts 

throughout the organization that are close to the business side and endowed with technical 

understanding (E05, E07, E16, E18). For some established organizations, however, realizing an 

ML-driven business model that cannibalizes their own business can prove unsustainable within 

their company boundaries (E04, E05, E17). For example, “lawyers sell hours. No lawyer in the world 

wants to become more efficient; that’s the last thing he wants” (E04). To circumvent this issue, such 

organizations may pursue corporate spin-offs to capture new parts of the market (E04, E05, E17). 

“We are working with an insurer at the moment who’s been around for hundreds of years as a 

company, and they’re creating a new business which will be the claims experience itself which will 

be entirely driven by machine learning. […] So, what they’ve done with that model is they’ve created 

a separate company, and they will eventually move out of the insurer, and they funded that company 

themselves. So, the insurer will still be a majority stakeholder, but they recognized that they couldn’t 

create such a different business model within an old insurance business model” (E05). This approach 

further helps in attracting talent as well as novel partnerships, maybe even with former 

competitors (E17), but also represents a large investment that takes a long time, “about three to 

five years” (E05), to pay off. Nevertheless, the experts advise highly disruptive business models: 

“If [the ML-driven business model] becomes fundamental like that, spin it off” (E04). Besides 

appropriate structures, ML-driven business model realization further benefits from 

organizational culture fostering ML innovation. While concerns often emerge when adopting novel 

technologies, especially ML-driven business models are often met with resistances (E06, E14, 

E16) due to their unique implications for humans at work (see Section 7.2.1). Realizing ML-driven 
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business models, however, calls for an organizational culture fostering curiosity and “willingness 

to embrace change, to accept what makes ML solutions very different than other ones, which is the 

amount of uncertainty that [they] might imply. […] There needs to be aware[ness] also of the risks 

that [uncertainty] might imply” (E06). Members of the organization should be willing to take risks, 

accepting of failure, and championing trial-and-error approaches (E02, E05, E11, E13, E15, E17, 

E18). Building such a culture further sensitizes members of all departments for added value in 

data (E17) but may call for extensive change management efforts in established enterprises (E06). 

Another microfoundation of the transforming capability is the top management commitment. As 

the realization of ML-driven business models must be carried by all parts of an organization, 

committing to and communicating its strategic importance from the top management is crucial 

(E06, E13, E14, E16, E17). This is especially important in traditional organizations like “insurance 

companies, for example: They don’t have any pressure to change at the moment. Business is good. 

They have nice margins on their traditional insurance policies. […] Of course, there are a few fintech 

players who are just starting to act in a more innovative, faster, and more customer-centric way. But 

the pressure from outside has not yet been felt. That means there has to be an internal, intrinsic 

motivation to develop new business models, and there has to be oomph behind it from the board” 

(E17). Furthermore, the top management must secure the budget for ML development (E01, E02, 

E06, E13), which is both costly (E06, E09, E11) as well as risky due to the outcome being uncertain 

(E09, E18). Thereby, laying a large focus on performance indicators and costs “destroys the 

innovation” (E13). Having top managers that understand the need for extensive and untied 

experimentation during ML development and provide the necessary budget thus benefits the 

business model realization (E06, E11, E13, E14, E18). Lastly, the microfoundation cross-industry 

knowledge acquisition describes an organization’s ability to gather insights through its network of 

partners. Due to ML being a general-purpose technology, these insights are not necessarily limited 

to the organization’s market, which makes the exchange with partners equipped with vast 

experience on different ML projects, such as consulting firms, very attractive (E05, E16, E17). Such 

exchange is fostered through strong internal champions who understand ML technologies and are 

driven to motivate for novel ML business ideas (E04, E06, E07, E19). Additionally, as the ML 

market is relatively new and changes within it can be far-reaching (see Section 7.4.1), e.g., due to 

new regulations, networking with the ML community and the scientific field is essential for 

maintaining competitive advantages (E02, E09).  

7.5 Discussion 

By adopting a dynamic capabilities perspective, we uncover the microfoundations that explain 

how organizations build the sensing, seizing, and transforming capabilities that empower them in 

realizing ML-driven business models. More specifically, we conceptualize three sensing, four 

seizing, and four transforming microfoundations (see Figure 7), answering our research question. 

Our study makes multiple theoretical contributions. First, motivated by scholars stating that 

organizations must build dynamic capabilities for digital transformation efforts (Warner & Wäger, 

2019; Wamba et al., 2017; Shollo et al., 2022; Mikalef et al., 2020) and to confront turbulent 

environments (Wilden & Gudergan, 2015), we contextualize and verify the suitability of the 

dynamic capabilities perspective for the realization of ML-driven business models. Second, with 

dynamic capabilities playing a large role in the success of organizations realizing business models 

(see Teece, 2018; Winter, 2003; Ricciardi et al., 2016), we illuminate the processes and practices 

underlying the dynamic capabilities of these organizations. More specifically, we theorize on 

microfoundations on which ML-specific dynamic capabilities are grounded, answering a call for 
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research on dynamic capabilities for digitalization (Vial, 2019). Thereby, we extend extant 

research on realizing data-driven business models revolving around models of the development 

process (e.g., Shollo et al., 2022; Rashed & Drews, 2021; Hunke et al., 2017) and the necessary 

resources and ordinary capabilities (e.g., Lange et al., 2021) by delineating how organizations 

build the ML-specific dynamic capabilities that enable them to orchestrate their resources in the 

realization process for sustainable success (see Teece, 2018). Third, we corroborate and expand 

the results of previous research stating that experimenting with business model ideas helps 

organizations reduce uncertainty (Andries et al., 2013). While organizations creating value from 

other digital technologies can tinker with novel business model ideas at very low costs (Huang et 

al., 2017; Lange et al., 2021), the development of ML technologies requires high up-front 

investments. Our results thus suggest that experimentation for the two development processes, 

ML development and business model development, must be interleaved to reduce the associated 

uncertainties simultaneously. Fourth, our results contribute to research building on the dynamic 

capabilities perspective in several ways. Our identified microfoundation of data-driven sensing 

gives support to recent literature reporting that organizations must increasingly digitize their 

sensing capabilities to quickly understand changes in highly dynamic markets (Nambisan et al., 

2017; Warner & Wäger, 2019). The identified seizing microfoundation continuous business model 

alignment further underscores research emphasizing the need for rapid strategic realignment in 

such markets characterized by high velocity and uncertainty (Teece & Leih, 2016; Peteraf et al., 

2013). Additionally, while the benefit of collaboration in inter-organizational networks to 

innovation has been shown in the literature (e.g., Schilling & Phelps, 2007), our results suggest an 

exacerbated need for ecosystem play in the ML market due to its increasing modularity and 

partnerships involving the exchange of data requiring high mutual trust between partners. 

Regarding transforming microfoundations, ML-driven business models need the involvement of 

all members of the organization as per our results and thus necessitate an organizational culture 

that emphasizes openness to change, cross-departmental collaboration, and sensitizes towards 

ML- and data-specific topics. These findings coincide with literature on digitalization efforts, 

which similarly require change management efforts to overcome resistances to change (Singh & 

Hess, 2017; Ellström et al., 2022; Warner & Wäger, 2019). Lastly, while many types of digital 

business ideas benefit from the agility offered by developing the new business model next to 

traditional structures in a bimodal organizational structure (Haffke et al., 2017b; Lange et al., 

2021), we found that the increased capacity of ML-driven business models to cannibalize an 

organization’s own business may more often demand realization outside of previous 

organizational boundaries. Furthermore, our study makes two major practical contributions. 

First, we guide organizations by conceptualizing the novel challenges that arise when realizing 

business ideas driven by ML technologies. Practitioners can thus circumvent these issues and 

their implications when designing their business model realization process. Second, practitioners 

can utilize the presented microfoundations as guidelines on how to build dynamic capabilities 

that empower ML-driven business model realization processes. We thereby enable decision-

makers to identify and make the necessary changes within their organization to align it for optimal 

capacity to realize ML-driven business models. 

Our study is subject to limitations that invite future research. As our focus lay on capturing a 

practitioner’s perspective, we utilized the broad scope of our qualitative study to identify 

microfoundations grounded on expertise on a variety of business model realization cases. Yet, this 

leaves the quantitative measurement of the microfoundations’ effectivity in building dynamic 

capabilities or the associated success of business model realization endeavors unresolved to date; 

a limitation shared by comparable research on dynamic capabilities (see Warner & Wäger, 2019; 
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Mousavi et al., 2019). Future research could therefore operationalize our microfoundations to 

both verify them and measure their effects in real-time longitudinal studies. Particularly their 

impact on the speed and degree of an organization’s alignment to customer needs (see Teece, 

2018) during different phases of the realization process could thereby be of interest. Moreover, 

future research might investigate whether involving consultants in the realization process of 

business models alters how dynamic capabilities are built. To further expand on this work, future 

research could examine the interaction of ordinary capabilities (see Lange et al., 2021) and 

dynamic capabilities during business model realization.  

7.6 Conclusion 

In summary, our study represents a first step in examining how organizations navigate the ML-

driven business model realization process despite ML-specific complications. Based on data from 

20 expert interviews with practitioners, we thus shed light on the dynamic capabilities that 

empower organizations in realizing ML-driven business models. As results, we conceptualize 

various microfoundations (see Figure 7) on which these dynamic capabilities are grounded and 

that are crucial for counteracting the identified ML-induced complications in the business 

environment and the business model itself. Yet, further research is needed to unpack the full 

potential of ML-driven business models. 
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8 Overarching Discussion and Conclusion 

Modern ML systems hold immense economic potential for organizations to exploit. The vast 

number of associated entrepreneurial opportunities, in combination with the disruptive nature of 

ML innovations, both enable and pressure organizations to adapt their existing business models 

or develop entirely new ones driven by ML (e.g., Chalmers et al., 2021; Davenport et al., 2020). In 

this regard, while ML systems offer novel and unique opportunities in countless application 

scenarios along the value chain (e.g., Benbya et al., 2021; Burström et al., 2021), they also pose 

new challenges that differ from those of other digital technologies (e.g., Benbya et al., 2020b; 

Berente et al., 2021). When organizations thus integrate ML into their business models, they must 

adapt the way they create and deliver value for their customers while capturing value themselves, 

to harness opportunities unlocked by ML and account for ML-specific challenges (e.g., Ågerfalk, 

2020; Amershi et al., 2019; Benbya et al., 2020a; Lange et al., 2021; Steininger et al., 2022; Sturm 

et al., 2021b). However, to date, research has left largely unexplored exactly how ML influences 

the business logic of organizations and how organizations adapt their business models to 

optimally utilize ML. Thus, this dissertation aims to further the understanding of the nature and 

unique potential of ML-driven business models for both scholars and practitioners. It expounds 

on the emerging ML-specific challenges influencing how organizations create, deliver, and capture 

value with ML systems, delineating the respective avenues by which organizations tackle these 

difficulties while exploiting the unique capabilities of ML to ensure their ML-driven business 

models’ sustainable success. To this end, this dissertation draws on empirical evidence and 

several explorative research approaches, which entail some limitations (detailed in each of the 

papers above), yet provide various important contributions that can inspire practitioners and 

inform future studies in this underexplored area of research, which appear below.  

8.1 Theoretical Contributions 

This dissertation illuminates the influence of ML on the business logic of organizations and 

provides various contributions to research, which are detailed in the three dimensions of value 

creation, value delivery, and value capture in the following. 

First, concerning value creation, this dissertation identifies both ML-induced challenges 

complicating the creation of value in ML-driven business models, and unique ways in which ML 

systems can provide additional value during their development. Regarding the latter, the results 

of Paper A show that when organizations conduct ML development projects, they can create value 

not only upon successful completion through the productively usable ML systems at the end of 

the development process, but are also able to stimulate learning processes among the 

organization’s domain experts during all phases of the development. In other words, ML 

development itself can be of value to the organization by fostering organizational learning, a 

process critical to maintaining and increasing its knowledge base and thus vital to its long-term 

performance (e.g., Argote et al., 2021; March, 1991). To date, few studies have investigated the 

learning processes involving ML systems and human learners, yet with a focus on productive ML 
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systems and the organizational learning they enable (e.g., Balasubramanian et al., 2022; Lyytinen 

et al., 2021; Ransbotham et al., 2020; Seidel et al., 2019; Sturm et al., 2021b). Paper A thus 

contributes to the current discussion of how ML impacts organizational learning, and highlights 

how organizations can create valuable knowledge as a byproduct of their value creation efforts to 

develop productively usable ML systems. In particular, the findings show that organizations can 

employ the development of ML systems as a novel tool to initiate the revision of suboptimal or 

outdated knowledge, which is notoriously difficult in organizational learning (e.g., Argote et al., 

2021; Argyris, 1976; Levinthal & March, 1993), and as a mechanism to facilitate the similarly 

challenging management of tacit knowledge (e.g., Argote et al., 2021; Nonaka, 1994). In this 

regard, recent literature indicates that productive generative AI may play a more central role in 

future knowledge management (Alavi et al., 2024) and merit a reexamination in further studies 

of potential learning processes during projects aimed at developing or adapting generative AI 

systems for the organization. With respect to the challenges in the way of value creation with ML, 

papers A, B, and E emphasize the need for extensive experimentation in ML development. This 

need arises from both domain experts’ attempts to integrate their own knowledge with insights 

and solutions from the development process, to simultaneously evaluate the system and their 

knowledge base (paper A), and the uncertainty inherent in ML development, in which software 

and data are inextricably linked due to the data-based learning approach of ML systems (paper 

E). However, the demand for experimentation runs counter to the demands of many conventional 

business processes for exploiting existing strengths (e.g., Gerbert et al., 2020; Pumplun et al., 

2019), creating tensions during ML development (paper B). Therefore, Paper B identifies four 

distinct tensions arising when organizations create value through ML developments. They 

concern, for instance, the type of knowledge that ML systems are to generate, between granting 

the ML system the freedom to learn autonomously (generating independent, potentially novel 

knowledge) and more strictly guiding its learning process through domain experts (generating 

knowledge relevant to the domain; e.g., van den Broek et al., 2021; Seidel et al., 2020). Moreover, 

the paper presents exploration and exploitation tactics that organizations use to alleviate the 

problematic poles of the tensions, depending on the chosen organizational structure for ML 

development. An example is helping organizations with inherently exploitation-oriented 

decentralized structures to satisfy the demand for experimentation through workshops or open 

time during working hours, motivating business units to think “outside of the box”. Furthermore, 

these alleviating tactics cause organizations to shift their organizational structure toward hybrid 

approaches, underscoring the importance of satisfying the ML demand for extensive 

experimentation as part of the exploitation-exploration duality during ML development, to ensure 

long-term performance through ambidexterity (see, e.g., Raisch & Birkinshaw, 2008; Smith & 

Lewis, 2011; Smith et al., 2011). Collectively, the conceptualizations within these papers can be 

used in future research on the management of ML-driven value creation efforts, which I hope to 

inspire to consider both the challenges and the unique avenues for learning that ML’s data-based 

learning and the associated need for experimentation present. 

Second, on the topic of value delivery, the results reported in this dissertation show that ML-

driven business models must tailor their offerings to their customers, both concerning how the 

value generated by the ML system is communicated to its users through XAI approaches (paper 

C), and concerning the necessary adaptation of the provided ML system to the customer’s data 

and business problem at hand (paper E). Regarding the latter, organizations employing ML-driven 

business models must gain a detailed understanding of both data and business problems of their 

clients. Accordingly, they often initially employ a consulting-based approach, to learn alongside 

their clients, or enter close development partnerships to enable data sharing and co-development, 
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as paper E details. While the positive effects of inter-organizational collaboration in networks on 

innovation appear in the literature (e.g., Schilling & Phelps, 2007), paper E corroborates initial 

research suggesting the heightened importance of ecosystem play for delivering value through 

ML-driven business models (Burström et al., 2021; Weber et al., 2022). In addition, paper C 

furthers our understanding of how organizations can ensure that the potential value their ML 

system can provide is also receivable by and of benefit to the system’s users through user-specific 

explanations. Only recently has research on XAI begun considering the needs of lay users who 

must understand the ML system’s output to incorporate it into their decision-making, such as 

doctors making diagnostic decisions in the healthcare sector (e.g., Ellenrieder et al., 2023; Gaube 

et al., 2023). By carefully delineating the user groups of an ML system for a forecasting use case in 

the corporate performance management domain and considering their requirements before 

developing an approach to designing XAI, the paper thus makes an important contribution to an 

ongoing scholarly effort to provide explainability specifically tailored to the various users of ML 

systems. In particular, the defined user groups include such lay users as managers who urgently 

need explanations to consider the ML system’s output in their decision-making (e.g., Barredo 

Arrieta et al., 2020; Martin, 2019b). The design principles the paper presents can thus inform 

future XAI research on the design of user-centric explanations provided by ML systems, both in 

the field of corporate performance management specifically and in further domains with 

comparable forecasting use cases. 

Third, with respect to value capture, this dissertation offers insight into the anatomy of ML-

driven business models through which organizations in practice aim to capture value sustainably 

(paper D) and fosters our understanding of how organizations build the dynamic capabilities to 

successfully realize these business models (paper E). Regarding the former, paper D develops a 

taxonomy of ML-driven business models, answering calls from the literature for taxonomic 

research related to data-driven business models (e.g., Veit et al., 2014; Müller & Buliga, 2019) and 

complementing the discussion with ML-focused observations. The taxonomy provides 

researchers with a standardized vocabulary to describe and differentiate ML-driven business 

models found in practice in a common language. Thus, it facilitates the future scholarly exchange 

of new ideas on the topic and contributes to a unified understanding of ML-driven business 

models. In addition, this dissertation supplements insights into frequently employed ML-driven 

business models and their constituent components, through the identified archetypes in paper D, 

as well as information on the characteristics and particularities distinctly inherent in ML-driven 

business models and their environment, which complicate their realization (paper E). Building on 

these findings, paper E presents an in-depth examination of how organizations can nevertheless 

successfully realize ML-driven business models. In particular, it theorizes on eleven 

microfoundations (i.e., practices and processes) with which organizations build the dynamic 

capabilities that allow them to sustainably capture value through ML-driven business model 

realization, despite ML-specific challenges. The study finds that while all organizations benefit 

from experimenting with business model ideas in the market to reduce uncertainty and ensure 

their suitability for eventual value capture (e.g., Andries et al., 2013), the data-based learning 

approach of ML systems adds an additional layer of uncertainty inherent in the technology. In 

addition, while other digital products and services can be experimented with at relatively low 

costs (e.g., Huang et al., 2017; Lange et al., 2021), the development of ML entails high up-front 

investments. The results of the paper thus suggest that organizations are well advised to 

interleave and simultaneously conduct both the ML development processes and the business 

model development process to reduce their respective uncertainties in tandem. The paper 

thereby contributes to a thriving research stream on the learning processes that foster successful 
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business model realization by reducing uncertainty around markets, products, and activities (e.g., 

experimentation, trial-and-error learning, vicarious learning; see Snihur & Eisenhardt, 2022), 

underscoring the importance of addressing ML-induced uncertainties in the case of ML-driven 

business models. In this context, future studies may build on these findings by examining in depth 

how organizations realizing ML-driven business models account for these uncertainties in their 

learning processes. In addition, drawing on the findings of paper A, studies that focus on the 

interplay between these learning processes about markets, products, and activities during 

business model development and the simultaneous learning processes during ML development 

might also prove interesting. Furthermore, the results of paper E show that the capacity to tackle 

environmental dynamism is particularly important for ML-driven business models because their 

business environments are commonly inherently complex and fast-moving (e.g., Chalmers et al., 

2021; Steininger et al., 2022), and additionally because their ML systems can also be affected by 

said dynamism when learning from data from the environment. The identified microfoundation 

data-driven sensing can support in this endeavor and emphasizes the need for organizations to 

listen to their data when determining which opportunities to target in the market. Recent research 

finds this beneficial for all organizations in fast-moving environments (e.g., Nambisan et al., 2017; 

Warner & Wäger, 2019). Yet, the findings of paper E deem it crucial for ML-driven business 

models, due to their reliance on data as a value driver. Moreover, realizing a novel ML-driven 

business model out of an existing business model can fundamentally change how an established 

organization does business. In such cases, the results show that the ML-driven business model has 

an increased capacity to cannibalize the organization’s core business, potentially meriting 

realization outside of existing organizational boundaries. The results further indicate that scaling 

ML-driven business models can prove difficult, e.g., due to the required training efforts for new 

(groups of) customers, corroborating recent research on the topic (Haefner et al., 2023; 

Zebhauser, 2024). They suggest that new ventures are thus incentivized to start with a consulting-

oriented approach, as mentioned above, which limits their ability to capture value, and have 

difficulty transitioning to a more scalable product-oriented approach, meriting additional studies 

on the avenues through which ML-driven business models can perform the desirable 

transformation. Taken together, the findings of papers D and E thus provide to future studies 

insights and a common language for examining how new ventures powered by ML can succeed 

and for investigating the factors explicating the long-term success of ML-driven organizations.  

Overall, this dissertation thus contributes to a growing understanding of ML-driven business 

models, both by verifying that the ML-specific characteristics and challenges indeed change the 

logic underlying the value creation, value delivery, and value capture of organizations (e.g., 

Benbya et al., 2020a; Berente et al., 2021; Burström et al., 2021; Steininger et al., 2022) and 

particularly by elaborating on concrete ways they do so in each of the three dimensions. It is my 

hope that the results this dissertation presents form a foundation that inspires scholars to further 

investigate the demand of ML systems for unique consideration in the business logic of 

organizations, as well as their great potential to enable and power novel types of business models. 

8.2 Practical Contributions 

In addition to its theoretical contributions, this dissertation yields practical guidance on various 

aspects of the creation, delivery, and capture of value with ML systems. It also holds particularly 

valuable insights for practitioners aiming to realize their own ML-driven business models. Two 

major contributions to practice are discussed below. 
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First, organizations can utilize the findings and artifacts contained in this dissertation to inform a 

multitude of design decisions arising in the context of their ML development process (papers B 

and C) and their ML-driven business model realization process (papers D and E). Regarding the 

former, paper B outlines the effects of structural decisions on ML development and empowers 

practitioners to identify the tensions that arise when developing and operating ML systems, 

depending on their chosen structure. After their identification, the paper further provides 

organizations with specific tactics they can use to alleviate these tensions. Concerning the 

practical contributions to ML development, paper C focuses on the design of the ML system itself. 

Accordingly, it offers design principles in three decomposition layers, which organizations that 

aim to provide explainability through their ML system can use as concrete guidelines for designing 

their XAI approaches, particularly for tailoring them to their system’s user groups. Organizations 

can further utilize the evaluation framework that paper C presents to evaluate their ML systems 

for their capacity to provide suitable explanations to their user groups and, in turn, for their ability 

to address the lack of explainability standing in the way of increased use of ML systems in practice 

(see Chui et al., 2021). With respect to guidance on the ML-driven business model realization 

process, paper D first offers an artifact, in the form of the developed taxonomy, that organizations 

can use to create blueprints of ML-driven business models. Thus, the taxonomy can function as a 

supporting tool in their business model innovation efforts to create novel ML-driven business 

models (Bouwman et al., 2020) and, in conjunction with the identified archetypes, as an 

evaluation instrument for their own or others’ ML-driven business models. When taking the next 

step of realizing ML-driven business models, organizations can then apply the dynamic 

capabilities microfoundations that paper E presents as templates for practices and processes to 

implement, setting up the realization process for success. Equipped with these insights, decision-

makers can thus identify and make the required changes in their organization to maximize its 

capacity to successfully realize ML-driven business models.   

Second, this dissertation highlights the value of experimentation during multiple periods in an 

organization’s journey toward an ML-driven business model. Beginning with the development of 

the ML systems, paper B emphasizes that ML development itself necessitates extensive 

experimentation in fast and exploratory processes, a demand that organizations are well advised 

to meet. For instance, tactical solutions, such as the organization’s leadership creating the 

necessary space for experimentation during working hours and for their employees’ personal 

development, can serve in this regard. This dovetails nicely with the findings of paper A, which 

support granting the domain experts involved in ML development additional time and resources 

for exploratory thinking, analyses, and discussions. These can yield immense value in the form of 

knowledge, generated through organizational learning processes, which the experts returning to 

their domains disseminate in the organization. However, as paper E shows, the demand for 

experimentation extends beyond ML development, as organizations that realize business models 

with ML at their core must simultaneously reduce uncertainties from the side of the market (e.g., 

whether intended customers will even find their planned offering worthwhile). Therefore, papers 

B and E inform organizations of avenues along the business model realization processes for 

fostering experimentation, e.g., by letting data guide both ML development and business model 

experimentation, by having the top management designate an appropriate budget allowing the 

freedom to experiment, or by creating an organizational culture commending risk-taking and fail-

fast approaches. Complementing these results with those of paper A, this dissertation thus 

encourages organizations to both consider the important contribution of experimentation to the 

success of ML-driven business model realization, and view failed attempts as generators of 
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valuable knowledge through organizational learning, a powerful motor to help organizations 

achieve performance gains in the long term. 

8.3 Concluding Remarks 

Organizations incorporating ML systems into their business models can benefit immensely from 

the distinct power of these learning machines, that have long transcended their use in 

organizations alone and now permeate most aspects of human experience, for instance, steering 

autonomous vehicles around pedestrians or helping us select which movies to watch (e.g., Benbya 

et al., 2020b; Berente et al., 2021; Lyytinen et al., 2021; Yoo, 2010). However, intertwined with 

their marvelous capabilities come unique particularities that demand consideration in the 

business logic of ML-infused organizations (e.g., Benbya et al., 2020a; Burström et al., 2021; 

Steininger et al., 2022). To further our still sparse understanding of ML-driven business models, 

this dissertation illuminates their distinguishing aspects and examines in depth how 

organizations utilize ML to create and deliver value for their customers and capture value for 

themselves. While this dissertation thus constitutes an important step in shedding light on factors 

explicating the success of ML-infused organizations for both practitioners and scholars, further 

research is required to comprehensively reveal changes to the business logic of all kinds of 

organizations in the era of ML. 



References 111 

References 

Abiteboul, S., Buneman, P., & Suciu, D. (1999). Data on the web: From relations to semistructured 

data and XML. Morgan Kaufmann. 

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial 

intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/

ACCESS.2018.2870052 

Adya, M. P., & Collopy, F. L. (1998). How effective are neural networks at forecasting and 

prediction? A review and evaluation. Journal of Forecasting, 17, 481–495. https://doi.org/

10.1002/(SICI)1099-131X(1998090)17:5/6%3C481::AID-FOR709%3E3.0.CO;2-Q 

Afuah, A. (2003). Redefining firm boundaries in the face of the internet: Are firms really shrinking? 

Academy of Management Review, 28(1), 34–53. https://doi.org/10.2307/30040688 

Agarwal, R., & Dhar, V. (2014). Editorial—big data, data science, and analytics: The opportunity 

and challenge for IS research. Information Systems Research, 25(3), 443–448. http://doi.org/

10.1287/isre.2014.0546 

Ågerfalk, P. J. (2020). Artificial intelligence as digital agency. European Journal of Information 

Systems, 29(1), 1–8. https://doi.org/10.1080/0960085X.2020.1721947 

Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and knowledge management 

systems: Conceptual foundations and research issues. MIS Quarterly, 25(1), 107–136. 

http://doi.org/10.2307/3250961 

Alavi, M., Leidner, D. E., & Mousavi, R. (2024). A knowledge management perspective of generative 

artificial intelligence. Journal of the Association for Information Systems, 25(1), 1–12. 

http://doi.org/10.17705/1jais.00859 

Al-Debei, M. M., & Avison, D. (2010). Developing a unified framework of the business model 

concept. European Journal of Information Systems, 19(3), 359–376. https://doi.org/

10.1057/ejis.2010.21 

AltaML. (2021, November 16). Elevating business through AI. https://www.altaml.com 

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B., & 

Zimmermann, T. (2019). Software engineering for machine learning: A case study. 

Proceedings of the 41st IEEE/ACM International Conference on Software Engineering: 

Software Engineering in Practice (ICSE-SEIP), 291–300. https://doi.org/10.1109/ICSE-

SEIP.2019.00042 

Anderberg, M. R. (1973). Cluster analysis for applications: Probability and mathematical statistics: 

A series of monographs and textbooks. Academic Press. https://doi.org/10.1016/C2013-0-

06161-0 

https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6%3C481::AID-FOR709%3E3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6%3C481::AID-FOR709%3E3.0.CO;2-Q
https://doi.org/10.2307/30040688
http://doi.org/10.1287/isre.2014.0546
http://doi.org/10.1287/isre.2014.0546
https://doi.org/10.1080/0960085X.2020.1721947
http://doi.org/10.2307/3250961
http://doi.org/10.17705/1jais.00859
https://doi.org/10.1057/ejis.2010.21
https://doi.org/10.1057/ejis.2010.21
https://www.altaml.com/
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1016/C2013-0-06161-0
https://doi.org/10.1016/C2013-0-06161-0


References 112 

Andries, P., Debackere, K., & van Looy, B. (2013). Simultaneous experimentation as a learning 

strategy: Business model development under uncertainty. Strategic Entrepreneurship 

Journal, 7(4), 288–310. https://doi.org/10.1002/sej.1170 

Anton, E., Oesterreich, T. D., Schuir, J., Protz, L., & Teuteberg, F. (2021). A business model 

taxonomy for start-ups in the electric power industry — the electrifying effect of artificial 

intelligence on business model innovation. International Journal of Innovation and 

Technology Management, 18(03), Article 2150004. https://doi.org/10.1142/

S0219877021500048 

Arend, R. J. (2013). The business model: Present and future—beyond a skeumorph. Strategic 

Organization, 11(4), 390–402. https://doi.org/10.1177/1476127013499636 

Argote, L., Lee, S., & Park, J. (2021). Organizational learning processes and outcomes: Major 

findings and future research directions. Management Science, 67(9), 5399–5429. 

https://doi.org/10.1287/mnsc.2020.3693 

Argote, L., & Miron-Spektor, E. (2011). Organizational learning: From experience to knowledge. 

Organization Science, 22(5), 1123–1137. https://doi.org/10.1287/orsc.1100.0621 

Argyris, C. (1976). Single-loop and double-loop models in research on decision making. 

Administrative Science Quarterly, 21(3), 363–375. https://doi.org/10.2307/2391848 

Armour, J., & Sako, M. (2020). AI-enabled business models in legal services: From traditional law 

firms to next-generation law companies? Journal of Professions and Organization, 7(1), 27–

46. https://doi.org/10.1093/jpo/joaa001 

Asatiani, A., Malo, P., Nagbøl, P., Penttinen, E., Rinta-Kahila, T., & Salovaara, A. (2021). 

Sociotechnical envelopment of artificial intelligence: An approach to organizational 

deployment of inscrutable artificial intelligence systems. Journal of the Association for 

Information Systems, 22(2), 325–352. https://doi.org/10.17705/1jais.00664 

Aubert, B., & Chan, Y. (2024). Evolving strategic IS themes. The Journal of Strategic Information 

Systems, 33(1), Article 101821. https://doi.org/10.1016/j.jsis.2024.101821 

Azevedo, A., & Santos, M. F. (2008). KDD, SEMMA and CRISP-DM: A parallel overview. Proceedings 

of the IADIS European Conference on Data Mining, 182–185. https://www.iadisportal.org/

digital-library/kdd-semma-and-crisp-dm-a-parallel-overview 

Azkan, C., Iggena, L., Gür, I., Möller, F., & Otto, B. (2020). A taxonomy for data driven services in 

manufacturing industries. Proceedings of the 24th Pacific Asia Conference on Information 

Systems (PACIS), Paper 184. https://aisel.aisnet.org/pacis2020/184 

Bačić, D., & Fadlalla, A. (2016). Business information visualization intellectual contributions: An 

integrative framework of visualization capabilities and dimensions of visual intelligence. 

Decision Support Systems, 89, 77–86. http://doi.org/10.1016/j.dss.2016.06.011 

Baecker, J., Böttcher, T. P., & Weking, J. (2021). How companies create value from data – a 

taxonomy on data, approaches, and resulting business value. Proceedings of the 29th 

European Conference on Information Systems (ECIS), Paper 124. https://aisel.aisnet.org/

ecis2021_rp/124  

Baier, L., Jöhren, F., & Seebacher, S. (2019). Challenges in the deployment and operation of 

machine learning in practice. Proceedings of the 27th European Conference on Information 

Systems (ECIS), Paper 163. https://doi.org/10.5445/IR/1000095028 

https://doi.org/10.1002/sej.1170
https://doi.org/10.1142/S0219877021500048
https://doi.org/10.1142/S0219877021500048
https://doi.org/10.1177/1476127013499636
https://doi.org/10.1287/mnsc.2020.3693
https://doi.org/10.1287/orsc.1100.0621
https://doi.org/10.2307/2391848
https://doi.org/10.1093/jpo/joaa001
https://doi.org/10.17705/1jais.00664
https://doi.org/10.1016/j.jsis.2024.101821
https://www.iadisportal.org/digital-library/kdd-semma-and-crisp-dm-a-parallel-overview
https://www.iadisportal.org/digital-library/kdd-semma-and-crisp-dm-a-parallel-overview
https://aisel.aisnet.org/pacis2020/184
http://doi.org/10.1016/j.dss.2016.06.011
https://aisel.aisnet.org/ecis2021_rp/124
https://aisel.aisnet.org/ecis2021_rp/124
https://doi.org/10.5445/IR/1000095028


References 113 

Bailey, K. D. (1994). Typologies and taxonomies: An introduction to classification techniques. SAGE 

Publications.  

Baird, A., & Maruping, L. M. (2021). The next generation of research on IS use: A theoretical 

framework of delegation to and from agentic IS artifacts. MIS Quarterly, 45(1), 315–341. 

https://doi.org/10.25300/MISQ/2021/15882 

Balasubramanian, N., Ye, Y., & Xu, M. (2022). Substituting human decision-making with machine 

learning: Implications for organizational learning. Academy of Management Review, 47(3), 

448–465. https://doi.org/10.5465/amr.2019.0470 

Barker, J. (2020). Machine learning in M4: What makes a good unstructured model? International 

Journal of Forecasting, 36(1), 150–155. https://doi.org/10.1016/j.ijforecast.2019.06.001 

Barney, J. B. (1991). Firm resources and sustained competitive advantage. Journal of Management, 

17(1), 99–120. https://doi.org/10.1177/014920639101700108  

Barredo Arrieta, A. , Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., 

Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F.  (2020). Explainable artificial 

intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible 

AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012 

Barreto, I. (2010). Dynamic capabilities: A review of past research and an agenda for the future. 

Journal of Management, 36(1), 256–280. http://doi.org/10.1177/0149206309350776 

Basadur, M., Graen, G. B., & Green, S. G. (1982). Training in creative problem solving: Effects on 

ideation and problem finding and solving in an industrial research organization. 

Organizational Behavior and Human Performance, 30, 41–70. https://doi.org/10.1016/

0030-5073(82)90233-1 

Baumer, E. P. S., Mimno, D., Guha, S., Quan, E., & Gay, G. K. (2017). Comparing grounded theory and 

topic modeling: Extreme divergence or unlikely convergence? Journal of the Association for 

Information Systems and Technology, 68(6), 1397–1410. https://doi.org/10.1002/asi.23786 

Benbya, H., Davenport, T. H., & Pachidi, S. (2020a). Artificial intelligence in organizations: Current 

state and future opportunities. MIS Quarterly Executive, 19(4), 9–21. https://doi.org/

10.2139/ssrn.3741983 

Benbya, H., Ning, N., Tanriverdi, H., & Youngjin, Y. (2020b). Complexity and information systems 

research in the emerging digital world. MIS Quarterly, 44(1), 1–17. http://doi.org/

10.25300/MISQ/2020/13304 

Benbya, H., Pachidi, S., & Jarvenpaa, S. L. (2021). Special issue editorial: Artificial intelligence in 

organizations: Implications for information systems research. Journal of the Association for 

Information Systems, 22(2), 281–303. https://doi.org/10.17705/1jais.00662 

Benbya, H., Strich, F., & Tamm, T. (2024). Navigating generative artificial intelligence promises 

and perils for knowledge and creative work. Journal of the Association for Information 

Systems, 25(1), 23–36. https://doi.org/10.17705/1jais.00861 

Berente, N., Gu, B., Recker, J., & Santhanam, R. (2021). Special issue editor’s comments: Managing 

artificial intelligence. MIS Quarterly, 45(3), 1433–1450. http://doi.org/10.25300/MISQ/

2021/16274 

https://doi.org/10.25300/MISQ/2021/15882
https://doi.org/10.5465/amr.2019.0470
https://doi.org/10.1016/j.ijforecast.2019.06.001
https://doi.org/10.1177/014920639101700108
https://doi.org/10.1016/j.inffus.2019.12.012
http://doi.org/10.1177/0149206309350776
https://doi.org/10.1016/0030-5073(82)90233-1
https://doi.org/10.1016/0030-5073(82)90233-1
https://doi.org/10.1002/asi.23786
https://doi.org/10.2139/ssrn.3741983
https://doi.org/10.2139/ssrn.3741983
http://doi.org/10.25300/MISQ/2020/13304
http://doi.org/10.25300/MISQ/2020/13304
https://doi.org/10.17705/1jais.00662
https://doi.org/10.17705/1jais.00861
http://doi.org/10.25300/MISQ/2021/16274
http://doi.org/10.25300/MISQ/2021/16274


References 114 

Bi, X., Adomavicius, G., Li, W., & Qu, A. (2022). Improving sales forecasting accuracy: A tensor 

factorization approach with demand awareness. INFORMS Journal on Computing, 34(3), 

1644–1660. https://doi.org/10.1287/ijoc.2021.1147 

Bidnamic. (2022, March 22). Google shopping management software. https://www.bidnamic.com 

Bigelow, L. S., & Barney, J. B. (2021). What can strategy learn from the business model approach? 

Journal of Management Studies, 58(2), 528–539. https://doi.org/10.1111/joms.12579 

Birkinshaw, J., & Ansari, S. (2015). Understanding management models: Going beyond “what” and 

“why” to “how” work gets done in organizations. In N. J. Foss & T. Saebi (Eds.), Business model 

innovation: The organizational dimension (pp. 85–103). Oxford University Press. 

http://doi.org/10.1093/acprof:oso/9780198701873.003.0005 

Birks, D. F., Fernandez, W., Levina, N., & Nasirin, S. (2013). Grounded theory method in 

information systems research: Its nature, diversity and opportunities. European Journal of 

Information Systems, 22(1), 1–8. https://doi.org/10.1057/ejis.2012.48 

Björkdahl, J. (2020). Strategies for digitalization in manufacturing firms. California Management 

Review, 62(4), 17–36. https://doi.org/10.1177/0008125620920349 

Bock, M., & Wiener, M. (2017). Towards a taxonomy of digital business models – conceptual 

dimensions and empirical illustrations. Proceedings of the 38th International Conference on 

Information Systems (ICIS). https://aisel.aisnet.org/icis2017/Strategy/Presentations/19 

Bogner, A., Littig, B., & Menz, W. (2009). Interviewing experts. Palgrave Macmillan. https://doi.org/

10.1057/9780230244276 

Bontempi, G., Taieb, S. B., & Le Borgne, Y. A. (2013). Machine learning strategies for time series 

forecasting. In M.-A. Aufaure & E. Zimányi (Eds.), Lecture notes in business information 

processing (Vol. 138, pp. 62–77). Springer. https://doi.org/10.1007/978-3-642-36318-4_3 

Bostrom, N. (2017). Superintelligence: Paths, dangers, strategies. Oxford University Press. 

Böttcher, T. P., Weking, J., Hein, A., Böhm, M., & Krcmar, H. (2022). Pathways to digital business 

models: The connection of sensing and seizing in business model innovation. The Journal of 

Strategic Information Systems, 31(4), Article 101742. https://doi.org/10.1016/

j.jsis.2022.101742 

Bouwman, H., de Reuver, M., Heikkilä, M., & Fielt, E. (2020). Business model tooling: Where 

research and practice meet. Electronic Markets, 30(3), 413–419. https://doi.org/

10.1007/s12525-020-00424-5 

Brennen, A. (2020). What do people really want when they say they want “explainable AI?” we 

asked 60 stakeholders. Extended Abstracts of the 2020 ACM Conference on Human Factors in 

Computing Systems (CHI EA), 1–7. https://doi.org/10.1145/3334480.3383047 

van den Broek, E., Sergeeva, A., & Huysman, M. (2021). When the machine meets the expert: An 

ethnography of developing AI for hiring. MIS Quarterly 45(3), 1557–1580. 

https://doi.org/10.25300/MISQ/2021/16559 

Brynjolfsson, E., & McAfee, A. (2017, July 18). The business of artificial intelligence. Harvard 

Business Review. https://hbr.org/2017/07/the-business-of-artificial-intelligence 

Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. 

Science, 358(6370), 1530–1534. https://doi.org/10.1126/science.aap8062 

https://doi.org/10.1287/ijoc.2021.1147
https://www.bidnamic.com/
https://doi.org/10.1111/joms.12579
http://doi.org/10.1093/acprof:oso/9780198701873.003.0005
https://doi.org/10.1057/ejis.2012.48
https://doi.org/10.1177/0008125620920349
https://aisel.aisnet.org/icis2017/Strategy/Presentations/19
https://doi.org/10.1057/9780230244276
https://doi.org/10.1057/9780230244276
https://doi.org/10.1007/978-3-642-36318-4_3
https://doi.org/10.1016/j.jsis.2022.101742
https://doi.org/10.1016/j.jsis.2022.101742
https://doi.org/10.1007/s12525-020-00424-5
https://doi.org/10.1007/s12525-020-00424-5
https://doi.org/10.1145/3334480.3383047
https://doi.org/10.25300/MISQ/2021/16559
https://hbr.org/2017/07/the-business-of-artificial-intelligence
https://doi.org/10.1126/science.aap8062


References 115 

Burkhart, T., Krumeich, J., Werth, D., & Loos, P. (2011). Analyzing the business model concept — a 

comprehensive classification of literature. Proceedings of the 32nd International Conference 

on Information Systems (ICIS). https://aisel.aisnet.org/icis2011/proceedings/

generaltopics/12 

Burnell, D., Stevenson, R., & Fisher, G. (2023). Early-stage business model experimentation and 

pivoting. Journal of Business Venturing, 38(4), Article 106314. https://doi.org/

10.1016/j.jbusvent.2023.106314 

Burr, J. (2023, January 19). 9 ways we use AI in our products. Google. https://blog.google/

technology/ai/9-ways-we-use-ai-in-our-products 

Burström, T., Parida, V., Lahti, T., & Wincent, J. (2021). AI-enabled business-model innovation and 

transformation in industrial ecosystems: A framework, model and outline for further 

research. Journal of Business Research, 127, 85–95. https://doi.org/10.1016/

j.jbusres.2021.01.016 

Butts, M. M., Becker, W. J., & Boswell, W. R. (2015). Hot buttons and time sinks: The effects of 

electronic communication during nonwork time on emotions and work-nonwork conflict. 

Academy of Management Journal, 58(3), 763–788. http://doi.org/10.5465/amj.2014.0170 

Carter, N., Bryant-Lukosius, D., Dicenso, A., Blythe, J., & Neville, A. J. (2014). The use of 

triangulation in qualitative research. Oncology Nursing Forum, 41(5), 545–547. 

https://doi.org/10.1188/14.onf.545-547 

Casadesus-Masanell, R., & Ricart, J. E. (2010). From strategy to business models and onto tactics. 

Long Range Planning, 43(2-3), 195–215. https://doi.org/10.1016/j.lrp.2010.01.004 

Casadesus-Masanell, R., & Ricart, J. E. (2011). How to design a winning business model. Harvard 

Business Review, 89(1/2), 100–107. 

Castelvecchi, D. (2016). Can we open the black box of AI? Nature, 538, 20–23. https://doi.org/

10.1038/538020a 

Chalmers, D., MacKenzie, N. G., & Carter, S. (2021). Artificial intelligence and entrepreneurship: 

Implications for venture creation in the fourth industrial revolution. Entrepreneurship 

Theory and Practice, 45(5), 1028–1053. https://doi.org/10.1177/1042258720934581 

Charmaz, K., & Belgrave, L. L. (2012). Qualitative interviewing and grounded theory analysis. In J. 

F. Gubrium, J. A. Holstein, A. B. Marvasti, and K. D. McKinney (Eds.), The SAGE handbook of 

interview research: The complexity of the craft (2nd ed., pp. 347–365). SAGE Publications. 

http://doi.org/10.4135/9781452218403.n25 

Choudhury, P., Allen, R. T., & Endres, M. G. (2021). Machine learning for pattern discovery in 

management research. Strategic Management Journal, 42(1), 30–57. https://doi.org/

10.1002/smj.3215 

Chui, M., Hall, B., Singla, A., & Sukharevsky, A. (2021, December 8). The state of AI in 2021. 

McKinsey. https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-

survey-the-state-of-ai-in-2021 

Circuit Mind. (2021, November 16). AI electronics design software. https://www.circuitmind.io 

CognitOps. (2021, November 16). Automate warehouse management. https://cognitops.com 

https://aisel.aisnet.org/icis2011/proceedings/generaltopics/12
https://aisel.aisnet.org/icis2011/proceedings/generaltopics/12
https://doi.org/10.1016/j.jbusvent.2023.106314
https://doi.org/10.1016/j.jbusvent.2023.106314
https://blog.google/technology/ai/9-ways-we-use-ai-in-our-products
https://blog.google/technology/ai/9-ways-we-use-ai-in-our-products
https://doi.org/10.1016/j.jbusres.2021.01.016
https://doi.org/10.1016/j.jbusres.2021.01.016
http://doi.org/10.5465/amj.2014.0170
https://doi.org/10.1188/14.onf.545-547
https://doi.org/10.1016/j.lrp.2010.01.004
https://doi.org/10.1038/538020a
https://doi.org/10.1038/538020a
https://doi.org/10.1177/1042258720934581
http://doi.org/10.4135/9781452218403.n25
https://doi.org/10.1002/smj.3215
https://doi.org/10.1002/smj.3215
https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021
https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021
https://www.circuitmind.io/
https://cognitops.com/


References 116 

Corbin, J., & Strauss, A. (2015). Basics of qualitative research: Techniques and procedures for 

developing grounded theory (4th ed.). SAGE Publications. 

Correa-Baena, J. P., Hippalgaonkar, K., van Duren, J., Jaffer, S., Chandrasekhar, V. R., Stevanovic, V., 

Wadia, C., Guha, S., & Buonassisi, T. (2018). Accelerating materials development via 

automation, machine learning, and high-performance computing. Joule, 2(8), 1410–1420. 

https://doi.org/10.1016/j.joule.2018.05.009 

Crunchbase. (2021, March 13). Search less. Close more. https://www.crunchbase.com 

DaSilva, C. M., & Trkman, P. (2014). Business model: What it is and what it is not. Long range 

planning, 47(6), 379–389. https://doi.org/10.1016/j.lrp.2013.08.004 

Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 

73–80. https://doi.org/10.1080/2573234X.2018.1543535 

Davenport, T. H., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change 

the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42. 

https://doi.org/10.1007/s11747-019-00696-0 

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, PAMI-1(2), 224–227. https://doi.org/10.1109/

TPAMI.1979.4766909 

Davison, R. M., & Martinsons, M. G. (2016). Context is king! Considering particularism in research 

design and reporting. Journal of Information Technology, 31(3), 241–249. https://doi.org/

10.1057/jit.2015.19 

DeepL. (2023, January 13). Partnering for progress: DeepL’s latest funding round will fuel AI 

research and development. https://www.deepl.com/en/blog/latest-funding-round 

Dehnert, M., Gleiss, A., & Reiss, F. (2021). What makes a data-driven business model? A 

consolidated taxonomy. Proceedings of the 29th European Conference on Information Systems 

(ECIS), Paper 139. https://aisel.aisnet.org/ecis2021_rp/139 

Dempster, M. A. H., & Leemans, V. (2006). An automated FX trading system using adaptive 

reinforcement learning. Expert Systems with Applications, 30(3), 543–552. https://doi.org/

10.1016/j.eswa.2005.10.012 

Dennett, D. C. (2006). Cognitive wheels: The frame problem of AI. In J. L. Bermúdez (Ed.), 

Philosophy of psychology: Contemporary readings (pp. 433–454). Routledge/Taylor & Francis 

Group. 

Di Stefano, G., Peteraf, M., & Verona, G. (2014). The organizational drivetrain: A road to integration 

of dynamic capabilities research. Academy of Management Perspectives, 28(4), 307–327. 

https://doi.org/10.5465/amp.2013.0100 

Dingli, A., Haddod, F., & Klüver, C. (Eds.). (2021). Artificial intelligence in industry 4.0. A collection 

of innovative research case-studies that are reworking the way we look at industry 4.0 thanks 

to artificial intelligence. Springer. https://doi.org/10.1007/978-3-030-61045-6 

Dorfer, L. (2016). Datenzentrische Geschäftsmodelle als neuer Geschäftsmodelltypus in der 

Electronic-Business-Forschung: Konzeptionelle Bezugspunkte, Klassifikation und 

Geschäftsmodellarchitektur. Schmalenbachs Zeitschrift Für Betriebswirtschaftliche 

Forschung, 68(3), 307–369. https://doi.org/10.1007/s41471-016-0014-9 

https://doi.org/10.1016/j.joule.2018.05.009
https://www.crunchbase.com/
https://doi.org/10.1016/j.lrp.2013.08.004
https://doi.org/10.1080/2573234X.2018.1543535
https://doi.org/10.1007/s11747-019-00696-0
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1057/jit.2015.19
https://doi.org/10.1057/jit.2015.19
https://www.deepl.com/en/blog/latest-funding-round
https://aisel.aisnet.org/ecis2021_rp/139
https://doi.org/10.1016/j.eswa.2005.10.012
https://doi.org/10.1016/j.eswa.2005.10.012
https://doi.org/10.5465/amp.2013.0100
https://doi.org/10.1007/978-3-030-61045-6
https://doi.org/10.1007/s41471-016-0014-9


References 117 

Dotzel, T., & Shankar, V. (2019). The relative effects of business-to-business (vs. business-to-

consumer) service innovations on firm value and firm risk: An empirical analysis. Journal of 

Marketing, 83(5), 133–152. https://doi.org/10.1177/0022242919847221 

EAIGLE. (2021, November 16). Visitor management | wellness screening. https://www.eaigle.com 

Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic 

Management Journal, 21(10–11), 1105–1121. https://doi.org/10.1002/1097-

0266(200010/11)21:10/11%3C1105::AID-SMJ133%3E3.0.CO;2-E 

Ellenrieder, S., Kallina, E. M., Pumplun, L., Gawlitza, J. F., Ziegelmayer, S., & Buxmann, P. (2023). 

Promoting learning through explainable artificial intelligence: An experimental study in 

radiology. Proceedings of the 44th International Conference on Information Systems (ICIS). 

https://aisel.aisnet.org/icis2023/learnandiscurricula/learnandiscurricula/3 

Ellström, D., Holtström, J., Berg, E., & Josefsson, C. (2022). Dynamic capabilities for digital 

transformation. Journal of Strategy and Management, 15(2), 272–286. http://doi.org/

10.1108/JSMA-04-2021-0089 

Engelbrecht, A., Gerlach, J., & Widjaja, T. (2016). Understanding the anatomy of data-driven 

business models ‐ towards an empirical taxonomy. Proceedings of the 24th European 

Conference on Information Systems (ECIS), Paper 128. https://aisel.aisnet.org/

ecis2016_rp/128 

Eszergár-Kiss, D., & Caesar, B. (2017). Definition of user groups applying Ward's method. 

Transportation Research Procedia, 22, 25–34. https://doi.org/10.1016/j.trpro.2017.03.004 

Fang, C., Lee, J., & Schilling, M. (2010). Balancing exploration and exploitation through structural 

design: The isolation of subgroups and organizational learning. Organization Science, 21(3), 

625–642. https://doi.org/10.1287/orsc.1090.0468 

Faraj, S., Pachidi, S., & Sayegh, K. (2018). Working and organizing in the age of the learning 

algorithm. Information and Organization, 28(1), 62–70. https://doi.org/10.1016/

j.infoandorg.2018.02.005 

Farjoun, M. (2010). Beyond dualism: Stability and change as a duality. Academy of Management 

Review, 35(2), 202–225. https://doi.org/10.5465/amr.35.2.zok202 

Fiol, C., & Lyles, M. (1985). Organizational learning. Academy of Management Review, 10(4), 803–

813. https://doi.org/10.5465/amr.1985.4279103 

Flick, U. (2004a). Triangulation: Eine Einführung. VS Verlag für Sozialwissenschaften. 

https://doi.org/10.1007/978-3-322-97512-6 

Flick, U. (2004b). Triangulation in qualitative research. In U. Flick, E. von Kardoff, & I. Steinke 

(Eds.), A companion to qualitative research (pp. 178–183).  SAGE Publications. 

Foss, N. J., & Saebi, T. (Eds.). (2015). Business model innovation: The organizational dimension. 

Oxford University Press. 

Frolick, M. N., & Ariyachandra, T. R. (2006). Business performance management: One truth. 

Information Systems Management, 23(1), 41–48. http://doi.org/10.1201/1078.10580530/

45769.23.1.20061201/91771.5 

Gartner. (2024, February 20). Get AI ready — what IT leaders need to know and do. 

https://www.gartner.com/en/information-technology/topics/ai-readiness 

https://doi.org/10.1177/0022242919847221
https://www.eaigle.com/
https://doi.org/10.1002/1097-0266(200010/11)21:10/11%3C1105::AID-SMJ133%3E3.0.CO;2-E
https://doi.org/10.1002/1097-0266(200010/11)21:10/11%3C1105::AID-SMJ133%3E3.0.CO;2-E
https://aisel.aisnet.org/icis2023/learnandiscurricula/learnandiscurricula/3
http://doi.org/10.1108/JSMA-04-2021-0089
http://doi.org/10.1108/JSMA-04-2021-0089
https://aisel.aisnet.org/ecis2016_rp/128
https://aisel.aisnet.org/ecis2016_rp/128
https://doi.org/10.1016/j.trpro.2017.03.004
https://doi.org/10.1287/orsc.1090.0468
https://doi.org/10.1016/j.infoandorg.2018.02.005
https://doi.org/10.1016/j.infoandorg.2018.02.005
https://doi.org/10.5465/amr.35.2.zok202
https://doi.org/10.5465/amr.1985.4279103
https://doi.org/10.1007/978-3-322-97512-6
http://doi.org/10.1201/1078.10580530/45769.23.1.20061201/91771.5
http://doi.org/10.1201/1078.10580530/45769.23.1.20061201/91771.5
https://www.gartner.com/en/information-technology/topics/ai-readiness


References 118 

Gaube, S., Suresh, H., Raue, M., Lermer, E., Koch, T. K., Hudecek, M. F. C., Ackery, A. D., Grover, S. C., 

Coughlin, J. F., Frey, D., Kitamura, F. C., Ghassemi, M., & Colak, E. (2023). Non-task expert 

physicians benefit from correct explainable AI advice when reviewing X-rays. Scientific 

Reports, 13(1), Article 1383. https://doi.org/10.1038/s41598-023-28633-w 

George, G., & Bock, A. J. (2011). The business model in practice and its implications for 

entrepreneurship research. Entrepreneurship Theory and Practice, 35(1), 83–111. 

https://doi.org/10.1111/j.1540-6520.2010.00424.x 

Gerbert, P., Hartmann, P., Liebl, A., Schamberger, M., & Waldmann, A. (2020). Building the 

organization for scaling AI. appliedAI Initiative. https://www.appliedai.de/hub/building-

the-organization-for-scaling-ai 

Ghoddusi, H., Creamer, G. G., & Rafizadeh, N. (2019). Machine learning in energy economics and 

finance: A review. Energy Economics, 81, 709–727. https://doi.org/10.1016/

j.eneco.2019.05.006 

Gibson, C. B., & Birkinshaw, J. (2004). The antecedents, consequences, and mediating role of 

organizational ambidexterity. Academy of Management Journal, 47(2), 209–226. 

http://doi.org/10.5465/20159573 

Gioia, D. A., Corley, K. G., & Hamilton, A. L. (2013). Seeking qualitative rigor in inductive research: 

Notes on the Gioia methodology. Organizational Research Methods, 16(1), 15–31. 

http://doi.org/10.1177/1094428112452151 

Glaser, B. G. (1978). Theoretical sensitivity: Advances in the methodology of grounded theory. 

Sociology Press. 

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative 

research. Aldine Publishing Company. https://doi.org/10.4324/9780203793206 

Gläser, J., & Laudel, G. (2004). Experteninterviews und qualitative Inhaltsanalyse. VS Verlag. 

Gregor, S., Chandra Kruse, L., & Seidel, S. (2020). Research perspectives: The anatomy of a design 

principle. Journal of the Association for Information Systems, 21(6), 1622–1652. 

http://doi.org/10.17705/1jais.00649 

Gregor, S., & Hevner, R. A. (2013). Positioning and presenting design science research for 

maximum impact. MIS Quarterly, 37(2), 337–355. http://doi.org/10.25300/MISQ/

2013/37.2.01 

Grewal, D., Guha, A., Satornino, C. B., & Schweiger, E. B. (2021). Artificial intelligence: The light and 

the darkness. Journal of Business Research, 136, 229–236. https://doi.org/10.1016/

j.jbusres.2021.07.043 

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2019). A survey of 

methods for explaining black box models. ACM Computing Surveys, 51(5), 1–42. 

https://doi.org/10.1145/3236009 

Gunning, D., Vorm, E., Wang, J. Y., & Turek, M. (2021). DARPA’s explainable AI (XAI) program: A 

retrospective. Applied AI Letters, 2(4), 1–11. https://doi.org/10.1002/ail2.61 

Günther, W. A., Rezazade Mehrizi, M. H., Huysman, M., & Feldberg, F. (2017). Debating big data: A 

literature review on realizing value from big data. The Journal of Strategic Information 

Systems, 26(3), 191–209. https://doi.org/10.1016/j.jsis.2017.07.003 

https://doi.org/10.1038/s41598-023-28633-w
https://doi.org/10.1111/j.1540-6520.2010.00424.x
https://www.appliedai.de/hub/building-the-organization-for-scaling-ai
https://www.appliedai.de/hub/building-the-organization-for-scaling-ai
https://doi.org/10.1016/j.eneco.2019.05.006
https://doi.org/10.1016/j.eneco.2019.05.006
http://doi.org/10.5465/20159573
http://doi.org/10.1177/1094428112452151
https://doi.org/10.4324/9780203793206
http://doi.org/10.17705/1jais.00649
http://doi.org/10.25300/MISQ/2013/37.2.01
http://doi.org/10.25300/MISQ/2013/37.2.01
https://doi.org/10.1016/j.jbusres.2021.07.043
https://doi.org/10.1016/j.jbusres.2021.07.043
https://doi.org/10.1145/3236009
https://doi.org/10.1002/ail2.61
https://doi.org/10.1016/j.jsis.2017.07.003


References 119 

Hadjimichael, D., & Tsoukas, H. (2019). Toward a better understanding of tacit knowledge in 

organizations: Taking stock and moving forward. Academy of Management Annals, 13(2), 

672–703. http://doi.org/10.5465/annals.2017.0084 

Haefner, N., Parida, V., Gassmann, O., & Wincent, J. (2023). Implementing and scaling artificial 

intelligence: A review, framework, and research agenda. Technological Forecasting and 

Social Change, 197, Article 122878. https://doi.org/10.1016/j.techfore.2023.122878 

Haffke, I., Kalgovas, B., & Benlian, A. (2017a). Options for transforming the IT function using 

bimodal IT. MIS Quarterly Executive, 16(2), 101–120. https://aisel.aisnet.org/misqe/

vol16/iss2/2 

Haffke, I., Kalgovas, B., & Benlian, A. (2017b). The transformative role of bimodal IT in an era of 

digital business. Proceedings of the 50th Hawaii International Conference on System Sciences 

(HICSS), 5460–5469. http://doi.org/10.24251/HICSS.2017.660 

Hahn, C., Traunecker, T., Niever, M., & Basedow, G. N. (2020). Exploring AI-driven business models: 

Conceptualization and expectations in the machinery industry. Proceedings of the 2020 IEEE 

International Conference on Industrial Engineering and Engineering Management (IEEM), 

567–570. https://doi.org/10.1109/IEEM45057.2020.9309824 

Hanelt, A., Hildebrandt, B., & Polier, J. (2015). Uncovering the role of IS in business model 

innovation - a taxonomy-driven approach to structure the field. Proceedings of the 23rd 

European Conference on Information Systems (ECIS), Paper 71. https://doi.org/

10.18151/7217345 

Hartmann, P. M., Zaki, M., Feldmann, N., & Neely, A. (2016). Capturing value from big data – a 

taxonomy of data-driven business models used by start-up firms. International Journal of 

Operations & Production Management, 36(10), 1382–1406. https://doi.org/10.1108/IJOPM-

02-2014-0098 

Hedman, J., & Kalling, T. (2003). The business model concept: Theoretical underpinnings and 

empirical illustrations. European Journal of Information Systems, 12(1), 49–59. 

https://doi.org/10.1057/palgrave.ejis.3000446 

Helfat, C. E., Finkelstein, S., Mitchell, W., Peteraf, M. A., Singh, H., & Winter, S. G. (2007). Dynamic 

capabilities: Understanding strategic change in organizations. Blackwell Publishing. 

Helfat, C. E., & Peteraf, M. A. (2003). The dynamic resource‐based view: Capability lifecycles. 

Strategic Management Journal, 24(10), 997–1010. https://doi.org/10.1002/smj.332 

Helfat, C. E., & Peteraf, M. A. (2015). Managerial cognitive capabilities and the microfoundations 

of dynamic capabilities. Strategic Management Journal, 36(6), 831–850. https://doi.org/

10.1002/smj.2247 

Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time series 

forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 

388–427. https://doi.org/10.1016/j.ijforecast.2020.06.008 

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative 

Health Research, 15(9), 1277–1288. https://doi.org/10.1177/1049732305276687 

Hu, P. J.-H., Ma, P.-C., & Chau, P. Y. (1999). Evaluation of user interface designs for information 

retrieval systems: A computer-based experiment. Decision Support Systems, 27(1), 125–143. 

https://doi.org/10.1016/S0167-9236(99)00040-8  

http://doi.org/10.5465/annals.2017.0084
https://doi.org/10.1016/j.techfore.2023.122878
https://aisel.aisnet.org/misqe/vol16/iss2/2
https://aisel.aisnet.org/misqe/vol16/iss2/2
http://doi.org/10.24251/HICSS.2017.660
https://doi.org/10.1109/IEEM45057.2020.9309824
https://doi.org/10.18151/7217345
https://doi.org/10.18151/7217345
https://doi.org/10.1108/IJOPM-02-2014-0098
https://doi.org/10.1108/IJOPM-02-2014-0098
https://doi.org/10.1057/palgrave.ejis.3000446
https://doi.org/10.1002/smj.332
https://doi.org/10.1002/smj.2247
https://doi.org/10.1002/smj.2247
https://doi.org/10.1016/j.ijforecast.2020.06.008
https://doi.org/10.1177/1049732305276687
https://doi.org/10.1016/S0167-9236(99)00040-8


References 120 

Huang, J., Henfridsson, O., & Liu, M. (2017). Growing on steroids: Rapidly scaling the user base of 

digital ventures through digital innovation. MIS Quarterly, 41(1), 301–314. https://doi.org/

10.25300/MISQ/2017/41.1.16 

Huber, G. P. (1991). Organizational learning: The contributing processes and the literatures. 

Organization Science, 2(1), 88–115. http://doi.org/10.1287/orsc.2.1.88 

Hunke, F., Engel, C. T., Schüritz, R., & Ebel, P. (2019). Understanding the anatomy of analytics-

based services ‐ a taxonomy to conceptualize the use of data and analytics in services. 

Proceedings of the 27th European Conference on Information Systems, Paper 25. 

https://aisel.aisnet.org/ecis2019_rp/25 

Hunke, F., Seebacher, S., Schüritz, R., & Illi, A. (2017). Towards a process model for data-driven 

business innovation. Proceedings of the 19th IEEE Conference on Business Informatics (CBI), 

150–157. http://doi.org/10.1109/CBI.2017.43 

Iankova, S., Davies, I., Archer-Brown, C., Marder, B., & Yau, A. (2019). A comparison of social media 

marketing between B2B, B2C and mixed business models. Industrial Marketing Management, 

81, 169–179. https://doi.org/10.1016/j.indmarman.2018.01.001 

IDC. (2021). Data creation and replication will grow at a faster rate than installed storage capacity, 

according to the IDC global DataSphere and StorageSphere forecasts. Retrieved November 2, 

2021, from https://www.idc.com/getdoc.jsp?containerId=prUS47560321 

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 

651–666. https://doi.org/10.1016/j.patrec.2009.09.011 

Jöhnk, J., Weißert, M., & Wyrtki, K. (2020). Ready or not, AI comes— an interview study of 

organizational AI readiness factors. Business & Information Systems Engineering, 63(1), 5–20. 

https://doi.org/10.1007/s12599-020-00676-7 

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. 

Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415 

Kaggle. (2021, November 16). Your machine learning and data science community. 

https://www.kaggle.com 

Kane, G. C., & Alavi, M. (2007). Information technology and organizational learning: An 

investigation of exploration and exploitation processes. Organization Science, 18(5), 796–

812. https://doi.org/10.1287/orsc.1070.0286 

Karimi, J., & Walter, Z. (2015). The role of dynamic capabilities in responding to digital disruption: 

A factor-based study of the newspaper industry. Journal of Management Information Systems, 

32(1), 39–81. https://doi.org/10.1080/07421222.2015.1029380 

Kellogg, K. C., Valentine, M. A., & Christin, A. (2020). Algorithms at work: The new contested terrain 

of control. Academy of Management Annals, 14(1), 366–410. https://doi.org/10.5465/

annals.2018.0174 

Kenessey, Z. (1987). The primary, secondary, tertiary and quaternary sectors of the economy. 

Review of Income and Wealth, 33(4), 359–385. https://doi.org/10.1111/j.1475-

4991.1987.tb00680.x 

Kowalczyk, M., & Buxmann, P. (2015). An ambidextrous perspective on business intelligence and 

analytics support in decision processes: Insights from a multiple case study. Decision Support 

Systems, 80, 1–13. https://doi.org/10.1016/j.dss.2015.08.010 

https://doi.org/10.25300/MISQ/2017/41.1.16
https://doi.org/10.25300/MISQ/2017/41.1.16
http://doi.org/10.1287/orsc.2.1.88
https://aisel.aisnet.org/ecis2019_rp/25
http://doi.org/10.1109/CBI.2017.43
https://doi.org/10.1016/j.indmarman.2018.01.001
https://www.idc.com/getdoc.jsp?containerId=prUS47560321
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1007/s12599-020-00676-7
https://doi.org/10.1126/science.aaa8415
https://www.kaggle.com/
https://doi.org/10.1287/orsc.1070.0286
https://doi.org/10.1080/07421222.2015.1029380
https://doi.org/10.5465/annals.2018.0174
https://doi.org/10.5465/annals.2018.0174
https://doi.org/10.1111/j.1475-4991.1987.tb00680.x
https://doi.org/10.1111/j.1475-4991.1987.tb00680.x
https://doi.org/10.1016/j.dss.2015.08.010


References 121 

Laato, S., Tiainen, M., Najmul Islam, A.K.M., & Mäntymäki, M. (2022). How to explain AI systems to 

end users: A systematic literature review and research agenda. Internet Research, 32(7), 1–

31. https://doi.org/10.1108/INTR-08-2021-0600 

Lange, H. E., Drews, P., & Höft, M. (2021). Realization of data-driven business models in incumbent 

companies : An exploratory study based on the resource-based view. Proceedings of the 42nd 

International Conference on Information Systems (ICIS). https://aisel.aisnet.org/icis2021/

dig_innov/dig_innov/2 

Langer, M., Oster, D., Speith, T., Hermanns, H., Kästner, L., Schmidt, E., Sesing, A., & Baum, K. (2021). 

What do we want from explainable artificial intelligence (XAI)? -- A stakeholder perspective 

on XAI and a conceptual model guiding interdisciplinary XAI research. Artificial Intelligence, 

296, Article 103473. https://doi.org/10.1016/j.artint.2021.103473 

Lanzolla, G., & Markides, C. (2021). A business model view of strategy. Journal of Management 

Studies, 58(2), 540–553. https://doi.org/10.1111/joms.12580 

Lebovitz, S. (2019). Diagnostic doubt and artificial intelligence: An inductive field study of 

radiology work. Proceedings of the 40th International Conference on Information Systems 

(ICIS). https://aisel.aisnet.org/icis2019/future_of_work/future_work/11 

Lebovitz, S., Levina, N., & Lifshitz-Assaf, H. (2021). Is AI ground truth really true? The dangers of 

training and evaluating AI tools based on experts’ know-what. MIS Quarterly, 45(3b), 1501–

1525. http://doi.org/10.25300/MISQ/2021/16564 

Lebovitz, S., Lifshitz-Assaf, H., & Levina, N. (2022). To engage or not to engage with AI for critical 

judgments: How professionals deal with opacity when using AI for medical diagnosis. 

Organization Science, 33(1), 126–148. http://doi.org/10.1287/orsc.2021.1549 

Lee, G., DeLone, W. H., & Espinosa, J. A. (2010). The main and interaction effects of process rigor, 

process standardization, and process agility on system performance in distributed IS 

development: An ambidexterity perspective. Proceedings of the 31st International Conference 

on Information Systems (ICIS), Paper 34. https://aisel.aisnet.org/icis2010_submissions/34 

Lee, J., Suh, T., Roy, D., & Baucus, M. (2019). Emerging technology and business model innovation: 

The case of artificial intelligence. Journal of Open Innovation: Technology, Market, and 

Complexity, 5(3), Article 44. https://doi.org/10.3390/joitmc5030044 

Leemann, N., & Kanbach, D. K. (2022). Toward a taxonomy of dynamic capabilities – a systematic 

literature review. Management Research Review, 45(4), 486–501. http://doi.org/

10.1108/MRR-01-2021-0066 

Leppänen, P., George, G., & Alexy, O. (2023). When do novel business models lead to high 

performance? A configurational approach to value drivers, competitive strategy, and firm 

environment. Academy of Management Journal, 66(1), 164–194. https://doi.org/

10.5465/amj.2020.0969 

Levinthal, D. A., & March, J. G. (1993). The myopia of learning. Strategic Management Journal, 

14(S2), 95–112. https://doi.org/10.1002/smj.4250141009 

Levitt, B., & March, J. G. (1988). Organizational learning. Annual Review of Sociology, 14, 319–338. 

https://doi.org/10.1146/annurev.so.14.080188.001535 

https://doi.org/10.1108/INTR-08-2021-0600
https://aisel.aisnet.org/icis2021/dig_innov/dig_innov/2
https://aisel.aisnet.org/icis2021/dig_innov/dig_innov/2
https://doi.org/10.1016/j.artint.2021.103473
https://doi.org/10.1111/joms.12580
https://aisel.aisnet.org/icis2019/future_of_work/future_work/11
http://doi.org/10.25300/MISQ/2021/16564
http://doi.org/10.1287/orsc.2021.1549
https://aisel.aisnet.org/icis2010_submissions/34
https://doi.org/10.3390/joitmc5030044
http://doi.org/10.1108/MRR-01-2021-0066
http://doi.org/10.1108/MRR-01-2021-0066
https://doi.org/10.5465/amj.2020.0969
https://doi.org/10.5465/amj.2020.0969
https://doi.org/10.1002/smj.4250141009
https://doi.org/10.1146/annurev.so.14.080188.001535


References 122 

Liao, Q. V., Gruen, D., & Miller, S. (2020). Questioning the AI: Informing design practices for 

explainable AI user experiences. Proceedings of the 2020 ACM Conference on Human Factors 

in Computing Systems (CHI), Paper 463. https://doi.org/10.1145/3313831.3376590 

Likert, R (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 5–55. 

Lindebaum, D., Vesa, M., & den Hond, F. (2020). Insights from “the machine stops” to better 

understand rational assumptions in algorithmic decision making and its implications for 

organizations. Academy of Management Review, 45(1), 247–263. http://doi.org/

10.5465/amr.2018.0181 

Lyytinen, K., Nickerson, J. V., & King, J. L. (2021). Metahuman systems = humans + machines that 

learn. Journal of Information Technology, 36(4), 427–445. https://doi.org/

10.1177/0268396220915917 

Ma, S., & Fildes, R. (2021). Retail sales forecasting with meta-learning. European Journal of 

Operational Research, 288(1), 111–128. https://doi.org/10.1016/j.ejor.2020.05.038 

Makridakis, S. (2017). The forthcoming artificial intelligence (AI) revolution: Its impact on society 

and firms. Futures, 90, 46–60. http://doi.org/10.1016/j.futures.2017.03.006 

Makridakis, S., Spiliotis, E., Assimakopoulos, V., Semenoglou, A.-A., Mulder, G., & Nikolopoulos, K. 

(2023). Statistical, machine learning and deep learning forecasting methods: Comparisons 

and ways forward. Journal of the Operational Research Society, 74(3), 840–859. 

http://doi.org/10.1080/01605682.2022.2118629 

Mangalindan, J. P. (2010, July 9). Twitter’s business model: A visionary experiment. Fortune. https://

money.cnn.com/2010/07/09/magazines/fortune/Twitter_business_model.fortune/  

Marabelli, M., Newell, S., & Handunge, V. (2021). The lifecycle of algorithmic decision-making 

systems: Organizational choices and ethical challenges. The Journal of Strategic Information 

Systems, 30(3), 1–15. https://doi.org/10.1016/j.jsis.2021.101683 

March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science, 

2(1), 71–87. https://doi.org/10.1287/orsc.2.1.71 

March, J. G. (2006). Rationality, foolishness, and adaptive intelligence. Strategic Management 

Journal, 27(3), 201–214. https://doi.org/10.1002/smj.515 

March, J. G. (2010). The Ambiguities of experience. Cornell University Press. 

Martin, K. (2019a). Designing ethical algorithms. MIS Quarterly Executive, 18(2), 129–142. 

http://doi.org/10.17705/2msqe.00012 

Martin, K. (2019b). Ethical implications and accountability of algorithms. Journal of Business 

Ethics, 160(4), 835–850. https://doi.org/10.1007/s10551-018-3921-3 

Martinez, I., Viles, E., & G. Olaizola, I. (2021). Data science methodologies: Current challenges and 

future approaches. Big Data Research, 24. http://doi.org/10.1016/j.bdr.2020.100183 

Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N., 

Ramirez-Quintana, M. J., & Flach, P. (2021). CRISP-DM twenty years later: From data mining 

processes to data science trajectories. IEEE Transactions on Knowledge and Data Engineering, 

33(8), 3048–3061. https://doi.org/10.1109/TKDE.2019.2962680 

https://doi.org/10.1145/3313831.3376590
http://doi.org/10.5465/amr.2018.0181
http://doi.org/10.5465/amr.2018.0181
https://doi.org/10.1177/0268396220915917
https://doi.org/10.1177/0268396220915917
https://doi.org/10.1016/j.ejor.2020.05.038
http://doi.org/10.1016/j.futures.2017.03.006
http://doi.org/10.1080/01605682.2022.2118629
https://money.cnn.com/2010/07/09/magazines/fortune/Twitter_business_model.fortune/
https://money.cnn.com/2010/07/09/magazines/fortune/Twitter_business_model.fortune/
https://doi.org/10.1016/j.jsis.2021.101683
https://doi.org/10.1287/orsc.2.1.71
https://doi.org/10.1002/smj.515
http://doi.org/10.17705/2msqe.00012
https://doi.org/10.1007/s10551-018-3921-3
http://doi.org/10.1016/j.bdr.2020.100183
https://doi.org/10.1109/TKDE.2019.2962680


References 123 

Massa, L., & Tucci, C. L. (2014). Business model innovation. In M. Dodgson, D. M. Gann, & N. Phillips 

(Eds.), The Oxford handbook of innovation management. Oxford University Press. 

https://doi.org/10.1093/oxfordhb/9780199694945.013.002 

Massa, L., Tucci, C. L., & Afuah, A. (2017). A critical assessment of business model research. 

Academy of Management Annals, 11(1), 73–104. https://doi.org/10.5465/annals.2014.0072 

Mayring, P. (2007). On generalization in qualitatively oriented research. Forum: Qualitative Social 

Research, 8(3), 1–11. https://doi.org/10.17169/fqs-8.3.291 

McCarthy, J. (2007, November 12). What is artificial intelligence? Stanford University. 

http://www-formal.stanford.edu/jmc/whatisai.pdf  

McCarthy, J. L., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955, August 31). A proposal for the 

dartmouth summer research project on artificial intelligence. 

http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf 

McLoughlin, S., Puvvala, A., Maccani, G., & Donnellan, B. (2019). A framework for understanding & 

classifying urban data business models. Proceedings of the 52nd Hawaii International 

Conference on System Sciences (HICSS), 3295–3304. http://doi.org/10.24251/

HICSS.2019.398 

Meske, C., Bunde, E., Schneider, J., & Gersch, M. (2022). Explainable artificial intelligence: 

Objectives, stakeholders, and future research opportunities. Information Systems 

Management, 39(1), 53–63. https://doi.org/10.1080/10580530.2020.1849465 

van der Meulen, R., & McCall, T. (2018). Gartner says nearly half of CIOs are planning to deploy 

artificial intelligence. Gartner. https://www.gartner.com/en/newsroom/press-releases/

2018-02-13-gartner-says-nearly-half-of-cios-are-planning-to-deploy-artificial-intelligence  

Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big 

data analytics capability and competitive performance: The mediating roles of dynamic and 

operational capabilities. Information & Management, 57(2), Article 103169. http://doi.org/

10.1016/j.im.2019.05.004 

Miranda, S. (2004). Beyond BI: Benefiting from corporate performance management solutions. 

Financial Executive, 2(20), 58–61. 

MIT Technology Review Insights. (2018, November 2). Professional services firms see huge 

potential in machine learning. https://www.technologyreview.com/2018/11/02/139216/

professional-services-firms-see-huge-potential-in-machine-learning 

Mitchell, T. M. (1997). Machine learning. McGraw-Hill. https://doi.org/10.1002/(SICI)1099-

1689(199909)9:3%3C191::AID-STVR184%3E3.0.CO;2-E 

Möhlmann, M., Zalmanson, L., Henfridsson, O., & Gregory, R. W. (2021). Algorithmic management 

of work on online labor platforms: When matching meets control. MIS Quarterly, 45(4), 

1999–2022. https://doi.org/10.25300/MISQ/2021/15333 

Mojena, R. (1977). Hierarchical grouping methods and stopping rules: An evaluation. The 

Computer Journal, 20(4), 359–363. https://doi.org/10.1093/comjnl/20.4.359 

Möller, F., Bauhaus, H., Hoffmann, C., Niess, C., & Otto, B. (2019). Archetypes of digital business 

models in logistics start-ups. Proceedings of the 27th European Conference on Information 

Systems (ECIS), Paper 17. https://aisel.aisnet.org/ecis2019_rp/17 

https://doi.org/10.1093/oxfordhb/9780199694945.013.002
https://doi.org/10.5465/annals.2014.0072
https://doi.org/10.17169/fqs-8.3.291
http://www-formal.stanford.edu/jmc/whatisai.pdf
http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf
http://doi.org/10.24251/HICSS.2019.398
http://doi.org/10.24251/HICSS.2019.398
https://doi.org/10.1080/10580530.2020.1849465
https://www.gartner.com/en/newsroom/press-releases/2018-02-13-gartner-says-nearly-half-of-cios-are-planning-to-deploy-artificial-intelligence
https://www.gartner.com/en/newsroom/press-releases/2018-02-13-gartner-says-nearly-half-of-cios-are-planning-to-deploy-artificial-intelligence
http://doi.org/10.1016/j.im.2019.05.004
http://doi.org/10.1016/j.im.2019.05.004
https://www.technologyreview.com/2018/11/02/139216/professional-services-firms-see-huge-potential-in-machine-learning
https://www.technologyreview.com/2018/11/02/139216/professional-services-firms-see-huge-potential-in-machine-learning
https://doi.org/10.1002/(SICI)1099-1689(199909)9:3%3C191::AID-STVR184%3E3.0.CO;2-E
https://doi.org/10.1002/(SICI)1099-1689(199909)9:3%3C191::AID-STVR184%3E3.0.CO;2-E
https://doi.org/10.25300/MISQ/2021/15333
https://doi.org/10.1093/comjnl/20.4.359
https://aisel.aisnet.org/ecis2019_rp/17


References 124 

Möller, F., Stachon, M., Hoffmann, C., Bauhaus, H., & Otto, B. (2020). Data-driven business models 

in logistics: A taxonomy of optimization and visibility services. Proceedings of the 53rd 

Hawaii International Conference on System Sciences (HICSS), 5379–5388. http://doi.org/

10.24251/HICSS.2020.661 

Morris, M., Schindehutte, M., & Allen, J. (2005). The entrepreneur's business model: Toward a 

unified perspective. Journal of Business Research, 58(6), 726–735. https://doi.org/10.1016/

j.jbusres.2003.11.001 

Mousavi, S., Bossink, B., & van Vliet, M. (2019). Microfoundations of companies’ dynamic 

capabilities for environmentally sustainable innovation: Case study insights from high-tech 

innovation in science-based companies. Business Strategy and the Environment, 28(2), 366–

387. https://doi.org/10.1002/bse.2255 

Müller, J., & Buliga, O. (2019). Archetypes for data-driven business models for manufacturing 

companies in industry 4.0. Proceedings of the 40th International Conference on Information 

Systems (ICIS). https://aisel.aisnet.org/sigbd2019/2 

Müller, O., Junglas, I., vom Brocke, J., & Debortoli, S. (2016). Utilizing big data analytics for 

information systems research: Challenges, promises and guidelines. European Journal of 

Information Systems, 25(4), 289–302. http://doi.org/10.1057/ejis.2016.2 

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, methods, and 

applications in interpretable machine learning. Proceedings of the National Academy of 

Sciences of the United States of America, 116(44), 22071–22080. 

https://doi.org/10.1073/pnas.1900654116 

Murray, A., Rhymer, J., & Sirmon, D. G. (2021). Humans and technology: Forms of conjoined agency 

in organizations. Academy of Management Review, 46(3), 552–571. https://doi.org/

10.5465/amr.2019.0186 

Myers, M. (1997). Qualitative research in information systems. MIS Quarterly, 21(2), 241–242. 

http://doi.org/10.2307/249422 

Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research: Examining the craft. 

Information and Organization, 17(1), 2–26. https://doi.org/10.1016/

j.infoandorg.2006.11.001 

Nambisan, S., Lyytinen, K., Majchrzak, A., & Song, M. (2017). Digital innovation management: 

Reinventing innovation management research in a digital world. MIS Quarterly, 41(1), 223–

238. http://doi.org/10.25300/MISQ/2017/41:1.03 

Naous, D., Schwarz, J., & Legner, C. (2017). Analytics as a service: Cloud computing and the 

transformation of business analytics business models and ecosystems. Proceedings of the 

25th European Conference on Information Systems (ECIS), Paper 32. https://aisel.aisnet.org/

ecis2017_rp/32 

Nelson, L. K. (2020). Computational grounded theory: A methodological framework. Sociological 

Methods and Research, 49(1), 3–42. https://doi.org/10.1177/0049124117729703 

Nickerson, R. C., Varshney, U., & Muntermann, J. (2013). A method for taxonomy development and 

its application in information systems. European Journal of Information Systems, 22(3), 336–

359. https://doi.org/10.1057/ejis.2012.26 

http://doi.org/10.24251/HICSS.2020.661
http://doi.org/10.24251/HICSS.2020.661
https://doi.org/10.1016/j.jbusres.2003.11.001
https://doi.org/10.1016/j.jbusres.2003.11.001
https://doi.org/10.1002/bse.2255
https://aisel.aisnet.org/sigbd2019/2
http://doi.org/10.1057/ejis.2016.2
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.5465/amr.2019.0186
https://doi.org/10.5465/amr.2019.0186
http://doi.org/10.2307/249422
https://doi.org/10.1016/j.infoandorg.2006.11.001
https://doi.org/10.1016/j.infoandorg.2006.11.001
http://doi.org/10.25300/MISQ/2017/41:1.03
https://aisel.aisnet.org/ecis2017_rp/32
https://aisel.aisnet.org/ecis2017_rp/32
https://doi.org/10.1177/0049124117729703
https://doi.org/10.1057/ejis.2012.26


References 125 

Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. Organization Science, 

5(1), 14–37. https://doi.org/10.1287/orsc.5.1.14 

Obschonka, M., & Audretsch, D. B. (2020). Artificial intelligence and big data in entrepreneurship: 

A new era has begun. Small Business Economics, 55(3), 529–539. 

https://doi.org/10.1007/s11187-019-00202-4 

Oh, C., Song, J., Choi, J., Kim, S., Lee, S., & Suh, B. (2018). I lead, you help but only with enough 

details: Understanding user experience of co-creation with artificial intelligence. Proceedings 

of the 2018 ACM Conference on Human Factors in Computing Systems (CHI), Paper 649. 

https://doi.org/10.1145/3173574.3174223 

Omerovic, M., Islam, N., & Buxmann, P. (2020). Unlashing the next wave of business models in the 

internet of things era: New directions for a research agenda based on a systematic literature 

review. Proceedings of the 53rd Hawaii International Conference on System Sciences (HICSS), 

4569–4578. http://doi.org/10.24251/HICSS.2020.559 

OpenAI. (2022, November 30). Introducing ChatGPT. https://openai.com/index/chatgpt 

O'Reilly, C. A., & Tushman, M. L. (2008). Ambidexterity as a dynamic capability: Resolving the 

innovator’s dilemma. Research in Organizational Behavior, 28, 185–206. 

http://doi.org/10.1016/j.riob.2008.06.002 

O'Reilly, C. A., & Tushman, M. L. (2013). Organizational ambidexterity: Past, present, and future. 

Academy of Management Perspectives, 27(4), 324–338. https://doi.org/10.5465/

amp.2013.0025 

Ossenbrink, J., Hoppmann, J., & Hoffmann, V. H. (2019). Hybrid ambidexterity: How the 

environment shapes incumbents’ use of structural and contextual approaches. Organization 

Science, 30(6), 1319–1348. http://doi.org/10.1287/orsc.2019.1286 

Osterwalder, A., & Pigneur, Y. (2010). Business model generation: A handbook for visionaries, game 

changers, and challengers. John Wiley & Sons. 

Passlick, J., Dreyer, S., Olivotti, D., Grützner, L., Eilers, D., & Breitner, M. H. (2021). Predictive 

maintenance as an internet of things enabled business model: A taxonomy. Electronic 

Markets, 31, 67–87. https://doi.org/10.1007/s12525-020-00440-5 

Pavlyshenko, B. (2019). Machine-learning models for sales time series forecasting. Data, 4(1), 1–

15. http://doi.org/10.3390/data4010015 

Peffers, K., Tuunanen, T., Gengler, C., Rossi, M., Hui, W., Virtanen, V., & Bragge, J. (2006). The design 

science research process: A model for producing and presenting information systems 

research. Proceedings of the 1st International Conference on Design Science Research in 

Information Systems and Technology (DESRIST), 83–106. 

Peteraf, M., Di Stefano, G., & Verona, G. (2013). The elephant in the room of dynamic capabilities: 

Bringing two diverging conversations together. Strategic Management Journal, 34(12), 

1389–1410. https://doi.org/10.1002/smj.2078 

Porter, M. E. (2001). Strategy and the internet. Harvard Business Review, 79(3), 62–78. 

Prescott, J. E., & Filatotchev, I. (2021). The business model phenomenon: Towards theoretical 

relevance. Journal of Management Studies, 58(2), 517–527. https://doi.org/10.1111/

joms.12610 

https://doi.org/10.1287/orsc.5.1.14
https://doi.org/10.1007/s11187-019-00202-4
https://doi.org/10.1145/3173574.3174223
http://doi.org/10.24251/HICSS.2020.559
https://openai.com/index/chatgpt
http://doi.org/10.1016/j.riob.2008.06.002
https://doi.org/10.5465/amp.2013.0025
https://doi.org/10.5465/amp.2013.0025
http://doi.org/10.1287/orsc.2019.1286
https://doi.org/10.1007/s12525-020-00440-5
http://doi.org/10.3390/data4010015
https://doi.org/10.1002/smj.2078
https://doi.org/10.1111/joms.12610
https://doi.org/10.1111/joms.12610


References 126 

Pumplun, L., Peters, F., Gawlitza, J. F., & Buxmann, P. (2023). Bringing machine learning systems 

into clinical practice: A design science approach to explainable machine learning-based 

clinical decision support systems. Journal of the Association for Information Systems, 24(4), 

953–979. https://doi.org/10.17705/1jais.00820 

Pumplun, L., Tauchert, C., & Heidt, M. (2019). A new organizational chassis for artificial 

intelligence - exploring organizational readiness factors. Proceedings of 27th European 

Conference on Information Systems (ECIS), Paper 106. https://aisel.aisnet.org/

ecis2019_rp/106 

Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions 

for application. Journal of Marketing Research, 20(2), 134–148. https://doi.org/

10.1177/002224378302000204 

Putnam, L. L., Fairhurst, G. T., & Banghart, S. (2016). Contradictions, dialectics, and paradoxes in 

organizations: A constitutive approach. Academy of Management Annals, 10(1), 65–171. 

https://doi.org/10.1080/19416520.2016.1162421 

Rai, A. (2020). Explainable AI: From black box to glass box. Journal of the Academy of Marketing 

Science, 48(1), 137–141. https://doi.org/10.1007/s11747-019-00710-5 

Raisch, S., & Birkinshaw, J. (2008). Organizational ambidexterity: Antecedents, outcomes, and 

moderators. Journal of Management, 34(3), 375–409. https://doi.org/

10.1177/0149206308316058 

Raisch, S., & Fomina, K. (2024). Combining human and artificial intelligence: Hybrid problem-

solving in organizations. Academy of Management Review. Advance online publication. 

https://doi.org/10.5465/amr.2021.0421 

Ransbotham, S., Khodabandeh, S., Fehling, R., LaFountain, B., & Kiron, D. (2019, October 15). 

Winning with AI. MIT Sloan Management Review. https://sloanreview.mit.edu/

projects/winning-with-ai 

Ransbotham, S., Khodabandeh, S., Kiron, D., Candelon, F., Chu, M., & LaFountain, B. (2020, October 

20). Expanding AI’s impact with organizational learning. MIT Sloan Management Review. 

https://sloanreview.mit.edu/projects/expanding-ais-impact-with-organizational-learning 

Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017, September 6). Reshaping business with 

artificial intelligence. MIT Sloan Management Review. https://sloanreview.mit.edu/

projects/reshaping-business-with-artificial-intelligence 

Rashed, F., & Drews, P. (2021). Pathways of data-driven business model design and realization: A 

qualitative research study. Proceedings of the 54th Hawaii International Conference on System 

Sciences (HICSS), 5676–5685. http://doi.org/10.24251/HICSS.2021.689 

Remane, G., Nickerson, R. C., Hanelt, A., Tesch, J. F., & Kolbe, L. M. (2016). A taxonomy of carsharing 

business models. Proceedings of the 37th International Conference on Information Systems 

(ICIS). https://aisel.aisnet.org/icis2016/Crowdsourcing/Presentations/18 

Rencher, A. C. (2002). Methods of multivariate analysis (2nd ed.). Wiley. http://doi.org/

10.1002/0471271357 

Ricciardi, F., Zardini, A., & Rossignoli, C. (2016). Organizational dynamism and adaptive business 

model innovation: The triple paradox configuration. Journal of Business Research, 69(11), 

5487–5493. http://doi.org/10.1016/j.jbusres.2016.04.154 

https://doi.org/10.17705/1jais.00820
https://aisel.aisnet.org/ecis2019_rp/106
https://aisel.aisnet.org/ecis2019_rp/106
https://doi.org/10.1177/002224378302000204
https://doi.org/10.1177/002224378302000204
https://doi.org/10.1080/19416520.2016.1162421
https://doi.org/10.1007/s11747-019-00710-5
https://doi.org/10.1177/0149206308316058
https://doi.org/10.1177/0149206308316058
https://doi.org/10.5465/amr.2021.0421
https://sloanreview.mit.edu/projects/winning-with-ai
https://sloanreview.mit.edu/projects/winning-with-ai
https://sloanreview.mit.edu/projects/expanding-ais-impact-with-organizational-learning
https://sloanreview.mit.edu/projects/reshaping-business-with-artificial-intelligence
https://sloanreview.mit.edu/projects/reshaping-business-with-artificial-intelligence
http://doi.org/10.24251/HICSS.2021.689
https://aisel.aisnet.org/icis2016/Crowdsourcing/Presentations/18
http://doi.org/10.1002/0471271357
http://doi.org/10.1002/0471271357
http://doi.org/10.1016/j.jbusres.2016.04.154


References 127 

Richards, G., Yeoh, W., Chong, A. Y. L., & Popovič, A. (2019). Business intelligence effectiveness and 

corporate performance management: An empirical analysis. Journal of Computer Information 

Systems, 59(2), 188–196. http://doi.org/10.1080/08874417.2017.1334244 

Rindova, V., Martins, L., & Yeow, A. (2016). The hare and the fast tortoise: Dynamic resource 

reconfiguration and the pursuit of new growth opportunities by Yahoo and Google (1995–

2007). In T. Folta, C. E. Helfat, & S. Karim (Eds.), Resource redeployment and corporate 

strategy (advances in strategic management) (Vol. 35, pp. 253–284). http://doi.org/

10.1108/S0742-332220160000035009 

Ritter, T., & Lettl, C. (2018). The wider implications of business-model research. Long Range 

Planning, 51(1), 1–8. https://doi.org/10.1016/j.lrp.2017.07.005 

Rogers, P. R., Miller, A., & Judge, W. Q. (1999). Using information‐processing theory to understand 

planning/performance relationships in the context of strategy. Strategic Management 

Journal, 20(6), 567–577. https://doi.org/10.1002/(SICI)1097-0266(199906)20:6%

3C567::AID-SMJ36%3E3.0.CO;2-K 

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and 

use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. 

https://doi.org/10.1038/s42256-019-0048-x 

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd ed.). Pearson. 

Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Pearson. 

Sabatier, V., Mangematin, V., & Rousselle, T. (2010). From recipe to dinner: Business model 

portfolios in the european biopharmaceutical industry. Long Range Planning, 43(2-3), 431–

447. https://doi.org/10.1016/j.lrp.2010.02.001 

Saldaña, J. (2009). The coding manual for qualitative researchers (1st ed.). SAGE Publications. 

Saldaña, J. (2015). The coding manual for qualitative researchers (3rd ed.). SAGE Publications. 

Salesforce. (2022, March 11). Artificial intelligence technology and resources: Salesforce Einstein. 

https://www.salesforce.com/products/einstein/overview/?d=cta-body-promo-90 

Salovaara, A., Lyytinen, K., & Penttinen, E. (2019). High reliability in digital organizing: 

Mindlessness, the frame problem, and digital operations. MIS Quarterly, 43(2), 555–578. 

http://doi.org/10.25300/MISQ/2019/14577 

Sanctify Financial Technologies. (2021, November 16). Taking financial forecasting into the future. 

https://sanctify.ai 

Santos, F., Pereira, R., & Vasconcelos, J. B. (2020). Toward robotic process automation 

implementation: An end-to-end perspective. Business Process Management Journal, 26(2), 

405–420. https://doi.org/10.1108/BPMJ-12-2018-0380 

Sarker, S., Sarker, S., Sahaym, A., & Bjørn-Andersen, N. (2012). Exploring value cocreation in 

relationships between an ERP vendor and its partners: A revelatory case study. MIS 

Quarterly, 36(1), 317–338. http://doi.org/10.2307/41410419 

Schad, J., Lewis, M. W., Raisch, S., & Smith, W. K. (2017). Paradox research in management science: 

Looking back to move forward. Academy of Management Annals, 10(1), 5–64. 

https://doi.org/10.1080/19416520.2016.1162422 

http://doi.org/10.1080/08874417.2017.1334244
http://doi.org/10.1108/S0742-332220160000035009
http://doi.org/10.1108/S0742-332220160000035009
https://doi.org/10.1016/j.lrp.2017.07.005
https://doi.org/10.1002/(SICI)1097-0266(199906)20:6%3C567::AID-SMJ36%3E3.0.CO;2-K
https://doi.org/10.1002/(SICI)1097-0266(199906)20:6%3C567::AID-SMJ36%3E3.0.CO;2-K
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1016/j.lrp.2010.02.001
https://www.salesforce.com/products/einstein/overview/?d=cta-body-promo-90
http://doi.org/10.25300/MISQ/2019/14577
https://sanctify.ai/
https://doi.org/10.1108/BPMJ-12-2018-0380
http://doi.org/10.2307/41410419
https://doi.org/10.1080/19416520.2016.1162422


References 128 

Schaltegger, S., Lüdeke-Freund, F., & Hansen, E. G. (2012). Business cases for sustainability: The 

role of business model innovation for corporate sustainability. International Journal of 

Innovation and Sustainable Development, 6(2), 95–119. https://doi.org/10.1504/

IJISD.2012.046944 

Schilling, M. A., & Phelps, C. C. (2007). Interfirm collaboration networks: The impact of large-scale 

network structure on firm innovation. Management Science, 53(7), 1113–1126. 

https://doi.org/10.1287/mnsc.1060.0624 

Schneider, S., & Spieth, P. (2013). Business model innovation: Towards an integrated future 

research agenda. International Journal of Innovation Management, 17(01), Article 1340001. 

https://doi.org/10.1142/S136391961340001X 

Schoemaker, P. J. H., Heaton, S., & Teece, D. (2018). Innovation, dynamic capabilities, and 

leadership. California Management Review, 61(1), 15–42. https://doi.org/

10.1177/0008125618790246 

Schroeder, R. (2016). Big data business models: Challenges and opportunities. Cogent Social 

Sciences, 2(1), Article 1166924. https://doi.org/10.1080/23311886.2016.1166924 

Schuetz, S., & Venkatesh, V. (2020). The rise of human machines: How cognitive computing 

systems challenge assumptions of user-system interaction. Journal of the Association for 

Information Systems, 21(2), 460–482. https://doi.org/10.17705/1jais.00608 

Schüritz, R., & Satzger, G. (2016). Patterns of data-infused business model innovation. Proceedings 

of the 18th IEEE Conference on Business Informatics (CBI), 133–142. 

http://doi.org/10.1109/CBI.2016.23 

Schüritz, R., Seebacher, S., & Dorner, R. (2017). Capturing value from data: Revenue models for 

data-driven services. Proceedings of the 50th Hawaii International Conference on System 

Sciences (HICSS), 5348–5357. http://doi.org/10.24251/HICSS.2017.648 

Scissero. (2021, November 16). Unlock data, save time and cut legal costs with Scissero. 

https://www.scissero.com 

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo, 

J.-F., & Dennison, D. (2015). Hidden technical debt in machine learning systems. Advances in 

Neural Information Processing Systems, 28, 2503–2511. https://papers.nips.cc/paper_files/

paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html 

Seelos, C., & Mair, J. (2007). Profitable business models and market creation in the context of deep 

poverty: A strategic view. Academy of Management Perspectives, 21(4), 49–63. 

http://doi.org/10.5465/AMP.2007.27895339 

Seidel, S., Berente, N., Lindberg, A., Lyytinen, K., Martinez, B., & Nickerson, J. V. (2020). Artificial 

intelligence and video game creation: A framework for the new logic of autonomous design. 

Journal of Digital Social Research, 2(3), 126–157. http://doi.org/10.33621/jdsr.v2i3.46 

Seidel, S., Berente, N., Lindberg, A., Lyytinen, K., & Nickerson, J. (2019). Autonomous tools and 

design: A triple-loop approach to human-machine learning. Communications of the ACM, 

62(1), 50–57. https://doi.org/10.1145/3210753 

Seidel, S., & Urquhart, C. (2013). On emergence and forcing in information systems grounded 

theory studies: The case of strauss and corbin. Journal of Information Technology, 28, 237–

260. https://doi.org/10.1057/jit.2013.17 

https://doi.org/10.1504/IJISD.2012.046944
https://doi.org/10.1504/IJISD.2012.046944
https://doi.org/10.1287/mnsc.1060.0624
https://doi.org/10.1142/S136391961340001X
https://doi.org/10.1177/0008125618790246
https://doi.org/10.1177/0008125618790246
https://doi.org/10.1080/23311886.2016.1166924
https://doi.org/10.17705/1jais.00608
http://doi.org/10.1109/CBI.2016.23
http://doi.org/10.24251/HICSS.2017.648
https://www.scissero.com/
https://papers.nips.cc/paper_files/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
http://doi.org/10.5465/AMP.2007.27895339
http://doi.org/10.33621/jdsr.v2i3.46
https://doi.org/10.1145/3210753
https://doi.org/10.1057/jit.2013.17


References 129 

Shafer, S. M., Smith, H. J., & Linder, J. C. (2005). The power of business models. Business Horizons, 

48(3), 199–207. https://doi.org/10.1016/j.bushor.2004.10.014 

Sharma, R., Mithas, S., & Kankanhalli, A. (2014). Transforming decision-making processes: A 

research agenda for understanding the impact of business analytics on organisations. 

European Journal of Information Systems, 23(4), 433–441. https://doi.org/

10.1057/ejis.2014.17 

Shearer, C. (2000). The CRISP-DM model: The new blueprint for data mining. Journal of Data 

Warehousing, 5(4), 13–22. 

Shollo, A., Hopf, K., Thiess, T., & Müller, O. (2022). Shifting ML value creation mechanisms: A 

process model of ML value creation. The Journal of Strategic Information Systems, 31(3), 

Article 101734. https://doi.org/10.1016/j.jsis.2022.101734 

Simon, H. (1991). Bounded rationality and organizational learning. Organization Science, 2(1), 

125–134. https://doi.org/10.1287/orsc.2.1.125 

Singh, A., & Hess, T. (2017). How chief digital officers promote the digital transformation of their 

companies. MIS Quarterly Executive, 16(1), 1–17. https://aisel.aisnet.org/misqe/

vol16/iss1/5 

Sint, R., Schaffert, S., Stroka, S., & Ferstl, R. (2009). Combining unstructured, fully structured and 

semi-structured information in semantic wikis. Proceedings of the 4th Semantic Wiki 

Workshop (SemWiki) at the 6th European Semantic Web Conference (ESWC), 73–87. 

Smith, W. K., & Lewis, M. W. (2011). Toward a theory of paradox: A dynamic equilibrium model of 

organizing. Academy of Management Review, 36(2), 381–403. https://doi.org/

10.5465/AMR.2011.59330958 

Smith, W. K., Lewis, M. W., & Tushman, M. L. (2011). Organizational sustainability: Organization 

design and senior leadership to enable strategic paradox. In K. Cameron & G. Spreitzer (Eds.), 

The Oxford handbook of positive organizational scholarship (pp. 798–810). Oxford University 

Press. https://doi.org/10.1093/oxfordhb/9780199734610.013.0061 

Snihur, Y., & Eisenhardt, K. M. (2022). Looking forward, looking back: Strategic organization and 

the business model concept. Strategic Organization, 20(4), 757–770. https://doi.org/

10.1177/14761270221122442 

Snihur, Y., & Markman, G. (2023). Business model research: Past, present, and future. Journal of 

Management Studies, 60(8), e1–e14. https://doi.org/10.1111/joms.12928  

Spiegel, O., Abbassi, P., Zylka, M. P., Schlagwein, D., Fischbach, K., & Schoder, D. (2016). Business 

model development, founders' social capital and the success of early stage internet start‐ups: 

A mixed‐method study. Information Systems Journal, 26(5), 421–449. https://doi.org/

10.1111/isj.12073 

Spieth, P., Schneckenberg, D., & Ricart, J. E. (2014). Business model innovation–state of the art and 

future challenges for the field. R&D Management, 44(3), 237–247. https://doi.org/

10.1111/radm.12071 

Spiliotis, E., Nikolopoulos, K., & Assimakopoulos, V. (2019). Tales from tails: On the empirical 

distributions of forecasting errors and their implication to risk. International Journal of 

Forecasting, 35(2), 687–698. http://doi.org/10.1016/j.ijforecast.2018.10.004 

https://doi.org/10.1016/j.bushor.2004.10.014
https://doi.org/10.1057/ejis.2014.17
https://doi.org/10.1057/ejis.2014.17
https://doi.org/10.1016/j.jsis.2022.101734
https://doi.org/10.1287/orsc.2.1.125
https://aisel.aisnet.org/misqe/vol16/iss1/5
https://aisel.aisnet.org/misqe/vol16/iss1/5
https://doi.org/10.5465/AMR.2011.59330958
https://doi.org/10.5465/AMR.2011.59330958
https://doi.org/10.1093/oxfordhb/9780199734610.013.0061
https://doi.org/10.1177/14761270221122442
https://doi.org/10.1177/14761270221122442
https://doi.org/10.1111/joms.12928
https://doi.org/10.1111/isj.12073
https://doi.org/10.1111/isj.12073
https://doi.org/10.1111/radm.12071
https://doi.org/10.1111/radm.12071
http://doi.org/10.1016/j.ijforecast.2018.10.004


References 130 

Steininger, D. M. (2019). Linking information systems and entrepreneurship: A review and agenda 

for IT-associated and digital entrepreneurship research. Information Systems Journal, 29(2), 

363–407. https://doi.org/10.1111/isj.12206 

Steininger, D. M., Brohman, K. M., & Block, J. H. (2022). Digital entrepreneurship: What is new if 

anything? Business & Information Systems Engineering, 64(1), 1–14. https://doi.org/

10.1007/s12599-021-00741-9 

Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., Hirschberg, J., Kalyanakrishnan, 

S., Kamar, E., Kraus, S., Leyton-Brown, K., Parkes, D., Press, W., Saxenian, A. L., Shah, J., Tambe, 

M., & Teller, A. (2016). Artificial intelligence and life in 2030. One hundred year study on 

artificial intelligence: Report of the 2015-2016 study panel. Stanford University. 

http://ai100.stanford.edu/2016-report 

Studer, S., Bui, T. B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., & Müller, K. R. (2021). 

Towards CRISP-ML(Q): A machine learning process model with quality assurance 

methodology. Machine Learning and Knowledge Extraction, 3(2), 392–413. 

http://doi.org/10.3390/make3020020 

Sturm, T., Koppe, T., Scholz, Y., & Buxmann, P. (2021a). The case of human-machine trading as 

bilateral organizational learning. Proceedings of the 42nd International Conference on 

Information Systems (ICIS). https://aisel.aisnet.org/icis2021/ai_business/ai_business/3 

Sturm, T., Gerlach, J. P., Pumplun, L., Mesbah, N., Peters, F., Tauchert, C., Nan, N., & Buxmann, P. 

(2021b). Coordinating human and machine learning for effective organizational learning. 

MIS Quarterly, 45(3), 1581–1602. https://doi.org/10.25300/MISQ/2021/16543 

Sturm, T., Fecho, M., & Buxmann, P. (2021c). To use or not to use artificial intelligence? A 

framework for the ideation and evaluation of problems to be solved with artificial 

intelligence. Proceedings of the 54th Hawaii International Conference on System Sciences 

(HICSS), 206–215. http://doi.org/10.24251/HICSS.2021.023 

Tallon, P. P., Ramirez, R. v., & Short, J. E. (2013). The information artifact in IT governance: Toward 

a theory of information governance. Journal of Management Information Systems, 30(3), 141–

177. http://doi.org/10.2753/MIS0742-1222300306 

Täuscher, K., & Laudien, S. M. (2018). Understanding platform business models: A mixed methods 

study of marketplaces. European Management Journal, 36(3), 319–329. https://doi.org/

10.1016/j.emj.2017.06.005 

Teece, D. J. (2007). Explicating dynamic capabilities: The nature and microfoundations of 

(sustainable) enterprise performance. Strategic Management Journal, 28(13), 1319–1350. 

https://doi.org/10.1002/smj.640 

Teece, D. J. (2009). Dynamic capabilities and strategic management: Organizing for innovation and 

growth. Oxford University Press. 

Teece, D. J. (2010). Business models, business strategy and innovation. Long Range Planning, 

43(2–3), 172–194. https://doi.org/10.1016/j.lrp.2009.07.003 

Teece, D. J. (2014). The foundations of enterprise performance: Dynamic and ordinary capabilities 

in an (economic) theory of firms. Academy of Management Perspectives, 28(4), 328–352. 

http://doi.org/10.5465/amp.2013.0116 

https://doi.org/10.1111/isj.12206
https://doi.org/10.1007/s12599-021-00741-9
https://doi.org/10.1007/s12599-021-00741-9
http://ai100.stanford.edu/2016-report
http://doi.org/10.3390/make3020020
https://aisel.aisnet.org/icis2021/ai_business/ai_business/3
https://doi.org/10.25300/MISQ/2021/16543
http://doi.org/10.24251/HICSS.2021.023
http://doi.org/10.2753/MIS0742-1222300306
https://doi.org/10.1016/j.emj.2017.06.005
https://doi.org/10.1016/j.emj.2017.06.005
https://doi.org/10.1002/smj.640
https://doi.org/10.1016/j.lrp.2009.07.003
http://doi.org/10.5465/amp.2013.0116


References 131 

Teece, D. J. (2018). Business models and dynamic capabilities. Long Range Planning, 51(1), 40–49. 

http://doi.org/10.1016/j.lrp.2017.06.007 

Teece, D. J., & Leih, S. (2016). Uncertainty, innovation, and dynamic capabilities: An introduction. 

California Management Review, 58(4), 5–12. http://doi.org/10.1525/cmr.2016.58.4.5 

Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. 

Strategic Management Journal, 18(7), 509–533. https://doi.org/10.1002/(SICI)1097-

0266(199708)18:7%3C509::AID-SMJ882%3E3.0.CO;2-Z 

Tidhar, R., & Eisenhardt, K. M. (2020). Get rich or die trying… finding revenue model fit using 

machine learning and multiple cases. Strategic Management Journal, 41(7), 1245–1273. 

https://doi.org/10.1002/smj.3142 

Townsend, D. M., & Hunt, R. A. (2019). Entrepreneurial action, creativity, & judgment in the age of 

artificial intelligence. Journal of Business Venturing Insights, 11, Article e00126. 

http://doi.org/10.1016/j.jbvi.2019.e00126 

Uber. (2024, February). Investor update February 2024. https://investor.uber.com/financials 

Uotila, J., Maula, M., Keil, T., & Zhara, S. A. (2008). Exploration, exploitation and firm performance: 

An analysis of S&P 500 corporations. Strategic Management Journal, 30, 221–231. 

https://doi.org/10.1002/smj.738 

Urquhart, C., Lehmann, H., & Myers, M. D. (2010). Putting the ‘theory’ back into grounded theory: 

Guidelines for grounded theory studies in information systems. Information systems journal, 

20(4), 357–381. https://doi.org/10.1111/j.1365-2575.2009.00328.x 

Urquhart, C., & Fernández, W. (2013). Using grounded theory method in information systems: The 

researcher as blank slate and other myths. Journal of Information Technology, 28(3), 224–

236. https://doi.org/10.1057/jit.2012.34 

Vaast, E., & Pinsonneault, A. (2021). When digital technologies enable and threaten occupational 

identity: The delicate balancing act of data scientists. MIS Quarterly, 45(3), 1087–1112. 

http://doi.org/10.25300/MISQ/2021/16024 

Veit, D., Clemons, E., Benlian, A., Buxmann, P., Hess, T., Kundisch, D., Leimeister, J. M., Loos, P., & 

Spann, M. (2014). Business models: An information systems research agenda. Business & 

Information Systems Engineering, 6(1), 45–53. https://doi.org/10.1007/s12599-013-0308-

y 

Vetter, O. A., Hoffmann, F. S., Pumplun, L., & Buxmann, P. (2022). What constitutes a machine-

learning-driven business model? A taxonomy of B2B start-ups with machine learning at their 

core. Proceedings of the 30th European Conference on Information Systems (ECIS), Paper 29. 

https://aisel.aisnet.org/ecis2022_rp/29 

Vial, G. (2019). Understanding digital transformation: A review and a research agenda. The Journal 

of Strategic Information Systems, 28(2), 118–144. http://doi.org/10.1016/j.jsis.2019.01.003 

Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics 

and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–

365. https://doi.org/10.1016/j.jbusres.2016.08.009 

http://doi.org/10.1016/j.lrp.2017.06.007
http://doi.org/10.1525/cmr.2016.58.4.5
https://doi.org/10.1002/(SICI)1097-0266(199708)18:7%3C509::AID-SMJ882%3E3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1097-0266(199708)18:7%3C509::AID-SMJ882%3E3.0.CO;2-Z
https://doi.org/10.1002/smj.3142
http://doi.org/10.1016/j.jbvi.2019.e00126
https://investor.uber.com/financials
https://doi.org/10.1002/smj.738
https://doi.org/10.1111/j.1365-2575.2009.00328.x
https://doi.org/10.1057/jit.2012.34
http://doi.org/10.25300/MISQ/2021/16024
https://doi.org/10.1007/s12599-013-0308-y
https://doi.org/10.1007/s12599-013-0308-y
https://aisel.aisnet.org/ecis2022_rp/29
http://doi.org/10.1016/j.jsis.2019.01.003
https://doi.org/10.1016/j.jbusres.2016.08.009


References 132 

Wamba-Taguimdje, S.-L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. 

(2020). Influence of artificial intelligence (AI) on firm performance: The business value of 

AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924. 

https://doi.org/10.1108/BPMJ-10-2019-0411 

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the 

American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/

01621459.1963.10500845 

Warner, K. S. R., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An 

ongoing process of strategic renewal. Long Range Planning, 52(3), 326–349. https://doi.org/

10.1016/j.lrp.2018.12.001 

Wasserbacher, H., & Spindler, M. (2022). Machine learning for financial forecasting, planning and 

analysis: Recent developments and pitfalls. Digital Finance, 4(1), 63–88. https://doi.org/

10.1007/s42521-021-00046-2 

Weber, M., Beutter, M., Weking, J., Böhm, M., & Krcmar, H. (2022). AI startup business models: Key 

characteristics and directions for entrepreneurship research. Business & Information Systems 

Engineering, 64(1), 91–109. https://doi.org/10.1007/s12599-021-00732-w 

Weking, J., Stöcker, M., Kowalkiewicz, M., Böhm, M., & Krcmar, H. (2020). Leveraging industry 4.0 

– a business model pattern framework. International Journal of Production Economics, 225, 

Article 107588. https://doi.org/10.1016/j.ijpe.2019.107588 

Wiener, M., Cram, W. A., & Benlian, A. (2023). Algorithmic control and gig workers: A legitimacy 

perspective of Uber drivers. European Journal of Information Systems, 32(3), 485–507. 

https://doi.org/10.1080/0960085X.2021.1977729 

Wiener, M., Saunders, C., & Marabelli, M. (2020). Big-data business models: A critical literature 

review and multiperspective research framework. Journal of Information Technology, 35(1), 

66–91. http://doi.org/10.1177/0268396219896811 

Wiesche, M., Jurisch, M. C., Yetton, P. W., & Krcmar, H. (2017). Grounded theory methodology in 

information systems research. MIS Quarterly, 41(3), 685–701. http://doi.org/

10.25300/MISQ/2017/41.3.02 

Wilden, R., & Gudergan, S. P. (2015). The impact of dynamic capabilities on operational marketing 

and technological capabilities: Investigating the role of environmental turbulence. Journal of 

the Academy of Marketing Science, 43(2), 181–199. https://doi.org/10.1007/s11747-014-

0380-y 

Winter, S. G. (2003). Understanding dynamic capabilities. Strategic Management Journal, 24(10), 

991–995. https://doi.org/10.1002/smj.318 

Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. 

Proceedings of the 4th International Conference on the Practical Applications of Knowledge 

Discovery and Data Mining, 1, 29–39. 

Wirtz, B. W., Pistoia, A., Ullrich, S., & Göttel, V. (2016). Business models: Origin, development and 

future research perspectives. Long Range Planning, 49(1), 36–54. http://doi.org/

10.1016/j.lrp.2015.04.001 

https://doi.org/10.1108/BPMJ-10-2019-0411
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1016/j.lrp.2018.12.001
https://doi.org/10.1016/j.lrp.2018.12.001
https://doi.org/10.1007/s42521-021-00046-2
https://doi.org/10.1007/s42521-021-00046-2
https://doi.org/10.1007/s12599-021-00732-w
https://doi.org/10.1016/j.ijpe.2019.107588
https://doi.org/10.1080/0960085X.2021.1977729
http://doi.org/10.1177/0268396219896811
http://doi.org/10.25300/MISQ/2017/41.3.02
http://doi.org/10.25300/MISQ/2017/41.3.02
https://doi.org/10.1007/s11747-014-0380-y
https://doi.org/10.1007/s11747-014-0380-y
https://doi.org/10.1002/smj.318
http://doi.org/10.1016/j.lrp.2015.04.001
http://doi.org/10.1016/j.lrp.2015.04.001


References 133 

Woroch, R., & Strobel, G. (2021). Understanding value creation in digital companies – a taxonomy 

of IoT enabled business models. Proceedings of the 29th European Conference on Information 

Systems (ECIS), Paper 11. https://aisel.aisnet.org/ecis2021_rp/11 

Yang, H.-F., & Chen, Y.-P. P. (2019). Representation learning with extreme learning machines and 

empirical mode decomposition for wind speed forecasting methods. Artificial Intelligence, 

277, Article 103176. https://doi.org/10.1016/j.artint.2019.103176 

Yeow, A., Soh, C., & Hansen, R. (2018). Aligning with new digital strategy: A dynamic capabilities 

approach. The Journal of Strategic Information Systems, 27(1), 43–58. http://doi.org/

10.1016/j.jsis.2017.09.001 

Yoo, Y. (2010). Computing in everyday life: A call for research on experiential computing. MIS 

Quarterly, 34(2), 213–231. https://doi.org/10.2307/20721425 

Zebhauser, J. (2024). Resource configuration for scaling AI startups — an action design research 

approach. Proceedings of the 32nd European Conference on Information Systems (ECIS). 

https://aisel.aisnet.org/ecis2024/track23_designresearch/track23_designresearch/4 

Zhou, J., Gandomi, A. H., Chen, F., & Holzinger, A. (2021). Evaluating the quality of machine learning 

explanations: A survey on methods and metrics. Electronics, 10(5), Article 593. 

http://doi.org/10.3390/electronics10050593 

Zott, C., & Amit, R. (2008). The fit between product market strategy and business model: 

Implications for firm performance. Strategic Management Journal, 29, 1–26. https://doi.org/

10.1002/smj.642 

Zott, C., & Amit, R. (2010). Business model design: An activity system perspective. Long Range 

Planning, 43(2–3), 216–226. https://doi.org/10.1016/j.lrp.2009.07.004 

Zott, C., Amit, R., & Massa, L. (2011). The business model: Recent developments and future 

research. Journal of Management, 37(4), 1019–1042. https://doi.org/10.1177/

0149206311406265 

 

 

https://aisel.aisnet.org/ecis2021_rp/11
https://doi.org/10.1016/j.artint.2019.103176
http://doi.org/10.1016/j.jsis.2017.09.001
http://doi.org/10.1016/j.jsis.2017.09.001
https://doi.org/10.2307/20721425
https://aisel.aisnet.org/ecis2024/track23_designresearch/track23_designresearch/4
http://doi.org/10.3390/electronics10050593
https://doi.org/10.1002/smj.642
https://doi.org/10.1002/smj.642
https://doi.org/10.1016/j.lrp.2009.07.004
https://doi.org/10.1177/0149206311406265
https://doi.org/10.1177/0149206311406265


Appendix 134 

Appendix 

Appendix 1. Excerpt of the Examined Sample Set of B2B ML-Driven Start-Ups (Paper D). 

Start-up Website Start-up Website 

Acquired Insights www.aiinc.cloud Alectio www.alectio.com 

Animatico animati.co Arva Intelligence www.arvaintelligence.com 

Arytic arytic.com Bevov www.bevov.com 

Blyng blyng.io Clinicgram www.clinicgram.com 

Cordian www.cordian.com CropSafe www.cropsafe.io 

DeepHow www.deephow.com DeepRisk.ai deeprisk.ai 

Donna donna.legal Edgematrix edgematrix.com 

edisn.ai edisn.ai Eiffo Analytics www.eiffo-analytics.com 

FACTIC www.factic-sf.com Frontier Medicines frontiermeds.com 

Gamyte www.gamyte.com Hasty hasty.ai 

Inlet Laboratories inletlabs.com Intuaition www.intuaition.com 

LabVoice www.labvoice.ai Logmind logmind.com 

Mapxus www.mapxus.com Myst AI www.myst.ai 

Nanochomp www.nanochomp.com Nucleus Cyber nucleuscyber.com 

Orbem orbem.ai Pixofarm pixofarm.com 

RailVision Analytics www.railvision.ca REIGO Investments www.reigo-inv.com 

Salesken salesken.ai Swiftlane swiftlane.com 

ThreatLandscape threatlandscape.com Traverse www.traverse.ai 

uman.ai uman.ai Uservision www.user.vision 

Virtual Facility www.virtualfacility.ai Xelera Technologies xelera.io 
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