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ABSTRACT

In many applications, kinematic structures are used to enable and disable degrees of freedom. The relative
movement between a wheel and the body of a car or a landing gear and an aircraft fuselage are examples for a
defined movement. In most cases, a spring-damper system determines the kinetic properties of the movement.
However, unexpected high load peaks may lead to maximum displacements and maybe to locking. Thus, a hard
clash between two rigid components may occur, causing acceleration peaks. This may have harmful effects for
the whole system. For example a hard landing of an aircraft can result in locking the landing gear and thus
damage the entire aircraft. In this paper, the potential of adaptive auxiliary kinematic guidance elements in a
spring-damper system to prevent locking is investigated numerically. The aim is to provide additional forces in
the auxiliary kinematic guidance elements in case of overloading the spring-damper system and thus to absorb
some of the impact energy. To estimate the potential of the load redistribution in the spring-damper system, a
numerical model of a two-mass oscillator is used, similar to a quarter-car-model. In numerical calculations, the
reduction of the acceleration peaks of the masses with the adaptive approach is compared to the acceleration
peaks without the approach, or, respectively, when locking is not prevented. In addition, the required force of
the adaptive auxiliary kinematic guidance elements is calculated as a function of the masses of the system and
the drop height, or, respectively, the impact energy.
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1. INTRODUCTION

Defined kinematics are often an important part of the functional performance in load-bearing systems with
moving structural components. Examples are landing gear or suspension strut movements in airplanes or vehicles.
These movements are provided by kinematic elements, as an auxiliary structure (guest), that link two or more
parts of a primer load structure (host) mechanically. The kinematic elements may block degrees of freedom of the
various parts of a system so that only a specifically desired movement is possible. In a landing gear, a primer load
structure (host) is represented by a piston rod and a cylinder. Torque links are used as an auxiliary kinematic
structure (guest) without load-bearing properties in axial direction. In cases of overloading the host, it might
be useful to redistribute a part of the load to the guest e. g. with guidance elements capable to bear additional
axial loading. Another example is the vertical movement of a car’s suspension. In this case a spring-damper
system as the host determines the kinetic properties. End-stops as guest restrict the travel range. The limitation
of travel range may lead to locking, which occurs e. g. if unexpected and critical high load peaks are applied to
a system. High acceleration peaks in car-1 or seat-suspension2 or worsening performance in active mass driver
(AMD)3 may be a result of exceeding the travel range.

To enhance the dynamic of the system for vibration control today, semi-active systems are used in car- or
seat-suspensions, mostly controlled by the sky-hook control strategy.4 They can be used to enhance the vertical
damping property. They are an opportunity to beat the trade-off between comfort and driving handling for car
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design, but mostly do not take into account problems that may occur when the suspension travel reaches the
limit.1

In this paper, the potential of an active auxiliary kinematic guidance elements (guest) in a spring-damper
system (host) with an additional kinetic, load-bearing function to prevent end-stop impact events caused by a
drop test is investigated numerically. The aim is to provide additional forces in the auxiliary kinematic guidance
elements that absorb kinetic energy in an alternative load path in case of overloading the spring-damper system,
e. g. due to exceeding the travel range when hitting the ground after falling from the maximum drop height. The
basic idea is to redirect axial loads through the originally kinematic and now kinetic guidance elements, that
are normally going through the spring-damper system only. To estimate the potential of the load redistribution,
a numerical model of a two-mass oscillator (host) with auxiliary kinematic guidance elements (guest), able to
actively bear axial loads, is used. It is derived from a more complex load-bearing system that is currently
developed in the German Collaborative Research Center (SFB) 805 “Control of Uncertainties in Load-Carrying
Structures in Mechanical Engineering” at the Technische Universität Darmstadt. The acceleration peaks of the
upper mass, resulting from the lower mass hitting the ground after simulated drop tests, are compared for with
and without the augmented kinetic function of the guidance elements. Furthermore, the relative displacement
of the two masses is investigated according to the two cases with and without kinetic function. Eventually, a
kinematic transmission variation of the guidance elements due to the kinematic state is shown.

2. MATHEMATICAL DYNAMIC MODEL OF THE TWO-MASS OSCILLATOR

A two-mass oscillator with two degrees of freedom, similar to a quarter-car-model, is used as an example for a
dynamic load-bearing system to investigate the ability to redirect parts of the axial load path from the spring-
damper system to the additional kinematic guidance elements with an active load bearing capacity, Fig. 1. The
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Figure 1. Two-mass oscillator with kinematic guidance elements at ∆z=∆z0 := 0 (a) and at minimal relative displace-
ment ∆zmin (b), cut free forces for the passive system without (c) and cut free forces for the active system with additional
kinetic function of the guidance elements (d)

two-mass oscillator has an upper and a lower mass mU and mL connected by a suspension strut with a coil
spring and a viscous damper, with stiffness kS and damping coefficient bS. The lower mass mL is connected to
the ground by, again, a spring and a damper with stiffness kg and damping coefficient bg. The upper and lower
masses are kinematically connected by angular guidance elements with the ability to actively redistribute the
load path. The suspension strut and the angular guidance elements are assumed to be free of mass. The cut free
spring force and damping force of the suspension strut are

Fk,S = kS∆z with the relative motion ∆z = zL−zU, (1a)

Fb,S = bS∆ż with the relative velocity ∆ż = żL−żU (1b)
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and the cut free spring force and damping force of the ground are

Fk,g = kS zL, (2a)

Fb,g = 0 (2b)

with neglected damping bg = 0 between lower mass and the ground as assumption by the authors. The initial
state of the two-mass oscillator at ∆z=∆z0 :=0 is shown in Fig. 1(a), the minimum relative displacement ∆zmin
of the two masses, limited by assumed end-stops, is shown in Fig. 1(b). The stiffness properties kS of the strut
for motions before and after reaching the end stops is simulated by two different stiffnesses,

kS =

(
kS,1 for ∆z ≥ ∆zmin,
kS,2 for ∆z < ∆zmin.

(3)

with kS,2 = 100 ·kS,1. This means that once the end stop comes into effect, further movement ∆z < ∆zmin is still
possible, since the end stops are assumed not to be rigid, but with a much higher stiffness kS,2 than kS,1. When
considering a passive system without redirection of load path, the guidance elements have no kinetic use and any
additional forces and moments are neglected, Fig. 1(c). When considering an active system with redirection of
load path, the guidance elements are able to provide additional momentsMa, Fig. 1(a). The two active moments
Ma result in a vertical active force Fa, Fig. 1(d), and are coupled by the kinematic transmission

2·Ma = cos(α) lkin Fa, (4)

where lkin represents the length of one component 1 and 2 of the kinematic guidance elements and α the angle
between the components 1 and 2 of the kinematic guidance elements on each side, see Fig. 1(a). The active
force

Fa = ba∆ż + ka∆z sgn(∆ż) (5)

is simulated as an assumed control feedback loop with two linear gain factors ba and ka for active control.
Equation (5) represents a damping force with ba∆ż proportional to the relative velocity ∆ż and ka∆z sgn(∆ż)
proportional to the relative displacement ∆z in z-direction. Both terms in (5) are dependent on the sign of the
relative velocity ∆ż. The sign function in (5) leads to a case analysis for the gain ka depending on the relative
velocity

ka =

(
+ka for ∆ż > 0,

−ka for ∆ż < 0.
(6)

With Eqs. (1a), (1b), (1a), (1b) and (5) according to the displacements zU and zL of upper and lower masses
mU and mL, the two coupled linear equations of motion

5 for the two degrees of freedom of the masses can be
written as

mUz̈U + bS(żL−żU) + kS(zL−zU) =−mUg + Fa (7)

for the upper mass and

mLz̈L + bS(żU−żL) + kS(zU−zL) + kW zU =−mLg−Fa (8)

for the lower mass, combined to a linear matrix formulation�
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0 mL
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K

�
zU
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�
| {z }
z

=

�
−mU g
−mL g

�
| {z }

F

. (9)

In Eq. (9), M , B and K are the mass, damping and stiffness matrices, z̈, ż, z and F are the acceleration,
velocity, displacement and force vectors. The force vector F in (9) contains only the weight forces of the masses
mU and mL and the gravity g which leads to a static relative displacement ∆zstat. The active force Fa in (5)
and the considered end-stop stiffness assumption in (3) lead to an overall nonlinear two-mass oscillator in (9).
Although, it is possible to get piecewise linear behavior by separating the solution in various sections depending
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on the cases in Eq. (3) and Eq. (6) for kS and ka. For each section, the homogeneous part of the differential
Eq. (9) can be solved with the exponential approach

z(t) = ẑ eλ t (10)

which leads to the eigenvalue problem �
λ2M + λB +K

�
ẑ eλ t = 0, (11)

for the homogeneous form of (9) with the characteristic polynomial

P (λ) = det
�
λ2M + λB +K

	
. (12)

The solutions of the characteristic polynomial (12) are N pairs of complex conjugate eigenvalues λn and λ
∗
n for

n=1, ..., N . The number of degrees of freedom in case of the two-mass oscillator is N = 2. With Eq. (11) the
corresponding N pairs of complex conjugate eigenvectors are ẑn and ẑ

∗
n. The free motion of the homogeneous

system is the sum of the N modal eigen-oscillations

zh(t) =
NX
n=1

ẑn C1n e
λn t + ẑ∗n C2n e

λ∗n t. (13)

The particular part of (9) is taken into account by

zp =K
−1 F (14)

which can be interpreted as a static relative displacement ∆zstat due to the weight forces of the masses mU and
mL. The overall solution is the superposition of (13) and (14) and can be stated as

z(t) = zh(t) + zp. (15)

To calculate the integration constants C1n and C2n in (13), initial conditions presented in the next section are
used.

3. NUMERICAL SIMULATION OF DROP TESTS

The numerical solution (15) of the governing Eq. (9) is basis for the following numerical simulations to study the
potential of the proposed method for load path redistribution. In Table 1, the assumed values for the introduced
variables in (9) are summarized.

In order to solve the solution of (15), initial conditions are used. For that, a drop test with initial velocities
for both masses mU and mL unequal to zero żU,0 = żL,0 6= 0 is taken into account. The initial velocities are
calculated by the shift of the potential energy Epot of an assumed drop height h into kinetic energy Ekin when
falling from that height. This assumption results in the initial velocities żU,0 = żL,0 =

√
2 g h for mU and mL.

By exceeding a maximal drop height hmax the system hits the end-stops when the system is falling from hmax
and hitting the ground. Three different drop test cases are investigated:

i) drop height h = hmax = 0.2m
∧
= max. drop height & passive system without auxiliary kinetic function of

the guidance elements,

ii) drop height h = 1.2 ·hmax = 0.24m
∧
= 20% surplus of max. drop height & passive system without auxiliary

kinetic function of the guidance elements,

iii) drop height h = 1.2 · hmax = 0.24m
∧
= 20% surplus of max. drop height & active system with auxiliary

kinetic function of the guidance elements.

In case iii), the gain factors for Fa according to Eq. (5) are assumed ba = 0.2 ·bS and ka = 0.2 ·kS. With a defined
relation between the gain factors ba and ka and the suspension parameters bS and kS, it is possible to describe
the split of the load path for the active system. The originally kinematic and now kinetic guidance elements
become part of the flux of forces and can prevent locking of the system.
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Table 1. Parameters of the two-mass oscillator

Property Variable Value Unit

damping (suspension) bS 1500 Ns/m

stiffness 1 (suspension) kS,1 27000 N/m

stiffness 2 (suspension) kS,2 2700000 N/m

min. displacement (suspension) ∆zmin -0.2 m

upper mass mU 220 kg

lower mass mL 40 kg

damping (ground) bg 0 Ns/m

stiffness (ground) kg 225000 N/m

gravity g 9.81 m/s2

3.1 Decay of acceleration due to cases i-iii)

The two-mass oscillator hits the ground after it is falling down from different drop heights with respect to cases
i) to iii). The acceleration decay z̈U in time domain according to the three cases i) to iii) after hitting the ground
is shown in Fig. 2. The three curves, one for each case i), ii), and iii), start at t = 0 s with z̈U =−g =−9.81m/s2
as a result of the initial conditions for (13). Figure 2 shows z̈U = 0m/s

2 at the end of the decay at t = 1.5 s.
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Figure 2. Acceleration z̈U of the upper mass mU for the three cases i-iii)

Case i): After a rebound at the beginning at t = 0.1 s influenced by the interaction of the two masses mL
and mU, the vibrations damp out. The end-stop is not reached.

Case ii): After a short rebound at t = 0.1 s similar to case i), the vibrations are not damped out immediately,
but two acceleration peaks for z̈U can be seen due to the end-stop coming into action. The impact energy of the
system due to the drop exceeded the amount of energy the passive system can deal with and the high stiffness
kS,2 of the end-stop causes the acceleration peaks. After the two end-stop come to effect once, the vibrations
damp out.
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Case iii): The decay starts again with a short rebound at t = 0.1 s influenced by the interaction of the two
masses mL and mU, similar to cases i) and ii), but with up to 40% higher values for the acceleration caused by
the additional force Fa provided in the active guidance elements. Although the values for the acceleration are
up to 40% higher then in cases i) and ii) between t = 0 s and t = 0.15 s, the additional load path through the
active kinematic guidance elements prevents the high acceleration peaks and no end-stop effects occur.

3.2 Decay of the relative displacement of the two masses due to cases i-iii)

The two-mass oscillator hits the ground after it is falling down from different drop heights with respect to cases
i) to iii). The decay in time domain for the relative displacement ∆z of the two masses mU and mL according
to the three cases i) to iii) after hitting the ground is shown in Fig. 3. The three curves, one for each case
i), ii), and iii), start at t = 0 s with ∆z = ∆z0 = 0m for the unloaded system and end with a static relative
displacement ∆z = ∆zstat caused by the weight of the mass mU at the end of the decay at t = 1.5 s. The relative
displacement is assumed to be limited by end-stops. The displacement limit is reached at the minimal relative
suspension displacement ∆z = ∆zmin = −0.2m, as presented in Table 1. By exceeding the displacement limit,
the suspension strut stiffness kS = kS,2 is high according to (3) and, thus, end-stop comes into effect.

Case i): The relative displacement of the two masses mU and mL remains above the minimal displacement,
∆z > ∆zmin, for the whole decay progress. The end-stops are not effective.

Case ii): The relative displacement of the two masses mU and mL undercuts the minimal suspension dis-
placement, ∆z < ∆zmin, twice during the decay. The zoom window in Fig. 3 shows the critical area during the
decay when the end-stops are reached. The suspension strut stiffness kS changes from kS,1 to kS,2 according to
(3) and, thus, acceleration peaks in Fig. 2 are observed.

Case iii): The relative displacement of the two masses mU and mL remains again above the minimal displace-
ment, ∆z > ∆zmin, for the whole decay. The end-stops are not reached in contrary to case ii). The extremum
of the relative displacement is even 7% less compared to case i). The additional force Fa provided by the active
guidance elements prevents locking due to an alternative load path.
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Figure 3. Relative displacement ∆z of the upper and lower masses mU and mL for the three cases i-iii)

3.3 Resulting Forces at suspension strut and guidance elements

The two-mass oscillator hits the ground after it is falling down from different drop heights with respect to cases
i) to iii). The resulting axial forces Fz, Fz,S and Fz,a of the suspension strut, the suspension strut with additional
kinetic function of the active guidance elements and the active elements itself for cases i-iii) according to (1a),
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(1b) and (5) during the decay are shown in Fig. 4. All the curves, one for each case i) and ii) and three for iii),
begin at t = 0 s with Fz = 0N for the unloaded system and end with a static force countering the weight force
of the mass mU at the end of the decay at t = 1.5 s.

Case i): The whole load path from the lower mass mL to the upper mass mU is led through the suspension
strut. The resulting axial force in z-direction is Fz = Fk,S + Fb,S. Since the end-stop is not reached for case i),
the stiffness of the suspensions strut according to (3) is kS ≡ kS,1 during the whole decay.
Case ii): The whole load path from the lower mass mL to the upper mass mU is led through the suspension

strut similar to case i). The resulting axial force in z-direction is again Fz = Fk,S + Fb,S. Since the maximal
drop height of the passive system is exceeded, the end-stop is reached twice. The suspension strut stiffness kS
changes from kS,1 to kS,2 according to (3) when reaching the end-stop and, thus, force peaks with Fz,ii) � Fz,i)
can be observed in Fig. 4.

Case iii): The load path from the lower mass mL to the upper mass mU is split into a part in the suspension
strut Fz,S = Fk,S + Fb,S and a part in the active kinetic guidance elements Fz,a = Fa, dashed light gray
curves. The resulting axial force in z-direction is the sum of the suspension strut force and the additional force
Fz = Fz,S + Fz,a, solid light gray curve. Although the maximal drop height of the passive system is exceeded,
the end-stop is not reached by means of the active kinetic guidance elements. The stiffness of the suspension
strut according to (3) is kS ≡ kS,1 during the whole decay comparable to case i). Since the additional force Fa
according to (5) depends on the algebraic sign of the relative velocity ∆ż, the force Fa changes its algebraic sign
in the same manner as the relative velocity ∆ż does. This can be seen in the zoom window in Fig. 4.

Considering Figures 2-4, it can be seen that active kinetic guidance elements has potential to provide an
alternative load path in a load-bearing system. Depending on the assumed control law in (5), the distribution
of the load between the suspension strut and the guidance elements can be adjusted.
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Figure 4. Resulting axial forces Fz and Fz,S at the suspension strut and active force Fz,a = Fa for the three cases i-iii)

3.4 Influence of the kinematic transmission of the guidance elements

Figure 5 shows the kinematic transmission due to varying angles α and their influence of the required moments
Ma to maintain sufficient active forces Fa for load path redistribution. In this Paper, the active axial force Fa is
provided by active kinetic guidance elements due to two active momentsMa according to (4) and Fig. 1. Because
of the kinematic transmission of the guidance elements, a constant axial force Fa requires an increasing active
moment Ma for decreasing angle α, cf. Fig. 1(a) and 1(b). A decreasing angle α is equivalent to a decreasing
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relative displacement ∆z of the upper and the lower masses mU and mL. The range of the angle α = 130
◦ . . . 50◦

is limited by the assumed end stops at ∆zmin. A transmission factor for the required active moments Ma(α) for
a constant active axial force Fa depend on the angle α and can be stated as

γ =
Ma(α)

Ma(130◦)
(16)

with the minimal required active moment Ma(130
◦) at the widest possible angle α = 130◦ as reference on one

side in Fig. 1(a). The transmission factor γ is shown in Fig. 5. At α = 130◦ the transmission factor is γ = 1.
For α < 65◦, the transmission factor is γ ≥ 2 and, thus, the required active moment Ma for a constant vertical
force Fa has doubled.
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Figure 5. kinematic transmission factor γ of the angular guidance elements

4. CONCLUSION

This paper shows the potential of an active auxiliary kinetic guidance elements in a two mass spring-damper
system to prevent end-stop impact events by changing the load path after the system hits the ground according to
different drop heights. By changing the load path, load redistribution leads to less loading of the otherwise high
loaded suspension strut alone. The system is simplified by a two-mass oscillator with two degrees of freedom.
Three cases i-iii) are taken into account: case i) a drop test from maximal drop height for the passive system
without auxiliary kinetic function of the guidance elements, case ii) a drop test from 20% exceeded maximal drop
height for the passive system without auxiliary kinetic function of the guidance elements and case iii) a drop test
from 20% exceeded maximal drop height for the active system with auxiliary kinetic function of the guidance
elements. For all cases i-iii), the acceleration of the upper mass, the relative displacement and the resulting
axial forces between the masses are calculated. Case i) is used as reference without end-stop effects and only
one load path that goes through the suspension strut. Case ii) leads to undesirable high relative displacements
of the two masses and, thus, to end-stop effects causing high acceleration peaks. As in case i), only one load
path that goes through the suspension strut is available in case ii). In case iii), the load path is split into a
part in the suspension strut and a part in the active kinetic guidance elements. Despite exceeded drop height,
dangerous end-stop effects that lead to high impacts, are prevented. It is shown that a kinematic transmission
of the angular guidance elements increases the required moments Ma to maintain sufficient active forces Fa for
load path redistribution. Although, active kinetic guidance elements can be used to prevent locking in case of
overloading or to provide fail-safe behavior in case of a damaged primary load path due to redirecting the load
partly through an alternative load path.
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