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Abstract
The existing and future accelerator facilities at GSI and FAIR offer unique opportunities
for interdisciplinary research, especially for material science and nanotechnology. On
their way through polymers, swift heavy ions with GeV energy deposit enormous
energy densities along their trajectory, generating long nanoscopic damage trails
known as ion tracks. Ion-track technology utilizes the small track size (few nm)
combined with the extensive track length (up to 100 μm and more) to synthesize
and control the geometry of high-aspect-ratio nanostructures such as tailored
nanochannels and nanowires. In particular, electrodeposition and ion-track
nanotechnology provide an excellent platform for developing unique 3D networks of
nanowires with controlled dimensions, composition and crystallographic properties.
Here, a summary of recent results obtained on the synthesis and characterization of
stable 3D architectures of semiconductor and semimetal nanowires, and their
implementation in the fields of photoelectrochemistry and thermoelectrics, is
presented.
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1 Introduction
The implementation of nanowires for applications such as thermoelectrics, catalysis, plas-
monics, or photoelectrochemical water splitting for hydrogen generation requires both, an
excellent control on geometry, crystallinity and composition of the individual nanostruc-
tures, as well as the successful assembly into 2D and 3D architectures [1–6]. Fabrication
of 3D nanowire superstructures by e.g. vapour–liquid–solid processes has been reported;
however, in most cases the tunability of the relevant parameters is limited [7, 8]. Electrode-
position in etched ion-track membranes with interconnected nanochannels, on the other
hand, offers high flexibility in the choice of relevant parameters.

Etched ion-track membranes with parallel nanochannels are widely used as templates
for the growth of nanowires [3, 9–12]. Their fabrication involves two separate process
steps. First, the template material is irradiated with energetic heavy ions creating so-called
ion tracks [13]. High energy heavy-ion beams are provided at large accelerator facilities,
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Figure 1 Irradiation scheme for network templates with intersecting pores. The polymer foils are irradiated
sequentially from four different directions (a)–(d) using swift heavy ions. During each irradiation step, the foil
is tilted by 45° towards the incoming ion beam. From M.F.P. Wagner, PhD Thesis, Technische Universität
Darmstadt, 2018 [1, 4]

such as the universal linear accelerator (UNILAC) of GSI (Darmstadt, Germany). The GSI
UNILAC provides heavy ions (up to uranium) of specific energy up to 11.4 MeV/nucleon.
Such high energy ion beams have a penetration depth in polymers of about 120 μm, en-
abling the exposure of foils or stacks of foils with thicknesses between ∼ 6 and 100 μm
[9]. By chemical etching, the ion tracks are subsequently selectively dissolved and en-
larged into open channels. Control over the irradiation and etching conditions enables
the production of membranes with channels of predefined geometries, sizes, and aspect
ratios. Channel densities can be adjusted between a single channel per polymer foil and
∼ 1010 cm–2 [2, 9, 14–16]. Apart from membranes with parallel channels, novel templates
can be obtained by performing the irradiation under several incident angles. Subsequent
chemical etching results in templates consisting of a nanochannel network. Electrodeposi-
tion in these tilted nanochannels and removal of the polymer matrix leads to freestanding
3-D nanowire networks. A variety of different materials including Pt, Bi, Sb, Cu2O or ZnO
networks have been demonstrated [1–4, 17, 18].

Three dimensional nanowire networks can span over cross-sectional areas of up to sev-
eral cm2 with a surface area of up to ∼250 cm2 on a 1 cm2 planar surface. The junc-
tions between adjacent nanowires render excellent mechanical stability as well as electri-
cal conductivity. The wires mechanically support each other, and in case individual wires
break, electrical or thermal transport can still occur via alternative nanowire intercon-
nections [1, 2, 6, 19–21]. By means of several examples, we illustrate how 3D nanowire
networks combine the advantages and ease of handling of macroscopic samples with the
size-dependent properties of nanowires.

2 Experimental
For the preparation of network templates, stacks of up to 3 polycarbonate foils with a
thickness of 30 μm (Makrofol N, Bayer AG) are irradiated at an angle of 45° with respect
to the incoming beam. The irradiation is repeated from four different directions, with an
angle of 90° between each direction (Fig. 1). The ion species are usually ions of high atomic
number such as Au or Bi because of the high energy loss. The specific energy of the ions
is 11.1 MeV/nucleon [22].

Prior to chemical etching, the irradiated foils are exposed to UV light using a T-30M
Vilber Lourmat lamp (30 W, 312 nm). This process is known to decrease the width of the
pore size distribution after etching [23–25]. Selective chemical etching of the ion tracks is
performed in 6M NaOH solution at 50 °C yielding cylindrical channels [9, 13, 24]. Under
these conditions, the nanochannel diameter grows with a radial rate of 10-12 nm/min
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Figure 2 Schematics and scanning electron microscopy images of various pore geometries in ion
track-etched membranes illustrating channels with (a) asymmetric bullet-like and (b) conical shapes, as well
as (c) symmetric cylindrical parallel and (d) interconnected arrangements. Partially adapted from L. Burr, PhD
Thesis, Technische Universität Darmstadt, 2017 and L. Movsesyan, PhD Thesis, Technische Universität
Darmstadt, 2017

[22]. Figure 2 illustrates various geometries that can be obtained by adjusting geometry
and parameters of the etching process. They include channels with asymmetric bullet-like
(a) and conical shapes (b), as well as symmetric cylindrical parallel (c) and interconnected
(d) arrangements [3, 14–16, 22]. The latter ones are used as templates for the controlled
electrodeposition of 3D nanowire networks.

In order to fill the pores by electroplating, first a conductive contact material (e.g.
∼100 nm thin gold layer) is sputtered on one side of the membrane. This initial layer is
further reinforced by electroplating a thicker layer usually of gold or copper on top. The
conductive layer serves as a working electrode in a three-electrode electrochemical cell
during the electrodeposition of the material of choice inside the channels. In most cases,
the reaction is controlled via the applied potential (constant or pulsed) in order to avoid
the occurrence of side reactions like hydrogen evolution.

The electrodeposition process is monitored by recording the current between the work-
ing electrode and a counter electrode as a function of time. The electrodeposition parame-
ters and the employed electrolytes determine the chemical composition, crystallinity, and
crystallographic orientation of the resulting nanowires. The length of the nanowires can
be adjusted by varying the electrodeposition time. Detailed descriptions of the fabrication
processes for the presented materials can be found elsewhere [1, 3, 4, 9, 26, 27].

The 3D nanowire networks are typically characterized by a variety of methods, such as
X-ray diffraction (XRD) and scanning or transmission electron microscopy. When direct
access to the nanowires is required, the polymer membrane is dissolved in several consec-
utive baths of dichloro-methane.

3 Photoelectrochemical and thermoelectric applications of nanowire networks
The compact design, mechanical stability, and high surface area of semiconducting
3D nanowire-based networks can be advantageous for specific performances. Here we
present two representative examples for applications of 3D nanowire networks.
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3.1 ZnO nanowire networks as photoanodes for electrochemical water splitting
Nanowire networks are expected to facilitating efficient light absorption and charge car-
rier transport in photoelectrodes [3, 5, 28–36]. The one-dimensional geometry and the
small diameter of the nanowires is advantageous regarding the transport of charge carri-
ers to the nanowire-electrolyte interface, which in turn should lead to less charge recom-
bination and an increase in photocurrent. Additionally, the large surface to volume ratio
generates a large electrode-to-electrolyte interface [3, 33–35]. The network structure here
allows for a mechanically rigid and electrically reliable model system for which the various
geometrical parameters can be adjusted independently [3, 35].

To investigate the photoelectrochemical performance, a ZnO network was inserted in a
photoelectrochemical cell and immersed in a 0.1M K2SO4 solution of pH 5.6. A Ag/AgCl
(Sat. KCl) electrode served as reference and a Pt-wire as counter electrode. The sample was
then illuminated with an arc lamp source with an Xe lamp calibrated at AM 1.5 (1 sun).
The illumination generates electron-hole pairs within the material that can be separated by
applying a bias voltage. Figure 3 shows the generated photo-current density as a function
of the linearly sweeped bias voltage for ZnO nanowire networks and ZnO thin films, while
the light was periodically switched off and on. The nanowire networks had a wire density
of ∼ 5.7×109 cm–2, wire diameter of ∼150 nm and a height of ∼30 μm. Here, the potential
is reported versus the reversible hydrogen electrode according to:

ERHE = EAg/AgCl + 0.059 pH + E0
Ag/AgCl.

For both cases, also samples with a 20 nm thick TiO2 layer, that was applied by atomic
layer deposition are shown. The TiO2 layer was applied to protect ZnO versus photocor-
rosion as can be seen in Fig. 4. In general, the networks show a larger photocurrent than
flat films. The films exhibit relatively constant photocurrent densities of 0.02 mA/cm2

and 0.06 mA/cm2 for at 1.5 V vs. RHE with and without additional TiO2, respectively,
whereas the networks generated 0.1 mA/cm2 and 0.35 mA/cm2 that were increasing with
increasing bias voltage. The fivefold increase in the current generated by the networks
was attributed to the geometrical advantages explained above. The higher performance of
the TiO2 coated samples is ascribed to additional electron-hole pairs generated within the
TiO2 layer and additional contributions to the charge carrier separation by the ZnO-TiO2

interface, which further helps to reduce the probability of charge carrier recombination
[37, 38].

Additional experiments were performed on networks covered with 20 nm TiO2 with a
lower nanowire number density of 1.4 × 109 cm–2 and various nanowire diameters, shown
in Fig. 5. Here, the larger the nanowire diameter the denser the network and, correspond-
ingly, the higher the generated photocurrents. This is attributed to a larger amount of
photoactive material in the denser networks. Also the variation of the photocurrents as
a function of the applied bias voltage increases with increasing nanowire diameter. In all
cases the generated photocurrents of the networks were higher than the corresponding
reference value for the thin films. These measurements demonstrate that nanowire net-
works are most suitable model systems and enables a systematic investigation of the ge-
ometrical factors influencing photoelectrochemical water splitting. Similar results were
obtained for Cu2O nanowire-based photocathodes [17].
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Figure 3 Measured generated photocurrents for ZnO nanowire networks and ZnO films with and without a
TiO2 protection layer during a linear bias voltage sweep. Yellow areas mark when the samples were
illuminated, white areas when the light was switched off. From L. Movsesyan et al., ©Nanomaterials 8, 693
(2018)

Figure 4 SEM images of ZnO nanowire networks with and without a TiO2 protection layer after
photoelectrochemical experiments. (a) After one hour of reaction, the nanowires decay and recrystallization
of ZnO occurs. (b) After three hours of photocorrosion, the network coated with TiO2 shows no or only small
corrosion effects. From L. Movsesyan et al., ©Nanomaterials 8, 693 (2018)

3.2 Bi and Sb nanowire networks for thermoelectric applications
The dimensionless thermoelectric figure-of-merit Z ·T = S2 ·σ ·T/(λel +λph) describes the
efficiency of the material for thermoelectric applications [39–41]. Here, S is the Seebeck
coefficient, σ is the electrical conductivity and λel , λph are the respective thermal conduc-
tivities by charge carriers and phonons of a given material. The interdependency of S, σ ,
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Figure 5 Photocurrents for uncoated and TiO2-coated ZnO nanowire networks with different wire diameters
during a linear bias voltage sweep. Yellow and white areas correspond to illuminated or dark samples,
respectively. From L. Movsesyan et al., ©Nanomaterials 8, 693 (2018)

and λel via the charge carrier density hinders the increase of ZT. Commercial thermo-
electric materials nowadays exhibit maximal ZT values of ∼1 [40, 42–44]. However, for
widespread applications of thermoelectric modules a ZT of 3 would be required [45–47].

The size effects expected in small nanowires can help to decouple the electrical and
thermal transport and thereby open up a route for further improvement of thermoelectric
materials [43, 44, 48]. Bi(1–x)Sbx bulk has already been proven suitable for thermoelectric
applications at low temperatures [40]. The material system is also ideal for studying the
influence of size effects on transport and thermoelectrical properties, because the mean
free paths of charge carriers and phonons in Bi and Sb at room temperature are in the or-
der of 100 nm, and the Fermi wavelength in the order of 40 nm [40, 43, 48–53]. Size effects
therefore already occur at relatively large dimensions. Potentially, nanowire arrays exhibit-
ing higher ZT values will yield more efficient thermocouples, which are of great interest
for infrared sensor applications [54]. Crossplane relative electrical resistivity and Seebeck
coefficient of Sb nanowire networks as a function of temperature were investigated using
a custom-build setup described elsewhere [1, 55, 56]. Figure 6 shows the relative electrical
resistance and Seebeck coefficient of Sb nanowire networks with ∼ 1.4 × 109 wires·cm–2

and wire diameters ranging between 30 to 140 nm as a function of temperature. In all
samples, the relative electrical resistance exhibits a metallic behaviour. The electrical resis-
tivity of the nanowire networks with smaller wire diameters is dominated by scattering of
charge carriers at the nanowire surface and on grain boundaries, as theoretically described
by Mayadas, Shatzkes, Fuchs, Sondheimer and Dingle, for both thin films and nanowires
[57–60]. Therefore, with decreasing wire diameter, the electrical resistance is less affected
by a decrease in temperature and the corresponding increase in mean free path of the
charge carriers. The measured Seebeck coefficient for the Sb networks is in the order of 20
– 25 μV/K. Bulk Sb is very anisotropic and has a maximal Seebeck coefficient of ∼47 μV/K
for transport along the binary axis [40]. According to XRD measurements, the Sb networks
exhibited a {01.2} texture, while also the {10.4} and {11.0} planes were observed [22]. Due
to this, the Seebeck coefficient is smaller than ∼47 μV/K, but comparable to the Seebeck
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Figure 6 Relative electrical resistance and Seebeck coefficient of Sb nanowire networks with a nanwire
density of 1.4× 109 cm–2 and various wire diameters as a function of temperature. From M.F.P. Wagner, PhD
Thesis, Technische Universität Darmstadt, 2018

Figure 7 Thermal conductivity of various samples as a function of temperature. From M.F.P. Wagner, PhD
Thesis, Technische Universität Darmstadt, 2018

coefficient of Sb bulk for other crystal orientations. The nanowire networks with smallest
diameters have a slightly higher Seebeck coefficient at room temperature, possibly because
of small variations in crystallinity for the different wire diameters [61–63]. With decreas-
ing temperature, the values monotonously decrease towards zero, as expected [39, 40].
Figure 7 shows the thermal conductivities of the polycarbonate template material as well
as Sb nanowire arrays and nanowire networks measured using a method described else-
where [4]. As comparison, also the well-known thermal conductivity of a Borofloat glass
was measured. The thermal conductivity measured for nanowire networks and nanowire
arrays (∼0.3–0.4 W/mK) is significantly smaller than for bulk Sb (λ = 24 W/mK), which
is attributed to enhanced phonon scattering at the nanowire’s surfaces [20, 21, 40, 64].
Since the Seebeck coefficient is similar to bulk and thermal conductivity is significantly
suppressed, the thermoelectric efficiency ZT is most probably increased for the networks
compared to bulk material, making nanowire networks promising materials for thermo-
electric applications. To demonstrate this, absolute values of the electrical resistance have
to be measured in the future.
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Figure 8 Seebeck coefficient of Bi nanowire networks with a wire density of 1.4× 109 cm–2 as a function of
temperature. From M.F.P. Wagner, PhD Thesis, Technische Universität Darmstadt, 2018

Figure 8 shows the Seebeck coefficient of Bi nanowire networks with different wire di-
ameters as a function of temperature. The Seebeck coefficients at room temperature are
similar to previously reported values for nanowires and are comparable to theoretical val-
ues assigned to the bisectrix axis in Bi nanowires [48, 65]. The Seebeck coefficient mea-
sured at room temperature decreases with decreasing nanowire diameter, due to the lim-
itation of the mean free path of the charge carriers, and possibly also due to the influence
of surface states which is more important for higher surface-to-volume ratios [56, 65–67].
With decreasing temperature, the Seebeck coefficient decreases, exhibiting a change of
sign which was not observed in the case of Sb nanowires. The data show that the temper-
ature at which the sign change occurs depends on the diameter of the nanowires, namely
the temperature shifts to higher values with decreasing nanowire diameter. A similar be-
haviour was theoretically predicted by Murata et al. for Bi nanowires with crystals oriented
along the bisectrix axis [67]. According to Murata et al., this sign change can be attributed
to a different dependence of hole and electron mobility on nanowire diameter and tem-
perature. In semimetals, the Seebeck coefficient S is made up of contributions of holes
and electrons according to S = (Snσn + Spσp)/(σn + σp), where Sn,p and σn,p are the Seebeck
coefficient and electrical conductivity of electrons and holes, respectively [40]. Under the
assumption that both charge carrier densities are similar, this means that at the transi-
tion temperature, the mobility of holes becomes larger than the one of electrons [65]. At
small dimensions also topological surface states can additionally contribute to transport
[56, 66, 67]. As the properties of topological transport in bismuth and antimony are still
under discussion, further transport measurements will unravel new and exciting effects
on the transport behavior of tailored Bi and Sb nanostructures [68].

4 Conclusion
Selected examples illustrate how macroscopic, cm-sized samples with three-dimensional
nanowire networks exhibit size-dependent properties. Such well-defined tailored net-
works are excellent candidates to serve as tailored model systems to elucidate the influ-
ence of surface, size and geometry factors. Optimized nanosystems are required for novel
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devices in many different fields including thermoelectrics, photoelectrochemistry, sens-
ing, or catalysis. The combination of ion-track nanotechnology and electroplating yields
nanowire networks of a large variety of technological relevant materials, while providing
excellent control on their chemical, structural and morphological properties. The large
number of well-defined interconnections between adjacent nanowires provides excellent
electrical connectivity and gives the samples a remarkable mechanical stability even with-
out a supporting matrix.
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