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Abstract
The present thesis establishes a new converse theorem for Borcherds products. More-
over, the injectivity of the Kudla–Millson theta lift is demonstrated in the O(n, 2) case
in greater generality than is currently available in the literature. Both results are de-
rived under the assumption of a single hyperbolic split of the base lattice. Additionally,
symmetric square type L-series associated to elliptic vector valued modular forms are exam-
ined and special values of these series are linked to cycle integrals of Kudla–Millson liftings.

For vector valued elliptic modular forms, asymptotic bounds for their Fourier coefficients
are tailored to the specific setting and the structure of their index set with respect to Hecke
actions is analysed. Subsequently, symmetric square type L-series are associated to these
forms which are realised via a Rankin–Selberg integral and meromorphic continuation is
concluded. Further, formulae for the operation of Hecke algebras are extended and proven
to imply product expansions of the aforementioned L-series.

In the orthogonal setting, the construction of special divisors is reviewed, before integrals
of Kudla–Millson liftings over these divisors are explicitly related to special values of the
aforementioned L-series by means of the Siegel–Weil formula. The relations that emerge
in this context are then exploited in order to derive the injectivity of the Kudla–Millson
lift and, by means of a duality statement, a converse theorem for Borcherds products.



viii

Zusammenfassung
In der vorliegenden Arbeit wird ein neuer Umkehrsatz für Borcherdsprodukte bewiesen.
Außerdem wird die Injektivität des Kudla–Millsons lifts im O(n, 2) Fall in größerer All-
gemeinheit nachgewiesen als die aktuelle Literaturlage belegt. Beide Resultate werden
unter der Annahme eines einzigen hyperbolischen Splits des zu Grunde liegenden Gitters
gezeigt. Zusätzlich werden L-Reihen vom „symmetric square“ Typ, welche zu vektorw-
ertigen Modulformen assoziiert werden, untersucht und spezielle Werte derselben mit
Zykelintegralen von Kudla–Millson lifts in Verbindung gebracht.

Für vektorwertige Modulformen werden asymptotische Schranken ihrer Fourierkoef-
fizienten an den Rahmen der Arbeit angepasst und die Struktur ihrer Indizes im Hinblick
auf die Wirkung von Hecke Algebren untersucht. Nachfolgend werden diesen Formen
die oben benannten L-Reihen zugeordnet und als Rankin–Selberg Integrale realisiert,
woraus eine meromorphe Fortsetzung gefolgert wird. Außerdem gelingt es, Formeln für die
Wirkung von Hecke Algebren zu erweitern und daraus Produktentwicklungen der zuvor
konstruierten L-Reihen zu berechnen.

Im ortogonalen Fall wird die Konstruktion spezieller Divisoren dargelegt, um an-
schließend Integrale von Kudla–Millson Lifts darüber unter zu Hilfenahme der Siegel–Weil
Formel in Termen spezieller L-Werte auszudrücken. Die sich hieraus ergebenden Relationen
werden ausgenutzt, um die Injektivität des Kudla–Millson Lifts zu zeigen und, mit Hilfe
eines Dualitätsresultats, einen Umkehrsatz für Borcherdsprodukte zu folgern.
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0 Introduction

A converse theorem for Borcherds products

In 1998, Richard Borcherds was awarded the fields medal in recognition of his pioneering
contributions to the field of automorphic forms and mathematical physics [OR]. He
had introduced vertex operator algebras as well as a multiplicative lift of automorphic
forms and employed these tools to prove the Conway–Norton moonshine conjecture. The
constructed lift is nowadays referred to as Borcherds lift and maps vector valued elliptic
modular forms to orthogonal automorphic forms with infinite product expansions. These
are also referred to as Borcherds products which provide a diverse array of examples of
orthogonal modular forms, a fact that was instrumental in the jury’s decision to bestow
the fields medal upon Borcherds. In this thesis we prove a converse theorem for Borcherds
products, demonstrating that all orthogonal modular forms that may a priori be targeted
by the Borcherds lift are, in fact, in its range up to a nonzero constant factor.

To be more explicit, let (L, q) be an even lattice of signature (m+, 2) and D be the
associated Grassmannian which carries a natural complex structure. The natural arith-
metic subgroup to consider is the discriminant kernel Γ(L) ≤ O(L) which is a finite index
subgroup stabilising the discriminant group of L. On the elliptic side, let L = L′/L and
inspect holomorphic modular functions f : H → C[L] of weight k ∈ Z/2, transforming
with the dual Weil representation ρL which may possess poles at the cusp. This space is
referred to as the space of weakly holomorphic modular forms and denoted by M!

L−,k.
Let f ∈ M!

L−,k and recall that such a function has a Fourier expansion

f(τ) =
∑︂

µ∈L′/L

∑︂
m∈Z−q(µ)

a(µ,m)e2πiτmeµ (0.1)

where eµ denotes the standard basis vector of C[L] being 1 in the µ component and 0

elsewhere. Assume f has integral principal part, meaning that a(µ,m) ∈ Z for all m < 0.
Then the Borcherds lift associates to f a meromorphic modular form Ψ(z, f) on D for
Γ(L) with unitary multiplier system of finite order such that
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a) the weight of Ψ( · , f) is given by a(0, 0)/2,

b) the divisor of Ψ( · , f) is equal to

1

2

∑︂
µ∈L′/L

∑︂
n>0

a(µ,−n)Z(µ, n), (0.2)

where
Z(µ, n) =

∑︂
λ∈L+µ
q(λ)=n

{z ∈ D | z ⊥ λ}

is the Heegner divisor of discriminant (µ, n) (cf. Definition 4.70),

c) the target form Ψ( · , f) has explicit infinite product expansions.

As previously stated, this lift gives rise to a variety of new orthogonal modular forms
and also to the monster denominator formula, which is utilised to prove the moonshine
conjecture. In [Bor98, Pr. 16.10] Borcherds himself poses the question whether his lift
may be reversed. That is to say, given a meromorphic modular form F for Γ(L) whose
zeros and poles are supported on special divisors Z(µ, n), is there a form f ∈ M!

L−,k such
that Ψ(z, f) equals F up to a constant factor? In this thesis we provide the following
answer (cf. Theorem 7.19).

Theorem 0.1. Assume that L splits a hyperbolic plane and m+ > 3. Then every
meromorphic modular form F with respect to Γ(L) whose divisor is a linear combination
of special divisors Z(µ, n) is (up to a nonzero constant factor) the Borcherds lift Ψ(z, f)

of a weakly holomorphic modular form f ∈ M!
L−,1−m+/2.

The case of m+ = 3 is also addressed in Section 7.3. More specifically, the same result
holds for Witt rank 1 of the lattice L and a weaker version for Witt rank 2. The statement
above improves upon the previously strongest result [Bru14, Thm. 1.2], in that only one
hyperbolic split is required and no transition to a sublattice is needed. In order to prove
Theorem 0.1, a method developed by Bruinier [Bru02] is utilised to characterise the above
converse statement in terms of the injectivity of another theta lift, the Kudla–Millson lift.

The Kudla–Millson lift

In the 1980s Kudla and Millson [KM86] introduced special Schwartz forms ϕKM on
the symmetric spaces attached to the classical groups O(m+,m−), U(m+,m−), and
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Sp(m+,m−), taking values in closed differential forms. Their principal objective was
to investigate cohomology classes of special cycles by means of a theta correspondence,
generalising the celebrated work of Hierzebruch and Zagier [HZ76] on Hilbert modular
surfaces. More precisely, in the orthogonal case, Kudla and Millson symmetrised the
Schwartz forms ϕKM over a base lattice L and let the Weil representation of the symplectic
group act on ϕKM in order to obtain a kernel (cf. Subsection 7.2.1 for details)

ΘKM(τ, z), τ ∈ H, z ∈ D

in a symplectic and an orthogonal variable, which transforms automorphically in both
variables. These may then be employed as an integral kernel to shift automorphic objects
from the symplectic to the orthogonal setting or vice versa. Such an association is referred
to as a theta lift. The authors continued their work in [KM87] in great generality and
we recommend [KM90] and [BF04] as an introductory source. The applications of the
Kudla–Millson theta correspondence range from the study of the cohomology of orthogonal
and unitary Shimura varieties [KM86] and Arakelov theory of Shimura varieties [Kud04a]
over specific counting problems [EGS23], constructing mock modular forms and higher
dimensional error functions [FK17] to proving a converse theorem for Borcherds products
[Bru02] [Bru14].

In this thesis, we consider the Kudla–Millson lift on the space of vector valued elliptic
modular forms associated to the Weil representation ρL of an even lattice L of signature
(m+, 2). To be more explicit, let k = rank(L)/2 and SL,k denote the space of cusp forms
for the Weil representation ρL. Then

ΛKM : SL,k → H(1,1)(YL), f ↦→
∫︂

Mp2(Z)\H
⟨f,ΘKM⟩ Imk dµ

defines a linear map to the square integrable harmonic differential forms of Hodge type (1,1)
on the variety YL = Γ(L)\D and is referred to as the Kudla–Millson lift. Here µ denotes
the hyperbolic measure on the upper half-plane H on which Mp2(Z) acts via Möbius
transforms. The question of its injectivity already arose in [KM90] and may be used to
compute the rational Picard number of the underlying Shimura variety [Ber+16], as well
as to derive properties of cones generated by special cycles [BM19] [Zuf22]. However, the
main application we have in mind is the converse Theorem 0.1 for Borcherds products.
There have been multiple results on the injectivity of the Kudla–Millson lift over the
past two decades presented in [Bru02, Thm. 5.12 p. 139], [BF10, Cor. 4.11 p. 37], [Bru14,
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Thm. 5.3 p. 331], [Zuf24, Thm. 6.1 p. 22], and [Ste23, Cor. 7.8 p. 25]. These results are
based on three fundamentally different methods which are sketched in Section 7.2. While
there has been a recent success in unifying the results above by Zuffetti and the author
[MZ23, Thm. 6.2 p. 24] by generalising Zuffetti’s method, this has not shed any new
light on the converse theorem for Borcherds products. The most potent result1 for this
application is Theorem 7.10 by Bruinier which provides injectivity under the assumption
that the lattice L splits a hyperbolic plane as well as a scaled hyperbolic plane.

In the context of this thesis, we present a new approach to proving the injectivity of
the Kudla–Millson lift by means of computing cycle integrals on the orthogonal variety.
This approach eliminates the need for a scaled hyperbolic split and leads to the following
result (cf. Theorem 7.16).

Theorem 0.2. Let (L, q) be an even lattice of signature (m+, 2) with m+ > 3. Assume that
L splits a hyperbolic plane. Then the Kudla–Millson lift ΛKM : SL,1+m+/2 → H(1,1)(YL) is
injective.

The case of m+ = 3 is also discussed in Subsection 7.3.2 and proven for the lattice L
having Witt rank 1. It should be stressed that in the case of no hyperbolic split, Bruinier
constructed a subspace of the kernel and demonstrated that it is in general non-trivial
even in the simple instance of lattices of prime level [Bru14, Sec. 6.1].
The general proof strategy is to compute special cycle integrals of Kudla–Millson liftings
ΛKM(f) of cusp forms f ∈ SL,k. For suitably chosen cycles, these may be expressed in
terms of special values of certain L-series L(f, s) associated to the form f . If ΛKM(f)

vanishes, its cycle integral must vanish as well, yielding roots of the aforementioned
L-series. As a consequence, a relation is established between the Fourier coefficients of f
appearing in the construction of L(f, s). This ultimately permits the deduction of their
vanishing, which renders the initial form to vanish as well. Since the Kudla–Millson lift is
linear, injectivity is inferred. Nonetheless, the appearing cycle integrals are interesting in
their own right and we proceed with describing their computation below.

Cycle integrals

We describe how certain cycle integrals of Kudla–Millson liftings may be expressed in
terms of special values of L-series. In order to construct these special cycles, note that for

1This result is, in fact, identical to [MZ23, Thm. 5.1 (i) p. 19] in this particular signature.
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ℓ ∈ L of positive norm, there is a subvariety of the Grassmannian of the same type

Dℓ = {x ∈ D | x ⊆ ℓ⊥} ⊂ D.

When considering the stabiliser Γℓ of ℓ in Γ(L),

Z(ℓ) := Γℓ\Dℓ → Γ(L)\D = YL

defines a (in general relative) cycle of YL. Completing ΛKM(f) with an adequate power of
a Kähler form Ω allows for integration over Z(ℓ):∫︂

Z(ℓ)
ΛKM(f) ∧ Ωm

+−2.

For the sake of simplicity, assume throughout the introduction that L = Zℓ ⊕K splits
for some lattice K of signature (m+ − 1, 2). Then the theta series ΘKM = ΘZℓ ⊗ΘKM,K

splits as a tensor product on Dℓ which, neglecting convergence issues, allows for isolating
the integral over the divisor Z(ℓ) as follows.∫︂
Z(ℓ)

ΛKM(f) ∧ Ωm
+−2 =

∫︂
Z(ℓ)

∫︂
Mp2(Z)\H

⟨f,ΘKM⟩ Imk dµ ∧ Ωm
+−2

=

∫︂
Mp2(Z)\H

∑︂
λ∈(Zℓ)′/(Zℓ)
δ∈K′/K

fλ⊕δ · θZℓ,λ
∫︂
Z(ℓ)

θKM,K,δ ∧ Ωm
+−2 Imk dµ.

(0.3)

Here, subscripts in λ and δ indicate components of the corresponding vector valued
modular forms. The inner integral

∫︁
Z(ℓ) θKM,K,δ ∧ Ωm

+−2 may be expressed in terms of
an adelic standard theta integral which is suitable for an application of the Siegel–Weil
formula2. Effectively, it is replaced by an Eisenstein series. Retranslating this to the
classical setting reveals the expression as a scalar product∫︂

Z(ℓ)
ΛKM(f) ∧ Ωm

+−2 ·=

∫︂
Mp2(Z)\H

⟨︁
f,ΘZℓ ⊗ EK,k−1/2

⟩︁
Imk dµ. (0.4)

Here, EK,k−1/2 denotes an Eisenstein series of weight k − 1/2 associated to the lattice K.
Note that EK,k−1/2 is a Poincaré series, technically offering the possibility of unfolding.
Selecting a primitive element ℓ0 ∈ (Zℓ)′ and performing a subsequent calculation yields

2Compare Subsection 5.4.1 for details about its application.
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the following special L-value (cf. Theorem 7.14).

Theorem 0.3. Let (L, q) be an even lattice of signature (m+, 2), set k = 1 +m+/2, let
f ∈ SL,k and select some primitive ℓ0 ∈ L′ of positive norm. If m+ > 3, then

∫︂
Z(ℓ0)

ΛKM(f) ∧ Ωm
+−2 = C ·

∑︂
n∈N

a(nℓ0, n
2 q(ℓ0))

nm+ ,

where a(λ, n) denote the Fourier coefficients of the initial form f ∈ SL,k (cf. (0.1)) and C
is an explicit constant.

Before analysing the L-series presented above, it is imperative to elucidate the sim-
plifications made previously and delineate an approach to the general case. Firstly, for
general ℓ ∈ L such that the lattice L does not split the lattice Zℓ, a splitting sublattice
M = Zℓ ⊕ K ≤ L is considered. Subsequently, by applying lifting operators between
vector valued modular forms to the respective discriminant forms, we may replace f by
another form ↑ f to the discriminant form of the sublattice M , thus resulting in the theta
function splitting once more as a tensor product. In order to relate the inner integral in
(0.3) over the special cycle Z(ℓ) to a standard theta integral and apply the Siegel–Weil
formula, it is necessary to pass to a covering of the cycle and rewrite it in terms of the
GSpin setting (compare Subsection 7.3.1 for details). Another obstacle is that the integral
resulting from unfolding (0.4) is not convergent which is circumvented by passing to an
analytic continuation and verifying that the function agrees with the resulting L-series on
a right half-plane, thereby extending the identity to the edge of convergence. Ultimately,
the coefficients of the initial form f must be recovered from the expression involving ↑ f .

Symmetric square L-series

The L-series appearing in Theorem 0.3 are of independent interest and are analogous
to symmetric square L-series in the scalar valued case. The latter have already been
investigated by Shimura playing a key role in establishing the Shimura lift [Shi73] and led
to further investigations in [Shi75]. When extending the construction of these L-series in
Shimura’s work to the vector valued setting, a straightforward approach is to associate a
certain L-series to every component function of f ∈ ML,k, meaning for fixed µ ∈ L′/L in
(0.1). However, upon closer examination it becomes evident that their natural analogues
in the setting of vector valued modular forms intertwine the components. For the sake of
simplicity, we present only a special instance of the series discussed in the main body in
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Subsection 6.4.1. Namely, for a holomorphic vector valued modular form f ∈ ML,k with
Fourier expansion as in (0.1) and an anisotropic vector ℓ ∈ L′, we define

Lℓ(f, s) =
∑︂
n∈N

a(nℓ, n2 q(ℓ))
ns

(0.5)

for s ∈ C. In Subsection 3.3.4 we gather bounds of Fourier coefficients from existing
literature and adjust these for our intended purpose. This is done in order to determine a
right half-plane on which Lℓ(f, s) converges absolutely with respect to the parameter s,
thereby defining a holomorphic function. This is always the case for Re(s) > k + 1/2

and we refer to Corollary 6.82 for sharper bounds. In Subsection 6.4.3 we proceed by
realising the L-series in (0.5) as a Rankin–Selberg convolution and prove the convergence
and analyticity of its unfolded counterpart in a certain region (cf. Proposition 6.97).
Furthermore, we conclude that it admits meromorphic continuation to the whole complex
plane and note that a symmetry property is inherited from an Eisenstein series. In fact,
the main body of the thesis treats much more general L-series than the instance presented
in (0.5).
A key feature of the L-series investigated by Shimura is that these admit infinite product
expansions provided they are induced by Hecke eigenforms. This property may be
replicated in the vector valued setting. In [BS08], Bruinier and Stein develop a theory of
Hecke operators for vector valued modular forms, presenting a construction that is suitable
for concrete computations. Additionally, the action of a variety of Hecke operators on
Fourier coefficients of vector valued modular forms is also already presented in [BS08,
Prop. 4.3 p. 258]. To be more precise, for a prime p not dividing the level of L and
an eigenform f ∈ ML,k for the Hecke operator T (p2) with eigenvalue σp, there exists a
constant C such that

σpa(λ, n) = p2k−2a(λ/p, n/p2) + C · a(λ, n) + a(pλ, p2n). (0.6)

Here, a(λ, n) denote the Fourier coefficients of f as in (0.1). The recursion relation (0.6)
is suitable for eliminating the prime p from the index n in (0.5). However, the case of
primes p dividing the level of the lattice L is not contained in the source. Therefore,
we derive a recursion formula analogous to (0.6) for primes dividing the level of the
lattice L in Proposition 6.71 based on [Ste15]. However, in the general case, the recursion
formula has ambiguities due to the phenomenon of torsion in the discriminant form. For
maximal lattices, though, these ambiguities are resolved, resulting in a perfect recursion
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for certain forms. In this case, we derive an infinite product expansion for L-series as
in (0.5). Simplifying, compared to the main body of the thesis, results in the following
statement (cf. Corollary 6.92).

Theorem 0.4. Assume L to be maximal with 2 ∤ lev(L) and select a simultaneous
eigenform f ∈ SL,k of all T (p2) with eigenvalue σp that is invariant under O(L′/L). Write

f(τ) =
∑︂
µ∈L

∑︂
m∈Z+q(µ)

a(µ,m)e2πiτmeµ

for the Fourier expansion of f . For an element ℓ ∈ L′ such that lev(L) · q(ℓ) is square
free writing (λ, t) := (ℓ, q(ℓ)) ∈ L ×Q× yields the following product expansion

∑︂
n∈N

a(nλ, n2t)

ns

= a(λ, t) ·
∏︂

p∤lev(L)

1 + δp∤t
GL(1)
GL(p)

· pk−1−s

1−
(︂

σp
pk−1 − (1− p−1)GL(1)

GL(p)

)︂
· pk−1−s + p2(k−1−s)

·
∏︂

p|lev(L)

1 +KL,p

⎧⎨⎩δλp ̸=0(1− p−1) + δλp=0 · δp∤t, 2 | Rp

−δλp=0 · p−1/2
(︂
−t
p

)︂
ϵp, 2 ∤ Rp

· pk−1−s + C(λp) · p2(k−1−s)

1−
(︂

σp
pk−1 − δ2|Rp

(1− p−1)KL,p

)︂
pk−1−s + p2(k−1−s)

.

Here, GL and KL,p are certain Gauss sums, λp denotes the projection of λ ∈ L to its
p-component in Lp, C(λp) is a specified integer vanishing if λp = 0, χL is a quartic
character and ϵp equals 1 or i. Further, the quantity Rp is given in Definition 1.38.

In this context, we prove absolute convergence of the infinite product expansions as
well as non-vanishing of the rational factors in p−s within a specified range.

Injectivity of the Kudla–Millson lift

Turning to the question of injectivity, we recall that assuming f ∈ SL,k lying in the kernel
of the Kudla–Millson lift renders the special L-value in Theorem 0.3 to vanish. More
explicitly, for any primitive ℓ0 ∈ L′ of positive norm, the L-series in (0.5) admits the root
Lℓ0(f,m

+) = 0. In conclusion, we have established relations stating that certain weighted
sums of Fourier coefficients of any form f lying in the kernel of ΛKM must equal zero.
This will be exploited to prove that the form f had to vanish in the first place, thereby
implying the triviality of the kernel of ΛKM.
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In the case of the lattice L splitting a hyperbolic plane, this is possible with an elegant
trick. The key idea is to represent Lℓ0(f, s) as a recombination of subseries of the same
type through an inclusion–exclusion argument. The assumption regarding the lattice L
then guarantees that a substantial amount of these subseries vanish at m+, effectively
thinning out the original series Lℓ0(f,m+). By exploiting absolute convergence of the
L-series it will be concluded that the first coefficient of the series in (0.5) had to vanish,
which is exactly the Fourier coefficient a(ℓ0, q(ℓ0)) of the form f . However, the set of
Fourier coefficients representable in this fashion is, again due to the hyperbolic split,
exhaustive, implying the vanishing of the initial form f . The details of this reasoning are
presented in Subsection 7.3.2 and result in Theorem 0.2 above. Finally, an application of
[Bru14, Thm. 4.2 p. 330] yields Theorem 0.1.





Part I

Preliminaries

In this part, the basics of the theory are provided before turning the attention to the
theory of automorphic forms which lie at the heart of this thesis, as well as, the subject of
modern number theory as a whole.





1 Fundamentals

For the sake of efficiency, the following content is not provided in chronological order.
However, the majority of fundamental concepts that are not typically included in a regular
Master’s programme, although essential for comprehending this thesis, are addressed in
the subsequent sections. Part of the following content has already been discussed in my
Master’s thesis and is restated here for the sake of convenience.

1.1 Quadratic spaces and lattices
The following content is primarily found in [Ehl03, Sec. 1.1], [Cas78, Sec. 7], [Bos08],
[Kne02], [Lam73], [Lam05], and [Joh98]. Let R be a unitary, commutative, associative
ring and M be a finitely generated R module and Fr(R) the fraction field if R is integral.

Definition 1.1. A quadratic form is a map q :M → R such that

(i) q(rx) = r2 q(x) for all r ∈ R and x ∈M ,

(ii) M ×M ∋ (x, y) ↦→ b(x, y) := q(x+ y)− q(x)− q(y) is R bilinear.

Further, if R is integral, we allow q :M → K for a field K/Fr(R).
a) The form b is called associated bilinear form (to q).
b) The pair (M, q) is called quadratic module over R. In case R = F is a field, it is

called quadratic space and in this case, M is denoted by V .
c) For a basis (mi) of a free module M , the matrix S = (b(mi,mj))i,j is called a Gram

matrix and det(M) := det(q) := det(S) ∈ R/(R×)2 the determinant of M or b or q.
d) If det(q) ∈ R× (or ∈ K×), the form q or module (M, q) is called regular .

Example 1.2. Let F be a field of characteristic different from 2 and V = Fn, then

V ∋ x ↦→ xT diag(a1, . . . , an)x ∈ F (1.1)

defines a quadratic form, where ai ∈ F .
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There is a notion of morphisms and a natural process of constructing new quadratic
modules from known modules.

Definition 1.3. Let (M1, q1), (M2, q2) be quadratic modules over R mapping to the
same ring.

a) A morphism σ : (M1, q1) → (M2, q2) of quadratic modules is an R module homomor-
phism σ :M1 →M2 translating quadratic forms q1 = q2 ◦σ. An injective/bijective
morphism is called isometry/isomorphism.

b) Define (M1, q1)⊕ (M2, q2) as the quadratic module (M, q) with M :=M1 ⊕M2 as
R modules and q : (m1,m2) ↦→ q1(m1) + q2(m2).

c) For r ∈ R, we refer to (M1, r · q1) as the scaled lattice M1(r).

Example 1.4. For y ∈ (M, q) with q(y) ∈ R× the reflection at y is defined as the map
τy : m ↦→ m− b(m, y) q(y)−1y and determines an isometry. It is involutive, maps y to −y,
and any m ∈M with b(m, y) = 0 to itself.

If in Example 1.2 an element aj was 0 for some j, the form would be considered on a
smaller space where ai ∈ F× for all indices i. In fact, any quadratic space is isometrically
isomorphic to a form as in (1.1). As a consequence, regularity may be assumed in general.
Further, multiplying ai with a nonzero square does not alter the isomorphism type of
the space (V, q), so that ai are regarded as elements of F×/(F×)2. Over rings like Z the
situation is more delicate (cf. Remark 1.13).

Example 1.5. In case of F = R and V = Rm, every regular form q is isomorphic to

x ↦→ xT diag(1, . . . , 1⏞ ⏟⏟ ⏞
r times

,−1, . . . ,−1)x,

where the tuple (r,m − r) =: (m+,m−) is called signature or type of (V, q) and is a
complete invariant. We shall denote (V, q) by R(m+,m−).

Definition 1.6. Let (M, q) be a quadratic module.

a) For a subset N ⊆ M we refer to N⊥ := {x ∈M | b(x, y) = 0 for all y ∈ N} as the
orthogonal complement of N .

b) Further, (M, q) is called non-degenerate, if M⊥ = {0}.
c) An element 0 ̸= x ∈M is called isotropic, if q(x) = 0. We refer to (M, q) as being

isotropic if it possesses an isotropic element and anisotropic, otherwise.
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d) If (V, q) is a quadratic space, the dimension of a maximal totally isotropic subspace
is called Witt index or Witt rank and is an invariant of (V, q).

Example 1.7. The standard isotropic regular module has Gram matrix ( 0 1
1 0 ). It is denoted

by H and called hyperbolic plane. If e1, e2 denotes the standard basis, we have e⊥i = ⟨ei⟩,
i.e. ei is isotropic, and (e1 + e2)

⊥ = ⟨e1 − e2⟩, rendering H ≃
(︁
2 0
0 −2

)︁
provided 2 ∈ R×.

Note that the Witt index of H is 1.

Remark 1.8. Any regular quadratic space splits into an orthogonal sum of an anisotropic
space and hyperbolic planes, a fact known as Witt’s decomposition theorem (cf. [Lam05,
I.4 Thm. 4.1 p. 12]) rendering the Witt index r well defined as the number of hyperbolic
planes. Also compare Theorem 4.6.

Definition 1.9. Let (V, q) be a quadratic space over F with basis (vi)
m
i=1 and R be a

unital subring of F .

a) The R module L =
∑︁m

i=1Rvi together with q is called quadratic R lattice, (vi)mi=1 is
called lattice basis of L and m the rank of L. Equivalently, an R lattice L may be
defined as an R submodule of (V, q) such that L⊗R F ≃ V .

b) Further, define the discriminant disc(L) := (−1)
m2−m

2 det(L) of L.

Note that the determinant of a quadratic lattice is independent of the chosen basis if
viewed as an element of F×/(F×)2 ∪ {0}.

Example 1.10. Prominent examples for lattices in this thesis are Z lattices in quadratic
spaces over Q or Zp lattices in quadratic spaces over Qp. In fact, every Z lattice in a
quadratic Q vector space V lifts to a Zp lattice Lp in a Qp vector space Vp, by extending
the bilinear form b onto the tensor product Vp = Qp ⊗Q V and setting Lp = Zp ⊗Z L. A
fundamental concrete example for 2 < p <∞ is the lattice Znp with form (here, r ∈ Z×p )

qn,rp : x ↦→ xT diag(1, . . . , 1, r)x. (1.2)

Proposition 1.11. For 2 < p < ∞ every non-degenerate quadratic Zp lattice (L, q)
is isomorphic to an orthogonal sum of scaled forms as in (1.2). More precisely, let
dim(V ) = m, then there are mi ∈ N for 1 ≤ i ≤ n such that

∑︁n
i=1mi = m, ri ∈ Z×p and

a strictly increasing sequence of integers νi, such that

(L, q) ≃
m⨁︂
i=1

(︁
Zni
p , p

νi · qni,ri
p

)︁
.
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Further, two of the above orthogonal sums are isomorphic to each other precisely when the
associated ensembles of invariants mi, νi, ϵi :=

(︂
ri
p

)︂
are identical.

Corollary 1.12. Assume p ̸= 2. Every Zp lattice has an orthogonal basis and there is a
cancellation property for Zp lattices.

Remark 1.13. In fact, the case p = 2 is more complicated as the representation is not
unique! However, these forms are required in Chapter 6 so that we refer to [Cas78, 8.4
p. 117] as well as [Joh98, 7.5 p. 881] and at least note that the fundamental building
blocks of regular 2-adic quadratic lattices are, up to scaling with powers of 2, given by
the Gram matrices

(r) with r ∈ {1, 3, 5, 7} , H =

(︄
0 1

1 0

)︄
, A2 =

(︄
2 1

1 2

)︄
. (1.3)

Further, there is a cancellation property with respect to hyperbolic planes, i.e. for L1, L2

quadratic Z2 lattices with L1 ⊕H ≃ L2 ⊕H, we have L1 ≃ L2 (also cf. [OMe73, 93:14
p. 256]). This remains true if H is replaced by a scaled hyperbolic plane.

Definition 1.14. The constituents
(︁
Zni
p , p

νi · qni,r
p

)︁
in Proposition 1.11 are referred to as

Jordan components and are also denoted (pνi)ϵini , where ϵi = ( rip ).

In case p = 2, the characterisation is more complicated, incorporating the oddity and
two different types of forms (cf. [Joh98, 7.4 p. 380]).

After having learnt about characterisations of Zp lattices and realising that a Z lattice
L lifts to local lattices Lp := L⊗ Zp, it is natural to utilise local data in order to describe
the global situation. Before continuing, note that with the correct identifications

L =
⋂︂
p<∞

Lp.

Definition 1.15. On the set of non-degenerate Z lattices we introduce an equivalence
relation by associating a lattice L with the collection of the isometry classes of [L ⊗
R, (Lp)p<∞]. These collections are called genera (singular: genus).

In fact, the local isomorphisms do not characterise Z lattices up to Z isomorphy; the
relation is strictly coarser. Nonetheless, if the Gram matrix is indefinite and the rank is
greater than 2, the significant case for this thesis, these equivalent classes are close. In
fact, they coincide for |det(L)| < 128 and divergences obey strict conditions (cf. [Joh98,
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15.7 p. 378 and 15.9]). Also, two Z lattices L1, L2 have the same genus, if, and only if,
L1 ⊕H ≃ L2 ⊕H.

Example 1.16. The following Z lattices have the same genus (note that 41 ∈ (Z×2 )2 as well
as 2 ∈ (Z×41)2) and are not isomorphic over Z (cf. [Cas78, p. 129]):(︄

2 0

0 164

)︄
and

(︄
4 0

0 82

)︄
.

The following definition plays a major role for one of the main theorems of the present
thesis (cf. Theorem 7.16).

Definition 1.17. A lattice (L, q) is said to split another lattice M , if there is a third
lattice K, such that L ≃ K⊕M is an orthogonal decomposition. In case M is a hyperbolic
plane, we also speak of a hyperbolic split.

Before introducing dual lattices and discriminant forms the primary consideration of
lattices is concluded by sketching the Witt ring associated to a field F . To this end,
another construction principle for lattices besides direct sums is required.

Definition 1.18. For two quadratic modules (Mi, qi) over the same ring their tensor
product (M1 ⊗M2, q1⊗ q2) may be defined canonically by forming the tensor product of
the associated bilinear forms, so that q1⊗ q2(m1 ⊗m2) = q1(m1) q2(m2).

The set M(F ) of all isometry classes of finite dimensional quadratic spaces over a field
F represents a commutative semiring with the orthogonal sum and the tensor product as
concatenations. By Witt’s cancellation Theorem, the additive monoid is a cancellation
monoid. Consequently, there is a natural abelian group Groth(M(F )) containing M(F )

as a submonoid, called Grothendieck group of M(F ). It consists of pairs (x, y) ∈M(F )2

modulo the equivalence (x, y) ≡ (x′, y′) ⇐⇒ x⊕ y′ = x′ ⊕ y, so that, for instance, (0, y)
is the additive inverse of (y, 0) ∈M(F ).1 The tensor product extends naturally onto this
structure, equipping Groth(M(F )) with the structure of a commutative ring.

Remark 1.19. For a field F , the quotient of the ring (Groth(M(F )),⊗) and the ideal
generated by hyperbolic planes is called Witt ring of F and denoted W (F ). The elements
of the Witt ring are in bijection to the isometry classes of anisotropic quadratic spaces
[Lam05, II.1 Prop. 1.4 p. 29].

1Recall the construction of rational numbers from the ring of integers.
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Remark 1.20. Note that the discriminant is well defined on the Witt ring (cf. Defi-
nition 1.9 b)). Further, the signature (m+,m−) of a quadratic R space descends to an
invariant on W (R) when it is modified to sig(V ) = m+ −m−. For a Z lattice (L, q) we
will also write sig(L) := sig(L⊗Z R).

Dual lattices and discriminant forms

In the following, we assume the lattice L to be non-degenerate.

Definition 1.21. For a non-degenerate R lattice (L, q), define its dual lattice

L′ := {x ∈ L⊗Q(R) | b(x, y) ∈ R for all y ∈ L} .

The lattice L is called

(i) integral, if L ⊆ L′ or equivalently b(L,L) ⊆ R or Si,j ∈ R for all indices,

(ii) even, if q(L) ⊆ R,

(iii) unimodular , if L = L′.

Note that every lattice which is unimodular or even is automatically integral. Further,
in case of 2 < p < ∞ we find 2 ∈ Z×p , so that the notions of being even and integral
coincide for Zp lattices.

Example 1.22. a) The Zp lattice pνqn,rp from Example 1.10 is even; also compare Ta-
ble 1.1 for L′.

b) The hyperbolic plane H from Example 1.7 is unimodular over all rings R.
c) For R with 2, 3 ∈ R× consider (R2, q) with Gram matrix A2 from Remark 1.13,

meaning q(x) = x21 + x1x2 + x22. Clearly, the vectors ℓ1 = 1
3 · ( 11 ) , ℓ2 = ( 10 ) are

part of the dual lattice and since |⟨ℓ1, ℓ2⟩/L| = 3 = det(A2) which equals |L′/L| by
Remark 1.30, these represent a basis of L′.

Remark 1.23. a) For a non-degenerate R lattice L and c ∈ R× we find (cL)′ = c−1L′.
b) If L is a non-degenerate R lattice with Gram matrix S, then L′ = S−1L.

Before turning to discriminant forms, we require some technical notions for reference.

Definition 1.24. Let (L, q) be an R lattice.
a) For 0 ̸= l1, l2 ∈ L ⊗R Fr(R) and z ∈ R \ R× such that z · l2 = l1, we say that l2

divides l1 and write l2 | l1. If, in addition, l2 ∈ L, we say z divides l1, written z | l1
and set l1/z := l2 which might not be unambiguous!
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b) The element l1 ̸= 0 is said to be primitive in L, if l/z /∈ L for all z ∈ R \R×.
c) An even L is called maximal if there is no even R lattice in L ⊗R Q(R) properly

containing L.

Remark 1.25. Let R be a principal ideal domain.
a) Any R lattice is contained in a maximal lattice.
b) If L is maximal and L⊗RQ(R) splits a hyperbolic plane, so does L =M ⊕H where

M is automatically a maximal R lattice.
c) In case R = Zp (p <∞) and rk(L) ≥ 5 the space L⊗Qp splits a hyperbolic plane.

By the theorem of Hasse–Minkowski every indefinite quadratic Q space of dimension
at least 5 splits off a hyperbolic plane. This classical result is attributed to Meyer.

The theorem of Meyer implies the following result about the Witt rank over Q.

Remark 1.26. Let (L, q) be an even Z-lattice of signature (m+,m−). If |sig(L)| ≥ 3,
then the Witt rank r of L⊗Q is maximal, i.e. r = min{m+,m−}.

Finally, discriminant forms may be derived from lattices.

Remark 1.27. If an R lattice L is integral, the bilinear form induces a form

b : L′/L× L′/L→ F/R.

If a lattice L is even, the quadratic form induces a form

q : L′/L→ F/R.

The latter is called discriminant form.

We state some apparent observations before introducing more parameters.

Example 1.28. a) Since the hyperbolic plane H is unimodular, we find H ′/H = {0}
and q = 0.

b) Let (L, q) be an even Zp lattice and d ∈ Zp. Then L(d) = L ≤ L′ ≤ L(d)′, so that
there is a natural map L′/L ↪→L(d)′/L(d).

Definition 1.29. Let (L, q) be an even Z lattice.

a) The smallest number N ∈ N, such that N q(ℓ) ∈ Z for all arguments ℓ ∈ L′ is called
the level of L.
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L L′ D N

p > 2 (Znp , pν qn,rp )
(︁
p−ν · Znp , pν qn,rp

)︁
((Z/pνZ)n, p−ν qn,rp ) pν

p = 2 (Znp , pν qn,rp )
(︁
p−(ν+1) · Znp , pν qn,rp

)︁ (︁
(Z/pν+1Z)n, p−(ν+2) qn,rp

)︁
pν+2

(Z2
p, p

νH)
(︁
Z2
p/p

ν , pνH
)︁ (︁

(Z/pνZ)2, p−νH
)︁

pν

(Z2
p, p

νA2) (p−νZ2
p, p

νA2)
(︁
(Z/pνZ)2, p−νA2

)︁
pν

Table 1.1: Examples of even lattices, their discriminant forms, and levels. Here, p is a
prime, n, ν ∈ N0, the form qn,rp is given in Example 1.10. In addition, note that
H and A2 (cf. Remark 1.13) denote the Gram matrix, meaning a factor of 1

2
has to be taken into account when moving on to the associated quadratic form.

b) The level of ℓ ∈ L is the number Nℓ ∈ N, such that b(ℓ, L) = NℓZ.
c) A prime number p is referred to as being bad and as good otherwise. We also speak

of these primes as places.

Remark 1.30. (cf. addendum) Let L be an even non-degenerate Z lattice of rank m.

a) We find det(L)L′ ≤ L as well as NL′ ≤ L.
b) We have |L′/L| = |det(L)| = vol(L)2, in particular, L′/L is finite.
c) Further, the following division relations are true: lev(L) | 2det(L) | 2 lev(L)m and

lev(L) | det(L)2. In case of odd level N or even rank m, we find lev(L) | det(L).
d) The level lev(L) and the determinant det(L) have the same prime divisors.

Further, if the rank of the lattice L is odd, then its level is divisible by 4. Equipped
with these statements, discriminant groups may be defined and analysed locally.

Definition 1.31. In case of an even Z lattice L, the group L′/L is called discriminant
group. Its level is the level of L.

Remark 1.32. In fact, any finite abelian group L with a non-degenerate quadratic form
to Q/Z arises as a quotient L′/L of a Z lattice L (cf. [Wal63, 4 p. 294]). Further, for any
even Z lattice (L, q) we have Milgram’s formula [MH73, App. 4]

∑︂
λ∈L′/L

exp(2πi · q(λ)) =
√︁
|L′/L| · exp(2πi · sig(L)/8). (1.4)

As a consequence, the signature sig(L) := sig(L) mod 8 is well defined.
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Example 1.33. For a Z lattice, the group L := L′/L factors orthogonally into maximal p
subgroups

L′/L ≃
⨁︂
p<∞

Lp.

By the classification of finitely generated abelian groups L′/L ≃
∏︁
p<∞ Lp is immediate.

Note that if x ∈ Lp, y ∈ Lp′ , then deg(x)b(x, y) ≡ 0, so that the denominator of b(x, y)
must be a divisor of deg(x). But the same holds for y, implying b(x, y) ≡ 0. Further, we
have Lp = L′p/Lp with Lp = L ⊗Z Zp, so that considerations of discriminant forms are
reduced to local objects, signifying the relevance of Definition 1.15 and Proposition 1.11.
In particular, Table 1.1 is essentially exhaustive.

Remark 1.34. An even lattice L is maximal if, and only if, L′/L is anisotropic. In
particular, unimodular lattices are maximal. Further, by Example 1.33, the Z lattice L is
maximal if, and only if, Lp is maximal for all primes p.

Definition 1.35. Let L be a discriminant group and n ∈ N. Then nL denotes the elements
which are n-th powers in L and nL denotes the n-torsion of L.

Remark 1.36. For a discriminant group L the subgroup nL is the orthogonal complement
of nL and the following sequence is exact

0 nL L nL 0.ι ·n

Example 1.37. Consider pνqn,rp (cf. Example 1.10) and k ∈ N with νp := νp(k). Then

kL =
{︂
z ∈ Zp

⃓⃓⃓
pν−νp+2δp=2 | z

}︂n
.

The following technical definition is required in Section 6.4.2 and in particular in
Proposition 6.71, where (1.6) is needed.

Definition 1.38. Let (L, q) be an integral Z lattice. By [Ste15, Lemma 4.3] for any n ∈ N
and odd prime p, there is an orthogonal decomposition of L/pnL into Z/pnZ submodules

(︄⨁︂
i

Li

)︄
⊕

⎛⎝⨁︂
j

Mj

⎞⎠⊕N,

where Li = (Z/pnZ)vi is one dimensional with b(vi, vi) ∈ (Z/pnZ)×, Mj = (Z/pnZ)vj
with b(vj , vj) ∈ pk(Z/pnZ)× where 1 ≤ k ≤ n− 1, and b(N,N) ⊆ pnZ. We may assume
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the Mj being sorted with respect to increasing valuation k of q(vj). Define

nk = #{1 ≤ i ≤ m : νp(b(vi, vi)) = k} and Rnp :=
n−1∑︂
k=0

(n− k)nk. (1.5)

The most prominent case in this thesis is the one of n = 1, in which case we write Rp := R1
p

and note that
Rp = n0 = #{1 ≤ i ≤ m : νp(b(vi, vi)) = 0} (1.6)

equals the number of basis elements of L/pL such that the p-valuation of their norm is
zero.

1.2 p-adic numbers and the adele ring
Number theorists are in general interested in the rational numbers Q or even primarily
the discrete case of Z. Sustainably, analytical approaches have been instrumental in
developing sophisticated tools to simplify or even completely solve such discrete algebraic
questions. The following section presents tools from Topology and functional Analysis
(more precisely integration theory) that have the potential to facilitate solutions of purely
algebraic questions, while also offering an intrinsic mathematical appeal.

Definition 1.39. For a field F , a mapping | · | : F → [0,∞] is called absolute value
function (abs), if

a) | · | is definite, that is |a| = 0 =⇒ a = 0.

b) | · | satisfies the triangle inequality, i.e. for all a, b ∈ F : |a+ b| ≤ |a|+ |b|.

c) | · | is multiplicative, meaning for all a, b ∈ F we have |ab| = |a| · |b|.

Further, such a function is said to be non-Archimedean if the following stricter version of
b) is true:

|a+ b| ≤ max {|a|, |b|} .

The inequality above is referred to as the strong triangle inequality.

Example 1.40. The most prominent examples are the standard abs on Q as well as the
so called p-adic absolute value functions for a prime number p. The latter measure the
appearance of p in the prime factor decomposition of a rational number. More precisely, let
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p ∈ N be a prime number and 0 ̸= q ∈ Q. Furthermore, let a, b, k ∈ Z with gcd(a, b) = 1,
such that gcd(a, b, p) = 1 and q = pk ab . Then setting | q |p := p−k gives rise to an abs on
Q which is called p-adic absolute value function.
As expected, positive powers of p-adic abs are again abs, the same holds true for powers
to 0 < α < 1 of the standard absolute value function on Q. Clearly, these classes of abs
generate the same topology on Q, therefore two abs related this way are called equivalent.
Another absolute value function is the trivial one, mapping every element to 1.

Proposition 1.41 (Ostrowski,[BS, 1.4.2 Thm. 3 p. 37]). The list of absolute value
functions on Q presented in Example, i.e. the standard abs, the class of p-adic abs, and
the trivial abs 1.40 is complete up to equivalence.

The Theorem of Ostrowski reveals that the definition of absolute value functions is
eminently restrictive and that it is interconnected with the arithmetic structure of the
field Q. In fact, one can prove that any locally compact field with non-discrete topology is
isomorphic to R, C, or a finite extension of Qp or Fp(t). The latter two classes are exactly
the so called local fields, which might be characterised by being complete with respect to
a discrete valuation (absolute value), and possess a finite residue class field.

Definition 1.42. The completion of Q with respect to a p-adic abs is called field of p-adic
numbers and denoted Qp. It is referred to as the local field at that place p, in contrast
to the global field Q. The function | · |p extends uniquely to Qp and the fact that it is
non-Archimedean results in the unit ball (which is open as well as compact)

Zp := {x ∈ Qp | |x|p ≤ 1} = Z| · |p

being a ring. It is called ring of p-adic integers, is a principal ideal domain and its unit
group consists exactly of all elements with absolute value 1. As a consequence, Qp is a
locally compact, totally disconnected group. According to convention, define Q∞ := R
and Z∞ := Z and write ‘p <∞’for the set of all primes.

Remark 1.43. Note that since Zp is compact for p <∞, as well as open, the standard
notation for the closure of balls is inadequate. For a fixed p, the field Qp may be identified
with the set of all Laurent series

∑︁∞
k=k0

ckp
k for integer coefficients 0 ≤ ck < p and an

integer k0. Then Zp consists of the subring of power series.

It becomes apparent that the p-adic numbers encode arithmetic information about
the rationals in an analytic fashion. Hence, a desirable tool would be an algebraic and
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topological structure containing all p-adic numbers Qp. In order to capitalise on functional
analytical tools, a locally compact ring R seems to be preferable. However, in this case
R would be a locally compact Q vector space and by a well known result from André
Weil it had to be finite dimensional, conflicting with the requested properties. In order to
obtain a structure which is at least additively locally compact, the inductive limit of the
topological groups ∏︂

p∈S
Qp ×

∏︂
p/∈S

Zp

with product topology is taken, where S is a finite set of primes. The resulting structure
Af is called ring of finite adeles and is a locally compact additive group with a topologically
incompatible multiplication. Further, it contains the ring Ẑ :=

∏︁
p<∞ Zp ⊆ Af = Ẑ⊗Z Q.

Definition 1.44. The topological product

A := Af × R

is called Adele ring. It is, again, a locally compact abelian group and its Haar measure µ
is obtained by taking the product measure of the Haar measures of Qp (the same holds
for Af where we assume the normalisation µf (Ẑ) = 1). The group of multiplicatively
invertible elements A× of A is called Idele group and becomes a locally compact group
with the inductive limit topology with respect to Z×p as open compact subgroups in the
components. Its Haar measure µ× is again the product of the Haar measures of Q×p .2

Example 1.45. For s ∈ C with Re(s) > 1 we have that [Dei10, 5.3 Prop. 5.3.4 p. 128]

ζ(s) =

∫︂
Ẑ∩A×

∏︂
p<∞

|xp|sp dµ×f .

The integral expression above contains, at a glance, an infinite product. In fact,
the product is effectively finite for every argument and this type of function is usually
considered when integrating adelically. The above identity was generalised by John Tate
in his thesis [Tat16, [1]]. More precisely, for a Schwartz–Bruhat function f on A× (cf.
Definition 1.53), the Zeta integral

ζ(f, s) :=

∫︂
A×

f(x) ·
∏︂
p≤∞

|xp|sp dµ×

2These are given by their respective scaled additive measure µ such that µ×(t) = p
p−1

µ(t)
|t|p , where ∞

∞ = 1.
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converges locally uniformly for Re(s) > 1, has a meromorphic extension to C with known
poles and fulfils the functional equation

ζ(f, s) = ζ(f̂ , 1− s).

The construction presented above may be generalised by intertwining the integrand with
finite characters. Further references are the elaborate [Kud04b], the comfortably accessible
[Dei10, 6 p. 139–156], the concise [Bum98, 3.1 pp. 254–277], as well as Tate’s original
thesis [Tat16, [1] pp. 1–44].

The function
| · | : A× → R>0, (xp)p ↦→

∏︂
p≤∞

|xp|p

used above as an integral kernel defines a homomorphism whose kernel we denote by A1.
It plays a significant role in classifying finite characters on A×/Q×.

Another important feature of adelic formulations is the so called Hasse principle or
local-global principle, named after Helmut Hasse. The core concept is that global properties
of Q correspond to an ensemble of properties at all places p ≤ ∞. A concrete example for
this is the Theorem of Hasse-Minkowski (cf. [Has23] or [Has24]) or the fact that Q× < A1.

1.3 Dual groups and Fourier analysis
A convenient setting for this theory is that of locally compact abelian groups (lca). Details
are treated in depth in [Rud90, 1–2 pp. 1–58], which may serve as a comprehensive source
for acquiring the theory. The examples of particular interest for this thesis are discussed
in [Dei10, 5.4 pp. 129-138 and 6.3 pp. 146–152] and [Bum98, 3.1 pp. 254–262], featuring
p-adic numbers and the adele ring.

Definition 1.46. A topological group (G, · ) is called locally compact if it is Hausdorff
and every element of G possesses a compact neighbourhood.
A positive measure µ on the borel σ-Algebra of G is called a Haar measure, if it satisfies
the following conditions:

a) µ is locally finite, meaning for any compact set K ⊆ G we have µ(K) <∞.

b) µ is regular.

c) µ is left invariant, hence for any subset H ⊆ G and g ∈ G the identity µ(gH) = µ(H)

holds.
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By a theorem of Haar [Els11, Thm. 3.12 p. 362], any locally compact group possesses a
non-trivial Haar measure µ which is unique up to a constant factor. As a consequence, for
any g ∈ G the measure µg(A) := µ(Ag) must coincide with δG(g) · µ for an appropriately
chosen factor δG(g) ∈ R×>0. Moreover, δG defines a continuous homomorphism which is
called modular quasi character of G (cf. [DE14, 1.4 Thm. 1.4.1 p. 14]).

Definition 1.47. A character of a lca G is a continuous homomorphism χ : G → T.
The group of characters G∗ with the compact open topology is again a lca and called
(Pontryagin) dual group .3

Example 1.48. The prototype of a character is the exponential function. In case of (R,+),
define

x ↦→ exp(2πi · a · x) =: e∞(a, x),

for a ∈ R. In case of (Qp,+) for any p <∞ and a ∈ Qp define

x ↦→ exp(−2πi · a · x) =: ep(a, x).

Note that by continuity, the mapping has to be constant on some neighbourhood pkZp of 0.
Hence, it is well defined by multiplicativity. In fact, this list of characters for Qp is faithful
and exhaustive. In particular, Qp is isomorphic to its dual group via a ↦→ (x ↦→ ep(a, x)).

The following theorem, initially proven by Pontryagin in a more restrictive setting and
later proven in general by Egbert van Kampen and André Weil, justifies the name dual
group.

Theorem 1.49 (Pontryagin). The bidual group of G is canonically isomorphic to G, in
formulae (G∗)∗ ≃ G.

As a consequence, a lca G is compact if, and only if, G∗ is discrete.
With the notion of a dual group, Fourier transformations may be defined. Recall that we
write L1(G,µ) for the space of integrable C-valued functions on (G,µ).

Definition 1.50. Let f ∈ L1(G,µ), then the mapping

G∗ ∋ χ ↦→
∫︂
G
f(g) · χ−1(g) dµ(g)

is called Fourier transform of f and denoted by f̂ or F(f).
3So characters are unitary, one dimensional representations of the group G, whereas for the notion of

quasi characters unitaricity is not demanded.
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Before illustrating this definition by specifying the main application within this thesis,
a well established Lemma is stated.

Remark 1.51. Let H ≤ G be a compact subgroup and ψ ∈ Hom(G,C×)∩L∞loc(G). Then

F(1Hψ)(χ) =

⎧⎨⎩µ(H), if ψ|H = χ|H ,

0, else.

Proof : For arbitrary h ∈ H the following calculation immediately yields the result

F(1Hψ)(χ) = ψ(h)χ−1(h)

∫︂
H
ψ(g)χ−1(g) dµ(g) =

(︁
ψχ−1

)︁
(h) · F(1Hψ)(χ).

In case of G = Qp, the transform may be identified with a function on Qp (cf. Ex-
ample 1.48), resulting in the classical Fourier transformation in case of p = ∞ if the
measure µ is scaled properly. In case of a non-degenerate quadratic space (Vp, q) over Qp,
the bilinear form b provides an isomorphism to the linear dual of Vp, which induces an
isomorphism of Pontryagin duals via

Vp ∋ a ↦→
(︂
x ↦→ ψp(b(a, x)) =: ψb

p (a, x)
)︂
∈ V ∗p , (1.7)

for a non-trivial character ψp of Qp. For convenience, we fix the choice ψp(x) := ep(1, x)

(cf. Example 1.48). These isomorphisms give rise to a Fourier transformation on L1(Vp)

F := Fψb
p
: L1(Vp) ∋ f ↦→

(︄
a ↦→

∫︂
Vp

f(x) · ψb
p (a, x)

−1 dµ(x)

)︄
. (1.8)

In fact, there is, analogously to the Schwartz space in the real setting, a subspace
S(Vp) < L1(Vp) on which Fψb

p
defines an automorphism. Moreover, the space S(Vp) is

characterised by this property4 (cf. [Osb75, Thm. 1 p. 42]).

Example 1.52. Let f ∈ L1(Vp, µp) and b be a non-degenerate bilinear form on Vp, ψp be a
non-trivial character of Qp and c ∈ Vp. Then we find the following calculation rules.

a) F [f( · + c)](a) = ψb
p (c, a) · F [f ](a)

4The classic approach from Bruhat is via an inductive limit involving Lie subquotient groups and hence
requires extensive background knowledge in differential geometry, while the characterisation of Osborne
is elementarily accessible. In addition, a key feature of the space and its maximality with respect to
this feature is apparent.
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b) F [ψ(c, · )f ](a) = F [f ](a− c)

c) Let p <∞ and (Lp, q) ⊂ (Vp, q) be an even lattice. Then

F [1Lp ] = µp(Lp) · 1L′
p

(1.9)

by Remark 1.51 with ψ = 1 and H = Lp.

d) Let p <∞, (Lp, q) ⊂ (Vp, q) be an even lattice, and λ ∈ Q×p . Then

F [f(λ · )](a) = 1

|λ|mp
F [f ](a/λ).

This follows from the fact that A ↦→ µp(λA) defines a Haar measure as well, meaning
it must agree with µp modulo a non-trivial factor. Evaluation on Lp in case p <∞
yields the desired result.

Definition 1.53. Let p <∞. For a Qp vector space Vp, a Schwartz–Bruhat function is
a locally constant function with compact support. These functions constitute a vector
space denoted by S(Vp).

Clearly, for l ∈ Vp and λ ∈ Qp, the function 1l+λLp is a Schwartz–Bruhat function. On
the other hand, by decomposing the support of f ∈ S(Vp), we may represent it as a linear
combination of such functions.

Remark 1.54. Let p < ∞, (Lp, q) ⊂ (Vp, q, µp) be an even lattice, l ∈ Vp, and λ ∈ Q×p .
Then the observation 1l+λLp(x) = 1λLp(x− l), as well as 1λLp(x) = 1Lp(x/λ), imply in
conjunction with Example 1.52 that

F [F [1l+λLp ]](a) = F [ψb
p (−l, · )F [1λLp ]](a)

= F [|λ|mp F [1Lp ](λ · )](a+ l)

= F [F [1Lp ]]

(︃
a+ l

λ

)︃
= µp(Lp)

2|L′p/Lp| · 1Lp

(︃
a+ l

λ

)︃
= µp(Lp)

2|L′p/Lp| · 1−l+λLp (a)

= µp(Lp)
2|L′p/Lp| · 1l+λLp (−a) .

In particular, the Fourier transform defines an automorphism of S(Vp). It is apparent,
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that the usual choice of Haar measure, in the following denoted by µb
p , has normalisation

µb
p(Lp) :=

√︂
|L′p/Lp|

−1
=
√︂
|det(S)|p (1.10)

as this results in

F2
ψb
p
[f ](a) = f(−a) (1.11)

for f ∈ S(Vp), rendering the Fourier transformation idempotent. As a consequence,
Parseval’s formula [Els11, 3.14 p. 199] holds as well as the Theorem of Plancherel,
extending the result to L2. With this normalisation the measure µb

p is called self dual and
the product measure on VA assigns the value 1 to the compact space VA/VQ (cf. [Bum98,
Prop. 3.1.3 p. 261]).

Schwartz–Bruhat functions may also be defined for the adele ring. Let V be a Q vector
space of dimension m and Vp = V ⊗QQp such as VA = V ⊗QA. Then an element f ∈ S(VA)
might be directly defined as a linear combination of products of the form

VA ∋ a ↦→
∏︂
p≤∞

fp(ap),

where fp ∈ S(Vp) and fp = 1Zm
p

for almost all p <∞. Note that this space agrees with
the inductive limit of finite tensor products of the local Schwartz–Bruhat spaces S(Vp)5.
Further, the space S(VA) is generated by products as above when restricting possible
choices of fp at finite places to characteristic functions of elements of local discriminant
groups associated to even quadratic lattices in V (cf. [KY10, p. 2286]).

For the final part of this section we return to characters, discussing the adelic case.

Remark 1.55. The instances of Example 1.48 may be combined to an adelic character.
In fact, the mapping

A ∋ a ↦→

⎡⎣x ↦→
∏︂
p≤∞

ep(ap, xp)

⎤⎦ ∈ A∗

defines an isomorphism A ≃ A∗. Write e(a, x) :=
∏︁
p≤∞ ep(a, x) and note that these

characters are trivial on Q if, and only if, a ∈ Q, so that (A/Q)∗ ≃ Q (equipped with the
discrete topology). Moreover, ψ will denote the standard character ψ(x) = e(1, x), with

5For inducing the inclusions vectors of each S(Vp) have to be fixed which are taken to be χZp for p < ∞.
For further information consider [Bum98, p. 300-301].
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components ψp, if not specified further.

Characterising the characters of the multiplicative group A×, however, is more subtle
and will not be discussed extensively.

Remark 1.56. Characters of A×/Q× are called Hecke characters and decompose into a
finite character and a quasi character of the form a ↦→ | · |s for some s ∈ C. Finite Hecke
characters are in bijection to primitive Dirichlet characters (cf. [Bum98, Prop. 3.1.2 p. 259],
[Dei10, Lem. 6.3.2 p. 147]), a link whose application becomes relevant in Section 5.3 and
which is treated in detail in [Opi18, 1.10 p. 20]. If χ is a Dirichlet character, then χp will
denote the associated local character on Q×p .

Further, quadratic Dirichlet characters are representable by the Hilbert symbol, which
is the subject of the following section.

Remark 1.57. Remark 1.55 may be upgrade to characters of VA by sending

VA ∋ a ↦→

⎡⎣x ↦→
∏︂
p≤∞

eb
p(ap, xp)

⎤⎦ ∈ V ∗A .

As a consequence, Fourier analysis as above may be carried out in the adelic setting, where
computations are essentially reduced to treating finitely many places. For convenience,
write eb

f (a, x) :=
∏︁
p<∞ e

b
p(ap, xp) as well as eb(a, x) :=

∏︁
p≤∞ e

b
p(ap, xp)

1.4 Hilbert symbol
The Hilbert symbol is a number theoretic bilinear form and induces characters which are
essential for understanding the Weil representation which itself is of critical significance
for the space of cusp forms appearing in the main theorem of this thesis.
The curious reader may find a compact and, concerning the framework of this thesis,
comprehensive investigation of Hilbert symbols in [Ser12a, I.III p. 19–26] by Serre. Based
on this reference, the following section provides the bare minimum of information required
to grasp the conceptional use throughout this thesis.

Definition 1.58. Let F be a field. The Hilbert symbol H of a, b ∈ F× is defined as

H(a, b) =

⎧⎨⎩1, if z2 − ax2 − by2 = 0 has a non-trivial solution (x, y, z) ∈ F 3,

−1, otherwise.
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This association is naturally viewed as a mapping F×/(F×)2 × F×/(F×)2 → {±1}.

Remark 1.59. Let a, a′, b ∈ F× and Fb = F (
√
b). Then H(a, b) = 1 holds if, and only if,

a belongs to the group NF×
b

of norms of F×b .

i) H(a,−a) = H(a, 1− a) = 1,

ii) H(a, b) = 1 =⇒ H(aa′, b) = H(a′, b),

iii) H(a, b) = H(a,−ab) = H(a, (1− a)b), if 1− a ̸= 0 in the last expression.

The Hilbert symbol may be evaluated in terms of the Legendre symbol. In order to to
perform this reduction, a characterisation of F×/(F×)2 is advantageous, which is provided
in [Ser12a] in case of F = Qp. As a result, the following formulae are obtained.

Proposition 1.60. If F = Qp and a, b ∈ Qp are written as pαu, pβv with |u|p = |v|p = 1,
the Hilbert symbol of a, b admits the following representation:

H(a, b) = (−1)αβε(p) ·
(︃
u

p

)︃β (︃v
p

)︃α
if p ̸= 2,

H(a, b) = (−1)ε(u)ε(v)+αω(v)+βω(u) if p = 2,

where
(︂
u
p

)︂
:=
(︂
u
p

)︂
≡ u

p−1
2 mod p is defined by the common Legendre symbol of u in Fp

and u denotes the image of u under the canonical mapping Z×p → (Z/pZ)×. Furthermore,
the notation ε(u) := u−1

2 mod 2 as well as ω(u) := u2−1
8 mod 2 has been used.

Once the above formulae are established, they may be utilised to derive the following
theorem.

Theorem 1.61. For any p ≤ ∞, the Hilbert symbol Hp defines a non-degenerated bilinear
mapping on the F2 vector space Q×p /(Q×p )2.

The following examples of finite Hecke characters are central for the Weil representation
of SL2(A) and it is recommended to compare these with [Dei10, Lemma 6.3.2 p. 147].

Example 1.62. Let b ∈ Q×, then for every p ≤ ∞, χbp : Q×p → {−1, 1} , a ↦→ Hp(a, b)

defines a character. Furthermore, χbp is trivial on Z×p for almost all p and the product over
all χbp(ap) equals 1 for (ap)p≤∞ ∈ Q× ⊂ A×, giving rise to a character

χb : A×/Q× → {−1, 1} , (ap)p≤∞ ↦→
∏︂
p≤∞

χbp(ap).
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For a quadratic Q vector space (V, q) of dimension m, the associated character is denoted

by χV and equals χb with b = (−1)
m(m−1)

2 det(V ). Note that the mapping (V, q) ↦→ χV

is well defined on the underlying additive group of the Witt ring W (Q) (cf. Section 1.1).
Similarly, define χL for a quadratic Z-lattice L and χL = Hp( · ,disc(L)) for a local lattice.

In fact, all quadratic Dirichlet characters admit a representation via the Hilbert symbol
as above. Each quadratic character, given by a fundamental discriminant D ≡ 0, 1 mod 4

via the Kronecker symbol m ↦→
(︁
D
m

)︁
, corresponds to the Hilbert symbol HA( · , D).6 Here,

A2 ∋ (a, b) ↦→ HA(a, b) :=
∏︂
p≤∞

Hp(ap, bp)

denotes the product of the local Hilbert symbols. Further, these characters are related to
quadratic field extensions (cf. [Zag13]), which are all of the form Q(

√
D)/Q and will be

discussed in the subsequent section.

1.5 Quadratic field extensions
In the following, elementary statements about quadratic field extensions of Q and Qp are
presented. The reader will find adequate references in [Neu06], [Hel90] as well as [Zag13]
and a brief overview in [Fre90, Appendix A].
In the following, let R be a principal ideal domain and Q(R) its field of fractions. In later
sections the case R = Zp for p ≤ ∞ will be primarily considered which is the reason for
restricting the class of admissable rings R. If the field in question is Qp for p < ∞, we
associate the choice R = Zp, in case of Q, the ring R = Z is considered.

Definition 1.63. Let F/Q(R) be a field extension, then the roots of monic polynomials
from R[X] lying in F form a ring which is denoted OF and referred to as ring of integers
of F . Its elements are referred to as being integral.

Example 1.64. As a principal ideal domain, R is a unique factorisation domain and we
have OQ(R) = R, so that there are no integral elements strictly above R in Q(R). In
particular, OQ = Z and OQp = Zp for p <∞.

Lemma 1.65. If F/Q(R) is algebraic, then every OF module M in F is a free R module
of rank [F : Q(R)] In particular, M admits an R basis.

6This relation is established in detail in [Opi18, 1.10 p. 20].
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Example 1.66. Let 0, 1 ̸= d ∈ Z be square free and define

b =

⎧⎨⎩
√
d, if d ≡ 2, 3 mod 4,

(1 +
√
d)/2, if d ≡ 1 mod 4.

Then, OF = Z+ bZ for F = Q(
√
d).

Definition 1.67. a) Let trF/Q(R)(x) and NF/Q(R)(x) denote the trace and norm of an
element x ∈ F for a finite extension, given by the trace and determinant, respectively,
of the associated linear Mapping Mx : F → F, y ↦→ xy.

b) The so called discriminant of (an R basis (αi) of) OF for separable F/Q(R) is given
by D = det(trF/Q(R)(αiαj)i,j) ∈ R/(R×)2. The discriminant DF/Q(R) of F/Q(R) is
the ideal generated by all discriminants of bases.7

Example 1.68. For Q(
√
d) as above, a computation yields

D =

⎧⎨⎩4d, if d ≡ 2, 3 mod 4,

d, if d ≡ 1 mod 4,
(1.12)

so that F = Q(
√
d) = Q(

√
D) =: FD and OF = Z + D+

√
D

2 Z for all choices of d.
Discriminants of the above form correspond to determinants of binary even quadratic
lattices over Q.
Further, the norm q = NFD/Q restricted to OFD

induces the structure of a quadratic
lattice with Gram matrix (with respect to the basis (1, D+

√
D

2 ))

(︄
2 D

D D2−D
2

)︄
,

so that (F ⊗Q R, q) is of signature

(1, 1), if D > 0,

(2, 0), if D < 0.

Further, note that disc(OF , q) = (−1)(−D) = D. In particular, if D = ±p is prime, we
find that L′/L ≃ (Z/pZ, rx2/p) for some p ∤ r.

7In fact, this is a principle ideal, so that one basis suffices. As a consequence, the ideal D and generating
element D will not be distinguished.
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Definition 1.69. A finitely generated OF module a is called fractional ideal. The
collection of such ideals forms an abelian group8 JOF

= JF with inversion defined by
a−1 = {x ∈ F | xa ⊆ OF } and identity element OF . The quotient of JF and the principal
fractional ideals (a) = aOF for all a ∈ F is called ideal class group and denoted ClF , so
that the following sequence is exact:

1 O∗F F ∗ JF ClF 1.

For R = Z and an algebraic number field F/Q, the number |ClF | is finite and called class
number of F/Q.

The function NFD/Q defines a quadratic form on FD, so that every fractional ideal a of
FD is naturally equipped with the structure of a quadratic lattice. For an ideal 0 ̸= a◁OF ,
the mapping a → [OF : a] extends to a homomorphism N : JF → R×+ which is called
absolute norm.

Example 1.70. In fact, q = NFD/Q /N(a) : a → Z defines an integral (even) quadratic form
on the fractional ideal a. This is true since NFD/Q(a) = N(aOF ) by definition, meaning
that N(a) | NFD/Q(a) for all a ∈ a. As a consequence, each fractional ideal is naturally an
even Z lattice.

As mentioned above, fractional ideals admit a unique factorisation into prime ideals of
OF with exponents in Z. However, a prime ideal p ◁R might not stay prime when passing
to OF (meaning to p ≡ pOF ), so that there are prime ideals qi ◁OF , such that

p =
r∏︂
i=1

qeii (1.13)

for adequate ei ∈ N0 in a unique fashion. The exponents ei are called ramification index
and the degree of the field extension

fi := [OF /qi : R/p]

is called inertia degree of qi over p.

8Note that every element of this group admits a unique factorisation into prime ideals with exponents in
Z.
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Proposition 1.71. If F/Q(R) is separable, then the following fundamental identity holds

[F : Q(R)] =

r∑︂
i=1

eifi.

There are the following notions which are advantageous for investigating ramification.

Definition 1.72. Let p factor as in (1.13).

a) The prime ideal p is said to split completely or totally split in F if r = [F : Q(R)].
On the other hand, p is said to be nonsplit or indecomposed if r = 1.

b) Further, the prime ideal qi in the decomposition of p is said to be unramified over
OF if ei = 1 and (OF /qi)/(R/p) is separable, otherwise it is called ramified. If,
additionally, fi = 1 for all i, then p is called totally ramified.

c) Further, the ideal p is called unramified, if all qi are unramified, and the extension
F/Q(R) is called unramified, if all of its prime ideals are unramified in F .

In fact, ramification barely occurs. For a given extension F/Q(R), only finitely many
prime ideals are ramified – these are exactly the prime divisors of the so called different
(ideal). The different ideal of F/Q(R) is given by the dual lattice of OF with respect to
the bilinear form (x, y) ↦→ trF/Q(R)(x, y) := trF/Q(R)(xy) and is denoted by dF .

Remark 1.73. Let a be a fractional ideal of F/Q(R) as in Example 1.70. Then the dual
ideal can be computed by means of the different ideal via

a′ = d−1F a.

Example 1.74. In case of FD/Q, we find dFD
= (

√
D), so that a′ = (

√
D)−1a.

Further, for a prime ideal (identified with the number) p ∈ Z, the occurrence of a case
described in Definition 1.72 may be identified by means of the associated character:

p splits in FD ⇐⇒
(︃
D

p

)︃
= 1,

p remains prime in FD ⇐⇒
(︃
D

p

)︃
= −1,

p ramifies in FD ⇐⇒
(︃
D

p

)︃
= 0.

In order to investigate the global situation, local considerations prove to be useful. This
is why the following definition for non-Archimedean fields is established.
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Definition 1.75. A finite field extension of local fields F/K (with K = Q(R)) is called
unramified, if

[F : K] = [OF /mF : R/mR],

where m refers to the maximal ideal of the respective ring of integers.

Note that by Proposition 1.71, this coincides with Definition 1.72.

Valuations and global to local relations
This section is interconnected with Section 1.5, as the rings considered in elementary
algebraic number theory are exactly these for which valuation rings can be naturally and
consistently be associated. In Subsection 1.5 a prime factorisation in JR for special
types of rings R was introduced. Rings in which such a factorisation is possible are called
Dedekind domains and these form a frame predestined to study discrete valuation rings
(comparable to Zp). The reader further interested in the material will find the content
provided in this thesis as well as additional relations in [Neu06] and [CF10, Chap. 1 p. 1].

Definition 1.76. A discrete valuation ring D is a principal ideal domain that is local, i.e.
possesses exactly one maximal ideal mD.

Given such a ring D, the maximal ideal mD is generated by an element π, which is
uniquely determined up to a unit and called the uniformiser of D. Hence, every element
d ∈ D may be written as d = ε · πn with a unit ε ∈ D and n ∈ N0. The number n is
denoted by νp(d), where we write p = mD, and is called the valuation of d. The mapping
extends uniquely to the quotient field of D and behaves in such a fashion, that d ↦→ ρνp(d)

for 0 < ρ < 1 defines a non-Archimedean absolute value function | · |p on Q(D).9

Definition 1.77. Let R be an integral domain, but not a field. Then, R is called Dedekind
domain if every proper ideal factors into primes. Equivalently, it may be characterised by
its localisations at every prime ideal p being discrete valuation rings.

Example 1.78. Let R = Z, then every prime ideal p is represented by a prime number p.
The localisation at p identifies with

Zp =

{︃
x

y
| x ∈ Z, y /∈ p

}︃
,

9In fact, every non-trivial absolute value function | · | on Q(D) with |D| ≤ 1 must be of this form.
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meaning any number in Q, whose nominator is not divided by p. The associated absolute
value function is given by z ↦→ |p|−νp(z) in accordance with Example 1.40. We see that Zp

is the unit ball with respect to this abs and that in fact Qp is the completion of Q(Zp)

along the abs. The same topological relation holds for Zp and Zp.

Therefrom, the prime ideals p of a Dedekind domain R give rise to complete non-
Archimedean fields Q(R)

| · |p
=: Q(R)p, similar to Qp over Q = Q(Z) with ring of integers

Rp = {x ∈ Q(R)p | |x|p ≤ 1} and maximal ideal mRp
= {x ∈ Q(R)p | |x|p < 1}. These

fields might be considered in order to characterise the field Q(R) or compute invariants
of Q(R). Usually, Q(R) is chosen to be a global field, in our setting a finite extension of
Q and the prime ideals p of OQ(R) are called places of Q(R) or OQ(R), while the fields
Q(R)p are referred to as local fields10 associated to Q(R).
In many cases the investigation of global properties might be reduced to the computation
of local objects. A few supplementing examples will be presented in the following. For
instance,

JR =
⨁︂

p prime
JRp =

⨁︂
p prime

JRp
, (1.14)

so that global fractional ideals are completely described in terms of local ideals.11 This
should not be surprising, as JRp

is generated by one element, exactly the prime ideal p
and the left hand side of (1.14) equals the free group in exactly these prime ideals. In
fact, the local objects are almost always trivial, so that only finitely many computations
have to be carried out. For instance, consider two R modules M,N in a Q(R) vector
space V , which span V over Q(R). Then for almost all p, we find RpM = RpN . Further,
M =

⋂︁
p primeRpM .

Example 1.79. Let L be a Z lattice in Qn, then ZpL = Znp for almost all p and

⋂︂
p<∞

ZpL = L.

Next, two invariants of classical algebraic number theory are related to the local case, as
they are useful for our proceedings. For two free12 R modules M,N in a finite dimensional

10This notion might be defined rigorously and abstractly.
11Note that this implies that the class number is locally finite as well.
12In fact, requiring the modules to be free is not necessary, as by equation (1.14) the index can be defined

locally and gives rise to one and only one ideal in JR.
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Q(R) vector space V , there is a linear isomorphism σ :M → N that extends to V . Define

[M : N ]R := R det(σ)

as a principal ideal, the module index of N in M . It agrees with the group index, if R = Z
and M ⊇ N .

Definition 1.80. The discriminant of an R module spanning a finite dimensional non-
degenerate quadratic Q(R) vector space V is defined to be

D(M) := D(M/R) := [M ′ :M ]R,

where M ′ is the dual module with respect to the bilinear form associated to V (cf.
Section 1.1).

Note that D(RpM/Rp) = D(M/R)Rp as well as D(RM/R) = D(M/R)R, and that in
case of M being free,

D(M) = (det(S))

where S is the Gram matrix to the trace on M . This, in fact, accords with Definition 1.67.
Similarly to the above, the following relation may be established for duals:

(MR)′ =M ′R.

Last, the discriminant and different ideal behave well when splitting considerations to
local field extensions.

Remark 1.81. For a prime ideal p in R and prime ideals B | p in OF , we find

d(OF /R)OF,B = d(OF,B/Rp) and D(OF /R)Rp =
∏︂
B|p

D(OF,B/Rp).

Remark 1.82. The different ideal and discriminant give rise to a class of easily accessible
lattices and are important constructions. Note that a lattice L in13 F = Qp(

√
D)/Qp

is distinct from its dual dFL (cf. Remark 1.73) if, and only if, dF is not trivial, which
happens if, and only if, there is a prime ideal B in OF that divides dF . This case occurs
only if p | D, as dF = (

√
D) (cf. Example 1.74) and (p) is the only prime ideal in OQp .

13We explicitely state that D is assumed to be the discriminant of the extension, as the statement fails in
case of p = 2, otherwise.
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We conclude: the lattice (a, N/N(a)) in Qp(
√
D)/Qp is not unimodular if, and only if,

Qp(
√
D)/Qp is ramified which is equivalent to p | D.





2 Classical modular forms

Modular forms are at the origin of the present thesis. Some notions and theorems of the
classical theory are necessary for the later investigations in Sections 3.3 and 7.3. These
are collected in a compact fashion in Section 2.2 of this chapter.

Apart from that, the author decided to devote a whole section to the motivation of
classical modular forms, in order to build up an intuition for readers who are not familiar
with a conceptual approach to modular forms. The path followed can be found in [DS05],
[GBL10, III.59 p. 250], and [FB06, V p. 255], whereas introductory material offering
different perspectives is, for instance, found in e.g. [Dei10], [KK98], [Iwa95], [Bum98],
[Hec26], and [Bor97]. The curious reader will find elaborate material in [BC79], which is
beyond the scope of this thesis, as well as a brief inspiring introduction to the general
theory in [Bor65].

2.1 Introduction

Familiarity with at least classical modular forms1 was an advantage in reading this thesis.
Due to the sheer complexity2 of the theory and the broad mathematical requirements to
grasp its content, its introduction is often not realised conceptually. Nevertheless, a rough
idea as well as fundamental concepts are discussed in this overview, which is based on a
talk given by Solomon Friedberg at ICERM in 2013 [Fri13].
Based on mathematical experience, functions on a topological group G which are invariant
under the action of a discrete (compact) subgroup Γ (or K) are particularly interesting.
In a concrete setting, additional conditions may be imposed on these functions and the
action of Γ frequently involves characters of G.

1These associated with SL2(Z) on SL2(R)/ SO2(R) ≃ H which are also referred to as elliptic modular
forms.

2Cf. Robert Langlands on automorphic forms: ’It is a deeper subject than I appreciated and, I begin to
suspect, deeper than anyone yet appreciates. To see it whole is certainly a daunting, for the moment
even impossible, task.’ according to [Fri13]
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Example 2.1. Let G = R and Γ = Z < R, then a Z invariant function f is called periodic
and gives rise to a Fourier expansion under reasonable circumstances (cf. [Con94, I.5
Thm. 5.11 p. 22]). In this sense, Z acts on R as a group if automorphism and f is an
automorphic function (invariant under the action) with respect to Γ on G. In particular f
may be regarded as a function on the quotient R/Z ∼ S1 and by considering functions on
S1 all automorphic functions on R with respect to Z are induced.

Remark 2.2. a) In case of G = SL2(R) and a congruence subgroup Γ the theory of
classical modular forms is obtained. Recall that by the Iwasawa decomposition
H ≃ SL2(R)/SO2(R), where the latter group is compact. A function f on G to C
which is right invariant under K = SO2(R) and invariant under Γ via the operation
of the Petersson operator is called classical modular form if it fulfils certain analytic
properties.3 Usually, holomorphy or meromorphy is assumed. By imposing weaker
conditions, for instance, real smoothness and satisfying certain differential equations,
involving the hyperbolic Laplace operator, Maas forms are obtained (cf. [Bum98, 1.9
pp. 103-118]). This opens up the field to functional analysis, particularly operator
theory, and representation theory. The latter was incorporated into the theory of
automorphic forms by Gelfand and Fomin 1952 (cf. [GF52]4, while a reference for
the former application is found in [Iwa95].

b) In the adelic setting, similar functions may be considered. For instance, G = A may
be chosen along with functions f which are invariant under the operation of Γ = Q
(Note that Q < A is discrete and the quotient is compact). Further, the group (A/Q)∗

may be identified with Q (in fact, with discrete topology - cf Remark 1.55), so that f
admits a Fourier series analogously to the case R/Z. If G is set to be GL1(A) = A×

and Γ = GL1(Q) = Q×, automorphic forms are multiplicative functions on G, which
are invariant under Γ and called Hecke characters (cf. Section 1.3).

c) Similarly, adelisations of rational groups may be considered, for instance, SL2(A) (cf.
[Bor91]). In this setting certain functions which transform with a character under a
compact subgroup K from the right and are invariant under SL2(Q) from the left
may be related to classical modular forms (cf [Bum98, 3.6 p. 341] and the concrete
example in Section 5.2.1), providing a broader context for classical modular forms.

3In fact, this classical setting allows for a colourful geometric interpretation, discussed over the course of
the subsequent sections.

4An English translation of that source is available by the American Mathematical Society.
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2.1.1 A geometric approach

The viewpoints on automorphic forms are manifold. However, the classical case admits
a certain concrete geometric interpretation which shall be discussed over the course of
the subsequent sections. In short, classical automorphic forms (a generalised notion of
modular forms) are global meromorphic differentials of the compactified coarse moduli
space of complex elliptic curves. The following sections are devoted to fill these words
with meaning for the reader unfamiliar with the aforementioned concepts.

Elliptic curves

At the origin of the geometrical approach lie elliptic curves, objects which are of
a particular interest for number theorists. In fact, the ancient Greeks had already
investigated equations such as

aX + bY = c a, b, c ∈ N

and asked for its solutions for X and Y . In a modern context, the coefficients would be
chosen from Z and it is well known, that the equation always has infinitely many solutions
over Q and admits an integer solution, if, and only if, gcd(a, b) | c. All of these solutions
are computable via the Euclidean Algorithm.
An immediate problem arising from the above is to determine the solution of equations of
the form

aXn + bY n = c

for natural numbers n which is exactly Fermat’s last Theorem for a, b, c = 1. Questions
of the type presented above are the subject of Diophantine Geometry. In fact, the case
of a quadratic polynomial is solved by the Theorem of Hasse–Minkowsky, which relates
solvability over Q to solvability over all p-adic numbers Qp. In this case there are infinitely
many rational solutions. If, however, the degree of an irreducible polynomial is greater
than 4, the number of rational solutions is finite, which was proven by Faltings5 (1983)
and conjectured by Mordell (1922).
At the verge of these cases lies the class of elliptic curves which correspond to cubic
polynomials. They can have infinitely many rational solutions or finitely many, manifesting
a bridge between both cases. This feature alone suffices to render them interesting for

5In fact, he received the fields medal for his proof of the conjecture in 1986.
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number theorists.
In the following, we assume the characteristic of the field F to be different from 2 and 3.6

Definition 2.3. An elliptic curve over a field F , written E/F is given by a cubic equation

Y 2 = X3 + aX + b (2.1)

where a, b ∈ F and the associated discriminant ∆ := −24(4a3 + 27b2) does not vanish.
Equation (2.1) is called affine Weierstraß equation and the parameter j := −1728 (4a)3

∆ is
called j-invariant.

More geometrically, an elliptic curve is defined to be a projective, non-singular curve of
genus 1 with a distinguished point. This results in the curve E having a cubic Weierstraß
equation, which may look far more complicated than the above but may be transformed
into that form via rational coordinate transformations, provided char(F ) ̸= 2, 3. The
condition on the discriminant translates to the curve being non-singular and the j-invariant
parametrises elliptic curves over a field. The distinguished point may be chosen to be ∞
in the projective space. Compare Figure 2.1.1 for illustrations.

Nonetheless, there is more to elliptic curves than points in a plane – an algebraic
structure! In fact, the Theorem of Riemann–Roch induces a natural addition on an elliptic
curve, implying that every such curve can be understood as an abelian variety. A theorem
of Mordell–Weil states that for any number field F the elliptic curve E/F as a group bears
the structure of a finitely generated abelian group. The rank of it’s free component is
called rank of the elliptic curve and determines whether there are infinitely many solutions
or not. In fact, the rank of an elliptic curve is the subject of the famous conjecture of
Birch and Swinnerton-Dyer. Their conjecture relates the Laurent coefficients at a critical
point of an L-series associated to the elliptic curve to different parameters of the curve.
In particular, the pole order at the critical point is conjectured to equal the rank of the
curve.
The aim of the following sections is to construct the coarse moduli space of complex elliptic
curves with the aim of realising classical automorphic forms as meromorphic differentials
on that space.

6This assumption guarantees that the Weierstraß equation can then be chosen to be much simpler.
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Figure 2.1.1: Illustration of elliptic curves over R (cf. [Sil13, III.1 p. 43]). Indeed, cubic
curves are smooth if, and only if, ∆ ̸= 0. Also note that the last equation
transforms to y2 = x3 − 3x+ 2 under x ↦→ (x− 1)/3, y ↦→ y/3, so it can be
transformed to match Definition 2.3.
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The coarse moduli space of complex elliptic curves

In order to construct the desired moduli space, a concrete realisation of complex elliptic
curves is advantageous. Hence, these are related to tori in the following by the well known
Weierstraß ℘ function.
Let Λ < C be a lattice of rank 2. Similar to the examples above, Λ-automorphic functions
f : C → C may be considered, meaning functions that fulfil

∀λ ∈ Λ, z ∈ C : f(z + λ) = f(z).

A naive attempt in order to construct such a function would be the summation over simple
poles at the lattice points, which fails due to divergence. The next natural candidate is a
sum over poles of order 2 which may be realised as a convergent series with the following
correction terms:

℘Λ : C → C, z ↦→ 1

z2
+
∑︂

0̸=λ∈Λ

(︃
1

(z − λ)2
− 1

λ2

)︃
.

This function is called Weierstraß p-function and represents a meromorphic Λ-automorphic
function on C.7 In fact, ℘Λ may be used to classify elliptic functions. First, note that every
even elliptic function can be written as a rational function in ℘Λ (cf. [FB06, Thm. 3.2
p. 275]). But the differential of ℘Λ is odd, so that the field of elliptic functions must be a
quadratic extension of C(℘Λ). A direct computation confirms that the associated minimal
polynomial is given by

(℘′Λ)
2 = 4 · ℘3

Λ − g2 · ℘Λ − g3, (2.2)

where
g2 = 60

∑︂
λ∈Λ\{0}

λ−4, g3 = 140
∑︂

λ∈Λ\{0}

λ−6.

These coefficients are called Eisenstein series and represent modular forms8. Nonetheless,
equation (2.2) and (2.1) are of the same form, so that it appears to be not too far off to
seek relating the associated solution sets. To be precise, the map to projective space

C/Λ ∋ z ↦→ [℘Λ(z), ℘
′
Λ(z), 1] ∈ P2(C)

7Such a function, meaning an Λ-automorphic function on C, is called elliptic function. The name is
derived from the fact that these functions were discovered to occur as inverses to so called elliptic
integrals – integrals which parametrise the arc length of an ellipse.

8However, this is not evident at the moment.
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is a natural candidate, which maps 0 to infinity. In fact the map is bijective, in the sense
that it relates elements of the Torus C/Λ to elements in P2(C) which fulfil equation (2.2) for
independent variables (℘Λ, ℘

′
Λ). The associated elliptic curve is denoted EΛ/C. Exporting

the group structure from C/Λ yields exactly the addition induced by the Theorem of
Riemann–Roch, so that the above mapping is, in fact, a biholomorphic homomorphism
C/Λ ≃ EΛ/C. Two of these tori C/Λ and C/Λ′ can be shown to be biholomorphically
equivalent9 if, and only if, Λ′ = αΛ for some α ∈ C×, meaning they arise from each other
by homogeneous stretching and rotation.

After complex elliptic curves have been discussed briefly, the construction of the
associated moduli space will be carried out. The approach below comprises the topological
realisation followed by an outline of equipping it with a complex structure as well as its
compactification.
In order to parametrise a space of elliptic curves, considering bases of lattices appears to
be an advantageous starting point. A basis of a lattice Λ is given by a pair of complex non-
collinear numbers (z1, z2). Since scaling does not change the class of the quotient C/Λ we
are interested in, considering τ := z1

z2
suffices. Further, note that changing the orientation

of the basis does not give rise to another lattice, so that τ ∈ H = {z ∈ C | Im(z) > 0}
may be assumed, effectively fixing an orientation. In summary, the space B of unordered
bases of lattices modulo scaling by C× may be viewed as the upper half plane H:

B/C× ≃ H.

However, this is not a one to one description of elliptic curves, since there is in general
more than one basis for a lattice. In fact, a suitable Z linear combination of basis elements
(z1, z2) represents a basis of the same lattice again. Such a base change can be identified
with a matrix M with coefficients in Z and the most primitive examples of these are
translation and rotation:

T (z1, z2) = ( 1 1
0 1 ) (z1, z2) = (z1 + z2, z2), S(z1, z2) =

(︁
0 −1
1 0

)︁
(z1, z2) = (−z2, z1).

Abusing the information of reversibility of this base change

M ∈ GL2(Z) = SL2(Z) ∪̇ SL2(Z) ( 0 1
1 0 )

9In fact, such a biholomorphism is a group isomophism if, and only if, it preserves 0, as the biholomorphisms
are identified to be of the form x ↦→ αx+ β by lifting them to the covering spaces C, which only allow
for affine linear transformations as biholomorphisms.
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is derived. Since orientation had already been fixed, only base changes from SL2(Z) =: Γ(1)

need to be considered which form a complete set of representatives. Note that the action
of SL2(Z) and C× commute on B, so that the Modular curve

SL2(Z)\B/C× ≃ SL2(Z)\H =: Y (Γ(1))

is well defined. In order to conclude that γ ∈ Γ(1) operates via Möbius transformations10

on H note that
γ ( τ1 ) =

(︁
aτ+b
cτ+d

)︁
≃
(︂

aτ+b
cτ+d

1

)︂
∈ H.

In order to picture the geometry which will be induced on this quotient set, a fundamental
domain which is a connected full set of representatives in H will be considered.11 Such a
domain for Y (Γ(1)) is given by

FΓ(1) =
{︁
τ ∈ H | |Re(τ)| ≤ 1

2 , |τ | ≥ 1
}︁

(2.3)

and is illustrated in Figure 2.1.2.
In order to glue the fundamental domain properly to a geometric representation of

Y (Γ(1)), ambiguities have to be investigated. While the interior of FΓ(1) does not contain
multiple representatives of one class, its boundary is full of redundance which is illustrated
in Figure 2.1.3. Utilising that FΓ(1) is a fundamental domain for Γ(1), the identity

SL2(Z) = ⟨S, T ⟩

may be derived rendering the examples of transformations presented essentially exhaustive.
The next step would be the introduction of a complex structure for the topological

space Y (Γ(1)) as well as its compactification.
In order to endow Y (Γ(1)) with the desired structure, charts have to be constructed.
Around most points of the quotient, this is trivial, since the natural projection from H to
Y (Γ(1)) is one to one in a sufficiently small neighbourhood. The only exceptions to this
are the image of i and ρ. This phenomenon occurs due to the fact that these points in
H have a non-trivial stabiliser in SL2(Z), rendering the projection not injective on any
neighbourhood. To address this problem, the Cayley transform is applied to transfer the
setting to the open unit disc, where it is solved via unwrapping (details are treated in
10In fact, this computation and the above motivation clarify the sudden appearance of Möbius transfor-

mations in the vast majority of textbooks on this subject.
11In fact, ambiguities on null sets are neglected.
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Figure 2.1.2: Illustration of FΓ(1) (blue). Its border is marked in orange in addition to
the upper half of the unit circle (grey) for the purpose of orientation. The
corners match ρ := exp(2πi/6) and ρ2.

[DS05, 2.2 p. 50]).
Next, the curve Y (Γ(1)) will be compactified, offering the application of advanced tools
from algebraic geometry to study the resulting object. With this intention, the following
chart, compatible with the above, is considered. Note that

H ∋ τ ↦→ e2πiτ ∈ Ḃ1(0)

induces a biholomorphic map from H/⟨T ⟩ (a vertical strip) to the open unit disc without
zero Ḃ1(0). Restricting this map to all elements τ ∈ H with Im(τ) > c for a fixed number
c > 1 then provides a biholomorphic map from a vertical strip to a smaller open disc
without its centre.12 The situation is illustrated in Figure 2.1.4. The consequential step is

12As a consequence, every periodic (in real direction) function that is holomorphic on an upper half plane
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T T−1 S TS or ST

Figure 2.1.3: Illustration of ambiguities in FΓ(1) together with the transformations they
arise from. The orange lines correspond to the intersection of FΓ(1) and its
transform.

to formally add an element ’∞’ to Y (Γ(1)) and declare the geometry around it by the
coordinate map ψ. This process yields a compactification of the curve Y (Γ(1)) which is
denoted by X(Γ(1)) and referred to as the Baily–Borel compactification.

has a Fourier series. This is seen by pulling the function to the punctured unit disc, where it has a
Laurent series around 0. Resubstituting the variable for e2πiτ yields the desired Fourier series on an
upper halfplane, which is truncated to the left. From this point of view, being holomorphic in ∞ is
meaningful and translates to all Fourier coefficients being zero for negative indices.
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ψ : τ ↦→ e2πiτ

∞

0

Figure 2.1.4: Illustration of the construction of a chart at ’∞’. The blue arrow indicates
the geometrical correspondence, while the orange lines are mapped to each
other.
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Classical modular forms as differentials

Previously, the space X(Γ(1)) has been constructed as a compactification of an important
geometric description of elliptic curves. Hence, it appears natural to investigate functions
on this space. Note that due to compactness, all holomorphic functions on X(Γ(1))

are trivial, leading to meromorphic functions as the next potential class to examine.
However, Klein’s j-invariant can be proven to be a biholomorphism of X(Γ(1)) and the
Riemann sphere, mapping ∞ to ∞, so that j parametrises elliptic curves over C. As
a consequence, meromorphic functions on X(Γ(1)) accord with rational functions in j,
resulting in an immense space with a very simple structure. Fortunately, there is a natural
class of function like objects attached to X(Γ(1)), which yields finite dimensional spaces of
utmost significance in number theory. Instead of recognising functions only, meromorphic
differentials might be considered.
The sheaf of meromorphic differentials of degree n on C is given by associating to each
open set V ⊆ C objects

f(q)(dq)n,

where f is a meromorphic function on V . These are identified as sections through tensor
powers of the cotangent space. The above definition translates instantly to manifolds
and we shall be interested in global sections, leading to a compatibility criterion for local
descriptions with respect to coordinate transformations. Let g be such a transformation,
then we have

g∗(f(q)(dq)n) = f(g(q))g′(q)n(dq)n,

where g∗ denotes the pullback along g. However, it is not evident how to construct
differentials on X(Γ(1)) unless a different perspective is chosen. In fact, a differential
might be pulled back along the natural projection π : H → X(Γ(1)). The resulting
differential f(τ)(dτ)n must then be invariant under pullbacks from Γ(1), so that

f(τ)(dτ)n = γ∗ (f(τ)(dτ)n)

= f(γτ)(γ(τ)′)n(dτ)n

= f(γτ)

(︃
a(cτ + d)− c(aτ + b)

(cτ + d)2

)︃n
(dτ)n

= f(γτ)

(︃
ad− bc

(cτ + d)2

)︃n
(dτ)n

=
f(γτ)

(cτ + d)2n
(dτ)n
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has to be true for all γ ∈ Γ(1). We introduce j(γ, τ) := (cτ + d), the so called factor of
automorphy and observe that j defines a cocycle:

j(γ · γ′, τ) = j(γ, γ′τ)j(γ′, τ). (2.4)

Further, having the transformation property of f(dτ)n in mind, we define the Petersson
operator of weight k ∈ Z given by

(f |kγ)(τ) = j(γ, τ)−kf(γτ). (2.5)

This defines a right operation of Γ(1) on the space of meromorphic (holomorphic) functions
on H. In addition to being invariant under pullbacks from Γ(1), the differentials f(dτ)n

have to be meromorphic in ∞, which translates to their Fourier expansion having only
finitely many coefficients of negative index.
Combining the information above results in a bijective correspondence of meromorphic
differentials of degree k/2 (for k ∈ 2N0) on X(Γ(1)) and the following objects.

Definition 2.4. An automorphic form of weight k ∈ Z on H for Γ(1) is a meromorphic
function f on H, that fulfils the following properties.

i) f is invariant with respect to the Petersson operator |k for all γ ∈ Γ(1).

ii) f is meromorphic in ∞.

This alternative description via functions on H is a convenient tool for constructing
such differentials on X(Γ(1)). The resulting spaces will be infinite dimensional, but the
alternative definition suggests the following modification. Instead of demanding f to be
meromorphic, this property might be replaced by being holomorphic13, resulting in the
definition of classical modular forms which span finite dimensional spaces Mk(Γ(1)) for
each k:14

dim(Mk)k∈N = (0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, . . .).

Further, instead of considering Γ(1) as a group of automorphisms on H, other discrete
groups may be studied. A fruitful setting is given by Fuchsian groups Γ (cf. [Iwa95,
13This condition translates to orders of vanishing in the cusps and fix points of Γ(1) for differentials, so it

is not immeditely intuitive from a geometrical viewpoint.
14In fact, by i), every holomorphic modular form is 0 for even k ∈ N. Upper bounds for the other cases up

to 12 are found by means of the residue theorem of complex Analysis and are met by Eisenstein series
and the Ramanujan τ -function ∆.
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Chap. 2 p. 39]), which act discontinuously, rendering the quotient Γ\H a T2 space, so
that it may be endowed with the structure of a manifold. Popular choices for groups are
special subgroups of Γ(1), introduced in the following.
Let Γ(N) denote the kernel of the natural projection

SL2(Z) → SL2(Z/NZ).

The index of Γ(N) in Γ(1) is finite, so that a set of representatives of Γ(N)\H is constructed
by gluing finitely many translates of FΓ(1). A group Γ lying in between Γ(N) ≤ Γ ≤ Γ(1) is
called a congruence subgroups . These play a major role in the classical theory of modular
forms. The reason why restricting the theory to these groups is that the associated spaces
of modular forms offer a rich operator theory, called Hecke theory (cf. Section 6.2). This
theory proves valuable when modular forms are associated to L-series or when elementary
geometry15 is considered (cf. [Bum98, 1.4 p. 41]). We shall have a glance at common
examples of congruence subgroups: the group

Γ0(N) :=

{︄
γ ∈ Γ(1)

⃓⃓⃓⃓
⃓γ =

(︄
a b

c d

)︄
, c ≡ 0 mod N

}︄

for some N ∈ N occurs naturally, when considering elliptic curves with torsion data and
we clearly find Γ(N) ≤ Γ0(N). Further, Γ1(N) is defined to be the kernel of

Γ0(N) ∋ γ ↦→ d ∈ (Z/NZ)×

and Γ(N) equals the kernel of the homomorphism

Γ1(N) ∋ γ ↦→ b ∈ Z/NZ.

Both projections are surjective, so that the number of cosets may be computed elementarily.
In summary,

Γ(N) ⊴ Γ1(N) ⊴ Γ0(N) ≤ SL2(Z).

At this point, the setting of a group Γ acting discontinuously on the upper half plane
H might appear to be too specific unless the universal cover property of H is taken
into account which clarifies the broadness of this choice. In fact, any compact Riemann

15There is a scalar product on the space of cusp forms, the Petersson product, which is compatible with
Hecke operators.
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surface M of genus strictly greater than 1 has the upper half plane H as its universal cover
and its fundamental group π1(M) may be realised as a group Γ that acts discontinuously
on H (cf. [Bum98, 3.7 p. 349]).

2.1.2 Constructions and generalisations

Before constructing classes of examples of modular forms and presenting more general
notions than in the proceedings above, there are a few elementary facts to be collected
about the action of GL+

2 (R) on H. Recall that the group GL2(R) acts on C\R via Möbius
transformations. Namely, γ =

(︁
a b
c d

)︁
∈ GL2(R) acts on τ ∈ C \ R via

(︄
a b

c d

)︄
τ =

aτ + b

cτ + d
.

This family of biholomorphic mappings of C \R is exhaustive. We also recall the factor of
automorphy j(γ, τ) = cτ + d and note that by direct computation(︄

a b

c d

)︄
τ =

aτ + b

cτ + d

=
[a(u+ iv) + b][c(u− iv) + d]

(cu+ d)2 + (cv)2

=
ac(u2 + v2) + bd+ ad(u+ iv) + bc(u− iv)

(cu+ d)2 + (cv)2

=
ac(u2 + v2) + bd+ (ad+ bc)u+ iv(ad− bc)

(cu+ d)2 + (cv)2

=
ac|τ |2 + bd+ (ad+ bc)u

|j(γ, τ)|2
+ idet(γ) v

|j(γ, τ)|2
.

As a consequence, we find

Im(γτ) = det(γ) Im(τ)

|j(γ, τ)|2
.

Eisenstein series

The investigation above portrays an elegant and aesthetic abstract approach to mod-
ular forms, but the existence of such functions has not been verified yet. This is where
Eisenstein series come into play, as the first examples and most elementarily accessible
class of modular forms.
Since a modular form has to be invariant with respect to the Petersson operator, sym-
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metrising seems to be an obvious approach. For a function f : H → C, the sum

∑︂
γ∈Γ(1)

f |kγ

is a natural candidate, which fulfils, at least formally, the invariance with respect to the
operator |k. The next step is to choose the function f , such that the sum converges and
is holomorphic. This, however, is hopeless for a holomorphic function f and it appears
to be reasonable to restrict the summation. For simplicity16, f shall be assumed to be
1-periodic, resulting in the group Γ(1)∞ = ⟨±1, T ⟩ not changing the summand, so that

∑︂
γ∈Γ(1)∞\Γ(1)

f |kγ

would be an appropriate choice for an invariant function. If f is, for instance, chosen to
be constant, the sum converges locally uniformly for k > 2 and defines a holomorphic
function. In this case, the resulting function

Ek :=
∑︂

γ∈Γ(1)∞\Γ(1)

1|kγ (2.6)

is called Eisenstein series of weight k and the following computation yields that it is even
holomorphic at ∞, with value 1:

2ζ(k)Ek = 2ζ(k) ·
∑︂

γ∈Γ∞(1)\Γ(1)

j(γ, τ)−k

= ζ(k) ·
∑︂
c,d∈Z
(c,d)=1

1

(cτ + d)k

=
∑︂
c,d∈Z
(c,d)̸=0

1

(cτ + d)k
(⋆)

=
∑︂

λ∈Λτ\{0}

1

λk
.

The first equality is valid, since

Γ(1)∞\Γ(1) →
{︁
(c, d) ∈ Z2 | (c, d) = 1

}︁
, (c, d) ↦→ (c, d)

16A more general construction is known by the term Poincaré series (cf. Subsection 3.3.2).
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defines a bijection and the representation via (⋆) is the one commonly used in introductory
texts on the topic. This sum also immediately yields that Ek is holomorphic in ∞, by
letting Im(τ) → ∞. An adept computation involving the partial fraction expansion of
the cotangent function17 yields the Fourier expansion of the Eisenstein series (cf. [DS05,
p. 5]):

Ek = 1− 2k

Bk

∑︂
n>0

σk−1(n) · e2πinτ , (2.7)

where Bk is the k-th Bernoulli–number and

σs(n) =
∑︂
d|n

ds (2.8)

denotes the so called divisor function of degree s ∈ C. The latter is a classical, multiplica-
tive number theoretic function, meaning that the coefficients of Ek bear number theoretic
information.
The Fourier expansion (2.7) together with the fact that the spaces of modular forms
are finite dimensional may be utilised to derive unimagined identities between different
sequences of Fourier coefficients. For instance, E2

4 = E8 has to hold, since the space M8

is 1 dimensional. As a result,

σ7(n) = 120 ·
n∑︂
k=0

σ3(n− k)σ3(k)

is derived immediately.
Eisenstein series are not only the first examples of and most easily accessible modular
forms, but to some extent all classical modular forms. To verify this claim note that the
discriminant, technically defined above in Definition 2.3, can be written as

∆ =
E3

4 − E2
6

1728

and does not vanish on H, by definition. It vanishes in ∞ and, as a consequence, defines
a linear bijection

f ↦→ ∆ · f, Mk → Sk+12 <Mk+12,

17In fact, this perspective offers another point for constructing modular forms from rational functions in
the variable q – cf. [Fra20].
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where Sk denotes the subspace of functions in Mk which vanish in ∞ and is called the
space of cusp forms. Clearly, Mk = CEk ⊕ Sk, so that all modular forms may be written
as homogenous polynomials in E4 and E6 due to the known dimension of Mk up to the
choice k = 12.
This closes the brief overview about a geometrical approach to classical modular forms as
well as the particular case of Eisenstein series.

Non-holomorphic Eisenstein series

Examining Equation (2.6) results in realising that the series is convergent, if and only
if, k > 2. Nonetheless, a similar function exists for k = 2 and even lower values of k, but
these are not holomorphic. In order to generate such functions, a technique, named after
Hecke, is commonly used.18 The general approach discussed in Section 5.3 resembles this
technique which is reason enough to devote a subsection to its introduction. The reader
may find additional information in [DS05, Sec. 4.10 p. 147] or [Iwa95, Sec. 3.2 p. 61].

Definition 2.5. For s ∈ C, k ∈ Z and τ ∈ H, let

Ek(τ, s) :=
∑︂

γ∈Γ(1)∞\Γ(1)

Im(τ)s|kγ

be the augmented19 Eisenstein series of weight k.

In case of Re(s) > 1 − k
2 , this series converges absolutely in a uniform fashion on

compact subsets, so that it is analytic on the half plane
{︁
s ∈ C | Re(s) > 1− k

2

}︁
. Note

that lims→0Ek(τ, s) = Ek(τ), in case of k > 2, so that this family of functions reproduces
the classical Eisenstein series presented above. In case of k ≤ 2, the series is not convergent
for s→ 0, so that the naive definition of Eisenstein series given in Section 2.1.2 fails and
a more advanced approach is required. This is exactly what the above series Ek(τ, s)
are capable of, due to their remarkable analytic properties being reflected in the next
proposition.

Proposition 2.6. With Ek(τ, s) associate the complete Eisenstein series

G∗k(τ, s) := π−sΓ(k/2 + s)ζ(2s)Ek(s− k/2).

18Compare, for instance, ’Darstellung von Klassenzahlen als Perioden von Integralen 3. Gattung aus dem
Gebiet der elliptischen Modulfunktionen’ found in [Hec83, p. 412].

19The series is augmented by the parameter s.
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This function has analytic continuation to the whole plane of complex numbers in s, except
for the case when k = 0. In that case, the function has simple poles at s = 0, 1. In any
case it is invariant under the transformation s ↦→ 1− s.

This result suggests using Ek(τ, 0) as a generalisation of classical Eisenstein series, which
will then be non-holomorphic in case of k = 2. In fact, the Fourier expansion of that
function looks like expected, but with the addition of a non-holomorphic correction term:

E2(τ) = − 3

π
· Im(τ)−1 + 1− 24

∑︂
n>0

σ1(n)q
n.

More generally, the Fourier expansion of the automorphic functionG∗0(τ, s) = ζ∗(2s)E0(τ, s)

is given by (cf. [Bum98, proof of Thm. 1.6.1 p. 66])

G∗0(τ, s) = ζ∗(2s)ys + ζ∗(2(1− s))y1−s (2.9)

+
∞∑︂

r=−∞,
r ̸=0

2|r|s−1/2σ1−2s(|r|)
√
yKs−1/2(2π|r|y)e2πirx,

where
Ks(y) =

1

2

∫︂ ∞
0

e−y(t+1/t)/2ts
dt
t

is the K Bessel function and σs is the sum divisor function given in (2.8). The known
applications of G∗0 are manifold (compare for instance the Rankin–Selberg methon [Bum98,
1.6 p. 65]). Note that Proposition 2.6 is derived from the Fourier expansion (2.9) for
k = 0.

Define the Maas differential operator20

Rk := 2i ∂z +
k

y
.

A simple calculation confirms that it satisfies the relations

(Rkf)|k+2γ = Rk(f |kγ) and Rky
s = (s+ k)ys−1,

20In fact, the original operator looks slightly different, as it had been designed for Maas wave forms. Minor
modifications were necessary to make it work as desired in the present setting.
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for smooth functions f and γ ∈ SL2(R). As a consequence, we find

RkG
∗
k(s) =

(︃
s+ k − k

2

)︃
· Γ
(︃
s+

k

2

)︃
π−sζ(2s) · Ek+2

(︃
s− k

2
− 1

)︃
= Γ

(︃
s+

k + 2

2

)︃
π−sζ(2s) · Ek+2

(︃
s− k + 2

2

)︃
= G∗k+2(s)

and, in particular, Proposition 2.6 for k > 0. Further, the Fourier expansion of G∗k follows
from that of G∗0 by iterative application of differential operators, ultimately delivering
that of Ek.

In fact, Proposition 2.6 might also be proven by means of theta functions (cf. [DS05,
4.10 p. 147 as.]), which are to be introduced in the next section before briefly relating
them to Eisenstein series via a theorem of Siegel.

Theta series

Theta series are special modular forms related to quadratic lattices. Hence, let (L, q)
be a quadratic Z lattice of rank m ∈ N and associate the theta function

θL : H → C, τ ↦→
∑︂
x∈L

e2πiq(x)τ

with it.21 The sum above converges locally uniformly for positive definite q, defines a
holomorphic function in τ and is 1-periodic, if L is even. The transformation with respect
to the inversion S is computed via Poisson summation which yields

θL′(Sτ) =
(︂τ
i

)︂m/2
det(q) θL(τ).

Here the root is defined by using the main branch of the logarithm. Strictly speaking,
this is not the transformation property of a classical modular form for Γ(1). However,
it resembles the desired property and for the special choices det(q) = 1 (equivalently
L = L′), as well as, m ∈ 8N it is a classical modular form. If, on the other hand, L is at
least even, θL still represents a modular form for a subgroup of Γ(1). In fact, [Ebe12, 3.1
Thm. 3.2 p. 87] states the following.

Theorem 2.7. For an even lattice (L, q) of rank m ∈ 2N and level N ∈ N, the function

21In case the quadratic lattice is encoded in the Gram matrix S, we shall denote the theta series by θS .
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θL is a modular form of weight m
2 for Γ0(N) with character22

(︂
disc(L)
·

)︂
, meaning that for

all γ =
(︁
a b
c d

)︁
∈ Γ0(N), we have

θL(γτ) =

(︃
disc(L)

d

)︃
j(γ, τ)m/2θL(τ)

and that the form is holomorphic at the cusps.

Example 2.8. An as famous as immediate application of theta series is that to the problem
of representation numbers of quadratic forms. Let (L, q) be an even positive Z lattice of
rank m, then

θL(τ) =
∑︂
k≥0

rL(k)e
2πikτ ,

where rL(k) = # {x ∈ L | q(x) = k} is the representation number of n by (L, q). In fact,
in case of 8 | m and det(q) = 1, θL is a classical modular form of weight m/2 as mentioned
above, allowing for exact formulae for rL in terms of coefficients of Eisenstein series in
case m ≤ 16. For higher ranks m ≥ 24 estimates with bounded error are obtained at least:

rL(k) =

⎧⎨⎩− m
Bd/2

σm/2−1(k), if m = 8, 16,

− m
Bd/2

σm/2−1(k) +O(km/4), else.

The bound is derived from a general, elementary bound for coefficients of modular forms,
named after Hecke (cf. Prop. 2.24), whereas the exact formulae for the low dimensional
cases are due to the space of modular forms being one dimensional in this instance.

Another application of theta functions would be the proof of the functional equation of
the Riemann Zeta function ζ, as the completed version

ζ∗(s) = ζ(s)Γ(s/2)π−s/2

is essentially the Mellin transform of (θZ,x2/2 − 1). As a consequence, the transformation
law for that theta function may be abused, to represent ζ∗ as an integral that is symmetric
in s and 1− s, yielding23 the following symmetry property

ζ∗(s) = ζ∗(1− s).

22Note that the character is trivial, when the respective group is restricted to Γ1(N).
23A detailed computation is found in [Dei10, Thm. 6.1.2 p. 140]
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Theorem of Siegel

The (arithmetic) Theorem of Siegel established a formula for weighted representation
numbers of special quadratic lattices (cf. [Sie51a], [Sie51b]). As a consequence, an analytic
result, namely realising Eisenstein series as a weighted sum of theta series, is obtained.24

It is this version which we shall refer to as Siegel’s Theorem over the course of this thesis.
The reader may consult [Fre13, V.1.3 p. 261] or [KK98] for information exceeding the
scope of the following brief overview.
As seen in the preceeding section, theta series correspond to positive definite lattices. In
fact, representation numbers of the latter may be used for properly combining theta series
in order to construct the full range of classical modular forms. In order to substantiate
this claim, let S ∈Mn(Z) be symmetric positive definite and G ∈ Zn×m, then GTSG is
again symmetric positive definite. In fact, the number of matrices G, such that GTSG
coincide with a fixed choice of matrix is finite. More specifically, for a symmetric matrix
T ∈Mm(Z),

#(S, T ) := #
{︁
G ∈Mn,m(Z) | GTSG = T

}︁
is finite. It is called representation number of T by S. Further, on the set of symmetric
positive definite matrices Posn(Z), the operation

S.G = GTSG

with G ∈ GLn(Z) defines a right action, which preserves evenness as well as unimodularity.
This information suffices to state the analytic version of Siegel’s Theorem.

Theorem 2.9 (Siegel, Witt). Let S1, . . . , Sh be representatives of the classes of positive
definite even unimodular quadratic Z-lattices of rank m and k = m

2 . Then

h∑︂
j=1

#(Sj , Sj)
−1∑︁h

k=1 #(Sk, Sk)−1
· θSj = Ek.

Altogether, the above theorem reveals that Eisenstein series may be obtained by a
suitable combination of theta series, presenting them as an alternative foundation of the
theory of classical modular forms.

The statement of Theorem 2.9 is briefly revisited in Section 5.4.1 where the Siegel–
Weil formula, an intricate generalisation, is presented. In a phrase, it relates an integral
24The stated version was developed by Witt and can be proven with elementary Hecke theory.
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(resembling the weighted sum) of a theta distribution25 to a special value (in the parameter
s - cf. Section 2.1.2) of an Eisenstein series.

25These are adelic distributions corresponding to classical theta functions in special cases (cf. Subsec-
tion 5.2.1).
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2.2 Elliptic modular forms
This section is designed to provide a brief recollection of the classical theory and will serve
as a point of reference in subsequent sections.

Definition 2.10. a) Define the upper/lower half plane as

H := {τ ∈ C | Im(τ) > 0}, H− := {τ ∈ C | Im(τ) < 0}.

b) Let γ =
(︁
a b
c d

)︁
∈ GL2(R). Then the associated Möbius transform is given by

H ∪H− ∋ τ ↦→ γτ :=
aτ + b

cτ + d
∈ H ∪H−.

c) For γ =
(︁
a b
c d

)︁
∈ GL2(R) and τ ∈ C \ R define the factor of automorphy as

j(γ, τ) := (cτ + d). (2.10)

The following relations shed some light on these definitions.

Remark 2.11. a) For γ, γ′ ∈ GL2(R) and τ ∈ C \ R we find the cocycle relation

j(γγ′, τ) = j(γ, γ′τ) · j(γ′, τ). (2.11)

b) For τ ∈ C \R and γ =
(︁
a b
c d

)︁
∈ GL2(R), we write τ = u+ iv with u, v ∈ R and find

(︄
a b

c d

)︄
τ =

aτ + b

cτ + d

=
ac|τ |2 + bd+ (ad+ bc)u

|j(γ, τ)|2
+ idet(γ) v

|j(γ, τ)|2
.

In particular, we have

Im(γτ) =
Im(τ)

|j(γ, τ)|2
. (2.12)

As a consequence, the subgroup GL2(R)+ < GL2(R) of matrices with positive
determinant acts on H and GL2(R)/GL+

2 (R) ≃ ⟨( 0 1
1 0 )⟩ has order 2. The centre

RI2 < GL2(R)+ acts trivially and its quotient acts transitively on H (cf. (3.22)).

We consider the following arithmetic subgroup of GL+
2 (R).
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Definition 2.12. The group Γ(1) := SL2(Z) ≤ GL+
2 (R) is called the modular group. Its

special elements

T :=

(︄
1 1

0 1

)︄
, S :=

(︄
0 −1

1 0

)︄
are referred to as translation and inversion.

Definition 2.13. Let k ∈ Z and f : H → C be a holomorphic function. Then f is called
modular form of weight k if it satisfies the following two conditions:

a) For all γ ∈ Γ(1) it transforms with f(γτ) = j(γ, τ)kf(τ).

b) The function f is holomorphic at ∞.

The space of such functions is denoted Mk(Γ(1)).

In order to give the last condition meaning, note that f is invariant under the translation
matrix T , meaning it is periodic. As a consequence, it possesses a Fourier expansion

f(τ) =
∑︂
n∈Z

a(n) exp(2πiτn) (2.13)

for all τ ∈ H. Here, a(n) ∈ C are complex numbers26 and the series converges (and hence
absolutely – cf. Lemma A.19) on the upper half plane. In the context of Fourier series,
write

q := e(τ) := exp(2πiτ). (2.14)

With this notation, the expansion of f becomes

f(τ) =
∑︂
n∈Z

a(n)e(nτ) =
∑︂
n∈Z

a(n)qn. (2.15)

Definition 2.14. With the notation as above, we say that f is holomorphic/meromorphic/
vanishes at ∞, if the power series in (2.15) has that property in the variable q in 0.

We define an operator leaving the space of modular forms invariant.

Definition 2.15. a) For a function f : H → C, k ∈ Z, and γ ∈ GL+
2 (R) define the

Petersson (slash) operator of weight k as

|k : CH → CH, f |kγ(τ) := det(γ)k/2j(γ, τ)−kf(γτ). (2.16)
26For a note on the Im(τ) independence of a(n), compare A.2.
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b) On H write τ = u+ iv and define the hyperbolic measure

µ :=
du dv
v2

. (2.17)

c) For δ > 0, the set

S(δ) := {τ ∈ H | Im(τ) > δ, |Re(τ)| < 1/δ} (2.18)

is called the Siegel domain associated to δ.

The Petersson slash operator defines a right action of GL+
2 (R) on CH preserving

continuitiy, real smoothness and analyticity. Letting a matrix γ ∈ GL+
2 (Q) act preserves

having a Fourier expansion and it preserves properties at ∞ of elements of Mk(Γ(1)).
Further, the measure µ is invariant under pullback via Möbius transformations from
GL+

2 (R). Finally, Siegel domains have finite measure and may be used to prove that Γ(1)

acts properly discontinuously on H, implying that the quotient Y (Γ(1)) := Γ(1)\H carries
a T2 topology (cf. [Miy06, 1.5 p. 17]). A visualisation of a set of representatives in H of
Y (Γ(1)) is presented in Figure 2.1.2.
The following series represents a canonical choice of a modular form.

Definition 2.16. Let Γ∞ := ⟨T ⟩ and consider for k ≥ 3 the Eisenstein series

Ek(τ) :=
1

2
·

∑︂
γ∈Γ∞\Γ(1)

1|kγ(τ). (2.19)

The series Ek converges normally on H and defines a holomorphic function. Further, it
vanishes for 2 ∤ k and in fact, by the invariance condition, any f ∈ Mk(Γ(1)) has to vanish
due to the transformation under −I2 for uneven k. A comparison with the partial fraction
expansion of the cotangent (cf. [DS05, p. 5]) delivers the following Fourier expansion:

Ek(τ) = 1− 2k

Bk

∑︂
n>0

σk−1(n)q
n, (2.20)

where Bk denotes the k-th Bernoulli number and

σs(n) =
∑︂
d|n

ds (2.21)

denotes the divisor function of degree s ∈ C (with Re(s) > 0).



2.2 Elliptic modular forms 67

Another example of automorphic forms are theta functions which are revisited in the
more general setting of vector valued modular forms in Definition 3.29.

Definition 2.17. For (L, q) a positive definite even Z lattice of rank m, define

θL : H → C, τ ↦→
∑︂
x∈L

e(q(x)τ) =
∑︂
n∈N

rL(n)q
n. (2.22)

For unimodular lattices, these are modular forms for Γ(1) of weight m/2. However,
instead of merely considering the arithmetic subgroup Γ(1) as a group of transformations,
a wider family of groups due to Hecke may be considered.

Definition 2.18. Let N ∈ N. Then the kernel of the natural (surjective) projection

SL2(Z) → SL2(Z/NZ)

is denoted by Γ(N) and called the principal congruence subgroup of level N . Further, a
subgroup Γ ≤ Γ(1) is called congruence subgroup, if there is some Γ(N) ≤ Γ.

Remark 2.19. The following two classes of examples represent congruence subgroups:

Γ0(N) :=

{︄(︄
a b

c d

)︄
∈ SL2(Z)

⃓⃓⃓⃓
⃓ c ≡ 0 mod N

}︄
, (2.23)

Γ1(N) :=

{︄(︄
a b

c d

)︄
∈ Γ0(N)

⃓⃓⃓⃓
⃓ a ≡ d ≡ 1 mod N

}︄
. (2.24)

We find for N > 1 that
Γ(N) ◁ Γ1(N) ◁ Γ0(N) < Γ(1),

where the natural kernel morphisms are given by

Γ0(N) ∋

(︄
a b

c d

)︄
↦→ d ∈ (Z/NZ)×, Γ1(N) ∋

(︄
a b

c d

)︄
↦→ b ∈ (Z/NZ).

In particular, any congruence subgroup has finite index in Γ(1).

The action of GL+
2 (R) on H may be extended to the closure H = H∪P1(R) in a natural

way. The modular group Γ(1) then acts transitively on P1(Q) = Q ∪ {∞}.

Definition 2.20. For a congruence subgroup Γ, the equivalence classes Γ\P1(Q) are
referred to as cusps. For a meromorphic function f : H → C with Fourier expansion at
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Notation Behaviour on H Behaviour at cusps Name
Sk(Γ, χ) holomorphic vanishings cusp forms
Mk(Γ, χ) holomorphic holomorphic (holomorphic) modular forms
M!

k(Γ, χ) holomorphic meromorphic weakly holomorphic modular forms
Ak(Γ, χ) meromorphic meromorphic meromorphic modular forms
Rk(Γ, χ) real analytic no condition real analytic modular forms
Cmk (Γ, χ) Cm no condition Cm modular functions

Table 2.1: Table of different types of modular forms. All of the forms f are assumed to
transform with respect to Γ like in Definition 2.21, meaning for all γ ∈ Γ they
satisfy f(γτ) = χ(γ)j(γ, τ)kf(τ).

∞ and a representative c of a cusp, we select γ ∈ Γ(1) with γ∞ = c. Then the Fourier
expansion of f |kγ at ∞ is referred to as the Fourier expansion of f at c (for |k). It is not
unique, but its properties like vanishings or being holomorphic are well defined.

The modular curve associated to some congruence subgroup Γ is denoted by Y (Γ) := Γ\H.
It is a Riemannian manifold. By the theory of Baily–Borel , it may be compactified by
adding its cusps to it, yielding the compactified modular curve X(Γ) := Γ\H∗, where
H∗ = H ∪ P1(Q). As a consequence, Y (Γ) is a quasi projective variety.

Definition 2.21. Let Γ ≤ Γ(1) be a congruence subgroup, k ∈ Z, and χ : Γ → T be a
character. Then a holomorphic function f : H → C is called a modular form for Γ of
weight k with character χ, if it satisfies the following two properties.

a) For all γ ∈ Γ it transforms with f(γτ) = χ(γ)j(γ, τ)kf(τ).

b) The function f is holomorphic at ∞.

The space of such functions is denoted by Mk(Γ, χ).

The conditions on such functions f may be relaxed or tightened. Table 2.1 presents an
overview of typical variants of Definition 2.21. The spaces Mk(Γ, χ) are finite dimensional
and if Γ(N) ≤ Γ, then TN ∈ Γ, so that f is invariant under a possibly higher power of
TN and hence possesses a Fourier expansion. Examples of such more general modular
forms may be constructed again as Eisenstein series or, more generally, as Poincaré series
(cf. [Miy06, 2.6 p. 61]). Further, theta functions represent modular forms with character.

Theorem 2.22 ([Ebe12, 3.1 Thm. 3.2 p. 87]). For an even lattice (L, q) of rank m ∈ 2N
and level N ∈ N, the function θL is a modular form of weight m

2 for Γ0(N) with character27

27Note that the character vanishes, when the respective group is restricted to Γ1(N).
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(︂
disc(L)
·

)︂
, meaning that for all γ =

(︁
a b
c d

)︁
∈ Γ0(N), we have

θL(γτ) =

(︃
disc(L)
a

)︃
j(γ, τ)m/2θL(τ)

and that the form is holomorphic at the cusps.

Apart from these examples, modular forms with characters appear naturally, when
considering these without character as a byproduct of representation theory of finite
groups (cf. Remark 6.8).

Remark 2.23. There is a natural pairing serving as a scalar product on the space of cusp
forms. For f ∈ M!

k(Γ) and g ∈ M!
k(Γ
′) congruence modular forms, so that Γ(N) ≤ Γ∩Γ′

for some N ∈ N and f · g ∈ S2k(Γ(N)), set

⟨f, g⟩ := 1

[Γ(1) : Γ(N)]
·
∫︂
Γ(N)\H

f · g · Imk dµ. (2.25)

Then, the expression is absolutely convergent (cf. Example 3.52) and independent of the
choice of N . It is referred to as the Petersson product of f and g.

In Section 6.4, L-functions, another significant number theoretic construct, will be
associated to modular forms. For their convergence, asymptotic bounds on Fourier
coefficients of modular forms are required. The following is a naive bound that already
suffices for a vast array of cases.

Proposition 2.24 ([KK98, p. 200]). For f ∈ Sk(Γ0(N), χ) and γ ∈ Γ(1). Denote the
Fourier expansion of f |kγ by

∑︁
n0≤n∈Z/N a(n)e(nτ), then we have that

a(n) = O(nk/2), n→ ∞.

While the advantage of the proposition above is that its proof is relatively accessible,
there are more effective bounds which become relevant in boundary cases.

Theorem 2.25 ([Ran39b, Thm. 2, p. 358]). Let f ∈ Sk(Γ(N)) with Fourier expansion∑︁
n0≤n∈Z/N a(n)e(nτ). Then

an = O(nk/2−1/5), n→ ∞.

The strongest possible bound is the following (cf. [Miy06, Thm. 4.5.17 p. 150]).
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Theorem 2.26 (Ramanujan-Petersson-Deligne). For f ∈ Sk(Γ0(N), χ) with Fourier
expansion

∑︁
n0≤n∈Z/N a(n)e(nτ), we have for gcd(n,N) = 1 and any ε > 0 that

a(n) = O(nk/2−1/2+ε), n→ ∞.

Note that for primes dividing the level, Atkin–Lehner theory may be utilised to deduce
similar bounds (cf. [Kna92, Thm. 9.27 p. 289]) and also 3.81. Additional bounds are
presented in Section 3.3.4.







Part II

Automorphic forms





3 Symplectic theory

In Section 2.2, an introduction to the theory of classical modular forms associated with
the group SL2 has been presented, followed by a couple of generalisations. A further
avenue for exploration would be groups of higher rank, such as SL3. However, it turns out
that the proper generalisation in this context is the symplectic setting. This will be briefly
discussed in the following section, after which the focus will return to the essential subcase
for this thesis, namely the elliptic setting, which will include the Weil representation
and vector valued modular forms. The chapter concludes with a collection of asymptotic
bounds for Fourier coefficients of vector valued modular forms which will be used to derive
convergence results of L–series.

3.1 Symplectic modular forms

We provide a brief overview of the symplectic notions of modular forms – called Siegel
modular forms. For a slightly more elaborate but concise description of the following, we
refer to [Fre91, Chap. 1], while the German source [Fre83] provides a more comprehensive
picture.

As in case of the orthogonal group, symplectic groups may be defined as the invariance
group of a bilinear form. For that purpose, let g ∈ N and Ig denote the identity matrix of
rank g. Then

J =

(︄
0 Ig

−Ig 0

)︄
∈M2g

denotes the standard alternating matrix.

Definition 3.1. Let R be a commutative ring with unit. Then the symplectic group of
genus g ∈ N over R is defined to be

Spg(R) :=
{︁
M ∈M2g(R) |MTJM = J

}︁
. (3.1)
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Example 3.2. In case g = 1, the conditions reduce to the case of the special linear group

Sp1(R) = SL2(R).

As in case of SL2, there is also a variety of symplectic matrices that may be presented
more explicitly in the case of a general ring R. Let S ∈Mg(R) be symmetric, i.e. ST = S

and U ∈ GLg(R). Then the following are symplectic matrices.

N(S) :=

(︄
Ig S

0 Ig

)︄
, (3.2)

M(U) :=

(︄
UT 0

0 U−1

)︄
, (3.3)

J =

(︄
0 In

−In 0

)︄
. (3.4)

In case R = Z or R = F a field, the group Spg(R) is generated by matrices as in (3.2)
and (3.4). Further, the unitary group U(g) of rank g embeds into Spg(R) via

U(g) ↪→ Spg(R), U ↦→

(︄
Re(U) Im(U)

− Im(U) Re(U)

)︄
. (3.5)

This is a maximal compact subgroup and it agrees with SO2(R) in the instance of
Sp1(R) = SL2(R).

As in case of the special linear group of rank 2, there is a theory of congruence subgroups
and of multiplier systems which are described in [Fre91]. In order to define modular forms
in the symplectic setting, an analogue of the upper half plane has to be constructed.

Definition 3.3. Let g ∈ N. Then the Siegel upper half space of degree g is defined to be

Hg := {Z = X + iY ∈M2g(C) | ZT = Z, Y > 0}.

Here, X,Y denote the real, respectively imaginary part, of Z and the condition Y > 0

means that Y is a positive definite matrix, i.e. as a Gram Matrix of a real quadratic vector
space.

The Siegel upper half space is convex and as such connected and carries a natural
complex structure. Analogous to the SL2 case, there is an action of Spg(R) on the upper
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half space Hg. Namely, let

Z ∈ Hg, M =

(︄
A B

C D

)︄
∈ Spg(R).

Then CZ +D is invertible and the matrix

MZ := (AZ +B)(CZ +D)−1 (3.6)

lies in Hg, again. This association defines an action of Spg(R) on Hg via biholomorphic
maps and all biholomorphic maps on the upper half space are of this form. For instance,
the action of the matrices in (3.2), (3.3), and (3.4) looks like the following.

N(S)Z = Z + S, M(U)Z = UTZU, JZ = −Z−1.

Note that to the map
Hg ∋ Z ↦→ det(CZ +D),

there is a holomorphic square root. We fix one of these roots and denote it by

Z ↦→ det(CZ +D)1/2.

Definition 3.4. Let r ∈ Z, V be a finite dimensional C vector space, and

f : Hg → V

be holomorphic. Then f is called holomorphic Siegel modular form of weight r if it satisfied
the following transformation property for all M =

(︁
A B
C D

)︁
∈ Spg(Z)

f(MZ) = det(CZ +D)rf(Z) (3.7)

and for any Z0 ∈ Hg, the expression f(Z) is uniformly bounded for Im(Z) > Im(Z0).

We note that such a function is invariant under the operation of matrices N(S) with
S ∈ Mg(Z) symmetric which form a Z lattice with bilinearform induced by the trace.
Hence, it possesses a Fourier expansion of the form

f(Z) =
∑︂

S rational, S=ST

a(S) e (tr(SZ)) . (3.8)
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The condition on a modular form f being universally bounded on domains with Im(Z) ≥
Im(Z0) for any fixed Z0 ∈ Hg translates to the Fourier coefficients a(S) vanishing unless
S ≥ 0 is semi positive definite.

In case of genus greater than 1, there are harsher restrictions on the Fourier coefficients
given by the so called Koecher principle.

Theorem 3.5 (Koecher principle). Let f : Hg → C be a holomorphic function with the
properties that

a) f(Z + S) = f(Z) for all S ∈Mg(Z) with ST = S,

b) f(UTZU) for all U ∈ SLg(Z).

Then the condition g > 1 implies that f has a Fourier expansion of the form

f(Z) =
∑︂
S=ST ,
S≥0 even

a(S) e (tr(SZ)) .

In particular, for any Z0 ∈ Hg the expression f(Z) is uniformly bounded for Im(Z) ≥
Im(Z0).

There is also a rich theory of Siegel modular forms reproducing a variety of results
from the classical setting of genus g = 1 and we refer to [Fre83] for details before turning
towards the essential case for this thesis being Sp1 = SL2 and its Weil representation.

3.2 Weil representation
Vector valued modular forms for the Weil representation of SL2 play a significant role
within the scope of this thesis (cf. Section 3.3). However, when forms of half integral weight
are taken into account, it becomes necessary to consider a twofold cover, the metaplectic
group Mp2, of SL2. Such a cover exists and an abstract construction is sketched in the
addendum (cf. Section B.3). However, these details are not required for the purpose of
the thesis and we will be presenting a briefer more ad hoc approach in the following.

As mentioned in the chapter above, the symplectic group over a field is generated by
the elements N(S) and J (cf. (3.2) and (3.4)). In case of genus g = 1 and a field F we
follow [Lan98, XI.2 pp. 209-214] and write a ∈ F× and b ∈ F . Then we find the following
relations

J2 =M(−1), (3.9)
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M(a)N(b)M(a−1) = N(ba2), (3.10)

M(a) = JN(a−1)JN(a)JN(a−1). (3.11)

We note that

F ∋ b ↦→ N(b) ∈ SL2(F ), F× ∋ a ↦→M(a) ∈ SL2(F )

are embeddings. These matrices may be used to represent any element in SL2(F ).

Lemma 3.6. Every element of SL2(F ) has a unique representation of the form

N(b)M(a) or N(b1)M(a)JN(b2)

where a ∈ F× and b, b1, b2 ∈ F .

In fact, we have the following stronger assertion.

Proposition 3.7. Let F be a field. The group SL2(F ) is, up to isomorphy, the free group
generated by an injective additive homomorphism N from F and an element J such that
M defined by (3.11) is an injective multiplicative homomorphism from F× modulo the
relations (3.9) and (3.10).

This reveals that in order to construct a representation of SL2(F ), solely the action of
N(b) and J have to be established and the relations stated in Proposition 3.7 have to be
verified. Also from a practical point of view, relation (3.11) alongside Lemma 3.6 suggest
computing the action of M(a) in order to manipulate emerging expressions conveniently.
In the following, we will describe the respective action of matrices.

The setting of this paragraph is mainly a brief overview of necessary notions from
[KRY06, 8.5 pp. 320-342] – the source also covers the case of higher genus. We will restrict
to the case of a prime p > 2 and refer to the source for the case of p = 2 which is similar
in nature. Let ψp denote the standard additive character of Qp meaning the one from
Example 1.48 with the choice a = 1 and Vp a vector space of dimension m.1 Recall that
to a Schwartz–Bruhat form φ ∈ S(Vp), the Fourier transform described in (1.8) will be
denoted φ̂. Then, for a ∈ Q×p and b ∈ Qp a projective representation of SL2(Qp) on S(Vp),

1Selecting different characters only requires minor modifications.
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is given by the following operator

prrp

[︄(︄
1 b

0 1

)︄]︄
: φ ↦→ ψ(b q(x)) · φ(x), (3.12)

prrp

[︄(︄
0 1

−1 0

)︄]︄
: φ ↦→ φ̂(x), (3.13)

prrp

[︄(︄
a 0

0 a−1

)︄]︄
: φ ↦→ |a|m/2

p φ(ax). (3.14)

In fact, it satisfies the relation prrp(g1)
prrp(g2) = cL(g1, g2)

prrp(g1g2) for the Leray cocycle
cL. That cocycle is given by

cL(g1, g2) = γ(ψ ◦ q(g1, g2)),

where γ is the Weil index of a character of second degree and the associated quadratic
form is given by the Leray invariant of the isotropic subspaces (Y, g1, Y, Y g

−1
2 ) (cf. [LV80,

1.6 p. 47 as.] for an extensive discussion or [Rao93, Introduction and Thm. 4] for a brief
reference). The cocycle amounts to a parametrisation of the metaplectic extension SL2(Qp)

of SL2(Qp) satisfying
1 → T → SL2(Qp) → SL2(Qp) → 1 (3.15)

via SL2(Qp)× T. Namely,

(g, z) ↦→ [g, z]L, where [g1, z1]L · [g2, z2]L = [g1g2, cL(g1, g2)z1z2].

For later global use this cocycle has to be modified, as it is not trivial on compact open
subgroups.2 The Weil representation in Leray coordinates is given by

ωVp([g, z]L)φ(x) = χV (x(g))

(︃
zγ

(︃
ψ
p,
1
2

)︃)︃#
γ

(︃
ψ
p,
1
2
◦ V
)︃−1

prrp(g) φ(x) (3.16)

where

# =

⎧⎨⎩1 if m is odd,

0 if m is even,
ψp,a(x) := ep(a, x),

2This issue is fixed explicitly in [KRY06, (8.5.11)], resulting in a complex cocycle that is trivial on
compact open subgroups as well as the standard parabolic subgroup.
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and

χV (x(g)) = Hp (x(g),disc(q)) , where x
(︁(︁

a b
c d

)︁)︁
=

⎧⎨⎩c, if c ̸= 0,

d, else.
(3.17)

Recall that Hp denotes the Hilbert symbol on Qp described in Section 1.4. Note also
that χV , as well as, γ are well defined on isometry classes of quadratic spaces (V, q) and
the latter even defines a character of the Witt Ring (cf. Definition 1.19) mapping to the
8-th roots of unity.

Example 3.8. In case of dim(Vp) = m is even, the representation factors through SL2.3 In
that case, the concrete operations are given by

ωVp

[︄(︄
1 b

0 1

)︄]︄
: φ ↦→ ψ(b q(x)) · φ(x),

ωVp

[︄(︄
0 1

−1 0

)︄]︄
: φ ↦→ γ(Vp) · φ̂(x),

ωVp

[︄(︄
a 0

0 a−1

)︄]︄
: φ ↦→ χp(a)|a|m/2

p φ(ax),

where γ(Vp) is the local splitting index defined in [Kud94, Thm. 3.1].

This closes the brief overview of the local case and we turn towards sketching an
adelisation of the construction.

Adelisation

The concepts above, namely the constructed group and their representations may be
transferred to the adelic setting. For instance, define

SL2(A) :=
∏︂′

p≤∞
SL2(Qp)

3In fact, that statement is an if, and only if, meaning the associated representation is ordinary on SL2 in
that case exactly.
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to be the restricted product with respect to SL2(Zp).4 Similarly to the local case, there is
an extension

1 −→ T −→ SL2(A) −→ SL2(A) −→ 1. (3.18)

The Weil representation is given as a direct product. In order to prove that this
definition is meaningful, the reader verifies that SL2(Zp) operates trivially on almost all
components of a Schwartz Bruhat function from S(VA) (cf. [Yos84, Lemma 2.1 p. 190]).
So that

ωA([gA, z]L) =
⨂︂
p≤∞

ωVp([gp, zp]L) (3.19)

might be realised as a restricted tensor product (cf. [Bum98, pp 300-303]).

Note that this definition is given in Leray coordinates, as were the above representations,
even though the group itself is more conveniently parametrised by the cocycle from
[KRY06, (8.5.11)], so that it is trivial on a suitable compact open subgroup.
There is a product formula for the Weil indices

1 =
∏︂
p≤∞

γ(ψ ◦ qp) = 1,

which is also valid for the modified local Weil indices γ(V ), used in [KY10] to describe
Fourier coefficients of adelic Eisenstein series in terms of Whittaker functions (also cf.
[Rao93]).

We continue by stating some properties of SL2 and its metaplectic extension based on
[KY10, 1 p. 2278]. We restate the following notation

M(Fp) :=

{︄(︄
a 0

0 a−1

)︄
=:M(a)

⃓⃓⃓⃓
⃓ a ∈ F×p

}︄
, (3.20)

N(Fp) :=

{︄(︄
1 b

0 1

)︄
=: N(b)

⃓⃓⃓⃓
⃓ b ∈ Fp

}︄
. (3.21)

Recall that SL2(R) admits the so called Iwasawa decomposition. Namely, that SO2(R) <

4Since the product does not depend on changes to finitely many components, we select an arbitrary open
subgroup at the Archemedian place.
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SL2(R) is a maximal compact subgroup, such that SL2(R)/SO2(R) ≃ H. Here,

kϑ =

(︄
cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)︄
∈ K∞ := SO2(R)

constitutes a parametrisation of K∞ via ϑ ∈ T.5 Consequently, we find for τ = u+ iv ∈ H
and gτ := N(u)M(

√
v) ∈ P∞ that

gτkϑ = [N(u)M(
√
v)]kϑ

=
[︂
( 1 u0 1 ) ·

(︂√
v 0
0 1/

√
v

)︂]︂
·
(︂

cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)︂
↦→ gτkϑi = τ = u+ iv ∈ H (3.22)

defines a bijection SL2(R)/SO2(R) ≃ H. As a consequence, the Iwasawa decomposition

SL2(R) = P∞K∞ (3.23)

follows, where P∞ := P (R) = N(R)M(R) < SL2(R) denotes the standard Borel group of
upper triangular matrices and the representation is unique.6 This decomposition will be
presented in more detail in the prerequisites of Chapter 5.
Similar to the above, define Kp := SL2(Zp) as well as Kf := SL2(Ẑ) =

∏︁
p<∞Kp. Then,

for the maximal compact subgroup KA := K∞Kf < SL2(A), an analogous decomposition
SL2(A) = PAKA is acquired. Such a decomposition is used to compute the action of SL2,
globally or locally, on the principal series representation, discussed in Section 5.3.1.

Recall that SL2(A) is described in terms of SL2(A) and T by means of a cocycle in
accordance with (3.18) that is given by local Leray cocycles. In the following, we assume
these to be modified as in [KRY06, (8.5.11)] in order to yield a cocycle that is trivial
on Kp which is advantageous for global use. To the group P (A) there is a splitting
homomorphism P (A) → SL2(A), so that when P ′A denotes the inverse image, we have

P (A)× T ≃ P ′A.

Similarly, the group K∞ come with a corresponding group in K ′∞ in SL2(A). However,
for Kf , passing to a subgroup is necessary, due to the place p = 2. If that component is

5Note that other authors oftentimes choose ϑ ↦→ −ϑ, even though this results in a negative direction of
rotation. However, as a consequence, the standard character does not have to be conjugated in the
transformation formula of Θ functions (cf. (5.12)).

6The group P is a parabolic subgroup which manifests itself in the notation.
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replaced with K0(4)2 = Γ0(4), which is the completion of Γ0(4) in K2 = SL2(Z2), then

K0(4) = K0(4)2 ×
∏︂

2<p<∞
Kp

is an open compact subgroup of SL2(Af ) and there is a splitting morphism K0(4) →
SL2(A).
Further, the group SL2(A) might be exhausted by simple components – a feature known
as strong approximation, after Kneser [Kne65]. Namely, for any compact open subgroup
KAf

, multiplication by GR and SL2(Q) suffices to reconstruct the whole group SL2(A):

SL2(A) = SL2(Q) (SL2(R)×Kf ) ,

where SL2(Q) is to be understood as lying diagonally in SL2(A). If K0 is chosen to be
an open compact subgroup in K0(4) and identified with its image in SL2(A) under the
splitting morphism, the same result holds for the metaplectic group:

SL2(A) = SL2(Q)SL2(R)K0. (3.24)

3.2.1 Classical Weil representation and relation

In the extension SL2(Qp) there is a twofold cover Mp2(Qp) included [Kud94] satisfying
the analogue of (3.15), namely

1 → {±1} → Mp2(Qp) → SL2(Qp) → 1. (3.25)

Two fold covers of SL2(Qp) are unique up to isomorphism and are relevant for considering
half integral weight modular forms. In addition to generalising the weight to the half
integral case, vector valued modular forms, like in Section 3.3, may be considered. For
these, the most prominent choice of representation is the Weil representation we have
encountered above.

In fact, there is also a classical notion of Weil representations on Mp2(Z), which may be
taken to be the subgroup of Mp2(R) projecting to SL2(Z), dating back to Schoenberg in
[Sch39]. We shall understand such a representation adelically before verifying that it, in
fact, coincides with the classical definition found in the literature (cf. [Str13] which builds
upon [Sch09]). The classical notion is related to discriminant forms (cf. Remark 1.27)
which are without exception representable by quotients of even Z lattices. Let (L, q) be
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such an even non-degenerate lattice. From that object we obtain in a natural way a
quadratic space (Vp, q) by taking a tensor product with Qp. The sections above explain
how a representation of Mp2(A) on SA(VA) is induced by this – the associated Weil
representation ωA. We follow [Kud03] and [BY09] for sketching the extraction of a discrete
representation on a finite dimensional space from ωA. Let K ′ < Mp2(A) be the preimage
of SL2(Ẑ) < SL2(Af ) under the natural projection to SL2(A). Recall that there is a
canonical splitting morphism of SL2(Q) into Mp2(A). Then

Mp2(A) = SL2(Q)Mp2(R)K ′. (3.26)

Note that SL2(Z) ≃ Mp2(Q) ∩ Mp2(R)K ′ and that for any γ ∈ Mp2(Z) there are unique
elements γ0 ∈ SL2(Z) and γ′ ∈ K ′ such that

γ0 = γγ′.

The association Mp2(Z) ∋ γ ↦→ γ′ ∈ K ′ defines a homomorphism and the idea is to
construct a finite dimensional subspace of S(VAf

) that arises naturally from L and
is invariant under the action of Mp2(Z) via ωf . Then we had a finite dimensional
representation of Mp2(Z).
Note that for L̂ = L⊗ Ẑ we have that 1µ+L̂ ∈ S(VAf

) with µ ∈ L′/L. Recall Example 1.33
to verify that this notation is meaningful and the denoted functions generate a space
SL′/L < S(VAf

) of complex dimension |L′/L|. Next, we verify that this space is invariant
under ωAf

|Mp2(Z). For that purpose, it is sufficient to consider the representation locally.
Further, (3.16) reveals that the action of the representation ωp only differs by an element
of T from the action of prrp. But the latter defined a projective representation of SL2(Qp)

and hence it suffices to consider the action of elements of SL2(Z) via prrp. The group
SL2(Z) is, however, generated by the two matrices T representing translation by 1 and S
representing an inversion at i (cf. Definition 2.12).
By (3.12), we find for l ∈ L′p that

prrp(T )1l+Lp(l + x) = ep(q(l + x))1l+Lp(l + x) = ep(q(l))1l+Lp(l + x)
·
= 1l+Lp(l + x)

For the action of S we remark that by (3.13) it suffices to consider only the operation of
the Fourier transformation. By assuming a self dual measure, Remark 1.54 then yields in
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the notation of Remark 1.57 that

F [1l+L̂(x)](y) = eb
f (−l, y) · 1L̂′(y)

which is again in SL′/L, as eb
f (l, · ) descends to a character on L′/L. Hence, we obtain a

representation

ρL : Mp2(Z) ∋ γ ↦→ ω∗Af
(γ′) : SL′/L → SL′/L, (3.27)

where ω∗ denotes the dual representation. Recall that the normalisation of the local
measure

µb
p(Lp) =

√︂
|L′p/Lp|

−1
=
√︂

|det(S)|p

implies µ̂b(L̂) =
√︁
|L′/L|−1 =

√︁
|S|∞

−1 for the measure of the finite adele module, where
S denotes the Gram matrix of L. Of course, there is a scalar product on the space SL′/L

that will be normalised to ⟨1L̂,1L̂⟩ = 1 for reasons that will become clear later on.
Note that SL′/L in fact carries the structure of a commutative C algebra, by considering
convolution as a product. We have

[1l+Lp ∗ 1l′+Lp ](y) =

∫︂
Qp

1l+Lp(x)1l′+Lp(y − x) dµp(x)

=

∫︂
Lp

1L(y − (l + l′)− x) dµp(x)

= 1l+l′+Lp(y)

meaning that the convolution product coincides with the one induced by the group
structure of the discriminant form L′/L. Hence, we have proven the following lemma.

Lemma 3.9. For an even non-degenerate lattice L the space SL′/L equipped with the
convolution product is isometrically isomorphic to the group algebra C[L′/L]

Further, we conclude the existence of a natural representation on the group algebra
C[L′/L], based on the discussion succeeding (3.27).

Corollary 3.10. For an even Z lattice there is a natural representation of Mp2(Z) on
the group algebra C[L′/L], which we denote ρL and call (integral) Weil representation.

We would like to describe this representation more explicitly. For that purpose, the
group Mp2(Z) has to be examined more closely. We begin by studying the twofold
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metaplectic cover of GL+
2 (R) which we will denote by GL+

2 (R). In order to provide a
convenient model for this group, we require the factor of automorphy j that has been
given in Definition 2.10. Equipped with that notion, GL+

2 (R) may be realised as the group
of pairs (γ, φ), where γ ∈ GL+

2 (R) and φ denotes a holomorphic square root of j(γ, · ) on
H. Multiplication is given by

(γ, φ) · (γ′, φ′) = (γγ′, φ(γ′ · )φ′). (3.28)

Note that GL+
2 (R) inherits an action on H from GL2(R)+ via pullback along the covering

map. Namely, for (γ, φ) ∈ GL+
2 with γ =

(︁
a b
c d

)︁
and τ ∈ H, set

(γ, φ)τ := γτ =
aτ + b

cτ + d
. (3.29)

Also, the preimage of SO2 in GL+
2 (R) will be denoted SO2 and defines a double cover.

Recall that the preimage of SL2(Z) in GL+
2 (R) is denoted by Mp2(Z). It is then generated

by the two elements

T :=

(︄(︄
1 1

0 1

)︄
, 1

)︄
, (3.30)

S :=

(︄(︄
0 −1

1 0

)︄
,
√
τ

)︄
(3.31)

which project to the two generators T and S of SL2(Z) (cf. Definition 2.12). The element

Z := S
2
= (ST )3 =

(︄(︄
−1 0

0 −1

)︄
, i

)︄
(3.32)

generates the centre of Mp2(Z).

Remark 3.11. To ease the notation, an element γ ∈ SL2(Z) will be associated to
(γ, φ) ∈ Mp2(Z) for the standard choice of square root φ of the factor of automorphy
j(γ, τ). We will also write γ̃ = (γ, φ). Note that this association does not define a section
of groups as it is not a homomorphism, but only in terms of covering maps!
Similarly, we embed Γ∞ into Mp2(Z) by sending γ ↦→ (γ, 1). This, however, is a section
in the category of groups.

Comparing the transformation property of theta functions in the adelic setting with
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the transformation rule of theta functions in the classical setting (cf. [Bor98, Thm. 4.1
p. 505]) yields the identification of ρL as the classical Weil representation [BY09, p. 639].
The concrete formulae are given as follows.

Remark 3.12. Let (L, q) be an even non-degenerate lattice and L = (L′/L, q) be the
associated discriminant form. It suffices to describe the action of ρL on the generators T
and S. These operations are given by

ρL(T )eλ = e(q(λ)) · eλ, (3.33)

ρL(S)eλ =
e(− sig(L)/8)√︁

|L|
·
∑︂
µ∈L

e(−β(λ, µ))eµ. (3.34)

From the remark above it is apparent that the representation ρL only depends on the
discriminant form L.

Definition 3.13. Let (L, q) be a discriminant form. Then ρL := ρL is a unitary represen-
tation of Mp2(Z) on C[L] that is fully determined by (3.33) and (3.34).

We require some more insights into this representation for later investigations and will,
in the following, recollect a number of useful facts based on [BS08].

Remark 3.14. a) Note that the generator of the centre Z operates for λ ∈ L as

ρL(Z)eλ = e(− sig(L)/4) · e−λ. (3.35)

As a consequence, the Weil representation ρL factors through Mp2(Z)/⟨Z
2⟩ ≃

SL2(Z), if, and only if, sig(L) ≡ 0 mod 2.

b) Another useful action which is computable is the one of U = ST
−1
S
−1:

ρL(U
m
)eλ =

1

|D|
∑︂
µ,ν∈D

e (−mq(µ) + β(µ, λ− ν)) eν (3.36)

found in [BS08, 2 Lem. 2.3 p. 254].

c) Further, following [BS08, 2 Lem. 2.1 p. 253] define for integers a, d ∈ Z fulfilling
gcd(a,N) = 1 = gcd(d,N) such that a · d ≡ 1 mod N the element

Rd := ST
d
S
−1
T
a
ST

d
.
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It has the form Rd = (γ, φ) with γ ≡
(︁
a 0
0 d

)︁
mod N . Then

ρL(Rd)eλ =
GL(d)

GL(1)
· edλ, (3.37)

where GL(d) =
∑︁

ν∈L e(d q(ν)) are Gauss sums (cf. Definition A.16).

Remark 3.15. Let (L, q) = (L1, q1)⊕ (L2, q2) be a direct composition into even lattices.
Recall that C[L] = C[L1]⊗ C[L2]. Then ρL = ρL1 ⊗ ρL2 .

Remark 3.16. In case of even rank it had been noted above that the representation ρL

factors through SL2(Z). Further, writing N := lev(L) we find that ρL is trivial on Γ(N)

for even rank, so that it factors through the finite group

SL2(Z/NZ) ≃ Γ(1)/Γ(N).

In case of odd rank, the oddity formula [Joh98, Chap. 15 p. 383 (30)] implies 4 | N , in
particular, L contains 2-adic Jordan components. In this case, there is a well known
section (see also [Shi73, p. 447])

s : Γ0(4) → Γ0(4), γ =

(︄
a b

c d

)︄
↦→

(︄(︄
a b

c d

)︄
, ϵ−1d

(︂ c
d

)︂√︁
j(γ, τ)

)︄
(3.38)

with ϵd = 1 or i, depending on whether d ≡ 1 or 3 mod 4. Here, Γ0(4) denotes the
preimage of Γ0(4) under the projection SL2(Z) → SL2(Z).7 The argument at the end
of [Bor00, Thm. 5.4 p. 330] yields that ρL is trivial on s(Γ(N)) and factors through the
central extension of SL2(Z/NZ) by {±1} given by

Mp2(Z)/s(Γ(N)).

Finally, we require the following piece of notation for the computation of Fourier
expansions of non-holomorphic Eisenstein series.

Definition 3.17. For λ, µ ∈ L and (γ, φ) ∈ Mp2(Z), we introduce the following notation
for the λ, µ-coefficient:

ρλ,µ(γ, φ) := ⟨ρL(γ, φ)eλ, eµ⟩. (3.39)

7Note that only the section on Γ(N) maps to Mp2 and Γ0(N) is mapped to a central extension by C×.
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3.3 Vector valued modular forms
The theory of scalar valued modular forms is rich and attempting to generalise it in
different directions is apparent. Recall that the compellingly simple construction of
Jacobi’s theta function ∑︂

n∈Z
qn

yields a function that is not modular in the standard sense, but almost. In addition,
classical functions like the Dedekind eta function are almost modular in the sense that
they transform with a multiplier, which is correcting signs. Also recall that Theorem 2.22
yields a whole class of theta functions that transform almost like a modular form - up to a
character. Characters are unital one dimensional representations and cocycles appear when
projecting representations from coverings to the underlying groups. So it appears natural
to generalise the concept of modular forms to include a (possibly projective) representation.
However, the step from allowing a character to allowing a multidimensional representation
may not be immediately intelligible and we will recall an example. Consider the generalised
theta function (compare Definition 2.17) for an even positive definite lattice (L, q)

θλ+L : H → C,
∑︂

x∈λ+L
qq(x),

with λ ∈ L′/L and q = exp(2πiτ). Note that then

θλ+L|n/2S

is in fact a linear combination of theta functions of this very form θµ+L for µ ∈ L′/L.
(cf. [Ebe12, 3.1 p. 81 (T2)]). To rephrase this phenomenon: there is a linear action
intertwining the different theta functions θλ+L associated to an even lattice L. In fact,
their action is compatible in the above sense.

Theorem 3.18 ([Bor98, Thm. 4.1 p. 505]). For an even lattice (L, q), the theta series
(θλ+L)λ∈L′/L is a vector valued modular form for Mp2(Z) that transforms under the Weil
representation associated to the discriminant form (L′/L, q).

This means that the linear intertwining of the individual components may be described
by a complex representation, yielding a new perspective on the topic at hand. Indeed,
the theory of vector valued modular forms is suited to unify all of the above phenomena
in a single framework and we shall, in the following, review the elementary parts of its
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theory. The first published record of a call for the development of the theory of vector
valued modular forms the author is aware of is from Selberg [Sel65]. The reader may
find a source for vector valued modular forms in a quite general setting in [Gan14]. The
subcase that is required for this thesis is the one of vector valued modular forms for the
Weil representation ρL of Mp2(Z) and it will be discussed in the following. However, note
that not all naturally occurring vector valued modular forms are associated to these types
of representations – compare for instance [Zhu96].

3.3.1 Discrete Weil representation

For the following, compare [Str13] and [BS08].
One of the most significant examples of representations for considering vector valued

modular forms is the discrete Weil representation introduced in Subsection 3.2.1.
Recall that for a discriminant form (L, q) there is a unitary representation ρL :

Mp2(Z) → Aut(C[L]) introduced in (3.27) and described in Remark 3.12. As before,
set e(x) = exp(2πix) and recall that the representation is determined by the actions of
the two generators T = (( 1 1

0 1 ) , 1), and S =
(︁(︁

0 −1
1 0

)︁
,
√
τ
)︁

of Mp2(Z) given by

ρL(T )eλ = e(q(λ)) · eλ,

ρL(S)eλ =
e(− sig(L)/8)√︁

|L|
·
∑︂
µ∈L

e(−β(λ, µ))eµ.

After this recap, we may introduce vector valued modular forms.

Definition 3.19. A function f : H → C[L′/L] is called vector valued modular function of
weight k ∈ 1

2Z for Γ ≤ Mp2(Z) if for all γ = (M,φ) ∈ Γ

f(γτ) = φ(τ)2k · [ρL(γ)f ] (τ).

It carries the predicate holomorphic, weakly holomorphic, meromorphic, or real analytic, if
it satisfies the usual conditions on Γ\H respectively. The associated spaces are denoted
by ML,k,M!

L,k,AL,k,RL,k in accordance with Table 2.1.

By Remark 3.16, we recognise that every component function of such a vector valued
modular form is a scalar valued modular form for Γ(N) for some N ∈ N. However,
following [Bor98, Exa. 2.2 p. 500] we realise that any scalar valued modular form may be
induced to a vector valued modular form to Mp2(Z) for some Weil representation. Hence,
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we we will stick with the case of vector valued modular forms of level 1; meaning for the
full group Mp2(Z).

Remark 3.20. In case of 2k ̸≡ sig(L) mod 2, we find ML,k = {0} = RL,k.

Proof : In fact, applying |LZ to a function f twice yields

e(sig(L)/2− k) · f.

Now if f was a modular form for Mp2(Z), i.e. invariant under that action, we concluded
that either f = 0 or e(k − sig(L)/2) = 1 which is equivalent to 2k ≡ sig(L) mod 2.

Remark 3.21. If f ∈ M!
L,k we find that

f |L,kT =
∑︂

λ∈L′/L

e(− q(λ))fλ(τ + 1)eλ.

By comparing components we infer that e(− q(λ)(τ+1))fλ(τ+1) = e(− q(λ)(τ))fλ(τ), i.e.
e(− q(λ)( · ))fλ( · ) is 1 periodic and holomorphic in a neighbourhood of infinity, meaning
it possesses a Fourier expansion. As a consequence, we find

f(τ) =
∑︂

λ∈L′/L

∑︂
n∈q(λ)+Z

a(λ, n)e(nτ)eλ (3.40)

for appropriate numbers a(λ, n) ∈ C. In particular, the set of admissible indices (cf.
Definition 3.67)

I = {(λ, n) ∈ L ×Q | n ≡ q(λ)}

interpreted as a subset of the dual space (M!
k,L)

′ is separating.

Remark 3.22. Let f ∈ M!
L,k with Fourier expansion as in (3.40). Applying |LZ to f

yields
fλ = e[(sig(L)− 2k)/4] · f−λ (3.41)

for any λ ∈ L. In particular, assuming λ = −λ which may only happen if λ is trivial in
all p components of L for p > 2, we conclude that fλ vanishes, unless sig(L) ≡ 2k mod 4.
On the level of Fourier coefficients (3.41) means that these fulfil the following symmetry
property

a(−λ, n) = e[(sig(L)− 2k)/4] · a(λ, n). (3.42)
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In fact, applying |LZ (cf. Example 3.14 a)) yields

∑︂
λ∈L′/L

∑︂
n∈q(λ)+Z

a(λ, n)e(nτ)eλ = e(sig(L)/4− k/2)
∑︂

λ∈L′/L

∑︂
n∈q(λ)+Z

a(λ, n)e(nτ)e−λ.

While properties of vector valued modular forms have already been discussed, we have
yet to verify their existence. Hence, we will have a look at the following trivial example,
before turning towards more interesting construction principles.

Example 3.23. Let L be unimodular, i.e. L = L′/L = {0}. Then C[L] ≃ C and necessarily
rk(L) = m ≡ 0 mod 8, so that the discrete Weil representation ρL acts trivially by
Remark 3.12. This implies that the notion of a vector valued modular form for the Weil
representation coincides with the classical notion of a scalar valued modular form in that
case. Also note that by Remark 3.20 the weight k must be even in that context.

3.3.2 Some constructions

There are various construction principles for vector valued modular forms. We will present
a selection of these principles and begin by making direct observations. We will then
introduce concrete classes of modular forms and subsequently move on to discuss more
advanced construction principles before touching on some structure results.

Combining known forms

Clearly, we may abstractly induce forms from subrepresentations, but this has already
been cast aside as a special technical case when explaining that we stick to forms for
the full group Mp2(Z). Instead, we recall ideas from the classical setting where we have
encountered two accessible construction principles: products and symmetrisation. The
latter has been used to construct Eisenstein series, which will also be revisited below,
while the further offered a trivial construction of new forms and will be stated first.

Remark 3.24. Consider finitely many discriminant forms (Li, qi) for 1 ≤ i ≤ m and for
ki ∈ Z/2 modular forms fi ∈ MLi,ki with Fourier expansion

fi(τ) =
∑︂
λi∈Li

∑︂
ni∈qi(λi)+Z

ci(λi, ni)e(niτ)eλi .

For L =
⨁︁

i Li we use the notation λ = (λi)i ∈
⨁︁

i Li = L as well as n = (ni)i to define
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the function

⨂︂
i

fi : H ∋ τ ↦→
∑︂
λ∈L

∑︂
n∈Qm,

∀i:ni∈qi(λi)+Z

c(λ, n)e(nτ) · eλ ∈ C[L]

where c(λ, n) =
∏︁
i ci(λi, ni), e(nτ) = e(

∑︁
i niτ), and eλ =

⨂︁
i eλi . Then for k =

∑︁
i ki we

have that
f1 ⊗ . . .⊗ fm :=

⨂︂
i

fi ∈ ML,k.

The above remark offers trivial means to construct new forms from already known ones,
but so far we have not encountered a single true vector valued modular form. Hence,
selecting an even lattice L of level lev(L) | N and a modular form for Γ(N), we may inject
this form into a component of C[L′/L]. This yields a vector valued modular form for Γ(N)

which may be symmetrised to a vector valued modular form for the full group SL2(Z).
Such a construction has been given by Scheithauer in [Sch15, Thm. 3.1 p. 7] along others
and we will present a special case of the more delicate variant for Γ0(N).
Note that the Weil representation acts in fact via a character χL under Γ0(lev(L)) on the
zero component of C[L′/L]. This character is given by (cf. [Sch15, p. 7] for details)

χL

(︄(︄
a b

c d

)︄)︄
=

(︃
a

|L|

)︃
e[(a− 1) oddity(L)/8].

Proposition 3.25. Let L be an even lattice, N ∈ N with lev(L) | N and χL be the
character of SL2(Z) presented above. Given a modular form f ∈ Mk(Γ0(N), χL), we find

F (τ) :=
∑︂

γ∈Γ0(N)\Γ(1)

f |kγρL(γ)−1e0 ∈ ML,k.

Remarkably, a significant portion of vector valued modular forms are of this type.
Namely, if lev(L) is assumed to be square free and we choose F ∈ ML,k that is invariant
under the action of O(L′/L), then F may be represented as such a lift of a Γ0(lev(L))
scalar valued modular form (cf. [Sch15, Cor. 5.5 p. 24]).

Siegel theta series

We will briefly review Siegel theta series, based on [Bor98]. In this subsection let
(L, q) be an even lattice of signature (m+,m−) and rank m = m+ +m−. Further, let
P : Rm → C be a polynomial. We identify Rm with the underlying space of the quadratic
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space R(m+,m−) (cf. Example 1.5). Then we say that P has degree (κ+, κ−), if P has
degree κ+ in the first m+ variables and degree κ− in the last m− variables.
Denote by σ : L ⊗Z R → R(m+,m−) an isometry and set z := σ−1(R0,m−

). Then z⊥ =

σ−1(Rm+,0) and V = z⊥ ⊕ z with z ∈ D. For any element v ∈ VR = L⊗ R introduce the
decomposition v = vz⊥ + vz ∈ z⊥ ⊕ z. With this notation, we may introduce Siegel theta
functions.

Definition 3.26. Let λ ∈ L′/L and P be homogeneous of degree (κ+, κ−), τ = u+ iv ∈ H
and σ, z be as above as well as α, β ∈ V . Define

θL,λ(τ, α, β, σ,P) := v
m−

2 +κ−
∑︂

µ∈L+λ
exp

(︃
− ∆

8πy

)︃
(P)(σ(µ+ β))

× e (τ q[(µ+ β)z⊥ ] + τ q[(µ+ β)z]− b(µ+ β/2, α)) ,

(3.43)

where ∆ is the Laplacian.

Remark 3.27. Note that the prefactor v
m−

2 +κ− has been introduced in order to completely
shift the transformation to the holomorphic variable as in [MZ23].

Remark 3.28. In the particularly relevant case of α = 0 = β these elements are ommitted
from the notation and the function may be written in more plane terms. To this end,
note that q(v) = q(vz⊥) + q(vz) so that we write qz(v) := q(vz) and call q+

z given by
q+
z (v) := q(v)− 2 qz(v) = q(vz⊥)−q(vz) the standard majorant of q with respect to z ∈ D.

With this notation, we find for τ = u+ iv ∈ H that

θL,λ(τ, σ,P) = v
m−

2 +κ−
∑︂

µ∈L+λ
exp

(︃
− ∆

8πy

)︃
(P)(σ(µ))e

(︁
u q(µ) + iv q+

z (µ)
)︁
. (3.44)

We have defined such a Siegel theta function for every λ ∈ L = L′/L and consider these
to carry local information. Piecing them together creates a complete theta function.

Definition 3.29. Let P be homogeneous of degree (κ+, κ−), τ = u+ iv ∈ H and σ, z be
as above and α, β ∈ V . Define the Siegel theta function of L to be

ΘL(τ, α, β, σ,P) :=
∑︂
λ∈L

θL,λ(τ, α, β, σ,P)eλ. (3.45)

In case α = β = 0, these are omitted from the notation. The same holds in case P = 1.

Borcherds has proven the following transformation property for Siegel theta functions.
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Theorem 3.30 ([Bor98, Thm. 4.1 p. 505]). For P a homogeneous polynomial of degree
(κ+, κ−) and every γ =

(︁(︁
a b
c d

)︁
, φ
)︁
∈ Mp2(Z), we find

ΘL(γτ, aα+ bβ, cα+ dβ, σ,P) = φm
++2κ+−(m−+2κ−)ρL(γ)ΘL(τ, α, β, σ,P). (3.46)

As usual, the proof of the transformation property is reduced to the cases of the two
generators T and S of Mp2(Z). The first identity is a triviality, while the second is
achieved with the typical tool of Poisson summation.

In Section 5.2, theta functions are introduced in adelic fashion, depending on a choice
of Schwartz function which is why we introduce the following semiclassical perspective.

Theta functions for general Schwartz forms

The Siegel theta functions introduced above already represent a fairly general framework
for theta functions which suffices for most applications. However, the kernel symmetrised
in that setting has a very particular form and while technically being adequate for the
applications within this thesis, formulae appearing in the later parts of this thesis are
much more amenable in a different notation, arising from a more conceptual approach to
theta functions. In order to approach another construction perspective recall the classical
setting for theta functions (cf. Definition 2.17) which were constructed by building a
family of Schwartz functions ϕ(τ) ∈ S(VR) from the form q and symmetrising ϕ(τ) over
the lattice L. These series were clearly periodic and constructed in such a fashion that
Poisson summation yielded a transformation property for the action of S ∈ SL2(Z).
However, in case of an indefinite quadratic form, the choice VR ∋ x ↦→ exp(2πi q(x)τ) does
not define a Schwartz function, for it is not rapidly decreasing. Hence, we will have to
select a different variant of that prototype in order to guarantee convergence. In addition,
it is unclear how to construct a whole family ϕ(τ) ∈ S(VR) of Schwartz functions. In order
to shed light on a possible solution we have to take another perspective on the classical
situation.
We note that in the classical setting for a positive definite quadratic space (V, q) of even
signature and

ϕ : VR → C, v ↦→ exp(−2π q(v))
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we find for τ = u+ iv ∈ H, gτ = N(u)M(
√
v) as in (3.22) and ω∞ the Weil representation

of Example 3.8 that

ω∞(gτ )ϕ(x) = e2πi q(v)uvm/4ϕ(
√
vx) = vm/4 exp(2πi q(x)τ). (3.47)

With that new perspective, we may define theta functions associated to Schwartz forms.
First, recall that there is a section P∞ → Mp2(R) of the standard Borel subgroup, so that
gτ may directly be interpreted as an element in Mp2(R).

Definition 3.31. Let ϕ ∈ S(VR) and λ ∈ L = L′/L. Then

θL,λ(τ ;ϕ) = v−m/4 ·
∑︂

x∈L+λ
[ω∞(gτ )ϕ](x)

is called theta function associated to ϕ and the coset λ+ L.

We note that we may let O(VR) act on ϕ via the left regular representation, i.e.

h : ϕ ↦→ ϕ(h−1 · ) ∈ S(VR).

In that sense, θL,λ may be understood as a function on H× O(VR). Combining the above
theta functions for different cosets of the dual lattice yields the following theta function.

Definition 3.32. Let ϕ ∈ S(VR). Then

ΘL(τ, h;ϕ) = v−m/4 ·
∑︂
x∈L′

[ω∞(gτ )ϕ](h
−1x)ex+L

is called theta function associated to ϕ. In case the Schwartz form ϕ is invariant under
the action of a maximal compact K ⊆ O(VR), we find that the dependence on h factors
through D and we write ΘL(τ, z;ϕ) for z ∈ D. Also, for fixed z, we omit this variable.

A prominent example is the classical case based on (3.47) given that (VR, q) is positive
definite. However, in case of an indefinite quadratic form, the naively chosen function
VR ∋ x ↦→ exp(−2π q(x)) does not define a Schwartz function, for it is not rapidly
decreasing. Recall that we had for an element z ∈ D defined the standard majorant

q+
z (v) = q(vz⊥)− q(vz)

which is positive definite. This enables us to associated theta functions to indefinite
quadratic spaces by introducing a parameter z ∈ D.
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Example 3.33. With q+
z : VR → R as above, ϕ(x) = e(i q+

z (x)), and τ = u + iv ∈ H we
find

ΘL(τ, z;ϕ) =
∑︂
x∈L′

e
(︁
u q(x) + iv q+

z (x)
)︁
ex+L.

We will revisit this construction later in Section 5.2, where it will be given adellically.
Before finishing the current subsection we note that theta functions do factor, provided
the associated Schwartz forms do.

Remark 3.34. Let the lattice L = L1 ⊕ L2 split and assume ϕ∞ ∈ S(V∞) splits as
a tensor product ϕ∞ = ϕ′∞ ⊗ ϕ′′∞ ∈ S(V21∞) ⊗ S(V2,∞). Then, if the theta function
Θ(τ ;ϕ∞) is absolutely convergent, it also decomposes as a tensor product

ΘL(τ ;ϕ∞) = ΘL1(τ ;ϕ
′
∞)⊗ΘL2(τ ;ϕ

′′
∞). (3.48)

Proof : A straight forward calculation yields the desired result

ΘL(τ ;ϕ∞)

= v−
m
4 ·

∑︂
(λ1,λ2)∈L′

1/L1⊕L′
2/L2

∑︂
l1∈L1+λ1,l2∈Lℓ+λ2

(ω∞(gτ )ϕ∞ ((l1, l2))) eλ1+λ2

=
∑︂

λ1∈L′
1/L1

λ2∈L′
2/L2

v−
1
4

∑︂
l1∈L1+λ1

(︁
ω∞(gτ )ϕ

′
∞
)︁
(l1) · v−

m−1
4

∑︂
l2∈L2+λ2

(︁
ω∞(gτ )ϕ

′′
∞
)︁
(l2)eλ1+λ2

=
∑︂

λ1∈L′
1/L1

λ2∈L′
2/L2

θL1,λ1(τ ;ϕ
′
∞) · θL2,λ2(τ ;ϕ

′′
∞)eλ1+λ2

= ΘL1(τ ;ϕ
′
∞)⊗ΘL2(τ ;ϕ

′′
∞).

Lifts between discriminant forms

Assuming we have an even lattice L and a sublattice M ≤ L, it is natural to ask, whether
modular forms for one of these lattices may be used to construct modular forms for the
other. In fact, there is a rather natural construction for relating functions in the spaces
C[M ′/M ]H and C[L′/L]H. However, its following discussion is technical and the reader
only interested in references may consult (3.49) and (3.51) as well as Proposition 3.36.
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M L L′ M ′

L/M L′/M M ′/M

L′/L M ′/L

M ′/L′

0

0

0

Figure 3.3.1: Visualisation of natural projections and injections between quotients related
to M ≤ L. Diagonal arrows correspond to trivial mappings. The significant
rectangle for our construction is framed in blue. Passing to the generated
group algebras, the diagram remains the same.

To this end, let

M ≤ L ≤ L′ ≤M ′

be a chain of lattices of finite index, so that L/M ≤ L′/M ≤M ′/M – compare Figure 3.3.1.

Recall the construction of the coordinate mappings M ′/M ∋ µ ↦→ (f ↦→ fµ). An element
f ∈ AM ′/M,k is determined by its values under all of these mappings. Hence, it suffices to
construct from such an f images for the respecting mappings L′/L ∋ ν ↦→ gν . We may
reduce to the case f(τ) ∈ CM ′/M by fixing τ .
Clearly, an element in CM ′/L has a natural reduction to an element in CL′/L, by pulling back
along the natural injection ι : L′/L → M ′/L. Hence, constructing from f(τ) ∈ CM ′/M

a natural element in CM ′/L suffices. If there was a natural section s to the projection
M ′/M →M ′/L, applying the pullback of it to f(τ) yielded the desired result. However,
the projection π : M ′/M → M ′/L might not be injective, in fact its kernel is L/M , so
that it represents a |L/M | fold cover of M ′/L on which the kernel L/M acts on the fibres.
Hence, for an arbitrary section s0 to π we obtain for every ν ∈ L/M another section
sν : µ ↦→ s0(µ) + ν. Their images cover M ′/M disjointly so that the mapping

s∗ :
∑︂

ν∈ker(π)

(sν)
∗ : CM

′/M → CM
′/L
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is well defined and, in particular, independent of any choice of ν and s0. As a consequence,
there is the natural map

ι∗ ◦ s∗ : CM ′/M → CM
′/L → CL

′/L.

In conclusion, there is an operator

↓ML : C[M ′/M ]H → C[L′/L]H, g ↦→↓ML g, (3.49)

with

(↓ML g)µ =
∑︂

ν∈L/M

gµ+ν (3.50)

where µ := s0 ◦ ι(µ) is an arbitrary but fixed lift of some µ ∈ L′/L to M ′/M .

Remark 3.35. The operator ↓ML translates the theta function associated with M to a
theta function of L. In the notation of Definition 3.32 this means

↓ML (ΘM (τ, z;ϕ)) = ↓ML

⎛⎝ ∑︂
λ∈M ′/M

∑︂
x∈M+λ

(ω∞(gτ )ϕ)(x, z)eλ

⎞⎠
=

∑︂
λ∈L′/L

∑︂
x∈L+λ

(ω∞(gτ )ϕ)(x, z)eλ

= ΘL(τ, z;ϕ).

The operator ↓ML clearly preserves smoothness and polynomial or exponential growth
conditions so that it preserves the property of being a modular (cusp) form, if only it
translated the transformation property. This will become apparent later, so that we
continue to ask for its adjoint operator with respect to the Petersson scalar product.

Let f ∈ AL,k, g ∈ AM,k such that their Petersson scalar product is defined and compute

⟨f, ↓ML g⟩L =
∑︂

µ∈L′/L

fµ · ↓ML gµ

=
∑︂

µ∈L′/L

fµ ·
∑︂

α∈L/M

gµ+α

=
∑︂

µ∈L′/L

fµ ·
∑︂

α∈L′/M
α=µ

gα
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=
∑︂

µ∈L′/M

fµ · gµ

=
∑︂

µ∈M ′/M

(︁
↑ML f

)︁
µ
· gµ

= ⟨↑ML f, g⟩M

where ↑ML f denotes the naive embedding from f ∈ CL′/L to CM ′/M given by fµ, if
µ ∈ L′/M and 0, otherwise. Explicitly,

(︁
↑ML f

)︁
µ
=

⎧⎨⎩fµ, if µ ∈ L′/M,

0, otherwise,
(3.51)

which defines the lift

↑ML : AL,k → AM,k, g ↦→ gM . (3.52)

Note that these lifts are not inverse to each other, as ↓ML ◦ ↑ML = |L/M | · id and ↑ML ◦ ↓ML
equals |L/M | · id only on the in general proper subspace given by the image of ↑ML , whose
elements are supported on L′/M . In fact, the latter gives a complete description of the
image of ↑ML , in particular, any element f ∈ MM,k supported on L′/M satisfies fµ = fµ+µ′

for µ′ ∈ L/M (cf. [Bru14, Prop. 3.3]).

In fact, there is an underlying more conceptual construction of such operators which is
also the origin of the naming convention in this thesis [Sch15, Sec. 4] and [Bru14, Sec. 3].
In fact, for a discriminant group D and an isotropic subgroup H, the group D′ := H⊥/H

defines a discriminant group of the same signature. Then there are operators

↑DD′ :Mk,D′ →Mk,D, g ↦→
∑︂
µ∈H⊥

gµ+Heµ,

↓DD′ :Mk,D →Mk,D′ , f ↦→
∑︂
µ∈H⊥

fµeµ+H .

The relation to the operators constructed in this thesis is explained in [Sch15, p. 16]
and is the following: The subgroup H := L/M ≤ M ′/M =: D is isotropic and we find
H⊥ = L′/M , yielding the natural isomorphism D′ = H⊥/H ≃ L′/L. The formulae are
then identical to these above and the respective results of Scheithauer and Bruinier yield
that the operators do in fact transfer the transformation properties with respect to the
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respective Weil representations. That is, the operators map modular forms to modular
forms.
Note that the more abstract description is in fact not more general, but equivalent, for if
H ≤ D, its preimage π−1(H) ⊆M ′ under the projection π :M ′ → D is an even sublattice.
In fact, if H := L/M , we obtain π−1(H) = L.

In conclusion we find the following proposition.

Proposition 3.36. For M ≤ L even non-degenerate lattices and k ∈ Z/2, there are linear
operators

↓ML : AM,k → AL,k, ↑ML : AL,k → AM,k

fulfilling the following properties.

a) The operators map modular (cusp) forms to modular (cusp) forms.

b) The lift ↓ML is compatible with theta functions, i.e. ↓ML (ΘM ) = ΘL.

c) The operators are adjoint to each other on the space of cusp forms:

⟨ · , ↓ML ( · )⟩L = ⟨↑ML ( · ), · ⟩M .

This identity also holds, if one of the cusp forms is replaced by a modular form.

d) The image B := im(↑ML ) is the subspace consisting of functions that are supported
on L′/M . We find

↓ML ◦ ↑ML = |L/M | · id,

↑ML ◦ ↓ML
⃓⃓
B
= |L/M | · idB .

Note that the latter identity is an abuse of notation, since ↑ML had to formally be
endowed with a restriction of its target to B.

Eisenstein series

The following exposition is based upon [Kie21, 2.5 pp. 30-36]. The statements are
essential for our investigations, more specifically for deriving meromorphic continuation of
the symmetric square type L-functions arising from the Rankin–Selberg type integrals in
Subsection 6.4.3. In the following, let (L, q) be a non-degenerate lattice and k ∈ Z/2 be a
half integral number.
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Definition 3.37. Let λ ∈ L be isotropic and k ∈ Z/2. Define the Eisenstein series

EL,λ,k(τ, s) :=
1

2

∑︂
γ∈Γ∞\Mp2(Z)

(Im(τ)seλ) |L,kγ. (3.53)

By construction this function is Mp2(Z) modular of weight k.

Lemma 3.38. The Eisenstein series EL,λ,k converges normally on H for Re(s) > 1− k
2 ,

is real analytic in τ and an eigenfunction of the hyperbolic Laplace operator of weight k
with Eigenvalue s(s+ k − 1).

Remark 3.39. Recall that the Weil representation ρL acts trivially on Γ(lev(L)), so that
the components of EL,λ,k(τ, s) are scalar-valued Eisenstein series for Γ(lev(L)). These,
however, have meromorphic continuation in s.

Bruinier and Kühn compute the Fourier expansion of these Eisenstein series. Note that
they do so with respect to the dual Weil representation, which is why the following is a
slight reformulation of their statement, taking that difference into account.

Proposition 3.40 ([BK03, Prop. 3.1 p. 1695]). For sig(L) ≡ 2k mod 2, the Eisenstein
series EL,λ,k has the Fourier expansion

EL,λ,k(τ, s) =
∑︂

µ∈L′/L

∑︂
n∈Z+q(µ)

cλ(µ, n, s, v)e(nu)eγ (3.54)

where the coefficients cλ(µ, n, s, v) are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
(δλ,µ + isig(L)+2kδ−λ,µ)v

s + 2πv1−k−s Γ(k+2s−1)
Γ(k+s)Γ(s) ·

∑︁
x∈Z\{0}|2c|1−k−2sHc(β, 0, µ, 0), if n = 0,

2kπs+k−1

Γ(s+k) Ws(4πnv) ·
∑︁

c∈Z\{0}|c|1−k−2sHc(λ, 0, µ, n), if n > 0,

2kπs+k−1

Γ(s) Ws(4πnv) ·
∑︁

c∈Z\{0}|c|1−k−2sHc(λ, 0, µ, n), if n < 0.

Here, Hc denotes the generalised Kloostermann sum

Hc(λ,m, µ, n) =
e−πi sgn(c)k/2

|c|
∑︂

0 ̸≡d mod c(︂
a b
c d

)︂
∈Γ(1)∞\Γ(1)/Γ(1)∞

ρµ,λ

˜︂(︄
a b

c d

)︄
e
(︃
am+ nd

c

)︃
, (3.55)

the matrix coefficients ρµ,λ are as in Definition 3.17, and the Whittaker functions Ws are
given in Definition A.20.
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For the notation γ̃ ∈ Mp2(Z) for an element γ ∈ SL2(Z), compare Remark 3.11.

Proof : In [BK03] only the case sig(L) + 2k ≡ 0 mod 4 is considered. In order to be
certain that, apart from the obvious change to the constant coefficient, no additional term
has to be altered, we compute the Fourier coefficients by consulting [Bru02, 1.2.3 p. 23] .
Begin with

cλ(µ, n, s, v) =
1

2

∫︂ 1

0

⟨︂ ∑︂
(γ,φ)∈˜︂Γ(1)∞\Mp2(Z)

Im(τ)seλ|kγ, eµ(nτ)
⟩︂
.

Note that there are 4 non-trivial representatives (γ, φ) with γ2,1 = 0, namely Z0
, Z

1
, Z

2
, Z

3.
The remaining matrices are represented by the double coset Γ(1)∞\Γ(1)/Γ(1)∞. Recall
that by Remark 3.20 we may reduce to the case sig(L) ≡ 2k mod 2, so that Z acts
trivially and we find

cλ(µ, n, s, v) =

∫︂ 1

0
⟨eλ, eµ(nτ)⟩ du · vs +

∫︂ 1

0
⟨eλ|L,kZ, eµ(nτ)⟩ du · vs

+
∑︂

γ∈Γ(1)∞\Γ(1)
γ2,1 ̸=0

∫︂ 1

0

Im(τ)s

|j(γ, τ)|2s
j(γ, τ)−k

⟨︁
ρ(γ̃)−1eλ, eµ(nτ)

⟩︁
du

Define ϵk := isig(L)+2k and recall that by Remark 3.22 we have

eλ|L,kZ = ϵke−λ.

Further, we find that

⟨︁
ρ(γ̃)−1eλ(mγτ), eµ(nτ)

⟩︁
= ρµ,λ(γ̃)e(mγτ)e(−nτ).

Note that by unitaricity, the expression ρµ,λ(γ̃) does not depend on altering γ̃ from the
right by an element of Γ(1)∞. With these computations, we obtain

cλ(µ, n, s, v) = δ0,n (δλ,µ + ϵkδ−λ,µ) v
s

+
∑︂

γ∈Γ(1)∞\Γ(1),γ2,1 ̸=0

∫︂ 1

0

Im(τ)s

|j(γ, τ)|2s
j(γ, τ)−kρµ,λ(γ̃)e(−nτ) du

= δ0,n (δλ,µ + ϵkδ−λ,µ) v
s
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+
∑︂

γ∈Γ(1)∞\Γ(1)/Γ(1)∞
γ2,1 ̸=0

ρµ,λ(γ̃)v
s exp(2πv)

∫︂ ∞
−∞

e(−nu)
|j(γ, τ)|2s

j(γ, τ)−k du.

Now writing γ =
(︁
a b
c d

)︁
, we have

√︁
j(γ, τ) = sgn(c)

√
c
√︁
τ + d/c,

so that we find for the appearing integral

vs exp(2πv)
∫︂ ∞
−∞

e(−nx)
|j(γ, τ)|2s

j(γ, τ)−k du

=vs exp(2πv)|c|−k−2s sgn(c)k
∫︂ ∞
−∞

e(−nu)
(τ + d/c)k+s (τ + d/c)s

du

=vs exp(2πv)|c|−k−2s sgn(c)ke
(︃
nd

c

)︃∫︂ ∞
−∞

e(−nu)
τk+sτ s

du

=vs exp(2πv)|c|−k−2s sgn(c)ke
(︃
nd

c

)︃∫︂ ∞
−∞

e(−nu)
τk+sτ s

du.

The integral ∫︂ ∞
−∞

e(−nu)
τk+sτ s

du =

∫︂ ∞
−∞

e(−nu)
(v − iu)k+s(v + iu)s

du

is then rewritten by Bruinier and Kühn in terms of Whittaker functions as

2kπs+ki−k|n|s+k−1y−sWs(4πny)

⎧⎨⎩Γ(k + s)−1, n > 0,

Γ(s)−1, n < 0,

and
22−k−2sπi−k

Γ(k + 2s− 1)

Γ(k + s)Γ(s)
y1−k−2s, in case of n = 0.

Finally, we find for the sum

∑︂
(︂
a b
c d

)︂
∈Γ(1)∞\Γ(1)/Γ(1)∞

c ̸=0

|c|−k−2s sgn(c)kρµ,λ(γ̃)e
(︃
nd

c

)︃

=
∑︂
c ̸=0

|c|−k−2s sgn(c)k
∑︂

0̸=d mod c(︂
a b
c d

)︂
∈Γ(1)∞\Γ(1)/Γ(1)∞

ρµ,λ(γ̃)e

(︃
nd

c

)︃

=
∑︂
c ̸=0

|c|1−k−2sHc(λ, 0, µ, n).
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Remark 3.41. The Fourier expansion of a slight generalisation, with non-trivial periodic
term, of the above is computed in [Völ18, Prop 3.6.7 p. 58]. In that case, however, the
series is not an eigenfunction of the hyperbolic Laplacian anymore, but suffers from a
shift in the parameter s.

We also introduce the following notation for simplifying statements further below.

cλ(µ, n, s, v) =

⎧⎨⎩(δλ,µ + isig(L)+2kδ−λ,µ)v
s + cλ(µ, 0, s)v

1−k−s, n = 0,

cλ(µ, n, s)Ws(4πnv), n ̸= 0.
(3.56)

Proposition 3.42. Let k > 2, then EL,λ,k(τ, 0) defines a vector valued holomorphic
modular form with respect to ρL and Mp2(Z), in short EL,λ,k(τ, 0) ∈ ML,k. Its Fourier
expansion is of the form

EL,λ,k(τ) = eλ + (−1)keλ +
∑︂

γ∈L′/L

∑︂
0<n∈Z+q(γ)

cλ(γ, n)eλ(nτ),

where we set cλ(γ, n) := cλ(γ, n, 0).

According to [Hej83, p. 372] we have the following transformation property.

Proposition 3.43. For an isotropic element λ ∈ L, we find the following functional
equation

EL,λ,k(τ, s) =
1

2

∑︂
µ∈Iso(L′/L)

cλ(µ, 0, s)EL,µ,k(τ, 1− k − s). (3.57)

From that transformation, a symmetry property for a special value of the Eisenstein
series is derived which may naively play a role in investigating the values of special
L-functions in Subsection 6.4.3 – also compare Remark 6.99 on that matter.

Corollary 3.44. Imposing the additional condition λ = −λ on an isotropic element λ ∈ L
and assuming k > 2 for the purpose of convergence, we obtain for the choice s = s0 = 0

that
EL,λ,k(τ, s0) =

2− δλ,0
2

(︂
1 + isig(L)+2k

)︂
· EL,λ,k(τ, 1− k − s0). (3.58)

From the Fourier expansion of EL,λ,k and the properties of the Whittaker function Ws

(cf. [Erd81, 6.9 p. 264], [Olv+10, Sec. 13.14], and [DAR84, Sec. 13 p. 189]) we derive an
asymptotic bound for the Eisenstein series.
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Corollary 3.45. We find for τ = u+ iv ∈ H and σ = max{Re(s),Re(1− k − s)} that

EL,λ,k(τ, s) = O(vσ), v → ∞. (3.59)

In fact, the constant required to bound may be chosen locally uniformly in s.

Proof : Indeed, the constant term of the expansion gives rise to the growth ∼ vσ, while
the other terms may be locally uniformly bounded in s. Note that the coefficients ρµ,λ
are universally bounded by 1, since ρ is unitary, effectively bounding the Kloostermann
sum (3.55) in the Fourier expansion of EL,λ,k. This gives rise to a universal bound of
the infinite series in the coefficients in (3.54) on right half planes by comparing it to the
Riemann ζ function. The exponential terms may be uniformly bounded in s on vertical
strips, as may the Γ factors in the Numerator. Further, the Beta function is entire and as
such continuous, yielding a locally uniformly bound in s. Finally, Lemma A.21 yields the
desired bound on the remaining Whittaker functions to justify an absolute bound on the
series of all other coefficients by bounding it by a geometric series.

Remark 3.46. This implies the same bound for the scalar valued Eisenstein series by
selecting the lattice L to be unimodular.

Parabolic Poincaré series

The construction of Eisenstein series above may be significantly generalised. Instead
of sticking with eλ for some λ ∈ L with q(λ) = 0 isotropic for a kernel, we may select
a general element λ ∈ L and adjust for the additional prefactor that came with the
transformation under T by cancelling it with a proper choice of the following form

eλ(mτ) := e(mτ) · eλ.

Now for m ∈ Z + q(λ), we find that eλ(mτ)|L,kT = eλ(mτ) for any weight k. The
generalisation goes further. In fact, instead of symmetrising Im(τ)s we may consider
much more general functions. To this end, let ψ : R>0 → C be piecewise infinitely
differentiable and for reasons of convergence, assume there is an exponent α ∈ R≥0 such
that ψ(v) = O(vα) for v → 0. Then we find

ψ(v)eλ(mτ)|L,kT = ψ(v)eλ(mτ),

so that the following expression is well defined.
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Definition 3.47. Let λ ∈ L′/L and m ∈ q(λ) + Z. Further, let ψ ∈ L1
loc(R>0). Then

Pλ,m,ψ,k(τ) :=
1

2

∑︂
(γ,φ)∈Γ∞\Mp2(Z)

ψ(v)eλ(mτ)|L,k(γ, φ) (3.60)

is called the (parabolic) Poincaré series of weight k with parameters λ,m and ψ.

Clearly, ψ may be replaced by a family ψs of functions with the analogous property
depending on a complex parameter s and we write Pλ,m,ψ,k(τ, s) for the Poincaré series in
that case. This way, we may reproduce the Eisenstein series from the section above. The
Fourier series of such parabolic Poincaré series for special choices of ψ may be computed.
Compare [Bru02, Thm. 1.4 p. 19] for the choice ψ = 1 and for different choices of ψ which
play a role in the field of Maass forms consult [Völ18, p. 54].

Remark 3.48. Assume there is α ∈ R such that ψ(v) = O(vα) for v → 0 and that
the weight fulfils k ≥ 2(1− α). Then Pλ,m,ψ,k(τ) may be proven to be locally uniformly
convergent, by comparing it to the classical Eisenstein series Ek(τ, α). Hence, if ψ is
(locally) continuous or holomorphic, so is Pλ,m,ψ,k(τ).

Remark 3.49. Note that ψeλ(mτ)|L,kZ = ψe−λ(mτ), so that the kernel, and as such
also the Poincaré series, are invariant under the action of Z2.

Petersson scalar product

As in the scalar valued case, the space of cusp forms is equipped with a scalar product.
This subsection serves two purposes: firstly, it introduces this product, and secondly, it
realises pairings of cusp forms against more general automorphic forms which are required
for constructing a class of L-series as Rankin–Selberg type integrals in Subsection 6.4.3.

Definition 3.50. Let f ∈ SL,k and g ∈ ML,k. Define the Petersson product of f and g

to equal ∫︂
FΓ(1)

⟨f, g⟩ · Imk dµ, (3.61)

where dµ is the standard invariant hyperbolic measure on H as in Definition 2.15 b) and
FΓ(1) denotes a fundamental domain for Γ(1) (cf. (2.3)).

We will need to verify that this expression is convergent in order to obtain a well defined
notion. In fact, we require a more general convergence statement for a later application
in the context of the Rankin–Selberg method and will state it here. Note first, that an
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integral of the form ∫︂
FΓ(1)

f dµ

is absolutely convergent, as long as f ∈ L∞(FΓ(1)). In fact, it is easy to verify that the
volume of FΓ(1) is finite, by computing the volume of an encompassing Siegel domain.

Definition 3.51. A function f : R → C is called rapidly decreasing towards ∞, if for all
n ∈ N we have

f(x) = O(x−n), x→ ∞. (3.62)

A family of functions fi is called rapidly decreasing, if all fi are. It is called uniformly
rapidly decreasing, if the constants in (3.62) may be chosen independently of the index i.

Example 3.52. a) Let f : R → C be rapidly decreasing towards ∞ and p : R → C be
of at most polynomial growth. Then the product f · p is rapidly decreasing.

b) Let f : H → C have a convergent Fourier expansion of the form

f(τ) =
∑︂

0<n∈Z/N

a(n)e(nτ)

for some natural number N ∈ N. Then for τ = u+ iv ∈ H, the family f(u+ iv) is
uniformly rapidly decreasing for v → ∞.

c) Let f, g be as in Definition 3.50. Then ⟨f, g⟩ is uniformly (in Re(τ)) rapidly decreasing
towards ∞.

d) Let L be a non-degenerate quadratic lattice that splits L = L1⊕L2. Given f ∈ SL,k,
g ∈ ML1,k1 and an Eisenstein series EL2,λ,k2 as in Definition 3.37 the product

⟨f, g ⊗ EL2,λ,k2( · , s)⟩ (3.63)

is uniformly rapidly decreasing towards ∞ for all fixed s for which EL2,λ,k2 does not
have a pole. Further, the prefactor for the bound can be chosen locally uniformly in
the parameter s (cf. Corollary 3.45).

In fact, part b) is verified by the following computation. Note first, that the Fourier
series must then be absolutely convergent on H by a standard argument for power series
(cf. Lemma A.19). In fact, we find that for any δ > 0 the series is absolutely bounded on
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the upper half plane {τ | Im(τ) > δ} by

∑︂
0<n∈Z/N

|a(n)| exp(−2πnδ). (3.64)

Consequently, we infer

|f(τ)| ≤
∑︂

0<n∈Z/N

|a(n)| exp(−2πnv)

= exp(−πv/N)
∑︂

0<n∈Z/N

|a(n)| exp(−πnv) exp(−π(n− 1/N)v)

≤ exp(−πv/N)
∑︂

0<n∈Z/N

|a(n)| exp(−πnδ).

Recall that the series on the right hand side equals a finite value, since the Fourier expansion
of f is absolutely convergent at iδ/2. Consequently, we find f(u+ iv) = O(exp(−πv/N))

for v → ∞ uniformly in u.
In order to verify that (3.63) is rapidly decreasing we restrict to the case Re(s) > 1− k/2

first and note that

|⟨f, g ⊗
∑︂

γ∈Γ∞\Mp2(Z)

(Im(τ)seλ) |L,kγ⟩|

≤

⃓⃓⃓⃓
⃓⃓ ∑︂
γ∈Γ∞\Mp2(Z)

Im(τ)s|kγ

⃓⃓⃓⃓
⃓⃓ · |⟨f, g ⊗ ρL2(γ)

−1eλ⟩|.

Observe that

|⟨f, g ⊗ ρL2(γ)
−1eλ⟩| ≤

∑︂
µ∈L2

|⟨eλ, ρL2(γ)eµ⟩| · |⟨f, g ⊗ eµ⟩|.

Since ρL2 is unitary, we find that the prefactor in the sum is universally bounded by 1.
Further, ⟨f, g⊗ eµ⟩ possesses a Fourier expansion as in part b), so that it remains to recall
that ∑︂

γ∈Γ∞\Mp2(Z)

Im(τ)s|kγ = Ek(τ, s)

is by Corollary 3.45 locally in s uniformly bounded in u by a single polynomial for v → ∞.
The concrete polynomial is given by vmax{Re(s),1−k−Re(s)}.
Deriving the statement for more general parameters s ∈ C is more technical. The idea is
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to use the Fourier expansion of EL,λ,k(τ, s) presented in Theorem 3.40 and note that it has
meromorphic continuation (this is derived from the scalar valued case for the coordinate
functions). Then, the L-series appearing in the Fourier expansion has meromorphic
continuation and is independent of v, so that it may be locally uniformly bounded as
long as it has no pole. Further, in order to bound the Whittaker function Ws, we refer to
Definition A.20 to recall its definition and to [Olv+10, (13.19.3)]8 in order to verify that
the asymptotic behaviour Ws(v) ∼ e−1/2v declared in [Olv+10, (13.14.21)] is true for a
locally uniform bound in s. Consequently, only the constant term of the Fourier expansion
plays a role which may again be asymptotically bounded by vmax{Re(s),1−k−Re(s)}.
Note that part c) is a subcase of part b) and part a) is immediate.

By part c) and a) of the above Example, we conclude the following Corollary implying
that the Petersson product in Definition 3.50 is well defined.

Corollary 3.53. Assume f, g to be chosen as in Definition 3.50 and let p : H → C be a
function of at most polynomial growth in Im(τ) → ∞. Then the integral∫︂

FΓ(1)

⟨f, g⟩ · p dµ (3.65)

converges absolutely.

Further, we obtain by part d) of Example 3.52 that the following Rankin–Selberg type
integrals yield holomorphic functions.

Corollary 3.54. Let L be a non-degenerate quadratic lattice that splits L = L1 ⊕ L2.
Given f ∈ SL,k, g ∈ ML1,k1 and an Eisenstein series EL2,λ,k2 as in Definition 3.37, the
integral ∫︂

FΓ(1)

⟨f, g ⊗ EL2,λ,k2( · , s)⟩ · vk dµ (3.66)

converges absolutely for Re(s) > 1 − k/2. In fact, if EL2,λ,k has no pole at some s ∈ C
the convergence is locally uniformly, so that the integral in (3.66) defines a holomorphic
function in s.

The case of higher genus

Many of the ideas that have been presented above for the SL2 case may be reproduced
in case of genus g > 1. There is, for instance, also a metaplectic extension which at the

8The reader may also consult [Olv+10, (5.2.4)] for the definition of the appearing Pochhammer symbol.
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infinite place may also be realised by pairs(︄(︄
A B

C D

)︄
, φ(Z)

)︄
,

where φ is a holomorphic square root of (CZ +D). Its integral points Mp2g(Z) act via
the discrete Weil representation on C[Lg], where L = L′/L is the discriminant form as
before. For λ, µ ∈ Lg we understand b(µ, λ) =

∑︁g
j=1 b(µj , λj). Then the action of ρL is

given by the following formulae.

a) For U ∈ GLg(Z) we find

ρL

(︂
M(U),

√︁
det(U)

)︂
eλ =

√︁
det(U)

m−−m+

eU−1λ.

b) For S ∈Mg(Z) symmetric we have

ρL (N(S), 1) eλ = e[tr(q(λ)S)]eλ.

c) For J the standard alternating matrix we find

ρL

(︂
−J,

√︁
det(Z)

)︂
eλ =

e[−g (m+−m−)
8 ]

|L′/L|g/2
∑︂
µ∈Lg

e[−b(µ, λ)]eµ.

We note that a holomorphic function

f : Hg → C[Lg], f(Z) =
∑︂
λ∈Lg

fλeλ

transforming like a modular form for the Weil representation ρL fulfils

f |L,k(N(S), 1) =
∑︂
λ∈Lg

e[− tr(q(λ)S)]fλeλ,

meaning e[− tr(q(λ)(Z + S))]fλ(Z) = e[− tr(q(λ)Z)]fλ(Z), i.e. it is periodic and hence
possesses a Fourier expansion just as in the case of a trivial representation (cf. (3.8)).

For additional details, the reader may consult [KRY06] and [Zha09].
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3.3.3 Indices of Fourier coefficients

In this subsection we lay the foundation for investigations of Fourier coefficients in the
context of examining the injectivity of the Kudla–Millson lift in Section 7.3. In case the
base lattice in this section does not split a hyperbolic plane, partial orders will play a
key role whose relevance arises from the action of Hecke algebras on Fourier coefficients
of the vector valued modular forms involved. In fact, these partial orders are induced
by the action of monoids. Consequently, we begin our investigation with introducing
monoidal preorders before defining crucial notions for the investigation of indices of Fourier
coefficients of automorphic forms.

Monoid preorders

Definition 3.55. Let (M, · ) be a monoid and S be a set.

a) We say that (M, · ) acts on S, written M

⟳

S, if there is a monoid-morphism
σ : (M, · ) → Aut(S). For m ∈M and s ∈ S write m · s := σ(m)(s).

b) For an action M

⟳
S define a preorder on S via

s1 ⪯ s2 ⇐⇒ ∃m ∈M : s2 = m · s1.

The following examples are meant to build some intuition and also lay the foundation
for the key instance we have in mind.

Example 3.56. a) For the monoid (N0,+) and the set N0, where the action is given by
addition, we find that ⪯ equals the usual order on N0.

b) Let (N0,+) be the monoid and S = Q×. Pick a prime p and a natural number k ∈ N
and let N0 act via q ↦→ n · q := pnk · q. Then q1 ⪯ q2 encodes that q2 is a multiple of
q1 by a power of pk.

c) Let (N, · ) be the monoid and S = Q×. Then N ⟳ Q× via multiplication and the
relation ⪯ detects natural multiples.

d) As a refinement of the above, let P ⊆ P be a set of primes and for every p ∈ P select
kp ∈ Z. Construct the monoid

⨁︁
p∈P (N0,+) and S = Q× with action

q ↦→ (np)p · q :=

⎛⎝∏︂
p∈P

pnpkp

⎞⎠ · q
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where multiplication on the right denotes multiplication in Q×. Note that the choice
P = {p} is b), the choice P = P and kp = 1 for all p ∈ P equals part c). Unique
factorisation domains may be treated similarly.

The notion of a preorder is too weak for the application in later stages of this thesis.
However, the desired property of antisymmetry may be characterised in terms of the
monoid action.

Lemma 3.57. For the preorder ⪯ induced by (M, · ) ⟳ S the following are equivalent:

a) The preorder ⪯ is a partial order (i.e. antisymmetric).

b) For all m1,m2 ∈ M and all s ∈ S we find that m2m1 · s = s already implies
m1 · s = s.

Proof : Assume there are m1,m2 ∈ M and some s ∈ S such that m2m1 · s = s, in other
words s ⪯ m1 · s ⪯ m2m1 · s = s. If we assume antisymmetry, we obtain m1 · s = s,
settling the first implication.
On the other hand, assuming b) and given s1 ⪯ s2 and s2 ⪯ s1, we spell that out as there
are m1,m2 ∈M such that s2 = m1s1 and s1 = m2s2 = m2m1s1. By assumption we find
s2 = m1s1 = s1.

Example 3.58. All subexamples of Example 3.56 define partial orders since there is no
unit other than the neutral element and no other element acts with a fixed point.

This prompts us to define the following notion.

Definition 3.59. A monoid action M

⟳

S is called faithful if only the neutral element
e ∈ M acts as the identity on S. It is further called free if e ∈ M is the only element
fixing a point in S.

Remark 3.60. A monoid action M

⟳

S that is free induces a partial order. Further,
every free action is faithful.

Clearly, we would like to apply the notion of monoidal preorders to discriminant forms
and consider the following example as a prototype.

Example 3.61. Let (L, q) be an even lattice of level N ∈ N. With the notation of
Example 3.56 part d), we select Q to be a subset of the prime divisors of N , choose
S = ⊕q∈QLq = ⊕q∈QL

′
q/Lq, and declare a similar action

λ ↦→ (np)p · λ :=

⎛⎝∏︂
p∈P

pnpkp

⎞⎠ · λ.
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We remark that the associated preorder is almost never antisymmetric. In fact, let
2 ̸= q ∈ Q and assume there is p ∈ P with p ̸= q. Then, multiplication by p acts as an
automorphism on Lq and there must be some number rp such that multiplication by prp

acts as the identity on Lq. In consequence, select some non-trivial λ ∈ Lq ≤ S and verify
that

(prp−1 · p1) · λ = λ ∧ p1 · λ ̸= λ. (3.67)

However, (3.67) contradicts part b) of Lemma 3.57. In case Q holds only one element and
P ⊆ Q, the preorder will be antisymmetric.

When considering indices of Fourier coefficients of vector valued automorphic forms,
however, not only the associated discriminant form L plays a role but pairs taken from
L ×Q. Hence, it is natural to ask how to combine actions onto products of sets.

Definition 3.62. Let (Mi, · ) be monoids and (Si) be sets with an Mi monoid action σi.

a) Then we call

σ :
∏︂
i

(Mi, · ) → Aut

(︄∏︂
i

Si

)︄
, (mi) · (si) := (σi(mi)si) ∈

∏︂
i

Si

the product action of the σi.

b) In case there is a monoid (M, · ) that embeds into each (Mi, · ), the induced action
via a diagonal embedding into the product

σ :M → Aut

(︄∏︂
i

Si

)︄
, m · (si) := (σi(m)si) ∈

∏︂
i

Si

is called the diagonal action of (M, · ) via the family (σi).

Remark 3.63. If in the above definition for a diagonal action one of the σi is faithful, so
is the product of the family (σi). Then, however, it induces a partial order.

The following is the prime example for the application in this thesis.

Example 3.64. Let M = (N, · ) and (L, q) be an even lattice. Then N acts naturally on
L = L′/L via multiplication and on Q× via multiplication with squares. The resulting
diagonal action of the product is given by letting n ∈ N act by

n · (λ, q) = (nλ, n2q) ∈ L ×Q×. (3.68)
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Refine the above by selecting some N ∈ N and replacing M by the submonoid of (N, · )
generated by prime numbers that are (co)prime to N . The action defines a partial order.

Remark 3.65. Example 3.64 may be realised in the following fashion. Select P ⊆ P
to be the collection of primes coprime to N , consider Example 3.56 d) with kp = 2 and
Example 3.61 with kp = 1 and Q representing all prime divisors of lev(L). Then taking
the diagonal action of

⨁︁
p∈P (N0,+) via the actions described above yields the desired

result. The advantage of decomposing along primes becomes apparent in Subsection 6.4.2.

The following definition subsumes partial orders generated by the cases of Example 3.64
that are crucial for investigating the action of Hecke operators on Fourier coefficients of
vector valued modular forms for the Weil representation.

Definition 3.66. Let N ∈ N and define ⪯N (⪯N ) to be the partial order on L × Q×

induced by the monoid action from Example 3.64 with the monoid M ⊆ (N, · ) being
generated by primes dividing (being coprime to) N .
Explicitly, this means that for s0, sf ∈ S = L ×Q× and some prime p ∈ P we define

s0 ⪯p sf : ⇐⇒ there is some k ∈ N such that pk · s0 = sf ,

s0 ⪯N sf : ⇐⇒
there is a finite set of primes {pi ∈ P : 0 ≤ i ≤ k, pi | N}
and corresponding elements si ∈ S such that
s0 ⪯p0 s1 ⪯p1 · · · ⪯pk sk = sf ,

s0 ⪯N sf : ⇐⇒
there is a finite set of primes {pi ∈ P : 0 ≤ i ≤ k, pi ∤ N}
and corresponding elements si ∈ S such that
s0 ⪯p0 s1 ⪯p1 · · · ⪯pk sk = sf .

The corresponding strict partial orders are denoted ≺N (≺N ).

Indices of Fourier coefficients

First, we will have a look at indices of Fourier coefficients of vector valued modular
forms associated to an even quadratic lattice (L, q) of signature (m+,m−). Recall that
the possible indices lie in the set L ×Q, where L = L′/L denotes the discriminant form.

Definition 3.67. For an even quadratic lattice (L, q) of signature (m+,m−), define the
set of admissible indices with respect to (L, q) as

I := {(λ, n) ∈ L ×Q | q(λ) ≡ n} .
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Further, define the set of representable indices with respect to (L, q) as

R :=
{︁
(λ, n) ∈ L ×Q

⃓⃓
∃ℓ ∈ L′ : (λ, n) = (ℓ, q(ℓ))

}︁
.

Here, ℓ denotes the natural projection of ℓ to L. Define the subsets

I × := I ∩ L ×Q× ⊆ I , R× := R ∩ I × ⊆ R,

with non-vanishing second component. The subsets with positive/negative second compo-
nent are denoted I ±,R±. Further, we require the primitively representable pairs

R1 :=
{︁
(λ, n) ∈ L ×Q

⃓⃓
∃ℓ ∈ L′ primitive : (λ, n) = (ℓ, q(ℓ))

}︁
.

With these notions, we may formulate the following key lemma for prooving the
injectivity of the Kudla–Millson lift under the assumption of a hyperbolic split.

Lemma 3.68. In case L ≃ K ⊕H splits a hyperbolic plane we find R1 = R = I , i.e.
any possible index (λ, n) may be written as (ℓ0, q(ℓ0)) for some primitive element ℓ0 ∈ L′.

Proof : Let (λ, n) ∈ I , choose a representative ℓ ∈ L′ with ℓ = λ, meaning q(ℓ) ≡ n

mod Z, and note that the class ℓ ∈ L is invariant under translating ℓ by elements in H.
Since L = K⊕H splits a hyperbolic plane H = ⟨e1, e2⟩Z, where e1, e2 denote the standard
generators with q(e1) = q(e2) = 1 and b(e1, e2) = 1, we find

q(ℓ) = q(ℓ|K) + q(ℓ|H)

and for all m1,m2 ∈ Z that

q(m1e1 +m2e2) = m1m2

so that the primitive vector

ℓλ := ℓ|K ⊕ [(n− q(ℓ|K))e1 + e2]

fulfils the desired property (ℓλ, q(ℓλ)) = (λ, n). In particular, (λ, n) ∈ R1 ⊆ R ⊆ I .

Remark 3.69. The action of Example 3.64 on L × Q× and the corresponding partial
orders from Definition 3.66 restrict to I × and R×. They may, in the same spirit be
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extended to L ×Q and then restricted to I and R, if antisymmetry is given up (also cf.
Example 3.61).

The monoid action of Example 3.64 on L×Q may be partly reversed for good primes.

Definition 3.70. For a pair (λ, n) ∈ L ×Q and k ∈ N with gcd(k, lev(L)) = 1 define

(λ, n)/k := (λ/k, n/k2).

Note that in the notation above and for natural numbers k1, k2 ∈ N satisfying
gcd(k1, lev(L)) = gcd(k2, lev(L)) = 1 we find that

[(λ, n)/k1]/k2 = (λ, n)/(k1k2) = [(λ, n)/k2]/k1.

Next assume we have an element (λ, n) ∈ I ×. Then, necessarily n ∈ Z/ lev(L) so that
for k ∈ N with gcd(k, lev(L)) = 1, we conclude (λ, n)/k /∈ I ×, unless n/k2 ∈ Z/ lev(L).
So there must be elements in I which are minimal with respect to division.

Definition 3.71. Let N ∈ N.

a) The pair (λ, n) ∈ I × (respectively contained in R×) is called N -primitive, if there
is no (µ,m) ∈ I × (respectively contained in R×) with

(µ,m) ≺N (λ, n).

b) A number n ∈ Z/N is called N -square free (also N □-̸ ), if for any prime p ∤ N we
find n/p2 /∈ Z/N .

In case of good primes, N -primitive indices may be classified by their second component
as follows.

Lemma 3.72. For N ∈ N with lev(L) | N and p ∈ P the following are true.

a) A pair (λ, n) ∈ R× is N -primitive if, and only if, n is N–square free.

b) If (λ, n) ∈ I × with p ∤ N , p2 | n, and (λ, n) only differs (additively in the second
component) from an element in R by (0, p2 · z) ∈ L × p2Z, we find that it cannot be
N -primitive.

Proof : Clearly, if n is N -square free, there is nothing to show.
For the other direction write (λ, n) = (λ, q(ℓλ)) with ℓλ ∈ L′ projecting to λ. Assume
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there was some prime p ∤ N such that p2 | num(q(ℓλ)) (which is equivalent to p2 | q(ℓλ),
since p ∤ lev(L) and den(q(ℓλ)) | lev(L)).
We have µ := λ/p ⇐⇒ pµ = λ, so that there must be some ℓµ ∈ L′ projecting to µ. This
means ℓλ = pℓµ + l for some l ∈ L. Hence,

q(ℓλ) = p2 q(ℓµ) + pb(ℓµ, l) + q(l) (∗)

but since p2 | q(ℓλ), so does p2 | q(ℓλ)− p2 q(ℓµ) ∈ Z, meaning pb(ℓµ, l) + q(l) = p2 · r for
some r ∈ Z. Hence, the numerator on the right side of (∗) is divisible by p2 so that

q(ℓλ)/p2 = q(ℓµ) + r.

This, however, means nothing else than

q(ℓλ)/p2 ≡ q(µ) = q(λ/p)

and hence, (λ/p, q(ℓλ)/p2) was admissible, so that (λ, n) could not be primitive.
Now, in case n = q(ℓλ) + p2 · z with z ∈ Z, we find p2 | q(ℓλ) and the same argument as
above works.

Lemma 3.73. Assume there are λ, σ, µ ∈ L and m,n ∈ Z with gcd(n,m) = 1 as well as
nλ = σ = mµ. Then there is δ ∈ L such that mδ = λ and nδ = µ. In other words

σ

λ µ

δ

·n ·m

·m ·n

∧ gcd(n,m) = 1 =⇒ ∃δ ∈ L :

σ

λ µ

δ

·n ·m

·m ·n

.

Proof : For the notation compare Definition 1.35. We begin with the left diagram and
note that σ ∈ nL ∩ mL. However, multiplication by m acts as an automorphism on Lp for
all primes p with p ∤ m, so that µ ∈ nL. In other words, there is δµ ∈ L with nδµ = µ.
Now by assumption nmδµ = mnδµ = mµ = σ = nλ, meaning λ −mδµ ∈ nL. However,
by symmetry of the diagram, we also find λ ∈ mL, so that λ −mδµ ∈ nL ∩ mL. This
means, there is an m-th root of λ−mδµ which we will call δ′ and which lies in nL, since
multiplication by m acts as an automorphism on this submodule. In total, we find for
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δ := δµ + δ′ that

nδ = nδµ + nδ′ = nδµ = µ, and

mδ = mδµ +mδ′ = mδ + λ−mδ = λ.

We will have to explain the purpose of these investigations which originate from an
approach to proving the injectivity of the Kudla–Millson theta lift.

For a lattice of signature (m+, 2) with level N and a modular form f ∈ ML,k we find
that I is the set of possible indices of Fourier coefficients of f . If f is further a cusp
form, these lie in I + which decomposes into maximal cones with respect to the partial
order ≺N . For an index i ∈ I we speak of the value of i on f when referring to the
Fourier coefficient with index i.
By Proposition 6.54 we find that for a prime p ∤ N the Hecke operator T (p2) relates the
values of indices on f which are linked by ≺p. If f is an eigenform, the value of some
index in I may actually be reduced to the value of a minimal index with respect to ≺p,
in many cases. In fact, the same is true for the partial order ≺N .
The role of the representable indices R is the following. Recall that a major goal of
this thesis is to prove the injectivity of the Kudla–Millson lift. For that purpose we
consider cycle integrals of liftings. In Subsection 7.3.1 we learn that coefficients with
indices in R are exactly these that appear in descriptions of the aforementioned cycle
integrals (cf. Theorem 7.14). The same is true for different descriptions of the Fourier
expansion of Kudla–Millson liftings appearing in the literature (cf. [Bru14], [Zuf24], and
[MZ23]). Hence, the set R contains the indices that play a role for the Kudla–Millson lift.
The purpose of the primitively representable indices R1 is then the following. The values
of these indices represent the first terms of certain L-series associated to f which are
introduced in Subsection 6.4.1. These series are shown to admit roots if the form f is
annihilated by the Kudla–Millson lift. Now if these indices happen to be minimal with
respect to ≺N , their value on f can be shown to vanish if f is an eigenform for a certain
Hecke algebra. Then, however, all indices related to it by ≺N have to vanish on f . In
many cases, this suffices to prove that f has to vanish, if its Kudla–Millson lift does.
By employing a Hecke equivariance result for theta lifts [Yos85], the assumption of an
eigenform may be eliminated, implying the injectivity of the Kudla–Millson theta lift.

However, for now, results obtained by this procedure are less general than Theorem 7.16.
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3.3.4 Bounds on Fourier coefficients

Recall that a vector valued modular form f ∈ ML,k has a Fourier expansion of the form

f(τ) =
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n) · qneλ.

Typically these coefficients encode arithmetic information, in the case of theta series rep-
resentation numbers of lattices, for instance. This alone justifies the desire for asymptotic
bounds of these coefficients, as n → ∞. In our case, in Section 6.4, we are associating
L-series to vector valued modular forms and exploit that the asymptotic behaviour of the
coefficients a(λ, n) determines the range of convergence of these series.
In the following, we will collect information on this asymptotic behaviour. In fact, there is
an abundance of bounds for scalar valued modular forms available and one could hope to
lift these results to the vector valued case. Clearly, the Weil representation intertwines the
different components of f , so directly applying bounds for scalar valued modular forms
for Mp2(Z) cannot work and we will have to do further investigations. Along these lines,
we attempt to understand the behaviour of the discrete Weil representation ρL better
with respect to subgroups of Mp2(Z) and state the following result.

Proposition 3.74 ([Bor00, Thm. 5.4]). Suppose that L is a discriminant form of level
dividing N . If b and c are divisible by N , then γ =

(︁(︁
a b
c d

)︁
,
√
cτ + d

)︁
∈ Mp2(Z) acts on

the Weil representation by
ρL(g)eλ = χL(g)edλ

where χL denotes the character of Γ0(N) defined in [Bor00, Thm. 5.4].

However, in case of 4 ∤ N , the character χL is trivial on the preimage of Γ(N) in Mp2(Z).
In the other case, meaning 4 | N , the section s(Γ(N)) in Mp2(Z) is contained in the kernel
of the character (cf. [Bor00, Lem. 5.3 p. 329]). Hence, the component functions fλ of a
vector valued modular form are actually contained in Mk(Γ(lev(L))).

As a consequence, for the purpose of bounding the coefficients of the vector valued
modular form f , it suffices to bound the asymptotic behaviour of scalar valued modular
forms for Γ(N). There is the following standard bound available in the literature (cf.
[Shi71, Lem. 3.62 p. 90], [Shi73, p. 447]).

Lemma 3.75. Let k ∈ Z/2 and N ∈ N with 4 | N if k is not integral. Suppose that
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f ∈ Sk(Γ(N)) has Fourier expansion

f(τ) =
∑︂
n∈Z

a(n)qn/N .

Then
a(n) ∈ O(nk/2) for n→ ∞.

Also compare [JLL18] deriving that if the component functions of a vector valued
modular form satisfy this bound, then it is a cusp form. Combining this bound with the
bounds on coefficients of Eisenstein series yields the following result.

Corollary 3.76. Let f ∈ Mk(Γ(N)) with Fourier expansion as above. Then

a(n) ∈ O(nk−1).

In many cases there are sharper bounds on the asymptotic behaviour known, for instance,
the bound O(nk/2−1/5) by Rankin in the even case (cf. Theorem 2.25). However, even
sharper bounds are to be found in the literature for forms to larger congruence subgroups.
Consequently, the idea is to reduce the cases relevant to us to the setting of these bigger
congruence subgroups.

In fact, further analysis of the situation yields that the component functions fλ for
λ ∈ L may indeed be described by scalar valued modular forms for Γ1(lev(L)) with
character. Recall that Γ(lev(L)) ◁ Γ1(lev(L)) with abelian quotient, which remains true
under the section s so that by Remark 6.8, we may reduce to the case of a modular form
for Γ1(lev(L)) with character.

In a subsequent step, this information may be utilised to reduce to the even simpler
case of Γ0 modular forms. However, First note that a scalar valued modular form f that
has been transferred by the Petersson operator still possesses a Fourier expansion. Hence,
it is meaningful to speak of a Fourier expansion of forms that have been altered by such a
procedure. The proof idea of the following lemma is found in [DS05, 1.2.11 p. 24].

Lemma 3.77. Let Γ be a congruence subgroup, k ∈ Z/2, f ∈ Mk(Γ), and select
γ ∈ GL+

2 (Q). Then f |kγ has a Fourier expansion and its constant term vanishes if f is a
cusp form.

Proof : Assuming γ ∈ Mp2(Z), f |kγ must have a Fourier expansion. In fact, recall that
there is N ∈ N such that Γ(N) ≤ Γ. However, s(Γ(N)) ⊴ Mp2(Z) is normal. Hence, f |kγ



3.3 Vector valued modular forms 123

is N periodic and holomorphic at ∞, so that it possesses a Fourier expansion.
In the general case, γ may be written as γ = αγma′ where α ∈ Mp2(Z) and γ′ =

r ·
(︂(︁

a b
0 d

)︁
,
√
d
)︂

with r ∈ Q+ and gcd(a, b, d) = 1. Then also f |kγ must have a Fourier
expansion.

With this tool at hand, we may reduce to the case of a modular form for Γ1(N) without
character which, in turn, reduce to modular forms for Γ0(N) with character factoring
through Γ1(N).

Lemma 3.78. Let N ∈ N, k ∈ Z/2, ψ : Γ1(N) → T be a character that is trivial on
Γ(N), and

f =
∑︂

n∈N/N

a(n)qn ∈ Sk(Γ1(N), ψ).

Assume that there is some α ∈ R such that for all characters χ : Γ0(N) → T that are
trivial on Γ1(N) and any choice g =

∑︁
n∈N b(n)q

n ∈ Sk(Γ0(N
2), χ) we have b(n) ∈ O(nα).

Then also
a(n) ∈ O(nα).

Remark 3.79. The statement above, meaning the transferal of bounds, remains true if the
space of cusp forms S is replaced by holomorphic modular forms M, weakly holomorphic
modular forms M! or meromorphic modular forms A.

Proof : Assume f to be as above and k /∈ Z implying 4 | N (the case of k ∈ Z is similar
but easier to prove). We will prove that f(N · ) is a modular form without character
for Γ1(N

2). Recall that there is a section s : Γ0(N) → SL2(Z) given by (3.38) which is
implicitly used to define modular forms of half integral weight and may be utilised to pull
back some computations to Γ0(N). Let γ =

(︁(︁
a b
c d

)︁
, φ(τ)

)︁
∈ Γ1(N

2) and compute

(︄(︄
N 0

0 1

)︄
, 1

)︄
·

(︄(︄
a b

c d

)︄
, φ(τ)

)︄
·

(︄(︄
1/N 0

0 1

)︄
, 1

)︄

=

(︄(︄
N 0

0 1

)︄
, 1

)︄
·

(︄(︄
a/N b

c/N d

)︄
, φ(τ/N)

)︄

=

(︄(︄
a Nb

c/N d

)︄
, φ(τ/N)

)︄
∈ Γ1(N).

Now, without loss of generality, we may pass to the case of N being a square and
3 | ν2(N). Under this assumption, we infer from (3.38) that if γ ∈ s(Γ1(N

2)) then also the
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conjugate above is contained in s(Γ1(N)). In fact, it even lies in s(Γ(N)). Next, define
MN :=

(︁(︁
N 0
0 1

)︁
, 1
)︁
∈ GL+

2 (Q) and conclude that for any γ ∈ s(Γ1(N
2)) we find that

f(MNγτ) = f(MNγM
−1
N MNτ)

= ψ(MNγM
−1
N )f(MNτ)φ(τ)

k.

Recall that by assumption ψ was trivial on s(Γ(N)). As a result, we have that

f(Nτ) =
∑︂

n∈N/N

a(n)qNn ∈ Sk(Γ1(N
2)).

Recall that the space Sk(Γ1(N
2)) may be represented as a direct sum of spaces of modular

forms for Γ0(N
2) with character (cf. Remark 6.8 and Example 6.9) so that the coefficients

fulfil a(n) ∈ O(nα) by assumption.

As a consequence, it suffices to cite asymptotic bounds of Fourier coefficients for modular
forms for Γ0(N) with nebentypus. There are some sharper bounds available in this setting.
For integral weight modular forms, there is the Deligne bound, stated in Thm. 2.26,
providing the best possible bound. However, it had been formulated only for natural
numbers n being coprime to the level N of the modular form. Due to the structure of the
Hecke algebra (cf. Proposition 6.41) it will then suffice to only prove a similar bound for
coefficients at primes that divide the level. In fact, by Atkin–Lehner theory, it suffices to
do so for newforms. The following is due to Ogg and Li and part of [Li74, Thm. 3 p. 295].

Proposition 3.80. Let k ∈ Z>0 and f ∈ Snew
k (Γ0(N), χ) with Fourier expansion

f(τ) =

∞∑︂
n=1

a(n)e(nτ)

be a normalised form that is an eigenform for the Hecke algebra HN . Then for p | N we
find the following

i) If χ is not induced by a character modulo N/p, then |a(p)| = pk/2−1/2.

ii) If χ is a character modulo N/p and p2 ∤ N , then a(p)2 = χ(p)pk−1.

iii) If χ is a character modulo N/p and p2 | N , then a(p) = 0.

As a Corollary we obtain the following bound on Fourier coefficients.
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Theorem 3.81. Let k ∈ Z>0 and f ∈ Sk(Γ0(N), χ) with Fourier expansion

f(τ) =

∞∑︂
n=1

a(n)e(nτ).

Then
a(n) ∈ Oε(n

k/2−1/2+ε).

However, for half integral weight forms, the situation is more delicate. Nevertheless,
there are the following two bounds available in the literature. The first has been proven
by Blomer and Harcos and is derived from [BH08, Cor. 2 p. 55].

Theorem 3.82. Let k ∈ (Z/2) \ Z with k ≥ 5/2, N ∈ N, and χ be a character modulo
4N . Let

f(τ) =

∞∑︂
n=1

a(n)e(nτ)

be in Sk(Γ0(4N), χ). Then for t ∈ N and n ∤ (2N)∞ we find

a(tn) ∈ Oε(n
k/2−5/16+ε).

Note that the above theorem is also true in case of k = 3/2, if the choice of cusp form
is reduced to the orthogonal complement of theta functions.
The second bound goes back to Iwaniec [Iwa87] and Duke [Duk88] in a special case and
has been generalised by Waibel [Wai18, Thm. 1 p. 186].

Theorem 3.83. Let k ∈ (Z/2) \ Z with k ≥ 5/2, 4 | N ∈ N, and χ be a character modulo
4N . Let

f(τ) =

∞∑︂
n=1

a(n)e(nτ)

be in Sk(Γ0(4N), χ). Then it holds for indices n = tv2w2 with t squarefree, v | N∞, and
gcd(w,N) = 1 that

a(n) ∈ Oε(n
k/2−1/2+εv1/2).

Note that the above implies a(n) ∈ Oε(n
k/2−1/4+ε), which is the Weil bound.

In conclusion we have the following bounds on Fourier coefficients of vector valued
modular forms.
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Corollary 3.84. Let 2 ≤ k ∈ Z/2 and f ∈ SL,k(Mp2(Z)) with Fourier expansion

f(τ) =
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n) · e(nτ)⊗ eλ.

Assume n ∈ Q is in a progression with an upper bound on the number of bad primes
appearing in the prime number decomposition of n. Then for all λ ∈ L

a(λ, n) ∈

⎧⎨⎩Oε(n
k/2−1/2+ε), 2 | rank(L),

Oε(n
k/2−5/16+ε), 2 ∤ rank(L).

For general n and t ∈ Q, the following bound is true

a(λ, tn2) ∈

⎧⎨⎩Oε(n
k−1+ε), 2 | rank(L),

Oε(n
k−1/2+ε), 2 ∤ rank(L).

In later applications, certain progressions of indices of Fourier coefficients of the vector
valued form f are considered. Hence, we conclude with statements about how the bounds
above transfer to setting we have in mind.

Corollary 3.85. Let f ∈ Mk,L(Mp2(Z)) be a modular form with Fourier expansion

f(τ) =
∑︂
λ∈L

∑︂
n∈Z+λ2/2

a(λ, n) · e(nτ)⊗ eλ.

Assume that there is σ ∈ R such that for all λ ∈ L we find a(λ, n) ∈ O(nk/2−σ). Select
d ∈ N and fix a pair (λ, n). Then

a(mλ,md · n) ∈ O(md(k/2−σ)). (3.69)

Proof : We find
|a(mλ,mdn)| ≤

∑︂
µ∈L

|a(µ,mdn)| ∈ O(md(k/2−σ)).

Remark 3.86. Clearly, the above corollary is also valid for progressions s : L×Q → L×Q
such that the projection to the second component of s is in O(md) for some d > 0 which
is independent of λ ∈ L. Formalising this statement, however, interfered with readability.
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The section will be concluded with a collection of bounds that are required for proving
convergence of L-series in Section 6.4.1.

Corollary 3.87. Let 2 ≤ k ∈ Z/2 and f ∈ SL,k(Mp2(Z)) with Fourier expansion

f(τ) =
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n) · e(nτ)eλ.

Select t ∈ Q, then the following bound is true for all λ ∈ L

a(λ, tn2) ∈

⎧⎨⎩Oε(n
k−1+ε), 2 | rank(L),

Oε(n
k−1/2+ε), 2 ∤ rank(L).

If in addition n ∈ Q is assumed to be coprime to lev(L) we obtain

a(λ, tn2) ∈

⎧⎨⎩Oε(n
k−1+ε), 2 | rank(L),

Oε(n
k−5/8+ε), 2 ∤ rank(L).

In order to recollect the different bounds relevant to our setting, we introduce a
parameter σ ∈ R associated to some f ∈ ML,k(Mp2(Z)) describing the improvement of
the asymptotic growth of its Fourier coefficients compared to the Hecke bound, i.e. σ ∈ R
is chosen such that in the case of a progression which is linear in n we have

a(λ, n) ∈ Oε(n
k/2−σ+ε). (3.70)

In case f /∈ SL,k and sufficiently large weight, we select the obvious bound σ = 1− k/2.
In case of f ∈ SL,k, Table 3.1 provides an overview of possible choices, also for a variant
of progression in the index. In other cases, for theta functions of low weight, for instance,
the parameter σ has to be determined separately.
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σ
n ∈ N n ∈ N n ∤ lev(L)∞
a(λ, n) a(λ, tn2) a(λ, tn2)

2 | rk(L) 1/2 1/2 1/2
2 ∤ rk(L) 0 1/4 5/16

Table 3.1: To a cusp form f ∈ SL,k of weight k ≥ 2 we associate the parameter σ ∈
R above, determined by the asymptotic growth of its Fourier coefficients
a(λ, n) relative to the Hecke bound, i.e. a(λ, n) ∈ Oε(n

k/2−σ+ε). Its direct
application is determining the range of convergence of L-series associated to f
(cf. Subsection 6.4.1). The number t ∈ Q appearing above allows for a shift in
the index in order to consider the variant a(λ, tn2) ∈ Oε(n

k−2σ+ε).



4 Orthogonal theory

The preceding chapter focussed on introducing the symplectic setting for modular forms.
This chapter presents a similar theory in the orthogonal setting. First, properties of
orthogonal groups and the construction of the spin group are reviewed. Subsequently,
models of modular varieties in this context, the standard arithmetic subgroups and
modular forms are introduced. Finally, a brief review of special divisors which play a
significant role for cycle integrals in Section 7.3 is provided.

4.1 Group properties
In this section we summarise the theory of orthogonal and Spin groups in the context of
our investigations.

4.1.1 Orthogonal groups

Definition 4.1. Let (M, q) be a free non-degenerate quadratic R module. Then the
associated orthogonal group is defined as

O(M) := {γ ∈ Aut(M) | b(γx, γy) = b(x, y) for all x, y ∈M} .

Here, b denotes the associated bilinear form. Further, the subgroup of elements with
determinant 1 is denoted SO(M). Further, if M = V is an R vector space of signature
(m+,m−), we write O(m+,m−) := O(V ).

One of the most significant examples of orthogonal transformations are reflections.

Example 4.2. Let (V, q) be a quadratic space over K. Then every u ∈ V with non-trivial
norm q(u) induces a reflection at the hyperplane u⊥ via τu : v ↦→ v − b(v, u) q(u)−1u. In
fact, we have τu ∈ O(V ). The name reflection derives from the properties τu(u) = −u
and τu(v) = v for v ∈ u⊥. In particular, τ2u = id and we find det(τu) = −1, so that
τu /∈ SO(V ).
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We will present more examples, which are discussed in more detail in [Fis10, 5.5 p. 303].

Example 4.3. Let V be a real vector space of dimension 2 with standard scalar product as
bilinear form, so that x ↦→ q(x) = 1

2⟨x, x⟩ defines the quadratic form.

a) The map from the unit circle

T → SO(V ), ϑ ↦→ kϑ :=

(︄
cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

)︄
(4.1)

defines an injective group homomorphism from the complex unit circle. The associ-
ated map may be visualised as a rotation by the angle ϑ.

b) We find that for any ϑ ∈ T the map represented by the matrix

rϑ :=

(︄
cos(ϑ) sin(ϑ)
sin(ϑ) − cos(ϑ)

)︄

is also orthogonal. In fact, it is elementary to verify that any element in O(2, 0) is rep-
resented by either kϑ or rϑ for a suitable choice of ϑ ∈ T, yielding a homeomorphism
O(2, 0) ≃ T ⊔ T, if O(2, 0) is equipped with the relative topology.

Remark 4.4. In case of M = V a K vector space, the group O(M) may be defined as
the stabiliser of q of the natural right action GL(V ) ∋ g ↦→ q ◦ g on quadratic forms on
M , as long as the characteristic of K is different from 2.

Remark 4.5. If (M, q) is a free non-degenerate quadratic R module and R → S is a
map of rings, we have a natural induced map O(M) → O(M ⊗ S). In particular, for a Z
lattice O(L) ↪→O(L⊗ S) for S ∈ {Zp,Qp,R}.

The following two theorems are essential for our investigations and central to the
orthogonal theory. The extension result is due to Witt, while the generation result is due
to Cartan–Dieudonné.

Theorem 4.6 ([Cas78, Thm. 4.1]). Let (V, q) be a quadratic space over a field of charac-
teristic different from 2 with regular subspaces V1, V2. Suppose there is an isomorphism
σ : (V1, q |V1) → (V2, q |V2), then σ extends to an automorphism of (V, q).

Theorem 4.7 ([Gro02, Thm. 6.6]). Let (V, q) be a quadratic K vector space with char(K) ̸=
2 of dimension m. Then every element in O(V ) is the product of at most m reflections.
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Remark 4.8 ([Fis10, 5.5.5, 5.5.6, p. 307]). In fact, the examples presented above provide
a complete list of orthogonal elements for definite quadratic R spaces. Let (V, q) be such a
space of dimension m, and γ ∈ O(V ), then there are r+, r−, r ∈ N0 with r++r−1+2r = m,
and ϑi ∈ (0, π) ∪ (π, 2π) such that γ is represented by a matrix

Ir+ ⊕ (−1) · Ir− ⊕
r⨁︂
i=1

kϑi

with respect to a suitable orthogonal basis of V . Further, in case of a complex quadratic
space, all Gram matrices are diagonal.

Recall that GLn(R) ≃ Aut(V ) carries the trace topology of Rn×n.

Lemma 4.9. Let (V, q) be a regular real quadratic space. Then O(V ) is closed. Further,
it is compact, if, and only if, V is definite.

Proof : Recall that S denotes the Gram matrix of q. Consider the mapMn(R) ∋ g ↦→ gT S g,
wich is continuous as it is polynomial in the coordinates of Mn(R). Then O(V ) is given
by the preimage of S and as such closed.
Recall further that

√︁
q( · ) defines a norm on V if, and only if, q is definite. This norm

induces an operator norm on the operator algebra B(V ) ≃Mn(R) whose unit ball contains
O(V ). Since Mn(R) is finite dimensional, all of its norms are equivalent and O(V ) is
compact as it is closed and totally bounded.
Assume (V, q) ≃ H is a hyperbolic plane. Further, we find for any a ∈ R× that

diag(a, a−1)TH diag(a, a−1) = H,

meaning sa := diag(a, a−1) ∈ O(H). However, in the standard operator topology we have
∥sa∥ = max{|a|, |a−1|}, meaning O(H) is unbounded. Now if (V, q) was not a hyperbolic
plane but indefinite, we may assume a hyperbolic split, rendering Im−2 ⊕ sa ∈ O(V ) with
∥Im−2 ⊕ sa∥ = ∥sa∥, settling the general case.

Before turning to constructing the general spin group, which will be an extension of the
special orthogonal group SO, we will state some topological properties of SO and O in
the following remark which is not trivial to proove.

Remark 4.10. Let (V, q) be a real quadratic space of signature (m+,m−).
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a) If (V, q) is definite, O(V ) is compact and has two connected components, one of
which is given by SO(V ). Then SO(V ) is the identity component and is even
pathconnected, as may be proven by means of Remark 4.8.

b) If (V, q) is indefinite, O(V ) is non-compact and has four connected components.
The components correspond to whether the elements preserve the orientation on the
maximal (positive and negative) definite subspaces. SO(V ) then has two connected
components, corresponding to elements (not) changing the orientation on both
maximal positive and negative definite subspaces. Further,

O(m+)× O(m−) < O(m+,m−),

SO(m+,m−) ∩ (O(m+)× O(m−)) < SO(m+,m−),

SO(m+)× SO(m−) < SO+(m+,m−)

are maximal compact subgroups, where SO+ denotes the identity component. We
find that

O(m+,m−)/O(m+)× O(m−) ≃ SO+(m+,m−)/SO(m+)× SO(m−).

4.1.2 Spin groups

In the following section the Clifford algebra is constructed in order to derive the general
Spin group from it. This group functions as a cover of the special orthogonal group and is
a valid choice for defining Shimura varieties in the orthogonal setting, since these embed
naturally into Siegel varieties and are hence defined over Q, making the transition to a
number field superfluous. For basic facts about the tensor product and tensor algebra we
refer to [GW20] and [Lan02, XVI-7 p. 632]. The primary source for the introduction of the
Clifford algebra and the Spin group is [Bru+08, 2.2 p. 129] which may be supplemented
with [Kit99].

Recall the definition of tensor products.

Definition 4.11. Let R be a ring and M,N be R modules. A tensor product of M,N is
an R module M ⊗R N together with an R bilinear map τ :M ×N →M ⊗R N , denoted
(m,n) ↦→ m⊗ n, which is universal for the following diagram.
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M ⊗R N P

M ×N

∃!β

τ α

This means for every R module and R bilinear map α :M ×N → P there exists exactly
one linear map β :M ⊗R N → P , such that α = β ◦ τ .

Remark 4.12. i) The pair (M ⊗R N, τ) is unique up to unique isomorphism.
ii) If (mi), (nj) are generating sets of M,N , respectively, then the elementary tensors

(mi ⊗ nj) form a generating set of M ⊗R N , in particular, the tensor product is a
finitely generated R module, if M , N are.

Example 4.13. Given a ring homomorphism f : R → S, the R module M induces an
S module via tensoring. Namely, M ⊗R S, where S is regarded as an R module via
f carries the structure of an S module, since S itself is an S module. More precisely,
the multiplication in S is associative, so that for r ∈ R, s1, s2 ∈ S we find that the
corresponding actions commute f(r) · (s1 · s2) = (f(r) · s1) · s2, so that S inherits an S

right action and is rendered an (R,S) bimodule. Then, however, M ⊗R S carries the
structure of an S (right) module. This is called extension of scalars.
A common realisation is what we have encountered in Section 1.1 in the context of
quadratic modules, where R ↪→S injects and the name extension of scalars becomes quite
graphical. If, for instance, R = K is a field, and F/K its algebraic closure and (bi) denotes
a basis of the vector space V , then V (F ) := V ⊗K F is a vector space over F with basis
(bi) again. This process is then called complexification of the K vector space V .

The tensor product as an operation on modules has remarkable properties, constituting
the structure of the Witt ring.

Remark 4.14. a) The modulesM⊗RN andN⊗RM are isomorphic viam⊗n ↦→ n⊗m,
i.e. the tensor product is a commutative operation.

b) The modules (M1 ⊗R M2) ⊗R M3 and M1 ⊗R (M2 ⊗R M3) are isomorphic via
(m1 ⊗ m2) ⊗ m3 ↦→ m1 ⊗ (m2 ⊗ m3), i.e. the tensor product is an associative
operation. This is why we write m1 ⊗m2 ⊗m3 for (m1 ⊗m2)⊗m3 and

⨂︁
i∈IMi

for the tensor product of a finite family (Mi)i∈I of R modules.
c) The map R ⊗R M → M , r ⊗m ↦→ rm defines an R linear isomorphism, i.e. the

module R functions as a unit element with respect to the tensor product.
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d) For a family of R modules Mi and an R modules N , the map (mi)i⊗n ↦→ (mi⊗n)i

defines an isomorphism
(︁⨁︁

iMi

)︁
⊗R N ≃

⨁︁
i(Mi ⊗ N), i.e. the tensor product

commutes with direct sums or in short distributivity.

For an R module M , we seek an R algebra, that canonically includes R, as well as M .
The tensor product appears to possess the correct properties to be beneficial in that quest.
Let M be an R module and l ∈ N0. We write M⊗0 for R and M⊗l+1 := M⊗l ⊗R M .
Then from the associativity of the tensor product we obtain for any l1, l2 ∈ N0 a bilinear
associative map

M⊗l1 ⊗M⊗l2 →M⊗(l1+l2), (m1,m2) ↦→ m1 ⊗m2.

This declares a ring structure on the direct sum
⨁︁∞

l=0M
⊗l(M) rendering it an algebra.

Definition 4.15. Let M be an R module. The tensor algebra T (M) of M is defined as

T (M) :=
∞⨁︂
l=0

M⊗l. (4.2)

The product of two elements m, n ∈ T (M) is denoted m⊗n. For l ∈ N0, we refer to M⊗l

in T (M) as the tensors of degree l and denote the summand by T l(M), rendering T (M)

a graded asscociative algebra with canonical injection ι :M → T (M).

Remark 4.16. Note that for l ∈ N0 the association M ↦→ T l(M) is functorial. In fact, if
(Mi), (Ni) are finite families of R modules and fi :Mi → Ni are R linear maps. Then we
may concatenate

∏︁
i fi with the tensor map τ :

∏︁
iNi →

⨂︁
iN
′
i to obtain a multilinear

map
∏︁
iMi →

⨂︁
iNi that factors uniquely through

⨂︁
iMi and gives by the universal

property of
⨂︁

iMi rise to a linear map

⨂︂
i

fi :
⨂︂
i

Mi →
⨂︂
i

Ni. (4.3)

This shows that T l : M ↦→ M⊗l, f ↦→ f⊗l :=
⨂︁l

i=1 f is functorial in the category of R
modules.

Remark 4.17. For an R module map f :M → N the family of associated maps (T l(f))
induces a map T (M) → T (N) which we denote by T (f). In fact, for a finite family of
elements mi ∈M we find

T (f)(⊗imi) = ⊗if(mi),



4.1 Group properties 135

so that we obtain an algebra morphism and hence end up with a functorial association
T :M ↦→ T (M), f ↦→ T (f) of R modules to graded R algebras.

Theorem 4.18. The tensor algebra satifies the following universal property: For any
linear map f : M → A for an associative R algebra A, there is a unique linear algebra
morphism ρ : T (M) → A such that the following diagramm commutes.

T (M) A

M

∃!ρ

ι
f

Example 4.19. The universal property of T (M) implies that the mapping defined by
J : M → M ⊂ T (M), m ↦→ −m lifts to a map T (M) → T (M). It is called the
canonical automorphism of T (M).

There are several algebras derived from the tensor algebra. Recall that morphisms
from T (M) to commutative algebras factor through the quotient by the commutator ideal
⟨[m,n]⟩.

Definition 4.20. Let M be an R module.
a) Let C := ⟨[T (M), T (M)]⟩ denote the commutator ideal of T (M). Then the symmet-

ric algebra of M is defined to be the quotient Sym(M) := T (M)/C. The product is
denoted by ‚·‘. The image of T l(M) in Sym(M) is denoted by Syml(M) and called
the l-th symmetric power of M .

b) Let I = ⟨{m⊗n+n⊗m | m,n ∈ T (M)}⟩ denote the anticommutator ideal of T (M).
Then the exterior algebra of M is defined to be the quotient

⋀︁
(M) := T (M)/I.

The product is denoted by ‚∧‘. The image of T l(M) in
⋀︁
(M) is denoted by

⋀︁l(M)

and called the l-th exterior power of M .

The following universal property is directly inherited from the one of the tensor algebra.

Remark 4.21. By construction, M l → T l(M) → Symr(M) is universal for multilinear
symmetric maps.

Example 4.22. Let V be an F vector space of dimension n. Then
⋀︁n(V ) has dimension

one and we find by functoriality of
⋀︁l that for any endomorphism f : V → V , we have

an associated linear map
⋀︁n(f) :

⋀︁n(V ) →
⋀︁n(V ) ≃ F . Clearly, HomVS(F, F ) ≃ F

canonically, so that
⋀︁n(f) may be interpreted as an element in F . It is called the

determinant of f .
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Remark 4.23. Let n ∈ N0 and Sn denote the n-th symmetric group, i.e. the automor-
phism group of the set of n elements. Then there is a canonical injection ιn : Sn ↪→Sn+1

by letting an element σ ∈ S act on the first n elements of {1, . . . , n+1} and fixing the last
element. This gives rise to a filtered inductive system and the colimit along this system is
called the general finite symmetric group and denoted Sf .
It is clear that Sn acts on T n(M) via σ(⊗1≤i≤nmi) := ⊗imσ(i). This action extends to a
linear action of Sf on T (M) and gives rise to the ideal

C := ⟨{m− σ(m) | m ∈ T (M), σ ∈ Sf}⟩.

The quotient T (M)/C is isomorphic to the symmetric algebra Sym(M).

Definition 4.24. Assume (M, q) is a quadratic R module mapping to R. Consider the
ideal I := ⟨{m ⊗m − q(m) | m ∈ M}⟩ ⊴ T (M). Then the quotient CM := T (M)/I is
called the Clifford algebra.

Remark 4.25. a) Write m · n := m⊗ n ∈ CM . Then

m ·m = q(m), m · n+ n ·m = b(m,n). (4.4)

In particular, we have m · n = −n ·m, if, and only if, m and n are orthogonal to
each other.

b) Both R as a ring and M as a module are canonically injected into CM .
c) If M is free and of finite rank with basis b1, . . . , bn then the family

bi1 · · · · · bir (1 ≤ r ≤ n, 1 ≤ i1, < . . . < ir ≤ n)

forms a basis of CM , rendering it a free R module of rank 2n.

Example 4.26. If char(R) ̸= 2 and q ≡ 0, we find CM ≃
⋀︁
(M).

Remark 4.27. The Clifford algebra satifies the following universal property: For any linear
map f :M → A for an associative unital R algebra A, such that f(m)2 = q(m) · 1 ∈ A for
all m ∈M , there is a unique linear algebra morphism ρ : CM → A such that the following
diagramm commutes.

CM A

M

∃!ρ

ι
f
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Note that, as a consequence, any isometry M1 →M2 lifts to an R algebra morphism
CM1 → CM2 so that the Clifford construction yields a functor from quadratic R modules
with isometries as morphisms to the category of unital associative R algebras.

From now on, we will consider the case of free quadratic R modules (M, q). There are
two canonical automorphisms on CM which will become important for constructing and
working with the Spin group (cf. Subsection 5.4.3).

Definition 4.28. Let (M, q) be a free quadratic R module.
a) Multiplication by −1 induces an isometry on M . By the universal property of CM it

lifts to a map J : CM → CM called the canonical automorphism.
b) Define the canonical involution by

·T : CM → CM , m1 · · · · ·mk ↦→ mk · · · · ·m1. (4.5)

c) Define the Clifford norm on CM by

N : CM → CM , m ↦→ mT ·m. (4.6)

Example 4.29. a) For m ∈M ≤ CM we find mT = m and hence N(m) = q(m).

We are ultimately interested in finite dimensional quadratic vector spaces over fields
of characteristic 0, so assume in the following that 2 ∈ R× and that M has the finite
orthogonal basis (bi)

n
i=1.

Definition 4.30. Write C0
M for the subalgebra generated by products of an even number

of basis elements bi and call it the even Clifford algebra. On the contrary, the submodule
C1
M is defined as the submodule generated by products of an odd number of basis elements.

Remark 4.31. a) The decomposition CM = C0
M ⊕ C1

M as a modules defines a Z/2Z
grading on CM . In case −1 ̸= 1 ∈ R, note that C0

M = (CM )J equals the fix space of
the canonical automorphism J .

b) Let δ := b1 · · · · · bn ∈ CM . Then

δbi = (−1)n−1biδ, δ2 = (−1)(n−1)n/22−n det(q) ∈ R/(R×)2. (4.7)

Further, this special element determines the centre of the Clifford algebra

Z(CM ) =

⎧⎨⎩R if n is even,

R+Rδ if n is odd,
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Z(C0
M ) =

⎧⎨⎩R+Rδ if n is even,

R if n is odd.

A sizeable range of examples is found in [Bru+08, p. 132] that is further extended by
[Kit99, 1.5 p. 24]

Now that the Clifford algebra has been introduced we turn towards the main application
of this construction within the scope of our quest: the construction of the Spin group.
Note that for every invertible element x ∈ C×M we obtain a linear map

vx :M →M, m ↦→ xmJ(x)−1.

Definition 4.32. Define the Clifford group of M as

GM := {x ∈ C×M | vx(M) =M}.

The induced representation v : GM → AutR(M) is referred to as the vector representation
of GM .

Example 4.33. Note that x ∈ GM ∩ V gives rise to the reflection τx at the hyperplane x⊥

that had already appeared in Example 4.2. In fact, with w = rx+ sy for y ∈ x⊥, r, s ∈ R,
we find

vx(w) = xwJ(x)−1 = −rxxx−1 − sxyx−1 = −rx+ syxx−1 = τx(w).

Lemma 4.34. Let −1 ̸= 1 ∈ R

a) We find ker(v) = R×.
b) The mapping N : GM → R× defines a homomorphism.
c) Moreover, v : GM → Aut(M) only targets the subgroup O(M) ⊆ Aut(M).

Proof : It suffices to verify that ker(v) ⊆ R×. Let x ∈ ker(v), then x = x0+x1 ∈ C0
M ⊕C1

M

and we have xmJ(x)−1 for all m ∈M . This means

x0m = mx0,

x1m = −mx1.

However, these m generate CM , so that we find x0 ∈ Z(CM ) ∩ C0
M = R. Also, the second

condition can be tested with basis elements m = bi of M . Then we find bix1 = x1bi and
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hence by (4.7) x1 = 0.
b) For m ∈ M and x ∈ GM , we have vx(m) = xmJ(x)−1 ∈ M and hence the identity
vx(m) = −J(vx(m))T . This implies

xmJ(x)−1 = vx(m) = −J(vx(m))T = (xT )−1mJ(xT )

which in turn provides

m = (xTx)mJ(xTx)−1 = N(x)mJ(N(x))−1 = vN(x)(m).

However, the kernel of v had been identified to equal R× and hence N(x) ∈ R×.
c) Recall that for x ∈ GM ,m ∈M we have vx(m) ∈M , so that

q(vx(m)) = N(vx(m)) = J(x−1)TmTxTxmJ(x−1) = q(m),

meaning vx ∈ O(M).

With these preparations we may define a cover of the special orthogonal group that
is regularly used to define orthogonal Shimura varieties, the general Spin group. The
advantage of using it in order to define varieties in place of the orthogonal group is that
the corresponding varieties embed into Siegel varieties and are hence defined over Q,
meaning it is not necessary to pass to an extension of Q.

Definition 4.35. The general Spin group and Spin group of M are defined as

GSpinM := GM ∩ C0
M , (4.8)

SpinM := GSpinM ∩ ker(N). (4.9)

Remark 4.36. In case R = K is a field of characteristic unequal to 2, we write V =M

and note that the orthogonal group is generated by reflections (cf. Theorem 4.7), so that
the special orthogonal group is the subgroup of elements given by an even number of
reflections. Consequently, we obtain the following exact sequences

1 K× GV O(V ) 1,

1 K× GSpinV SO(V ) 1.
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Remark 4.37. The above exact sequence implies GV /K
× ≃ O(V ), so by Lemma 4.34,

the Clifford norm induces a homomorphism O(V ) → K×/(K×)2 which we denote by N
and call the Spinor norm.

Example 4.38. We find for an anisotropic vector x ∈ V and the corresponding reflection
τx that N (τx) ≡ N(x) ≡ q(x) mod (K×)2.

Remark 4.39. We obtain an exact sequence

1 {±1} SpinV SO(V ) K×/(K×)2.v N

Note that if L is indefinite, then SpinVR is connected (cf. [PRR93, Prop. 7.6 p. 407]).
We end this subsection by describing SpinLp

in more concrete terms, following [Att15,
p. 20]. Let L be an R lattice of rank m with R ∈ {Z,Zp} and basis (bi)i. Then the Clifford
algebra CL has the basis

{be11 · . . . · bemm , | ei ∈ {0, 1}}

as an R module. The involution J identifies with the restriction from CV and the Z/2Z
grading on it descends to CL. Hence, it is possible to define the spin groups as in
Definition 4.35, meaning in explicit terms

GSpinL := {x ∈ C0
L | x · J(x) ∈ R×, xLJ(x)−1 = L}, (4.10)

SpinL := {x ∈ C0
L | x · J(x) = 1, xLJ(x)−1 = L}. (4.11)

Eichler transforms

We have already seen some examples of orthogonal transformations constructed via the
vector representation of the Clifford group. However, there is another significant class
that plays a key role for the existence of Fourier expansions of orthogonal modular forms
– Eichler transforms.

Definition 4.40. For x ∈ L and y ∈ VR with q(x) = b(x, y) = 0 the vector representation
of 1 + xy ∈ Spin(VR) is called the Eichler transform of x and y and is denoted by E(x, y).

Remark 4.41. In explicit terms, we find for v ∈ VR the following formula

E(x, y)(v) = v − b(v, x)y + b(v, y)x− q(y)b(v, x)x. (4.12)

In fact, a computation reveals that

v1+xy(w) = (1 + xy)wJ(1 + xy)−1
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= (1 + xy)w(1− xy)

= w − wxy + xyw − xywxy.

Note that wxy = (b(w, x)− xw)y = b(w, x)y − x(b(w, y)− yw), notice that [x, y] = 0

and xx = q(x) = 0 to learn that

wxy = (b(w, x)− xw)y = b(w, x)y − x(b(w, y) + yw),

xyw = (b(x, y)− yx)w,

xywxy = xb(w, x) q(y).

This yields the desired result.

Remark 4.42. If x, y ∈ L, then E(x, y) restricts to an isometry of L. Additionally,
E(x, y) also preserves v ∈ L′/L in this case.

Further, Eichler transforms have the following properties.

Lemma 4.43. Let x, y be as above.

a) We find E(x, y)(x) = x.

b) We find E(x, y)(y) = y + 2 q(y)x.

c) For y1, y2 ∈ x⊥ we find E(x, y1) ◦ E(x, y2) = E(x, y1 + y2).

4.2 Modular varieties
4.2.1 Models

A fundamental reference for the following is [Bru02, p. 78], while [Bru+08, 2.4 p. 136]
provides a brief and accessible overview.

This section will explore various ways in which orthogonal spaces that serve as domains
for automorphic forms can be realised. As previously stated, (V, q) denotes a regular ra-
tional quadratic space of signature (m+,m−). Let G = O(m+,m−) denote the orthogonal
group of the real quadratic vector space VR = V ⊗R. A canonical candidate for a domain
to study modular forms on is the symmetric domain G/K, where K is a maximal compact
subgroup. The resulting symmetric space is hermitian, if, and only if, either m+ or m− is
equal to 2. As a consequence, we shall restrict to assuming m− = 2 from Subsection 4.2.2
onwards.
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The Grassmannian

We begin with a model providing a conveniently simple descritpion, the Grassmannian.
It is a special case of a Flag manifold.

Definition 4.44. Let VR be a real quadratic space of signature (m+, 2). Then its
Grassmannian is defined to be

D(VR) := {z ⊆ VR | dim(z) = 2 and q |z < 0} . (4.13)

We would like to realise D as a quotient G/K for some maximal compact K ≤ G.
Note that by Witt’s extension theorem (Theorem 4.6), the group O(VR) acts transitively
on D and that any real orthogonal group associated to a definite space is compact (cf.
Lemma 4.9). So fix z0 ∈ D, then K := O(z0) × O(z⊥0 ) ↪→ O(VR) = G is included in
the stabiliser of z0. However, an element of O(VR) leaving z0 invariant, must also leave
z⊥0 invariant, so that K is, in fact, identified to equal the stabiliser of z0. Additionally,
the group K is maximally compact among subgroups of G. Further, G/K ≃ D, so that
the Grassmannian might be equipped with a symmetric structure, inhertited from the
quotient. Nevertheless, the clear advantage of the model is the apparent description, while
the models below provide different additional insights.

The projective Model

Another model is induced through projective space and called the projective model. It
offers the advantage of an immediate complex structure. Consider VC = C⊗Q V , which
induces a projective variety

P (VC) = (VC \ {0})/C×.

Equipping this space with the final topology of the natural projection results in a compact
space. Further, it naturally carries the structure of a complex analytic manifold. In fact,
it is the standard example of such a space. We consider the closed subvariety

N := {[Z] ∈ P (VC) | b(Z,Z) = 0} ,

which, as a consequence, bears an analytic structure. It is called zero quadric. Note that
elements Z ∈ VC may be decomposed into X + iY for X,Y ∈ VR, where the elements
X,Y are referred to as the real and imaginary part of the vector z. As a consequence, we
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find
b(X + iY,X ± iY ) = b(X,X)∓ b(Y, Y ) + i (b(X,Y )± b(X,Y )) ,

yielding b(Z,Z) = b(X,X) + b(Y, Y ) and that b(Z,Z) = 0 is equivalent to b(X,X) =

b(Y, Y ) and b(X,Y ) = 0. We consider the open subset of the zero quadratic

K :=
{︁
[Z] ∈ P (VC) | b(Z,Z) = 0,b(Z,Z) < 0

}︁
which inherits the complex structure of N . Note that the orthogonal group O(VR) acts,
by Witt’s extension theorem (cf. Theorem 4.6), transitively on K.

In the following, we reduce to the case m− = 2. Then the space K may be explicitly
related to the Grassmannian.

Proposition 4.45. The assignment K ∋ [Z] ↦→ RX + RY ∈ D defines a continuous and
open two to one map.

Proof : In fact, the real part X and imaginary part Y of a representative Z of [Z] ∈ K
fulfil q(X) = q(Y ) < 0 and b(X,Y ) = 0, as we have computed above. As a consequence,
they form an orthogonal normed basis of an element of D. Note that the pair (X,−Y )

associated to Z gives rise to the same element in D, so that the mapping is at least
two to one, where the ambiguity of the cover is given by the orientation of the basis
that is considered. If there was another preimage, it had to arise from (X,Y ) via an
orthogonal transformation. If the transformation was special, it reduced to multiplying
Z with an element of T, acting as the identity on N , if it was not special, it reduced to
(X,Y ) ↦→ (X,−Y ).
Checking the topological conditions is left to the reader and plays no major role in the
following exposition.

In fact, the space K decomposes into two connected components which agree with the
sheets of the twofold cover above. We fix one of these sheets and denote it by K+, the other
by K−. Then the elements of O(VR) preserving K+ form a subgroup O+(VR) < O(VR).
This may be characterised as follows: recall that the Spinor norm N : O(VR) → {±1}
defines a homomorphism (cf. Remark 4.37) so that its product with the determinant map
N ·det represents a homormophism, as well. The kernel of this map equals O+(VR), which
is open and closed in O(VR). Its complement O(VR) \O+(VR) consists of these orthogonal
transformations that interchange K+ and K−.

The projective model provides a natural complex structure that may be exported to
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the Grassmannian D via Proposition 4.45. In the next section, we identify K with a tube
domain.

The tube domain model

The last model that is to be discussed is the tube domain model, reminiscent of the
upper half plane. In the following, we restrict to the hermitian case of m+ = 2. We choose
a nonzero isotropic vector e1 ∈ V and some e2 ∈ V with b(e1, e2) = 1.1 Next, we define
the quadratic space W = e⊥1 ∩ e⊥2 which is of type (n− 1, 1) (meaning it is Lorentzian),
so that

V =W ⊕Qe1 ⊕Qe2. (4.14)

We write Z = (z, a, b) ∈ VC for an element in the associated complex space given by
z + ae1 + be2 with z ∈WC.
Assume, we wanted to construct an element [Z] ∈ K from some z ∈WC. We recall that
the conditions on such a representative Z for inducing an element in the zero quadric N

imply that for the decomposition Z = X + iY with X,Y ∈ VR we must have that X,Y
have equal negative weight and span a 2 dimensional subspace of VR. Hence, one of these
must have an e2-component, meaning b(Z, e1) ̸= 0. This prompts us to set (z, a, 1) as a
candidate for Z, with a complex number a ∈ C which has yet to be determined. If we
now require [z + ae1 + e2] ∈ N , we obtain by definition

0 = b((z, a, 1), (z, a, 1))

= 2 q(z) + 2a+ 2 q(e2),

yielding a = − q(z)− q(e2). We realise that e2 could without loss of generality have been
assumed to fulfil q(e2) = 0, by replacing it with e2 − q(e2)e1, since q(e2 − q(e2)e1) = 0

and b(e1, e2 − q(e2)e1) = b(e1, e2). If we write z = x+ iy with x, y ∈WR, again, we find
for the real and imaginary part

(z,− q(z)− q(e2), 1) = (x, q(y)− q(x)− q(e2), 1) + i(y, b(x, y), 0).

1Should the rational space V be not isotropic, we may perform the construction in the real setting.



4.2 Modular varieties 145

Now the second condition to lie in K reads

0 > b((z,− q(z)− q(e2), 1), (z,−q(z)− q(e2), 1))

= 2(q(x) + q(y)) + 2(−Re(q(z))− q(e2)) + 2 q(e2)

= 4 q(y).

(4.15)

Meaning lying in K is equivalen to q(y) < 0. As a consequence, we restrict to the subspace

H±
m+ := {z = x+ iy ∈WC | q(y) < 0}, (4.16)

which is an analogy of the union of the upper and lower halfplane. We see in particular,
that the constructed association is injective, as (z,− q(z) − q(e2), 1) is determined by
z. In order to recall that given [Z] ∈ K, we had seen that Z must have a nonzero e2

component, so that we may without loss of generality pick a representative Z = (z, a, 1)

for some a ∈ C. Above we had seen that this already implies a = − q(z)− q(e2), which
results in a unique element z ∈ H±. In conclusion, we have proven the bijectivity result
of the following proposition.

Proposition 4.46. The map

H±
m+ ∋ z ↦→ [(z,− q(z)− q(e2), 1)] ∈ K

defines a biholomorphic association.

Definition 4.47. Define H+
m+ , to be the preimage of K+ under the above isomorphism

as the generalised upper half plane or tube domain model.

To emphasise the analogy to the upper half plane model in the elliptic case, we set

C := {y ∈WR | q(y) < 0}

and note that it possesses two connected components, each of which forms a cone. One
component is given by

C+ := H+
m+ ∩ iC,

so that
H+
m+ =WR + iC+. (4.17)

In the following the superscript + of the tube domain model will frequently be omitted.
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The action of O+(VR) on K+ may be pulled back to an action on the tube domain Hm+ .

4.2.2 Modular groups

Similarly to the classic case of elliptic modular forms, the base space will be constructed as
a quotient of G/K by an arithmetic subgroup of O(VR) and compactified. In the following,
we consider lattices which comprise a central class of objects in this thesis as a foundation
for the construction. Let (L, q) be an even Z lattice of signature (m+,m−). Recall that
V = Q⊗Z L is the associated rational quadratic space.

Note that O(L) also acts on L′. In fact, let ℓ ∈ V , γ ∈ O(L) and (bi) be a basis of L.
Then (γbi) also constitutes a basis of L. Hence, we may test γℓ against (γbi) for integrality.
Writing ℓ in the basis (bi) yields that γℓ ∈ L′ if, and only if, ℓ ∈ L′. As a consequence, we
obtain a natural projection

O(L) → Aut(L′/L). (4.18)

Of course, the same is true for any subgroup of O(L), in particular the following definition
is meaningful.

Definition 4.48. Let H ≤ O(L) be a finite index subgroup. Then the kernel of the
natural map obtained from restricting (4.18)

H ↪→O(L) → Aut(L′/L) (4.19)

is called the discriminant kernel subgroup of H. It is denoted HL. In case of the choice
H = O+(L) or SO+(L), also write Γ(L) = HL or ΓL = HL.

Typically, the group H is chosen to be O+(L) := O(L) ∩ O+(V ), the subgroup which
preserves orientation or SO+(L) = SO(L) ∩ O+(V ). These cases will be assumed if not
specified further.
Note that the group Γ(L) has finite index in O(L). Next, recall that for any d ∈ Z \ {0}
the lattice L(d) was defined as (L, d · q), so that (L(d))′ = (1/d)L′. The orthogonal
group O(L(d)) agrees with O(L) if embedded canonically into GL(VR).2 Further, we find
the embedding L′/L ↪→ L(d)′/L(d) = L(d)′/L. Clearly, any element σ ∈ Aut(L(d)′/L)
induced from O(L) restricts to an element σ′ ∈ Aut(L(d2)′/L) for d2 | d. As a special
case, any element in the kernel of O(L) → Aut(L(d)′/L) also lies in the kernel of O(L) →

2To do so, realise L(d) as (
√
d · L, q).
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Aut(L(d2)′/L), meaning there is the following inclusion

Γ(L(d)) ≤ Γ(L(d2)) ≤ Γ(L) ≤ O+(L) ≤ O(L) (4.20)

of subgroups of finite index.

Example 4.49. Consider the case of a hyperbolic plane H presented in Example 1.7. In the
following, for a nonzero integer d, the discriminant kernel Γ(H(d)) is computed. Assume
we had an orthogonal transformation γ ∈ O(H), described in coordinates as γ =

(︂
b1 b2
b3 b4

)︂
.

Then we find

γTHγ =

(︄
2 b1b3 b2b3 + b1b4

b2b3 + b1b4 2 b2b4

)︄
=

(︄
0 1

1 0

)︄
.

From this equation we infer that in every column of the matrix representation of γ, an
entry must vanish. Further, a whole row cannot vanish, as the side diagonal entries were
contradicted (and bijectivity of γ). So either b1 = b4 = 0 or b2 = b3 = 0. Then the side
diagonals read b1b4 = 1 or b2b3 = 1. Since the entries will have to be integers, this may
be reformulated as b1 = b4 = ±1 and b2 = b3 = ±1. So the only orthogonal matrices are(︄

1 0

0 1

)︄
,

(︄
0 1

1 0

)︄
,

(︄
−1 0

0 −1

)︄
,

(︄
0 −1

−1 0

)︄
.

This group is clearly generated by the matrices −I,H.
Recall that H was unimodular, so that L(d)′ = Z/d · e1 + Z/d · e2 and L(d)′/L(d) =

L(d)′/L ≃ Z/dZ×Z/dZ where the latter carries the quadratic form (x, y) ↦→ xy/d ∈ Q/Z.
Hence, for any d ∈ Z, the automorphisms induced by O(L(d)) = O(L) in Aut(L(d)′/L)
are generated by the images of

−I :(x, y) ↦→ (−x,−y) ∈ Z/dZ× Z/dZ,

H :(x, y) ↦→ (y, x) ∈ Z/dZ× Z/dZ.

This results in the following discriminant kernel:

Γ(H(d)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{±I,±H}, d = ±1,

{±I}, d = ±2,

{I}, |d| > 2.

(4.21)

Remark 4.50. The discriminant kernel is, other than the orthogonal group, functorial
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in the lattice. Explicitly, if there are two lattices M ≤ L, then Γ(M) ≤ Γ(L). For the
identification of elements in O(L) and O(M), these are embedded into O(L⊗Z Q).

Proof : Denote V = L⊗Z Q =M ⊗Z Q and let γ ∈ Γ(M) ⊂ O(V ). Then γ acts trivially
on M ′/M . In particular, it acts trivially on the subgroup L/M ≤ M ′/M , meaning it
must act on L, so that γ ∈ O(L). However, the trivial action on M ′/M is preserved
under pushforward via M ′/M →M ′/L. Conclusively, the element γ lies in O(L) and acts
trivially on M ′/L and hence on the subgroup L′/L ≤ M ′/L. Intersection with O+(VR)

does not interfere with any of the presented arguments, implying Γ(M) ≤ Γ(L).

Note that Γ(M) in the above Remark has finite index in Γ(L) which follows from the
fact that it must contain Γ(L(d)) for some d ∈ N, again by Remark 4.50. In analogue to
the elliptic case, this prompts us to define the notion of a congruence subgroup.

Definition 4.51. Let L be as above and d ∈ N be a natural number. Then Γ(L(d)) is
called its d-th principal congruence subgroup. Further, a subgroup Γ ≤ O+(L) is called a
congruence subgroup with respect to L, if there is some d ∈ N such that Γ(L(d)) ≤ Γ.

Note that all of these groups have finite index in O(L) and that the notion of congruence
subgroups depends solely on the associated rational quadratic space V = L⊗Z Q.

Remark 4.52. For the hermitian case of m− = 2, there is a theorem stating that the
opposite is also true, provided m+ ≥ 3. We will see below that this theorem does not hold
in case of m+ = 1.

In fact, there are some accidental isomorphisms that realise symplectic cases via
orthogonal groups. Most notably the elliptic case may be realised via the O(1, 2) setting.

Example 4.53. Assume V has signature (1, 2), then the associated real space has quadratic
form x1x2 − x20 and we may realise it as

VR =

{︄(︄
x1 x0

x0 x2

)︄ ⃓⃓⃓⃓
⃓ xi ∈ R

}︄
,

so that q = det. Then for g ∈ GL2(R) the transformation V ∋ v ↦→ gvgT is orthogonal
as long as det(g) = ±1 is presumed. The corresponding natural association defines an
isogeny with kernel ±I which descends to an isogeny

SL2(R) → O+(VR).
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The image has index 2 and adding the reflection v ↦→ −v to the image generates the whole
group. The association

P1(C) ∋ τ ↦→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝1 0

0 0

⎞⎠ , if τ = ∞,⎛⎝τ2 τ

τ 1

⎞⎠ , else,

defines a biholomorphic map onto the zero quadric N ⊂ P(VC). The induced action of
PSL2(R) is given by Möbius transformations. In fact, let γ ∈ SL2(R), then(︄

a b

c d

)︄
·

(︄
τ2 τ

τ 1

)︄
·

(︄
a c

b d

)︄
=

(︄
(b+ aτ)2 (b+ aτ)(d+ cτ)

(b+ aτ)(d+ cτ) (d+ cτ)2

)︄

≃

(︄
(γτ)2 γτ

γτ 1

)︄
.

The space K in that model identifies with the upper and lower half plane, where K+

represents exactly the upper (or lower) half plane. In fact, the condition to lie in K,
namely b(τ, τ) < 0, reads

0 >
(︂
τ, τ2, 1

)︂⎛⎜⎜⎝
−2

1

1

⎞⎟⎟⎠
⎛⎜⎜⎝
τ

τ2

1

⎞⎟⎟⎠ = −2|τ |2 + τ2 + τ2 = −4y2 ⇐⇒ y ̸= 0.

The discriminant kernel of L may also be realised over GSpinL. In fact, we have the
following theorem.

Theorem 4.54 ([Att15, Cor 2.5.3]). Let (L, q) be a non-degenerate R-lattice. Then the
image of GSpin(L) in SO(L) under the natural map equals Γ(L), which is the discriminant
kernel of SO+(L), where SO+(L) denotes the intersection of SO(L) with SO+(L⊗ R) if
R = Z or SO+(L⊗Qp) if R = Zp.

We will often consider the following variety in analogue to the classical case.

Definition 4.55. Let Γ ≤ Γ(L) be a subgroup of finite index. Then denote Γ\D by YΓ.
In case of Γ = Γ(L), we also write YL = YΓ(L).
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4.2.3 Boundary components

Additional background material on the subject is found in the base source [BF01] for this
subsection and [Kie21].

Throughout this section we shall assume m− = 2, so that L is a lattice of signature
(m+, 2). Boundary components of G/K are represented by isotropic spaces and the
projective model is relatively accessible for the purpose of describing boundary components.
Hence, we consider the boundary of K+ in the zero quadric N .

In fact, the boundary points are described as follows. If a point in [Z] ∈ N should be
a boundary point of K, its representative Z = X + iY has to fulfil q(X) = q(Y ) = 0 and
b(X,Y ) = 0. This might happen, if the vectors X and Y are collinear or not, giving rise
to a one dimensional or respectively two dimensional isotropic subspace. In fact, X and Y
are collinear if, and only if, [X + iY ] may be represented by a real vector (namely either
X or Y ). Otherwise, there is no real representation. These points are then collected into
components.

Definition 4.56. We have the following classification of boundary points.

a) If the space spanned by X,Y is one dimensional, we call [Z] a special boundary
point.

b) If the space spanned by X,Y is two dimensional, we call [Z] a generic boundary
point.

c) A set consisting of one special boundary point is called zero dimensional boundary
component.

d) For an isotropic plane I ⊂ VR, the collection of generic boundary points which may
be represented by elements in I ⊗R C is called one dimensional boundary component.

The reason for bundling these points is due to the following structural result about one
dimensional boundary components.

Remark 4.57. There is a bijective correspondence between boundary components and
isotropic subspaces of VR. Moreover, one dimensional boundary components are isomorphic
to upper half planes H.

In fact, the image of I ⊗R C in N for a two dimensional isotropic space I ⊂ V (R) may
be identified with H ∪ R ∪ {∞} as in the classical case.
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Definition 4.58. A boundary component is called rational, if the corresponding isotropic
space I is defined over Q, meaning for [Z] ∈ N that there is a representative Z = X + iY ,
such that X,Y ∈ VQ ⊂ VR.

Example 4.59. Assume VQ is anisotropic and Γ < O+(V ) is commensurable with O(L).
Then the rational boundary of YΓ is empty and XΓ = YΓ is compact.

4.2.4 Modular forms

The following content is essentially contained in [Bru02, 3.3 p. 84]. Another reference
providing a brief overview is [Kie22].

Similar to the elliptic case, we will describe modular forms, which may be interpreted as
global sections of a hermitian line bundle over the modular variety Y (Γ), as functions on
the cover G/K of that space with a certain transformation property. In order to state this
transformation property analogously to the classical case, we are required to introduce
the factor of automorphy in the orthogonal setting.

Recall that there is a natural action of O+(VR) on the projective model K of G/K,
which is transferred by the biholomorphic association discussed above to the tube domain
model Hm+ . We use the notation of the preceding subsections and select for z ∈ Hm+ a
specific representative of its corresponding element [Z] ∈ K+ following Proposition 4.46.
In fact, selecting VC ∋ z̃ = z − (q(z) + q(e2))e1 + e2 gives rise to an embedding of Hm+

into the preimage of K+ in VC. The latter is exactly the cone over the chosen embedding
and will be denoted K̃+.

Starting from the perspective of the cone, it is relatively straightforward how to define
modular functions in analogy to the classical case:

Definition 4.60. A function F : K̃+ → C is called modular of weight r ∈ Z with respect
to a congruence subgroup Γ ≤ Γ(L) if it satisfies the following two properties.

a) For all t ∈ C× the function is homogeneous of degree −r, meaning F (tZ) = t−rF (Z).

b) For all γ ∈ Γ(L) the function is invariant under pullback: F (γZ) = F (Z).

From that definition, it is immediate how to generalise it to modular functions with
a character. In fact, let χ : Γ → T ba a character, then b) may be generalised to read
F (γZ) = χ(γ)F (Z). In order to translate that action to the function on the embedded
tube domain Hm+ , we need to introduce the factor of automorphy for which we will have
to consider the action of O+(VR) that is transferred from the canonical action on K. We
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find for γ ∈ O+(VR) and z ∈ Hm+ with corresponding lift z̃ ∈ K̃+ (cf. Proposition 4.46)
that3

γ(z̃) = z′ − ae1 + b(e2 − q(e2)e1)

for some a, b ∈ R and another z′ ∈ Hm+ . By definition, we obtain via normalising that
the preimage of [γ(z̃)] in Hm+ equals

γ(z) = b−1z′ where b = b(γ(z̃), e1).

If we repeat the procedure by letting another γ2 ∈ O+(VR) act on z′, we find that the
new prefactor b′ (in place of b) fulfils a cocycle relation. This prompts us to define.

Definition 4.61. Let γ ∈ O+(VR) and z ∈ Hm+ corresponding to z̃ as above. Then the
factor of automorphy is defined to be

j(γ, z) := b(γ(z̃), e1).

Lemma 4.62. The factor of automorphy fulfils

j(γ, z)˜︃(γz) = γ(z̃) (4.22)

as well as the cocycle relation

j(γ1γ2, z) = j(γ1, γ2z)j(γ2, z). (4.23)

In addition, the imaginary part of an element z ∈ Hm+ transforms with the factor of
automorphy in analogy to the elliptic case presented in (2.12).

Remark 4.63. For γ ∈ O+(VR) and z ∈ Hm+ , we have the following transformation
property

q(Im(γz)) =
q(Im(z))

|j(γ, z)|2
(4.24)

Proof : By (4.15) reading 4 q(y) = b(z̃, z̃) and (4.22) we obtain

q(Im(γz)) =
1

4

(︃
γ(z̃)

b(γz̃, e1)
,

γ(z̃)

b(γz̃, e1)

)︃
=

1

4|b(γz̃, e1)|2
(︁
γz̃, γz̃

)︁
3Recall that we may replace e2 by e2 − q(e2)e1 to guarantee q(e2) = 0.
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=
q(Im(z))

|b(γz̃, e1)|2
.

In the light of Lemma 4.62, we may translate Definition 4.60 to the tube domain model.
To be explicit, let

FH(z) : Hm+ → C, z ↦→ F (z̃) = F (z − (q(z) + q(e2))e1 + e2).

Then FH satisfies the following transformation property for γ ∈ Γ (cf. (4.22))

FH(γz) = F (˜︂γz)
= F (j(γ, z)−1γz̃)

= j(γ, z)rχ(γ)F (z̃)

= j(γ, z)rχ(γ)FH(z)

(4.25)

and we see that there is a bijective correspondence between such functions.
Technically, (4.25) already yields the notion of a modular function on Hm+ . However,

as we will consider the Borcherds lift in Section 7.1, we require a more general notion of
modular forms than these; namely to characters and have to introduce multiplier systems.
To this end, let ln(j(γ, z)) denote a fixed logarithm of j(γ, z). For a rational number
r ∈ Q, set

j(γ, z)r := exp (r · ln(j(γ, z))) .

Then there is a map wr : O+(VR)× O+(VR) → T restricting to the roots of unity of order
bounded by den(r) such that

j(γ1γ2, Z)
r = wr(γ1, γ2) · j(γ1, γ2z)rj(γ2, z)r

which only depends on r mod Z. With this preparation, we may replace the notion of
a character with a more general notion, satisfying the same transformation property to
cancel the above factor when transforming.

Definition 4.64. Let Γ ≤ O+(VR) and r ∈ Q. A multiplier system of weight r for Γ is a
map

χ : Γ → T, s.t. χ(γ1γ2) = wr(γ1, γ2)
−1 · χ(γ1)χ(γ2).

With the notion of a multiplier system, modular forms on the tube domain Hm+ may
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be defined. For simplicity we assume m+ ≥ 3 first, in order to simplify to the following
definition.

Definition 4.65. Assume m+ ≥ 3. Let Γ ≤ Γ(L) be a subgroup of finite index and χ be
a multiplier system for Γ of weight r ∈ Q. A holomorphic function F on Hm+ is called a
holomorphic modular function of weight r and multiplier system χ with respect to Γ, if it
fulfils

F (γz) = χ(γ)j(γ, z)rF (z) (4.26)

for all γ ∈ Γ. Write Mr(Γ, χ) for the space of such functions.

Recall that in the classical case, there has been a growth condition towards the boundary.
In case of a holomorphic modular function this condition is superfluous by the Köcher
principle (cf. [Bru02, Prop. 4.15 p. 109]) in case of m+ ≥ 3. If m+ = 2, however, the
situation is more convoluted and we would like to briefly touch on how to proceed.
Assuming m+ = 2 and that there is no isotropic element in V , the quotient Γ\D is
compact and we may stick with Definition 4.60 for integral weight r ∈ Z and impose
holomorphicity or meromorphicity.4 In case there is an isotropic element, we are required
to speak about vanishing at the cusps. For this instance, we sketch how to derive a Fourier
expansion of such functions.5

Recall for x, y ∈ L the Eichler transform E(x, y) of Definition 4.40. Then by Remark 4.42,
we find that the Eichler transform E(x, y) ∈ Aut(L) is contained in Γ(L). In fact, for
d ∈ N and y ∈ d · L, we even find E(x, y) ∈ Γ(L(d)). These transformations may be
used to associate a Fourier expansion to a modular function. For that purpose, recall the
construction of the tube domain model, in particular of the subspace WR < VR whose
rational points are described in (4.14). Instead of constructing W directly as a vector
space, we may, as long as VQ is isotropic, select a primitive isotropic vector e1 ∈ L and
choose e2 ∈ L′ such that b(e1, e2) = 1. Then the lattice M := L∩ e⊥1 ∩ e⊥2 is a Lorentzian,
i.e. it has signature (m+ − 1, 1). If we set WR := K ⊗R, we obtain the same construction
as for the tube domain model. The difference is that this time we have a lattice M ⊂ L

as a base of the construction.
Select z ∈ Hm+ with associated element z̃ = z + ae1 + e2 ∈ VC.

4In case of non-integral weight r ∈ Q \ Z one has to consider covers of K+, based on the denominator or
r.

5This is also valid in case of m+ ≥ 3, as there will always be isotropic vectors by Meyer’s theorem.
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Next, notice that for l ∈M we find that E(e1, l) acts as follows (cf. (4.12))

E(e1, l)(z̃) = z̃ − b(z̃, e1)l + b(z̃, l)e1 − q(l)b(z̃, e1)e1

= z̃ − l + b(z, l)e1 − q(l)e1

= (z − l) + (a+ b(z, l)− q(l))e1 + e2.

Hence, the induced action of E(e1, l) on Hm+ is given by z ↦→ z − l and we obtain for
the corresponding factor of automorphy that j(E(e1, l), z) = b(E(e1, l)z̃, e1) = 1. As a
consequence, every holomorphic function F : Hm+ → C transforming with respect to
Γ(L(d)) as in (4.26) for some d ∈ N possesses a Fourier expansion

F (z) =
∑︂

λ∈ρ+K′/d

c(λ)e(b(λ, z)) (4.27)

for some ρ ∈M ⊗Q =WQ which is unique modulo K ′/d.

With this preparation, one may define modular forms also in case m+ ̸≥ 3.

Definition 4.66. Let V be isotropic. Let Γ ≤ Γ(L) be a subgroup of finite index and χ

be a multiplier system for Γ of weight r ∈ Q. A holomorphic function F on Hm+ is called
a holomorphic modular function of weight r and multiplier system χ with respect to Γ, if
it fulfils

F (γz) = χ(γ)j(γ, z)rF (z) (4.28)

for all γ ∈ Γ and for the associated Fourier expansion (4.27) the coefficient c(λ) vanishes,
unless their index λ lies in C+. We write Mr(Γ, χ) for the space of such functions.

As already alluded to, the second condition stated above about coefficients vanishing
unless being contained in the cone manifesting the imaginary part of the tube domain
model is automatic in case of m+ ≥ 3 by the Köcher Principle [Bru02, Prop 4.15 p. 109].
With the notion of holomorphic modular forms, the meromorphic version may be defined
in a straightforward fashion.

Definition 4.67. Let V be isotropic. An orthogonal meromorphic modular form with
respect to the group Γ ≤ Γ(L) of finite index of weight r ∈ Q and multiplier system χ is a
function F on Hm+ with transformation property

F (γz) = χ(γ)j(γ, z)rF (z)
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for all γ ∈ Γ that may be written as a quotient F = F1/F2 with F1 ∈ Ms(Γ, χ1) and
F2 ∈ Mt(Γ, χ2) for suitable parametres s, t ∈ Q and multiplier systems χ1, χ2.

Analogously to the classical case presented in Chapter 2, there is a natural class
of modular forms that may be constructed to prove the existence of such forms (cf.
Subsection 2.1.2). To this end, we define, in analogy to the classical case, the following
operator.

Definition 4.68. Let f be a function on Hm+ and k ∈ Z. Then for γ ∈ Γ(L)

f |kγ(z) := j(γ, z)−kf(γz)

defines a function on Hm+ and the induced right operation of Γ(L) preserves holomorphicity
and meromorphicity, respectively. The operator |k is referred to as Petersson operator of
weight k or slash operator .

As in the elliptic setting, the Petersson operator leaves the space of modular forms
invariant.

An example of orthogonal modular forms has yet to be constructed! Recall Eisenstein
series in the classical setting introduced in Definition 2.16. These are constructed to be
the simplest possible instance of a Γ(1) invariant function, by symmetrising the constant
function with respect to the Petersson operator. The same procedure will be mimicked in
the orthogonal setting.

Definition 4.69. Let k ∈ Z, z ∈ L be a cusp, i.e. a primitive isotropic vector, and
Γ ≤ Γ(L) be a subgroup of finite index. Then

Ek,z(Z) :=
∑︂
σ∈Γ

1|kσ

as a function on K+ is called Eisenstein series.

The series converges for k > l + 2 by comparison to an Epstein zeta function. As in
the elliptic setting non-holomorphic Eisenstein series may be defined. We will not require
these in the following, but the curious reader may consult [Kie22, 7 p. 2867]. Further,
non trivial examples of modular forms may be constructed via the Borcherds lift, relating
weakly holomorphic vector valued elliptic modular forms to meromorphic orthogonal
modular forms (cf. Section 7.1).
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4.2.5 Special divisors

In algebraic geometry divisors are a common tool for investigating the structure of
varieties. A feature of the orthogonal setting is that the associated Shimura varieties
have an abundance of divisors being induced by sub-varieties of the same type in all
codimensions. These give rise to so called special cycles which will play a key role in
proving the injectivity of the Kudla–Millson lift in Section 7.3. In the following, we
describe the construction of these codimension 1 special cycles.

Recall that we assume the rational quadratic space (V, q) to have signature (m+, 2) and
select some v ∈ V with q(v) > 0. Then the subspace Vv := v⊥ has signature (m+ − 1, 2)

and the complement in the projective model K+ denoted by

Zv :=
{︁
[z] ∈ K+ | (z, v) = 0

}︁
(4.29)

is an analytic divisor on K+, which is exactly the hermitian symmetric domain corre-
sponding to (Vv, q). This means

Zv ≃ Dv := {U ⊂ Vv(R) | dim(U) = 2 and q |U < 0}. (4.30)

Here, Dv can be realised as the Grassmannian attached to the stabiliser O(VR)v of v in
O(VR). It has become apparent that the divisor Zv coincides with a subsymmetric domain
of the same type and these divisors are referred to as special divisors. Its corresponding
description in the tube domain model looks as follows. Write v = vW + ae2 + be1 as above
(cf. (4.14)) so that

Zv ≃
{︁
z ∈ H+ | a q(z)− b(z, vW )− a q(e2)− b = 0

}︁
⊂ H+.

This description gives rise to the term rational quadratic divisor . Further, the following
combination of these divisors appears naturally in many applications (cf. Theorem 7.3).

Definition 4.70. Select λ ∈ L′/L as well as a rational number n > 0. Then

Z(λ, n) :=
∑︂

v∈λ+L
q(v)=n

Zv (4.31)

defines an analytic divisor on K+ which is called Heegner divisor of discriminant (λ, n).

Recall that arithmetic subgroups Γ ≤ O(L) have been considered which give rise to
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modular varieties YΓ = Γ\D. If the arithmetic group Γ lies in the discriminant kernel, i.e.
acts trivially on the discriminant group L′/L, then the Heegner divisor descends to an
algebraic divisor on YΓ, which is also denoted by Z(λ, n). This may be verified by Chow’s
lemma.

Alternatively, the Heegner divisors might be symmetrised over L′/L to yield an algebraic
divisor on YΓ, namely

Z(m) :=
1

2

∑︂
λ∈L′/L

Z(λ,m). (4.32)

We also require the following more primitive divisor which is directly induced by (4.29).
Let Γv := Γ ∩ O(VR)v be the intersection with the stabiliser of v. Then we find that

Z(v) := Γv\Dv → YΓ (4.33)

defines a (in general relative) cycle. These cycles play a fundamental role in the proof of
the injectivity of the Kudla–Millson lift in Section 7.3.1.

The existence of such a family of algebraic divisors is distinctive for orthogonal and
unitary groups.







5 Automorphic forms on SL2

In the preceding sections, the concept of modular forms has been introduced in classical
terms, both in the orthogonal and elliptic setting. In particular, Eisenstein series and theta
functions have been discussed, both playing a central role in the theory of automorphic
forms. Furthermore, there is a rather representation theoretic perspective on modular forms
involving the adelic points of the respective group. An introduction to this perspective
is presented in [Dei10], while a more thorough discussion can be found in [Bum98] and
[Gel+90]. We restrict ourselves to describing the analogous versions of classical theta
functions and Eisenstein series on SL2(A) in an ad hoc fashion and encourage the reader
to consult the literature for additional background information.

The following sections introduce theta distributions 5.2 and Eisenstein series 5.3 associ-
ated to Schwartz–Bruhat functions are introduced before relating both to each other by
means of the Siegel–Weil formula (5.4.1).

5.1 Preliminaries
Before introducing examples of automorphic forms, we will have to state some facts about
the group SL2(R) based on [Dei10, Chap. 3 p. 81]. Recall the following three embeddings
into SL2(R):

m : (R×, · ) ∋ a ↦→ m(a) :=

(︄
a 0

0 a−1

)︄
, (5.1)

n : (R,+) ∋ b ↦→ n(b) :=

(︄
1 b

0 1

)︄
, (5.2)

k : T ∋ ϑ ↦→ k(ϑ) :=

(︄
cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)︄
. (5.3)

The image of m equals the subgroup of diagonal matrices in SL2(R). We will denote it by
M and the subgroup m(R>0) by M0. Further, the image of n will be denoted by N and
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the one of k, which equals SO2(R), will also be denoted by K∞.

Example 5.1. a) For γ =
(︁
a b
c d

)︁
∈ SL2(R) we consider the action on i ∈ H and compute

γi =
ai+ b

ci+ d
=
ac+ bd+ i(ad− bc)

c2 + d2
=
ac+ bd

c2 + d2
+ i

1

c2 + d2
. (5.4)

b) For a ∈ R× and τ ∈ H we find

m(a)τ = a2τ.

c) For b ∈ R and τ ∈ H we find
n(b)τ = τ + b.

d) Combining the last two instances, we obtain for u+ iv = τ ∈ H that

n(u)m(
√
v)i = n(u)iv = u+ iv = τ. (5.5)

The example above prompts the following definition.

Definition 5.2. Let u+ iv = τ ∈ H and define the associated matrix gτ := n(u)m(
√
v) ∈

SL2(R), acting as gτ i = τ .

With these notions, the Iwasawa decomposition of the group SL2(R) may be constructed.
Consider the stabiliser of i ∈ H with respect to the action SL2(R)

⟳ H via Möbius
transformations. A swift computation yields that Stab(i) = SO2(R). Recall that by
Example 5.1 the action of SL2(R) is transitive and we obtain the desired decomposition.

Proposition 5.3 (Iwasawa decomposition). Let M0, N , and K∞ = Stab(i) = SO2(R) be
as above. Then

N ×M0 ×K∞ → SL2(R), (n,m, k) ↦→ nmk

defines a homeomorphism.

Proof : In fact, we find that associating the following matrices to
(︁
a b
c d

)︁
∈ SL2(R) defines

a topological inverse mapping.

m =

(︄√
c2 + d2

−1
0

0
√
c2 + d2

)︄
,

n =

(︄
1 ac+bd

c2+d2

0 1

)︄
,
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k =
1√

c2 + d2

(︄
d −c
c d

)︄
.

For constructing these matrices, we have employed (5.4) and (5.5).

We will also require the interplay of the factor of automorphy with the special matrices
appearing in the Iwasawa decomposition.

Example 5.4. Let a ∈ R×, b ∈ R, ϑ ∈ T, and τ ∈ C \ R. Then we find

j(m(a), τ) = a−1, (5.6)

j(n(b), τ) = 1, (5.7)

j(kϑ, i) = e−iϑ. (5.8)

Further, combining these with the cocycle relation (cf. Remark 2.11), we obtain

j(n(b)m(a)kϑ, i) = j(n(b)m(a), i)j(kϑ, i)

= j(n(b),m(a)i)j(m(a), i)j(kϑ, i)

= a−1e−iϑ.

For the purpose of explicitly constructing Eisenstein series in Section 5.3, we are required
to express the factor of automorphy of the constitute k of an element γ ∈ SL2(R) in
Proposition 5.3 in terms of entries of γ and refer to [BY09, p. 641] on that matter.

Remark 5.5. Let γ =
(︁
a b
c d

)︁
∈ SL2(R) and τ ∈ H. Then γτ = γgτ i, where the Iwasawa

decomposition guarantees γgτ = gγτkϑ = n(β)m(α)kϑ for suitable β, α and ϑ. In fact, we
find

eiϑ = j(kϑ, i) =
j(γ, τ)

|j(γ, τ)|
, (5.9)

α =

√
v

|j(γ, τ)|
=
√︁

Im(γτ). (5.10)

Proof : Recall that the first equation of (5.9) has already been given in Example 5.4. For
the second, we begin by calculating(︄

a b

c d

)︄
gτ =

(︄
a b

c d

)︄(︄√
v u/

√
v

0 1/
√
v

)︄
=

(︄√
va (ua+ b)/

√
v

√
vc (uc+ d)/

√
v

)︄
(5.11)



164 5 Automorphic forms on SL2

yielding by the Iwasawa decomposition (cf. proof of Prop. 5.3) as an associated matrix

kϑ =
1√︁

(cv)2 + (uc+ d)2

(︄
(uc+ d) −cv
cv (uc+ d)

)︄
.

With this expression, we obtain by inserting the definition of the factor of automorphy
and by writing τ = u+ iv that

j(kϑ, i) =
−cvi+ (uc+ d)√︁
(cv)2 + (uc+ d)2

=
c(u− iv) + d√︁

[c(u+ iv) + d][c(u− iv) + d]
=

j(γ, τ)

|j(γ, τ)|
.

We may also read the parameter α off by employing (5.11) deriving that

a =
√︁
vc2 + (uc+ d)2/v

−1
=

√
v

|j(γ, τ)|
=
√︁

Im(γτ)

which finishes the proof.

After these prerequisites, we may turn towards concrete examples of automorphic forms.

5.2 Theta distributions

The following section introduces the first example of automorphic forms on Mp2(A) in the
form of theta distributions. Their construction requires less effort than the construction of
Eisenstein series, which is the reason for favouring their introduction for the first section.
Further information is provided in [Kud03]. Let (V, q) be a quadratic Q vector space, VA
its adelisation, and let ω denote the Weil representation of Mp2(A) on S(VA) as in (3.19).

Definition 5.6. Define the theta distribution, also known as theta kernel,

θ(g, h;ϕ) =
∑︂

x∈V (Q)

(ω(g)ϕ)(h−1x)

which is a tempered distribution in ϕ ∈ S(VA), where g ∈ Mp2(A) and h ∈ O(VA). Here,
the latter denote the adelic points of the orthogonal group O(V ).

Poisson summation yields that the theta kernel is left invariant under Mp2(Q) as well
as O(V ). Furthermore, it is only slowly increasing on the quotient Mp2(Q)\Mp2(A) and
O(V )\O(VA).
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We would like to compare the context of the definition above to previous notations of
theta functions.

Remark 5.7. Comparing Definition 5.6 with Definition 3.31 we find the following identity.
Select λ ∈ L′/L and ϕf = 1λ+L as well as ϕ∞ ∈ S(V∞) and h∞ ∈ O(VR) as well as
hf = id ∈ O(VAf

). Then we find

θL,λ(τ, h∞;ϕ∞) = Im(τ)−m/4 · θ(gτ , h∞hf ;ϕ∞ ⊗ ϕf ).

Theta lifts and as such theta functions are central objects in the present thesis and we
will present a link to Eisenstein series, the Siegel–Weil formula (cf. Section 5.4.1), which
is also crucial for the main objective of this thesis of proving injectivity and surjectivity
results of theta lifts. We note that in many parts of the thesis, we use classical notation,
also for theta functions which is why we explicitly outline the realisation of a classical
theta function by a theta distributions as above.

5.2.1 The classic setting

Theta distributions may be viewed as generalisations of classical theta series (cf. Defini-
tion 2.17). In this context, let (L, q) be a classical Z lattice with positive definite quadratic
form and even rank m. Then V := Q⊗Z L is a vector space with quadratic form q and
the association

V∞ ∋ x ↦→ exp(−2π q(x))

defines a Schwartz–Bruhat function on V∞ := V ⊗Q R.
Recall that the Weil representation factors through SL2 in the even case and we may

restrict to working with the SL2 setting. Further, we select N ∈ N and introduce the
abbreviation K0(N)p = Γ0(N) ≤ SL2(Zp) to note that

Γ0(N) \ SL2(R) ≃ SL2(Q) \ SL2(A)/
∏︂
p<∞

K0(N)p

via the association
α : Γ0(N)x ↦→ SL2(Q)(x, 1)

∏︂
p<∞

K0(N)p.

As a Schwartz form choose ϕ = e∞(i q, · ) ·
∏︁
p<∞ 1Lp , where e∞ is the standard character

at the archimedian place from Example 1.48 and let gτkϑ = g∞ ∈ SL2(R) be the element
corresponding to u + iv = τ ∈ H with respect to the Iwasawa decomposition as in
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Definition 5.2:

gτkϑ =
[︂
( 1 u0 1 ) ·

(︂√
v 0
0 1/

√
v

)︂]︂
·
(︂

cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)︂
∈ SL2(R).

With this notation, we obtain

θ(gτkϑ, 1;ϕ) = e−iϑm/2 ·
√
v
m/2 · θL(τ). (5.12)

Given τ ∈ H, define ψ : τ ↦→ θ(gτkϑ, 1;ϕ)j(gτkϑ, i)
m/2 = θL(τ). Then, for arbitrary

γ ∈ Γ0(N), where N is the level of L we obtain:

ψ(γ.τ) = θ((γgτkϑ, 1), 1;ϕ) · j(γgτkϑ, i)m/2

= θ(γ(gτkϑ, γ
−1), 1;ϕ) · j(γgτkϑ, i)m/2

= θ((gτkϑ, 1), 1;ϕ)χV (γ
−1) · j(γgτkϑ, i)m/2

= θL(τ) · χV (γ−1) · j(γ, τ)m/2

= ψ(τ) ·
(︃

disc(L)
γ2,2

)︃
· j(γ, τ)m/2,

where the isolation of the character χV from Example 1.62, which is meant to act on
the lower right entry of the argument, is performed locally. For that purpose the local
matrices are decomposed in order to apply the formulae of Example 3.8 and we refer
to [Rao93] to relate the local Weil index appearing to the values of the character χV .
The final step to express this character in terms of the Kronecker symbol is performed
in [Opi18, Cor. 1.10.2 p. 22]. Consequently, the function ψ : H → C not only equals the
theta series θL on H but the calculation also proves that it transforms with a character
under Γ0(N). Additionally, holomorphy may be verified directly by a trivial estimate of
the sum, so that θL is identified as a holomorphic modular form (cf. Theorem 2.22).

Corollary 5.8. The function θL : H → C is a modular form of weight m
2 with character(︂

disc(L)
·

)︂
with respect to the group Γ0(lev(L)).

5.3 Eisenstein series
This section is devoted to the introduction of Eisenstein series on SL2 which play a
pivotal role in applying the Siegel–Weil formula for proving the central result of this thesis
(cf. Theorem 7.16). At first, principal series representations, which are indispensable
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for constructing Eisenstein series, are briefly discussed, before defining Eisenstein series
associated to standard sections. Subsequently, Eisenstein series are ascribed to Schwartz–
Bruhat functions which lays the foundation for forging a bridge to theta kernel from the
previous section by means of the Siegel–Weil formula.
This entire section relies upon [KY10], in which Kudla and Yang provide a comprehensive
setting in a compact fashion that is adequate for the investigation of Eisenstein series
on SL2(A). Readers interested in further details may wish to consult the more elaborate
[Bum98], which also addresses the Lie theory upon which individual results are built.

We fix a character ψ of A/Q which we recall are identifiable with rational numbers.
For explicit computations ψ is assumed to be the standard character as in Remark 1.55
with a = 1, even though the theory works for arbitrary non-trivial characters, with proper
normalisation of the Haar measures involved. In general, χ will denote a finite character
on A×/Q×, if it is not specified further.

5.3.1 Principal series representations

The principal series representations constitute an essential component of adelic Eisenstein
series. They are vital for investigating unitary representations of SL2, as they comprise
two of essentially four infinitesimal isomorphism classes of representations of SL2(R) –
besides the (mock) discrete series and the complementary series [Lan98, VI.6 Thm. 8
p. 123]. The reason for the appearance of these representations in the construction of
Eisenstein series is described in detail in [Bum98]. The case of SL2 is discussed in [Dei10,
Sec. 7.1 p. 157], a more sophisticated compact approach is given by [Gel74] or [Kud96],
whereas [Bum98, p. 213, Sec. 4.5 pp. 469-489] presents the content extensively, featuring
a significant representation theoretic discussion. Supplementing material is also found in
[Kud94], [KR92], as well as [KRY99, pp. 353-454].

The principal series representations of SL2 are induced by characters on the Borel group
of upper triangular matrices. As in the case of finite groups, induced representations can
be constructed as tensor products or explicitly by right action of the comprising group.
However, in the infinite case involving topology is indispensable so that working only on
dense subspaces with properties which are apparently advantageous for computations is
convenient. This leads to demanding analytical and symmetry features of investigated
functions.

The following construction is nearly identical in the SL2(R) case. Let G be a totally
disconnected locally compact group with a closed subgroup H which possesses a smooth
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representation (πH , V ). Consider the space of smooth functions f : G→ V which satisfy

f(hg) = δG(h)
−1/2δH(h)

1/2πH(h)f(g)

with modular quasi characters δG, δH of the respective groups.1 Then, the representation of
G induced by πH (of H) on the space of functions defined above is denoted πG = IndGH(πH)
and given by right translation of G:

πG(g)(f)(x) = f(xg).

The essential case for this thesis is the choice G = SL2(Fp) with upper triangular matrices
H as a maximal compact subgroup. When the representation πH of H is chosen to be a
multiplicative quasi character χ

(︁
a b
0 a−1

)︁
:= χ(a), IndGH(χ) consists of functions f : G→ C,

such that
f(n(b)m(a)g) = χ(a)|a|p · f(g),

where n(b) =
(︁
1 b
0 1

)︁
and m(a) =

(︁
a 0
0 a−1

)︁
as usual. These are called principal series

representations in case of irreducibility and an element of them is determined by the values
it attains on Kp.2 The choice of particular interest is that of a Hecke quasi character, which
naturally decomposes into a family of local finite characters χp on Q×p and quasi characters
| · |sp (cf. Remark 1.56). Hence, the functions in the associated induced representation
transform in the following fashion

f(n(b)m(a)g) = χp(a)|a|s+1
p · f(g). (5.13)

The collection of spaces IndGH(χ | · |sp) form vector bundles over C (parametrised by s)
denoted by Ip(s, χ) which admit holomorphic sections Φp(s) – at least for Re(s) > 1. In
particular, there is a so called spherical section Φ0

p, attaining the value 1 on the neutral
element of SL2 and being right Kp invariant.

For a family of Hecke quasi characters χ · | · |s parametrised by s ∈ C, the local
representations described above (for all p ≤ ∞) may be combined via restricted tensor
products (cf. [Bum98, p. 300 as.]). For this purpose the spherical section is fixed in each
component. This results in a collection of adelic representations, denoted by I(s, χ) and
also called principal series representations associated to the Hecke character. A similar

1Note that the factors are chosen in such a fashion that induction preserves unitaricity (cf. [Bum98,
Thm. 2.6.1 p. 224]).

2This is true by strong approximation (cf. [Kne65]).
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construction can be done in case of SL2(A) (cf. [KY10]) and the resulting principal series
representation will also be denoted I(s, χ). In case these factor through SL2(A), they are
called even, if not, they are called odd. Again, there are holomorphic sections Φ(s), which
are utilised as kernels for symmetrisation resulting in non-holomorphic Eisenstein series
which are to be discussed in the following section. To be more explicit, a section Φ(s)

from I(s, χ) is a smooth function on G′A such that

Φ(p′g′, s) = χ(a) · |a|s+1Φ(g′, s)

⎧⎨⎩1, in the even case,

z, in the odd case,
(5.14)

where p′ = [n(b)m(a), z] ∈ P ′A is in the standard Borel subgroup (cf. Subsection 3.2) and
the same normalisation as in [KRY06, p. 287] is chosen. A section Φ(s) is called standard if
its restriction to the maximal compact subgroup KA < SL2(A) (K ′A < SL2, respectively) is
independent of s and factorisable if Φ = ⊗pΦp is a primitive tensor. Further, every section
Φ(g, s) ∈ I(s, χ) is determined by its values on K ′A which is verified via the Iwasawa
decomposition in (3.23).

The simplest example of a section at a finite place is the normalised standard section.

Example 5.9. Let 2 < p <∞ and. Then the section Φ0
p ∈ Ip(s, χ) determined by

Φ0
p(k, s) = 1

for k ∈ Kp = SL2(Zp) is a standard section. It is called the spherical section (since it is
right invariant under Kp). To make sense of the above, recall that in case 2 < p, there is
a section of Kp = SL2(Zp) ↪→SL2(Qp).

Recall that the characters of the double cover SO2(R) sitting in K ′∞ are of the following
form (cf. [BF04, Sec. 2]).

Remark 5.10. For every l ∈ Z/2 there is a character of SO2(R) denoted by νl with values

νl

(︂
kϑ,±

√︁
j(kϑ, τ)

)︂
↦→ ±

√︁
j(kϑ, i)

−1
= ±eilϑ.

With this family of characters, one may define concrete elements of the principal series
representation at the infinite place.

Example 5.11. Assume χ is a quadratic character. For l ∈ Z/2 imposing the conditions

Φl∞(gk, s) = νl(k)Φ
l
∞(g, s), Φl∞(1, s) = 1
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on a candidate Φl∞ for a section through I∞(s, χ) almost works. In fact, the parameter
l has to satisfy a parity condition to comply with the action of −I when letting it act
via χ, for otherwise the section Φl∞ is forced to vanish. The concrete condition is stated
in (5.18). We refer to Φl∞ as the normalised eigenfunction of weight l and note that these
functions span the K∞ finite functions in I∞(s, χ).

For τ = u+ iv ∈ H we recall the following matrices from the Iwasawa decomposition
appearing in Proposition 5.3. Let gτ = ( 1 u0 1 )

(︂√
v 0
0 1/

√
v

)︂
and kϑ =

(︂
cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)︂
for

some radiant ϑ. Inserting these, we find

Φl∞(gτkϑ, s) = χ∞

(︂√︁
Im(τ)

)︂
Im(τ)(s+1)/2νl(kϑ)Φ

l
∞(1, s).

In particular, for γ ∈ Mp2(Z) we find γgτ = gγτkϑ, resulting by Remark 5.5 in

Φl∞(gγτkϑ, s) = χ∞(
√︁

Im(γτ)) Im(γτ)(s+1)/2νl(kϑ)Φ
l
∞(1, s)

= Im(γτ)(s+1)/2

(︄
j(γ, τ)

|j(γ, τ)|

)︄l
Φl∞(1, s)

= Im(τ)l/2
Im(γτ)(s+1−l)/2

j(γ, τ)l
.

There is an intertwining map which may be used to construct elements of the principal
series representations by means of the Weil representation. In fact, when considering the
action of the Weil representation in Example 3.8, for instance, and comparing it to (5.14),
the following statement is inferred.

Lemma 5.12. Let (V, q) be a quadratic Q space of dimension m with character χV as in
Example 1.62. Further, let p ≤ ∞, ωp be the associated Weil representation as in (3.16)
and set s0 := m

2 − 1. Then

λp : S(Vp) → Ip(s0, χ), λp(ϕ)(g
′) := ωp(g

′)ϕ(0) (5.15)

is a well defined map. In fact, it is almost always surjective, except for three special cases
that are described in [KY10, Sec. 4 p. 2286].

Clearly, to any of the sections arising from the above intertwining operator (5.15), there
is an associated canonical standard section. This method reproduces the already known
examples from above but also yields new examples.

Example 5.13. a) Let V∞ have signature (m+,m−). Then for any element z of the
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associated Grassmannian, there is an associated positive standard majorant q+
z of q

by decomposing orthogonally along z and flipping the sign of the negative definite
part (cf. Remark 3.28). Setting

ϕ∞(x, z) := e−2π q+
z (x) ∈ S(V∞) (5.16)

associates the standard section from Example 5.11 of weight l = m+−m−

2 via the
intertwining operator of Lemma 5.12 in the archimedian case.

b) Let Lp be unimodular, then the standard section associated to λVp(1L) equals the
spherical section Φ0

p(s) from Example 5.9.

c) Next, assume Lp is simply even, let µp ∈ L′p/Lp and write ϕµp := 1µp+Lp . Then
the action of ωp on ϕµp is described in Section 3.2, where the Fourier transform of
ϕµp is computed explicitly in Remark 1.54. This gives rise to a standard section in
Ip(χ, s).

d) Further, we find an operator for the finite adelic part

λf : S(VAf
) → If (s0, χ) = ⊗′p<∞Ip(s0, χ), λf (ϕ)(g

′
f ) = ωf (g

′
f )ϕ(0).

For µ ∈ L′/L ≃ L̂
′
/L̂ there is the associated element ϕµ := 1µ+Lf

= ⊗p<∞ϕµp ∈
S(VAf

) for which we find λf (ϕµ) ∈ If (s0, χ). The associated standard section will
be denoted by Φµ and plays a major role in the construction of Eisenstein series
below. Clearly, we may perform the same procedure for a Schwartz–Bruhat function
ϕ ∈ S(VA) and associate to it a standard section Φ ∈ I(s, χ).

With the tools described and examples constructed above, we may turn towards
Eisenstein series.

5.3.2 Eisenstein series

The following exposition is based on [KY10, Sec. 2] and [BY09, Sec. 2]. We begin by
defining Eisenstein series in analogy to the classical case by symmetrising sections of the
principal series representation.

Definition 5.14. For a standard section Φ(g, s) ∈ I(s, χ) define the associated Eisenstein
series

E(g, s; Φ) :=
∑︂

γ∈P (Q)\SL2(Q)

Φ(γg, s). (5.17)
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Note that this series converges for Re(s) > 1, is, by definition, left invariant under
SL2(Q), and has a meromorphic continuation to the whole complex plane in s due to
Langlands [Lan06].3

We are interested in concrete instances of the above series and restrict, from now on, to
a quadratic character χ which may be realised by a square free integer d ∈ Z via

χ(x) =

⎧⎨⎩HA(x, d), even case,

HA(x, 2d), odd case.

Here, HA denotes the Hilbert symbol discussed in Section 1.4 and the even or odd case
refers to the principal series representation factoring through SL2 or not.4 Recall that in
order for the section Φl∞ of Example 5.11 to be non-trivial and hence part of I∞(s, χ),
the following parity condition has to be satisfied⎧⎨⎩(−1)l = sig(d), even case,

l ≡ sig(d)/2 mod 2, odd case.
(5.18)

In this context, we are able to represent classical Eisenstein series.

Example 5.15. For χ being the trivial character and gτ as a above we find by Example 5.11
and Example 5.9 with the definition Φ0

f = ⊗pΦ
0
p that

E(gτ , s; Φl∞ ⊗ Φ0
f ) = Im(τ)l/2

∑︂
γ∈Γ∞\ SL2(Z)

Im(γτ)(s+1−l)/2

j(γ, τ)l
.

The above example demonstrates how classical Eisenstein series may be realised. In fact,
this motivates considering the Eisenstein series in (5.17) as functions on the upper half
plane. Recall that any factorisable finite standard section Φf (g, s) ∈ If (χ, s) is invariant
under some open subgroup K0 of K0(4). Hence, by strong approximation the following
Eisenstein series, whose definition is motivated by the example above, determines the
series E(g′, s; Φl∞ ⊗ Φf ) completely.

Definition 5.16. For Φl∞ from Example 5.11 transforming with νl under K∞ and a finite

3Compare 6 Lemma 6.1 p. 91 for instance. However, that treatment is written in a completely different
notation and with a different perspective than the current document (a more analytic point of view),
rendering it not particularly helpful on a glance if only our setting is known.

4This will agree with the signature being even or odd in our later setting.
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standard section Φf ∈ If (χ, s), define

E(τ, s; Φl∞ ⊗ Φf ) := Im(τ)−l/2 · E(gτ , s; Φl∞ ⊗ Φf ). (5.19)

The series E(τ, s; Φl∞ ⊗ Φf ) then defines a non-holomorphic modular form of weight l
and we have seen how to realise classical scalar valued Eisenstein series. However, in this
thesis, vector valued modular forms play a major role and we seek means to describe these
also in the adelic setting.
In the spirit of Subsection 3.2.1, we will realise non-holomorphic vector valued Eisenstein
series for the discrete Weil representation (cf. Definition 3.37) in the present setting. To
this end, let (V, q) be the rational quadratic space associated to an even Z-lattice (L, q)
and select the quadratic character χ = χV = HA( · ,disc(V )) described in Example 1.62.
Recall that in Example 5.13 d), for µ ∈ L′/L the finite adelic Schwartz form ϕµ := 1µ+L̂ :=

⊗p<∞1µ+Lp has been associated to a standard section Φµ via the intertwining operator.

Definition 5.17. With the notation as above, we define the following Eisenstein series

EL̂,l(τ, s) :=
∑︂

µ∈L′/L

E
(︂
τ, s; Φl∞ ⊗ Φµ

)︂
ϕµ. (5.20)

The shape of this series not only resembles that of the classical non-holomorphic vector
valued Eisenstein series presented in Definition 3.37 but may be directly translated to
that setting [BY09].

Proposition 5.18. With the notation as above we find the following identity

EL̂,l(τ, s) = EL,0,l
(︁
τ, s+1−l

2

)︁
. (5.21)

For this equality, the natural identification SL′/L ≃ C[L′/L] from Lemma 3.9 is used.

Proof : We follow [BY09, Sec. 2 pp. 637-642] for part of the computation. We begin our
calculation by inserting the explicit term for the section Φl∞ that has been calculated in
Example 5.11.

EL̂,l(τ, s) = Im(τ)−l/2
∑︂
µ∈L

E(gτ , s; Φl∞ ⊗ Φµ)ϕµ

=
1

2

∑︂
µ∈L

∑︂
γ∈Γ∞\Γ(1)

Im(γτ)(s+1−l)/2

j(γ, τ)l
Φµ(γ)ϕµ.
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Now, recall that Φµ was induced by λf (ϕµ) ∈ If (s0, χ) via the finite intertwining operator
introduced in Example 5.13. We then find via the correspondence of SL′/L and C[L′/L]
constructed before Lemma 3.9 that for γ ∈ Mp2(Z) the following identity is true.

λf (ϕµ)(γ) = (ωf (γ)ϕµ) (0)

= ⟨ωf (γ)ϕµ, ϕ0⟩

= ⟨ϕµ, ωf (γ)−1ϕ0⟩

= ⟨ωf (γ−1)ϕ0, ϕµ⟩

= ⟨ρL(γ−1)ϕ0, ϕµ⟩

= ⟨ρL(γ−1)e0, eµ⟩

= ⟨e0, ρL(γ)eµ⟩.

Here, we have used the correspondence (3.27) between the classical Weil representation
and the dual of the adelic version on SL′/L. Inserting this relation in the above expression
for the Eisenstein series and using the isomorphism SL′/L ≃ C[L′/L] we obtain

EL̂,l(τ, s)

≃ 1

2

∑︂
γ∈Γ∞\Mp2(Z)

Im(γτ)(s+1−l)/2

j(γ, τ)l

∑︂
ν∈L

⟨ρL(γ−1)e0, eµ⟩eµ

=
1

2

∑︂
γ∈Γ∞\Mp2(Z)

[︂
Im(τ)(s+1−l)/2

]︂ ⃓⃓⃓
l
· ρL(γ−1)e0

=
1

2

∑︂
γ∈Γ∞\Mp2(Z)

[︂
Im(τ)(s+1−l)/2e0

]︂ ⃓⃓⃓
L,l
γ

= EL,0,l(τ,
s+1−l

2 ).

This completes the proof.

It is possible to compute the Fourier expansion of E(τ, s; Φ) for factorisable sections
in terms of local Whittaker functions as explained in [KY10, Thm. 2.4 p. 2282]. The
computations in concrete cases involve solving Gauss sums for the appearing local integrals
and a sizable amount of case distinctions. This has been carried out in the special case of
lattices associated to quadratic field extensions in a Master’s thesis [Met19].
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5.4 Comparing theta and Eisenstein series

Theta and Eisenstein series represent a sizable share of the theory of automorphic forms.
In fact, in many cases it is known that the span of theta series encompasses the space
of cusp forms (cf. [Mül24, Thm. 6.7]) which is then complemented by Eisenstein series.
Further, it is worth noting the existence of a celebrated formalism for relating theta series
to Eisenstein series, called the Siegel–Weil formula, which is the subject of the subsequent
subsection. Afterwards, the Siegel–Weil formula is applied to link a certain geometric
integral of the Kudla–Millson Schwartz form to Eisenstein series, as outlined by Kudla
[Kud03, Sec. 4.3 pp. 328-335]. Recall that L is an even lattice of signature (m+, 2) and
the dimension of V = L⊗Z Q is denoted by m.

5.4.1 Siegel–Weil formula

In the previous section, Eisenstein series have been associated to Schwartz–Bruhat func-
tions. The subject of this subsection is the so called Siegel–Weil formula which establishes
a relation between such Eisenstein series (5.17) evaluated at a special point s0 and theta
integrals as described in (5.22). It is an adelic extension of the classic result Theorem 2.9
presented in Section 2.1.2 and has first been proven by André Weil [Wei65]. The curious
reader may find further information in [KR94] where the result is notably extended. Recall
that the classic result mentioned above reads

∑︂
i

#(Si, Si)
−1∑︁

j #(Sj , Sj)−1
θSi = Em/2,

where Si are representatives of classes of even unimodular lattices of rank m. In other
words, a weighted sum, or integral for an appropriate measure, over theta series equals an
Eisenstein series of weight m/2. Weil performed the step of reinterpreting the sum as an
integral and transformed the above formula into the adelic context [Wei65].

In order to state the Siegel–Weil formula, we have to introduce the aforementioned theta
integral. Recall the definition of adelic theta distributions as in Definition 5.6. Namely,
for a Schwartz–Bruhat function ϕ ∈ S(VA) we set

θ(g, h;ϕ) =
∑︂
x∈VQ

(ω(g)ϕ)(h−1x)

as a function in g ∈ Mp2(A) and h ∈ O(VA). Averaging over the argument h delivers the
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following standard theta integral.

Definition 5.19. For a Schwartz–Bruhat function ϕ ∈ S(VA) define the following theta
integral.

I(g;ϕ) :=

∫︂
O(VQ)\O(VA)

θ(g′, h;ϕ) dh, (5.22)

where dh is the standard invariant normalised measure on the quotient such that
vol(O(VQ) \ O(VA)) = 1.

By Weil’s convergence criterion, the integral I(g;ϕ) above is absolutely convergent in
case the rational space V is anisotropic or dim(V ) = m > 2+ r, where r denotes the Witt
rank of V . In case this criterion is not matched, the integral may still be regularised as in
[KR94, p. 41] and numerous results may be transferred to this setting.

With these preparations we require only one additional piece of notation to state the
Siegel–Weil formula. Let ϕ ∈ S(VA) be a Schwartz–Bruhat form and Φ ∈ I(s, χ) its
associated standard section through the principal series representation arising from the
intertwining operator as described in Example 5.13 d) (also compare Lemma 5.12).

Definition 5.20. With the notation as above, write

E(g′, s;ϕ) := E(g′, s; Φ), E(τ, s;ϕ) := E(τ, s; Φ).

Theorem 5.21 (Siegel–Weil formula, [Kud03, Thm. 4.1 p. 36]). Assume m > 2+r or that
V is anisotropic. Then the theta integral I(g′;ϕ) for ϕ ∈ S(VA) is absolutely convergent.
Further, E(g′, s;ϕ) is holomorphic at s0 = m

2 − 1 and the following identity holds:

E(g′, s0;ϕ) = κ · I(g′;ϕ),

where κ = 2, if m ≤ 2, and κ = 1 otherwise.

In particular, the Eisenstein series associated to a lattice as it has been discussed in
the previous section bears information about representation numbers of the quadratic
lattice in its Fourier expansion at the critical point s0 = m

2 − 1. This is remarkable since
the Eisenstein series is essentially build from local data, while the theta integral involves
global arithmetic. Hence, theta integrals associated to different quadratic spaces may be
related to each other, via the Eisenstein series, once the local data agrees.
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Definition 5.22. Let Vp, V ′p be two quadratic Qp spaces of dimension m. Suppose
these spaces induce the same character χVp = χV ′

p
(cf. Example 1.62). Two functions

ϕp ∈ S(Vp) and ϕ′p ∈ S(V ′p) are called matching, if they give rise to the same section via
the intertwining operator λp(ϕp) = λ′p(ϕ

′
p).

In fact, in case of m > 4 and p non-Archimedian, every ϕp ∈ S(Vp) has a matching
function ϕ′p ∈ S(V ′p), since the local principal series Ip(s0, χp) is irreducible.

In order to compare theta integrals as suggested above, it is hence sufficient to find a
non-trivial match at the archimendian place. One solution to that problem is given by
the Kudla–Millson Schwartz function which is introduced in the following section.

5.4.2 Kudla–Millson Schwartz form

Let (V, q) be a quadratic Q vector space of signature (m+, 2) and dimension m. Recall
that for a complex manifold D, the space of smooth forms of Hodge type (1, 1) is denoted
by A (1,1)(D). Kudla and Millson have constructed a form ϕKM ∈ S(VR) ⊗ A (1,1)(D̃),
where D̃ denotes the oriented Grassmannian associated to the base lattice L, with the
following properties.

i) For all h ∈ O(VR)

h∗ϕKM(h−1x) = ϕKM(x). (5.23)

ii) The form ϕKM has weight m/2 for K ′∞ for the Weil representation ω∞, meaning

ω∞(k′)ϕKM = νm/2(k
′)ϕKM, (5.24)

where the character νl is presented in Remark 5.10.

iii) The form ϕKM is closed, i.e.
dϕKM = 0 (5.25)

for the exterior differential d on D̃.

This form matches the Gaussian on a positive definite space of the same dimension in
the sense that it gives rise to the same section through the principal series representation.
To specify the meaning of this statement, we define the following form.

Definition 5.23. Define the following closed O(V∞) invariant (1, 1) form on D̃:

Ω := ϕKM(0). (5.26)
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An explicit description in local coordinates on the tube domain model of that form is
presented in [Kud03, Prop. 4.11 p. 330]. It is given by

Ω = − 1

2πi

[︁
−b(y, y)−2 b(y, dz) ∧ b(y, dz) + b(y, y)−1 12 b( dz, dz)

]︁
(5.27)

in coordinates on the tube domain model H±
m+ (cf. (4.16)). Its negative −Ω is an invariant

Kähler form on D̃ and descends to a Kähler form on the variety XK given in (5.30).
Note that we may write

ϕKM(x) ∧ Ωm−1 = ϕ̃KM(x)Ωm

for a function ϕ̃KM ∈ S(VR)⊗A(0,0)(D̃). The O(V∞) invariance of Ω then implies that

ϕ̃KM(hx, hz) = ϕ̃KM(x, z)

for any h ∈ O(V∞). Further, for k := m
2 we find

λ∞(ϕKM( · , z)) = Φk(s0)Ω, λ∞(ϕ̃KM( · , z)) = Φk(s0) (5.28)

for any z ∈ D̃, where λ∞ denotes the intertwining operator described in Lemma 5.12
and Φk∞ denotes the standard section in I∞(s, χV ) at the infinite place presented in
Example 5.11. This means, the function ϕ̃KM will be associated by λ∞ to the same section
as the standard Gaussian ϕ0 on a space V ′ of signature (m, 0) if the local characters agree,
i.e. they are matching. If further, we have two matching functions at the finite places
ϕf ∈ S(Vf ) and ϕ′f ∈ S(V ′f ), the Siegel–Weil formula (Theorem 5.21) yields

I(g′; ϕ̃KM ⊗ ϕf ) = E(g′, s0; ϕ̃KM ⊗ ϕf ) = E(g′, s0;ϕ0 ⊗ ϕ′f ) = I(g′;ϕ0 ⊗ ϕ′f ). (5.29)

Before turning towards an essential application of the Siegel–Weil formula within
the scope of this thesis, we remark that a more constructive approach to the Kudla–
Millson Schwartz form will be sketched in Subsection 7.2.1 while an even more explicit
representation is found in [MZ23].
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5.4.3 A geometric integral

The following discussion evolves around [Kud03, Prop. 4.17 p. 332]. Before stating the
main proposition, understanding the structure of the variety in terms of the considered
reductive group is instructive.

Lemma 5.24. Let G be a reductive group, Kf ⊂ G(Af ) be a compact open subgroup and
K∞ ⊂ G(R) be a maximal compact subgroup. Assume G(A) =

⨆︁
j G(Q)G+(R)hjKf for

suitable hj ∈ G(Af )5 and set Γj := G(Q) ∩ (G+(R)hjKfh
−1
j ). Then by abuse of notation

we understand Γj ≤ G+(R) and find

G(Q)\(G(R)×G(Af ))/(K∞ ×Kf ) =
⨆︂
j

Γj\(G+(R)/K∞).

Further, the following map is bijective and equivariant

⨆︂
j

Γj\G+(R) → G(Q)\G(A)/Kf , Γjx ↦→ G(Q)(x, hj)Kf .

Proof : By abuse of notation, we understand Γj ⊂ G(Qp) for all p. First, we assume
x = γjy ∈ G+(R) with γj ∈ Γj . Then recall that Γj ⊂ G(Q) ∩ hjKfh

−1
j , implying

(x, hj) ≡ (γjy, hj) ≡ (y, γ−1j hj) ≡ (y, hj), so that the map is well defined.
Next, we verify that the mapping is injective: Assume there are two x, y ∈

⨆︁
j Γj\G+(R)

with (x, hi) ≡ (y, hj). Clearly, i = j, for otherwise the decomposition of G(A) provided by
the hj is not disjoint. So assume (x, hj) ≡ (y, hj). Then there are γ ∈ G(Q) and k ∈ Kf

with (x, hj) = (γy, γhjk). Hence, hj = γhjk ⇐⇒ hjk
−1h−1j = γ ∈ G(Q), meaning

γ = hjk
−1h−1j ∈ Γj . As a consequence, we find x = γy, meaning the map is injective.

For surjectivity let there be (x∞, xf ) ∈ G(A). By assumption, we know that there
is γ ∈ G(Q) with γ−1xf ∈ hjKf for some j and γ−1x∞ ∈ G+(R). Then necessarily
(x∞, xf ) = γ(γ−1x∞, 1)γ

−1xf , i.e. Γjγ
−1x∞ ∈ ΓjG

+(R) is a preimage.

In our context, the considered group will be denoted by H and represents the GSpin
group associated to the lattice (L, q) of signature (m+, 2). Denote by D̃ the oriented
Grassmannian of L and choose a compact open subgroup Kf ⊂ H(Af ). Then we consider
the variety

XK := H(Q)\(D̃×H(Af ))/Kf (5.30)

5Compare [Kne65] as a reference for the method of strong approximation or [PRR93, Sec. 7.4 p. 427].
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and have that
XK =

⨆︂
j=1

Γj\D

as in the proposition above, where D is a connected component of D̃. We write Yj := Γj\D
and note that there are |Ẑ× : N(Kf )| of these components. Here, N denotes the Clifford
norm given in Definition 4.28. With this preparation we may state the following modified
version of [Kud03, Prop. 4.17 p. 332].

Proposition 5.25. We find for a compact subgroup Kf ≤ H(Af ) with Kf ∩ Z(A) ≃ Ẑ×

under the isomorphism Z(A) ≃ A× that

(−1)m
+ 1
4 vol(Kf ) ·

∫︂
XK

θ(g′;ϕKM ⊗ ϕf ) ∧ Ωm
+−1 = I(g′; ϕ̃KM ⊗ ϕf ).

Further, the integral on the right hand side over each component Yj of XK is identical.
Hence, for any component Yj the following identity holds

(−1)m
+ 1
4 vol(Kf ) · |Ẑ

×
: N(Kf )| ·

∫︂
Yj

θ(g′;ϕKM ⊗ ϕf ) ∧ Ωm
+−1 = I(g′; ϕ̃KM ⊗ ϕf ).

We would like to apply this result in the more classical setting of varieties defined at
the infinite place over O as in [Bor98] and recall that for H = GSpin we find

1 → Q× → H(Q) → SO(V ) → 1,

as well as
H(Ẑ) → Γ′(L̂) → 1,

where Γ′(L̂) denotes the discriminant kernel in SO(L̂). For Γ ≤ SO(L), we may consider
the closure Γ < SO(VAf

) and further select a cover Kf < H(Af ), containing Ẑ×. In that
case, we have that the Shimura variety XK of the pair (H,Kf ) is the same as the variety
associated to (SO,Γ) (cf. [BY21, p. 1669]):

SO(V )\D× SO(VAf
)/Γ ≃ H(Q)\D×H(Af )/Kf .

In the special case of Kf = GSpinL̂, we find that for the choice of hj = e being equal to
the neutral element that Yj ≃ Y ′(L) = Γ′(L)\D, where Γ′(L) is the discriminant kernel
in SO. In fact, if we specialise further, to the case of L splitting a hyperbolic plane, we
find that the index |Ẑ× : N(Kf )| equals 1 so that there is only one connected component
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identifying with Y ′(L) = Γ′(L)\D. All in all, we obtain the following corollary.

Corollary 5.26. Let (L, q) be an even quadratic lattice of signature (m+, 2) and select
Kf = GSpinL̂. Further, write YL = Γ(L)\D for the variety associated to the discriminant
kernel Γ(L) in O(L) and select an element ϕf ∈ S(VAf

) that is invariant under Γ(L).
Then ∫︂

YL

θ(g′;ϕKM ⊗ ϕf ) ∧ Ωm
+−1 = (−1)m

+ 4cK

|Ẑ× : N(Kf )|
· I(g′, ϕ̃KM ⊗ ϕf ), (5.31)

where cK = 1 or 1/2, depending on whether Γ(L) ∩ SO(V )\D → Γ(L)\D is bijective or
two to one.

Proof : If considered in the special orthogonal setting, meaning integrating over Γ′(L)\D
instead of Γ(L)\D on the left hand side of (5.31), the statement follows immediately from
Proposition 5.25. The only task remaining is hence the translation to the orthogonal
setting. By assumption, the integrand is invariant under pullback by elements from
Γ(L). In fact, the form Ω is invariant under O(V∞) and ϕKM fulfils (5.23). Further, ϕf
was chosen to be invariant under Γ(L) as well, so that we may translate the domain
of integration by γ ∈ Γ′(L)\Γ(L) and combine a fundamental domain for Γ′(L)\D from
translates of a domain for Γ(L)\D. We obtain that the integral in question in (5.31) equals
the integral over Γ′(L)\D divided by the multiplicity of the cover Γ′(L)\D → Γ(L)\D.
Finally, we employ the determinant map and the fundamental theorem on group ho-
momorphism or apply Lemma A.8 with G = O(V ), H = SO(V ) and K = Γ(L) to
find

[Γ(L) : Γ′(L)] ≤ [O(V ) : SO(V )] = 2,

meaning that the considered cover represents at most a double-cover.





Part III

Intertwining worlds





6 L-series

The main purpose of this chapter is to introduce and investigate symmetric square type
L-series associated to vector valued modular forms (cf. Definition 6.77). After a brief
overview of classical L-functions in 6.1, classical Hecke theory for Γ1(N) modular forms is
investigated and applied to derive properties of associated L-series. Afterwards, Hecke
theory for vector valued modular forms is briefly reviewed based on [BS08] and properties
of Hecke algebras arising in that context are verified. In the last section, L-series are
associated to vector valued modular forms. We prove their convergence and realise them as
a Rankin–Selberg integral to derive meromorphic continuation. In special cases, product
expansions for these L-series are proven.

6.1 Introduction
The concept of an L-function is loosely speaking a generalisation of the Riemann ζ-function

ζ : {s ∈ C | Re(s) > 1} → C, s ↦→
∞∑︂
n=1

1

ns
.

This famous function attributed to Riemann encodes deep number theoretic insights –
the distribution of prime numbers among the naturals and it is equipped with remarkable
analytic properties:

• An elementary bound, involving geometric sums, yields absolute convergence of the
series for s ∈ C with Re(s) > 1. In this range, it converges normally and defines a
holomorphic function without roots.

• For these s ∈ C, the series has an alternative representation as a so called Euler
product over the finite primes:

ζ(s) =
∏︂
p<∞

(︁
1− p−s

)︁−1
. (6.1)
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• The Riemann zeta function ζ has a meromorphic continuation to the whole complex
plane C with a single pole in s = 1 with residue 1.

• The so called completed Riemann zeta function Λ(s) := π−s/2Γ(s/2)ζ(s) has a point
symmetry around 1/2:

Λ(s) = Λ(1− s). (6.2)

There is no universally accepted definition of L-functions. However, inspired by the
properties of the Riemann ζ–function and later applications, the following description
delimits a rough notion of what to expect of an L-function.

An L-function should be a holomorphic function L on a right half plane {s ∈ C | Re(s) > σ}
for some σ ∈ R such that the following properties are fulfilled.

a) There are rational functions Qp for any prime p, such that

L(s) =
∏︂
p<∞

Qp(p
−s)

on some right half plane.

b) There exist rational functions re and r1, . . . , rm, signs ±1, . . . ,±m, and a constant
C ∈ C, such that

Λ(s) := C · ere(s) ·
m∏︂
l=1

Γ(rl(s))
±l · L(s)

admits meromorphic continuation to C with only finitely many poles all lying along
the real line.

c) There is a functional equation. Explicitly, there are ϵ ∈ T and k ∈ R such that

Λ(s) = ϵΛ(1− s+ k).

An L-series should then be a series of the form

L(a, s) :=
∑︂
n∈N

a(n)

ns

for a sequence a : N → C with the potential to represent an L-function in its range of
convergence.
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In the following, we will have a brief look at some elementary notions and the classical
example of a Dirichlet L-series associated to a Dirichlet character.

Definition 6.1. A function a : N → C is called weakly multplicative, if a(m·n) = a(m)·a(n)
for m,n ∈ N with gcd(m,n) = 1.

Example 6.2. i) Evidently, any multiplicative function χ : N → C is weakly multiplica-
tive.

ii) The sum divisor function σs(n) =
∑︁

d|n d
s for s ∈ C with Re(s) > 0 is weakly

multiplicative.

iii) if νp denotes the p-adic evaluation of an integer, then the function N ∋ n ↦→ λ(n) =

(−1)
∑︁

p<∞ νp(n) is weakly multiplicative.

iv) The Möbius function

n ↦→ µ(n) :=

⎧⎨⎩0, if n contains a square,

(−1)#{p | νp(n)>0}, else.
(6.3)

In compact and uncommon notation, we may write µ(n) = δ ̸∃ □|n · λ(n).

Example 6.3. a) If a, b : N → C are weakly multiplicative, so is their product a · b, and
as for s ∈ C for Re(s) > 0. In particular, N ∋ n ↦→ a(n)

ns is multiplicative.

b) If a, b : N → C are weakly multiplicative, so is the convolution

[a ∗ b](n) =
∑︂
d|n

a(d)b(n/d).

This product naturally arises as the coefficient sequence of L(a, s)·L(b, s) = L(a∗b, s).
It is commutative, admits a neutral element and an inverse to a, if, and only if,
a(1) ̸= 0.

Remark 6.4. If a is weakly multiplicative and
∑︁

n a(n) ̸= 0 is absolutely convergent then

∞∑︂
n=1

a(n) =
∏︂
p

(︄ ∞∑︂
l=0

a
(︂
pl
)︂)︄

.
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If a is in fact multiplicative,

∞∑︂
n=1

a(n) =
∏︂
p<∞

1

1− a(p)
.

Example 6.5. For a Dirichlet character χ the L-function L(χ, s) :=
∑︁∞

n=1
χ(n)
ns converges

absolutely for s ∈ C with Re(s) > 1 by comparing it to the Riemann zeta function ζ(s)

and admits the following Euler product

L(χ, s) =
∏︂
p<∞

1

1− χ(p)p−s
.

In particular, for χ = χ0 the trivial character on (Z/NZ)× we have

L(s, χ0) =
∏︂
p|N

(1− p−s) · ζ(s).

Also, the series L(χ, s) converge conditionally in case the character χ is non-trivial1 and
never vanishes at s = 1.

Should the reader be interested in obtaining a better impression of Dirichlet series he
may consider the compactly presented discussion in [Zag13, pp 1-15]. Further, L-series
may also be associated to scalar valued modular forms. In fact, if f ∈ Mk(Γ0(N), χ) has
Fourier expansion

f(τ) =
∑︂
n∈N0

a(n)qn

we may associate to it the L-series

L(f, s) :=
∑︂
n∈N

a(n)

ns
. (6.4)

This series converges on a right half plane due to asymptotic bounds on the Fourier
coefficients a(n) (cf. Corollary 3.76) and possesses a meromorphic continuation. There is
even a converse theorem for such L-functions due to André Weil presented in [Bum98,
Thm. 1.5.1 p. 60]. Further, by developing a theory of Hecke operators, which will be
partially carried out in the following section, product expansions of such L-series may be
constructed for certain classes of modular forms (cf. Theorem 6.45).

1IN case of trivial character, it has a pole at s = 1.
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6.2 Classical Hecke theory
In this section, we explore classical Hecke theory for Γ1(N) modular forms. In fact, the
theory is reduced to the case Γ0(N) with character. Hecke operators are endomorphisms
of modular forms and allow for proving that L-series associated to modular forms have
not only meromorphic continuation, but also admit product expansions. For the content
of this section, compare [Bum98, 1.4 pp. 41-53] and [Kna92, IX.6 p. 273].

We return to elliptic modular forms for a moment. These form, for fixed weight and
congruence group, a finite dimensional vector space. In order to comprehend the structure
of objects considering morphisms on them is a fundamental approach. Since these are
finite dimensional vector spaces the ring of endomorphisms is, of course, represented by
square matrices with entries in the ground field. This, however, does not provide any
meaningful insight.
Hence, the aim is to naturally construct special algebras of operators on these spaces.
Recall the Petersson slash operator of weight k ∈ Z for γ ∈ GL2(R)+:

|kγ : CH → CH, f ↦→
(︂
z ↦→ f |kγ(τ) := det(γ)k/2j(γ, τ)−kf(γτ)

)︂
.

This defines a right action of GL2(R)+ that preserves smoothness conditions.2 The
subspace of Chol(H,C) on which a subgroup Γ < GL2(Q)+ that is commensurable to Γ(1)

operates as the identity comprises the space of weakly holomorphic modular forms of
weight k to Γ.
These operators form the basis of constructing the desired endomorphism ring. Observe
that for g ∈ GL2(Q)+ and f ∈ Mk(Γ) we find

f |kg ∈ Mk(g
−1Γg).

The basic idea is to construct an appropriate linear combination of operators |kg in order
to cancel terms to receive a form that is invariant under Γ, again. The first obvious
candidate of an index set would be gΓ in order to achieve invariance by summation.
However, this does obviously not converge in general so means of forcing convergence are
to be sought. A naive idea for diminishing the index set of the sum would be utilising the
invariance of f to quotient out Γ from the left. However, Γ then was required to operate
on the index set gΓ so the set, indeed, had to be ΓgΓ. This, on the other hand, appears

2Note that the centraliser R · I operates trivially if k is even and R+ · I if k is odd causing spaces of
automorphic forms to vanish if k is odd and −I ∈ Γ.
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to be a promising candidate. Now, a reasonable condition to force convergence is that the
quotient Γ\ΓgΓ is finite. There is a wide range of groups for which this is possible and
uniformly computable: the so called Hecke or congruence subgroups (cf. Definition 2.18).

Remark 6.6. Let Γ ≤ Γ(1) be a congruence subgroup and g ∈ GL2(Q)+. Then there is
M ∈ N such that Γ(M) ≤ g−1Γg. In particular, Γ\ΓgΓ is finite.

Proof : Let Γ(N) ≤ Γ and choose N1, N2 such that N1g and N2g
−1 have integer entries.

Define M = NN1N2 and write γ = I +Mγ′ for γ ∈ Γ(M) where γ′ has integer entries.
Clearly, gγg−1 = I +N(N1g)γ

′(N2g
−1) ∈ Γ(N) ≤ Γ.

Further, |Γ\ΓgΓ| = [Γ : g−1Γg ∩Γ]. The intersection, however, must contain a congruence
group which has finite index in Γ(1) and hence in Γ.

This statement not only yields the desired finiteness result of the symmetrised sum
discussed above, directly yielding the operators that had been advertised, but also that
the property of being a congruence modular form is preserved by the action of GL2(Q)+.
In fact, every space of congruence modular forms can be injected into a space of modular
forms for Γ1(M) for an adequate M ∈ N which is beneficial for explicit computations and
stated below. Note that this operation preserves the property of vanishing at cusps (cf.
Lemma 3.77).

Remark 6.7. Let Γ ≤ Γ(1) be a congruence subgroup. Then there is g ∈ GL2(Q)+ and
M ∈ N such that Γ1(M) ≤ g−1Γg.

Proof : Let Γ(N) ≤ Γ and g =
(︁
a b
c d

)︁
∈ GL2(Q)+ with entries in Z such that N | a2 and

N | c2. To ensure the former condition, multiply with the least common multiple of the
denominators. Then for any I + γ ∈ Γ1(N det(g)) there is h ∈ N such that

g(I + γ)g−1 ≡ I +

(︄
a b

c d

)︄
·

(︄
0 h

0 0

)︄
·

(︄
d −b
−c a

)︄
mod N

≡ I + h ·

(︄
−ac a2

−c2 ac

)︄
mod N

≡ I mod N.

Consequently, gΓ1(N det(g))g−1 ≤ Γ(N) ≤ Γ.

In particular, for any congruence modular form f of weight k there is g ∈ GL2(Q)+

and a natural number N such that f |kg ∈ Mk(Γ1(N)) ( ⇐⇒ f ∈ Mk(gΓ1(N)g−1)). In
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fact, the reduction may be taken further by harnessing a decomposition of Γ1(N) modular
forms into Γ0(N) modular forms with Dirichlet character.

Remark 6.8 ([Miy06, Lemma 4.3.1 p. 114]). Let Γ be commensurable to Γ(1) and assume
there is Γ′ ⊴ Γ such that Γ/Γ′ is finite abelian. Then forRk ∈

{︁
Ak,M!

k,Mk,Sk,S⊥k ≤ Mk

}︁
Rk(Γ

′) =
⨁︂

χ∈(Γ/Γ′)∗

Rk(Γ, χ).

Proof : The group Γ acts on Rk(Γ
′) via γ ↦→ (f ↦→ f |kγ), descending to a representation

of Γ/Γ′ which decomposes by Example B.13 into irreducible representations, meaning
characters as the quotient is abelian.

Example 6.9. For N ∈ N: Γ1(N) ⊴ Γ0(N) and Γ0(N)/Γ1(N) = (Z/NZ)× by

Γ0(N) → (Z/NZ)×,

(︄
a b

c d

)︄
↦→ a.

As a consequence, we have for instance

Mk(Γ1(N)) =
⨁︂

χ Dirichlet
mod N

Mk(Γ0(N), χ). (6.5)

This sum is exploited to justify only explicitly constructing the theory of Hecke operators
for Mk(Γ0(N), χ). To do so, the Petersson slash operator will be altered for Γ0(N) to
include characters:

|k,χ
(︁
a b
c d

)︁
: f ↦→

(︂
z ↦→ f |k,χ

(︁
a b
c d

)︁
(z) = χ(a)det(γ)k/2j(γ, z)−kf(γz)

)︂
.

However, in order to treat modular forms with characters, the modified Petersson slash
operator has to be extended (analogously to the extension of the regular one to GL2(Q)+).
Hence, an extension of Γ0(N) < GL2(Q)+ on which the Dirichlet character χ mod N

operates naturally has to be constructed. For a matrix
(︁
a b
c d

)︁
evaluating a character

χ
(︁
a b
c d

)︁
= χ(a) clearly fails for general rationals a but may be defined with ease in case

that the denominator of a is coprime to N .
To this end let SN be the prime divisors of N and ZSC

N
denote the localisation along all

other primes (rendering them invertible). For r/s ∈ ZSC
N

write χ(r/s) := χ(r)/χ(s), so χ
is applicable to elements of GL2(ZSC

N
)+. However, it fails to be a character of this group
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unless restricting to the subgroup of matrices with left lower entry being in NZSC
N

(an
analogue of Γ0(N)).

Definition 6.10. Define the following subgroup of GL+
2 (Q)

G0(N) :=

{︄(︄
a b

c d

)︄
∈ GL2(ZSC

N
)

⃓⃓⃓⃓
⃓ c ∈ NZSC

N

}︄
∩ GL+

2 (Q).

Recall that by Remark 6.6 there are finitely many representatives gi ∈ GL2(Q)+ giving
rise to the following decomposition into right cosets

Tg := Γ0(N)gΓ0(N) =
⋃︂
i

Γ0(N)gi. (6.6)

Hence, the following is an immediate definition for a natural operator on spaces of
modular forms.

Definition 6.11. Let g ∈ G0(N), k ∈ Z and χ be a Dirichlet character for Γ0(N) and
assume the decomposition in (6.6). Then the associated Hecke operator is defined to be

|k,χTg : Cαk (Γ0(N), χ) → Cαk (Γ0(N), χ), f ↦→
∑︂
i

f |k,χgi. (6.7)

Remark 6.12. The operator |k,χTg above descends to an endomorphism of the space of
holomorphic modular forms Mk(Γ0(N), χ) and of cusp forms Sk(Γ0(N), χ).

Now that there is a relatively natural family of operators on a wide spectrum of modular
forms, the structure of their algebra has to be investigated. Ultimately, this will yield
product expansions of L-functions associated to cusp forms (cf. Proposition 6.42).

For f ∈ C∞k (Γ0(N), χ) and α, β ∈ G0(N) consider the expression

f |k,χTαTβ =
∑︂
i,j

f |k,χαiβj .

Since f is invariant with respect to |k,χΓ0(N), αiβj may be pooled in families Γ0(N)αiβj .
However, choosing other αi, which amounts to multiplying them from the left with
γi ∈ Γ0(N), does not change the family Γ0(N)αiβj and multiplying the collection αi

from the right side by a fixed element γ ∈ Γ0(N) results in permuting the cosets in (6.6)
yielding a family γi ∈ Γ0(N) such that {αi} is replaced by {γiαi}. As a consequence, the
number of elements αiβj occuring in Γ0(N)αiβj is independent of the concrete choices for
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αi, βj and may be denoted n(α, β;σ) for some σ ∈ Γ0(N)αiβj . As a second consequence,
it is independent under multiplying σ with an element γ ∈ Γ0(N) from the right, yielding

∑︂
i,j

f |k,χαiβj =
∑︂

σ∈Γ0(N)\G0(N)

n(α, β;σ)f |k,χσ

=
∑︂

σ∈Γ0(N)\G0(N)/Γ0(N)

n(α, β;σ)f |k,χTσ.

This inspires defining a multiplication on the objects Tα by the above formula. To be
precise, let H0(N) denote the free abelian group over {Tα | α ∈ Γ0(N)\G0(N)/Γ0(N)}
and define a multiplication via

TαTβ :=
∑︂

σ∈Γ0(N)\G0(N)/Γ0(N)

n(α, β;σ) · Tσ. (6.8)

This is immediately recognised to be associative by explicitly writing the triple product
out yielding a sum of the form

TαTβTγ =
∑︂

σ∈Γ0(N)\G0(N)/Γ0(N)

n(α, β, γ;σ) · Tσ.

Definition 6.13. The ring H0(N) is called abstract Hecke algebra for Γ0(N).

Remark 6.14. Usually the ring H0(N) is tensorised with Q (or R) over Z and becomes
an algebra - there will be no distinction in notation.

In order to characterise the ring H0(N), the different symbols Tα are classified, first.
This is a multi step process and may be inferred from the base case N = 1. In that
instance, the elementary divisor theorem yields the following.

Remark 6.15. The set Γ(1)\GL2(Q)+/Γ(1) is faithfully represented by(︄
D1 0

0 D2

)︄

where D1, D2 ∈ Q>0 such that D1/D2 ∈ N. In particular, Γ(1)αΓ(1) = Γ(1)αTΓ(1).

Proof : The proof is completely contained in [Bum98, 1.4.2 p. 44].

Remark 6.16. The set Γ(1)
(︂
D1 0
0 D2

)︂
Γ(1), with D1, D2 as above, equals

{︁
D2 ·M |M =

(︁
a b
c d

)︁
∈M2(Z), gcd(a, b, c, d) = 1,det(M) = D1/D2

}︁
.
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Proof : First,(︄
α β

γ δ

)︄
·

(︄
D1 0

0 D2

)︄
·

(︄
α′ β′

γ′ δ′

)︄
=

(︄
αD1α

′ + βD2γ
′ αD1β

′ + βD2δ
′

γD1α
′ + δD2γ

′ γD1β
′ + δD2δ

′

)︄
.

Assume D2 = 1 by factoring out. Obviously, a common divisor had to divide D1, since the
determinant is D1. However, it cannot divide D1 since then w.l.o.g. β must be divisible
by it, preventing δ to be. But then γ′ and δ′ had to, leading to a contradiction.
On the other hand, by Remark 6.15 any matrix in GL2(Q)+ is in such a double coset and
D1, D2 are determined by the greatest common divisor of the entries and the determinant
D1D2 (paired with the condition D1/D2 ∈ N).

With these statements as a foundation we may prove the general case. Recall that
we write ZSC

N
for the localisation of Z along all primes not dividing N . Explicitly, let

R := {z ∈ Z | gcd(z,N) = 1}, then ZSC
N
= R−1Z.

Remark 6.17. Γ0(N)\G0(N)/Γ0(N) is faithfully represented by matrices(︄
D1 0

0 D2

)︄

with D1, D2 ∈ Z×
SC
N

∩Q+ such that D1/D2 ∈ N. Consequently, for all α ∈ G0(N), we have
Γ0(N)αΓ0(N) = Γ0(N)αTΓ0(N).

Proof : Let α ∈ G0(N) and select (by virtue of Remark 6.15) γ1, γ2 ∈ Γ(1) such that
α = γ1δγ2 with δ = diag(D1, D2) such that D2 | D1 and D1/D2 ∈ N.
By Remark 6.16 we find that N cannot have a common divisor with D1 and D2, meaning
gcd(D1/D2, N) = 1. Further, we find for an arbitrary element γD =

(︂
a b

c·D1/D2 d

)︂
∈

Γ0(D1/D2) that(︄
D1 0

0 D2

)︄
·

(︄
a b

cD1
D2

d

)︄
=

(︄
aD1 bD1

cD1 dD2

)︄
=

(︄
a bD1

D2

c d

)︄
·

(︄
D1 0

0 D2

)︄
.

Hence, γ2 =
(︂
a2 b2
c2 d2

)︂
may be altered by an element γD like above from the left, if γ1 is

altered, respectively. The left lower entry of the resulting matrix γDγ2 is cD1
D2
a2 + dc2

and we endeavour to select c, d such that this number is congruent to zero modulo N .
Let g := gcd

(︂
D1
D2
a2, c2

)︂
. The Euclidean algorithm yields a solution (cN, dN) such that

g
(︂
c D1
D2g

a2 + dc2/g
)︂
·N = gN . By passing to the solution (c′, d′) := (cN ± c2, dN ∓ D1

D2
a2)
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we obtain a tuple for which gcd(c′, d′) = 1, remaining valid for the pair
(︂
D1
D2
c′, d′

)︂
.3

As a consequence, the Lemma of Bézout implies the existence of the desired matrix
γD ∈ Γ0(D1/D2), such that γDγ2 ∈ Γ0(N). Hence, w.l.o.g. γ2 ∈ Γ0(N) implying
γ1 = αγ−12 δ−1 ∈ G0(N) ∩ Γ(1) ≤ Γ0(N).

This characterisation of the symbols appearing in the Hecke algebra is, in fact, more
useful than it might initially appear to be. Indeed, it may be used to prove that the
algebra H0(N) is commutative. First, however, the following preparatory assertion is
stated.

Remark 6.18. The representatives gi in Equation (6.6) may be chosen in such a fashion
that

Γ0(N)gΓ0(N) =
⋃︂

Γ0(N)gi =
⋃︂
giΓ0(N).

Proof : By Remark 6.17

⋃︂
Γ0(N)gi = Γ0(N)αΓ0(N) = Γ0(N)αtΓ0(N) =

⋃︂
gtiΓ0(N)

and the matrices gi, gti generate the same double coset. Hence, gi = γgtiγ
′ for γ, γ′ ∈ Γ0(N),

so γ−1gi = gtiγ
′ ∈ Γ0(N)gi ∩ gtiΓ0(N) are the desired representatives.

Proposition 6.19. The algebra H0(N) is commutative.

Proof : The proof is, neglecting minor modifications, carried out in [Bum98, p. 45].

This algebra is not only remarkably well behaved, but the extent of naturality of the
action on the spaces of modular forms is reflected in its compatibility with the Petersson
product. For that insight recall the following expression for the Petersson product from
Remark 2.23 where we write τ = u+ iv ∈ H

⟨f, g⟩ = 1

[Γ(1) : Γ(N)]

∫︂
Γ(N)\H

f(τ)g(τ)vk
dx dy
v2

defining a scalar product on Sk(Γ0(N), χ).

Proposition 6.20. The algebra H0(N) acts on Sk(Γ0(N), χ) as a commutative algebra
of normal operators. As such, it admits an orthogonal basis of simultaneous eigenforms of
Sk(Γ0(N), χ). In case χ = 1, the operators are self adjoint.

3Note that if there was a divisor, it had to be a divisor of D1/D2, but then it also had to divide dN .
However, D1/D2 has neither a common divisor with N nor d.
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The proof is split into the following two lemmas.

Lemma 6.21. For f, g ∈ Sk(Γ0(N), χ) and α ∈ G0(N) we have

⟨f |α, g⟩ = ⟨f, g|α−1⟩. (6.9)

Proof : Recall that by Remark 6.6 there is Γ′ := Γ(N ′) ≤ α−1Γ(N)α. Since the measure
is Moebius invariant the transformation τ ↦→ α−1τ yields

⟨f |α, g⟩

(∗)
=

1

[Γ(1) : Γ′]

∫︂
Γ′\H

f |k,χα(α−1τ) · g(α−1τ)

(︄
det(α−1)

j(α−1, τ)j(α−1, τ)

)︄k
yk

dx dy
y2

=
1

[Γ(1) : Γ′]

∫︂
Γ′\H

χ(a)det(α)k/2

j(α, α−1τ)k
f(τ) · j(α−1, τ)−kg(α−1τ)

(︃
det(α−1)
j(α−1, τ)

)︃k
yk

dx dy
y2

=
1

[Γ(1) : Γ′]

∫︂
Γ′\H

χ(a)

χ(d/det(α))
f(τ) · g|k,χα−1(τ)yk

dx dy
y2

= ⟨f, g|α−1⟩.

In the last step α ∈ G0(N) has been used, so that det(α) = ad mod NZSC
N

. However,
then

χ(a)

χ(d/det(α))
= χ(det(α)/ad) = χ(ad− bc)/χ(ad) = 1.

In (∗) the group Γ′ is replaced by αΓ′α−1 ≤ Γ(N) ≤ Γ(1). By the invariance of the
measure (used in ↓)

vol(FΓ(1)) · [Γ(1) : αΓ′α−1] = vol(αΓ′α−1) ↓= vol(Γ′) = vol(FΓ(1)) · [Γ(1) : Γ′],

so that descending to a Hecke subgroup suffices implying that this inconvenience could be
ignored.

Lemma 6.22. The adjoint of |k,χTα with α = diag(D1, D2) as in Remark 6.17 with
respect to the Petersson scalar product is given by

(|k,χTα)∗ =Mχ(D1D2)|k,χTα.

Here, Mz for z ∈ C denotes the multiplication operator by z.

Proof : Clearly, Equation (6.9) states that the expression is invariant under translat-
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ing α from the left or right by an element in Γ0(N) implying that each element β ∈
Γ0(N)\Γ0(N)αΓ0(N) may be replaced by α under the scalar product. By Remark 6.6 the
number of these is finite, say nα ∈ N. Then, however, the statement is trivial for Sk(Γ(1)),
as in that case det(α)α−1 = SαS−1 and scalar matrices operate trivially yielding

⟨f |kTα, g⟩ = nα⟨f |kα, g⟩ = nα⟨f, g|kα⟩ = ⟨f, g|kTα⟩.

In case of Γ0(N) with N > 1, however, the computation is more subtle. First note
that scalar matrices act by multiplication with a character and, hence, transform nearly
trivially:

(|k,χTD2I)
∗ =

(︂
M
χ(D2)

)︂∗
=Mχ(D2) = |k,χTD−1

2 I
.

As a consequence, only Tβ with β = β(D1) =
(︁
D1 0
0 1

)︁
and D1 ∈ N remain to be considered.

Select m1,m2,∈ Z such that
D2

1m1 −Nm2 = 1

and notice that(︄
D1m1 m2

N D1

)︄
·

(︄
1 0

0 D1

)︄
·

(︄
m1 m2

N D2
1

)︄−1
=

(︄
D1 0

0 1

)︄
.

Employing that computation immediately yields the desired adjoint, where nβ(D1) ∈ N is
chosen suitably:

⟨f |k,χTβ(D1), g⟩ = nβ(D1)⟨f |k,χβ(D1), g⟩

= nβ(D1)⟨f, g|k,χ(D
−1
1 I)β(D1)⟩

= ⟨f, χ(D1) · g|k,χTβ(D1)⟩.

Combining the computations above yields for α = diag(D1, D2)

(|k,χTα)∗ =
(︁
|k,χTD2ITβ(D1/D2)

)︁∗
=Mχ(D1)|k,χTβ(D1/D2) =Mχ(D1D2)|k,χTα,

meaning the operator |k,χTα is in general normal. Further, it is self adjoint, if, and only if,
χ(D1D2) = 1. Note that the proof relied upon gcd(D1, N) = 1.

We find the following application to the eigenvalues of Hecke operators.
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Example 6.23. Note that the lemma above implies for the Hecke eigenvalue σ of Tα

σ = χ(D1D2) · σ. (6.10)

This yields, in particular, for the angle ϑ of σ in polar coordinates that 2ϑ(σ) ≡
−ϑ(χ(D1D2)), implying

σ ∈ R · ζ2 ord(χ) ⊆ R · ζ2N . (6.11)

In particular, in case of χ = 1, the value of σ must be real. If χ, on the other hand,
is quadratic, we find that σ must be real or purely imaginary, depending on whether
χ(D1D2) equals 1 or −1.

Proposition 6.20 has the significant application of yielding Euler products. In order to
relate these operators directly to the coefficients of L-functions associated to modular
forms, the operators are clustered in an appropriate fashion.
Recall that qI ∈ (ZSC

N
)×>0 · I < G0(N) acts trivially via the Petersson slash operator as

multiplication with χ(q), so that any Hecke operator |k,χTα is essentially represented by
a matrix α with integer entries. Further, let n ∈ N with gcd(n,N) = 1 and denote for
the moment4 by T (n) the operator arising from summing over all Tα where α ∈ G0(N) is
of the form diag(D1, D2), such that D2 | D1 (cf. Remark 6.17) and D1, D2 ∈ N, with the
limitation det(α) = D1 ·D2 = n.
By Definition 6.11

f |k,χT (n) =
∑︂
i

f |k,χβi (6.12)

for suitable choices of βi ∈M2(Z). In fact, if M(n,N) denotes the subset of M2(Z)∩G0(N)

consisting of matrices with determinant n we have that

M(n,N) =
⋃︂
i

Γ0(N)βi. (6.13)

Definition 6.24. The Z algebra generated by Tα with α ∈ G0(N) ∩M2(Z) is denoted
H0,Z(N).

In order to carry out explicit computations, the following decomposition is useful.

Lemma 6.25. For D1, D2 ∈ N as in Remark 6.17 there is the following disjoint decompo-
4Note that this operator is renormalised in Definition 6.27!
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sition

Γ0(N)

(︄
D1 0

0 D2

)︄
Γ0(N) =

⋃̇︂
a,d∈N, ad=D1D2

b mod d
gcd(a,b,d)=D2

Γ0(N)

(︄
a b

0 d

)︄
. (6.14)

In particular,

M(n,N) =
⋃̇︂

a,d∈N, ad=n
b mod d

Γ0(N)

(︄
a b

0 d

)︄
.

Proof : Only (6.14) requires proof. The inclusion ‘⊇’ is obvious by Remark 6.17.
Let g =

(︁
a b
c d

)︁
be an element of the left set. Then (γ, δ) = (c,−a) / gcd(a, c) has gcd

1 and gcd(a, c,N) = 1, so that N | c carries over to c/ gcd(a, c). Hence, the pair (γ, δ)

gives rise to a matrix
(︂
α β
γ δ

)︂
∈ Γ0(N), such that the product

(︂
α β
γ δ

)︂
· g has lower left

entry (ca − ac)/ gcd(a, c) = 0, yielding w.l.o.g. c = 0. As a consequence, ad = n and
possible multiplication with −I forces a, d > 0, while gcd(a, b, d) = D2 is deduced from
Remark 6.16. Finally, multiplication with a suitable element from Γ0(N)∞ = Γ(1)∞ yields
0 ≤ b < d.
Lastly, it remains to be verified that the decomposition is disjoint. Assume there were
representatives

(︁
a b
0 d

)︁
,
(︁
a′ b′

0 d′

)︁
and

(︂
α β
γ δ

)︂
∈ Γ0(N) such that:

(︄
α β

γ δ

)︄
·

(︄
a b

0 d

)︄
=

(︄
a′ b′

0 d′

)︄
. (6.15)

Solving yields (︄
α β

γ δ

)︄
=

(︄
a′ b′

0 d′

)︄(︄
d −b
0 a

)︄
· 1
n

from which we infer that γ = 0 and δ > 0. However, the matrix is an element of
Γ0(N) ≤ Γ(1), so α = δ = 1. Inserting this result in (6.15) yields b + dβ = b′ or,
alternatively, b ≡ b′ mod d.

As an immediate application we find (cf. [Dei10, Prop. 2.5.4 p. 40]) the following.

Lemma 6.26. For m,n ∈ N coprime to N with gcd(m,n) = 1 we have

T (mn) = T (m)T (n).

Recall that the operator T (m) is (up to now) empty in case (m,N) > 1.

Proof : Lemma 6.25 yields sets of representatives Rm, Rn for T (m) and T (n). Their
product T (m)T (n) will, as set of representatives, admit the product set RmRn. That the
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following mapping is well defined is clear by the definition of M(n,N) and Lemma 6.25.

Rm ×Rn → Γ0(N)∞\Rmn, (A,B) ↦→ Γ∞\AB.

For injectivity: assume there were (the relation ≃ in the following means that the matrices
are identical module left operation of Γ∞ = ⟨T ⟩, where T denotes the translation matrix)(︄

a1 b1

0 d1

)︄
·

(︄
a′1 b′1

0 d′1

)︄
=

(︄
a1a
′
1 a1b

′
1 + b1d

′
1

0 d1d
′
1

)︄

≃

(︄
a2a
′
2 a2b

′
2 + b2d

′
2

0 d2d
′
2

)︄
=

(︄
a2 b2

0 d2

)︄
·

(︄
a′2 b′2

0 d′2

)︄
.

Since the diagonal entries are identical and gcd(m,n) = 1 we deduce that indices do not
matter for a and d. Hence, the identity of the right upper entries becomes

ab′1 + b1d
′ ≡ ab′2 + b2d

′ mod dd′.

Reduction modulo d′ yields
ab′1 ≡ ab′2 mod d′.

Again, by gcd(m,n) = 1 we infer gcd(a, d′) = 1, yielding b′1 ≡ b′2 mod d′. By assumption,
however, this means b′1 = b′2, implying b1d′ ≡ b2d

′ mod dd′ which reduces to b1d′ ≡ b2d
′

mod d. Once more, gcd(d, d′) = 1 yields b1 = b2 by choice of the set of representatives.
The surjectivity is implied once Lemma 6.25 is taken into consideration to deduce that
|Rm| = σ1(m) which is evidently weakly multiplicative.

Before employing the above results, the operator T (n) is renormalised.

Definition 6.27. For n ∈ N with gcd(n,N) = 1 define kT (n) := nk/2−1 · T (n), and, more
generally, kT g = det(g)k/2−1 · Tg, so that

|k,χkT (n) := nk/2−1 ·
∑︂

β∈Γ0(N)\M(n,N)

|k,χβ.

With these modifications in place L-functions associated to modular forms (cf. (6.4))
may be investigated. First, the operation of the operators on Fourier expansions of
modular forms is examined before exploiting the result to extract (incomplete) product
expansions for associated L-series.
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Example 6.28. If
∑︁∞

m=0A(m)qm = f ∈ Mk(Γ0(N), χ) and n ∈ N with gcd(n,N) = 1 the
Fourier coefficients of f |k,χkT (n) =

∑︁∞
m=0B(m)qm are given by

B(m) =
∑︂

a|gcd(m,n)

χ(a)ak−1A
(︂mn
a2

)︂
.

This is verified by the direct computation, where in the following b(d) runs through a
set of representatives mod d.

f |k,χkT (n)(z) = nk/2−1 ·
∑︂
ad=n

∑︂
b (d)

(︂a
d

)︂k/2
χ(a)f

(︃
az + b

d

)︃

=
∑︂
ad=n

χ(a)
ak

n

∞∑︂
m=0

A(m)e
(︂amz

d

)︂
·
∑︂
b (d)

e

(︃
mb

d

)︃

=
∞∑︂
m=0

∑︂
ad=n
d|m

χ(a)
ak

n
A(m) · e

(︂amz
d

)︂
· d

=
∞∑︂
m=0

∑︂
ad=n
a|m

χ(a)ak−1A

(︃
md

a

)︃
· e (mz)

=
∞∑︂
m=0

∑︂
a|gcd(m,n)

χ(a)ak−1A
(︂mn
a2

)︂
· e (mz) .

With this example at hand, we may prove properties of eigenforms to Hecke operators.

Definition 6.29. Let N ∈ N and χ : Γ0(N) → T be a Dirichlet Character modulo N . A
form f ∈ Sk(Γ0(N), χ) is referred to as a Hecke eigenform, if it is an eigenvector to T (n)
for all n ∈ N with gcd(n,N) = 1.

Hecke eigenforms have remarkable properties derived from the properties of the Hecke
algebra.

Proposition 6.30 ([Bum98, Prop 1.4.5 p. 48]). Assume f ∈ Sk(Γ0(N), χ) is a Hecke
eigenform with Fourier coefficients a(m) and eigenvalues λ(n) for kT (n). Then

i) In case N = 1 we have a(1) ̸= 0.

ii) If a(1) = 1, then λ(n) = a(n) for all n with gcd(n,N) = 1.

iii) If a(1) = 1 the association n ↦→ a(n) for gcd(n,N) = 1 is weakly multiplicative.
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Proof : By Example 6.28 we find for n ∈ N with gcd(n,N) = 1 that

λ(n)a(m) =
∑︂

d|gcd(m,n)

χ(d)dk−1a
(︂mn
d2

)︂
.

Assuming gcd(m,n) = 1 we infer

λ(n)a(m) = a(mn).

Setting m = 1 provides λ(n)a(1) = a(n). This implies ii) immediately and iii) after
comparison with Lemma 6.26. In case of i) a(1) = 0 renders f = 0, contradicting the
assumption of f being an eigenform.

Hecke eigenforms for which the first Fourier coefficient equals 1 are referred to as
normalised. Their relevance is demonstrated by Proposition 6.31.

Proposition 6.31. If f ∈ Sk(Γ0(N), χ) is a normalised eigenform the associated L-
function has a partial product expansion:

L(f, s) =

∞∑︂
m=1

a(m)

ms
=

⎛⎜⎜⎝ ∑︂
m∈N

p|m =⇒ p|N

a(m)

ms

⎞⎟⎟⎠ ·
∏︂
p∤N

(︂
1− a(p)p−s + χ(p)pk−1−2s

)︂−1
.

Before proving this result, another beneficial application of Lemma 6.25 shedding light
on the structure of H0,Z(N) is presented.

Lemma 6.32. For r ∈ N and k, p ∤ N as above we find

T (pr+1) = T (p)T (pr)− p · Tp·I · T (pr−1).

The identity remains valid if the symbol T is replaced by kT .

Proof : The proof is presented in Section A.3 based on the idea found in [Dei10, Prop
2.5.4 p 40].

Example 6.33. Employing Definition 6.11 and 6.27 in Lemma 6.32 yields for k, χ, p as
above and r ∈ N

|k,χkT (p) kT (pr) = |k,χkT
(︁
pr+1

)︁
+ pk−1χ(p) · |k,χkT

(︁
pr−1

)︁
. (6.16)
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Proof of Prop 6.31: The weak multiplicativity of the coefficients for arguments coprime
to N yields

∑︂
m∈N

a(m)m−s =

⎛⎜⎜⎝ ∑︂
M∈N

p|m =⇒ p|N

a(m)

ms

⎞⎟⎟⎠ ·
∏︂
p∤N

(︄ ∞∑︂
l=0

a(pl)p−ls

)︄
.

For p ∤ N Equation 6.16 and λ(p) = a(p) yield for r ∈ N

a(pr+1)− a(p)a(pr) + χ(p)pk−1a(pr−1) = 0

translating to (︂
1− a(p)X + χ(p)pk−1X2

)︂
·

(︄ ∞∑︂
r=0

a(pr)Xr

)︄
= 1

as an identity of formal power series. Selecting X = p−s yields the desired result.

Proposition 6.34. The algebra H0,Z(N) has the following properties:

a) It is commutative.

b) It is generated (over Z) by TI and T (p) for primes p with p ∤ N .

c) It acts normally on Sk(Γ0(N), χ).

d) H0(N) and H0,Z(N) generate the same algebra over Q.

Proof : For a) and c) the properties are inherited from H0(N) (cf. Proposition 6.19, 6.20).
Part b): Lemma 6.26 and Lemma 6.32 imply immediately that every element in H0(N)

is generated by the operators mentioned in b).
Part d) is realised as follows: by Lemma 6.26 in case of r = 1, the operator TpI is
reconstructable from T (p), but then TmI for m ∈ N with gcd(m,N) = 1 is. By the
discussion before Definition 6.24 operators in H0(N) are decomposed into elements from
H0,Z(N) and TqI with q = q1

q2
∈ Z×

SC
N

. The latter act as multiplication with χ(q1)/χ(q2),
where χ is a Dirichlet character mod N . However, there is m ∈ N with gcd(m,N) = 1

and χ(m)χ(q2) = 1, meaning TqI acts as TmI .

Evidently, a full product expansion of L-series associated to a Hecke eigenform instead
of the partial expansion of Proposition 6.31 is desirable, though cannot be expected in
general, as the following example testifies.
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Example 6.35. The modular form ∆(τ) + ∆(6τ) = f ∈ S12(Γ0(6), 1) is an eigenfunction
of all Hecke operators Tg with g ∈ G0(6), since ∆ ∈ S12 which is one dimensional.
The associated L-function L(f, s), however, has no Euler product, since its Fourier
coefficients C(m) are not multiplicative. Indeed, C(2) and C(3) equal the Fourier coefficient
C∆(2), C∆(3) of ∆ while C(6) equals C∆(6) + C∆(1) ̸= C∆(6) = C∆(2) · C∆(3).

However, in order to hope for a full product expansion, Hecke operators for primes
dividing the level have to be constructed and investigated.

6.2.1 Dividing the level

We fix a level N ∈ N. There is, in fact, a theory of Hecke operators T (p) for Γ0(N) in
case p | N . However, these are, in general, not normal and hence there is no basis of
Hecke eigenforms for Sk(Γ0(N), χ) which have the strong properties stated above (cf.
Example 6.35).

In order to extend the definition of Hecke operators T (n) to n ∈ N with gcd(n,N) > 1

note that the collection of matrices M(n,N) (cf. (6.13)) was empty, so it has to be
redefined. In fact, instead of a congruence subgroup Γ acting on a suitable subgroup
of GL2(Q)+ the condition may be attenuated to semigroups (cf. [Shi71] or [Miy06, 4.5
p. 131]). This had implicitly been done before, when replacing G0(N) with M2(Z)∩G0(N)

in the investigation prior to this subsection. In the case at hand, define

∆0(N) :=

{︄
α =

(︄
a b

c d

)︄
∈M2(Z)

⃓⃓⃓⃓
⃓ c ≡ 0 mod N, (a,N) = 1

}︄
∩ GL2(Q)+

to extend G0(N)∩M2(Z) ⊆ ∆0(N). Note that the conditions on a, c were chosen suitably
to extend χ to the semigroup. The semigroup ∆0(N) decomposes as before into the sets

M(n,N) :=

{︄
α =

(︄
a b

c d

)︄
∈M2(Z)

⃓⃓⃓⃓
⃓ det(α) = n, c ≡ 0 mod N, (a,N) = 1

}︄
.

In case of gcd(n,N) = 1, this agrees with the definition previously settled for, so it is, in
fact, an extension. There is a geometric reason for the condition on a, emerging from
symmetrising over superlattices of index n with a natural torsion condition (cf. [Kna92,
IX.6 p 275]). Note that the condition on a stays intact, when such a matrix is multiplied
from the left or right by an element of Γ0(N). The proof of Lemma 6.25 stays intact as
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well and we find (cf. [Kna92, p. 277])

M(n,N) =
⋃̇︂

a,d∈N, ad=n
(a,N)=1
b mod d

Γ0(N)

(︄
a b

0 d

)︄
. (6.17)

Now, if we define

f |k,χ

(︄
a b

c d

)︄
= χ(a)det(α)k/2j(α, τ)−kf(ατ),

we obtain an extension of the action used above on Γ0(N) that yields the same Hecke
operators in case gcd(n,N) = 1. We attempt to reproduce the results of the case treated
above and note that for the following [Miy06, p. 134] is helpful.

Remark 6.36. If
∑︁∞

m=1A(m)qm = f ∈ Mk(Γ0(N), χ) and n ∈ N, the Fourier coefficients
of f |k,χkT (n) =

∑︁∞
m=0B(m)qm are given by

B(m) =
∑︂

a|gcd(m,n)

χ(a)ak−1A
(︂mn
a2

)︂
.

Proof : The computation is identical to that of Example 6.28:

f |k,χkT (n)(z) = nk/2−1 ·
∑︂
ad=n

(a,N)=1

∑︂
b (d)

(︂a
d

)︂k/2
χ(a)f

(︃
az + b

d

)︃

=
∑︂
ad=n

(a,N)=1

χ(a)
ak

n

∞∑︂
m=0

A(m)e
(︂amz

d

)︂
·
∑︂
b (d)

e

(︃
mb

d

)︃

=

∞∑︂
m=0

∑︂
ad=n

(a,N)=1
d|m

χ(a)
ak

n
A(m) · e

(︂amz
d

)︂
· d

=
∞∑︂
m=0

∑︂
ad=n

(a,N)=1
a|m

χ(a)ak−1A

(︃
md

a

)︃
· e (mz)

=

∞∑︂
m=0

∑︂
a|gcd(m,n)
(a,N)=1

χ(a)ak−1A
(︂mn
a2

)︂
· e (mz) .

Note that χ(a) = 0 if (a,N) > 1, so the requirement may be eliminated from the sum.
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Definition 6.37. The algebra of operators generated by Tα for all α ∈
⋃︁
n∈NM(n,N) is

denoted H0,Z(N). It contains the algebra H0,Z(N) from the previous section.

Lemma 6.38. For coprime m,n ∈ N the Hecke operators are multiplicative:

T (m)T (n) = T (mn).

Proof : The first part of the proof is identical to the proof of Lemma 6.26. Only for
identifying the map to fulfil surjectivity counting has to be reconsidered. Note that

|Rn| =
∑︂

(a,N)=1,a|n

n

a
= n ·

∑︂
a|n/ gcd(n,N)

a−1 = gcd(n,N) · σ1
(︃

n

gcd(n,N)

)︃
.

However, n ↦→ gcd(n,N) is clearly weakly multiplicative, so that n ↦→ |Rn| is, yielding
bijectivity from injectivity.

Together with the Lemma below the structure of T (m) where m only has prime divisors
appearing in N is recognised to be trivial.

Lemma 6.39. If p | N the following reduction is valid T (pr) = T (p)r. It is evidently also
true for kT in place of T .

Proof : The proof is reduced to the identity T (pr+1) = T (p)T (pr). The decomposition
(6.17) yields the following sets of representatives for T (p) and T (p)r

Rp =

{︄(︄
1 b

0 p

)︄⃓⃓⃓⃓
⃓ b mod p

}︄
, Rpr =

{︄(︄
1 br

0 pr

)︄⃓⃓⃓⃓
⃓ br mod pr

}︄
.

The product of representatives is, evidently,(︄
1 br + prb

0 pr+1.

)︄

However, this yields exactly the set of representatives Rpr+1 .

This yields a complete picture of the structure of the algebra H0,Z(N).

Corollary 6.40. The algebra H0,Z(N) is commutative and generated (over Z) by the
operators TqI for primes q ∤ N and T (p) for all primes p. It extends the action of H0,Z(N).

Proof : This is an immediate consequence of Proposition 6.34, Lemma 6.38, and Lemma 6.39.
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There is also an analogous result to Lemma 6.22 for bad primes that is more complicated
and we refer to [Miy06, Thm. 4.5.4 p 136] The analogue of Proposition 6.30 is also true
without the condition (n,N) = 1.

Proposition 6.41. Assume f ∈ Sk(Γ0(N), χ) is an eigenform for all kT (n) with Fourier
coefficients a(m) and eigenvalues λ(n) for kT (n). Then w.l.o.g. a(1) = 1 and

i) λ(n) = a(n) for all n ∈ N ,

ii) the association n ↦→ a(n) is weakly multiplicative.

iii) For p | N and r ∈ N we find necessarily a(pr) = a(p)r.

iv) For p ∤ N and r ∈ N we find a(pr+1) = a(p)a(pr)− pk−1χ(p)a(pr−1).

Proof : Except for iii) the proof ist identical to the proof of 6.30. Part iii), however, is a
direct consequence of Lemma 6.39.

Further, a full product expansion of simultaneous eigenforms (cf. Prop 6.31) is obtained:

Proposition 6.42. If f ∈ Sk(Γ0(N), χ) is a simultaneous eigenform of kT (n) for all
n ∈ N with Fourier coefficients a(n), a(1) = 1 may be assumed and the associated
L-function has the product expansion:

L(f, s) =

∞∑︂
m=1

a(m)

ms
=
∏︂
p|N

(︁
1− a(p)p−s

)︁−1 ·∏︂
p∤N

(︂
1− a(p)p−s + χ(p)pk−1−2s

)︂−1
.

Proof of Prop 6.42: From Proposition 6.31 follows, that only⎛⎝ ∑︂
p|m =⇒ p|N

a(m)

ms

⎞⎠
has to be factored. For p | N Part iii) of Proposition 6.41 translates to

(1− a(p)X) ·

(︄ ∞∑︂
r=0

a(pr)Xr

)︄
= 1

as an identity of formal power series. Selecting X = p−s yields the desired result.

Clearly, the question remains whether such simultaneous eigenfunctions exist. Exam-
ple 6.35 already indicated a weakness in the construction: there exist Hecke eigenforms in
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Sk(Γ0(N), χ) arising from cusp forms of different level or weight which may be effortlessly
combined to violate multiplicative conditions. However, there is still a decomposition into
eigenspaces.

Theorem 6.43 (Hecke-Petersson). The space Sk(Γ0(N)) decomposes into a direct sum
of eigenforms for T (p) for all primes p.

The above theorem also provides a multiplicity one statement for forms with non-
vanishing first coefficient, as the Fourier coefficients are by Proposition 6.41 determined
by the Hecke eigenvalues of T (p).
In fact, the result may even be improved. If the modular forms induced by lower weight
and level are eliminated from consideration by restricting to their orthogonal complement,
the theory of T (p) for primes not dividing the level N works as desired (cf. [AL70]).
The remaining subspace of forms which do not arise in such a fashion is called space of
newforms Snew

k (Γ0(N), χ). It is stable under the operation of the Hecke algebra, admits
an orthogonal basis of Hecke eigenforms and, if f is such an eigenform, its first Fourier
coefficient is automatically different from zero. We restrict to the case of trivial character
for the following statement.

Theorem 6.44 (strong multiplicity one). The space Snew
k (Γ0(N)) admits a basis of

normalised eigenforms for the operators T (p) for p ∤ N . Further, two normalised eigenforms
f ∈ Snew

k (Γ0(N)) and g ∈ Sk(Γ0(N
′)) having the same eigenvalues for all but finitely

many T (p) result in N = N ′ and f = g. Additionally, in this case f is an eigenfunction
for all T (p).

Compare [AL70, Thm 2 p 144 and Thm 4 p 150] for the origin of the theorem, [Miy71,
Thm 2 p 185]5 for a representation theoretic perspective.6 The name multiplicity one
arises from the fact that it is described in adelic terms as only admitting every smooth
irreducible admissible representation once. This is true for GLn (cf. [Jac70, Prop 11.1.1
p. 354] for the case n = 2 and [Sha74] for the generalisation to n > 2) and SL2. The part
strong referes to the fact that these cuspidal automorphic representations are determined
up to isomorphism locally and if they differ they must differ at infinitely many places,
compare [Cas73, Thm. 2 p. 307] and [JS81].

The L-function associated to a newform does not only admit a product expansion but
carries additional analytic properties (cf. [DS05, pp 200-205]).

5note that normalised eigenforms are referred to as primitive in this source
6For translating the representation theoretic perspective [Cas73, 3. p. 308] might be considered.
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Theorem 6.45. Let f ∈ Snew
k (Γ0(N), χ) be a normalised Hecke eigenform and L(f, s)

denote its L-series. Then

a) The series L(f, s) admits analytic continuation to all s ∈ C.

b) There is a product expansion

L(f, s) =
∏︂
p<∞

(︂
1− a(p)p−s + χ(p)pk−1−2s

)︂−1
.

c) Assume f is an eigenfunction for the Fricke involution with eigenvalue ϵ. The com-
pleted L-function L∗(f, s) :=

(︂
2π√
N

)︂−s
Γ(s)L(f, s) satisfies the functional equation

L∗(f, s) = ϵ · ik · L∗(f, k − s).

That the form f is assumed in the last part to be an eigenform for the Fricke involution
is no remarkable restriction. The Fricke involution is a special case of an Atkin–Lehner
involution, commutes with the Hecke operators for good primes and is self adjoint [Kna92,
Prop 9.19 p.281], so that these are simultaneously diagonisable. We will briefly review
Atkin–Lehner involutions as these are helpful for computing product expansions of L-series
associated to vector valued modular forms arising as a symmetrisation of scalar valued
forms for Γ0(N).

Atkin–Lehner involution

Atkin–Lehner involutions that already appeared briefly above, are of particular interest
for investigating L-series associated to lifts of scalar valued modular forms in Sk(Γ0(N), χ)

to the vector valued case. For the following, compare [AL70].

Definition 6.46. Let e | N be a divisor of N , such that gcd(e,N/e) = 1. Such a number
is called a Hall divisor of N and this fact is denoted e ||N .
For any Hall divisor e ||N select a matrix

γe =

(︄
ae b

cN de

)︄
∈M2(Z)
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with determinant e.7 The induced operator is called an Atkin–Lehner involution:

Mk(Γ0(N), χ) → Mk(Γ0(N), χ), f ↦→ f |kγe.

Remark 6.47. a) Atkin Lehner involutions on Mk(Γ0(N), χ) are well defined.

b) For all e ||N the matrices γe are normalising Γ0(N).

c) Different choices γe, γ′e are equivalent mod Γ0(N).

d) For e, h ||N we have γe · γh = γlcm(e,h).

Proof : Note that for two different choices γe, γ′e of matrices and γ ∈ Γ0(N)

γeγγ
′
e ∈ e2 · Γ0(N).

Additionally, γ′′e := eγ′−1e is an alternative choice, meaning γeγγ′−1e ∈ Γ0(N) (⋆). However,
for an element δ ∈ Γ0(N), select γ = γ−1e δγ′e ∈ Γ0(N) and find that γeΓ0(N)γ−1e = Γ0(N),
i.e. b).
For c), (⋆) implies γeγ = γ′γ′e for some γ′ ∈ Γ0(N). By b), a modified γ′ ∈ Γ0(N) yields
γeγ = γ′eγ

′, meaning γe ≡ γ′e mod Γ0(N).
Lastly, for a), f ∈ Mk(Γ0(N), χ) together with b) (select δ ∈ Γ0(N) s.t. δγe = γeγ)
and the computation for c) imply f |kγe = f |kδγe = f |kγeγ = f |kγ′eγ′ = f |kγ′e. The
preservation of vanishing conditions at cusps, however, is immediate.

6.3 Vector valued Hecke theory

So far we have had a look at Hecke operators acting on scalar valued modular forms in
Sk(Γ0(N), χ). However, in Section 3.3 we have introduced vector valued modular forms
that are a collection of scalar valued forms interacting under transformation of the full
modular group to guarantee automorphic behaviour. In this setting, L-series may also be
defined and one might hope to reproduce some of the results in the classical case. For
the purpose of deriving product expansions, specifically, an analogous theory to Hecke
operators in the elliptic case has to be developed which has been carried out by [BS08].

7Of course, this condition already implies that such a divisor e had to be a Hall divisor.
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Recall that a vector valued modular form f ∈ ML,k(Mp2(Z)) is associated to a discrim-
inant form L and has a Fourier expansion

f(τ) =
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n) · e(nτ)eλ.

We fix a Z lattice L with L = L′/L. In order to construct Hecke operators in the classical
case, the action of the Petersson slash operator on a supergroup of Γ0(N) was utilised.
This action already exists and may be reused for acting on the component functions. The
task that remains, however, is to extend the action of the Weil representation ρL on C[L]
to a supergroup of Mp2(Z).
Assume sig(L) is even so that we are in the case of SL2(Z) modular forms and write
N := lev(L). Then the Weil representation is trivial on Γ(N), meaning it factors through

SL2(Z/NZ) ≃ SL2(Z)/Γ(N).

Hence, a naive approach would be an extension of the Weil representation to GL2(Z/NZ).
This, however, fails. Bruinier and Stein note that with the definitions S(N) := SL2(Z/NZ),
G(N) := GL2(Z/NZ), and U(N) := (Z/NZ)×, the following sequence is exact and
splitting:

1 → S(N) → G(N) → U(N) → 1.

Hence, G(N) is a semidirect product of S(N) and U(N). Then they construct a group
Q(N), such that there is a natural exact sequence

1 → S(N) → Q(N) → U(N) → 1

and, in fact, Q(N) ≃ S(N)×U(N). Hence, the authors choose a unitary representation of
U(N) that commutes with ρL on S(N) and have thus extended the representation. Their
choice is consistent with the classical theory, in case the base lattice is unimodular and we
will denote the extended representation by ρL, again. They then construct a group Q(N)

(cf. [BS08, (4.2) p. 257]) containing Mp2(Z) and covering Q(N). This setting is finally
suitable to reproduce the ideas of the scalar valued case.

The full picture is presented in [BS08, Sec. 3]. In the end, the authors prove that in
the case we are interested in, the coset decomposition of the appearing double cosets
are equivalent to the standard decomposition. We will briefly sketch the action of these
operators after introducing notation and proving identities for their abstract counterparts.
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Note that in Lemma 6.32 and 6.39 relations of Hecke operators in the abstract Hecke
algebra have been proven. We recall that the subalgebra H0,Z(N) generated by the
operators T (n) for n ∈ N (cf. paragraph before (6.12)) was of particular interest for the
theory of L-series and we would like to replicate part of these results in the vector valued
setting. The operators considered by [BS08], however, correspond not to T (p2), but to so
called primitive operators, serving as simpler building blocks of the abstract Hecke algebra.
This justifies the new notation T (p2) in contrast to T (p2) from the previous section.

Definition 6.48. For n ∈ N with gcd(n,N) = 1, define the matrix

g(n) :=

(︄
n 0

0 1

)︄
∈ GL+

2 (R)

and in the notation of (6.8) set the primitive Hecke operator associated to n to be

T (n) := Tg(n).

Note that these operators may be used to decompose the previously defined operators
T (n) appearing in (6.12).

Remark 6.49. Let n ∈ N and p a prime not dividing lev(L), then Lemma 6.25 implies

T (pn) =

⌊n/2⌋∑︂
l=0

T
pl·

(︂
pn−2l 0

0 1

)︂ =

⌊n/2⌋∑︂
l=0

TplI · T (pn−2l).

Hence, for n ∈ N with gcd(n, lev(L)) = 1 to understand the action of the family of
operators T (n), it suffices to know how T (n) and TnI act.

There is the following analog to Lemma 6.32.

Lemma 6.50. We find for r ∈ N and a prime p not dividing N that

T (pr+1) = T (p)T (pr)− p · TpI · T (pr−1)− δr=1 · TpI .

Proof : See Section A.3 for details.

Note that this is consistent with [Miy06, Lem. 4.5.7 (1) p. 140], where T (p, p) = TpI

and T (1, pe) = T (pe) in our notation. Note also that the number N in Miyake may be
assumed to equal 1 in the current subsection. By utilising the statement above, we may
derive a relation for square indices which may prove useful later.
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Lemma 6.51. For 2 ≤ r ∈ N and a prime p not dividing N , the following relation is true:

T (pr+2) =
[︁
T (p2) + (1− p) · TpI

]︁
T (pr)− (1 + δr=2p

−1) (p · TpI)2 T (pr−2).

Proof : We apply Lemma 6.50 repeatedly to obtain the following:

T (pr+2) = T (p)T (pr+1)− p · TpIT (pr)

= T (p)
[︁
T (p)T (pr)− p · TpIT (pr−1)

]︁
− p · TpIT (pr)

=
[︁
T (p2) + (p+ 1) · TpI

]︁
T (pr)

− p · TpI
[︁
T (pr) + (p+ δr=2) · TpIT (pr−2) + T (pr)

]︁
=
[︁
T (p2) + (1− p) · TpI

]︁
T (pr)− (1 + δr=2p

−1) (p · TpI)2 T (pr−2).

In order to define an action of the abstract Hecke operators, also in the vector valued
case, it is necessary to declare how the representatives in the double cosets of the operators
T (m) act on the group algebra C[L]. For m ∈ N with gcd(m, lev(L)), the approach
presented in [BS08] and sketched above yields the following action for any λ ∈ L:

eλ|Lg(m2) = emλ. (6.18)

It also translates to the odd case, where the metaplectic cover is required and we set for
m ∈ N with gcd(m, lev(L)) = 1 analogously to the even case

g(m2) :=

(︄(︄
m2 0

0 1

)︄
, 1

)︄
∈ Mp+

2 (R). (6.19)

With this notation and the operation on C[L] obtained from linearising (6.18), we may
define the action of the Hecke operator T (m2).

Definition 6.52. Let m ∈ N with gcd(m, lev(L)) = 1 and let g(m2) ∈ Mp+
2 (R) be as

above. Further, let

Mp2(Z) · g(m2) · Mp2(Z) =
⨆︂
i

Mp2(Z) · hi
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be a right coset decomposition. Then we declare for f ∈ ML,k the following operation

f |L,kT (m2) := det(g(m2))k/2−1
∑︂
i

∑︂
µ∈L

(f |kδi)⊗ (eµ|Lhi) .

Note that unlike the scalar valued case, the factor det(g(m))k/2−1 has directly been
incorporated into the action instead of writing kT for a separate, rescaled operator. Since
this is the only case required in the following, we decided to lighten the notation. We also
note that |L,kT (m2) equals exactly the primitive operator |k,AT ∗(m2) in [BS08, (4.30)].

We turn towards describing how these Hecke operators manipulate the Fourier expansion
of a modular form.

Operation on Fourier coefficients

First, we fix some notation for the following sections.

Notation 6.53. To lighten the notation write Γ(1) for Mp2(Z). We fix an even Z lattice
(L, q) of rank m and level lev(L). Its discriminant form is denoted L := L′/L and for
n ∈ N with gcd(n, lev(L)) = 1, we write |L,kT (n2) for the Hecke operator represented
by Γ(1)g(n2)Γ(1) which is denoted by |k,LT (n2)∗ in [BS08] and represents the primitive
Hecke operator associated to n2 in the existing literature. Also, we resort to eliminating
the metaplectic group from the notation of the space of modular forms, writing ML,k or
SL,k for the space of cusp forms, respectively.

Recall that for k ∈ Z/2 a vector valued modular form f ∈ ML,k has a Fourier expansion
by Remark 3.21:

f(τ) =
∑︂

λ∈L′/L

∑︂
n∈q(λ)+Z

a(λ, n)e(nτ)eλ. (6.20)

For once, understanding how the above Hecke operators manipulate the Fourier expansion
of a modular form provides insights into the structure of the operators and arithmetic of
the expansion. On the other hand, it has an immediate application to a family of L-series
associated to modular forms. For that purpose, Bruinier and Stein have investigated the
action of Hecke operators on the Fourier coefficients of such a form.

Proposition 6.54 ([BS08, Prop. 4.3 p. 258]). Let L have even signature and p be a prime
coprime to lev(L). Let f ∈ ML,k and denote the Fourier expansion as in (6.20). Then

f |L,kT (p2) =
∑︂
λ∈L

∑︂
n∈Z+q(λ)

b(λ, n)qn ⊗ eλ,
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where

b(λ, n) = p2k−2a(λ/p, n/p2) +
GL(1)

GL(p)
pk−2(pδp|n − 1)a(λ, n) + a(pλ, p2n) (6.21)

and

δp|n =

⎧⎨⎩1, p | n,

0, p ∤ n.

Moreover, we understand that a(λ/p, n/p2) = 0 if p2 ∤ n.

Here, for d ∈ N, the Gauss sum GL(d) =
∑︁
λ ∈ Le(d q(λ)) is further described in

Definition A.16 and below. Bruinier and Stein have also proven the case of odd signature.

Theorem 6.55 ([BS08, Thm 4.10 p 263]). Let L have odd signature and p be a prime
coprime to lev(L). Let f ∈ ML,k and denote the Fourier expansion as in (6.20). Then

f |L,kT (p2) =
∑︂
λ∈L

∑︂
n∈Z+q(λ)

b(λ, n)qn ⊗ eλ,

where

b(λ, n) = p2k−2a(λ/p, n/p2) + ϵ
sig(L)+(

−1
|L| )

p

(︃
p

|L|2sig(L)

)︃(︃
−n
p

)︃
pk−3/2a(λ, n) + a(pλ, p2n)

(6.22)

and for an odd integer d we set

ϵd =

⎧⎨⎩1, d ≡ 1 mod 4,

i, d ≡ −1 mod 4.

Moreover, we understand that a(λ/p, n/p2) = 0 if p2 ∤ n.

Based upon this operation on the Fourier coefficients of vector valued modular forms
f ∈ ML,k, product expansions of L-series associated to f may be established, provided
that the form f is an eigenform of the respective Hecke operators. This approach is
pursued in Subsection 6.4.2.
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6.3.1 Dividing the level

Next, we will have to turn to the bad places, following Bruinier and Stein. In case p | N ,
the matrix g(p2) =

(︂
p2 0
0 1

)︂
does not belong to GL2(Z/NZ). However, the action of the

case p ∤ N might be mimicked by defining for λ ∈ L the operation

eλ|Lg(p2) := epλ. (6.23)

This coincides with the action of g(p2) in case of p ∤ lev(L) constructed in [BS08, Sec. 4] and
extends to g(m2) form ∈ N. Since the goal is to define associated Hecke operators, products
γg(m2)γ′ ∈ Γ(1)g(m2)Γ(1) have to be considered, where we understand Γ(1) = Mp2(Z).
It is clear how to define their action, however, consistency remains to be verified. In the
following we frequently drop the index L from |L to improve readability.

Proposition 6.56 ([BS08, Prop. 5.1]). For fixed δ(m2) = γg(m2)γ′ ∈ Γ(1)g(m2)Γ(1)

different choices of γ, γ′ result in the same action

eλ|γ|g(m2)|γ′.

Proof : Assume a different set of choices, such that γg(m2)γ′ = γ1g(m
2)γ′1. It is sufficient

to assume γ′ = γ1 = 1, meaning δ(m2) = γg(m2) = g(m2)γ′1 so that

eλ|γg(m2) = eλ|g(m2)γ′1. (6.24)

Write γ =
(︁(︁

a b
c d

)︁
,±

√
cτ + d

)︁
, then necessarily γ′1 =

(︂(︂
a b/m2

m2c d

)︂
,±

√
m2cτ + d

)︂
. As a

consequence, b ≡ 0 mod m2, meaning γ ∈ Γ
0
(m2) and γ′ ∈ Γ0(m

2).
However, Γ

0
(m2) is generated by Γ

0
(m2) ∩ Γ

0
0(N), Tm

2 and U .8 In the first case, the
identity follows directly from a well known theorem by Borcherds, stating that matrices
in Γ

0
0(N) act by multiplication with a character in d and multiplication of the index of eλ

with d. For Tm2 the representation acts by multiplication, trivialising the computation.
The delicate case is that of U =

(︁
( 1 0
1 1 ) ,

√
τ + 1

)︁
. The operation of U is found in Lemma

2.3 of [BS08], so that the left hand side of (6.24) reads

eλ|U |g(m2) =
1

|L|
∑︂
µ,ν∈L

e (q(µ) + β(µ, λ− ν)) emν .

8Note that γ may be manipulated by multiplication with T lm2

for suitable l ∈ Z such that b is divisible
by N , since (a, d) = 1 so that N | (l1a+ l2d+ b/m2). However, the same argument applies to altering
c with U l for l ∈ Z adequately chosen.
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Using the decomposition from Remark 1.36 yields

=
1

|L|
∑︂
µ∈L

∑︂
ν′∈Lm
ν′′∈Lm

e
(︁
q(µ) + β(µ, λ− ν ′/m− ν ′′)

)︁
eν′ ,

where mL denotes the m-torsion of L. By a simple character argument (cf. Remark 1.51)

=
|Lm|
|L|

∑︂
µ∈Lm

∑︂
ν∈Lm

e (q(µ) + β(µ, λ− ν/m)) eν

=
1

|L|
∑︂
µ∈L

∑︂
ν∈Lm

e (q(mµ) + β(mµ, λ− ν/m)) eν .

Considering the right hand side of (6.24) results in

eλ|g(m2)|Um2
=

1

|L|
∑︂
µ,ν∈L

e
(︁
m2q(µ) + β(µ,mλ− ν)

)︁
eν .

Shifting µ by an element µ′ ∈ Lm does not change the sum over µ meaning

=
1

|L||Lm|
∑︂
µ,ν∈L

∑︂
µ′∈Lm

e
(︁
m2q(µ) + β(µ+ µ′,mλ− ν)

)︁
eν .

However, the sum over µ′ is, as a sum over a character, non-vanishing if, and only if,
ν ∈ Lm, so that

=
1

|L|
∑︂
µ∈L

∑︂
ν∈Lm

e
(︁
m2q(µ) + β(µ,mλ− ν)

)︁
eν

=
1

|L|
∑︂
µ∈L

∑︂
ν∈Lm

e (q(mµ) + β(mµ, λ− ν/m)) eν .

As a consequence, the natural extension of the action is meaningful.

Definition 6.57. For m ∈ N and δ(m2) = γg(m2)γ′ ∈ Γg(m2)Γ set

eλ|δ(m2) := eλ|γ|g(m2)|γ′.

Moreover this acts9 weakly contravariantly in the sense of the following Proposition,
9Note that it is not derived from an actual mathematical group action like in the case gcd(m, lev(L)) = 1.
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being essential for the Hecke theory developed by Bruinier and Stein.

Proposition 6.58 ([BS08, Prop. 5.4]). For coprime m1, m2 ∈ N we find for elements
α ∈ Γ(1)g(m2

1)Γ(1) and β ∈ Γ(1)g(m2
2)Γ(1) that

eλ|α|β = eλ|(αβ).

Proof : Write g1 := g(m2
1), g2 := g(m2

2) and α = γg1γ
′, β = δg2δ

′. By the elementary
divisor Theorem we find αβ = ϵg1g2ϵ

′. In view of the definition of the action, the assertion
reduces to the case γ = δ′ = 1. So far,

αβ = g1γ
′δg2 = ϵg1g2ϵ

′. (6.25)

First, assume ϵ′ = 1. Then αβ = g1γ
′δg2 = ϵg1g2 implies g1γ′δ = ϵg1 ∈ Γ(1)g1Γ(1)

yielding with the definition of the action preceding this Proposition

eλ | g1γ′δ = eλ | ϵg1

=⇒ eλ | g1γ′δ| g2 = eλ | ϵg1 | g2.

Clearly, |g1|g2 = |g1g2, so that the right hand side’s action reads |ϵg1g2 = |αβ, while the
left hand sides action is by definition and the slash operator defining an action of Γ(1)
|g1γ′|δg2 = |α|β.
Next, consider the case of general ϵ′. Rearranging (6.25) yields

δg2ϵ
′−1 = γ′−1g−11 ϵg1g2.

However, since the matrix component of the left hand side has integral entries, so does
the right hand. Since (m1,m2) = 1 it may be inferred that δ̃ := γ′−1g−11 ϵg1 ∈ Γ(1).
Introducing this notation results in

δg2 = δ̃g2ϵ
′ (6.25)⇐⇒ (g1γ

′)(δ̃g2) = ϵg1g2.

However, the assertion has already been proven in case ϵ′ = 1, so that

eλ | (g1γ′) | (δ̃g2) = eλ | (ϵg1g2).

Acting from the right with ϵ′ renders this statement equivalent to the original.
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For g(m2) =
(︁(︁

m2 0
0 1

)︁
, 1
)︁
∈ Mp2(Q)+, pick a disjoint left coset decomposition

Γ(1)g(m2)Γ(1) =
⋃︂
i

Γ(1)hi.

Definition 6.59. For g(m2) and hi as above define the action of T (m2) on f ∈ML,k by

f ↦→ f |L,kT (m2) := det(g(m2))k/2−1 ·
∑︂
i

∑︂
λ∈L

fλ|khi ⊗ eλ|Lhi. (6.26)

Before stating the main theorem of this section, a variant of Lemma 6.25 has to be
established.

Lemma 6.60. Let m,n ∈ N and R∗m denote a set of representatives of T (m) = T(︂m 0
0 1

)︂.

Then gcd(m,n) = 1 implies
R∗mR

∗
n = R∗mn.

Proof : We begin with the case of Γ(1). Equation (6.14) of Lemma 6.25 yields

R∗m =
⋃̇︂

a,d∈N, ad=m
b mod d

gcd(a,b,d)=1

Γ(1)

(︄
a b

0 d

)︄
. (6.14)

The proof is heavily based upon that of Lemma 6.26, as translates of R∗· form a partition
of the set of representatives Rm appearing in its proof. First, we check that the following
map is well defined:

R∗m ×R∗n → Γ(1)∞\R∗mn, (A,B) ↦→ Γ(1)∞\AB.

It is clear that (︄
a b

0 d

)︄
·

(︄
a′ b′

0 d′

)︄
=

(︄
aa′ ab′ + bd′

0 dd′

)︄

is in Rmn, however, note that by gcd(m,n) = 1 we have

gcd(aa′, dd′, ab′ + bd′) | gcd(aa′, dd′) = gcd(a, d) · gcd(a′, d′).

Assume p | gcd(aa′, dd′, ab′ + bd′) then

p | gcd(a, d) =⇒ p | bd′ =⇒ p | b =⇒ p | gcd(a, b, d) ⊥,

p | gcd(a′, d′) =⇒ p | ab′ =⇒ p | b′ =⇒ p | gcd(a′, b′, d′) ⊥.
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So the right hand side is, in fact, contained in R∗mn. The proof of Lemma 6.26 shows that
the mapping is bijective, if the non-primitive version Rm is considered. However, note
that by Lemma 6.25

Rm =
⋃︂

a,d∈N, ad=m
b mod d

Γ(1)

(︄
a b

0 d

)︄
=
⋃̇︂

d2|m
(dI) ·R∗m/d2 ,

so that it must, by dI ∈ Z(GL2(R)), be bijective on the level of R∗m. In case of a square
we find the identity

Rm2 =
⋃︂

a,d∈N, ad=m2

b mod d

Γ(1)

(︄
a b

0 d

)︄
=
⋃̇︂

d|m
(dI) ·R∗(m/d)2 , (6.27)

which is used to explicitly partition T (m2) essentially into primitive operators T ( ·2 ).
Now in case of Γ(1), it suffices to consider only squares m,n. In that case, however, the
computation is identical.

We also require the action of another element. Recall that we had defined the metaplectic
element g(m2) =

(︁(︁
m2 0
0 1

)︁
, 1
)︁

in (6.19) and define the following associated element

g∗(m2) :=

(︄(︄
1 0

0 m2

)︄
,m

)︄
= Sg(m2)S

−1 ∈ Γ(1)g(m2)Γ(1). (6.28)

Lemma 6.61. For λ ∈ L and m ∈ N we find

eλ|Lg∗(m2) =
∑︂
σ∈L
mσ=λ

eσ (6.29)

and conclude for the standard scalar product on C[L] and v1, v2 ∈ C[L] that

⟨v1|Lg(m2), v2⟩ = ⟨v1, v2|Lg∗(m2)⟩, (6.30)

meaning these operators are adjoint to each other:
(︁
|Lg(m2)

)︁∗
= |Lg∗(m2).

Proof : By linearity it suffices to prove the identity on a basis of C[L]. Let λ, µ ∈ L and
consider the following computation:

⟨eλ|g(m2), eµ⟩ = ⟨emλ, eµ⟩
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= δmλ=µ

= ⟨eλ,
∑︂
σ∈L
mσ=µ

eσ⟩.

Note that the right entry of the scalar product may be realised as eµ|g∗(m2). In fact, we
find by (3.34), (3.35), and S

−1
= S

7
= Z3S =

(︁(︁
0 1
−1 0

)︁
,−i

√
τ
)︁

that

eµ|LSg(m2)S
−1

=
e(− sig(L)7/8)√

L

∑︂
ν∈L

e(b(µ, ν))emν |S
−1

=
1

|L|
·
∑︂
ν∈L

e(β(µ, ν))
∑︂
σ∈L

e(−b(mν, σ))eσ

=
1

|L|
·
∑︂
ν,σ∈L

e(b(µ−mσ, ν))eσ

=
∑︂
σ∈L
mσ=µ

eσ,

so that
g∗(m2) = det(g(m2))g(m2)−1 = Sg(m2)S

−1

acts adjointly to g(m2).

As a consequence, we obtain the following adjointness on the space of modular forms.

Corollary 6.62. Let f, h ∈ SL,k(Γ(1)), m ∈ N and g(m2) as above. Then we find for
every α ∈ Γ(1)g(m2)Γ(1) that

⟨f |L,kα, h⟩ = ⟨f, h|L,k det(α)α−1⟩. (6.31)

The expression does not depend on the choice of α in the double coset.

Proof : Recall that

⟨f |L,kα, h⟩ =
∑︂
λ,µ∈L

⟨fλ|kα, hµ⟩⟨eλ|α, eµ⟩.

Assume first that α ∈ Γ(1) = Mp2(Z). Note that the scalar valued case of Corollary 6.62
as in Lemma 6.21 is also valid for Γ(N) – the proof is identical but simpler, as there is
no character. Recall that the component functions satisfy fλ, hµ ∈ Sk(Γ(lev(L))) and
combine this with the unitaricity of the Weil representation for the desired result.
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In the general case, by the contravariance of the slash operator (cf. Definition 6.57), and
invariance of f and h under Mp2(Z), we may reduce to the choice α = g(m2). This,
however is solved by the same argument as above combined with Lemma 6.61 in the
components of the group algebra.

Combining the results above leads to the following observation which is also stated in
[BS08, Thm. 5.6 p. 269].

Theorem 6.63. The operation of T (m2) for arbitrary m ∈ N determines a linear, cusp
form preserving action on the space of modular forms. Further, it is identified to be self
adjoint with respect to the Petersson scalar product and the operators satisfy

T (m2
1)T (m2

2) = T (m2
1m

2
2)

for coprime elements m1,m2 ∈ N.

We install the following piece of notation in order to state two corollaries.

Definition 6.64. For M ∈ N let H2
M denote the Hecke algebra generated by all T (p2)

and TpI for primes p with gcd(p,M) = 1.

Corollary 6.65. For any M ∈ N, the algebra H2
M acts as a commutative algebra of cusp

form preserving linear operators.

The Corollary follows from Theorem 6.63. In conjunction with Lemma 6.51 we conclude
that for any prime p with p ∤M lev(L), the algebra H2

M contains T (p2r) for all r ∈ N.
Corollary 6.65 immediately implies the existence of simultaneous eigenforms.

Corollary 6.66. Let M ∈ N and assume W ≤ SL,k is a nonzero subspace that is invariant
under the operation of H2

M . Then W has an orthonormal basis consisting of simultaneous
eigenforms of H2

M .

We turn towards proving Theorem 6.63.

Proof : The first assertion is immediate. For the proof of the second claim, let f, h ∈ SL,k
and apply Corollary 6.62 to see that there must be a natural number nm ∈ N such that

⟨f |L,kT (m2), h⟩ = det(g(m2))k/2−1 · nm · ⟨f |L,kg(m2), h⟩

= det(g(m2))k/2−1 · nm · ⟨f, h|L,kSg(m2)S
−1⟩

= det(g(m2))k/2−1 · nm · ⟨f, h|L,kg(m2)⟩
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= ⟨f, h|L,kTg(m2)⟩.

The last assertion is a consequence of Lemma 6.60 and the fact that the contravariance
of the slash operator extends to the definition for p | lev(L) in case of coprime numbers
as in Proposition 6.58. The product T (m2

1)T (m2
2) will, as set of representatives, admit

the product set R∗
m2

1
R∗
m2

2
which, by the stated lemma, equals R∗(m1m2)2

representing the
operator T ((m1m2)

2).

Now that the existence of eigenforms is certain, a bound on the respective eigenvalues
was advantageous. The following method for such bounds was discovered by Kohnen
[Koh87] even though the bound itself had been known before [Wei84, Sec. 6].

Lemma 6.67. Let m ∈ N and f ∈ SL,k(Γ(1)) be a nonzero eigenform of T (m2) = Tg(m2)

with eigenvalue σm, where g(m2) =
(︁(︁

m2 0
0 1

)︁
, 1
)︁
. Then

|σm| < mk−2|Γ(1)\Γ(1)g(m2)Γ(1)| · |mL|. (6.32)

In the particular case where m = p is a prime, we find

|σp| < pk−1 · (p+ 1) · |pL|. (6.33)

Here, mL for a natural number m denotes the m-torsion of L.

Proof : Recall the definition of g∗(m2) from (6.28) and note that for λ ∈ L = L′/L we
have by Lemma 6.61 that

eλ|Lg∗(m2)|Lg(m2) =
∑︂
σ∈L
mσ=λ

eσ|Lg(m2) = δλ∈mL · |mL| · eλ.

First, note that Cauchy–Bunyakowsky–Schwarz implies in conjunction with Corollary 6.62
that

∥f |L,kg∗(m2)∥22 ≤ ∥f |L,kg∗(m2)g(m2)∥2 · ∥f∥2.

Further,

∥f |L,kg∗(m2)g(m2)∥22
=

∑︂
λ,µ∈L

⟨fλ|kg∗(m2)g(m2), fµ|kg∗(m2)g(m2)⟩⟨eλ|kg∗(m2)g(m2), eµ|kg∗(m2)g(m2)⟩
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=
∑︂

λ,µ∈mL
⟨fλ, fµ⟩|mL|2⟨eλ, eµ⟩

≤ |mL|2∥f∥22.

In particular, in case of gcd(m, lev(L)), we have equality in the last line. Here, mL and mL
denote the m-torsion and m-multiples in L, respectively. Also compare Remark 1.36.
Second,

σm · ⟨f, f⟩ =
⟨︁
T (m2)f, f

⟩︁
= mk−2

∑︂
h∈Γ(1)\Γ(1)g(m2)Γ(1)

⟨f |kh, f⟩

= mk−2 · |Γ(1)\Γ(1)g(m2)Γ(1)| ·
⟨︁
f |kg(m2), f

⟩︁
,

where we have used, in the last line that by Corollary 6.62, the value of the inner
product does not depend on the representative in the double coset. Again, by Cauchy–
Bunyakowsky–Schwarz and the above calculations, we infer

|σm| ≤ mk−2
⃓⃓⃓
Γ(1)\Γ(1)g(m2)Γ(1)

⃓⃓⃓ ∥f |L,kg(m2)∥2 · ∥f∥2
∥f∥22

(6.34)

= mk−2 ·
⃓⃓⃓
Γ(1)\Γ(1)g(m2)Γ(1)

⃓⃓⃓
|mL|.

Considering the case gcd(m, lev(L)) = 1, we have equality, if, and only if, f |L,kg(m2) and
f are proportional to each other. Hence, assume there is some constant C ∈ C with

C ·
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n) e (τn)⊗ eλ =
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n) e
(︁
τnm2

)︁
⊗ emλ. (6.35)

Here, we see that components λ ∈ mL could not have contributed. Assume first, that
gcd(m, lev(L)) = 1 in which case multiplication by m acts as an automorphism on L. So
there is a natural number l ∈ N, such that ml acts as the identity on L. Now, unless
σm = 0, we must have C ̸= 0. In the latter case, assume a(λ, n) was a nonzero coefficient
and possibly replace the l above by a multiple, large enough, so that ml ∤ n. Applying
the operator |L,kg(m2) in succession for l iterations, we obtain (6.35) but with (C,m)

replaced by (C l,ml). Hence, we find by comparing coefficients that a(λ, n) could only be
different from zero if ml | n which contradicts our assumption. Hence, we must have strict
inequality in equation (6.34).
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In the case of gcd(m, lev(L)) > 1, we find that if the bound was not strict, there could not
be any contribution from any p part Lp of L, for primes p | gcd(m, lev(L)). Explicitly, this
means that fλ = 0 for any λ, such that the projection to Lp for p as above was different
from 0. On the remaining components, the argument is the same as above.
Finally, for the choice m = p, there are p(p+ 1) cosets in the class Γ(1)\Γ(1)g(m2)Γ(1)

(cf. [Shi73, p. 451]), finishing the proof.

We turn our attention towards the irregular case of bad primes for the action of
Hecke operators on Fourier coefficients of vector valued modular forms, in analogy to
Proposition 6.54. Such a formula has been given by [Ste15, Thm. 5.4 p. 246] for bad
odd primes. However, it has been pointed out by [BCJ18] that the cited Theorem is
flawed. The original author has submitted a correction [Ste21], representing the previously
arising but flawed coefficients in a more abstract fashion in terms of certain representation
numbers of the lattice that also appear in [BK01, p. 447] as coefficients of Eisenstein
series.

These representation numbers, however, are not explicit enough for the application we
have in mind. In particular, they are unfit to derive product expansions of L-series. Hence,
the coefficients had to be calculated more explicitly based on the exposition [Ste15]. To
this end we have to let T (p2) explicitly act on f ∈ ML,k where the operation is given by
letting right cosets of

Γ(1)g(p2)Γ(1), where g(p2) =

(︄(︄
p2 0

0 1

)︄
, 1

)︄

operate as in Definition 6.59. Recall that by [BS08, p. 263] or [Shi73, p. 451] we find

Γ(1)g(p2)Γ(1) = Γ(1)g(p2) ∪
⋃︂
h(p)∗

Γ(1)βh ∪
⋃︂
b(p2)

Γ(1)γb, (6.36)

where

βh =

(︄(︄
p h

0 p

)︄
,
√
p

)︄
, γb =

(︄(︄
1 b

0 p2

)︄
, p

)︄
. (6.37)

The operation on the scalar component functions of the vector valued modular form via
the Petersson slash operator is well known and understood. As a consequence, it suffices
to compute the action of the elements in (6.37) on the discriminant group. The action of
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γb is presented in [Ste15, Thm. 5.1 p. 243] in greater generality than required.

Proposition 6.68. Let p be an odd prime, b ∈ Z/p2Z, and λ ∈ L. Then γb acts in the
following fashion:

eλ|Lγb =
∑︂
ν∈L
pν=λ

e(−b q(ν))eν . (6.38)

The action of βh, however, will be extracted from [BCJ18, Prop. 5.3 p. 26] where we
select the special case of l = a = 1.

Proposition 6.69. Let p be an odd prime and h ∈ (Z/pZ)×, write m = rank(L), and
select λ ∈ L. Then

eλ|Lβh = p−m/2
∑︂
δ∈L(p)
pδ=λ

e(−h qp(δ))eλ, (6.39)

where qp denotes p q : L(p) = L(p)′/L(p) → Q/Z.

This will have to be rewritten for our purposes.

Lemma 6.70. With the notation as above, we find

eλ|Lβh = p−m/2δλ∈pL · e
(︁
−hp q(ℓλ/p)

)︁
GL,p(1,−h)eλ,

where GL,p(n, h) =
∑︁

v∈L/pnL e
(︂
h
pn q(v)

)︂
is the Gauss sum defined in Definition A.12,

ℓλ/p ∈ L′ is some element, such that p · ℓλ/p = λ, pL are the p-multiples in L and δ denotes
Kronecker symbol.

Proof : Beginning with (6.39) we transform the sum by utilising the following description
L(p) = p−1L′/L ≃ L′/pL:

p−m/2
∑︂
δ∈L(p)
pδ=λ

e(−h qp(δ))eλ = p−m/2
∑︂

µ∈L′/pL
µ=λ mod L

e

(︃
−h
p

q(µ)
)︃
eλ,

where q(µ) is do be understood as the quadratic form on L′ of some preimage in L′ of
µ ∈ L′/pL. In order for the sum above to not vanish, it is necessary that λ ∈ pL (cf.
[Bar03, Lemma 5.2.1]). Note that by the isomorphism (L′/pL)/(L/pL) ≃ L, the solutions
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in µ of µ = λ mod L are represented by λ+ L/pL so that the expression above equals

p−m/2δλ∈pL ·
∑︂

v∈L/pL

e

(︃
−h
p

q(ℓλ + v)

)︃
eλ,

where ℓλ is some lift of λ to L′. In fact, the sum does not depend on the chosen
representative, as the shift may be absorbed into v. We would like to separate the
dependency on λ from the sum. To this end, let ν ∈ L be a p-th root of λ, i.e. p ·ν = λ ∈ L
and denote a lift of ν to L′ by ℓν . Then

δλ∈pL
∑︂

v∈L/pL

e
(︂
−h
p q(ℓλ + v)

)︂
= δλ∈pL · e

(︂
−h
p q(pℓν)

)︂
·
∑︂

v∈L/pL

e
(︂
−h
p q(v)

)︂
. (∗)

In fact, since λ ∈ pL there is ν ∈ L such that pν = λ. Hence, there must be ℓν ∈ L′ and
δ ∈ L such that pℓν + δ = ℓλ. Nevertheless, the term δ ∈ L, may be absorbed in v and
will henceforth be ignored resulting in replacing q(ℓλ + v) by q(pℓν + v). Then, however,

q(pℓν + v) = q(pℓν) + pβ(ℓν , v) + q(v) ≡ q(pℓν) + q(v) mod p.

This, in fact, means that the reduction above is valid.
Note that Stein appears to have made the same reduction, first. Then, however, he noted
in [Ste21] that it was not valid because the factored expression in (∗) depended on the
choice of representative. If, however, a p-th root ν of λ is considered, there is no ambiguity
as the following computations testifies: Note that two chosen ν may differ by ν ′ ∈ pL. As
a consequence, ℓν might be replaced with ℓν + ℓν′ + ν0 with ν0 ∈ L. Then

q [p(ℓν + ℓν′ + ν0)] = q [p(ℓν + ℓν′)] + p2 b(ℓν + ℓν′ , ν0) + p2 q(ν0)

≡ q [p(ℓν + ℓν′)] mod p

= q(pℓν) + pb(ℓν , pℓν′) + q(pℓν′)

≡ q(pℓν) mod p.

In order to verify the last line, note that pℓν′ ∈ L, so that the term involving the
bilinear form is, in fact, in pZ and we have q(pℓν′) ∈ Z. On the other hand we find
q(pℓν′) = 2−1pb(ℓν′ , pℓν′) ∈ p

2Z ∩ Z = pZ.

We follow [Ste15] in order to compute the action of Hecke operators on the Fourier
expansion of vector valued modular forms more explicitly. In fact, the following is a
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modified version of [Ste15, Thm. 5.4 p. 246].

Proposition 6.71. Let p be an odd prime and f ∈ ML,k with Fourier expansion

f(τ) =
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n) · e(nτ)eλ.

Then the Fourier coefficients of f |L,kT (p2) are given by

b(λ, n) = p2(k−1)δλ∈pL
∑︂
λ′∈pL

n−p2 q(λ/p+λ′)∈p2Z

a

(︃
λ/p+ λ′,

n− p2 q(λ/p+ λ′)

p2
+ q(λ/p+ λ′)

)︃

+ pk−2δλ∈pLKL,pgp
[︁
1,−χp

R, n− q(p · ℓλ/p)
]︁
a (λ, n)

+ a(pλ, p2n).

Here, KL,p = p−m/2GL,p(1, 1), where GL,p(r, 1) =
∑︁

ν∈L/prL e
(︂

1
pr q(ν)

)︂
and gp[r, χ, n] =∑︁

h∈(Z/prZ)∗ χ(h)e
(︂
hn
pr

)︂
, while ℓλ/p ∈ L′ is any element such that pℓp/λ = λ ∈ L. Further,

pL is the p-torsion of L, pL are the p-multiples and δλ∈pL = 1 if λ ∈ pL and 0, otherwise.
In addition, −χp(h) =

(︂
−h
p

)︂
is the Legendre symbol and the exponent R has been presented

in Definition 1.38 (1.6) as Rp.

Proof : Most of the proof is identical for higher powers of p2, but we restrict to the
operation of T (p2) in order to lighten the notation. We have

f |k,LT (p2) = pk−2
∑︂
λ∈L

fλ|kg(p2) eλ|Lg(p2) (6.40)

+ pk−2
∑︂

h∈(Z/pZ)×

∑︂
λ∈L

fλ|kβh eλ|Lβh (6.41)

+ pk−2
∑︂

b∈Z/p2Z

∑︂
λ∈L

fλ|kγb eλ|Lγb. (6.42)

For the first part (6.40) we find

pk−2
∑︂
λ∈L

fλ|kg(p2) eλ|Lg(p2)

= p2(k−1)
∑︂
λ∈L

fλ
(︁
p2τ
)︁
epλ

= p2(k−1)
∑︂
λ∈L

∑︂
n∈Z+q(λ)

a(λ, n) · e
(︁
p2nτ

)︁
epλ
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= p2(k−1)
∑︂
λ∈pL

∑︂
λ′∈pL

∑︂
n∈p2(Z+q(λ/p+λ′))

a(λ/p+ λ′, n/p2) · e (nτ) eλ.

Here, λ/p is any fixed p-th root of λ in L. Also compare Remark 1.36. The inner sum in
the expression above may be rewritten as

∑︂
n−p2 q(λ/p+λ′)∈p2Z

a

(︃
λ/p+ λ′,

n− p2 q(λ/p+ λ′)

p2
+ q(λ/p+ λ′)

)︃
· e (nτ) eλ

in order to separate the integer part of the index from the rest.
Next, we evaluate the sum (6.41) involving the action of the elements βh:

pk−2
∑︂

h∈(Z/pZ)×

∑︂
λ∈L

fλ|kβh eλ|Lβh.

First, we utilise Lemma 6.70 to obtain

pk−2
∑︂

h∈(Z/pZ)×

∑︂
λ∈L

fλ|kβh eλ|Lβh

= p2(k−1)
∑︂

h∈(Z/pZ)×

∑︂
λ∈pL

p−kfλ

(︃
pτ + h

p

)︃
· p−

m
2 e
(︁
−hp q(ℓλ/p)

)︁
GL,p(1,−h)eλ. (∗)

Here, ℓµ for some µ ∈ L is understood to be an arbitrary but fixed lift of µ to L′ and λ/p
is any fixed p-th root of λ in L. In (∗), the dependency of the Gauss sum GL,p(1,−h) on
h may be extracted. In fact, an application of Remark A.14 yields

GL,p(1,−h) =
(︃
−h
p

)︃R
·GL,p(1, 1) (6.43)

with the following choice of Rp. The (Z/pZ) module L/pL with quadratic form to Z/pZ
decomposes into one dimensional submodules (cf. Remark A.14). Let Rp be the number
of these one dimensional modules, such that their generator is non-isotropic, i.e. if v is a
generator, then q(v) /∈ pZ.
With these computations, and by writing −χp(h) for the Legendre symbol appearing
in (6.43), we find the following expression for (∗):

pk−2−m/2GL,p(1, 1)
∑︂

h∈(Z/pZ)×

∑︂
λ∈pL

fλ

(︃
pτ + h

p

)︃
· e
(︁
−hp q(ℓλ/p)

)︁
−χp(h)

Reλ
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= pk−2−m/2GL,p(1, 1)
∑︂

h∈(Z/pZ)×

∑︂
λ∈pL

∑︂
n∈q(λ)+Z

a(λ, n) e(nτ) e
(︂
h
p [n− q(p · ℓλ/p)]

)︂
−χp(h)

Reλ.

Set KL,p := p−m/2GL,p(1, 1) and compare Definition A.12 to recognise the appearing term
above as the following Gauss sum:

gp
[︁
1,−χ

R
p , n− q(p · ℓλ/p)

]︁
=

∑︂
h∈(Z/pZ)×

e
(︂
h
p [n− q(p · ℓλ/p)]

)︂
χp(−h)R

which yields for the term in (∗) to equal

pk−2KL,p

∑︂
λ∈pL

∑︂
n∈q(λ)+Z

a(λ, n)gp
[︁
1,−χ

R
p , n− q(p · ℓλ/p)

]︁
e (nτ) eλ.

Last, the sum in (6.42) involving the action of γb is evaluated, using Proposition 6.68.

pk−2
∑︂

b∈Z/p2Z

∑︂
λ∈L

fλ|kγb eλ|Lγb

= p−2
∑︂

b∈Z/p2Z

∑︂
λ∈L

fλ

(︃
τ + b

p2

)︃
·
∑︂
ν∈L
pν=λ

e (−b q(ν)) eν

= p−2
∑︂
λ∈L

∑︂
ν∈L
pν=λ

∑︂
n∈q(λ)+Z

a(λ, n)
∑︂

b∈Z/p2Z

e

(︃
b
n− q(pℓν)

p2

)︃
e

(︃
nτ

p2

)︃
eν . (∗’)

Note that the inner sum is p2, if n− q(pℓν) ∈ p2Z, otherwise the geometric formula yields

∑︂
b∈Z/p2Z

e

(︃
n− q(pℓν)

p2

)︃b
=

1− e (n− q(pℓν))
1− e ([n− q(ℓν)]/p2)

= 0.

Hence,

∑︂
b∈Z/p2Z

e

(︃
n− q(pℓν)

p2

)︃b
= p2δn≡q(pℓν) mod p2Z.

Further, pν = λ may only be fulfilled if λ ∈ pL. The solutions to the equation are
exactly the elements λ/p+ δ where δ ∈ pL and λ/p is a fixed inverse image. However, by
Remark 1.36, these are all elements in L. In total, we obtain the following expression for
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(∗′):

∑︂
λ∈pL

∑︂
ν∈L
pν=λ

∑︂
n∈Z+q(λ)

n−q(pℓν)∈p2Z

a(λ, n)e

(︃
nτ

p2

)︃
eν

=
∑︂
µ∈L

∑︂
n−p2 q(ℓµ)∈p2Z

a(pµ, n)e

(︃
nτ

p2

)︃
eµ

=
∑︂
µ∈L

∑︂
m∈Z+q(µ)

a(pµ, p2m)e (mτ) eµ.

As a consequence of the above, we obtain the case of good primes (different from 2),
meaning essentially Proposition 6.54.

Corollary 6.72 (Bruinier, Stein). Let L have even signature, p be an odd prime not
dividing lev(L) and f ∈ ML,k with Fourier coefficients a(λ, n). Denote the Fourier
coefficients of f |L,kT (p2) by b(λ, n). Then we find

b(λ, n) = p2k−2a(λ/p, n/p2) +
GL(1)

GL(p)
pk−2(δp|np− 1)a(λ, n) + a(pλ, p2n). (6.44)

Proof : In the present case, the formulae of Proposition 6.71 read

b(λ, n) = p2(k−1)a

(︃
λ/p,

n

p2

)︃
+ pk−2−m/2GL,p(1, 1)gp

[︁
1,−χp

R, n− q(p · λ/p)
]︁
a (λ, n)

+ a(pλ, p2n).

As a consequence, only the middle term has to be evaluated. So the sums gp and GL,p are
to be understood. Recall that Equation (A.5) in Remark A.18 yields the desired quotient
of Gauss sums. Hence, only proving that the second Gauss sum gp reduces to (δp|np− 1)

is required. Note that R = m is even in our case, so that χRp = χ1 is the trivial character.
As a consequence, Remark A.15 implies

gp[1, χ1, n− q(p · ℓλ/p)] = δp|n−q(p·ℓλ/p)p− 1.

However, the denominator of the individual fractions does not contain p, since p ∤ lev(L).
Hence, investigating the numerator for divisibility by p suffices. However, q(p · ℓλ/p) is
clearly divisible by p, so that the question reduces to whether p | n or not.
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6.4 L-functions of modular forms

L-functions and modular forms are closely related analytical objects in the field of number
theory. In fact, there is a classical theory of the association of L-functions to scalar
valued modular forms, as well as a converse theorem10. Furthermore, the interconnection
between these classes of objects has also been exploited to deliver the famous proof of
Fermat’s last theorem. We refer to [DS05] and [Sil13] for more on that matter and to
[Bum98] for an accessible overview of the classical theory of L-functions and their relation
to modular forms. In the following, our focus lies on associating symmetric square type
L-series that have appeared in [Shi73] to vector valued modular forms for the discrete
Weil representation which play a key role in the present thesis.

6.4.1 L-series of vector valued modular forms

In this subsection, convergence statements depend on a parameter σ ∈ R. Its value is
given by the improvement of the asymptotic growth of Fourier coefficients compared to
the Hecke bound of cusp forms and a possible, not necessarily optimal, choice is found in
Table 3.1 or Corollary 6.82.

In Section 6.1 we have briefly reviewed L-functions associated to classical modular forms
and stated their main properties in Theorem 6.45. In the following we will define similar
L-functions associated to vector valued modular forms f ∈ ML,k for some lattice L. For
this subsection, assume that the Fourier expansion of the modular form f is written as

f(τ) =
∑︂

µ∈L′/L

∑︂
n∈q(µ)+Z

a(µ, n) · e(nτ)eµ. (6.45)

Given the structure of the operation of the Hecke algebra on Fourier coefficients, a
definition resembling symmetric square L-functions comparable to these in [Shi73] is
motivated. Recall that (L, q) was an even lattice of signature (m+,m−) and rank m. For
simplicity, we will initially assume a splitting L = L1⊕L2 with L1⊗R definite of rank m1.

Definition 6.73. For f ∈ ML,k, L = L1 ⊕ L2 an orthogonal splitting with definite
L1 ⊗Z R, an isotropic element η ∈ L′2/L2, and r ∈ Q× we define the formal series

LL1,η,r(f, s) :=
∑︂

0 ̸=l∈L′
1

a(l + η, r q(l))
q(l)s

. (6.46)

10Compare [Bum98, Thm 1.5.1 p 60], for instance, for a general Theorem due to André Weil.
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The origin of this definition lies in the construction of such L-series via the Rankin–
Selbgerg method as in Proposition 6.97.

Remark 6.74. Note that in case η = 0, the series in (6.46) has a symmetry property
inherited from the symmetry of the Fourier coefficients of the modular form f . Recall
Remark 3.22, in particular (3.42), reading

a(−λ, n) = e[(sig(L)− 2k)/4]a(λ, n)

which is satisfied for all λ ∈ L = L′/L and n ∈ q(λ) + Z. In the light of Remark 3.20, we
may assume sig(L)− 2k ≡ 0, 2 mod 4, in any case, so that e[(sig(L)− 2k)/4] = ±1.

It is natural to ask for the region of convergence of these L-series for complex arguments
s ∈ C which may be derived from asymptotic bounds on the Fourier coefficients appearing
in their construction. The reader may compare Corollary 3.84 and Corollary 3.85 on that
matter. We require the following technical result, before continuing.

Lemma 6.75. Let m ∈ N be a natural number and α ∈ R. Then

∑︂
0̸=z∈Zm

∥z∥−α∞

converges if α > m, where ∥ · ∥∞ denotes the ∞–norm.

Proof : For n ∈ N, we will compute the size of the discrete sphere Sm−1∞ (n) of radius n in
Zm with respect to ∥ · ∥∞. Using the abbreviation [n] := {0, . . . , n} for n ∈ N, we find

Sm−1∞ (n) = ∥ · ∥−1∞ (n)

= {(zi) ∈ Zm | max |zi| = n}

= ∥ · ∥−1∞ ([n]) \ ∥ · ∥−1∞ ([n− 1]).

Clearly, #∥ · ∥−1∞ ([n]) = (2n+ 1)m, so that we obtain

|Sm−1∞ (n)| = (2n+ 1)m − (2n− 1)m.

Using the binomial formula yields

(2n± 1)m =
m∑︂
k=0

(︃
m

k

)︃
(±1)k(2n)m−k,
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resulting in

|Sm−1∞ (n)| = (2n+ 1)m − (2n− 1)m

= 2

m∑︂
2∤k=0

(︃
m

k

)︃
(2n)m−k

≤ K · nm−1

for some K > 0. With that bound, we obtain

∑︂
0̸=z∈Zm

∥z∥−α∞ ≤ K
∑︂
n∈N

1

n1−m+α

However, the right hand series equals ζ(1−m+α) which converges exactly if 1−m+α > 1

or, equivalently, α > m.

With this tool, we may prove convergence of the investigated L-series.

Lemma 6.76. Assume L = L1⊕L2 splits with definite L1⊗ZR of rank m1 and 2 ≤ k ∈ Z/2.
In case f ∈ ML,k, the series LL1,η,r(f, s) converges normally for Re(s) > k − 1 + m1

2 . If,
in addition, f ∈ SL,k, we find that LL1,η,r(f, s) converges normally for Re(s) > k+m1

2 − σ

for σ = 1/2 in the even case and σ = 1/4 in the odd case.

Proof : Recall that
√︁
|q| : L1⊗ZR → R≥0 defines a norm. Hence, it is equivalent to ∥ · ∥∞,

meaning, in particular, there is a constant 0 < c such that for all v ∈ L1 ⊗Z R we have

c · ∥v∥∞ ≤
√︁
|q(v)|.

Further recall that we have for any λ ∈ L a bound

|a(λ, rn2)| ≤ C · nk−2σ

for some σ ∈ R and some positive constant C > 0. For instance, we may always pick
σ = 1− k/2 (cf. Corollary 3.76) and select σ = 1

5 for f ∈ SL,k by Corollary 3.84. The best
choices available in this thesis are found in Corollary 3.87. In particular, we find

∑︂
0̸=l∈L′

1

|a(l + η, r q(l))|
|q(l)|Re(s) ≤ C

c2

∑︂
0̸=l∈L′

1

∥l∥k−2σ∞

∥l∥2(Re(s))
∞
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=
C

c2

∑︂
0̸=l∈Zm1

∥l∥k−2(σ+Re(s))
∞ .

However, by Lemma 6.75 the latter series converges as long as

2(σ + Re(s))− k > m1

holds, which is equivalent to Re(s) > k+m1
2 − σ. Clearly, the bound is decreasing in Re(s),

so that normal convergence on a right half plane follows immediately.

Clearly, it is dissatisfying to rely on a splitting of the lattice L in order to associate the
symmetric square L-function from Definition 6.73 to a modular form. In the following,
we will erase that assumption. Let L1 be a Z-submodule of L such that L1 ⊗ R is
definite. By choosing L2 := (L⊥1 ∩ L) we construct an even non-degenerate lattice
M := L1 ⊕ L2 ≤ L of finite index. Then by Proposition 3.36 there is a lifting operator
mapping f ∈ ML,k(Mp2(Z)) to ↑ML f ∈ MM,k and for η ∈ L′2/L2 isotropic and r ∈ Q× we
may declare the L-series LL1,η,k(↑ML f, s) as above. We abbreviate f̃ :=↑ML f and denote
its Fourier coefficients by ã(λ, n). Then

LL1,η,r(f̃ , s) =
∑︂

0̸=l∈L′
1

ã(l + η, r q(l))
q(l)s

.

Note that if η is not induced by an element of L′, then the coefficients ã(l+η, r q(l)) vanish.
Hence, we may assume η to be induced by an element of L′. Further, ã(l+η, q(l)) vanishes
unless l ∈ L′. But if also l ∈ L′, necessarily ã(l+ η, q(l)) = a(l+ η, q(l)). Consequently, if
we define a(l + η, q(l)) to vanish, unless l ∈ L′, we conclude

LL1,η,r(f̃ , s) =
∑︂

0̸=l∈L′
1

a(l + η, r q(l))
q(l)s

.

This prompts us to generalise Definition 6.73.

Definition 6.77. For f ∈ ML,k, a splitting sublattice M = L1 ⊕ L2 ≤ L with definite
L1 ⊗ R, an isotropic element η ∈ (L′ ∩ L′2)/L2, and r ∈ Q× define the formal series

LL1,η,r(f, s) :=
∑︂

0̸=l∈L′
1∩L′

a(l + η, r q(l))
q(l)s

. (6.47)
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Remark 6.78. In the setting of Definition 6.77 we have

LL1,η,r(f, s) = LL1,η,r(↑ML f, s),

where the right hand side may be interpreted as in Definition 6.73. As a consequence,
the definition above is a proper extension to the case without splitting lattice L1 and, in
particular, Lemma 6.76 is applicable to obtain the same range of convergence.

In addition to these general series, we are also interested in the following specialisations
which will appear as cycle integrals of Kudla–Millson liftings in Subsection 7.3.1.

Definition 6.79. Let (L, q) be an even lattice and

f =
∑︂
µ∈L

∑︂
n∈Z+q(µ)

a(µ, n) · e(nτ)eµ ∈ ML,k

be a modular form. For λ ∈ L and r ∈ Q× we define the associated symmetric square
L-function

L(λ,r)(f, s) :=
∑︂
n∈N

a(nλ, n2r)

ns
(6.48)

and its specialisation induced by ℓ ∈ L′ satisfying q(ℓ) ̸= 0 with λ := ℓ and r := q(ℓ):

Lℓ(f, s) := L(ℓ,q(ℓ))(f, s) =
∑︂
n∈N

a(nℓ, n2 q(ℓ))
ns

. (6.49)

The range of convergence of these special series is derived from Lemma 6.76.

Lemma 6.80. For f ∈ ML,k, k ≥ 2, λ ∈ L = L′/L, and r ∈ Q× the series L(λ,r)(f, s)

converges absolutely for Re(s) > 2k − 1. If, in addition, f ∈ SL,k, we find that L(λ,r)(f, s)

converges absolutely for Re(s) > k + 1− 2σ for σ = 1/2 in the even case and σ = 1/4 in
the odd case.

Proof : Begin by choosing ℓ ∈ L′ such that ℓ = λ and recall that we have to assume
r = q(ℓ) ̸= 0. Note that (Qℓ ∩ L, q |Zℓ) defines an even lattice, implying ℓ ∈ (Qℓ ∩ L, ℓ)′.
Denote by ℓ0 a primitive element of the dual (Qℓ ∩ L)′. Then

LZℓ,0,r =
∑︂

0̸=l∈(Zℓ)′

a(l, r q(l))
q(l)s
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=
∑︂

0 ̸=n∈Z

a(nℓ0, r q(ℓ0)n2)
q(ℓ0)sn2s

.

In particular, if t ∈ Z denotes the unique element with tℓ0 = ℓ we have

q(ℓ)s/2 · LZℓ,0,r/ q(ℓ)(s/2) =
∑︂

0̸=n∈Z

a(nℓ0, r(n/t)
2)

(n/t)s
.

Recall that by Lemma 6.76 this expression converges absolutely for Re(s)/2 > k+1
2 − σ

for σ = 1 − k/2 in general and some 1/4 ≤ σ < 1/2 in case f was a cusp form (cf.
Corollary 3.87). However, by considering the subseries of indices n ∈ tN we obtain exactly
L(λ,r)(f, s). Hence, the latter series converges absolutely for Re(s) > k + 1− 2σ.

For the proof of Theorem 7.16 we will require subseries of the above L-functions that
are of a special shape. A naive motivation for defining these is to isolate coefficients
associated to good primes for which there is a product expansion due to a well behaved
Hecke theory (cf. Corollary 6.87).

Definition 6.81. In the setting of Definition 6.79, meaning f ∈ ML,k with Fourier
coefficients a(µ, n) and λ ∈ L = L′/L as well as r ∈ Q×, consider for some N ∈ N the
subseries

LN(λ,r)(f, s) :=
∑︂
n∈N

gcd(n,N)=1

a(nλ, n2r)

ns
(6.50)

and its specialisation induced by ℓ ∈ L′ satisfying q(ℓ) ̸= 0 with λ := ℓ and r := q(ℓ):

LNℓ (f, s) := LN
(ℓ,q(ℓ))(f, s) =

∑︂
n∈N

gcd(n,N)=1

a(nℓ, n2 q(ℓ))
ns

. (6.51)

As subseries of L(λ,r)(f, s), these clearly converge absolutely, if the original series does,
meaning Lemma 6.80 is applicable as well. Further, the concrete asymptotic bounds for
Fourier coefficients of vector valued cusp forms in Section 3.3.4 that are subsumed in
Corollary 3.87 provide information on how far absolute convergence may be pushed.

Corollary 6.82. Let 2 ≤ k ∈ Z/2, ℓ ∈ L′ be non-isotropic and f ∈ SL,k with Fourier
expansion

f(τ) =
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n) · e(nτ)eλ.
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Then for N ∈ N the series

LNℓ (f, s) =
∑︂
n∈N

gcd(n,N)=1

a(nℓ, n2 q(ℓ))
ns

converges absolutely for Re(s) > k+ 1− 2σ for some 1/4 ≤ σ ≤ 1/2. The possible choices
of σ are given as follows.

σ N ∈ N lev(L) | N∞

2 | rk(L) 1/2 1/2

2 ∤ rk(L) 1/4 5/16

We turn to the application of Hecke theory to the L-functions discussed above.

6.4.2 Product expansions

In case f ∈ SL,k is an eigenform of a family of Hecke operators T (m2) as in Definition 6.59,
the associated L-series considered in Definition 6.79 admits a partial product expansion.
These products are induced by the action of Hecke operators on the Fourier expansion of f
presented in Proposition 6.54 and Theorem 6.55. Recall that for N ∈ N the expression H 2

N

denotes the Hecke algebra generated by T (p2) for primes p ∤ N . By Corollary 6.66 these
operators always admit simultaneous eigenforms unless SL,k is trivial.

In special cases, even full product expansions of the associated L-series may be derived,
though requiring restrictive assumptions on the lattice L and the form f as presented in
Corollary 6.92. We begin by isolating a single factor associated to a prime number based
on [Shi73, Cor. 1.8 p. 451].

Proposition 6.83. Let p be a prime with p ∤ lev(L), N ∈ N fulfil p ∤ N and assume
f ∈ SL,k is an eigenform of T (p2) with eigenvalue σp. Then for λ ∈ L and 0 < t ∈ Z+q(λ)
such that p2 ∤ lev(L)t we find that

LN(λ,t)(f, s) = LNp(λ,t)(f, s)

·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1+δp∤t

GL(1)

GL(p)
·pk−1−s

1−
(︂

σp

pk−1−(1−p−1)
GL(1)

GL(p)

)︂
·pk−1−s+p2(k−1−s)

, 2 | rk(L),

1−χL(p)
(︂

−t
p

)︂
p−1/2·pk−1−s

1− σp

pk−1 ·pk−1−s+p2(k−1−s) , 2 ∤ rk(L).
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Here, χL(p) = ϵ
sig(L)+

(︂−1
|L|

)︂
p

(︂
p

|L|2sig(L)

)︂
and ϵp = 1 or i depending on wether p ≡ 1 or −1

mod 4. Given LN(λ,t)(f, · ) is nonzero, the rational function in p−s is well defined and does
not vanish in the right half plane of absolute convergence of LN(λ,t)(f, · ) determined by
Corollary 6.82.

Before proving the result, recall that for some integer d we set GL(d) =
∑︁

λ∈L e(d q(λ))
in Definition A.16, preceding alternative descriptions of that Gauss sum.

Proof : Recall that the Fourier coefficients of f ∈ SL,k are denoted a(λ, n) as in (6.20).
For n ∈ N, following [Shi73, p. 452], define the formal power series

Hn(x) :=

∞∑︂
m=0

a(pmnλ, (pmn)2t)xm.

Our goal is to prove that there is a rational function Q(x) such that

Hn(x) = a(nλ, n2t) ·Q(x). (∗)

Then,

LN(λ,t)(f, s) =

∞∑︂
n=1

gcd(n,N)

a(nλ, n2t)n−s

=

∞∑︂
n=1

gcd(n,Np)

Hn(p
−s)n−s = LNp(λ,t)(f, s) ·Q(p−s).

We will compute Q(x) in the case of even and odd rank separately.
The case of even rank: In this case, Proposition 6.54 yields

σp · a(λ, n) = a(pλ, p2n) +
GL(1)

GL(p)
pk−2

(︁
pδp|n − 1

)︁
a(λ, tn) + p2(k−1)a(λ/p, n/p2)

resulting for n,m ∈ N with p ∤ n and p2 ∤ lev(L)t in

σp · a(nλ, n2t) = a(pnλ, p2n2t) +
GL(1)

GL(p)
pk−2

(︁
pδp|t − 1

)︁
a(nλ, n2t), (I)

σp · a(pmnλ, p2mn2t) = a(pm+1nλ, p2(m+1)n2t)

+ (p− 1)
GL(1)

GL(p)
pk−2a(pmnλ, p2mn2t)
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+ p2(k−1)a(pm−1nλ, p2(m−1)n2t). (II)

Multiplying these equations by the formal variable xm+1 and summing them results in

σpx ·Hn(x) = Hn(x)− a(nλ, n2t) + (p− 1)
GL(1)

GL(p)
pk−2xHn(x)

− δp∤t
GL(1)

GL(p)
pk−1a(nλ, n2t)x+ p2(k−1)x2Hn(x).

A straightforward rearrangement yields

Hn(x) = a(nλ, tn2) ·
(︃
1 + δp∤t

GL(1)

GL(p)
pk−1x

)︃
·
[︃
1− σpx+ (p− 1)

GL(1)

GL(p)
pk−2x+ p2(k−1)x2

]︃−1
.

The case of odd rank: In this case, Theorem 6.55 yields

σp · a(λ, n) = a(pλ, p2n) +
χL(p)√

p

(︃
−n
p

)︃
pk−1a(λ, n) + p2(k−1)a(λ/p, n/p2)

where we have abbreviated χL(p) := ε
sig(A)+

(︂−1
|A|

)︂
p

(︂
p

|A|2sig(A)

)︂
. This results for p ∤ n, m ∈ N

and p2 ∤ lev(L)t in

σp · a(nλ, n2t) = a(pnλ, p2n2t) +
χL(p)√

p

(︃
−t
p

)︃
pk−1a(nλ, n2t), (I)

σp · a(pmnλ, p2mn2t) = a(pm+1nλ, p2(m+1)n2t) + p2(k−1)a(pm−1nλ, p2(m−1)n2t). (II)

Analogously to the situation of even rank we find

σpx ·Hn(x) = Hn(x)− a(nλ, n2t) +
χL(p)√

p

(︃
−t
p

)︃
pk−1a(nλ, n2t)x

+ p2(k−1)x2Hn(x)

resulting in

Hn(x) = a(nλ, n2t)

(︃
1− χL(p)√

p

(︃
−t
p

)︃
pk−1x

)︃
·
[︂
1− σpx+ p2(k−1)x2

]︂−1
.

This settles the shape of the rational factor.
Next, we will investigate the behaviour of the numerator and denominator of the rational
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factor. Write
Q(x) =

R(x, t)

P (x)

for the rational function in x. Now assume that LN(λ,t)(f, s) ̸= 0, for otherwise there
is no behaviour to consider. Then there is some n ∈ N with gcd(n,N) = 1, such that
a(nλ, n2t) ̸= 0. We fix this n. Recall that there exists a whole right half plane such that if
s ∈ C is contained in it, the series LN(λ,t)(f, s) converges absolutely. Then the proof above
shows that we have for such s the identity

P (p−s) ·Hn(p
−s) = a(nλ, n2t) ·R(p−s, t).

Observe that unless R(p−s, t) = 0, no factor in the above equation may vanish. In fact,
in case of p | t, we find R(p−s, t) = 1 regardless of s. If p ∤ t, further analysis is required.
In that case, all factors in the second term of R(p−s, t) that are not a power of p have
absolute value 1. Hence, we find that

R(p−s, t) ̸= 0 for

⎧⎨⎩Re(s) > k − 1, 2 | rk(L),

Re(s) > k − 3/2 2 ∤ rk(L).

These bounds are strictly better than the bounds of convergence for LN(λ,t)(f, s) imposed
on Re(s). Hence, in the right half plane of absolute convergence of LN(λ,t)(f, s), the factor
Q(p−s) is well defined and different from zero.

The result above may be utilised to construct infinite product expansions. However,
before employing this result, a remarkable notion of convergence has to be introduced.

Definition 6.84. Let (an)n∈N ∈ C be a sequence of numbers. Then, the infinite product

∏︂
n∈N

(an)

is said to be absolutely convergent, if the following series converges:

∑︂
n∈N

|an − 1|.

The practical application of that notion is that an absolutely convergent product is zero,
if, and only if, one of its factors equals zero. We refer the reader to [FB06, IV p. 200] for
more on that matter and proceed by applying Proposition 6.83 in order to derive infinite
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product expansions.

Corollary 6.85. Let N ∈ N, S be a family of good primes p, and assume f ∈ SL,k is a
simultaneous eigenform of T (p2) with eigenvalue σp for all p ∈ S. Denote the Fourier
expansion of f by

f =
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n)e(nτ)eµ

and select λ ∈ L = L′/L, as well as t ∈ q(λ) + Z with p2 ∤ lev(L)t for all p ∈ S. Then we
find in the range of absolute convergence of LN(λ,t)(f, s) presented in Corollary 6.82 that

LN(λ,t)(f, s) =

⎛⎜⎜⎜⎜⎜⎝
∑︂
n∈N

gcd(n,N)=1
∀p∈S:p∤n

a(nλ, nt)

ns

⎞⎟⎟⎟⎟⎟⎠

·
∏︂
p∈S

gcd(p,N)=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1+δp∤t

GL(1)

GL(p)
·pk−1−s

1−
(︂

σp

pk−1−(1−p−1)
GL(1)

GL(p)

)︂
·pk−1−s+p2(k−1−s)

, 2 | rk(L),

1−χL(p)
(︂

−t
p

)︂
p−1/2·pk−1−s

1− σp

pk−1 ·pk−1−s+p2(k−1−s) , 2 ∤ rk(L).

Further, the possibly infinite product is absolutely convergent for Re(s) > k + 1.

Proof : The existence of the product is a consequence of Proposition 6.83 and a standard
argument.
In order to prove absolute convergence of the product in the claimed range, it suffices to
prove that its individual rational factors we denote by Qp(p−s, t) converge to 1 for p→ ∞
and all choices of s ∈ C with Re(s) > k+1 fast enough – compare Definition 6.84 on that
matter. Introduce the following notation for the numerator and denominator

Qp(p
−s, t) =

Rp(p
−s, t)

Pp(p−s)
.

Then we have
Qp(p

−s, t)− 1 =
Rp(p

−s, t)− Pp(p
−s)

Pp(p−s)

and it suffices to investigate the convergence of the numerator and denominator for this
expression, separately. The denominator will be shown to converge to 1. Then it suffices
to prove that the numerator goes to 0 faster than linearly.11 As before, we distinguish the
11Hence, the series over Qp(p

−s, t)− 1 is absolutely convergent by comparison to the Riemann ζ function.
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odd and even case, however, before specialising to one of these, recall that by Lemma 6.67
the following bound is true:

|σp| < pk−1(p+ 1). (6.52)

The Case of even signature: We begin by bounding

⃓⃓
Pp(p

−s)− 1
⃓⃓
≤
⃓⃓⃓⃓
σp
pk−1

− (1− p−1)
GL(1)

GL(p)

⃓⃓⃓⃓
pk−1−Re(s) + p2(k−1−Re(s))

=

(︃
p+ 1

p
+

1− p−1

p

)︃
· pk−Re(s) + p2(k−1−Re(s)).

We see that for Re(s) > k, the expression converges to 0 for p→ ∞ as desired. Next, the
numerator is investigated:

Rp(p
−s, t)− Pp(p

−s)

=

[︃
σp
pk−1

+
(︁
δp∤t − (1− p−1)

)︁ GL(1)
GL(p)

]︃
· pk−1−s − p2(k−1−s).

We refer to Remark A.18 for a proof of the fraction of Gauss sums to be of absolute value
one in order to verify that the term in brackets may be absolutely bounded by⃓⃓⃓⃓

σp
pk−1

+
(︁
δp∤t − (1− p−1)

)︁ GL(1)
GL(p)

⃓⃓⃓⃓
≤ (p+ 1) + (1− p−1/2) =

(︁
1 + 2p−1 − p−2

)︁
· p.

As a consequence, the difference Rp(p−s, t) − Pp(p
−s) goes to zero for p → ∞ in case

of Re(s) > k. It goes to 0 faster than linearly for Re(s) > k + 1. This settles absolute
convergence of the product in the even case.

The case of odd signature: We begin by bounding

|Pp(p−s)− 1| ≤
⃓⃓⃓⃓
σp
pk−1

⃓⃓⃓⃓
· pk−1−Re(s) + p2(k−1−Re(s))

=
p+ 1

p
· pk−Re(s) + p2(k−1−Re(s)).

We see that for Re(s) > k, the expression converges to 0 for p→ ∞. Next, the numerator
is investigated:

Rp(p
−s, t)− Pp(p

−s)
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=

[︃
σp
pk−1

− χL(p)

(︃
−t
p

)︃
p−1/2

]︃
· pk−1−s − p2(k−1−s)

The term in brackets may be bounded by⃓⃓⃓⃓
σp
pk−1

− χL(p)

(︃
−t
p

)︃
p−1/2

⃓⃓⃓⃓
≤ (p+ 1) +

√
p−1 = [1 + p−1 + p−3/2] · p.

As a consequence, the difference Qp(p−s, t) − Pp(p
−s) goes to zero for p → ∞ in case

Re(s) > k. It goes to 0 more than linearly for Re(s) > k + 1. This settles absolute
convergence of the product in the odd case.
Recall that the the different ranges of absolute convergence of LN(λ,t)(f, s) determined by
Corollary 6.82 cover the condition Re(s) > k + 1/2.

The following special case conveys the essence of the above statement but is not general
enough for applications that we have in mind.

Corollary 6.86. Let 2 ≤ k ∈ Z/2 and assume f ∈ SL,k is a simultaneous eigenform of
T (p2) with eigenvalue σp for all primes p ∤ lev(L). Denote the Fourier expansion of f by

f(τ) =
∑︂
µ∈L

∑︂
n∈q(λ)+Z

a(µ, n) · e(nτ)eµ

and select λ ∈ L as well as t ∈ q(λ) + Z with p2 ∤ lev(L)t for all p ∤ lev(L). Then

L(λ,t)(f, s) =

⎛⎜⎜⎝ ∑︂
n∈N

n|lev(L)∞

a(nλ, nt)

ns

⎞⎟⎟⎠

·
∏︂

p∤lev(L)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1+δp∤t

GL(1)

GL(p)
·pk−1−s

1−
(︂

σp

pk−1−(1−p−1)
GL(1)

GL(p)

)︂
·pk−1−s+p2(k−1−s)

, 2 | rk(L),

1−χL(p)
(︂

−t
p

)︂
p−1/2·pk−1−s

1− σp

pk−1 ·pk−1−s+p2(k−1−s) , 2 ∤ rk(L)

is absolutely convergent as an infinite product for Re(s) > k + 1.

Corollary 6.87. Select 2 ≤ k ∈ Z/2 and f ∈ SL,k with Fourier expansion

f(τ) =
∑︂
µ∈L

∑︂
n∈q(λ)+Z

a(µ, n) · e(nτ)eµ

and let (λ, t) be an index of a Fourier coefficient of f such that for some N ∈ N with



6.4 L-functions of modular forms 245

lev(L) | N we have p2 ∤ lev(L)t for all p ∤ N . Assume f is a simultaneous eigenform for
T (p2) with eigenvalue σp for all primes p ∤ N . Then

LN(λ,t)(f, s)
def
=

∑︂
n∈N,

gcd(n,N)=1

a(nλ, n2t)

ns

= a(λ, t) ·
∏︂
p∤N

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1+δp∤t

GL(1)

GL(p)
·pk−1−s

1−
(︂

σp

pk−1−(1−p−1)
GL(1)

GL(p)

)︂
·pk−1−s+p2(k−1−s)

, 2 | rk(L),

1−χL(p)
(︂

−t
p

)︂
p−1/2·pk−1−s

1− σp

pk−1 ·pk−1−s+p2(k−1−s) , 2 ∤ rk(L)

converges absolutely for Re(s) > k + 1. Here we have GL(d) =
∑︁

µ∈L e(d q(µ)) and

χL(p) = ϵ
sig(L)+

(︂−1
|L|

)︂
p

(︂
p

|L|2sig(L)

)︂
with ϵp = 1 or i depending on wether p ≡ 1 or −1

mod 4.

Remark 6.88. Specialising to the case of a negative definite lattice of rank 1 in Corol-
lary 6.87 and the choice (λ, t) = (ℓ0, q(ℓ0)) for some suitable ℓ0 ∈ L′, we find by [BS08,
Rem. 4.11] that χL(p) =

(︂
−q(ℓ0)

p

)︂
, implying

LNℓ0(f, s) = a(ℓ0, q(ℓ0)) ·
∏︂
p∤N

1− δp∤q(ℓ0)p
−1/2 · pk−1−s

1− σp
pk−1 · pk−1−s + p2(k−1−s)

.

After settling the case of primes not dividing the level lev(L), we turn to the more
delicate case of a prime p | lev(L). Recall that in this instance the map on the discriminant
form

L ∋ λ→ p · λ ∈ L

is not an automorphism, but has a non-trivial kernel denoted by pL. In this case, the re-
cursion formula for Fourier coefficients of Hecke eigenforms obtained from Proposition 6.71
fans out in general, inhibiting the construction of a product expansion. However, this
fan-out may be trivialised by imposing adequate constraints.

To this end, we recall that by Example 1.33 a discriminant form L decomposes orthogo-
nally into maximal p subgroups

L ≃
⨁︂
p<∞

Lp

and we refer to the component of λ ∈ L lying in Lp as λp. With this preparation we may
state appropriate conditions for a factorisation at bad places.
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Proposition 6.89. Let f ∈ SL,k with Fourier expansion

f(τ) =
∑︂
µ∈L

∑︂
n∈q(µ)+Z

a(µ, n) · e(nτ)eµ.

Assume p ̸= 2 is a prime such that f is an eigenform of T (p2) with eigenvalue σp and that
there is no nonzero λ′ ∈ Lp with q(λ′) = 0. Select λ ∈ L and t ∈ q(λ) + Z such that the
p-component λp ∈ Lp of λ is non-trivial or p2 ∤ lev(L)t. If λp ̸= 0 assume further that f
is invariant under O(Lp). Then we find for a natural number N ∈ N with p ∤ N that

LN(λ,t)(f, s) = LNp(λ,t)(f, s)

·

1 +KL,p

⎧⎨⎩δλp ̸=0(1− p−1) + δλp=0δp∤t, 2 | Rp

−δλp=0p
−1/2

(︂
−t
p

)︂
ϵp, 2 ∤ Rp

· pk−1−s + C(λp)p
2(k−1−s)

1−
(︂

σp
pk−1 − δ2|Rp

(1− p−1)KL,p

)︂
pk−1−s + p2(k−1−s)

.

The rational factor in pk−1−s extracted is well defined and nonzero for Re(s) > rk(Lp)/2+k.
Here, KL,p = p− rk(L)/2∑︁

ν∈L/pL e
(︂
1
p q(ν)

)︂
and Rp has been given in Definition 1.38.

Further, ϵp = 1, i depending on whether p = 1, 3 mod 4 and the constant C(λp) + 1 equals
the size of the orbit of λp ∈ Lp under O(Lp). In particular, C(λp) = 0, if λp = 0.

Remark 6.90. Sharper bounds for the non-vanishing result are found in the proof in a
variety of subcases.

Proof : The proof is analogous to the proof of Proposition 6.83 but more convoluted.
Recall that the Fourier coefficients of f ∈ SL,k in question are denoted by a(λ, n) as in
Equation (6.20). For n ∈ N, following [Shi73, p. 452], define the formal power series

Hn(x) :=
∞∑︂
m=0

a(pmnλ, (pmn)2t)xm.

Our goal is to prove that there is a rational function Q(x) such that

Hn(x) = a(nλ, n2t) ·Q(x). (∗)
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Then,

LN(λ,t)(f, s) =

∞∑︂
n=1

gcd(n,N)

a(nλ, n2t)n−s

=

∞∑︂
n=1

gcd(n,Np)

Hn(p
−s)n−s

= LNp(λ,t)(f, s) ·Q(p−s).

Recall that by Proposition 6.71, the operation of T (p2) on the Fourier coefficients of f
reads

σpa(λ, n) = p2(k−1)δλ∈pL
∑︂
λ′∈pL

n−p2 q(λ/p+λ′)∈p2Z

a

(︃
λ/p+ λ′,

n− p2 q(λ/p+ λ′)

p2
+ q(λ/p+ λ′)

)︃

+ pk−2δλ∈pLKL,pgp
[︁
1,−χp

Rp , n− q(p · ℓλ/p)
]︁
a (λ, n)

+ a(pλ, p2n).

This results for some n,m ∈ N with p ∤ n and p2 ∤ lev(L)t or λp ̸= 0 in12

σpa(nλ, n
2t) = pk−2δλ∈pLKL,pgp

[︁
1,−χp

Rp , n2(t− q(p · ℓλ/p))
]︁
a
(︁
nλ, n2t

)︁
+ a(pnλ, (pn)2t) (I)

and

σpa(p
mnλ, (pmn)2t) = p2(k−1)

∑︂
λ′∈pL

(pmn)2t−p2 q(pmnλ/p+λ′)∈p2Z

a
(︁
(pmnλ)/p+ λ′, (pmn)2t/p2

)︁

+ pk−2KL,pgp
[︁
1,−χp

Rp , (pmn)2t− q(p · ℓ(pmnλ)/p))
]︁
a
(︁
pmnλ, (pmn)2t

)︁
+ a(pm+1nλ, (pm+1n)2t). (II)

The Gauss sum gp given in Definition A.12 appearing above will be made more explicit.
We begin by understanding the sum appearing in (II) meaning for m ∈ N being different
from zero. Note that for a fixed choice ℓλ ∈ L′ projecting to λ ∈ L we have t = q(ℓλ) + r

for some integer r ∈ Z. The expression gp in (II) above, however, is independent of

12Note that the group Lp may only contain constituents of the form Z/pZ.
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that residue r as it is multiplied by pm. Further, recall that by Proposition 6.71, the
choice of representative ℓ(pmnλ)/p does not matter, meaning we may choose pm−1nℓλ. As
a consequence, the Gauss sum in (II) collapses to

gp
[︁
1,−χp

Rp , (pmn)2t− q(p · ℓ(pmnλ)/p))
]︁
= gp

[︁
1,−χp

Rp , 0
]︁
.

It should be noted that this Gauss is computed in Remark A.15. In fact, we find that

gp
[︁
1,−χp

Rp , 0
]︁
=

⎧⎨⎩0, if 2 ∤ Rp,

p− 1, if 2 | Rp.

Next, the case m = 0, corresponding to (I), is considered. Here, Remark A.15 implies

gp
[︁
1,−χp

Rp , t− q(p · ℓλ/p)
]︁
=

⎧⎨⎩δp∤t−q(pℓλ/p)p
1/2
(︂

q(p·ℓλ/p)−t
p

)︂
ϵp, if 2 ∤ Rp,

δp|t−q(pℓλ/p)p− 1, if 2 | Rp.

We deduce that the Gauss sum is indifferent to multiplication of the last argument by a
square that is coprime to p. Multiplication by (lev(L)/pνp(lev(L)))2 yields that the number
(lev(L)/pνp(lev(L)))2p2 q(ℓλ/p) is an integer divisible by p.13 Hence, δp∤t−q(pℓλ/p) = δp∤t and
this expression is already implicitly included in the Legendre symbol, yielding

gp
[︁
1,−χp

Rp , t− q(p · ℓλ/p)
]︁
=

⎧⎨⎩p
1/2
(︂
−t
p

)︂
ϵp, if 2 ∤ Rp,

δp|tp− 1, if 2 | Rp.

In the next step, we investigate the index of the sum in (II). Further analysis of the
discriminant group yields that Lp = pLp ≃ pL equals the p-torsion of the discriminant
group L. As a consequence, any p multiple µ ∈ pL has trivial p component µp, meaning
multiplication by p acts as an automorphism on pL, yielding

{pmnλ/p+ λ′ | λ′ ∈ pL} = {pm−1nλ+ λ′ | λ′ ∈ pL}.

In addition, by Remark 1.36, pL is the orthogonal complement of pL, so that for λ′ ∈ pL

q(pm−1nλ+ λ′) = q(pm−1nλ) + q(λ′)

13Recall that we have assumed Lp to be non-isotropic, implying p2 ∤ lev(L).
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in case of m > 1 or λp = 0. Recall that t ∈ q(λ)+Z so that (pmn)2t−p2 q(pm−1nℓλ) ∈ p2Z.
However, we have assumed that there is no isotropic element in Lp, meaning we find that
the index of the sum in (II) collapses to the case λ′ = 0 ∈ L.
Should we have λp ̸= 0, only the case m = 1 remains. We may begin arguing as above by
replacing λ by λ− λp but note that there will be at least two choices of λ′ ∈ pL this time.
Namely, λp ̸= 0 and −λp. However, there might be even more and the number of these
choices λ′ ∈ Lp will be denoted by C(λp) + 1. In order to proceed with the calculation
the different Fourier coefficients appearing in the sum in (II) have to be related.14 This is
where the assumption of invariance with respect to the action of the orthogonal group
comes into play. Recall that for λp ̸= 0, we find q(λp) ̸= 0 by assumption on the lattice.
This implies the local lattice Lp to be maximal (cf. Remark 1.34) which renders Lp an Fp
vector space. Then, mapping λp to a different choice of root with the same norm defines
an isometry of subspaces, which, by Witts extension theorem 4.6, extends to an isometry
of Lp, i.e. an element in O(Lp). By assumption the Fourier coefficients of f are invariant
with respect to this action so that we obtain C(λp) + 1 contributions from this particular
coefficient and identify this number as the size of the orbit of λp under O(Lp).
With these manipulations, (I) and (II) become

σpa(nλ, n
2t) = pk−2δλ∈pLKL,p

[︃
δ2|Rp

(δp|tp− 1) + δ2∤Rp
p1/2

(︃
−t
p

)︃
ϵp

]︃
a
(︁
nλ, n2t

)︁
+ a(pnλ, (pn)2t) (I’)

and

σpa(p
mnλ, (pmn)2t) = p2(k−1)[δm>1 + δm=1(C(λp) + 1)]a

(︃
pm−1nλ,

(pmn)2t

p2

)︃
+ δ2|Rp

pk−2KL,p · (p− 1) a
(︁
pmnλ, (pmn)2t

)︁
+ a(pm+1nλ, (pm+1n)2t). (II’)

We multiply the equations above by xm+1 and sum them to obtain

σp ·Hn(x)x

= p2(k−1)Hn(x)x
2 + C(λp)p

2(k−1)a(nλ, n2t)x2

+ δ2|Rp
pk−2KL,p

[︁
(p− 1)Hn(x)x− a(nλ, n2t)x

{︁
(p− 1)− δλp=0(δp|tp− 1)

}︁]︁
14In fact, in the sum in (II), there are now indices appearing for different choices of λ′ which were not

contained in the initial series LN
(λ,t)(f, s).
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+ δ2∤Rp
pk−2KL,pδλp=0p

1/2

(︃
−t
p

)︃
ϵpa(nλ, n

2t)x

+Hn(x)− a(nλ, n2t).

This will have to be rearranged. Beforehand, note that the term in curly braces may be
rewritten as

(p− 1)− δλp=0(δp|tp− 1)

= (p− 1)− δλp=0[(p− 1 + (δp|tp− p)]

= δλp ̸=0(p− 1)− δλp=0p(δp|t − 1)

= δλp ̸=0(p− 1) + δλp=0δp∤tp.

With that transformation, we may rearrange the above equation for Hn(x) to read

Hn(x)−Hn(x)x
(︂
σp − δ2|Rp

(p− 1)pk−2KL,p

)︂
+Hn(x)x

2p2(k−1)

= a(nλ, n2t)×

⎡⎣1 + pk−2KL,p

⎧⎨⎩δλp ̸=0(p− 1) + δλp=0δp∤tp, 2 | Rp

−δλp=0p
1/2
(︂
−t
p

)︂
ϵp, 2 ∤ Rp

· x− C(λp)p
2(k−1)x2

⎤⎦
which yields the desired rational expression, once x is substituted with p−s:

Hn(p
−s)

= a(nλ, n2t) ·

1 +KL,p

⎧⎨⎩δλp ̸=0(1− p−1) + δλp=0δp∤t, 2 | Rp

−δλp=0p
−1/2

(︂
−t
p

)︂
ϵp, 2 ∤ Rp

· pk−1−s − C(λp)p
2(k−1−s)

1−
(︁
σp − δ2|Rp

(1− p−1)pk−1KL,p

)︁
p−s + p2(k−1−s)

.

However, it remains to check that the potential denominator is well defined. First, we
may assume LN(λ,t)(f, s) ̸= 0 for there is nothing to show otherwise. Then we may fix n
such that a(nλ, n2t) ̸= 0 and write

Q(p−s) =
R(p−s, t)

P (p−s)

for the numerator and denominator of the rational expression above. In the right half
plane of absolute convergence of LN(λ,t)(f, s), also Hn(p

−s) converges absolutely, yielding

P (p−s)Hn(p
−s) = a(nλ, n2t) ·R(p−s, t)
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in this right half plane. Note that in the above equation no factor vanishes, unless
R(p−s, t) does, meaning it suffices to verify that R(p−s, t) does not vanish, to conclude
that P (p−s) does not vanish as well. To this end, we shall specify a right half plane,
such that |1 − R(p−s, t)| < 1. The first factor that needs to be tended to is KL,p. By
Remark A.18 we find

|KL,p| = p− rk(L)/2|GL,p(1, 1)| =
√︂
|pL|.

Recall that in our case the local lattice Lp was assumed to be maximal, implying pL ≃ Lp
which results in its size being equal to prk(Lp). Also note that C(λp) = 0 in case λp = 0.
If λp ̸= 0, we necessarily find p | lev(L) and conclude that C(λp) ≤ |Lp| − 2 = prk(Lp) − 2.
We will have a look at the event that 2 | Rp first which yields

|1−R(p−s, t)| ≤

⎧⎨⎩
(︁
prk(Lp)/2(1− p−1) + [prk(Lp) − 2]pk−1−Re(s))︁ pk−1−Re(s), λp ̸= 0,

prk(Lp)/2+k−1−Re(s), λp = 0.

Next, the case 2 ∤ Rp is considered which gives

|1−R(p−s, t)| ≤

⎧⎨⎩[prk(Lp) − 2]p2(k−1−Re(s)), λp ̸= 0,

prk(Lp)/2+k−3/2−Re(s), λp = 0.

With the gathered information we may guarantee non-vanishing of the numerator for

Re(s) > λp = 0 λp ̸= 0

2 | Rp rkp(L)/2 + k − 1 rkp(L)/2 + k

2 ∤ Rp rkp(L)/2 + k − 1− 1/2 rkp(L)/2 + k − 1

For the case 2 | Rp and λp ̸= 0, we chose a suboptimal bound by bounding (1− p−1) ≤ 1

and (1− p− rk(Lp)) ≤ 1/3. The exact choice may be computed by means of a quadratic
equation. In detail, note that in this case the expression is strictly decreasing in Re(s),
write z = pk−1−Re(s) and cp = prk(Lp)/2 1−p−1

prk(Lp)−2 . Then we seek the even point of

z2 + cpz = 1.

Solving the quadratic equation results in only the positive solution being acceptable,
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meaning

pk−1−Re(s) = −cp
2

+

√︄
c2p
4

+ 1,

yielding

Re(s) = k − 1− lnp(2) + lnp

⎛⎝√︄prk(Lp)
(︃

1− p−1

prk(Lp) − 2

)︃2

+ 4− prk(Lp)/2 1− p−1

prk(Lp) − 2

⎞⎠ .

Note that in case of a good prime p ∤ lev(L), the parameter Rp equals the rank and
λp = 0 vanishes trivially as the associated local lattice is unimodular, so that we may
recover Proposition 6.83 in case p ̸= 2. For the reduction to that case, also compare
Corollary 6.72 and Remark A.18 where the respective Gauss sums are explicitly compared
to each other in the even case.

As another corollary, we obtain a factorisation of L-series. Note that it suffices in light
of Corollary 6.86 to reduce to the case of bad primes and compare Remark 1.34 for the
appearing maximality condition.

Corollary 6.91. Select N | lev(L)∞ and a Hall divisor N0 | N with 2 ∤ N0 such that Lp
is maximal for all primes p | N0. Further, let f ∈ SL,k be a simultaneous eigenform of all
T (p2) with eigenvalue σp for the primes p | N0. Denote the Fourier expansion of f by

f(τ) =
∑︂
µ∈L

∑︂
n∈q(µ)+Z

a(µ, n) · e(nτ)eµ

and select an index (λ, t) such that for all primes p | N0 we have p2 ∤ lev(L)t or λp = 0.
For the primes p | N0 for which λp ̸= 0, assume that f is invariant with respect to O(Lp).
Then

∑︂
n∈N
n|N∞

a(nλ, nt)

ns

=
∑︂
n∈N

n|(N/N0)∞

a(nλ, nt)

ns
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·
∏︂
p|N0

1 +KL,p

⎧⎨⎩δλp ̸=0(1− p−1) + δλp=0δp∤t, 2 | Rp

−δλp=0p
−1/2

(︂
−t
p

)︂
ϵp, 2 ∤ Rp

· pk−1−s + C(λp)p
2(k−1−s)

1−
(︂

σp
pk−1 − δ2|Rp

(1− p−1)KL,p

)︂
pk−1−s + p2(k−1−s)

for Re(s) > maxp|N0
{rk(Lp)}/2 + k in the notation of Proposition 6.89.
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Combining this factorisation with Corollary 6.86 yields the following product expansion.

Corollary 6.92. Assume L to be maximal and select a simultaneous eigenform f ∈ SL,k
of all T (p2) with eigenvalue σp. Write

f(τ) =
∑︂
µ∈L

∑︂
n∈q(µ)+Z

a(µ, n) · e(nτ)eµ

for its Fourier expansion and select an index (λ, t) such that for all primes p we have
p2 ∤ lev(L)t or λp ̸= 0. Assume f to be invariant with respect to the action of O(Lp) for
these primes for which 0 ̸= λp ∈ Lp. Then

L(λ,t)(f, s)

def
=
∑︂
n∈N

a(nλ, n2t)

ns

=

⎧⎨⎩
∑︁

n∈N
a(2nλ,2nt)

2ns , 2 | lev(L),

a(λ, t), 2 ∤ lev(L)

·
∏︂

p∤lev(L)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1+δp∤t

GL(1)

GL(p)
·pk−1−s

1−
(︂

σp

pk−1−(1−p−1)
GL(1)

GL(p)

)︂
·pk−1−s+p2(k−1−s)

, 2 | rk(L),

1−χL(p)
(︂

−t
p

)︂
p−1/2·pk−1−s

1− σp

pk−1 ·pk−1−s+p2(k−1−s) , 2 ∤ rk(L)

·
∏︂

2̸=p|lev(L)

1 +KL,p

⎧⎨⎩δλp ̸=0(1− p−1) + δλp=0δp∤t, 2 | Rp

−δλp=0p
−1/2

(︂
−t
p

)︂
ϵp, 2 ∤ Rp

· pk−1−s + C(λp) · p2(k−1−s)

1−
(︂

σp
pk−1 − δ2|Rp

(1− p−1)KL,p

)︂
pk−1−s + p2(k−1−s)

.

The product converges absolutely for Re(s) > k + 1 as long as the factors in the finite
product are well defined. This is definitely the case for Re(s) > max{rk(Lp)}/2 + k and
in this range all rational factors in p−s are different from zero.
Here, GL(d) =

∑︁
λ∈L e(d q(λ)) and KL,p = p− rk(L)/2∑︁

v∈L/pL e(q(v)), while λp denotes
the projection of λ ∈ L to the p-component Lp. Further, Rp is given in Definition 1.38 and

χL(p) = ϵ
sig(L)+

(︂−1
|L|

)︂
p

(︃
p

|L|2sig(L)

)︃
, with ϵp =

⎧⎨⎩1, p ≡ 1 mod 4,

i, p ≡ 3 mod 4.
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6.4.3 Rankin–Selberg L-series

In this section, the L-series associated to vector valued modular forms in Subsection 6.4.1
are constructed via an integral pairing in Rankin–Selberg fashion. We begin with a brief
introduction of the central tool for the method, the unfolding trick.

The unfolding trick

Let G be a group, (X,µ) be a measured space, such that G ⟳

X acts faithfully and
invariantly with respect to the measure. Further, let H ≤ G be a subgroup.

Lemma 6.93. Assume there is a measurable representation FG of G\X and select a
subgroup H ≤ G with countable H\G. Then

FH :=
⋃︂

γ∈H\G

γ−1FG

is a measurable representation of H\X.

Proof : Let x ∈ X, then there is g ∈ G with gx ∈ FG. Now there is some γ ∈ H\G and
h ∈ H with γh = g. Apparently, hx = γ−1γhx = γ−1gx ∈ γ−1FG.
Assume we had x1, x2 ∈ FH and h ∈ H with x1 = hx2. Then there are γ1, γ2 ∈ H\G with
xi ∈ γ−1i FG, so that there are yi ∈ FG such that γ−11 y1 = x1 = x2 = hγ−12 y2, meaning
x1 = γ1hγ

−1
2 y2 ∈ FG. Hence, γ1hγ−12 = e, translating to γ1h = γ2 ∈ γ1H, implying

γ1 = γ2, and resulting in h = e.

Lemma 6.94. Assume there is a measurable representation of G\X, a subgroup H ≤ G

of at most countably infinite index and a function f : (X,µ) → C which is invariant under
H and integrable on a measurable representation of H\X. Then∫︂

G\X

∑︂
γ∈H\G

γ∗f dµ =

∫︂
H\X

f dµ. (6.53)

Proof : We have∫︂
G\X

∑︂
γ∈H\G

γ∗f dµ =
∑︂

γ∈H\G

∫︂
G\X

γ∗f dµ =
∑︂

γ∈H\G

∫︂
γ−1(G\X)

f dµ =

∫︂
H\X

f dµ,

where convergence is verified from right to left.
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There are some straightforward generalisations to the above setting. First, one may
assume that G ⟳

X acts not faithfully, but that its isotropy group of an element x ∈ X

is normal in G and contained in H. However, even that is not necessary, but their
are measure theoretic inconveniences arising when considering more general situations
– compare [Neu29] for a note on that matter. Further, the last result is indifferent to
null sets, meaning that conditions may be neglected on null-sets and also the notion of a
fundamental domain – a set of representatives of the orbits – may be defined up to null
sets.

Constructing L-series

The most prominent application of the unfolding trick that has been briefly reviewed
in the section above is the choice of X = H the upper half plane, G = Γ(1) = SL2(Z)
acting via Möbius transformations and as a subgroup H = Γ∞. Recall that a fundamental
domain FΓ(1) is, up to a null-set, given by

FΓ(1) = {τ ∈ H | |Re(τ)| ≤ 1/2, |τ | ≥ 1}

(cf. Figure 2.1.2) and except for i, ρ, and ρ2, the isotropy group is {±I} < Γ(1), which
may be divided out. The considered measure is the hyperbolic measure on the upper
half plane which is given by dµ = du dv

v2
, where we represent τ = u + iv ∈ H with

u = Re(τ), v = Im(τ) (cf. ).
In this context, Rankin15 [Ran39b] and Selberg have considered integrals of the form∫︂

FΓ(1)

ϕ ·G0(τ, s) dµ,

where ϕ = f · g · Imk was essentially a product of two modular forms f, g ∈ Mk(Γ(1))

that was assumed to be a cusp form, so that ϕ was automorphic. Further, G0 denotes a
non-holomorphic Eisenstein series of weight 0. The resulting integral would unfold and
define an L-series with analytic continuation and functional equation [Ran39b, Thm. 3
p. 360].

In the following, we will mimic that procedure in order to construct L-series as in (6.47)
for cusp forms f ∈ SL,k. For that purpose, we will pair f against a non-holomorphic
Eisenstein series that is twisted with a theta series. We will first prove that the unfolding
trick is applicable in our context. However, we will do so in greater generality, as we have
15Note that Rankin has already considered the case of the arithmetic group Γ(N).



6.4 L-functions of modular forms 257

future applications in mind. As a consequence, the following technical result is meant
for the reader who is interested in details. Its Corollary 6.96 suffices for the proof of
Theorem 7.16 which is the main application within the scope of the present thesis.

Recall that for η ∈ L = L′/L and suitable parameters m,ψ, k we have defined vector
valued parabolic Poincaré series Pη,m,ψ,k (cf. Definition 3.47 and its succeeding comments).

Proposition 6.95. Let L be an even lattice that splits as L = L1 ⊕ L2,

• f ∈ SL,k with Fourier coefficients a(λ, n) ∈ Oε(n
νf ),

• g ∈ ML1,k1 with Fourier coefficients b(λ, n) ∈ Oε(n
νg),

• and Pη,m,ψ,k2 =
∑︁

γ∈Γ∞\Mp2(Z)
ψeη(m · )|L2,k2γ ∈ AL2,k2 be a parabolic Poincaré

series in the notation of Definition 3.47 such that k = k1 + k2. Asssume that
ψ ∈ L∞loc(R>0) and that there are constants α0, α∞ ∈ R such that ψ(v) ∈ O(vα0) for
v → 0 and ψ(v) ∈ O(vα∞) for v → ∞.

Then ∫︂
FΓ(1)

⟨f, g ⊗ Pη,m,ψ,k⟩ · Imk dµ =

∫︂
FΓ∞

⟨︁
f, g ⊗ ψeη(m · )

⟩︁
· Imk dµ (6.54)

provided α0 > max{3− k + νf + νg, 1− k/2}.

Note that by assumption of f, g being modular forms we find by Theorem 2.25 and
Corollary 3.85 that the parameters νf , νg are explicitly selectable such that a(λ, n) =
O(nνf ) and b(µ, n) = O(nνg).

Proof : First, we assume absolute convergence of the integral on the right hand side of
(6.54) and verify the result of the unfolding method. We use the abbreviations H := Γ∞,
G = Mp2(Z), as well as hη,m = ψeη(m · ) and begin by computing

∫︂
FΓ(1)

⟨f, g ⊗ Pη,m,ψ,k⟩ · Imk dµ =

∫︂
FΓ(1)

⟨︄
f, g ⊗

∑︂
γ∈H\G

hη,m|k2γ

⟩︄
· Imk dµ

=

∫︂
FΓ(1)

∑︂
γ∈H\G

⟨f, g ⊗ hη,m|k2γ⟩ · Imk dµ

=

∫︂
FΓ(1)

∑︂
γ∈H\G

⟨f |kγ, g|k1γ ⊗ hη,m|k2γ⟩ · Imk dµ

=

∫︂
FΓ(1)

∑︂
γ∈H\G

⟨︁
f |kγ,

(︁
g ⊗ hη,m

)︁
|kγ
⟩︁
· Imk dµ
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=

∫︂
FΓ(1)

∑︂
γ∈H\G

γ∗
(︂⟨︁
f, g ⊗ hη,m

⟩︁
· Imk

)︂
dµ

=

∫︂
FΓ∞

⟨︁
f, g ⊗ hη,m

⟩︁
· Imk dµ. (6.55)

Subsequently, we have to prove absolute convergence of the unfolded integral. Note that

⟨︁
f, g ⊗ hη,m

⟩︁
=
⟨︁ ∑︂
λ1∈L′

1/L1

λ2∈L′
2/L2

fλ1+λ2eλ1+λ2 ,
∑︂

λ1∈L′
1/L1

gλ1ψeλ1+η(m · )
⟩︁

=
∑︂

λ1∈L′
1/L1

fλ1+ηgλ1ψe(m · ) (6.56)

where indices of f and g denote the respective component function. Assume we had
ψ(v) = 1 and m = 0, then

⟨︁
f, g ⊗ hη,m

⟩︁
=

∑︂
n∈Z/ lev(L)

c(n)qn

has a Fourier expansion that is convergent and hence absolutely convergent on H (cf.
Lemma A.19). Returning to the case of general hη,m, we restrict to considering the
behaviour v → ∞, first and note that it suffices to prove convergence of the integral on
a strip S ⊆ {z ∈ C | |Re(z)| ≤ 1/2} with arbitrary positive minimum height such that
ψ(v) is bounded by some positive multiple of vα∞ . Then, we may use the same trick as in
Example 3.52 d) to verify that for general ψ(v) we have the following bound on S

⃓⃓⟨︁
f, g ⊗ hη,m

⟩︁⃓⃓
≤ |ψ(v)|

∑︂
n∈N/ lev(L)

|c(n)|e−2πvn

≤ |ψ(v)|e−2πv/(2 lev(L))
∑︂

n∈N/ lev(L)

|c(n)|e2πin(iv/2).

The right sum however, is bounded by a constant, since the Fourier series is absolutely
convergent on H and the integral over S of the last expression converges absolutely.

We turn to the case v → 0 and will proceed with inserting the Fourier expansion of
both modular forms f and g in (6.56) to proceed with the computation. Recall that there
are Fourier coefficients, such that

f(τ) =
∑︂

λ∈L′/L

∑︂
0<n∈Z+q(λ)

a(λ, n)e(nτ)eλ,
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g(τ) =
∑︂

µ∈L′
1/L1

∑︂
0≤n∈Z+q(µ)

b(µ, n)e(nτ)eµ.

With that notation, we derive the following explicit expansion.

∑︂
λ1∈L′

1/L1

fλ1+ηgλ1

=
∑︂

λ1∈L′
1/L1

∑︂
0<n∈Z+q(λ1)+q(η)

∑︂
0≤n1∈Z+q(λ1)

a(λ1 + η, n)b(λ1, n1) · e(nτ − n1τ).

With this expansion, we shall prove absolute convergence of the unfolded integral. First,
we note that it is sufficient to bound each of the |L′1/L1| summands in λ1 arising in (6.56)
separately. Consequently, we fix λ1 in such a fashion that the associated term dominates
the others, when multiplied with a suitable constant C1 > 0. Next, we rewrite

|e(nτ − n1τ)| = exp[−2πv(n+ n1)].

In the following, we may assume νf , νg ≥ 0. Combining these observations with (6.56)
yields that the scalar product isbounded by

|
⟨︁
f, g ⊗ hη,m

⟩︁
| ≤ |L′1/L1|C1

∑︂
0<n∈Z+q(λ1)+q(η)

0≤n1∈Z+q(λ1)

nνfn
νg
1 · exp[−2πv(n+ n1)] · |ψ(v)|.

We write N := lev(L) and note that a summation over more possible choices of n, n1
potentially increases the sum.

|
⟨︁
f, g ⊗ hη,m

⟩︁
| ≤ |L′1/L1|C1

∑︂
0̸=n∈Z/N
n1∈Z/N

|n|νf |n1|νg · exp[−2πv(|n|+ |n1|)] · |ψ(v)|

= |L′1/L1|C1

∑︂
0̸=n∈Z
n1∈Z

|n|νf |n1|νg

N (νf+νg)
· exp[−2πv(|n|+ |n1|)/N ] · |ψ(v)|.

We simplify the appearing series. First, we observe that we may bound the numerator

|n|νf |n1|νg ≤ max{|n|, |n1|}(νf+νg).

Recall further that |ψ(v)| was bounded for v → 0 by vα0 . Hence, we may bound
|ψ(v)| ≤ C2

|L′
1/L1|C1

vα0 close to the real line for a positive constant C2 > 0 and without loss
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of generality we may assume that the bound for ψ is valid on FΓ∞ . Consequently, we
deduce ∫︂

FΓ∞

|
⟨︁
f, g ⊗ hη,m

⟩︁
| · Imk dµ

≤ C2 ·
∫︂ ∞
0

∑︂
0 ̸=n∈Z
n1∈Z

max{|n|, |n1|}(νf+νg)

Nνf+νg
· e−

2π
N

(|n|+|n1|)·vvα0+k−2 dv

substituting v ↦→ v ·N/[2π(|n|+ |n1|)] yields

= C2 ·
∑︂

0̸=n∈Z
n1∈Z

max{|n|, |n1|}νf+νg

N (νf+νg)[2π(|n|+ |n1|)/N ]α0+k−1
· Γ(α0 + k − 1)

=
C2

Nνf+νg

Γ(α0 + k − 1)

(2π/N)α0+k−1 ·
∑︂

0 ̸=n∈Z
n1∈Z

max{|n|, |n1|}νf+νg
(|n|+ |n1|)α0+k−1 .

We are left with the task of bounding the series to the right. First, we increase it by
summing over 0 ̸= (n, n1) ∈ Z2 and write x := (n, n1). Then we note that |n|+ |n1| = ∥x∥1
and max{|n|, |n1|} = ∥x∥∞. However, these norms are equivalent (cf. Remark A.7),
implying that the series converges, if and only if,

∑︂
0̸=x∈Z2

1

∥x∥α0+k−1−(νf+νg)
∞

converges. The convergence of this type of series, however, has already been established
in Lemma 6.75 by computing the size of the discrete ∥ · ∥∞–sphere and comparing the
result with the Riemann ζ-function. It converges for α0 + k − 1− (νf + νg) > 2, meaning

α0 > 3− k + νf + νg.

A special instance of Proposition 6.95 where the Poincaré series is given by an Eisenstein
series is integral for the main goal of this thesis. This yields the following observation
which is relevant for the computation of cycle integrals of the Kudla–Millson liftings in
Section 7.3.1.

Corollary 6.96. Let f ∈ SL,k, L = L1 ⊕ L2 split, g ∈ ML1,k1, and η ∈ L′2/L2 be
isotropic. Further, choose EL2,η,k2(τ, s) be the Eisenstein series from Definition 3.37 such
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that k = k1 + k2. Then there is some s0 ∈ R such that∫︂
FΓ(1)

⟨f, g ⊗ EL2,η,k2( · , s)⟩ · Imk dµ =

∫︂
FΓ∞

⟨︁
f, g ⊗ eη

⟩︁
· Ims+k dµ (6.57)

for all s ∈ C with Re(s) > s0 and both sides are holomorphic in s.

In order to construct the L-series presented in (6.47), we will have to choose g to equal
a theta series. Assume, we had (L, q) = (L1, q1)⊕ (L2, q2) with (L1, q1) positive definite
of rank m1 and associated theta function ΘL1(τ) := ΘL1(τ ; exp(−2π q1)). Selecting
g = ΘL1(τ), we obtain for f ∈ SL,k a cusp form and suitable s ∈ C that∫︂

FΓ(1)

⟨f,ΘL1 ⊗ EL2,η,k2( · , s)⟩ · Imk dµ =

∫︂
FΓ∞

⟨︁
f,ΘL1 ⊗ eη Ims

⟩︁
· Imk dµ.

We compute the integrand before continuing:

⟨︁
f,ΘL1(τ)⊗ eη

⟩︁
=
⟨︁ ∑︂
λ1∈L′

1/L1

λ2∈L′
2/L2

fλ1+λ2eλ1+λ2 ,
∑︂

λ1∈L′
1/L1

θL1,λ1eλ1+η
⟩︁

=
∑︂

λ1∈L′
1/L1

fλ1+ηθL1,λ1 .

We proceed similarly to the proof of the technical Proposition 6.95. This time, however,
we do not have to consider the absolute value of the integrand and a significant portion of
the terms appearing will cancel, allowing for a relatively concrete computation. For that
purpose, we assume Re(s) to be large enough to guarantee absolute convergence. To this
end, recall that f has a representation as a Fourier series as well as the definition of ΘL1

(compare for instance Definition 3.31 in conjunction with Example 3.33 in the positive
definite case).

f(τ) =
∑︂

λ∈L′/L

∑︂
0<n∈Z+q(λ)

a(λ, n)e(nτ)eλ,

ΘL1(τ) =
∑︂

λ1∈L′
1/L1

∑︂
l∈L1+λ1

e(q(l)τ)eλ1 .

We insert the Fourier expansion of both functions in order to obtain (recall that η ∈ L′2/L2
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was isotropic)

∑︂
λ1∈L′

1/L1

fλ1+ηθL1,λ1

=
∑︂

λ1∈L′
1/L1

∑︂
0<n∈Z+q(λ1)

∑︂
l∈L1+λ1

a(λ1 + η, n) · e(nτ)e [−τ q(l)]

=
∑︂

λ1∈L′
1/L1

∑︂
0<n∈Z+q(λ1)

∑︂
l∈L1+λ1

a(λ1 + η, n) · e[iv(n+ q(l))]e [u(n− q(l))] .

Clearly, n− q(l) ∈ Z, so that R ∋ u ↦→ e [u(n− q(l))] defines a character which descends
to a character on T. The unit circle T, however, is compact, implying by Remark 1.51 the
following identity: ∫︂ 1

0
e [u(n− q(l))] du = δn,q(l),

where the right hand side is to be understood as a Kronecker symbol. As a consequence,
we conclude∫︂

FΓ∞

⟨︁
f,ΘL1 ⊗ eη

⟩︁
· Ims+k dµ

=

∫︂ ∞
0

∑︂
λ1∈L′

1/L1

∑︂
0̸=l∈L1+λ1

a(λ1 + η, q(l)) · e[iv2 q(l)] · vs+k−2 dv

=
∑︂

λ1∈L′
1/L1

∑︂
0̸=l∈L1+λ1

a(λ1 + η, q(l)) ·
∫︂ ∞
0

exp[−4π q(l) · v] · vs+k−2 dv.

Applying the subtitution v ↦→ v/4π q(l) yields that this equals

=
∑︂

λ1∈L′
1/L1

∑︂
0̸=l∈L1+λ1

a(λ1 + η, q(l))
(4π q(l))s+k−1

·
∫︂ ∞
0

e−v · vs+k−2 dv

=
Γ(s+ k − 1)

(4π)s+k−1

∑︂
λ1∈L′

1/L1

∑︂
0 ̸=l∈L1+λ1

a(λ1 + η, q(l))
q(l)s+k−1

,

where instead of summing over all elements of all cosets of L′1 by L1, we may as well sum
over the whole lattice L′1 to obtain the following, simpler description

=
Γ(s+ k − 1)

(4π)s+k−1

∑︂
0 ̸=l∈L′

1

a(l + η, q(l))
q(l)s+k−1

.

Comparing the last result with Definition 6.77, we notice that the series appearing is ex-
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actly LL1,η,1(f, s+k−1). Recall that there is σ ∈ R such that a(λ, q(l)) ∈ Oε(q(l)k/2−σ+ε)
– compare Table 3.1 for concrete choices of σ. Then a comparison with Lemma 6.76 yields
that the last expression converges absolutely for Re(s) > m1−k

2 + 1− σ with σ as in the
Lemma and defines a holomorphic function in s in that right half plane. As a consequence,
we have proven the following Proposition.

Proposition 6.97. Let f ∈ SL,k, k ≥ 2, L = L1 ⊕ L2 with positive definite L1 of rank
m1, EL2,η,k2( · , s) be the Eisenstein series of Definition 3.37, and assume k = m1/2 + k2.
Then we have the identity∫︂

FΓ(1)

⟨f,ΘL1 ⊗ EL2,η,k2( · , s)⟩ · Imk dµ =
Γ(s+ k − 1)

(4π)s+k−1
· LL1,η,1(f, s+ k − 1) (6.58)

of holomorphic functions in s for Re(s) > m1−k
2 + 1− σ, where σ = 1/2 or 1/4 depending

on whether 2 | rk(L) or not. Further, the left hand side gives rise to a meromorphic
continuation of LL1,η,1.

There is a specialisation that plays a key role in the proof of Theorem 7.16.

Corollary 6.98. Let (L, q) be even such that L = Zℓ ⊕ L2 for some ℓ ∈ L of positive
norm and f ∈ SL,k. Assume we have k > 3− 2σ with σ as above. Then∫︂
FΓ(1)

⟨︁
f,ΘZℓ ⊗ EL2,0,k−1/2( · , 0)

⟩︁
·Imk dµ =

2Γ(k − 1)

(4π q(ℓ0))k−1
δsig(L)≡2k (4)·Lℓ0(f, 2k−2) (6.59)

for a primitive ℓ0 ∈ L′ such that ℓ0 | ℓ ∈ L′. Here, δ denotes a Kronecker symbol.

Proof : In Proposition 6.97, we select L1 = Zℓ and find m1 = rk(Zℓ) = 1. Further, the
choice s = 0 necessitates k > 2 +m1 − 2σ = 3− 2σ for reasons of convergence. Writing
out (6.58) yields∫︂

FΓ(1)

⟨︁
f,ΘL1 ⊗ EL2,0,k−1/2( · , 0)

⟩︁
· Imk dµ =

Γ(k − 1)

(4π)k−1

∑︂
0̸=l∈L′

1

a(l, q(l))
q(l)k−1

=
Γ(k − 1)

(4π q(ℓ0))k−1
∑︂

0̸=n∈Z

a(nℓ0, n
2 q(ℓ0))

|n|2k−2
.

Recall that by Remark 3.20 there are no non-trivial modular forms in case 2 ∤ sig(L) + 2k,
anyway. Further, in case of sig(L) ≡ 2k + 2 mod 4 the series vanishes by the symmetry
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property of the coefficients under reflection of the index (cf. Remark 3.22). Hence,

∑︂
0̸=n∈Z

a(nℓ0, n
2 q(ℓ0))

|n|2k−2
= 2 · δsig(L)≡2k (4) ·

∑︂
0̸=n∈N

a(nℓ0, n
2 q(ℓ0))

n2(k−1)
.

Finally, the series on the right hand side equals Lℓ0(f, 2(k − 1)) by Definition 6.79.

The special value Lℓ0(f, 2(k− 1)) in (6.59) plays a key role in the context of computing
cycle integrals of Kudla–Millson liftings in the subsequent chapter about theta lifts.

Remark 6.99. We recall that the Eisenstein series EL2,0,k−1/2 appearing in (6.59) has
a symmetry property (cf. Corollary 3.44). This symmetry may naively be utilised to
relate the special value to another value for which properties like non-vanishing might be
derivable. However, upon closer investigation we find that the right hand side of (6.59)
had, under the induced reflection property, to be evaluated at s = 1− k, where neither
the L-series nor the Γ–prefactor converge.







7 Automorphic lifts

In the preceding sections two distinct types of varieties have been discussed, namely
symplectic and orthogonal varieties as well as their associated automorphic forms. It
turns out that forms of one type may be utilised to construct forms of the other type by
means of so called lifts. The lifts considered in this thesis are of a special type, referred
to as theta lifts. These are given by integrating against a kernel that is constructed by
symmetrising a smooth object with respect to representations of a dual reductive pair. A
concrete description, tailored to our setting, is presented below.
The celebrated paper [BF04] of Bruinier and Funke serves as a fundamental source for the
subsequent discussion and a lattice (L, q) of signature (m+,m−) is assumed to be fixed.

7.1 Borcherds Lift

The celebrated product expansion of the discriminant function

∆ = q

∞∏︂
n=1

(1− qn)24 (7.1)

derived from the respective product of the Dedekind eta function is well established in
the field of automorphic forms. It was this expression that prompted Richard Borcherds
to pursue a more conceptual approach to product expansions of modular forms.
In 1995 Borcherds published a paper [Bor95] in which he presented a rigorous method for
obtaining infinite product expansions of modular forms with character for SL2(Z) by lifting
weakly holomorphic modular forms of weight 1/2 to the latter. The lift is multiplicative,
transforming the sum of modular forms into a product of their images. Furthermore,
the constant coefficient of the input form represents the weight of the resulting function
[Bor95, Thm. 14.1 p. 204]. This theorem even yields information about the zeroes and
poles of the target function as algebraic number theoretic data. As an example Borcherds
retrieves identity (7.1) and product expansions for the Klein j-invariant as well as several
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Eisenstein series. The following selection represents some of these examples.

Example 7.1. For 12 · θ(τ) = 12
∑︁

n∈Z e
2πin2τ =

∑︁
n∈Z c(n)q

n and the series
∑︁

n∈Z a(n)q
n

as in [Bor95, p. 204] we obtain

∆(τ) = q1
∏︂
n>0

(1− qn)c(n
2) and j(τ) = q−1

∏︂
n>0

(1− qn)a(n
2).

A far more intricate example is the following construction.

Example 7.2. The modified Klein’s j invariant j(τ)− 744 =
∑︁

n≥−1 c(n)q
n lifts to

j(τ1)− j(τ2) = q−11

∏︂
m>0,n∈Z

(1− qm1 q
n
2 )
c(mn)

known as the monster denominator formula. This may be utilised to endow the mon-
ster module with a multiplication, inducing a vertex operator algebra structure, which
ultimately leads to solving the Moonshine conjecture.

In his renowned 1998 paper [Bor98] Borcherds significantly expanded on his initial
approach, presenting a multiplicative lift [Bor98, Thm. 13.3 p. 544] that maps weakly
holomorphic vector valued modular forms of weight 1−m+/2 to modular forms for certain
discrete automorphism groups in Om+,2(R), i.e. to the orthogonal setting. In the case
of m+ = 1, the association may be interpreted as a purely symplectic lift, due to the
accidental isomorphism of SO1,2(R) and Sp1(R). For an excellent concise source on the
fundamentals which are presented in the following, see [Bru14].

It should be noted that the basis of Borcherds’ construction is a theta lift utilising a
Siegel theta function as in Definition 3.29 (see also Remark 3.28)

ΘL(τ, z) = v
m−

2
∑︂
λ∈L′

e
[︁
u q(λ) + iv q+

z (λ)
]︁
eλ+L

as an integral kernel which is paired with a weakly holomorphic vector valued modular
form f ∈ M!

L,k, namely

Φ(z, f) :=

∫︂ •

Mp2(Z)\H
⟨f(τ),ΘL(τ, z)⟩

du dv
v2

. (7.2)

Here, we have written u + iv = τ ∈ H and z ∈ D is an element of the Grassmannian.
Further, the dot accompanying the integral sign signifies a necessary regularisation (cf.
[Bor98]). This pairing is then utilised to derive the multiplicative Borcherds lift, the main
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features of which are collected in the following theorem.1

Theorem 7.3 (Borcherds). Let f ∈ M!
L−,1−m+/2 be a weakly holomorphic modular form

with Fourier coefficients a(λ, n) as in (3.40). Assume that a(λ, n) is integral for n ≤ 0.
Then there exists a meromorphic modular form Ψ( · , f) for the discriminant kernel Γ(L)
with unitary multiplier system of finite order, such that the following conditions are
satisfied.

a) The weight of Ψ( · , f) is given by a(0, 0)/2.

b) The divisor of the target form Ψ( · , f) is given by the principal part of f via

1

2

∑︂
µ∈L′/L

∑︂
n>0

a(µ,−n)Z(µ, n), (7.3)

where
Z(µ, n) =

∑︂
v∈µ+L
q(v)=n

{z ∈ D | z ⊥ v}

is the Heegner divisor of discriminant (µ, n) (cf. Definition 4.70 plus the subsequent
comment).

c) The target form Ψ( · , f) has explicit infinite product expansions.

For further details regarding the product expansions that are constructed for different
cusps, or background material on the construction itself, we refer the reader to [Bor98,
Thm. 13.3 p. 544] and conclude with the following definition.

Definition 7.4. For a form f ∈ M!
L−,1−m+/2 as above, we refer to Ψ( · , f) as the

Borcherds lift of the form f or, alternatively, as the Borcherds product of f .

7.2 Kudla–Millson lift
In the 1980s Kudla and Millson [KM86] introduced special Schwartz forms ϕKM on
the symmetric spaces attached to the classical groups O(m+,m−), U(m+,m−), and
Sp(m+,m−), taking values in closed differential forms. Their principal objective was
to investigate cohomology classes of special cycles by means of a theta correspondence,
generalising the celebrated work of Hirzebruch and Zagier [HZ76] on Hilbert modular

1We denote by L− the lattice (L,− q).
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surfaces. More precisely, in the orthogonal case, Kudla and Millson symmetrised the
Schwartz forms ϕKM over a base lattice L and let the Weil representation of the symplectic
group act on ϕKM in order to obtain a kernel ΘKM(τ, z) in a symplectic and an orthogonal
variable, which transforms automorphically in both variables. These may then be employed
as an integral kernel to lift automorphic objects from the symplectic to the orthogonal
setting or vice versa. The authors continued their work in [KM87] in great generality and
we recommend [KM90] as an introductory source and [BF04] for a perspective restricting
to the elliptic case on the symplectic side.

In the following subsection, the theta function ΘKM, as well as the associated lift will
be described in a more explicit manner. We begin by reviewing the construction of the
Schwartz form ϕKM.

7.2.1 The Kudla–Millson Schwartz form

In this section we will provide a brief overview of the construction of the Kudla–Millson
Schwartz form within the context relevant to our study, while also establishing the
necessary notation. It should be noted that some of its properties have already been
stated in Subsection 5.4.2, as they were required in the context of the Siegel–Weil formula.
This section is based on [BF04, Sec. 2, 4 p. 64], which serves as an excellent source of
further background information and some of the content of the following is also found
in [MZ23].

We begin by recalling the setting. Let (L,b) be an even Z lattice of signature (m+,m−)

and rank m. It should be recalled that V = L⊗Q is the associated rational quadratic
space and that V (R) = V ⊗ R denotes the enclosing real space. An orthogonal basis (ei)

of V (R) with b(ei, ei) = 1 for 1 ≤ i ≤ m+ and b(ei, ei) = −1 for m+ < i ≤ m is selected,
effectively choosing an isometry to the standard real quadratic vector space R(m+,m−)

of Example 1.5. Recall that the symmetric domain associated to L has a model as the
Grassmannian

D = {z ⊂ V | dim z = m−, q |z < 0},

which will be equipped with the base point z0 spanned by (ei)m+<i≤m. Further, we denote
its stabiliser in SO+(V (R)) by K and note that it is maximal compact. Additional details
can be found in Subsection 4.2.1. Recall that for any z ∈ D we find V (R) = z⊕ z⊥ so that
each element v ∈ V (R) may be decomposed uniquely into v = vz + vz⊥ ∈ z ⊕ z⊥. Note



7.2 Kudla–Millson lift 271

that this decomposition gives rise to the positive definite standard majorant of q, namely

qz(v)+ = q(vz⊥)− q(vz).

Let g denote the Lie algebra of SO+(V (R)) and g = p+ k be its Cartan decomposition.
Then p ≃ g/k identifies with the tangent space at z0 of D. With respect to the basis above,
we have

p ≃

{︄(︄
0 X

XT 0

)︄ ⃓⃓⃓⃓
⃓ X ∈ Rm

+×m−

}︄
≃ Rm

+×m−
. (7.4)

We denote the m−-forms on D by A m−
(D). Then

[︂
S(V (R))⊗ A m−

(D)
]︂SO+(V (R))

≃
[︃
S(V (R))⊗

⋀︂m−

p∗
]︃K

,

where the isomorphism is given by evaluation at the base point and the form may
be extended to the entire Grassmannian D by the action of SO(V (R)) via pullback.
Therefore, we may represent ϕKM as an element in

[︂
S(V (R))⊗

⋀︁m−
p∗
]︂K

. To this end,

let Xα,β ∈ Rm+×m− for 1 ≤ α ≤ m+ and 1 ≤ β ≤ m− denote the basis matrix with
value one in the (α, β)-entry and zero elsewhere. The corresponding dual element will be
denoted by wα,β and multiplication with it by Aα,β . Then, define the following differential
operator where we identify the cotangent space of D at z0 with p∗ under (7.4):

Dm+,m−
:=

1

2m−/2

m−∏︂
β=1

⎡⎣m+∑︂
α=1

(︃
xα − 1

2π

∂

∂xα

)︃
⊗Aα,β

⎤⎦ . (7.5)

This operator is applied to the standard Gaussian ϕ0 ⊗ 1 ∈
[︂
S(V (R))⊗

⋀︁0 p∗
]︂K

in order
to obtain the Kudla–Millson Schwartz form

ϕKM = Dm+,m−
ϕ0 ⊗ 1 (7.6)

which is closed. Based upon this construction, a more explicit description of the form
is computed in [MZ23, Sec. 2.2] which invokes products of Hermite polynomials. It is
noteworthy that Ω := ϕKM(0, · ) is the Euler form of the symmetric space D and in
the hermitian case of m− = 2, its negative defines a Kähler form. In the latter case,
a description in coordinates on the associated tube domain model has been provided
in (5.27). Of particular interest for this thesis is the hermitian case of signature (m+, 2),
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for which the form ϕKM is, in fact, a (1, 1)-form.
With the Kudla–Millson Schwartz form available, the associated theta kernel may be

constructed as presented in Definition 3.32.

Definition 7.5. Let τ = u+ iv ∈ H and z ∈ D. Then the Kudla–Millson theta function
of the lattice L is given by

ΘKM(τ, z) := ΘL(τ, z;ϕKM) := v−m/4
∑︂

λ∈L′/L

∑︂
l∈λ+L

(ω∞(gτ )ϕKM) (l, z)eλ. (7.7)

It should be noted that this form is explicitly expressed in terms of Siegel–theta functions
in [MZ23]. With the form ΘKM at hand, we may construct associated lifts of automorphic
forms.

7.2.2 The Kudla–Millson lift

As with the Borcherds lift, the theta kernel associated to the Kudla–Millson Schwartz
form may be utilised as an integral kernel to construct a theta lift.

Definition 7.6. Let L be an even lattice of signature (m+,m−) and rank m. Set k := m/2,
then for a cusp form f ∈ SL,k(Mp2(Z)) and τ = u+ iv ∈ H, the association

f ↦→ ΛKM(f) :=

∫︂
Mp2(Z)\H

vk⟨f(τ),ΘL(τ, z;ϕKM)⟩ du dv
v2

(7.8)

defines a map to the m−-forms A m−
(D) and is referred to as Kudla–Millson lift.

The target form ΛKM(f) is in general closed and inherits the invariance under the
discriminant kernel subgroup Γ(L) of L on the orthogonal side from the theta form ΘKM.
Consequently, it descends to a form on the quotient space YL = Γ(L)\D. In the hermitian
case of m− = 2, we obtain a map

ΛKM : SL,1+m+/2 → H(1,1)(YL), (7.9)

to the space of square integrable harmonic differential forms of Hodge type (1, 1) on the
orthogonal modular variety associated to the discriminant kernel Γ(L).

The applications of the Kudla–Millson theta correspondence range from the study of
the cohomology of orthogonal and unitary Shimura varieties [KM86] and Arakelov theory
of Shimura varieties [Kud04a] over specific counting problems [EGS23], constructing mock
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modular forms and higher dimensional error functions [FK17], to proving a converse
theorem for Borcherds products [Bru02] [Bru14]. It is the latter application that we have
in mind which is related to the injectivity of the Kudla–Millson lift. The question of
its injectivity already arose in [KM90, p. 122] and may be used to compute the rational
Picard number of the underlying Shimura variety [Ber+16], as well as to derive properties
of cones generated by special cycles [BM19] [Zuf22]. Since the Kudla–Millson lift has
been constructed, there have been a number of advances in prooving its injectivity and
we would like to present these results. The first statement found in the literature, the
author is aware of, is the following.

Theorem 7.7 ([Bru02, Thm. 5.12 p. 139]). Let (L, q) be an even lattice of signature
(m+, 2) such that it splits two hyperbolic planes L ≃ K ⊕H ⊕H. Then the Kudla–Millson
lift ΛKM : SL,1+m+/2 → H(1,1)(YL) is injective.

The proof is based upon the computation of the Fourier expansion of the target form,
which reveals information about the Fourier coefficients of the initial form f and leads
to the conclusion that it must vanish if its image does. The second hyperbolic split is
required in order to guarantee that indices of Fourier coefficients are representable by the
lattice in a certain fashion similar to Lemma 3.68.

There has been a second advance by the same author in collaboration with Jens Funke
in [BF10]. In this instance, the authors develop a new strategy of proof, by utilising the
doubling method to compute the L2–norm of the Kudla–Millson lift by means of the
Rallis inner product formula in order to conclude injectivity in the unimodular case for
general signature. In addition, the authors consider a twist of the Kudla–Millson lift,
denoted by ΛKMF,l, which was introduced by Funke and Millson [FM12] with a parameter
l ∈ N0 that allows for inputting forms of higher weight. The twisted lift ΛKMF,l maps
to the space of ˜︃Sym

l
(V ) valued closed differential forms on YL. Here, ˜︃Sym

l
(V ) denotes

the local system on D associated to the l-the symmetric power of V (cf. Definition 4.20).
Details are provided in the primary source or in a compact fashion in [BF10] and we refer
to the lift ΛKMF,l as the Kudla–Millson–Funke lift of degree l ∈ N0. The latter source also
contains the following injectivity statement.

Theorem 7.8 ([BF10, Cor. 4.11 p. 37]). Assume that m > max{4, 3+ r},m+ > 1,m−+ l

even, and that L is even unimodular.
Then the theta lift ΛKMF,l : SL,k+l → A m−

(YL, ˜︃Sym
l
(V )) is injective.

This approach has recently been generalised by Stein to include the case of maximal
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lattices by solving intricate local integrals for bad primes in the same setting.

Theorem 7.9 ([Ste23, Cor. 7.8 p. 25]). Let m > max{6, 2l − 2, 3 + r} and assume that
m− + l as well as k = m

2 + l are even. If L′/L is assumed to be anisotropic, then
ΛKMF,l : SL,k+l → A m−

(YL, ˜︃Sym
l
(V )) is injective.

Nevertheless, the case with the most compelling application within this thesis remains
the O(m+, 2) setting since it relates to the Borcherds lift – a connection that is discussed
in further detail below. In this case, the strongest result available in the literature
is attributed to Bruinier and proven by refining his approach in [Bru02] through the
development of a newform theory for vector valued modular forms in order to weaken the
assumption of a second hyperbolic split.

Theorem 7.10 ([Bru14, Thm. 5.3 p. 331]). Let (L, q) be an even lattice of signature (m+, 2)

such that it splits a hyperbolic plane and a scaled hyperbolic plane L ≃ K ⊕H(N)⊕H for
some N ∈ N. Then the Kudla–Millson lift ΛKM : SL,1+m+/2 → H(1,1)(YL) is injective.

It should also be noted that quite recently, Zuffetti and the author have extended this
result to the case of general signature, also including the Funke–Millson twist.

Theorem 7.11 ([MZ23, Thm. 6.2 p. 24]). Let L be an even indefinite lattice of signa-
ture (m+,m−).

i) If L ≃ K ⊕H(N)⊕H for some even lattice K and some positive integer N , then
the lift ΛKMF,l is injective.

ii) Let m− = 1. If L ≃M ⊕H for some positive definite even lattice M and M ⊗ Zp
splits off a hyperbolic plane for every prime p, then the lift ΛKMF,l is injective.

iii) Let m+ = 1. Then the lift ΛKMF,l associated to L is identically zero.

It is noteworthy that this result implies all of the above. The proof of Theorem 7.11
relies on the utilisation of Borcherds’ method of expressing theta functions with respect
to sublattices [Bor98, Sec. 5] and realising these as Poincaré series in order to apply the
unfolding method. The application of this method yields a Fourier expansion of the lift in
terms of the Fourier coefficients of the initial form. In this context, the first hyperbolic
split is then employed to simplify this expansion allowing to extract vanishing results for
the initial coefficients, while the additional split of a scaled hyperbolic plane is required to
guarantee that the lattice represents a sufficient number of indices of Fourier coefficients
of the initial form. In order to rely on the weaker assumption of a scaled hyperbolic split,
the newform theory of [Bru14, Sec. 3] is invoked.
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7.2.3 Linking lifts

An alternative approach to constructing the Kudla–Millson lift ΛKM based on Borcherds’
additive lift Φ(z, f), as presented in (7.2), has been described by Bruinier and Funke and
will be outlined in the following paragraphs. In their celebrated paper [BF04], based
upon this construction, the authors prove a duality statement between the Borcherds and
Kudla–Millson lift. In this context, they formally introduce a new space of Maass wave
forms that has been foreshadowed by [Bru02] and relate it to holomorphic modular forms
via a differential operator.

We will briefly present the setting and highlight the aforementioned connection between
the injectivity of the Kudla–Millson lift and the converse theorem for Borcherds products,
as outlined in [Bru14, Sec. 4.1].

Definition 7.12. Let (L, q) be an even lattice. For k ∈ Z/2 with k ̸= 1 denote by HL,k

the space of weak Maass forms of weight k with respect to the Weil representation ρL.
This space consists of all real analytic functions f : H → C[L′/L], satisfying the following.

a) f transforms as a modular form: f(γτ) = φ2kρL(γ, φ)f(τ) for all (γ, φ) ∈ Mp2(Z).

b) f grows at most exponentially towards the cusps.

c) f is annihilated by the hyperbolic Laplace operator of weight k given by

∆k = −v2
(︃
∂2

∂u2
+

∂2

∂v2

)︃
+ ikv

(︃
∂

∂u
+ i

∂

∂v

)︃
.

Such a form has a Fourier expansion on the upper half plane, however, its coefficients
are not invariant under imaginary shifts. It should also be noted that the hyperbolic
Laplace operator may be expressed in terms of the Maass raising and lowering operator.
To be explicit, the operators

Rk = 2i
∂

∂τ
+ kv−1, Lk = −2iv2

∂

∂τ

can be concatenated to construct −∆k = Lk+2Rk + k = Rk−2Lk. Bruinier and Funke
then craft an antilinear operator

ξk : HL,k → M!
L−,2−k, f(τ) ↦→ vk−2Lkf(τ) = R−kv

kf(τ) (7.10)

with kernel M!
L,k. Recall that L− denotes the lattice L with quadratic form rescaled by
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the factor −1. The crucial point is that the operator ξk is in fact surjective, resulting in
the exact sequence

0 → M!
L,k → HL,k

ξk→ M!
L−,2−k → 0. (7.11)

If we restrict to the preimage of SL−,2−k which will be denoted by H+
L,k, this yields the

following exact sequence.

0 → M!
L,k → H+

L,k

ξk→ SL−,2−k → 0.

In the following, fix k = m/2 and compare [BF04, Thm. 6.1 p. 77] to verify that the
following equality is true for all f ∈ H+

L−,2−k:

⟨ΘL(τ, z;ϕKM), ξ2−k(f)⟩L,k − a+(0, 0)Ω = ddcΦ(z, f),

where Ω is the negative of a Kähler form considered in (5.23), a+(0, 0) denotes the constant
term of the Fourier expansion of f and the expression Φ(z, f) might require regularisation
as in [Bru02]. Hence, for a cusp form g ∈ SL,k, select a weak harmonic Maass form
f ∈ H+

L−,2−k with vanishing constant Fourier coefficient such that ξ2−k(f) = g, inducing
a linear map

Λ(g, z) = ddcΦ(z, f) (7.12)

that agrees with the Kudla–Millson lift on SL,k. Based on this construction a subspace of
the kernel of the linear lift ΛKM on SL,k may be specified. Namely, let

NL−,2−k = {f ∈ HL−,2−k | Z(f) = 0 ∈ Div(YL)⊗ C},

where Z(f) denotes the divisor of f on YL. Then by [Bru02, Thm. 4.23 p. 114], the space
ξ(NL−,2−k) is contained in the kernel of ΛKM and Bruinier defines S+

L,k to be the orthogonal
complement of that subspace in SL,k. Moreover, he outlines the characteristics of the
spaces NL−,2−k and S+

L,k, including their dependence on the lattice L and not merely on
the discriminant form L′/L, that they are stable under O+(L), and that NL−,2−k vanishes,
provided L splits a hyperbolic plane which implies in particular S+

L,k = SL,k. Further, the
constant term in the Fourier expansion of an element in NL−,2−k vanishes automatically.

The relationship (7.12) is then utilised to prove the following alternative characterisation
of a converse theorem for Borcherds products. For that purpose, write Λ+

KM for the
restriction of Λ to S+

L,k.
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Theorem 7.13 ([Bru14, Thm 4.2 p. 330]). Suppose that m+ ≥ 2 and that m+ is greater
than the Witt rank of V . The following are equivalent:

i) The map Λ+
KM : S+

L,k → H(1,1)(YL) is injective.

ii) Every meromorphic modular form F with respect to Γ(L) whose divisor is a linear
combination of special divisors as in (7.3) is (up to a nonzero constant factor) the
Borcherds lift Ψ(z, f) of a weakly holomorphic modular form f ∈ M!

L−,2−k with
integral principal part.

The proof of the first implication is based on a weak converse theorem for Borcherds
products of Bruinier, stating that there is a desired preimage f ∈ HL−,2−k in the space
of weak harmonic Maass forms such that ΛKM(ξ(f)) = ddcΦ(z, f) = 0. For the sake of
convenience, assume that the lattice L splits a hyperbolic plane. Then, if Λ+

KM is injective,
we must have ξ(f) = 0, i.e. f is in the kernel of the operator ξ. This kernel, however,
agrees with the space M!

L−,2−k by (7.11), meaning f was, in fact, a weakly holomorphic
modular form. In conclusion, a converse theorem for Borcherds products is derived as
demanded in [Bor95, Problem 10] and [Bor98, Problem 16.10].

7.3 Injectivity of a theta lift

Let (L, q) be an even Z lattice of signature (m+, 2) and rank m and set k := m/2. In this
section we will prove the injectivity of the Kudla–Millson lift introduced in Definition 7.6:

ΛKM : SL,k → H(1,1)(YL).

First, note that the lift ΛKM is linear, hence it suffices to prove that its kernel is trivial.
As described in the introduction, the idea is for f ∈ SL,k to integrate the form ΛKM(f)

over special cycles of YL. If it is assumed that f is annihilated by the Kudla–Millson lift,
then these cycle integrals must vanish. The nature of the special cycles will allow us to
extract information about the Fourier coefficients of the initial form f . Subsequently, we
shall conclude that they vanish without exception, i.e. f = 0, proving the injectivity.
In the following, abbreviate L = L′/L and denote the Fourier expansion of f by

f(τ) =
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n) · e(nτ)eλ. (7.13)
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7.3.1 Cycle integrals of Kudla–Millson lifts

The first major step is to prove that integrals of a target form ΛKM(f) of the Kudla–Millson
lift over certain divisors reduce to special L-values of symmetric square type L-functions
of f . These divisors have been presented in Subsection 4.2.5 in (4.33) and we briefly recall
their shape. Let ℓ ∈ L have positive norm, D denote the Grassmannian of L and Γ(L)

denote the discriminant kernel in O(L). If Γ(L)ℓ denotes the stabiliser of ℓ in Γ(L), then

Z(ℓ) := Γ(L)ℓ\Dℓ → Γ(L)\D = YL

defines a (in general relative) cycle of YL, where we have set Dℓ = {x ∈ D | x ⊆ ℓ⊥}. With
the application of Kudla’s geometric example [Kud03, Sec. 4.3 p. 328] in mind, consider∫︂

Z(ℓ)

∫︂
F
⟨f(τ),ΘL(τ, z;ϕKM)⟩vk du dv

v2
∧ Ωm

+−2, (7.14)

where Ω is the negative of a Kähler form on YL as in Definition 5.23 and F = Mp2(Z)\H.
In order to apply Kudla’s observation [Kud03, Prop. 4.17 p. 332], several reduction steps
are performed. To this end, recall that Lℓ := L ∩ ℓ⊥ is a lattice of signature (m+ − 1, 2),
such that M := Zℓ ⊕ Lℓ ≤ L defines a sublattice of finite index. If O(V )ℓ denotes the
stabiliser of ℓ, we find

Γ(Lℓ) ≃ Γ(M) ∩ O(V )ℓ ≤ Γ(L) ∩ O(V )ℓ = Γ(L)ℓ.

Here, we have used that the discriminant kernel is inclusion preserving (cf. Remark 4.50).
Further, an application of Lemma A.8 with the choices G = Γ(L),H = Γ(M), and
K = Γ(L)ℓ necessitates [Γ(L)ℓ : Γ(Lℓ)] ≤ [Γ(L) : Γ(M)]. The latter index is certainly
finite, and so is the multiplicity C(ℓ) of the covering

Y(ℓ) := Γ(Lℓ)\Dℓ → Γ(L)ℓ\D = Z(ℓ).

Since the integrand in (7.14) is invariant under pullbacks from Γ(L) (cf. Definition 5.23
and (5.23)), we may rewrite the integral as an integral over Y(ℓ), provided we adjust for
the prefactor C(ℓ)−1.

We will begin the computation in the following and note that convergence will be
verified backwards at a later stage. The first aim is to separate part of the integrand that
belongs to the cycle Z(ℓ) in order to apply the Siegel–Weil formula.
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In Subsection 3.3.2 a lift ↑ML : SL,k → SM,k has been described that behaves well with respect
to the respective scalar products as well as theta functions. In fact, by Proposition 3.36
the operator ↑ML fulfils the following relation:

⟨f(τ),ΘL(τ, z;ϕKM)⟩ = ⟨↑ML f(τ),ΘM (τ, z;ϕKM)⟩.

Note that ΘM (τ, z;ϕKM) fulfils the conditions of Remark 3.34 on Dℓ (cf. [Fun02, Thm. 2.1
p. 294]). As a consequence, this theta function splits as a tensor product and by abbrevi-
ating f̃ :=↑ML f and writing ϕKM,Lℓ

for the Kudla–Millson Schwartz form on Lℓ ⊗ R, we
obtain the following identity on Dℓ:

⟨f(τ),ΘL(τ, z;ϕKM)⟩ = ⟨f̃(τ),ΘZℓ(τ, z;ϕ0,ℓ)⊗ΘLℓ
(τ, z;ϕKM,Lℓ

)⟩,

where ϕ0,ℓ(x) = exp(−2π q(x)) is the standard Gaussian on the space Rℓ. Now, if we swap
the order of integration in (7.14) under the assumption of absolute convergence, we may
integrate over only a part of the scalar product. For that purpose, write λ1 ∈ (Zℓ)′/Zℓ as
well as λ2 ∈ (Lℓ)

′/Lℓ and find in the notation of Definition 3.31 that∫︂
Y(ℓ)

∫︂
F
⟨f(τ),ΘL(τ, z;ϕKM)⟩vk du dv

v2
∧ Ωm

+−2

=

∫︂
F

∑︂
λ1,λ2

f̃λ1⊕λ2(τ) · θZℓ,λ1(τ ;ϕ0,ℓ)

∫︂
Y(ℓ)

θLℓ,λ2(τ, z;ϕKM,Lℓ
) ∧ Ωm

+−2vk
du dv
v2

.

Recall that ΘZℓ has no z-dependence, since the associated Grassmannian is trivial. The
inner integral over Y(ℓ), however, has already been explicitly related to a standard theta
integral by means of Corollary 5.26 which in turn equals a special value of an Eisenstein
series by the application of the Siegel–Weil formula (cf. Theorem 5.21).2 In fact, we obtain
under the assumption that m+ − 1 is bigger than the Witt index of Vℓ = Lℓ ⊗Q that∫︂

Z(ℓ)

∫︂
F
⟨f(τ),ΘL(τ, z;ϕKM)⟩vk du dv

v2
∧ Ωm

+−2

= CL(ℓ) ·
∫︂
F

∑︂
λ1,λ2

f̃λ1⊕λ2θZℓ,λ1(τ ;ϕ0,ℓ)E(τ, s0; ϕ̃KM,Lℓ
⊗ ϕλ2)v

k du dv
v2

(7.15)

for a nonzero explicit constant3 CL(ℓ). Here, the Eisenstein series is to be understood

2Compare Remark 5.7 as well as Definition 5.16 for translating Theorem 5.21 from functions on the
group to functions in τ ∈ H. A factor of Im(τ)−k/2 appears in the process on both sides.

3In fact, we find that CL(ℓ) is given by the product of the prefactors on the right hand side of (5.31) in
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adellically and has been presented in Definition 5.20. Further, it is holomorphic at the
critical point s0 = k − 3/2 while ϕλ2 denotes the finite Schwartz form represented by the
coset of λ2 (cf. Example 5.13 part d)). By (5.28), the intertwining operator maps ϕ̃KM,Lℓ

to the weight k − 1/2 section Φ
k−1/2
∞ through the principal series representation. Hence,

collecting terms for λ1, λ2 and utilising Definition 5.17, the inner sum in (7.15) may again
be written as a scalar product by using the identification of C[L] with SL presented in
Lemma 3.9:

∑︂
λ1,λ2

f̃λ1⊕λ2θZℓ,λ1(τ ;ϕ0,ℓ)E(τ, s0; ϕ̃KM,Lℓ
⊗ ϕλ2) = ⟨f̃ ,ΘZℓ(τ ;ϕ0,ℓ)⊗ EL̂ℓ,k−1/2(τ, s0)⟩.

Here, EL̂ℓ,k−1/2 is an adelic version of the vector valued Eisenstein series (cf. Definition 5.17)
which has been rewritten in classical terms in Proposition 5.18. In fact, (5.21) reads for
l ∈ Z/2, representing the weight,

EL̂ℓ,l
(τ, s0) = ELℓ,0,l

(︂
τ, s0+1−l

2

)︂
, (7.16)

where ELℓ,0,l is described in Definition 3.37. As a consequence, selecting l = k− 1/2 yields
a new expression for the initial integral in classical terms:∫︂

Z(ℓ)

∫︂
F
⟨f(τ),ΘL(τ, z;ϕKM)⟩vk du dv

v2
∧ Ωm

+−2

= CL(ℓ) ·
∫︂
F
⟨f̃(τ),ΘZℓ(τ ;ϕ0,ℓ)⊗ ELℓ,0,k−1/2(τ, 0)⟩v

k du dv
v2

. (7.17)

Recall that by Example 3.52 part d) the integral in (7.17) converges absolutely as long as
the Eisenstein series ELℓ,0,k−1/2 converges. This is definitely the case if k > 5/2 is assumed
(cf. Lemma 3.38) which is equivalent to m+ > 3, justifying all steps so far. Further, the
expression in (7.17) is a Petersson scalar product type integral containing a parabolic
Poincaré series as in Proposition 6.95. As such, it qualifies for unfolding, provided the
resulting integral converges absolutely. By Proposition 6.95, it does so for 0 > 3− k/2,
which is true in our case as long as m+ > 10. This bound may be marginally improved,
however, a bound below 7 appears to be unfeasible. Clearly, it is possible to continue
the desired computation under the assumption m+ > 10. Nevertheless, regularising the
integral appears to be more attractive.
For that purpose, recall that by Definition 3.37 the series ELℓ,0,k−1/2(τ, 0) is a special value

Corollary 5.26 with C(ℓ)−1.
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of a series ELℓ,0,k−1/2(τ, s) depending on some parameter s ∈ C which may be proven
to be normally convergent if s satisfies Re(s) > 5

4 − k/2 = 5−m
4 (cf. Lemma 3.38). This

implies the condition m+ ≥ 3 to guarantee holomorphicity to the right of s = 0. Now,
instead of considering the Eisenstein series ELℓ,0,k−1/2 for s = 0, we may investigate the
integral in (7.17) for general arguments s ∈ C (also compare the analytic continuation
of ELℓ,0,k−1/2 in s by Remark 3.39). Then, unfolding is possible for choices s ∈ C with
sufficiently large real part as a byproduct of Proposition 6.95. This has been spelled out
in Corollary 6.96 stating explicitly that for all s with sufficiently large real part we find∫︂

F

⟨︂
f̃ ,ΘZℓ ⊗ ELℓ,0,k−1/2( · , s)

⟩︂
· Imk du dv

v2
=

∫︂
FΓ∞

⟨︁
f̃ ,ΘZℓ ⊗ e0

⟩︁
· Ims+k du dv

v2
.

Here, FΓ∞ denotes a suitable representation of Γ∞\H. We may then proceed to manipulate
the integral as it is carried out directly below Corollary 6.96 to obtain a representation as
an L-series. This will yield the special case of Proposition 6.97 that is∫︂
F

⟨︂
f̃ ,ΘZℓ ⊗ ELℓ,0,k−1/2( · , s)

⟩︂
· Imk du dv

v2
=

Γ(s+ k − 1)

(4π)s+k−1
·
∑︂

0̸=l∈(Zℓ)′

ã(l, q(l))
q(l)s+k−1

. (7.18)

Here, ã(λ, n) denote the Fourier coefficients of f̃ as in (7.13). The series on the right hand
side identifies with LZℓ,0,1(f̃ , s+ k − 1) given in Definition 6.73. For that naive definition,
the lattice Zℓ was assumed to split from the initial lattice. However, the succeeding more
thorough Definition 6.77 also allowed for considering splitting sublattices and Remark 6.78
concluded that

∑︂
0̸=l∈(Zℓ)′

ã(l, q(l))
q(l)s+k−1

= LZℓ,0,1(f̃ , s+ k − 1)

= LZℓ,0,1(f, s+ k − 1)

=
∑︂

0̸=l∈(Zℓ)′

a(l, q(l))
q(l)s+k−1

.

To ease the notation before continuing, we may select a primitive element ℓ0 ∈ (Zℓ)′ ∩ L′

and write

LZℓ,0,1(f, s+ k − 1) =
∑︂

0̸=l∈(Zℓ)′

a(l, q(l))
q(l)s+k−1

=
∑︂

0 ̸=n∈Z

a(nℓ0, n
2 q(ℓ0))

q(nℓ0)s+k−1
.

Notice that the Fourier coefficients of cusp forms have a symmetry property enforced by
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the action of the generator Z ∈ Mp2(Z) of the centre (cf. Remark 6.74), yielding that the
series vanishes unless 2k ≡ sig(L) mod 4. In our case 2k = m+ + 2 ≡ m+ − 2 mod 4.
The right side is, in fact, the signature, so that the negative and positive indices of the
series contribute the same terms, yielding

LZℓ,0,1(f, s+ k − 1) =
∑︂

0̸=n∈Z

a(nℓ0, n
2 q(ℓ0))

q(nℓ0)s+k−1

=
2

q(ℓ0)s+k−1
·
∑︂
n∈N

a(nℓ0, n
2 q(ℓ0))

n2(s+k−1)

=
2

q(ℓ0)s+k−1
· Lℓ0(f, 2(s+ k − 1)),

where we use the notation of Definition 6.79 in the last line. By utilising the asymptotic
growth of the Fourier coefficients a(λ, n), absolute convergence of Lℓ0(f, 2(s+ k− 1)) may
be proven in a right half plane. This is carried out in Lemma 6.80, proving that absolute
convergence is guaranteed for 2 · Re(s) > 3− k − 2σ with some positive σ depending on
the asymptotic behaviour of the progression of Fourier coefficients. Concrete choices of σ
have been derived in Corollary 3.87 based on bounds by [Ran39b], [BH08], and [Wai18]
and collected in Table 3.1. The currently relevant cases are also contained in Lemma 6.80
and read

σ =

⎧⎨⎩1/2, 2 | sig(L),

1/4, 2 ∤ sig(L).

If we were to insert the critical point s = 0, the conditions read

m+ > 4(1− σ) =

⎧⎨⎩2, 2 | sig(L),

3, 2 ∤ sig(L).
(7.19)

Assuming (7.19), we terminate the manipulation of the right hand side of (7.18) and apply
our findings to (7.17) in order to infer the following Theorem.

Theorem 7.14. Let (L, q) be an even lattice of signature (m+, 2), set k := 1 + m+

2 , let
f ∈ SL,k and select some ℓ ∈ L of positive norm. If m+ > 3, then∫︂

Z(ℓ)
ΛKM(f) ∧ Ωm

+−2 = 2CL(ℓ)
Γ(k − 1)

(4π q(ℓ0))k−1
· Lℓ0(f,m+), (7.20)

where ΛKM is the Kudla–Millson lift, Ω the negative of a Kähler form presented in
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Definition 5.23, Z(ℓ) is the special divisor in (4.33), CL(ℓ) is a nonzero explicit constant,
ℓ0 is some primitive element in Qℓ ∩ L′, and Lℓ0(f, s) denotes the symmetric square type
L-series from Definition 6.79.

As a consequence, we conclude that a family of special L-values vanishes, if the associated
cusp form is annihilated by the Kudla–Millson lift.

Corollary 7.15. In the notation of Theorem 7.14 we find that for any f ∈ ker(ΛKM) and
all primitive ℓ0 ∈ L′ of positive norm the following L-value vanishes

Lℓ0(f,m
+)

def
=
∑︂
n∈N

a(nℓ0, n
2 q(ℓ0))

nm+ = 0. (7.21)

The corollary above will be employed to derive an injectivity result.

7.3.2 Injectivity for a hyperbolic split

The aim of this subsection is to prove the following theorem.

Theorem 7.16. Let (L, q) be an even lattice of signature (m+, 2) with m+ > 3. Assume
that L splits a hyperbolic plane. Then the Kudla–Millson lift ΛKM : SL,1+m+/2 → H(1,1)(YL)

is injective.

We begin by recalling that the Kudla–Millson lift associates to an elliptic cusp form
f ∈ SL,k a form

ΛKM(f) =

∫︂
Mp2(Z)\H

⟨f(τ),Θ(τ, z;ϕKM)⟩ du dv
v2

∈ H(1,1)(YL).

Before continuing, we will sketch the idea of the proof of Theorem 7.16. By Corollary 7.15,
the vanishing of ΛKM(f) for some f ∈ SL,k implies the vanishing of special L-values
associated to primitive positive ℓ0 ∈ L′. Briefly recall that primitivity derived from having
to sum over all coefficients whose indices are generated by a rational line in V . Under the
hypothesis of a hyperbolic split of L, we may eliminate the primitivity assumption on ℓ0.
With that advantage, the series Lℓ0(f,m+) may be dissected into vanishing subseries,
guaranteeing the vanishing of all of its coefficients.

There are two challenges to be addressed in order to prove the vanishing of the initial
form f based on the vanishing of the special L-values in (7.21) which contain Fourier
coefficients of f . The first is, that the only Fourier coefficients a(λ, n) of f ever appearing
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with the chosen method are of the form a(ℓ, q(ℓ)) for some ℓ ∈ L′ of positive norm; the
second is that the relations involve infinitely many of these coefficients – the system of
equations does not appear to be determined. While the second issue may be addressed by
Hecke theory, the first is solely a property of the lattice L.

By assuming that L splits off a hyperbolic plane, we may eliminate the first problem. In
fact, in this case, Lemma 3.68 states that any possible index (λ, n) of a Fourier coefficient
of f ∈ SL,k may be represented by some primitive (!) vector ℓ0 ∈ L′ in the sense that
(λ, n) = (ℓ0, q(ℓ0)).4 However, the L-series Lℓ(f, s) depends solely on the pair (ℓ, q(ℓ)), so
that in conjunction with Corollary 7.15 we immediately conclude the following assertion.

Corollary 7.17. Assume (L, q) is an even Z lattice of signature (m+, 2) that splits a
hyperbolic plane and set k := 1 +m+/2. If m+ > 3 and f ∈ SL,k is annihilated by ΛKM,
then for any ℓ ∈ L′ of positive norm the following special L-value vanishes:

Lℓ(f,m
+)

def
=
∑︂
n∈N

a(nℓ, q(nℓ))
nm+ = 0.

As we will see, this also eliminates the second problem in proving the main theorem
without resorting to Hecke theory by utilising an inclusion–exclusion trick.

Lemma 7.18. Assume L splits a hyperbolic plane and f ∈ SL,k for m+ > 3 is annihilated
by ΛKM. Let N ∈ N be a natural number and ℓ ∈ L′ be of positive norm. Then

LNℓ (f,m
+)

def
=

∑︂
n∈N

gcd(n,N)=1

a(nℓ, q(nℓ))
nm+ = 0.

Proof : Note that it suffices to consider square free N . We will prove the assertion by
induction on the number of distinct prime divisors of N . The case N = 1 is identical
to Corollary 7.17. Assume that the statement is true for some N ∈ N. Select a prime
number p ∤ N and note that by the assumption m+ > 3 absolute convergence guarantees

∑︂
n∈N

gcd(n,pN)=1

a(nℓ, q(nℓ))
nm+ =

∑︂
n∈N

gcd(n,N)=1

a(nℓ, q(nℓ))
nm+ − 1

pm+

∑︂
n∈N

gcd(n,N)=1

a(npℓ, q(npℓ))
nm+

= LNℓ (f,m
+)− 1

pm+ L
N
pℓ(f,m

+).

4Note that the proof ot the Lemma in question may be understood without learning about the notation
of the respective subsection.
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Now the right hand side vanishes by our induction hypothesis, completing the proof.

The lemma above is the last ingredient for the proof of the main theorem.

Proof of Theorem 7.16: Assume there was a non-trivial form f ∈ ker(ΛKM) with Fourier
expansion

f(τ) =
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n) · e(nτ)eλ.

Fix a pair (λ, n) for which a(λ, n) ̸= 0. By Lemma 3.68, the hyperbolic split guarantees the
existence of some ℓ ∈ L′ of positive norm with (ℓ, q(ℓ)) = (λ, n). Further, the assumption
of m+ > 3 implies that Lℓ(f,m+) =

∑︁
d∈N a(dℓ, d

2 q(ℓ))/dm+ converges absolutely. Hence,
there must be some number M ∈ N such that

∞∑︂
d∈N
d>M

|a(dℓ, d2 q(ℓ))|
dm+ < |a(ℓ, q(ℓ))|.

Consequently, selecting N :=M ! results in

LNℓ (f,m
+) = a(ℓ, q(ℓ)) +

∑︂
1<d∈N

gcd(d,N)=1

a(dℓ, d2 q(ℓ))
dm+ ̸= 0. (7.22)

However, f was assumed to be annihilated by ΛKM, implying by Lemma 7.18 that the
left hand side of (7.22) vanishes – a contradiction! As a consequence, the assumption of a
non-trivial element in the kernel of ΛKM must be incorrect i.e. the Kudla–Millson lift is
injective.

An application of Theorem 7.13 yields a converse theorem for Borcherds products (also
compare Theorem 7.25).

Theorem 7.19. Assume that L ≃ K ⊕H for some lattice K of signature (m+ − 1, 1)

with m+ > 3. Then every meromorphic modular form F for Γ(L) whose divisor is a linear
combination of special divisors Z(µ, n) as in (4.31) is (up to a nonzero constant factor)
the Borcherds lift Ψ(z, f) of some weakly holomorphic modular form f ∈ M!

L−,1−m+/2.

Remark 7.20. We note that the essential assumption of a hyperbolic split in Theorem 7.16
may not be omitted. This has been shown by [Bru14, Sec. 6.1 p. 333]. Also, the theorem
cannot be proven for m+ = 1 – cf. Theorem 7.11 iii). The case of m+ = 3 is discussed in
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the following, while the case of m+ = 2 remains out of reach for a single hyperbolic split
with the current method.
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The case of m+ = 3

The case of m+ = 3, which was previously excluded for the sake of convenience, may
still be treated by the same procedure. A careful analysis of the proof reveals that the
majority of arguments remains intact if vanishing of the L-value Lℓ(f,m+) is replaced
by convergence Lℓ(f, s) → 0 for s → m+. This approach is universally applicable for
Witt rank 1 of the lattice L which is precisely the case that remains unproven. The
crucial additional element for such an advancement is Theorem 3.82, guaranteeing that
the subseries LNℓ (f,m+) in fact converges absolutely, provided lev(L) | N .
Indeed, the sole issue with the case m+ = 3 in the proof of Theorem 7.16 is convergence.
More explicitly, in order to apply the Siegel–Weil formula to insert the Eisenstein series E
in (7.15) and obtain holomorphicity at s0 = k−1/2, Weil’s convergence criterion is applied.
This criterion fails, unless L∩ ℓ⊥ has Witt rank at most 1 which is guaranteed if the initial
lattice L is assumed to have Witt rank 1. Continuing the proof under this assumption,
yields that (7.18) equals

2
Γ(s+ k − 1)

(q(ℓ0)4π)s+k−1
· Lℓ0(f, 2(s+ k − 1))

for all s ∈ C in a right half plane, where the L-series converges absolutely and is
holomorphic in s. This is the case for Re(s) > 0. However, the left hand side of (7.18)
is holomorphic in s at s = m+ by Weil’s convergence criterion (cf. Theorem 5.21 and
Corollary 3.54). Hence, the right hand side of (7.18) can be holomorphically continued to
s = m+. As a consequence, we obtain the following version of Corollary 7.15.

Corollary 7.21. Let (L, q) be an even lattice of signature (3, 2), set k := 5
2 , let f ∈ SL,k

and select some ℓ ∈ L of positive norm such that L ∩ ℓ⊥ has Witt rank at most 1. Then∫︂
Z(ℓ)

ΛKM(f) ∧ Ω1 = 2CL(ℓ)
Γ(k − 1)

(4π q(ℓ0))k−1
· lim

s→m+

Re(s)>m+

Lℓ0(f, s), (7.23)

for some primitive element ℓ0 ∈ Qℓ∩L′. For the rest of the notation, compare Theorem 7.14.

Corollary 7.22. In the notation of Corollary 7.21, assume f ∈ ker(ΛKM). Then

lim
s→m+

Re(s)>m+

Lℓ0(f, s)
def
= lim

s→m+

Re(s)>m+

∑︂
n∈N

a(nℓ0, n
2 q(ℓ0))
ns

= 0, (7.24)

where a(λ, n) denote the Fourier coefficients of f as in (7.13).
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The same line of reasoning that was used to prove Corollary 7.17 and Lemma 7.18
can be applied to prove their respective analogues which are subsumed in the following
Corollary.

Corollary 7.23. Assume the lattice L of signature (3, 2) has Witt rank 1, splits a hyperbolic
plane and that some f ∈ SL,k is annihilated by ΛKM. Let N ∈ N be a natural number and
ℓ ∈ L′ be of positive norm. Then

lim
s→m+

Re(s)>m+

Lℓ(f, s) = lim
s→m+

Re(s)>m+

LNℓ (f, s) = 0.

Proposition 7.24. Let (L, q) be an even lattice of Witt rank 1 and signature (3, 2) such
that L splits a hyperbolic plane. Then the lift ΛKM : SL,5/2 → H(1,1)(YL) is injective.

Proof : The proof is almost identical to the proof of Theorem 7.16, only differing by
convergence issues at the critical point s = 3 of the L-series involved.
Assume there was a non-trivial form f ∈ ker(ΛKM) with Fourier expansion

f(τ) =
∑︂
λ∈L

∑︂
n∈q(λ)+Z

a(λ, n) · e(nτ)eλ.

Fix a pair (λ, n) for which a(λ, n) ̸= 0. By Lemma 3.68, the hyperbolic split guarantees
the existence of some ℓ ∈ L′ of positive norm with (ℓ, q(ℓ)) = (λ, n). Further, m+ = 3

is chosen such that Lℓ(f, s) =
∑︁

d∈N a(dℓ, d
2 q(ℓ))/ds converges absolutely to the right of

s = m+. However, for N ∈ N with lev(L) | N , the series

LNℓ (f, s) =
∑︂
d∈N

gcd(d,N)=1

a(dℓ, d2 q(ℓ))
ds

converges absolutely at s = m+ by Corollary 3.87. Hence, there must be some number
M ∈ N such that

∞∑︂
M<d∈N

gcd(d,N)=1

|a(dℓ, d2 q(ℓ))|
dm+ < |a(ℓ, q(ℓ))|.

Consequently, selecting N := (M · lev(L))! results in

LNℓ (f,m
+) = a(ℓ, q(ℓ)) +

∑︂
1<d∈N

gcd(d,N)=1

a(dℓ, d2 q(ℓ))
dm+ ̸= 0. (7.25)
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However, the form f was assumed to be annihilated by ΛKM, implying by Corollary 7.23
that

LNℓ (f,m
+) = lim

s→m+

Re(s)>m+

Lℓ(f, s) = 0,

contradicting (7.25). As a consequence, the assumption of a non-trivial element in the
kernel of ΛKM must be incorrect, i.e. the Kudla–Millson lift is injective.

This result may be employed to augment the converse theorem for Borcherds products.
Recall that Theorem 7.19 already settled the case of a hyperbolic split with m+ > 3. For
the case of m+ = 3 and a hyperbolic split, we may find that the lattice L has Witt rank 1

or 2. The case of Witt rank 2 is treated in [Bru14, Thm. 1.2 p. 317] with a minor caveat,
while the case of Witt rank 1 is a consequence of Proposition 7.24 in conjunction with
Theorem 7.13.

Theorem 7.25. Assume m+ > 2 and that L ≃ K ⊕H splits a hyperbolic plane. Then
there is a sublattice K0 ≤ K such that every meromorphic modular form F with respect to
Γ(L) whose divisor is a linear combination of special divisors Z(µ, n) as in (4.31) is (up
to a nonzero constant factor) the Borcherds lift Ψ(z, f) of a weakly holomorphic modular
form f ∈ M!

K−
0 ,1−m+/2

.

Remark 7.26. Note that the only case, where passing to a proper sublattice K0 < K

in Theorem 7.25 might be necessary is the case of m+ = 3 and L having Witt rank 2.
We expect the method of proof employed in the current thesis to also work in this case
by bypassing Weil’s convergence criterion, rendering the transition to a sublattice K0

superfluous in each instance.





Part IV

Appendix





A Supplementing proofs

A.1 Lattices
In this section, we provide proofs of statements from Section 1.1 and also provide a
non-trivial example of diagonalising a Gram matrix shedding some light on the O(2, 2)

case. We assume the reader to be familiar with the notation of Section 1.1.

Remark A.1. Let (L, q) be an R lattice of rank m in the quadratic space L⊗R F . Then
choosing a Gram matrix S corresponds to defining an isometry to the lattice Rm ⊆ Fm

with bilinear form
b : Rm ×Rm ∋ (x, y) ↦→ xtSy ∈ F.

In the p-adic case R = Zp, we may for p ̸= 2,∞ also bring the quadratic form into a
standard form according to Proposition 1.11 which then results in choosing a different
basis. In case of F = Qp, the additive group (F,+) carries a locally compact topology and
hence possesses a Haar measure, which induces a measure on Fm and will be normalised
on the unit cube (Zmp in case p < ∞). Hence, it is meaningful to assign to L a volume
vol(L) by taking the measure of the Zp cube generated by a basis of L. Note that for
a Z lattice L we find the following product formula for the corresponding local lattices∏︁
p≤∞ vol(Lp) = 1.

Remark A.2. (1.30) Let L be a non-degenerate Z lattice.
[back]

a) We find det(L)L′ ≤ L as well as NL′ ≤ L.
b) We have |L′/L| = |det(L)| = vol(L)2, in particular, L′/L is finite.
c) Further, the following division relations are true N | 2det(L) | 2Nn and N | det(L)2.

In case of odd level N or even rank m, we find N | det(L).
d) The level N and the determinant det(L) have the same prime divisors.

Proof : a) Let S denote a Gram matrix of the lattice L. Then both inclusions follow
from 1.23 once NS−1 is identified as an integral matrix. For a basis (li)i of L and respective
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dual basis (l′i)i we have S−1 = (b(l′i, l′j))i,j and verify

N b(l′i, l′j) = N
[︁
q(l′i + l′j)− q(l′i)− q(l′j)

]︁
∈ Z.

c) The latter implies det(S) | det(S)det(NS−1) = Nm. Since 2det(L)S−1 ∈Mm(Z) and
by a) we have det(L)2 q(L′) ∈Mm(Z), N must divide both by minimality.
Finally, in case of even lattice and rank m, det(S)S−1 represents an even lattice. To
verify this, the Leibniz formula for a minor of S reading

∑︁
σ∈Sm−1

sgn(σ) ·
∏︁
i si,σ(i) yields

identical terms for permutations σ and σ−1. In case σ2 = id, there is a fixed index n, as
m − 1 is odd, so that snσ(n) = snn ∈ 2Z is part of the product. As a consequence, all
linear combinations of NS−1 and det(S)S−1 are even, yielding by definition of the level
N | det(S).
b) Further, the elementary divisor Theorem for L ≤ L′ and a straightforward calculation
yield det(S) = |L′/L|2 det(S)−1. The statement about the volume is completely reduced
to the case Qn

p . Then Remark 1.23 and the transformation formula for integrals yield the
desired result.

Remark A.3. Let (L, q) be an even Z-lattice of signature (m+,m−). If |sig(L)| ≥ 3,
then the Witt rank rQ of L is maximal, i.e. r = min{m+,m−}.

Proof : The definite case is clear. Assume VQ is indefinite, i.e. m+,m− > 0. Note that
|sig(L)| = |m+ −m−| = max{m+,m−} − min{m+,m−}, so that

|sig(L)| ≥ 3 ⇐⇒ max{m+,m−}+ min{m+,m−} ≥ 3 + 2min{m+,m−}.

This translates to dim(V ) ≥ 3+ 2 · rR, with rR = min{m+,m−} being the Witt rank over
R. By applying the Theorem of Meyer (cf. Remark 1.25) inductively to an indefinite space
fulfilling the last inequality, we see that it splits at least rR hyperbolic planes.

In the following, we present the diagonalisation of two important cases of lattices, one of
which may play a key role for the injectivity of the Kudla–Millson lift in signature (2, 2).

Example A.4. Let L be a non-degenerate quadratic Z lattice of rank 2 with Gram matrix
S. Clearly, given ℓ ∈ V = L⊗Z Q with q(ℓ) = 0, it cannot be completed to an orthogonal
basis, since the lattice was assumed to be non-degenerate. So assume ℓ fulfilled q(ℓ) ̸= 0.
Then ℓTS ̸= 0 and by non-degeneracy, this vector has 1 dimensional kernel generated by
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0 ̸= v :=
(︁

0 1
−1 0

)︁
Sℓ. Now ℓ, v represent an orthogonal basis of V . We find

vTS = ℓTS
(︁
0 −1
1 0

)︁
S = ℓT det(S)

(︁
0 −1
1 0

)︁
= det(S)

[︁(︁
0 1
−1 0

)︁
ℓ
]︁T
.

This results in
vTSv = det(S)ℓT

(︁
0 −1
1 0

)︁ (︁
0 1
−1 0

)︁
Sℓ = det(S)2 q(ℓ),

yielding the following Gram matrix with respect to the basis B = (ℓ, v)

SB = 2 q(ℓ)

(︄
1 0

0 det(S)

)︄
.

Example A.5. Assume L is a non-degenerate Z lattice of rank 4, such that L =M ⊕N

splits with rk(M) = 2. Note that this renders M,N non-degenerate Z lattices of rank 2.
We would like to complete ℓ ∈ V = L ⊗Z Q to an orthogonal basis. The vector ℓ must
clearly be non-isotropic and we write ℓ = (ℓ1, ℓ2, ℓ3, ℓ4)

T ∈ V as for the Gram matrix

S = SM ⊕ SN =

⎛⎜⎜⎜⎜⎜⎝
s11 s12

s12 s22

s33 s34

s34 s44

⎞⎟⎟⎟⎟⎟⎠ .

Without loss of generality, ℓ|M is not isotropic, meaning q(ℓ|M ) ̸= 0. If ℓ = ℓ|M ⊕ 0,
meaning the restriction ℓ|N = 0 vanishes identically, the situation has been solved in
Example A.4, by giving an OB for M and N individually.
So assume ℓ|M , ℓ|N ̸= 0. Then we may, without loss of generality assume that ℓ1, ℓ3 ̸= 0.
Further, v1 =

(︂
ℓ1s12 + ℓ2s22 −ℓ1s11 − ℓ2s12 0 0

)︂T
∈M ′ is orthogonal to ℓ. In order

to complete this to a basis, we have two cases to consider, namely whether ℓ|N is isotropic
or not.

1. Assume ℓ|N is not isotropic. Then we may repeat the argument above to find
v2 =

(︂
0 0 ℓ3s34 + ℓ4s44 −ℓ3s33 − ℓ4s34

)︂T
∈ N ′ to be orthogonal to ℓ|N and

hence also to ℓ. Now in order to find the last vector of the orthogonal basis, we need
to solve the following system of equations (we use the computation of Example A.4,
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again)⎛⎜⎜⎝
ℓ2 −ℓ1 0 0

0 0 ℓ4 −ℓ3
ℓ1s11 + ℓ2s12 ℓ1s12 + ℓ2s22 ℓ3s33 + ℓ4s34 ℓ3s34 + ℓ4s44

⎞⎟⎟⎠w =

⎛⎜⎜⎝
0

0

0

⎞⎟⎟⎠ .

For the last line, we want to eliminate the second and fourth entry. In order to
complete the step, note that ℓ1s11+ ℓ2s12+(ℓ1s12+ ℓ2s22)/ℓ1 = 2 q(ℓ|M )/ℓ1, so that
we need to solve the following system:⎛⎜⎜⎝

ℓ2 −ℓ1 0 0

0 0 ℓ4 −ℓ3
q(ℓ|M )/ℓ1 0 q(ℓ|N )/ℓ3 0

⎞⎟⎟⎠w =

⎛⎜⎜⎝
0

0

0

⎞⎟⎟⎠ .

We choose w1 = q(ℓ|N )ℓ1, yielding by the first line w2 = q(ℓ|N )ℓ2. Now the
third line yields q(ℓ|M ) q(ℓ|N ) = − q(ℓ|N )w3/ℓ3, which returns w3 = − q(ℓ|M )ℓ3.
Combining this fact with the second line results in w4 = q(ℓ|M )ℓ4. This completes
the construction of the orthogonal basis. We end the computation by determining
the representing matrix. To this end, it suffices to reduce the computation to w|M =

q(ℓ|N )ℓ|M . This yields w|TMSMw|M = q(ℓ|N )2 q(ℓ|M ), which may be combined to
wTSw = (q(ℓ|N )2 q(ℓ|M )+q(ℓ|M )2 q(ℓ|N )) = q(ℓ|M ) q(ℓ|N ) q(ℓ). All in all, we obtain
the following orthogonal basis with representing Gram matrix

B =

⎛⎜⎜⎜⎜⎜⎝
ℓ1 ℓ1s12 + ℓ2s22 0 q(ℓ|N )ℓ1
ℓ2 −ℓ1s11 − ℓ2s12 0 q(ℓ|N )ℓ2
ℓ3 0 ℓ3s34 + ℓ4s44 − q(ℓ|M )ℓ3

ℓ4 0 −ℓ3s33 − ℓ4s34 − q(ℓ|M )ℓ4

⎞⎟⎟⎟⎟⎟⎠
=
(︁
ℓ,
(︁

0 1
−1 0

)︁
SMℓ|M ,

(︁
0 1
−1 0

)︁
SNℓ|N , q(ℓ|N )ℓ|M − q(ℓ|M )ℓ|N

)︁
,

SB = 2

⎛⎜⎜⎜⎜⎜⎝
q(ℓ)

det(SM ) q(ℓ|M )

det(SN ) q(ℓ|N )
q(ℓ|M ) q(ℓ|N ) q(ℓ)

⎞⎟⎟⎟⎟⎟⎠ .

2. Assume ℓ|N is isotropic. Then the space ℓ⊥ will clearly be isotropic as well, as it
contains ℓ|N . However, we still have ℓ and v1 as non-isotropic, orthogonal elements.
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Also, N is isotropic, non-degenerate and 2 dimensional and as such isometric to a
hyperbolic plane, meaning we may assume N = H. We may still assume ℓ3 ̸= 0,
forcing ℓ4 = 0. This leaves us with finding elements from the kernel of the following
system that are different from (0, 0, ℓ3, 0).(︄

ℓ2 −ℓ1 0 0

2 q(ℓ|M )/ℓ1 0 0 ℓ3

)︄
u =

(︄
0

0

)︄
.

We assume u4 ̸= 0, say −2 q(ℓ|M )/ℓ3. Then the last equation yields 2 q(ℓ|M )/ℓ1 ·u1 =
2 q(ℓ|M ), meaning u1 = ℓ1. In addition, the first equation yields ℓ1ℓ2 = ℓ1u2, meaning
u2 = ℓ2. All in all, we find

v2 := u =
(︂
ℓ1 ℓ2 u3 −2 q(ℓ|M )/ℓ3

)︂T
,

with u3 undetermined, yet. We choose u3 = 0. Clearly, we have ℓ|M = u|M , so that
for the orthogonality condition on M , we may reproduce the same computation
as above and only have to compute u|TNSN = u|TNH =

(︂
−2 q(ℓ|M )/ℓ3 0

)︂T
. This

yields as a condition for the last vector w⎛⎜⎜⎝
ℓ2 −ℓ1 0 0

2 q(ℓ|M )/ℓ1 0 0 ℓ3

2 q(ℓ|M )/ℓ1 0 −2 q(ℓ|M )/ℓ3 0

⎞⎟⎟⎠w =

(︄
0

0

)︄
.

We recall that assuming w4 ̸= 0 (as above for u will determine w1 and vice versa).
Further, w1 determines w2 by the first line. Hence, w is of the same form as u,
but with w3 ̸= u3 = 0. In fact, we find from the last line that 2 q(ℓ|M )/ℓ1 · ℓ1ℓ3 =

2 q(ℓ|M )w3, meaning w3 = ℓ3. We recollect the basis elements

ℓ =

⎛⎜⎜⎜⎜⎜⎝
ℓ1

ℓ2

ℓ3

ℓ4

⎞⎟⎟⎟⎟⎟⎠ , v1 =

⎛⎜⎜⎜⎜⎜⎝
ℓ1s12 + ℓ2s22

−ℓ1s11 − ℓ2s12

0

0

⎞⎟⎟⎟⎟⎟⎠ , v2 =

⎛⎜⎜⎜⎜⎜⎝
ℓ1

ℓ2

0

−2 q(ℓ|M )/ℓ3

⎞⎟⎟⎟⎟⎟⎠ , v3 =

⎛⎜⎜⎜⎜⎜⎝
ℓ1

ℓ2

ℓ3

−2 q(ℓ|M )/ℓ3

⎞⎟⎟⎟⎟⎟⎠ .

Next, we need to compute the representing matrix for v2, v3, finding

vT2 SHv2 = 2 q(ℓ|M ), vT3 Sv3 = 2 q(ℓ|M )− 4 q(ℓ|M ) = −2 q(ℓ|M ).
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Now recall that we have assumed in this case that q(ℓ|N ) = 0, rendering q(ℓ|M ) =

q(ℓ). Further, we had assumed L =M ⊕H, meaning det(S) = det(SM ) · det(SH) =
−det(SK). This ultimately leads to the following representing matrix for the
orthogonal basis B := (ℓ, v1, v2, v3):

SB = 2 q(ℓ)

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 −det(S) 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠ .

A.2 Miscellaneous

Norms

We briefly recall the following definition.

Definition A.6. Let F ∈ {R,C} and V be an F vector space. A map ∥ · ∥ : V → R≥0 is
called a norm, if for x, y ∈ V and λ ∈ F the following conditions are satisfied.

a) It is positive definite, i.e. ∥x∥ = 0 ⇐⇒ x = 0.

b) It fulfils the triangle inequality, i.e. ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

c) It is positive homogeneous of degree one, i.e. ∥λx∥ = |λ| · ∥x∥.

We call the pair (V, ∥ · ∥) a normed space.

We also recall the following fact about normed spaces that is applied to prove convergence
of certain L-series in Lemma 6.76 and Proposition 6.95.

Remark A.7. Let (Vi, ∥ · ∥i) for i ∈ I an index set be normed spaces over a field
F ∈ {R,C}.

a) For c ∈ R>0, the space (Vi, c · ∥ · ∥i) is a normed space, again.

b) The direct sum ⨁︂
i

(Vi, ∥ · ∥i) :=

(︄
⊕iVi,

∑︂
i

∥ · ∥i

)︄
is a normed space, again.



A.2 Miscellaneous 299

c) Let Vi be finite dimensional. Then any norm ∥ · ∥ is equivalent to ∥ · ∥i, i.e. there
are constants C ≥ c > 0 such that

c ∥ · ∥ ≤ ∥ · ∥i ≤ C ∥ · ∥.

Groups and index transfers

We will briefly recall a property of groups that is required for a key reduction to domains
of integration in the proof of the main theorem of this thesis.

Lemma A.8. Let G be a group, H,K ≤ G be subgroups. Then we find

[K : H ∩K] ≤ [G : H].

Proof : First, note that H ∩ K ≤ K is a subgroup. Assume, we establish a bijection
between the left cosets of H ∩K in K and the left cosets of H in HK. We will call the
latter [HK : H]. Then since HK ⊆ G, we find

[K : H ∩K] = [HK : H] ≤ [G : H].

The bijection is identical to the construction in the first isomorphism theorem of group
theory [Bos18, Prop. 8 p. 18]. To be explicit, send

(H ∩K)k ↦→ Hk.

Assume there are two different k1, k2 ∈ K such that Hk1 = Hk2. Then there is h ∈ H

such that k1k−12 = h ∈ H ∩K. In other words, (H ∩K)k2 = (H ∩K)k1, proving that the
association is injective. However, surjectivity of the association is apparent, finishing the
proof.

Corollary A.9. Let G be a group and, H,K ≤ G be subgroups. Then we have

[G : H ∩K] ≤ [G : H] · [G : K].

Invariance of Fourier coefficients under imaginary shifts

It has been stated in (2.13) that periodic holomorphic functions on the upper half plane
possess a Fourier expansion, i.e. let f : H → C be holomorphic with f(τ +1) = f(τ), then



300 A Supplementing proofs

there is a Fourier expansion of f :

f(z) =
∑︂
n∈Z

a(n) · e2πinτ

with coefficients
a(n) =

∫︂
[0,1]

f(τ) · e−2πinτ dλ(Re(τ)).

From the real perspective on Fourier theory, however, it is unclear why the Fourier coeffi-
cients a(n) should be independent of the chosen height Im(τ). The following computation
is based on [FB06, III.5, p. 150].

We investigate the derivative of a(n) with respect to Im(τ) and use the product
integration rule to perform the following calculation:

∂Im(τ)a(n) =

∫︂
[0,1]

∂Im(τ)(f(τ)) · e−2πinτ dλ(Re(τ)) + 2πn

∫︂
[0,1]

f(τ) · e−2πinτ dλ(Re(τ))

= f(τ)e−2πinτ
⃓⃓⃓⃓Re(τ)=1

Re(τ)=0

= 0,

where we have used that f is holomorphic, i.e. ∂f
Im(τ) = i ∂f

∂ Re(τ) . In consequence, a(n) is
constant with respect to Im(τ).

A.3 Relations of Hecke operators

In this section, we present some proofs of lemmas in Subsection 6.2 and 6.3 that have
been outsourced in order to improve readability.

Lemma A.10 (Lemma 6.32). For r ∈ N and k, p ∤ N as above we find

T (pr+1) = T (p)T (pr)− p · Tp·I · T (pr−1).

The identity remains valid if the symbol T is replaced by kT .

Proof of Lemma 6.32: Lemma 6.25 yields the following sets of representatives for T (p)

Rp =

{︄(︄
p 0

0 1

)︄}︄⋃︂{︄(︄
1 b

0 p

)︄⃓⃓⃓⃓
⃓ b mod p

}︄
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and for T (pr)

Rpr =

{︄(︄
pr1 b

0 pr2

)︄⃓⃓⃓⃓
⃓ r1 + r2 = r,

b mod pr2

}︄
.

Their product RpRpr will be a system of representatives for T (p)T (pr) and reads

{︄(︄
pr1+1 pb

0 pr2

)︄⃓⃓⃓⃓
⃓ r1 + r2 = r,

b mod pr2

}︄⋃︂⎧⎪⎪⎨⎪⎪⎩
(︄
pr1 br + b1p

r2

0 pr2+1

)︄⃓⃓⃓⃓⃓⃓⃓⃓ r1 + r2 = r,

b1 mod p,

br mod pr2

⎫⎪⎪⎬⎪⎪⎭ .

The second set falls only short of a set of representatives of T (pr+1) by the matrix
diag(pr+1, 1). Eliminating this element from the first set leaves⎧⎪⎪⎨⎪⎪⎩p ·

(︄
pr1 b

0 pr2−1

)︄⃓⃓⃓⃓⃓⃓⃓⃓ r1 + r2 = r,

r2 > 0,

b mod pr2

⎫⎪⎪⎬⎪⎪⎭ =

{︄
p ·

(︄
pr1 b

0 pr2

)︄⃓⃓⃓⃓
⃓ r1 + r2 = r − 1,

b mod pr2+1

}︄
.

The associated Hecke element is given by

p · Tp·I · T (pr−1) =
p

(pr+1)k/2−1
kT p·I · kT (pr−1).

Combining the information above, we obtain in light of Definition 6.13 that

T (p)T (pr) = T (pr+1) + p · Tp·I · T (pr−1).

Lemma A.11 (Lemma 6.50). We find for r ∈ N and a prime p not dividing N that

T (pr+1) = T (p)T (pr)− p · TpI · T (pr−1)− δr=1 · TpI .

Proof of Lemma 6.50: The classes Γ(1)\Γ(1)
(︁
p 0
0 1

)︁
Γ(1) are represented by

R∗p =

{︄(︄
p 0

0 1

)︄}︄
∪

{︄(︄
1 b

0 p

)︄ ⃓⃓⃓⃓
⃓ b mod p

}︄
.
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For pr the set of representatives reads as follows:

R∗pr =

⎧⎪⎪⎨⎪⎪⎩
(︄
pr1 br

0 pr2

)︄ ⃓⃓⃓⃓⃓⃓⃓⃓ r1 + r2 = r

br mod pr2

0 < r2 < r =⇒ p ∤ br

⎫⎪⎪⎬⎪⎪⎭ .

Their product R∗pR∗pr has the following decomposition:⎧⎪⎪⎨⎪⎪⎩
(︄
pr1+1 brp

0 pr2

)︄ ⃓⃓⃓⃓⃓⃓⃓⃓ r1 + r2 = r

br mod pr2

0 < r2 < r =⇒ p ∤ br

⎫⎪⎪⎬⎪⎪⎭ (I)

⋃︂
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(︄
pr1 br + b1p

r2

0 pr2+1

)︄ ⃓⃓⃓⃓⃓⃓⃓⃓
⃓⃓⃓
r1 + r2 = r

br mod pr2

b1 mod p

0 < r2 < r =⇒ p ∤ br

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (II)

The second set’s conditions may be reformulated as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(︄
pr1 br+1

0 pr2

)︄ ⃓⃓⃓⃓⃓⃓⃓⃓
⃓⃓⃓

0 < r2

r1 + r2 = r + 1

br+1 mod pr2

1 < r2 < r + 1 =⇒ p ∤ br+1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(︄
pr1 br+1

0 pr2

)︄ ⃓⃓⃓⃓⃓⃓⃓⃓
⃓⃓⃓

0 < r2

r1 + r2 = r + 1

br+1 mod pr2

0 < r2 < r + 1 =⇒ p ∤ br+1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(II.1)

⋃︂{︄
p

(︄
pr−1 0

0 1

)︄}︄
. (II.2)

Clearly, (II.1) falls short of a set of representatives for R∗pr+1 by diag(pr+1, 1) only which
is taken from (I) (the case of r2 = 0), leaving in place of (I)⎧⎪⎪⎨⎪⎪⎩p

(︄
pr1 br−1

0 pr2

)︄ ⃓⃓⃓⃓⃓⃓⃓⃓ r1 + r2 = r − 1

br−1 mod pr2+1

r2 < r − 1 =⇒ p ∤ br−1

⎫⎪⎪⎬⎪⎪⎭
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=

{︄
p

(︄
pr−1 br−1

0 1

)︄ ⃓⃓⃓⃓
⃓ br−1 mod p

1 < r =⇒ p ∤ br−1

}︄

⋃︂
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p

(︄
pr1 br−1

0 pr2

)︄ ⃓⃓⃓⃓⃓⃓⃓⃓
⃓⃓⃓

0 < r2

r1 + r2 = r − 1

br−1 mod pr2+1

0 < r2 < r − 1 =⇒ p ∤ br−1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

We modify the elements via multiplication with suitable elements from Γ(1) to obtain

Γ(1) ≃
p−1+δr=1⨆︂

i=1

{︄
p

(︄
pr−1 0

0 1

)︄}︄

⋃︂ p⨆︂
i=1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p

(︄
pr1 br−1

0 pr2

)︄ ⃓⃓⃓⃓⃓⃓⃓⃓
⃓⃓⃓

0 < r2

r1 + r2 = r − 1

br−1 mod pr2

0 < r2 < r − 1 =⇒ p ∤ br−1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Adding the representative from (II.2) yields

=

p+δr=1⨆︂
i=1

{︄
p

(︄
pr−1 0

0 1

)︄}︄⋃︂ p⨆︂
i=1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p

(︄
pr1 br−1

0 pr2

)︄ ⃓⃓⃓⃓⃓⃓⃓⃓
⃓⃓⃓

0 < r2

r1 + r2 = r − 1

br−1 mod pr2

0 < r2 < r − 1 =⇒ p ∤ br−1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= δr=1

{︄
p

(︄
pr−1 0

0 1

)︄}︄⋃︂ p⨆︂
i=1

⎧⎪⎪⎨⎪⎪⎩p
(︄
pr1 br−1

0 pr2

)︄ ⃓⃓⃓⃓⃓⃓⃓⃓ r1 + r2 = r − 1

br−1 mod pr2

0 < r2 < r − 1 =⇒ p ∤ br−1

⎫⎪⎪⎬⎪⎪⎭ .

This represents the operator

δr=1 · TpI + p · TpI · T (pr−1).

In total we find

T (p)T (pr) = T (pr+1) + p · TpI · T (pr−1) + δr=1 · TpI .
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A.4 Gauss sums

This is a complementary section containing elementary computations for different Gauss
sums appearing throughout the thesis. The presented sums and a significant portion of
the computations are already found in [Ste15] but had to be recomputed in order to detect
a computational error in the expression for Fourier coefficients in Theorem 5.4 of this
source.

Definition A.12. Let (L, q) be a quadratic Z lattice of rank m ∈ N, p a prime, h ∈ Z
with gcd(h, p) = 1 and n, l ∈ N with l ≥ n, plus χ be a Dirichlet Character modulo n.
Define

GL,p(n, h) :=
∑︂

v∈L/pnL

e

(︃
h

pn
q(v)

)︃
, (A.1)

gp(n, l, h) :=
∑︂

k∈Z/plZ

e

(︃
h

pn
k2
)︃
, (A.2)

gp [n, χ, h] :=
∑︂

k∈Z/pnZ

χ(k)e

(︃
hk

pn

)︃
. (A.3)

Remark A.13. For odd primes p, we have the following identity:

gp(n, l, h) =

(︃
h

pn

)︃
ϵ(pn)pl−n/2,

where

ϵ(k) =

⎧⎨⎩1, if k ≡ 1 mod 4,

i, if k ≡ 3 mod 4.

For p = 2, we find

gp(n, l, h) =

(︃
pn

h

)︃
(1 + ih)pl−n/2.

Proof : We find

gp(n, l, h) =
∑︂

k1∈Z/pl−nZ

∑︂
k2∈Z/pnZ

e

(︃
h

pn
(k1p

n + k2)
2

)︃

= pl−n
∑︂

k2∈Z/pnZ

e

(︃
h

pn
k22

)︃
.
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The sum on the right is equal to

√
pn ·

⎧⎪⎨⎪⎩
(︂
h
pn

)︂
ϵ(pn), if p > 2,(︂

pn

h

)︂
(1 + ih), if p = 2,

by [BEW98, 1.5 Thm. 1.5.2 p. 26] and [BEW98, 1.5 Thm. 1.5.4 p. 27].

Remark A.14. For p > 2 we find that the following reduction is true

GL,p(n, h) =

(︃
h

p

)︃Rn

pnR0 ·
n−1∏︂
k=0

(︂
ϵ(pn−k)

√︁
pn+k

)︂nk

·
nk∏︂
i=1

(︃
q(vi)∥ q(vi)∥p
pn∥ q(vi)∥p

)︃
⏞ ⏟⏟ ⏞

=GL,p(n,1)

for suitable but explicit numbers Rn, R0 ∈ N0.

Proof : By [Ste15, Lemma 4.3] there is an orthogonal decomposition of L/pnL into Z/pnZ
submodules (︄⨁︂

i

Li

)︄
⊕

⎛⎝⨁︂
j

Mj

⎞⎠⊕N,

where Li = (Z/pnZ)vi is one dimensional with b(vi, vi) ∈ (Z/pnZ)×, Mj = (Z/pnZ)vj
where b(vj , vj) ∈ pk(Z/pnZ)× with 1 ≤ k ≤ n− 1 and b(N,N) ⊆ pnZ. We may assume
the Mj being sorted with respect to increasing valuation k of q(vj). Recall that we set

nk = #{1 ≤ i ≤ m : νp(b(vi, vi)) = k}, R :=

n−1∑︂
k=0

(n− k)nk

in Definition 1.38. Here {vi} denotes, as suggested before, a basis of L as a Z/pnZ module.
With these definitions, we find

GL,p(n, h) =
∑︂

(xj)j∈(Z/pnZ)m
e

(︄∑︂
i

h q(vj)
pn

x2i

)︄

=
∏︂

i,q(vi )̸=0

∑︂
xi∈Z/pnZ

e

(︃
h q(vi)∥ q(vi)∥p
pn∥ q(vi)∥p

x2i

)︃
·
∏︂

i,q(vi)=0

pn

⋆
=

n−1∏︂
k=0

(︃
h

pn−k

)︃nk

·
∏︂
i

0≤νp(q(vi))<n

∑︂
xi∈Z/pnZ

e

(︃
q(vi)∥ q(vi)∥p
pn∥ q(vi)∥p

x2i

)︃
·
∏︂
i

q(vi)∈pnZ

pn
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=

(︃
h

p

)︃R
·GL,p(n, 1).

For ⋆, Remark A.13 has been used to obtain for 0 ≤ νp(q(vi)) < n and fixed i

gp(n− νp(q(vi)), n, h q(vi)∥ q(vi)∥p)

=
∑︂

xi∈Z/pnZ

e

(︃
h q(vi)∥ q(vi)∥p
pn∥ q(vi)∥p

x2i

)︃

=

(︃
h

pn∥ q(vi)∥p

)︃(︃
q(vi)∥ q(vi)∥p
pn∥ q(vi)∥p

)︃
ϵ(pn−νp(q(vi)))p(n+∥ q(vi)∥p)/2

=

(︃
h

p

)︃n−νp(q(vi))
· gp(n− νp(q(vi)), n, q(vi)∥ q(vi)∥p).

This computation, however, yields directly

GL,p(n, 1) = pnR0 ·
∏︂
i

0≤νp(q(vi))<n

(︃
q(vi)∥ q(vi)∥p
pn∥ q(vi)∥p

)︃
ϵ(pn−νp(q(vi)))p(n+∥ q(vi)∥p)/2

= pnR0 ·
n−1∏︂
k=0

(︂
ϵ(pn−k)

√︁
pn+k

)︂nk

·
nk∏︂
i=1

(︃
q(vi)∥ q(vi)∥p
pn∥ q(vi)∥p

)︃

for R0 = {i | q(vi) ∈ pnZ} = m−
∑︁n−1

k=0 nk Recall that the elements vi have been assumed
to be sorted with respect to increasing valuation of q(vi)

Remark A.15. For χ = χ1 the trivial character on (Z/pnZ)× or χ = χp =
(︂
·
p

)︂
the

Legendre symbol and p ̸= 2, we find

gp [n, χ1, h] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pn−1(p− 1), if νp(h) ≥ n,

−pn−1, if νp(h) = n− 1,

0, if νp(h) < n− 1.

gp [n, χp, h] =

⎧⎨⎩p
n−1/2

(︂
h/pn−1

p

)︂
ϵp, if νp(h) = n− 1,

0, if νp(h) ̸= n− 1.

Note that χ1(0) = χ1(p) = 0 and ϵp = 1, i depending on p ≡ 1, 3 mod 4.
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Proof : If χ is induced by a character mod p, we find

gp [n, χ, h] =
∑︂

k∈Z/pnZ

χ(k)e

(︃
kh

pn

)︃

=
∑︂

k1∈Z/pZ

χ(k1)
∑︂

k2∈Z/pn−1Z

e

(︃
(k1 + pk2)h

pn

)︃

=
∑︂

k1∈Z/pZ

χ(k1)e

(︃
k1h

pn

)︃ ∑︂
k2∈Z/pn−1Z

e

(︃
k2h

pn−1

)︃

= δpn−1|h · pn−1 ·
∑︂

k1∈Z/pZ

χ(k1)e

(︃
k1h

pn

)︃
.

Now, if χ = χ1 is the trivial Dirichlet character (mod p),

∑︂
k1∈Z/pZ

χ1(k1)e

(︃
k1h

pn

)︃
=

⎧⎨⎩p− 1, if νp(h) ≥ n,

−1, if νp(h) = n− 1.

In addition, if χp =
(︂
·
p

)︂
, we have

∑︂
k1∈Z/pZ

χp(k1)e

(︃
k1h

pn

)︃
=

⎧⎨⎩0, if νp(h) ≥ n,(︂
h/pn−1

p

)︂
ϵ(p)

√
p, if νp(h) = n− 1.

The last assertion follows from a well known Theorem by Gauss [IK04, 3.5 Thm. 3.3 p. 49],
who required years finding an adequate solution to the problem but finally came out with
multiple different successful approaches.

The following Gauss sum is required in Proposition 6.54 and in the subsequent results
building upon it.

Definition A.16. Let L be a discriminant form. For d ∈ N define

GL(d) =
∑︂
λ∈L

e (d q(λ)) . (A.4)

In [BS08], the authors compare [McG03, Lem. 4.6 p. 115] to [Bor00, Thm. 5.4 p. 329]
in order to conclude the following statement.
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Remark A.17. For gcd(d, lev(L)) = 1 the association

(Z/ lev(L)Z)× ∋ d ↦→ GL(1)

GL(d)

defines a character.

For the following remark that is required in the proof of Corollary 6.72, recall that for
a natural number d ∈ N and a discriminant form L, the symbol dL denoted the d-torsion
of L.

Remark A.18. Let L be the discriminant form of a lattice L of rank m and assume
gcd(d, lev(L)) = 1. Then, by [Bar03, Thm. 5.2.2] we find

GL(d) =
√︁

|L|
√
i
sgn(L) 1

dm/2

∑︂
ν∈L/dL

e

(︃
−1

d
q(ν)

)︃
.

In particular, the case d = pn yields

GL(p
n) =

√︁
|L|

√
i
sgn(L) 1

pnm/2
·GL,p(n, 1).

As a consequence,

GL(1)

GL(p)
= pm/2 1

GL,p(1, 1)
=
p−m/2

|pL|
GL,p(1, 1). (A.5)

Proof : Only the last equation has to be proven. By [Sch09, Prop. 3.8] we find the identity
|GL(d)| =

√︁
|dL||L|. As a consequence,

|GL,p(n, 1)| =
√︂

|pmn||pL|.

This immediately implies the result.

Do note that explicit formulae for a more general version of GL are also contained in
[Sch09, Thm. 3.9 p. 11].

A.5 Whittaker functions and asymptotics
In these complementary notes, we explore convergence and boundedness properties of
special functions which are required for Rankin–Selberg integrals in Subsection 6.4.3.
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Lemma A.19. Let
∑︁

n∈N anz
n with an ∈ C be a power series that is convergent at a

point 0 ̸= z ∈ C. Then it is absolutely and locally uniformly convergent on the interior of
the disc B|z|(0) of radius |z|.

Proof : Recall that by the convergence of the series, it must form a Cauchy sequence and
as such, there is some N ∈ N such that |anzn| < 1 for all n ≥ N . Now let z2 ∈ C fulfil
|z2| < |z|. Then

∞∑︂
n=N

|anzn2 | =
∞∑︂
n=N

|anzn|| z2z |
n ≤

∞∑︂
n=N

| z2z |
n <∞.

In fact, the last term is strictly decreasing, when decreasing |z2|. As a consequence, we
obtain uniform absolute convergence on the interior of the disc B|z|(0).

The following special functions are required for the Fourier expansion of the non-
holomorphic Eisenstein series in Proposition 3.40. We follow [DAR84, Sec. 13 p. 189] and
[Olv+10, Chap. 13 p. 321] as a reference for the following special functions.

Definition A.20. 1. For a, b ∈ C with Re(a) > 0 and z ∈ R define the integral
representation of the confluent hypergeometric function

U(a, b, z) := Γ(a)−1
∫︂ ∞
0

e−ztta−1(1 + t)b−a−1 dt.

2. Define the Whittaker function

Wκ,µ(z) := e−z/2z1/2+µU(1/2 + µ− κ, 1 + 2µ, z).

3. The following special version plays a role for the Fourier expansion of Eisenstein
series in Proposition 3.40. For v ∈ R× and k ∈ Z/2 representing the weight in the
respective section, set

Ws(v) := |v|−k/2Wsgn(v)k/2,(1−k)/2−s(|v|).

Lemma A.21. Given δ > 0, the modified Whittaker function Ws(v) is bounded for any
v ∈ R \Bδ(0) and any s ∈ C with Re(s) > 1− k by

Cs · e−
|v|
2 (1−ε),

with some arbitrarily small ε > 0 and a constant Cs > 0 that may be chosen locally
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uniformly in s.

Proof : We write out the modified Whittaker function Ws explicitly.

Ws(v)

= |v|−
k
2 · e−

|v|
2 |v|

1
2+

1−k
2 −sU

(︃
1

2
+

1− k

2
− s− sgn(v)k

2
, 1 + 2

1− k

2
− 2s, |v|

)︃
= e−

|v|
2 |v|1−

k
2−s · U

(︃
1− k

2
− s− sgn(v)k

2
, 2− k − 2s, |v|

)︃
= e−

|v|
2 |v|1−s−

k
2 · U (1− s− kδv>0, 2(1− s)− k, |v|) .

Now, by the differential equation of the confluent hypergeometric functions, we may
replace U(a, b, |v|) by a finite sum of such functions with a, b≫ 0 with prefactors that are
polynomial in a, b, and |v| (cf. [Olv+10, 13.3.14 p. 325]). Hence, it suffices to bound the
above term for s ∈ C with Re(s) ≪ 0. In that case, we find

Ws(v)

=
e−
|v|
2 |v|1−

k
2−s

Γ(1− s− kδv>0)
·
∫︂ ∞
0

e−|v|tt−s−kδv>0(1 + t)2(1−s)−k−(1−s−kδv>0)−1 dt

=
e−
|v|
2 |v|1−

k
2−s

Γ(1− s− kδv>0)
·
∫︂ ∞
0

e−|v|tt−s−kδv>0(1 + t)−s−kδv<0 dt.

It is clear, that the integral is bounded for |v| above a fixed threshold and that the bound
is uniform on vertical strips in s. Recall that the Beta functions is entire, in particular
continuous. Hence, the whole expression is bounded by

Cse
−|v|2 (1−ε)

for ε > 0 arbitrarily small and some Cs that may be chosen as a constant on a sufficiently
small neighbourhood.







B Further background material

In this chapter, we present some more general background material that is less subject to
direct referencing in the main body of the thesis. It is presented in a less formal manner
and thought of as additional notes and not part of the main content.

B.1 Some categorical notions
Restricted products

The construction of A as a locally compact Hausdorff ring is the paradigm of a natural
extension of locally compact structures in this category. However, it may be generalised
and is based on the observation that a product of locally compact topological spaces is
again locally compact with respect to the product topology if and only if almost all of the
factors are compact. We refer to [Dei10, 5.1 p. 121] for more details on the subject than
we have presented below.

Definition B.1. Let I be an index set and Xi be locally compact spaces as well as
Ki ⊂ Xi compact and open. Then

∏︂
i∈I

KiXi =
⋃︂
E⊂I
finite

∏︂
i∈E

Xi ×
∏︂
i∈I\E

Ki

together with the topology generated by the sets

∏︂
i∈E

Ui where Ui ⊂ Xi is open and almost all Ui are equal toKi (B.1)

is called restricted product of the family (Xi)i∈I with respect to (Ki)i∈I .

From the above commentary it is immediate that the individual products which are
being united are locally compact. However, the restricted product is a locally compact
space itself. Note that since every Ki is open, the sets presented in B.1 form a basis of a
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topology, meaning they are closed under intersection. The following remark states some
elementary properties of

∏︁
i∈I

KiXi.

Remark B.2. a) For any partition of I = A ∪̇B, we have

∏︂
i∈I

KiXi ≃

(︄∏︂
i∈A

KiXi

)︄
×

(︄∏︂
i∈B

KiXi

)︄
.

b) The canonical injection
ι :
∏︂
i∈I

KiXi ↪→
∏︂
i∈I

Xi

is continuous, but it is only homeomorphic onto its image, if Ki = Xi for almost all
i ∈ I.

c) If every space Xi is locally compact,
∏︁
i∈I

KiXi is as well.

Both products in a) are equal as sets. The topological equivalence follows immediately
by definition of the restricted product topology and the product topology itself.
In case b) the continuity of ι is a consequence of a), by splitting the product according to
every open set

∏︁
i∈E Ui ×

∏︁
i∈I\E Xi in

∏︁
i∈I Xi and considering both factors seperately.

The homeomorphicity follows from the fact, that
∏︁
i∈I Ki is open in

∏︁
i∈I Xi if and only

if Xi = Ki for almost all I.
For c) let (x)i∈I ∈

∏︁
i∈I

KiXi, then there is a finite subset E ⊂ I, such that xi ∈ Ki for i ∈
I \E. Choose compact neighbourhoods Ui of xi for i ∈ E, then U :=

∏︁
i∈E Ui×

∏︁
i∈I\EKi

is, by use of a) and b), a compact neighbourhood of x.

Projective limits

Both, Zp and Z×p can be viewed as projective limits of families of finite algebraic structures,
inheriting many of their properties. Hence, it might be sufficient to prove certain properties
for the families of finite groups they arise from to lift these properties to the adelic structure.
We will define projective limits and give Zp and Z×p as concrete realisations. Compare
again [Dei10, 4.5 p. 113] for additional details.

Definition B.3. A partially ordered set (I,≤) is called directed, if to a, b ∈ I there exists
a common upper bound c, e.g. a ≤ c and b ≤ c.

Projective limits will be defined for rings explicitly, implying the same structure for
groups.
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Definition B.4. A projective system of rings is a family (Ri)i∈I of rings Ri where (I,≤)

is a partially ordered directed set together with homomorphisms

πji : Rj → Ri

for every pair i, j ∈ I with i ≤ j, such that

πii = idRi and πji = πki ◦ π
j
k for i ≤ k ≤ j ∈ I.

The last property is called compatibility of the homomorphisms. The projective limit of
the projective system ((Ri)i∈I , (π

j
i )i≤j∈I) is the subring of all (ai)i∈I ∈

∏︁
i∈I Ai with ai =

πji (aj) for all i ≤ j ∈ I and is denoted by lim
←
Ri. It comes with mappings πi : lim

←
Ri → Ri

such that for any Y with mappings ψi : Y → Ri fulfilling the same properties, there is
exactly one π : Y → lim

←
Ri such that the following diagram commutes.

Y

lim
←
Ri

Rj Ri

π

ψj ψj

πj πi

πj
i

The following example illustrates the concept and provides an idea of why the structure
is called projective limit.

Example B.5. • Let (I,≤) = (N0,≤), p be a prime number and Ri := Z/pi+1Z as well
as

πji : Rj → Ri, x+ pj+1Z ↦→ x+ pi+1Z

be the canonical projections. Then ((Ri)i∈I , (π
j
i )i≤j∈I) is a projective system and

its limit is isomorphic to Zp =
{︁∑︁∞

i=0 bip
i | 0 ≤ bi < p− 1 and bi ∈ N

}︁
. In fact the

mapping

φ : Zp → lim
←
Ri,

∞∑︂
i=0

bkp
k ↦→

(︄
i∑︂

k=0

bkp
k mod pi+1

)︄
i∈I

is a topological ring isomorphism (note that both spaces are compact Hausdorff
spaces).

• This example is used in [Ser12a, 3.1 p 15] to derive the results presented in 1.4 nd
we stick to the notation of the source, denoting U := Z×p and Un := 1 + pnZp for
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n ≥ 1 (here a projective system of groups is considered). Then U ≃ lim
←
U/Un with

respect to the canonical projections:

πji : U/Uj → U/Ui, x · (1 + pjZp) ↦→ x · (1 + piZp).

Note that U/Un ≃ (Z/pnZ)×, since

Z×p =

{︄ ∞∑︂
i=0

bip
i | 0 ≤ bi < p− 1 and bi ∈ N and b0 ̸= 0

}︄
.

Then

ψ : Z×p → lim
←
U/Ui,

∞∑︂
i=0

bkp
k ↦→

(︄
i∑︂

k=0

bkp
k mod pi+1

)︄
i∈I

is the desired isomorphism, which was directly derivable from example one with
ψ := φ|Z×

p
.

B.2 Representation theory in characteristic 0
Groups, as such, appear throughout all sciences. In nearly every subfield ob mathematics
the author is aware of but also in information technologies, physics (symmetry groups,
atomic spectra, ...), biology, chemistry, and more . This is, in fact, due to the general fashion
of their notion, alternatively expressed: their poor structure. In order to investigate
particular representatives, a different perspective is advantageous: a more geometric
approach that results in an apparent enrichment of structure (in fact it is more of a
revelation of structure). The author speaks of realising groups as symmetry groups
of geometric objects, by embedding them into GLn. This is the fundamental idea of
finite representation theory and it yields, in the case of complex finite dimensional
representations, a self-contained, accessible edifice of ideas. There are, however, significant
obstacles when representations in infinite dimensional spaces are considered, which prevent
purely algebraic approaches from finding success. In this section we discuss, in a brief
fashion, representation theoretic aspects of relevance for our subsequent investigations.
They are based on [Ser12b], [Ber07], [Bum98], and [Con94].

Definition B.6. A representation ρ of a (topological) group G [or ring] is a homomorphism
ρ : G → Aut(V ) for some complex vector space. Two representations ρ1, ρ2 of G are
isomorphic, if there is a G-equivariant automorphism F of V , meaning for all g ∈ G :
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Fρ1(g) = ρ2(g)F . Write dim ρ := dimV . In case a representation of a Banach (∗) algebra
or a C∗ algebra is considered, it will map to B(H), the bounded linear operators on a
Hilbert space H. A representation is called unitary if ρ(G) lies in the unitary group of H.

Remark B.7. The notion of a G-equivariant mapping is particularly restrictive in this
setting. In fact, there is no non-trivial G-equivariant mapping between two non-isomorphic
representations and in the case of identical representations these are given by homotheties.
This fact is known as Schur ’s lemma.

Example B.8. a) If G is a topological group, then the representations of G into GL1(C)
are quasi characters. Those which are unitary comprise the class of characters (cf.
Definition 1.47). This indicates how restrictive the requirement of unitaricity is.

b) Let G be compact implying the existence of a right Haar measure µR. Further,
let ρ : G → B(H) be a representation of G. The symmetrised scalar product∫︁
G⟨ρ(g) · , ρ(g) · ⟩ dµR(g) renders ρ unitary. In particular, all representations of finite

groups may be assumed to be unitary.

c) Let G = SO(2), then T ≃ SO(2) via θ ↦→
(︂

cos(θ) − sin(θ)
sin(θ) cos(θ)

)︂
= kθ. In this sense, the

unitary representations of SO(2) are exactly the characters of T, which are given by
mapping θ ↦→ e(kθ) for k ∈ Z.

d) The Weil representation (3.16) is an example of a unitary representation of Mp2(Qp).

e) Let F be a field. Then GLn(F ) has a representation on the vector space of n× n

matrices Mn(F ) via
r(M)(X) :=M ·X ·MT .

In case n = 2, the matrix S =
(︁
0 −1
1 0

)︁
is an eigenvector of r(M) for all M ∈ GLn

with Eigenvalue det(M). This matrix plays a major role in the theory of modular
forms and also this thesis (cf. (3.13), for instance).

f) Let G be a toplogical (Lie) group [possessing a Haar measure], then the right regular
representation ρR maps into the automorphism group of C(G) (C∞(G)) [L2(G)]
and is given by

ρR : g ↦→ [f ↦→ (h ↦→ f(hg))] ,

in short [ρR(g)f ](h) = f(hg). Analogously, the left regular representation is given
by [ρL(g)f ](h) = f

(︁
g−1h

)︁
. [These are unitary, provided a right, respectively left

Haar measure is chosen.] This construction generalises readily to an action G

⟳

X
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for proper X instead of G ⟳

G by multiplication, yielding a representation on L2(X)

for instance.

In fact, the left regular representation is the ultimate example for finite groups as
it carries their entire representation theoretic information. In this sense it is the most
important example of a representation of finite groups.

Remark B.9. Let H ≤ G be groups and σ : H → Aut(V ) be a representation. The
induced representation of σ to G is given by

IndGH(σ) = K[G]⊗K[H] V.

As in most theories objects may be used to construct new ones in the category at hand
and in this spirit there is the obvious notion of finite direct sums and tensor products of
representations. However, there is another naive construction becoming relevant later.

Example B.10. Let ρG, ρH be representations of (topological) groups [rings] G,H into
Aut(V ), Aut(W ), and ϕ : V →W be an isomorphism. Then ρH is pulled back along ϕ via
pointwise conjugation to a representation ρ′H into Aut(V ). If ρG, ρ′H commute pointwise,
there is an obvious representation

ρG×H : G×H → Aut(V ), (g, h) ↦→
[︁
v ↦→ (ρG(g) ◦ ρ′H(h))(v)

]︁
called the product representation of ρG, ρ′H .

As usual the basic building blocks of the theory are to be investigated; in this case the
constituents of direct sums of representations which are exactly constructed as expected.

Definition B.11. A representation ρ : G→ Aut(H) is called irreducible if there is no
proper subspace 0 ̸= K < H that is invariant under ρ, meaning ρ(G)K ⊆ K. Otherwise, it
is called reducible.

The reason for the cautious fashion of the definition is that the theory does not behave
particularly well for non-unitary infinite dimensional representations. A closed subspace
K is obviously complementable such that K ⊕ K⊥ = H, but the invariance of K under
ρ carries only in general over if G is unitary (cf. Example B.8 b) to recall that any
representation of a finite group is essentially unitary).

Example B.12. Let G = SO(2) and consider the trivial representation given by the action
of G on C2. Then let U :=

(︁
1 i
i 1

)︁
and note that Uk(θ)U−1 =

(︂
eiθ 0
0 e−iθ

)︂
. Meaning that

conjugation with U yields an isomorphism to an obvious direct sum of characters of SO(2).
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The next instance depicts the classical theory of finite groups.

Remark B.13. Let G be finite. Then any finite dimensional representation ρ of G
decomposes into a direct sum of irreducible representations. Further, let (ρi)i∈I be a
complete set of isomorphically distinct irreducible representations of G. For ρ as above,
define the character χρ(g) := tr(ρ(g)) of ρ. It is invariant on conjugacy classes of G. Such
functions are called class functions and they form a vector space Cl(G) whose dimension
equals the number of conjugacy classes of G. It is equipped with the scalar product

⟨ψ, φ⟩ = |G|−1
∑︂
g∈G

ψ(g)φ(g).

Crucially, ⟨χρi , χρ⟩ equals the number of irreducible constituents of ρ isomorphic to ρi,
consequently χρ characterises ρ completely and we find ⟨χρ, χρ⟩ = 1 if, and only if, ρ is
irreducible. Computing the character of ρL results in

ρL ≃
⨁︂
i∈I

dim ρi⨁︂
k=1

ρi

causing
∑︁

i∈I dim ρiρi(g) = δg,1 which in turn implies
∑︁

i∈I(dim ρi)
2 = |G|. Further,

applying this information to the regular representation yields that (ρi)i is an ortho normal
basis of Cl(G) meaning |I| equals the number of conjugacy classes of G. As a corollary
one obtains that G is abelian, if, and only if, all ρi are one dimensional. So far everything
was also applicable in characteristic different from 0.
If, in addition, characteristic 0 is imposed, another harsh constraint is forced upon the
numbers dim ρi: these divide |G|.

B.3 Symplectic and metaplectic groups

The term metaplectic group describes a covering group of the symplectic group SL2, which,
in general, will be a central extension1 of SL2 by Z/pZ or T. In our case, however, an
extension by T is considered, as it splits over subgroups for which the common Z/2Z
extension does not (cf. [Kud94]). It will be referred to as the metaplectic group as if
there were only one and denoted SL2. A concrete description is provided by [KRY06, 8.5
pp. 320-336], which accords with the choice in [KY10]. The extension by Z/2Z, usually

1Cf. [Tao10] for a brief overview of group extensions.
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referred to as the metaplectic group, is derivable from SL2 as the latter determines a
cocycle c ∈ H2(SL2,T). Since this homology group contains only one non-trivial element
of order two, the cover is essentially unique and coordinates are chosen by picking a
concrete representative for c, which shall be denoted by c and equal the one from [KRY06,
8.5 p. 320]. If chosen, SL2 is realised as the set of pairs (γ, ζ) ∈ SL2×T with multiplication
(γ, ζ) · (γ′, ζ ′) = (γγ′, c(γ, γ′)ζζ ′). Formally, the information above, supplemented by a few
remarks about subgroups and splits mentioned in Section 3.2 in the adelic case, suffices in
order to deal with the metaplectic group as far as the major aim of this thesis is concerned.
However, the author sought to supplement the thesis by additional details concerning the
construction of metaplectic groups.
Throughout this section, the mapping x ↦→ 2x is usually assumed to be an isomorphism.

Abstract symplectic groups

There is a conceptional approach to the metaplectic group motivated by quantum mechanics
which shall be discussed in the following paragraphs. It was introduced by André Weil
[Wei64] in general in order to describe the theory of theta functions in group theoretic
terms (cf. [Gel74]). The concrete case, sufficient for our investigation, is sketched concisely
in [Gel76, 2.3 p. 28] or, more crisply but less conceptually in [Kud96], and the basis of its
construction shall be presented in greater detail, based on [Wei64]. Starting with locally
compact abelian groups G,H isomorphic to their Pontryagin duals G∗,H∗, respectively, a
completion of Q with respect to an absolute value function for instance, every morphism
α : G→ H induces a dual morphism α∗ via pullback:

α∗ : H∗ → G∗, h∗ ↦→ h∗ ◦ α.

The association α ↦→ α∗ defines a contravariant, isomorphism preserving functor, which
also conserves the modulus of the morphisms, meaning the scaling factor for pushforward
measures. Furthermore, we have (α∗)∗ = α when the canonical isomorphy G ≃ (G∗)∗ is
taken into account. Note that product group G×G∗ is isomorphic to its dual G∗ ×G via(︄

x

x∗

)︄
↦→

(︄
0 1

−1 0

)︄(︄
x

x∗

)︄
.
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Similarly, endomorphisms σ of G×G∗ may be written in matrixform(︄
x

x∗

)︄
↦→

(︄
α β

γ δ

)︄(︄
x

x∗

)︄
, with dual morphism

(︄
α∗ γ∗

β∗ δ∗

)︄
= σ∗, (B.2)

where α, β, γ and δ denote morphisms mapping appropriately betweenG orG∗, respectively.
The pairing

F : (G×G∗)× (G×G∗) → T, [(x, x∗), (y, y∗)] ↦→ (x, x∗)

(︄
0 1

0 0

)︄(︄
y

y∗

)︄
= y∗(x) (B.3)

will become relevant later, whereas for now we are interested in the pairing

κ : (G×G∗)× (G×G∗) ∋ [ω1, ω1] ↦→ F (ω1, ω2)F (ω2, ω1)
−1 = y∗x/x∗y ∈ T, (B.4)

which has the symplectic group as its invariance group.

Definition B.14. The symplectic group Sp(G) of a locally compact abelian group G is
defined to be the group of automorphisms of G×G∗ which fix the pairing κ. Hence, with
the notation as above an automorphism σ is in Sp(G) if κ(σω1, σω2) = κ(ω1, ω2) holds
for all ω1, ω2 ∈ G×G∗.

By direct computation this condition for σ may be expressed equivalently as

σ∗

(︄
0 1

−1 0

)︄
σ =

(︄
0 1

−1 0

)︄
.

Example B.15. In the concrete case of G = Qp the group Qp may be identified with its
Pontryagin dual via the exponential mapping and the entries of the endomorphism σ of
G×G∗ ≃ Q2

p are interpreted as elements of Qp. Consequently, the invariance condition
for a symplectic automorphism σ reduces to

1 = (αδ − βγ) = det(σ).

In particular, this testifies that the symplectic group is exactly the special linear group
SL2(Qp) if G is chosen to be the additive group of a p-adic field. This closes the paragraph
about realising SL2 via a symplectic pairing.
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The Heisenberg group

The subsequent sections cover the construction of the metaplectic group, following [Wei64].
He viewed the symplectic group as a group of unitary operators on L2(G) and utilised
tools from the theory of C∗ Algebras to prove the existence of a group extension, which
he called metaplectic group. As a first step, the Heisenberg group of G is constructed on
which Sp(G) acts.
For ω = (u, u∗) ∈ G×G∗ define the unitary operator

U(ω) : L2(G) → L2(G), f(x) ↦→ f(x+ u) · u∗(x).

Moreover, we find

U(ω1)U(ω2) = F (ω1, ω2) · U(ω1 + ω2). (B.5)

Consequently, the mapping

G×G∗ × T ∋ (ω, t) ↦→ U(ω)t (B.6)

defines a bijection onto an operator group which can be used to pullback the group law,
obtaining

(ω1, t1) · (ω2, t2) = (ω1ω2, F (ω1, ω2)t1t2). (B.7)

This law makes A(G) := G × G∗ × T into a locally compact group with the ordinary
product topology, which, exported to the corresponding operator group, equals the strong
operator topology. The group A(G) equipped with multiplication given by (B.7) is called
Heisenberg group of G, for a reason which will become clear after the following historical
example.

Example B.16 (history, quantum mechanics). In 1925 Werner Heisenberg suggested solving
the harmonic oscillator, a physical system, with operators P,Q on which he imposed a
commutator relation [Q,P ] = i · id. Nearly simultaneously, Erwin Schrödinger suggested
solving the very same system with a partial differential equation. Both resulted in the
same physical solution, leaving the community puzzled before these seemingly different
approaches.
John Von Neumann showed not only that both descriptions were mathematically equivalent,
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but that Heisenberg’s abstract condition determines the mathematical system up to unitary
equivalence [Neu31] if irreducibility is imposed and that all representations are direct
sums of this essentially unique irreducible one. His proof relied upon a one to one
relation between self adjoint operators on Hilbert spaces and unitary strongly continuous
1-parameter operator groups suggested by Herrmann Weyl and published by Marshall
Harvey Stone [Sto30]. Transferring the operators P,Q to the corresponding unitary
operators translates the commutator relation essentially to (B.5), called the Weyl relation.
Roughly 20 years later, 1949, George Whitelaw Mackey published a theorem analogous
to that of von Neumann, but for locally compact abelian (seperable) groups [Mac49], so
that the unitary irreducible representations of the Heisenberg group in the above abstract
setting were understood.2

The centre of A(G) is evidently T, which is closed as it is the kernel of the continuous
homomorphism π1 : A(G) → G×G∗, (ω, t) ↦→ ω and therefore the diagram induces a
topological group isomorphism

A(G) G×G∗

A(G)/T

π1

Recall that the concern of this section is to construct a covering group for the symplectic
group Sp(G) which is a group of automorphisms of G×G∗.

The symplectic group as a group of automorphisms of A(G)

The next step is to consider the group of automorphisms B(G) of A(G) and to prove that it
contains a copy of Sp(G). This realises the symplectic group as a group of automorphisms
of operators and ultimately leads to the existence of a projective representation of Sp(G),
called Weil representation. Elements of B(G) which operate trivially on T form a subgroup,
denoted B0(G). An automorphism s ∈ B0(G) evidently induces an automorphism σ on
G×G∗ and may be represented as

s(ω, t) = (σω, f(ω)t),

2Elaborate historical notes discussing the development of unitary representation theory from this context
may be found in [Mac76, Appendix p. 209 a.s.].
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where f : G×G∗ → T is a continuous mapping. The condition that an automorphism of
this form defines an element of B(G) is equivalent to

∀ω1, ω2 ∈ G×G∗ : f(ω1 + ω2) f(ω1)
−1 f(ω2)

−1 = F (σω1, σω2)F (ω1, ω2)
−1, (B.8)

implying that B0(G) may be identified with the group of pairs (σ, f) satisfying (B.8), with
multiplication given by

(σ, f) (σ′, f ′) = (σσ′, f ′′),

where f ′′(ω) = f(ω)f ′(σω). Since the left hand side of equation (B.8) is symmetric in
ω1, ω2 the automorphism σ has to be a symplectic element, leaving κ, defined in (B.4),
invariant. This suggests seeking a decomposition of B0(G) by Sp(G) and in fact there is
a splitting exact sequence:

1 (G×G∗)∗ B0(G) Sp(G) 1. (B.9)

Note that the kernel of the natural projection B0(G) → Sp(G) is exactly (G × G∗)∗,
according to condition (B.8). As a result, it suffices to construct the splitting morphism
for (B.9), which is done by computation. For the sake of lucidity the application of
characters is denoted with duality brackets. Henceforth, f ∈ (G×G∗)∗ may be written as
f(g, g∗) = ⟨g, a∗⟩ · ⟨a, g∗⟩ with suitable a ∈ G, a∗ ∈ G∗. Before constructing the splitting
morphism for (B.9) explicitly, a general construction concerning generators of characters
of second degree has to be carried out. For that sake let f denote a character of second
degree3 of G, that is a function f : G→ T, such that

G×G ∋ (g, g′) ↦→ f(g + g′)f(g)−1f(g′)−1 ∈ T (B.10)

is a bilinear pairing. These functions f form a group with pointwise multiplication denoted
X2(G). Furthermore, the associated pairing (B.10) may be represented by a morphism
ρ : G→ G∗:

f(g + g′)f(g)−1f(g′)−1 = ⟨g, ρg′⟩.

Since the lefthand side is obviously symmetric, ρ has to be as well, namely ρ = ρ∗ and
the mapping π : f ↦→ ρ defines a homomorphism onto the additive group of symmetric
morphisms Homs(G,G

∗) and has kernel G∗. If doubling defines an automorphism of G,

3The meaning of characters of second degree for bilinear pairings is similar to the one of quadratic forms
for bilinear forms in linear Algebra.
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namely G ∋ g ↦→ 2g ∈ G is bijective4 with inverse 2−1, then the association

ι : Homs(G,G
∗) ∋ ρ ↦→ (g ↦→ ⟨g, ρ2−1g⟩) ∈ X2(G) (B.11)

defines a section of π, making the following exact sequence split:

1 G∗ X2(G) Homs(G,G
∗) 1.

π

ι
(B.12)

Ultimately, the split of (B.9) may be dealt with. For this purpose define the function

f ′(g, g∗) = f(g, g∗)⟨γg∗,−βg⟩,

where σ ∈ Sp(G) was written in matrixform as in (B.2). Then, equation (B.8) reads

f ′(g1 + g2, g
∗
1 + g∗2) = f ′(g1, g

∗
1)f
′(g2, g

∗
2) · ⟨g1, β∗αg2⟩ · ⟨δ∗γg∗1, g∗2⟩

for f ′ and the definitions h(g) = f ′(g, 0), h∗(g∗) = f ′(0, g∗) lead to

h(g1 + g2) = h(g1)h(g2) · ⟨g1, β∗αg2⟩,

h∗(g∗1 + g∗2) = h(g∗1)h(g
∗
2) · ⟨δ∗γg∗1, g∗2⟩.

Since σ is assumend to be symplectic, the morphisms β∗α, δ∗γ are symmetric, hence
the above relation describes the transformation property of a character of second degree.
Thereupon, f may be written as a product of two characters of second degree and a
bilinear form:

f(g, g∗) = h(g)h∗(g∗) · ⟨γg∗, βg⟩.

In view of (B.12), especially (B.11), the function f is effortlessly expressed in terms of σ
as

fσ(g, g
∗) = ⟨g, β∗α2−1g⟩ · ⟨δ∗γ2−1g∗, g∗⟩ · ⟨γg∗, βg⟩.

The association σ ↦→ fσ defines a right split of (B.9), which proves that B0(G) contains
a copy of the symplectic group Sp(G), as claimed. Next, these are related to unitary
operators on L2(G).

4This requirement is in fact equivalent to G × G∗ having only one equivalence class of irreducible
σ-representations [Mac64].
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A theorem of Segal

The following theorem, initially from Segal [Seg63, Thm. 2 p. 39], and reformulated by
Weil [Wei64, 10. Thm. 1 p. 157] is not proven here, but its implications relevant for our
discourse are discussed.

Weil shows that every automorphism of A(G) which fixes its centre is given by an inner
automorphism of the unitary group of L2(G). This ensures an abstract argument for the
existence of the Weil representation (cf. section B.3).

Theorem B.17. Let B0(G) denote the normaliser of A(G) in the group of automorphisms
of L2(G). Then every element of B0(G) is a restriction of an inner automorphism of
the unitary group where the latter may be chosen from B0(G). Furthermore, this natural
projection π0 : B0(G) → B0(G) has kernel T, producing the exact sequence:

1 T B0(G) B0(G) 1.
π0 (B.13)

The theorem above provides an operator theoretic characterisation of the automorphism
group B0(G) of A(G) which contains a copy of Sp(G). In fact, it plays a central role
in constructing Weil’s abstract metaplectic group Mp which is discussed briefly in the
subsequent section.

The metaplectic extension

What has been done above may be partly transferred to the situation where G = V is
a finite dimensional vector space over a local field F . In this case the theory may be
linearised, replacing the Pontryagin dual G∗ with the algebraic dual vector space V ′. In
particular, equation (B.4) reads

β : (V ×V ′)× (V ×V ′) ∋ [ω1, ω1] ↦→ F (ω1, ω2)− F (ω2, ω1) = (x, x′)

(︄
0 1

−1 0

)︄(︄
y

y′

)︄
∈ F,

(B.14)

with F analogous to (B.3). Similarly, the product V × V ′ × F becomes a group with the
law

(ω1, t1) · (ω2, t2) = (ω1 + ω2, F (ω1, ω2) + t1 + t2), (B.15)
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denoted H(V ). In case of V = F , the associated symplectic group is exactly SL2(F ),
analogous to example B.15. Inspired by the abstract treatment above, automorphisms of
H(V ) which are composed of an automorphism σ of V × V ′ and a quadratic form f on
V × V ′ and operate via

(ω, t) ↦→ (σω, f(ω) + t)

are considered. In order to define an automorphism of H(V ) via this association, it is
necessary and sufficient to satisfy

∀ω1, ω2 ∈ V × V ′ : f(ω1 + ω2)− f(ω1)− f(ω2) = F (σω1, σω2)− F (ω1, ω2). (B.16)

Nearly identically to the multiplicative case, these automorphisms comprise a group with
group law

(σ, f)(σ′, f ′) = (σσ′, f ′′)

where f ′′(ω) = f(ω) + f ′(σω). This group is denoted by Ps(V ) and named pseudo
symplectic group of V . Again, by symmetry of the left hand side of (B.16) σ has to be
symplectic, where on the other hand, every symplectic element σ determines a quadratic
form via (B.16). As a consequence, (σ, f) → σ defines an isomorphism of Ps(V ) and
Sp(V ). In addition, if F = Qp and χ denotes a non-trivial character of Qp, then the
relations above may be transformed to the multiplicative case by applying χ to both sides
of the equations. This may be utilised to pull fragments of the multiplicative theory back
to the additive case. Explicitly, the mapping

H(V ) → A(G), (ω, t) ↦→ (ω, χ(t))

defines a homomorphism as well as

µ : Ps(V ) → B0(G), (σ, f) ↦→ (σ, χ ◦ f).

The latter is injective, if char(F ) ̸= 2.5 Note that the group was denoted by G, instead of
V , since it is considered to be a locally compact topological group with Pontryagin dual,
rather than a linear vector space. This difference in notation might appear captious but it
is meant to remind the reader which point of view led to the associated results.

5In fact, the mapping µ is surjective if, and only if, F = Qp for some p ≤ ∞ (cf. [Rao93, p. 350]). Rao’s
Ps(H,F ) is essentially our Ps(V ) (where the second component is the induced multiplicative function)
and Ps(H) in his notation is identical with our B0(G).
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Definition B.18. Define the abstract metapletic group Mp(V ) to be the subgroup of
Ps(V )×B0(V ), consisting of those elements (s, s), such that µ(s) = π0(s) (cf. Figure B.3.1).

The natural projection onto Ps(V ) will be denoted by π. Its surjectivity is a consequence
of π0’s (cf. Theorem B.17). The kernel of π consists exactly of T < B0(V ), so that the
upper horizontal sequence in the commutative Diagram B.3.1 is exact. Consequently,
Mp(V ) is a central extension of Sp(V ).
Furthermore, the injectivity of µ implies that the projection of Mp(V ) into B0(G) must
be injective as well. Hence, Mp(V ) admits a faithful unitary continuous representation on
L2(G), where the automorphism group is equipped with the strong operator topology. In
fact, it even restricts to a representation on the subspace of Schwartz Bruhat functions
S(V ), since B0(G) operates on S(V ).
After the introduction of the metaplectic group, Weil constructs the adelic pendant to
Mp and proves [Wei64, IV p. 194] that the cover is never trivial and always reduces to a
topological central extension

1 −→ Z2 −→ Sp(V ) −→ Sp(V ) −→ 1,

since the cohomology class it determines in H2(G,T) is of order 2. If V = F , which is
the case we are interested in, this double cover is unique (cf. [Gel76, 2 Prop. 2.3 p. 14]).6

However, working with the extension Mp(V ) is more convenient for the adelic setting due
to its splitting over certain subgroups for which the Z2 extension does not (cf. [Kud94]). In
the process of Weils proceedings, a class of representations named after him is constructed
which will be discussed in the following section.

The Weil representation

The most concise conceptional approaches to the relevant setting of the Weil representation
the author is aware of is found in [Kud96] and the slightly less dense [Pra93]. An extended
description is found in [LV80] and a slightly more explicit approach in [Rao93] (note that
Rao’s notation is slightly different, for instance, he writes Ps(G) for B0(G).). The abstract
reason for the existence of a representation of Sp(V ) is a theorem by von Neumann [Neu31]
which was later generalised by [Mac49] (cf. Remark B.16). This essentially means that
any irreducible unitary representation of the Heisenberg group A(G) on L2(G) is unique

6Further, [Wed16, 2.6 p. 34] or [Hat02, 1.3 p. 54] may be considered for a conceptual approach to
coverings.
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Sp(V )

1 T Mp(V ) Ps(V ) 1

B0(G)×Ps(V )

1 T B0(G) B0(G) 1

1 (G×G∗)∗ B0(G) Sp(G) 1

π

µ

π0

Figure B.3.1: Cf. (B.13) from Theorem B.17 for the horizontal sequence in the middle.
The bottom sequence is in accord with the right split of (B.9) discussed in
Section B.3. By injectivity of µ, the projection of Mp(V ) into B0(G) must
be injective as well.

up to unitary equivalence7. In fact, if (B.6) defines a unitary representation, then for any
element σ ∈ Sp(G) = Sp(V )

A(G) = G×G∗ × T ∋ (ω, t) ↦→ U(σω)t (B.17)

defines another one. Consequently,

U(σω) = Γ(σ)U(ω)Γ(σ)−1

for some unitary operator Γ(σ), which is determined up to a scalar. As a result, the
mapping σ ↦→ Γ(σ) gives rise to a projective representation8 of the symplectic group Sp(V ),
meaning a continuous homomorphism into U(L2(G))/T. This projective representation
may be lifted to a central extension of Sp(V ), which may be taken as a double cover. As
mentioned above there is only one double cover of Sp(V ), resulting in a representation of
Sp(V ).
However, the above discussion is not very instructive, especially if computations are
required. For this thesis only Weil representations of SL2, more accurately its metaplectic
cover SL2, are required. Weil representations for this setting are given more explicitely

7The proof features elementary fragments of the theory of C∗-Algebras [Seg63, p. 39, 41], which happen
to be of no further use in supporting a deeper understanding of the ultimate goal of this thesis. As a
consequence, it will be disregarded.

8Details about projective representations are found in [Mac58]. If the reader is interested in the historic
approach a far more elementary and less sophisticated source is [Sch04]. Note that the multipliers of
projective representations are also called Schur multiplier.
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in terms of integral and multiplication operators in Subsection B.3. Note that the term
local Weil representation denotes a representation of the metaplectic extension SL2(Fp)

of SL2(Fp) into the space of automorphisms of a Schwartz Bruhat space S(Vp) for a
finite vector space Vp over Fp, while the global (adelic) representation emerges from their
combination. The representation factors through SL2 if, and only if, the space Vp is even
dimensional, rendering it an ordinary representation of SL2 in that case.
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B.4 Figures

A×

Ẑ×/U

A×/Q×

Ẑ×

p∏︁
p|N

Z×p /U(p,N)

A1/Q××R×+

A1/Q×

T

(Z/NZ)×

p∏︁
p|N

(Z/(p,N)Z)×

∼

∼

∼

η

∼

χ

η̂

∼
Chin.
remainder
thm

Figure B.4.1: Illustration of the relation between finite Hecke characters and primitive
Dirichlet characters in form of a commutative diagram. Double tipped arrows
mark surjective projections, where the ones from A× → Ẑ× → (Z/NZ)×
are induced by taking the corresponding long paths. However, both of them
are canonical and using the Chinese remainder theorem Ẑ× ≃ lim

←
(Z/NZ)×

may be verified. An in depth description is found in [Opi18, Sec. 1.10 p. 20].
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Km Km

Ui Uj

Xi Xj

M

xi xj

Figure B.4.2: Visualisation of charts for a manifold M of dimension m over a field K ∈
{R,C} and their respective transition map (represented by a blue arrow).
Here, Ui, Uj are neighbourhoods on M , Xi, Xj neighbourhoods in Km and
xi, xj denote the local coordinates. The illustration is based on [Tho15].



B.4 Figures 333





Index

abs, 22
absolute norm, 34
absolute value function, 22

equivalence, 23
non-Archimedean, 22
p-adic, 23

action
monoid, 113

Adele
Eisenstein series, 171

Adele ring, 24
finite, 24

admissible indices, 116
affine Weierstraß equation, 44
algebra

Clifford, 136
exterior, 135
grading, 134
Lie, 271
symmetric, 135

algebraic integers, 32
algebraic number fied

fundamental identity, 35
alternating matrix, 75
Atkin–Lehner

involution, 210
automorphic form, 53
automorphism

canonical, 135
Clifford, 137

automorphy
factor, 53, 64, 152

cocycle relation, 64

bad
place, 20
prime number, 20

Baily–Borel
compactification, 50

Bernoulli
number, 57, 66

Bessel
function, 59

bilinear
form, 13
pairing, 321

Birch Swinnerton-Dyer, 44
Borcherds

denominator formula, 268
lift, 269
product, 269

boundary component
one dimensional, 150
rational, 151
zero dimensional, 150

boundary point
generic, 150



336 Index

special, 150

Cartan
decomposition, 271

Cayley
transform, 48

character, 26
second degree, 324
standard, 29

class number, 34
Clifford

alegbra
canonical involution, 137

algebra, 136
canonical automorphism, 137
even, 137

group, 138
representation, 138

module
odd, 137

norm, 137, 180
representation, 138

cocycle, 152, 320
relation, 53, 64, 152

complementary series, 167
completed Riemman zeta function, 186
complexification, 133
confluent hypergeometric function, 309
congruence subgroup, 54, 67

orthogonal, 148
level, 67
principal, 67

convergence
absolute

infinite product, 241
cover

metaplectic, 80
curve

elliptic, 43
modular, 48

cusp, 67
cusp form, 58

decomposition
Cartan, 271
Iwasawa, 162

Dedekind
η-function, 267
domain, 36

definite
positive, 298

degree, 76
tensor, 134

denominator formula, 268
determinant, 135
different ideal, 35
differential

forms, 271
Diophantine Geometry, 43
discontinuous action, 54
discrete series, 167
discrete valuation ring, 36
discriminant, 33

function, 44
kernel, 146

division
of lattice vectors, 18

divisor
rational quadratic, 157
special, 157

divisor function, 57, 66

Eichler
transform, 140

Eisenstein series, 46, 66
augmented, 58



Index 337

classical, 56
adelic, 171
complete, 58
non-holomorphic, 103
orthogonal, 156

elementary tensors, 133
elliptic

curve, 43, 44
rank, 44

function, 46
Euclid

algorithm, 43
Euler

product, 185
extension

of scalars, 133
of Q, 33
unramified, 36

exterior
algebra, 135
power, 135

factor
of automorphy, 53, 64, 152

factorisable section, 169
faithful

monoid action, 114
Faltings, 43
Fermat

last Theorem, 43
field

global, 23
local, 23, 37
of fractions, 32

Finite Hecke character, 30
forms

differential, 271
Fourier

expansion
classic case, 57

transform, 26
free

monoid action, 114
Fuchsian groups, 53
function

confluent hypergeometric, 309
elliptic, 46
matching, 177
rapidly decreasing, 109
Whittaker, 309

fundamental domain, 48

general Spin group, 139
generalised upper half plane, 145
generic

boundary point, 150
genus

quadratic lattice, 16
symplectic group, 75

global field, 23
good

place, 20
prime number, 20

graded algebra, 134
Gram

matrix, 13
Grassmannian, 142
Grothendieck

group, 17
group

Heisenberg, 322
character, 26
Clifford, 138
covering, 319
discriminant, 20
dual, 26



338 Index

genus, 75
Grothendieck, 17
Idele, 24
locally compact abelian, 25
metaplectic, 319, 326, 328
modular, 65
special linear, 321
Spin, 139
symmetric, 136
symplectic, 75, 321

half plane
lower, 64
upper, 64

generalised, 145
Hall

divisor, 209
Hasse

principle, 25
Hasse–Minkowsky, 43
Hecke

theory, 54
algebra, 193
bound, 61
character, 30
eigenform, 201
operator, 192

primitive, 212
subgroup, 190

Heegner
divisor, 2, 157, 269

Heisenberg, 322
group, 322

Hilbert
symbol, 30

holomorphic
at ∞, 65
modular form, 154

homogeneous
degree, 298
positive, 298

hyperbolic
Laplacian, 42
measure, 66
plane, 15

hypergeometric function, 309
hyperplane

reflection, 138

ideal
class groups, 34
fractional, 34

absolute norm, 34
inverse, 34

Idele group, 24
imaginary part, 142
indices

admissible, 116
representable, 117

primitively, 117
inequality

triangle, 298
inertia degree, 34
infinite product

absolute convergence, 241
integral element, 32
inversion matrix, 65
involution

canonical
Clifford, 137

irreducible representation, 318
isotropic

element, 14
Iwasawa

decomposition, 82, 83, 162



Index 339

j-invariant, 44
Jordan

components, 16

K Bessel function, 59
kernel

discriminant, 146
Klein

j-invariant, 268
Kloostermann

sum, 103
Kudla–Millson–Funke

lift, 273
Kudla–Millson

lift, 272
Schwartz form, 271
theta function, 272

Kähler
form, 178

Laplacian, 95
lattice, 15

basis, 15
discriminant group, 20
division, 18
dual, 18
even, 18
maximal, 19
quadratic

signature, 18
representation number, 61
scaled, 14
unimodular, 18
vector

primitive, 19
lca, 25
Leray

cocycle, 80

level
of an element, 20
quadratic lattice, 19

L-function
completion, 209
vector valued

symmetric square, 236
Lie

algebra, 271
lift

Borcherds, 269
Kudla–Millson, 272
Kudla–Millson–Funke, 273

local
field, 23
splitting index, 81

local field, 23
lowering operator, 275

Maass
differential operator, 59
form, 275

weak, 275
lowering operator, 275
raising operator, 275

majorant
standard, 95

matrix
alternating, 75
Gram, 13

measure
hyperbolic, 66
self dual, 29

Mellin
transformation, 61

meromorphic
at ∞, 65
modular form, 155



340 Index

metaplectic
extension, 80
group

abstract, 328
Milgram

formula, 20
Model

Grassmannian, 142
modular

curve, 48
function

orthogonal, 151, 154
group, 65

inversion, 65
translation, 65

quasi character, 26, 168
variety, 149

modular form
holomorphic, 154
meromorphic, 155
orthogonal, 155

module
exterior algebra, 135
symmetric algebra, 135
tensor product, 132

monoid
action, 113

diagonal, 115
faithful, 114
free, 114
product, 115

preorder, 113
Monster denominator formula, 268
Mordell, 43
morphism

modulus, 320
multiplier system, 153

Möbius
function, 187
transformation, 48, 64, 162

newforms, 208
norm, 33

Clifford, 137
Spinor, 140

normalised eigenfunction, 170
normed space, 298
N -primitive, 118
N -square free, 118
n-torsion, 21

order
partial, 116

orthogonal congruence subgroup, 148
orthogonal Eisenstein series, 156
orthogonal group, 129

parabolic Poincaré series, 108
Parseval

formula, 29
partial order, 116
Petersson

product, 54
operator, 42, 53, 65

orthogonal, 156
product, 69

place, 23, 37
bad, 20
good, 20

Plancharel
Theorem, 29

Pochhammer
symbol, 111

Poincaré
series, 108

Polynomial
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degree, 95
Pontryagin, 26

dual group, 26, 320
positive definite, 298
positive homogeneous, 298
preorder

monoidal, 113
prime ideal

indecomposed, 35
nonsplit, 35
ramified, 35

totally, 35
split, 35
umramified, 35
unramified, 35

prime number
bad, 20
good, 20

primitive
Hecke operator, 212

primitively representable indices, 117
principal congruence subgroup, 67, 148
principal series representation, 168

even, 169
odd, 169
spherical section, 168

product
Borcherds, 269

quadratic
lattice

discriminant, 15
determinant, 13
extension

discriminant, 33
extension of Q, 33
form, 13

bilinear form, 13

non-degenerate, 14
regular, 13
standard majorant, 95

lattice, 15
bad prime, 20
discriminant form, 19
discriminant group, 20
dual, 18
even, 18
genus, 16
hyperbolic, 15
integral, 18
level, 19
maximal, 19
oddity, 16
rank, 15
representation number, 61
split, 17
type, 16
unimodular, 18

module, 13
anisotropic, 14
direct sum, 14
isometry, 14
isomorphism, 14
isotropic, 14
morphism, 14
non-degenerate, 14
orthogonal complement, 14
reflection, 14
regular, 13
tensor product, 17

space, 13
character, 31
reflection, 129
signature, 14

quantum mechanics, 320
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raising operator, 275
ramification index, 34
rank

elliptic curve, 44
rapidly decreasing function, 109
rational boundary component, 151
real part, 142
real quadratic space, 14
reflection at hyperplane, 138
relation

cocycle, 64
representable indices, 117
representation

right regular, 317
character, 319
induced, 318
irreducible, 318
number, 61, 62

restricted tensor product, 82, 168
Riemann

zeta function
completed, 186
Euler product, 185

Riemann Zeta, 61
functional equation, 61

Riemmann–Roch
theorem, 44

right regular representation, 317
ring of integers, 32

Schur
multiplier, 329

Schwartz form
Kudla–Millson, 271

Schwartz–Bruhat
function, 28

section
factorisable, 169

spherical, 168, 169
standard, 169

Segal, 326
Siegel

domain, 66
theta function, 95
upper half space, 76

signature, 18
slash operator

orthogonal, 156
special

boundary point, 150
linear group, 321
orthogonal cover, 87

spherical section, 169
Spin group, 139

general, 139
Spinor norm, 140
split, 35

hyperbolic, 17
lattice, 17

splitting homomorphism, 83
standard

majorant, 171
section, 169

strong approximation, 84
strong operator topology, 322
strong triangle inequality, 22
sum

direct
quadratic module, 14

symmetric
algebra, 135
group, 136
power, 135

Symplectic
group, 75
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symplectic group, 321

tangent space, 271
tensor

algebra, 134
canonical automorphism, 135
degree, 134

product, 132
elementary tensors, 133
restricted, 168

theta
distribution, 164
function, 97

Siegel, 95
kernel, 164

trace, 33
translation matrix, 65
triangle inequality, 298

strong, 22
tube domain, 145
type

real quadratic space, 14

uniformiser, 36
uniformly rapidly decreasing, 109
unitary operator, 322
upper half plane, 64

generalised, 145
upper half space, 76

valuation, 36
vanishing

at ∞, 65
variety

modular, 149
vector representation, 138
vector space

complexification, 133

Weierstraß
equation

affine, 44
p-function, 46

Weil
convergence criterion, 176
representation, 328

coefficient, 89
integral, 86

Whittaker
function, 309

Witt
decomposition theorem, 15
index, 15
rank, 15
ring, 17

zero quadric, 142
zeta

integral, 24





Glossary

Notation Description Page
List

R A commutative, unitary, and associative ring. 13
q A quadratic form. 13
b The bilinear form associated to a quadratic form. 13
F A field. If the characteristic is not mentioned, it will

never equal 2.
13

V A vector space. If the associated field is not
mentioned, it will be a Q vector space.

13

S The Gram matrix of q. 13
det(M) The determinant of a free quadratic Module (M, q),

also det(q) = det(S) ∈ R/(R×)2 for the Gram matrix
S.

13

N⊥ The orthogonal complement of a subset N of a
quadratic module (M, q).

14

H The hyperbolic plane, meaning an unimodular Z
lattice of rank 2 and signature (1, 1).

15

L A lattice (usually accompanied by a quadratic form
q).

15

Vp The tensor product V ⊗Q Qp usually accompanied by
a quadratic form q.

15

Lp The tensor product L⊗Z Zp usually accompanied by
a quadratic form q.

15

q1⊗ q2 The tensor product of two quadratic forms. 17
Groth(M) The Grothendieck group of a cancellation monoid M . 17
W (F ) The Witt ring of a field F . 17
L′ The dual lattice of L. 18
Qp The field of p-adic numbers. 23
Zp The ring of p-adic integers. 23



346 Glossary

Notation Description Page
List

Af The finite Adele ring - containing all Qp for finite
primes p <∞.

24

Ẑ The product of all Zp for p <∞. It is an open and
compact subring of Af .

24

A The Adele ring - containing all Qp. 24
ζ(s) The Riemann Zeta function. 24, 61
| · | The absolute value on A×. 25
A1 The kernel of the absolute value on A×. 25
G A locally compact abelian group with elements g. 25
µ The Haar measure of G. 25
δG The modular quasi character of G, where

δG(g)µ(A) = µ(Ag).
26, 168

χ A character of G. 26, 327
T The group of unitary complex numbers. 26,

319, 323
G∗ The dual group of a locally compact abelian group G. 26
e∞ Bicharacter for Q∞. 26
ep Bicharacter for Qp. 26
f̂ The Fourier transform of a function f ∈ L1(G). 26
ψb(a, x) The concatenation of a character ψ and a

bilinearform b.
27

S(S) The space of Schwartz Bruhat functions on an
appropriate topological space S.

28, 79

χp The character associated to the place p. 30(︂
v
p

)︂
The Legendre symbol of v ∈ Z. 31

Fp The finite field with p elements. 31
χb The finite Hecke character associated with b ∈ Q. 31
χL The character associated to a quadratic lattice (L, q). 32
Q(R) The quotient field of an integral domain R. 32
OF The ring of integers of a field F/Q(R). 32
trF/K The trace of an element x ∈ F over the extension

F/Q(R).
33

NF/K The norm of an element x ∈ F over the extension
F/Q(R).

33
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Notation Description Page
List

Mx The linear Mapping Mx : F → F, y ↦→ xy associated
to x ∈ F .

33

a A fractional ideal of F/Q(R). 34
JF The group of fractional ideals F/Q(R). 34
ClF The ideal class group of F/Q(R). 34
Γ A discrete subgroup of a topological group G –

usually with additional properties to ensure that the
quotient is equipped with an appropriate structure
(cf. Fuchsian subgroup of SL2).

41

K A compact subgroup of a topological group G. In an
adelic setting K will usually assumed to be open.

41

SL2 The special linear group of 2× 2 matrices. 42, 319
SO2 The special orthogonal group of 2× 2 matrices. 42, 82
E/F An elliptic curve over the field F . 44
℘ The Weierstraß ℘-function. 46
H The upper half plane consisting of all complex

numbers c with Im(c) > 0.
47

Γ(1) The modular group Γ(1) = SL2(Z). 48
Y (Γ) The modular curve Y (Γ) = Γ\H for an

automorphism group Γ of H.
48

FΓ A fundamental domain for the automorphism group Γ

of H.
48

∞ The element added to the modular curve Y (Γ(1)) for
compactification. It is also referred to as the cusp ∞
or just the cusp.

50

X(Γ) The compactified modular curve for Γ. 50
j(γ, τ) The factor of automorphy, relying on γ ∈ SL2(Z) and

τ ∈ H.
53

|k Petersson operator of weight k ∈ Z, where
f |kγ = j(γ, τ)−kf(γτ). It defines a right operation of
SL2(Z) on meromorphic (holomorphic) functions on
H.

53

Mk(Γ) The Weierstraß ℘-function. 53
Γ(N) The kernel of the natural projection

SL2(Z) → SL2(Z/NZ) for a natural number N .
54
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Notation Description Page
List

Γ0(N) A special congruence subgroup. 54
Γ1(N) A special congruence subgroup. 54
π1(M) The fundamental group of a Riemann surface M . 55
Ek The classical normalised Eisenstein series of weight

k ∈ 2N.
56

σs(n) The divisor function of the number n with parameter
s ∈ C.

57

Ek(τ, s) The normalised (non-holomorphic) augmented
Eisenstein series of weight k ∈ 2N.

58

G∗k(τ, s) The complete augmented Eisenstein series of weight
k ∈ 2N.

58

Ks The K Bessel function. 59
Rk A Maass differential operator. 59
θL The theta function associated to the quadratic lattice

L.
60

rL(n) Representation number of the natural number n by
the quadratic lattice L.

61

ζ∗ The completed Riemann Zeta function. 61
#(S, T ) The representation number of the Gram matrix T by

S.
62, 175

Posn(Z) The set of symmetric positive definite n× n-matrices
with coefficients in Z.

62

prrp The projective representation on SL2, inducing the
Weil representation.

80

cL The Leray cocycle. 80
γ(η) The Weil index of the character η of second degree. 80
q(g1, g2) The Leray invariant associated to the Leray triple of

isotropic subspaces determined by g1, g2.
80

[g, z]L The Leray bracket, parametrising SL2. 80
ωV The Weil representation of SL2 into the space S(VA). 80
ψp,a The mapping x ↦→ ep(a, x). 80
M(Fp) The matrix group of elements of the form m(a) for

a ∈ F×p .
82

N(Fp) The matrix group of elements of the form n(b) for
b ∈ Fp.

82
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Notation Description Page
List

kϑ Elements of SO2(R) parametrised by an angle ϑ ∈ T. 83, 166
gτ The matrix n(x)m(

√
y) representing the number

τ = x+ iy ∈ H
83, 166

P∞ The real matrix group of 2× 2 upper triangular
matrices.

83

Kp The group SL2(Zp) for p <∞. 83
Kf The group SL2(Ẑ). 83
KA The adelic group K∞ ×Kf . 83
PA The adelic Borel group of upper triangular matrices

in GA.
83

P ′A The preimage under the splitting morphism of PA in
G′A.

83

K ′∞ The preimage under the splitting morphism of K∞ in
G′A.

83

K0(4)2 The completion of Γ0(4) in K2. 84
K0(4) The group K0(4)2 ×

∏︁
2<p<∞Kp. 84

K0 A subgroup of K0(4), which is open and compact in
Kf – it is identified with its preimage in G′A.

84

Mp2 A subgroup of SL, representing a central extension of
SL2 by {±1}.

84

SL′/L The subspace of S(Vf ) generated by indicator
functions of cosets of L′ by L.

85

ρL The discrete Weil representation on Mp2(Z) to
C[L′/L].

86

GL+
2 The metaplectic cover of GL+

2 . 87
T The element (( 1 1

0 1 ) , 1) ∈ Mp2(Z). 87
S The element

(︁(︁
0 −1
0 1

)︁
,
√
τ
)︁
∈ Mp2(Z). 87

Z The element
(︁(︁−1 0

0 −1
)︁
, i
)︁
∈ Mp2(Z). 87

U The element ST−1S−1 ∈ Mp2(Z). 88
Rd The element ST dS−1T aST d ∈ Mp2(Z) for suitable

elements a, b ∈ Z.
88

χL A special character describing the action of
Γ0(lev(L)) under the discrete Weil representation.

94

O(M) The orthogonal group of a quadratic module (M, q). 129
T The unit circle in C. 130
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Notation Description Page
List

T (M) The tensor algebra of the module M . 134
CM The Clifford algebra of the quadratic module M . 136
N The Clifford norm. 137
GM The Clifford group of the quadratic module M . 138
GSpinM The general Spin group of the quadratic module M . 139
SpinM The Spin group of the quadratic module M . 139
D(V ) The Grassmannian of the quadratic vector space V . 142
K The projective model of the Grassmannian. 143
Γ(L) The discriminant kernel of the lattice L. 146
Zv The special divisor of D induced by some v ∈ D. 157
θ The theta distribution associated to h ∈ OA(V ). 164
θL The theta series associated with the quadratic lattice

L.
166

H A closed subgroup of the topological group G. 167
πH A smooth representation of the closed subgroup H. 168
IndGH(πH) The induced representation of G by πH of G. 168
Ip(s, χ) The local principal series representation associated to

s, χ.
168

Φp(g, s) Holomorphic sections through the bundles of local
principal series representations Ip(s, χ).

168

Φ0
p(g, s) The spherical section, characterised by being right Kp

invariant and normalised.
168

I(s, χ) The global principal series representation associated
to s, χ.

168

Φ(g, s) Holomorphic sections through the bundles of
principal series representations I(s, χ).

169

I(g;ϕ) The theta integral of the theta distribution associated
with a Schwartz Bruhat form ϕ.

176

|k The Petersson slash operator of weight k ∈ Z. 189
T (n) The standard Hecke operator of level n ∈ N. 198
g(n) The matrix ( n 0

0 1 ) ∈ GL+
2 (Q) for some n ∈ N. 212

T (n) The primitive Hecke operator of level n ∈ N, directly
associated to g(n).

212

σn The eigenvalue of a modular form f under the
primitive Hecke operator T (n).

223
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Notation Description Page
List

Lℓ(f, s) The L-series Lℓ(f, s) =
∑︁

n∈N a(nℓ, n
2 q(ℓ))/ns

associated to a modular form f ∈ ML,k with Fourier
coefficients a(λ,m) and an isotropic element ℓ ∈ L′.

236

Φ(z, f) Borcherds’ regularised additive theta lift. 268
Ψ(z, f) Borcherds’ regularised multiplicative lift. 269
ϕKM The Kudla–Millson Schwartz form. 271
ΘKM The Kudla–Millson theta form. 272
ΛKM The Kudla–Millson theta lift. 272
SL2 The metaplectic extension of SL2. 319
α∗ The dual morphism to α : G→ H, given as a

pullback.
320

F A bilinear pairing inducing – the multiplier of the
Heisenberg group.

321

κ The symplectic pairing of G×G∗. 321
Sp(G) The symplectic group of G×G∗. 321
L2(G) The complex Hilbert space of square integrable

functions on (G,µ).
322

U(ω) The unitary operator induced by ω ∈ G×G∗. 322
A(G) The Heisenberg group of G. 322
[Q,P ] The commutator QP (PQ)−1 of Q,P . 322
B(G) The group of automorphisms of A(G). 323
B0(G) The group of automorphisms of A(G) fixing its

centre.
323

⟨ · , · ⟩ Duality brackets, taking an element of G×G∗ and
merging the components.

324

X2(G) The group of characters of second degree for G. 324
ρ The morphism associated to a bilinear paring. 324
Homs(G,G

∗) The subgroup of symmetric morphisms of
Hom(G,G∗).

324

fσ The image of σ under the section Sp(G) → B0(G),
splitting the Sequence (B.9).

325

B0(G) The normaliser of A(G) in Aut(L2(G)). 326
π0 The projection of B0(G) onto B0(G). 326
H(V ) The Heisenberg group of the Vector space V . 327
Ps(V ) The pseudo symplectic group of a vector space V . 327



352 Glossary

Notation Description Page
List

Mp The abstract metaplectic group. 328
N The natural numbers, excluding the zero.
N0 The natural numbers, including the zero.
Z The integers.
Q The rational numbers.
R The real numbers.
C The complex numbers.
gcd(a, b) The greatest common divisor of a, b ∈ Z.
Im(τ) The imaginary part of τ ∈ H.
Re(s) The real part of s ∈ C.
⟨ · , · ⟩ A scalar product.
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