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Abstract

Recent techniques based on Mean Field Games (MFGs)
allow the scalable analysis of multi-player games with many
similar, rational agents. However, standard MFGs remain
limited to homogeneous players that weakly influence each
other, and cannot model major players that strongly influence
other players, severely limiting the class of problems that
can be handled. We propose a novel discrete time version
of major-minor MFGs (M3FGs), along with a learning
algorithm based on fictitious play and partitioning the prob-
ability simplex. Importantly, M3FGs generalize MFGs with
common noise and can handle not only random exogeneous
environment states but also major players. A key challenge
is that the mean field is stochastic and not deterministic
as in standard MFGs. Our theoretical investigation verifies
both the M3FG model and its algorithmic solution, showing
firstly the well-posedness of the M3FG model starting from
a finite game of interest, and secondly convergence and
approximation guarantees of the fictitious play algorithm.
Then, we empirically verify the obtained theoretical results,
ablating some of the theoretical assumptions made, and show
successful equilibrium learning in three example problems.
Overall, we establish a learning framework for a novel and
broad class of tractable games.

Introduction
While reinforcement learning (RL) has achieved tremendous
recent success (Mnih et al. 2015; Sutton and Barto 2018),
multi-agent RL (MARL) as its game-theoretic counterpart
remains difficult due to its many challenges (Zhang, Yang,
and Başar 2021). In particular, the scalability challenge is
hard to overcome due to the notorious complexity of non-
cooperative stochastic games (Daskalakis, Goldberg, and
Papadimitriou 2009; Yang and Wang 2021). Here, the recent
introduction of mean field games (MFGs, (Lasry and Lions
2007; Huang, Malhamé, and Caines 2006; Saldi, Başar, and
Raginsky 2018)) has contributed a mathematically rigorous
and tractable approach to handling large-scale games,
finding application in a variety of domains such as finance
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(Carmona 2020) and engineering (Djehiche, Tcheukam, and
Tembine 2017). The general idea is to summarize many sim-
ilar agents (players) and their interaction through their state
distribution – the mean field (MF). Owing to the amenable
complexity of MFGs, many recent efforts have formulated
equilibrium learning algorithms for MFGs (Laurière et al.
2022), including approaches based on regularization (Cui
and Koeppl 2021; Laurière et al. 2022; Guo, Xu, and Za-
riphopoulou 2022), optimization (Guo, Hu, and Zhang 2023;
Guo et al. 2023), fictitious play (Perrin et al. 2020; Geist
et al. 2022) and online mirror descent (Pérolat et al. 2022;
Laurière et al. 2022; Yardim et al. 2023). For less-familiar
readers, we refer to the survey of Laurière et al. (2022).

So far however, most MFG learning frameworks remain
unable to handle common noise (Carmona, Delarue, and
Lacker 2016), or more generally major players. Contrary
to minor players, a major player directly affects all minor
players and is affected by the MF of minor players, whereas
common noise also affects all minor players, but is exoge-
neous and can be understood as a static major player with-
out actions (Huang and Wang 2016). Notably, Perrin et al.
(2020) formulate an algorithm handling common noise us-
ing a continuous learning Lyapunov argument (Harris 1998;
Hofbauer and Sandholm 2002), assuming however that the
common noise is known, while Cui, Fabian, and Koeppl
(2023) consider a cooperative setting. Common noise and
major players remain important in practice, as a system sel-
dom consists only of many similar minor players. For ex-
ample, strategic players on the market do not exist in a vac-
uum but must contend for instance with idiosyncratic shocks
(Carmona 2020) or government regulators (Aurell et al.
2022), while many cars on a road network (Cabannes et al.
2022) may be subject to traffic accidents or traffic lights.
In continuous-time, such systems are known as MFGs with
major and minor players (Carmona, Delarue et al. 2018),
and have been considered, e.g., by Huang (2010); Nguyen
and Huang (2012); Bensoussan, Chau, and Yam (2016) for
LQG systems, by (Nourian and Caines 2013; Sen and Caines
2016) in non-linear and partially observed settings, and
more recently by Carmona and Zhu (2016); Carmona and
Wang (2017); Lasry and Lions (2018); Cardaliaguet, Cirant,
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and Porretta (2020). Major agents also generalize common
noise, an important problem in MFG literature (Carmona,
Delarue, and Lacker 2016; Perrin et al. 2020; Motte and
Pham 2022). For an additional overview, we also point to
Carmona, Delarue et al. (2018). In contrast to prior work,
we focus on a computational learning framework that is in
discrete time. Additionally, even existing discrete-time MFG
frameworks with only common noise such as by Perrin et al.
(2020) have to the best of our knowledge not yet rigorously
connected MFGs with the finite games of practical inter-
est. We note that another setting with major players has al-
ready been explored: Stackelberg MFGs. (Elie, Mastrolia,
and Possamaı̈ 2019; Carmona and Wang 2021; Carmona,
Dayanıklı, and Laurière 2022) consider a Stackelberg equi-
librium instead of a Nash equilibrium, wherein a ‘major’
principal player chooses their policy first and has priority
(like a government or regulator); see (Guo, Hu, and Zhang
2022; Vasal and Berry 2022) for discrete time versions of the
problem. Though the Stackelberg setting is of importance, it
is distinct from computing Nash equilibria where major and
minor players are “on the same level”: in the Stackelberg
setting, minor players only respond with a Nash equilibrium
between themselves after the principal’s policy choice. Fur-
thermore, we are not aware of any propagation of chaos re-
sults even in discrete-time Stackelberg MFGs, for which our
result also applies. The field of Stackelberg MFGs remains
part of continued active research, to which our M3FG setting
may also contribute, and vice versa.

By the preceding motivation, we propose the first general
discrete-time Major-Minor MFG (M3FG) learning frame-
work. We begin with providing a theoretical foundation of
the proposed M3FG model, showing that equilibria in finite
games with many players can be approximately learned in
the M3FG instead. The proof is based upon showing propa-
gation of chaos i.e., convergence of the empirical MF, which
– in contrast to its counterpart in MFGs without common
noise – converges only in distribution. We then move on to
provide a learning algorithm based on fictitious play to solve
M3FGs, with convergence results and approximation guar-
antees for its tractable and practical, tabular variant. Empiri-
cally, our learned policies do not assume that common noise
is known a priori. Due to the resulting stochastic MF, for
tractable dynamic programming we allow conditioning of
player actions and policies also on the MF instead of just
the player’s own state. Finally, we verify the M3FG frame-
work on three problems, empirically supporting theoretical
claims, even when the assumptions are not entirely fulfilled.

Major-Minor Mean Field Games

In this section, we begin by giving a description of consid-
ered problems and their corresponding mean field system.
Proofs and additional details can be found in the full preprint
version (Cui et al. 2023).

Notation: Equip finite sets S with the discrete metric,
products with the product sup metric, and probability mea-
sures P(S) on S with the L1 norm. Let [N ] := {1, . . . , N}.

Finite Player Game
We consider a game with N minor players and one major
player. Let X and U be finite state and action spaces for mi-
nor players, respectively. Let X 0 and U0 be finite state and
action spaces for the major player, respectively. Let T ∈ N
be a finite time horizon and let T := {0, 1, . . . , T − 1}. We
denote the state and the action of minor player i ∈ [N ] at
time t ∈ T by xi,N

t and ui,N
t , respectively. Similarly, we de-

note by x0,N
t and u0,N

t the state and the action of the major
player at time t. Let µ0 and µ0

0 be initial probability distri-
butions on X and X 0, respectively. Define the empirical MF
µN
t := 1

N

∑N
i=1 1xi,N

t
, where 1x is the indicator function

equal to 1 for the argument x and 0 otherwise. The MF can
be viewed as a histogram with |X | many bins.

We can consider several classes of policies. In this pre-
sentation, we focus on Markovian feedback policies in the
following sense: the policy πi,N for minor player i is a func-
tion of her own state, the major player’s state and the MF;
the policy π0,N for the major player is a function of her own
state and the MF. We denote respectively by Π and Π0 the
sets of such minor and major player policies.

For a given tuple of policies (πN , π0,N ) =
((π1,N , . . . , πN,N ), π0,N ) ∈ ΠN × Π0, the game be-
gins with states x0,N

0 ∼ µ0
0, xi,N

0 ∼ µ0 and subsequently,
for t = 0, 1, . . . , T − 2, let

ui,N
t ∼ πi,N

t (xi,N
t , x0,N

t , µN
t ), i ∈ [N ] (1a)

u0,N
t ∼ π0,N

t (x0,N
t , µN

t ), (1b)

xi,N
t+1 ∼ P (xi,N

t , ui,N
t , x0,N

t , u0,N
t , µN

t ), i ∈ [N ] (1c)

x0,N
t+1 ∼ P 0(x0,N

t , u0,N
t , µN

t ). (1d)

where P : X × U × X 0 × U0 × P(X ) → P(X ) and
P 0 : X 0 × U0 × P(X ) → P(X ) are transition kernels.

In contrast to classic MFGs such as studied e.g, in (Saldi,
Başar, and Raginsky 2018), the minor players’ dynamics de-
pend also on the major player’s state. An important conse-
quence is that the minor players’ dynamics are influenced
by a form of common noise. This explains why we decide
to consider policies that depend on the MF µN

t . Further-
more, this form of common noise is not simply an exogenous
source of randomness because it is influenced by the major
player’s choice of policy. This makes the problem more chal-
lenging than MFGs with common noise.

Next, we define the minor and major total rewards

J i
N (πN , π0,N ) = E

[∑
t∈T

r(xi,N
t , ui,N

t , x0,N
t , u0,N

t , µN
t )

]
,

J0
N (πN , π0,N ) = E

[∑
t∈T

r0(x0,N
t , u0,N

t , µN
t )

]
,

for some reward functions r : X×U×X 0×U0×P(X ) → R
and r0 : X 0 × U0 × P(X ) → R.

In this work, we focus on the non-cooperative scenario
where players try to maximize their own objectives while
anticipating the behavior of other players. This is formalized
by the solution concept of (approximate) Nash equilibria.
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Definition 1. Let ε ≥ 0. An approximate ε-Nash equilib-
rium is a tuple (πN , π0,N ) = ((π1,N , . . . , πN,N ), π0,N ) ∈
ΠN × Π0 of policies, such that J0

N (πN , π0,N ) ≥
supπ̃0 J0

N ((π1,N , . . . , πN,N ), π̃0)− ε and J i
N (πN , π0,N ) ≥

supπ̃i∈Π J i
N ((π1, . . . , πi−1, π̃i, πi+1, . . . , πN ), π0,N ) − ε

for all i ∈ [N ]. A Nash equilibrium is an approximate 0-
Nash equilibrium.

Remark 1. We can also consider time-dependent dynam-
ics or rewards, multiple major players, and infinite-horizon
discounted objectives. Some results we prove below can be
extended to such settings (e.g., propagation of chaos, equi-
librium approximation, and fictitious play; see also gener-
alized infinite-horizon experiments in Cui et al. (2023, Ap-
pendix I)). Similarly, we can extend the model to multiple
minor agent populations with small changes, see e.g. Pérolat
et al. (2022). Another possibility is to simply include types
of players into their state (Mondal et al. 2022).

Mean Field Game
When the number of minor players N is large, we can ap-
proximate the game by an MFG, which corresponds for-
mally to the limit N → ∞. In an MFG, the empirical MF is
replaced by a random limiting MF. Unlike standard MFGs,
the limiting MF does not evolve in a deterministic way due
to the influence of the major player. Fixing major and mi-
nor player policies π0, π for all players, except for a single
minor player deviating to π̂, when N → ∞, we obtain (in-
tuitively by a law of large numbers argument) the major and
deviating minor player M3FG dynamics x0

0 ∼ µ0
0, x0 ∼ µ0,

ut ∼ π̂t(xt, x
0
t , µt), (2a)

u0
t ∼ π0

t (x
0
t , µt), (2b)

xt+1 ∼ P (xt, ut, x
0
t , u

0
t , µt), (2c)

x0
t+1 ∼ P 0(x0

t , u
0
t , µt), (2d)

µt+1 = Tπ
t (x

0
t , u

0
t , µt) (2e)

with the deterministic transition operator Tπ
t (x

0, u0, µ) :=∫∫
P (x, u, x0, u0, µ)πt(du | x, x0, µ)µ(dx) as the condi-

tional “expectation” of the next MF given the current ma-
jor state x0, action u0, and random MF µ. The policy π is
shared by all minor players except one who is deviating and
using π̂. This means that we look for symmetric Nash equi-
libria where all exchangeable minor players use the same
policy, as usual in MFG literature. Still, a mean field equi-
librium suffices as an approximate Nash equilibrium in the
finite game, which is not to say that there cannot be other
heterogeneous policy tuples in the finite game that are Nash.

M3FGs now consist of two Markov decision process
(MDP) optimality conditions, one for all minor players and
one for the major player. An equilibrium is then optimal in
each MDP simultaneously. More precisely, from the point of
view of a minor player, the goal is to optimize over π̂ while
(π, π0) are fixed. This yields the minor player MDP with
state (xt, x

0
t , µt) ∈ X × X 0 × P(X ), and action ut ∈ U ,

and with the objective

J(π̂, π, π0) = E

[∑
t∈T

r(xt, ut, x
0
t , u

0
t , µt)

]
. (3)

Note that, although µt+1 is given by a deterministic function
of (x0

t , u
0
t , µt), from the point of view of a minor player, the

evolution of (µt)t is stochastic since it depends on the se-
quence (x0

t , u
0
t )t, which is random. By definition of a Nash

equilibrium, only a single minor player can deviate arbitrar-
ily to π̂, and by symmetry it does not matter which “repre-
sentative” minor player deviates. Therefore there is only one
MDP optimality condition for all minor players. We also
stress that since N → ∞, the representative player is in-
significant and her deviation does not affect the mean field.

On a similar note, from the major player’s point of view,
we obtain the major player MDP with (X 0 ×P(X ))-valued
states (x0

t , µt) and U0-valued actions u0
t of the major player,

using the same dynamics, forgetting about the (insignificant
for the major player) deviating minor player, and optimizing
instead for π0, the corresponding major objective

J0(π, π0) = E

[∑
t∈T

r0(x0
t , u

0
t , µt)

]
. (4)

Mean field equilibrium. The Nash equilibrium in the fi-
nite game hence corresponds to a major-minor mean field
equilibrium, as a fixed point of both MDPs at once. In
other words, major and minor policies π0, π that are optimal
against themselves in the major and minor player MDPs.

Definition 2. A Major-Minor Mean Field Nash Equilibrium
(M3FNE) is a tuple (π, π0) ∈ Π× Π0 of policies, such that
π ∈ argmax J(·, π, π0) and π0 ∈ argmax J0(π, ·).

We slightly weaken the concept of optimality to approx-
imate optimality, since the solution of a limiting MFG pro-
vides approximate Nash equilibria for the finite game, which
are still achieved by solving for approximate M3FNE.

Definition 3. An approximate ε-M3FNE is a tuple (π, π0) ∈
Π×Π0 of policies, such that J(π, π, π0) ≥ sup J(·, π, π0)−
ε and J0(π, π0) ≥ sup J0(π, ·)− ε.

The minimal such ε for minor and major agents are also
referred to as the minor and major exploitabilities E(π, π0)
and E0(π, π0) of (π, π0). Accordingly, an exploitability of 0
means that (π, π0) is an exact M3FNE.

Theoretical Analysis
The M3FG is a theoretically rigorous formulation for large
corresponding finite games. Note in particular that the MF
will be stochastic due to the randomness of major players
and their states, and therefore standard results based on de-
terminism of MFs will no longer hold. We provide such a
theoretical foundation of M3FG by propagation of chaos.

Continuity assumptions. We provide theoretical guaran-
tees to prove that the M3FNE is an approximate Nash
equilibrium in the finite game, despite having a non-
deterministic MF in the limiting case, contrary to most of the
existing literature (Huang et al. 2006; Guo et al. 2019). For
this, we need some common Lipschitz continuity assump-
tions (Gu et al. 2021; Pásztor, Krause, and Bogunovic 2023).

Assumption 1. The kernels P , P 0 are LP , LP 0 -Lipschitz.

Assumption 2. The rewards r, r0 are Lr, Lr0 -Lipschitz.
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Assumption 3. The classes of major and minor policies Π0,
Π are equi-Lipschitz, i.e. there are LΠ0 , LΠ > 0 s.t. for all
t, π0 ∈ Π0, π ∈ Π, we have that π0

t : X 0 × P(X ) → P(U)
and πt : X × X 0 × P(X ) → P(U) are LΠ0 , LΠ-Lipschitz.

Here, we always consider Lipschitz continuity for all ar-
guments using the sup metric for products, and the L1 dis-
tance for probability measures, see e.g., Cui et al. (2023,
Appendix B). We note that the Lipschitz assumption for
policies – while standard – is technical. Empirically, the
only piecewise Lipschitz policies obtained in Section for
tractability nonetheless remain close to the following ap-
proximations in the finite system. A theoretical investigation
of guarantees for piecewise Lipschitz policies is left for fu-
ture work.

Propagation of chaos. We achieve propagation of chaos
“in distribution” for major and minor players to the M3FG
at rate O(1/

√
N), which is shown inductively in Cui et al.

(2023, Appendix F). Here, propagation of chaos refers to the
conditional independence of minor agents, and thus conver-
gence in the limit to the deterministic mean field (Chain-
tron and Diez 2022). In contrast to MFGs with determinis-
tic MFs, a stronger mode of convergence such as the one
considered by Saldi, Başar, and Raginsky (2018) fails by
stochasticity of the MF.

Theorem 1. Consider Assumptions 1 and 3, and any equi-
Lipschitz family of functions F ⊆ RX×U×X 0×U0×P(X )

with shared Lipschitz constant LF . Then, the random
variable (x1,N

t , u1,N
t , x0,N

t , u0,N
t , µN

t ) in system (1) under
((π̂, π, π, . . .), π0) converges weakly, uniformly over f ∈ F
and (π̂, π, π0) ∈ Π×Π×Π0, to (xt, ut, x

0
t , u

0
t , µt) in system

(2) under (π̂, π, π0),

∀t ∈ T , sup
π̂,π,π0

sup
f∈F

∣∣∣E [
f(x1,N

t , u1,N
t , x0,N

t , u0,N
t , µN

t )
]

−E
[
f(xt, ut, x

0
t , u

0
t , µt)

]∣∣ = O(1/
√
N). (5)

Corollary 1. Similarly, consider Assumptions 1 and
3, and any family of equi-Lipschitz functions F0 ⊆
RX 0×U0×P(X ) with shared Lipschitz constant LF0 . Then
the random variable (x0,N

t , u0,N
t , µN

t ) in system (1) under
((π̂, π, π, . . .), π0) converges weakly, uniformly over f ∈
F0, to (x0

t , u
0
t , µt) in system (2) under (π̂, π, π0),

∀t ∈ T , sup
π̂,π,π0

sup
f∈F0

∣∣∣E [
f(x0,N

t , u0,N
t , µN

t )
]

−E
[
f(x0

t , u
0
t , µt)

]∣∣ = O(1/
√
N). (6)

Approximate Nash equilibrium. From propagation of
chaos, the approximate Nash property of M3FNE follows,
suggesting that a solution of M3FGs provides a good game-
theoretic solution of interest to practical N -player games,
see Cui et al. (2023, Appendix G) for the proof based on
propagation of chaos.

Corollary 2. Consider Assumptions 1, 2, 3, and a M3FNE
(π, π0) ∈ Π × Π0. Then, the policies ((π, . . . , π), π0) con-
stitute an O(1/

√
N)-Nash equilibrium in the finite game.

Finally, existence of a M3FNE is a difficult question un-
der policies that depend on the stochastic MF. While assum-
ing reactive policies unconditioned on the MF could help,
choosing such policies makes the design of our algorithm
based on dynamic programming difficult, as policies com-
puted via dynamic programming need to depend on the en-
tire M3FG system state. In contrast, in usual deterministic
MFGs it is sufficient to remove policy dependence on the
MF, which is deterministic. For practical purposes, learning
equilibria and then checking the exploitability by Theorem 3
may suffice.

Fictitious Play
To find M3FNE and solve the fixed-point problem, we for-
mulate a fictitious play (FP) algorithm and provide a the-
oretical analysis. Following the exact algorithm, as empir-
ical contribution we provide and analyze an approximate,
numerically tractable algorithm that does not assume knowl-
edge of common noise, contrary to Perrin et al. (2020), and
extend it to the setup with major and minor players. Since
the space of MFs is continuous and does not allow general
exact computation of value functions, we project MFs onto
a finite partition with guarantees for policy evaluation.

Fictitious Play for M3FNE
In order to learn an M3FNE, we first propose an exact ana-
lytic algorithm based on FP (Perrin et al. 2020) and provide
a theoretical analysis of convergence. For this part, we will
assume that the major player’s action does not affect the mi-
nor players’ transition kernel. To simplify the presentation
and the analysis, we will use conditioning with respect to
the sources of randomness that affect the MF, i.e., the mi-
nors’ distribution. For every t ≥ 0, let the major and mi-
nor players’ actions be determined not by the mean field
µt, but instead by the history of major states and actions,
u0
t ∼ π0

t (x
0
t , x

0
0:t−1, u

0
0:t−1), x

0
0:t−1 := (x0

0, x
0
1, . . . , x

0
t−1),

u0
0:t−1 := (u0

0, u
0
1, . . . , u

0
t−1). By induction, we can in

fact view µt as a deterministic function of (x0
0:t−1, u

0
0:t−1)

given the minor players’ policy π, since we simply have
µt+1 = Tπ

t (x
0
t , u

0
t , µt) recursively and deterministically.

This means that for fixed policies such as a given Nash equi-
librium, any policies dependent on µt can instead be rewrit-
ten as functions of (x0

0:t−1, u
0
0:t−1). Therefore, instead of

seeing policies as functions of µt, we will see them as func-
tions of the major player randomness (x0

0:t−1, u
0
0:t−1) and

we will write (slightly abusing notation) πt(xt, x
0
0:t, u

0
0:t−1)

and π0
t (x

0
t , x

0
0:t−1, u

0
0:t−1) respectively for the minor play-

ers’ and the major player’s policies. The results we prove
below go beyond existing results by (i) analyzing also the
major exploitability similarly to the minor exploitability, and
(ii) expanding analysis of minor exploitability under pres-
ence of major players. To this end, we formulate Assump-
tion 4.(c) and 4.(d), which provide the conditions for conver-
gence in the presence of major players. See Cui et al. (2023,
Appendix A) for more detail.

We first start by introducing the discrete time FP before
analyzing it in continuous time. Here, time refers to the al-
gorithm’s current iteration and not to the time of the M3FG

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9619



system, which remains discrete throughout the whole paper.
At any given step j of FP, we have:

µπ̄j

t|x0
0:t−1,u

0
0:t−1

=
j − 1

j
µπ̄j−1

t|x0
0:t−1,u

0
0:t−1

+
1

j
µπBR,j

t|x0
0:t−1,u

0
0:t−1

(7)
where we use the notation µπ

t|x0
0:t−1,u

0
0:t−1

for the minor state
distribution at time t induced by the minor agent policy
π and conditioned on the past sequence (x0

0:t−1, u
0
0:t−1).

Here, µπBR,j

t|x0
0:t−1,u

0
0:t−1

is the conditional distribution induced

by the best response (BR) policy πBR,j against π̄j−1 and
π̄0,j−1, i.e., πBR,j := argmaxπ J(π, π̄

j−1, π̄0,j−1). The
policy generating this average distribution is

π̄j
t (u|x, x

0
0:t−1, u

0
0:t−1)

=

∑j
i=0 µ

πBR,i

t|x0
0:t−1,u

0
0:t−1

(x)πBR,i
t (u|x, x0

0:t−1, u
0
0:t−1)∑j

i=0 µ
πBR,i

t|x0
0:t−1,u

0
0:t−1

(x)
. (8)

Meanwhile, the major player state distribution is

µπ̄0,j

t =
j − 1

j
µπ̄0,j−1

t +
1

j
µπ0,BR,j

t

where π̄0,j
t analogous to (8), but in contrast to minor

agents using joint distributions µπ0,BR,i

t (x0
t , x

0
0:t−1, u

0
0:t−1)

and π0,BR,i
t (u0

t | x0
t , x

0
0:t−1, u

0
0:t−1).

For the convergence analysis, we study the continuous
time version of above discrete time FP, as Perrin et al.
(2020). In the continuous time FP algorithm, we denote
the time of the algorithm (its “iterations”) with τ and we
first initialize the algorithm for τ < 1 with arbitrary poli-
cies for the minor players, π̄τ<1 = {π̄τ<1

t }t∈T , and major
player, π̄0,τ<1 = {π̄0,τ<1

t }t∈T . For all τ ≥ 1, t ∈ T and
x0
0:t−1, u

0
0:t−1, define the FP process

µ̄τ
t|x0

0:t−1,u
0
0:t−1

=
1

τ

∫ τ

0

µ
π
BR,s
0:t−1

t|x0
0:t−1,u

0
0:t−1

ds

µ̄0,τ
t =

1

τ

∫ τ

0

µ
π
0,BR,s
0:t−1

t ds

(9)

where µ
πBR,τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

and µ
π0,BR,τ
0:t−1

t are conditional and
joint distributions respectively, induced by the BR poli-
cies πBR,τ and π0,BR,τ up to time t − 1 against
µπ̄τ

t|x0
0:t−1,u

0
0:t−1

(x) and µπ̄0,τ

t (x0
t , x

0
0:t−1, u

0
0:t−1). In other

words, πBR,τ := argminπ J(π, π̄
τ , π̄0,τ ) and π0,BR,τ :=

argminπ0 J0(π̄τ , π0).
Note that the distributions induced by the averaged poli-

cies {π̄τ
t }t∈T and {π̄0,τ

t }t∈T for τ ≥ 1 are given as

π̄τ
t (u|x, x0

0:t−1, u
0
0:t−1)

∫ τ

s=0

µπBR,s

t|x0
0:t−1,u

0
0:t−1

(x)ds

=

∫ τ

s=0

µπBR,s

t,|x0
0:t−1,u

0
0:t−1

(x)πBR,s
t (u|x, x0

0:t−1, u
0
0:t−1)ds,

π̄0,τ
t (u0|x0, x0

0:t−1, u
0
0:t−1)

∫ τ

s=0

µπ0,BR,s

t (x0, x0
0:t−1, u

0
0:t−1)ds

=

∫ τ

s=0

µπ0,BR,s

t (x0, x0
0:t−1, u

0
0:t−1)

· π0,BR,s
t (u0|x0, x0

0:t−1, u
0
0:t−1)ds,

(10)

for all t ∈ T and x0
0:t−1, u

0
0:t−1. For s < 1, πBR,s and

π0,BR,s are chosen arbitrarily. The proof and the differential
form of equations (9) and (10) can be found in Cui et al.
(2023, Appendix A).

As a result, below we give a convergence analysis to-
gether with assumptions for continuous time FP, converg-
ing in both minor and major exploitability E(π̄τ , π̄0,τ ) =
maxπ′ J(π′, π̄τ , π̄0,τ ) − J(π̄τ , π̄τ , π̄0,τ ), E0(π̄τ , π̄0,τ ) =
maxπ0′ J0(π̄τ , π0′)−J0(π̄τ , π̄0,τ ), summarized as the total
exploitability Etot(π̄τ , π̄0,τ ) = E(π̄τ , π̄0,τ ) + E0(π̄τ , π̄0,τ ).
Assumption 4. (a) The transition kernels are in the form of

P (xt+1 | xt, ut, x
0
t , u

0
t ) and P 0(x0

t+1 | x0
t , u

0
t ) for minor

players and major player, respectively.
(b) The reward of minor and major players are separable,

i.e. for some reward functions r̃, r, r̃0, r̂0, ř0, we have
r(x, u, x0, u0, µ) = r̃(x, x0, u) + r(x, x0, µ),

r0(x0, u0, µ) = r̃0(x0, u0) + r0(x0, µ).

(c) The game is monotone; i.e., satisfies Lasry-
Lions monotonicity condition: For minor play-
ers, we have ∀x0 ∈ X 0, ∀µ, µ′:

∑
x∈X (µ(x) −

µ′(x))(r(x, x0, µ) − r(x, x0, µ′)) ≤ 0. Meanwhile,

for major players, we have d
dτ µ

π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t) ·〈

∇µr̄
0(x0

t+1, µ
π̄τ
0:t

t+1|x0
0:t,u

0
0:t
), d

dτ µ
π̄τ
0:t

t+1|x0
0:t,u

0
0:t

〉
≤ 0.

(d) We have Ẽ(π̄τ , π0,BR,τ , π̄0,τ ) ≤ E(π̄τ , π̄0,τ ), where we
define Ẽ(π̄τ , π0,BR,τ , π̄0,τ ) = J(πBR,τ , π̄τ , π0,BR,τ ) −
J(π̄τ , π̄τ , π0,BR,τ ) with any BR policy given as πBR,τ =
argmaxπ J(π, π̄

τ , π̄0,τ ).
Remark 2. Assumption 4.(c) is fulfilled for major
players if r0(x0, µ) = r0(x0). Assumption 4.(d) is sat-
isfied for instance if r(x, u, x0, µ) = r(x, u, µ) and
P (xt+1 | xt, ut, x

0
t , u

0
t ) = P (xt+1 | xt, ut). Then, we triv-

ially have Ẽ(π̄τ , π0,BR,τ , π̄0,τ ) = E(π̄τ , π̄0,τ ) by obtaining
a minor player MFG independent of the major player.
Theorem 2. Under Assumption 4, the total exploitability is
a strong Lyapunov function such that d

dτ Etot(π̄τ , π̄0,τ ) ≤
− 1

τ Etot(π̄τ , π̄0,τ ); i.e., we have Etot(π̄τ , π̄0,τ ) = O(1/τ)
in the continuous time FP algorithm.

The proof of Theorem 2 can be found in Cui et al. (2023,
Appendix A) and is based on a monotonic decrease of ex-
ploitability, at the same rate as standard FP in MFGs (Perrin
et al. 2020).

In numerical experiments, for applicability and compu-
tational tractability (due to the exponential complexity of
the histories in the horizon), we condition policies on the
random MF and major state instead of the histories, aver-
aging policies uniformly instead of for each possible major
state-action sequence. Further, numerically we partition and
represent the (naturally continuous) MFs as described in the
following, to obtain tabular Algorithm 1. Experimentally, in
Section we nonetheless find that the algorithm optimizes ex-
ploitability, even if Assumption 4 is not fully satisfied. The
dependence of policy actions on the MF and major state has
the additional advantage of allowing standard dynamic pro-
gramming for major and minor MDPs, as their full MDP
states include both the MF and major state.
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Projected Mean Field
Observe that for given current MF and major state-actions,
we obtain deterministic transitions from one MF to the next.
Therefore, by partitioning we can obtain deterministic tran-
sitions in-between parts of a partition of P(X ), and a Bell-
man equation over finite spaces.
Definition 4. A δ-partition M = {Pi}i∈[|M|] is a partition
of P(X ), with ∥µ− ν∥ < δ for any i ∈ [|M|], µ, ν ∈ Pi.

Since P(X ) is compact, a finite δ-partition of P(X ) exists
for any δ > 0. We will henceforth assume for any δ > 0
some δ-partition M of P(X ) with M = M(δ) parts.

Discretized finite MDPs. To each part Pi, we associate
an arbitrary element µ̂(i) ∈ Pi and write projδµ for the δ-
partition projection of MFs µ ∈ P(X ), i.e. whenever µ ∈ Pi

we project to the representative projδµ = µ̂(i) ∈ Pi.
As a result, we obtain discretized, finite MDP versions

of the major and minor player MDPs, where the continu-
ous MF state is replaced by finitely many states in P̂(X ) :=
{µ̂(1), . . . , µ̂(M)}, evolving by discretized MF evolutions in
(2), i.e. µ̂t+1 = projδT

π
t (x

0, u0, µ̂t) for any x0, u0, µ̂t.
We can solve the discretized MDPs in a tabular manner:

To compute best responses under policies (π, π0), observe
that the true action-value function Q0

π,π0 of the (not dis-
cretized) major player MDP follows the Bellman equation

Q0
π,π0(t, x

0, u0, µ) = r0(x0, u0, µ) +
∑
x0′

P 0(x0′ | x0, u0, µ)

·max
u0′

Q0
π,π0(t+ 1, x0′, u0′, Tπ

t (x
0, u0, µ)).

The tabular approximate action-value function Q̂0
π,π0 for the

major player follows instead the Bellman equation of the
discretized major player MDP (letting the domain of Q̂π,π0

be the entirety of P(X ) as constants over each part Pi),

Q̂0
π,π0(t, x

0, u0, µ) = Q̂0
π,π0(t, x

0, u0, projδµ)

= r0(x0, u0, projδµ) +
∑
x0′

P 0(x0′ | x0, u0, projδµ)

Algorithm 1: Discrete-time, projected fictitious play

1: Input: δ-partition {Pi}i=1...,M .
2: Initialize initial policies π̄(0), π̄0

(0).
3: for iteration n = 0, 1, 2, . . . do
4: Compute discretized BR (as in Definition 5)

π(n+1) ∈ argmax Q̂π̄(n),π̄
0
(n)

,

π0
(n+1) ∈ argmax Q̂0

π̄(n),π̄
0
(n)

.

5: Compute next average policies

π̄(n+1) :=
n

n+ 1
π̄(n) +

1

n+ 1
π(n+1),

π̄0
(n+1) :=

n

n+ 1
π̄0
(n) +

1

n+ 1
π0
(n+1).

6: end for

·max
u0′

Q̂0
π,π0(t+ 1, x0′, u0′, Tπ

t (x
0, u0, projδµ))

with terminal condition zero, and the minor action-values
analogously. The above can nonetheless provide a good ap-
proximation that can be computed in tabular form, see Cui
et al. (2023, Appendix C) and empirical support in Section .

Discretized equilibria. Building upon the preceding ap-
proximations, we define an approximate equilibrium as a
fixed point of the discretized system.
Definition 5. A δ-partition M3FNE is a tuple (π, π0) ∈
Π̂ × Π̂0 with π ∈ argmax Q̂π,π0 and π0 ∈ argmax Q̂0

π,π0

where policies in Π̂, Π̂0 are instead defined as blockwise
constant over each part Pi of the δ-partition.

Here, we understand π̂ ∈ argmax Q̂π,π0 by the defining
equation

∑
u∈argmaxu′ Q̂π,π0 (t,x,u′,x0,µ̂) π̂t(x, x

0, µ̂, u) = 1

for all (t, x, x0, µ̂) ∈ T × X × X 0 × P̂(X ), and similarly
for major players, noting that π̂ optimizes the preceding dis-
cretized finite MDP (Hernández-Lerma and Lasserre 2012).

We note that while the discretized solutions only piece-
wise fulfill Assumption 3 by not being Lipschitz, in Section
we empirically find that the approximation of finite games
and exploitability can nonetheless be accurate.

Approximation guarantees. We evaluate solutions by
tabular evaluation in the discretized MDP, for which we are
able to obtain theoretical guarantees for evaluating the true
exploitability via the approximate tabular exploitability. Un-
der a δ-partition, define the major approximate objective

Ĵ0(π, π0) :=
∑
x0

µ0
0(x

0)V̂ 0,π0

π,π0 (0, x
0, µ0)

and approximate exploitability

Ê0(π, π0) :=
∑
x0

µ0
0(x

0)

·
(
max
π̂0′∈Π̂

V̂ 0,π̂0′

π,π0 (0, x0, µ0))− V̂ 0,π0

π,π0 (0, x
0, µ0)

)
,

with approximate values V̂ 0,π̂0

π,π0 of major deviation under
(π, π0) to π̂0, following the “discretized” Bellman equation

V̂ 0,π̂0

π,π0 (t, x
0, µ) =

∑
u0′

π̂0
t (u

0′ | x0′, projδµ)[
r0(x0, u0, projδµ) +

∑
x0′

P 0(x0′ | x0, u0, projδµ)

V̂ 0,π̂0

π,π0 (t+ 1, x0′, u0′, Tπ
t (x

0, u0, projδµ))
]
,

and similarly for the minor player. Note that only for the ma-
jor player, π0 is irrelevant (replaced by π̂0). In other words,
we approximate values and exploitability via the discretized
finite MDPs, which has the advantage of enabling dynamic
programming (backwards induction, value iteration).

By analyzing the value functions under continuity, we
show in Cui et al. (2023, Appendix H) that these approx-
imations are generally close to the true objectives and ex-
ploitabilities respectively, as the discretization becomes suf-
ficiently fine.
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Theorem 3. Under Assumptions 1, 2, 3, as δ → 0, approx-
imate minor and major values tend to the exact values, and
approximate exploitabilities tend to the exact exploitabili-
ties, at rate O(δ) uniformly over (π, π0) ∈ Π×Π0.

Experiments
We evaluate FP by comparing against fixed-point iteration
(FPI), which iterates discretized best response policies. For
reproducibility, note that the algorithms used are determinis-
tic, and details can be found in Cui et al. (2023, Appendix I).
For code, see https://github.com/tudkcui/M3FG-learning.

Problems
For the evaluation, we use the following problem instances
for exemplary, practically applicable M3FG scenarios.

SIS epidemics control. The SIS problem is an epidemics
control scenario, where each individualistic minor player
may decide whether to take costly preventative actions
against becoming infected at a rate proportional to the pro-
portion of infected. The major player (e.g. government) is
responsible for the well-being of minor players, and can en-
courage preventative actions, while its state models random
low- and high-infectivity seasons. The finite time horizon
can be considered the time until a cure is found. The original
problem without major players has been used as a bench-
mark for MFG learning (Cui and Koeppl 2021; Laurière
et al. 2022).

Buffet problem. In the Buffet problem, we consider the
following scenario: At a conference with multiple buffet
locations, players desire to be at locations that are filled
with food and uncrowded. However, each location depletes
faster with increasing number of players. The major player
(caterer) must keep buffets full and equally filled. The Buffet
problem fulfills most assumptions (except Assm. 4.(d)) and
shows accordingly stable FP learning.

Advertisement duopoly model. Lastly, in the advertise-
ment model, a regulator sets the price of advertisement. De-
pending on the regulator’s state and price of advertisement,
two companies exogeneously decide on advertisement effi-
ciencies of their subscription service. Minor players are con-
sumers and choose whether to change to subscriptions for
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Ê
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(f)

M=50 M=80 M=120

Figure 1: The approximate exploitability oscillates over iter-
ations of FPI. (a, d): SIS, (b, e): Buffet, (c, f): Advertisement.
(a-c): Minor exploitability, (d-f): major exploitability.
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Figure 2: The approximate exploitability is optimized via FP.
(a, d): SIS, (b, e): Buffet, (c, f): Advertisement. (a-c): Minor
exploitability, (d-f): major exploitability.

the better-funded product, while the regulator avoids forma-
tion of a monopoly. Duopoly advertisement competition in a
static MFG was modeled in (Carmona and Dayanıklı 2021).

Numerical Results
In the following, we provide a numerical evaluation via ex-
ploitability as the primary metric of interest, since it de-
scribes the quality of achieved equilibria. Additional exper-
iments and parameter details are shown in Cui et al. (2023,
Appendix I), including more qualitative results, the effect of
alternative initializations, and analogous results for infinite-
horizon discounted objectives. Beyond supporting the theo-
retical results, we also ablate both convergence assumptions
for the algorithm and the Lipschitz policy assumption for
propagation of chaos in the finite player system.

Exploitability convergence. As observed in Figure 1,
naive FPI usually fails to converge and runs into limit cy-
cles, motivating FP. In Figure 2, we see that the proposed
FP algorithm optimizes both approximate major and mi-
nor exploitabilities Ê , Ê0 over its iterations. Especially for
Buffet, which fulfills most of Assumption 4, learning is
smooth and exploitability descends monotonically as in The-
orem 2, while exploitability is nevertheless optimized in
the other problems. Overall, the proposed FP algorithm im-
proves achieved exploitabilities significantly over FPI.
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50 100
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Ĵ
0
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(e)
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−40 (f)

Figure 3: The final objectives of FP under discretization
(dashed: right-most entry) are stable with high discretiza-
tion. (a, d): SIS, (b, e): Buffet, (c, f): Advertisement. (a-c):
Minor exploitability, (d-f): major exploitability.
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Figure 4: The mean N -player objective (red) over 1000 (or
5000 for Buffet) episodes, with 95% confidence interval,
against MF predictions Ĵ , Ĵ0 for FP and M = 120 (blue,
dashed). (a, d): SIS, (b, e): Buffet, (c, f): Advertisement.

Stability over discretization. Comparing approximation
results empirically over discretization bins M per dimen-
sion, i.e. using δ-partitions with δ ≈ 2

M , in Figure 3 we
observe that the FP-learned policies quickly stabilize as the
discretization becomes sufficiently fine. The result supports
not only the discretization approximation in Theorem 3, but
also shows insensitivity of our FP algorithm to the fineness
of the grid, as long as it is sufficiently fine to approximate the
problem well. Hence, in the following we will use M = 120.

Finite-player convergence. In Figure 4, the convergence
of episodic returns by propagation of chaos is depicted as
the number of players N → ∞. The limiting performance
as the number of players grows, quickly approaches the per-
formance of the projected MF prediction, up to a small, neg-
ligible error from discretization and finite players. The result
supports propagation of chaos in Theorem 1 by convergence
of the empirical objective to the limiting objective, despite
the non-Lipschitz projected MF policies. In Cui et al. (2023,
Appendix I), similar results are shown for a Lipschitz policy.
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Figure 5: The FP-learned M3FNE in SIS, for M = 120.
Top: example trajectory (for visualization, L = P̄ = F̄ =
0, H = P = F = 1, see Cui et al. (2023, Appendix I) for
the details); bottom (a-d): policy heatmaps.

Qualitative analysis. Lastly, we visualize the qualitative
behavior obtained and find plausible equilibrium behavior,
e.g., for the SIS problem. As seen in Figure 5, the equilib-
rium behavior plausibly reaches an equilibrium of infected
players, where the cost of actions equilibrates. The number
of infected increases over time due to the finite horizon, dis-
counting costs of infection beyond the horizon. Furthermore,
minor players take precautions only down to some infec-
tion threshold, at which point the expected cost of not taking
precautions is higher. The major player prevents infections
in the low-infectivity regime (x0 = L), while in the high-
infectivity regime (x0 = H) the high infection probability
for minor players already encourages preventative actions.

Conclusion and Discussion
We have developed a new model and algorithm for a novel,
broad class of tractable games. The framework allows scal-
able analysis of a large number of players with theoretical
guarantees. The proposed methods have been empirically
supported through a variety of experiments. Still, for prob-
lems with multiple Nash equilibria, the FP algorithm finds
only some equilibrium. Future work could address finding
all or specific, e.g., socially-optimal equilibria. One could
also try to relax theoretical assumptions. Lastly, since scala-
bility of the discretization method remains an issue for larger
minor state spaces, one may consider deep RL methods.
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