. mathematics

Article

Shift-Invariance Robustness of Convolutional Neural Networks
in Side-Channel Analysis

Marina Kréek 1@, Lichao Wu 22, Guilherme Perin 3

check for
updates

Citation: Kréek, M.; Wu, L.; Perin, G.;
Picek, S. Shift-Invariance Robustness
of Convolutional Neural Networks in
Side-Channel Analysis. Mathematics
2024, 12, 3279. https:/ /doi.org/
10.3390/math12203279

Academic Editor: Cheng-Chi Lee

Received: 29 September 2024
Revised: 11 October 2024
Accepted: 11 October 2024
Published: 18 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Stjepan Picek %*

Independent Researcher, 2624 Delft, The Netherlands; marina.krcek7@gmail.com

System Security Lab, Technical University of Darmstadt, 64289 Darmstadt, Germany;
lichao.wu@tu-darmstadt.de

Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1,
2333 CA Leiden, The Netherlands; g.perin@liacs.leidenuniv.nl

4 Digital Security Group, Radboud University, Houtlaan 4, 6525 XZ Nijmegen, The Netherlands
* Correspondence: stjepan.picek@ru.nl

Abstract: Convolutional neural networks (CNNs) offer unrivaled performance in profiling side-
channel analysis. This claim is corroborated by numerous results where CNNs break targets protected
with masking and hiding countermeasures. One hiding countermeasure commonly investigated
in related works is desynchronization (misalignment). The conclusions usually state that CNN5s
can break desynchronization as they are shift-invariant. This paper investigates that claim in more
detail and reveals that the situation is more complex. While CNNs have certain shift-invariance, it
is insufficient for commonly encountered scenarios in deep learning-based side-channel analysis.
We investigate data augmentation to improve the shift-invariance and, in a more powerful version,
ensembles of data augmentation. Our results show that the proposed techniques work very well and
improve the attack significantly, even for an order of magnitude.

Keywords: side-channel analysis; deep learning; misalignment; countermeasures; shift-invariance

MSC: 94A60

1. Introduction

Convolutional neural networks are successfully applied in diverse domains, like
image [1] and audio [2] processing. Moreover, CNNs have been successfully applied to
profiling side-channel analysis (SCA). From the first paper on CNNs in SCA appearing in
2016, there have been more than 250 papers exploring the topic of deep learning-based side-
channel analysis (DLSCA). In [3], the authors reported 183 papers up to 2021. Searching
papers published in 2022 and 2023 showed more than 100 additional papers. The primary
motivation for using CNNs in DLSCA is their ability to (1) work with raw features, making
feature engineering non-mandatory, and (2) deliver excellent attack performance even
when the target is protected with countermeasures. While implicitly assumed by the SCA
community, both points deserve more discussion.

While CNNs dramatically reduce the requirement of feature engineering, most works
in the DLSCA domain consider traces with a pre-selected window of samples. More re-
cently, results demonstrate that such selection is unnecessary: CNNs can directly retrieve
leakages from raw measurements and reach state-of-the-art performance [4,5]. Excellent
attack performance, even in the presence of countermeasures, is commonly assumed but
also confirmed by numerous empirical analyses. However, the rationale for how CNNs
bypass these countermeasures must be clarified. Specifically, desynchronization is a com-
monly investigated hiding countermeasure. For “reasonable” desynchronization values,
it is assumed that CNNs inherently handle it due to their shift-invariance property. Un-
derstanding where the shift-invariance comes from and how to improve it is a challenging

Mathematics 2024, 12, 3279. https:/ /doi.org/10.3390/math12203279

https://www.mdpi.com/journal /mathematics

https://doi.org/10.3390/math12203279
https://doi.org/10.3390/math12203279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8475-1853
https://orcid.org/0000-0002-7139-732X
https://orcid.org/0000-0003-3799-7636
https://orcid.org/0000-0001-7509-4337
https://doi.org/10.3390/math12203279
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12203279?type=check_update&version=1

Mathematics 2024, 12, 3279

20f17

problem. Although multiple works try to explain it from a theoretical perspective or im-
prove shift-invariance by modifying CNN architecture or the dataset used for training,
the mechanism is not fully understood. Since multilayer perceptron (MLP) architectures
are not shift-invariant [6], we focus our attention on CNNs in this work.

While the core motivation for this work (data augmentation (DA) enhancing the
shift-invariance of CNNs for DLSCA) may sound intuitive and well-known in the SCA
domain, we argue that this is not the case. We conducted a literature survey for DLSCA and
examined around 230 related works. We do not claim this to be an exhaustive search, but we
are confident it is representative as it contains more works than a recent systematization
of knowledge work [3]. Out of those 230 works, 70 use datasets with desynchronization.
Surprisingly, only 17 out of those 70 works use data augmentation. Thus, with 24% of
papers using data augmentation, we cannot claim it as a well-known or accepted technique
for DLSCA. Furthermore, we analyzed the 230 papers to see if they mention the shift-
invariance property of CNNs and what the cause of it is. We found nine papers discussing
how the convolutional layer is the key to shift-invariance. Four papers claim it is due to
the pooling layer. From a more general perspective, 18 papers claim it is due to CNNs
without going into specifics. More importantly, no papers in DLSCA directly connect data
augmentation and shift-invariance.

To conclude, despite the numerous related works, the shift-invariance of CNNs
in DLSCA remains an open question. More precisely, it needs to be clarified if CNNs
have sufficient shift-invariance and, if not, how to extend it. Our main contributions are
as follows:

1. We show that commonly used CNNs in DLSCA have a limited shift-invariance and
should be carefully used when attacking desynchronized datasets. Additionally, our
experiments show that the pooling layer has a negligible effect on the shift-invariance
of CNN:s. Still, this might need a separate, more thorough investigation.

2. We show how data augmentation can successfully improve the shift-invariance of
CNNs in DLSCA.

3. We show how to use ensembles of data augmentation settings to provide superior
attack performance using CNNs when dealing with highly desynchronized datasets.

We emphasize that understanding what part of CNN gives shift-invariance and how to
design a shift-invariant CNN are problems that have been open for several years. This work
does not aim to solve those problems by providing a universal solution regardless of the
evaluated dataset. Instead, we propose an efficient data augmentation approach to improve
the shift-invariance of an existing model. Although one could potentially reduce the effects
of desynchronization by using deeper architectures or custom architecture elements, we
decided not to follow those directions as they will (1) make the hyperparameter tuning
more challenging and (2) increase the chances for overfitting. On the other hand, using
data augmentation and ensembles is a simpler yet very successful approach.

2. Deep Learning-Based Side-Channel Analysis

As is commonly performed in profiling attacks, we consider a setup with two phases:
profiling and attack. The profiling phase corresponds to training a machine learning-based
classifier, and the attack phase tests its classification performance. Let us assume a side-
channel dataset X’ that consists of N measurements. X’ can be considered as a 2D array with
N rows and] columns. Each point in the array X is an element ¢; j, where i indicates the
side-channel trace index and j indicates the index of a sample (feature) inside a side-channel
trace x;. The profiling phase aims to learn a parameterized function fg, where f represents
a mapping f : X —) between the input space & and the label space). The function fy
corresponds to a specific instance of f defined by parameters 0, which are optimized to
minimize the empirical risk, i.e., the expected value of the loss function. The objective of
the profiling phase is defined in Equation (1), where L represents the loss function, which

Mathematics 2024, 12, 3279

3o0f17

takes the model prediction fy(x) and the true labels y as inputs. The term E[-] denotes the
expected value.

0 = argminE[L(fy (), y)]. M

In the test phase, the goal is to predict labels) based on the traces from the attacked
device and the trained model fg. More precisely, the result of predicting with a model
fo on the test set is a two-dimensional matrix P with dimensions Q x C, where Q is
the number of attack traces and C is the number of labels. Each value in the matrix P
denotes the probability that for a specific key k and input a, we obtain the label y. Finally,
the cumulative sum S(k) for any key byte candidate k is a side-channel distinguisher
with a common maximum log-likelihood principle: S(k) = Zinl log(pi,y). The cumulative
sums for each possible key value form a key guessing vector ordered per the probability
of the key being correct (the first position in the vector is the most likely key, and the
last position is the least likely key). The position of the correct key is called the key rank,
which denotes the effort the attacker requires to break the target. To reduce the effects of
a random choice of test measurements, it is common to assess the average behavior over
many randomly selected traces, called guessing entropy (GE) (i.e., average key rank) [7].
We consider DLSCA as already well-known in the SCA community, so we only briefly
overview it. For more details, we refer readers to, e.g., [3].

Data Normalization. The application of data normalization is crucial to obtain better
deep learning performance. The most common form of data normalization adopted in
previous papers is standardization (see Section 3 in [8] and Section 4-B in [3] for a discussion
about data preprocessing). Profiling, validation, and attack sets must be aligned for con-
sistent data normalization. Otherwise, features in validation and attack sets are distorted
when normalized with i, and 0, (standardization). In our case, as we aim to investigate
the shift-invariance robustness of trained deep neural networks, the profiling and attack
sets might contain different desynchronization levels. Therefore, we use the Horizontal
MinMax Scaler for data normalization in the range [—1, 1] that was shown to be better
overall in [8]. The scaler is trained on and also fits the transposed trace sets individually.

Data Augmentation. Data augmentation refers to increasing the training set’s size
by artificially generating additional training data with dynamic changes during a model’s
training. These changes must preserve the class properties of the training set. The training
set represents an approximate distribution, given by a finite set 7, from a true and unknown
distribution R. By augmenting the training set 7, one expects that 7 becomes a better
representation of R. The main idea is to improve class representation inside a dataset,
so it is essential to understand what kind of effect the augmentation needs to develop.
Inappropriate data augmentation settings can lead to no or even detrimental effects [9].

Metrics. As the goal of this work is to improve the attack efficiency of SCA, the shift-
invariance robustness is quantified with the guessing entropy metric and the corresponding
number of attack traces to reach a GE equal to 1 (Nge—1), which means successful key
recovery. In all our experiments, we provide GE and corresponding Nge—1 results for a
single attacked key byte from a 128-bit AES key.

3. Related Works

Cagli et al. used data augmentation to defeat datasets protected with software-based
countermeasures (Random Delay Interrupt) and hardware-based countermeasures (jit-
ter) [10]. The authors broke the targets and suggested using data augmentation to reduce
overfitting. Interestingly, they did not mention data augmentation as the technique to help
defeat desynchronization. B. Timon proposed a non-profiled deep learning-based SCA
approach and used data augmentation to improve the learning phase [11]. Perin et al. used
data augmentation to improve the performance of the deep learning-based attack on a
protected ECC implementation [12]. The authors stated that data augmentation defeats
overfitting and the investigated datasets do not have desynchronization. Lu et al. used
data augmentation to expand the profiling set and improve the attack performance [5].

Mathematics 2024, 12, 3279

40f17

The authors mentioned convolutional layers as relevant for shift-invariance. Perin et al.
discussed various feature selection scenarios and broke several datasets [4]. The authors
used data augmentation for desynchronized datasets and reported significantly fewer
attack traces needed if data augmentation was used in the training process. The authors
did not discuss the connection between shift-invariance and data augmentation.

Since the publicly available ASCAD datasets provide 50 and 100 window desynchro-
nization samples [13], most papers either use synchronized datasets or desynchronizations
up to 100 samples. Naturally, the desynchronization window should be considered relative
to the length of the trace. Cagli et al. used desynchronization levels up to 200 samples [10],
which they managed to circumvent by using deep neural network architectures and data
augmentation. Lu et al. investigated the performance of CNNs against the ASCAD dataset
with desynchronization of up to 200 samples [5]. Zotkin et al. used data augmentation and
attacked datasets with desynchronization of up to 150 samples [14]. Aligned with several
DLSCA works, the authors attributed a shift-invariance property to CNNs. Hajra et al.
considered scenarios where the datasets had a significant level of desynchronization, up to
400 samples, and used transformer networks to handle it [15]. The authors tested scenarios
where a neural network is trained on synchronized and attacked desynchronized datasets.
The good performance is attributed to the shift-invariance property of the used transformer
networks. Hajra et al. proposed using a transformer network with linear time and memory
complexity that is also shift-invariant [16].

Finally, we note that ensembles were used in various contexts in DLSCA, improving
attack performance. For instance, Perin et al. used ensembles to combine predictions from
multiple neural networks [17], while Zaid et al. proposed a loss function called Ensembling
Loss [18].

4. CNNs and Invariance

In the context of CNNSs, three general types of invariance are commonly discussed:
translation (shift), rotation, and scale invariance. Of those three, shift-invariance is dis-
cussed in the context of DLSCA as it becomes relevant to defeat various desynchronization
countermeasures. An operation G is called shift-invariant if, for an input x and its shifted
version xs, the output remains unchanged, i.e., G(x) = G(x,). Similarly, shift-equivariance
means that shifting the input results in an equivalently shifted output, i.e., G(xs) = (G(x)).,.
In the context of CNNs, which are designed to extract features from the input, the feature
representation is said to be shift-invariant if shifting the input x produces the same feature
representation. On the other hand, it is shift-equivariant if shifting the input results in an
equally shifted output feature representation. In this case, operation G can represent the
feature extraction operation (e.g., the convolutional layers of the CNN). It is a relatively
common (and long-lasting) claim that CNNs are invariant due to the convolution layer,
e.g., [19,20]. More recently, it was recognized that convolutional layers could have the
property of shift-equivariance and not shift-invariance [6,21]. Consider a convolutional
layer operation F, which applies a convolution filter k to an input x: F(x) = k * x, where *
denotes the convolution operation. If the input x is shifted x; = Tsx, with T; being the shift
operator, the convolution output for the shifted input becomes F(x;) = k * (Tsx). Due
to the properties of convolution, shifting the input shifts the output by the same amount:
F(xs) = Ts(k * x) = Ts F(x). The convolutional layers can lose the perfect equivariance
due to downsampling [22]. In CNNs, downsampling happens when the pooling or convo-
lutional stride is greater than one, as the intermediate representation skips samples in the
input. It is a pooling layer that provides approximate shift-invariance to small translations
of the input [23]. Shift-invariance means that translating the input by a small amount
will not cause the values of most of the pooled outputs to change. Intuitively, pooling
achieves local translation invariance [24]. Invariance is a particular case of equivariance
when the transformation has no effect [25]. Combining the shift-equivariance property
of convolutional layers and stability to deform pooling layers, one could expect CNNs
to become shift-invariant [26]. Unfortunately, recent results showed that this is not the

Mathematics 2024, 12, 3279

50f 17

case since small input shifts can cause drastic changes in the output [22,27]. The reason is
the downsampling nature of modern convolutional and pooling layers. Some works also
showed that CNNs could encode absolute spatial location in images, resulting from a lack
of shift-invariance [21]. Additionally, one cannot definitively answer what part of CNNs
brings the most invariance. For instance, it has been shown that the network depth, not the
type of layer, contributes more to the shift-invariance [28]. This is relevant for the DLSCA
perspective, as most of the results (including state-of-the-art) commonly use relatively
shallow neural network architectures, e.g., [4]. Finally, larger convolution filter sizes allow
for more shift-invariance [28]. We note that data augmentation is recognized for improv-
ing the accuracy and performance of machine learning models across various domains,
such as image recognition and segmentation [29-32], and natural language processing
(NLP) [33-35]. Additionally, it aids in learning more robust representations that generalize
better [36-38]. This robustness is typically achieved by designing transformations that
mimic variations observed in the real world [39], making models more likely invariant to
such transformations.

5. The Shift-Invariance Robustness of Deep Learning Models in SCA

In this section, we deploy several experiments to empirically verify the shift-invariance
robustness of various deep neural networks in SCA. Moreover, we evaluate how data aug-
mentation improves shift-invariance robustness and how this robustness is directly related
to data augmentation settings and the shift distribution in side-channel measurements. We
define four main scenarios:

1. Neural networks are trained with a synchronized profiling set.

2. Neural networks are trained with a desynchronized profiling set.

3. Neural networks are trained with a synchronized profiling set and data augmentation.
4. Neural networks are trained with a desynchronized profiling set and data augmentation.

The trained networks are tested on an attack set with different levels of desynchro-
nization to showcase the performance.

Datasets

We consider the ASCAD datasets (https:/ /github.com/ANSSI-FR/ASCAD (accessed
on 29 September 2024)), which are protected with first-order Boolean masking. In total, we
consider four different datasets:

1. ASCADf: This dataset contains side-channel measurements consisting of 700 features
representing side-channel leakages from processing the third S-Box output byte in the
first AES encryption round. We split this dataset into profiling, validation, and attack
sets with 45,000, 5000, and 5000 traces, respectively. All sets have the same fixed key.

2. ASCADr: This dataset contains side-channel measurements where each trace con-
sists of 1400 features. Similar to ASCADf, this measurement interval also represents
side-channel leakages from processing the third S-Box output byte in the first AES
encryption round. We split this dataset into profiling, validation, and attack sets with
200,000, 5000, and 5000 traces, respectively. The profiling set has random keys, while
the validation and attack sets have the fixed key.

3. ASCADf_desync100: Desynchronized version of ASCADf, and each trace is randomly
shifted inside the interval [0, 100]. Shifts are drawn from a uniform distribution.

4. ASCADr_desync100: Desynchronized version of ASCADr. Each trace is randomly shifted
(also from a uniform distribution) inside the interval [0, 100].

Datasets are always labeled according to the identity leakage model for the third S-Box
output byte in the first AES encryption round.

Deep Neural Network Architectures

The neural network architectures considered in the experiments of this section are
described below. The CNN architectures always contain convolution blocks consisting of a

https://github.com/ANSSI-FR/ASCAD

Mathematics 2024, 12, 3279

6 of 17

convolution layer followed by a batch normalization layer connected to a pooling layer.
Both average and max pooling layers are tested. All hyperparameters were obtained with a
random hyperparameter search, with the best-found architectures reported in Table 1. The
architectures are denoted as cnn_pooling_2, cnn_pooling_4, cnn_pooling_6, and cnn_-
ascadr_desync100. We train the models for 100 epochs in all experiments. The batch size
of each case will be reported in the corresponding section.

Table 1. Hyperparameter values for cnn_pooling_2, cnn_pooling_4, cnn_pooling_6, and cnn_-
ascadr_desync100. Hyperparameters like weight initializer, activation function, or number of neu-
rons in fully connected (FC) layers apply across all layers if specified with a single value. The number
of filters in convolutional layers varies per layer and is specified in sequence.

Hyperparameters cnn_pooling 2 cnn_pooling 4 cnn_pooling 6 cnn_ascadr_desync100
Conv. blocks 2 5

Filters (ordered) 8,16 12,24, 36, 48, 60
Kernel size 30 40
Strides 2 15

Pool size 2 4 6 6

Pool strides 2 4 6 6

FC layers 1 2

FC Nb. neurons 40 50
Weight initializer glorot_normal glorot_uniform
Activation function elu elu
Learning rate 0.001 0.00025
Optimizer RMSprop Adam
Epochs 100

We analyze cnn_pooling_2, cnn_pooling_4, and cnn_pooling_6, which contain dif-
ferent pooling sizes, to understand if small changes in the pooling size have any effect on
shift-invariance. Moreover, all models listed above contain large convolution kernel sizes
(e.g., 40). Still, in this work, we skip a more detailed evaluation of the effect of filter kernel
size (and its strides) on shift-invariance robustness. We evaluate architectures that have
provided the best results (i.e., minimum Nge—1) from our random hyperparameter search
and also architectures with good performances from some related works on the evaluated
datasets. Specifically, we test CNN architectures from [8,40] designed for the ASCADf and
ASCADf_desync100 datasets. Hyperparameter values are kept the same as in those papers.
We denote the architectures as follows:

e zaid_ascad_desync_0 for architecture from [40] for ASCADf.

®* noConvl_ascad_desync_O for architecture from [8]. The network is a reduced version
of zaid_ascad_desync_0, where the convolution and batch normalization layers are
removed, and the input layer is the pooling layer.

® zaid_ascad_desync_100 for architecture from [40] for ASCADf _desync100.

* noConvl_ascad_desync_100 for design from [8]. This architecture is a reduced version
of zaid_ascad_desync_100 in the same manner as noConvl_ascad_desync_0.

For all architectures, the loss function is always categorical cross-entropy.

Reading the Graphs

The x-axis in all figures (except those illustrating the shift distributions) indicates
the maximum number of shifts § drawn from a uniform distribution and applied to the
set of attack traces. For instance, when the x-axis indicates the value of 100, the set of
attack traces is randomly shifted by values inside the interval [0, 100]. For negative x-axis
values —J, the interval is [—6, 0]. To treat the trace samples at the trace boundaries, we first
apply random shifts to the attack set and then trim it. The shaded area around lines in the
plots indicates the minimum and maximum values obtained from 10-fold experiments,
while the main line is the average value. The gray region in the plots indicates the target
shift-invariance region.

Mathematics 2024, 12, 3279 7of 17

5.1. Shift-Invariance Robustness of CNNs Trained with Synchronized Datasets

First, we analyze the shift-invariance robustness of cnn_pooling_2, cnn_pooling_4,
and cnn_pooling_6 architectures with the ASCADr and ASCADf datasets. Figure 1a shows
the shift-invariance robustness of these three models. As we can see, the shift-invariant
robustness of these networks, when trained on the synchronized datasets, is very limited
in the side-channel context. Note how randomly shifting a few trace samples to the
right (positive) or the left (negative) already significantly affects the model performance.
With more than five sample shifts, the GE of the attacked key byte substantially increases.
The results show no significant difference in the shift-invariance robustness between the
tested pooling sizes. Different pooling types (i.e., average or max pooling) show no critical
effects on shift-invariance for these three CNN architectures.

cnn_pooling_2 cnn_pooling_2
4000 2
o 102
- —— avg_pooling - ASCADr e
2& 2000 - max_pooling - ASCADr .g 10t 4
—— avg_pooling - ASCADf =
—— max_pooling - ASCADf §
0 T T T T T T T o
-20 -15 -10 -5 0 5 10 15 20
cnn_pooling_4
4000 — 2
g3
5
- 2
I w
3 2000 - o
= %
b3}
E}
0 T T T T T T T o
-20 -15 -10 -5 0 5 10 15 20
cnn_pooling_6
4000 2
" 807
- €
8 2000 o
3 1 2 10* 4
a
S 00
0 T T T T T T T G 10°4 T T T T T T T
-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20
Maximum uniformly distributed shifts Maximum uniformly distributed shifts
(@)
zaid_ascad_desync_0 zaid_ascad_desync_0
4000 2
—— ASCADf Sl P
o ASCADr b=
& 2000 =
K £ 10t 4
a
2
g 0
0 T T T T T T T 5 1074 T T T T T T T
-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20
noConvl_ascad_desync_0 noConvl_ascad_desync_0
4000 2 ———— P ——
2 107 4 —— =
- €
& 2000 A)
[10t]
= §
g 0
0 . . . T T T T G 10°4 T . . T T T T
-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20
zaid_ascad_desync_100 zaid_ascad_desync_100
4000 v 2
S 1024
£ 10 AN~
[2000 o A A
g 1 2 10 \/
= §
g 0
0 r T T ; T T T o 10°4 T T T T T T T
-100 -75 -50 -25 0 25 50 75 100 -100 -75 -50 -25 0 25 50 75 100
noConv1l_ascad_desync_100 noConvl_ascad_desync_100
4000 2
o 1024 A\ N
- = N —
I w
3 2000 - 2 101]
= §
L 00
0 T . T T T T T G 10°4 T T T T T T T
-100 -75 -50 -25 0 25 50 75 100 -100 -75 -50 -25 0 25 50 75 100
Maximum uniformly distributed shifts Maximum uniformly distributed shifts

(b)
Figure 1. Shift-invariance robustness of profiling models trained with synchronized profiling sets.
(a) Shift-invariance robustness of cnn_pooling_2, cnn_pooling_4, and cnn_pooling_6 architectures.
Training batch size is set to 400. (b) Shift-invariance robustness of zaid_ascad_desync_0, noConv1_-
ascad_desync_0, zaid_ascad_desync_100, and noConvl_ascad_desync_100 architectures. Training
batch size is set to 50 for zaid_ascad_desync_0 and noConv1_ascad_desync_0, and 400 for zaid_-
ascad_desync_100 and noConvl_ascad_desync_100.

Mathematics 2024, 12, 3279

8 of 17

In the second group, we consider the CNN architectures zaid_ascad_desyncO [40]
and noConv1_ascad_desyncO [8] that are designed for the synchronized ASCADf dataset.
These architectures and the architectures from our first group were not designed to defeat
desynchronized datasets. As shown in Figure 1b, zaid_ascad_desyncO and noConv1_-
ascad_desyncO provide a more limited shift-invariance robustness compared to CNNs
from Figure 1a. The performance of zaid_ascad_desyncO and noConvl_ascad_desyncO
models is significantly inferior compared to original results from [8,40]. The main rea-
son comes from data normalization: in original papers, the authors considered (feature)
standardization, while here, we apply horizontal MinMax normalization for the reasons
mentioned in Section 2. We also show results for zaid_ascad_desync100 and noConv1_-
ascad_desync100 that were designed to break the ASCADf _desync100 dataset. In particu-
lar, the zaid_ascad_desync100 model provides much better shift-invariance, as randomly
shifting the attack set inside the interval [—60,40] delivers successful key recovery when
the attack set contains 4000 traces. In contrast, the improved version proposed in [8],
noConvl_ascad_desync100, provides significantly less shift-invariance robustness. Further-
more, noConvl_ascad_desync100 cannot provide successful key recovery with the ASCADr
dataset. This might be because the first convolution layer is absent in this architecture.
The second convolution block in zaid_ascad_desync_100 and noConvl_ascad_desync_-
100 contains a pooling layer with a size and stride of 50, which is significantly higher than
the pooling sizes from other CNN architectures analyzed here. As large (e.g., 50) and small
(e.g., 6) pooling sizes provide similar results for synchronized datasets, we conclude that
large pooling sizes in one of the hidden layers might not be the main reason for better
shift-invariance robustness. Still, more research should be performed to investigate the
influence of pooling hyperparameters for the shift-invariance robustness and some other
hyperparameters like kernel size, which are also not addressed in this work.

5.2. Shift-Invariance Robustness of CNNs Trained with Desynchronized Datasets

An alternative way to improve the shift-invariance robustness of CNN models is
by conducting the training with desynchronized profiling traces. Figure 2 shows results
for different CNN models trained with the desynchronized ASCADr and ASCADf datasets.
Here, we skip results for cnn_pooling_2, cnn_pooling_4, cnn_pooling_6, zaid_ascad_-
desync_0, and noConvl_ascad_desync_0 architectures as, with these models, we were
unable to successfully recover the key when trained and predicted with desynchronized
datasets. Thus, we consider the cnn_ascadr_desync100 architecture that was found in a
random hyperparameter search when ASCADr_desync100 was used as a training set, and
its shift-invariance robustness is provided in the top part of Figure 2. Since this model is
trained with a dataset containing uniformly distributed random shifts inside the interval
[0,100], its shift-invariance robustness is more salient within the same shift-interval [0, 100].
This is expected, as the profiling set contains traces that are shifted inside this interval.
The model shows poor generalization capacity outside the interval of [0, 100]. For the zaid_-
ascad_desync_100 and noConvl_ascad_desync_100 architectures, we found similar shift-
invariance robustness results. Both models were designed to break the ASCADf _desync100
dataset with traces containing uniform random shifts inside the interval [0,100]. As shown
in Figure 2, both CNN models provide satisfactory shift-invariance inside this shift interval.
Outside this interval, the performance quickly deteriorates, indicating that shift-invariance
is directly related to the shift distribution in the desynchronized profiling set.

Mathematics 2024, 12, 3279

90f17

cnn_ascadr_desync100 cnn_ascadr_desync100

4000

T p > T T
—— ASCADr_desync100 i 1 g, hhad AN |]
ASCADf_desync100 i j 2 10 ey o) \’/\‘
i 2000 I : 5
! 2 1014 e/
{ 1 g —— ASCADr_desync100
| | 8 10 ASCADf_desync100
] Y A8 W
0 : . : t : t . 10 : ; ‘ ‘ :
-200 -150 -100 -50 0 50 100 150 200 -200 -150 -100 50 0 50 100 150 200
zaid_ascad_desync_100 zaid_ascad_desync_100
4000 T T >
—— ASCADr_desync100 | ! g 2]
ASCADf_desync100 ! E
i 2000 : : E
4]
= ! | 2 105 |
\ | ﬂ&) —— ASCADr_desync100 |]
! 1 3 ASCADf_desync100] |
H H O 100 4 ; :
0 T T T T T T T T T T T T T
-200 -150 -100 —50 0 50 100 150 200 -200 -150 -100 50 0 50 100 150 200
noConv1l_ascad_desync_100 noConvl_ascad_desync_100
4000 T T o~ T
—— ASCADr_desync100 ! ! g 2] !
ASCADf_desync100 ! ! 5 !
i 2000 i : e :
3 ! | 2 10! 4 i
1 H 2 —— ASCADr_desync100 | |
| ! L“:; . ASCADF_desync100 ! !
0 : . T t : | . 10 . : ‘ f ‘ f r
-200 -150 -100 50 0 50 100 150 200 -200 -150 -100 -50 0 50 100 150 200

Maximum uniformly distributed shifts Maximum uniformly distributed shifts

Figure 2. The shift-invariance robustness of different neural network models trained with desynchro-
nized datasets. For the zaid_ascad_desync_100 and noConv1_ascad_desync_100, batch size is set
to 200; for cnn_ascadr_desync100, the batch size is set to 400.

5.3. DA Effect on Shift-Invariance Robustness of CNNs Trained with Synchronized Datasets

When CNN models are trained with a synchronized trace set, one expects this model to
generalize poorly to desynchronized attack sets, as shown by most of the results in Figure 1.
One alternative to improve the model’s generalization is to train with data augmentation.
In this section, we only select cnn_pooling_2 instead of also analyzing cnn_pooling_4
and cnn_pooling_6, as they showed similar results in the previous section. Also, cnn_-
pooling_2 provided slightly less shift-invariance compared to cnn_pooling_4 and cnn_-
pooling_6, and we want to verify if adding data augmentation improves shift-invariance in
the most critical case. The cnn_pooling_2 architecture is configured with average pooling
layers. We skip results for max pooling layers, as our preliminary analysis found no
particular benefit of max pooling in shift-invariance robustness, as visible in Figure 1. This
model is trained with the ASCADr and ASCADf datasets. In contrast, zaid_ascad_desync_-
0 and noConv1_ascad_desync_0 models are trained for the ASCADf dataset only (results
for the ASCADr dataset for these two models provided no successful key recovery, so we
omit these results). In terms of data augmentation, CNN models are trained with the full
profiling set plus double the number of profiling traces as augmented traces (For ASCADr,
we have 200,000 profiling traces plus 400,000 augmented traces. In comparison, for ASCADf,
we have 45,000 profiling traces plus 90,000 augmented traces.). We define the number
of augmented traces arbitrarily, and the analysis of the optimal number of augmented
profiling traces is left for future work.

Figure 3 shows results for three different CNN architectures: cnn_pooling_2 (with
average pooling layer), zaid_ascad_desync_0, and noConvl_ascad_desync_0. We train
these models with synchronized datasets and with data augmentation, which shifts the
traces for specific ranges, i.e., [—100,0], [0,100], and [—100, 100]. The main idea is to verify
if all models can become shift-invariant inside specific shift intervals that could be present
in a desynchronized attack set. Due to data augmentation, the shift-invariance robustness
of all trained CNN models significantly improves compared to the scenario without data
augmentation shown in Figure 1. Moreover, the shift-invariance robustness often occurs
outside of the augmented shift interval. When data augmentation is implemented for
random shifts inside the interval [0,100] (or [—100, 0]), the CNN model tends to become
shift-invariant for the interval [0,200] (or [—200,0]), as is visible for the cnn_pooling_2
models. The same can be seen in the results on the ASCADf dataset with cnn_pooling_2. In
the case of the models designed for a specific synchronized dataset, data augmentation
helped reach good attack results, at least within the data augmentation interval. Thus,
training a CNN model with a synchronized dataset and data augmentation may ensure

Mathematics 2024, 12, 3279

10 of 17

satisfactory shift-invariance robustness. This could prevent the model from presenting
poor generalization for cases when the attack set is not perfectly aligned with the profiling
set in the time domain.

Another finding in this analysis comes from applying data augmentation for a larger
interval, which is the case for the random shifts drawn from the interval [—100,100].
The shift-invariance robustness of the model improves. However, it is not as good for
some cases, like with separated intervals [0,100] and [—100,0], when looking into GE
for these intervals. This is more evident for the zaid_ascad_desync_0 model: splitting
the data augmentation interval from [—100,100] into two model training for intervals
[0,100] and [—100, 0] provides better convergence of GE inside each smaller shift inter-
val. For cnn_pooling_2, the results for the interval [0,100] are superior if the model is
trained with data augmentation providing random shifts inside [0,100] instead of the
entire interval [—100,100]. In Section 6, we propose an ensemble-based strategy to make
CNN models highly shift-invariant for larger desynchronization intervals. More precisely,
we propose combining multiple data augmentation intervals into a model with better
shift-invariant robustness.

cnn_(avg)pooling_2 (ASCADr) cnn_(avg)pooling_2 (ASCADr)

,_.
£
1

1

Nyge
-
A

L

- i
— DA[0,100]
DA [-100,0]
—— DA[-100,100] I

i
T T T
—200 -100 0 100 200 300 -200 -100 0 100 2

cnn_(avg)pooling_2 (ASCADf) cnn_(avg)pooling_2 (ASCADf)

W

Guessing Entropy

-
S}
>

i

0 300

H
R
1

1

103 4

Guessing Entropy

= — DA[0,100] 10t 4
DA [-100,0]
—— DA [-100,100]
! ! : 10° 5] . . !
—-200 -100 0 100 200 300 —-200 -100 0 100 200 300

zaid_ascad_desync_0 (ASCADf) zaid_ascad_desync_0 (ASCADf)

]

]

,_.
£
!

103 4

=1

—
2
1

i
i i

{ — DA[0,100]

{ DA [-100,0]

! —— DA[-100,100]
| :

T

Nge
Guessing Entropy

-

o
E}
!

-200 -100 0 100 200 300
noConvl_ascad_desync_0 (ASCADf) noConvl_ascad_desync_0 (ASCADf)

T T
0 100 200 300

|
N
=]
[S]

|
=
=3
o

4 x10%1

,_.
L
!

WA

N

3x10°

1

Nge
-
A

L

Guessing Entropy

2x103{— DA [0,100] 1
DA [-100,0] |]
—— DA[-100,100] o i i
. : . 107 5 . T . :
—200 -100 0 100 200 300 —200 -100 0 100 200 300
Maximum uniformly distributed shifts Maximum uniformly distributed shifts

Figure 3. The shift-invariance robustness of different neural network models trained with synchro-
nized datasets. Except for noConvi_ascad_desync_0, which has a batch size of 50, all models are
trained with a batch size of 400.

5.4. DA Effect on Shift-Invariance Robustness of CNNs Trained with Desynchronized Datasets

A CNN architecture designed to provide an excellent generalization to desynchronized
trace sets already shows improved shift-invariance robustness, as shown in Figure 2.
However, shift-invariance robustness is still related to the desynchronization in the profiling
set. We explore the model’s generalization when the attack set contains desynchronization
levels that differ from the profiling set. Data augmentation is a solution to improve the
shift-invariance robustness of CNN models trained with desynchronized datasets. Our
primary goal in this section is to make the CNN models from Section 5.2 shift-invariant
inside the trace shift interval [—100, 200] when the profiling set is given by a desynchronized
dataset with shifts inside the interval [0, 100]. This means that our trained CNN models

Mathematics 2024, 12, 3279

11 of 17

become shift-invariant outside the shifts contained in the profiling set. Figure 4 shows the
shift distribution of original desynchronized profiling traces and the shift distribution of
augmented sets. Note that the shifts are applied to already desynchronized profiling traces,
so it does not follow a uniform distribution. Still, we ensure the occurrence of shifts from
the interval [—100,200].

0.010

0.010 o — shifts original Traces =—— Shifts Augmented [0,100]
== Shifts Augmented [-100,0]
—— Shifts Augmented [-100, 100]
z z
2 0.005 A 2 0.005 o
ko k)
a a
0.000 T T T T 0.000 T 1 T Y
—200 -100 0 100 200 300 —200 -100 0 100 200 300
Shifts Shifts

Figure 4. Shift distribution of original (left) and augmented profiling sets (right).

Results from Figure 5 show the shift-invariance robustness of cnn_ascadr_desync100,
zaid_ascad_desync_100, and noConv1l_ascad_desync_100. Models were used for predic-
tions on desynchronized attack sets. Although these three models were designed to be
shift-invariant to desynchronization of [0, 100], when data augmentation is set to randomly
shift the profiling set inside the shift interval [—100, 100], all models become shift-invariant
inside the interval [—100, 200]. We can also see that zaid_ascad_desync_100 and noConv1_-
ascad_desync_100 become shift-invariant well outside of that interval, achieving low GE
but requiring more attack traces than within the [—100, 200] interval.

cnn_ascadr_desync100 (ASCADr_desync100) cnn_ascadr_desync100 (ASCADr_desync100)

i —— DA[0,100] > i i
{ DA [-100,0] 3 107 5 : |
o | —— DA[-100,100] £ i i
) | “6" | |
S 1 1) 1
= 103 4 \ % 10 1 /
i 4 | !
1 3 1 1
i ! ! i 107 5] . .]
-200 -100 0 100 200 300 -200 -100 0 100 200 300
cnn_ascadr_desync100 (ASCADf_desync100) cnn_ascadr_desync100 (ASCADf_desync100)
i T
g 102 4 ; i
- £ Tha i
g ! o .1 | | i
= 10° 4 — DA[0,200] \ a 10 i i
DA [-100,0] | g i i /\//W
—— DA[-100,100 1 |
S L . a © } . . ;
-200 -100 0 100 200 300 -200 -100 0 100 200 300
zaid_ascad_desync_100 (ASCADf_desync100) zaid_ascad_desync_100 (ASCADf_desync100)
I T W\
| —— DA[0,100] E 2 107 4 i i
| DA [-100,0] 1 o .
) . X 1 = 1
5:' 10° ! DA [-100,100] : “E : |
<3 ! 1 10! 4 1 1
= : | | |
| | 5 | 1
i] ! i 100 : . .] :
-200 -100 0 100 200 300 -200 -100 0 100 200 300
noConvl_ascad_desync_100 (ASCADf desync100) noConvl_ascad_desync_100 (ASCADf desync100)
v ! - — Dparo0,100] i 2 10?4 i i
| DA [100,0] t o ; |
1 1 = 1 1
7 107 | —— DA[-100,100] i g | i
| | g1 |
@
) | s | |
1 1 1 1
102 i ; ; | ? 100 : . . :
-200 -100 0 100 200 300 -200 -100 0 100 200 300
Maximum uniformly distributed shifts Maximum uniformly distributed shifts

Figure 5. The shift-invariance robustness of different neural network models trained with desynchro-
nized datasets. All models are trained with a batch size of 400.

6. Ensembles to Defeat Larger Desynchronization Levels

In the previous section, we evaluated the shift-invariance robustness when trace sets
are desynchronized inside the interval [0, 100]. This section shows that a different strategy

Mathematics 2024, 12, 3279

12 0of 17

is required for trace sets containing larger desynchronization levels to improve the shift-
invariance robustness of a profiling CNN model. Specifically, we propose a solution to
improve the shift-invariance robustness of a CNN model by ensembling multiple CNN
models, each trained on a shorter desynchronization interval with data augmentation. We
build an ensemble by averaging the output class probabilities from multiple models. The
levels of desynchronization that we test are [0,200], [0,400], and [0, 1000]. To the best of our
knowledge, the largest desynchronization level tested in DLSCA-related works is 400 [15].

Datasets

The experiments are conducted with the ASCADr and DPAv4.2 datasets
(https:/ /www.dpacontest.org/v4/42_traces.php, accessed on 28 September 2024). Since
we want to analyze larger desynchronization levels, we select larger intervals from the
raw ASCADr and DPAv4.2 measurements. For ASCADr, we select the trace interval consist-
ing of 5000 features, ranging from sample indexes 79,145 to 84,145 (the raw traces have
250,000 features). This trimmed interval includes processing the third S-Box byte in the
first AES encryption round. This dataset is referred to as ASCADr_5000. For the DPAv4.2
dataset, we select the trace interval from sample indexes 200,000 to 220,000, which contains
the processing of the twelfth S-Box byte in the first AES encryption round. The resulting
20,000 samples interval is further resampled into 4000 samples. This resampling process re-
duces the complexity of CNN models. This dataset is referred to as DPAv4.2_4000. To work
with desynchronized datasets, before trimming each dataset into 5000 and 4000 samples for
ASCADr and DPAv4. 2, we apply random shifts from a uniform distribution and then trim the
datasets. Both datasets are labeled with the identity leakage model. For ASCADr_5000, using
data augmentation, the model processes 200,000 profiling traces plus 400,000 augmented
traces. For DPAv4.2_4000, we process 70,000 profiling traces plus 140,000 augmented traces.

Deep Neural Networks

CNN architectures evaluated in the previous section cannot deliver successful key
recovery results for the experiments with larger desynchronization intervals. Therefore, we
deploy a new random hyperparameter search to find the best possible CNN models for
ASCADr_5000 and DPAv4.2_4000. The search considers datasets with desynchronization
inside the interval [0,100]. As a result, we found the CNN models reported in Table 2.
The models are referred to as cnn_large_desync_ascadr and cnn_large_desync_dpa_v42.
In cnn_large_desync_dpa_v42, the fully connected layer is regularized with 11 regulariza-
tion using / = 0.00001.

Table 2. Hyperparameter values for cnn_large_desync_ascadr and cnn_large_desync_dpa_v42.
Hyperparameters like weight initializer, activation function, or number of neurons in fully con-
nected (FC) layers apply across all layers if specified with a single value. The number of filters in
convolutional layers varies per layer and is specified in sequence.

Hyperparameters cnn_large_desync_ascadr400 cnn_large_desync_dpa_v42
Conv. blocks 3 4
Filters (ordered) 8,16,24 16, 32, 48, 64
Kernel size 40 30
Strides 2 1

Pool size 2 4

Pool strides 2 4

FC layers 1 1

FC Nb. neurons 300 50
Weight initializer random_normal

Activation function selu

Learning rate 0.00025 0.001
Optimizer Adam

Batch size 400

Epochs 100

https://www.dpacontest.org/v4/42_traces.php

Mathematics 2024, 12, 3279

13 of 17

Our goal is not to promote the best CNN architectures for large desynchronization
cases but to propose a robust ensemble-based data augmentation approach that is expected
to be equally efficient with architectures from related works, such as [5,15], which evaluated
desynchronization of 200 and 400 samples, respectively.

We aim to make described architectures cnn_large_desync_ascadr and cnn_large_-
desync_dpa_v42 shift-invariant inside the shift intervals [0,200], [0,400], and [0, 1000].
For that, we train each model with profiling sets having desynchronized traces with a
normal shift distribution inside these intervals, and we add data augmentation to the
training process. To keep the model shift-invariant inside, e.g., the interval [0,200], data
augmentation is optimized to preserve the shifts from the original profiling set inside this
[0,200] interval. This means that when we add data augmentation to the profiling set, we
shift already desynchronized traces. We carefully choose the minimum and maximum shift
ranges for data augmentation. Figure 6a shows (on the left side) the shift distribution of
the original profiling set when it is desynchronized inside the interval [0,200] and also (in
the middle) the resulting shift distribution of the augmented traces. Note how our data
augmentation process mainly preserves the shift distribution inside the interval [0,200],
with some traces also being shifted outside these boundaries. We perform a similar process
when desynchronization is [0,400] and [0,1000] (see Figure 6b,c).

1 — 1 1
i i i
| | ’
0.004 4 0.004 4 j i 0.004 4 — [0,200] + DA [-25,0]
Z | —emrme z safeioan
0) —[o, 50,
g 5 10200} + DAL 100200 5 == G2+ alasol
0 0.002 o & 0.002 ~ - L & 0.002 1 — [0.2001 + DA [-100.0]
]] | — = [0,200] + DA [0,100] NN
\
f i i /jq N
1 1 1 [\
i i i b AR
0.000 t 0.000 t T t 0.000 L4 T L —
-100 0 100 200 300 -100 0 100 200 300 -100 0 100 200 300
Shifts Shifts Shifts
(a)
i —— 1 ~
: = ANV
0.002 0.002 - i i 0.002 - = [0,400] + DA [-50,0]
2 JE‘ —— [0,400] + DA [-50,50] JE v __ {g':gg} : gﬁ :Oizg]o]
i — g . -100,
5 Shifts Original Traces - = {g:gs} : g: {;gg;gg} c — = [0,400] + DA [0,100]
o 0.001 4 8 0.001 2 - ’ 8 0.001 = [0,400] + DA [-200,0]
3 : : : = = [0,400] + DA [0,200]
f i | i \'\ \
| \ 1 1 \
1 1 1 1 I \ N
0.000 T T T 0.000 T T T 0.000 1 T 1
—200 0 200 400 600 —200 0 200 400 600 —200 0 200 400 600
Shifts Shifts Shifts
0.0010 0.0010 - Vora\\ 0.0010 1
i 1
| : {
o~ > s >
F = b= = [0,1000] + DA [-100,100] = — 10(’)0] + DA[-100,0]
% 0.0005 4 —— shifts Original Traces 2 60005 - [0,1000] + DA [-250,250] 2 50005 [08800] + pa [0.100] [LRR
[] = [0,1000] + DA [-500,500] [0 , . LY
a a a —— [0,1000] + DA [-250,0] AN
i f h — = [0,1000] + DA [0,250] FRY
| ! | i\ —— [0,1000] + DA [-500,0] [N
] 1] :\ — = 10,1000] + DA[0,500] = {1 ¥ '\
0.0000 T T T 0.0000 T T T 0.0000 t T pt
-500 0 500 1000 1500 -500 0 500 1000 1500 =500 0 500 1000 1500
Shifts Shifts Shifts
()

Figure 6. Shift distributions in the original and augmented trace sets when the profiling set has
desynchronization in [0,200]. (a) Profiling set desynchronization: [0,200]. (b) Profiling set desynchro-
nization: [0,400]. (c) Profiling set desynchronization: [0, 1000].

For each large desynchronization case and each dataset, we train multiple CNN
models to combine them into an ensemble. We divide the data augmentation range [, ¢]
into smaller ranges. For instance, when desynchronization in the original profiling set
is [0,200], we divide the data augmentation into the following eight separate ranges:
[—100, —75], [-75, —50], [-50, —25], [—25, 0], [0, 25], [25,50], [50, 75], and [75,100]. It means
we have a data augmentation of step 25 because we implement multiple trainings with data
augmentation, shifting the traces with an interval of 25. We train the CNN model for
each range with the original desynchronized traces and the data augmentation with the

Mathematics 2024, 12, 3279

14 of 17

small range. Thus, we train eight separate CNN models and a CNN model with data
augmentation with a [—100, 100] shift range. Finally, we build an ensemble from these
nine CNN models by averaging their output class probabilities. Similarly, we will test data
augmentation with steps of 50 and 100 for the dataset with desynchronization [0,200]; steps
50, 100, and 200 for [0,400]; and steps 100, 250, and 500 for [0, 1000].

Figure 7 shows results for the ensembles obtained for large desynchronization cases in
the ASCADr_5000 dataset. Training a single CNN model with data augmentation inside the
shift range [—J, 6] shows inferior results compared to ensembling multiple CNN models
with specific data augmentation steps. In the top part of Figure 7, we show results for the
desynchronization case of [0,200]. Building an ensemble (with all tested step sizes) allows
us to recover the key with approximately 10 attack traces, while using data augmentation
with [—4, 6] needs 100 attack traces. This is ten times fewer traces, which indicates better
performance. A similar improvement is visible in the case of desynchronization [0,400].
When desynchronization is much larger, in the case of [0,1000], the only scenario where
we can improve shift-invariance is by using an ensemble with a data augmentation step
of 100. This means that the shift-invariance robustness of this CNN model is significantly
improved with the usage of ensembles.

ASCADr_5000 Desync [0,200]

ASCADr_5000 Desync [0,200]

| —— DA[-2525]

—— DA[-50,50]

—— DA[-100,100]
—— Ensemble (Step 25)
—— Ensemble (Step 50)

— DA[-25,25] \
1034 DA [-50,50]

—— DA[-100,100]

= Ensemble (Step 25)
—— Ensemble (Step 50)
4 —— Ensemble (Step 100)

-1

Nge

=

b
Guessing Entropy

10! 4

H T
T T T T T T T T T T T T T T
—2000 -1500 -1000 -500 0 500 1000 1500 2000 —2000 -1500 -1000 -500 0 500 1000 1500 2000

ASCADr_5000 Desync [0,400] ASCADr_5000 Desync [0,400]
S — 7

T
|
|
|
I
|
|

1

—— DA [-50,50]
DA [-100,100]

—— DA [-200,200]

= Ensemble (Step 50)

—— Ensemble (Step 100)

—— DA[-50,50]

DA [-100,100]
—— DA [-200,200]
—— Ensemble (Step 50)
——— Ensemble (Step 100)
—— Ensemble (Step 200)

Nge
Guessing Entropy

—— Ensemble (Step 200)

i
i
102 4 I
T T T t L T T T T T T T T T
—2000 -1500 -1000 -500 0 500 1000 1500 2000 —2000 -1500 -1000 -500 0 500 1000 1500 2000

ASCADr_5000 Desync [0,1000] ASCADr_5000 Desync [0,1000]
4x10° T 7 T T
—— DA[-100,100] :"\)’ WWVVV 9 i |
—— DA[-250,250] | 1 > 102 100
3 1 1 b,
3x10%{ — pa-500,500] | i s -
. —— Ensemble (step 100) ! ! = \
) —— Ensemble (step 250) | i s —— DA[-100,100] |
> 3 | — Ensemble (step 500) | | € 1914 — DA[-250.250] |
2 2x10 i | 7 193 — par-500,500) |
| | g —— Ensemble (step 100) 1
| | o ~—— Ensemble (step 250) | !
| | 100 4 —— Ensemble (step 500) | /
T T T t T t T 1 T T T t T t T 1
—2000 -1500 -1000 -—500 0 500 1000 1500 2000 —2000 -1500 -1000 —500 0 500 1000 1500 2000

Maximum uniformly distributed shifts Maximum uniformly distributed shifts

Figure 7. The shift-invariance robustness of the cnn_large_desync_ascadr model trained with large
desynchronization levels and on the ASCADr_5000 dataset.

The results for the shift-invariance robustness analysis of the cnn_large_desync_-
dpa_v42 model and DPAv4.2 dataset are shown in Figure 8. When desynchronization in
the profiling set is within the range [0,200], the model becomes shift-invariant for all cases,
but ensembles need fewer traces. When the profiling set has desynchronization of [0,400],
we find better results when a single model is trained with data augmentation inside the
shift range [—200,200] and an ensemble of data augmentation with a step of 200. Results
for the large desynchronization scenario of [0,1000] show that we are only able to make
the cnn_large_desync_dpa_v42 model shift-invariant inside the interval of [0,1000] when
we build ensembles of multiple data augmentation steps. The best results were obtained
with the data augmentation step of 100. Additionally, the ensembles provide good results
outside the targeted shift intervals. Finally, in Figures 7 and 8, if data augmentation is not
considered, none of the models can provide successful key recovery results.

Mathematics 2024, 12, 3279 150f17
DPAv4.2_4000 Desync [0,200] DPAv4.2_4000 Desync [0,200]
A\ |] , | | — DpAl-25.25]
108 > i i 7 0% i | DA [-50,50]
| 1 3 H | —— DA[-100,100]
i | g i | ,
~- —— DA[-25,25] | 1 = 1 | —— Ensemble (Step 25)
H DA [-50,50] | | o . | | —— Ensemble (Step 50)
2 1024 — DA[-100,100] . i £ 10% 3 | | = Ensemble (Step 100)
—— Ensemble (Step 25) 8 1
—— Ensemble (Step 50) = 3 |
—— Ensemble (Step 100) H
101 E T T T T T T 100 T T T r T T
-1000 -750 =500 —250 0 250 500 750 1000 -1000 -750 =500 —250 0 250 500 750 1000
Maximum uniformly distributed shifts Maximum uniformly distributed shifts
DPAv4.2_4000 Desync [0,400] DPAv4.2_4000 Desync [0,400]
vV 7 7
21024 0o ’\/\ i E AAKXKDY
3 S J A —— DA[-50,50]
10° 4 5 | DA [-100,100]
- —— DA[-50,50] i | | — DA[-200,200]
o DA [-100,100] o | 1 .
2 —— DA[-200,200] £ 10! 4 i | —— Ensemble (Step 50)
. [H | —— Ensemble (Step 100)
—— Ensemble (Step 50) 4 ! | —— Ensemble (Step 200)
102 4 — Ensemble (step 100) 3 !]
—— Ensemble (Step 200) i i 100 _KA i E /
T T T T T T T T T T
-1500 -1000 —-500 0 500 1000 1500 —1500 -1000 —-500 0 500 1000 1500
DPAv4.2_4000 Desync [0,1000] DPAv4.2_4000 Desync [0,1000]

T j
|
, A e
10 _\/\,__’\‘ \ 10 DA [-100,100]
™~ !

DA [-250,250]
—— DA[-100,100] DA [-500,500]

b
i
|
i

Ensemble (step 100) |
|
|
|
|
|
|
1

=1

— DA [-250,250]

i
1
1 1
—— DA [-500,500] | 10° 5
i
|
Y
|
H
T

Nge

Ensemble (step 250)
Ensemble (step 500)

102 3 — Ensemble (step 100)

—— Ensemble (step 250)
- Ensemble (step 500)

Guessing Entropy

100 - - N

T T T T T T T T T T T
—-2000 -1500 -1000 -500 0 500 1000 1500 2000 —2000 -1500 -1000 -500 0 500 1000 1500 2000
Maximum uniformly distributed shifts Maximum uniformly distributed shifts

Figure 8. The shift-invariance robustness of the cnn_large_desync_dpa_v42 model trained with
large desynchronization levels and the DPAv4.2_4000 dataset.

7. Conclusions and Future Work

This paper investigates the shift-invariance of CNNs in DLSCA. First, we show that
desynchronized datasets can easily disrupt the shift-invariance of CNNs, leading to un-
successful attacks. CNNs can learn desynchronization patterns, but this can lead to poor
generalization when the attack set is not perfectly aligned with the profiling set in the time
domain. Therefore, we empirically demonstrate that the shift-invariance of these CNNs
can be enhanced through the use of data augmentation. Data augmentation provides the
CNNs with an extended profiling set by introducing potential desynchronization that may
occur in the attack set, consequently increasing the model’s robustness and improving its
generalization to the attack set. Additionally, in many cases, we observe improved shift-
invariance beyond the desynchronization levels present within the profiling set. Finally,
if the desynchronization levels are large, we propose a novel method based on the ensem-
bles of data augmentation. Our results show superior performance with data augmentation,
especially with ensembles of data augmentation. Interestingly, architectural changes (e.g.,
modifications in the convolutional or pooling layer) provide minor improvements in shift-
invariance and represent a more difficult path toward reaching it. This is especially true for
more shallow neural network architectures used in DLSCA.

The limitations of this study stem from the reliance on datasets containing the AES
measurements, which may not generalize well for other cryptographic algorithms. How-
ever, the utilized datasets are widely recognized public benchmarks commonly used in
related work to evaluate different methods. Moreover, this work focuses on a single coun-
termeasure, while the methodologies discussed could potentially benefit in the presence of
other/multiple countermeasures as well. Thus, for potential future research directions, it
would be interesting to evaluate different types of misalignment, like jitter and random
delays. Next, here, we arbitrarily set the number of augmented traces. Evaluating the
optimal number of augmented traces to be used would be very relevant, especially if
some guidelines based on the dataset’s properties can be given. Similarly, optimizing
model combination techniques for ensembles and the data augmentation steps could be
further investigated.

Mathematics 2024, 12, 3279 16 of 17

Author Contributions: All authors contributed to all steps in the preparation of this article. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, and further inquiries can be directed to the corresponding authors. The datasets utilized in
this study are publicly available, and corresponding links and references can be found in the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. He, K; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778. [CrossRef]

2. Kim, T; Lee, J.; Nam,]. Comparison and Analysis of SampleCNN Architectures for Audio Classification. IEEE]. Sel. Top. Signal
Process. 2019, 13, 285-297. [CrossRef]

3. Picek, S.; Perin, G.; Mariot, L.; Wu, L.; Batina, L. SoK: Deep Learning-Based Physical Side-Channel Analysis. ACM Comput. Surv.
2022, 55, 227. [CrossRef]

4. Perin, G.; Wu, L.; Picek, S. Exploring Feature Selection Scenarios for Deep Learning-based Side-channel Analysis. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2022, 2022, 828-861. [CrossRef]

5. Lu, X; Zhang, C.; Cao, P; Gu, D.; Lu, H. Pay Attention to Raw Traces: A Deep Learning Architecture for End-to-End Profiling
Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 235-274. [CrossRef]

6. Bronstein, M.M.; Bruna, J.; Cohen, T.; Velickovic, P. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
arXiv 2021, arXiv:2104.13478. [CrossRef]

7. Standaert, EX,; Malkin, T.G.; Yung, M. A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In
Proceedings of the Advances in Cryptology—EUROCRYPT 2009, Santa Barbara, CA, USA, 16-20 August 2009; Joux, A., Ed.;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 443-461.

8. Wouters, L.; Arribas, V.; Gierlichs, B.; Preneel, B. Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 2020, 147-168. [CrossRef]

9. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. Autoaugment: Learning augmentation strategies from data. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15-20 June 2019;
pp. 113-123.

10. Cagli, E.; Dumas, C.; Prouff, E. Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures.
In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES 2017, Taipei, Taiwan, 25-28 September 2017;
Fischer, W., Homma, N., Eds.; Springer: Cham, Switzerland, 2017; pp. 45-68.

11. Timon, B. Non-Profiled Deep Learning-Based Side-Channel Attacks. Cryptology ePrint Archive, Paper 2018/196. 2018. Available
online: https:/ /eprint.iacr.org/2018/196 (accessed on 1 October 2024).

12. Perin, G.; Chmielewski, L.; Batina, L.; Picek, S. Keep it Unsupervised: Horizontal Attacks Meet Deep Learning. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020, 2021, 343-372. [CrossRef]

13. Benadjila, R.; Prouff, E.; Strullu, R.; Cagli, E.; Dumas, C. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptogr. Eng. 2020, 10, 163-188. [CrossRef]

14. Zotkin, Y.; Olivier, E; Bourbao, E. Deep Learning vs Template Attacks in front of fundamental targets: Experimental study. JACR
Cryptol. ePrint Arch. 2018

15. Hajra, S.; Saha, S.; Alam, M.; Mukhopadhyay, D. TransNet: Shift Invariant Transformer Network for Side Channel Analysis.
In Progress in Cryptology—AFRICACRYPT 2022: 13th International Conference on Cryptology in Africa, AFRICACRYPT 2022, Fes,
Morocco, July 18-20. 2022, Proceedings; Springer: Berlin/Heidelberg, Germany, 2022; pp. 371-396. [CrossRef]

16. Hajra, S.; Chowdhury, S.; Mukhopadhyay, D. EstraNet: An Efficient Shift-Invariant Transformer Network for Side-Channel
Analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2024, 2024, 336-374. [CrossRef]

17. Perin, G.; Chmielewski, L.; Picek, S. Strength in Numbers: Improving Generalization with Ensembles in Machine Learning-based
Profiled Side-channel Analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 2020, 337-364. [CrossRef]

18. Zaid, G.; Bossuet, L.; Habrard, A.; Venelli, A. Efficiency through Diversity in Ensemble Models applied to Side-Channel Attacks:
A Case Study on Public-Key Algorithms. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 60-96. [CrossRef]

19. LeCun, Y. Generalization and Network Design Strategies. In Connectionism in Perspective; Pfeifer, R., Schreter, Z., Fogelman, E,,

Steels, L., Eds.; Elsevier: Zurich, Switzerland, 1989; An extended version was published as a technical report of the University of
Toronto.

http://doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/JSTSP.2019.2909479
http://dx.doi.org/10.1145/3569577
http://dx.doi.org/10.46586/tches.v2022.i4.828-861
http://dx.doi.org/10.46586/tches.v2021.i3.235-274
https://doi.org/10.48550/arXiv.2104.13478
http://dx.doi.org/10.46586/tches.v2020.i3.147-168
https://eprint.iacr.org/2018/196
http://dx.doi.org/10.46586/tches.v2021.i1.343-372
http://dx.doi.org/10.1007/s13389-019-00220-8
http://dx.doi.org/10.1007/978-3-031-17433-9_16
http://dx.doi.org/10.46586/tches.v2024.i1.336-374
http://dx.doi.org/10.46586/tches.v2020.i4.337-364
http://dx.doi.org/10.46586/tches.v2021.i3.60-96

Mathematics 2024, 12, 3279 17 of 17

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

Gens, R.; Domingos, PM. Deep Symmetry Networks. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 8-13 December 2014; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran
Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27.

Kayhan, O.S.; van Gemert,].C. On Translation Invariance in CNNs: Convolutional Layers Can Exploit Absolute Spatial Location.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA,
13-19 June 2020; pp. 14262-14273. [CrossRef]

Azulay, A.; Weiss, Y. Why do deep convolutional networks generalize so poorly to small image transformations? arXiv
2018, arXiv:1801.01450. [CrossRef]

Goodfellow, 1.].; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:
/ /www.deeplearningbook.org (accessed on 1 October 2024).

Marcos, D.; Volpi, M.; Tuia, D. Learning rotation invariant convolutional filters for texture classification. arXiv 2016,
arXiv:1604.06720. [CrossRef]

Lenc, K.; Vedaldi, A. Understanding Image Representations by Measuring Their Equivariance and Equivalence. Int. J. Comput.
Vis. 2018, 127, 456-476. [CrossRef] [PubMed]

Chaman, A.; Dokmanic, I. Truly shift-invariant convolutional neural networks. In Proceedings of the 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 20-25 June 2021; pp. 3772-3782. [CrossRef]
Zhang, R. Making Convolutional Networks Shift-Invariant Again. In Proceedings of the 36th International Conference on
Machine Learning, Long Beach, CA, USA, 9-15 June 2019; PMLR, Proceedings of Machine Learning Research; Chaudhuri, K.,
Salakhutdinov, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 97, pp. 7324-7334.

Kauderer-Abrams, E. Quantifying Translation-Invariance in Convolutional Neural Networks. arXiv 2018, arXiv:1801.01450.
[CrossRef]

Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [CrossRef]

Ho, D.; Liang, E.; Chen, X,; Stoica, I.; Abbeel, P. Population based augmentation: Efficient learning of augmentation policy
schedules. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9-15 June 2019; PMLR;
Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 2731-2741.

Ghiasi, G.; Cui, Y,; Srinivas, A.; Qian, R,; Lin, T.Y; Cubuk, E.D.; Le, Q.V.; Zoph, B. Simple copy-paste is a strong data augmentation
method for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Virtual, 19-25 June 2021; pp. 2918-2928.

Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image
augmentations. Information 2020, 11, 125. [CrossRef]

Feng, S.Y.; Gangal, V.; Wei,].; Chandar, S.; Vosoughi, S.; Mitamura, T.; Hovy, E. A survey of data augmentation approaches for
NLP. arXiv 2021, arXiv:2105.03075.

Park, D.S.; Chan, W.; Zhang, Y.; Chiu, C.C.; Zoph, B.; Cubuk, E.D.; Le, Q.V. Specaugment: A simple data augmentation method
for automatic speech recognition. arXiv 2019, arXiv:1904.08779.

Meng, L.; Xu, J.; Tan, X.; Wang, J.; Qin, T.; Xu, B. Mixspeech: Data augmentation for low-resource automatic speech recognition.
In Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Toronto, ON, Canada, 6-11 June 2021; pp. 7008-7012.

Min, J.; McCoy, R.T.; Das, D.; Pitler, E.; Linzen, T. Syntactic data augmentation increases robustness to inference heuristics. arXiv
2020, arXiv:2004.11999.

Sun, S.; Yeh, C.E,; Ostendorf, M.; Hwang, M.Y.; Xie, L. Training augmentation with adversarial examples for robust speech
recognition. arXiv 2018, arXiv:1806.02782.

Zheng, S.; Song, Y.; Leung, T.; Goodfellow, I. Improving the robustness of deep neural networks via stability training. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016;
pp. 4480-4488.

Hernandez-Garcia, A. Data augmentation and image understanding. arXiv preprint 2020, arXiv:2012.14185.

Zaid, G.; Bossuet, L.; Habrard, A.; Venelli, A. Methodology for Efficient CNN Architectures in Profiling Attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019, 2020, 1-36. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR42600.2020.01428
https://doi.org/10.48550/arXiv.1801.01450
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.48550/arXiv.1604.06720
http://dx.doi.org/10.1007/s11263-018-1098-y
http://www.ncbi.nlm.nih.gov/pubmed/31148885
http://dx.doi.org/10.1109/CVPR46437.2021.00377
https://doi.org/10.48550/arXiv.1801.01450
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.3390/info11020125
http://dx.doi.org/10.46586/tches.v2020.i1.1-36

	Introduction
	Deep Learning-Based Side-Channel Analysis
	Related Works
	CNNs and Invariance
	The Shift-Invariance Robustness of Deep Learning Models in SCA
	Shift-Invariance Robustness of CNNs Trained with Synchronized Datasets
	Shift-Invariance Robustness of CNNs Trained with Desynchronized Datasets
	DA Effect on Shift-Invariance Robustness of CNNs Trained with Synchronized Datasets
	DA Effect on Shift-Invariance Robustness of CNNs Trained with Desynchronized Datasets

	Ensembles to Defeat Larger Desynchronization Levels
	Conclusions and Future Work
	References

