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Wolf notes are generally undesirable sounds that occur in string instruments, particularly in cellos.

State-of-the-art passive wolf note eliminators affect the whole cello sound and can become ineffec-

tive when environmental conditions and, therefore, the cello’s structural properties change. In this

paper, an approach is presented that uses smart materials to eliminate the wolf note with little

effects to the cello’s sound. Based on preliminary measurements, a mathematical model of the cello

for generating the wolf note and for developing a wolf note elimination controller is set up. The

controller consists of a wolf detection criterion that triggers a velocity feedback controller to

actively induce damping into the cello’s body whenever a wolf note is detected. The controller

setup is experimentally validated by an implementation on a test cello. The velocity feedback to

induce the active damping is implemented by means of a piezoelectric patch actuator attached to

the cello’s body. Both the results of the mathematical model and the results of the experimental

investigation show a good performance in eliminating the wolf note on a cello.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5037467

[AM] Pages: 2965–2974

I. INTRODUCTION

In acoustics of musical instruments, a wolf note is a phe-

nomenon that occurs in string instruments. The sound of a

wolf note is characterized by intense beats and the shifting

of the tone to higher harmonics. The beats typically occur

with modulation frequencies of 4–10 Hz, which, from a psy-

choacoustic point of view, is considered annoying.1,2

Furthermore, the wolf note has a substantial impact on the

playability of a cello.3,4 Since the frequency at which a wolf

note occurs depends on the structural characteristics of the

individually manufactured instrument and the variable

mechanical properties of the wooden body, wolf notes can

be found at different frequencies for various cellos. Usually

the frequencies of wolf notes for cellos are between 147 and

185 Hz.2,5 Conventional wolf eliminators are based on tuned

mass dampers, which must be tuned to a fixed frequency.1,5

Therefore, they are only capable of eliminating that single

wolf note at the specific frequency to which they are tuned.

The mechanical properties of cellos and other classical string

instruments made of wood are very sensitive to the environ-

mental conditions to which they are exposed. These condi-

tions primarily are the ambient temperature and the

humidity. If these environmental conditions change, the

structural properties of the instrument, such as the stiffness,

for example, will also change and, therefore, alter the fre-

quency of the wolf note. The frequency shift may render the

conventional mechanical wolf eliminators ineffective.6,7

This paper presents a universal smart material wolf note

eliminator that is compatible with conventional designs of

cellos and is able to adjust to changes in its surrounding

environment. The elimination device consists of a piezoelec-

tric patch actuator and a demand-actuated velocity feedback

controller. After a brief introduction to the wolf note (Sec.

II), a description of selected conventional mechanical wolf

note eliminators and active approaches by other researchers

is presented (Sec. III). This is followed by preliminary

measurements (Sec. IV), the mathematical modeling of the

cello with the development of an approach to detect the wolf

note and of the controller design (Sec. V), and the results

of the implementation with an experimental validation

(Sec. VI).

II. CHARACTERISTICS OF THE WOLF NOTE

Since Raman, one of the first scientists who worked on

the subject, investigated the processes of how a wolf note

occurs from cellos at the beginning of the 20th century,8

there have been many different approaches to explain this

phenomenon from various points of view. However, the con-

sensus is that a strong coupling between the string and the

body (similar values for the input admittances) as well as a

lightly damped body mode may result in wolf notes.1,2,5–10

Schelleng developed a theoretical criterion for the occur-

rence of a wolf note on a violin, which consists of the body’s

damping, the point of bowing, as well as the ratio of the

string’s and the body’s effective masses.11 This criterion was

confirmed by Gough.9,10 The body and the strings are

mechanically coupled by the bridge, which acts as the maina)Electronic mail: neubauer@sam.tu-darmstadt.de
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energy transducer and as an admittance transformer.6,7,9,10

Due to the asymmetric design of the cello’s body with the

sound post connecting the top and the bottom of the cello

below the higher strings and the bass bar found below the

lower strings, the bridge begins to rock strongly if a fre-

quency close to a wolf note is excited. This is described by

Rossing as the “rocking motion” of the bridge.12 The con-

nection points between the bridge and the body are subse-

quently referred to as left bridge foot and right bridge foot,
as indicated in Fig. 1. The strong coupling allows for the

well-known double-slip motion of the bowed string and the

periodic collapses of the body’s vibration to occur, which

subsequently leads to the acoustic phenomenon called the

wolf note.1,2,6,7,13,14 In�acio and co-authors have developed a

very accurate mathematical model of a cello and were able

to extensively study and understand the interactions of string

and body as well as the parameters that influence the occur-

rence of the wolf note such as the bow force and the bowing

velocity.15–17

III. WOLF NOTE ELIMINATION STRATEGIES

Experienced cellists can suppress the wolf note by

increasing the bow force, changing the point of bowing, or

even squeezing the cello between their legs.6,7,13 These

methods, however, rely on the expertise of the player and

still affect the sound of the cello.

The conventional wolf note elimination devices avail-

able on the market today aim at passively reducing the vibra-

tion amplitudes so that the coupling between the string and

the body is reduced. Most of the available conventional wolf

note eliminators are designed as mechanical tuned mass

dampers in order to limit their influence on the cello’s sound

solely to the frequency of the wolf note. The effectiveness of

these devices was investigated and discussed for example by

Gidion.18 High quality handmade cellos can come already

equipped with such a mechanical tuned mass damper, which

is mounted to the inside of the cello’s top plate and is tuned

to the exact frequency of the wolf note in order to reduce the

vibration amplitudes at this specific frequency.2,6 Another

type of passive elimination device can be installed by the

players themselves. This device consists of an attachable

mass and must be positioned at a specific spot on the string

between the tailpiece and the bridge in order to reduce the

vibration amplitudes of the bridge at the frequency of the

wolf note. Once the device is fixed in its position, the opera-

tion frequency is fixed as well. This wolf note elimination

device requires the player to properly tune it.2,6 Although the

presence of these conventional wolf note eliminators still

affects the cello’s sound, most musicians can tolerate this

drawback because the wolf note is eliminated. The biggest

problem with this type of wolf note eliminator is that the

effective frequency of the mechanical tuned mass damper is

fixed once it is attached, which means the eliminator can

become ineffective if the wolf note’s frequency shifts.7

Therefore, the convenience of these simple mechanically

tuned mass dampers comes with design and reliability

drawbacks.

Benacchio and Mamou-Mani present a way to actively

adjust the modal parameters of a simplified musical instru-

ment in order to modify its radiated sound. They use an

active system with an electrodynamic actuator and a piezo-

electric sensor in a closed loop, controlled by a time-

dimensionless algorithm, called modal active control.19–21

Such combinations of musical instruments with sensors and

actuators are called smart musical instruments.20 By chang-

ing the modal parameters of a cello, the elimination of a

wolf note is generally possible.

In previous works a semi-active approach in form of pie-

zoelectric shunt damping was investigated. Unfortunately, the

conversion from mechanical to electrical energy and vice

versa between the cello’s body and the piezoelectric patch

actuator was too low to effectively eliminate the wolf note.

To increase the amount of energy induced into the cello’s

body, active approaches were investigated.22–24

The active approach presented in this paper shall be

compatible to different cellos and varying environmental

conditions. The use of a demand-actuated velocity feedback

controller allows for an active increase of the cello’s body

mechanical damping. The approach includes the control of

the amount of damping to fully suppress the wolf note while

affecting the sound of the instrument as little as possible.

IV. PRELIMINARY MEASUREMENTS

Preliminary measurements on a test cello were neces-

sary to estimate both the technical feasibility and the require-

ments for the used actuators, sensors, and the controller.

Furthermore, this allowed for the development of a wolf

note detection strategy.

A. Experimental setup

The test cello is a handcrafted high class cello of full

size (4/4) that strongly suffers from a wolf note. The strings

are medium sized and have a standard tuning (C-G-d-a).

Since the wolf note is more likely to occur with heavier

strings, the C string is excited. All other strings are muted

using plastic foam. Adjusting the natural frequency of the C

string is achieved by pushing the string against the finger-

board with a metal clamp in a defined and reproducible way.

The cello is excited by a cellist bowing it constantly with

FIG. 1. (Color online) Relevant parts of a cello (cross section, view from the

tailpiece) with the rocking motion of the bridge at the main body resonance,

qualitative illustration.
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medium velocity and medium bow force. The cello is held

by the cellist in a standard position. During the experiments,

the environmental conditions were held constant at 21 �C
(70 �F) and 50%–60% relative humidity to prevent the cello

from detuning. Two miniature lightweight accelerometers

are applied to the cello’s body next to each bridge foot. The

airborne sound pressure is measured by a microphone that is

elastically mounted to the tailpiece. Furthermore, an electric

guitar pickup (conventional Humbucker) is applied to the

bottom end of the fingerboard to qualitatively analyze the

string oscillations at the typical point of bow excitation. All

sensor positions can be taken from Fig. 2.

B. Experimental results

For the following results, the C string is tuned to two

representative frequencies using the metal clamp. The stron-

gest occurrence of the wolf note on the given test cello is at

154 Hz (subsequently referred to as wolf state), while a tun-

ing frequency of the string of 130 Hz represents a state with-

out a wolf note occurrence (subsequently referred to as

regular state). In Fig. 3, all sensor signals in wolf state and

in regular state are compared in the time domain. In the reg-

ular state (Fig. 3, left), the measured signals are not modu-

lated. In the wolf state (Fig. 3, right), a strong and

characteristic amplitude modulation occurs in the sound

pressure as well as in the acceleration at the left bridge foot.

In comparison to the regular state, the maximum peak-to-

peak amplitudes of the sound pressure approximately dou-

ble, whereas the peak-to-peak amplitudes of the acceleration

on the left bridge foot almost triple. The acceleration ampli-

tudes at the right bridge foot do not change significantly. In

the wolf state, the string does not noticeably change its peak-

to-peak displacement amplitudes, but experiences a distur-

bance in its waveform caused by the high vibration ampli-

tudes of the body at the left bridge foot. This shows how

strong the string and the body are coupled near the left

bridge foot at the wolf note.

In the frequency domain, the same measurements of the

regular state and the wolf state are compared. The sound

pressure level spectra are given in Fig. 4. Although the exci-

tation of the string is a single peak at exactly its tuning fre-

quency in the regular state, this cannot be confirmed for the

wolf state. There is a local minimum at the string’s nominal

tuning frequency of 154 Hz surrounded by two peaks. This is

the characteristic double-peak of the wolf note in the fre-

quency domain. The actual 154 Hz tuning frequency of the

string becomes instable and splits up into two peaks, one of

which is lower and one of which is higher in frequency. This

behavior is described intensively in the literature.4,9,10,12,13

A more common method to identify frequencies at

which wolf notes may occur is to determine the input admit-

tance (driving point mobility) of the bridge.5,6,9,10,12,17,25 A

high value of the input admittance for a certain frequency

means a high “willingness to vibrate,” which, in the case of

the cello’s body, may lead to a wolf note. The input admit-

tances at the left and the right bridge foot are determined

using a small impact hammer to excite the top plate of the

cello in its normal direction close to the bridge feet. The

accelerometers marked in Fig. 2 are used to measure the

response of the cello’s body in the same direction. The

results are shown in Fig. 5. The highest peak of the input

admittance at the left bridge foot is at the frequency at which

the wolf note occurs (about 154 Hz). At this frequency, there

is a strong coupling to a body mode, which can only be

observed at the left bridge foot. The input admittance of the

right bridge foot is about 13 dB lower at this frequency. At

FIG. 2. (Color online) Sensor positions at the cello used for the preliminary

measurements.

FIG. 3. (Color online) All sensor signals in regular state (left) and in wolf

state (right) in the time domain.

FIG. 4. (Color online) Sound pressure levels of the regular state and the

wolf state in the frequency domain.
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most other frequencies, the differences of the input admit-

tance levels at the left and the right bridge foot are much

smaller. At the right bridge foot the maximum input admit-

tance can be found at approximately 200 Hz, where there is a

strong coupling to another body mode.

V. MATHEMATICAL WOLF NOTE MODELING AND
CONTROLLER DESIGN

In 1963 Schelleng modeled a cello as an electric circuit

and was, therefore, able to describe the parameters that influ-

ence the wolf note.11 Later, other authors modeled the string

and the body of a cello with simple mechanical or electrical

elements such as single mass oscillators or idealized

strings.4,9,10,26 In more recent works the cello has been mod-

eled using modal approaches.17,21 For the research presented

in this paper a linear model for generating the wolf note and

for developing the controller is set up. A combination of three

coupled single mass oscillators, representing the string and

the body at the two bridge feet, is used. The modeling of two

parts of the body is necessary to reflect the asymmetric prop-

erties of the cello’s body and to evaluate the wolf criterion,

which is described in Sec. V D. Even though a cello is not a

perfect linear structure, particularly the bowed string, the line-

arized model is assumed to approximate the structural proper-

ties close enough. Moreover, other authors have already been

able to use similar linear models to simulate the cello’s

body4,7,9,10,26 or even the bowed string,27 so it can be assumed

that the linearized model provides appropriate results.

A. Mathematical model

The block diagram of the mathematical model used in

this paper is shown in Fig. 6. The string is excited by an

initial displacement of xsðt ¼ 0Þ ¼ 0:001 m, which corre-

sponds to a plucked string and which is much easier to model

than a bowed string, but is still able to generate the wolf note

behavior in the linear model. The string, which is represented

as a single mass oscillator (subscript s), excites the single

mass oscillator at the left bridge foot (subscript l) as well as

the single mass oscillator at the right bridge foot (subscript r).

Note that the two single mass oscillators represent the two

body modes at 154 and 200 Hz (which can be interpreted

from Fig. 5) rather than representing two independent bodies.

The reaction forces at the two bridge feet in turn work at the

string’s single mass oscillator. However, the couplings

between the string and the oscillators at the bridge feet must

be multiplied by the coupling factor c in order to match the

model’s behavior to the test cello’s behavior. The values of

the mechanical elements used in this model are determined

from experiments performed on the test cello and from further

estimations. The mass of the string’s oscillator mS and the

effective masses of the body’s oscillators ml and mr are esti-

mated by calculating their effective masses at the frequency

of the wolf note. The spring rate at the two bridge feet kl and

kr are determined by setting the natural frequency at the left

bridge foot to 154 Hz and at the right bridge foot to 200 Hz

(see peaks of the input admittance in Fig. 5). The spring rate

of the string kS is kept variable to change the string’s natural

frequency. The damping coefficients of the string’s oscillator

dS as well as the damping coefficients of the body’s oscillators

dl and dr are determined by means of experimental measure-

ments taken on the test cello. The coupling factor c is empiri-

cally determined and represents the behavior of the bridge

and other properties of the cello that are neglected. The

derived equations of motion are given in Eq. (1),

M

€xsðtÞ
€xlðtÞ
€xrðtÞ

2
64

3
75þD

_xsðtÞ
_xlðtÞ
_xrðtÞ

2
64

3
75þK

xsðtÞ
xlðtÞ
xrðtÞ

2
64

3
75¼ F: (1)

The mass matrix M, the damping matrix D, the stiffness

matrix K, and the force excitation vector F are given as

follows:

M ¼
ms 0 0

0 ml 0

0 0 mr

2
64

3
75; (2)

D ¼
ds þ c ðdl þ drÞ c dl c dr

c dl dl 0

c dr 0 dr

2
64

3
75; (3)

K ¼
ks þ c ðkl þ krÞ c kl c kr

c kl kl 0

c kr 0 kr

2
64

3
75; (4)

F ¼
0

0

0

2
4
3
5: (5)

The corresponding physical values are given in Table I.

FIG. 5. (Color online) Input admittances of the cello at the left and the right

bridge foot.

FIG. 6. Block diagram of the mathematical model of the cello.

2968 J. Acoust. Soc. Am. 143 (5), May 2018 Neubauer et al.

 06 N
ovem

ber 2024 14:34:37



B. Results of the mathematical model

The results of the mathematical model are compared

with experimental results. The natural frequency of the string

is set at every 1 Hz interval from 140 to 160 Hz for both the

mathematical model and the test cello. In the experiment,

the string is excited with the bow, while in the mathematical

model it is excited by an initial displacement xs ¼ 0:001 m,

which simulates a plucked string. For each of the string’s

natural frequencies the response of the level of body acceler-

ations at the left bridge foot is determined and the spectrum

is calculated. In Fig. 7, the response surfaces at the left

bridge foot are shown as determined from both the numerical

simulation and the experiment. In both response surfaces the

acceleration of the body at the left bridge foot develops the

characteristic double-peak for the natural frequency of the

string in the wolf state (154 Hz). For strings tuned to

frequencies higher and lower, the levels of both peaks differ,

which means the wolf note becomes less intense. The pre-

sented mathematical model is in good agreement with the

experimental results for response frequencies close to the

wolf note. For response frequencies higher than 180 Hz and

lower than 130 Hz the acceleration levels match only qualita-

tively, which suggests a limited validity for the presented

model. These results conform to those of the coupled vibrat-

ing systems of Fletcher and Rossing.6

C. Wolf note elimination in the mathematical model

The goal is to eliminate the wolf note while changing

the instrument’s sound as little as possible. The effective

mass and the stiffness are mechanical parameters that are

difficult to alter. Furthermore, the resonance frequencies

and, therefore, the sound of the cello, will be influenced on a

large scale when these parameters are changed. Since the

damping coefficient is a mechanical parameter that primarily

affects the amplitude of an oscillation and furthermore is

easy to control by a velocity feedback control algorithm, this

parameter is chosen as an adequate parameter to affect the

wolf note, as is confirmed in the literature.2,7,13 In the mathe-

matical model, the value of the damping coefficient of the

body at the left bridge foot dl is varied in a range between 0

and 2:5 Ns=m, while all other mechanical parameters are

kept constant. The string is tuned to a fixed natural frequency

of 154 Hz (wolf state). The calculation results are illustrated

as a surface plot in the frequency domain in Fig. 8, where

the acceleration response of the body at the left bridge foot

is a function of dl. With increasing values of the damping

coefficient dl, the characteristic double peak of the wolf note

decreases. Of course, as the damping coefficient increases,

the dissipation of vibration energy becomes higher, causing

the sound to fade out faster. Finding the optimal damping

coefficient is a trade-off between fully eliminating the wolf

note and minimizing the influence of the additional mechani-

cal damping on the sound of the cello. The experimentally

determined damping coefficient of the unmodified test cello

(0:33 Ns=m ) is marked with the black line. The required

damping coefficient for the mathematical model, at

TABLE I. Physical values for the mathematical model.

mass stiffness damping coupling factor

mS ¼ 0:00157 kg kS ¼ variable dS ¼ 0:0038 Ns=m c ¼ 0:01

ml ¼ 0:0134 kg kl ¼ 12546 Ns=m dl ¼ 0:33 Ns=m

mr ¼ 0:0103 kg kr ¼ 16265 Ns=m dr ¼ 0:38 Ns=m

FIG. 7. Response surfaces of the level of body accelerations for the results

of the mathematical model (a) and for the experimental results (b), left

bridge foot.

FIG. 8. Influence of the damping coefficient of the body at the left bridge

foot dl on the occurrence of the wolf note.
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which the double peak fully disappears, can be found at

dl;req ¼ 0:7 Ns=m (white line in Fig. 8).

D. Wolf note detection

To detect a wolf note, a criterion is necessary that can

be experimentally determined at the test cello. Furthermore,

it needs to work in real time and it should enable the deter-

mination of the amount of additional damping necessary to

suppress the wolf note. A criterion based on the measure-

ment of airborne sound is presumed to be unreliable since, in

the context of a musical play, there are many other sources

of airborne sound that may lead to false detections. Hence,

the measurement of structure-borne sound is assumed to be

more suitable.

As a conclusion from the experimental results shown in

Fig. 5, a great difference of input admittances between the

left and the right bridge foot at the excited frequency is

assumed to indicate a high risk of a wolf note occurrence.

Since the input admittance Yðf Þ is defined as the ratio

between the resulting vibration velocity vðf Þ and the force

excitation Fðf Þ,

Y fð Þ ¼ v fð Þ
F fð Þ ; (6)

a high input admittance at a certain frequency results in high

vibration velocities. Assuming the bridge to be rigid and

forces induced by the string into the bridge to work equally

on the left and the right bridge foot, in the wolf state

(154 Hz) the vibration velocities at the left bridge foot

vl ð154 HzÞ will significantly exceed those at the right bridge

foot vr ð154 HzÞ. But high vibration amplitudes at the left

bridge foot alone do not necessarily indicate a wolf note

since a regular non-wolf note tone can be heavily bowed and

a wolf note can be lightly bowed, both resulting in similar

vibration amplitudes at the left bridge foot. However, the

ratio between the vibration amplitudes at the left and the

right bridge foot as a relative measure is a reliable wolf crite-

rion CwðtÞ to detect the wolf note in the time domain,

Cw tð Þ ¼ vl tð Þ
vr tð Þ : (7)

Based on the assumption made before [see Eq. (6)], this cri-

terion implicitly represents the ratio between the input

admittances and can be calculated as a time-dependent scalar

value since a vibration velocity only exists if a correspond-

ing force excitation by the string is given. So, if, for exam-

ple, the string is tuned to 130 Hz and excites the cello’s body

via the bridge, the vibration velocities at the bridge feet will

take amplitudes according to their input admittances at the

excited frequency. In reality, of course, the force excitation

by the string will not only consist of the string’s tuning fre-

quency, but also of several harmonics, which might reduce

the wolf criterion’s performance.

However, in practice it is not easy to experimentally

determine vibration velocities, particularly regarding the

implementation on a cello during a musical play. Vibration

accelerations are much easier to determine since they can be

measured using lightweight accelerometers, as used in the

preliminary measurements. The required velocities can be

determined by an integration of the acceleration signals alðtÞ
and arðtÞ of the accelerometers at both bridge feet. Assuming

the time signals to be harmonic functions, it can be shown

that the ratio of the velocities from Eq. (7) equals the ratio of

the accelerations except for the constant phase shift of p=2.

The angular frequency is assumed to be identical for the left

and the right bridge foot since both are excited by the same

string and it can, therefore, be canceled,

v̂l sin xtð Þ
v̂r sin xtð Þ ¼

ð
âl sin xtð Þdtð
âr sin xtð Þdt

¼ �x âl cos xtð Þ
�x âr cos xtð Þ

¼ âl sin xtþ p=2ð Þ
âr sin xtþ p=2ð Þ : (8)

Hence, CwðtÞ is calculated as the ratio of alðtÞ and arðtÞ.
The ratio between two time signals yields very unsteady

values for CwðtÞ since time signals, of course, contain posi-

tive values, negative values, and values close to zero.

Therefore, the RMS values of the time signals are used to

calculate the final wolf criterion CwðtÞ, where Dt is the

instantaneous averaging time, ~alðtÞ is the RMS acceleration

signal measured at the left bridge foot, and ~arðtÞ is the RMS

acceleration signal measured at the right bridge foot. False

detection of the wolf note by unexpected short-time inci-

dents such as a knock on the cello’s body must be prevented,

so the time averaging interval Dt is a crucial parameter.

Experiments show that Dt ¼ 0:75 s is a useful instantaneous

averaging time as a trade-off between a reliable and a fast

detection of the wolf note even though the real-time charac-

ter of the wolf criterion is reduced by high values for the

averaging interval,

Cw tð Þ ¼ ~al tð Þ
~ar tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dt

ðt

t�Dt

al tð Þð Þ2dt

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dt

ðt

t�Dt

ar tð Þð Þ2dt

s : (9)

In the case of a wolf note, ~alðtÞ takes much higher values

than ~arðtÞ and, therefore, the wolf criterion is Cw � 1. In the

case of a regular note ~alðtÞ and ~arðtÞ take less differing

amplitudes (independently from the bowing intensity) which

results in lower wolf criterion values.

An experimental validation is performed. The value of

the wolf criterion is calculated from measured acceleration

signals for various tunings of the C string. A rather big step

size is chosen far away from the frequency of the wolf note

since a high value is not expected, considering the results of

the measured input admittance in Fig. 5. Close to the wolf

note a much smaller step size of only 1 Hz is chosen.

Additionally, Cw is calculated from acceleration signals in

the mathematical model. The experimental and the calcu-

lated results are shown in Fig. 9. In both the experimental
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results as well as the calculated results the wolf criterion

takes higher values if the string is excited at a frequency

close to the wolf note. Based on the results it is assumed that

on the test cello as well as in the mathematical model the

wolf note occurs for Cw > 4:5. Hence, this value is set as the

threshold value Cw;t.

E. Controller design

To eliminate the wolf it is necessary to increase the

mechanical damping of the body near the left bridge foot. A

velocity feedback controller is suitable for this purpose. The

controller must be enabled to actively increase mechanical

damping if a wolf note is detected while otherwise staying

disabled to ensure that the wolf note elimination system

affects the cello’s vibrations only when necessary. The activa-

tion of the controller is made possible by using the wolf crite-

rion. The block diagram of the controller is shown in Fig. 10.

The acceleration signals gathered at the left and the right

bridge foot are used to calculate the single value wolf criterion

CwðtÞ as introduced in Eq. (9). The next block contains a

threshold function set to the value Cw;t ¼ 4:5: Hence, the con-

trol deviation is only a non-zero value if CwðtÞ exceeds the

threshold value. The deviation value is amplified with the

gain factor g. This gain factor determines the amplification of

the velocity feedback and, therefore, the amount of active

damping added at the left bridge foot. The acceleration signal

at the left bridge foot is integrated to obtain the velocity. The

result is the feedback force Fvf, which acts as active damping

since it is proportional to the velocity. Note that Fvf is not an

additional excitation force since the model is still excited by

an initial displacement of the string, as described in Sec. V A.

The velocity feedback controller is integrated into the

mathematical model. Therefore, Fvf must be added to the

force excitation vector F on the right hand side of Eq. (1),

F ¼
0

Fvf

0

2
4

3
5 (10)

with

Fvf ¼
ðCw � Cw;tÞ g _xlðtÞ for Cw > Cw;t;

0 else;

8<
: (11)

where g is the gain factor that is necessary to set the amount

of velocity feedback in order to achieve a resulting damping

coefficient of dl;req ¼ 0:7 Ns=m . The difference Cw � Cw;t is

used to calculate the control deviation. To meet the require-

ment for the damping, in the mathematical model g can be

calculated from

ðdl þ ðCw;154 Hz � Cw;tÞ gÞ _xlðtÞ ¼ dl;req _xlðtÞ; (12)

which represents the sum of the mechanical damping at the

left bridge foot dl and the additional damping of the velocity

feedback. This leads to

g ¼ dl;req � dl

Cw;154 Hz � Cw;t
¼ 0:7� 0:33

6:3� 4:5
� 0:21; (13)

where Cw;154 Hz is set to 6.3, which is the value of the wolf

criterion in the wolf state (154 Hz) in the mathematical

model, see Fig. 9.

F. Results of the mathematical model

By analogy with the computations in Fig. 7, the natural

frequency of the string is varied from 140 to 160 Hz and the

string is excited by an initial displacement of xsð0Þ ¼ 0:001 m.

The results from the mathematical model with the included

velocity feedback controller and the wolf criterion are shown in

Fig. 11. With the included wolf eliminator the double peak

completely disappears at natural frequencies of the string

around 154 Hz (white line). Of course, when damping is

actively added to the system, the amplitudes of the accelera-

tions decrease. Therefore, the volume of the instrument slightly

decreases when the wolf note is being eliminated. This, how-

ever, might be an acceptable drawback compared to a wolf

note actually occurring. At frequencies without a wolf note, the

active wolf eliminator has no influence on the vibrations of the

system since the controller is deactivated. The goal to eliminate

the wolf note by actively adding damping to the body by means

of the velocity feedback principle is achieved in the mathemati-

cal model. The demand to only affect the sound of the instru-

ment when a wolf note occurs is also satisfied.

VI. EXPERIMENTAL IMPLEMENTATION AND RESULTS

The active wolf elimination is experimentally validated.

Therefore, the real test cello, the applied accelerometers, and

a piezoelectric patch actuator take the place for the

FIG. 9. (Color online) Value of the wolf criterion Cw for various tuning fre-

quencies of the C string, calculated results and experimental results.

FIG. 10. Implemented velocity feedback controller using the wolf criterion.
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mathematical model of the cello, its acceleration outputs,

and the velocity feedback input, respectively. A dSPACE

rapid control prototyping system is used to implement the

velocity feedback control algorithm in real time.

A. Application of the smart wolf note eliminator and
experimental setup

Compared to the experimental setup described in Sec.

IV A, a piezoelectric patch actuator (PI Ceramic, Type

DuraAct P 876.A12) is applied to the cello’s body, while the

guitar pickup was dismounted. Figure 12 shows the experi-

mental setup. The mounting of the piezoelectric patch actua-

tor is a difficult task since the wood of the body is very soft

compared to the material of the piezoelectric actuator. In

order to maximize the transmission of flexural waves from

the actuator into the body, the actuator is fixed by double-

sided adhesive tape and is edge-supported by superglue. For

further improving the transmission of bending moments, the

longer side of the actuator is orientated along the fiber direc-

tion of the wood, where it has the highest stiffness.6 The

actuator is positioned at the spot of the highest displacement

amplitudes of the body’s top plate found in the wolf state

(see Fig. 1). The experimental wolf note elimination system

is shown as a block diagram in Fig. 13. The two accelerome-

ters, positioned near the bridge feet, measure the vibrations

of the cello’s body. After preamplifying, the signals are con-

verted from analog to digital and the controller is imple-

mented in the dSPACE system. If a wolf note is detected,

the velocity feedback controller is activated and an output

signal is calculated. This output signal is converted from dig-

ital to analog, reconstructed, and high voltage-amplified to

drive the piezoelectric patch actuator. The actuator induces

the bending moments in the cello’s body, which increases

the mechanical damping as long as the wolf note is detected

and the controller is activated. Since the velocity feedback

signal is calculated from the measured acceleration signal,

the active wolf eliminator may adapt itself to different cellos

and varying environmental conditions. Note that the gain

factor g and, therefore, the required amount of active damp-

ing induced into the body is empirically determined in the

experimental investigations and differs from the calculated

value in the mathematical model since the high voltage

amplifier and the piezoelectric patch actuator were neglected

in the mathematical model.

B. Experimental results

Measurements of the body acceleration signal confirm

the effectiveness of the active wolf note eliminator applied

to the test cello as depicted in Fig. 14. When the wolf note

eliminator is enabled (solid line), a stable single peak occurs

right in the center of the former double peak. At frequencies

other than the wolf note frequency there are only minor

changes. Compared to the preliminary measurements in Sec.

IV the frequency of the wolf note changed slightly from 154

to 160 Hz. This may be a result of changing environmental

conditions, but is more likely caused by the removal of the

guitar pickup. This emphasizes both how sensitively the

cello reacts to minor changes in the test conditions and the

importance of an adaptive wolf note elimination system. The

measured wolf note elimination can also be verified in the

FIG. 11. Response surface of the level of body acceleration for the results of

the mathematical model with included control algorithm, left bridge foot.

FIG. 12. (Color online) Experimental setup of the validation of the smart

materials wolf note eliminator.

FIG. 13. Signal flow of the experimental setup of the wolf note eliminator.

FIG. 14. (Color online) Influence of the wolf note eliminator in the fre-

quency domain, measured body acceleration level at the left bridge foot.
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time domain, see Fig. 15. The strong beats in the body accel-

eration disappear when the active wolf note eliminator is

enabled. Two sound samples, which were recorded from the

real test cello with the wolf note eliminator being disabled

and enabled, are provided as supplementary material.28

Their waveforms are shown in Fig. 16. The strong beats of

the wolf note are fully suppressed when the wolf note elimi-

nator is activated. However, the instantaneous averaging

time of Dt ¼ 0:75 s of the wolf criterion leads to a relatively

slow response of the wolf eliminator with two beats to occur

at the beginning of the sound sample. On the one hand this

may appear like a reduced performance of the wolf note

eliminator, on the other hand this ensures a smooth reaction

of the controller so that the cellist will not be disrupted by a

sudden intervention of the controller.

VII. SUMMARY AND CONCLUSIONS

This paper presents a smart wolf note elimination sys-

tem. A demand-actuated velocity feedback controller with a

wolf note detection algorithm is set up to work with a piezo-

electric patch actuator, which is applied to the cello’s body.

With this configuration the wolf note can be eliminated

while the sound of the musical instrument is influenced as

little as possible.

The presented research was carried out under laboratory

conditions. Investigations of the wolf note eliminator’s

behavior in practical use are necessary, particularly in the

context of a musical performance. The player’s reactions to

the wolf eliminator’s actions as well as the eliminator’s

impact on the playability of the cello should be investigated.

Furthermore, the system must be tested with different cellos

to ensure its universality. It would be interesting to evaluate

the wolf criterion also for other cellos. In order to become a

real alternative for cello players, the system must be signifi-

cantly scaled down. The accelerometers, in particular, must

be smaller in order to have only negligible effects on the

whole cello sound. Another challenge in the future will be

the high input voltage of the piezoelectric actuator, which, in

case of improper use, could be dangerous for the musician.

Maybe other types of actuators can be used. Also, it could be

advantageous if violin makers were included to study the

possibilities of the full integration of the actuator to avoid a

visually unaesthetic topside mounting.
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