
Distributed Computation Meets

Blockchain:
Advanced Cryptographic Services from

Blockchain Features

Vom Fachbereich Informatik der TU Darmstadt genehmigte

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

von

David Kretzler

Darmstadt 2024

Gutachter: Prof. Sebastian Faust, Ph.D.

Prof. Carmit Hazay, Ph.D.

Datum der Einreichung: 14.08.2024

Autor: David Kretzler

Titel: Distributed Computation Meets Blockchain:

Advanced Cryptographic Services from Blockchain Features

Ort: Darmstadt, Technische Universität Darmstadt

Datum der mündlichen Prüfung: 27.09.2024

Veröffentlichungsjahr der Dissertation auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,

E-Publishing-Service der TU Darmstadt

http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Bitte zitieren Sie dieses Dokument als:

URN: urn:nbn:de:tuda-tuprints-286614

URI: http://tuprints.ulb.tu-darmstadt.de/id/eprint/28661

Urheberrechtlich geschützt / In Copyright (https://rightsstatements.org/page/

InC/1.0/)

http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
urn:nbn:de:tuda-tuprints-286614
http://tuprints.ulb.tu-darmstadt.de/id/eprint/28661
https://rightsstatements.org/page/InC/1.0/
https://rightsstatements.org/page/InC/1.0/

Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den

angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus

Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat

in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

(D. Kretzler)

Wissenschaftlicher Werdegang

Oktober 2013 bis September 2016: Bachelor of Science in Wirtschaftsinformatik

an der Dualen Hochschule Baden-Württemberg – Karlsruhe

Oktober 2016 bis Mai 2019: Master of Science in Informatik an der Technischen

Universität Darmstadt

Oktober 2018 bis Oktober 2019: Master of Science in IT-Sicherheit an der Tech-

nischen Universität Darmstadt

Oktober 2019 bis September 2024: Doktorand am Lehrstuhl für Angewandte

Kryptographie an der Technischen Universität Darmstadt bei Prof. Sebas-

tian Faust.

iii

Acknowledgments

Pursuing a PhD has been a challenging yet rewarding endeavor, full of diverse and

exciting experiences. Having started my academic career with a bachelor’s degree

in business informatics from the practically oriented Cooperative State University,

I could never have imagined that I would be doing a PhD in cryptography. Indeed,

at the beginning of my studies, I had only a very vague idea of what cryptography

was. Nevertheless, I am currently writing the final parts of my dissertation and

would like to take a moment to look back and thank all the people who have

supported me in this (probably last) step of my academic career.

First and foremost, I would like to thank my PhD supervisor, Sebastian Faust,

for his continuous support and for giving me the freedom to choose my research

direction according to my own interests. I am grateful for the constant academic

and non-academic guidance, as well as the opportunity to attend various confer-

ences, summer schools, and research visits. Second, I would like to express my

sincere gratitude to Carmit Hazay, who, although not officially appointed, has

been my co-supervisor throughout my PhD studies. Carmit has supported me not

only from a professional point of view but also far beyond that. Besides others,

she made it possible for me to spend six months in her research group and to find

an internship at Intel Research. Here, I would also like to thank Ittai Abraham,

who supervised me during my internship, and Thomas Schneider and István Zsolt

for serving on my disputation committee alongside Sebastian and Carmit.

Naturally, I am also grateful to all my co-authors and colleagues for the fruitful

discussions, the challenges we solved, the publications we produced, and the many

great non-research moments we shared. I would like to mention Benjamin Schlosser

and Rahul Satish by name. Working with Benni, with whom I did most of my

projects together, was characterized by a rich exchange of ideas, mutual support,

and excellent collaboration. Rahul, on the other hand, made me feel like part of

the family during my research visit to Tel Aviv from the moment I first entered

the lab. I am also very grateful to Dorothee Nikolaus and Jacqueline Wacker

for their administrative support, which allows my colleagues and me to focus on

research without worrying about the bureaucratic hurdles one must overcome while

pursuing a PhD.

Last but not least, I owe my deepest gratitude to my parents, my brother, and

iv

my friends, not only for their support and encouragement but also for the many

times they provided me with the much-needed distraction from the daily grind of

research.

v

List of Own Publications

Peer-reviewed Publications

[86] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Financially Backed Covert

Security”. In: Public-Key Cryptography - PKC 2022 - 25th IACR International

Conference on Practice and Theory of Public-Key Cryptography, Virtual Event,

March 8-11, 2022, Proceedings, Part II. 2022, pp. 99–129. Part of this thesis.

[88] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Generic Compiler for Pub-

licly Verifiable Covert Multi-Party Computation”. In: Advances in Cryptology -

EUROCRYPT 2021 - 40th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,

Proceedings, Part II. 2021, pp. 782–811. Part of this thesis.

[90] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Putting the Online Phase on

a Diet: Covert Security from Short MACs”. In: Topics in Cryptology - CT-RSA

2023 - Cryptographers’ Track at the RSA Conference 2023, San Francisco, CA,

USA, April 24-27, 2023, Proceedings. 2023, pp. 360–386. Part of this thesis.

[91] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Statement-Oblivious Thresh-

old Witness Encryption”. In: 36th IEEE Computer Security Foundations Sym-

posium, CSF 2023, Dubrovnik, Croatia, July 10-14, 2023. 2023, pp. 17–32. Part

of this thesis.

[95] T. Frassetto, P. Jauernig, D. Koisser, D. Kretzler, B. Schlosser, S. Faust, and

A. Sadeghi. “POSE: Practical Off-chain Smart Contract Execution”. In: 30th

Annual Network and Distributed System Security Symposium, NDSS 2023, San

Diego, California, USA, February 27 - March 3, 2023. 2023. Part of this thesis.

[152] D. Richter, D. Kretzler, P. Weisenburger, G. Salvaneschi, S. Faust, and M. Mezini.

“Prisma : A Tierless Language for Enforcing Contract-client Protocols in Decen-

tralized Applications”. In: ACM Trans. Program. Lang. Syst. 3 (2023), 17:1–

17:41. Part of this thesis.

Articles in Submission

[93] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Threshold BBS+ From Pseu-

dorandom Correlations”. In: IACR Cryptol. ePrint Arch. (2023), p. 1076.

vi

My Contribution

The results presented in this thesis are based on six publications. The projects that

led to these publications were collaborations between myself and several excellent

researchers: Sebastian Faust, Tomasso Frassetto, Carmit Hazay, Patrick Jauern-

ing, David Koisser, Mira Mezini, David Richter, Ahmad-Reza Sadeghi, Guido

Salvaneschi, Benjamin Schlosser, and Pascal Weisenburger. In the following, I aim

to specify my individual contribution to each of the publications included in this

thesis.

Chapter 3 is based on [86, 88, 90], joint works with Sebastian Faust, Carmit

Hazay, and Benjamin Schlosser. In [88], I came up with the initial idea, the uti-

lization of time-lock puzzles to address shortcomings of prior work on publicly

verifiable covert (PVC) security. Based on this idea, Benjamin and I jointly de-

signed and specified our protocol. Subsequently, I conducted the security proof

for our protocol, for which I received some support from Benjamin. Moreover, I

provided extensions, allowing for shorter proofs of misbehavior and a more effi-

cient time-lock puzzle generation. Finally, I compared the deterrence factor of our

protocol to prior work. In [86], I designed and specified the transformations from

different classes of PVC secure protocols to financially backed covert secure proto-

cols, proved their security, proposed the single-gate validation, and conducted the

implementation and evaluation. In [90], I came up with the initial idea to reduce

the security of malicious secure online protocols to covert security by reducing the

MAC length, while Benjamin observed that such a reduction benefits the TinyOT

protocol. Benjamin and I both worked on the covert security composition theorem.

I provided the rationale behind the theorem, identified the theorem’s constraints,

and designed the simulator. Furthermore, I specified the covertly secure TinyOT

online phase and proved its security. Finally, I designed, specified, and evaluated

the cut-and-choose-based covert secure offline phase.

Chapter 4 is based on [91], a joint work with Sebastian Faust, Carmit Hazay,

and Benjamin Schlosser. In this project, I contributed the initial idea of hiding

the statements in witness encryption and proposed the applications. Benjamin

defined the notion of statement oblivious threshold witness encryption (SO-TWE),

while I defined the notion of oblivious threshold tag-based encryption (O-TTBE).

Moreover, I designed, specified, and proved the security of the construction of SO-

vii

TWE from O-TTBE, the instantiation of O-TTBE from bilinear pairings, and the

construction of O-TTBE from anonymous threshold identity-based encryption.

Chapter 5 is based on [95], a joint work with Sebastian Faust, Tomasso Frassetto,

Patrick Jauerning, David Koisser, Ahmad-Reza Sadeghi, and Benjamin Schlosser.

All co-authors contributed to the discussions leading to the design of our smart

contract platform. Benjamin Schlosser and I jointly designed and specified the

protocol and proved its security. Additionally, I implemented the on-chain manager

contract required by our platform.

Chapter 6 is based on [152], a joint work with Sebastian Faust, Mira Mezini,

David Richter, Guido Salvaneschi, and Pascal Weisenburger. David Richter and I

jointly designed the programming language Prisma. Moreover, I supported David

Richter with the implementation of the language’s compiler, implemented the case

studies, and performed the evaluation.

viii

Abstract

Today’s blockchain systems are no longer just about financial transactions within

decentralized networks. Instead, they offer a wide range of additional features. A

recent trend in cryptography leverages the rich functionality provided by blockchains

to implement new cryptographic services and enhance existing ones. However, the

potential of blockchain systems is far from exhausted and there is still significant

room for improvement in existing blockchain-based cryptographic solutions. This

thesis, therefore, aims to identify and unlock further potential for providing more

advanced cryptographic services by identifying and closing gaps in prior work on

blockchain-based cryptography.

Covert security, introduced by Aumann and Lindell (TCC’07), is a security

notion for cryptographic protocols that allows an adversary to successfully cheat

and break the protocol’s security with a fixed probability 1 − ε, while honest

parties are guaranteed to detect the cheating attempt with probability ε. Zhu et

al. (CCS’19) proposed strengthening this notion by financially punishing detected

cheaters via a smart contract. However, their work focuses on a specific two-party

protocol. This thesis advances their ideas by demonstrating how to transform

an arbitrary semi-honest secure protocol into a financially-backed covert secure

protocol combining cheating detection with immediate financial punishment.

Witness encryption, a primitive introduced by Garg et al. (STOC’13), allows

a party to encrypt a message under a statement x from an NP-language L with

relation R, such that the ciphertext can only be decrypted by a party knowing the

corresponding witness w for which R(x,w) holds. Unfortunately, known instan-

tiations of general-purpose witness encryption are based on strong assumptions

and lack efficiency. Moreover, the standard notion of witness encryption does not

consider the need to keep the statement used for encryption private. Goyal et al.

(PKC’22) addressed the former shortcoming by demonstrating how a committee

elected by a blockchain can provide a service equivalent to witness encryption but

with significant higher efficiency and without the need of strong cryptographic

assumptions. We advance on this idea by showing how such a committee-based

approach to witness encryption can be adopted without disclosing the statement

used for encryption, thereby addressing the latter shortcoming.

We envision a virtual trusted third party (V-TTP) as a service that is continu-

ix

ously available, strictly adheres to expected behavior, keeps its state and commu-

nication secret, and is capable of performing complex computations. A promising

approach to implementing a V-TTP is through a smart contract deployed on a

blockchain. Smart contracts inherit excellent liveness guarantees from the underly-

ing blockchain and ensure the correct execution of their code. However, traditional

smart contracts are inherently public and limited in their complexity. While nu-

merous proposals address these limitations, they often focus on only one aspect or

introduce new shortcomings, such as requiring locked collateral. In this thesis, we

propose a new smart contract platform that addresses the limitations of previous

smart contract systems in one holistic solution.

Naturally, utilization and improvement of blockchain features go hand in hand.

During our work with smart contracts, we identified several shortcomings in the

prevalent approach to smart contract development. We address these shortcomings

by proposing a new programming language for smart contracts, which reduces the

risk of security critical programming errors and increases the usability of smart

contracts.

x

Contents

1. Introduction 1
1.1. Financially Backed Covert Security 2

1.2. Statement Oblivious Witness Encryption 4

1.3. Virtual Trusted Third Party . 6

1.4. Modern Programming Language for Decentralized Applications . . 7

1.5. Thesis Outline . 8

2. Preliminaries 9
2.1. Notation and Convention . 9

2.2. (Publicly Verifiable) Covert Secure Multiparty Computation 10

2.2.1. Covert Security . 11

2.2.2. Publicly Verifiable Covert Security 13

2.3. Cryptographic Building Blocks . 15

2.4. Blockchain and Smart Contracts . 19

2.5. Trusted Execution Environments 22

3. Financially Backed Covert Security 24
3.1. Our Contribution . 28

3.2. Key results . 30

3.2.1. Generic Compiler for Publicly Verifiable Covert Security . . 30

3.2.2. Financially Backed Covert Security 34

3.2.3. Covert Security From Short MACs 41

3.3. Related Work . 45

4. Statement Oblivious Witness Encryption 48
4.1. Our Contribution . 49

4.2. Key Results . 49

4.3. Related Work . 53

5. Virtual Trusted Third Parties 54
5.1. Contribution . 55

5.2. Key Results . 55

5.3. Related Work . 59

xi

Contents

6. Modern Programming Language for Decentralized Applications 62
6.1. Our Contribution . 63

6.2. Key Results . 64

6.3. Related Work . 66

7. Conclusion 69

8. Bibliography 72

Appendix A. Generic Compiler for Publicly Verifiable Covert Multi-Party
Computation 92

Appendix B. Financially Backed Covert Security 123

Appendix C. Putting the Online Phase on a Diet: Covert Security from
Short MACs 154

Appendix D. Statement-Oblivious Threshold Witness Encryption 182

Appendix E. POSE: Practical Off-chain Smart Contract Execution 199

Appendix F. Prisma : A Tierless Language for Enforcing Contract-client
Protocols in Decentralized Applications 218

xii

1. Introduction

The introduction of the first decentralized cryptocurrency, Bitcoin [145], in 2008

profoundly impacted research, industry, and society. It established a novel field of

research, increased interest in decentralized systems across research and industry,

and significantly raised the general public’s attention to cryptography.

Blockchain-based cryptocurrencies comprise two fundamental components: a

distributed database, known as the ledger, and a consensus protocol. The ledger

stores all transactions within the system in a series of blocks. The order of trans-

actions within a block and the order of blocks are fixed and immutable. The

consensus protocol ensures that all involved parties share a consistent view of the

ledger at all times and guarantees the immutability of blocks added to the ledger.

This allows all parties to track every movement of assets and, hence, the balances of

all parties. The primary advantage of a decentralized cryptocurrency compared to

a traditional payment system is that the cryptocurrency does not rely on a trusted

authority. Instead, it guarantees the correct execution of transactions as well as

availability and censorship resistance as long as the majority of the maintainers

are honest.

While decentralization is an appealing feature for digital payment systems, it

does not come without costs. Most prominently, decentralized cryptocurrencies

often suffer from limited scalability. For example, Bitcoin is restricted to just

seven transactions per second [66], whereas the VISA network can process up to

65 000 transactions per second [168]. The challenges in designing decentralized

cryptocurrencies, coupled with a growing demand for additional features, such as

increased privacy, have spurred numerous advances in blockchain technology from

both academic institutions and industry. Today, 15 years after Bitcoin initiated

the blockchain era, there is a plethora of cryptocurrencies with a combined market

capitalization exceeding 1.5 trillion USD [61]. Furthermore, blockchain systems are

no longer only about payments in decentralized networks but offer a wide range

of additional functionalities.

Most importantly, many modern blockchains are capable of executing Turing-

complete programs, known as smart contracts, on the blockchain. Ethereum [83]

introduced the concept of smart contracts, which have since been adopted by nu-

merous other blockchain platforms, including [2, 15, 29, 52, 160, 166]. Smart

1

1. Introduction

contracts can own and transfer assets based on the programmed semantics. The

consensus protocol ensures the correct execution of the deployed contract code and

consistency of the contract state across the distributed database. The decentral-

ized nature of the blockchain ensures liveness and provides censorship resistance.

However, in many blockchain systems, such as Ethereum, the computation that

can be performed within a single block is limited, making smart contracts ineffi-

cient and infeasible for extensive computations.

The rich set of functionality provided by modern blockchain systems sparked a

new trend in cryptography (among others [3, 49, 57, 106, 107, 182]). Researchers

are leveraging blockchain features to revisit established problems lacking efficient

solutions and to tackle new problems previously deemed unsolvable. However,

due to the relatively recent emergence of this trend, existing solutions still hold

significant potential for improvement. Consequently, this thesis aims to identify

and address gaps in prior work on blockchain-based cryptography, thereby provid-

ing more advanced blockchain-based cryptographic services. We will focus on the

directions introduced in the following.

1.1. Financially Backed Covert Security

Secure multiparty computation (MPC) [104, 180] allows a set of parties to jointly

compute an arbitrary function on private inputs without revealing anything but

the output of the function. The privacy of the inputs and the correctness of the

outputs are guaranteed even in the presence of an adversary who corrupts a subset

of the parties. Traditionally, MPC protocols have been designed in either the semi-

honest security model or the malicious security model. While the adversary in the

semi-honest model is constrained to follow the protocol specification, the adversary

in the malicious model can deviate arbitrarily from the protocol specification.

Clearly, the malicious model provides stronger security guarantees. However, the

higher level of security comes at a significant efficiency overhead.

As a middle ground between the two notions, Aumann and Lindell [14] proposed

the notion of covert security. In covert security, the adversary is allowed to deviate

from the protocol specification, as in the malicious model. The honest parties

are guaranteed to detect cheating attempts with a fixed probability ε, referred

to as the deterrence factor. If the detection fails, the adversary can break all

security properties. The rationale behind this notion is that adversaries refrain

from cheating due to the deterrent effect of reputational damage connected to the

detection event. One shortcoming of covert security is that parties involved in the

protocol cannot transfer knowledge about malicious behavior to external parties.

2

1. Introduction

In order to address this drawback, Asharov and Orlandi [12] proposed the notion

of publicly verifiable covert (PVC) security. In PVC secure protocols, parties that

detect a cheating attempt obtain a proof of misbehavior (PoM) that can be used

to convince any external party, hereafter referred to as judge, about the malicious

behavior of a corrupted party. This way, PVC security translates the reputational

damage previously restricted to the parties involved in the protocol to the public.

However, there are instances where the public reputational damage of PVC se-

curity is still insufficient to deter cheating attempts, e.g., when parties hide behind

replaceable pseudonyms without disclosing their true identity. Therefore, Zhu et

al. [182] proposed to utilize a smart contract to link the reputational damage of

a detected cheating attempt with immediate financial punishment. The naive ap-

proach is to run a PVC secure protocol between the involved parties but require

them to lock a security deposit at the beginning of the protocol at a dedicated

judging smart contract. In the event of detected misbehavior, the honest parties

submit the received PoM to the smart contract, which verifies the PoM and with-

holds the deposit of the malicious parties. Unfortunately, this approach is not

practical. The PoM verification within known PVC secure protocols [12, 70, 116,

126, 182] requires the judge to recompute large parts of the executed protocol. Such

computation is not feasible for a resource-constrained smart contract. In [182], the

authors present a protocol that follows the same blueprint as the naive approach,

i.e., they run a PVC secure protocol and lock collateral at a smart contract, but

augment the protocol with a highly efficient interactive punishment procedure.

This allows the punishment to be realized via a smart contract. However, the

authors only consider a specific two-party protocol and tailor their techniques to

the specific underlying two-party PVC secure protocol.

Our contribution. In this thesis, we aim to broaden the scope of [182] by enhanc-

ing arbitrary semi-honest secure protocols with covert security and the financial

punishment of detected cheating attempts. We call such protocols financially

backed covert (FBC) secure protocols. As the financial punishment is enabled by

smart contracts, we require highly efficient judging and punishment procedures to

ensure that the judge can indeed be instantiated by a smart contract.

Note that FBC security builds directly on top of PVC security, as misbehavior

needs to be publicly verifiable to be punishable by an external judge. Therefore,

we envision a transformation from semi-honest security to FBC security to be

composed of two steps, one from semi-honest security to PVC security and one

from PVC security to FBC security. We innovate in both of these steps.

In [88], we focus on the first step and present a generic compiler transforming

any semi-honest secure multiparty protocol into a PVC secure multiparty protocol.

3

1. Introduction

The only prior work [70] considering PVC security in the multiparty setting also

presents a generic transformation from semi-honest security to PVC security but

restricts the deterrence factor of the resulting PVC secure protocol by 1
n

from

above (where n denotes the number of involved parties). Our compiler addresses

this limitation by proposing a new approach to PVC security based on time-lock

puzzles that allows for arbitrary deterrence factors.1

In [86], we consider the second step. On the one hand, we formally define

the notion of FBC security. On the other hand, we present several compilers

transforming different classes of PVC secure protocols into FBC secure ones. The

FBC secure protocols generated by our compilers incorporate a highly efficient

judging procedure, allowing the instantiation of the judge via a smart contract. We

showcase the efficiency of the judging procedure in the resulting protocols based

on a prototype implementation of the judge in the form of an Ethereum smart

contract. The classes considered by our transformations comprise all previously

proposed PVC secure protocols, including the ones generated by the compiler

presented in our previous work [88].

Although not directly related to financial punishments, we have identified dis-

regarded potential for efficiency improvement in certain classes of covert secure

MPC protocols during our work on covert security. Therefore, we round off our

contribution in the field of covert security in [90] by proposing significant improve-

ments for covert protocols based on TinyOT [46, 96, 131, 146]. These efficiency

improvements, although presented for covert security, carry over to PVC security

and FBC security.

1.2. Statement Oblivious Witness Encryption

One primitive that appears particularly challenging to instantiate from standard

cryptographic assumptions is witness encryption [99]. Witness encryption, defined

for some NP-complete2 language L, enables a party to encrypt a message m under

a problem statement x ∈ L such that the ciphertext can only be decrypted by a

party knowing a witness w to the problem statement x. Despite significant efforts

and progress [34, 98, 99, 102, 105, 135], general-purpose witness encryption is still

far from practical. The existing instantiations are based on strong assumptions

1Concurrent to our work, [155] presented a transformation that follows a similar approach to
ours. We discuss the differences and trade-offs between the two works in Chapter 3.

2It is widely assumed that a computationally bounded adversary is unable to solve a problem

statement sampled from an NP-complete language. This is the subject of the famous P
?
=

NP questions.

4

1. Introduction

and lack efficiency. Moreover, the standard notion of witness encryption does not

consider the need to keep the statement used for encryption private. This rules

out further interesting applications.

Goyal et al. [106] proposed a blockchain-based alternative to standard witness

encryption. A recent line of work [27, 49, 101] has shown how blockchains can be

exploited to nominate committees with a guaranteed minimal threshold of honest

parties. Goyal et al. utilize this work to shift the trust assumption from strong

cryptographic assumptions to trust in the committee provided by a blockchain.

In [106], a ciphertext on a message m is created by secret sharing the plaintext

among the committee members and tagging each share with the problem statement

x. The committee members reveal their share of the message m to whoever pro-

vides a valid witness w for the tagged statement x. While this approach straight-

forwardly provides the functionality of witness encryption, it has the downside

that the committee needs to store all currently active ciphertexts. Furthermore,

in the protocol of [106], the statement used for encryption is inherently public.

The authors do not consider the potential of hidden statements.

Hidden statement, on the one hand, can extend use cases of traditional witness

encryption with additional privacy guarantees, such as time-lock encryption [135]

with a hidden release time and dead-man’s switches [106] with hidden identities.

On the other hand, they enable novel use cases – for example, in the decentralized

finance sector, where witness encryption with hidden statements could be employed

to execute transactions contingent on specific events, like a stock reaching a target

price, without revealing the transaction or the event until it occurs.

Our Contribution. In [91], we adapt the committee-based approach to witness

encryption but address both of the described shortcomings of [106]. In particular,

we propose the notion of statement oblivious threshold witness encryption (SO-

TWE) and provide instantiations based on different cryptographic building blocks.

In SO-TWE, the committee members hold shares of an asymmetric decryption

key and perform decryptions upon request. A client can use the corresponding

public encryption key and a problem statement x to encrypt a message m locally.

The resulting ciphertext c does not yield any information about x or m. For

decryption, a client submits c to the committee along with a statement/witness-

pair (x′, w′). The committee members validate the pair and, if successful, reply

with decryption shares computed based on the statement x′ and their shares of the

decryption key. Importantly, the committee members do not learn whether the

statement submitted for decryption is the same as the one used for encryption, i.e.,

whether x = x′. Once the client receives enough decryption shares, it reconstructs

a message m′. However, if the statement used for decryption is not the same as the

5

1. Introduction

one used for encryption, i.e., if x′ 6= x, the reconstructed message is just a random

string that leaks no information about the encrypted message m or statement x.

1.3. Virtual Trusted Third Party

A trusted third party can be seen as a service that is continuously available, strictly

adheres to the expected behavior, keeps its state and communication secret, and

is capable of performing complex computations. The existence of such a service

would be of tremendous use and would render many cryptographic problems triv-

ial. Unfortunately, there is no such thing as a trusted third party in the real world.

However, there are systems employing cryptographic protocols or advanced hard-

ware to offer trusted computations with some of the properties that constitute a

trusted third party. In this thesis, we refer to such a service as virtual trusted third

party (V-TTP).

There are three major approaches to virtual trusted third parties. First, a vir-

tual trusted third party can be instantiated via a committee of servers that secret

share the private state and perform the requested computations via secure multi-

party computation (cf. among others [22, 31, 53, 121, 138]). This approach ensures

the correct execution of the service and privacy of the service’s state. However,

multiparty computation adds a significant performance overhead to the requested

computations, rendering it unsuitable for services that require complex computa-

tions. In addition, there is an inherent trade-off between the availability of the

service and the privacy of the internal state; the higher the availability guaran-

tees, the less malicious parties can be tolerated within the committee. A second

approach is to rely on trusted hardware (cf. among others [17, 109, 129, 149]),

usually referred to as Trusted Execution Environments (TEE). A TEE is a piece

of hardware integrated into an operator’s system that guarantees the correct exe-

cution of installed programs and secure storage of secrets. However, even though

a TEE protects the service’s secrets, guarantees correct execution, and is capable

of conducting complex computations, the hardware is in possession of an operator

that controls all incoming and outgoing communication. This allows the oper-

ator to censor communication such that the availability of a TEE-based virtual

trusted third party cannot be guaranteed. Third, a virtual trusted third party can

be realized in the form of a smart contract deployed to a public blockchain (cf.

among others [30, 167, 173, 176, 177]). Smart contracts are highly available and

guarantee the correct execution of the deployed code. However, traditional smart

contracts require the contract state to be public and are unsuitable for complex

computations.

6

1. Introduction

A long line of work (cf. among others [56, 73, 80, 120, 128, 164]) aims to

address the limitations of traditional smart contract platforms, thereby enhancing

the efficiency and privacy guarantees of smart contract-based V-TTPs. Many of

those utilize TEEs or techniques known from MPC. However, existing solutions

focus on either the privacy or efficiency of smart contracts or introduce additional

shortcomings, such as the necessity for the parties involved in the execution of the

smart contract to lock collateral; collateral can be withheld to punish unresponsive

parties, thereby incentivizing responsiveness.

Our contribution. In [95], we revisit the problem of providing a virtual trusted

third party based on smart contracts by proposing a novel smart contract system,

POSE, built on top of traditional smart contract platforms such as Ethereum.

POSE outsources the execution of smart contracts to a committee of TEE opera-

tors, one committee for each contract. This allows us to guarantee the privacy of

the contract state and significantly increases the efficiency of the smart contract

execution. At the same time, we avoid shortcomings of prior solutions propos-

ing privacy- or efficiency-enhanced smart contract platforms, such as the need

to lock collateral. However, we make a minor sacrifice regarding the liveness of

the system compared to traditional smart contract platforms. While traditional

smart contract platforms only require the underlying blockchain system to remain

healthy, POSE requires, in addition to a healthy blockchain system, at least one

TEE operator in a randomly selected pool to be honest, i.e., remain responsive.

1.4. Modern Programming Language for

Decentralized Applications

Naturally, the utilization and optimization of blockchain features go hand in hand.

During our work on blockchain-based cryptography, we have identified several

shortcomings in the prevailing programming paradigm for decentralized applica-

tions (dApps), programs composed of a smart contract deployed to a blockchain

and clients interacting with the smart contract. Currently, clients and contracts

are implemented as separate programs in different programming languages. Con-

tracts exhibit a list of public functions that can be invoked by the clients. In order

to protect the intended program flow against client-sided deviations, developers

restrict the states, in which each function can be invoked, via manually added en-

try guards. This way, the developers implicitly encode the program flow as a finite

state machine. While this programming model accurately reflects the functioning

of the blockchain, in which contracts are invoked via transactions submitted by

7

1. Introduction

the clients, it makes the distributed program flow awkward to express and rea-

son about. The difficulties in expressing the intended program flow can, in turn,

increase the risk of implementation errors and mismatches in the client-contract

interface. As contracts directly control financial assets, programming errors can

result in significant financial losses [4, 5, 6].

Our contribution. In order to address the shortcomings of the prevailing ap-

proach to dApp development, we propose a novel programming language, Prisma [152].

Prisma aims to capture the internal semantics of dApps rather than reflecting the

technical low-level processes of the smart contract platform. As the smart contract

represents the central entity responsible for managing the global state of the dApp

and deciding on the allowed state transition, we no longer model it as a passive en-

tity invoked by clients. Instead, we interpret the smart contract as the active entity

that is in charge of the control flow and passes it to the clients if input is required.

This approach enables developers to explicitly specify the distributed program flow

of the dApp with standard patterns akin to a main function known from other

modern programming languages. Our compiler transforms Prisma code to finite

state machine-style smart contract code that can be deployed to the blockchain

and Scala client code that is executed by the clients. It automatically adds en-

try guards to every contract function, which protect the intended program flow

against client-sided deviations. Furthermore, Prisma allows the implementation of

both client and contract in a single unit with the same programming language,

thus rendering mismatching communication impossible.

1.5. Thesis Outline

Chapter 2 presents definitions and building blocks used throughout this thesis and

provides the necessary background on blockchains, smart contracts, and trusted

execution environments. In Chapter 3, we detail the contribution of our pub-

lications [86, 88, 90] on covert security, publicly verifiable covert security, and

financially backed covert security. Chapter 4 describes our publication [91] on

statement oblivious witness encryption. In Chapter 5, we detail our work on the

POSE protocol [95], which emulates a virtual trusted third party without the lim-

itations known from prior approaches. Chapter 6 presents the contribution of

our publication [152], where we propose the programming language Prisma, which

adopts modern programming language concepts to the realm of decentralized ap-

plications. Chapter 7 concludes the thesis by discussing interesting directions for

future work.

8

2. Preliminaries

This chapter introduces the notation used throughout this thesis and recalls rele-

vant basics, definitions, and building blocks.

2.1. Notation and Convention

We denote the set {1, . . . k} by [k], the statistical security parameter by κ, and

the computational security parameter by λ. We use the abbreviation PPT to

describe a probabilistic polynomial-time algorithm. We call a function f : N→ R
negligible in λ if for every positive integer c, there exists an integer λ′ such that

for every λ > λ′, it holds that f(λ) < 1
λc

. We denote a negligible function by

negl(λ). Let {Xλ} and {Yλ} be two sequences of distributions, where both Xλ and

Yλ range over {0, 1}l(λ) for some l(λ) = nc with constant c. We call {Xλ} and

{Yλ} computationally indistinguishable if, for every PPT algorithm A, it holds

that |Pr[A(1λ,Xλ) = 1]− Pr[A(1λ,Yλ) = 1]| ≤ negl(λ). We write {Xλ}
c≡ {Yλ} to

denote computational indistinguishability of {Xλ} and {Yλ}.
NP is the class of languages that can be decided by a deterministic Turing

machine in polynomial time. More precisely, a language L is in NP if there exists

a relation R(x,w) computable in polynomial time in x such that for every problem

statement x ∈ L there exists a witness w such thatR(x,w) = true and for every x /∈
L there exists no witness w such that R(c, w) = true. A language L in NP is called

NP-complete if every algorithm A deciding membership in L in polynomial time

can be used to decide membership in any other NP language in polynomial time.

It is commonly assumed that there are no polynomial-time algorithms deciding

NP-complete languages. This is the subject of the famous P
?
= NP question.

If not stated otherwise, we will adhere to the following conventions throughout

this thesis. Adversaries are considered to be computationally bounded, i.e., they

are modeled as PPT algorithms and always receive 1λ as additional input. We

neglect negligible attack probabilities of adversaries, e.g., if we state that some-

thing is impossible for a (PPT) adversary, it is impossible except with negligible

probability. Further, we consider static corruption, i.e., require the adversary to

select the parties that should be corrupted prior to the protocol execution.

9

2. Preliminaries

2.2. (Publicly Verifiable) Covert Secure Multiparty

Computation

The term secure multiparty computation (MPC) describes cryptographic protocols

allowing a set of parties to compute a function f on their inputs such that nothing

beyond the output is revealed. Covert security as introduced by Aumann and

Lindell [14] is a security notion for multiparty computation and cryptographic

protocols in general that allows the adversary to successfully cheat with a fixed

probability 1− ε, called the deterrence factor. However, the honest parties detect

the cheating attempt with probability ε. Publicly verifiable covert (PVC) security

as introduced by Asharov and Orlandi [12] is an extension to covert security that

allows any honest party detecting a cheating attempt to prove the misbehavior of

the detected party to any third party. In the following, we introduce the basic

concepts of simulation-based security proofs, the prevalent technique to prove the

security of cryptographic protocols, and provide formal definitions for covert secure

and publicly verifiable covert secure multiparty computation.

Simulation-based security. The security of a cryptographic protocol is usually

defined by specifying an ideal world that provides the same functionality as the

cryptographic protocol is supposed to provide. In the ideal world, all parties

communicate with an ideal trusted third party F . In the case of MPC, the ideal-

world execution has four simple steps: the honest parties send their input to F ,

the ideal-world adversary sends the inputs of all corrupted parties on their behalf

to F , F computes function f on the received inputs, and F returns the output

to the honest parties and the ideal-world adversary. It is easy to see that the

output given to the parties is the result of the function evaluated on all inputs

and that the adversary does not learn anything about the honest parties’ inputs

except what it can derive from the output. This is precisely what we require from

an MPC protocol.

A protocol is secure if the ideal world and the real world are equivalent or,

in other words, if all “attacks” that are possible in the real-world execution are

also possible in the ideal-world execution. To prove the equivalence of the two

worlds, cryptographers specify an ideal-world adversary, called simulator, that

residues in the ideal world but generates a view for the real-world adversary that

is indistinguishable from the adversary’s view in a real-world execution. In order

to generate a real-world adversarial view, the simulator internally executes the

adversary and simulates a real-world execution to the adversary. In this simulated

real-world execution, the adversary plays the role of the corrupted parties and

10

2. Preliminaries

the simulator the one of the honest parties. However, the simulator does not have

direct access to the honest parties, e.g., their inputs, but only to the data it receives

as ideal-world adversary from the trusted third party, e.g., the result of evaluating

f . Since the simulator participates in the ideal-world execution, it also needs to

translate the messages received by the adversary to messages it is supposed to send

to the trusted party in the ideal-world execution, e.g., the inputs of the corrupted

parties. This way, it translates attacks possible in the real world to attacks in

the ideal world. As the adversary is executed as an internal subroutine of the

simulator, the simulator can reset the adversary and restart the simulated real-

world execution. This technique is called rewinding. Equivalence of the two worlds

is shown by proving that the honest party’s output and the view generated by the

simulator in an ideal-world execution are computationally indistinguishable from

the honest party’s output and the view of the adversary in a real-world execution.

Often, it is not directly evident that the two tuples are indistinguishable. There-

fore, equivalence is usually shown via a sequence of hybrid worlds gradually align-

ing the ideal-world execution to a real-world execution until a final hybrid identical

to the real world. The cryptographer then proves indistinguishability between ev-

ery two consecutive hybrid worlds, e.g., via reductions to the security guarantees of

underlying cryptographic primitives. If the number of hybrids is polynomial in the

security parameter, we can conclude from the indistinguishability between all con-

secutive hybrid worlds that the ideal world and the real world are computationally

indistinguishable.

2.2.1. Covert Security

Aumann and Lindell [14] propose several notions of covert security. We focus on

the one that is most prevalent in research, the strong explicit cheat formulation

(SECF). The definitions for covert security of Aumann and Lindell incorporate

identifiable abort, i.e., require all honest parties to identify one halting party in

case of an abort. In the two-party setting considered in [14], achieving identifiable

abort is trivial and comes without any efficiency overhead. This is not the case in

the multiparty setting. As we consider identifiable abort an independent research

area, we remove this property from the notion of covert security considered in

this thesis. In the following, we provide a formal definition of the SECF without

identifiable abort. We take the definition almost verbatim from [86].

In the real world, the parties jointly compute the desired function f using a

protocol π. Let n be the number of parties and let f : ({0, 1}∗)n → ({0, 1}∗)n,

where f = (f1, . . . , fn), be the function realized by π. We define for every input

vector x̄ = (x1, . . . , xn) the output vector ȳ = (f1(x̄), . . . , f1(x̄)) where party Pi

11

2. Preliminaries

with input xi obtains the output fi(x̄). During the execution of π, the adversary

A can corrupt a subset I ⊂ [n] of all parties. We define REALπ,A(z),I(x̄, 1λ) to

be the output of the protocol execution π on input x̄ = (x1, . . . , xn) and security

parameter λ, where A on auxiliary input z corrupts parties I. We further specify

OUTPUTi(REALπ,A(z),I(x̄, 1λ)) to be the output of party Pi for i ∈ [n].

In contrast, in the ideal world, the parties send their inputs to a trusted party

F which computes function f and returns the result. Hence, the computation in

the ideal world is correct by definition. The security of π is analyzed by compar-

ing the ideal-world execution with the real-world execution. The ideal world in

covert security is slightly adapted in comparison to the standard secure computa-

tion model. In covert security, the ideal world allows the adversary to cheat and

cheating is detected with some fixed probability ε, which is called the deterrence

factor. Let ε : N→ [0, 1] be a function; the execution in the ideal world is defined

as follows.

Inputs: Each party obtains an input; the i-th party’s input is denoted by xi.

We assume that all inputs are of the same length. The ideal-world adversary S
receives an auxiliary input z.

Send inputs to trusted party: Any honest party Pj sends its received input

xj to the trusted party. The corrupted parties, controlled by S, may either send

their received input or send some other input of the same length to the trusted

party. This decision is made by S and may depend on the values xi for i ∈ I and

auxiliary input z. Denote the vector of inputs sent to the trusted party by w̄.

Abort options: If a corrupted party sends wi = abort to the trusted party as

its input, then the trusted party sends abort to all of the honest parties and halts.

If a corrupted party sends wi = corruptedi to the trusted party as its input, then

the trusted party sends corruptedi to all of the honest parties and halts. If multiple

parties send abort (resp., corruptedi), then the trusted party reacts only to one of

them (say, the one with the smallest i). If both corruptedi and abort messages are

sent, then the trusted party ignores the corruptedi message.

Attempted cheat option: If a corrupted party sends wi = cheati to the

trusted party as its input , then the trusted party works as follows:

1. With probability ε, the trusted party sends corruptedi to the adversary and

all of the honest parties.

2. With probability 1− ε, the trusted party sends undetected to the adversary

along with the honest parties’ inputs {xj}j /∈I . Following this, the adversary

sends the trusted party output values {yj}j /∈I of its choice for the honest

parties. Then, for every j /∈ I, the trusted party sends yj to Pj.

12

2. Preliminaries

The ideal execution then ends at this point. If no wi equals abort, corruptedi or

cheati, the ideal execution continues below.

Trusted party answers adversary: The trusted party computes

(y1, . . . , yn) = f(w̄) and sends yi to S for all i ∈ I.

Trusted party answers honest parties: After receiving its outputs, the

adversary sends either abort or continue to the trusted party. If the trusted party

receives continue then it sends yj to all honest parties Pj (j /∈ I). Otherwise, if it

receives abort, it sends abort to all honest parties.

Outputs: An honest party always outputs the message it obtained from the

trusted party. The corrupted parties output nothing. The adversary S outputs any

arbitrary (PPT computable) function of the initial inputs {xi}i∈I , the auxiliary

input z, and the messages obtained from the trusted party.

We denote by IDEALCεf,S(z),I(x̄, 1
λ) the output of the honest parties and the

adversary in the execution of the ideal model as defined above, where x̄ is the

input vector and the adversary S runs on auxiliary input z.

Definition 2.1 (Covert security with ε-deterrent). Let f, π, and ε be as above.

Protocol π is said to securely compute f in the presence of covert adversaries

with ε-deterrent if for every non-uniform PPT adversary A for the real model,

there exists a non-uniform PPT adversary S for the ideal model such that for

every I ⊆ [n], every balanced vector x̄ ∈ ({0, 1}∗)n, and every auxiliary input

z ∈ {0, 1}∗:

{IDEALCεf,S(z),I(x̄, 1
λ)}λ∈N

c≡ {REALπ,A(z),I(x̄, 1
λ)}λ∈N

In order to prevent detecting parties that behave honestly except that they might

abort as corrupted, the definition of non-halting detection accurate was introduced

in [14]. The definition uses the notion of a fail-stop party, which acts honestly,

except that it may halt early.

Definition 2.2. A protocol π is non-halting detection accurate if for every honest

party Pj and every honest or fail-stop party Pk the probability that Pj outputs

corruptedk is negligible.

2.2.2. Publicly Verifiable Covert Security

While the original notion of PVC security [12] was restricted to two parties, we [88]

have extended the notion to the multiparty setting. In the following, we provide

our formal definition of PVC security in the multiparty setting. The definition is

taken almost verbatim from [88] (with some minor modifications).

13

2. Preliminaries

In addition to the covert secure protocol π, PVC security defines two algorithms,

Blame and Judge. Blame takes as input the view of an honest party Pi after Pi
outputs corruptedj in the protocol execution for j ∈ I and returns a certificate

cert, i.e., cert := Blame(viewi). The Judge-algorithm takes as input a certificate

cert and outputs the identity idj if the certificate is valid and states that party Pj
behaved maliciously; otherwise, it returns none to indicate that the certificate was

invalid.

Moreover, we require that the protocol π is slightly adapted such that an honest

party Pi computes cert = Blame(viewi) and broadcasts cert after cheating has

been detected. We denote the modified protocol by π′. Notice that due to this

change, the adversary gets access to the certificate. By requiring simulatability, it

is guaranteed that the certificate does not reveal any private information.

Definition 2.3 (Covert security with ε-deterrent and public verifiability). Let

f, π′,Blame, and Judge be as above. The triple (π′,Blame, Judge) securely computes

f in the presence of covert adversaries with ε-deterrent and public verifiability if

the following conditions hold:

1. (Simulatability) The protocol π′ securely computes f in the presence of

covert adversaries with ε-deterrent according to the strong explicit cheat

formulation (see Definition 2.1) and non-halting detection accurate (see Def-

inition 2.2).

2. (Accountability) For every PPT adversary A corrupting parties Pi for

i ∈ I ⊂ [n], there exists a negligible function µ(·) such that for all (x̄, z) ∈
({0, 1}∗)n+1 the following holds:

If OUTPUTj(REALπ′,A(z),I(x̄, 1λ)) = corruptedi for j ∈ [n]\I and i ∈ I then:

Pr[Judge(cert) = idi] > 1− negl(λ),

where cert is the output certificate of the honest party Pj in the execution.

3. (Defamation Freeness) For every PPT adversary A corrupting parties

Pi for i ∈ I ⊂ [n] and interacting with the honest parties, there exists a

negligible function µ(·) such that for all (x̄, z) ∈ ({0, 1}∗)n+1 and all j ∈
[n] \ I:

Pr[cert∗ ← A; Judge(cert∗) = idj] < negl(λ).

14

2. Preliminaries

2.3. Cryptographic Building Blocks

This section introduces the cryptographic building blocks utilized throughout this

thesis. As we focus on providing an overview of our contributions, we restrict the

description of the building blocks to high-level intuitions.

Hash functions. A cryptographic hash function H is a function mapping an input

of arbitrary length to a fixed-length output. While inputs and outputs are usually

encoded as bit strings, it is also possible to interpret them as elements of specific

algebraic structures. Security-wise, cryptographic hash functions are required to

satisfy collision resistance stating that it is not possible for any PPT adversary to

find two different input strings x1 and x2 such that H(x1) = H(x2).

Random oracle. A random oracle is a theoretical cryptographic concept provid-

ing a trusted service that is available to all parties and responds to every unique

input with a truly random element chosen from its output domain. The oracle

stores all answered queries such that it can produce the same output for repeated

queries with the same input. While it is not possible to instantiate a random oracle

in a provable secure way, the oracle is usually instantiated with a cryptographic

hash function in real-world use cases. The random oracle is, therefore, often seen

as an idealized hash function.

Bilinear pairings. A bilinear pairing is composed of three cyclic groups G1, G2,

and GT of prime order p, generators g1 ∈ G1, g2 ∈ G2, and an efficiently com-

putable pairing e : G1 × G2 → GT . It needs to hold that e(ua, vb) = e(u, v)ab for

all (u, v, a, b) ∈ G1×G2×Zp×Zp. We assume the decision bilinear Diffie-Hellman

(DBDH) assumption to hold in bilinear pairings. The DBDH states that it is im-

possible for any PPT adversary receiving a group description (G1,G2,GT , g1, g2, e)

and a challenge tuple (ga, gb, R) to distinguish whether R is sampled uniformly

random from GT or defined as R = e(g1, g2)ab.

(Homomorphic) secret sharing. A t-out-of-n secret sharing scheme allows a

party to split a secret s into n shares {si}i∈[n] such that any subset of t′ < t shares

does not leak any information about the secret while any subset of t distinct shares

is sufficient to reconstruct the secret s. If t = n, a simple secret sharing scheme

can be built by encoding s as bit-string and sampling all si uniformly random

under the constraint that s =
⊕

i∈[n] si. The most commonly used secret sharing

scheme for t < n is the Shamir secret sharing [157], in which the secret s is shared

by sampling a uniform random degree t − 1 polynomial p(X) with p(0) = s and

15

2. Preliminaries

defining si = p(i) for i ∈ [n]. Given t distinct evaluations of the polynomial p(X),

it is possible to interpolate s = p(0) using LaGrange interpolation.

For some use cases, it is desirable for the secret sharing scheme to exhibit ho-

momorphic properties, i.e., to enable parties to locally manipulate their shares of

the secret s such that the reconstruction applied to the manipulated shares yields

a value F (s) for a known function F . The Shamir secret sharing, for example,

is homomorphic under addition. Given a sharing of a secret x and a sharing of

a secret y, both with the same parameter t, parties can compute a sharing of

z = x+ y by adding their local shares, i.e., zi = xi + yi. In case the secret sharing

scheme allows the evaluation of arbitrary functions on the shared secret, we call

the scheme homomorphic secret sharing (HSS) [40, 41].

Encryption. An encryption scheme allows a party to encrypt a message m with

an encryption key ke such that the resulting ciphertext c does not leak any in-

formation about the message m except to the parties holding the decryption key

kd. We call an encryption scheme symmetric if the key used for encryption is

the same as the key used for decryption, i.e., if ke = kd. Otherwise, we call the

scheme asymmetric. In the context of asymmetric encryption, we call the encryp-

tion key public key and the decryption key secret key. While symmetric encryption

schemes are usually more efficient, asymmetric schemes have the advantage that

the encryption key can be announced publicly, such that the party holding the

corresponding secret key can receive encrypted messages from arbitrary senders

without having to establish a shared secret key.

Encryption schemes can provide different levels of security, most importantly

indistinguishably under chosen plaintext attacks (IND-CPA) and indistinguishably

under chosen ciphertext attacks (IND-CCA). Both notions state that a PPT adver-

sary receiving a ciphertext, which is the result of encrypting one of two messages,

both selected by the adversary, is not able to differentiate which of the two mes-

sages has been encrypted. In IND-CPA security, the adversary is given the power

to query additional ciphertexts for arbitrary messages. In IND-CCA security, the

adversary is additionally given the power to query decryptions of arbitrary cipher-

texts, just not for the ciphertext that should be distinguished.

Digital signatures. A digital signature scheme is a cryptographic tool to ensure

the authenticity and integrity of digital messages and documents. It allows a holder

of a secret signing key sk, called signer, to generate a signature σ on a message

m such that everyone in possession of the public verification key vk corresponding

to sk can verify that the message m originated from the signer and has not been

16

2. Preliminaries

modified during transmission. A signature scheme is required to satisfy correctness

and unforgeability. Correctness states that for any given key pair (sk, vk), any

signature σ created on a message m with secret key sk verifies successfully under

verification key vk with respect to message m. Unforgeability states that for any

given key pair (sk, vk), it is impossible for a PPT adversary receiving only vk to

find a signature/message-pair that verifies successfully under vk.

There are a variety of notions of digital signature schemes providing different

levels of security or additional functionalities. In this thesis, we consider one-time

signatures and signatures that are existentially unforgeable under chosen-message

attacks. In one-time signature schemes, each signing key can only be used once.

Unforgeability cannot be guaranteed if a signing key is used more than once.

Existential unforgeability under chosen-message attacks guarantees unforgeability

even if the adversary is able to query signatures under vk for arbitrary messages.

Naturally, a signature for a message that has already been queried is not considered

a forgery.

Commitments. A commitment scheme enables a party, Alice, to compute a

commitment/opening-pair (c, d) for a message m. While the value c already com-

mits Alice to message m, it does not leak any information about m. To open c

to m, Alice has to publish d. However, Alice cannot open c to any other message

but m. A commitment scheme is called correct if a commitment/opening-pair

computed for a message m always opens to m. From a security standpoint, we

require the commitment scheme to be hiding and binding. The former states that

an adversary selecting two messages and receiving a commitment for either of the

two cannot distinguish which message the challenger has committed to. The latter

states that an adversary is unable to find a commitment c and two openings that

open c to two different valid messages. Both properties can be defined with respect

to both computationally bounded (PPT) and unbounded adversaries.

Merkle Trees. A Merkle tree [141] is a cryptographic data structure that identi-

fies a large list L by a single hash r and allows the efficient and secure verification

of membership in L. The data structure is defined as a binary tree whose leaves

are labeled with the hashes of the elements in L. Each intermediate node is labeled

with a hash computed on the concatenation of the labels of its two child nodes.

The label of the tree root is the identifier r. Due to the collision resistance of the

hash functions, it is computationally infeasible to construct two distinct trees with

the same root and, hence, with the same identification hash. Therefore, it is safe

to assume that each list has a unique identifier. In order to prove that a particular

17

2. Preliminaries

element e is at the k-th position of the list identified by r, a prover provides the

element e, the position k, and the labels of the sibling nodes required to recompute

all labels on the path from e to the root r. We call such a proof a Merkle proof

(Threshold) identity-based encryption. Identity-based encryption (IBE) [33,

158] enables parties to encrypt messages to a specific identity, e.g., an e-mail

address, instead of encrypting the message to a public key. An IBE scheme con-

sists of four algorithms: a setup, an identity key generation, an encryption, and a

decryption. The setup algorithm generates public parameters and a master key.

The identity key generation algorithm takes the public parameters, the master key,

and an identity as input and generates an identity key. The encryption algorithm

takes the public parameters, an identity, and a message as input and generates

a ciphertext. The decryption algorithm takes the public parameters, an identity

key, and a ciphertext as input and returns a plaintext.

In this thesis, we require correctness and security under chosen identity attacks.

Correctness states that a ciphertext created under a particular identity can suc-

cessfully be decrypted with the corresponding identity key. Security under chosen

identity attacks requires that it is not possible for any PPT adversary, that selects

two messages m0 and m1 as well as an identity id∗ and receives a ciphertext of

either m0 or m1 under id∗, to distinguish which message has been encrypted. This

needs to hold even if the adversary is able to query arbitrary identity keys, just

not the one for identity id∗.
In order to mitigate the single point of failure represented by the holder of the

master key, the scheme can be thresholdized. This means that there is a committee

of servers holding shares of the master key such that an identity key can only be

generated by t collaborating servers. We call such a scheme threshold identity-based

encryption [16]. Some use cases require the identity under which a message has

been encrypted to be private. If an IBE scheme ensures that a ciphertext does not

leak any information about the identity used for encryption, we call the scheme

anonymous identity-based encryption [35, 100]. Finally, we call a scheme that

combines the thresholdization with the anonymity property anonymous threshold

identity-based encryption (A-TIBE) [88].

(Threshold) tag-based encryption. A tag-based encryption scheme (TBE) [139]

is an asymmetric encryption scheme in which ciphertexts are created with respect

to a specific tag. The decryption of a ciphertext is only successful if it is exe-

cuted with the same tag that was used for encryption. The decryption in TBE

schemes can be thresholdized such that the decryption key is secret shared among

18

2. Preliminaries

a committee of n servers and decryption can only be performed by t collaborating

servers. Such a thresholdized scheme is called a threshold tag-based encryption

scheme (TTBE) scheme [9]. Security of both TBE and TTBE is defined analo-

gously to standard asymmetric encryption.

Zero-knowledge proofs. A zero-knowledge proof system is a cryptographic tool

that allows a prover to prove to a verifier that a particular statement is true with-

out revealing any information beyond the fact that the statement is true. There

are efficient zero-knowledge proof systems for many cryptographically interesting

statements, e.g., to prove knowledge of the discrete logarithm of a given group

element.

Oblivious Transfer. A s-out-of-n oblivious transfer is a two-party protocol exe-

cuted between a sender and a receiver, in which the sender transfers t out of its n

messages to the receiver without learning which of the messages has been trans-

ferred. The sender’s input is a list of n messages (m1, . . . ,mn). The receiver’s

input is a set of indices S of size s. As a result of the protocol, the receiver learns

messages (mS[1], . . . ,mS[s]). The protocol guarantees that a PPT sender does not

learn any information about S and a PPT receiver does not learn any information

about any message mi : i /∈ S.

Time-lock puzzles. Time-lock puzzles (TLP), initially introduced by [154], allow

a party to lock a message m into a puzzle p such that no PPT adversary is able

to extract m in time smaller than T . Simultaneously, the puzzle guarantees that

every (reasonably equipped) honest party does not need much longer than T to

extract the message. We call the process of extracting the message solving. In [88],

we extend the notion of time-lock puzzles with a verifiability property that allows

a party that has solved a puzzle p to generate a proof π which can be used by any

third party to compute the message m from puzzle p efficiently, i.e., in time much

smaller than T . We call the process of extracting the message based on a proof

opening. The verifiability property can be integrated into TLP schemes based

on [154] by using techniques known from verifiable delay functions [150, 172].

2.4. Blockchain and Smart Contracts

The term blockchain describes a distributed append-only database known as the

ledger, which is maintained by a decentralized peer-to-peer network of nodes.

Within this network, each node maintains its own copy of the ledger. The ledger

19

2. Preliminaries

comprises a sequence of blocks, where each block includes the hash of its predeces-

sor. A block consists of a header, containing metadata such as timestamps or the

hash of the previous block, and a body, which encompasses a list of transactions.

The body is linked to the header through the inclusion of the root of a Merkle tree

computed over the transaction list. This method of linking blocks with each other

and with their transactions ensures the fixed order of both blocks and transactions

within them. Nodes within the network execute a consensus protocol that ensures

that all nodes share the same copy of the ledger and guarantees the immutability

of blocks once appended to the blockchain.

In blockchain-based cryptocurrencies, transactions represent transfers of the sys-

tem’s currency. Coins are owned by public signature keys, representing identities,

and are transferred through transactions signed with the corresponding private

keys. Transactions are executed sequentially in accordance with the predeter-

mined order defined by the blockchain. Consequently, the state of the blockchain,

i.e., the balances of all parties, after appending a specific block is unambiguously

defined by the list of transactions included in the blockchain up to that block.

Special nodes, called proposers, are responsible for gathering newly submitted

transactions, aggregating them into blocks, and appending them to the blockchain.

Proposers receive compensation for their efforts in the form of fees included in

transactions and the issuance of new currency per block, both of which are directly

allocated to the block proposer upon the block’s acceptance into the blockchain.

To prevent the inclusion of maliciously generated blocks, all nodes in the network

validate received blocks and discard invalid ones. For instance, a block is con-

sidered invalid if one of is transaction transfers coins from party A to B without

being signed by A or spends more coins than A possesses.

Blockchain consensus. The major purpose of the consensus protocol is to se-

lect the blocks to be appended the blockchain. The consensus protocol usually

operates under the assumption of an honest majority such that consensus and

immutability of appended blocks are assured only if the majority of the network

participants behave honestly. However, defining the majority in a decentralized

network is challenging as an adversary can efficiently create fake identities, which is

known as sybil attack. Consequently, blockchain consensus protocols deploy more

sophisticated approaches relying on proxies to determine the majority. The two

major categories of blockchain consensus protocols are proof-of-work (PoW) and

proof-of-stake (PoS).

PoW, introduced by Bitcoin and initially adopted by Ethereum [173], represents

the original approach to blockchain consensus. PoW leverages the computational

power within the system as a proxy for majority determination, thereby guaran-

20

2. Preliminaries

teeing consensus and immutability if at least half of the computational power is

honest. In PoW, proposers creating new blocks have to solve a computationally in-

tensive cryptographic puzzle in order to append their block to the blockchain. For

instance, in Bitcoin, proposers have to incorporate a nonce into the block header

such that the hash of the header commences with a specified number of zeros,

known as the difficulty. The difficulty automatically adjusts to sustain a consis-

tent block creation rate. Upon publication of a new valid block, other proposers

stop solving their own puzzle, create a new block extending the newly appended

one, and restart the puzzle-solving process. In cases where two proposers simulta-

neously propose new blocks, a fork occurs, necessitating other proposers to choose

which chain to extend. Eventually, one of the competing chains will outpace the

other, establishing itself as the valid chain and invalidating the forked chain. Con-

sequently, PoW-based blockchains consider transactions included in a block as final

and immutable only after confirmation by a certain number of successors.

In PoS, proposers receive voting power according to the amount of currency they

own in the system. PoS has been adopted by most of the more recent blockchains,

such as [2, 15, 29, 52, 160, 166]. Also, Ethereum [173] recently shifted to PoS. While

all consensus protocols in the PoW category follow the same blueprint explained

above, the design space of PoS protocols is much broader. The only common

denominator among PoS protocols is the random assignment of the block creation

to proposers based on the currency they possess in the system.

Smart contracts. Some blockchains, such as [2, 15, 29, 52, 83, 160, 166], sup-

port the deployment and execution of Turing-complete programs, so-called smart

contracts, on the blockchain. In order to deploy a smart contract, a user submits

a special transaction containing the contract’s code. The code exhibits a list of

functions that can be invoked by users. Users execute contracts by submitting

transactions to the network specifying the contract, the function that should be

executed, and the input to that function. Smart contracts are capable of receiv-

ing and transferring coins according to their program logic. The blockchain state

maintained by each node is no longer a list of balances but also includes the smart

contracts deployed to the blockchain, defined by their code and state. When creat-

ing a new block, a proposer computes the updated blockchain state by sequentially

executing all transactions within the block. Subsequently, the proposer aggregates

this state into a tree structure and includes the root in the block header.

The blockchain’s consensus protocol ensures the correct execution of deployed

contracts. All nodes need to recompute the transactions of received blocks. They

then compare the resulting blockchain state with the state root included in the

block header. If a proposer includes an incorrect root in the block header, the

21

2. Preliminaries

block is rejected, and the transactions within are reversed. However, to validate

the correct execution of contracts and, hence, the blockchain state, it’s crucial

that the state after appending a block is unequivocally defined by the list of all

transactions included in the blockchain up to that block. Thus, the state of each

smart contract must be public, contract computations must be deterministic, and

the execution order must be fixed.

Given that transactions now involve complex computations beyond simple mon-

etary transfers, smart contract-capable blockchains employ a more sophisticated

mechanism for determining transaction fees. Transaction complexity is captured

via an internal metric called gas. Each operation within the execution environ-

ment consumes a specific amount of gas. Notably, permanent storage allocation is

among the costliest operations, emphasizing the importance of optimizing smart

contract storage consumption. Users specify a maximum gas limit and the price

they pay per consumed gas when submitting a transaction. Once the transaction

is included into the blockchain, fees are paid to the proposer based on the actual

gas consumption. If a transaction runs out of gas or the user runs out of funds

before the transaction’s computation is finished, the transaction is reverted. How-

ever, the fees are still paid as the proposer and the nodes still need to compute

the transaction in order to determine the transaction failure. To prevent excessive

computations within a single block, a maximum gas limit is imposed. While this

mechanism ensures liveliness and prevents issues like infinite loops, it also imposes

constraints on the complexity of smart contracts. Due to the limited complexity,

the computations of smart contracts are highly expensive. At the time of writing,

a simple monetary transfer in Ethereum costs around $0.7 USD [84].

2.5. Trusted Execution Environments

We use the term trusted execution environment (TEE) to describe an isolated

execution environment integrated into a processor that guarantees confidentiality

and integrity of its data and processes. Simply put, TEEs ensure the correct

execution of their programs and protect their data against external access. TEEs

rely on specialized hardware that is integrated into a host system. We call the

party possessing the host system the TEE operator. Operators can install programs

called enclaves on their TEE. TEEs typically provide an attestation mechanism

allowing operators to prove to an external party that an enclave is running a

specific program. When necessary, the attestation report can be augmented with

additional data regarding the TEE, e.g., the enclave’s public keys.

Even though the TEE protects its programs and data, it remains under the

22

2. Preliminaries

physical control of a potentially malicious operator. Consequently, it depends

on the operator for all communication with the outside world. While enclaves

can protect the integrity and confidentiality of their communication by setting

up encryption and authentication keys with their communication partners, an

operator can still drop and replay messages. Operators can further shut down

their TEE and, hence, the services provided by the enclaves running on their

TEE. These limitations of TEEs need to be considered when deploying them in

cryptographic protocols.

The two most commonly used examples of TEEs are Intel SGX [62, 113, 140]

and ARM TrustZone [10]. We stress that existing TEE systems are far from being

flawless. There is a continuous line of work showing attacks on existing TEE

systems, e.g., [28, 43, 45, 50, 134], and proposing countermeasures, e.g., [1, 18, 42,

63, 159]. However, we assess research on improving TEE security orthogonal to our

work. In this thesis, we treat TEEs as a general concept independent of real-world

instantiations and assume them to provide the intended security guarantees.

23

3. Financially-backed Covert
Security

1

Secure multiparty computation (MPC) allows a set of n parties to jointly compute

a function f on their inputs such that nothing beyond the output of that function

is revealed. While originally MPC was mainly studied by the cryptographic the-

ory community, in recent years, many industry applications have been envisioned

in areas such as machine learning [125], databases [169], blockchains [181] and

more [8, 144]. One of the main challenges for using MPC protocols in practice is

their huge overhead in terms of efficiency.

One popular approach to deal with the efficiency overhead is to split protocols

into an input-independent offline and an input-dependent online phase. The of-

fline protocol carries out precomputations that are utilized to speed up the online

protocol, which securely evaluates the desired function. The main idea of this ap-

proach is that the offline protocol can be executed continuously in the background

and the online protocol is executed ad-hoc once input data becomes available or

output data is required. Since the performance requirements for the online pro-

tocol are usually much stricter, the offline part should cover the most expensive

protocol steps. Examples of such offline protocols are the circuit generation of

garbling schemes as in authenticated garbling [76, 122, 171, 178] or the generation

of correlated randomness in the form of Beaver triples [23] in secret sharing-based

protocols such as in SPDZ [69, 71] or the TinyOT-family [46, 96, 131, 146].

Another aspect with a strong impact on the protocol efficiency is the adver-

sarial model. The two standard adversarial models of MPC are semi-honest and

malicious security. While semi-honest adversaries follow the protocol description

but try to derive information beyond the output from the interaction, malicious

adversaries can behave in an arbitrary way. MPC protocols in the malicious ad-

versary model provide stronger security guarantees at the cost of significantly less

efficiency [76, 123]. As a middle ground between good efficiency and high secu-

rity, Aumann and Lindell [14] introduced the notion of security against covert

1Parts of the introductory section have been taken verbatim from [85, 87, 89] with some minor
adjustments.

24

3. Financially Backed Covert Security

adversaries. As in the malicious adversary model, corrupted parties may deviate

arbitrarily from the protocol specification, but the protocol ensures that cheat-

ing is detected with a fixed probability ε, called deterrence factor. The rationale

behind covert security is that the reputational damage connected to a detected

cheating attempt deters adversaries from cheating.

Although cheating can be detected in covert security, a party participating in the

protocol cannot transfer knowledge about malicious behavior to other (external)

parties. This shortcoming was addressed by Asharov and Orlandi [12] with the

notion of covert security with public verifiability (PVC). Informally, PVC enables

honest parties to create a publicly verifiable certificate about the detected malicious

behavior, called proof of misbehavior (PoM). This certificate can subsequently be

checked by any other party (usually referred to as judge), even if this party did

not contribute to the protocol execution. PVC secure protocols for the two-party

case were presented by [12, 116, 126, 182]. Further, Damg̊ard et al. [70] showed a

generic compiler from semi-honest to PVC security for the two-party setting and

gave an intuition on how to extend their compiler to the multiparty case.

While PVC security seems to solve the major shortcoming of covert security at

first glance, in many settings, PVC security is still not sufficient; especially when

only the digital identities of the parties are known, e.g., on the Internet. In such

a setting, a real party can create a new identity without suffering from a damaged

reputation in the sequel. Hence, malicious behavior needs to be punished in a

different way. The obvious choice is to punish malicious parties financially, as

already suggested by [182]. While it is possible to realize financial punishments

via the legal system, this would necessitate additional trust assumptions and a

cumbersome and expensive setup. A more convenient approach is to utilize a

smart contract. Smart contracts are highly available, capable of directly handling

financial assets, and reliably perform exactly the specified computation. A naive

approach towards realizing financial punishments via a smart contract is to require

all parties to lock a security deposit in a smart contract before running a PVC

secure protocol. Upon detection of a cheating attempt, a party submits the PoM

obtained by the protocol to the contract, which retains the deposit of the malicious

party and refunds the others. If the protocol ends without malicious behavior, the

contract refunds all parties. Unfortunately, this approach is not practical. Since

every instruction executed by a smart contract costs fees, it is highly important

to keep the amount of computation performed by a contract small. However,

verification of PoMs in existing PVC secure protocols is performed in a naive

way that requires the judge to recompute a whole protocol execution. In [182],

the authors address this problem by augmenting a PVC protocol with a highly

efficient interactive judging procedure, which allows them to efficiently instantiate

25

3. Financially Backed Covert Security

the judge via a smart contract. Unfortunately, their work is tailored to a specific

two-party PVC secure protocol based on garbled circuits. In this thesis, we aim

to generalize the results of [182] by showing how to upgrade arbitrary semi-honest

secure protocols to covert security with efficient financial punishment. However,

before going into the details of our work, we first provide the necessary background

on covert secure and PVC secure protocols, which serves as the basis for our work.

Covert security from cut-and-choose. All previously proposed covert secure

protocols amplify the security of a semi-honest base protocol by applying the cut-

and-choose technique. In the offline/online setting, this works as follows: Parties

first commit to t random seeds. Next, they execute t parallel instances of a semi-

honest secure protocol, implementing the offline phase. In the i-th instance, each

party derives all of its randomness from its i-th committed seed. This makes the

protocol instance deterministic and, hence, auditable. After execution of the semi-

honest instances, parties agree for each instance on the instance transcript, i.e., the

hashes of all messages sent during the execution of the instance. In the following,

we will call such an agreement on message hashes a public transcript of message

hashes. If the semi-honest protocol relies on private party-to-party communication,

security is preserved by integrating a key exchange, e.g., Diffie-Hellman [75], into

the protocol and encrypting all messages with the exchanged keys. After agreeing

on the transcripts, the parties jointly select s random instances for auditing, in the

following denoted as watchlist. The parameter s is usually set to t−1. As all parties

share the same watchlist, we call the watchlist global. For each of the selected

instances, all parties open their committed random seeds. Parties that refuse to

provide correct openings are considered cheaters. If all commitments are opened

successfully, each party locally emulates the audited instances and compares the

computed messages to the agreed transcripts. In case of a mismatch, the first

party that deviated from the protocol description is considered to be the cheater.

It is important to identify the first cheating attempt, as an incorrect message can

be the result of either malicious behavior or another incorrect message received in

a previous round. If there has not been any cheating attempt, parties utilize the

output of one of the remaining unchecked instances as the output of the offline

phase. Since the audited instances are chosen uniformly at random, any cheating

attempt is detected with probability at least s
t
. After successfully completing

the covert secure offline phase, the parties run a malicious secure online phase.

Therefore, it is necessary that the instances of the offline protocol, even though

they are just semi-honestly secure, provide precomputation material of the form

that is required by the maliciously secure online phase.

Auditing in the above blueprint requires the inputs of all parties to the audited

26

3. Financially Backed Covert Security

instances. While this approach works fine for input-independent offline proto-

cols, in which the inputs are just random seeds, it becomes problematic in the

input-dependent setting, where parties have actual private inputs. For input-

dependent protocols, the cut-and-choose technique is, therefore, applied in a dif-

ferent way following the party virtualization paradigm introduced by [119]. Let

f(x1, . . . , xn) = (y1, . . . , yn) be the function that is to be computed and

f ′(x1
1, . . . , x

t
1, . . . , x

1
n, . . . , x

t
n) = (y1

1, . . . , y
t
1, . . . , y

1
n, . . . , y

t
n) such that

f

⊕

j∈[t]

xj1, . . . ,
⊕

j∈[t]

xjn

 =

⊕

j∈[t]

yj1, . . . ,
⊕

j∈[t]

yjn

 .

In order to compute f with covert security, the parties run a semi-honest secure

(t · n)-party protocol evaluating function f ′, in which each real party Pi with

input xi simulates t virtual parties P 1
i , . . . , P

t
i with inputs x1

i , . . . , x
t
i such that

xi =
⊕

j∈[t] x
j
i . All virtual parties derive all their randomness from precommitted

random seeds. For auditing, each party discloses the inputs and seeds of s of its

virtual parties such that their messages can be recomputed by the other parties.

This again leads to a covert protocol with a deterrence factor of at least s
t
. How-

ever, as it is not possible to recompute all of the incoming messages of the audited

parties, which is required for auditing, it is necessary for the agreed instance tran-

script to contain all messages in full (instead of just a hash). In the following, we

will call such a transcript a public transcript of messages.

PVC security from cut-and-choose. PVC secure protocols also follow the cut-

and-choose technique but require some modifications to the approach explained

above. In the following, we will focus on input-independent protocols. However,

the explained problems and techniques translate to input-dependent protocols in a

straightforward way. The naive approach for achieving PVC security from covert

security is to require the parties to exchange signatures on the seed commitments

and instance transcripts. Given the seed commitments, the corresponding open-

ings, and the agreed transcripts, each external party can audit the respective

semi-honest instance and check if a party deviated from the intended behavior.

Signatures on the commitments and the transcripts make this data publicly veri-

fiable and non-reputable. However, PVC secure protocols have the problem that

aborts are not publicly verifiable. An adversary cheating in a particular semi-

honest instance that is selected for auditing can abort before opening its seed

commitment. This prevents both the local and public auditing of this instance. In

covert protocols, this problem is addressed by interpreting an abort in this phase

27

3. Financially Backed Covert Security

as cheating, a workaround that is not available to PVC secure protocols.

For the design of PVC secure protocols, it is, therefore, necessary to force parties

to provide all data necessary to audit the selected protocol instances (and create a

PoM) before they learn the selection. In previous work [12, 70, 116, 126, 182], this

has been achieved through the use of oblivious transfer (OT). Each party samples

a watchlist of s instances and receives the corresponding seed openings from each

other party via OT. As each party has its own watchlist, we call these watchlists

local. The OT hides the watchlist from the sender, thereby forcing the sender

to disclose the openings without learning whether a potential cheating attempt

will be detected. By exchanging signatures on the OT transcript, the OT becomes

publicly verifiable such that invalid openings inserted into the OT become publicly

auditable as well.

The OT-based approach has one severe downside. Recall that there needs to

be at least one unaudited instance to provide the precomputation for the online

phase. When relying on local watchlists, it is therefore necessary to set t > s · n
in order to prevent the auditing from covering all instances. This restricts the

deterrence factor by 1
n

from above. In [70], the authors suggest that, in the input-

independent setting, this restriction can be circumvented by repeating the PVC

secure protocol until one instance is not part of any local watchlist. Another

workaround to this problem employed in the two-party case for protocols based

on garbled circuits [12, 116, 126, 182] is to utilize an asymmetric semi-honest base

protocol that is maliciously secure in regard to cheating attempts of one party

and semi-honest secure in regard to cheating attempts of the other party. The

malicious security of the protocol in regard to the first party makes it impossible

for the first party to execute a successful cheating attempt. Therefore, it suffices

for the first party to audit the second one. The resulting protocol has just a single

watchlist, the one of the first party. Therefore, it is possible for the watchlist to

have size s = t− 1, which results in a deterrence factor of t−1
t

.

3.1. Our Contribution

In this thesis, we aim to transform arbitrary semi-honest secure protocols into

covert secure protocols with efficient financial punishment of detected cheaters.

In the following, we call such protocols financially backed covert (FBC) secure.

As financially backed covert security naturally builds on top of publicly verifiable

covert security – misbehavior needs to be publicly verifiable to be punishable by

an external judge – we envision the transformation to be performed in two steps:

one from semi-honest security to PVC security and one from PVC security to FBC

28

3. Financially Backed Covert Security

security. We make significant contributions in both steps and present an additional

efficiency improvement for covert secure protocols that straightforwardly translates

to PVC and FBC security.

First, we present a generic compiler that transforms an arbitrary semi-honest

secure multiparty protocol into a PVC secure one. While the only prior work on

PVC considering the multiparty setting [70] either restricts the deterrence factor

to be smaller than 1
n

or requires protocol repetitions, that significantly increase

the protocol complexity, our transformation does not suffer from either of the

two restrictions. Moreover, together with concurrent work [155], we are the first

to provide a formal specification and security proof for a PVC secure multiparty

protocol. Our work has been disseminated in the following article, which can be

found in Appendix A.

[88] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Generic Compiler for Pub-

licly Verifiable Covert Multi-Party Computation”. In: Advances in Cryptology -

EUROCRYPT 2021 - 40th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,

Proceedings, Part II. 2021, pp. 782–811. Part of this thesis.

Second, we formally define the notion of financially backed covert (FBC) security

and present transformations compiling arbitrary PVC secure protocols into FBC

secure ones. Our notion requires parties to lock a security deposit at the beginning

of the protocol at a judge, who disburses the deposits after the protocol execution

to all parties except those that have been proven to be corrupted. The judging

process in our protocols is highly optimized so that the judge can be efficiently

realized via a smart contract. We showcase practicability by providing a prototype

implementation of the judge as an Ethereum smart contract. Our work has been

published in the following article, which can be found in Appendix B.

[86] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Financially Backed Covert

Security”. In: Public-Key Cryptography - PKC 2022 - 25th IACR International

Conference on Practice and Theory of Public-Key Cryptography, Virtual Event,

March 8-11, 2022, Proceedings, Part II. 2022, pp. 99–129. Part of this thesis.

Third, we identify redundancy in the current approach of applying the cut-and-

choose technique to protocols in the offline/online model. Prior work considering

the offline/online model combines a covert secure offline phase with a malicious

secure online phase. The rationale behind this approach is that the online phase

is highly efficient, even when instantiated with malicious security, such that a

reduction of the security level would only have a negligible impact. However, this

rationale does not cover the whole picture. Although a reduction of the security

29

3. Financially Backed Covert Security

level of the online phase does not significantly impact the efficiency of the online

phase, it can significantly reduce the requirements on the precomputation material

generated by the offline phase. In order to address this redundancy, we first prove

that the combination of a covert secure offline phase with a covert secure online

phase yields a covert secure protocol with a deterrence factor equal to the minimum

of the deterrence factors of the two individual protocols. We then demonstrate

the impact of our observation using the TinyOT [146] protocol as an example.

Our evaluation shows that the downgrade of the online security to covert security

reduces the communication complexity of the offline phase by approximately 35%.

Our work resulted in the following publication, which can be found in Appendix C.

[90] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Putting the Online Phase on

a Diet: Covert Security from Short MACs”. In: Topics in Cryptology - CT-RSA

2023 - Cryptographers’ Track at the RSA Conference 2023, San Francisco, CA,

USA, April 24-27, 2023, Proceedings. 2023, pp. 360–386. Part of this thesis.

3.2. Key results

In the following, we provide a more detailed discussion of our key results in the

publications outlined above. We refer the reader to our published articles [86, 88,

90] (Appendix A-C) for further details.

3.2.1. Generic Compiler for Publicly Verifiable Covert Security

In [88], we present a generic compiler transforming an arbitrary semi-honest secure

multiparty protocol into a PVC secure protocol. Instead of relying on oblivious

transfer, inherently restricting the deterrence factor by 1
n
, we propose an alterna-

tive approach relying on time-lock puzzles [154]. In the following, we will focus

on input-independent offline protocols that are combined with a malicious secure

online protocol. However, the explained techniques straightforwardly translate to

the input-dependent setting.

The PVC compiler. According to the cut-and-choose blueprint introduced above,

our compiler requires the parties to first execute t instances of the semi-honest

secure offline phase with precommited randomness and agree on the instance tran-

scripts. Next, the parties run a maliciously secure subprotocol ΠPG, that takes the

openings of all seed commitments (one per party and instance) as input, samples

a random index r ∈ [t] and defines the output tuple to be r and the seed open-

ings of all instances except the r-th. Instead of releasing the output directly, ΠPG

30

3. Financially Backed Covert Security

releases the output in two phases. In the first phase, ΠPG locks the output tuple

into a time-lock puzzle and releases the puzzle to all parties. After receiving the

puzzle, the parties exchange signatures on the commitments, the instance tran-

scripts, and the puzzle. The hardness of the time-lock puzzle is set such that an

adversary cannot solve the puzzle before the signature exchange times out. In case

of an abort during or prior to the signature exchange, honest parties terminate

the protocol themselves without further investigating for adversarial misbehavior.

After a successful signature exchange, the parties continue with the second out-

put phase of ΠPG, which releases the output tuple in clear. In case of an abort

during the second phase of outputs, the parties solve the time-lock puzzle. Either

way, they receive the index r and the seed openings; the second phase of outputs

just avoids the need to solve the puzzle in the optimistic case. The parties then

use the received information, i.e., the seed commitments, seed openings, and in-

stance transcripts, to audit all semi-honest instances but the r-th. Note that the

index r defines one global watchlist for all parties in contrast to the OT-based

approach, in which each party samples its own local watchlists. If the auditing

does not yield any misbehavior, the parties interpret the output of the unaudited

r-th semi-honest instance as the output of the PVC secure offline phase. In case of

misbehavior, either due to deviations in one of the semi-honest instances or due to

invalid seed openings submitted to ΠPG, parties create a PoM and terminate the

protocol execution. If the auditing indicates a deviation from the protocol in one of

the semi-honest instances, the PoM contains the seed commitments, seed openings

and instance transcripts. If the auditing indicates an invalid opening submitted

to ΠPG, the PoM contains the seed commitments and the time-lock puzzle.2 In

both cases, the PoM is made publicly verifiable and non-reputable by appending

the corresponding signatures of the accused party. As each party audits t − 1

randomly selected instances out of the totally executed t instances, the protocol

provides a deterrence factor of t−1
t

.

The rationale for the utilization of time-lock puzzles is that a signature on the

puzzle commits a party to the locked secret in a publicly verifiable way while

simultaneously guaranteeing that the secret is hidden until after the signature

exchange. The latter prevents parties from basing their decision whether to sign

or abort on the locked secret. This way, we force parties attempting a cheating

attempt to disclose the data that can potentially be used to prove their misbehavior

without knowing whether their cheating attempt will be detected. Even though the

adversary can abort without sending a signature, it has to decide independently

2The parties can relieve the judge of the necessity to solve the time-lock puzzle by solving the
puzzle themselves and attaching the solution and a correctness proof to the PoM. This is
made possible by the use of verifiable time-lock puzzles (cf. Section 2.3.)

31

3. Financially Backed Covert Security

of the detection event. Such an abort is tolerated in PVC security.

Puzzles generation. For the sake of clarity, we have simplified the above descrip-

tion by abstracting over some of the details of the time-lock puzzle generation.

First, time-lock puzzle schemes require a setup generating public parameters.

In common instantiations based on [154], the setup yields trapdoor information,

which can be exploited to extract the secret locked within a puzzle efficiently.

Therefore, we require a trusted setup that prevents any potentially malicious party

from learning the trapdoor information. However, the setup needs to be executed

only once. The generated public parameters can be used for an unlimited num-

ber of protocol instances. Therefore, we propose the setup to be realized with a

distributed protocol executed between members of a committee of well-accepted

authorities, such as governmental institutions or universities. An alternative ap-

proach could be to investigate whether a time-lock puzzle scheme matching our

requirements can be instantiated based on hidden order groups with a public setup,

such as ideal class groups of imaginary quadratic fields [44] or Jacobians of hy-

perelliptic curves [77]. The public setup property would ensure that the public

parameters are generated efficiently without yielding a trapdoor to the scheme.

Second, we assume ΠPG to be instantiated via general-purpose maliciously secure

multiparty computation. Common instantiations of the TLP primitive require two

exponentations in an RSA group to generate a time-lock puzzle, which is highly

expensive when executed within general-purpose MPC. Therefore, we propose an

improvement to ΠPG, in which parties precompute what we call empty puzzles,

i.e., time-locked random masks without any locked secrets. Parties then use these

as additional input to ΠPG. Instead of generating a new puzzle, ΠPG only com-

bines the provided empty puzzles and uses the result to hide the actual secret.

This way, we eliminate exponentiations within ΠPG. However, our modification

enables malicious parties to modify the resulting puzzle by inputting non-empty

puzzles. Fortunately, we can interpret such an attack as a simple unpunsihed

abort analogously to an abort during the signature exchange. Recall that the

definition of PVC security (cf. Section 2.2.2) allows the adversary to perform an

early abort, i.e., abort before it learns whether a potential cheating attempt is

successful. During the TLP generation, the adversary has to make the decision

to insert malformed empty puzzles before learning anything about the watchlist

and, hence, about the detection of a potential cheating attempt. Therefore it is

tolerable to interpret a malformed empty puzzle as an early abort as long as we

can ensure that such an attack is always detected. To enable parties to detect the

described attack reliably, we utilize two techniques. First, we encode the secret

locked within the puzzle such that any non-empty puzzle inserted in ΠPG renders

32

3. Financially Backed Covert Security

the solution of the resulting combined puzzle invalid. Second, we require parties

to provide the randomness used to compute the empty puzzles to ΠPG and release

this randomness with the second round output of ΠPG. This allows parties to re-

compute the puzzle generation and verify if the received puzzle is correct. The first

technique allows detection of the attack if the adversary aborts before the second

round output and the parties have to solve the puzzles. The second technique

allows detection of the attack if the parties do not have to solve the puzzle, i.e., if

the second round output is available.

Concurrent with our work, [155] proposed a transformation from semi-honest

security to PVC security that also utilizes a malicious secure subprotocol and

time-lock puzzles. However, instead of computing the time-lock puzzle within

the subprotocol, they compute a secret sharing of the puzzle payload within the

subprotocol and require each party to generate its own time-lock puzzle, with its

own public parameters, on its share of the payload. This way, the authors avoid the

necessity of a trusted TLP setup and improve the efficiency of the subprotocol.

However, on the downside, their approach requires the judge to solve multiple

time-lock puzzles in order to verify a PoM.

Security. Together with concurrent work [155], we are the first to provide a formal

security proof for a PVC secure protocol in the multiparty setting. We refer the

reader to our paper [88] (Appendix A) for the full formal proof. In the following,

we focus on the major challenge of our security proof, the reduction to the security

guarantees of time-lock puzzles in a simulation-based security proof.

In fact, we are the first to incorporate time-lock puzzles into a simulation-based

security proof. An important detail when using time-lock puzzles is that the puzzle

does not actually hide any secrets. Any party can start solving any puzzle after

the protocol termination and will eventually learn the locked secrets. Instead, the

puzzle prevents parties from reacting to the secrets locked within a puzzle. Time-

lock puzzles can, therefore, only be used to show that some actions taken by a party

up to some given round, e.g., the messages sent by the party, are independent of

the secret locked within a puzzle. Based on this insight, we design a novel proof

strategy that allows us to prove the indistinguishability of two hybrid worlds via

a reduction to the security guarantees of the time-lock puzzle scheme. We outline

this strategy in the following.

Consider a scenario in which there are two hybrid worlds H1 and H2 with the

following structure. Both worlds send a puzzle p0 locking a secret bit s0 to the

adversary, execute the adversary up to some round R, and observe the adversary’s

behavior B0, i.e., whether the adversary aborts or not. Afterward, both worlds

rewind the adversary, send a puzzle p1 locking a secret bit s1 to the adversary,

33

3. Financially Backed Covert Security

and again observe the adversary’s behavior B1 up to round R. Both puzzles, p0

and p1, are parameterized such that they cannot be solved before round R + 1.

Both worlds keep rewinding the adversary until B1 = B0 and, only then, finalize

the experiment. Once an upper bound of rewinding iterations is reached, the

experiment aborts with an error symbol ⊥. The secret bit s1 is the same in both

hybrids. Further, in H2 it holds that s0 = s1. However, in H1 it holds that s0 6= s1.

This is the only difference between the two hybrids.

On an intuition level, it is clearly evident that an adversary capable of breaking

the security of the time-lock puzzle is capable of forcing a discrepancy in the output

distribution of the two worlds. If the adversary is capable of breaking the time-lock

puzzle, it can decide on behavior Bi based on the secret bit si (for i ∈ {0, 1}), e.g.,

abort only if si = 0. As s0 6= s1 in H1, the adversary can reliably force experiment

failures (output ⊥) in H1. This is not possible for the adversary in H2, as the

adversary’s view in the main thread and the rewound thread is the same (s0 = s1).

However, given that the adversary is not able to solve the time-lock puzzle before

round R, it is not possible for the adversary to select Bi dependent on si except

with negligible probability. Therefore, it cannot force experiment failures in either

of the two worlds. More generally, as Bi is selected independently of si except with

negligible probability and the rewound thread is exactly the same in both worlds,

the worlds need to be computationally indistinguishable.

More formally, our proof strategy works in two steps. First, we make the claim

that the action B0 taken by the adversary is independent of the hybrid world (H1 or

H2). This claim can be reduced to the security guarantees of the time-lock puzzle

scheme as it considers the time-restricted event B0. Second, we use the prior claim

to show the indistinguishability of the two worlds. As B0 is the only value that

carries over from the initial execution to the rewinding, the distribution of B0 is

computationally indistinguishable in both worlds, as shown by the previous claim,

and the steps in the rewinding threads are the same in both worlds, it needs to

follow that the outputs of the two worlds are computationally indistinguishable.

3.2.2. Financially Backed Covert Security

In [86], we introduce the notion of FBC security and present three compilers trans-

forming different classes of PVC secure protocols based on the cut-and-choose

technique into FBC secure protocols. Class 1 comprises input-independent PVC

secure protocols in which parties receive a public transcript of message hashes.

Class 2 comprises input-dependent PVC secure protocols in which parties receive

a public transcript of messages. Class 3 comprises input-independent PVC secure

protocols without a public transcript. As we envision the financial penalties to

34

3. Financially Backed Covert Security

be realized via a smart contract, we design our protocols to provide a highly ef-

ficient punishment procedure, i.e., to minimize the computation required by the

smart contract to verify malicious behavior. Since cheating detection is inherited

from the transformed PVC secure protocol, we will focus on the punishment in

the following.

Definition of FBC security. A financially backed covert secure protocol is com-

prised of three components: a base protocol π, an evidence algorithm Blame, and

a punishment protocol Punish. It considers three entities: a ledger capturing the

notion of money, a judge responsible for the financial punishment, and the set of

parties that aims to compute a function with FBC security.

The ledger stores the balances of all parties in the system and allows parties to

transfer money between each other. While the definition of the ledger is aligned

with the blockchain setting, it does not need to be instantiated via a blockchain-

based cryptocurrency. As we do not require the balances of the parties to be public,

the functionality of the ledger can also be captured by other monetary systems,

e.g., the amount of cash in circulation. The judge is responsible for locking security

deposits of all parties throughout the protocol execution and reimbursing those not

proven malicious after the protocol execution. The judge does not participate in

the protocol execution itself.

Protocol π is a multiparty protocol computing function f . We require a specific

structure from π. At the beginning of π, all parties send a fixed amount of coins

to the judge. If a party fails to do so, the other parties abort the protocol and the

judge redistributes the deposits. At the end of π, each party executes Blame with

its entire view as input and broadcasts the certificate generated by the algorithm.

The certificate contains all information required to prove the misbehavior of a

malicious party, if cheating is detected, and to protect against false accusations

of malicious parties. After completion of π, the parties and the judge engage in

protocol Punish. The parties use the previously generated certificates as input.

The judge does not have any input. As a result of the Punish protocol, the judge

refunds all parties that have not been proven malicious.

Security-wise we require three properties: Simulatability with ε-deterrent, finan-

cial accountability and financial defamation freeness. Simulatability requires that

protocol π is a covertly secure protocol with a deterrence factor of ε. As π includes

the broadcast of the certificates that are the only input to the Punish protocol,

covert security of π implies that the subsequent punishment protocol does not

leak any private data. Financial accountability states that if there is one honest

party that detects a cheating attempt in π, then there has to be at least one cor-

rupted party that does not receive its deposit back. Financial defamation freeness

35

3. Financially Backed Covert Security

states that an honest party always receives its deposit back.

Modeling the PVC secure protocol. We model the protocol specification of the

semi-honest protocol utilized by the underlying PVC secure protocol as a tuple of

deterministic round algorithms {ComputeRound∗∗}, one for each party and round.

Round algorithm ComputeRoundik takes as input the messages party Pi received

in round k − 1 and the intermediate state of party Pi computed in the previous

round and returns the messages party Pi is supposed to send in round i and a new

intermediate state. For simplicity, we assume that each party sends a message to

all other parties. As the round algorithm is deterministic, we require all random

choices to be derived by a seed embedded into the previous state. The initial state

of each party consists of the initial random seed and, if existent, the party’s input

to the protocol.

Our transformations rely on some features to be provided by the underlying PVC

secure protocol. First, we require the PVC secure protocols in all three classes to be

based on the cut-and-choose technique, as explained above. For Class 1 and Class

3 protocols, which are input-independent, parties execute t instances of a semi-

honest protocol and audit all parties in s of the instances. For Class 2 protocols,

which are input-dependent, parties execute one instance of a semi-honest (n · t)-
parties protocol, in which each real party simulates t virtual parties and audits s

virtual parties of each real party. Second, we require that the PVC secure protocol,

if not aborted prematurely, provide means to efficiently derive the initial state of

the audited parties in the audited instances in a publicly verifiable way, e.g., via

a signed commitment and the corresponding opening, or to prove misbehavior in

the provision of the initial states, e.g., via a time-lock signed puzzle containing an

invalid opening and a proof allowing the efficient opening of the puzzle. Third,

we require the availability of a public transcript of message (hashes) for some of

the classes. If a party Ph sends a message m
(h,i)
k to another party Pi in round k

of a semi-honest protocol instance, it also appends the (hashes of) all messages

it is supposed to send to the other parties in round k, i.e., {m(h,j)
k }j /∈{h,i}. After

the execution of the instance, the parties aggregate all messages (hashes) into a

Merkle Tree and exchange signatures on the tree root. This way, they agree on

the transcript and obtain evidence that can be verified by an external judge. If

they disagree, they terminate the protocol with a simple abort and each party

receives its deposit back. Finally, we ensure that all signatures used throughout

the protocol are uniquely bound to a specific purpose, i.e., a signature on the

transcript of the i-th semi-honest instance cannot be passed off as the signature on

the transcript of the j-th instance. This can be achieved by prepending data with

unique identifiers before being signed. We remark that the PVC secure protocols

36

3. Financially Backed Covert Security

generated by our compiler presented in [88] satisfy all of the required features.

Intermediate state commitments. In all transformations, we extend the under-

lying PVC secure protocol by requiring parties to commit to their intermediate

states in the semi-honest protocol instances. More precisely, we extend the round

algorithm ComputeRound∗∗ such that it also computes a commitment on the new

intermediate state and appends the commitment to all computed messages. The

randomness is still derived from the random seed embedded into the previous state.

After the execution of the semi-honest protocol instance, the parties compute a

Merkle Tree over all received state commitments and exchange signatures on the

tree root. This way, they agree on the internal states and obtain evidence that can

be verified by an external judge. If they do not agree, they terminate the protocol

with a simple abort and each party receives its deposit back.

Punishment in Class 1 and Class 2 protocols. Malicious behavior in a semi-

honest instance implies that there is a (virtual) party Pm and a round k such

that one of the messages sent by Pm in round k does not match the result of

ComputeRoundmk as emulated during auditing. When encountering misbehavior

during auditing, the honest parties accuse the first such protocol deviation via the

judge. If there has not been any accusation before a specific deadline, the judge

returns the deposits of all parties.

To verify malicious behavior and, hence, perform the punishment, the judge

needs to receive Pm’s incoming messagesM of round k−1, Pm’s intermediate state

of the previous round statek−1, and the hash of the malicious outgoing message m∗,
together with evidence proofing authenticity of this data. Based on the received

data, the judge recomputes the round algorithm ComputeRoundmk and compares

the result with m∗. If the recomputed message does not match m∗, the judge

punishes Pm by retaining its security deposit. All other parties are refunded.

Honest parties provide the data required to verify misbehavior and prove its

authenticity as follows: In Class 1 protocols, the incoming messages and interme-

diate state commitments are recomputed by emulating the complete semi-honest

instance. In Class 2 protocols, the honest parties only emulate the audited par-

ties and assume all messages from unaudited parties to be correct. As the parties

accuse the first protocol deviation, all messages, intermediate states, state com-

mitments, and openings exchanged and computed earlier to round k are correct

and, hence, can be recomputed. The authenticity of M as well as m∗ is proven

via the signed Merkle root of the transcript tree and Merkle proofs for each mes-

sage. Authenticity of statek−1 is proven via the signed Merkle tree root of the state

37

3. Financially Backed Covert Security

commitment tree, the commitment of statek−1, its Merkle proof, and the emulated

opening.

If k = 1, there is no commitment of statek−1 as statek−1 is the initial state.

In this case, the parties prove the authenticity of statek−1 to the judge via the

means provided by the PVC secure protocol, e.g., a signed commitment and the

corresponding opening. Analogously, the parties utilize the means of the PVC

secure protocol to prove adversarial behavior in the provision of the initial state,

e.g., a signed time-lock puzzle containing an invalid opening and a proof allowing

the efficient opening of the puzzle.

The bisection search. The major technique for the transformation of Class 3 pro-

tocols is the bisection search, introduced by [51] and popularized in the blockchain

space by [78, 117, 120]. The bisection search allows a judge to efficiently identify

the first deviation in two lists held by two parties. To do so, the parties compute

a Merkle tree over their lists, in which they identify the left-most deviation layer

by layer. Figure 3.1 illustrates an exemplary bisection search between two parties,

Alice and Bob, holding two lists of size four that deviate in the last element.

root

n1 = H(l1|l2)

l1 l2

n2 = H(l3|l4)

l3 l4

? →

? → X

? → X

Alice

r̃oot

n1 = H(l1|l2)

l1 l2

ñ2 = H(l3|l̃4)

l3 l̃4

? →

? → X

? → X

Bob

Figure 3.1.: Exemplary bisection search over two lists deviating in the last element.

The parties first submit the roots of their respective trees to the judge. A

disagreement in the roots indicates a deviation in the two lists. Next, the parties

identify the subtree (left or right) in which the first deviation occurs. To do so,

both parties submit the left child of the root (in the example n1) together with the

corresponding Merkle proof. Disagreement on the left child indicates that the first

deviation is in the left subtree. Agreement indicates that the first deviation is in

the right subtree. This step is repeated recursively for the identified subtree until

38

3. Financially Backed Covert Security

the search reaches a leaf node. In the example, the parties agree on the left node

n1 and, therefore, try to identify the first deviation in the right subtree below n2

by comparing the left child of n1, i.e., l3.

The result of the search is the last element lk−1 (in the example l3) both parties

agree on and the index k (in the example 4) of the first deviation in the two lists.

The number of rounds it takes to identify the disputed element is logarithmic in

the list size.

Transformation of Class 3 protocols. Due to the lack of a public transcript,

there are no Class 3 protocols that are PVC secure. However, we can remove

the public transcript from PVC secure protocols of Class 1 to get a preliminarily

insecure Class 3 protocol and then transform the resulting protocol into one that

is FBC secure. The latter is made possible by the interactivity of the punishment

protocol, which is not available in PVC security. Note that communication-wise

Class 3 protocols are more efficient than Class 1 protocols as Class 3 protocols

avoid the necessity of sending each message hash to each other party.

In Class 3 protocols, each party signs each of its outgoing messages. During

auditing, each party emulates all the audited semi-honest instances and compares

the computed messages to the received ones. In case of a deviation, a party

identifies the first such deviation and submits the identifiers (instance index, round

index, party index) to the judge. If there is no accusation before a specific deadline,

the judge returns the deposits of all parties. Otherwise, the judge selects the

deviation with the lowest indices and initiates a dispute between the blamer, the

party that submitted the deviation, and the defender, the party that has been

accused. Note that submitted deviations are not necessarily caused by malicious

behavior but could also be caused by a previously received maliciously generated

message to which the auditing party does not have access. Therefore, it is necessary

to select the first deviation to be disputed.

The dispute starts by requiring both the blamer and the defender to create a

Merkle tree over the message history up to the disputed round and submit the

tree’s root to the judge. If both parties agree on the message history, the blamer

has all the data to prove misbehavior. The incoming messages of the defender

in the disputed round can be submitted and verified with respect to the agreed

Merkle root. The maliciously crafted outgoing message is verified via the defender’s

signature. The intermediate state is submitted and verified analogously to Class

1 and Class 2 protocols.

If the parties disagree on the message history, they run a bisection search, de-

termining the first deviation in their histories. Let m∗ be the blamer’s claim for

the first disputed message, Pi its sender, and k its round. In order to determine

39

3. Financially Backed Covert Security

the party that submitted the wrong message history, the judge recomputes the

disputed message and punishes the party that lied about the message history. The

blamer provides the necessary data for the recomputation, i.e., the incoming mes-

sages and the intermediate state of Pi in round k−1. Authenticity of the incoming

messages is proven via Merkle proofs computed with respect to the blamer’s mes-

sage history. As both parties agree on all messages exchanged before round k, the

judge can assume all messages in the blamer’s history before round k to be correct.

The authenticity of the intermediate state is proven and verified analogously to

Class 1 and Class 2 protocols.

If any party does not provide the requested evidence throughout the punishment

protocol, it is punished itself. This is required to prevent a malicious party from

utilizing an early false accusation to avoid its own punishment. If the punishment

requires the judge to verify initial states or misbehavior while providing the initial

states of the audited instances, the data is verified by the judge analogously to

Class 1 and Class 2 protocols.

Efficiency improvements and evaluation. In addition to the transformations

introduced above, we propose two practical improvements applicable to all three

transformations. First, the bisection technique cannot only be applied to dispute a

message history but also to dispute computations. Instead of requiring the contract

to recompute complete algorithms, e.g., a full round algorithm, the computation

can be outsourced to the disputing parties (the blamer and the defender). To

identify the disagreement on the computation, the two parties run a bisection

search, yielding a single arithmetic gate on which the parties disagree. The judge

then only verifies this single gate. Second, it is not necessary for the judge to

be aware of all computations potentially required to verify misbehavior, e.g., all

rounds algorithms. Instead, we can provide the required code in an ad-hoc way.

To do so, all parties sign the root of a Merkle tree describing all computations.

Once the judge needs to verify a specific protocol step, the parties submit the step

information, e.g., an arithmetic gate or a round algorithm, and proof authenticity

via a Merkle proof.

In order to show the feasibility of a smart contract-based punishment, we have

implemented the judge for Class 3 FBC secure protocols as an Ethereum smart

contract. Class 3 FBC secure protocols involve the most complex punishment

protocol of all of our transformations. Our implementation includes the engineer-

ing improvements discussed above. We implement the judge in a way that allows

us to utilize a single contract for arbitrarily many FBC secure protocols. Our

evaluation includes the optimistic scenario, in which there are no detected cheat-

ing attempts, and pessimistic scenarios, in which there is detected cheating, with

40

3. Financially Backed Covert Security

different parameters, i.e., number of parties, message sizes, protocol rounds, and

complexity of the round algorithm. In the optimistic case, parties need to register

the protocol instance, deposit the security deposit, and withdraw the deposit after

protocol execution. For three parties, this accumulates to a total (over all parties)

of 533 K gas, which costs approximately $17 USD at the time of writing [84]. In

the worst case, a protocol execution with three parties, ten semi-honest instances,

ten communication rounds, 320-byte messages, and round algorithms with up to

1 000 arithmetic gates accumulates a gas consumption of 2 412 K gas, which costs

around $76 USD at the time of writing [84].

3.2.3. Covert Security From Short MACs

Previously proposed covert secure protocols in the offline/online model are com-

posed of a covert secure offline phase and a malicious secure online phase. Due

to the high efficiency of the online phase, it is assumed that a reduction of the

security level of the online phase does not impact the overall protocol efficiency sig-

nificantly. In [88], we challenge this belief. While we agree that the reduction of the

online phase’s security does not significantly impact the online phase’s efficiency,

we observe that it can significantly reduce the requirements on the precomputation

material generated by the offline phase.

One particular upside of our observation is that, security-wise, the efficiency gain

is for free. Intuitively, this is because an adversary only needs to cheat once to

break security. Therefore, it does not affect security if the adversary can choose the

phase it tries to cheat as long as the deterrence factor of both phases’ is the same.

In [90], we formally prove this intuition by showing that a protocol composed of

a covert secure offline phase with a deterrence factor of ε1 and a covert secure

online phase with a deterrence factor of ε2 is itself a covert secure protocol with

deterrence factor ε = Min(ε1, ε2).

We showcase the impact of our observation by the example of the famous

TinyOT [147] protocol. In the following, we will focus on this case study.

The TinyOT online phase. The TinyOT protocol is a general-purpose two-party

protocol for computations over boolean circuits that is based on the secret-sharing

approach. In a nutshell, the protocol works as follows: For each input wire of the

boolean circuit, the parties receive an XOR-sharing of the wire value, e.g, if wire wi
has value xi, then we provide a value xAi to party A and a value xBi to party B such

that xi = xAi ⊕xBi . Subsequently, the parties compute the intermediate wires of the

circuit layer by layer. If a wire wl is the result of an addition gate with input wires

wj and wk, parties compute a sharing of wl’s value xl by adding their shares of the

41

3. Financially Backed Covert Security

input wires, i.e., xAl = xAj ⊕ xAk and xBl = xBj ⊕ xBk . If the wire wl is the result of a

multiplication gate, parties compute the secret sharing of xl interactively using the

Beaver [23] technique. Given a fresh multiplication triple provided by the offline

phase consisting of a random tuple (αA, βA, γA) known to party A and a random

tuple (αB, βB, γB) known to party B such that (αA⊕αB)� (βA⊕βB) = (γA⊕γB),

the parties compute the sharing of xl as follows: First, each party P (P ∈ {A,B})
sends eP = (αP ⊕ xPj) and dP = (αP ⊕ xPk) to the other party. Party P then

computes e = eA ⊕ eB, d = dA ⊕ dB and xPl := γP ⊕ e � xPk ⊕ d � xPj ⊕ e � d.

Once the circuit evaluation reaches the output wires, the parties start the output

phase, in which they exchange their shares on the output wires to reconstruct the

final output.

In order to guard the protocol summarized above against malicious deviations,

the TinyOT protocol utilizes information-theoretic message authenticate codes

(MAC). Each party P holds a global key ∆P ∈ {0, 1}κ where κ is the statistical

security parameter. The goal is that for each wire share xPi , party P holds a MAC

MP
i ∈ {0, 1}κ and the other party P̄ holds a local key K P̄

i ∈ {0, 1}κ such that

MP
i = K P̄

i ⊕ xPi �∆P̄ .

To authenticate an input bit x of party A, the parties make use of an authen-

ticated random bit produced by the offline phase, i.e., the offline phase provides

(r,M [r]) to A and (K[r]) to B. To transform the authenticated bit into an au-

thenticated secret sharing of A’s input bit x, A sends c = x ⊕ r. Then A de-

fines (xA,M [xA], K[xB]) = (r,M [r], c �∆A) and B defines (xB,M [xB], K[xA]) =

(c, 0κ, K[r]). Due to the additive homomorphism of the MACs, it is possible to

compute the local keys and MACs associated with intermediate wires symmetri-

cally to the shares of the wire values. However, the multiplication triples received

by the offline phase need to be authenticated via MACs as well.

Whenever a party reveals a share, during the multiplication procedure or the

output phase, the share is authenticated to the receiver via the sender’s MAC

on the share. Given the received share, the receiver recomputes the MAC and

compares it to the received one. In practical instantiations, parties do not actually

send the MAC with every share they reveal but authenticate all shares exchanged

during the protocol via an aggregated MAC check. Throughout the protocol, each

party maintains a list of MACs it should have sent and a list of MACs it should

have received. Before the parties open the output wires, they send the hash of

their outgoing MAC list to the other party, which verifies the hash against its

own list. The same aggregation technique is used for the shares exchanged in the

output phase.

Note that a part can only cheat in this protocol by flipping the bits of shares

exchanged during the protocol execution. Such a deviation can only go undetected

42

3. Financially Backed Covert Security

if the adversary manages to guess the MAC for the modified bit correctly, which

is equivalent to successfully guessing the other party’s global key. As the guess

cannot be verified locally, the adversary has only one shot for this guess. It follows

that the probability of a successful attack on the protocol is 1
2κ

.

Covert security from short MACs. We observe that the TinyOT online phase

with a decreased statistical security parameter t is almost a covert secure protocol

with deterrence factor ε = 1
2t

. This is because the only attack on the TinyOT

protocol requires the attacker to guess the other party’s randomly sampled global

MAC key, which has t bits.

However, there is a problem when proving covert security of such a modified

protocol. In the final output round, both parties exchange the shares of the output

wires and append the corresponding MACs (or the hash of the MAC list). As we

assume a rushing adversary, we allow the adversary to receive the honest party’s

message first and then send its message. The adversary, therefore, learns its output

before deciding whether to cheat by sending modified output shares. While the

prevalent notion of covert security, the one we have considered so far, which is

called the strong explicit cheat formulation (SECF), allows an adversary to abort

after learning its output, it does not allow the adversary to attempt cheating after

learning its output. We propose two approaches to tackle this problem.

First, we propose an alternative notion of covert security called intermediate

explicit cheat formulation (IECF). This notion still requires the adversary to make

its cheating decision independent of its output, as in the SECF, but allows the

adversary to learn its own output even in the case that cheating is detected. We

deem the security downgrade justifiable as the adversary only receives information

that it would also receive by behaving honestly. To transform the TinyOT protocol

with short MACs into an IECF covert secure protocol, we split the output phase

into two rounds. In the first round, parties exchange commitments on the output

shares and MACs. In the second round, they open the commitments. The com-

mitment prevents the adversary from lying about its output shares after learning

its output.

Second, we propose an extension to the TinyOT protocol that allows us to prove

the security according to the SECF. We adapt the circuit computing function

f so that the output wires hold a commitment to the actual outputs and the

corresponding opening. The output phase is again split into two rounds. In the

first round, the parties reconstruct the commitment and verify its authenticity as

usual. In the second part, the parties reconstruct the opening and use it to open the

commitment. An adversary only learns the output in the second round. However,

due to the commitment exchanged earlier, it is impossible for the adversary to send

43

3. Financially Backed Covert Security

incorrect opening shares without being detected. This allows the honest party to

interpret incorrect shares received in the second round as an abort. The downside

of this second approach is that the computation of the commitments as part of

the jointly evaluated circuit imposes a significant efficiency overhead to the online

phase. Therefore, we assess the first approach to be more practical.

Evaluation. Due to the aggregated MAC check in the TinyOT protocol, the

reduction of the MAC length does not positively impact the communication com-

plexity of the online phase. In fact, the covert online phase, as presented above,

is slightly less efficient than the malicious secure one due to the commitments ex-

changed during the output phase. We deem the reduced computation and storage

complexity as insignificant. However, we predict that the offline phase required for

the covert secure online phase is significantly more efficient than the offline phase

required for the malicious secure online phase.

In the TinyOT protocol, the offline phase is responsible for providing authen-

ticated bits for the input phase and secret shared authenticated multiplication

triples for the efficient evaluation of multiplication gates. In the boolean setting,

these are typically provided by protocols based on oblivious transfer, as, for exam-

ple, done in [122, 146, 147, 171, 178]. Due to the lack of an explicit specification of

a covert secure offline phase providing the required precomputation material, we

design the offline phase ourselves. The offline protocol employs the cut-and-choose

approach introduced above in order to transform a semi-honest secure protocol

into a covert secure one. The semi-honest instances utilize oblivious transfer to

generate authenticated bits and employ techniques from [122, 171] to transform au-

thenticated bits into authenticated triples. We instantiate the OT based on [118].

In our evaluation, we focus on the communication complexity as communication

constitutes the major bottleneck of the offline protocol. We compute the com-

munication complexity for both the long MAC and the short MAC version of the

precomputation with different deterrence factors and different numbers of gener-

ated triples. Our results yield that for deterrence factors ε ≤ 7
8

the communication

complexity of a protocol generating precomputation material for a covert secure

online phase is at least 35 % lower than the complexity of a protocol generating

precomputation material for a malicious secure online phase. The influence of the

number of generated triples is insignificant.

44

3. Financially Backed Covert Security

3.3. Related Work

Research on general-purpose multiparty computation has been initiated by [24,

26, 55, 104, 180]. Since then, there have been tremendous efforts to improve MPC

in many different settings, especially in the malicious security setting. Today, the

most relevant directions are authenticated garbling, e.g., [76, 122, 171, 178], the

TinyOT family, e.g., [46, 96, 131, 146], and the SPDZ family, e.g., [65, 69, 71, 123].

The concept of covert security was first introduced by Aumann and Lindell [14],

who focused on the two-party case. Their approach has been extended to the

multiparty setting by Goyal et al. [108]. While the protocols provided by [14, 108]

rely on garbled circuits, subsequent work adapted the notion of covert security

to different settings. In [67], the authors present a generic transformation from

semi-honest security to covert security in the honest majority setting. In [133], the

authors extend MPC techniques introduced by the IPS compiler [119] to construct

a generic compiler from semi-honest security to covert security in the dishonest

majority setting. Their construction inherits excellent asymptotic efficiency from

the underlying IPS compiler. In [69], the authors adapt the notion of covert secu-

rity to the SPDZ protocol [68], which is tailored to evaluating arithmetic circuits

in the dishonest majority setting. In [132], the author proposes improvements to

cut-and-choose and garbled circuit-based malicious and covert secure two-party

computation. Another line of work focuses on adding stronger security guarantees

to covert security. While [127, 143] both propose protocols, in which even a suc-

cessful adversary can only learn up to one bit about the private input of the honest

party, the protocol of [143] additionally guarantees correctness even in the case of

successful cheating. In [130], the authors add fairness to covert secure two-party

computation based on an external third party. The fairness property ensures that

if one party learns the output of the protocol execution, the other party will do so

as well. Experimental evaluations of covert secure general-purpose MPC protocols

have been provided by [68, 151]. Furthermore, there is a line of work adapting the

notion of covert security to special purpose protocols such as private set interaction

and pattern matching [111], oblivious polynomial evaluation [110] and oblivious

transfer [11]. Despite the large amount of research on covert security, all protocols

in the offline/online model utilize a malicious secure online phase. We are the first

to observe that the overall protocol efficiency can benefit from a reduction of the

security level of the online phase.

The notion of public verifiable covert security has been introduced by Asharov

and Orlandi [12]. The core technique of [12] is to utilize a novel primitive called

signed oblivious transfer that ensures that the receiver of the oblivious transfer

also receives a signature by the sender on the selected message. In [126], the au-

45

3. Financially Backed Covert Security

thors present an improved covert secure protocol that is based on a more efficient

instantiation of the signed oblivious transfer that is, unlike the signed oblivious

transfer presented by [12], compatible with the OT extension technique [118]. In

[116], the authors simplify the previous two approaches by proposing a PVC secure

protocol that does not rely on signed oblivious transfer. The resulting protocol is

significantly more efficient than the previous two protocols. The protocols in [12,

116, 126] all focus on the two-party setting, utilize the cut-and-choose technique,

and are based on garbled circuits enabling them to support a deterrence factor of

ε = t−1
t

, where t is the number of semi-honest instances executed in the PVC secure

protocol. In [70], the authors extend the scope of PVC security beyond garbled

circuits by proposing a generic transformation from semi-honest security to PVC

security. While the authors focus on the two-party case, they also provide an intu-

ition on how their ideas can be translated to the multiparty setting. As discussed

above, the deterrence factor in their protocol is bound from above by 1
n
. Higher

deterrence factors can be supported but require the parties to rerun the protocol

until there is one semi-honest instance that has not been audited. Our work [88],

in contrast, provides a formal specification of a transformation from semi-honest

security to PVC security and does not require protocol repetitions to support a

deterrence factor of ε = t−1
t

. Concurrent to our work on PVC security [88], [155]

have proposed a transformation from semi-honest security to PVC security that

is based on the same techniques as our compiler, i.e., time-lock puzzles. However,

as discussed above, they provide a more efficient way to instantiate the generation

of the time-lock puzzles. Further, there has been work adapting PVC security

to the use case of private function evaluation [137], presenting a transformation

from semi-honest security to PVC security in the honest majority setting [13], and

strengthening the security guarantees by ensuring that even a successfully cheating

adversary cannot break correctness and can only learn one bit of leakage from the

honest party’s input [136], akin to what have been proposed by [143] for covert

security.

While our work [86] is the first to formally introduce the notion of financially

backed covert security, there has been prior [103, 182] also linking detected cheat-

ing in PVC secure protocols to financial punishment. In [182], the authors describe

a two-party garbled circuit-based protocol in which a smart contract financially

punishes misbehavior. The authors construct the protocol in a way that prevents

malicious cheating attempts at any step but one, the creation of the garbled cir-

cuits. Therefore, it is sufficient to audit this particular step via the cut-and-choose

technique. If the evaluator detects a maliciously crafted circuit during auditing, it

triggers punishment via a smart contract. To instantiate the judge efficiently, they

utilize the bisection technique as well. While our work [86] also aims to instantiate

46

3. Financially Backed Covert Security

the judge as a smart contract and increases the efficiency of the judging and pun-

ishment with the bisection technique, we generalize the work of [182] in several

directions and overcome significant challenges on the way. While [182] restricts

cheating to one message and the algorithm generating that message, we consider

misbehavior in interactive protocols. Furthermore, the protocols considered in our

work can involve more than two parties, be input-dependent (Case 2), and tolerate

private party-to-party communication (Case 3). In [103], the authors proposed to

augment PVC security with real-world legal contracts. They prove the security

of their scheme concerning rational adversaries, adversaries that will only cheat if

the expected revenue of cheating is positive. By showing that the expected cost of

detected cheating attempts, enforced via the real-world legal contract, outweighs

the expected revenue of successful cheating, they prove that any rational adversary

refrains from cheating attempts. However, they restrict their work to a specific

protocol, i.e., garbled circuit-based two-party computation, while we consider a

more general setting.

47

4. Statement Oblivious Witness
Encryption

Given an NP language L with associated relation R, witness encryption, intro-

duced by Garg et al. [99], enables a party to encrypt a message m under a state-

ment x. The ciphertext can only be decrypted by a party holding a valid witness

w such that R(x,w) = true. The applications for witness encryption range from

public key encryption with fast key generation [99] and attribute-based encryption

for general circuits [99] to using it for encrypting a prize for solving an NP-hard

puzzle like the millennium problems [99] or achieving fairness in MPC [57].

Despite the enormous potential of the primitive, it still suffers from severe limita-

tions hindering its deployment in real-world use cases. First, known instantiations

supporting general languages rely on strong cryptographic assumptions such as

multilinear maps [99, 102, 105, 135], indistinguishability obfuscation [98], or cryp-

tographic invariant maps [34] and lack practical efficiency. Second, the standard

notion of witness encryption does not provide any means to keep the statement

used for encryption hidden and, hence, rules out further interesting use cases.

In order to address the first shortcoming, Goyal et al. [106] propose an alternative

approach, shifting the trust assumption towards assuming that a subset of servers

in a committee is honest. The authors present a protocol in which a committee

of servers is responsible for storing the plaintexts labeled with a statement in a

secret shared way and releasing the plaintexts to clients that can provide a valid

witness. This approach is based on a line of work presenting constructions of how

such committees can be obtained in a blockchain setting [27, 49, 101]. While the

protocol in [106] is solely based on standard cryptographic assumptions, it does not

consider the need to keep the statement used for encryption private. In fact, we

are the first to observe the potential of private statements. Keeping the statement

used for encryption hidden not only enhances existing use cases with additional

privacy guarantees but also enables new use cases, e.g., in decentralized finance.

48

4. Statement Oblivious Witness Encryption

4.1. Our Contribution

In this thesis, we introduce and formally define the notion of statement oblivi-

ous threshold encryption (SO-TWE). This notion provides the same functionality

as witness encryption but relies on a committee with a fixed threshold of hon-

est servers instead of strong cryptographic assumptions. Moreover, it augments

witness encryption with a statement obliviousness property that ensures that the

statement used for encrypting a ciphertext remains private, even from the servers

performing the decryption. We show two ways SO-TWE can be instantiated and

prove the security of our constructions. Our work has been disseminated in the

following article and can be found in Appendix A.

[91] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Statement-Oblivious Thresh-

old Witness Encryption”. In: 36th IEEE Computer Security Foundations Sym-

posium, CSF 2023, Dubrovnik, Croatia, July 10-14, 2023. 2023, pp. 17–32. Part

of this thesis.

4.2. Key Results

In the following, we provide an overview of our key results. Most importantly,

we formally define the notion of SO-TWE and show two ways to instantiate SO-

TWE via multiple transformations. While doing so, we also introduce the notions

of oblivious threshold tag-based encryption and anonymous threshold identity-based

encryption together with formal definitions. Figure 4.1 gives an overview of our

constructions. We refer the reader to our published article [91] (Appendix D) for

further details.

Defining SO-TWE. In SO-TWE, defined for some NP-language L with relation

R, we envision a setting where a client, Alice, locally encrypts a message m under

a statement x with a committee public key pk. The result is a ciphertext c.

Another client, Bob, receiving ciphertext c, can submit c to the committee with

a statement-witness pair (x′, w′). The committee members compute decryption

shares di (which can also be equal to a special error symbol) with their secret

key shares ski and return the decryption shares to Bob. Each server does this

independently, i.e., there is no communication between the committee members.

Once Bob has received s valid decryption shares from different servers, he runs

a reconstruction algorithm on the shares, which yields the decryption m′. By

correctness, it needs to hold that m′ = m if x = x′ and R(x′, w′) = true.

49

4. Statement Oblivious Witness Encryption

CCA Secure Statement-Oblivious Threshold Witness Encryption (SO-TWE)

CCA Secure Oblivous Threshold Tag-based Encryption (O-TTBE)CASOT()

Collision-Resistant
Hash Function

One-time Signatures (OTS)

CPA Secure Anonymous Threshold
Identity-Based Encryption (A-TIBE)

CPAST
ATIBE)

Homomorphic Secret Sharing (HSS)

CPA-Secure Anonymous Verifiable
Identity-Based Encryption (A-VIBE)

CASOT()

Random Oracle

Bilinear Pairing

Figure 4.1.: Different ways to instantiate statement-oblivious threshold witness en-
cryption.

Security-wise, we require a SO-TWE scheme to satisfy what we call insdis-

tinguishability and statement obliviousness under chosen-ciphertext attacks. In-

tuitively, this property states that any computationally bounded adversary that

receives a ciphertext c∗ that is the result of encrypting one of two messages, m0 or

m1, with one of two statements, x0 or x1, all of which are selected by the adversary,

can neither differentiate which message was encrypted nor which statement was

used. To account for the threshold setting, we enable the adversary to corrupt up

to s − 1 of the committee members, i.e., learn their secret key shares. As we en-

vision a client-server setting in which an external committee performs decryption

upon request, we require security under chosen ciphertext attacks (CCA). This

means the adversary can request decryption shares of arbitrary ciphertexts under

arbitrary statements and witnesses, just not for c∗ with x0 or x1.

It is important to note that our notion implies that any subset of servers of size

smaller than s must not be able to check if a ciphertext c has been created with

a particular statement x. This fact leads to the major challenge we face when

instantiating SO-TWE. In CCA secure encryption schemes, it is standard to vali-

date received ciphertexts before decryption in order to ensure that the secret key

operation is applied to the ciphertext only if the decryption will indeed yield a

correct plaintext. This technique is required to prevent an adversary from exploit-

ing homomorphisms in the ciphertext space, i.e., adapt the challenge ciphertext c∗

50

4. Statement Oblivious Witness Encryption

such that the decryption of the adapted ciphertext yields information about the

decryption of c∗. In SO-TWE, we can apply such a validation only to a limited

extent. As we require that a single server cannot validate if a ciphertext c has

been created with a particular statement x and we do not allow any communica-

tion during decryption, servers cannot decline the secret key operation in case of

invalid statements. A server has to execute the decryption for whatever arbitrary

statement it receives (as long as the witness matches). From the resulting decryp-

tion share, we require that it does not indicate if the reconstruction will yield the

correct plaintext. Otherwise, this information could be used to test for the correct

statement. However, we also require that a decryption share created based on an

invalid statement does not yield any information about the correct plaintext.

Instantiating SO-TWE. As a first step towards instantiating SO-TWE, we ex-

tend the notion of (threshold) tag-based encryption [9, 139] to oblivious threshold

tag-based encryption (O-TTBE). O-TTBE is defined equivalently to SO-TWE but

without the necessity of providing or checking witnesses upon decryption; the

statement x is now just called tag t. Given an O-TTBE scheme, it is possible

to instantiate SO-TWE straightforwardly. The SO-TWE ciphertext is computed

using the O-TTBE encryption with the witness as the tag. During decryption,

the servers check the received statement-witness pair and perform the O-TTBE

decryption only if the witness relation is verified successfully. While this transfor-

mation provides a simple instantiation of SO-TWE, it shifts the challenge outlined

above to the instantiation of the O-TTBE scheme.

We provide two ways to instantiate O-TTBE. First, we present a concretely

efficient instantiation of O-TTBE from bilinear pairings in the random oracle

model. Our construction uses bilinear pairings to augment the asymmetric El-

Gamal encryption system [97] with an oblivious tag. In ElGamal, the encryption

of a message m is computed as (A = ga,M = m ⊕H(Y a)) for a freshly sampled

exponent a, a group generator g, a random oracle H, and a public key Y = gy. In

the threshold setting, the secret key y is shared among the committee members;

each member receives a share yi. For decryption, the servers compute decryption

shares Di = Ayi . We add the tag dependency to the ElGamal scheme by apply-

ing a random offset T to the encryption randomness A in both encryption and

decryption. The offset T is sampled by a random oracle with input tag t and

encryption randomness A. This gives us a unique offset T for each tag-ciphertext

pair. Moreover, the random oracle ensures that each offset is uniformly random

and sampled independently from any other offset. The offset cannot simply be

applied using addition or multiplication, e.g., M = H(Y a·T) ⊕ m, as this allows

an adversary to exploit homomorphisms between decryptions with different tags,

51

4. Statement Oblivious Witness Encryption

i.e., Y a·T = (Ax·T
′
)
T
T ′ . To avoid such attacks, we apply the offset using a bilin-

ear pairing e, i.e., M = m ⊕ H(e(T,Xa)). During decryption, the tag is applied

before the secret key operation, i.e., Di = e(T,A)yi . This way, an invalid tag is

ensured to apply a uniform random offset to the decryption. We further prevent

the reusage of encryption randomness A in new ciphertexts by appending a zero-

knowledge proof of knowledge of a to the ciphertext and binding the proof to the

message-dependent component M .

Second, we provide an instantiation of O-TTBE from collision-resistant hash

functions, one-time signatures, and anonymous threshold identity-based encryp-

tion (A-TIBE). This transformation follows the approach of [32], which uses the

same building blocks, just without the anonymity property, to construct CCA se-

cure threshold encryption. In a nutshell, our construction works as follows. A

party, Alice, encrypts a message in the O-TTBE scheme by first sampling a fresh

one-time signature key pair and creating a new identity based on the tag and the

new signature verification key. Then, she computes an A-TIBE ciphertext of the

message under the freshly generated identity. In order to bind the ciphertext to

the generated identity, Alice signs the ciphertext and the signature verification

key with the corresponding signing key and appends the signature to the cipher-

text. The anonymity property of the A-TIBE scheme ensures that the tag remains

private. For decryption, the servers generate the identity key for the identity de-

termined by the given tag and the signature verification key embedded in the

ciphertext. Any decryption attempt with an incorrect tag will yield a new iden-

tity such that the generated identity key does not leak any information about the

plaintext or the tag used for encryption.

While there are constructions for anonymous identity-based encryption [35, 100]

and threshold identity-based encryption [32], we are the first to consider the notion

of anonymous threshold identity-based encryption. To provide a first step towards

instantiating A-TIBE, we show how A-TIBE can be instantiated from anonymous

non-threshold identity-based encryption and homomorphic secret sharing (HSS).

While Campanelli et al. [49] have already used HSS for a similar transformation,

just without the anonymity property, we discovered a gap in their security analysis.

Their construction does not provide any means to verify if an identity key has been

generated correctly, a feature that is required by threshold identity-based encryp-

tion schemes. To address this problem, we augment the non-threshold anonymous

identity-based encryption scheme with a verifiability property that allows to check

if an identity key has been generated correctly. In our transformation, the A-TIBE

scheme inherits this property from the underlying non-threshold scheme. We note

that our construction relies on general-purpose HSS and, hence, is not concretely

efficient yet. However, our transformations use the underlying primitives in a

52

4. Statement Oblivious Witness Encryption

black-box way such that every progress in the field of A-TIBE or HSS directly

translates to SO-TWE.

4.3. Related Work

Goyal et al. [106] are the first to propose the utilization of a committee to pro-

vide functionality equivalent to witness encryption. Their notion, called extractable

Witness Encryption on Blockchains (eWEB), is explicitly tailored to the blockchain

setting by relying on a blockchain election mechanism to provide committees. Fur-

thermore, eWEB explicitly integrates a mechanism that allows committee renewal,

i.e., the committee can be securely replaced by a new committee that receives all

the secrets held by the old one. As committee renewals aim to guard against

adversaries who corrupt additional committee members over time, Goyal et al.

prove the security of their construction in the presence of an adaptive adversary.

On the downside, their approach requires servers to keep shares of all secrets in

storage and even transfer them upon committee renewal. Further, they do not con-

sider the privacy of statements used during encryption. Our scheme, in contracts,

abstracts over the origin of the committee, allowing compatibility with different

committee election mechanisms. As the committee, in our notion of threshold

witness encryption, decrypts received ciphertexts upon requests, we require the

committee to store nothing but a constant size secret key share. Unlike [106],

we do not explicitly consider committee renewals and, hence, focus on the weaker

static security setting. However, in our concrete ElGamal-based instantiation, the

committee members hold Shamir secret shares of a single field element. Therefore,

it is fair to assume that the committees can be renewed with minimal overhead.

Finally, our constructions are tailored to support the privacy of statements used

for encryption.

Subsequent to [106], Campanelli et al. [49] propose another construction for

blockchain-based witness encryption called Blockchain Witness Encryption. How-

ever, their construction is neither practical, e.g., each encryption requires the de-

ployment of a smart contract, nor does it consider statement privacy.

53

5. Virtual Trusted Third Parties

Many problems studied in cryptography would become trivial if there were a

trusted third party (TTP). This observation is illustrated by the fact that simulation-

based security defines the security of a protocol with respect to an ideal world in

which a TTP exists. While we are not in an ideal world and, hence, cannot assume

the existence of a real TTP, it is possible to design systems emulating some of the

features provided by a TTP. We call such a system a virtual trusted third party (V-

TTP). Ideally, a V-TTP strictly adheres to the expected behavior, keeps its state

and communication confidential, is capable of performing complex computations,

and provides high availability guarantees.

One approach for instantiating a V-TTP is to rely on a committee of servers

that stores the internal state of the V-TTP in a secret shared way and performs

computations via secure multiparty computation (MPC) as, for example, done

in [22, 31, 53, 121, 138]. This approach ensures correct execution of the V-TTP

and confidentiality of state and messages but suffers from a significant perfor-

mance overhead introduced by the underlying MPC protocol. Furthermore, there

is an inherent trade-off between availability and security; the higher the availabil-

ity guarantees, the less malicious parties can be tolerated within the committee.

An alternative approach is to rely on trusted execution environments (TEEs), e.g.,

[17, 109, 129, 149]. TEEs ensure correct execution of the installed code, guard the

internal state and communication, and are capable of executing complex applica-

tions. However, TEEs are in control of potentially untrusted operators, which can

censor communication and, hence, harm the availability of the service.

In order to overcome the availability restrictions of the above two approaches,

one can rely on blockchains, which provide high availability guarantees by de-

sign. The naive approach is to realize the V-TPP in the form of a smart contract

running directly on the blockchain. Smart contracts ensure the correct execution

of the deployed code and inherit high availability guarantees from the underly-

ing blockchain. However, traditional smart contracts are inherently public and

limited in the extent of computations they can perform. The latter makes com-

putations assigned to smart contracts costly and, hence, inefficient. While there

are approaches based on MPC techniques or TEEs that enhance traditional smart

contracts with additional privacy guarantees or relieve smart contracts from their

54

5. Virtual Trusted Third Parties

complexity limitations, e.g. [56, 73, 79, 80, 120, 128, 142], all known solutions suf-

fer from at least one of the following shortcomings: They require participants to

lock large amounts of collateral used to incentivize availability; they incorporate

regular blockchain interactions, which is costly; they restrict the scope to applica-

tions with a limited lifetime or a fixed set of participants; or they do not hide the

private state of the smart contract from all of the involved parties.

5.1. Contribution

In this thesis, we propose POSE a novel blockchain-based system that leverages a

committee of TEE operators to execute smart contracts with a private state and

significantly increased efficiency compared to traditional smart contracts without

suffering from any of the shortcomings introduced above. Our solution circumvents

these shortcomings by making a minor sacrifice in terms of availability, i.e., POSE

only guarantees the availability of a smart contract as long as at least one TEE

operator in a randomly selected pool of operators remains responsive. Our work

has been disseminated in the following article and can be found in Appendix E.

[95] T. Frassetto, P. Jauernig, D. Koisser, D. Kretzler, B. Schlosser, S. Faust, and

A. Sadeghi. “POSE: Practical Off-chain Smart Contract Execution”. In: 30th

Annual Network and Distributed System Security Symposium, NDSS 2023, San

Diego, California, USA, February 27 - March 3, 2023. 2023. Part of this thesis.

5.2. Key Results

In the following, we present the high-level design and mechanics of the POSE

system. We refer the reader to our published article [95] (Appendix E) for further

details.

System overview. The POSE system assigns each POSE contract a randomly

sampled pool of TEE operators that are jointly responsible for managing the con-

tract, which in turn can be used to implement a V-TTP. The system only relies

on the blockchain to resolve disputes. In the optimistic case, POSE contracts are

executed without any blockchain interaction. Furthermore, POSE guarantees the

availability of a contract as long as at least one of the operators is honest, i.e.,

remains active.

We illustrate the high-level overview of the POSE system in Figure 5.1. The

core of the system is a smart contract deployed to the blockchain, called the

55

5. Virtual Trusted Third Parties

1. Contract
creation

initialization

 Manager

6. Execute call
& sync Pool

3. Setup
Operator

Pool

4. Contract
creation

finalization

2. Contract
creation
request

5. Call on Contract

Contract
User

Creator
Enclave

Watchdog
Enclave

Watchdog
Enclave

Executor
Enclave

Contract

Blockchain

Figure 5.1.: Overview of the POSE system including the processes of contract cre-
ation (blue) and the contract execution (green).

manager. The manager keeps track of all registered POSE enclaves and POSE

contracts and resolves disputes when necessary. TEE operators who wish to join

the system install a new enclave running a special POSE program on their TEE.

The enclave generates a new key pair and returns its public key and an attestation

report to the operator. The operator then registers the TEE with the manager

by submitting the attestation report and the generated public key. The manager

utilizes the attestation report to verify that the enclave runs the correct program

and includes the enclave in its list of available enclaves. The uploaded public key

is employed to encrypt and authenticate communication with the enclave, thereby

preventing the operator from eavesdropping or tampering with the communication

of its enclave. In the following, we will assume that all communication involving

enclaves is protected in this manner. However, operators may still drop, delay, or

replay messages.

In order to deploy a new POSE contract, a client selects a random POSE enclave,

designated as the creation enclave, from the manager’s list and sends a creation

request to the manager containing the identity of the creator enclave (Step 1).

Next, the client sends the contract code to the creator enclave (Step 2). The

creator enclave selects a random pool of enclaves from the manager’s list, samples

shared contract secrets, such as a shared symmetric encryption key, and sends the

code and the initial secrets to the selected enclaves (Step 3). The selected enclaves

install the new contract with the given code and the provided secrets and confirm

the installation to the creation enclave. The state of the installed contract contains

56

5. Virtual Trusted Third Parties

both the application-specific variables and the variables required to manage the

contract in the context of the POSE system. As the state is only stored within

protected enclaves, the operators cannot access the state of POSE enclaves. Once

the creator enclave receives installation confirmations from all pool members, it

sends a finalization report containing the identities of the pool members to the

manager (Step 4).

During contract execution, pool members can have two different roles. The first

enclave in a pool is the executor enclave. The other pool members are watch-

dogs. A client executes a contract by sending an execution request to the executor

enclave (Step 5). The executor enclave executes the request and distributes the

resulting state to the watchdogs, who confirm the state update (Step 6). Finally,

the executor enclave sends an execution confirmation, including potential outputs

of the transaction, to the client. Optimistically, i.e., if all actors are responsive,

the execution process does not involve any communication with the blockchain.

Handling unresponsive enclaves. The rationale behind the pooled execution is

that unresponsive executors can be kicked from the pool and replaced by one of

the watchdogs. This way, POSE ensures the availability of a contract as long as

at least one of the operators in the contract’s pool is honest, i.e., remains active

and responsive. However, for watchdogs to be able to replace the executor, it is

necessary to ensure that each watchdog receives all state updates. Therefore, we

only allow an executor enclave to finalize a transaction if it receives confirmations

from all watchdogs. In order to prevent unresponsive watchdogs from stalling the

execution, we enable the executor enclave to kick unresponsive watchdogs and

continue the execution with a smaller pool.

As operators can censor their enclaves’ communication, it is impossible for any

enclave to determine the unresponsiveness of other enclaves on its own. An execu-

tor enclave missing an update confirmation cannot differentiate whether its own

operator blocks the communication or the watchdog enclave failed to send the

confirmation. Watchdog enclaves, on the other hand, cannot know if an execu-

tor that should be kicked is indeed unresponsive or if a client only claims so. In

the blockchain space, this problem is known as non-uniquely attributable faults :

malicious behavior is evident but cannot be attributed to a specific actor.

In order to solve this problem, we utilize the manager to resolve disputes about

the unresponsiveness of enclaves. As the manager is executed on the blockchain,

its state and communication are accessible to all parties such that messages sent

to the manager are evident to all actors. Whenever an enclave stops responding

at any point throughout the protocol, its operator is challenged by the dependent

party via the manager. The dependent party can be a client waiting for a con-

57

5. Virtual Trusted Third Parties

firmation of a creator enclave or an executor enclave, the creator enclave waiting

for an installation confirmation of a pool member, or an executor enclave waiting

for an update confirmation of a watchdog. To issue the challenge, the dependent

party submits the identity of the challenged enclave and the (encrypted) message,

that should be answered, to the manager. The operator of the challenged enclave

answers the challenge by submitting its enclave’s response to the manager. This

way, the dependent party receives the requested response and, hence, is able to

continue with the execution. If the challenged operator fails to respond timely,

its enclave is kicked from the pool and unregistered with the manager. As cre-

ator enclaves have no immediate replacement, clients have to restart the creation

procedure if a creator enclave does not respond to an issued challenge.

Supplying enclaves with blockchain data. Some of the actions taken by an

enclave depend on data published on the blockchain, such as challenges or re-

sponses sent to the manager. Therefore, it is essential to ensure consistency of

the blockchain data available to an enclave. As an enclave does not have direct

access to the blockchain network, it depends on the data provided by its opera-

tor. However, an operator can be malicious and, therefore, provide inconsistent or

incomplete data. Consequently, we have designed a synchronization mechanism

that ensures the correctness and completeness of the blockchain data forwarded

to the enclave, limits the time an enclave may lag behind the main chain, and

prevents the isolation of enclaves onto maliciously crafted forks. Our synchroniza-

tion mechanism is tailored to proof-of-work blockchains. If the POSE system is

instantiated on top of proof-of-stake-based blockchains, the synchronization needs

to be adapted to the respective consensus protocol.

Upon enclave initialization, the enclave receives the most recent finalized block

and adds the block hash to its attestation report, which is submitted to the man-

ager upon registration. The manager uses this hash to reject registrations of

enclaves that are not up to date. More precisely, the manager rejects the registra-

tion if the provided hash does not match any of the ∆ most recent blocks, where

∆ defines the upper limit for the time an enclave is allowed to lag behind the

main chain. Once initialized, the enclave synchronizes itself with the blockchain

as follows: Upon execution, the enclave receives the blocks mined since its last

execution and validates that the new blocks are valid successors of its own sub-

chain. To prevent an operator from isolating the enclave onto a fork, we require

the operators to periodically provide new blocks to the enclave even if the enclave

is not required to perform any actions. If the enclave does not receive sufficiently

many blocks in a fixed time interval, it shuts itself down. The time interval and

the number of expected blocks are defined based on the blockchain’s average block

58

5. Virtual Trusted Third Parties

creation time, variances in the block creation time, and the speed of the difficulty

adjustment.

5.3. Related Work

V-TTP systems relying solely on MPC or TEEs have already been introduced in

the motivation above. In the following, we will focus on smart contract-based

approaches proposing platforms that enhance traditional smart contracts, already

providing high availability guarantees and correct execution, with a private state

or increased efficiency.

State channels [79, 80, 142] release smart contracts from their complexity limita-

tions by outsourcing the execution of the contract to a protocol executed between

the channel members. The blockchain is only invoked to resolve disputes or capture

results of the channel execution, e.g., to disburse coins assigned to the channel.

While reliably addressing the complexity limitations of smart contracts, state chan-

nels require participants to lock collateral, do not support a private smart contract

state, and are limited to applications with a fixed group of participants.

Rollups, studied both in industry [7, 148, 162, 183] and academia [120, 174,

175], increase the efficiency of smart contracts by outsourcing computations to

an operator or a committee of operators. Operators compute (batches of) trans-

actions and submit the result of the outsourced computation to the blockchain.

While relieving the blockchain from the necessity of computing the transaction

itself, the state of the contracts is still stored on the blockchain. Rollups support

smart contracts with an unlimited lifetime and open participation but still require

regular blockchain interactions and do not support contracts with a private state.

One partial exception is [120], which stores only the hash of the contract state

on the blockchain, thereby minimizing the complexity of the regular blockchain

interaction and providing state privacy if the operators are honest. However, [120]

privacy of the contract state can only be guaranteed if all operators assigned to a

contract are honest.

Steffen et al. [163, 164] enhance the privacy properties of smart contracts by

relying on zero-knowledge proof systems and asymmetric encryption. In their sys-

tem, contract variables can explicitly be declared private. Each private variable is

assigned to a particular owner. Instead of storing the private variables in clear, the

contract stores the ciphertext of the private variables encrypted under the respec-

tive owner’s public key. In order to invoke a function, clients locally compute the

original function operating on the plaintext variables and submit the state updates,

encrypted in the case of private variables, to the smart contract together with a

59

5. Virtual Trusted Third Parties

zero-knowledge proof showing that the function has been computed correctly. As

each variable has a dedicated owner, it is not possible to compute functions that

involve variables of multiple owners without first disclosing the private variables to

the party executing the function. This shortcoming has been partially addressed

in [163] by utilizing additively homomorphic encryption, which allows parties to

perform additions on private variables of different owners. Nevertheless, neither

system supports variables that are kept private from all parties nor addresses the

complexity limitations of smart contracts.

Another line of work [19, 20, 21, 128, 184] utilizes MPC in order to realize

smart contracts with a private state. Computations and storage are outsourced

to a committee of MPC nodes that securely stores the private state in a secret

shared way and securely performs computations on the state via multiparty com-

putation. If the smart contract execution yields results that should be captured

by the blockchain, e.g., the payout of coins, the consortium submits the result

to the blockchain, together with a proof showing that the contract has been exe-

cuted correctly. While the MPC-based approach supports smart contracts with a

private state, unlimited lifetime, and open participation without requiring regular

blockchain interactions, the MPC protocol introduces an additional runtime over-

head. Furthermore, the secret sharing of the state and the computation comes with

an inherent trade-off between availability and security; the more unresponsive par-

ties can be tolerated, the fewer malicious parties are required to break security. To

address this trade-off, responsiveness is often incentivized via collateral deposited

by the committee members, which is retained in case of unresponsiveness.

Ekiden [56] utilizes TEEs to support smart contracts with a private state. In

Ekiden, the state of each contract is stored in an encrypted form on the blockchain.

The decryption keys are maintained by a TEE-enabled key management commit-

tee. Contract execution is facilitated by operators running special computation

enclaves on their TEEs. To execute a contract, a client submits an execution re-

quest to any computation enclave in the system. The computation enclave retrieves

the encrypted contract state from the blockchain, requests the corresponding de-

cryption key from the key management committee, decrypts the contract state, ex-

ecutes the requested transactions, re-encrypts the new state, stores the encrypted

new state on the blockchain, and triggers public effects of the state transition,

e.g., the payout of coins. While Ekiden provides high availability guarantees and

supports contracts with a private state, each contract invocation requires costly

interaction with the blockchain.

FastKitten [73] is another TEE-based solution that supports smart contracts

with a private state. In FastKitten, contracts are deployed directly to the enclave

of an operator and executed by the enclave. To prevent an operator from shutting

60

5. Virtual Trusted Third Parties

down the enclave, potentially freezing coins of the deployed smart contract, the

operator has to lock collateral, which is used to reimburse participants for poten-

tial losses if the enclave becomes unavailable. Analogous to state channels, the

blockchain is only invoked to settle disputes or capture the public effects of the

contract execution. While FastKitten addresses both the complexity limitations

of smart contracts and the missing privacy guarantees for the contract state, the

collateral restricts the platform to contracts with a limited lifetime and a fixed set

of participants.

Unlike previous work, POSE provides a platform to execute smart contracts and,

hence, instantiate V-TTPs that addresses all of the aforementioned shortcomings

in one holistic solution. More precisely, POSE neither requires locked collateral

nor regular blockchain interactions, supports complex contracts with open par-

ticipation and unlimited lifetime, and hides the state of smart contracts from all

involved parties. On the downside, POSE makes a minor sacrifice in terms of avail-

ability when compared to traditional smart contract platforms executing contracts

directly on the blockchain. While traditional smart contracts are available as long

as the underlying blockchain system remains healthy, POSE requires, in addition

to a healthy blockchain system, at least one TEE operator in a randomly selected

pool to remain responsive.

61

6. Modern Programming Language
for Decentralized Applications

1

Today, the contracts and clients that make up a decentralized application (dApp)

are implemented as separate programs in different programming languages. Con-

tracts have a set of public functions that can be called by clients. By restricting

the states from which certain functions can be called, programmers implicitly de-

fine a finite state machine (FSM) that describes the program flow of the dApp.

Figure 6.1 shows a simplified Solidity2 smart contract for a tic-tac-toe dApp with

a dedicated funding phase and payout phase and the corresponding FSM.

1 contract TicTacToe {
2 State phase = Funding; /*...*/

3 function Fund() public {
4 require(phase == Funding);
5 /*...*/;
6 if (!(balance< FUNDING GOAL))
7 phase = Exec; }
8 function Move(int x, int y) public {
9 require(phase == Exec && sender == players[moves % 2]);

10 /*...*/;
11 if (!(moves< 9 && winner == 0))
12 phase = Finished; }
13 function Payout() public {
14 require(phase == Finished);
15 /*...*/;
16 phase = Closed; }
17 }

Funding Executing

FinishedClosed

Fund(c)

Fund(c)

Move(x, y)

Move(x, y)

Payout()

Payout() Payout()

Figure 6.1.: Solidity code of a tic-tac-toe contract with a funding phase and a
payout phase (left). The code implicitly defines a finite state ma-
chine (right). Red dashed arrows illustrate unintended transitions,
e.g., premature calls of the Payout function. Line 14 of the contract
(underlined in red) prevents such unintended payouts.

1Figures and listings are taken from [152] with minor adjustments.
2Solidity is the most widely used programming language for smart contracts executed on the

Ethereum Virtual Machine (EVM). The EVM is the most popular smart contract platform
used not only by Ethereum [83] but also by other smart contract capable blockchains such
as [15, 29, 166].

62

6. Modern Programming Language for Decentralized Applications

During the initial Funding state, the two players jointly deposit coins until a

certain funding goal is reached. Then the contract enters an Executing state, in

which the players take turns submitting their moves. When the game is over, the

contract enters the Finished state, where either player can trigger a payout. Once

the payout has been triggered, the contract terminates by reaching the Closed
state. The programmer specifies the states in which each function can be executed

by placing entry guards. In this way, the programmer protects the program flow

from unintended deviations. For example, a premature call to the Payout function

could deprive a player of its well-deserved winnings. Therefore, it is essential to

ensure that the Payout function can only be executed after the application has

reached the Finished state.

The FSM-style encoding of the program flow has several drawbacks. First, it

makes the distributed program flow difficult to express and reason about. Second,

it requires the programmer to explicitly protect each function against unintended

invocation, e.g., to validate both the caller and the current state upon invocation.

This increases the risk of vulnerabilities due to mismanaged program flow. As

smart contracts directly control financial assets and are publicly available, mis-

managed program flow can cause tremendous damage. Real-world examples of

exploits due to mismanaged program flow include the DAO hack, where attackers

stole $50 M USD [5], and the two Parity hacks, where attackers stole $30 M USD [4]

and froze $150 M USD [4]. Therefore, we believe it is essential, especially for the

use of smart contracts in cryptographic protocols, to develop a simpler approach

to dApp development that makes it easier to express distributed program flow and

automatically protects the specified program flow from unintended client devia-

tions.

6.1. Our Contribution

In this thesis, we present Prisma, a modern programming language for decentral-

ized applications. In Prisma, we interpret the smart contract as the active entity

that is in charge of the control flow and passes it to the client when input is re-

quired. This allows programmers to explicitly define the distributed program flow

of the decentralized application using standard control flow instructions. Prisma

automatically protects the program flow against client-sided deviations. Further-

more, Prisma allows the implementation of both contract and client in one unit in

the same programming language and to express communication via explicit client

calls, thus simplifying the encoding of client-contract communication and render-

ing mismatching communication impossible. Our work has been disseminated in

63

6. Modern Programming Language for Decentralized Applications

the following article and can be found in Appendix F.

[152] D. Richter, D. Kretzler, P. Weisenburger, G. Salvaneschi, S. Faust, and M. Mezini.

“Prisma : A Tierless Language for Enforcing Contract-client Protocols in Decen-

tralized Applications”. In: ACM Trans. Program. Lang. Syst. 3 (2023), 17:1–

17:41. Part of this thesis.

6.2. Key Results

In the following, we present the high-level concept of Prisma and parts of our ex-

perimental evaluation showing that the additional layer of abstraction introduced

by Prisma causes only a tolerable performance overhead. We refer the reader to

our published article [152] (Appendix F) for further details.

The programming language. Prisma is implemented as a domain-specific lan-

guage integrated with Scala. We provide a compiler that compiles Prisma code

into Solidity contract code to be deployed on a blockchain and Scala client code

to be executed by users. Below, we explain the syntax of Prisma using the code

example in Figure 6.2. The given program shows a Prisma implementation, defin-

ing both client and contract, of the tic-tac-toe application introduced above (cf.

Figure 6.1).

1 @prisma object TicTacToeModule {
2
3 @co @cl case class UU(x: U8, y: U8)
4
5 class TicTacToe(
6 val players: Arr[Address],
7 val fundingGoal: Uint) {
8
9 // u8 is an unsigned 8-bit integer

10 @co @cross var moves: U8 = "0".u8
11 @co @cross var winner: U8 = "0".u8
12 @co @cross val board: Arr[Arr[U8]] =
13 Arr.ofDim("3".u, "3".u)
14
15 @co def performMove(x: U8, y: U8): Unit =
16 { /* ... */ }
17 @cl def updateBoard(): Unit =
18 { /* ... */ }
19 @cl def fund(): (U256, Unit) =
20 (readLine("How much?").u, ())
21 @cl def move(): (U256, UU) =
22 ("0".u, UU(readLine("x−pos?"),
23 readLine("y−pos?"))

24 @cl def payout(): (U256, Unit) = {
25 readLine("Press (enter) for payout")
26 ("0".u, ())
27 }
28 @co val init: Unit = {
29 while (balance()< FUNDING GOAL) {
30 awaitCl(=> true) { fund() }
31 }
32 while (moves< "9".u && winner == "0".u) {
33 val pair: UU = awaitCl(a =>
34 a == players(moves % "2".u)) { move() }
35 performMove(pair.x, pair.y)
36 }
37 awaitCl(a => true) { payout() }
38 if (winner != "0".u) {
39 players(winner− "1".u).transfer(balance())
40 } else {
41 players("0".u).transfer(balance() / "2".u)
42 players("1".u).transfer(balance())
43 }
44 }
45 }
46 }

Figure 6.2.: Prisma dApp implementing the tic-tac-toe case study.

64

6. Modern Programming Language for Decentralized Applications

In Prisma, programmers place variable or function declarations on the contract

or client using the annotations @co and @cl. The variable declarations can be

annotated with an additional @cross (cf. Line 10) to grant the client read access

to the contract variable. Data types passed between contract and client are defined

as classes and annotated with both @co and @cl (cf. Line 3).

The program flow is defined by the init block placed at the contract. This

block provides the functionality of a main function known from other programming

languages. When the contract is deployed, the program flow starts at the beginning

of the init block. Code is executed on the contract until an awaitCl-expression

is encountered. This expression passes control to the clients, prompting them to

submit input in the form of a message. The awaitCl-expression takes two inputs.

The first is a lambda expression, which receives a client’s address as input and

returns a boolean. Clients execute the expression with their own address as input

to decide whether it is their turn to send a message. The contract uses the same

expression to decide whether to accept a message received from a client. In this

way, we force developers to explicitly specify access control, thereby reducing the

risk of human failure. The second input to the awaitCl expression is a code

block executed by the client. It returns the amount of coins transferred to the

contract and a message. The message is passed to the contract by the awaitCl
expression. The amount of Ether transferred can be accessed through a built-in

expression value. In order to access other blockchain-specific functionality, we

provide additional built-in expressions, such as balance (cf. Line 29) to access

the current balance of the contract, or transfer (cf. Line 39) to send Ether to

another address.

Consider the init block in the given code example (Lines 28-44) for illustration.

The contract first requests clients to provide funding via the awaitCl-expression

in Line 30. Since any client can provide funding, the access control always returns

true. Upon receiving the control, the clients execute the fund function, which

requests a command line input from the user specifying the funding amount and

sends the funding along with an empty message to the contract. This step is

repeated until a specific funding goal is reached (cf. Line 29). The contract then

requests the two players to submit their moves in alternating turns until one party

wins or the board is full (cf. Line 32 and 33). Once a move has been received,

the board is updated accordingly and the winning condition is checked. Since only

one player may submit a move in each round, the awaitCl-expression in Line 33

validates the sender of the message. Once the game ends with a winner or a tie,

either client can request a payout by sending a message with neither coins nor

content (cf. Line 37). Upon receiving the payout request, the contract pays out

the funds accordingly.

65

6. Modern Programming Language for Decentralized Applications

Efficiency evaluation. In order to evaluate the overhead of the additional layer

of abstraction introduced by Prisma, we implemented 12 case studies in Prisma and

Solidity and compared the gas consumption. Since our compiler transforms Prisma

code into Solidity code, it is not possible for Prisma to outperform hand-written

Solidity code; any smart contract compiled from Prisma can also be implemented

directly in Solidity. Nevertheless, the results of our evaluation show that the

contract deployment overhead is 0-7 % and the contract execution overhead is

0-10 % for all case studies.

The overhead of Prisma in some of the case studies is primarily attributable

to the automated program flow control. In order to ensure correct execution,

Prisma introduces an explicit phase variable upon compilation. The phase variable

is used to generate entry guards for each of the contract functions, analogous to

those utilized in the Solidity code example in Figure 6.1 (Lines 4, 9 and 14). In

Solidity, developers do not always need an explicit phase variable. In some cases,

they can infer the phase from existing variables. For example, in the tic-tac-toe

game, the phase information can be inferred from the contract balance, the move

variable, and the winner variable. Case studies that require an explicitly managed

phase variable, also when implemented directly in Solidity, exhibit only a negligible

overhead.

6.3. Related Work

The programming languages most closely related to Prisma are Solidity [161], Ob-

sidian [58, 59, 60], and Nomos [72]. While the former represents the de facto

standard for EVM-based smart contracts, the latter two are academic program-

ming languages for smart contracts enforcing correct execution of the intended

distributed program flow by design.

Solidity has the aforementioned shortcomings. First, contracts and clients are

implemented separately in different programming languages. Second, the intended

program flow needs to be implicitly encoded as a finite state machine. Third,

the program flow needs to be guarded manually against both out-of-order and

unauthorized execution of functions. In contrast, Prisma enables the programmer

to implement both the contract and the client in a single unit, thus eliminating

the possibility of mismatching communication. Furthermore, Prisma allows for

the explicit specification of the intended program flow, automatically guards the

application against client-side deviations, and forces the developer to explicitly

define access control.

Obsidian is a programming language for smart contracts that uses so-called

66

6. Modern Programming Language for Decentralized Applications

typestates [74, 165] to increase safety by forcing developers to explicitly define the

finite state machine representing the intended program flow. As illustrated in the

Obsidian code snippet in Figure 6.3, the Obsidian code explicitly defines a set of

valid states and the allowed transitions between the states.

1 asset contract TTT {
2 state Funding{}; state Executing{}; state Finished{}; state Closed{}
3 transaction Fund(TTT@Funding>>(Funding|Executing) this, int c) {
4 /*...*/; if (/* enough funds? */)−> Executing else−> Funding }
5 transaction Move(TTT@Executing>>(Executing|Finished) this, int x, int y) {
6 /*...*/; if (/* game over? */)−> Finished else−> Executing }
7 transaction Payout(TTT@Finished>>Closed this) {
8 /*...*/;−> Closed } }

Figure 6.3.: Simplified Obsidian smart contract of the tic-tac-toe case study.

Nomos is a smart contract programming language that employs so-called session

types [47, 48, 114, 115, 170] to protect the program flow. As illustrated in the code

snippet in Figure 6.4, the Nomos code defines a set of valid states, the inputs that

can be provided in each state and the possible state transitions (cf. Lines 1-3).

The final state is always encoded as 1. The transition logic is implemented via

processes (cf. Lines 4 and 8). The recv-expression accepts a session type of the

form T −> U as input, returns a variable of type T, which represents the client

message, and transitions the session to type U. If a type has multiple possible

transitions, the program needs to select the respective label (e.g., $ s.notenough
in Line 6 or $ s.enough in Line 7). Note that the payout does not require an

additional process, as it has only one entry point and, therefore, can be appended

to the transition to the Finished state (cf. Line 11).

1 type Funding = money−> +{ notenough: Funding, enough: Executing }
2 type Executing = int−> int−> +{ notdone: Executing, done: Finished }
3 type Finished = −> 1
4 proc contract funding : . |{∗}− ($ s : Funding) = {
5 a = recv $ s; /* ... */

6 if /* enough funds? */ then $ s.notenough; $ s<− funding
7 else $ s.enough; $ s<− executing }
8 proc contract executing : . |{∗}− ($ s : Executing) = {
9 x = recv $ s; y = recv $ s; /* ... */

10 if /* game over? */ then $ s.notdone; $ s<− executing
11 else $ s.done; z = recv $ s; /* distribute funds */ close $ s }

Figure 6.4.: Simplified Nomos smart contract of the tic-tac-toe case study.

In contrast to both Obsidian and Nomos, Prisma relies on a standard type sys-

tem and employs standard expressions to specify the distributed program flow.

67

6. Modern Programming Language for Decentralized Applications

The sole non-standard expression introduced by Prisma is the awaitCl-expression.

However, this expression functions in a manner analogous to the await-expression

commonly utilized in other programming languages that facilitate asynchronous

interactions, such as JavaScript [81]. Consequently, it adheres to a well-established

semantic framework. This leads to a much simpler and clearer specification of the

distributed program flow in Prisma in comparison to the alternative smart contract

languages, as illustrated by the provided code snippets. Furthermore, neither Obi-

sidian nor Nomos enables the implementation of client and contract in one unit in

the same programming language as possible in Prisma.

68

7. Conclusion

Today’s blockchain systems offer a wide range of features going far beyond the mere

execution of financial transactions. Recently, a new trend in cryptography emerged

that leverages the rich set of features provided by modern blockchain systems to

implement new cryptographic services and enhance existing ones. However, the

potential of blockchain systems is far from exhausted. This thesis, therefore, aimed

to unlock further potential of blockchain systems and to provide more advanced

blockchain-based cryptographic services by identifying and addressing gaps in prior

work on blockchain-based cryptography. First, we have shown how to augment ar-

bitrary semi-honest secure protocols with covert security and smart contract-based

punishment of detected cheating attempts, thereby increasing the deterrent effect

of cheating detection. Second, we have enhanced blockchain-based witness encryp-

tion, as introduced by [106], with additional privacy guarantees for the statement

used for encryption. Third, we have proposed a novel smart contract platform

to provide a service that effectively emulates a trusted third party and, unlike

previous approaches, combines increased efficiency and state privacy with high

liveness guarantees. Fourth, we have proposed a new programming language for

decentralized applications that allows developers to implement blockchain-based

applications in a simpler and more secure way. We conclude the thesis by dis-

cussing further research questions based on our work.

The concrete efficiency gain of covert security. The primary motivation for

the utilization of covert security is that covert security constitutes a middle-ground

between active and passive security, providing higher security guarantees than pas-

sive security and more efficient protocols than active security. However, continuous

research on actively secure multiparty computation, e.g., [25, 38, 54, 71, 76, 112,

146, 171], is gradually narrowing the gap between passive and active security. In

particular, the recently introduced concept of pseudorandom correlation genera-

tors (PCG) [36, 37, 38, 39, 64, 76, 156, 179] is assumed to provide significant

efficiency improvements.1 PCGs allow parties to generate the precomputation

1PCGs still lack complete implementations, making it difficult to quantify the concrete runtime
benefits.

69

7. Conclusion

material required by MPC protocols in the offline/online model with sublinear

communication complexity; sublinear in the amount of required precomputation

material and, hence, in the complexity of the jointly computed function. While

PCGs can be used for both active and passive security, they have a much more

substantial impact on active security.

Given the recent advancements in active security, we believe it is an interest-

ing research question to empirically examine the concrete efficiency advantage of

covert security over active security. In both active security and covert security,

there are a variety of protocols that focus on different settings, e.g., two-party and

multiparty protocols, and offer different trade-offs, e.g., communication complexity

versus computational complexity. Therefore, it is likely that the benefit of covert

security strongly depends on the concrete setting. A comprehensive experimental

evaluation and comparison of the various protocols across different settings could

provide a more thorough basis, allowing system designers to choose the best pro-

tocol for their particular setting and to assess whether a downgrade from active

to covert security is worth the efficiency gain.

Anonymous threshold identity-based encryption. One of our constructions for

statement oblivious threshold witness encryption is based on anonymous threshold

identity-based encryption. While there are constructions for anonymous identity-

based encryption [35, 100] and threshold identity-based encryption [32], there has

not been any prior work combining both anonymity and threshold identity key

issuance. In [91], we provide an instantiation for anonymous threshold identity-

based encryption based on general-purpose homomorphic secret sharing. Since

there are no efficient instantiations of general-purpose homomorphic secret sharing,

this instantiations represents a feasibility result.

Therefore, we consider it to be an interesting direction for future work to con-

struct concretely efficient anonymous threshold identity-based encryption schemes.

Such constructions would not only benefit our work on statement oblivious thresh-

old witness encryption but could also enhance use cases of anonymous non-threshold

identity-based encryption with threshold identity key issuance, thus mitigating the

single point of failure represented by the master key holder.

POSE on proof-of-stake blockchains. Although most of the POSE system is

independent of the underlying blockchain, we have based POSE on the Ethereum

blockchain [83], the most prominent smart contract platform. Most importantly,

we have designed the blockchain synchronization with respect to the Ethereum con-

sensus protocol. At the time the POSE protocol was developed, Ethereum’s con-

70

7. Conclusion

sensus protocol was based on proof-of-work. However, in the meantime, Ethereum

has shifted to proof-of-stake [82]. In fact, most of the actively used smart contract

platforms are based on proof-of-stake blockchains [2, 15, 29, 52, 160, 166].

Therefore, we believe it is an interesting research direction for future work to

design alternative synchronization techniques that enable enclaves to ensure the

correctness and completeness of the received blockchain data on proof-of-stake

blockchains. Most importantly, it is necessary to prevent a malicious operator

from isolating its enclave on a blockchain fork, on which its enclave is the only

member of a pool responsible for a particular POSE contract. Such an attack would

allow the operator to test a particular transaction on its isolated enclave, obtain

the result, which may depend on the private state of the contract and, therefore,

cannot be determined without isolation, and, if beneficial, submit the transaction

to the original pool running with respect to the main chain.

Eliminating inefficiencies in the Prisma compiler. Our evaluations of the Prisma

compiler show that for some case studies, Prisma-compiled smart contracts intro-

duce an overhead of up to 7 % in deployment costs and up to 10 % in execution

costs compared to equivalent smart contracts implemented in Solidity. This over-

head is due to the automated program flow protection provided by Prisma. Prisma

contracts implicitly introduce a phase variable to keep track of the application’s

phase and use this variable to protect the program flow by rejecting unintended

function calls. However, in some applications, it is possible to infer the appli-

cation’s phase from the existing contract variables, making the phase variable

redundant and, hence, causing the efficiency overhead.

An interesting direction for future work is to enable the Prisma compiler to de-

termine whether a phase variable is necessary. The compiler could deploy program

flow analysis techniques such as symbolic execution [124] to determine whether the

application’s phase is uniquely defined by the existing contract variables through-

out the lifetime of the dApp. If this is the case, the compiler generates entry guards

for functions based on the rules derived from the program flow analysis instead

of using a dedicated phase variable. Such an extension would not only eliminate

the inefficiencies introduced by the Prisma compiler, but is likely to detect the

redundancy of the phase variable more reliably than a Solidity developer manu-

ally inspecting the code. The same techniques could be used to identify further

potential for reducing the storage requirements of smart contracts. If a variable

required in the early phases of a dApp is not used in later phases, it could be re-

cycled in later phases of the dApp to store different data, possibly unrelated to its

original purpose. Program flow analysis could identify and automatically recycle

such variables at compile time, effectively reducing the allocated storage.

71

8. Bibliography

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. “Control-flow integrity”.

In: Proceedings of the 12th ACM Conference on Computer and Communications

Security, CCS 2005, Alexandria, VA, USA, November 7-11, 2005. 2005, pp. 340–

353.

[2] Algorand – Website. https://www.algorand.foundation/. Accessed 21-04-

2024.

[3] G. Almashaqbeh, F. Benhamouda, S. Han, D. Jaroslawicz, T. Malkin, A. Nicita,

T. Rabin, A. Shah, and E. Tromer. “Gage MPC: Bypassing Residual Function

Leakage for Non-Interactive MPC”. In: Proc. Priv. Enhancing Technol. 4 (2021),

pp. 528–548.

[4] An In-Depth Look at the Parity Multisig Bug. https://hackingdistributed.

com/2017/07/22/deep-dive-parity-bug/. Accessed 31-01-2024.

[5] Analysis of the DAO exploit. https://hackingdistributed.com/2016/06/18/

analysis-of-the-dao-exploit/. Accessed 31-01-2024.

[6] Another Parity Wallet hack explained. https://medium.com/@Pr0Ger/another-

parity-wallet-hack-explained-847ca46a2e1c. Accessed 31-01-2024.

[7] Arbitrum – Website. https://arbitrum.io/. Accessed 30-04-2024.

[8] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I. Pagter, N. P.

Smart, and R. N. Wright. “From Keys to Databases - Real-World Applications

of Secure Multi-Party Computation”. In: Comput. J. 12 (2018), pp. 1749–1771.

[9] S. Arita and K. Tsurudome. “Construction of Threshold Public-Key Encryp-

tions through Tag-Based Encryptions”. In: Applied Cryptography and Network

Security, 7th International Conference, ACNS 2009, Paris-Rocquencourt, France,

June 2-5, 2009. Proceedings. 2009, pp. 186–200.

[10] ARM Security Technology Building a Secure System using TrustZone Technology.

https://developer.arm.com/documentation/PRD29-GENC-009492/. Accessed

18-04-2024.

72

https://www.algorand.foundation/
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
https://arbitrum.io/

8. Bibliography

[11] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. “More Efficient Oblivious

Transfer Extensions with Security for Malicious Adversaries”. In: Advances in

Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-

30, 2015, Proceedings, Part I. 2015, pp. 673–701.

[12] G. Asharov and C. Orlandi. “Calling Out Cheaters: Covert Security with Public

Verifiability”. In: Advances in Cryptology - ASIACRYPT 2012 - 18th Interna-

tional ConferenceGam on the Theory and Application of Cryptology and Infor-

mation Security, Beijing, China, December 2-6, 2012. Proceedings. 2012, pp. 681–

698.

[13] T. Attema, V. Dunning, M. H. Everts, and P. Langenkamp. “Efficient Compiler to

Covert Security with Public Verifiability for Honest Majority MPC”. In: Applied

Cryptography and Network Security - 20th International Conference, ACNS 2022,

Rome, Italy, June 20-23, 2022, Proceedings. 2022, pp. 663–683.

[14] Y. Aumann and Y. Lindell. “Security Against Covert Adversaries: Efficient Pro-

tocols for Realistic Adversaries”. In: Theory of Cryptography, 4th Theory of Cryp-

tography Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24,

2007, Proceedings. 2007, pp. 137–156.

[15] avalanche – Website. https://www.avax.network/. Accessed 21-04-2024.

[16] J. Baek and Y. Zheng. “Identity-Based Threshold Decryption”. In: Public Key

Cryptography - PKC 2004, 7th International Workshop on Theory and Practice

in Public Key Cryptography, Singapore, March 1-4, 2004. 2004, pp. 262–276.

[17] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A. Sadeghi, G. Scerri, and

B. Warinschi. “Secure Multiparty Computation from SGX”. In: Financial Cryp-

tography and Data Security - 21st International Conference, FC 2017, Sliema,

Malta, April 3-7, 2017, Revised Selected Papers. 2017, pp. 477–497.

[18] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A. Sadeghi, and

E. Stapf. “CURE: A Security Architecture with CUstomizable and Resilient En-

claves”. In: 30th USENIX Security Symposium, USENIX Security 2021, August

11-13, 2021. 2021, pp. 1073–1090.

[19] A. Banerjee, M. Clear, and H. Tewari. “zkHawk: Practical Private Smart Con-

tracts from MPC-based Hawk”. In: 3rd Conference on Blockchain Research &

Applications for Innovative Networks and Services, BRAINS 2021, Paris, France,

September 27-30, 2021. 2021, pp. 245–248.

[20] A. Banerjee and H. Tewari. “Multiverse of HawkNess: A Universally-Composable

MPC-Based Hawk Variant”. In: Cryptogr. 3 (2022), p. 39.

73

https://www.avax.network/

8. Bibliography

[21] C. Baum, J. H. Chiang, B. David, and T. K. Frederiksen. “Eagle: Efficient Privacy

Preserving Smart Contracts”. In: Financial Cryptography and Data Security -

27th International Conference, FC 2023, Bol, Brač, Croatia, May 1-5, 2023,

Revised Selected Papers, Part I. 2023, pp. 270–288.

[22] C. Baum, I. Damg̊ard, and C. Orlandi. “Publicly Auditable Secure Multi-Party

Computation”. In: Security and Cryptography for Networks - 9th International

Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings. 2014,

pp. 175–196.

[23] D. Beaver. “Efficient Multiparty Protocols Using Circuit Randomization”. In:

Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings.

1991, pp. 420–432.

[24] D. Beaver, S. Micali, and P. Rogaway. “The Round Complexity of Secure Proto-

cols (Extended Abstract)”. In: Proceedings of the 22nd Annual ACM Symposium

on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA. 1990,

pp. 503–513.

[25] A. Ben-Efraim, M. Nielsen, and E. Omri. “Turbospeedz: Double Your Online

SPDZ! Improving SPDZ Using Function Dependent Preprocessing”. In: Applied

Cryptography and Network Security - 17th International Conference, ACNS 2019,

Bogota, Colombia, June 5-7, 2019, Proceedings. 2019, pp. 530–549.

[26] M. Ben-Or, S. Goldwasser, and A. Wigderson. “Completeness Theorems for Non-

Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract)”.

In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing,

May 2-4, 1988, Chicago, Illinois, USA. 1988, pp. 1–10.

[27] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin, T.

Rabin, and L. Reyzin. “Can a Public Blockchain Keep a Secret?” In: Theory of

Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA,

November 16-19, 2020, Proceedings, Part I. 2020, pp. 260–290.

[28] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A. Sadeghi. “The Guard’s

Dilemma: Efficient Code-Reuse Attacks Against Intel SGX”. In: 27th USENIX

Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-

17, 2018. 2018, pp. 1213–1227.

[29] BnB Chain – Website. https://www.bnbchain.org/. Accessed 21-04-2024.

[30] BNB Smart Chain. https://github.com/bnb- chain/whitepaper/blob/

master/WHITEPAPER.md. Accessed 18-01-2024.

74

https://www.bnbchain.org/
https://github.com/bnb-chain/whitepaper/blob/master/WHITEPAPER.md
https://github.com/bnb-chain/whitepaper/blob/master/WHITEPAPER.md

8. Bibliography

[31] P. Bogetoft et al. “Secure Multiparty Computation Goes Live”. In: Financial

Cryptography and Data Security, 13th International Conference, FC 2009, Accra

Beach, Barbados, February 23-26, 2009. Revised Selected Papers. 2009, pp. 325–

343.

[32] D. Boneh, X. Boyen, and S. Halevi. “Chosen Ciphertext Secure Public Key

Threshold Encryption Without Random Oracles”. In: Topics in Cryptology - CT-

RSA 2006, The Cryptographers’ Track at the RSA Conference 2006, San Jose,

CA, USA, February 13-17, 2006, Proceedings. 2006, pp. 226–243.

[33] D. Boneh and M. K. Franklin. “Identity-Based Encryption from the Weil Pair-

ing”. In: Advances in Cryptology - CRYPTO 2001, 21st Annual International

Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001,

Proceedings. 2001, pp. 213–229.

[34] D. Boneh, D. B. Glass, D. Krashen, K. E. Lauter, S. Sharif, A. Silverberg, M.

Tibouchi, and M. Zhandry. “Multiparty Non-Interactive Key Exchange and More

From Isogenies on Elliptic Curves”. In: J. Math. Cryptol. 1 (2020), pp. 5–14.

[35] X. Boyen and B. Waters. “Anonymous Hierarchical Identity-Based Encryption

(Without Random Oracles)”. In: Advances in Cryptology - CRYPTO 2006, 26th

Annual International Cryptology Conference, Santa Barbara, California, USA,

August 20-24, 2006, Proceedings. 2006, pp. 290–307.

[36] E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai. “Compressing Vector OLE”. In:

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. 2018,

pp. 896–912.

[37] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl.

“Efficient Two-Round OT Extension and Silent Non-Interactive Secure Compu-

tation”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2019, London, UK, November 11-15, 2019. 2019,

pp. 291–308.

[38] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. “Efficient Pseu-

dorandom Correlation Generators from Ring-LPN”. In: Advances in Cryptology

- CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO

2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II. 2020,

pp. 387–416.

[39] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. “Efficient Pseu-

dorandom Correlation Generators: Silent OT Extension and More”. In: Advances

in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Confer-

ence, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III. 2019,

pp. 489–518.

75

8. Bibliography

[40] E. Boyle, N. Gilboa, and Y. Ishai. “Breaking the Circuit Size Barrier for Secure

Computation Under DDH”. In: Advances in Cryptology - CRYPTO 2016 - 36th

Annual International Cryptology Conference, Santa Barbara, CA, USA, August

14-18, 2016, Proceedings, Part I. 2016, pp. 509–539.

[41] E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro. “Foundations of Homo-

morphic Secret Sharing”. In: 9th Innovations in Theoretical Computer Science

Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA. 2018, 21:1–

21:21.

[42] F. Brasser, D. Gens, P. Jauernig, A. Sadeghi, and E. Stapf. “SANCTUARY:

ARMing TrustZone with User-space Enclaves”. In: 26th Annual Network and Dis-

tributed System Security Symposium, NDSS 2019, San Diego, California, USA,

February 24-27, 2019. 2019.

[43] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A. Sadeghi.

“Software Grand Exposure: SGX Cache Attacks Are Practical”. In: 11th USENIX

Workshop on Offensive Technologies, WOOT 2017, Vancouver, BC, Canada,

August 14-15, 2017. 2017.

[44] J. Buchmann and H. C. Williams. “A Key-Exchange System Based on Imaginary

Quadratic Fields”. In: J. Cryptol. 2 (1988), pp. 107–118.

[45] J. V. Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom

with Transient Out-of-Order Execution”. In: 27th USENIX Security Symposium,

USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. 2018, pp. 991–

1008.

[46] S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini, P.

Scholl, and N. P. Smart. “High-Performance Multi-party Computation for Binary

Circuits Based on Oblivious Transfer”. In: J. Cryptol. 3 (2021), p. 34.

[47] L. Caires and F. Pfenning. “Session Types as Intuitionistic Linear Propositions”.

In: CONCUR 2010 - Concurrency Theory, 21th International Conference,

CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings.

2010, pp. 222–236.

[48] L. Caires, F. Pfenning, and B. Toninho. “Linear logic propositions as session

types”. In: Math. Struct. Comput. Sci. 3 (2016), pp. 367–423.

[49] M. Campanelli, B. David, H. Khoshakhlagh, A. Konring, and J. B. Nielsen. “En-

cryption to the Future - A Paradigm for Sending Secret Messages to Future

(Anonymous) Committees”. In: Advances in Cryptology - ASIACRYPT 2022 -

28th International Conference on the Theory and Application of Cryptology and

Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part III.

2022, pp. 151–180.

76

8. Bibliography

[50] C. Canella et al. “Fallout: Leaking Data on Meltdown-resistant CPUs”. In: Pro-

ceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS 2019, London, UK, November 11-15, 2019. 2019, pp. 769–

784.

[51] R. Canetti, B. Riva, and G. N. Rothblum. “Practical delegation of computation

using multiple servers”. In: Proceedings of the 18th ACM Conference on Computer

and Communications Security, CCS 2011, Chicago, Illinois, USA, October 17-21,

2011. 2011, pp. 445–454.

[52] Cardano – Website. https://cardano.org/. Accessed 21-04-2024.

[53] J. Cartlidge, N. P. Smart, and Y. T. Alaoui. “MPC Joins The Dark Side”. In:

Proceedings of the 2019 ACM Asia Conference on Computer and Communica-

tions Security, AsiaCCS 2019, Auckland, New Zealand, July 09-12, 2019. 2019,

pp. 148–159.

[54] I. Cascudo and J. S. Gundersen. “A Secret-Sharing Based MPC Protocol for

Boolean Circuits with Good Amortized Complexity”. In: Theory of Cryptography

- 18th International Conference, TCC 2020, Durham, NC, USA, November 16-

19, 2020, Proceedings, Part II. 2020, pp. 652–682.

[55] D. Chaum, C. Crépeau, and I. Damg̊ard. “Multiparty Unconditionally Secure

Protocols (Extended Abstract)”. In: Proceedings of the 20th Annual ACM Sym-

posium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA. 1988,

pp. 11–19.

[56] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. M. Johnson, A. Juels, A.

Miller, and D. Song. “Ekiden: A Platform for Confidentiality-Preserving, Trust-

worthy, and Performant Smart Contracts”. In: IEEE European Symposium on Se-

curity and Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019. 2019,

pp. 185–200.

[57] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers. “Fairness in an

Unfair World: Fair Multiparty Computation from Public Bulletin Boards”. In:

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017.

2017, pp. 719–728.

[58] M. J. Coblenz. “Obsidian: a safer blockchain programming language”. In: Pro-

ceedings of the 39th International Conference on Software Engineering, ICSE

2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume. 2017,

pp. 97–99.

[59] M. J. Coblenz, G. Kambhatla, P. Koronkevich, J. L. Wise, C. Barnaby, J. Aldrich,

J. Sunshine, and B. A. Myers. “User-Centered Programming Language Design in

the Obsidian Smart Contract Language”. In: CoRR (2019). arXiv: 1912.04719.

77

https://cardano.org/
https://arxiv.org/abs/1912.04719

8. Bibliography

[60] M. J. Coblenz, R. Oei, T. Etzel, P. Koronkevich, M. Baker, Y. Bloem, B. A.

Myers, J. Sunshine, and J. Aldrich. “Obsidian: Typestate and Assets for Safer

Blockchain Programming”. In: ACM Trans. Program. Lang. Syst. 3 (2020), 14:1–

14:82.

[61] CoinMarketCap – Charts. https://coinmarketcap.com/charts/. Accessed

18-01-2024.

[62] V. Costan and S. Devadas. “Intel SGX Explained”. In: IACR Cryptol. ePrint

Arch. (2016), p. 86.

[63] V. Costan, I. A. Lebedev, and S. Devadas. “Sanctum: Minimal Hardware Ex-

tensions for Strong Software Isolation”. In: 25th USENIX Security Symposium,

USENIX Security 16, Austin, TX, USA, August 10-12, 2016. 2016, pp. 857–874.

[64] G. Couteau, P. Rindal, and S. Raghuraman. “Silver: Silent VOLE and Oblivious

Transfer from Hardness of Decoding Structured LDPC Codes”. In: Advances in

Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,

CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part III. 2021,

pp. 502–534.

[65] R. Cramer, I. Damg̊ard, D. Escudero, P. Scholl, and C. Xing. “SPDZ
2k: Efficient

MPC mod 2k for Dishonest Majority”. In: Advances in Cryptology - CRYPTO

2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA,

USA, August 19-23, 2018, Proceedings, Part II. 2018, pp. 769–798.

[66] K. Croman et al. “On Scaling Decentralized Blockchains - (A Position Paper)”. In:

Financial Cryptography and Data Security - FC 2016 International Workshops,

BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016,

Revised Selected Papers. 2016, pp. 106–125.

[67] I. Damg̊ard, M. Geisler, and J. B. Nielsen. “From Passive to Covert Security at

Low Cost”. In: Theory of Cryptography, 7th Theory of Cryptography Conference,

TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings. 2010, pp. 128–

145.

[68] I. Damg̊ard, M. Keller, E. Larraia, C. Miles, and N. P. Smart. “Implementing

AES via an Actively/Covertly Secure Dishonest-Majority MPC Protocol”. In:

Security and Cryptography for Networks - 8th International Conference, SCN

2012, Amalfi, Italy, September 5-7, 2012. Proceedings. 2012, pp. 241–263.

[69] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. “Prac-

tical Covertly Secure MPC for Dishonest Majority - Or: Breaking the SPDZ

Limits”. In: Computer Security - ESORICS 2013 - 18th European Symposium on

Research in Computer Security, Egham, UK, September 9-13, 2013. Proceedings.

2013, pp. 1–18.

78

https://coinmarketcap.com/charts/

8. Bibliography

[70] I. Damg̊ard, C. Orlandi, and M. Simkin. “Black-Box Transformations from Pas-

sive to Covert Security with Public Verifiability”. In: Advances in Cryptology -

CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO

2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II. 2020,

pp. 647–676.

[71] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. “Multiparty Computa-

tion from Somewhat Homomorphic Encryption”. In: Advances in Cryptology -

CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,

August 19-23, 2012. Proceedings. 2012, pp. 643–662.

[72] A. Das, S. Balzer, J. Hoffmann, F. Pfenning, and I. Santurkar. “Resource-Aware

Session Types for Digital Contracts”. In: 34th IEEE Computer Security Founda-

tions Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. 2021, pp. 1–

16.

[73] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig, S. Faust,

and A. Sadeghi. “FastKitten: Practical Smart Contracts on Bitcoin”. In: 28th

USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,

August 14-16, 2019. 2019, pp. 801–818.

[74] R. DeLine and M. Fähndrich. “Typestates for Objects”. In: ECOOP 2004 -

Object-Oriented Programming, 18th European Conference, Oslo, Norway, June

14-18, 2004, Proceedings. 2004, pp. 465–490.

[75] W. Diffie and M. E. Hellman. “New directions in cryptography”. In: IEEE Trans.

Inf. Theory 6 (1976), pp. 644–654.

[76] S. Dittmer, Y. Ishai, S. Lu, and R. Ostrovsky. “Authenticated Garbling from

Simple Correlations”. In: Advances in Cryptology - CRYPTO 2022 - 42nd Annual

International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA,

August 15-18, 2022, Proceedings, Part IV. 2022, pp. 57–87.

[77] S. Dobson and S. D. Galbraith. “Trustless Groups of Unknown Order with Hy-

perelliptic Curves”. In: IACR Cryptol. ePrint Arch. (2020), p. 196.

[78] S. Dziembowski, L. Eckey, and S. Faust. “FairSwap: How To Fairly Exchange

Digital Goods”. In: Proceedings of the 2018 ACM SIGSAC Conference on Com-

puter and Communications Security, CCS 2018, Toronto, ON, Canada, October

15-19, 2018. 2018, pp. 967–984.

[79] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostáková. “Multi-party

Virtual State Channels”. In: Advances in Cryptology - EUROCRYPT 2019 -

38th Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part

I. 2019, pp. 625–656.

79

8. Bibliography

[80] S. Dziembowski, S. Faust, and K. Hostáková. “General State Channel Networks”.

In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-

munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018.

2018, pp. 949–966.

[81] ECMAScript® 2023 Language Specification. https : / / 262 . ecma -

international.org/. Accessed 12-04-2024.

[82] Ethereum – The Merge. https://ethereum.org/en/roadmap/merge/. Accessed

21-04-2024.

[83] Ethereum – Website. https://ethereum.org/. Accessed 21-04-2024.

[84] Etherscan – Ethereum Average Gas Price Chart. https : / / etherscan . io /

chart/gasprice. 10 GWei per gas, 3152 USD per ETH. Accessed 03-05-2024.

[85] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Financially Backed Covert

Security”. In: IACR Cryptol. ePrint Arch. (2021), p. 1652.

[86] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Financially Backed Covert

Security”. In: Public-Key Cryptography - PKC 2022 - 25th IACR International

Conference on Practice and Theory of Public-Key Cryptography, Virtual Event,

March 8-11, 2022, Proceedings, Part II. 2022, pp. 99–129. Part of this thesis.

[87] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Generic Compiler for Publicly

Verifiable Covert Multi-Party Computation”. In: IACR Cryptol. ePrint Arch.

(2021), p. 251.

[88] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Generic Compiler for Pub-

licly Verifiable Covert Multi-Party Computation”. In: Advances in Cryptology -

EUROCRYPT 2021 - 40th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,

Proceedings, Part II. 2021, pp. 782–811. Part of this thesis.

[89] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Putting the Online Phase

on a Diet: Covert Security from Short MACs”. In: IACR Cryptol. ePrint Arch.

(2023), p. 52.

[90] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Putting the Online Phase on

a Diet: Covert Security from Short MACs”. In: Topics in Cryptology - CT-RSA

2023 - Cryptographers’ Track at the RSA Conference 2023, San Francisco, CA,

USA, April 24-27, 2023, Proceedings. 2023, pp. 360–386. Part of this thesis.

[91] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Statement-Oblivious Thresh-

old Witness Encryption”. In: 36th IEEE Computer Security Foundations Sym-

posium, CSF 2023, Dubrovnik, Croatia, July 10-14, 2023. 2023, pp. 17–32. Part

of this thesis.

[92] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Statement-Oblivious Thresh-

old Witness Encryption”. In: IACR Cryptol. ePrint Arch. (2023), p. 668.

80

https://262.ecma-international.org/
https://262.ecma-international.org/
https://ethereum.org/en/roadmap/merge/
https://ethereum.org/
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice

8. Bibliography

[93] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Threshold BBS+ From Pseu-

dorandom Correlations”. In: IACR Cryptol. ePrint Arch. (2023), p. 1076.

[94] T. Frassetto, P. Jauernig, D. Koisser, D. Kretzler, B. Schlosser, S. Faust, and

A. Sadeghi. “POSE: Practical Off-chain Smart Contract Execution”. In: CoRR

(2022). arXiv: 2210.07110.

[95] T. Frassetto, P. Jauernig, D. Koisser, D. Kretzler, B. Schlosser, S. Faust, and

A. Sadeghi. “POSE: Practical Off-chain Smart Contract Execution”. In: 30th

Annual Network and Distributed System Security Symposium, NDSS 2023, San

Diego, California, USA, February 27 - March 3, 2023. 2023. Part of this thesis.

[96] T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl. “A Unified Approach to

MPC with Preprocessing Using OT”. In: Advances in Cryptology - ASIACRYPT

2015 - 21st International Conference on the Theory and Application of Cryptology

and Information Security, Auckland, New Zealand, November 29 - December 3,

2015, Proceedings, Part I. 2015, pp. 711–735.

[97] T. E. Gamal. “A Public Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms”. In: Advances in Cryptology, Proceedings of CRYPTO ’84,

Santa Barbara, California, USA, August 19-22, 1984, Proceedings. 1984, pp. 10–

18.

[98] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. “Candidate

Indistinguishability Obfuscation and Functional Encryption for all Circuits”. In:

54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013,

26-29 October, 2013, Berkeley, CA, USA. 2013, pp. 40–49.

[99] S. Garg, C. Gentry, A. Sahai, and B. Waters. “Witness encryption and its ap-

plications”. In: Symposium on Theory of Computing Conference, STOC’13, Palo

Alto, CA, USA, June 1-4, 2013. 2013, pp. 467–476.

[100] C. Gentry. “Practical Identity-Based Encryption Without Random Oracles”. In:

Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Confer-

ence on the Theory and Applications of Cryptographic Techniques, St. Petersburg,

Russia, May 28 - June 1, 2006, Proceedings. 2006, pp. 445–464.

[101] C. Gentry, S. Halevi, B. Magri, J. B. Nielsen, and S. Yakoubov. “Random-Index

PIR and Applications”. In: Theory of Cryptography - 19th International Confer-

ence, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part III.

2021, pp. 32–61.

[102] C. Gentry, A. B. Lewko, and B. Waters. “Witness Encryption from Instance

Independent Assumptions”. In: Advances in Cryptology - CRYPTO 2014 - 34th

Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,

Proceedings, Part I. 2014, pp. 426–443.

81

https://arxiv.org/abs/2210.07110

8. Bibliography

[103] M. George and S. Kamara. “Adversarial Level Agreements for Two-Party Pro-

tocols”. In: ASIA CCS ’22: ACM Asia Conference on Computer and Communi-

cations Security, Nagasaki, Japan, 30 May 2022 - 3 June 2022. 2022, pp. 816–

830.

[104] O. Goldreich, S. Micali, and A. Wigderson. “How to Play any Mental Game or

A Completeness Theorem for Protocols with Honest Majority”. In: Proceedings

of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York,

New York, USA. 1987, pp. 218–229.

[105] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.

“How to Run Turing Machines on Encrypted Data”. In: Advances in Cryptology -

CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,

August 18-22, 2013. Proceedings, Part II. 2013, pp. 536–553.

[106] V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song. “Storing and

Retrieving Secrets on a Blockchain”. In: Public-Key Cryptography - PKC 2022 -

25th IACR International Conference on Practice and Theory of Public-Key Cryp-

tography, Virtual Event, March 8-11, 2022, Proceedings, Part I. 2022, pp. 252–

282.

[107] V. Goyal, E. Masserova, B. Parno, and Y. Song. “Blockchains Enable Non-

interactive MPC”. In: Theory of Cryptography - 19th International Conference,

TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part II. 2021,

pp. 162–193.

[108] V. Goyal, P. Mohassel, and A. D. Smith. “Efficient Two Party and Multi Party

Computation Against Covert Adversaries”. In: Advances in Cryptology - EURO-

CRYPT 2008, 27th Annual International Conference on the Theory and Appli-

cations of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Pro-

ceedings. 2008, pp. 289–306.

[109] D. Gupta, B. Mood, J. Feigenbaum, K. R. B. Butler, and P. Traynor. “Using

Intel Software Guard Extensions for Efficient Two-Party Secure Function Eval-

uation”. In: Financial Cryptography and Data Security - FC 2016 International

Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, Febru-

ary 26, 2016, Revised Selected Papers. 2016, pp. 302–318.

[110] C. Hazay and Y. Lindell. “Efficient Oblivious Polynomial Evaluation with

Simulation-Based Security”. In: IACR Cryptol. ePrint Arch. (2009), p. 459.

[111] C. Hazay and Y. Lindell. “Efficient Protocols for Set Intersection and Pattern

Matching with Security Against Malicious and Covert Adversaries”. In: Theory of

Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New York,

USA, March 19-21, 2008. 2008, pp. 155–175.

82

8. Bibliography

[112] C. Hazay, P. Scholl, and E. Soria-Vazquez. “Low Cost Constant Round MPC

Combining BMR and Oblivious Transfer”. In: Advances in Cryptology - ASI-

ACRYPT 2017 - 23rd International Conference on the Theory and Applications

of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,

Proceedings, Part I. 2017, pp. 598–628.

[113] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. del Cuvillo. “Using

innovative instructions to create trustworthy software solutions”. In: HASP 2013,

The Second Workshop on Hardware and Architectural Support for Security and

Privacy, Tel-Aviv, Israel, June 23-24, 2013. 2013, p. 11.

[114] K. Honda. “Types for Dyadic Interaction”. In: CONCUR ’93, 4th International

Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,

Proceedings. 1993, pp. 509–523.

[115] K. Honda, V. T. Vasconcelos, and M. Kubo. “Language Primitives and Type Dis-

cipline for Structured Communication-Based Programming”. In: Programming

Languages and Systems - ESOP’98, 7th European Symposium on Programming,

Held as Part of the European Joint Conferences on the Theory and Practice of

Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings.

1998, pp. 122–138.

[116] C. Hong, J. Katz, V. Kolesnikov, W. Lu, and X. Wang. “Covert Security with

Public Verifiability: Faster, Leaner, and Simpler”. In: Advances in Cryptology

- EUROCRYPT 2019 - 38th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-

23, 2019, Proceedings, Part III. 2019, pp. 97–121.

[117] J. van den Hooff, M. F. Kaashoek, and N. Zeldovich. “VerSum: Verifiable Com-

putations over Large Public Logs”. In: Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, Scottsdale, AZ, USA,

November 3-7, 2014. 2014, pp. 1304–1316.

[118] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. “Extending Oblivious Transfers

Efficiently”. In: Advances in Cryptology - CRYPTO 2003, 23rd Annual Inter-

national Cryptology Conference, Santa Barbara, California, USA, August 17-21,

2003, Proceedings. 2003, pp. 145–161.

[119] Y. Ishai, M. Prabhakaran, and A. Sahai. “Founding Cryptography on Oblivious

Transfer - Efficiently”. In: Advances in Cryptology - CRYPTO 2008, 28th Annual

International Cryptology Conference, Santa Barbara, CA, USA, August 17-21,

2008. Proceedings. 2008, pp. 572–591.

[120] H. A. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten.

“Arbitrum: Scalable, private smart contracts”. In: 27th USENIX Security Sym-

posium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. 2018,

pp. 1353–1370.

83

8. Bibliography

[121] S. Kanjalkar, Y. Zhang, S. Gandlur, and A. Miller. “Publicly Auditable MPC-

as-a-Service with succinct verification and universal setup”. In: IEEE European

Symposium on Security and Privacy Workshops, EuroS&P 2021, Vienna, Aus-

tria, September 6-10, 2021. 2021, pp. 386–411.

[122] J. Katz, S. Ranellucci, M. Rosulek, and X. Wang. “Optimizing Authenticated

Garbling for Faster Secure Two-Party Computation”. In: Advances in Cryptol-

ogy - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa

Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III. 2018, pp. 365–391.

[123] M. Keller, E. Orsini, and P. Scholl. “MASCOT: Faster Malicious Arithmetic Se-

cure Computation with Oblivious Transfer”. In: Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, Vienna, Aus-

tria, October 24-28, 2016. 2016, pp. 830–842.

[124] J. C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM 7

(1976), pp. 385–394.

[125] B. Knott, S. Venkataraman, A. Y. Hannun, S. Sengupta, M. Ibrahim, and L.

van der Maaten. “CrypTen: Secure Multi-Party Computation Meets Machine

Learning”. In: Advances in Neural Information Processing Systems 34: Annual

Conference on Neural Information Processing Systems 2021, NeurIPS 2021, De-

cember 6-14, 2021, virtual. 2021, pp. 4961–4973.

[126] V. Kolesnikov and A. J. Malozemoff. “Public Verifiability in the Covert Model

(Almost) for Free”. In: Advances in Cryptology - ASIACRYPT 2015 - 21st In-

ternational Conference on the Theory and Application of Cryptology and Infor-

mation Security, Auckland, New Zealand, November 29 - December 3, 2015, Pro-

ceedings, Part II. 2015, pp. 210–235.

[127] V. Kolesnikov, P. Mohassel, B. Riva, and M. Rosulek. “Richer Efficiency/Security

Trade-offs in 2PC”. In: Theory of Cryptography - 12th Theory of Cryptography

Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part

I. 2015, pp. 229–259.

[128] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. “Hawk: The

Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts”.

In: IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA,

May 22-26, 2016. 2016, pp. 839–858.

[129] K. A. Küçük, A. Paverd, A. C. Martin, N. Asokan, A. Simpson, and R. Ankele.

“Exploring the use of Intel SGX for Secure Many-Party Applications”. In: Pro-

ceedings of the 1st Workshop on System Software for Trusted Execution, Sys-

TEX@Middleware 2016, Trento, Italy, December 12, 2016. 2016, 5:1–5:6.

84

8. Bibliography

[130] A. Küpçü and P. Mohassel. “Fast Optimistically Fair Cut-and-Choose 2PC”. In:

Financial Cryptography and Data Security - 20th International Conference, FC

2016, Christ Church, Barbados, February 22-26, 2016, Revised Selected Papers.

2016, pp. 208–228.

[131] E. Larraia, E. Orsini, and N. P. Smart. “Dishonest Majority Multi-Party Compu-

tation for Binary Circuits”. In: Advances in Cryptology - CRYPTO 2014 - 34th

Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,

Proceedings, Part II. 2014, pp. 495–512.

[132] Y. Lindell. “Fast Cut-and-Choose Based Protocols for Malicious and Covert Ad-

versaries”. In: Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology

Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II.

2013, pp. 1–17.

[133] Y. Lindell, E. Oxman, and B. Pinkas. “The IPS Compiler: Optimizations, Vari-

ants and Concrete Efficiency”. In: Advances in Cryptology - CRYPTO 2011 - 31st

Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.

Proceedings. 2011, pp. 259–276.

[134] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMaged-

don: Cache Attacks on Mobile Devices”. In: 25th USENIX Security Symposium,

USENIX Security 16, Austin, TX, USA, August 10-12, 2016. 2016, pp. 549–564.

[135] J. Liu, T. Jager, S. A. Kakvi, and B. Warinschi. “How to build time-lock encryp-

tion”. In: Des. Codes Cryptogr. 11 (2018), pp. 2549–2586.

[136] Y. Liu, J. Lai, Q. Wang, X. Qin, A. Yang, and J. Weng. “Robust Publicly Verifi-

able Covert Security: Limited Information Leakage and Guaranteed Correctness

with Low Overhead”. In: Advances in Cryptology - ASIACRYPT 2023 - 29th

International Conference on the Theory and Application of Cryptology and In-

formation Security, Guangzhou, China, December 4-8, 2023, Proceedings, Part I.

2023, pp. 272–301.

[137] Y. Liu, Q. Wang, and S. Yiu. “Making Private Function Evaluation Safer, Faster,

and Simpler”. In: Public-Key Cryptography - PKC 2022 - 25th IACR Interna-

tional Conference on Practice and Theory of Public-Key Cryptography, Virtual

Event, March 8-11, 2022, Proceedings, Part I. 2022, pp. 349–378.

[138] D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and A. Miller. “HoneyBad-

gerMPC and AsynchroMix: Practical Asynchronous MPC and its Application to

Anonymous Communication”. In: Proceedings of the 2019 ACM SIGSAC Con-

ference on Computer and Communications Security, CCS 2019, London, UK,

November 11-15, 2019. 2019, pp. 887–903.

85

8. Bibliography

[139] P. D. MacKenzie, M. K. Reiter, and K. Yang. “Alternatives to Non-malleability:

Definitions, Constructions, and Applications (Extended Abstract)”. In: Theory of

Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge,

MA, USA, February 19-21, 2004, Proceedings. 2004, pp. 171–190.

[140] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue,

and U. R. Savagaonkar. “Innovative instructions and software model for isolated

execution”. In: HASP 2013, The Second Workshop on Hardware and Architectural

Support for Security and Privacy, Tel-Aviv, Israel, June 23-24, 2013. 2013, p. 10.

[141] R. C. Merkle. “A Digital Signature Based on a Conventional Encryption Func-

tion”. In: Advances in Cryptology - CRYPTO ’87, A Conference on the Theory

and Applications of Cryptographic Techniques, Santa Barbara, California, USA,

August 16-20, 1987, Proceedings. 1987, pp. 369–378.

[142] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry. “Sprites and

State Channels: Payment Networks that Go Faster Than Lightning”. In: Finan-

cial Cryptography and Data Security - 23rd International Conference, FC 2019,

Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers.

2019, pp. 508–526.

[143] P. Mohassel and B. Riva. “Garbled Circuits Checking Garbled Circuits: More

Efficient and Secure Two-Party Computation”. In: Advances in Cryptology -

CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,

August 18-22, 2013. Proceedings, Part II. 2013, pp. 36–53.

[144] MPC Alliance. https://www.mpcalliance.org/. Accessed 01-02-2024.

[145] S. Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: (2008).

[146] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. “A New Approach to

Practical Active-Secure Two-Party Computation”. In: Advances in Cryptology -

CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,

August 19-23, 2012. Proceedings. 2012, pp. 681–700.

[147] J. B. Nielsen, T. Schneider, and R. Trifiletti. “Constant Round Maliciously Secure

2PC with Function-independent Preprocessing using LEGO”. In: 24th Annual

Network and Distributed System Security Symposium, NDSS 2017, San Diego,

California, USA, February 26 - March 1, 2017. 2017.

[148] Optimism – Website. https://www.optimism.io/. Accessed 30-04-2024.

[149] A. J. Paverd, A. P. Martin, and I. Brown. “Privacy-enhanced bi-directional com-

munication in the Smart Grid using trusted computing”. In: 2014 IEEE Inter-

national Conference on Smart Grid Communications, SmartGridComm 2014,

Venice, Italy, November 3-6, 2014. 2014, pp. 872–877.

86

https://www.mpcalliance.org/
https://www.optimism.io/

8. Bibliography

[150] K. Pietrzak. “Simple Verifiable Delay Functions”. In: 10th Innovations in The-

oretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San

Diego, California, USA. 2019, 60:1–60:15.

[151] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. “Secure Two-Party

Computation Is Practical”. In: Advances in Cryptology - ASIACRYPT 2009,

15th International Conference on the Theory and Application of Cryptology and

Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings. 2009,

pp. 250–267.

[152] D. Richter, D. Kretzler, P. Weisenburger, G. Salvaneschi, S. Faust, and M. Mezini.

“Prisma : A Tierless Language for Enforcing Contract-client Protocols in Decen-

tralized Applications”. In: ACM Trans. Program. Lang. Syst. 3 (2023), 17:1–

17:41. Part of this thesis.

[153] D. Richter, D. Kretzler, P. Weisenburger, G. Salvaneschi, S. Faust, and M. Mezini.

“Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decen-

tralized Applications (Extended Version)”. In: CoRR (2022). arXiv: 2205.07780.

[154] R. L. Rivest, A. Shamir, and D. A. Wagner. “Time-lock puzzles and timed-release

crypto”. In: (1996).

[155] P. Scholl, M. Simkin, and L. Siniscalchi. “Multiparty Computation with Covert

Security and Public Verifiability”. In: 3rd Conference on Information-Theoretic

Cryptography, ITC 2022, July 5-7, 2022, Cambridge, MA, USA. 2022, 8:1–8:13.

[156] P. Schoppmann, A. Gascón, L. Reichert, and M. Raykova. “Distributed Vector-

OLE: Improved Constructions and Implementation”. In: Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security, CCS

2019, London, UK, November 11-15, 2019. 2019, pp. 1055–1072.

[157] A. Shamir. “How to Share a Secret”. In: Commun. ACM 11 (1979), pp. 612–613.

[158] A. Shamir. “Identity-Based Cryptosystems and Signature Schemes”. In: Advances

in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA,

August 19-22, 1984, Proceedings. 1984, pp. 47–53.

[159] M. Shih, S. Lee, T. Kim, and M. Peinado. “T-SGX: Eradicating Controlled-

Channel Attacks Against Enclave Programs”. In: 24th Annual Network and Dis-

tributed System Security Symposium, NDSS 2017, San Diego, California, USA,

February 26 - March 1, 2017. 2017.

[160] Solana – Website. https://solana.com/. Accessed 21-04-2024.

[161] Solidity Documentation. https://docs.soliditylang.org/en/v0.8.24/.

Accessed 31-01-2024.

[162] Starknet – Website. https://www.starknet.io/. Accessed 30-04-2024.

87

https://arxiv.org/abs/2205.07780
https://solana.com/
https://docs.soliditylang.org/en/v0.8.24/
https://www.starknet.io/

8. Bibliography

[163] S. Steffen, B. Bichsel, R. Baumgartner, and M. T. Vechev. “ZeeStar: Private

Smart Contracts by Homomorphic Encryption and Zero-knowledge Proofs”. In:

43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA,

USA, May 22-26, 2022. 2022, pp. 179–197.

[164] S. Steffen, B. Bichsel, M. Gersbach, N. Melchior, P. Tsankov, and M. T. Vechev.

“zkay: Specifying and Enforcing Data Privacy in Smart Contracts”. In: Proceed-

ings of the 2019 ACM SIGSAC Conference on Computer and Communications

Security, CCS 2019, London, UK, November 11-15, 2019. 2019, pp. 1759–1776.

[165] R. E. Strom and S. Yemini. “Typestate: A Programming Language Concept

for Enhancing Software Reliability”. In: IEEE Trans. Software Eng. 1 (1986),

pp. 157–171.

[166] Tron – Website. https://tron.network/. Accessed 21-04-2024.

[167] TRON Whitepaper: Advanced Decentralized Blockchain Platform. https://tron.

network/static/doc/white_paper_v_2_0.pdf. Accessed 18-01-2024.

[168] VISA Fact Sheet. https://www.visa.co.uk/dam/VCOM/download/corporate/

media/visanet-technology/aboutvisafactsheet.pdf. Accessed 17-01-2024.

[169] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and

A. Bestavros. “Conclave: secure multi-party computation on big data”. In:

Proceedings of the Fourteenth EuroSys Conference 2019, Dresden, Germany,

March 25-28, 2019. 2019, 3:1–3:18.

[170] P. Wadler. “Propositions as sessions”. In: ACM SIGPLAN International Confer-

ence on Functional Programming, ICFP’12, Copenhagen, Denmark, September

9-15, 2012. 2012, pp. 273–286.

[171] X. Wang, S. Ranellucci, and J. Katz. “Authenticated Garbling and Efficient Ma-

liciously Secure Two-Party Computation”. In: Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, CCS 2017,

Dallas, TX, USA, October 30 - November 03, 2017. 2017, pp. 21–37.

[172] B. Wesolowski. “Efficient Verifiable Delay Functions”. In: Advances in Cryptology

- EUROCRYPT 2019 - 38th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-

23, 2019, Proceedings, Part III. 2019, pp. 379–407.

[173] G. Wood et al. “Ethereum: A secure decentralised generalised transaction ledger”.

In: Ethereum project yellow paper (Paris Version) (2024).

[174] K. Wüst, L. Diana, K. Kostiainen, G. Karame, S. Matetic, and S. Capkun.

“Bitcontracts: Supporting Smart Contracts in Legacy Blockchains”. In: 28th An-

nual Network and Distributed System Security Symposium, NDSS 2021, virtually,

February 21-25, 2021. 2021.

88

https://tron.network/
https://tron.network/static/doc/white_paper_v_2_0.pdf
https://tron.network/static/doc/white_paper_v_2_0.pdf
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf

8. Bibliography

[175] K. Wüst, S. Matetic, S. Egli, K. Kostiainen, and S. Capkun. “ACE: Asynchronous

and Concurrent Execution of Complex Smart Contracts”. In: CCS ’20: 2020 ACM

SIGSAC Conference on Computer and Communications Security, Virtual Event,

USA, November 9-13, 2020. 2020, pp. 587–600.

[176] B. Xu, D. Luthra, Z. Cole, and N. Blakely. “EOS: An Architectural, Performance,

and Economic Analysis”. In: (2018).

[177] A. Yakovenko. “Solana: A new architecture for a high performance blockchain”.

In: (2018).

[178] K. Yang, X. Wang, and J. Zhang. “More Efficient MPC from Improved Triple

Generation and Authenticated Garbling”. In: CCS ’20: 2020 ACM SIGSAC Con-

ference on Computer and Communications Security, Virtual Event, USA, Novem-

ber 9-13, 2020. 2020, pp. 1627–1646.

[179] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang. “Ferret: Fast Extension for

Correlated OT with Small Communication”. In: CCS ’20: 2020 ACM SIGSAC

Conference on Computer and Communications Security, Virtual Event, USA,

November 9-13, 2020. 2020, pp. 1607–1626.

[180] A. C. Yao. “How to Generate and Exchange Secrets (Extended Abstract)”. In:

27th Annual Symposium on Foundations of Computer Science, Toronto, Canada,

27-29 October 1986. 1986, pp. 162–167.

[181] Zengo Wallet. https://zengo.com/. Accessed 01-02-2024.

[182] R. Zhu, C. Ding, and Y. Huang. “Efficient Publicly Verifiable 2PC over

a Blockchain with Applications to Financially-Secure Computations”.

In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2019, London, UK, November 11-15, 2019.

2019, pp. 633–650.

[183] zkSync – Website. https://zksync.io/. Accessed 30-04-2024.

[184] G. Zyskind, O. Nathan, and A. Pentland. “Enigma: Decentralized Computation

Platform with Guaranteed Privacy”. In: CoRR (2015). arXiv: 1506.03471.

89

https://zengo.com/
https://zksync.io/
https://arxiv.org/abs/1506.03471

List of Figures

3.1. Exemplary bisection search over two lists deviating in the last element. 38

4.1. Different ways to instantiate statement-oblivious threshold witness

encryption. 50

5.1. Overview of the POSE system including the processes of contract

creation (blue) and the contract execution (green). 56

6.1. Solidity code of a tic-tac-toe contract with a funding phase and a

payout phase (left). The code implicitly defines a finite state ma-

chine (right). Red dashed arrows illustrate unintended transitions,

e.g., premature calls of the Payout function. Line 14 of the contract

(underlined in red) prevents such unintended payouts. 62

6.2. Prisma dApp implementing the tic-tac-toe case study. 64

6.3. Simplified Obsidian smart contract of the tic-tac-toe case study. . . 67

6.4. Simplified Nomos smart contract of the tic-tac-toe case study. . . . 67

90

List of Abbreviations

A-TIBE Anonymous Threshold Identity-based Encryption
CCA Chosen Ciphertext Attacks
DAO Decentralized Autonomous Organization
DBDH Decision bilinear Diffie-Hellman
EVM Ethereum Virtual Machine
eWEB Extractable Witness Encryption on Blockchains
FBC Financially Backed Verifiable Covert
FSM Finite State Machine
HSS Homomorphic Secret Sharing
IBE Identity-based Encryption
IECF Intermediate Explicit Cheat Formulation
IND-CCA Indistinguishably Under Chosen Ciphertext Attacks
IND-CPA Indistinguishably Under Chosen Plaintext Attacks
MAC Message Authentication Code
MPC Multiparty Computation
NP Nondeterministic Polynomial-Time
OT Oblivious Transfer
O-TTBE Oblivious Threshold Tag-Based Encryption
PoM Proof of Misbehavior
PoS Proof-of-Stake
PoW Proof-of-Work
PPT Probabilistic Polynomial-Time
PVC Publicly Verifiable Covert
SECF Strong Explicit Cheat Formulation
SO-TWE Statement Oblivious Threshold Witness Encryption
TBE Tag-based Encryption
TEE Trusted Execution Environment
TLP Time-Lock Puzzle
TTBE Threshold Tag-based Encryption
TTP Trusted Third Party
USD United States Dollar
V-TTP Virtual Trusted Third Party

91

A. Generic Compiler for Publicly
Verifiable Covert Multi-Party
Computation

This chapter corresponds to the following publication. The full version is available

at [87].

[88] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Generic Compiler for Pub-

licly Verifiable Covert Multi-Party Computation”. In: Advances in Cryptology -

EUROCRYPT 2021 - 40th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,

Proceedings, Part II. 2021, pp. 782–811. Part of this thesis.

92

Generic Compiler for Publicly Verifiable Covert
Multi-Party Computation

Sebastian Faust1, Carmit Hazay2, David Kretzler1, and Benjamin Schlosser1

1 Technical University of Darmstadt, Germany
{first.last}@tu-darmstadt.de

2 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract. Covert security has been introduced as a compromise be-
tween semi-honest and malicious security. In a nutshell, covert security
guarantees that malicious behavior can be detected by the honest par-
ties with some probability, but in case detection fails all bets are off.
While the security guarantee offered by covert security is weaker than
full-fledged malicious security, it comes with significantly improved effi-
ciency. An important extension of covert security introduced by Asharov
and Orlandi (ASIACRYPT’12) is public verifiability, which allows the
honest parties to create a publicly verifiable certificate of malicious be-
havior. Public verifiability significantly strengthen covert security as the
certificate allows punishment via an external party, e.g., a judge.
Most previous work on publicly verifiable covert (PVC) security focuses
on the two-party case, and the multi-party case has mostly been ne-
glected. In this work, we introduce a novel compiler for multi-party PVC
secure protocols with no private inputs. The class of supported protocols
includes the preprocessing of common multi-party computation proto-
cols that are designed in the offline-online model. Our compiler leverages
time-lock encryption to offer high probability of cheating detection (of-
ten also called deterrence factor) independent of the number of involved
parties. Moreover, in contrast to the only earlier work that studies PVC
in the multi-party setting (CRYPTO’20), we provide the first full formal
security analysis.

Keywords: Covert Security · Multi-Party Computation · Public Verifi-
ability · Time-Lock Puzzles

1 Introduction

Secure multi-party computation (MPC) allows a set of n parties Pi to jointly
compute a function f on their inputs such that nothing beyond the output of
that function is revealed. Privacy of the inputs and correctness of the outputs
need to be guaranteed even if some subset of the parties is corrupted by an
adversary. The two most prominent adversarial models considered in the liter-
ature are the semi-honest and malicious adversary model. In the semi-honest
model, the adversary is passive and the corrupted parties follow the protocol

description. Hence, the adversary only learns the inputs and incoming/outgoing
messages including the internal randomness of the corrupted parties. In con-
trast, the adversarial controlled parties can arbitrarily deviate from the protocol
specification under malicious corruption.

Since in most cases it seems hard (if not impossible) to guarantee that a
corrupted party follows the protocol description, malicious security is typically
the desired security goal for the design of multi-party computation protocols.
Unfortunately, compared to protocols that only guarantee semi-honest security,
protection against malicious adversaries results into high overheads in terms of
communication and computation complexity. For protocols based on distributed
garbling techniques in the oblivious transfer (OT)-hybrid model, the communi-
cation complexity is inflated by a factor of s

log |C| [WRK17b], where C is the com-

puted circuit and s is a statistical security parameter. For secret sharing-based
protocols, Hazay et al. [HVW20] have recently shown a constant communication
overhead over the semi-honest GMW-protocol [GMW87]. In most techniques,
the computational overhead grows with an order of s.

In order to mitigate the drawbacks of the overhead required for malicious
secure function evaluation, one approach is to split protocols into an input-
independent offline and an input-dependent online phase. The input-independent
offline protocol carries out pre-computations that are utilized to speed up the
input-dependent online protocol which securely evaluates the desired function.
Examples for such offline protocols are the circuit generation of garbling schemes
as in authenticated garbling [WRK17a, WRK17b] or the generation of correlated
randomness in form of Beaver triples [Bea92] in secret sharing-based protocols
such as in SPDZ [DPSZ12]. The main idea of this approach is that the offline
protocol can be executed continuously in the background and the online protocol
is executed ad-hoc once input data becomes available or output data is required.
Since the performance requirements for the online protocol are usually much
stricter, the offline part should cover the most expensive protocol steps, as for
example done in [WRK17a, WRK17b] and [DPSZ12].

A middle ground between the design goals of security and efficiency has
been proposed with the notion of covert security. Introduced by Aumann and
Lindell [AL07], covert security allows the adversary to take full control over a
party and let her deviate from the protocol specification in an arbitrary way.
The protocol, however, is designed in such a way that honest parties can detect
cheating with some probability ε (often called the deterrence factor). However, if
cheating is not detected all bets are off. This weaker security notion comes with
the benefit of significantly improved efficiency, when compared to protocols in
the full-fledged malicious security model. The motivation behind covert security
is that in many real-world scenarios, parties are able to actively deviate from the
protocol instructions (and as such are not semi-honest), but due to reputation
concerns only do so if they are not caught. In the initial work of Aumann and
Lindell, the focus was on the two-party case. This has been first extended to the
multi-party case by Goyal et al. [GMS08] and later been adapted to a different
line of MPC protocols by Damg̊ard et al. [DKL+13].

2

While the notion of covert security seems appealing at first glance it has one
important shortcoming. If an honest party detects cheating, then she cannot
reliably transfer her knowledge to other parties, which makes the notion of covert
security significantly less attractive for many applications. This shortcoming of
covert security was first observed by Asharov and Orlandi [AO12], and addressed
with the notion of public verifiability. Informally speaking, public verifiability
guarantees that if an honest party detects cheating, she can create a certificate
that uniquely identifies the cheater, and can be verified by an external party.
Said certificate can be used to punish cheaters for misbehavior, e.g., via a smart
contract [ZDH19], thereby disincentivizing misbehavior.

Despite being a natural security notion, there has been relatively little work
on covert security with public verifiability. In particular, starting with the work of
Asharov and Orlandi [AO12] most works have explored publicly verifiable covert
security in the two-party setting [KM15, HKK+19, ZDH19, DOS20]. These works
use a publicly checkable cut-and-choose approach for secure two-party computa-
tion based on garbled circuits. Here a random subset of size t−1 out of t garbled
circuits is opened to verify if cheating occurred, while the remaining unopened
garbled circuit is used for the actual secure function evaluation. The adversary
needs to guess which circuit is used for the final evaluation and only cheat in
this particular instance. If her guess is false, she will be detected. Hence, there
is a deterrence factor of t−1

t .

For the extension to the multi-party case of covert security even less is
known. Prior work mainly focuses on the restricted version of covert security
that does not offer public verifiability [GMS08, DGN10, LOP11, DKL+13]. The
only work that we are aware of that adds public verifiability to covert secure
multi-party computation protocols is the recent work of Damg̊ard et al. [DOS20].
While [DOS20] mainly focuses on a compiler for the two-party case, they also
sketch how their construction can be extended to the multi-party setting.

1.1 Our Contribution

In contrast to most prior research, we focus on the multi-party setting. Our main
contribution is a novel compiler for transforming input-independent multi-party
computation protocols with semi-honest security into protocols that offer covert
security with public verifiability. Our construction achieves a high deterrence
factor of t−1

t , where t is the number of semi-honest instances executed in the
cut-and-choose protocol. In contrast, the only prior work that sketches a solution
for publicly verifiable covert security for the multi-part setting [DOS20] achieves
≈ t−1

nt , which in particular for a large number of parties n results in a low
deterrence factor. [DOS20] states that the deterrence factor can be increased at
the cost of multiple protocol repetitions, which results into higher complexity
and can be abused to amplify denial-of-service attacks. A detail discussion of
the main differences between [DOS20] and our work is given in Section 6. We
emphasize that our work is also the first that provides a full formal security proof
of the multi-party case in the model of covert security with public verifiability.

3

Our results apply to a large class of input-independent offline protocols for
carrying out pre-computation. Damg̊ard et al. [DOS20] have shown that an
offline-online protocol with a publicly verifiable covert secure offline phase and
a maliciously secure online phase constitutes a publicly verifiable covert secure
protocol in total. Hence, by applying our compiler to a passively secure offline
protocol and combining it with an actively secure online protocol, we obtain
a publicly verifiable covert secure protocol in total. Since offline protocols are
often the most expensive part of the secure multi-party computation protocol,
e.g., in protocols like [YWZ20] and [DPSZ12], our approach has the potential of
significantly improving efficiency of multi-party computation protocols in terms
of computation and communication overhead.

An additional contribution of our work (which is of independent interest) is to
introduce a novel mechanism for achieving public verifiability in protocols with
covert security. Our approach is based on time-lock encryption [RSW96, MT19,
MMV11, BGJ+16], a primitive that enables encryption of messages into the
future and has previously been discussed in the context of delayed digital cash
payments, sealed-bid auctions, key escrow, and e-voting. Time-lock encryption
can be used as a building block to guarantee that in case of malicious behavior
each honest party can construct a publicly verifiable cheating certificate without
further interaction. The use of time-lock puzzles in a simulation-based security
proof requires us to overcome several technical challenges that do not occur for
proving game-based security notions.

In order to achieve efficient verification of the cheating certificates, we also
show how to add verifiability to the notion of time-lock encryption by using
techniques from verifiable delay functions [BBBF18]. While our construction
can be instantiated with any time-lock encryption satisfying our requirements,
we present a concrete extension of the RSW time-lock encryption scheme. Since
RSW-based time-lock encryption [RSW96, MT19] requires a one-time trusted
setup, an instantiation of our construction using the RSW-based time-lock en-
cryption inherits this assumption. We can implement the one-time trusted setup
using a maliciously secure multi-party computation protocol similar to the MPC
ceremony used, e.g., by the cryptocurrency ZCash.

1.2 Technical Overview

In this section, we give a high-level overview of the main techniques used in our
work. To this end, we start by briefly recalling how covert security is typically
achieved. Most covert secure protocols take a semi-honest protocol and execute
t instances of it in parallel. They then check the correctness of t − 1 randomly
chosen instances by essentially revealing the used inputs and randomness and
finally take the result of the last unopened execution as protocol output. The
above requires that (a) checking the correctness of the t − 1 instances can be
carried out efficiently, and (b) the private inputs of the parties are not revealed.

In order to achieve the first goal, one common approach is to derandomize
the protocol, i.e., let the parties generate a random seed from which they derive
their internal randomness. Once the protocol is derandomized, correctness can

4

efficiently be checked by the other parties. To achieve the second goal, the pro-
tocol is divided into an offline and an online protocol as described above. The
output of the offline phase (e.g., a garbling scheme) is just some correlated ran-
domness. As this protocol is input-independent, the offline phase does not leak
information about the parties’ private inputs. The online phase (e.g., evaluating
a garbled circuit) is maliciously secure and hence protects the private inputs.

Public verifiability. To add public verifiability to the above-described approach,
the basic idea is to let the parties sign all transcripts that have been produced
during the protocol execution. This makes them accountable for cheating in one
of the semi-honest executions. One particular challenge for public verifiability
is to ensure that once a malicious party notices that its cheating attempt will
be detected it cannot prevent (e.g., by aborting) the creation of a certificate
proving its misbehavior. Hence, the trivial idea of running a shared coin tossing
protocol to select which of the instances will be checked does not work because
the adversary can abort before revealing her randomness and inputs used in the
checked instances. To circumvent this problem, the recent work of Damg̊ard et
al. [DOS20] proposes the following technique. Each party locally chooses a subset
I of the t semi-honest instances whose computation it wants to check (this is
often called a watchlist [IPS08]). Next, it obliviously asks the parties to explain
their execution in those instances (i.e., by revealing the random coins used in
the protocol execution). While this approach works well in the two-party case,
in the multi-party case it either results in a low deterrence factor or requires
that the protocol execution is repeated many times. This is due to the fact that
each party chooses its watchlist independently; in the worst case, all watchlists
are mutually disjoint. Hence, the size of each watchlist is set to be lower or equal
than t−1

n (resulting in a deterrence factor of t−1nt) to guarantee that one instance
remains unchecked or parties repeat the protocol several times until there is a
protocol execution with an unchecked instance.

Public verifiability from time-lock encryption. Our approach avoids the above
shortcomings by using time-lock encryption. Concretely, we follow the shared
coin-tossing approach mentioned above but prevent the rushing attack by lock-
ing the shared coin (selecting which semi-honest executions shall be opened)
and the seeds of the opened executions in time-lock encryption. Since the time-
lock ciphertexts are produced before the selection-coin is made public, it will be
too late for the adversary to abort the computation. Moreover, since the time-
lock encryption can be solved even without the participation of the adversary,
the honest parties can produce a publicly verifiable certificate to prove misbe-
havior. This approach has the advantage that we can always check all but one
instance of the semi-honest executions, thereby significantly improving the deter-
rence factor and the overall complexity. One may object that solving time-lock
encryption adds additional computational overhead to the honest parties. We
emphasize, however, that the time-lock encryption has to be solved only in the
pessimistic case when one party aborts after the puzzle generation. Moreover,
in our construction, the time-lock parameter can be chosen rather small, since

5

the encryption has to hide the selection-coin and the seeds only for two com-
munication rounds. See section 6 for a more detailed analysis of the overhead
introduced by the time-lock puzzle generation and a comparison to prior work.

Creating the time-lock encryption. There are multiple technical challenges that
we need to address to make the above idea work. First, current constructions
of time-lock encryption matching our requirements require a trusted setup for
generating the public parameters. In particular, we need to generate a strong
RSA modulus N without leaking its factorization, and produce a base-puzzle
that later can be used for efficiency reasons. Both of these need to be generated
just once and can be re-used for all protocol executions. Hence, one option is
to replace the trusted setup by a maliciously secure MPC similar to what has
been done for the MPC ceremony used by the cryptocurrency ZCash. Another
alternative is to investigate if time-lock puzzles matching the requirements of
our compiler can be constructed from hidden order groups with public setup
such as ideal class groups of imaginary quadratic fields [BW88] or Jacobians of
hyperelliptic curves [DG20]. An additional challenge is that we cannot simply
time-lock the seeds of all semi-honest protocol executions (as one instance needs
to remain unopened). To address this problem, we use a maliciously secure MPC
protocol to carry out the shared coin-tossing protocol and produce the time-lock
encryptions of the seeds for the semi-honest protocol instance that are later
opened. We emphasize that the complexity of this step only depends on t and n,
and is in particular independent of the complexity of the functionality that we
want to compute. Hence, for complex functionalities the costs of the maliciously
secure puzzle generation are amortized over the protocol costs 3.

2 Secure Multi-Party Computation

Secure computation in the standalone model is defined via the real world/ideal
world paradigm. In the real world, all parties interact in order to jointly execute
the protocol Π. In the ideal world, the parties send their inputs to a trusted
party called ideal functionality and denoted by F which computes the desired
function f and returns the result back to the parties. It is easy to see that in the
ideal world the computation is correct and reveals only the intended information
by definition. The security of a protocol Π is analyzed by comparing the ideal-
world execution with the real-world execution. Informally, protocol Π is said to
securely realize F if for every real-world adversary A, there exists an ideal-world
adversary S such that the joint output distribution of the honest parties and the
adversary A in the real-world execution of Π is indistinguishable from the joint
output distribution of the honest parties and S in the ideal-world execution.

We denote the number of parties executing a protocol Π by n. Let f :
({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, . . . , fn), be the function realized by Π.

3 Concretely, for each instantiation we require two exponentiations and a small number
of symmetric key encryptions. The latter can be realized using tailored MPC-ciphers
like LowMC [ARS+15].

6

For every input vector x̄ = (x1, . . . , xn) the output vector is ȳ = (f1(x̄), . . . , fn(x̄))
and the i-th party Pi with input xi obtains output fi(x̄).

An adversary can corrupt any subset I ⊆ [n] of parties. We further set
REALΠ,A(z),I(x̄, 1

κ) to be the output vector of the protocol execution of Π on
input x̄ = (x1, . . . , xn) and security parameter κ, where the adversary A on aux-
iliary input z corrupts the parties I ⊆ [n]. By OUTPUTi(REALΠ,A(z),I(x̄, 1

κ)),
we specify the output of party Pi for i ∈ [n].

2.1 Covert Security

Aumann and Lindell introduced the notion of covert security with ε-deterrence
factor in 2007 [AL07]. We focus on the strongest given formulation of covert
security that is the strong explicit cheat formulation, where the ideal-world ad-
versary only learns the honest parties’ inputs if cheating is undetected. However,
we slightly modify the original notion of covert security to capture realistic ef-
fects that occur especially in input-independent protocols and are disregarded
by the notion of [AL07]. The changes are explained and motivated below.

As in the standard secure computation model, the execution of a real-world
protocol is compared to the execution within an ideal world. The real world
is exactly the same as in the standard model but the ideal model is slightly
adapted in order to allow the adversary to cheat. Cheating will be detected by
some fixed probability ε, which is called the deterrence factor. Let ε : N→ [0, 1]
be a function, then the execution in the ideal model works as follows.

Inputs: Each party obtains an input; the ith party’s input is denoted by xi.
We assume that all inputs are of the same length. The adversary receives an
auxiliary input z.

Send inputs to trusted party: Any honest party Pj sends its received
input xj to the trusted party. The corrupted parties, controlled by S, may either
send their received input, or send some other input of the same length to the
trusted party. This decision is made by S and may depend on the values xi for
i ∈ I and auxiliary input z. If there are no inputs, the parties send oki instead
of their inputs to the trusted party.

Trusted party answers adversary: If the trusted party receives inputs
from all parties, the trusted party computes (y1, . . . , ym) = f(w̄) and sends yi
to S for all i ∈ I.

Abort options: If the adversary sends abort to the trusted party as ad-
ditional input (before or after the trusted party sends the potential output to
the adversary), then the trusted party sends abort to all the honest parties and
halts. If a corrupted party sends additional input wi = corruptedi to the trusted
party, then the trusted party sends corruptedi to all of the honest parties and
halts. If multiple parties send corruptedi, then the trusted party disregards all
but one of them (say, the one with the smallest index i). If both corruptedi and
abort messages are sent, then the trusted party ignores the corruptedi message.

Attempted cheat option: If a corrupted party sends additional input wi =
cheati to the trusted party (as above: if there are several messages wi = cheati

7

ignore all but one - say, the one with the smallest index i), then the trusted
party works as follows:

1. With probability ε, the trusted party sends corruptedi to the adversary and
all of the honest parties.

2. With probability 1− ε, the trusted party sends undetected to the adversary
along with the honest parties inputs {xj}j /∈I . Following this, the adversary
sends the trusted party abort or output values {yj}j /∈I of its choice for the
honest parties. If the adversary sends abort, the trusted party sends abort to
all honest parties. Otherwise, for every j /∈ I, the trusted party sends yj to
Pj .

The ideal execution then ends at this point. Otherwise, if no wi equals aborti,
corruptedi or cheati, the ideal execution continues below.

Trusted party answers honest parties: If the trusted party did not re-
ceive corruptedi, cheati or abort from the adversary or a corrupted party then it
sends yj for all honest parties Pj (where j /∈ I).

Outputs: An honest party always outputs the message it obtained from the
trusted party. The corrupted parties outputs nothing. The adversary S outputs
any arbitrary (probabilistic) polynomial-time computable function of the initial
inputs {xi}i∈I , the auxiliary input z, and the received messages.

We denote by IDEALCεf,S(z),I(x̄, 1
κ) the output of the honest parties and the

adversary in the execution of the ideal model as defined above, where x̄ is the
input vector and the adversary S runs on auxiliary input z.

Definition 1 (Covert security with ε-deterrent). Let f,Π, and ε be as
above. Protocol Π is said to securely compute f in the presence of covert adver-
saries with ε-deterrent if for every non-uniform probabilistic polynomial-time ad-
versary A for the real model, there exists a non-uniform probabilistic polynomial-
time adversary S for the ideal model such that for every I ⊆ [n], every balanced
vector x̄ ∈ ({0, 1}∗)n, and every auxiliary input z ∈ {0, 1}∗:

{IDEALCεf,S(z),I(x̄, 1κ)}κ∈N
c≡ {REALΠ,A(z),I(x̄, 1

κ)}κ∈N

Notice that the definition of the ideal world given above differs from the
original definition of Aumann and Lindell in four aspects. First, we add the
support of functions with no private inputs from the parties to model input-
independent functionalities. In this case, the parties send ok instead of their
inputs to the trusted party. Second, whenever a corrupted party aborts, the
trusted party sends abort to all honest parties. Note that this message does not
include the index of the aborting party which differs from the original model.
The security notion of identifiable abort [IOZ14], where the aborting party is
identified, is an independent research area, and is not achieved by our compiler.
Third, we allow a corrupted party to abort after undetected cheating, which does
not weaken the security guarantees.

Finally, we allow the adversary to learn the output of the function f before
it decides to cheat or to act honestly. In the original notion the adversary has

8

to make this decision without seeing the potential output. Although this mod-
ification gives the adversary additional power, it captures the real world more
reliably in regard to standalone input-independent protocols.

Covert security is typically achieved by executing several semi-honest in-
stances and checking some of them via cut-and-choose while utilizing an
unchecked instance for the actual output generation. The result of the semi-
honest instances is often an input-independent precomputation in the form of
correlated randomness, e.g., a garbled circuit or multiplication triples, which is
consumed in a maliciously secure input-dependent online phase, e.g., the circuit
evaluation or a SPDZ-style [DKL+13] online phase. Typically, the precomputa-
tion is explicitly designed not to leak any information about the actual output of
the online phase, e.g., a garbled circuit obfuscates the actual circuit gate tables
and multiplication triples are just random values without any relation to the
output or even the function computed in the online phase. Thus, in such pro-
tocols, the adversary does not learn anything about the output when executing
the semi-honest instances and therefore when deciding to cheat, which makes the
original notion of covert security realistic for such input-dependent protocols.

However, if covert security is applied to the standalone input-independent
precomputation phase, as done by our compiler, the actual output is the cor-
related randomness provided by one of the semi-honest instances. Hence, the
adversary learns potential outputs when executing the semi-honest instances.
Considering a rushing adversary that learns the output of a semi-honest in-
stance first and still is capable to cheat with its last message, the adversary can
base its decision to cheat on potential outputs of the protocol. Although this sce-
nario is simplified and there is often a trade-off between output determination
and cheating opportunities, the adversary potentially learns something about
the output before deciding to cheat. This is a power that the adversary might
have in all cut-and-choose-based protocols that do not further process the out-
put of the semi-honest instances, also in the input-independent covert protocols
compiled by Damg̊ard et al. [DOS20].

Additionally, as we have highlighted above, the result of the precomputation
typically does not leak any information about an input-dependent phase which
uses this precomputation. Hence, in such offline-online protocols, the adversary
has only little benefit of seeing the result of the precomputation before deciding
to cheat or to act honestly.

Instead of adapting the notion of covert security, we could also focus on
protocols that first obfuscate the output of the semi-honest instances, e.g., by
secret sharing it, and then de-obfuscate the output in a later stage. However,
this restricts the compiler to a special class of protocols but has basically the
same effect. If we execute such a protocol with our notion of security up to the
obfuscation stage but without de-obfuscating, the adversary learns the potential
output, that is just some obfuscated output and therefore does not provide any
benefit to the adversary’s cheat decision. Next, we only have to ensure that the
de-obfuscating is done in a malicious or covert secure way, which can be achieved,

9

e.g., by committing to all output shares after the semi-honest instances and then
open them when the cut-and-choose selection is done.

For the above reasons, we think it is a realistic modification to the covert
notion to allow the adversary to learn the output of the function f before she
decides to cheat or to act honestly. Note that the real-world adversary in cut-
and-choose-based protocols does only see a list of potential outputs but the
ideal-world adversary receives a single output which is going to be the protocol
output if the adversary does not cheat or abort. However, we have chosen to be
more generous to the adversary and model the ideal world like this in order to
keep it simpler and more general. For the same reason we ignore the trade-off
between output determination and cheating opportunities observed in real-world
protocols.

In the rest of this work, we denote the trusted party computing function f
in the ideal-world description by FCov.

2.2 Covert Security with Public Verifiability

As discussed in the introduction Asharov and Orlandi introduced to notion of
covert security with ε-deterrent and public verifiability (PVC) in the two-party
setting [AO12]. We give an extension of their formal definition to the multi-party
setting in the following.

In addition to the covert secure protocol Π, we define two algorithms Blame
and Judge. Blame takes as input the view of an honest party Pi after Pi outputs
corruptedj in the protocol execution for j ∈ I and returns a certificate Cert,
i.e., Cert := Blame(viewi). The Judge-algorithm takes as input a certificate Cert
and outputs the identity idj if the certificate is valid and states that party Pj
behaved maliciously; otherwise, it returns none to indicate that the certificate
was invalid.

Moreover, we require that the protocol Π is slightly adapted such that an
honest party Pi computes Cert = Blame(viewi) and broadcasts it after cheating
has been detected. We denote the modified protocol by Π ′. Notice that due to
this change, the adversary gets access to the certificate. By requiring simulatabil-
ity, it is guaranteed that the certificate does not reveal any private information.

We now continue with the definition of covert security with ε-deterrent and
public verifiability in the multi-party case.

Definition 2 (Covert security with ε-deterrent and public verifiability
in the multi-party case (PVC-MPC)). Let f,Π ′,Blame, and Judge be as
above. The triple (Π ′,Blame, Judge) securely computes f in the presence of covert
adversaries with ε-deterrent and public verifiability if the following conditions
hold:

1. (Simulatability) The protocol Π ′ securely computes f in the presence of
covert adversaries with ε-deterrent according to the strong explicit cheat for-
mulation (see Definition 1).

10

2. (Public Verifiability) For every PPT adversary A corrupting parties Pi for
i ∈ I ⊆ [n], there exists a negligible function µ(·) such that for all (x̄, z) ∈
({0, 1}∗)n+1 the following holds:
If OUTPUTj(REALΠ,A(z),I(x̄, 1

κ)) = corruptedi for j ∈ [n]\I and i ∈ I then:

Pr[Judge(Cert) = idi] > 1− µ(n),

where Cert is the output certificate of the honest party Pj in the execution.
3. (Defamation Freeness) For every PPT adversary A corrupting parties Pi for

i ∈ I ⊆ [n], there exists a negligible function µ(·) such that for all (x̄, z) ∈
({0, 1}∗)n+1 and all j ∈ [n] \ I:

Pr[Cert∗ ← A; Judge(Cert∗) = idj] < µ(n).

3 Preliminaries

3.1 Communication Model & Notion of Time

We assume the existence of authenticated channels between every pair of parties.
Further, we assume synchronous communication between all parties participat-
ing in the protocol execution. This means the computation proceeds in rounds,
where each party is aware of the current round. All messages sent in one round
are guaranteed to arrive at the other parties at the end of this round. We further
consider rushing adversaries which in each round are able to learn the messages
sent by other parties before creating and sending their own messages. This allows
an adversary to create messages depending on messages sent by other parties in
the same round.

We denote the time for a single communication round by Tc. In order to
model the time, it takes to compute algorithms, we use the approach presented
by Wesolowski [Wes19]. Suppose the adversary works in computation model
M. The model defines a cost function C and a time-cost function T . C(A, x)
denotes the overall cost to execute algorithm A on input x. Similar, the time-
cost function T (A, x) abstracts the notion of time of running A(x). Considering
circuits as computational model, one may consider the cost function denoting
the overall number of gates of the circuit and the time-cost function being the
circuit’s depth.

Let S be an algorithm that for any RSA modulus N generated with respect
to the security parameter κ on input N and some element g ∈ ZN outputs the
square of g. We define the time-cost function δSq(κ) = T (S, (N, g)), i.e., the time
it takes for the adversary to compute a single squaring modulo N .

3.2 Verifiable Time-Lock Puzzle

Time-lock puzzles (TLP) provide a mean to encrypt messages to the future. The
message is kept secret at least for some predefined time. The concept of a time-
lock puzzle was first introduced by Rivest et al. [RSW96] presenting an elegant

11

construction using sequential squaring modulo a composite integer N = p · q,
where p and q are primes. The puzzle is some x ∈ Z∗N with corresponding solution

y = x2
T

. The conjecture about this construction is that it requires T sequential
squaring to find the solution. Based on the time to compute a single squaring
modulo N , the hardness parameter T denotes the amount of time required to
decrypt the message. (See Section 3.1 for a notion of time.)

We extend the notion of time-lock puzzle by a verifiability notion. This prop-
erty allows a party who solved a puzzle to generate a proof which can be effi-
ciently verified by any third party. Hence, a solver is able to create a verifiable
statement about the solution of a puzzle. Boneh et al. [BBBF18] introduced the
notion of verifiable delay functions (VDF). Similar to solving a TLP, the evalu-
ation of a VDF on some input x takes a predefined number of sequential steps.
Together with the output y, the evaluator obtains a short proof π. Any other
party can use π to verify that y was obtained by evaluating the VDF on input x.
Besides the sequential evaluation, a VDF provides no means to obtain the out-
put more efficiently. Since we require a primitive that allows a party using some
trapdoor information to perform the operation more efficiently, we cannot use a
VDF but start with a TLP scheme and add verifiability using known techniques.

We present a definition of verifiable time-lock puzzles. We include a setup
algorithm in the definition which generates public parameters required to effi-
ciently construct a new puzzle. This way, we separate expensive computation
required as a one-time setup from the generation of puzzles.

Definition 3. Verifiable time-lock puzzle (VTLP) A verifiable time-lock puzzle
scheme over some finite domain S consists of four probabilistic polynomial-time
algorithms (TL.Setup,TL.Generate,TL.Solve,TL.Verify) defined as follows.

– (pp)← TL.Setup(1λ, T) takes as input the security parameter 1λ and a hard-
ness parameter T , and outputs public parameter pp.

– p ← TL.Generate(pp, s) takes as input public parameters pp and a solution
s ∈ S and outputs a puzzle p.

– (s, π)← TL.Solve(pp, p) is a deterministic algorithm that takes as input pub-
lic parameters pp and a puzzle p and outputs a solution s and a proof π.

– b := TL.Verify(pp, p, s, π) is a deterministic algorithm that takes as input
public parameters pp, a puzzle p, a solution s, and a proof π and outputs
a bit b, with b = 1 meaning valid and b = 0 meaning invalid. Algorithm
TL.Verify must run in total time polynomial in log T and λ.

We require the following properties of a verifiable time-lock puzzle scheme.

Completeness For all λ ∈ N, for all T , for all pp← TL.Setup(1λ, T), and for
all s, it holds that

(s, ·)← TL.Solve(TL.Generate(pp, s)).

Correctness For all λ ∈ N, for all T , for all pp ← TL.Setup(1λ, T), for all s,
and for all p← TL.Generate(pp, s), if (s, π)← TL.Solve(p), then

TL.Verify(pp, p, s, π) = 1.

12

Soundness For all λ ∈ N, for all T , and for all PPT algorithms A

Pr

TL.Verify(pp, p′, s′, π′) = 1

s′ 6= s

pp← TL.Setup(1λ, T)
(p′, s′, π′)← A(1λ, pp, T)
(s, ·)← TL.Solve(pp, p′)

 ≤ negl(λ)

Security A VTLP scheme is secure with gap ε < 1 if there exists a polynomial
T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size
adversary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded
from above by T ε(λ), there exists a negligible function µ(·), such that for all
λ ∈ N it holds that

Pr

b← A2(pp, p, τ)

(τ, s0, s1)← A1(1λ)
pp← TL.Setup(1λ, T (λ))

b
$← {0, 1}

p← TL.Generate(pp, sb)

 ≤

1

2
+ µ(λ)

and (s0, s1) ∈ S2.

Although our compiler can be instantiated with any TLP scheme satisfying
Definition 3, we present a concrete construction based on the RSW time-lock
puzzle [RSW96]. We leave it to further research to investigate if a time-lock
puzzle scheme matching our requirements, i.e., verifiability and efficient puzzle
generation, can be constructed based on hidden order groups with public setup
such as ideal class groups of imaginary quadratic fields [BW88] or Jacobians of
hyperelliptic curves [DG20]. Due to the public setup, such constructions might
be more efficient than our RSW-based solution.

In order to make the decrypted value verifiable we integrate the generation
of a proof as introduced by Wesolowski [Wes19] for verifiable delay functions.
The technique presented by Wesolowski provides a way to generate a small proof
which can be efficiently verified. However, proof generation techniques from other
verifiable delay functions, e.g., presented by Pietrzak [Pie19] can be used as well.
The approach of Wesolowski utilizes a function bin, which maps an integer to
its binary representation, and a hash function Hprime that maps any string to an
element of Primes(2k). The set Primes(2k) contains the first 22k prime numbers,
where k denotes the security level (typically 128, 192 or 256).

The TL.Setup-algorithm takes the security and hardness parameter and out-
puts public parameter. This includes an RSA modulus of two strong primes, the
number of sequential squares corresponding to the hardness parameter, and a
base puzzle. The computation can be executed efficiently if the prime numbers
are know. Afterwards, the primes are not needed anymore and can be thrown
away. Note that any party knowing the factorization of the RSA modulus can
efficiently solve puzzles. Hence, the TL.Setup-algorithm should be executed in a
trusted way.

The TL.Generate-algorithm allows any party to generate a time-lock puzzle
over some secret s. In the construction given below, we assume s to be an element
in Z∗N . However, one can use a hybrid approach where the secret is encrypted

13

with some symmetric key which is then mapped to an element in Z∗N . This allows
the generator to time-lock large secrets as well. Note that the puzzle generation
can be done efficiently and does not depend on the hardness parameter T .

The TL.Solve-algorithm solves a time-lock puzzle p by performing sequential
squaring, where the number of steps depend on the hardness parameter T . Along
with the solution, it outputs a verifiable proof π. This proof is used as additional
input to the TL.Verify-algorithm outputting true if the given secret was time-
locked by the given puzzle.

We state the formal definition of our construction next.

Construction Verifiable Time-Lock Puzzle

TL.Setup(1λ, T):

– Sample two strong primes (p, q) and set N := p · q.
– Set T ′ := T /δSq(λ).

– Sample uniform g̃
$← Z∗N and set g := −g̃2(mod N).

– Compute h := g2
T ′

, which can be optimized by reducing 2T
′

module φ(N)
first.

– Set Z := (g, h).
– Output (T ′, N, Z).

TL.Generate(pp, s):

– Parse pp := (T ′, N, Z) and Z := (g, h).

– Sample uniform r
$← {1, . . . , N2}.

– Compute g∗ := gr and h∗ := hr.
– Set c∗ := h∗ · s mod N .
– Output p := (g∗, c∗).

TL.Solve(pp, p):

– Parse pp := (T ′, N, Z) and p := (g∗, c∗).

– Compute h := g∗2
T ′

(mod N) by repeated squaring.
– Compute s := c∗

h
mod N as the solution.

– Compute ` = Hprime(bin(g∗)|| ? ||bin(s)) ∈ Primes(2k) as the challenge.

– Compute π = g∗b2
T ′/`c as the proof.

– Output (s, π).

TL.Verify(pp, p, s, π):

– Parse pp := (T ′, N, Z).
– Parse p := (g∗, c∗).
– Compute ` = Hprime(bin(g∗)|| ? ||bin(s)) ∈ Primes(2k) as the challenge.

– Compute r = 2T
′

mod `.
– Compute h′ = π`g∗r.
– Compute s′ := c∗

h′ .
– If s = s′, output 1, otherwise output 0.

14

The security of the presented construction is based on the conjecture that it
requires T ′ sequential squarings to solve a puzzle. Moreover, the soundness of
the proof generation is based on the number-theoretic assumption that it is hard
to find the `-th root modulo an RSA modulus N of an integer x /∈ {−1, 0,+1}
where ` is uniformly sampled from Primes(2k) and the factorization of N is
unknown. See [Wes19] for a detailed description of the security assumption.

3.3 Commitment

Our protocol makes use of an extractable commitment scheme which is com-
putationally binding and hiding. For ease of description, we assume the scheme
to be non-interactive. We will use the notation (c, d) ← Commit(m) to commit
to message m, where c is the commitment value and d denotes the decommit-
ment or opening value. Similarly, we use m′ ← Open(c, d) to open commitment
c with opening value d to m′ = m or m′ = ⊥ in case of incorrect opening. The
extractability property allows the simulator to extract the committed message
m and the opening value d from the commitment c by using some trapdoor
information.

Such a scheme can be implemented in the random oracle model by defining
Commit(x) = H(i, x, r) where i is the identity of the committer, H : {0, 1}∗ →
{0, 1}2κ is a random oracle and r

$← {0, 1}κ.

3.4 Signature Scheme

We use a signature scheme (Gen,Sign,Verify) that is existentially unforgeable un-
der chosen-message attacks. Before the start of our protocol, each party executes
the Gen-algorithm to obtain a key pair (pk, sk). While the secret key sk is kept
private, we assume that each other party is aware of the party’s public key pk.

3.5 Semi-Honest Base Protocol

Our compiler is designed to transform a semi-honest secure n-party protocol with
no private input tolerating n−1 corruptions, ΠSH, that computes a probabilistic
function (y1, . . . , yn)← f(), where yi is the output for party Pi, into a publicly
verifiable covert protocol, ΠPVC, that computes the same function. In order to
compile ΠSH, it is necessary that all parties that engage in the protocol ΠSH

receive a protocol transcript, which is the same if all parties act honestly. This
means that there needs to be a fixed ordering for the sent messages and that
each message needs to be sent to all involved parties 4.

We stress that any protocol can be adapted to fulfill the compilation require-
ments. Adding a fixed order to the protocol messages is trivial and just a matter
of specification. Furthermore, parties can send all of their outgoing messages to
all other parties without harming the security. This is due to the fact, that the

4 This requirement is inherent to all known publicly verifiable covert secure protocols.

15

protocol tolerates n− 1 corruptions which implies that the adversary is allowed
to learn all messages sent by the honest party anyway. Note that the transferred
messages do not need to be securely broadcasted, because our compiler requires
the protocol to produce a consistent transcript only if all parties act honestly.

3.6 Coin Tossing Functionality

We utilize a maliciously secure coin tossing functionality Fcoin parameterized
with the security parameter κ and the number of parties n. The functionality
receives oki from each party Pi for i ∈ [n] and outputs a random κ-bit string

seed
$← {0, 1}κ to all parties.

Functionality Fcoin

Inputs: Each party Pi with i ∈ [n] inputs oki.

– Sample seed
$← {0, 1}κ.

– Send seed to A.
• If A returns abort, send abort to all honest parties and stop.
• Otherwise, send seed to all honest parties.

3.7 Puzzle Generation Functionality

The maliciously secure puzzle generation functionality FPG is parameterized with
the computational security parameter κ, the number of involved parties n, the
cut-and-choose parameter t and public TLP parameters pp. It receives a coin
share ri, a puzzle randomness share ui, and the seed-share decommitments for
all instances {dij}j∈[t] as input from each party Pi. FPG calculates the random
coin r and the puzzle randomness u using the shares of all parties. Then, it
generates a time-lock puzzle p of r and all seed-share decommitments expect
the ones with index r. In the first output round it sends p to all parties. In the
second output round it reveals the values locked within p to all parties. As we
assume a rushing adversary, A receives the outputs first in both rounds and can
decide if the other parties should receive the outputs as well.

The functionality FPG can be instantiated with a general purpose maliciously
secure MPC-protocol such as the ones specified by [DKL+13] or [YWZ20].

Functionality FPG

Inputs: Each party Pi with i ∈ [n] inputs (ri, ui, {dij}j∈[t]), where ri ∈ [t],
ui ∈ {0, 1}κ, and dij ∈ {0, 1}κ.

– Compute r :=
∑n
i=1 r

i mod t and u :=
⊕n

i=1 u
i.

– Generate puzzle p ← TL.Generate(pp, (r, {dij}i∈[n],j∈[t]\r)) using random-
ness u.

– Send p to A.

16

• If A returns abort, send abort to all honest parties and stop.
• Otherwise, send p to all honest parties.5

– Upon receiving continue from each party, send (r, {dij}i∈[n],j∈[t]\r) to A.
• If A returns abort or some party does not send continue, send abort to

all honest parties and stop.
• Otherwise, send (r, {dij}i∈[n],j∈[t]\r) to all honest parties.

4 PVC Compiler

In the following, we present our compiler for multi-party protocols with no pri-
vate input from semi-honest to publicly verifiable covert security. We start with
presenting a distributed seed computation which is used as subprotocol in our
compiler. Next, we state the detailed description of our compiler. Lastly, we pro-
vide information about the Blame- and Judge-algorithm required by the notion
of publicly verifiable covert security.

4.1 Distributed Seed Computation

The execution of the semi-honest protocol instances ΠSH within our PVC com-
piler requires each party to use a random tape that is uniform at random. In order
to ensure this requirement, the parties execute several instances of a distributed
seed computation subprotocol ΠSG at the beginning. During this subprotocol,
each party Ph selects a uniform κ-bit string as private seed share seed(1,h). Addi-
tionally, Ph and all other parties get uniform κ-bit strings {seed(2,i)}i∈[n], which
are the public seed shares of all parties. The randomness used by Ph in the semi-
honest protocol will be derived from seedh := seed(1,h)⊕ seed(2,h). This way seedh

is distributed uniformly. Note that if protocol ΠSH is semi-malicious instead of
semi-honest secure then each party may choose the randomness arbitrarily and
there is no need to run the seed generation.

As the output, party Ph obtains its own private seed, commitments to all
private seeds, a decommitment for its own private seed, and all public seed
shares. We state the detailed protocol steps next. The protocol is executed by
each party Ph, parameterized with the number of parties n and the security
parameter κ.

Protocol ΠSG

(a) Commit-phase
Party Ph chooses a uniform κ-bit string seed(1,h), sets (ch, dh) ←
Commit(seed(1,h)), and sends ch to all parties.

(b) Public coin-phase
For each i ∈ [n], party Ph sends ok to Fcoin and receives seed(2,i).
Output

5 The honest parties receive p or abort in the same communication round as A.

17

If Ph has not received all messages in the expected communication rounds
or any seed(2,i) = ⊥, it sends abort to all parties and outputs abort.
Otherwise, it outputs (seed(1,h), dh, {seed(2,i), ci}i∈[n]).

4.2 The PVC Compiler

Starting with a n-party semi-honest secure protocol ΠSH we compile a publicly
verifiable covert secure protocol ΠPVC. The compiler works for protocols that
receive no private input.

The compiler uses a signature scheme, a verifiable time-lock puzzle scheme,
and a commitment scheme as building blocks. Moreover, the communication
model is as defined in Section 3.1. We assume each party generated a signa-
ture key pair (sk, pk) and all parties know the public keys of the other parties.
Furthermore, we suppose the setup of the verifiable time-lock puzzle scheme
TL.Setup was executed in a trusted way beforehand. This means in particular
that all parties are aware of the public parameters pp. We stress that this setup
needs to be executed once and may be used by many protocol executions. The
hardness parameter T used as input to the TL.Setup-algorithm needs to be de-
fined as T > 2 ·Tc, where Tc denotes the time for a single communication round
(see Section 3.1). In particular, the hardness parameter is independent of the
complexity of ΠSH.

From a high-level perspective, our compiler works in five phases. At the
beginning, all parties jointly execute the seed generation to set up seeds from
which the randomness in the semi-honest protocol instances is derived. Second,
the parties execute t instances of the semi-honest protocol ΠSH. By executing
several instances, the parties’ honest behavior can be later on checked in all but
one instance. Since checking reveals the confidential outputs of the other parties,
there must be one instance that is unchecked. The index of this one is jointly se-
lected in a random way in the third phase. Moreover, publicly verifiable evidence
is generated such that an honest party can blame any malicious behavior after-
wards. To this end, we use the puzzle generation functionality FPG to generate
a time-lock puzzle first. Next, each party signs all information required for the
other parties to blame this party. In the fourth phase, the parties either honestly
reveal secret information for all but one semi-honest execution or abort. In case
of abort, the honest parties execute the fifth phase. By solving the time-lock
puzzle, the honest parties obtain the required information to create a certificate
about malicious behavior. Since this phase is only required to be executed in case
any party aborted before revealing the information, we call this the pessimistic
case. We stress that no honest party is required to solve a time-lock puzzle in
case all parties behave honestly.

A corrupted party may cheat in two different ways in the compiled proto-
col. Either the party inputs decommitment values into the puzzle generation
functionality which open the commitments created during the seed generation
to ⊥ or the party misbehaved in the execution of ΠSH. The later means that a

18

party uses different randomness than derived from the seeds generated at the
beginning.

The first cheat attempt may be detected in two ways. In the optimistic ex-
ecution, all parties receive the inputs to FPG and can verify that opening the
commitments is successful. In the pessimistic case, solving the time-lock puzzle
reveals the input to FPG. Since we do not want the Judge to solve the puzzle
itself, we provide a proof along with the solution of the time-lock puzzle. To this
end, we require a verifiable time-lock puzzle as modeled in Section 3. Even in the
optimistic case, if an honest party detects cheating, the time-lock puzzle needs
to be solved in order to generate a publicly verifiable certificate.

If all decommitments open the commitments successfully, an honest party can
recompute the seeds used by all other parties in an execution of ΠSH and re-run
the execution. The resulting transcript is compared with the one signed by all
parties beforehand. In case any party misbehaved, a publicly verifiable certificate
can be created. For the sake of exposition, we compress the detection of malicious
behavior and the generation of the certificate into the Blame-algorithm.

The protocol defined as follows is executed by each honest party Ph.

Protocol ΠPVC

Public input: All parties agree on κ, n, t, ΠSH and pp and know all parties’
public keys {pki}i∈[n].
Private input: Ph knows its own secret key skh.

Distributed seed computation:
We abuse notation here and assume that the parties execute the seed generation
protocol from above.

1. For each instance j ∈ [t] party Ph interacts with all other parties to receive

(seed
(1,h)
j , dhj , {seed(2,i)j , cij}i∈[n])← ΠSG

and computes seedhj := seed
(1,h)
j ⊕ seed

(2,h)
j .

Semi-honest protocol execution:

2. Party Ph engages in t instances of the protocol ΠSH with all other parties.
In the j-th instance, party Ph uses randomness derived from seedhj and
receives a transcript and output:

(transj , y
h
j)← ΠSH.

Create publicly verifiable evidence:

3. Party Ph samples a coin share rh
$← [t], a randomness share uh

$← {0, 1}κ,
sends the message (rh, uh, {dhj }j∈[t]) to FPG and receives time-lock puzzle
p as response.

4. For each j ∈ [t], Party Ph creates a signature σhj ← Signskh(dataj), where
the signed data is defined as

dataj := (h, j, {seed(2,i)j }i∈[n], {cij}i∈[n], p, transj).
Ph broadcasts its signatures and verifies the received signatures.

19

Optimistic case:

5. If any of the following cases happens
– Ph has not received valid messages in the first protocol steps in the

expected communication round.
– FPG returned abort, or
– any other party has sent abort

party Ph broadcasts and outputs abort.
6. Otherwise, Ph sends continueh to FPG, receives (r, {d∗ij }i∈[n],j∈[t]\r) as re-

sponse and calculates

(m, cert) := Blame(viewh)

where viewh is the view of Ph.
If cert 6= ⊥, broadcast cert and output corruptedm. Otherwise, Ph outputs
yhr .

Pessimistic case:

7. If FPG returned abort in step 6, Ph solves the time-lock puzzle

((r, {d∗ij }i∈[n],j∈[t]\r), π) := TL.Solve(pp, p)

and calculates
(m, cert) := Blame(viewh)

where viewh is the view of Ph.
If cert 6= ⊥, broadcast cert and output corruptedm. Otherwise, output abort.

4.3 Blame-Algorithm

Our PVC compiler uses an algorithm Blame in order to verify the behavior
of all parties in the opened protocol instances and to generate a certificate of
misbehavior if cheating has been detected. It takes the view of a party as input
and outputs the index of the corrupted party in addition to the certificate. If
there are several malicious parties the algorithm selects the one with the minimal
index.

Algorithm Blame

On input the view view of a party which contains:

– public parameters (n, t)

– public seed shares {seed(2,i)j }i∈[n]
– shared coin r
– private seed share commitments and decommitments {cij , dij}i∈[n],j∈[t]\r
– additional certificate information

({pkj}i∈[n], {dataj}j∈[t], π, {σij}i∈[n],j∈[t])

do:

20

1. Calculate seed
(1,i)
j := Open(cij , d

i
j) for each i ∈ [n], j ∈ [t] \ r.

2. Let M1 := {(i, j) ∈ ([n], [t] \ r) : seed
(1,i)
j = ⊥}. If M1 6= ∅, choose the tuple

(m, l) ∈ M1 with minimal m and l, prioritized by m, compute (·, π) :=
TL.Solve(pp, p), if π = ⊥, set cert := (pkm, dataj , π, r, {dij}i∈[n],j∈[t]\r, σml)
and output (m, cert).

3. Set seedij := seed
(1,i)
j ⊕ seed

(2,i)
j for all i ∈ [n] and j ∈ [t] \ r.

4. Re-run ΠSH for all j ∈ [t] \ r by simulating the view of all other parties: In
the j-th instance simulate all parties Pi with randomness seedij for i ∈ [n]
and receive (trans′j , ·).

5. Let M2 := {j ∈ [t] \ r : trans′j 6= transj}. If M2 6= ∅, determine the minimal
index m such that Pm is the first party that has deviated from the protocol
description in an instance l ∈ M2. If Pm has deviated from the protocol
description in several instances l ∈ M2, choose the smallest such l. Then,
set cert := (pkm, datal, {dil}i∈[n], σml) and output (m, cert).

6. Output (0,⊥).

4.4 Judge-Algorithm

The Judge-algorithm receives the certificate and outputs either the identity of
the corrupted party or ⊥. The execution of this algorithm requires no interaction
with the parties participating in the protocol execution. Therefore, it can also
be executed by any third party which possesses a certificate cert. If the output
is pkm for m ∈ [n], the executing party is convinced that party Pm misbehaved
during the protocol execution. The Judge-algorithm is parameterized with n, t,
pp, and ΠSH.

Algorithm Judge(cert)

Inconsistency certificate:
On input cert = (pkm, data, π, r, {dij}i∈[n],j∈[t]\r, σml) do:

– If Verifypkm(data;σml) = ⊥, output ⊥.

– Parse data to (m, l, ·, {cil}i∈[n], p, ·).
– If TL.Verify(pp, p, (r, {dij}i,j), π) = 0 output ⊥.
– If r = l, output ⊥.
– If Open(cml , d

m
l) 6= ⊥, output ⊥. Else output pkm.

Deviation certificate:
On input cert = (pkm, data, {dil}i∈[n], σml).

– If Verifypkm(data;σml) = ⊥, output ⊥.

– Parse data to (m, l, {seed(2,i)l }i∈[n], {cil}i∈[n], ·, transl).
– Set seed

(1,i)
l ← Open(cil, d

i
l) for each i ∈ [n]. If any seed

(1,i)
l = ⊥, output ⊥.

– Set seedil := seed
(1,i)
l ⊕ seed

(2,i)
l for each i.

– Simulate ΠSH using the seeds seedil as randomness of party Pi and get result
(trans′l, ·).

21

– If trans′l = transl, output ⊥. Otherwise, determine the index m′ of the first
party that has deviated from the protocol description. If m 6= m′, output
⊥. Otherwise, output pkm.

Ill formatted: If the cert cannot be parsed to neither of the two above cases,
output (⊥).

5 Security

In this section, we show the security of the compiled protocol described in Sec-
tion 4. To this end, we state the security guarantee in Theorem 1 and prove its
correctness in the following.

Theorem 1. Let ΠSH be a n-party protocol, receiving no private inputs, which
is secure against a passive adversary that corrupts up to n − 1 parties. Let the
signature scheme (Gen,Sign,Verify) be existentially unforgeable under chosen-
message attacks and let the verifiable time-lock puzzle scheme TL be secure with
hardness parameter T > 2 · Tc. Let (Commit,Open) be an extractable commit-
ment scheme which is computationally binding and hiding. Then protocol ΠPVC

along with algorithms Blame and Judge is secure against a covert adversary that
corrupts up to n − 1 parties with deterrence ε = 1 − 1

t and public verifiability
according to definition 2 in the (Fcoin,FPG)-hybrid model. 6

Proof. We prove security of the compiled protocol ΠPVC by showing simulata-
bility, public verifiability, and defamation freeness according to Definition 2 sep-
arately.

5.1 Simulatability

In order to prove that ΠPVC meets covert security with ε-deterrent, we define an
ideal-world simulator S using the adversary A in a black-box way as a subroutine
and playing the role of the parties corrupted by A when interacting with the
ideal covert-functionality FCov.

The simulator and the proof that the joint distribution of the honest parties’
outputs and the view of A in the ideal world is computationally indistinguishable
from the honest parties’ outputs and the view of A in the real world are given
in the full version of the paper.

5.2 Public Verifiability

We first argue that an adversary is not able to perform what we call a detection
dependent abort. This means that once an adversary learns if its cheating will be
detected, it can no longer prevent honest parties from generating a certificate.

6 See section 3.1, for details on the notion of time and the communication model.

22

In order to see this, note that withholding valid signatures by corrupted par-
ties in step 4 results in an abort of all honest parties. In contrast, if all honest
parties receive valid signatures from all other parties in step 4, then they are
guaranteed to obtain the information encapsulated in the time-lock puzzle, i.e.,
the coin r and the decommitments of all parties {dij}i∈[n],j∈[t]\r. Either, all par-
ties jointly trigger the puzzle generation functionality FPG to output the values
or in case any corrupted party aborts, an honest party can solve the time-lock
puzzle without interaction. Thus, it is not possible for a rushing adversary that
gets the output of FPG in step 6 first, to prevent the other parties from learning
it at some time as well. Moreover, the adversary also cannot extract the values
from the puzzles before making the decision if it wants to continue or abort, as
the decision has to be made in time smaller than the time required to solve the
puzzle. Thus, the adversary’s decision to continue or abort is independent from
the coin r and therefore independent from the event of being detected or not.

Secondly, we show that the Judge-algorithm will accept a certificate, created
by an honest party, expect with negligible probability. Assume without loss of
generality that some malicious party Pm has cheated, cheating has been detected
and a certificate (blaming party Pm) has been generated. As we have two types
of certificates, we will look at them separately.

If an honest party outputs an inconsistency certificate, it has received an
inconsistent commitment-opening pair (cml , d

m
l) for some l 6= r. The value cml

is signed directly by Pm and dml indirectly via the signed time-lock puzzle p.
Hence, Judge can verify the signatures and detect the inconsistent commitment
of Pm as well. Note that due to the verifiability of our time-lock construction, the
Judge-algorithm does not have to solve the time-lock puzzle itself but just needs
to verify a given solution. This enables the algorithm to be executed efficiently.

If an honest party outputs a deviation certificate, it has received consistent
openings for all j 6= r from all other parties, but party Pm was the first party
who deviated from the specification of ΠSH in some instance l ∈ [t]\r. Since ΠSH

requires no input from the parties, deviating from its specification means using
different randomness than derived from the seeds generated at the beginning of
the compiled protocol. As Pm has signed the transcript transl, the private seed-
commitments of all parties {cil}i∈[n], the public seeds {seed(2,i)}i∈[n], and the
certificate contains the valid openings {dil}i∈[n], the Judge-algorithm can verify
that Pm was the first party who misbehaved in instance l the same way the
honest party does. Note that it is not necessary for Judge to verify that j 6= r,
because the certificate generating party can only gain valid openings {dil}i∈[n]
for j 6= r.

5.3 Defamation Freeness

Assume, without loss of generality, that some honest party Ph is blamed by the
adversary. We show defamation freeness for the two types of certificates sepa-
rately via a reduction to the security of the commitment scheme, the signature
scheme and the time-lock puzzle scheme.

23

First, assume there is a valid inconsistency certificate cert∗ blaming Ph. This
means that there is a valid signatures of Ph on a commitment c∗hj and a time-

lock puzzle p∗ that has a solution s∗ which contains an opening d∗hj such that

Open(c∗hj , d
∗h
j) = ⊥ and j 6= r. As Ph is honest, Ph only signs a commitment

c∗hj which equals the commitment honestly generated by Ph during the seed

generation. We call such a c∗hj correct. Thus, c∗hj is either correct or the adversary
can forge signatures. Similar, Ph does only sign the puzzle p∗ received by FPG.
This puzzle is generated on the opening value provided by all parties. Since Ph is
honest, correct opening values are inserted. Therefore, the signed puzzle p∗ either
contains the correct opening value or the adversary can forge signatures. Due
to the security guarantees of the puzzle, the adversary has to either provide the
correct solution s∗ or can break the soundness of the time-lock puzzle scheme.
To sum it up, an adversary creating a valid inconsistency certificate contradicts
to the security assumptions specified in Theorem 1.

Second, assume there is a valid deviation certificate cert∗ blaming Ph. This
means, there is a protocol transcript trans∗j in which Ph is the first party that has
sent a message which does not correspond to the next-message function of ΠSH

and the randomness, seedhj used by the judge to simulate Ph. As Ph is honest,

either trans∗ or seedhj needs to be incorrect. Also, Ph does not create a signature
for an invalid trans∗. Thus, trans∗ is either correct or the adversary can forge sig-

natures. The seedhj is calculated as seedhj := seed
(1,h)
j ⊕ seed

(2,h)
j . The public seed

seed
(2,h)
j is signed by Ph and provided directly. The private seed of Ph is provided

via a commitment-opening pair (chj , d
h
j), where chj is signed by Ph. As above, chj

and seed
(2,h)
j are either correct or the adversary can forge signatures. Similar,

dhj is either correct or the adversary can break the binding property of the com-

mitment scheme. If the certificate contains correct (trans∗j , c
h
j , d

h
j , seed

(2,h)
j) the

certificate is not valid. Thus, when creating an accepting cert∗, the adversary
has either broken the signature or the commitment scheme which contradicts to
the assumption of Theorem 1.

ut

6 Evaluation

6.1 Efficiency of our Compiler

In Section 4, we presented a generic compiler for transforming input-independent
multi-party computation protocols with semi-honest security into protocols that
offer covert security with public verifiability. We elaborate on efficiency param-
eters of our construction in the following.

The deterrence factor ε = t−1
t only depends on the number of semi-honest

protocol executions t. In particular, ε is independent of the number of parties.
This property allows for achieving the same deterrence factor for a fixed number
of semi-honest executions while the number of parties increases. Our compiler

24

therefore facilitates secure computation with a large number of parties. Further-
more, the deterrence factor grows with the number of semi-honest instances (t),
similar to previous work based on cut-and-choose (e.g., [AL07, AO12, DOS20]).
Concretely, this means that for only five semi-honest instances, our compiler
achieves a cheating detection probability of 80%. Moreover, the semi-honest in-
stances are independent of each other and, hence, can be executed in parallel.
This means, that the communication and computation complexity in comparison
to a semi-honest protocol increases by factor t. However, our compiler preserves
the round complexity of the semi-honest protocol. Hence, it is particularly useful
for settings and protocols in which the round complexity constitutes the major
efficiency bottleneck. Similarly, the requirement of sending all messages to all
parties further increases the communication overhead by a factor of n − 1 but
does not affect the round complexity. Since this requirement is inherent to all
known publicly verifiable covert secure protocols, e.g., [DOS20], these protocols
incur a similar communication overhead.

While our compiler requires a maliciously secure puzzle generation function-
ality, we stress that the complexity of the puzzle generation is independent of
the cost of the semi-honest protocol. Therefore, the relative overhead of the
puzzle generation shrinks for more complex semi-honest protocols. One applica-
tion where our result may be particular useful is for the preprocessing phase of
multi-party computation, e.g., protocols for generating garbled circuits or multi-
plication triples. In such protocols, one can generate several circuits resp. triples
that are used in several online instances but require just one puzzle generation.

For the sake of concreteness, we constructed a boolean circuit for the puzzle
generation functionality and estimated its complexity in terms of the number of
AND-gates. The construction follows a naive design and should not constitute
an efficient solution but should give a first impression on the circuit complexity.
We present some intuition on how to improve the circuit complexity afterwards.

We utilize the RSW VTLP construction described in Section 3.2 with a hy-
brid construction, in which a symmetric encryption key is locked within the
actual time-lock puzzle and is used to encrypt the actual secret. Note that the
RSW VTLP is not optimized for MPC scenarios. Since our compiler can be in-
stantiated with an arbitrary VTLP satisfying Definition 3, any achievements in
the area of MPC-friendly TLP can result into an improved puzzle generation
functionality for our compiler. To instantiate the symmetric encryption opera-
tion, we use the LowMC [ARS+15] cipher, an MPC-friendly cipher tailored for
boolean circuits.

Let n be the number of parties, t being the number of semi-honest instances,
κ denoting the computational security parameter, and N represents the RSA
modulus used for the RSW VTLP. We use the notation |x| to denote the bit
length of x. The total number of AND-gates of our naive circuit is calculated as
follows:

25

(n− 1) · (11|t|+ 22|N |+ 12)

+ nt · (4|t|+ 2κ+ 755)

+ 192|N |3 + 112|N |2 + 22|N |

It is easy to see that the number of AND-gates is linear in both n and
t. The most expensive part of the puzzle generation is the computation of two
exponentiations required for the RSW VTLP, since the number of required AND-
gates is cubic in |N | for an exponentiation. However, we can slightly adapt our
puzzle generation functionality and protocol to remove these exponentiations
from the maliciously secure puzzle generation protocol. For the sake of brevity,
we just give an intuition here.

Instead of performing the exponentiations gu and hu required for the puzzle
creation within the puzzle generation functionality, we let each party Pi input
a 0-puzzle consisting of the two values gi = gui and hi = hui . The products of
all gi respectively hi are used as g∗ and h∗ for the VTLP computation. Since
we replace the exponentiations with multiplications, the number of AND-gates
is quadratic instead of cubic in |N |.

Note that this modification enables a malicious party to modify the resulting
puzzle by inputting a non-zero puzzle. Intuitively, the attacker can render the
puzzle invalid such that no honest party can create a valid certificate or the
puzzle can be modified such that a corrupted party can create a valid certificate
defaming an honest party. Concretely, one possible attack is to input inconsistent
values gi and hi, i.e., to use different exponents for the two exponentiations. As
such an attack must be executed without knowledge of the coin r, it is sufficient
to detect invalid inputs and consider such behavior as an early abort. To this
end, parties have to provide ui to the puzzle generation functionality and the
functionality outputs u = Σ ui, g

∗ and h∗ in the second output round together
with the coin and the seed openings. By comparing if g∗ = gu and h∗ = hu,
each party can check the validity of the puzzle. Finally, we need to ensure that a
manipulated puzzle cannot be used to create an inconsistency certificate blaming
an honest party. Such false accusation can easily be prevented, e.g., by adding
some zero padding to the value inside the puzzle such that any invalid puzzle
input renders the whole puzzle invalid.

6.2 Comparison with Prior Work

To the best of our knowledge, our work is the first to provide a fully specified
publicly verifiable multi-party computation protocol against covert adversaries.
Hence, we cannot compare to existing protocols directly. However, Damg̊ard
et al. [DOS20] have recently presented two compilers for constructing publicly
verifiable covert secure protocols from semi-honest secure protocols in the two-
party setting, one for input-independent and one for input-dependent protocols.
For the latter, they provide an intuition on how to extend the compiler to the
multi-party case. However, there is no full compiler specification for neither

26

input-dependent nor input-independent protocols. Still, there exist a natural
extension for the input-independent compiler, which we can compare to.

The major difference between our input-independent protocol and their input-
independent protocol, is the way the protocols prevent detection dependent abort.
In the natural extension to Damg̊ard et al. [DOS20], which we call the watchlist
approach in the following, each party independently selects a subset of instances
it wants to check and receives the corresponding seeds via oblivious transfer. The
transcript of the oblivious transfer together with the receiver’s randomness can
be used by the receiver to prove integrity of its watchlist to the judge; similar
to the seed commitments and openings used in our protocol. The watchlists are
only revealed after each party receives the data required to create a certificate
in case of cheating detection, i.e., the signatures by the other parties. Once a
party detects which instances are checked, it is too late to prevent the creation
of a certificate. Our approach utilizes time-lock puzzles for the same purpose.

In the watchlist approach, all parties have different watchlists. For t semi-
honest instances and watchlists of size s ≥ t

n , there is a constant probability
Pr[bad] that no semi-honest instance remains unwatched which leads to a failure
of the protocol. Thus, parties either need to choose s < t

n and hence ε = s
t <

1
n or

run several executions of the protocol. For the latter, the probability of a protocol
failure Pr[bad] and the expected number of protocol runs runs are calculated
based on the inclusion-exclusion principle as follows:

Pr[bad] = 1−
∑t
k=1(−1)(k−1) ∗

(
t
k

)
∗ (
∏s−1
j=0(t− j − k))n

∏s−1
j=0(t− j))n

= 1−
t∑

k=1

(−1)(k−1) ·
(
t

k

)
·
(

(t− k)! · (t− s)!
(t− k − s)! · t!

)n

runs = Pr[bad]−1

Setting the watchlist size s ≥ t
n such that there is a constant failure proba-

bility has the additional drawback that the repetition can be abused to amplify
denial-of-service attacks. An adversary can enforce a high failure probability by
selecting its watchlists strategically. If s ≥ t

(n−1) and n − 1 parties are cor-

rupted, the adversary can cause an error with probability 1 which enables an
infinite DoS-attack.

This restriction of the deterrence factor seems to be a major drawback of the
watchlist approach. Although our approach has an additional overhead due to
the puzzle generation, which is independent of the complexity of the transformed
protocol and thus amortizes over the complexity of the base protocols, it has the
benefit that it immediately supports an arbitrary deterrence factor ε. This is
due to the fact that the hidden shared coin toss determines a single watchlist
shared by all parties. In Table 1, we display the maximal deterrence factor of
our approach ε in comparison to the maximal deterrence factor of the watch-
list approach without protocol repetitions ε′ for different settings. Additionally,

27

we provide the number of expected runs required to achieve ε in the watchlist
approach with repetitions.

n t
Our approach Watchlist approach

ε ε′ or runs

2

2 1/2 - 2

3 2/3 1/3 3

10 9/10 4/10 10

3

2 1/2 - 4

4 3/4 1/4 16

10 9/10 3/10 100

5
2 1/2 - 16

6 5/6 1/6 1296

Table 1. Maximal deterrence factor or expected number of runs of the watchlist ap-
proach in comparison to our approach.

Acknowledgments

The first, third, and fourth authors were supported by the German Federal
Ministry of Education and Research (BMBF) iBlockchain project (grant nr.
16KIS0902), by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) SFB 1119 – 236615297 (CROSSING Project S7), by the BMBF and
the Hessian Ministry of Higher Education, Research, Science and the Arts within
their joint support of the National Research Center for Applied Cybersecurity
ATHENE, and by Robert Bosch GmbH, by the Economy of Things Project.
The second author was supported by the BIU Center for Research in Applied
Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office, and by ISF grant No. 1316/18.

References

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. TCC 2007.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security
with public verifiability. ASIACRYPT 2012.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. EURO-
CRYPT 2015, Part I.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. CRYPTO 2018, Part I.

28

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization.
CRYPTO’91.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod
Vaikuntanathan, and Brent Waters. Time-lock puzzles from randomized
encodings. ITCS 2016.

[BW88] Johannes Buchmann and Hugh C. Williams. A key-exchange system based
on imaginary quadratic fields. Journal of Cryptology, June 1988.

[DG20] Samuel Dobson and Steven D. Galbraith. Trustless groups of unknown
order with hyperelliptic curves. IACR Cryptol. ePrint Arch. 2020, 2020.

[DGN10] Ivan Damg̊ard, Martin Geisler, and Jesper Buus Nielsen. From passive to
covert security at low cost. TCC 2010.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. ESORICS 2013.

[DOS20] Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Black-box transforma-
tions from passive to covert security with public verifiability. CRYPTO
2020, Part II.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Za-
karias. Multiparty computation from somewhat homomorphic encryption.
CRYPTO 2012.

[GMS08] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and
multi party computation against covert adversaries. EUROCRYPT 2008.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. 19th
ACM STOC 1987.

[HKK+19] Cheng Hong, Jonathan Katz, Vladimir Kolesnikov, Wen-jie Lu, and Xiao
Wang. Covert security with public verifiability: Faster, leaner, and simpler.
EUROCRYPT 2019, Part III.

[HVW20] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss.
The price of active security in cryptographic protocols. EUROCRYPT 2020,
Part II.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party com-
putation with identifiable abort. CRYPTO 2014, Part II.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. CRYPTO 2008.

[KM15] Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in the
covert model (almost) for free. ASIACRYPT 2015, Part II.

[LOP11] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The IPS compiler: Opti-
mizations, variants and concrete efficiency. CRYPTO 2011.

[MMV11] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles
in the random oracle model. CRYPTO 2011.

[MT19] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic
time-lock puzzles and applications. CRYPTO 2019, Part I.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. ITCS 2019.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and
timed-release crypto. Technical report, Massachusetts Institute of Technol-
ogy. Laboratory for Computer Science, 1996.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. EURO-
CRYPT 2019, Part III.

29

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. ACM CCS
17.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. ACM CCS 17.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from im-
proved triple generation and authenticated garbling. ACM CCS 2020.

[ZDH19] Ruiyu Zhu, Changchang Ding, and Yan Huang. Efficient publicly verifiable
2pc over a blockchain with applications to financially-secure computations.
ACM CCS 2019.

30

B. Financially Backed Covert
Security

This chapter corresponds to the following publication. The full version is available

at [85].

[86] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Financially Backed Covert

Security”. In: Public-Key Cryptography - PKC 2022 - 25th IACR International

Conference on Practice and Theory of Public-Key Cryptography, Virtual Event,

March 8-11, 2022, Proceedings, Part II. 2022, pp. 99–129. Part of this thesis.

123

Financially Backed Covert Security

Sebastian Faust1, Carmit Hazay2, David Kretzler1, and Benjamin Schlosser1

1 Technical University of Darmstadt, Germany
{first.last}@tu-darmstadt.de

2 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract. The security notion of covert security introduced by Au-
mann and Lindell (TCC’07) allows the adversary to successfully cheat
and break security with a fixed probability 1 − ε, while with probabil-
ity ε, honest parties detect the cheating attempt. Asharov and Orlandi
(ASIACRYPT’12) extend covert security to enable parties to create pub-
licly verifiable evidence about misbehavior that can be transferred to any
third party. This notion is called publicly verifiable covert security (PVC)
and has been investigated by multiple works. While these two notions
work well in settings with known identities in which parties care about
their reputation, they fall short in Internet-like settings where there are
only digital identities that can provide some form of anonymity.
In this work, we propose the notion of financially backed covert secu-
rity (FBC), which ensures that the adversary is financially punished if
cheating is detected. Next, we present three transformations that turn
PVC protocols into FBC protocols. Our protocols provide highly efficient
judging, thereby enabling practical judge implementations via smart con-
tracts deployed on a blockchain. In particular, the judge only needs to
non-interactively validate a single protocol message while previous PVC
protocols required the judge to emulate the whole protocol. Further-
more, by allowing an interactive punishment procedure, we can reduce
the amount of validation to a single program instruction, e.g., a gate in
a circuit. An interactive punishment, additionally, enables us to create
financially backed covert secure protocols without any form of common
public transcript, a property that has not been achieved by prior PVC
protocols.

Keywords: Covert Security · Multi-Party Computation (MPC) · Public
Verifiability · Financial Punishment

1 Introduction

Secure multi-party computation (MPC) protocols allow a set of parties to jointly
compute an arbitrary function f on private inputs. These protocols guarantee
privacy of inputs and correctness of outputs even if some of the parties are
corrupted by an adversary. The two standard adversarial models of MPC are
semi-honest and malicious security. While semi-honest adversaries follow the
protocol description but try to derive information beyond the output from the

interaction, malicious adversaries can behave in an arbitrary way. MPC proto-
cols in the malicious adversary model provide stronger security guarantees at
the cost of significantly less efficiency. As a middle ground between good effi-
ciency and high security Aumann and Lindell introduced the notion of security
against covert adversaries [AL07]. As in the malicious adversary model, cor-
rupted parties may deviate arbitrarily from the protocol specification but the
protocol ensures that cheating is detected with a fixed probability, called deter-
rence factor ε. The idea of covert security is that adversaries fear to be detected,
e.g., due to reputation issues, and thus refrain from cheating.

Although cheating can be detected in covert security, a party of the proto-
col cannot transfer the knowledge about malicious behavior to other (external)
parties. This shortcoming was addressed by Asharov and Orlandi [AO12] with
the notion of covert security with public verifiability (PVC). Informally, PVC en-
ables honest parties to create a publicly verifiable certificate about the detected
malicious behavior. This certificate can subsequently be checked by any other
party (often called judge), even if this party did not contribute to the protocol
execution. The idea behind this notion is to increase the deterrent effect by dam-
aging the reputation of corrupted parties publicly. PVC secure protocols for the
two-party case were presented by [AO12, KM15, ZDH19, HKK+19]. Recently,
Damg̊ard et al. [DOS20] showed a generic compiler from semi-honest to publicly
verifiable covert security for the two-party setting and gave an intuition on how
to extend their compiler to the multi-party case. Full specifications of generic
compilers from semi-honest to publicly verifiable covert security for multi-party
protocols were presented by Faust et al. [FHKS21] and Scholl et al. [SSS21].

Although PVC seems to solve the shortcoming of covert security at first
glance, in many settings PVC is not sufficient; especially, if only a digital iden-
tity of the parties is known, e.g., in the Internet. In such a setting, a real party
can create a new identity without suffering from a damaged reputation in the
sequel. Hence, malicious behavior needs to be punished in a different way. A
promising approach is to use existing cryptocurrencies to directly link cheat-
ing detection to financial punishment without involving trusted third parties;
in particular, cryptocurrencies that support so-called smart contracts, i.e., pro-
grams that enable the transfer of assets based on predefined rules. Similar to
PVC, where an external judge verifies cheating by checking a certificate of mis-
behavior, we envision a smart contract that decides whether a party behaved
maliciously or not. In this setting, the task of judging is executed over a dis-
tributed blockchain network keeping it incorruptible and verifiable at the same
time. Since every instruction executed by a smart contract costs fees, it is highly
important to keep the amount of computation performed by a contract small.
This aspect is not solely important for execution of smart contracts but in all
settings where an external judge charges by the size of the task it gets. Due
to this constraint, we cannot straightforward adapt PVC protocols to work in
this setting, since detection of malicious behavior in existing PVC protocols is
performed in a naive way that requires the judge to recompute a whole protocol
execution.

2

Related work. While combining MPC with blockchain technologies is an ac-
tive research area (e.g., [KB14, BK14, ADMM14]) none of these works deal
with realizing the judging process of PVC protocols over a blockchain. The only
work connecting covert security with financial punishment thus far is by Zhu
et al. [ZDH19], which we describe in a bit more detail below. They combine a
two-party garbling protocol with an efficient judge that can be realized via a
smart contract. Their construction leverages strong security primitives, like a
malicious secure oblivious transfer for the transmission of input wires, to ensure
that cheating can only occur during the transmission of the garbled circuit and
not in any other part of the two-party protocol. By using a binary search over
the transmitted circuit, the parties narrow down the computation step under
dispute to a single circuit gate. This process requires O(log(|C|)) interactions,
where |C| denotes the circuit size, and enables the judge to resolve the dispute
by recomputing only a single circuit gate.

While the approach of Zhu et al. [ZDH19] provides an elegant way to reduce
the computational complexity of the judge in case cheating is restricted to a sin-
gle message, it falls short if multiple messages or even a whole protocol execution
is under dispute. As a consequence, their construction is limited in scalability
and generality, since it is only applicable to two-party garbling protocols, i.e.,
neither other semi-honest two-party protocols nor more parties are supported.

Generalizing the ideas of [ZDH19] to work for other protocol types and the
multi-party case requires us to address several challenges. First, in [ZDH19]
the transmitted garbled circuit under dispute is the result of the completely
non-interactive garbling process. In contrast, many semi-honest MPC protocols
(e.g., [GMW87, BMR90]) consist of several rounds of interactions that need
to be all considered during the verification. Interactivity poses the challenge
that multiple messages may be under dispute and the computation of messages
performed by parties may depend on data received in previous rounds. Hence,
verifications of messages need to consider local computations and internal states
of the parties that depend on all previous communication rounds. This task is far
more complex than verifying a single public message. Second, supporting more
than two parties poses the challenge of resolving a dispute about a protocol
execution during which parties might not know the messages sent between a
subset of other parties. Third, the transmitted garbled circuit in [ZDH19] is
independent of the parties private inputs. Considering protocols where parties
provide secret inputs or messages that depend on these inputs, requires a privacy-
preserving verification mechanism to protect parties’ sensitive data.

1.1 Contribution

Our first contribution is to introduce a new security notion called financially
backed covert security (FBC). This notion combines a covertly secure proto-
col with a mechanism to financially punish a corrupted party if cheating was
detected. We formalize financial security by adding two properties to covert
security, i.e., financial accountability and financial defamation freeness. Our no-
tion is similar to the one of PVC; in fact, PVC adds reputational punishment

3

to covert security via accountability and defamation freeness. In order to lift
these properties to the financial context, FBC requires deposits from all parties
and allows for an interactive judge. We present two security games to formal-
ize our introduced properties. While the properties are close to accountability
and defamation freeness of PVC, our work for the first time explicitly presents
formal security games for these security properties, thereby enabling us to rig-
orously reason about financial properties in PVC protocols. We briefly compare
our new notion to the security definition of Zhu et al. [ZDH19], which is called
financially secure computation. Zhu et al. follow the approach of simulation-
based security by presenting an ideal functionality for two parties that extends
the ideal functionality of covert security. In contrast, we present a game-based
security definition that is not restricted to the two-party case. While simulation-
based definitions have the advantage of providing security under composition,
proving a protocol secure under their notion requires to create a full simula-
tion proof which is an expensive task. Instead, our game-based notion allows to
re-use simulation proofs of all existing covert and PVC protocols, including fu-
ture constructions, and to focus on proving financial accountability and financial
defamation freeness in a standalone way.

We present transformations from different classes of PVC protocols to FBC
protocols. While we could base our transformations on covert protocols, FBC
protocols require a property called prevention of detection dependent abort, which
is not always guaranteed by a covert protocol. The property ensures that a
corrupted party cannot abort after learning that her cheating will be detected
without leaving publicly verifiable evidence. PVC protocols always satisfy pre-
vention of detection dependent abort. So, by basing our transformation on PVC
protocols, we inherit this property.

While the mechanism utilized by [ZDH19] to validate misbehavior is highly
efficient, it has only been used for non-interactive algorithms so far, i.e, to vali-
date correctness of the garbling process. We face the challenge of extending this
mechanism over an interactive protocol execution while still allowing for effi-
cient dispute resolution such that the judge can be realized via a smart contract.
In order to tackle these challenges, we present a novel technique that enables
efficient validation of arbitrary complex and interactive protocols given the ran-
domness and inputs of all parties. What’s more, we can allow for private inputs if
a public transcript of all protocol messages is available. We utilize only standard
cryptographic primitives, in particular, commitments and signatures.

We differentiate existing PVC protocols according to whether the parties pro-
vide private inputs or not. The former protocols are called input-dependent and
the latter ones input-independent. Input-independent protocols are typically used
to generate correlated randomness. Further, all existing PVC protocols incorpo-
rate some form of common public transcript. Input-dependent protocols require
a common public transcript of messages. In contrast, for input-independent pro-
tocols, it is enough to agree on the hashes of all sent messages. While it is not
clear, if it is possible to construct PVC protocols without any form of public
transcript, we construct FBC protocols providing this property. We achieve this

4

by exploiting the interactivity of the judge, which is non-interactive in PVC.
Based on the above observations, we define the following three classes of FBC
protocols, for which we present transformations from PVC protocols.

Class 1: The first class contains input-independent protocols during which par-
ties learn hashes of all protocol messages such that they agree on a common
transcript of message hashes.

Class 2: The second class contains input-dependent protocols with a public
transcript of messages. In contrast to class 1, parties may provide secret
inputs and share a common view on all messages instead of a common view
on hashes only.

Class 3: The third class contains input-independent protocols where parties do
not learn any information about messages exchanged between a subset of
other parties (cf. class 1). As there are no PVC protocol fitting into this
class, we first convert PVC protocols matching the requirements of class
1 into protocols without public transcripts and second leverage an interac-
tive punishment procedure to transform the resulting protocols into FBC
protocols without public transcripts. Our FBC protocols benefit from this
property since parties have to send all messages only to the receiver and
not to all other parties. This effectively reduces the concrete communication
complexity by a factor depending on the number of parties. In the optimistic
case, if there is no cheating, we get this benefit without any overhead in the
round complexity.

For each of our constructions, we provide a formal specification and a rigorous
security analysis; the ones of the second class can be found in the full version
of this paper. This is in contrast to the work of [ZDH19] which lacks a formal
security analysis for financially secure computation. We stress that all existing
PVC multi-party protocols can be categorized into class 1 and 2. Additionally,
by combining any of the transformations from [DOS20, FHKS21, SSS21], which
compile semi-honest protocols into PVC protocols, our constructions can be used
to transform these protocol into FBC protocols.

The resulting FBC protocols for class 1 and 2 allow parties to non-interactively
send evidence about malicious behavior to the judge. As the judge entity in these
two classes is non-interactive, techniques from our transformations are of inde-
pendent interest to make PVC protocols more efficient. Since, in contrast to
class 1 and 2, there is no public transcript present in protocols of class 3, we
design an interactive process involving the judge entity to generate evidence
about malicious behavior. For all protocols, once the evidence is interactively or
non-interactively created, the judge can efficiently resolve the dispute by recom-
puting only a single protocol message regardless of the overall computation size.
We can further reduce the amount of validation to a single program instruction,
e.g., a gate in a circuit, by prepending an interactive search procedure. This
extension is presented in the full version of this paper.

Finally, we provide a smart contract implementation of the judging party in
Ethereum and evaluate its gas costs (cf. Section 8). The evaluation shows the

5

practicability, e.g., in the three party setting, with optimistic execution costs of
533 k gas. Moreover, we show that the dispute resolution of our solution is highly
scalable in regard to the number of parties, the number of protocol rounds and
the protocol complexity.

1.2 Technical Overview

In this section, we outline the main techniques used in our work and present the
high-level ideas incorporated into our constructions. We start with on overview
of the new notion of financially backed covert security. Then, we present a first
attempt of a construction over a blockchain and outline the major challenges.
Next, we describe the main techniques used in our constructions for PVC proto-
cols of classes 1 and 2 and finally elaborate on the bisection procedure required
for the more challenging class 3.

Financially backed covert security. We recall that, a publicly verifiable covertly
secure (PVC) protocol (πcov,Blame, Judge) consists of a covertly secure protocol
πcov, a blaming algorithm Blame and a judging algorithm Judge. The blam-
ing algorithm produces a certificate cert in case cheating was detected and the
judging algorithm, upon receiving a valid certificate, outputs the identity of the
corrupted party. The algorithm Judge of a PVC protocol is explicitly defined as
non-interactive. Therefore, cert can be transferred at any point in time to any
third party that executes Judge and can be convinced about malicious behavior
if the algorithm outputs the identity of a corrupted party.

In contrast to PVC, financially backed covert security (FBC) works in a
model where parties own assets which can be transferred to other parties. This
is modelled via a ledger entity L. Moreover, the model contains a trusted judging
party J which receives deposits before the start of the protocol and adjudicates
in case of detected cheating. We emphasize that the entity J , which is a single
trusted entity interacting with all parties, is not the same as the algorithm Judge
of a PVC protocol, which can be executed non-interactively by any party. An
FBC protocol (π′cov,Blame′,Punish) consists of a covertly secure protocol π′cov, a
blaming algorithm Blame′ and an interactive punishment protocol Punish. Simi-
lar to PVC, the blaming algorithm Blame′ produces a certificate cert′ that is used
as an input to the interactive punishment protocol. Punish is executed between
the parties and the judge J . If all parties behave honestly during the execution
of π′cov, J sends the deposited coins back to all parties after the execution of
Punish. In case cheating is detected during π′cov, the judge J burns the coins of
the cheating party.

First attempt of an instantiation over a blockchain. Blockchain technologies pro-
vide a convenient way of handling monetary assets. In particular, in combination
with the execution of smart contracts, e.g., offered by Ethereum [W+14], we en-
vision to realize the judging party J as a smart contract. A first attempt of
designing the punishment protocol is to implement J in a way, that the judge
just gets the certificate generated by the PVC protocol’s blame algorithm and

6

executes the PVC protocol’s Judge-algorithm. However, the Judge-algorithm of
all existing PVC protocols recomputes a whole protocol instance and compares
the output with a common transcript on which all parties agree beforehand.
As computation of a smart contract costs money in form of transaction fees,
recomputing a whole protocol is prohibitively expensive. Therefore, instead of
recomputing the whole protocol, we aim for a punishment protocol that facili-
tates a judging party J which needs to recompute just a single protocol step or
even a single program instruction, e.g., a gate in a circuit. The resulting judge
becomes efficient in a way that it can be practically realized via a smart contract.

FBC protocols with efficient judging from PVC protocols. In this work, we
present three transformations from PVC protocols to FBC protocols. Our trans-
formations start with PVC protocols providing different properties which we use
to categorize these protocols into three classes. We model the protocol execution
in a way such that every party’s behavior is deterministically defined by her in-
put, her randomness and incoming messages. More precisely, we define the initial
state of a party as her input and some randomness and compute the next state
according to the state of the previous round and the incoming messages of the
current round. Our first two transformations build on PVC protocols where the
parties share a public transcript of the exchanged messages resp. message hashes.
Additionally, parties send signed commitments on their intermediate states to
all parties. The opening procedure ensures that correctly created commitments
can be opened – falsely created commitments open to an invalid state that is
interpreted as an invalid message. By sending the internal state of some party
Pm for a single round together with the messages received by Pm in the same
round to the judging party, the latter can efficiently verify malicious behavior
by recomputing just a single protocol step. The resulting punishment protocol
is efficient and can be executed without contribution of the cheating party.

Interactive punishment protocol to support private transcripts. Our third trans-
formation compiles input-independent PVC protocols with a public transcript
into protocols where no public transcript is known to the parties. The lack
of a public transcript makes the punishment protocol more complicated. In-
tuitively, since an honest party has no signed information about the message
transcript, she cannot provide verifiable data about the incoming message used
to calculate a protocol step. Therefore, we use the technique of an interac-
tive bisection protocol which was first used in the context of verifiable com-
puting by Canetti et al. [CRR11] and subsequently by many further construc-
tions [KGC+18, TR19, ZDH19, EFS20]. While the bisection technique is very
efficient to narrow down disagreement, it was only used for non-interactive al-
gorithms so far. Hence, we extend this technique to support also interactive
protocols. In particular, in our work, we use a bisection protocol to allow two
parties to efficiently agree on a common message history. To this end, both par-
ties, the accusing and the accused one, create a Merkle tree of their emulated
message history up to the disputed message and submit the corresponding root.
If they agree on the message history, the accusation can be validated by ref-

7

erence to this history. If they disagree, they perform a bisection search over
the proposed history that determines the first message in the message history,
they disagree on, while automatically ensuring that they agree on all previous
messages. Hence, the judge can verify the message that the parties disagree on
based on the previous messages they agree on. At the end of both interactions,
the judge can efficiently resolve the dispute by recomputing just a single step.

2 Preliminaries

We start by introducing notation and cryptographic primitives used in our con-
struction. Moreover, we provide the definition of covert security and publicly
verifiable covert security in the full version of this paper.

We denote the computational security parameter by κ. Let n be some integer,
then [n] = {1, . . . , n}. Let i ∈ [n], then we use the notation j 6= i for j ∈ [n]\{i}.
A function negl(n) : N→ R is negligible in n if for every positive integer c there
exists an integer n0 such that ∀n > n0 it hols that negl(n) < 1

nc . We use the
notation negl(n) to denote a negligible function.

We define REALπ,A(z),I(x̄, 1κ) to be the output of the execution of an n-party
protocol π executed between parties {Pi}i∈[n] on input x̄ = {xi}i∈[n] and security
parameter κ, where A on auxiliary input z corrupts parties I ⊂ {Pi}i∈[n]. We
further specify OUTPUTj(REALπ,A(z),I(x̄, 1κ)) to be the output of party Pj for
j ∈ [n].

Our protocol utilizes a signature scheme (Generate,Sign,Verify) that is exis-
tentially unforgeable under chosen-message attacks. We assume that each party
executes the Generate-algorithm to obtain a key pair (pk, sk) before the protocol
execution. Further, we assume that all public keys are published and known to
all parties while the secret keys are kept private. To simplify the protocol descrip-
tion we denote signed messages with

〈
x
〉
i

instead of (x, σ := Signski(x)). The

verification is therefore written as Verify(
〈
x
〉
i
) instead of Verifypki(x, σ). Further,

we make use of a hash function H(·) : {0, 1}∗ → {0, 1}κ that is collision resistant.

We assume a synchronous communication model, where communication hap-
pens in rounds and all parties are aware of the current round. Messages that are
sent in some round k arrive at the receiver in round k + 1. Since we consider a
rushing adversary, the adversary learns the messages sent by honest parties in
round k in the same round and hence can adapt her own messages accordingly.
We denote a message sent from party Pi to party Pj in round k of some protocol

instance denoted with ` as msg
(i,j)
(`,k). The hash of this message is denoted with

hash
(i,j)
(`,k) := H(msg

(i,j)
(`,k)).

A Merkle tree over an ordered set of elements {xi}i∈[N] is a labeled binary
hash tree, where the i-th leaf is labeled by xi. We assume N to be an integer
power of two. In case the number of elements is not a power of two, the set can
be padded until N is a power of two. For construction of Merkle trees, we make
use of the collision-resistant hash function H(·) : {0, 1}∗ → {0, 1}κ.

8

Formally, we define a Merkle tree as a tuple of algorithms (MTree,MRoot,
MProof,MVerify). Algorithm MTree takes as input a computational security pa-
rameter κ as well as a set of elements {xi}i∈[N] and creates a Merkle tree mTree.
To ease the notation, we will omit the security parameter and implicitly assume
it to be provided. Algorithm MRoot takes as input a Merkle tree mTree and
returns the root element root of tree mTree. Algorithm MProof takes as input a
leaf xj and Merkle tree mTree and creates a Merkle proof σ showing that xj is
the j-th leaf in mTree. Algorithm MVerify takes as input a proof σ, an index i,
a root root and a leaf x∗ and returns true iff x∗ is the i-the leaf of a Merkle tree
with root root.

A Merkle Tree satisfies the following two requirements. First, for each Merkle
tree mTree created over an arbitrary set of elements {xi}i∈[N], it holds that
for each j ∈ [N] MVerify(MProof(xj ,mTree), j,MRoot(mTree), xj) = true. We
call this property correctness. Second, for each Merkle tree mTree with root
root := MRoot(mTree) created over an arbitrary set of elements {xi}i∈[N] with
security parameter κ it holds that for each polynomial time algorithm adver-
sary A outputting an index j∗, leaf x∗ 6= xj∗ and proof σ∗ the probability that
MVerify(σ∗, j∗,MRoot(mTree), x∗) = true is negl(κ). We call this property bind-
ing.

3 Financially Backed Covert Security

In the following, we specify the new notion of financially backed covert security.
This notion extends covert security by a mechanism of financial punishment.
More precisely, once an honest party detects cheating of the adversary during
the execution of the covertly secure protocol, there is some corrupted party
that is financial punished afterwards. The financial punishment is realized by
an interactive protocol Punish that is executed directly after the covertly secure
protocol. In order to deal with monetary assets, financially backed covertly secure
protocols depend on a public ledger L and a trusted judge J . The former can be
realized by distributed ledger technologies, such as blockchains, and the latter
by a smart contract executed on the said ledger. In the following, we describe
the role of the ledger and the judging party, formally define financially backed
covert security and outline techniques to prove financially backed covert security.

3.1 The Ledger and Judge

An inherent property of our model is the handling of assets and asset transfers
based on predefined conditions. Nowadays, distributed ledger technologies like
blockchains provide convenient means to realize this functionality. We model
the handling of assets resp. coins via a ledger entity denoted by L. The entity
stores a balance of coins for each party and transfers coins between parties upon

request. More precisely, L stores a balance b
(t)
i for each party Pi at time t. For

the security definition presented in Section 3.2, we are in particular interested

in the balances before the execution of the protocol π, i.e., b
(pre)
i , and after the

9

execution of the protocol Punish, i.e., b
(post)
i . The balances are public such that

every party can query the amount of coins for any party at the current time.
In order to send coins to another party, a party interacts with L to trigger the
transfer.

While we consider the ledger as a pure storage of balances, we realize the
conditional transfer of coins based on some predefined rules specified by the
protocol Punish via a judge J . In particular, J constitutes a trusted third party
that interacts with the parties of the covertly secure protocol. More precisely,
we require that each party sends some fixed amount of coins as deposit to J
before the covertly secure protocol starts. During the covertly secure protocol
execution, the judge keeps the deposited coins but does not need to be part of
any interaction. After the execution of the covertly secure protocol, the judge
plays an important role in the punishment protocol Punish. In case any party
detects cheating during the execution of the covertly secure protocol, J acts
as an adjudicator. If there is verifiable evidence about malicious behavior of
some party, the judge financially punishes the corrupted party by withholding
her deposit. Eventually, J will reimburse all parties with their deposits except
those parties that have been proven to be malicious. The rules according to
which parties are considered malicious and hence according to which the coins
are reimbursed or withhold need to be specified by the protocol Punish.

Finally, we emphasize that both entities the ledger L and the judge J are
considered trusted. This means, the correct functionality of these entities cannot
be distorted by the adversary.

3.2 Formal Definition

We work in a model in which a ledger L and a judge J as explained above exist.
Let π′ be an n-party protocol that is covertly secure with deterrence factor ε.
Let the number of corrupted parties that is tolerated by π′ be m < n and the set
of corrupted parties be denoted by I. We define π as an extension of π′, in which
all involved parties transfer a fixed amount of coins, d, to J before executing
π′. Additionally, after the execution of π′, all parties execute algorithm Blame
which on input the view of the honest party outputs a certificate and broadcasts
the generated certificate – still as part of π. The certificate is used for both
proving malicious behavior, if detected, and defending against being accused for
malicious behavior.

After the execution of π, all parties participate in the protocol Punish. In case
honest parties detected misbehavior, they prove said misbehavior to J such that
J can punish the malicious party. In case a malicious party blames an honest
one, the honest parties participate to prove their correct behavior. Either way,
even if there is no blame at all, all honest parties wait to receive their deposits
back, which are reimbursed by J at the end of the punishment protocol Punish.

Definition 1 (Financially backed covert security). We call a triple
(π,Blame,Punish) an n-party financially backed covertly secure protocol with

10

deterrence factor ε computing some function f in the L and J model, if the
following security properties are satisfied:

1. Simulatability with ε-deterrent: The protocol π (as described above) is
secure against a covert adversary according to the strong explicit cheat for-
mulation with ε-deterrent and non-halting detection accurate.

2. Financial Accountability: For every PPT adversary A corrupting parties
Pi for i ∈ I ⊂ [n], there exists a negligible function µ(·) such that for all
(x̄, z) ∈ ({0, 1})n+1 the following holds:
If for any honest party Ph ∈ [n] \ I it holds that
OUTPUTh(REALπ,A(z),I(x̄, 1κ)) = corrupted∗ 3, then ∃m ∈ I such that:

Pr[b(post)m = b(pre)m − d] > 1− µ(κ),

where d denotes the amount of deposited coins per party.
3. Financial Defamation Freeness: For every PPT adversary A corrupting

parties Pi for i ∈ I ⊂ [n], there exists a negligible function µ(·) such that for
all (x̄, z) ∈ ({0, 1})n+1 and all j ∈ [n] \ I the following holds:

Pr[b
(post)
j < b

(pre)
j] < µ(κ).

Remark: For simplicity, we assume that the adversary does not transfer coins
after sending the deposit to J . This assumption can be circumvented by restating
financial accountability such that the sum of the balances of all corrupted parties
(not just the ones involved in the protocol) is reduced by d.

3.3 Proving Security of Financially Backed Covert Security

Our notion of financially backed covert security (FBC) consists of three prop-
erties. The simulatability property requires the protocol π, which augments the
covertly secure protocol π′, to be covertly secure as well. This does not au-
tomatically follows from the security of π′, in particular since π includes the
broadcast of certificates in case of detected cheating. Showing simulatability of
π guarantees that the adversary does not learn sensitive information from the
certificates. Showing that a protocol π satisfies the simulatability property is
proven via a simulation proof. In contrast, we follow a game-based approach to
formally prove financial accountability and financial defamation freeness. To this
end, we introduce two novel security games, ExpFA and ExpFDF, in the following.
Although these two properties are similar to the accountability and defamation
freeness properties of PVC, we are the first to introduce formal security games
for any of these properties. While we focus on financial accountability and finan-
cial defamation freeness, we note that our approach and our security games can
be adapted to suit for the security properties of PVC as well.

3 We use the notation corrupted∗ to denote that the output of Ph is corruptedi for some
i ∈ I. We stress that i does not need to be equal to m of the financial accountability
property.

11

Both security games are played between a challenger C and an adversary
A. We define the games in a way that allows us to abstract away most of the
details of π. In particular, we parameterize the games by two inputs, one for
the challenger and one for the adversary. The challenger’s input contains the
certificates {certi}i∈[n]\I of all honest parties generated by the Blame-algorithm
after the execution of π while the adversary’s input consists of all malicious par-
ties’ views {viewi}i∈I . By introducing the certificates as inputs to the game, we
can prove financial accountability and financial defamation freeness independent
from proving simulatability of protocol π.

Throughout the execution of the security games, the adversary executes one
instance of the punishment protocol Punish with the challenger that takes over
the roles of all honest and trusted parties, i.e., the honest protocol parties Ph
for h /∈ I, the judge J , and the ledger L. To avoid an overly complex challenger
description, we define those parties as separated entities that can be addressed
by the adversary separately and are all executed by the challenger: {Ph}h∈[n]\I ,
J, and L. In case any entity is supposed to act pro-actively and does not only
wait to react to malicious behavior, the entity is invoked by the challenger. Com-
munication between said entities is simulated by the challenger. The adversary
acts on behalf of the corrupted parties.

Financial accountability game. Intuitively, financial accountability states that
whenever any honest party detects cheating, there is some corrupted party that
loses her deposit. Therefore, we require that the output of all honest parties
was corruptedm for m ∈ I in the execution of π. If this holds, the security game
executes Punish as specified by the FBC protocol. Before the execution of Punish,
the challenger asks the ledger for the balances of all parties and stores them as

{b(prePunish)i }i∈[n]. Note that prePunish denotes the time before Punish but after
the whole protocol already started. This means, relating to Definition 1, the
security deposits are already transferred to J , i.e., bprePunishi = bprei − d. After the
execution, the challenger C again reads the balances of all parties storing them as

{b(post)i }i∈[n] . If b
(post)
m = b

(prePunish)
m +d for all m ∈ I, i.e., all corrupted parties get

their deposits back, the adversary wins and C outputs 1, otherwise C outputs 0.
A protocol satisfies the financial accountability property as stated in Definition 1
if for each adversary A running in time polynomial in κ the probability that A
wins game ExpFA is at most negligible, i.e., if Pr[ExpFA(A, κ) = 1] ≤ negl(κ).

Financial defamation freeness game. Intuitively, financial defamation freeness
states that an honest party can never lose her deposit as a result of executing
the Punish protocol. The security game is executed in the same way as the
financial accountability game. It only differs in the winning conditions for the
adversary. After the execution C checks the balances of the honest parties. If

b
(post)
h < b

(prePunish)
h + d for at least one h ∈ [n] \ I, the adversary wins and the

challenger outputs 1, otherwise C outputs 0. A protocol satisfies the financial
defamation freeness property as stated in Definition 1 if for each adversary A
running in time polynomial in κ the probability that A wins game ExpFDF is at
most negligible, i.e. if Pr[ExpFDF(A, κ) = 1] ≤ negl(κ).

12

4 Features of PVC Protocols

We present transformations from different classes of publicly verifiable covertly
secure multi-party protocols (PVC) to financially backed covertly secure proto-
cols (FBC). As our transformations make use of concrete features of the PVC
protocol (e.g., the exchanged messages), we cannot use the PVC protocol in a
block-box way. Instead, we model the PVC protocol in an abstract way, stating
features that are required by our constructions. In the remainder of this section,
we present these features in detail and describe how we model them. We note
that all existing PVC multi-party protocols [DOS20, FHKS21, SSS21] provide
the features specified in this section.

4.1 Cut-and-Choose

Although not required per definition of PVC, a fundamental technique used by
all existing PVC protocols is the cut-and-choose approach that leverages a semi-
honest protocol by executing t instances of the semi-honest protocol in parallel.
Afterwards, the views (i.e., input and randomness) of the parties is revealed in
s instances. This enables parties to detect misbehavior with probability ε = s

t .
PVC protocols can be split into protocols where parties provide private inputs
and those where parties do not have secret data. While cut-and-choose for input-
independent protocols, i.e., those where parties do not have private inputs, work
as explained on a high level before, the approach must be utilized in such a way
that input privacy is guaranteed for input-dependent protocols. However, for
both classes of protocols, a cheat detection probability of ε = s

t can be achieved.
We elaborate more on the two variants and provide details about them in the
full version of this paper.

4.2 Verification of Protocol Executions

An important feature of PVC protocols based on cut-and-choose is to enable
parties to verify the execution of the opened protocol instances. This requires
parties to emulate the protocol messages and compare them with the messages
exchanged during the real execution. In order to emulate honest behavior, we
need the protocol to be derandomized.

Derandomization of the protocol execution. In general, the behavior of each party
during some protocol execution depends on the party’s private input, its random
tape and all incoming messages. In order to enable parties to check the behavior
of other parties in retrospect, the actions of all parties need to be made deter-
ministic. To this end, we require the feature of a PVC protocol that all random
choices of a party Pi in a protocol instance are derived from some random seed
seedi using a pseudorandom generator (PRG). The seed seedi is fixed before
the beginning of the execution. It follows that the generated outgoing messages
are computed deterministically given the seed seedi, the secret input and all
incoming messages.

13

State evolution. Corresponding to our communication model (cf. Section 2),
the internal states of the parties in a semi-honest protocol instance evolve in
rounds. For each party Pi, for i ∈ [n], and each round k > 0 the protocol
defines a state transition computeRoundik that on input the previous internal

state state
(i)
(k−1) and the set of incoming messages {msg

(j,i)
(k−1)}j 6=i computes the

new internal state state
(i)
(k) and the set of outgoing messages {msg

(i,j)
(k) }j 6=i. Based

on the derandomization feature, the state transition is deterministic, i.e., all
random choices are derived from a random seed included in the internal state of
a party. Each party starts with an initial internal state that equals its random
seed seedi and its secret input xi. In case no secret input is present (i.e., in the
input-independent setting) or no message is sent, the value is considered to be
a dummy symbol (⊥). We denote the set of all messages sent during a protocol
instance by protocol transcript. Summarizing, we formally define

state
(i)
(0) ← (seedi, xi)

{msg
(j,i)
(0) }j∈[n]\{i} ← {⊥}j∈[n]\{i}

(state
(i)
(k), {msg

(i,j)
(k) }j∈[n]\{i})← computeRoundik(state

(i)
(k−1), {msg

(j,i)
(k−1)}j∈[n]\{i}).

Protocol emulation. In order to check for malicious behavior, parties locally
emulate the protocol execution of the opened instances and compare the set of
computed messages with the received ones. In case some involved parties are not
checked (e.g., in the input-dependent setting), the emulation gets their messages
as input and assumes them to be correct. In this case, in order to ensure that
each party can run the emulation, it is necessary that each party has access to
all messages sent in the opened instance (cf. Section 4.4).

To formalize the protocol emulation, we define for each n-party protocol π
with R rounds two emulation algorithms. The first algorithm emulatefullπ emulates
all parties while the second algorithm emulatepartπ emulates only a partial subset
of the parties and considers the messages of all other parties as correct. We
formally define them as

({msg
(i,j)
(k) }k,i,j 6=i, {state

(i)
(k)}k,i)← emulatefullπ ({state(i)(0)}i) and

({msg
(i,j)
(k) }k,i,j 6=i, {state

(̂i)
(k)}k,̂i)← emulatepartπ (O, {state(̂i)(0)}î, {msg

(i∗,j)
(k) }k,i∗,j 6=i∗)

where k ∈ [R], i, j ∈ [n], î ∈ O and i∗ ∈ [n] \ O. O denotes the set of opened
parties.

4.3 Deriving the Initial States

As a third feature, we require a mechanism for the parties of a PVC protocol to
learn the initial states of all opened parties in order to perform the protocol em-
ulation (cf. Section 4.2). Since PVC prevents detection dependent abort, parties
learn the initial state even if the adversary aborts after having learned the cut-
and-choose selection. Existing multi-party PVC protocols provide this feature

14

by either making use of oblivious transfer or time-lock puzzles as in [DOS20]
resp. [FHKS21, SSS21]. We elaborate on these protocols in the full version of
this paper.

To model this behavior formally, we define the abstract tuples initDatacore and
initDataaux as well as the algorithm deriveInit. initDatacore(i) represents data each
party holds that should be signed by Pi and can be used to derive the initial
state of party Pi in a single protocol instance (e.g., a signed time-lock puzzle).
initDataaux(i) represents the additional data all parties receive during the PVC
protocol that can be used to interpret initDatacore(i) (e.g., the verifiable solution of
the time-lock puzzle). Finally, deriveInit is an algorithm that on input initDatacore(i)

and initDataaux(i) derives the initial state of party Pi (e.g., verifying the solution
of the puzzle). Instead of outputting an initial state, the algorithm deriveInit
can also output bad or ⊥. The former states that party Pi misbehaved during
the PVC protocol by providing inconsistent data. The symbol ⊥ states that
the input to deriveInit has been invalid which can only occur if initDatacore(i) or
initDataaux(i) have been manipulated.

Similar to commitment schemes, our abstraction satisfies a binding and hiding
requirement, i.e., it is computationally binding and computationally hiding. The
binding property requires that the probability of any polynomial time adversary
finding a tuple (x, y1, y2) such that deriveInit(x, y1) 6= ⊥, deriveInit(x, y2) 6= ⊥,
and deriveInit(x, y1) 6= deriveInit(x, y2) is negligible. The hiding property requires
that the probability of a polynomial time adversary finding for a given initDatacore

a initDataaux such that deriveInit(initDatacore, initDataaux) 6= ⊥ is negligible.

4.4 Public Transcript

A final feature required by PVC protocols of class 1 and 2 is the availability of a
common public transcript. We define three levels of transcript availability. First,
a common public transcript of messages ensures that all parties hold a common
transcript containing all messages that have been sent during the execution of
a protocol instance. Every protocol can be transformed to provide this feature
by requiring all parties to send all messages to all other parties and defining
a fixed ordering on the sent messages – we consider an ordering of messages
by the round they are sent, the index of the sender, and the receiver’s index
in this sequence. If messages should be secret, each pair of parties executes a
secure key exchange as part of the protocol instance and then encrypts messages
with the established keys. Agreement is achieved by broadcasting signatures
on the transcript, e.g., via signing the root of a Merkle tree over all message
hashes as discussed in [FHKS21] and required in our transformations. Second,
a common public transcript of hashes ensures that all parties hold a common
transcript containing the hashes of all messages sent during the execution of a
protocol instance. This feature is achieved similar to the transcript of messages
but parties only send message hashes to all parties that are not the intended
receiver. Finally, the private transcript does not require any agreement on the
transcript of a protocol instance.

15

Currently, all existing multi-party PVC protocols either provide a common
public transcript of messages [DOS20, FHKS21] or a common public transcript
of hashes [SSS21]. However, [DOS20] and [FHKS21] can be trivially adapted to
provide just a common public transcript of hashes.

5 Building Blocks

In this section, we describe the building blocks for our financially backed covertly
secure protocols. In the full version of this paper, we show security of the building
blocks and that incorporating the building blocks into the PVC protocol does
not affect the protocol’s security.

5.1 Internal State Commitments

To realize the judge in an efficient way, we want it to validate just a single pro-
tocol step instead of validating a whole instance. Existing PVC protocols prove
misbehavior in a naive way by allowing parties to show that some other party

Pj had an initial state state
(j)
(0). Based on the initial state, the judge recomputes

the whole protocol instance. In contrast to this, we incorporate a mechanism

that allows parties to prove that Pj has been in state state
(j)
(k) in a specific round

k where misbehavior was detected. Then, the judge just needs to recompute a
single step. To this end, we require that parties commit to each intermediate
internal state during the execution of each semi-honest instance in a publicly
verifiable way. In particular, in each round k of each semi-honest instance `,
each party Pi sends a hash of its internal state to all other parties using a

collision-resistant hash function H(·), i.e., H(state
(i)
(`,k)). At the end of a pro-

tocol instance each party Ph creates a Merkle tree over all state hashes, i.e.,

sTree` := MTree({hash(i)(`,k)}k∈[R],i∈[n]), and broadcasts a signature on the root

of this tree, i.e.,
〈
MRoot(sTree`)

〉
h
.

5.2 Signature Encoding

Our protocol incorporates signatures in order to provide evidence to the judge
J about the behavior of the parties. Without further countermeasures, an ad-
versary can make use of signed data across multiple instances or rounds, e.g.,
she could claim that some message msg sent in round k has been sent in round
k′ using the signature received in round k. To prevent such an attack, we encode
signed data by prefixing it with the corresponding indices before being signed.
Merkle tree roots are prefixed with the instance index `. Message hashes are
prefixed with `, the round index k, the sender index i and the receiver index j.
Initial state commitments (initDatacore(`,i)) are prefixed with ` and the index i of
the party who’s initial state the commitment refers to. The signature verifica-
tion algorithm automatically checks for correct prefixing. The indices are derived
from the super- and subscripts. If one index is not explicitly provided, e.g., in
case only one instance is executed, the index is assumed to be 1.

16

5.3 Bisection of Trees

Our constructions make heavily use of Merkle trees to represent sets of data.
This enables parties to efficiently prove that chunk of data is part of a set by
providing a Merkle proof showing that the chunk is a leaf of the corresponding
Merkle tree. In case two parties disagree about the data of a Merkle tree which
should be identical, we use a bisection protocol ΠBS to narrow down the dispute
to the first leaf of the tree on which they disagree. This helps a judging party
to determine the lying party by just verifying a single data chunk in contrast to
checking the whole data. The technique of bisecting was first used by Canetti
et al. [CRR11] in the context of verifiable computing. Later, the technique was
used in [KGC+18, TR19, EFS20].

The protocol is executed between a party Pb with input a tree mTreeb, a
party Pm with input a tree mTreem and a trusted judge J announcing three
public inputs: rootj , the root of mTreej as claimed by Pj for j ∈ {b,m}, and
width, the width of the trees, i.e., the number of leaves. The protocol returns the
index z of the first leaf at which mTreeb and mTreem differentiate, the leaf hashmz
at position z of mTreem, and the common leaf hash(z−1) at position z − 1. The
latter is ⊥ if z = 1. Let node(mTree, x, y) be the node of a tree mTree at position
x of layer y – positions start with 1. The protocol is executed as follows:

Protocol Bisection ΠBS

1. J initializes layer variable y := 1, position variable x := 1, last agreed hash
hasha := ⊥, and depth := dlog2(width)e+ 1

2. All parties repeat this step while y ≤ depth:
(a) Both Pj (for j ∈ {b,m}) send hashj := node(mTreej , x, y) and σj :=

MProof(hashj ,mTreej) to J .
(b) If MVerify(hashj , x, rootj , σj) = false (for j ∈ {b,m}), J discards the mes-

sage from Pj .
(c) If y = depth, J keeps hashb and hashm and sets y = y + 1.
(d) If y < depth and hashb = hashm, J sets x = (2 · x) + 1 and y = y + 1.
(e) If y < depth and hashb 6= hashm, J sets x = (2 · x)− 1 and y = y + 1.

3. If hashb = hashm

– J sets z := x+ 1 and hash(z−1) := hashb.
– Pm sends hashmz := node(mTreem, z, depth) and σ :=

MProof(hashmz ,mTreem) to J .
– If MVerify(hashmz , z, root, σ) = false, J discards. Otherwise J stores hashmz .

4. If hashb 6= hashm

– J sets z := x and hashmz := hashm. If z = 1, J sets hash(z−1) := ⊥, and the
protocol jumps to step 5.

– Pm sends hash(z−1) := node(mTreem, z − 1, depth) and σ :=
MProof(hash(z−1),mTreem) to J .

– If MVerify(hash(z−1), z − 1,mTreem, σ) = false, J discards. Otherwise, J
keeps hash(z−1).

5. J announces public outputs z, hashmz and hash(z−1).

17

6 Class 1: Input-Independent with Public Transcript

Our first transformation builds on input-independent PVC protocols where all
parties possess a common public transcript of hashes (cf. Section 4.4) for each
checked instance. Since the parties provide no input in these protocols, all parties
can be opened. The set of input-independent protocols includes the important
class of preprocessing protocols. In order to speed up MPC protocols, a common
approach is to split the computation in an offline and an online phase. Dur-
ing the offline phase, precomputations are carried out to set up some correlated
randomness. This phase does not require the actual inputs and can be executed
continuously. In contrast, the online phase requires the private inputs of the par-
ties and consumes the correlated randomness generated during the offline phase
to speed up the execution. As the online performance is more time critical, the
goal is to put as much work as possible into the offline phase. Prominent examples
following this approach are the protocols of Damg̊ard et al. [DPSZ12, DKL+13]
and Wang et al. [WRK17a, WRK17b, YWZ20]. Input-independent PVC pro-
tocols with a public transcript can be obtained from semi-honest protocols us-
ing the input-independent compilers of Damg̊ard et al.[DOS20] and Faust et
al. [FHKS21].

In order to apply our construction to an input-independent PVC protocol,
πpp, we require πpp to provide some features presented in Section 4 and to have
incorporated some of the building blocks described in Section 5. First, we require
the PVC protocol to be based on the cut-and-choose approach (cf. Section 4.1).
Second, we require the actions of each party Pi in a protocol execution to be de-
terministically determined by a random seed (cf. Section 4.2). Third, we require
that all parties learn the initial states of all other parties in the opened protocol
instances (cf. Section 4.3). To this end, the parties receive signed data (e.g., a
commitment and decommitment value) to derive the initial states of the other
parties. Fourth, parties need to commit to their intermediate internal states dur-
ing the protocol executions in a publicly verifiable way (cf. Section 5.1). Finally,
all signed data match the encoded form specified in Section 5.2.

In order to achieve the public transcript of hashes and the commitments to
the intermediate internal states, parties exchange additional data in each round.
Formally, whenever some party Ph in round k of protocol instance ` transitions to

a state state
(h)
(`,k) with the outgoing messages {msg

(h,i)
(`,k)}i∈[n]\{h} , then it actually

sends the following to Pi:

(msg
(h,i)
(`,k), {hash

(h,j)
(`,k) := H(msg

(h,j)
(`,k))}j∈[n]\{h,i}, hash

(h)
(`,k) := H(state

(h)
(`,k)))

Let O denote the set of opened instances. We summarize the aforementioned
requirements by specifying the data that the view of any honest party Ph in-
cludes. It contains signed data to derive the initial state of all parties for the
opened instances (1a), a Merkle tree over the hashes of all messages exchanged
within a single instance for all instances (1b), a Merkle tree over the hashes of
all intermediate internal states of a single instance for all instances (1c), and
signatures from each party over the roots of the message and state trees (1d):

18

{(
〈
initDatacore(i,`)

〉
i
, initDataaux(i,`))}`∈O,i∈[n], (1a)

{mTree`}`∈[t] := {MTree({hash(i,j)(`,k)}k∈[R],i∈[n],j 6=i)}`∈[t], (1b)

{sTree`}`∈[t] := {MTree({hash(i)(`,k)}k∈[R],i∈[n])}`∈[t] (1c)

{
〈
MRoot(mTree`)

〉
i
}i∈[n],`∈[t] and {

〈
MRoot(sTree`)

〉
i
}i∈[n],`∈[t]. (1d)

We next define the blame algorithm that takes the specified view as input
and continue with the description of the punishment protocol afterwards.

The blame algorithm. At the end of protocol πpp, all parties execute the blame
algorithm Blamepp to generate a certificate cert. The resulting certificate is broad-
casted and the honest party finishes the execution of πpp by outputting cert. The
certificate is generated as follows:

Algorithm Blamepp

1. Ph runs state
(i)

(`,0) = deriveInit(initDatacore(i,`), initData
aux
(i,`)) for each i ∈ [n], ` ∈ O.

Let B be the set of all tuples (`, 0,m, 0) such that state
(m)

(`,0) = bad. If B 6= ∅,
goto step 4.

2. Ph emulates for each ` ∈ O the protocol executions on input the initial
states from all parties to obtain the expected messages and the expected in-
termediate states of all parties, i.e., ({msg

(i,j)

(`,k)}k∈[R],i∈[n],j 6=i, {state(i)(`,k)}k,i,j) :=

emulatefull({state(i)(`,0)}i∈[n]).

3. Let B be the set of all tuples (`, k,m, i) such that H(msg
(m,i)

(`,k)) 6= hash
(m,i)

(`,k)

or H(state
(m)

(`,k)) 6= hash
(m)

(`,k) – where hash
(m,i)

(`,k) and hash
(m)

(`,k) are extracted from
mTree` or sTree` respectively. In case of an incorrect state hash, set i = 0.

4. If B = ∅ Ph outputs cert := ⊥. Otherwise, Ph picks the tuple (`, k,m, i) from
B with the smallest `, k, m, i in this sequence, sets k′ := k − 1 and defines
variables as follows – variables that are not explicitly defined are set to ⊥.

(Always): ids := (`, k,m, i)

initData := (
〈
initDatacore(`,m)

〉
m
, initDataaux(`,m))

rootstate :=
〈
MRoot(sTree`)

〉
m

rootmsg :=
〈
MRoot(mTree`)

〉
m

(If k > 0): stateout := (hash
(m)

(`,k),MProof(hash
(m)

(`,k), sTree`))

msgout := (hash
(m,i)

(`,k) ,MProof(hash
(m,i)

(`,k) ,mTree`))

(If k > 1): statein := (state
(m)

(`,k′),MProof(H(state
(m)

(`,k′)), sTree`))

Min := {(msg
(j,m)

(`,k′),MProof(H(msg
(j,m)

(`,k′)),mTree`))}j∈[n]

5. Output cert := (ids, initData, rootstate, rootmsg, statein,Min, stateout,msgout).

19

The punishment protocol. Each party Pi (for i ∈ [n]) checks if cert 6= ⊥. If this
is the case, Pi sends cert to J pp. Otherwise, Pi waits till time T to receive her
deposit back. Timeout T is set such that the parties have sufficient time to submit
a certificate after the execution of πpp and Blamepp. The judge J pp is described
in the following. The validation algorithms wrongMsg and wrongState and the
algorithm getIndex can be found in the full version of this paper. We stress that
the validation algorithms wrongMsg and wrongState don’t need to recompute a
whole protocol execution but only a single step. Therefore, J pp is very efficient
and can, for instance, be realized via a smart contract. To be more precise, the
judge is execution without any interaction and runs in computation complexity
linear in the protocol complexity. By allowing logarithmic interactions between
the judge and the parties, we can further reduce the computation complexity
to logarithmic in the protocol complexity. This can be achieved by applying the
efficiency improvement described in the full version of this paper.

Judge J pp

Initialization: The judge has access to public variables n, t, T and the set of parties
{Pi}i∈[n]. Further, it maintains a set cheaters initially set to ∅. Prior to the execution
of πpp, J pp has received d coins from each party Pi.

Proof verification: Wait until time T1 to receive ((`, k,m, i), initData,
〈
rootstate(`)

〉
m
,〈

rootmsg
(`)

〉
m
, statein,Min, stateout, (hash, σ)) and do:

1. If Pm ∈ cheaters, abort.
2. Parse initData to (

〈
initDatacore(`,m)

〉
m
, initDataaux(`,m)) and set state0 =

deriveInit(initDatacore(`,m), initData
aux
(`,m)). If Verify(

〈
initDatacore(`,m)

〉
m

) = false or
state0 = ⊥, abort. If state0 = bad, add Pm to cheaters and stop.

3. If Verify(
〈
rootstate(`)

〉
m

) = false or Verify(
〈
rootmsg

(`)

〉
m

) = false, abort.

4. If i = 0 and wrongState(state0, statein, stateout,Min, root
state
(`) , root

msg
(`) , `, k,m) =

true, add Pm to cheaters.
5. If i > 0, MVerify(hash, getIndex(k,m, i), rootmsg

(`) , σ) = true and

wrongMsg(state0, statein, hash,Min, , root
state
(`) , root

msg
(`) , `,m, k, i) = true, add

Pm to cheaters.

Timeout: At time T1, send d coins to each party Pi /∈ cheaters.

6.1 Security

Theorem 1. Let (πpp, ·, ·) be an n-party publicly verifiable covert protocol com-
puting function f with deterrence factor ε satisfying the view requirements stated
in Eq. (1a)-(1d). Further, let the signature scheme (Generate,Sign,Verify) be ex-
istentially unforgeable under chosen-message attacks, the Merkle tree satisfies
the binding property and the hash function H be collision resistant. Then the
protocol πpp together with algorithm Blamepp, protocol Punishpp and judge J pp

satisfies financially backed covert security with deterrence factor ε according to
Definition 1.

We formally prove Theorem 1 in the full version of this paper.

20

7 Class 3: Input-Independent with Private Transcript

At the time of writing, there exists no PVC protocol without public transcript
that could be directly transformed into an FBC protocol. Moreover, it is not
clear, if it is possible to construct a PVC protocol without a public transcript.
Instead, we present a transformation from an input-independent PVC protocol
with public transcript into an FBC protocol without any form of common public
transcript. As in our first transformation, we start with an input-independent
PVC protocol πpvc

3 that is based on cut-and-choose where parties share a com-
mon public transcript. Due to the input-independence, all parties of the checked
instances can be opened. However, unlike our first transformation, which uti-
lizes the public transcript, we remove this feature from the PVC protocol as
part of the transformation. We denote the protocol that results by removing the
public transcript feature from πpvc

3 by π3. Without having a public transcript,
the punishment protocol becomes interactive and more complicated. Intuitively,
without a public transcript it is impossible to immediately decide if a message
that deviates from the emulation is maliciously generated or is invalid because
of a received invalid messages. Note that we still have a common public tree
of internal state hashes in our exposition. However, the necessity of this tree
can also be removed by applying the techniques presented here that allow us to
remove the common transcript.

In order to apply our construction to a protocol π3, we require almost the
same features of π3 as demanded in our first transformation (cf. Section 6). For
the sake of exposition, we outline the required features here again and point out
the differences. First, we require π3 to be based on the cut-and-choose approach
(cf. Section 4.1). Second, we require the actions of each party Pi in a semi-
honest instance execution to be deterministically determined by a random seed
(cf. Section 4.2). Third, we require that all parties learn the initial states of all
other parties in the opened protocol instances (cf. Section 4.3). To this end, the
parties receive signed data (e.g., a commitment and decommitment value) to
derive the initial states of the other parties. Fourth, parties need to commit to
their intermediate internal states during the protocol executions in a publicly
verifiable way (cf. Section 5.1). Finally, all signed data match the encoded form
specified in Section 5.2.

In contrast to the transformation in Section 6 we no longer require from
protocol π3 that the parties send all messages or message hashes to all other
parties. Formally, whenever some party Ph in round k of protocol instance `

transitions to a state state
(h)
(`,k) with the outgoing messages {msg

(h,i)
(`,k)}i∈[n]\{h},

then it actually sends the following to Pi:

(
〈
msg

(h,i)
(`,k)

〉
h
, hash

(h)
(`,k) := H(state

(h)
(`,k)))

Let O be the set of opened instances. We summarize the aforementioned
requirements by specifying the data that the view of any honest party Ph after
the execution of π3 includes. The view contains data to derive the initial state
of all parties which is signed by each party for each party and every opened

21

instance, i.e.,

{(
〈
initDatacore(i,`)

〉
j
, initDataaux(i,`))}`∈O,i∈[n],j∈[n], (2a)

a Merkle tree over the hashes of all intermediate internal states of a single in-
stance for all instances, i.e.,

{sTree`}`∈[t] := {MTree({hash(i)(`,k)}k∈[R],i∈[n])}`∈[t], (2b)

signatures from each party over the roots of the state trees, i.e.,

{
〈
MRoot(sTree`)

〉
i
}i∈[n],`∈[t] (2c)

and the signed incoming message, i.e.,

M := {
〈
msg

(i,h)
(`,k)

〉
i
}`∈[t],k∈[R],i∈[n]\{h}. (2d)

The blame algorithm. At the end of protocol π3, all parties first execute an evi-
dence algorithm Evidence to generate partial certificates cert′. The partial certifi-
cate is a candidate to be used for the punishment protocol and is broadcasted to
all other parties as part of π3. In case the honest party detects cheating in several
occurrences, the party picks the occurrence with the smallest indices (`, k,m, i)
(in this sequence). The algorithm to generate partial certificates Evidence is for-
mally described as follows:

Algorithm Evidence

1. Ph runs state
(i)

(`,0) = deriveInit(initDatacore(i,`), initData
aux
(i,`)) for each i ∈ [n], ` ∈ O.

Let B be the set of all tuples (`, 0,m, 0) such that state
(m)

(`,0) = bad. If B 6= ∅,
goto step 4.

2. Ph emulates for each ` ∈ O the protocol executions on input the initial
states from all parties to obtain the expected messages and the expected in-
termediate states of all parties, i.e., ({m̃sg

(i,j)

(`,k)}k∈[R],i∈[n],j 6=i, {state(i)(`,k)}k,i,j) :=

emulatefull({state(i)(`,0)}i∈[n]).

3. Let B be the set of all tuples (`, k,m, h) such that msg
(m,h)

(`,k) 6= m̃sg
(m,h)

(`,k) or

H(state
(m)

(`,k)) 6= hash
(m)

(`,k) – where msg
(m,h)

(`,k) and hash
(m)

(`,k) are taken from M or
sTree` respectively. In case of an invalid state, set h = 0.

4. Pick the tuple (`, k,m, i) from B with the smallest `, k, m, i in this sequence. If

k > 0 set msgout :=
〈
msg

(m,i)

(`,k)

〉
m

. Otherwise, set msgout := ⊥.

5. Output partial certificate (ids,msgout).

Since π3 does not contain a public transcript of messages, parties can only
validate their own incoming message instead of all messages as done in previ-
ous approaches. Hence, it can happen that different honest parties generate and
broadcast different partial certificates. Therefore, all parties validate the incom-
ing certificates, discard invalid ones and pick the partial certificate cert′ with the
smallest indices (`, k,m, i) (in this sequence) as their own. If no partial certificate
has been received or created, parties set cert′ := ⊥.

22

Finally, each honest party executes the blame algorithm Blamesp to create
the full certificate that is used for both, blaming a malicious party and defend-
ing against incorrect accusations. As in this scenario the punishment protocol
requires input of accused honest parties, the blame algorithm returns a certifi-
cate even if no malicious behavior has been detected, i.e., if cert′ = ⊥. The final
certificate is generated by appending following data from the view to the certifi-
cate: {(

〈
initDatacore(i,`)

〉
j
, initDataaux(i,`))}`∈O,i∈[n],j∈[n] (cf. Eq 2a), {sTree`}`∈[t] (cf.

Eq 2b), and {
〈
MRoot(sTree`)

〉
i
}i∈[n],`∈[t] (cf. Eq 2c). All the appended data is

public and does not really need to be broadcasted. However, in order to match
the formal specification, all parties broadcast their whole certificate. If cert′ 6= ⊥,
the honest party outputs in addition to the certificate corruptedm.

To ease the specification of the punishment protocol in which parties derive
further data from the certificates, we define an additional algorithm mesHistory
that uses the messages obtained during the emulation (m̃sg)4 to compute the
message history up to a specific round k′ (inclusively) of instance `. We structure
the message history in two layers. For each round k∗ < k′, parties create a Merkle
tree of all messages emulated in this round. These trees constitute the bottom
layer. On the top layer, parties create a Merkle tree over the roots of the bottom
layer trees. This enables parties to agree on all messages of one round making
it easier to submit Merkle proofs for messages sent in this round. The message
history is composed of the following variables:

{mTreeroundk∗ }k∗∈[k′] := {MTree({H(m̃sg
(i,j)
(`,k∗))}i∈[n],j 6=i)}k∗∈[k′]

mTreek′ := MTree({MRoot(mTreeroundk∗ }k∗∈[k′])
rootmsg

k′ := MRoot(mTree)

Additionally, if cert′ 6= ⊥, parties compute the following:

(Always): initData := (
〈
initDatacore(`,m)

〉
m
, initDataaux(`,m))

rootstate :=
〈
MRoot(sTree`)

〉
m

(If k > 0): stateout := (hash
(m)
(`,k),MProof(hash

(m)
(`,k), sTree`))

(If k > 1): statein := (state
(m)
(`,k′),MProof(H(state

(m)
(`,k′)), sTree`))

({mTreeroundk∗ }k∗∈[k′],mTreek′ , root
msg
k′) := mesHistory(k′, `)

σk′ := MProof(MRoot(mTreeroundk′),mTreek′))

Min := {(m̃sg
(j,m)
(`,k′),MProof(H(m̃sg

(j,m)
(`,k′)),mTreeroundk′))}j∈[n]

The punishment protocol. The main difficulty of constructing a punishment pro-
tocol Punishsp for this scenario is that there is no publicly verifiable evidence
about messages like a common transcript used in the previous transformations.

4 Formally, parties need to re-execute the emulation, as we do not allow them to use
any data not included in the certificate.

23

Hence, incoming messages required for the computation of a particular protocol
step cannot be validated directly. Instead, the actions of all parties need to be
validated against the emulated actions based on the initial states. This leads
to the problem that deviations from the protocol can cause later messages of
other honest parties to deviate from the emulated ones as well. Therefore, it is
important that the judge disputes the earliest occurrence of misbehavior.

We divide the punishment protocol Punishsp into three phases. First, the
judge determines the earliest accusation of misbehavior. To this end, if cert 6= ⊥
all parties start by sending tuple ids from cert to J sp and the judge selects the
tuple with the smallest indices (`, k,m, i). This mechanism ensures that either
the first malicious message or malicious state hash received by an honest party is
disputed or the adversary blames some party at an earlier point. To look ahead,
if the adversary blames an honest party at an earlier point, the punishment will
not be successful and the malicious blamer will be punished for submitting an
invalid accusation. If the adversary blames another malicious party, either one of
them will be punished. This mechanism ensures that if an honest party submits
an accusation, a malicious party will be punished, even if it is not the honest
party’s accusation that is disputed.

If there has not been any accusation submitted in the first phase, J sp re-
imburses all parties. Otherwise, J sp defines a blamer Pb, the party that has
submitted the earliest accusation, and an accused party Pm. Pb either accuses
misbehavior in the initial state, the first round, or in some later round. For the
former two, misbehavior can be proven in a straightforward way, similar to our
first construction. For the latter, Pb is supposed to submit a proof containing
the hash of a tree of the message history up to the disputed round k. Pm can
accept or decline the message history depending on whether the tree corresponds
to the one emulated by Pm or not. If the tree is accepted, the certificate can be
validated as in previous scenarios, with the only difference that incoming mes-
sages are validated with respect to the submitted message history tree instead
of the common public transcript. In case any party does not respond in time,
this party is considered maliciously and is financially punished.

If the message history is declined, the protocol transitions to the third phase.
Parties Pb and Pm together with J sp execute a bisection search in the message
history tree to find the first message they disagree on (cf. Section 5.3). By defini-
tion they agree on all messages before the disputed one – we call these messages
the agreed sub-tree. At this step, J sp can validate the disputed message of the
history tree (not the one disputed in the beginning) the same way as done in
previous constructions with the only difference that incoming messages are val-
idated with respect to the agreed sub-tree.

The number of interactions is logarithmic while the computation complexity
of the judge is linear in the protocol complexity. We can further reduce the
computation complexity to be logarithmic in the protocol complexity while still
having logarithmic interactions using the efficiency improvements described in
the full version of this paper. The judge is defined as follows:

24

Protocol Punishsp

Phase 1: Determine earliest accusation

1. If cert 6= ⊥, Ph sends ids := (`, k,m, i) taken from cert to J sp which stores
(`, k,m, i, h).

2. J sp waits till time T to receive message (`, k,m, i) from parties Pb for b ∈ [n]. If
no accusations have been received, J sp sends d coins to each party at time T .
Otherwise, J sp picks the smallest tuple (`, k,m, i, b) (ordered in this sequence),
sets k′ := k − 1 and continues with Phase 2.

Timeout: If its Pj ’s turn for j ∈ {b,m} and Pj does not respond with a valid
message, i.e., one that is not discarded, in time, Pj is considered malicious and J sp

terminates by sending d coins to all parties but Pj .

Phase 2: First evidence

3. If k < 2, Pb sends (initData, rootstate, stateout,
〈
msg

(m,i)

(`,k)

〉
m

) taken from cert to
J sp

(a) J sp parses initData to (
〈
initDatacore(`,m)

〉
m
, initDataaux(`,m)) and sets state0 =

deriveInit(initDatacore(`,m), initData
aux
(`,m)). If Verify(

〈
initDatacore(`,m)

〉
m

) = false or
state0 = ⊥, J sp discards. If state0 = bad, J sp terminates by sending d coins
to all parties but Pm.

(b) If Verify(
〈
rootstate(`)

〉
m

) = false, J sp discards.
(c) If i = 0 and wrongState(state0,⊥, stateout, ∅, rootstate(`) ,⊥, `, k,m) = false, J sp

discards.
(d) If i > 0, Verify(

〈
msg

(m,i)

(`,k)

〉
m

) = false or

wrongMsg(state0,⊥, H(msg
(m,i)

(`,k)), ∅, rootstate(`) ,⊥, `,m, k, i) = false, J sp

discards.
(e) J sp terminates by sending d coins to all parties but Pm.

4. Otherwise, Pb sends (rootstate, statein, stateout,
〈
rootstate(`)

〉
m
, rootmsg, rootroundk′ ,

σk′ ,Min,msgout) taken from cert to J sp.

(a) Pm executes mesHistory(k − 1, `). Let r̃oot
msg

be the root of the emulated
message history tree. If rootmsg 6= r̃oot

msg
Pm sends r̃oot

msg
to J sp. Otherwise,

Pm sends (⊥).
(b) If r̃oot

msg
received by Pm does not equal ⊥, J sp jumps to phase 3.

(c) J sp checks that Verify(
〈
rootstate(`)

〉
m

) = true and

MVerify(rootroundk′ , k′, rootmsg, σk′) = true and discards otherwise.
(d) If i = 0 and wrongState(⊥, statein, stateout,Min, root

state
(`) , root

round
k′ , `, k,

m) = false, J sp discards.

(e) If i > 0, Verify(
〈
msg

(m,i)

(`,k)

〉
m

) = false or

wrongMsg(state0, statein, H(msg
(m,i)

(`,k)),Min, , root
state
(`) , root

round
k′ , `,m, k

, i) = false, J sp discards.
(f) J sp terminates by sending d coins to all parties but Pm.

Phase 3: Dispute the message tree

5. Parties Pb, Pm and J sp run bisection sub-protocol ΠBS on the top-level tree.
Pb’s input is the tree with root rootmsg; Pm’s the one with root r̃oot

msg
. J sp

announces public inputs rootmsg and width of rootmsg, width := k′. The output
is the first round they disagree on k2, the agreed hash rootroundk′2

of leaf with index

k′2 := k2 − 1 and the hash rootround(b,k2)
of leaf with index k2 as claimed by Pm.

25

6. Parties Pm, Pb and J sp run bisection sub-protocol ΠBS on the low-level tree.
Both, Pm and Pb take as input mTreeroundk2

from their certificate. J sp announces

public inputs rootround(b,k2)
and the width of the low level tree width′n × (n − 1).

The output is the index x of the first message they disagree on and the hash of
this message hashx as claimed by Pm. The index of the sender of the disputed
message is m2 := d x

n−1
e and the index of the receiver i2 = x mod (n − 1) if

m2 > (x mod (n− 1)) and i2 := (x mod (n− 1)) + 1 otherwise.
7. Party Pb define variables as follows – variables that are not explicitly defined

are set to ⊥.

(Always): initData2 := (
〈
initDatacore(`,m2)

〉
m
, initDataaux(`,m2))

rootstate :=
〈
MRoot(sTree`)

〉
m

(If k2 > 1): state2in := (state
(m2)

(`,k′2)
,MProof(H(state

(m2)

(`,k′2)
), sTree`))

M2
in := {(msg

(j,m2)

(`,k′2)
,MProof(H(msg

(j,m2)

(`,k′2)
),mTreeroundk′2

))}j∈[n]

and sends (initData2,
〈
MRoot(sTree`)

〉
m
, state2in,M2

in) to J sp.

8. J sp parses initData2 to (
〈
initDatacore(`,m2)

〉
m
, initDataaux(`,m2)

) and sets state
(m2)

(0) :=

deriveInit(initDatacore(`,m2)
, initDataaux(`,m2)

). If Verify(
〈
rootstate(`)

〉
m

) = false,

Verify(
〈
initDatacore(`,m2)

〉
m

) = false or state
(m2)

(0) ∈ {⊥, bad}, J sp discards.

9. If wrongMsg(state
(m2)

(0) , state2in, hashx,M2
in, root

state
(`) , root

round
k′2

, `,m2, k2, i2) =

false, J sp discards.
10. J sp terminates by sending d coins to all parties but Pm.

7.1 Security

Theorem 2. Let (πpvc
3 ,Blamepvc, Judgepvc) be an n-party publicly verifiable covert

protocol computing function f with deterrence factor ε satisfying the view require-
ments stated in Eq. (2). Further, πpvc

3 generates a common public transcript of
hashes that is only used for Blamepvc and Judgepvc. Let π3 be a protocol that is
equal to πpvc

3 but does not generate a common transcript and instead of calling
Blamepvc executes the blame procedure explained above (including execution of
Evidence and Punishsp). Further, let the signature scheme (Generate,Sign,Verify)
be existentially unforgeable under chosen-message attacks, the Merkle tree sat-
isfies the binding property, the hash function H be collision resistant and the
bisection protocol ΠBS be correct. Then, the protocol π3, together with algorithm
Blamesp, protocol Punishsp and judge J sp satisfies financially backed covert secu-
rity with deterrence factor ε according to Definition 1.

We formally prove Theorem 2 in the full version of this paper.

8 Evaluation

In order to evaluate the practicability of our protocols, i.e., to show that the
judging party can be realized efficiently via a smart contract, we implemented

26

the judge of our third transformation (cf. Section 7) for the Ethereum blockchain
and measured the associated execution costs. We focus on the third setting, the
verification of protocols with a private transcript, since we expect this scenario to
be the most expensive one due to the interactive punishment procedure. Further,
we have extended the transformation such that the protocol does not require a
public transcript of state hashes.

Our implementation includes the efficiency features described in the full ver-
sion of this paper. In particular, we model the calculation of each round’s and
party’s computeRound function as an arithmetic circuit and compress disputed
calculations and messages using Merkle trees. The latter are divided into 32-byte
chunks which constitute the leave of the Merkle tree. The judge only needs to
validate either the computation of a single arithmetic gate or the correctness of a
single message chunk of a sent or received message together with the correspond-
ing Merkle tree proofs. The proofs are logarithmic in the size of the computation
resp. the size of a message. Messages are validated by defining a mapping from
each chunk to a gate in the corresponding computeRound function.

In order to avoid redundant deployment costs, we apply a pattern that allows
us to deploy the contract code just once and for all and create new independent
instances of our FBC protocol without deploying further code. When starting
a new protocol instance, parties register the instance at the existing contract
which occupies the storage for the variables required by the new instance, e.g.,
the set of involved parties. Further, we implement the judge to be agnostic to the
particular semi-honest protocol executed by the parties – recall that our FBC
protocol wraps around a semi-honest protocol that is subject to the cut-and-
choose technique. Every instance registered at the judge can involve a different
number of parties and define its own semi-honest protocol. This means that the
same judge contract can be used for whatever semi-honest protocol our FBC
protocol instance is based on, e.g., for both the generation of Beaver triples and
garbled circuits. Parties simply define for each involved party and each round
the computeRound function as a set of gates, aggregate all gates into a Merkle
tree and submit the tree’s root upon instance registration.

We perform all measurements on a local test environment. We setup the local
Ethereum blockchain with Ganache (core version 2.13.2) on the latest supported
hard fork, Muir Glacier. The contract is compiled to EVM byte code with solc
(version 0.8.1, optimized on 20 runs). As common, we measure the efficiency of
the smart contracts via its gas consumption – this metric directly translates to
execution costs. Further, we estimate USD costs based on the prices (gas to ETH
and ETH to USD) on Aug. 20, 2021 [Eth21, Coi21]. For comparison, a simple
Ether transfer costs 21,000 gas resp. 2,81 USD.

In Table 1, we display the costs of the deployment, the registration of a
new instance and the optimistic execution without any disputes. The costs of
these steps only depend on the number of parties. In Table 2, we display the
worst-case costs of a protocol execution for different protocol parameters, i.e.,
complexity of the computeRound functions, message size, communication rounds
and number of parties. In order to determine the worst-case costs, we measured

27

Table 1: Costs for deployment, in-
stance registration and optimistic
execution.

Protocol steps n
Cost

Gas USD

Deployment 4 775 k 639.91

New instance 2 287 k 38.41
New instance 3 308 k 41.30
New instance 5 351 k 47.05
New instance 10 458 k 61.43

Honest execution 2 178 k 23.92
Honest execution 3 224 k 30.07
Honest execution 5 316 k 42.38
Honest execution 10 546 k 73.14

Gates: Number of gates in the circuit of each
computeRound function.
Chunks: Number of chunks in each message.
R: Number of communication rounds.
n: Number of parties.

Table 2: Worst-case execution costs.

Gates Chunks R n
Cost

Gas USD

10 10 10 3 1 780 k 238.58
1 000 10 10 3 2 412 k 323.25
1M 10 10 3 3 512 k 470.55
1B 10 10 3 4 782 k 640.75
1T 10 10 3 6 182 k 828.35

10 10 10 3 1 785 k 239.14
100 100 10 3 2 086 k 279.61

1 000 1 000 10 3 2 422 k 324.55

100 10 10 3 2 081 k 278.91
100 10 10 4 2 223 k 297.86
100 10 10 7 2 442 k 327.29
100 10 10 10 2 659 k 356.34
100 10 10 50 4 764 k 638.35

100 10 3 3 1 878 k 251.65
100 10 10 3 2 074 k 277.88
100 10 100 3 2 403 k 322.04
100 10 1 000 3 2 834 k 379.79

different dispute patterns, e.g., disputing sent messages or disputing gates of
the computeRound functions, and picked the pattern with the highest costs. The
execution costs, both optimistic and worst case, incorporate all protocol steps,
incl. the secure funding of the instance. We exclude the derivation of the initial
seeds as this step strongly depends on the underlying PVC protocol.

In the optimistic case, the costs of executing our protocol are similar to
the ones of [ZDH19]. The authors report a gas consumption of 482 k gas while
our protocol consumes between 465 k and 1 M gas, depending on the number
of parties – recall that the protocol of [ZDH19] is restricted to the two-party
setting. This overhead in our protocol when considering more than two parties
is mainly introduced by the fact that [ZDH19] does assume a single deposit while
our implementation requires each party to perform a deposit.

Unfortunately, we cannot compare worst-case costs directly, as the protocol
of [ZDH19] validates the consistency of a fixed data structure, i.e., a garbled
circuit, while our implementation validates the correctness of the whole protocol
execution. In particular, [ZDH19] performs a bisection over the garbled circuit
while we perform two bisections, first over the message history and then over
the computation generating the outgoing messages; such a message might for
example be a garbled circuit. Further, [ZDH19] focuses on a boolean circuit,
while we model the computeRound function as an arithmetic circuit – as the EVM
always stores data in 32-byte words, it does not make sense to model the function
as a boolean circuit. Although not directly comparable, we believe the protocol
of [ZDH19] to be more efficient for the special case of a two-party garbling
protocol, as the protocol can exploit the fact that a dispute is restricted to a
single message, i.e., the garbled circuit, and the data structure of this message
is fixed such that the dispute resolution can be optimized to said data structure.

Our measurements indicate that the worst-case costs of each scenario are
always defined by a dispute pattern that does not dispute a message chunk but
a gate of the computeRound functions. This is why the message chunks have no

28

influence on the worst-case execution costs. Of course, this observation might
be violated if we set the number of chunks much higher than the number of
gates. However, it does not make sense to have more message chunks than gates
because each message chunk needs to be mapped to a gate of the computeRound
function defining the value of said chunk.

Both, the number of rounds and the number of parties increase the maximal
size of the disputed message history and, hence, the depth of the bisected history
tree. As the depth of the bisected tree grows logarithmic in the tree size, our
protocol is highly scalable in the number of parties and rounds.

Finally, we note that we understand our implementation as a research proto-
type showing the practicability of our protocol. We are confident that additional
engineering effort can further reduce the gas consumption of our contract.

Acknowledgments

The first, third, and fourth authors were supported by the German Federal
Ministry of Education and Research (BMBF) iBlockchain project (grant nr.
16KIS0902), by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) SFB 1119 – 236615297 (CROSSING Project S7), by the BMBF and
the Hessian Ministry of Higher Education, Research, Science and the Arts within
their joint support of the National Research Center for Applied Cybersecurity
ATHENE, and by Robert Bosch GmbH, by the Economy of Things Project.
The second author was supported by the BIU Center for Research in Applied
Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office, and by ISF grant No. 1316/18.

References

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and
Lukasz Mazurek. Secure multiparty computations on bitcoin. In IEEE
SP, 2014.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. In TCC, 2007.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security
with public verifiability. In ASIACRYPT, 2012.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair
protocols. In CRYPTO, 2014.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In STOC, 1990.

[Coi21] CoinMarketCap. Ethereum (ETH) price.
https://coinmarketcap.com/currencies/ethereum/, 2021.

[CRR11] Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of
computation using multiple servers. In CCS, 2011.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority
- or: Breaking the SPDZ limits. In ESORICS, 2013.

29

[DOS20] Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Black-box transforma-
tions from passive to covert security with public verifiability. In CRYPTO,
2020.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO,
2012.

[EFS20] Lisa Eckey, Sebastian Faust, and Benjamin Schlosser. Optiswap: Fast op-
timistic fair exchange. In ASIA CCS, 2020.

[Eth21] Etherscan. Ethereum Average Gas Price Chart.
https://etherscan.io/chart/gasprice, 2021.

[FHKS21] Sebastian Faust, Carmit Hazay, David Kretzler, and Benjamin Schlosser.
Generic compiler for publicly verifiable covert multi-party computation. In
EUROCRYPT, 2021.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
STOC, 1987.

[HKK+19] Cheng Hong, Jonathan Katz, Vladimir Kolesnikov, Wen-jie Lu, and Xiao
Wang. Covert security with public verifiability: Faster, leaner, and simpler.
In EUROCRYPT, 2019.

[KB14] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize
correct computations. In CCS, 2014.

[KGC+18] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg,
and Edward W. Felten. Arbitrum: Scalable, private smart contracts. In
USENIX Security, 2018.

[KM15] Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in the
covert model (almost) for free. In ASIACRYPT, 2015.

[SSS21] Peter Scholl, Mark Simkin, and Luisa Siniscalchi. Multiparty computation
with covert security and public verifiability. IACR Cryptol. ePrint Arch.,
2021.

[TR19] Jason Teutsch and Christian Reitwießner. A scalable verification solution
for blockchains. CoRR, abs/1908.04756, 2019.

[W+14] Gavin Wood et al. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper, 2014.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. In CCS, 2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In CCS, 2017.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from im-
proved triple generation and authenticated garbling. In CCS, 2020.

[ZDH19] Ruiyu Zhu, Changchang Ding, and Yan Huang. Efficient publicly verifiable
2pc over a blockchain with applications to financially-secure computations.
In CCS, 2019.

30

C. Putting the Online Phase on a
Diet: Covert Security from Short
MACs

This chapter corresponds to the following publication. The full version is available

at [89].

[90] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Putting the Online Phase on

a Diet: Covert Security from Short MACs”. In: Topics in Cryptology - CT-RSA

2023 - Cryptographers’ Track at the RSA Conference 2023, San Francisco, CA,

USA, April 24-27, 2023, Proceedings. 2023, pp. 360–386. Part of this thesis.

154

Putting the Online Phase on a Diet:
Covert Security from Short MACs

Sebastian Faust1 , Carmit Hazay2 , David Kretzler1 , and Benjamin
Schlosser1

1 Technical University of Darmstadt, Germany
{first.last}@tu-darmstadt.de

2 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract. An important research direction in secure multi-party com-
putation (MPC) is to improve the efficiency of the protocol. One idea
that has recently received attention is to consider a slightly weaker se-
curity model than full malicious security – the so-called setting of covert
security. In covert security, the adversary may cheat but only is detected
with certain probability. Several works in covert security consider the
offline/online approach, where during a costly offline phase correlated
randomness is computed, which is consumed in a fast online phase. State-
of-the-art protocols focus on improving the efficiency by using a covert
offline phase, but ignore the online phase. In particular, the online phase
is usually assumed to guarantee security against malicious adversaries.
In this work, we take a fresh look at the offline/online paradigm in the
covert security setting. Our main insight is that by weakening the secu-
rity of the online phase from malicious to covert, we can gain significant
efficiency improvements during the offline phase. Concretely, we demon-
strate our technique by applying it to the online phase of the well-known
TinyOT protocol (Nielsen et al., CRYPTO ’12). The main observation is
that by reducing the MAC length in the online phase of TinyOT to t bits,
we can guarantee covert security with a detection probability of 1− 1

2t
.

Since the computation carried out by the offline phase depends on the
MAC length, shorter MACs result in a more efficient offline phase and
thus speed up the overall computation. Our evaluation shows that our
approach reduces the communication complexity of the offline protocol
by at least 35% for a detection rate up to 7

8
. In addition, we present a

new generic composition result for analyzing the security of online/offline
protocols in terms of concrete security.

Keywords: Multi-Party Computation (MPC) · Covert Security · Offline/Online
· Deterrence Composition

1 Introduction

Secure multi-party computation (MPC) allows a set of distrusting parties to se-
curely compute an arbitrary function on private inputs. While originally MPC
was mainly studied by the cryptographic theory community, in recent years
many industry applications have been envisioned in areas such as machine learn-
ing [KVH+21], databases [VSG+19], blockchains [Zen] and more [ABL+18, MPC].
One of the main challenges for using MPC protocols in practice is their huge
overhead in terms of efficiency. Over the last decade, tremendous progress has
been made both on the protocol side as well as the engineering level to move
MPC protocols closer to practice [DPSZ12, DKL+13, KOS16, KPR18, BCS19,
CKR+20, Ors20].

Most efficient MPC protocols work in the honest-but-curious setting. In this
setting, the adversary must follow the protocol specification but tries to learn
additional information from the interaction with the honest parties. A much
stronger security notion is to consider malicious security, where the corrupted
parties may arbitrarily deviate from the specification in order to attack the proto-
col. Unfortunately, however, achieving malicious security is much more challeng-
ing and typically results into significant efficiency penalties [KOS16, DILO22].

An attractive middle ground between the efficient honest-but-curious model
and the costly malicious setting is covert security originally introduced by Au-
mann and Lindell [AL07]. As in malicious security, the adversary may attack
the honest parties by deviating arbitrarily from the protocol specification but
may get detected in this process. Hence, in contrast to malicious security such
protocols do not prevent cheating, but instead de-incentivize malicious behavior
as an adversary may fear getting caught. The latter may lead to reputational
damage or financial punishment, which for many real-world settings is a suffi-
ciently strong countermeasure against attacks. Moreover, since covert security
does not need to prevent cheating at the protocol level, it can lead to signifi-
cantly improved efficiency. Let us provide a bit more detail on how to construct
covert secure protocols.

The cut-and-choose technique. In a nutshell, all known protocols with covert
security amplify the security of a semi-honest protocol by applying the cut-and-
choose technique. In this technique, the semi-honest protocol is executed t times
where t − 1 of the executions are checked for correctness via revealing their
entire private values. The remaining unchecked instance stays hidden and thus
can be used for computing the output. Since in the protocol the t − 1 checked
instances are chosen uniformly at random, any cheating attempt is detected with
probability at least t−1

t , which is called the deterrence factor of the protocol
and denoted by ϵ. The overhead of the cut-and-choose approach is roughly a
factor t compared to semi-honest protocols due to the execution of t semi-honest
instances.

The offline/online paradigm. An important technique to construct efficient
MPC protocols is to split the computation in an input independent offline phase
and an input dependent online phase. The goal of this approach is to shift

2

the bulk of the computational effort to the offline phase such that once the
private inputs become available the evaluation of the function can be done effi-
ciently. To this end, parties pre-compute correlated randomness during the offline
phase, which is consumed during the online phase to speed up the computa-
tion. Examples for offline/online protocols are SPDZ [DPSZ12], authenticated
garbling [WRK17a, WRK17b] and the TinyOT approach [NNOB12, LOS14,
BLN+21, FKOS15].

While traditionally the offline/online paradigm has been instantiated either
in the honest-but-curious or malicious setting, several recent works have consid-
ered how to leverage the offline/online approach to speed-up covert secure pro-
tocols [DKL+13, DOS20, FHKS21]. The standard approach is to take a covertly
secure offline phase and combine it with a maliciously secure online phase. Since
the offline phase is most expensive, this results into a significant efficiency im-
provement. Moreover, since the offline phase is input independent, it is partic-
ularly well suited for the cut-and-choose approach used for constructing covert
secure protocols. In contrast to the offline phase, for the online phase we typi-
cally rely on a maliciously secure protocol. The common belief is that the main
efficiency bottleneck is the offline phase, and hence optimizing the online phase
to achieve covert security (which is also more challenging since we need to deal
with the private inputs) is of little value. In our work, we challenge this belief
and study the following question:

Can we improve the overall efficiency of a covertly secure offline/online protocol
by relaxing the security of the online phase to covert security?

1.1 Contribution

Our main contribution is to answer the above question in the affirmative. Con-
cretely, we show that significant efficiency improvements are possible by switch-
ing form a maliciously secure online phase to covert security.

To this end, we introduce a new paradigm to achieve covert security. Instead
of amplifying semi-honest security using cut-and-choose, we start with a mali-
ciously secure protocol and weaken its security. In malicious security, successful
cheating of the adversary is only possible with negligible probability in the statis-
tical security parameter. For protocol instantiations, this parameter is typically
set to 40. The core idea is to show that in the setting of covert security, we can
significantly reduce the value of the statistical security parameter without losing
in security. We are the first to describe this new method of achieving covert
security by weakening malicious security.

For achieving covert security of already efficient online protocols, the naive
cut-and-choose approach is not a viable option due to its inherent overhead. In
contrast, our approach is particularly interesting for these protocols. In addition,
we observe that for several offline/online protocols, a reduction to covert security
in the online phase reduces the amount of precomputation required. This results
in an overall improved efficiency.

3

To illustrate the benefits of our paradigm, we apply it to the well-known
TinyOT [NNOB12] protocol for two-party computation for boolean circuits
based on the secret-sharing approach. This protocol is a good benchmark for
oblivious transfer (OT)-based protocols and hasn’t been considered before for
the covert setting. The original TinyOT protocol consists of a maliciously secure
offline and online phase where MACs ensure the correctness of the computation
performed during the online phase. While the efficiency of the offline phase can
be improved by making this phase covertly secure using the cut-and-choose ap-
proach, we apply our paradigm to the online phase to gain additional efficiency
improvements. Our insight is that instead of using 40-bit MACs, which is typ-
ically done for an actively secure online phase, using t-bits MACs results in a
covertly secure online phase with deterrence factor 1 − 1

2t . We formally prove
the covert security of this online protocol.

As touched on earlier, shortening the MAC length of the TinyOT online
phase has a direct impact on the computation overhead carried out in the offline
phase. In particular, the size of the oblivious transfers that need to be performed
depend on the MAC length and thus this number can be reduced. Concretely, we
compare the communication complexity of a cut-and-choose-based offline phase
for different choices of MAC lengths. We can show that the communication
complexity of the offline protocol reduces by at least 35% for a deterrence factor
up to 7

8 .

While we chose the TinyOT protocol for demonstrating our new paradigm,
we can apply our techniques also for other offline/online protocols in the two-
and multi-party case, e.g., [LOS14, BLN+21, FKOS15, WRK17a, WRK17b].

As a second major technical contribution, we show that the combination of
a covert offline and covert online phase achieves the same deterrence factor as a
covert offline phase combined with an active online phase. We show this result
in a generic way by presenting a deterrence replacement theorem. Intuitively,
when composing a covertly secure offline phase with a covertly secure online
phase, the deterrence factor of the composed protocol needs to consider the worst
deterrence of both phases. This is easy to see, since the adversary can always
try to cheat in that phase where the detection probability is smaller. While easy
at first sight, the formalization requires a careful analysis and adds restrictions
on the class of protocols for which such composition can be shown. By applying
our deterrence replacement theorem, we show for offline/online protocols that
the overall detection probability is computed as the minimum of the detection
probability of the offline phase and the detection probability of the online phase.

While this result was proven by Aumann and Lindell [AL07] for a weak
notion of covert security, the failed-simulation formulation, we are the first to
formally present a proof in the strongest setting of covert security which is also
mostly used in the literature. The definitional framework of the failed-simulation
formulation and the one of all of the stronger notions are fundamentally different.
In particular, the failed-simulation formulation relies on the ideal functionality
defined for the malicious setting but allows for failed simulations. The stronger
notions define a covert ideal functionality explicitly capturing the properties

4

of the covert setting, i.e., the possible cheating attempts of the adversary. For
this reason, it is not straightforward to translate the proof techniques from the
failed-simulation formulation to the stronger notions.

1.2 Related Work

Short MACs. Hazay et al. [HOSS18] also considered short MAC keys for
TinyOT, but in the context of concretely efficient large-scale MPC in the ac-
tive security setting with a minority of honest parties. The main idea of their
work is to distribute secret key material between all parties such that the se-
curity is based on the concatenation of all honest parties’ keys. In contrast, we
achieve more efficient covert security and the security is based on each party’s
individual key.

TinyOT extensions. In the two-party setting, the TinyOT protocol is extended
by the TinyTables [DNNR17] and the MiniMac [DZ13] protocols. The former
improves the online communication complexity by relying on precomputated
scrambled truth tables. The precomputation of these works is based on the offline
phase of TinyOT. Therefore, we believe that our techniques can be applied to the
TinyTables protocol as well. We focus in our description on the original TinyOT
protocol to simplify presentation.

The MiniMac protocol uses error correcting codes for authentication of bit
vectors and is in particular interesting for “well-formed” circuits that allow
for parallelization of computation. The sketched precomputation of MiniMac
is based on the SPDZ-precomputation [DPSZ12]. In the SPDZ protocol, MACs
represent field elements instead of binary strings as in TinyOT. Therefore, it is
not straight-forward to apply our techniques to the MiniMac protocol. We leave
it as an open question if our techniques can be adapted to this setting.

Larraia et al. and Burra et al. [LOS14, BLN+21] show how to extend TinyOT
to the multi-party setting. Our paradigm can be applied to these protocols as
well as to the precomputation of [FKOS15].

Authenticated garbling. The authenticated garbling protocols [WRK17a,
WRK17b, KRRW18, YWZ20] achieve constant round complexity and active
security by utilizing an authenticated garbled circuit. For authentication, the
protocols rely on a TinyOT-style offline phase. Hence, we believe that our ap-
proach can improve the efficiency of the authenticated garbling protocols as well
(when moving to the setting of covert security).

Arithmetic computation. The family of SPDZ protocols [DPSZ12, DKL+13,
KOS16, KPR18, CDE+18] provide means to perform multi-party computation
with active security on arithmetic circuits. Damg̊ard et al. [DKL+13] have al-
ready considered the covert setting but only reduced the security of the offline
phase to covert security. As already mentioned above in the context of MiniMac,
we leave it as an interesting open question to investigate if our approach can
be translated to the arithmetic setting of the SPDZ family in which MACs are
represented as field elements.

5

Pseudorandom Correlation Generators. Recently, pseudorandom corre-
lation generators (PCGs) were presented to compute correlated randomness
with sublinear communication [BCG+19, BCG+20a, BCG+20b]. While this is a
promising approach, efficient constructions are based on variants of the learning
parity with noise (LPN) assumption. These assumptions are still not fully un-
derstood, especially compared to oblivious transfer which is the base of TinyOT.

1.3 Technical Overview

Notions of covert security. The notion of covert security with ϵ-deterrence
factor was proposed by Aumann and Lindell in 2007 [AL07], who introduced
a hierarchy of three different variants. The weakest variant is called the failed-
simulation formulation, the next stronger is the explicit cheat formulation (ECF)
and the strongest variant is the strong explicit cheat formulation (SECF). The
last is also the most widely used variant of covert security. In the failed-simulation
formulation, the adversary is able to cheat depending on the honest parties’
inputs. This undesirable behavior is prevented in the stronger variants. In the
ECF notion, the adversary learns the inputs of the honest parties even if cheating
is detected. Finally, SECF prevents the adversary from learning anything in case
cheating is detected.

In this work, we introduce on a new notion that lies between ECF and SECF.
We call it intermediate explicit cheat formulation (IECF) (cf. Section 2), where
we let the adversary learn the outputs of the corrupted parties even if cheating
is detected. This is a strictly stronger security guarantee than ECF, where the
adversary also learns the inputs of the honest parties. Our new notion captures
protocols where an adversary learns its own outputs (which may depend on
honest parties inputs) before the honest parties detect cheating. However, we
emphasize that the adversary cannot prevent detection by the honest parties. In
particular, it must make its decision on whether to cheat or not before learning
its outputs. Moreover, notice that in case when the adversary does not cheat, it
would anyway learn these outputs, and hence IECF is only a very mild relaxation
of the SECF notion.

Composition of covert protocol. Composition theorems allow to modular-
ize security proofs of protocols and thus are tremendously useful for protocol
design. Aumann and Lindell presented two sequential composition theorems for
protocols in the covert security model [AL07]. One for the failed-simulation for-
mulation and one for the (S)ECF. In the following, we focus on the later theorem
since these notions are closer to the IECF notion. The composition theorem pre-
sented in [AL07] allows to analyze the security of a protocol in a hybrid model
where the parties have access to hybrid functionalities. In more detail, the the-
orem states that a protocol that is covertly secure with deterrence factor ϵ in a
hybrid model where parties have access to a polynomial number of functionali-
ties, which themselves have deterrence factors, then the protocol is also secure if
the hybrid functionalities are replaced with protocols realizing the functionalities
with the corresponding deterrence values. Note that the theorem states that a

6

composed protocol using subprotocols instead of hybrid functionalities has the
same deterrence factor as when analyzed with (idealized) hybrid functionalities.

Aumann and Lindell’s theorem is very useful to show security of a complex
protocol. Unfortunately, however, the theorem of Aumann and Lindell does not
make any statement how the deterrence factor of hybrid functionalities influences
the deterrence factor of the overall protocol. Instead, the deterrence factor of
the overall protocol has to be determined depending on the concrete deterrence
factors of the hybrid functionalities. We are looking for a composition theorem
that goes one step further. In particular, we develop a theorem that allows to
analyze a protocol’s security and its deterrence factor in a simple model where no
successful cheating in hybrid functionalities is possible, i.e., a deterrence factor
of ϵ = 1. Then, the theorem should help deriving the deterrence factor of the
composed protocol when cheating in hybrid functionalities is possible with a
fixed probability, i.e., ϵ < 1.

Deterrence replacement theorem. Our deterrence replacement theorem fills
the aforementioned gap (cf. Section 3). Let Hy1 and Hy2 be two hybrid worlds.
In Hy1 an offline functionality exists with deterrence factor 1. In Hy2 the same
offline functionality has deterrence factor ϵ∗off . Our theorem states that a protocol,
which is covertly secure with deterrence factor ϵon in Hy1, is covertly secure
with deterrence factor ϵ∗on := Min(ϵon, ϵ

∗
off) in Hy2. While we have to impose

some restrictions on the protocols that our theorem can be applied on, practical
offline/online protocols [DPSZ12, NNOB12, WRK17a, WRK17b] fulfill these
restrictions or can easily be adapted to do so. The main benefit of our theorem
is to simplify the analysis of a protocol’s security by enabling the analysis in a
model where successful cheating in the offline functionality does not occur. In
addition, our theorem implies that the deterrence factor of the online phase can
be as low as the deterrence factor of the offline phase without any security loss.

Achieving covert security. Most covertly secure protocols work by taking
a semi-honest secure protocol and applying the cut-and-choose technique. In
contrast, we present a new approach to achieve covert security where instead of
amplifying semi-honest security, we downgrade malicious security. Our core idea
is to obtain covert security by reducing the statistical security parameter of a
malicious protocol.

As highlighted in the contribution, reducing the security of the online phase
to covert has the potential to improve the efficiency of the overall protocol exe-
cution. This improvement does not come from a speed-up in the online phase, in
fact the online phase can become slightly less efficient, but from lower require-
ments on the offline phase. Using the cut-and-choose approach to get a covertly
secure online phase incurs an overhead to the semi-honest protocol that is linear
in the number of executed instances. This overhead might exceed the efficiency
gap between the semi-honest and the malicious protocol rendering the cut-and-
choose-based covert offline phase significantly less efficient than the malicious
online phase. In this case, the overhead of the online phase can vanish the gains
of the faster offline phase. In contrast, our approach comes with a small con-
stant overhead to the malicious protocol such that the overall efficiency gain is

7

preserved. This makes our approach particularly interesting for actively secure
protocols that are already very efficient such as information-theoretic online pro-
tocols, e.g., the online phase of TinyOT [NNOB12].

The TinyOT protocol. We illustrate the benefit of our new paradigm for
achieving covert security by applying it to the maliciously secure online phase
of TinyOT [NNOB12]. We start with a high-level overview of TinyOT.

The TinyOT protocol is a generic framework for computing Boolean circuits
based on the secret sharing paradigm for two-party computation. The protocol
splits the computation into an offline and an online phase. In the offline phase,
the parties compute authenticated bits and authenticated triples. For instance,
the authentication of a bit x known to a party A is achieved by having the other
party B hold a global key∆B, a random t-bit keyK[x], and having A hold the bit
x and a t-bit MAC M [x] = K[x]⊕x·∆B. In the online phase, parties evaluate the
circuit with secret-shared wire values where each share is authenticated given the
precomputed data. Due to the additive homomorphism of the MACs, addition
gates can be computed non-interactively. For each multiplication gate, the parties
interactively compute the results by consuming a precomputed multiplication
triple. At the end of the circuit evaluation, a party learns its output, i.e., the
value of an output wire, by receiving the other party’s share on that wire. The
correct behavior of all parties is verified by checking the MACs on the output
wire shares.

Covert online protocol. The authors of TinyOT showed that successfully
breaking security of the online phase is equivalent to guessing the global MAC
key of the other party. In this work, we translate this insight to the covert setting.
In particular, we show that the online phase of a TinyOT-like protocol with a
reduced MAC length of t-bits implements covert security with a deterrence factor
of 1− (12)

t (cf. Section 4).
The resulting protocol can be modified with small adjustments to achieve

all known notions of covert security. In particular, the unmodified version of
TinyOT implements a variant of covert security in which the adversary learns
the output of the protocol, and, only then, decides on its cheating attempt.
We achieve the IECF, i.e., the notion in which the adversary always learns the
output of the corrupted parties, even in case of detected cheating, by committing
to the outputs bits and MACs before opening them. Due to the commitments,
the adversary needs to decide first if it wants to cheat and only afterwards
it learns the output. However, since the adversary receives the opening on the
commitment of the honest party first, it learns the output even if it committed to
incorrect values or refuses to open its commitment, both of which are considered
cheating. Finally, in order to achieve the SECF, we have to prevent the adversary
from inserting incorrect values into the commitment. We can do so by generating
the commitments as part of the function whose circuit is evaluated. Only after the
parties checked both, correct behavior throughout the evaluation and correctness
of the received outputs, i.e., the commitments, the parties exchange the openings
of the commitments. This way, we ensure that the adversary only receives its
output if it behaved honestly or cheated successfully which fulfills the SECF.

8

In this work, we focus on the IECF. On one hand, we assess the IECF to
constitutes a minor loss of security compared to the SECF. This is due to the fact
that we are in the security-with-abort setting, implying that the honest parties
already approve the risk of giving the adversary its output while not getting
an output themselves. On the other hand, the efficiency overhead of the IECF
compared to the weaker variant of covert achieved by the unmodified protocol
just consists out of a single commit-and-opening step accounting for 48 bytes
per party (if instantiated via a hash function and with 128 bit security). In
contrast, the SECF requires generating the commitments as part of the circuit
which incurs a much higher efficiency overhead. Therefore, we assess the protocol
achieving the IECF notion to depict a much better trade-off between efficiency
overhead and security loss than the other notions.

Evaluation. Our result shows that we can safely reduce the security level of
the online phase without compromising on the security of the overall protocol.
As we show in the evaluation section (cf. Section 5), this improves the efficiency
of the overall protocol. Concretely, the main improvements come from savings
during the offline phase since using our techniques the online phase gets less
demanding by relying on shorter MACs. We quantify these improvements by
evaluating the communication complexity of the offline phase depending on the
length of the generated MACs. More precisely, when using an actively secure
online phase, the MAC length needs to be 40 Bits, while for achieving covert
security, we can set the length of the MACs to a significantly lower value t. This
results into a deterrence factor of 1 − 1

2t . Our evaluation shows that we can
reduce the communication complexity of the offline protocol by at least 35% for
a deterrence factor of up to 7

8 .

2 Covert Security

A high-level comparison between the notions of covert security presented by Au-
mann and Lindell [AL07] is stated in Section 1.3. Next, we present details about
the explicit cheat formulation (ECF) and the strong explicit cheat formulation
(SECF). Afterwards, we present our new notion which lies strictly between the
ECF and the SECF.

The ECF and the SECF consider an ideal functionality where the adversary
explicitly sends a cheati command for the index i of a corrupted party to the
functionality which then decides if cheating is detected with probability ϵ. In
the ECF, the adversary learns the honest parties’ inputs even if cheating is
detected, which is prevented by the SECF. In addition, the adversary can also
send a corruptedi or aborti command, which is forwarded to the honest parties.
The corruptedi command models a blatant cheat option, where the adversary
cheats in a way that will always be detected, and the aborti command models an
abort of a corrupted party. Later, Faust et al. [FHKS21] proposed to extract the
identifiable abort property as it can be considered orthogonal and of independent
interest (cf. [IOZ14]). For the covert notion, this means that if a corrupted party

9

aborts, the ideal functionality only sends abort to the honest parties instead of
aborti for i being the index of the aborting party.

In the following, we present a new notion for covert security called the inter-
mediate explicit cheat formulation (IECF). We follow the approach of [FHKS21]
and present our notion without the identifiable abort property. In addition, we
clean up the definition by merging the blatant cheat option, where cheating
is always detected, with the cheat attempt that is only detected with a fixed
probability. To this end, if the adversary sends the cheat-command, we allow
the adversary to specify any detection probability between the deterrence factor
and 1. Furthermore, we enable the adversary to force a cheating detection or
abort even if the ideal functionality signals undetected cheating. This additional
action does not provide further benefit to the adversary and thus does not harm
the security provided by our notion. Since the decision solely depends on the
adversary, the change also does not restrict the adversary.

Finally, and most important, our notion allows the adversary to learn the
outputs of the corrupted parties but nothing else if cheating is detected. There-
fore, it lies between the ECF, where the adversary learns the inputs of all parties
even if cheating is detected, and the SECF, where the adversary learns nothing
if cheating is detected. Since our notion is strictly between the ECF and the
SECF, we call it the IECF.

Next, we present the IECF in full details in the following and state the
difference to the SECF afterwards.

Intermediate explicit cheat formulation. As in the standalone model, the
notions are defined in the real world/ideal world paradigm. This means, the
security of a protocol is shown by comparing the real-world execution with an
ideal-world execution. In the real world, the parties jointly compute the de-
sired function f using a protocol π. Let n be the number of parties and let
f : ({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, . . . , fn) is the function computed by
π. We define for every vector of inputs x̄ = (x1, . . . , xn) the vector of outputs
ȳ = (f1(x̄), . . . , fn(x̄)) where party Pi with input xi obtains the output fi(x̄).
During the execution of π, the adversary Adv can corrupt a subset I ⊂ [n] of all
parties. We define REALπ,Adv(z),I(x̄, 1κ) as the output of the protocol execution
π on input x̄ = (x1, . . . , xn) and security parameter κ, where Adv on auxiliary
input z corrupts parties I. We further specify OUTPUTi(REALπ,Adv(z),I(x̄, 1κ))
to be the output of party Pi for i ∈ [n].

In contrast, in the ideal world, the parties send their inputs to the uncor-
ruptible ideal functionality F which computes function f and returns the result.
Hence, the computation in the ideal world is correct by definition. The security
of π is analyzed by comparing the ideal-world execution with the real-world ex-
ecution. The ideal world in covert security is slightly changed compared to the
standard model of secure computation. In particular, in covert security, the ideal
world allows the adversary to cheat, and cheating is detected at least with some
fixed probability ϵ which is called the deterrence factor. Let ϵ : N → [0, 1] be
a function. The execution in the ideal world in our IECF notion is defined as
follows:

10

Inputs: Each party obtains an input, where the ith party’s input is denoted
by xi. We assume that all inputs are of the same length and call the vector
x̄ = (x1, . . . , xn) balanced in this case. The adversary receives an auxiliary input
z. In case there is no input, the parties will receive xi = ok.

Send inputs to ideal functionality: Any honest party Pj sends its received
input xj to the ideal functionality. The corrupted parties, controlled by ideal
world adversary S, may either send their received input, or send some other
input of the same length to the ideal functionality. This decision is made by S
and may depend on the values xi for i ∈ I and the auxiliary input z. Denote
the vector of inputs sent to the ideal functionality by x̄. In addition, S can send
a special cheat or abort message w.

Abort options: If S sends w = abort to the ideal functionality as its input,
then the ideal functionality sends abort to all honest parties and halts.

Attempted cheat option: If S sends w = (cheati, ϵi) for i ∈ I and ϵi ≥ ϵ,
the ideal functionality proceeds as follows:

1. With probability ϵi, the ideal functionality sends corruptedi to all honest
parties. In addition, the ideal functionality computes (y1, . . . , yn) = f(x̄)
and sends (corruptedi, {yj}j∈I) to S.

2. With probability 1− ϵi, the ideal functionality sends undetected to S along
with the honest parties’ inputs {xj}j /∈I . Then, S sends output values {yj}j /∈I
of its choice for the honest parties to the ideal functionality. Then, for every
j /∈ I, the ideal functionality sends yj to Pj . The adversary may also send
abort or corruptedi for i ∈ I, in which case the ideal functionality sends abort
or corruptedi to every Pj for j /∈ I.

The ideal execution ends at this point. Otherwise, if no w equals abort or
(cheati, ·) the ideal execution proceeds as follows.

Ideal functionality answers adversary: The ideal functionality computes
(y1, . . . , yn) = f(x̄) and sends yi to S for all i ∈ I.

Ideal functionality answers honest parties: After receiving its outputs,
the adversary sends abort, corruptedi for some i ∈ I, or continue to the ideal
functionality. If the ideal functionality receives continue then it sends yj to all
honest parties Pj (j /∈ I). Otherwise, if it receives abort resp. corruptedi, it sends
abort resp. corruptedi to all honest parties.

Outputs: An honest party always outputs the message it obtained from
the ideal functionality. The corrupted parties output nothing. The adversary S
outputs any arbitrary (probabilistic polynomial-time computable) function of
the initial inputs {xi}i∈I , the auxiliary input z, and the messages obtained from
the ideal functionality.

We denote by IDEALCϵ
f,S(z),I(x̄, 1

κ) the output of the honest parties and the
adversary in the execution of the ideal model as defined above, where x̄ is the
input vector and the adversary S runs on auxiliary input z.

Definition 1 (Covert security - intermediate explicit cheat formula-
tion). Let f, π, and ϵ be as above. A protocol π securely computes f in the

11

presence of covert adversaries with ϵ-deterrence if for every non-uniform prob-
abilistic polynomial-time adversary Adv in the real world, there exists a non-
uniform probabilistic polynomial-time adversary S for the ideal model such that
for every I ⊆ [n], every balanced vector x̄ ∈ ({0, 1}∗)n, and every auxiliary input
z ∈ {0, 1}∗:

{IDEALCϵ
f,S(z),I(x̄, 1

κ)}κ∈N
c≡ {REALπ,Adv(z),I(x̄, 1κ)}κ∈N

The SECF notions follows the IECF notion with one single change. Instead of
sending (corruptedi, {yj}j∈I) to S in case of detected cheating, the ideal function-
ality only sends (corruptedi). This means that in the SECF the ideal adversary
does not learn the output of corrupted parties in case cheating is detected.

3 Offline/Online Deterrence Replacement

Offline/online protocols split the computation of a function f into two parts. In
the offline phase, the parties compute correlated randomness independent of the
actual inputs to f . In the online phase, the function f is computed on the pri-
vate inputs of all parties while the correlated randomness from the offline phase
is consumed to accelerate the execution. When considering covert security, the
adversary may cheat in both the offline and the online phase. The cheating de-
tection probability might differ in these two phases. Intuitively, the deterrence
factor of the overall protocol needs to consider the worst-case detection proba-
bility. This is easy to see, since the adversary can always choose to cheat during
that phase where the detection probability is smaller.

While the above is easy to see at a high level, the outlined intuition needs
to be formally modeled and proven. We take the approach of describing of-
fline/online protocols within a hybrid model. This means, the offline phase is
formalized as a hybrid functionality to which the adversary can signal a cheat
attempt. This hybrid functionality is utilized by the online protocol during which
the adversary can cheat, too. We formally describe the hybrid model in Sec-
tion 3.1.

Next, we present our offline/online deterrence replacement theorem in Sec-
tion 3.2. Let πon be an online protocol that is covertly secure with deterrence
factor ϵon while any cheat attempt during the offline phase is detected with
probability ϵoff = 13. Then, our theorem shows that if the detection probability
during the offline phase is reduced to ϵ′off < 1, πon is also covertly secure with a
deterrence factor of ϵ′on = min(ϵon, ϵ

′
off). This means, the new deterrence factor

is the minimum of the detection probability of the old online protocol, in which
successful cheating during the offline phase is not possible, and the detection
probability of the new offline phase. Intuitively, our theorem quantifies the effect
on the deterrence factor of the online protocol when replacing the deterrence

3 Covert security with deterrence factor 1 can be realized by a maliciously secure
protocol as shown by Asharov and Orlandi [AO12].

12

factor of the offline hybrid functionality with a different value. This is why we
call Theorem 1 the deterrence replacement theorem.

The main purpose of our theorem is to allow the analysis of the security
of an online protocol in a simple setting where ϵoff = 1. Since in this setting
cheating during the offline phase is always detected, the security analysis and
the calculation of the online deterrence factor ϵon are much simpler. Once the
security of πon has been proven in the hybrid world, in which the offline phase is
associated with deterrence factor 1, and ϵon has been determined, our theorem
allows to derive security of πon in the hybrid world, in which the offline phase
is associated with deterrence factor ϵ′off , and determines the deterrence factor to
be ϵ′on = min(ϵ′off , ϵon).

While the effect of deterrence replacement was already analyzed by Aumann
and Lindell [AL07] for a weak variant of covert security, we are the first to
consider deterrence replacement in a widely adopted and strong variant of covert
security. We discuss the relation to [AL07] in Appendix B.

3.1 The Hybrid Model

We consider a hybrid model to formalize the execution of offline/online protocols.
Within such a model, parties exchange messages between each other but also
have access to hybrid functionalities F1, . . . ,Fℓ. These hybrid functionalities
work like trusted parties to compute specified functions. The hybrid model is thus
a combination of the real model, in which parties exchange messages according
to the protocol description, and the ideal model, in which parties have access to
an idealized functionality.

A protocol in a hybrid model consists of standard messages sent between the
parties and calls to the hybrid functionalities. These calls instruct the parties to
send inputs to the hybrid functionality, which delivers back the output according
to its specification. After receiving the outputs from the hybrid functionality, the
parties continue the execution of the protocol. When instructed to send an input
to the hybrid functionality, all honest parties follow this instruction and wait for
the return value before continuing the protocol execution.

The interface provided by a hybrid functionality depends on the security
model under consideration. Since we deal with covert security, the adversary
is allowed to send special commands, e.g., cheat, to the hybrid functionality.
In case the functionality receives cheat from the adversary, the functionality
throws a coin to determine whether or not the cheat attempt will be detected by
the honest parties. The detection probability is defined by the deterrence factor
of this functionality. We use the notation Fϵ

f to denote a hybrid functionality
computing function f with deterrence factor ϵ. The notation of a (Fϵ1

f1
, . . . ,Fϵℓ

fℓ
)-

hybrid model specifies the hybrid functionalities accessible by the parties.

The hybrid model technique is useful to modularize security proofs. Classical
composition theorems for passive and active security [Can00] as well as for covert
security [AL07] build the foundation for this proof technique. Informally, these
theorems state that if a protocol π is secure in the hybrid model where the

13

parties use a functionality Ff and there exists a protocol ρ that securely realizes
Ff , then the protocol π is also secure in a model where Ff is replaced with ρ.

3.2 Our Theorem

We start by assuming an online protocol πon that realizes an online functionality
Fϵon

fon
in the F1

foff
-hybrid world. This means the deterrence factor of πon is ϵon and

the deterrence factor of the offline functionality is 1 which means that every
cheating attempt in the offline phase will be detected. Next, our theorem states
that replacing the deterrence factor 1 of the offline hybrid functionality with
any ϵ′off ∈ [0, 1] results in a deterrence factor of the online protocol of ϵ′on =
min(ϵon, ϵ

′
off), i.e., the minimum of the previous deterrence factor of the online

protocol and the new deterrence of the offline hybrid functionality.
Formally, we model the composition of an offline and an online phase via

the hybrid model. Let foff : ({⊥}j /∈I , {xoff
i }i∈I) → (yoff1 , . . . , yoffn) be an n-party

probabilistic polynomial-time function representing the offline phase, where I
denotes the set of corrupted parties. We model the offline functionality in such
a way that the honest parties provide no input, the adversary may choose the
randomness used by the corrupted parties and the functionality produces outputs
which depend on the randomness of the corrupted parties and further random
choices. The n-party probabilistic polynomial-time online function is denoted by
fon : (x1, . . . , xn) → (yon1 , . . . , yonn). We use the abbreviation Fϵoff

off and Fϵon
on for

Fϵoff
foff

and Fϵon
fon

.
Our composition theorem puts some restrictions on the online protocol πon

that we list below and discuss in more technical depth in Appendix A. First,
we require that Fϵ

off is called only once during the execution of πon and this
call happens at the beginning of the protocol before any other messages are
exchanged. Second, we require that if Fϵ

off returns corruptedi to the parties,
then πon instructs the parties to output corruptedi. Practical offline/online pro-
tocols [DPSZ12, NNOB12, WRK17a, WRK17b] either directly fulfill theses re-
quirements or can easily be adapted to do so. We are now ready to formally
state our deterrence replacement theorem.

Theorem 1 (Deterrence replacement theorem). Let foff and fon be n-party
probabilistic polynomial-time functions and πon be a protocol that securely realizes
Fϵon

on in the F1
off-hybrid model according to Definition 1, where foff , fon and πon

are defined as above. Then, πon securely realizes Fϵ′on
on in the Fϵ′off

off -hybrid model
according to Definition 1, where ϵ′on = min(ϵon, ϵ

′
off).

Remarks. Our theorem focuses on the offline/online setting where only a single
hybrid functionality is present. Nevertheless, it can be extended to use additional
hybrid functionalities with fixed deterrence factors. In addition, we present our
theorem for the intermediate explicit cheat formulation to match the definition
given in Section 2. We emphasize that our theorem is also applicable to the strong
explicit cheat formulation. For this variant of covert security, our theorem can

14

also be extended to consider an offline hybrid functionality that takes inputs
from all parties, in contrast to the definition of the offline function we specified
above.

Proof sketch. We present a proof sketch together with the simulator here and
defer the full indistinguishability proof to the full version of the paper [FHKS23].

On a high level, we prove our theorem by constructing a simulator S for the

protocol πon in the Fϵ′off
off -hybrid world. In the construction, we exploit the fact

that πon is covertly secure in the F1
off -hybrid world with deterrence factor ϵon,

which means that a simulator S1 for the Fϵon
on -ideal world exists. Next, we state

the full simulator description.

0. Initially, S calls S1 to obtain a random tape used for the execution of Adv.

1. In the first step, S receives the messages sent from Adv to Fϵ′off
off , i.e., a set

of inputs for the corrupted parties {xoff
i }i∈I together with additional input

from the adversary m ∈ {⊥, abort, (cheati, ϵi)}, where i ∈ I and ϵi ≥ ϵ′off .
S distinguishes the following cases:
(a) If m ∈ {⊥, abort}, S sends {xoff

i }i∈I and m to S1 and continues the
execution exactly as S1. The latter is done by forwarding all messages

received from S1 to Adv or Fϵ′on
on and vice versa.

(b) If m = (cheatℓ, ϵℓ) for some ℓ ∈ I, S samples dummy inputs {x̂on
i }i∈I

for the corrupted parties, sends {x̂on
i }i∈I together with (cheatℓ, ϵℓ) to

Fϵ′on
on and distinguishes the following cases:

i. If Fϵ′on
on replies (corruptedi, {ŷoni }i∈I), S computes the probabilistic

function foff : ({⊥}i/∈I , {xoff
i }i∈I)→ (ŷoff1 , . . . , ŷoffn) using fresh ran-

domness, sends (corruptedi, {ŷoffi }i∈I) to Adv and returns whatever
Adv returns.

ii. Otherwise, if Fϵ′on
on replies (undetected, {xon

j }j /∈I), S sends undetected
to Adv and gets back the value y defined as follows:

– If y ∈ {abort, corruptedℓ} for ℓ ∈ I, S sends y to Fϵ′on
on and

returns whatever Adv returns.
– If y = {yoffj }j /∈I with yoffj ∈ {0, 1}∗ for j /∈ I, S interacts with

Adv to simulate the rest of the protocol. To this end, S takes
xon
j as the input of the honest party Pj and yoffj as Pj ’s output

of the offline phase for every j /∈ I. When the protocol ends
with an honest party’s output yonj for j /∈ I, S forwards these

outputs to Fϵ′on
on and returns whatever Adv returns. Note that

yonj can also be abort or corruptedℓ for ℓ ∈ I.

Recall that due to first restriction on πon, the call to the hybrid functionality

Fϵ′off
off is the first message sent in the protocol. Via this message, the adversary Adv

decides if it sends cheat to the hybrid functionality or not. Since this message
is the first one, the cheat decision depends only on the adversary’s code and its
random tape. The cheat decision is equally distributed in the hybrid and the

15

ideal world, as it depends only on the random tape and input of Adv which is
the same in the ideal world and in the hybrid world.

In the ideal world, the hybrid functionality is simulated by the simulator S
and hence S gets the message of Adv. Depending on Adv’s decision to cheat, S
distinguishes between two cases.

On the one hand, in case the adversary does not cheat, S internally runs S1
for the remaining simulation. Since the case of no cheating might also appear
in the F1

off -hybrid world, S1 is able to produce an indistinguishable view in the
ideal world. We formally show via a reduction to the assumption that πon is
covertly secure in the F1

off -hybrid world that the views are indistinguishable in
this case.

On the other hand, in case the adversary tries to cheat, S cannot use S1.
This is due to the fact that the scenario of undetected cheating can occur in

the Fϵ′off
off -hybrid world, while it cannot happen in the F1

off -hybrid world. Thus,
S needs to be able to simulate undetected cheating which is not required from
S1. Instead of using S1, S simulates the case of cheating on its own. To this end,
S asks the ideal functionality whether or not cheating is detected. If cheating
is detected, the remaining simulation is mostly straightforward. One subtlety
we like to highlight here is that S needs to provide the output values of the

corrupted parties of Fϵ′off
off to Adv. S obtains these values by computing the offline

function foff . Since this function is independent of the inputs of honest parties,
S is indeed able to compute values that are indistinguishable to the values in
the hybrid world execution.

If cheating is undetected, S needs to simulate the remaining steps of πon. Note
that if cheating is undetected, S obtains the inputs of the honest parties from
the ideal functionality. Moreover, the adversary provides to S the potentially
corrupted output values of the hybrid functionality for the honest parties. Now,
S knows all information to act exactly like honest parties do in the hybrid world
execution and therefore the resulting view is indistinguishable as well.

We finally give the idea about the deterrence factor of πon in the Fϵ′off
off -hybrid

world. We know that cheating during all steps after the call to the hybrid func-
tionality is detected with probability ϵon. This is due to the fact that πon is
covertly secure with deterrence factor ϵon in the F1

off -hybrid world. Now, any
cheat attempt in the hybrid functionality is detected only with probability ϵ′off .
Since the adversary can decide when he wants to cheat, the detection probability

of πon in the Fϵ′off
off -hybrid world is ϵ′on = min(ϵon, ϵ

′
off).

4 Covert Online Protocol

In this section, we demonstrate the applicability of our new paradigm to achieve
covert security. To this end, we construct a covertly secure online phase for the
TinyOT protocol [NNOB12]. We refer to Section 1.3 for the intuition and high-
level idea of TinyOT. Here, we present the exact specification of our covertly
secure online protocol. We present our protocol in a hybrid world where the

16

offline phase is modeled via a hybrid functionality and show its covert security
under the intermediate explicit cheat formulation (IECF) (cf. Definition 1) in
the random oracle model.

In the following, we first present the notation we use to describe our protocol.
Then, we state the building blocks of our protocol, especially, an ideal commit-
ment functionality and the offline functionality, which are both used as hybrid
functionalities. Next, we present the exact specification of our two-party online
protocol and afterwards prove its security.

We remark that we focus on the two-party setting, since this setting is suf-
ficient to show applicability and the benefit of our paradigm. Nevertheless, we
believe our protocol can easily be extended to the multi-party case following the
multi-party extensions of TinyOT ([LOS14, BLN+21, FKOS15, WRK17b]).

Notation. We use the following notation to describe secret shared and au-
thenticated values. This notation follows the common approach in the research
field [NNOB12, DPSZ12, WRK17a, WRK17b]. For covert security parameter t,
both parties have a global key, ∆A resp. ∆B, which are bit strings of length t. A
bit x is authenticated to a party A by having the other party B hold a random t-
bit key, K[x], and having A hold the bit x and a t-bit MAC M [x] = K[x]⊕x·∆B.
We denote an authenticated bit x known to A as ⟨x⟩A which corresponds to
the tuple (x,K[x],M [x]) in which x and M [x] is known by A and K[x] by B.
A public constant c can be authenticated to A non-interactively by defining
⟨c⟩A := (c, c · ∆b, 0

κ). Authenticated bits known to B are authenticated and
denoted symmetrically.

A bit z is secret shared by having A hold a value x and B hold a value y
such that z = x ⊕ y. The secret shared bit is authenticated by authenticating
the individual shares of A and B, i.e., by using ⟨x⟩A and ⟨y⟩B. We denote the
authenticated secret sharing (⟨x⟩A, ⟨y⟩B) = (x,K[x],M [x], y,K[y],M [y]) by ⟨z⟩
or ⟨x|y⟩.

Observe that this kind of authenticated secret sharing allows linear opera-
tions, i.e., addition of two secret shared values as well as addition and multi-
plication of a secret shared value with a public constant. In order to calculate
⟨γ⟩ := ⟨α⟩⊕⟨β⟩ with ⟨α⟩ = ⟨aA|aB⟩, ⟨β⟩ = ⟨bA|bB⟩, parties compute the authen-
ticated share of γ of A as ⟨cA⟩A := (aA ⊕ bA,K[aA]⊕K[bA],M [aA]⊕M [bA]).
The authenticated share of γ of B, ⟨cB⟩B, is calculated symmetrically. It follows
that ⟨γ⟩ = ⟨cA|cB⟩ is an authenticated sharing of α ⊕ β. In order to calculate
⟨γ⟩ := ⟨α⟩⊕β for a public constant β and α defined as above, parties first create
authenticated constants bits ⟨β⟩A and ⟨0⟩B and define ⟨β⟩ := ⟨β|0⟩. In order to
calcualte ⟨γ⟩ := ⟨α⟩ · β for a public constant β and α defined as above, parties
set ⟨γ⟩ := ⟨α⟩ if b = 1 and ⟨γ⟩ := ⟨0|0⟩ if b = 0.

Finally, we use the notation [n] to denote the set {1, . . . , n}. We consider
any sets to be ordered, e.g., {xi}i∈[n] := [x1, x2, . . . , xn], and for a set of indices
I = {xi}i∈[n] we denote the i-th element of I as I[i]. Note, that M [x] always
denotes a MAC for bit x and we only denote the i-th element for sets of indices
which we denote by I.

17

Ideal commitments. The protocol uses an hybrid commitment functionality
FCommit that is specified as follows:

Functionality FCommit: Commitments

The functionality interacts with two parties, A and B.

– Upon receiving (Commit, xP) from party P ∈ {A,B}, check if Commit
was not received before from P . If the check holds, store xP and send
(Committed, P) to party P̄ ∈ {A,B} \ P .

– Upon receiving (Open) from party P ∈ {A,B}, check if Commit was
received before from P . If the check holds, send (Open, P, xP) to party
P̄ ∈ {A,B} \ P .

Offline functionality. The online protocol uses an hybrid offline functionality
Fϵ

foff
to provide authenticated bits and authenticated triples. Function foff is

defined as follows.

Functionality foff : Precomputation

The function receives inputs by two parties, A and B. W.l.o.g., we assume
that if any party is corrupted it is A. The function is parametrized with a
number of authenticated bits, n1, a number of authenticated triples n2 and
the deterrence parameter t.
Inputs: A provides either input ok or (∆A, {ri,K[si],M [ri]}i∈[n1+3·n2]) where
∆A,K[·],M [·] are t-bit strings and ri is a bit for i ∈ [n1 + 3 · n2]. An honest
A will always provide input ok. B provides input ok.
Computation: The function calculates authenticated bits and authenticated
shared triples as follows:

– Sample ∆B ∈R {0, 1}t. Do the same for ∆A if not provided as input.
– For each i ∈ [n1 + 3 · n2], sample si ∈R {0, 1}. If not provided as input,

sample ri ∈R {0, 1} and K[si],M [ri] ∈R {0, 1}t. Set K[ri] := M [ri]⊕ ri ·
∆B and M [si] := K[si] ⊕ si · ∆A. Define ⟨ri⟩A := (ri,K[ri],M [ri]) and
⟨si⟩B = (si,K[si],M [si]).

– For each i ∈ [n2], set j = n1 + 3 · i and define x := rj ⊕ (rj−1 ⊕ sj−1) ·
(rj−2 ⊕ sj−2), K[x] := K[sj], and M [x] := K[x] ⊕ x · ∆A and ⟨x⟩B :=
(x,K[x],M [x]). Then, define the multiplication triple ⟨αi⟩ := ⟨rj−2|sj−2⟩,
⟨βi⟩ := ⟨rj−1|sj−1⟩, and ⟨γi⟩ := ⟨rj |x⟩.

Output: Output global keys (∆A, ∆B), authenticated bits
{(⟨ri⟩A, ⟨si⟩B)}i∈[n1], and authenticated shared triples {(⟨αi⟩, ⟨βi⟩, ⟨γi⟩)}i∈[n2],
and assign A and B their respective shares, keys and macs.

We present a protocol instantiating Fϵ
foff

in the full version of the paper [FHKS23].
Online protocol. The online protocol works in four steps. First, the parties ob-
tain authenticated bits and triples from the hybrid offline functionality. Second,
the parties secret share their inputs and use authenticated bits to obtain au-

18

thenticated shares of the inputs wires of the circuit. Third, the parties evaluate
the boolean circuit on the authenticated values. While XOR-gates are computed
locally, AND-gates require communication between the parties and the consump-
tion of a precomputed authenticated triple for each gate. Finally, in the output
phase each party verifies the MACs on the computed values to check for correct
behavior of the other party. If no cheating was detected, the parties exchange
their shares on the output wires to recompute the actual outputs.

We modified the original TinyOT online phase in two aspects. First, the
original TinyOT protocol uses one-sided authenticated precomputation data,
e.g., one-sided authenticated triples where the triple is not secret shared but
known to one party. In contrast, we focus on a simplification [WRK17a] where
the authenticated triples are secret shared among all parties. This allows us
to use a single two-sided authenticated triple for each AND gate instead of
two one-sided authenticated triples with additional data. Second, we integrate
commitments in the output phase. In detail, the parties first commit on their
shares for the output wires together with the corresponding MACs and only
afterwards reveal the committed values. By using commitments, the adversary
needs to decide first if it wants to cheat and only afterwards it learns the output.
However, since the adversary can commit on incorrect values, it still can learn
its output even if the honest parties detect its cheating afterwards. We show the
security of this protocol under the IECF of covert security.

To prevent the adversary from inserting incorrect values into the commit-
ment, the generation of the commitments can be part of the circuit evaluation.
By checking the correct behavior of the entire evaluation, honest parties detect
cheating with the inputs to the commitments with a fixed probability. This way,
we can achieve the strong explicit cheat formulation (SECF). Since computing
the commitments as part of the circuit reduces the efficiency, we opted for the
less expensive protocol.

Protocol Πon: TinyOT-style online protocol

The protocol is executed between parties A and B and uses of a hash function
H (modeled as non-programmable random oracle), the hybrid commitment
functionality FCommit, and the hybrid covert functionality F1

foff
, in the following

denoted as Foff . foff is instantiated with the same public parameters as the
protocol. When denoting a particular party with P , we denote the respective
other party with P̄ .
Public parameters: The deterrence parameter t and the number of input
bits and output bits per party n1. A function f({x(i,A)}i∈[n1], {x(i,B)}i∈[n1]) =
({z(i,A)}i∈[n1], {z(i,B)}i∈[n1]) with x(∗,A), x(∗,B), z(∗,A), z(∗,B) ∈ {0, 1} and a
boolean circuit C computing f with n2 AND gates. {z(i,A)}i∈[n1] resp.
{z(i,B)}i∈[n1] is the output of A resp. B. The set of indices of input wires resp.
output wires of each party P ∈ {A,B} is denoted by I inP resp. IoutP . Without
loss of generality, we assume that the wire values are ordered in topological
order.

19

Inputs: A has input bits {x(i,A)}i∈[n1] and B has input bits {x(i,B)}i∈[n1].

Pre-computation phase:

1. Each party P ∈ {A,B} defines ordered sets MP
P := ∅,

MP
P̄

:= ∅, sends (ok) to Foff and receives its shares of

({(⟨r(i,A)⟩A, ⟨r(i,B)⟩B)}i∈[n1], {(⟨αj⟩, ⟨βj⟩, ⟨γj⟩)}j∈[n2]). If Foff , returns
m ∈ {abort, corruptedP̄ }, P outputs m and aborts.

Input phase:

2. For each i ∈ [n1], each party P ∈ {A,B} sends d(i,P) := x(i,P)⊕r(i,P). Then,
the parties define ⟨x(i,A)⟩ := ⟨r(i,A)|0⟩⊕d(i,A) and ⟨x(i,B)⟩ := ⟨0|r(i,B)⟩⊕d(i,B)

For each party P ∈ {A,B} and each j ∈ [n1] with i := I inP [j], the parties
assign ⟨x(j,P)⟩ to ⟨wi⟩.
Circuit evaluation phase:

3. Repeat till all wire values are assigned. Let j be the smallest index of an
unassigned wire. Let l and r be the indices of the left resp. right input wire
of the gate computing wj . Dependent on the gate type, ⟨wj⟩ is calculated as
follows:
– XOR-Gate: ⟨wj⟩ := ⟨wl⟩ ⊕ ⟨wr⟩
– AND-Gate: For the i-th AND gate, the parties define (⟨α⟩, ⟨β⟩, ⟨γ⟩) :=

(⟨αi⟩, ⟨βi⟩, ⟨γi⟩), calculate ⟨e⟩ = ⟨eA|eB⟩ := ⟨α⟩ ⊕ ⟨wl⟩ and ⟨d⟩ =
⟨dA|dB⟩ := ⟨β⟩ ⊕ ⟨wr⟩, open e and d by publishing eA, eB, dA, dB respec-
tively, and compute ⟨wj⟩ := ⟨γ⟩ ⊕ e · ⟨wr⟩ ⊕ d · ⟨wl⟩ ⊕ e · d.
Further, each party P ∈ {A,B} appends (M [eP],M [dP]) to MP

P and

((K[eP̄]⊕ eP̄ ·∆P), (K[dP̄]⊕ dP̄ ·∆P)) toMP
P̄
.

Output phase:

4. Party P ∈ {A,B} computes M1
(P,P) := H(MP

P) and M1
(P,P̄)

= H(MP
P̄
)

and sendsM1
(P,P).

5. Each party P ∈ {A,B}, upon receiving M1
(P̄ ,P̄)

, verifies that M1
(P̄ ,P̄)

=

M1
(P,P̄)

. If not, P outputs corruptedP̄ and aborts. Otherwise, P computes

M2
(P,P) := H({M [wP

i]}i∈Iout
P̄
), and sends (Commit, ({wP

i }i∈Iout
P̄
,M2

(P,P))) to
FCommit.
6. Upon receiving, (Committed, P̄) from FCommit, P sends (Open) to FCommit.
7. Each party P ∈ {A,B}, upon receiving (Opened, P̄ , ({wP̄

i }i∈Iout
P
,M2

(P̄ ,P̄)
))

from FCommit, re-defines MP
P̄

:= {K[wP̄
i] ⊕ wP̄

i · ∆P }i∈Iout
P

and verifies that

M2
(P̄ ,P̄)

= H(MP
P̄
). If not, P outputs corruptedP̄ and aborts. Otherwise, P

outputs {wP
i ⊕ wP̄

i }i∈Iout
P
.

Handle aborts:

8. If a party P does not receive a timely message before executing Step 6, it
outs abort and aborts. If a party P does not receive a timely message after
having executed Step 6, it outputs corruptedP̄ and aborts.

20

Security. Intuitively, successful cheating in the context of the online protocol is
equivalent to correctly guessing the global key of the other party. Let us assume
A is corrupted. It is evident that A can only behave maliciously by flipping the
bits sent during the evaluation phase and the output phase – flipping a bit during
the input phase is not considered cheating as the adversary, A, is allowed to pick
its input arbitrarily. For each of those bits, there is a MAC check incorporated
into the protocol. Hence, A needs to guess the correct MACs for the flipped
bits (A knows the ones of the unflipped bits) in order to cheat successfully. As a

MAC M [bA] for a bit bA known to A is defined as K[bA]⊕bA ·∆B, a MAC M̃ [b̃A]
of a flipped bit b̃A is correct iff M̃ [b̃A] = M [bA]⊕∆B = K[bA]⊕ (bA ⊕ 1) ·∆B.
It follows that A has to guess the global key of B and apply it to the MACs of
all flipped bits in order to cheat successfully. As the global key has t bits, the
chance of guessing the correct global key is 1

2t . It follows that the deterrence
factor ϵ equals 1− 1

2t . More formally, we state the following theorem and prove
its correctness in the full version of the paper [FHKS23]:

Theorem 2. Let H be a (non-programmable) random oracle, t ∈ N, and ϵ =
1 − 1

2t . Then, protocol Πon securely implements Fϵ
f (i.e., constitutes a covertly

secure protocol with deterrence factor ϵ) in the presence of a rushing adversary
according to the intermediate explicit cheat formulation as defined in Definition 1
in the (Foff ,FCommit)-hybrid world.

On the usage of random oracles. As explained above, successful cheating is
equivalent to guessing the global key of the other party. However, a malicious
party can also cheat inconsistently, i.e., it guesses different global keys for the
flipped bits, or even provide incorrect MACs for unflipped bits. In this case, the
adversary has no chance of cheating successfully, which needs to be detected by
the simulator. As the simulator only receives a hash of a all MACs, it needs some
trapdoor to learn the hashed MACs and check for consistency. To provide such
a trapdoor, we model the hash function as a random oracle. The requirement of
a random oracle can be removed if the parties send all MACs in clear instead of
hashing them first. However, this increases the communication complexity.

Another alternative is to bound the deterrence parameter t such that the
simulator can try out all consistent ways to compute the MACs of flipped bits,
i.e., each possible value for the guessed global key, hash those and compare them
to the received hash. In this case, it is sufficient to require collision resistance
of the hash function. As the number of possible values for the global key grows
exponentially with the deterrence parameter t, i.e., 2t, this approach is only
viable if we bound t. Nevertheless, the probability of successful cheating also
declines exponentially with t, i.e., 1

2t . Hence, for small values of t, the simulator
runs in reasonable time.

5 Evaluation

In Section 4, we showed the application of our new paradigm to achieve covert
security on the example of the TinyOT online phase. By shortening the MAC

21

length in the online phase, we also reduced the amount of precomputation re-
quired from the offline phase. In order to quantify the efficiency gain that can be
achieved by generating shorter MACs, we compare the communication complex-
ity of a covert offline phase generating authenticated bits and triples with short
MACs to the covert offline phase generating bits and triples with long MACs.
The offline protocol. To the best of our knowledge, there is no explicit covert
protocol for the precomputation of TinyOT-style protocols. Therefore, we rely
on generic transformations from semi-honest to covert security based on the
cut-and-choose paradigm, similar to the transformations proposed by [DOS20,
FHKS21, SSS22]. However, semi-honest precomputation protocols do not con-
sider authentication of bits and triples, since semi-honest online protocols do
not need authentication. Hence, it is necessary to first extend the semi-honest
protocol to generate MACs, and then, apply the generic transformation. We
first specify a semi-honest protocol to generate authenticated bits and triples as
well as the covert protocol that can be derived via the cut-and-choose approach.
Both protocols are presented in the full version of the paper [FHKS23]. Then,
we take the resulting covert protocol to evaluate the communication complexity
for different MAC lengths.

ϵ # triples
λ-bit MACs

(state-of-the-art)
Short MACs

(our approach) Improvement

1
2

10K 531 333 37,19%
100K 5 211 3 258 37,47%
1M 52 011 32 508 37,50%
1B 52 000 011 32 500 008 37,50%

3
4

10K 1 062 677 36,24%
100K 10 422 6 617 36,51%
1M 104 022 66 017 36,54%
1B 104 000 022 66 000 017 36,54%

7
8

10K 2 124 1 374 35,29%
100K 20 844 13 434 35,55%
1M 208 044 134 034 35,57%
1B 208 000 044 134 000 034 35,58%

Table 1: Concrete communication complexity of the covert offline phase generat-
ing the precomputation required for a maliciously secure TinyOT online phase
(as applied by state-of-the-art) and a covertly secure TinyOT online phase (our
approach). As the offline phase is covertly secure, the overall protocol’s security
level is the same in both approaches. Communication is reported in kB per party.

Evaluation results. The communication complexity of each party is deter-
mined as follows. Let κ be the computational security parameter, λ be the sta-
tistical security parameter, t be the cut-and-choose parameter (which results in
a deterrence factor ϵ = 1 − 1

t), M be the length of the generated MACs, n1

be the number of authenticated bits required per party, n2 be the number of

22

authenticated triples, COT be the communication complexity of one party for
performing κ base oblivious transfers with κ-bit strings twice, once as receiver
and once as sender, CCommit be the size of a commitment and COpen be the size
of an opening to a κ-bit seed. Then, each party needs to send C bits with C
equal to

(t+ 1) · CCommit + t · (COT + COpen + n2 · (3 + κ− 1) + (n1 + 2 · n2) · (M − 1))

In our approach, M is defined such that t = 2M . In the classical approach
with a maliciously secure online phase M is fixed to equal λ. This yields an
absolute efficiency gain of G bits with G equal to

t · (n1 + 2 · n2) · (λ−M)

In the following, we set κ = 128, λ = 40, COT = (2 + κ) · 256 accord-
ing to [MRR21], CCommit = 256 and COpen = 2 · κ according to a hash-based
commitment scheme. Further, we fix n1 = 256. This yields the communication
complexity depicted in Table 1. For deterrence factors up to 7

8 , our approach
reduces the communication per party by at least 35%. As a reduction of the
security of the online phase to the level of the offline phase does not affect the
overall protocol’s security, as shown in Section 3.2, this efficiency improvement
is for free.

Acknowledgments

The first, third, and fourth authors were supported by the German Federal
Ministry of Education and Research (BMBF) iBlockchain project (grant nr.
16KIS0902), by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) SFB 1119 – 236615297 (CROSSING Project S7), and by the BMBF
and the Hessian Ministry of Higher Education, Research, Science and the Arts
within their joint support of the National Research Center for Applied Cyber-
security ATHENE. The second author was supported by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the
Israel National Cyber Bureau in the Prime Minister’s Office, and by ISF grant
No. 1316/18.

Appendix

A Discussion of Constraints on Online Protocol

In this section, we discuss the constraints on the online protocol used in our
theorem. These constraints emerged from technical issues and it is unclear how
to prove our deterrence replacement theorem in a more generic setting. Recall

23

that in our proof S uses the simulator S1 which exists since πon is covertly secure
in the F1

off -hybrid world.

First, the hybrid functionality Foff needs to be called directly at the begin-
ning. This enables the simulator S to react to the adversary’s cheating decision
in the offline phase, i.e., its input to Foff , right at the start of the simulation.
More specifically, S uses the black-box simulator S1 in case the adversary does
not cheat and simulates on its own in case there is a cheating attempt. If there
would be protocol interactions before the call to Foff , S would have to decide
whether it simulates this interactions itself or via S1. This means that the ad-
versary’s input to Foff could require S to change its decision, e.g., require S to
simulate the following steps itself while S initially used S1 for the earlier steps.
This leads to a problem as S uses S1 in a black-box way, and hence, can only use
it for all or none of the protocol steps. Rewinding does not solve the problem as a
change in the simulation of the steps before the call to Foff can influence the ad-
versary’s input to Foff , and hence, S’s decision to simulate the steps afterwards
based on S1 or not.

Second, we require that in case Foff outputs corrupted, the protocol πon in-
structs the parties to output corrupted as well. This is due to some subtle detail
in the security proof. As S1 runs in a world, in which cheating in the offline phase
is not possible, S1 does not know how to deal with undetected cheating. Further,
we treat the protocol πon in a black-box way. Due to these facts, the only way
for S to simulate the case of undetected cheating is to follow the actual protocol.
To do so in a consistent way, S has to get the input of the honest parties. Hence,
S has to notify the ideal covert functionality Fϵon

on about the cheating attempt in

the offline phase. In case of detected cheating, Fϵ′on
on sends corrupted to the honest

parties and thus the honest parties output corrupted in the ideal world. In order
to achieve indistinguishability between the ideal world and the real world, πon

needs to instruct the honest parties to output corrupted in the real world, too.

Finally, we emphasize that known offline/online protocols (SPDZ [DPSZ12],
TinyOT [NNOB12], authenticated garbling [WRK17a, WRK17b]) either directly
fulfill the aforementioned requirements or can easily be adapted to do so.

B Comparison of Theorem 1 with [AL07]

Aumann and Lindell [AL07] presented a sequential composition theorem for the
(strong) explicit cheat formulation. The theorem shows that a protocol π that
is covertly secure in an (Fϵ1

1 , . . . ,Fϵp(n)

p(n))-hybrid world with deterrence factor ϵπ,

i.e., parties have access to a polynomial number of functionalities F1, . . . ,Fp(n)

with deterrence factor ϵ1, . . . , ϵp(n), respectively, is also covertly secure with de-
terrence ϵπ if functionality Fi is replaced by a protocol πi that realizes Fi with
deterrence factor ϵi for i ∈ {1, . . . , p(n)}. This theorem allows to analyze the
security of a protocol in a hybrid model and replace the hybrid functionalities
with subprotocols afterwards. Aumann and Lindell already noted that the com-
putation of the deterrence factor ϵπ needs to take all the deterrence factors of

24

the subprotocols into account. However, the theorem does not make any state-
ment about how the individual deterrence factors influence the deterrence factor
of the overall protocol and neither analyzes the effect of changing some of the
deterrence factors ϵi.

Out theorem takes on step further and addresses the aforementioned draw-
backs. In particular, it allows to analyze the security of a protocol in a simple
hybrid world, in which the hybrid functionality is associated with deterrence
factor 1. As there is no successful cheating in the hybrid functionality, a proof
in this hybrid world is expected to be much simpler. The same holds for the
calculation of the overall deterrence factor. Once having proven a protocol to
be secure in the simple hybrid world, our theorem allows to derive the security
and the deterrence factor of the same protocol in the hybrid world, in which the
offline phase is associated with some smaller deterrence factor, ϵ′ ∈ [0, 1].

References

ABL+18. David W. Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt
Nielsen, Jakob Illeborg Pagter, Nigel P. Smart, and Rebecca N. Wright.
From keys to databases - real-world applications of secure multi-party com-
putation. Comput. J., 2018.

AL07. Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. In TCC, 2007.

AO12. Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security
with public verifiability. In ASIACRYPT, 2012.

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In CRYPTO, 2019.

BCG+20a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Correlated pseudorandom functions from variable-density
LPN. In FOCS, 2020.

BCG+20b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators from ring-lpn.
In CRYPTO, 2020.

BCS19. Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using topgear in over-
drive: A more efficient zkpok for SPDZ. In SAC, 2019.

BLN+21. Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian
Nordholt, Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P.
Smart. High-performance multi-party computation for binary circuits
based on oblivious transfer. J. Cryptol., 34(3):34, 2021.

Can00. Ran Canetti. Security and composition of multiparty cryptographic pro-
tocols. J. Cryptol., 13(1), 2000.

CDE+18. Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaop-

ing Xing. Spd𭟋
2k

: Efficient MPC mod 2k for dishonest majority. In Ad-

vances in Cryptology - CRYPTO 2018 - 38th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceed-
ings, Part II, 2018.

25

CKR+20. Hao Chen, Miran Kim, Ilya P. Razenshteyn, Dragos Rotaru, Yongsoo Song,
and Sameer Wagh. Maliciously secure matrix multiplication with applica-
tions to private deep learning. In ASIACRYPT, 2020.

DILO22. Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenti-
cated garbling from simple correlations. In CRYPTO, 2022.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishonest
majority - or: Breaking the SPDZ limits. In ESORICS, 2013.

DNNR17. Ivan Damg̊ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranel-
lucci. The tinytable protocol for 2-party secure computation, or: Gate-
scrambling revisited. In CRYPTO, 2017.

DOS20. Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Black-box transforma-
tions from passive to covert security with public verifiability. In CRYPTO,
2020.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO,
2012.

DZ13. Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation
of boolean circuits using preprocessing. In TCC, 2013.

FHKS21. Sebastian Faust, Carmit Hazay, David Kretzler, and Benjamin Schlosser.
Generic compiler for publicly verifiable covert multi-party computation. In
EUROCRYPT, 2021.

FHKS23. Sebastian Faust, Carmit Hazay, David Kretzler, and Benjamin Schlosser.
Putting the online phase on a diet: Covert security from short macs. Cryp-
tology ePrint Archive, Paper 2023/052, 2023. https://eprint.iacr.org/
2023/052.

FKOS15. Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter
Scholl. A unified approach to MPC with preprocessing using OT. In
ASIACRYPT, 2015.

HOSS18. Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-
Vazquez. Concretely efficient large-scale MPC with active security (or,
tinykeys for tinyot). In ASIACRYPT, 2018.

IOZ14. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party com-
putation with identifiable abort. In CRYPTO, 2014.

KOS16. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster
malicious arithmetic secure computation with oblivious transfer. In CCS,
2016.

KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT, 2018.

KRRW18. Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Opti-
mizing authenticated garbling for faster secure two-party computation. In
CRYPTO, 2018.

KVH+21. Brian Knott, Shobha Venkataraman, Awni Y. Hannun, Shubho Sengupta,
Mark Ibrahim, and Laurens van der Maaten. Crypten: Secure multi-party
computation meets machine learning. In NeurIPS, 2021.

LOS14. Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest ma-
jority multi-party computation for binary circuits. In CRYPTO, 2014.

MPC. MPC Alliance. https://www.mpcalliance.org/. (Accessed on
10/14/2022).

MRR21. Ian McQuoid, Mike Rosulek, and Lawrence Roy. Batching base oblivious
transfers. In ASIACRYPT, 2021.

26

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In CRYPTO, 2012.

Ors20. Emmanuela Orsini. Efficient, actively secure MPC with a dishonest ma-
jority: A survey. In WAIFI, 2020.

SSS22. Peter Scholl, Mark Simkin, and Luisa Siniscalchi. Multiparty computation
with covert security and public verifiability. In ITC, 2022.

VSG+19. Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, An-
drei Lapets, and Azer Bestavros. Conclave: secure multi-party computation
on big data. In EuroSys, 2019.

WRK17a. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. In CCS,
2017.

WRK17b. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In CCS, 2017.

YWZ20. Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from im-
proved triple generation and authenticated garbling. In CCS, 2020.

Zen. ZenGo - crypto wallet app. https://zengo.com/. (Accessed on
10/14/2022).

27

D. Statement-Oblivious Threshold
Witness Encryption

This chapter corresponds the following publication. The full version is available

at [92].

[91] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser. “Statement-Oblivious Thresh-

old Witness Encryption”. In: 36th IEEE Computer Security Foundations Sym-

posium, CSF 2023, Dubrovnik, Croatia, July 10-14, 2023. 2023, pp. 17–32. Part

of this thesis.

182

Statement-Oblivious Threshold Witness Encryption
Sebastian Faust∗, Carmit Hazay†, David Kretzler∗, Benjamin Schlosser∗

∗Technical University of Darmstadt, Darmstadt, Germany
{first.last}@tu-darmstadt.de

† Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

Abstract—The notion of witness encryption introduced by
Garg et al. (STOC’13) allows to encrypt a message under a
statement x from some NP-language L with associated relation
(x,w) ∈ R, where decryption can be carried out with the
corresponding witness w. Unfortunately, known constructions for
general-purpose witness encryption rely on strong assumptions,
and are mostly of theoretical interest. To address these short-
comings, Goyal et al. (PKC’22) recently introduced a blockchain-
based alternative, where a committee decrypts ciphertexts when
provided with a valid witness w. Blockchain-based committee
solutions have recently gained broad interest to offer security
against more powerful adversaries and construct new crypto-
graphic primitives.

We follow this line of work, and propose a new notion of
statement-oblivious threshold witness encryption. Our new notion
offers the functionality of committee-based witness encryption
while additionally hiding the statement used for encryption. We
present two ways to build statement-oblivious threshold witness
encryption, one generic transformation based on anonymous
threshold identity-based encryption (A-TIBE) and one direct
construction based on bilinear maps. Due to the lack of efficient
A-TIBE schemes, the former mainly constitutes a feasibility
result, while the latter yields a concretely efficient scheme.

Index Terms—Threshold Witness Encryption, Statement
Obliviousness, Committee-Based Decryption, Threshold Tag-
Based Encryption

I. INTRODUCTION

The notion of witness encryption as introduced by Garg
et al. [1] allows a party to encrypt a message m under
some problem instance x such that the ciphertext can only
be decrypted by someone holding a witness w. There are
countless applications of witness encryption ranging from
public key encryption with fast key generation, attribute-based
encryption for general circuits [1], to using it for encrypting
a prize for solving an NP-hard puzzle like the millennium
problems, or achieving fairness in MPC [2]. More formally,
witness encryption is defined for an NP language L with
associated relation (x,w) ∈ R, where x is the statement and
w is the corresponding witness. Security as defined by Garg
et al. [1] states that for any ciphertext that was created for x
not in the language L, ciphertexts do not reveal information
about the encrypted message. While this notion only deals
with statements that are not in the language, Goldwasser et
al. [3] introduced the notion of extractable witness encryption
stating that even for a statement in the language, ciphertexts
hide the message.

Although great progress has been made over the last years
[1], [3]–[7], witness encryption still has limitations. First,

known constructions rely on strong assumptions like multi-
linear maps [1], [3], [5], [6], indistinguishability obfuscation
[4] or cryptographic invariant maps [7], and its constructions
are not practically efficient yet. Second, even the stronger
notion of extractable witness encryption does not hide the
statement for which the ciphertext was created. This rules
out interesting applications that require the statement to be
private until decryption takes place, as it may disclose sensitive
information.

The first shortcoming of state-of-the-art witness encryp-
tion can be circumvented via so-called extractable Witness
Encryption on Blockchains (eWEB) put forward by Goyal
et al. [8]. It is based on a blockchain following a recent
trend in cryptography, where constructions leverage the power
of blockchains, e.g., [2], [9]–[12]. In the context of witness
encryption, this results in a shift from relying on strong
number theoretic assumptions to relying on an honest quorum
of users within a committee. This trend is further fueled
by a line of work that presents constructions of how such
committees can be obtained in a blockchain setting [10], [13],
[14].

In a nutshell, the scheme of [8] works as follows. Parties
encrypt a message by secret sharing it to a committee and
labeling the shares with a statement x. To decrypt, parties
need to send a witness to the committee proving that x
is in the language L and getting the secret shares back.
While the construction of Goyal et al. is certainly more
efficient than standard general-purpose witness encryption,
the downside of their solution is the storage complexity of
the committee, which grows linearly with the number of
ciphertexts. Improving on the approach of [8], [9] propose as
an application for their large-scale non-interactive threshold
cryptosystem a solution, in which the decryption committee
stores only secret key shares of a labeled threshold encryption
scheme. The committee receives ciphertext-witness-pairs and
decrypts only if the witness corresponds to the statement
encoded as the label of the ciphertext. This reduces the storage
complexity to be only constant. Following [8], [9], Campanelli
et al. [10] presents a similar construction called Blockchain
Witness Encryption (BWE). However, their construction is not
practical (e.g., for each encryption a smart contract deployment
is required).

In this work, we start with the approach of [9], which
we abstractly call threshold witness encryption, and address
the second shortcoming by a new feature called statement

obliviousness, which guarantees that the statement is hidden
given the ciphertext. This new feature allows us to extend
applications of standard (threshold) witness encryption with
an additional privacy property. For instance, we can construct
time-lock encryption from witness encryption, as proposed
by [6], without leaking the concrete time at which a decryption
can happen to third parties, or we can construct a dead-man’s
switch, as proposed by [8], without revealing for which person
it was created. Moreover, this feature enables a new class
of applications that inherently require the privacy property
and are not covered by standard witness encryption. As a
concrete example, imagine a user wants to buy some shares
of a company or some tokens on a Decentralized Finance
(DeFi) trading platform, once the price of the asset reaches a
certain value; however, without the necessity of having to stay
online. Privacy is an important aspect in this scenario, since
revealing information, e.g., the intended purchase price, could
lead to financial disadvantages, e.g., due to insider trading. To
support the described scenario, the user can exploit statement-
oblivious threshold witness encryption in the following way.
The user encrypts its transaction with the desired share price
as statement and a signature of a trusted price oracle service
as the required witnesses. Trusted price oracles are already
available in the DeFi ecosystem and heavily used for building
various financial products. The ciphertext is sent to the user’s
broker who repeatedly requests the signed current share price
from the oracle service, attempts decryption, and, if this gives
a valid transaction, executes the trade. For decrypting, the
broker sends the ciphertext together with the current share
price to the decryption committee. As the statement is hidden,
no one, not even the oracle service, learns the desired share
price until the transaction is successfully decrypted. Due to the
required signature of the oracle service, the broker cannot send
incorrect share prices to the decryption committee. We provide
more details about use-cases of our new security feature in
Section IX.

While [8] and [9] tackled the first limitation and present
more efficient constructions that are effectively the same as
witness encryption, both schemes still suffer from the fact
that the statement is public. In this work, we address the
privacy feature mentioned above. To this end, we introduce a
novel notion that we call statement-oblivious threshold witness
encryption (SO-TWE) and show how to instantiate it.

A. Contribution

We start by giving a summary of our contribution and
defer an high-level overview of our constructions as well
as a discussion of the technical challenges to the technical
overview.

1) Primitive definition: We introduce the notion of
statement-oblivious threshold witness encryption (SO-TWE).
This primitive provides effectively the same functionality as
witness encryption while requiring a committee with a fixed
number of corrupted parties as typically done in threshold
cryptography. As we envision the committee to perform
decryption on request, we define a security notion against

CCA Secure Statement-Oblivious Threshold Witness Encryption
(SO-TWE)

Definition in Section III

CCA Secure Oblivous Tag-based Threshold Encryption (O-TTBE)
Definition in Section IV

A
S

Collision-Resistant
Hash Function

One-time Signatures (OTS)

CPA Secure Anonymous Threshold
Identity-Based Encryption (A-TIBE)
CPAST
ATIBE)

Homomorphic Secret Sharing (HSS)

CPA-Secure Anonymous Verifiable
Identity-Based Encryption (A-VIBE)

Section VIII

Section VII

A
S

Programmable
Random Oracle (pROM)

Bilinear Decisional
Diffie Hellman (BDDH)

Section VI

Section V

Fig. 1. The Landscape of Our Contributions.

chosen-ciphertext attacks (CCA) which is at least as strong as
the notion of extractability for threshold witness encryption.
In addition, the statement-obliviousness property guarantees
that the statement used to generate a ciphertext is hidden. We
provide a formal security game combining the CCA security
with our new statement-obliviousness property.

We do not follow up on the existing notions of extractable
Witness Encryption on Blockchains, proposed by [8], or
Blockchain Witness Encryption, proposed by [10], as both
notions are tied to the blockchain setting. We take a more
general approach by using the committee to achieve witness
encryption without defining the origin of the committee. In
contrast to earlier works, however, our notion considers only
static corruptions.

2) Instantiating SO-TWE: We show how to instantiate SO-
TWE via a series of transformations, as depicted in Figure 1.
For all constructions and transformations, we provide formal
security proofs. As a first step, we introduce the notion
of oblivious threshold tag-based encryption (O-TTBE) as an
extension of standard threshold tag-based encryption as pre-
sented in [15]. Similar to statement-obliviousness, oblivious-
ness in this context ensures that the tag used for encryption is
hidden. Then, we present a general transformation from CCA
secure O-TTBE to CCA secure SO-TWE.

As a second step, we show two ways to construct CCA se-
cure O-TTBE schemes. First, we generically build a O-TTBE
scheme from collision-resistant hash functions, one-time sig-
natures and CPA secure anonymous threshold identity-based
encryption (A-TIBE). To the best of our knowledge, there are

2

constructions for anonymous identity-based encryption [16],
[17] and threshold identity-based encryption [18], but there
is no construction of an A-TIBE scheme. The techniques
used for anonymous IBE do not allow for a straightfoward
thresholdization via secret sharing while maintaining a high
threshold and non-interactive decryption at the same time.
As a feasibility result, we show how to instantiate A-TIBE
from non-threshold anonymous identity-based encryption, a
signature scheme and homomorphic secret sharing (HSS). This
transformation follows [10] which constructs non-anonymous
threshold identity-based encryption from HSS. While proving
the security of our construction, we discovered a gap in the
analysis of [10]. In particular, the construction in [10] allows
corrupted parties to trick honest parties into accepting invalid
identity keys, and hence, does not provide key generation
consistency. We propose a solution to fix this gap. While
the A-TIBE-based construction constitutes a feasibility result,
we emphasize that any progress in constructing these building
blocks, e.g., in terms of efficiency, immediately yields more
efficient constructions of SO-TWE.

As a second way, we present a concretely efficient in-
stantiation of O-TTBE in the random oracle model. Our
construction extends Hash-ElGamal with a bilinear mapping
and efficient non-interactive zero knowledge arguments. The
resulting scheme is concretely efficient in terms of ciphertext
size and bilinear mapping evaluations. The construction also
yields the first efficient threshold witness encryption scheme
that additionally achieves statement obliviousness. This is
because our generic transformation from O-TTBE to SO-TWE
only adds simple hash function evaluations and a check of
the witness relation. We formally prove the security of this
construction via a reduction to the Decision Bilinear Diffie-
Hellman assumption.

B. Technical Overview

In this section, we outline the main techniques used to
construct SO-TWE and discuss the major challenges.
Emulation of the witness encryption functionality. We consider
the setup of a SO-TWE scheme to be executed by a trusted
dealer or via a distributed key generation protocol. During the
setup, the public key and the verification key are published
while the secret key shares are distributed to the committee
members. It is assumed that an adversary can statically corrupt
a subset of the committee members. We allow the adversary
to corrupt all but one committee member. Upon corruption
the adversary takes full control over the committee members,
and hence, learns their secret key shares. Users can encrypt
messages non-interactively based on the public key and a self-
chosen statement. Decryption is performed in an interactive
way via a request-response protocol. To this end, a user sends
the ciphertext, a statement candidate and a witness to the
committee. All committee members compute and send their
decryption shares to the user, who attempts to combine the
shares to the actual message. This will only be successful if
it receives sufficiently many valid decryption shares and the
witness relation has been verified successfully. Further, the

statement-obliviousness property provides that the combined
shares will only yield the original plaintext if the statement
candidate used for the decryption is the same as the one
used for encryption. While emulating the functionality of
witness encryption using a committee-based approach seems
to be easy at first glance, achieving statement obliviousness
in combination with CCA security is highly non-trivial, as
discussed next.
Achieving obliviousness in the CCA-setting. Due to the com-
mittee setting in which decryption is executed on request,
we require security against chosen-ciphertext attacks (CCA).
The major challenge is to simultaneously guarantee CCA
security and achieve our new notion of statement oblivi-
ousness. A common technique to achieve CCA security in
the threshold setting is to incorporate ciphertext validation
before decryption [18]–[22]. The validation ensures that each
decryption request issued by the adversary in the security
game is either declined or yields exactly the original plaintext
created by some user. This feature is required by the security
proofs of known CCA secure threshold constructions, e.g., to
prevent the adversary from exploiting homomorphisms in the
group structure to decrypt valid ciphertexts that contain related
messages. The difficulty in our setting is that the decryption
committee may not know the statement used for encryption.
In fact, the information if the correct statement has been
used for decryption must not be leaked before decryption is
completed. Any such leakage would allow corrupted servers
to break the obliviousness property. It follows that we have
to allow for multiple decryptions, with different statements,
of the same ciphertext, and hence, cannot follow the standard
approach of previous work. The described scenario makes it
highly challenging to achieve obliviousness in combination
with CCA security in the threshold setting. In particular,
the challenge is to render decryptions useless for statements
different than the one used for encryption despite applying
the correct secret key shares when generating the decryption
shares. Prior CCA-secure encryption schemes apply the secret
key (shares) during decryption only after ensuring that the
resulting (combined) decryption yields exactly the original
message. Hence, we cannot use existing approaches to solve
the described challenge.
SO-TWE from oblivious threshold tag-based encryption (cf.
Section V). As a first step towards SO-TWE, we present a
transformation from a primitive called oblivious threshold tag-
based encryption (O-TTBE). To this end, we first extend the
standard notion of threshold tag-based encryption presented
by Arita and Tsurudome [15] with an obliviousness property.
Similar to statement-obliviousness, obliviousness for a tag-
based encryption scheme requires that two ciphertexts created
with different tags cannot be distinguished.

Our first transformation takes a CCA secure O-TTBE
scheme in order to construct SO-TWE. The high-level idea
is to use the hash of the statement as a tag for the O-
TTBE scheme. For decryption, a user needs to provide a
statement candidate together with a corresponding witness.
The decryption servers first check if the witness is valid and

3

then use the hash of the provided statement candidate as the
tag in the decryption of the O-TTBE scheme. The statement-
obliviousness property is directly obtained from the oblivious-
ness property of the O-TTBE scheme but constructing CCA
secure O-TTBE still faces the challenges explained above.
As depicted in Figure 1, we follow two different paths to
overcome these challenges and to construct CCA secure O-
TTBE as described below.
O-TTBE from programmable random oracles and bilinear
maps (cf. Section VI). In general, independently of the obliv-
iousness setting, the major difficulty when proving CCA
security is to answer decryption queries without knowledge
of the secret key. When instantiating O-TTBE from black-
box primitives, this task is realized by using oracles of the
underlying primitive in the reduction. For example, in our
transformation from O-TTBE to SO-TWE the reduction to O-
TTBE uses the decryption oracle of the O-TTBE security game
to answer decryption queries of the SO-TWE adversary. When
combining CCA security with an obliviousness property, we
additionally face the discussed challenge to answer different
decryption queries for the same ciphertext. Here, a random
looking value needs to be returned except for the decryption
query that contains the tag used for encryption. For a concrete
O-TTBE scheme, we need to address both challenges in
parallel. Due to the strict ciphertext validation used in existing
CCA secure encryptions schemes (e.g., [18]–[22]) extending
these schemes to support tag obliviousness cannot be done in
a straightforward way.

We propose a new construction starting from CPA secure
Hash-ElGamal, which is a variant of classical ElGamal [23].
In Hash-ElGamal, the encryption algorithm given a message
m samples a random exponent a and outputs two elements
A = ga and M = m ⊕ H(Xa) for a group generator
g, a random oracle H , and a public key X = gx. In the
threshold setting, the secret key x is secret shared among the
decryption servers. The decryption shares of the servers are
calculated as di := Axi , where xi is the share of the i-th
server. We apply an extension to this scheme that allows us
to solve both aforementioned challenges at once. We do so
by applying a random offset T to A in both, encryption and
decryption. This offset is unique for each ciphertext-tag pair
to obtain random values from decryption for tags different
to the one used for encryption. When applying the offset via
multiplication or exponentiation, e.g., M = m ⊕ H(Xa·T),
an adversary can easily perform an homomorphic attack, i.e.,
Axi·T = (Axi·T ′

)
T
T ′ . In order to prevent this, we apply the

offset using a bilinear mapping e, i.e., M = m⊕H(e(T,Xa)).
Further, we ensure that a ciphertext component A cannot

be reused in different ciphertexts expect by the party that
generated A, and hence, knows the plaintext anyway. We
do so, by adding a non-interactive zero-knowledge argument
of knowledge of a to the ciphertext. The second ciphertext
component, M , is used for computing the challenge value of
the non-interactive zero-knowledge argument, in order to link
this component to the zero-knowledge argument. In classical
ElGamal-based schemes, adding a zero-knowledge argument

of knowledge of a to the ciphertext is not sufficient to achieve
CCA security, as demonstrated in detail by [19]. Instead,
it is necessary to provide an additional trapdoor to solve
the general challenge of CCA security, to answer decryption
queries. Interestingly, in our construction, the tag-dependent
offset does not only give us tag obliviousness but also provides
us with such a trapdoor for free. In particular, in the reduction,
we can simulate the random oracle used to compute the
offset such that we learn the discrete logarithm of all offsets
sampled by the random oracle. This allows us to compute
e(T,Xa) via e(A,X)logg(T). We elaborate further on the
concrete challenges and the intuition of our construction in
Section VI before presenting the formal specification.

Despite being the first instantiation of O-TTBE, our con-
struction yields a concretely efficient scheme. The ciphertexts
consist of a bitstring with length equal to the message length,
a group element of the bilinear mapping’s base group and
two exponents (in Zq , where q is the bilinear group’s order).
Decryption shares consist of one group element in the map-
ping’s target group and two exponents. Encryption requires
a single evaluation and decryption three evaluations of the
bilinear map.
O-TTBE from anonymous threshold identity-based encryption
(cf. Section VII). While the construction described in the
previous paragraph yields an efficient scheme, we also present
a generic solution. Boneh et al. [18] show how to achieve CCA
security from one-time signatures and CPA secure identity-
based encryption. Following this approach, we achieve CCA
security in the threshold setting by combining one-time sig-
natures with CPA secure anonymous threshold identity-based
encryption (A-TIBE). The anonymity property of the TIBE is
utilized to achieve obliviousness of the TTBE scheme. The
high-level idea is to encode the tag into the identity of the
IBE ciphertext. Since the anonymity property guarantees that
no information about the identity can be obtained from the
ciphertext, the tag stays hidden as well. Only the decryption
with the correct tag, i.e., with the identity key corresponding
to the tag, reveals information about the plaintext.
Constructing A-TIBE (cf. Section VIII). As a final step, we
explore two directions to obtain anonymous threshold identity-
based encryption (A-TIBE). First, we present a black-box
construction based on homomorphic secret sharing (HSS). The
same approach was used by Campanelli et al. [10] in order to
construct threshold IBE without anonymity. When exploring
this direction, we discovered a gap in the security analysis of
[10]. The construction in [10] does not provide key generation
consistency, a security property that enables parties to validate
correctness of received identity keys. Without that property,
maliciously corrupted committee members can provide ar-
bitrary identity key shares. This may result in an incorrect
identity key such that the decryption of some ciphertext yields
a different plaintext than the originally encrypted message. As
such an attack is not possible in the non-threshold setting,
standard IBE does not provide means to validate identity keys.
It follows that the straightforward thresholdization of IBE
using HSS is not sufficient to provide a secure threshold IBE

4

scheme.
To overcome this problem, we propose a new IBE prim-

itive with an additional verifiability property. Verifiable IBE
contains a check if an identity key is computed correctly
which may be of independent interest in other settings where
malicious security is required. Such a scheme can be built from
a standard IBE scheme together with an existentially unforge-
able signature scheme. Eventually, we construct anonymous
threshold IBE by executing the key generation algorithm of the
verifiable IBE scheme within HSS. We provide a formal proof
showing security of the construction, including the discussed
identity key generation consistency property. We note that
in this black-box construction, we need to consider general-
purpose HSS like [10].

Finally, we explore the transformation of the concrete
anonymous non-threshold IBE scheme of Boyen and Wa-
ters [16]. The challenge in this transformation is that the
identity key generation requires multiplication of secret values
and freshly chosen randomness that needs to remain private.
A direct secret sharing of these values pose some challenges
which we discuss in the full version of this paper [24]. While
general-purpose secure multi-party computation can solve this
task, we aim for a threshold IBE scheme that requires no
interaction during identity key generation. We point out and
discuss two ways how the aforementioned issues can be
tackled and leave formal specifications and security analyses
of these approaches to future work.

II. PRELIMINARIES

Here, we present the most important primitives. Throughout
this work, we denote the security parameter by κ ∈ N. We
denote the set {1, . . . , k} as [k]. For a negligible function negl :
N → R, it holds that for every c ∈ N there exists a n0 ∈
N such that for all n > n0: |negl(n)| < 1

nc . For the sake
of expressiveness, we often denote a negligible function by
negl. We use the abbreviation PPT to denote a probabilistic
polynomial-time algorithm.

A. Bilinear Maps

We briefly recall the basics of bilinear maps following [18],
[25]. Let BGen be a randomized algorithm that on input a
security parameter κ outputs a prime q, such that log2(q) =
O(κ), two cyclic groups of prime order q and a pairing e :
G×G→ GT .

We call e a bilinear map if the following properties hold:
• Bilinearity: For all u, v ∈ G and a, b ∈ Zq , we have
e(ua, vb) = e(u, v)ab.

• Non-degeneracy: For generator g of G it holds that
e(g, g) 6= 1. Since GT is of prime order q, this implies
that e(g, g) is a generator of GT .

• Efficiency: e can be computed efficiently in polynomial
time in κ.

A bilinear map satisfying the above properties is sometimes
called admissible bilinear map. We are only interested in
admissible bilinear maps and implicitly mean this type of
bilinear maps when writing bilinear maps in short. We call

BGen a Bilinear Group Generator if the algorithm can be
computed efficiently in polynomial time in κ and each pairing
e generated by BGen is a bilinear map.

While in the above setting the decisional Diffie-Hellman
assumption (DDH) does not hold in group G, there is an
extension to the setting with bilinear maps.

Definition 1 (DBDH). The Decision Bilinear Diffie-Hellman
assumption (DBDH) states that for every Bilinear Group
Generator BGen and algorithm D running in time polynomial
in security parameter κ it holds that
∣∣Pr[D(Ḡ, g, h, ga, gb, e(h, g)ab)]− Pr[D(Ḡ, g, h, ga, gb, R)]

∣∣
≤ negl(κ)

where Ḡ = (q,G,GT , e) ←R BGen(κ), g, h ∈R G, R ∈R
GT , and a, b, c ∈R Zq . The randomness is taken over the
random choices of BGen, the group elements g, h, R, the
values a, b, c, and the random bits of D.

B. Hash Functions and Digital Signatures

A hash function H is a function that takes as input a
string x ∈ {0, 1}∗ and returns a fixed-length output string
H(x) ∈ {0, 1}`(κ) for some polynomial `(κ). A signature
scheme SIG = (KeyGen,Sign,Verify) over message space
M consists of three probabilistic polynomial-time algorithms.
The key generation algorithm KeyGen produces a key pair
(SigK,VerK) on security parameter 1κ. The signing algorithm
Sign takes a signing key SigK and a message m ∈ M and
produces a signature σ. A signature σ on message m can
be verified with respect to the verification key VerK using the
verification algorithm Verify. As standard, we require the hash
function to satisfy collision resistance and the digital signature
scheme to provide consistency and existential unforgeability
against chosen-message attacks. Formal definitions of these
properties are provided in Appendix B-A and B-B.

C. Anonymous Threshold Identity-Based Encryption

We derive the notion of Anonymous Threshold Identity-
Based Encryption from [17] as follows:

Definition 2 (TIBE). An anonymous threshold identity-based
encryption scheme (TIBE) TIBE is associated with the follow-
ing probabilistic polynomial-time algorithms:

1) Setup(1κ, s, n) takes as input a security parameter 1κ,
the number of decryption servers n and the security
threshold s, with 1 ≤ s ≤ n. It generates system
parameters pk, a verification key vk, and n master secret
key shares {ski}i∈[n]. The i-th decryption server gets
master secret key share ski.

2) ShareKeyGen(pk, i, ski, id) takes as input the public pa-
rameter pk, the decryption server index i, the corre-
sponding secret key ski and an identity id ∈ {0, 1}∗. It
generates an identity key share (i, iki).

3) ShareVf(pk, vk, id, i, iki) takes as input the public param-
eter pk, the verification key vk, an identity id, a decryption
server index i and an identity key share iki. It outputs true
or false.

5

4) Combine(pk, vk, id, {(i, iki)}i∈S) takes as input the pub-
lic parameter pk, the verification key vk, an identity id
and indexed identity key shares iki and returns an identity
key ik or ⊥.

5) Encrypt(pk, id,m) takes as input the public parameter
pk, an identity id and a message m and outputs a
ciphertext c.

6) Decrypt(pk, id, ik, c) takes as input the public parameter
pk, an identity id, an identity key ik and a ciphertext c
and outputs a message m.

We require for all κ, n, s ∈ N, where 1 ≤ s ≤ n, and any
(pk, vk, {ski}i∈[n]) ← Setup(1κ, s, n) the following proper-
ties:
• Share consistency: For any identity id ∈ {0, 1}∗ and

any i ∈ [n], if (i, iki)← ShareKeyGen(pk, i, ski, id), then
ShareVf(pk, vk, id, i, iki) = true.

• Decryption correctness: For any identity id ∈ {0, 1}∗,
if S is a subset of [n] of size s, IK := {(i, iki)|i ∈
S ∧ (i, iki) ← ShareKeyGen(pk, i, ski, id)}i∈S , and
ik ← Combine(pk, vk, id, IK), then we require
that for any m in the message space, m =
Decrypt(pk, ik,Encrypt(pk, id,m)).

Security. We define security via three properties: key genera-
tion consistency, security against chosen-identity attacks and
anonymity. Informally, the first one states that an adversary
cannot generate a ciphertext and two sets of valid identity key
shares for the same identity such that the shares combine to
different keys and the ciphertext is decrypted to two differ-
ent plaintexts. The last ones state that an adversary cannot
distinguish between two encryptions and two identities used
for encryption. We formally define the security game and
ANON-IND-ID-CPA security in Appendix B-E.

III. STATEMENT-OBLIVIOUS THRESHOLD WITNESS
ENCRYPTION

In the setting of threshold witness encryption (TWE), we
distinguish between users and decryption servers. Users either
aim to encrypt some plaintext under a statement x in some
NP language L or aim to decrypt some ciphertext knowing a
witness corresponding to the statement x ∈ L. Decryption
servers possess private information and assist users while
decrypting a ciphertext. The decryption servers constitute a
committee with a fixed number of corrupted parties. The
committee may be static or adaptive depending on the concrete
instantiation. For instance, a line of work [10], [13], [14]
proposed mechanisms to select committees without reveal-
ing the identity of the members until they speak to protect
against adaptive adversaries. The constructions are based on
techniques incorporated in many popular blockchain. We em-
phasize that our definition and construction abstracts from
the concrete instantiation of the committee. We only assume
that a committee consists of n decryption servers and only
s− 1 of them are corrupted. Moreover, we assume the setup
procedure of a TWE construction to be executed by a trusted
dealer. This approach is standard in threshold cryptography

and a trusted dealer could be realized by a tailored multi-party
computation protocol. The dealer distributes secret information
to the decryption servers and publishes public information to
all parties.

In contrast to the definition of extractable witness encryption
on blockchain (eWEB) by [8], we abstract away the realization
of the committee while their definition explicitly considers
a dynamic committee and a hand-off procedure to move
from one committee to another. Since the change of the
committee members is inherent to their definition, they also
consider adaptive corruption in their security game. Moreover,
their definition specifically considers a model where plaintexts
are shared to the committee members which reveal these
information only if a witness is presented. In contrast, our
definition follows the approach presented by [9] where only a
single secret key is shared between the committee members.
In contrast to the definition of blockchain witness encryption
(BWE) by Campanelli et al. [10] we do not explicitly define
our TWE based notion for blockchains. Here again, we ab-
stract away the concrete realization of the committee.

Formally, we define our new primitive as follows.

Definition 3 (TWE). A threshold witness encryption scheme
(TWE) TWE for an NP language L with associated relation
R consists of the following five PPT algorithms:

1) Setup(1κ, s, n) takes as input the security parameter 1κ,
a threshold s, and the number of decryption servers n,
where 1 ≤ s ≤ n. It outputs a triple (pk, vk, {ski}i∈[n]),
where pk is a public key, vk is a verification key, and
ski is the secret key share for the decryption server with
index i.

2) Encrypt(pk, x,m) takes as input the public key pk, a
statement x, and a message m. It outputs a ciphertext
c.

3) ShareDec(pk, c, x, w, (i, ski)) takes as input a public key
pk, a ciphertext c, a statement x, a witness w, and the
index i together with the secret key share ski of the i-th
decryption server. It outputs a decryption share di or a
failure symbol ⊥ together with the index i.

4) ShareVf(pk, vk, c, x, (i, di)) takes as input a public key
pk, a verification key vk, a ciphertext c, a statement x,
and an indexed decryption share (i, di). It outputs false
if the decryption share is invalid and true if it is valid
with respect to pk, vk, c, and x.

5) Combine(pk, vk, c, x, {(i, di)}i∈S) takes as input a public
key pk, a verification key vk, a ciphertext c, a statement
x, and a set of decryption shares {(i, di)}i∈S . It outputs
message m or ⊥.

We require for every security parameter κ ∈ N, every NP-
language L with associated relation R, every n, s ∈ N where
1 ≤ s ≤ n, every output (pk, vk, {ski}i∈[n]) of Setup(1κ, s, n),
every x ∈ L and w such that (x,w) ∈ R, for every message
m, and every ciphertext c← Encrypt(pk, x,m):
• Decryption share validity: If (i, di) ←
ShareDec(pk, c, x, w, (i, ski)), then
ShareVf(pk, vk, c, x, (i, di)) = 1.

6

• Correctness: For any S ⊆ [n] of size s, if {(i, di)}i∈S
is a set of distinct decryption shares with (i, di) ←
ShareDec(pk, c, x, w, (i, ski)) for each i ∈ S, then
Combine(pk, vk, c, x, {(i, di)}i∈S) = m.

Security. We define security via three properties: indis-
tinguishability under chosen-ciphertext attacks (IND-CCA),
statement obliviousness (SO) and decryption consistency un-
der chosen-ciphertext attacks (DC-CCA). Intuitively, IND-
CCA and SO state that ciphertexts created using two different
messages and two different statements cannot be distinguished.
We combine these property formally in the security game
ExpSO-CCA. The DC-CCA property states that an adversary
cannot produce two sets of valid decryption shares that are
combined to two different messages unequal ⊥. Formally, we
define the security game ExpSO-DC.

Experiment ExpSO-CCA
TWE,A (1κ)

M←A0(1
κ) with |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

α, β ∈R {0, 1}
(x0, x1,m0,m1)← AO(·,·,·,·)

1 (pk, vk, {ski}i∈M)

c∗ ← Encrypt(pk, xα,mβ)

(α′, β′)← AO(·,·,·,·)
2 (c∗)

return (α, β) = (α′, β′)

In the given security game, the adversary A = (A0,A1,A2)
corrupts the decryption servers in M. A1 and A2 can use
the oracle O(·, ·, ·, ·) to make decryption queries. To do so,
the adversary sends (i, c, x, w) to O which returns (i, di) ←
ShareDec(pk, c, x, w, (i, ski)). Only for A2, the oracle first
checks if c = c∗, x ∈ {x0, x1} and (x,w) ∈ R. If this holds,
the oracle returns (i,⊥) and otherwise it returns a correct
decryption share.

Experiment ExpSO-DC
TWE,A(1κ)

M←A0(1
κ) with |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(x, c, {(i, di)}i∈S , {(i, d′i)}i∈S′)← AO(·,·,·,·)
1 (pk, vk, {ski}i∈M)

m← Combine(pk, vk, c, x, {(i, di)}i∈S)
m′ ← Combine(pk, vk, c, x, {(i, d′i)}i∈S′)

where S,S ′ ⊆ [n] ∧ |S| = s = |S ′|
if ∀i ∈ S : ShareVf(pk, vk, c, x, (i, di)) = true

∧ ∀i ∈ S ′ : ShareVf(pk, vk, c, x, (i, d′i)) = true

∧ ⊥ 6= m 6= m′ 6= ⊥
return 1

else

return 0

Here, the adversary A = (A0,A1) corrupts
the decryption servers in M and A1 can use the
decryption oracle O(i, c, x, w) that returns (i, di) ←
ShareDec(pk, c, x, w, (i, ski)).

Definition 4 (SO-IND-CCA Security of TWE). A thresh-
old witness encryption scheme TWE is statement-oblivious

and message-indistinuishable under chosen-ciphertext attacks
(SO-IND-CCA) secure if for all PPT adversaries A =
(A0,A1,A2), there exist negligible functions negl0 and negl1
such that∣∣∣∣Pr[ExpSO-CCA

TWE,A (1κ) = 1]− 1

4

∣∣∣∣ ≤ negl0(κ) ∧

Pr[ExpSO-DC
TWE,A(1κ) = 1] ≤ negl1(κ).

a) Remark 1: The standard notion of witness encryption
(cf. [1]) defines security without access to a decryption oracle.
This is due to the fact that decryption in the standard notion
can be attempted by any party locally using knowledge of
the witness. In the threshold setting, decryption is performed
via an interaction with a decryption committee that performs
decryption in a distributed way using a secret shared trapdoor.
Hence, we have to give the adversary access to a decryption
oracle.

b) Remark 2: We note that in the context of TWE
SO-IND-CCA security implies extractability, an additional
security requirement often required from witness encryption.
We provide further details to the notion of extractability for
TWE and a reduction from extractability to SO-IND-CCA
security in Appendix A.

IV. OBLIVIOUS THRESHOLD TAG-BASED ENCRYPTION

In this section, we present the notion of oblivious threshold
tag-based encryption (O-TTBE) which constitutes an exten-
sion of standard threshold tag-based encryption as presented
in [15]. Intuitively, a threshold tag-based encryption scheme
is oblivious if a ciphertext hides the tag it was created with.
We first state the definition of threshold tag-based encryption
and present the obliviousness property as part of the security
guarantees afterwards.

Definition 5 (TTBE). A threshold tag-based encryption
scheme (TTBE) TTBE consists of the following five PPT
algorithms:

1) Setup(1κ, s, n) takes as input the security parameter 1κ,
a threshold s, and the number of decryption servers n
where 1 ≤ s ≤ n. It outputs a triple (pk, vk, {ski}i∈[n]),
where pk is a public key, vk is a verification key, and ski
is the secret key share for the i-th decryption server.

2) Encrypt(pk, t,m) takes as input a public key pk, a tag t,
and a message m, and it outputs a ciphertext c.

3) ShareDec(pk, c, t, (i, ski)) takes as input a public key pk,
a ciphertext c, a tag t, and the index i together with the
secret key share ski of the decryption server with index
i. It outputs a decryption share di or a failure symbol ⊥
together with the index i.

4) ShareVf(pk, vk, c, t, (i, di)) takes as input a public key
pk, a verification key vk, a tag t, and an indexed decryp-
tion share (i, di). It outputs false if the decryption share
is invalid and true if it is valid with respect to pk, vk, c
and t.

5) Combine(pk, vk, c, t, {(i, di)}i∈S) takes as input a public
key pk, a verification key vk, a ciphertext c, a tag t, and a

7

set of decryption shares {(i, di)}i∈S . It outputs message
m or ⊥.

We require for every security parameter κ ∈ N, every
committee parameters n, s ∈ N where 1 ≤ s ≤ n, every
(pk, vk, {ski}i∈[n]) generated by Setup(1κ, s, n), every mes-
sage m, every tag t and every c← Encrypt(pk, t,m):
• Decryption share validity: If

(di, i) ← ShareDec(pk, c, t, (i, ski)), then
ShareVf(pk, vk, c, t, (i, di)) = 1.

• Correctness: If {(i, di)}i∈S is a set of s
distinct decryption shares with (i, di) ←
ShareDec(pk, c, t, (i, ski)) for each i ∈ S, then
Combine(pk, vk, c, t, {(i, di)}i∈S) = m.

Security. Security of a TTBE scheme is defined via two
properties: oblivious indistinguishable messages under chosen-
ciphertext attacks (IND-CCA) and decryption consistency un-
der chosen-ciphertext attacks (DC-CCA). The intuition for
these properties is analog to the ones of threshold witness
encryption. The IND-CCA property states that ciphertexts
created using two different messages and two different tags
cannot be distinguished. The DC-CCA property states that an
adversary cannot produce two sets of valid decryption shares
that are combined to two different messages unequal ⊥. To
formalize these properties, we design the following security
games:

Experiment ExpO-CCA
TTBE,A(κ)

M←A0(1
κ) with |M| < s

α, β ∈R {0, 1}
(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(t0, t1,m0,m1)← AO(·,·,·)
1 (pk, vk, {ski}i∈M)

c∗ ← Encrypt(pk, tα,mβ)

(α′, β′)← AO(·,·,·)
2 (c∗)

return (α, β) = (α′, β′)

The decryption oracle O(·, ·, ·) takes as parameter an in-
dex i, a ciphertext c and a tag t, and computes (i, di) ←
ShareDec(pk, c, t, (i, ski)). If (c, t) ∈ {(c∗, t0), (c∗, t1)} it
returns (i,⊥), otherwise it returns (i, di).

Experiment ExpO-DC
TTBE,A(κ)

M←A0(1
κ) with |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(t, c, {(i, di)}i∈S , {(i, d′i)}i∈S′)← AO(·,·,·)
1 (pk, vk, {ski}i∈M)

where S,S ′ ⊆ [n] ∧ |S| = s = |S ′|
m← Combine(pk, vk, c, t, {(i, di)}i∈S)
m′ ← Combine(pk, vk, c, t, {(i, d′i)}i∈S′)

if ∀i ∈ S : ShareVf(pk, vk, c, t, (i, di)) = true

∧ ∀i ∈ S ′ : ShareVf(pk, vk, c, t, (i, d′i)) = true

∧ ⊥ 6= m 6= m′ 6= ⊥
return 1

else

return 0

The decryption oracle O(·, ·, ·) takes as parameter an
index i, a ciphertext c and a tag t , and returns
ShareDec(pk, c, t, (i, ski)).

Definition 6. A TTBE scheme TTBE is OB-IND-CCA secure
if for every PPT adversary A = (A0,A1,A2), there exists
negligible functions negl0 and negl1 such that

∣∣∣∣Pr[ExpO-CCA
TTBE,A(κ) = 1]− 1

4

∣∣∣∣ ≤ negl0(κ) ∧

Pr[ExpO-DC
OTTBE,A(κ) = 1] ≤ negl1(κ).

We use the notation of oblivious TTBE in short for referring
to an OB-IND-CCA secure TTBE.

V. CONSTRUCTING STATEMENT-OBLIVIOUS TWE
In this section, we present a construction for statement-

oblivious threshold witness encryption (SO-TWE) from obliv-
ious threshold tag-based encryption (O-TTBE).

Construction 1: SO-TWEOTTBE

Public parameters:
The scheme is defined for a language L with relation R. The
number of committee members is denoted by n and the threshold
parameter is s. We make use of a oblivious tag-based encryption
scheme OTTBE and a collision-resistant hash function H : X→
T, where X is the statement space of language L and T is the tag
space of OTTBE.

Setup(1κ, s, n):
Output (pk, vk, {ski}i∈[n]) := OTTBE.Setup(1κ, s, n).

Encrypt(pk, x,m):
Output c := OTTBE.Encrypt(pk, H(x),m).

ShareDec(pk, c, x, w, (i, ski)):
If (x,w) ∈ R, output OTTBE.ShareDec(pk, c,H(x), (i, ski)).
Otherwise, output (i,⊥).

ShareVf(pk, vk, c, x, (i, di)):
If di = ⊥, output false. Otherwise output
OTTBE.ShareVf(pk, vk, c,H(x), (i, di)).

Combine(pk, vk, c, x, {(i, di)}i∈S):
Output OTTBE.Combine(pk, vk, c,H(x), {(i, di)}i∈S).

Theorem 1. Let OTTBE be a threshold tag-based encryption
scheme that is OB-IND-CCA secure and H be a collision-
resistant hash function. Then, the scheme SO-TWEOTTBE is a
SO-IND-CCA secure threshold witness encryption scheme.

The security proof is presented in the full version of this
paper [24].
Confidential witnesses and decryptions. We can add the sup-
port of confidential witnesses and decryptions to our construc-
tion by applying techniques from [8]. To ensure confidential-
ity of witnesses, clients send non-interactive zero-knowledge
proofs of knowledge of the witness to the decryption severs.
Then, as part of the decryption algorithm the servers check
the validity of the proof against the submitted statement,
instead of checking the witness relation directly. To achieve
confidentiality of decryptions, the decryption servers encrypt

8

decryption shares under the public key of the client as part of
the decryption algorithm. We ensure that decryption requests
cannot be replayed with different public keys by applying
the witness confidentiality approach and labeling the zero-
knowledge proof with the submitted public key.

VI. O-TTBE FROM BILINEAR MAPPINGS AND RANDOM
ORACLES

In this section, we present the construction of a concretely
efficient oblivious threshold tag-based encryption scheme. Our
construction is based on bilinear maps and random oracles
and its security relies on the Decision Bilinear Diffie-Hellman
assumption (cf. Section II-A). Before we present the formal
specification of the construction, we give an intuition about
the challenges of designing an O-TTBE scheme and how they
are addressed by our construction.

Common approaches towards CCA security in the thresh-
old setting incorporate ciphertext validation before decryp-
tion [18]–[22]. The validation ensures that each decryption
request is either declined or yields exactly the original plain-
text created by some client. This feature is the common way to
prevent the adversary from executing ciphertext-reuse. Under
this term, we understand reusing and potentially adapting
ciphertext components in maliciously created ciphertext with
the goal to extract decryptions for valid ciphertexts from the
decryptions of maliciously created ones.

In an oblivious threshold scheme, declining decryptions is
not possible since a single decryption server must not detect
if the provided tag is valid. This is due to the fact that
some servers can get corrupted in the threshold setting. If
a single server was able to check the validity of a tag, the
adversary would be able to exploit corrupted servers to break
obliviousness. It follows that we have to apply a less strict
ciphertext validation allowing for multiple decryptions, with
different tags, of the same ciphertext. However, decryptions
with invalid tags must not leak any information about the en-
crypted plaintext or the tag used for encryption. Consequently,
we cannot follow the approaches of previous work.

Instead, we have to take one step back and address the
challenge of achieving CCA security independent of previous
work. It turns out that the discussed ciphertext validation
is necessary but not sufficient to prove CCA security. In
particular, when constructing a CCA secure encryption scheme
it is not sufficient to take a CPA secure scheme and add a zero-
knowledge proof of correct encryption to the ciphertexts. Prov-
ing security via a reduction to a number theoretic assumption
is typically done by building a simulator that uses a concrete
adversary on the scheme to break the underlying assumption.
Even if a ciphertext is proven to be created correctly, the
simulator needs to be capable of answering decryption queries
of the adversary without actually knowing the secret key. This
challenge is typically addressed by incorporating an additional
trapdoor into the construction. It follows that for achieving
CCA security we need both, (i) a way to prevent ciphertext
reuse and (ii) a trapdoor to enable the simulator to answer
decryption queries. In addition, for tag obliviousness, we

have to achieve the former while (iii) still allowing multiple
decryptions, with different tags, for the same ciphertext.

We propose a new construction deploying a single exten-
sion together with a simple zero-knowledge proof of correct
encryption to a standard threshold variant of CPA secure Hash-
ElGamal. The extension provides both, (iii) tag obliviousness
and (ii) a trapdoor for decryption, such that a simple zero-
knwoledge proof of correct encryption is sufficient to decline
invalid ciphertexts, and hence, (i) prevent ciphertext reuse.

We start by briefly recalling Hash-ElGamal. In Hash-
ElGamal, the encryption of a message m samples a random
exponent a and outputs two elements A = ga and M =
m⊕H(Xa) for a group generator g, a random oracle H , and
a public key X = gx. In the threshold setting, the secret key x
is secret shared among the decryption servers. The decryption
shares of the servers are calculated as di := Axi , where xi is
the share of the i-th server.

Our extension is to apply a random offset T to A for both,
encryption and decryption, using a bilinear map e. This offset
is unique for each ciphertext-tag pair. Precisely, we compute
M := H(e(T,Xa)) ⊕m for encryption and di := e(T,Axi)
for decryption. As our notion requires each encrypting party
and decryption server to be capable of generating the offset
independently, we generate the offset using a random oracle.
In particular, we compute the offset T by applying the random
oracle to the tag t and the ciphertext component A, i.e., we
compute T = H2(t, A). Finally, we add a non-interactive
Schnorr zero-knowledge argument of knowledge of a [26] to
the ciphertext, which we bind to the ciphertext component M .
The binding is done by incorporating M into the generation of
the challenge in the Fiat-Shamir transformation [27]. In addi-
tion, we add a Chaum-Pedersen zero-knowledge argument [28]
of correct decryption to decryption shares.

The random offset T adds a random exponent logg(T) to
decryptions with invalid tags, and hence, ensures that invalid
decryptions do not give any information about the encrypted
message (cf. (iii)). Further it provides a backdoor that can
be exploited by the simulator to answer decryption queries
without knowledge of xi (cf. (ii)). In particular, the simula-
tor can simulate the random oracle such that the simulator
learns k = logg(T) for each T generated by H2. This way,
the simulator can calculate the combined decryption shares
D = e(Xk, A) = e(T,Ax) which can again be used to
interpolate decryption shares of individual parties. Finally,
the zero-knowledge argument of knowledge of a ensures that
a component A cannot be re-used for different ciphertexts,
and hence, prevents ciphertext reuse (cf. (i)). Further, the
zero-knowledge argument of correct decryption ensures that
malicious servers cannot trick honest clients into excepting
incorrect decryptions.

Our construction yields a concretely efficient scheme. The
ciphertexts consist of a bitstring with length equal to the
message length, a group element of the bilinear mapping’s
base group and two exponents (in Zq , where q is the bilinear
group’s order). Decryption shares consist of one group element
in the mapping’s target group and two exponents. Encryption

9

requires a single evaluation and decryption three evaluations
of the bilinear map.

We continue by presenting the concrete construction:

Construction 2: TTBEpROM

Public parameters:
The scheme is defined over a bilinear map e : G×G→ GT with
groups G and GT where each group is of order q. The number of
committee members is denoted by n and the threshold parameter
is s. The message and tag length is defined as l. We make use
of random oracles H1 : GT → {0, 1}l, H2 : {0, 1}l × G → G,
H3 : {0, 1}l ×G2 → Zq , H4 : G3 → Zq .

Setup(1κ, s, n):
Sample a generator, g, of G, a secret key x ∈R Zq and a sharing
polynomial F of degree s − 1 over Zq such that F (0) = x. Set
pk = (g,X := gx), vk := {gF (i)}i∈[n] and ski := F (i) = xi for
each i ∈ [n]. Output (pk, vk, {ski}i∈[n]).
Encrypt(pk, t,m):
Sample a, r ∈R Zq and calculate:

A := ga, T = H2(t, A), M̃ := e(T,Xa), M := H1(M̃)⊕m
U := gr, w = H3(M,A,U), f = r + aw, π := (w, f)

Return c = (M,A, π).
Note that π constitutes a zero knowledge argument of knowledge
of logg(A).

ValidateCT(c):
Parse c = (M,A, π = (w, f)) and return true iff

w = H3(M,A,U) for U =
gf

Aw
.

ShareDec(pk, c, t′, (i, ski)):
If ValidateCT(c) = false return (i,⊥). Otherwise choose ri ∈R
Zq and compute,

T ′ := H2(t
′, A), Di := e(T ′, Axi)

Ui := e(T ′, Ari), Vi := e(T ′, gri)

wi := H4(Di, Ui, Vi), fi := ri + xi · wi
πi := (wi, fi)

and return di := (i,Di, πi).
Note that πi constitutes a zero knowledge argument that
(e(T ′, A), e(T ′, vki), Di) is a Diffie-Hellmann triple.

ShareVf(pk, vki, c, t
′, di):

Parse di = (i,Di, πi = (wi, fi)), c = (·, A, ·), calculate T ′ :=
H2(t

′, A) and return true iff

wi = H4(Di, Ui, Vi) for Ui =
e(T ′, A)fi

Dwi
i

, Vi =
e(T ′, g)fi

e(T ′, vki)wi
.

Combine(pk, vk, c, t′, {(di)}i∈S):
Return m =M ⊕H1(

∏
i∈S(Di)

λS
0,i).

Correctness of the scheme can be shown as follows:

m = M ⊕H1(
∏

i∈S
(Di)

λS
0,i) = M ⊕H1(

∏

i∈S
(e(T ′, Axi))λ

S
0,i)

= M ⊕H1(
∏

i∈S
e(T ′, A)xi·λS

0,i) = M ⊕H1(e(T ′, A)x)

= m⊕H1(e(T, gax))⊕H1(e(T ′, gax)) = m,

where t = t′ yields H2(t, A) = T = T ′ = H2(t′, A)).

For security, we state the following theorem:

Theorem 2. Let BGen be a Bilinear Group Generator,
(e,G,GT , q) ←R BGen(κ) be a bilinear group in which the
Decisional Bilinear Diffie-Hellman (DBDH) assumption holds,
and H1, H2, H3, H4 be programmable random oracles. Then,
the scheme TTBEpROM is an OB-IND-CCA secure oblivious
threshold tag-based encryption scheme.

We will provide an intuition of our proof for indistinguish-
able messages under chosen-ciphertext attacks, here, and defer
the formal security proof for both indistinguishable messages
under chosen-ciphertext attacks (defined via ExpO-CCA

TTBEpROM,A)
and decryption consistency under chosen-ciphertext attacks
(defined via ExpO-DC

TTBEpROM,A) to the full version of this pa-
per [24].
Proof intuition. We prove indistinguishable messages via
a reduction to the DBDH assumption. Hence, we build a
distinguisher D that receives a tuple (ḡ, h̄, α = ḡx, β = ḡy, γ)
and decides if the received tuple is a DBDH tuple, i.e., if
γ = e(h̄, ḡ)xy . D has access to an adversary A on the
experiment ExpO-CCA

TTBEpROM,A.
The reduction is based on the observation that, in order

to win in ExpO-CCA
TTBEpROM,A, adversary A when receiving a

challenge ciphertext (M∗, A∗, ·) has to query H1 at either
P0 = e(H2(t0, A

∗), A∗)x or P1 = e(H2(t1, A
∗), A∗)x. If

D defines public parameters g = ḡ and pk = X = α
and challenge ciphertext components H2(t1−b, A∗) ← h̄ (via
programming of the random oracle) and A∗ = β for some
b ∈R {0, 1}, it follows that P1−b = γ iff the received
tuple is a DBDH tuple. Hence, we can distinguish DBDH
tuples from random tuples based on the event that γ has been
queried by A. However, setting M∗ = mbm ⊕ H1(γ) for
bm ∈R {0, 1} does not yield a valid ciphertext if the tuple is no
DBDH tuple, a fact that makes the reduction distinguishable
from a real experiment. While there are techniques to deal
with this problem (cf. [19]), this distinguishability makes the
argumentation more long-winded. Instead, we make use of
the fact that we are in the tag-based setting, i.e., there are two
possible keys at which H1 can be queried to decide which
tag or message has been used for encryption. In particular, we
create M∗ such that it is a correct encryption of mbm under tag
tb, i.e., M∗ = m ⊕ H1(Pb). At the same time, we program
H2 such that P1−b = γ iff the received tuple is a DBDH
tuple, i.e., by programming H2(t1−b, A∗) ← h̄. Hence, we
can distinguish based on the event that γ has been queried
while still creating a valid ciphertext.

The next question is how to actually compute Pb without
knowing x nor y = logg(A

∗). Here we make use of the fact
that D simulates the random oracle H2 that is used to compute
the tag-dependent offset. In particular, whenever the random
oracle H2 is supposed to sample a random value in G, it
samples a random exponent k ∈R Zq instead and returns ḡk.
The output is still uniformly random distributed in G but D
learns the discrete logarithm of every value sampled by H2.
This way, D can restore k = logg(H2(tb, A

∗)) and compute
Pb = e(α, βk) = e(H2(tb, A

∗), A∗)x.

10

As explained above, the major challenge is to answer
decryption queries without having access to the private key
x. However, this problem can be solved the same way as
computing Pb. In particular, D answers decryption queries
for ciphertext c = (·, A, ·) and tag t by restoring k =
logg(H2(t, A)) and computing e(β,Ak) = e(H2(t, A), Ax).
The only keys for which the restoring of the exponent k does
not work are (t1−b, A∗) = (t1−b, β) for which D programmed
the random oracle to h̄ without knowing logg(h̄). However,
in consistency with the original security game, D declines
decryptions for (c, t) if (c, t) ∈ {(c∗, t0), (c∗, t1)}. Hence, D
only fails to answer decryption queries if A sends a valid
ciphertext c 6= c∗ such that c = (·, A∗, π). However, to do so,
the adversary needs to be capable of generating a valid zero-
knowledge argument π of knowledge of y = logg(A

∗) without
actually knowing y. In fact, not even D has knowledge of y.
The probability is negligible for a computationally bounded
adversary to find such a proof. It follows that D is capable
of answering all decryption queries, expect with negligible
probability.

VII. OBLIVIOUS TTBE FROM ANONYMOUS TIBE

This section presents a general transformation from an
anonymous threshold identity-based encryption scheme, a one-
time signature scheme and a collision-resistant hash functions
to an oblivious threshold tag-based encryption scheme. The
scheme depicts an extension of [18].

Construction 3: TTBEIBE

Public parameters:
The number of committee members is denoted by n and the thresh-
old parameter is s. We make use of a one-time signature scheme
OTS, an anonymous threshold identity-based encryption scheme
TIBE, and a collision-resistant hash function H : T × K → I,
where T, K, I is the tag space, the verification key space of OTS,
and the identity space of TIBE.

Setup(1κ, s, n):
Run (pk, vk, {ski}i∈[n]) ← TIBE.Setup(1κ, s, n) and output the
keys (pk, vk, {ski}i∈[n]).

Encrypt(pk, t,m):
Generate a signature key pair (SigK,VerK)← OTS.KeyGen(1κ),
calculate id := H(t,VerK), c0 := TIBE.Encrypt(pk, id,m), and
σ := OTS.Sign(SigK, c0). Output c := (c0,VerK, σ).

ShareDec(pk, c, t, (i, ski)):
Parse c to (c0,VerK, σ) and check that
OTS.Verify(VerK, σ, c0) = true. If the check fails, output
(i,⊥). Otherwise, calculate id := H(t,VerK) and output an
identity key share (i, iki) ← TIBE.ShareKeyGen(pk, i, ski, id)
as di.

ShareVf(pk, vk, c, t, (i, di)):
Parse c to (c0,VerK, σ) and output true
iff OTS.Verify(VerK, σ, c0) = true and
TIBE.ShareVf(pk, vk, H(t,VerK), i, di) = true.

Combine(pk, vk, c, t, {(i, di)}i∈S):
Parse c to (c0,VerK, σ), calculate id = H(t,VerK) and ik :=
TIBE.Combine(pk, vk, id, {(di)}i∈S). If ik = ⊥, output ⊥.

Otherwise, output m := TIBE.Decrypt(pk, id, ik, c0).

Correctness of the scheme is easy to see. If the same tag
is used for decryption and encryption, the encryption contains
a ciphertext under the same identity for which the decryption
algorithm creates the identity key. Next, we show security.

Theorem 3. Let TIBE be an anonymous threshold identity-
based encryption scheme that is ANON-IND-ID-CPA secure,
H be collision-resistant hash function, and OTS an exis-
tentially unforgeable one-time signature scheme. Then, the
scheme TTBEIBE is a OB-IND-CCA secure threshold tag-
based encryption scheme.

The security proof is presented in the full version of the
paper [24].

VIII. CONSTRUCTING ANONYMOUS TIBE
In this section, we construct an anonymous threshold

identity-based encryption scheme (TIBE) from an anonymous
non-threshold verifiable identity-based encryption scheme
(VIBE) and an homomorphic secret sharing scheme (HSS)
with linear decoding. A VIBE extends the definition of an
identity-based encryption scheme with a verification algorithm
that allows to check if an identity key was generated correctly.
An HSS scheme allows to secret share some value and to
perform operations on the shares such that the result of the
combination yields the output of a function applied directly
to the value. We state the definitions for VIBE and HSS in
Appendix B-C and B-D respectively. The HSS scheme is used
to execute the Extract algorithm of the VIBE scheme in a
distributed way. The operations that need to be supported
by the HSS scheme depend on the concrete VIBE scheme,
i.e., how the output shares of its Extract algorithm can be
computed. While we use the HSS scheme in a black-box
way, it is an interesting open question to provide concrete
instantiations of the following black-box transformation. In the
full version of this paper [24], we discuss potential pathways to
obtain an anonymous threshold IBE scheme from the concrete
anonymous IBE scheme by Boyen and Waters [16].

Construction 4: Anonymous TIBE

Public parameters:
The number of committee members is denoted by n
and the threshold parameter is s. This construction uses
an ANON-IND-ID-CPA secure VIBE scheme VIBE =
(VIBE.Setup,VIBE.Extract,VIBE.Verify,VIBE.Encrypt,
VIBE.Decrypt) and a linear decoding HSS scheme
HSS = (HSS.Share,HSS.Eval,HSS.Dec) for the function
y := (ikz, ρz) ← VIBE.Extract(pk, x, z) with public input
z = id and shared private input x = msk, as building blocks.

Setup(1κ, s, n):
• (pkVIBE, vkVIBE,msk)← VIBE.Setup(1κ)
• (msk1, . . . ,mskn)← HSS.Share(1κ,msk)
• return (pk, vk, (sk1, . . . , skn)) :=
(pkVIBE, vkVIBE, (msk1, . . . ,mskn))

ShareKeyGen(pk, i, ski, id):

11

• return (i, iki), where iki := yi ← HSS.Eval(i, id, ski)

ShareVf(pk, vk, id, i, iki):
• return true

Combine(pk, vk, id, {(i, iki)}i∈S):
• y ← HSS.Dec({iki}i∈S)
• Parse y := (ik, ρ)
• if VIBE.Verify(pk, vk, id, ik, ρ) = 1 return ik
• else return ⊥

Encrypt(pk, id,m):
• return VIBE.Encrypt(pk, id,m)

Decrypt(pk, id, ik, c):
• return VIBE.Decrypt(pk, ik, c)

We first show that our construction satisfies the cor-
rectness properties, in particular share consistency and de-
cryption correctness. Then, we prove the security property,
ANON-IND-ID-CPA security.

The share consistency property states that for all correctly
generated identity key shares, the ShareVf algorithm outputs
true. Since the ShareVf algorithm of our construction always
outputs true, the property is apparently satisfied. Decryption
correctness is easy to see as well. Let, for any κ, n ∈ N
and 1 ≤ s ≤ n, (pk, vk, {ski}i∈[n]) ← Setup(1κ, s, n).
Note that ski := mski where mski is the i-th share
obtained using HSS.Share(1κ,msk) for a master secret
key of the non-threshold VIBE scheme VIBE. Then,
for any id, ShareKeyGen(pk, i, ski, id) returns an output
share of HSS.Eval(i, id,mski) which equals a share of
VIBE.Extract(pk,msk, id). Given any set of s
identity key shares, the Combine algorithm first
decodes the shares to (ik, ρ) and outputs ik if
VIBE.Verify(pk, vk, id, ik, ρ) = 1. Due to the correctness
property of the (s, n)-HSS scheme, (ik, ρ) is exactly
the output of VIBE.Extract(pk,msk, id). Now, due
to the correctness property of VIBE, it follows that
Decrypt(pk, ik,Encrypt(pk, id,m)) = m holds for any
message m.

Finally, we show that the scheme TIBE is
ANON-IND-ID-CPA secure. Formally, we state the following
theorem.

Theorem 4. Let VIBE be an ANON-IND-ID-CPA secure
VIBE scheme satisfying soundness and let HSS be a linear
decoding (s, n)-HSS scheme satisfying correctness and com-
putational security. Then, TIBE defined in Construction 4 is an
ANON-IND-ID-CPA secure (n, s)-TIBE scheme.

The security proof is presented in the full version of the
paper [24].

IX. APPLICATIONS

Statement-oblivious threshold witness encryption (SO-
TWE) is interesting whenever use-cases of classical witness
encryption, e.g., the ones presented in [1], [8], should be
extended by an additional privacy property, i.e., if the state-
ment used for encryption is required to stay hidden until

the decryption is successful. A straightforward example is
witness encryption based time-lock encryption, as proposed
by [6], with a hidden release time. In simplified settings, in
which the decryption servers have access to public data (e.g.,
timestamps), our intermediate notion of oblivious threshold
tag-based encryption (O-TTBE) is often sufficient. However,
in more sophisticated scenarios, e.g., if the decryption servers
need to rely on external authorities to provide authenticated
public data, it is necessary to use SO-TWE. We present use-
cases and briefly explain how they can be realized using our
primitives; one of the use-case is provided in this section and
others are deferred to the full version of this paper [24]. The
use-cases are partial extensions to the ones presented by [8]
for their notion of eWEB.
Price-dependent transaction execution with hidden price.
Imaging a user that wants to buy some asset at a Decentralized
Finance (DeFi) trading platform once the share price reaches
a certain value. Since the user does not know when this
event happens, it does not want to stay online all the time.
The user’s goal is to keep the transaction and the desired
share price private until the price hits the intended value.
Privacy is an important aspect in this scenario, since revealing
information, e.g., the intended purchase price, could lead to
financial disadvantage, e.g., due to insider trading. In the DeFi
space, oracle services are widely deployed and commonly
used. These services provide signed information about real-
world data such as share prices. However, achieving the user’s
goal requires additional techniques. To support the described
scenario, the user can exploit SO-TWE.

In more detail, suppose there is a committee holding the
secret key shares of a SO-TWE scheme with public key pk
for language L with associated relation R. L is defined such
that a statement x specifies the intended share price as well
as the public key of the oracle service and (x,w) ∈ R if
the witness w contains a proof that the current share price
equals the specified one signed by the oracle. Initially, the
user creates a transaction tx containing the trade description
and encrypts it using the public key of the SO-TWE scheme,
i.e., c = Encrypt(pk, x, tx), where the statement is from the
specified language. The user sends the ciphertext c to its
broker. Next, the broker regularly requests the current share
price together with a proof from the oracle and provides this
information as the witness w together with the ciphertext c to
the decryption committee. Each committee member performs
ShareDec(pk, c, x, w, (i, ski)) to obtain a decryption share
(i, di). After obtaining s valid shares from the committee, the
broker executes Combine(pk, vk, c, x{(i, di)}i∈S). If decryp-
tion was executed with the intended share price, the result
is tx. In this case, the broker executes the transaction which
effectively performs the trade. Otherwise, the output of the
Combine-algorithm does not constitute a valid transaction.

The statement-obliviousness property guarantees that no
party, not even the broker or the oracles, gets to know anything
about the trade, neither the asset, the amount or the specified
price, until the transaction is successfully decrypted and the
trade can be executed. This way, we prevent insider trading. To

12

incentivize the broker to execute the trade reliably and timely,
users can rely on multiple brokers rewarding the one executing
the trade first.

ACKNOWLEDGMENTS

The first, third, and fourth authors were supported by the
German Federal Ministry of Education and Research (BMBF)
iBlockchain project (grant nr. 16KIS0902), by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
SFB 1119 – 236615297 (CROSSING Project S7), and by
the BMBF and the Hessian Ministry of Higher Education,
Research, Science and the Arts within their joint support
of the National Research Center for Applied Cybersecurity
ATHENE. The second author was supported by ISF grant
No. 1316/18 and by the Algorand Centres of Excellence
programme managed by Algorand Foundation. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of Algorand Foundation.

REFERENCES

[1] S. Garg, C. Gentry, A. Sahai, and B. Waters, “Witness encryption and
its applications,” in STOC, 2013.

[2] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers,
“Fairness in an unfair world: Fair multiparty computation from public
bulletin boards,” in CCS, 2017.

[3] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zel-
dovich, “How to run turing machines on encrypted data,” in CRYPTO,
2013.

[4] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
“Candidate indistinguishability obfuscation and functional encryption
for all circuits,” in FOCS, 2013.

[5] C. Gentry, A. B. Lewko, and B. Waters, “Witness encryption from
instance independent assumptions,” in CRYPTO, 2014.

[6] J. Liu, T. Jager, S. A. Kakvi, and B. Warinschi, “How to build time-lock
encryption,” Des. Codes Cryptogr., 2018.

[7] D. Boneh, D. B. Glass, D. Krashen, K. E. Lauter, S. Sharif, A. Sil-
verberg, M. Tibouchi, and M. Zhandry, “Multiparty non-interactive key
exchange and more from isogenies on elliptic curves,” J. Math. Cryptol.,
2020.

[8] V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song, “Fast
batched dpss and its applications,” in PKC, 2022.

[9] A. Erwig, S. Faust, and S. Riahi, “Large-scale non-interactive threshold
cryptosystems through anonymity,” IACR Cryptol. ePrint Arch., 2021.

[10] M. Campanelli, B. David, H. Khoshakhlagh, A. K. Kristensen, and
J. B. Nielsen, “Encryption to the future: A paradigm for sending secret
messages to future (anonymous) committees,” IACR Cryptol. ePrint
Arch., 2021.

[11] V. Goyal, E. Masserova, B. Parno, and Y. Song, “Blockchains enable
non-interactive MPC,” in TCC, 2021.

[12] G. Almashaqbeh, F. Benhamouda, S. Han, D. Jaroslawicz, T. Malkin,
A. Nicita, T. Rabin, A. Shah, and E. Tromer, “Gage MPC: bypassing
residual function leakage for non-interactive MPC,” Proc. Priv. Enhanc-
ing Technol., 2021.

[13] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk,
C. Lin, T. Rabin, and L. Reyzin, “Can a public blockchain keep a
secret?” in TCC, 2020.

[14] C. Gentry, S. Halevi, B. Magri, J. B. Nielsen, and S. Yakoubov,
“Random-index PIR and applications,” in TCC, 2021.

[15] S. Arita and K. Tsurudome, “Construction of threshold public-key
encryptions through tag-based encryptions,” in ACNS, 2009.

[16] X. Boyen and B. Waters, “Anonymous hierarchical identity-based en-
cryption (without random oracles),” in CRYPTO, 2006.

[17] C. Gentry, “Practical identity-based encryption without random oracles,”
in EUROCRYPT, 2006.

[18] D. Boneh, X. Boyen, and S. Halevi, “Chosen ciphertext secure public
key threshold encryption without random oracles,” in CT-RSA, 2006.

[19] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against
chosen ciphertext attack,” in EUROCRYPT, 1998.

[20] P. Mol and S. Yilek, “Chosen-ciphertext security from slightly lossy
trapdoor functions,” in PKC, 2010.

[21] B. Libert and M. Yung, “Non-interactive cca-secure threshold cryptosys-
tems with adaptive security: New framework and constructions,” in TCC,
2012.

[22] V. Koppula and B. Waters, “Realizing chosen ciphertext security
generically in attribute-based encryption and predicate encryption,” in
CRYPTO, 2019.

[23] T. E. Gamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” in CRYPTO, 1984.

[24] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser, “Statement-oblivious
threshold witness encryption,” Cryptology ePrint Archive, Paper
2023/668, 2023, https://eprint.iacr.org/2023/668. [Online]. Available:
https://eprint.iacr.org/2023/668

[25] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil
pairing,” in CRYPTO, 2001.

[26] C. Schnorr, “Efficient identification and signatures for smart cards,” in
CRYPTO, 1989.

[27] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in CRYPTO, 1986.

[28] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
CRYPTO, 1992.

[29] E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro, “Foundations of
homomorphic secret sharing,” in ITCS, 2018.

APPENDIX A
REDUCTION: EXTRACTABILITY TO SO-IND-CCA

SECURITY

This section provides further details to the notion of ex-
tractable threshold witness encryption and presents the re-
duction from extractability to SO-IND-CCA security in the
threshold setting.

Intuitively, the original notion of extractable witness encryp-
tion states that any adversary that is able to obtain non-trivial
information about a plaintext is also able to provide the witness
for the corresponding ciphertext. Formally, this is defined by
allowing the adversary to win the security game with non-
negligible advantage but requiring that such an adversary can
be used to extract the witness for the challenged plaintext.
It is natural to translate this notion from witness encryption
to our context, the one of threshold witness encryption, by
defining extrability via the same security game as the one of
SO-IND-CCA security, ExpSO-CCA, with the only difference
that the adversary is allowed to query the decryption oracle
O(·, ·, ·, ·, ·) with any ciphertext-witness pair while the oracle
in the original experiment returns ⊥ if c = c∗, x ∈ {x0, x1}
and (x, (ws, wp)) ∈ R. We call this game ExpSO-Ext

TWE,A, when
played with an adversary A for a scheme TWE.

Extractability now requires that if the adversary has a non-
negligible advantage in the security game, then it is possible
to construct a witness extractor that extracts a valid witness
with non-negligible probability.

Definition 7 (Extractability of SO-TWE). Let A be a PPT
adversary A = (A0,A1,A2) such that the following holds:
for every pk generated by Setup, for every x0, x1,m0,m1 and
every auxiliary information z ∈ {0, 1}poly(κ):

Pr[ExpSO-Ext
TWE,A(1κ) = 1] ≥ 1

4
+

1

poly(κ)
.

13

Then there exists a PPT extractor E such that:

Pr[(b, w) = E(1κ, x0, x1, z) : (xb, w) ∈ R] ≥ 1

poly(κ)
.

We state the following theorem:

Theorem 5. Any statement-oblivious threshold witness en-
cryption scheme TWE, that is SO-IND-CCA secure, is also
extractable.

Proof: Assume an adversary A = (A0,A1,A2) that
breaks extractability of TWE. This means that A is able to
win game ExpSO-Ext

TWE,A(1κ) with a non-negligible advantage and
there is no extractor E .

From the fact that there is no extractor, we can derive that
A does not query the oracle with input (·, ·, xb, ws, wp) such
that xb ∈ {x0, x1} and R(xb, (ws, wp)) = true; otherwise,
there would exist the trivial extractor Etriv that equals A up to
this query and then outputs (xb, (ws, wp).

As the adversary A does not make such queries, it can be
used in the SO-IND-CCA game without any modifications and
will still win with non-neglgible probability.

APPENDIX B
FURTHER DEFINITIONS

A. Collision Resistance of Hash Functions

The collision resistance property of hash functions states
that any PPT adversary can find two values x, x′ such that
x 6= x′ and H(x) = H(x′) only with negligible probability.

B. Security Properties of Digital Signatures

We assume digital signatures to satisfy consistency and
existential unforgeability against chosen-message attacks. The
consistency property states that for all κ ∈ N, for all
(SigK,VerK) ← KeyGen(1κ) and for every m ∈ M it holds
Pr[Verify(VerK,m,Sign(SigK,m))] = 1.

We define existential unforgeability against chosen-message
attacks via the following game

Experiment ExpEX-UNF
SIG,A (κ)

(SigK,VerK)← KeyGen(1κ)

(m∗, σ∗)← AO(·)(VerK)

if Verify(VerK,m∗, σ∗) = 1 then return 1

else return 0

where the adversary may ask its oracle O on a message m ∈
M and gets back the signature σ ← Sign(SigK,m). The pair
(m∗, σ∗) output by A must be different to any (m,σ) obtained
by the oracle.

Definition 8. A signature scheme SIG is existentially unforge-
able against chosen-message attacks if for every κ ∈ N and
every PPT adversary A there exists a negligible function negl
such that

Pr[ExpEX-UNF
SIG,A (κ) = 1] ≤ negl(κ).

Definition 9 (OTS). A signature scheme OTS =
(KeyGen,Sign,Verify) is called one-time signature scheme

with existential unforgeability against chosen-message attacks,
if for every κ ∈ N and every PPT adversary A′ that makes as
most one oracle query there exists a negligible function negl
such that

Pr[ExpEX-UNF
OTS,A′(κ) = 1] ≤ negl(κ).

C. Verifiable IBE

We state a definition for verifiable identity-based encryption
as an extension of identity-based encryption presented by
Boneh and Franklin [25]. In particular, the primitive contains
a verification algorithm that allows to check if an identity key
is generated correctly.

Definition 10 (VIBE). A verifiable identity-based encryption
scheme VIBE consists of five probabilistic polynomial-time
algorithms:

1) Setup(1κ) takes as input a security parameter 1κ and
outputs a public key pk including public parameters, a
verification key vk and a master key msk. pk include a
description of the finite message space M and the finite
ciphertext space C.

2) Extract(pk,msk, id) takes as input the public key pk, the
master key msk and an identity id ∈ {0, 1}∗. It outputs
an identity secret key ikid together with a proof ρid stating
that ikid was computed correctly.

3) Verify(pk, vk, id, ikid, ρid) takes as input the public key pk,
the verification key vk, an identity id, an identity key ikid,
and a proof ρid. It outputs 1 if ikid is a valid identity key
for identity id and 0 otherwise.

4) Encrypt(pk, id,m) takes as input the public key pk, an
identity id and a message m. It outputs a ciphertext c
encrypted under identity id.

5) Decrypt(pk, ikid, c) takes as input the public key pk, an
identity secret key ikid and a ciphertext c. It outputs a
message m.

We require these algorithms to fulfill the following correct-
ness and verifiability properties for all κ ∈ N:

• Correctness: For every (pk, vk,msk)← Setup(1κ), every
id ∈ {0, 1}∗, every (ikid, ·) ← Extract(pk,msk, id) and
every m ∈M:

Decrypt(pk, ikid,Encrypt(pk, id,m)) = m.

• Verifiability: For every (pk, vk,msk)← Setup(1κ), every
id ∈ {0, 1}∗ and every (ikid, ρid)← Extract(pk,msk, id)

Verify(pk, vk, id, ikid, ρid) = 1.

We define security by three properties: soundness,
anonymity and security against chosen-plaintext attacks. We
start defining the soundness property. Informally, soundness
means that an adversary cannot come up with two different
but valid identity keys that decrypt a chosen ciphertext to
two different plaintexts. Formally, we define the soundness
property via the following game.

14

Experiment ExpSOUND
VIBE,A(κ)

(pk, vk,msk)← Setup(1κ)

(ID, c, (ikID, ρID), (ik
′
ID, ρ

′
ID))← AO(·)(pk, vk)

if Verify(pk, vk, ID, ikID, ρID) = 1

∧ Verify(pk, vk, ID, ik′ID, ρ
′
ID) = 1

∧ Decrypt(pk, ikID, c) 6= Decrypt(pk, ik′ID, c)

return 1

else

return 0

The adversary can use its oracle O(·) to make identity key
queries. More precisely, upon receiving id from A the oracle
returns (ikid, ρid)← Extract(pk,msk, id) for any id ∈ {0, 1}∗.
Definition 11 (Soundness). A verifiable identity-based encryp-
tion scheme VIBE satisfies soundness if for all κ ∈ N and all
PPT adversary

Pr[ExpSOUND
VIBE,A(κ) = 1] ≤ negl(κ).

We next move on to the anonymity and security against
chosen-plaintext attacks. The anonymity property of a VIBE
scheme informally states that an adversary cannot learn the
associated identity from a ciphertext, while the security against
chosen-plaintext attacks states that an adversary cannot distin-
guish two ciphertexts over different messages. We combine
both properties following Gentry [17] and define security via
the following game.

Experiment ExpA-V-CPA
VIBE,A (κ)

(pk, vk,msk)← Setup(1κ)

(ID0, ID1,m0,m1)← AO0 (pk, vk)

α, β ∈R {0, 1}
c∗ ← Encrypt(pk, IDα,mβ)

(α′, β′)← AO1 (c∗)

return (α, β) = (α′, β′)

In the game ExpA-V-CPA
VIBE,A , the adversary can use its oracle O

to make key generation queries. Upon receiving id, O returns
Extract(pk,msk, id) if id /∈ {ID0, ID1} and ⊥ otherwise.

Definition 12 (ANON-IND-ID-CPA). A VIBE scheme VIBE
is ANON-IND-ID-CPA secure if for all PPT adversary A in
game ExpA-V-CPA

VIBE,A , there exists a negligible function negl such
that ∣∣∣∣Pr[ExpA-V-CPA

VIBE,A (κ) = 1]− 1

4

∣∣∣∣ ≤ negl(κ).

In the full version of this paper [24], we show how to
construct a VIBE scheme from a standard identity-based
encryption scheme IBE combined with an existentially un-
forgeable signature scheme SIG. Assuming IBE satisfies
ANON-IND-ID-CPA security, the VIBE construction satisfies
soundness and ANON-IND-ID-CPA security.

D. Homomorphic Secret Sharing

We follow the definition of Boyle et al. [29] for homo-
morphic secret sharing (HSS) schemes but state a simplified
version that fits our application. In particular, we consider only
a single input HSS and incorporate robust decoding in our
definition where only s output shares are required for correct
decoding. Additionally, we use the notation of s-out-of-n HSS
to denote an n-server (s − 1)-secure HSS according to the
definition of Boyle et al.

In Section VIII, we utilize an HSS to transform a VIBE
scheme into a threshold IBE scheme. In particular, the identity
key generation will be executed in a distributed fashion,
i.e., the Extract algorithm of the non-threshold scheme. The
homomorphic operations that need to be supported by the
HSS depend on the concrete VIBE construction. Since we
present a black-box construction in Section VIII, we consider
a generalized homomorphic secret sharing scheme.

Definition 13 (HSS). An s-out-of-n homomorphic secret shar-
ing scheme HSS for a function F : ({0, 1}∗)2 → {0, 1}∗, or
(s, n)-HSS in short, consists of three PPT algorithms:

1) Share(1κ, x) takes as input a security parameter 1κ and
a user input x. It outputs n shares (x1, . . . , xn), where
server i gets share xi.

2) Eval(i, z, xi) takes as input a server index i, a public
input z and the i-th share xi. It outputs yi ∈ {0, 1}∗,
corresponding to server i’s share of F (z;x).

3) Dec({yi}i∈S) takes as input a set of output shares and
outputs the final output y ∈ {0, 1}∗.

We require the following correctness and security properties
for every κ ∈ N:
• Correctness: For any input z, x ∈ {0, 1}∗ and any set of

shares (x1, . . . , xn) ← Share(1κ, x). Let ∀i ∈ [n] yi ←
Eval(i, z, xi), then for any set S ⊆ [n] of size s it holds
that

Dec({yi}i∈S) = F (z;x).

• Computational security: Security of an HSS HSS is de-
fined via the experiment ExpHSS

HSS,A,I where the adversary
A = (A0,A1) corrupts a set M⊂ [n] of s− 1 servers.
Then, we require

∣∣∣∣Pr[ExpHSS
HSS,A,M(κ) = 1]− 1

2

∣∣∣∣ ≤ negl(κ),

where the experiment is defined as follows.

Experiment ExpHSS
HSS,A,I(κ)

(x0, x1)← A0(1
κ), where |x0| = |x1|.

b ∈R {0, 1}
(x̂1, . . . , x̂n)← Share(1κ, xb)

b′ ← A1({x̂i}i∈I)
return b = b′

A trivial construction of the Eval algorithm is the identity
function. Then, the Dec algorithm first reconstructs x and
computes F (z;x) next. As described above, we utilize an

15

HSS to perform the Extract algorithm of a VIBE scheme in
a distributed way. In this scenario, the Eval algorithm being
the identity function means that the party that should learn the
identity key also learns the master secret key. Since this is an
undesired effect, we impose an additional requirement on the
decoding algorithm. We define a linear decoding HSS as a
slightly weakening of an additive HSS as defined by Boyle
et al. [29]. Intuitively, a linear decoding HSS requires the
decoding to be a linear combination of the output shares. In
contrast to an additive HSS, a linear decoding HSS enables
a decoding algorithm whose output depends on the set of
servers from which shares are obtained. In particular, the
coefficients depend on the servers’ indices that computed the
shares. This notion allows to capture any s-out-of-n Shamir’s
secret sharing.

Definition 14 (Linear Decoding HSS).
An (s, n)-HSS scheme HSS = (Share,
Eval,Dec) is called linear decoding if Dec works as
follows:

Let {y1, . . . , yn} be a set of output shares. Then, for any set
S ⊆ [n] of size s, there exists a set of s coefficient {aS,i}i∈S
such that

Dec({yi}i∈S) =
∑

i∈S
aS,i · yi.

E. Threshold IBE

In this section, we state the formal security games for
threshold identity-based encryption schemes (TIBE). The no-
tation for TIBE is given in Section II-C. We first define the
security game for anonymity and security against chosen-
identity attacks.

Experiment ExpA-T-CPA
TIBE,A (1κ)

M←A0(1
κ), where |M| < s

α, β ← {0, 1}
(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(ID0, ID1,m0,m1)← AO(·,·)
1 (pk, vk, {ski}i∈M)

c∗ ← Encrypt(pk, IDα,mβ)

(α′, β′)← AO(·,·)
2 (c∗)

return (α, β) = (α′, β′)

The adversary can use its oracle O(·, ·) to make key generation
queries. To do so, the adversary sends (i, id) to O and receives
(i, iki)← ShareKeyGen(pk, i, ski, id). In the game, we require
that ID0 and ID1 was not used in any oracle query of A1 before
or after providing the identities and messages.

Next, we define the game for key generation consistency.

Experiment ExpKC-CPA
TIBE,A(1κ)

M←A0(1
κ), where |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(ID, c, {(i, iki)}i∈S , {(i, ik′i)}i∈S′)← AO(·,·)
1 (pk, vk, {ski}i∈M),

where S,S ′ ⊆ [n] ∧ |S| = s = |S ′|
if ∀i ∈ S : ShareVf(pk, vk, ID, i, iki) = true

∧ ∀i ∈ S ′ : ShareVf(pk, vk, ID, i, ik′i) = true

∧ ik = Combine(pk, vk, ID, {iki}i∈S)
∧ ik′ = Combine(pk, vk, ID, {ik′i}i∈S′)

∧ ik, ik′ 6= ⊥
∧ Decrypt(pk, ID, ik, c) 6= Decrypt(pk, ID, ik′, c)

return 1

else

return 0

The adversary can use its oracle O(·, ·) in the same way
as described above without any restrictions on the queried
identities.

Definition 15 (ANON-IND-ID-CPA). A TIBE scheme TIBE is
ANON-IND-ID-CPA secure if for every κ, n ∈ N, every 1 ≤
s ≤ n and for every PPT adversary A := (A0,A1,A2) there
exist two negligible function negl0 and negl1 such that

∣∣∣∣Pr[ExpA-T-CPA
TIBE,A (κ) = 1]− 1

4

∣∣∣∣ ≤ negl0(κ) ∧

Pr[ExpKC-CPA
TIBE,A(κ) = 1] ≤ negl1(κ).

16

E. POSE: Practical Off-chain Smart
Contract Execution

This chapter corresponds to the following publication. The full version is available

at [94].

[95] T. Frassetto, P. Jauernig, D. Koisser, D. Kretzler, B. Schlosser, S. Faust, and

A. Sadeghi. “POSE: Practical Off-chain Smart Contract Execution”. In: 30th

Annual Network and Distributed System Security Symposium, NDSS 2023, San

Diego, California, USA, February 27 - March 3, 2023. 2023. Part of this thesis.

199

POSE: Practical Off-chain Smart Contract Execution

Tommaso Frassetto∗, Patrick Jauernig∗, David Koisser∗, David Kretzler†,
Benjamin Schlosser†, Sebastian Faust† and Ahmad-Reza Sadeghi∗

Technical University of Darmstadt, Germany
∗first.last@trust.tu-darmstadt.de
†first.last@tu-darmstadt.de

Abstract—Smart contracts enable users to execute payments
depending on complex program logic. Ethereum is the most
notable example of a blockchain that supports smart contracts
leveraged for countless applications including games, auctions
and financial products. Unfortunately, the traditional method of
running contract code on-chain is very expensive, for instance,
on the Ethereum platform, fees have dramatically increased,
rendering the system unsuitable for complex applications. A
prominent solution to address this problem is to execute code
off-chain and only use the blockchain as a trust anchor. While
there has been significant progress in developing off-chain systems
over the last years, current off-chain solutions suffer from various
drawbacks including costly blockchain interactions, lack of data
privacy, huge capital costs from locked collateral, or supporting
only a restricted set of applications.

In this paper, we present POSE—a practical off-chain pro-
tocol for smart contracts that addresses the aforementioned
shortcomings of existing solutions. POSE leverages a pool of
Trusted Execution Environments (TEEs) to execute the computa-
tion efficiently and to swiftly recover from accidental or malicious
failures. We show that POSE provides strong security guarantees
even if a large subset of parties is corrupted. We evaluate our
proof-of-concept implementation with respect to its efficiency and
effectiveness.

I. INTRODUCTION

More than a decade ago, Bitcoin [47] introduced the
idea of a decentralized cryptocurrency, marking the advent
of the blockchain era. Since then, blockchain technologies
have rapidly evolved and a plethora of innovations emerged
with the aim to replace centralized platform providers by
distributed systems. One particularly important application
of blockchains concerns so-called smart contracts, complex
transactions executing payments that depend on programs
deployed to the blockchain. The first and most popular
blockchain platform that supported complex smart contracts
is Ethereum [58]. However, Ethereum still falls short of the
decentralized “world computer” that was envisioned by the
community [51]. For example, contracts are replicated among
a large group of miners, thereby severely limiting scalability
and leading to high costs. As a result, most contracts used
in practice in the Ethereum ecosystem are very simple: 80%
of popular contracts consist of less than 211 instructions,
and almost half of the most active contracts are simple token

managers [49]. More recently proposed computing platforms
in permissionless decentralized settings (e.g., [1], [34]) suffer
from similar scalability limitations.

In recent years, numerous solutions have been proposed to
address these shortcomings of blockchains, one of the most
promising being so-called off-chain execution systems. These
protocols move the majority of transactions off-chain, thereby
minimizing the costly interactions with the blockchain. A
large body of work has explored various types of off-chain
solutions including most prominently state-channels [46], [26],
[22], Plasma [52], [37] and Rollups [48], [5], which are
actively investigated by the Ethereum research community.
Other schemes use execution agents that need to agree with
each other [60], [59], rely on incentive mechanisms [36],
[57], or leverage Trusted Execution Environments (TEEs) [20],
[25]. A core challenge that arises while designing off-chain
execution protocols is to handle the possibility of parties who
stop responding, either maliciously or accidentally. Without
countermeasures, this may cause the contract execution to
stop unexpectedly, which violates the liveness property. De-
spite major progress towards achieving liveness in a off-chain
setting, current solutions come with at least one of these
limitations: i participating parties need to lock large amounts
of collateral; ii costly blockchain interactions are required at
every step of the process or at regular intervals; and finally
iii the set of participants and the lifetime need to be known
beforehand, which limits the set of applications supported
by the system. Additionally, existing solutions often iv do
not support keeping the contract state confidential, which is
required, e.g., for eBay-style proxy auctions [9] and games
such as poker. We refer the reader to Table II for an overview
on related work and to Section X for a detailed discussion.

Addressing all of these limitations in one solution while
guaranteeing liveness is highly challenging. Currently, there
are two ways to address the risks of unresponsive parties. The
first approach is to require collateral, i.e., parties have to block
large amounts of money, which is used to disincentivize mali-
cious behavior and to compensate parties in case of premature
termination (cf. i). Since the amount of collateral depends
on the number of participants and the amount of money in
the contract, both must be fixed for the whole lifetime of the
contract. To ensure payout of the collateral, the lifetime of the
contract must be fixed as well (cf. iii). The second approach
is to store contract state on the blockchain to enable other
parties to resume execution. However, this is both expensive
and leads to long waiting times due to frequent synchronization
with the blockchain (cf. ii). Further, if the contract state
needs to be confidential, and hence, is not publicly verifiable,

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23118
www.ndss-symposium.org

verifying the correctness of the contract execution is harder
(cf. iv). Realizing a system tackling all these challenges in a
holistic way could pave the way towards the envisioned “world
computer”. We will further elaborate on the specific challenges
in Section III.

Our goals and contributions: We present POSE , a novel
off-chain execution framework for smart contracts in permis-
sionless blockchains that overcomes these challenges, while
achieving correctness and strong liveness guarantees. In POSE ,
each smart contract runs on its own subset of TEEs randomly
selected from all TEEs registered to the network. One of the
selected TEEs is responsible for the execution of a smart
contract.

However, as the system hosting the executing TEE may be
malicious (e.g., the TEE could simply be powered off during
contract execution), our protocol faces the challenge of dealing
with malicious operator tampering, withholding and replaying
messages to/from the TEE. Hence, the TEE sends state updates
to the other selected TEEs, such that they can replace the
executing TEE if required. This makes POSE the first off-
chain execution protocol with strong liveness guarantees. In
particular, liveness is guaranteed as long as at least one TEE in
the execution pool is responsive. Due to this liveness guarantee,
there is no inherent need for a large collateral in POSE (cf. i).
The state remains confidential, which allows POSE to have
private state (cf. iv). Furthermore, POSE allows participants
to change their stake in the contract at any time. Thus,
POSE supports contracts without an a-priori fixed lifetime and
enables the set of participants to be dynamic (cf. iii). Above
all, POSE executes smart contracts quickly and efficiently
without any blockchain interactions in the optimistic case (cf.
ii).

This enables the execution of highly complex smart con-
tracts and supports emerging applications to be run on the
blockchain, such as federated machine learning. Thus, POSE
improves the state of the art significantly in terms of security
guarantees and smart contract features. To summarize, we list
our main contributions below:

• We introduce POSE , a fast and efficient off-chain smart
contract execution protocol. It provides strong guarantees
without relying on blockchain interactions during opti-
mistic execution, and does not require large collaterals.
Moreover, it supports contracts with an arbitrary contract
lifetime and a dynamic set of users. An additional unique
feature of POSE is that it allows for confidential state
execution.

• We provide a security analysis in a strong adversarial
model. We consider an adversary which may deviate
arbitrarily from the protocol description. We show that
POSE achieves correctness and state privacy as well as
strong liveness guarantees under static corruption, even in
a network with a large share of corrupted parties.

• To illustrate the feasibility of our scheme, we implement
a prototype of POSE using ARM TrustZone as the TEE
and evaluated it on practical smart contracts, including
one that can merge models for federated machine learning
in 238ms per aggregation.

II. ADVERSARY MODEL

The goal of POSE is to allow a set of users to run a
complex smart contract on a number of TEE-enabled systems.
Note, that POSE is TEE-agnostic and can be instantiated on
any TEE architecture adhering to our assumptions, similar to,
e.g., FastKitten [25]. In order to model the behavior and the
capabilities of every participant of the system, we make the
following assumptions:

A1: We assume the TEE to protect the enclave program, in
line with other TEE-assisted blockchain proposals [63], [25],
[20], [17], [64], [43]. Specifically:
A1.1: We assume the TEE to provide integrity and confiden-
tiality guarantees. This means that the TEE ensures that the
enclave program runs correctly, is not leaking any data, and is
not tampering with other enclaves. While our proof of concept
is based on TrustZone, our design does not depend on any
specific TEE. In practice, the security of a TEE is not always
flawless, especially regarding information leaks. However,
plenty of mitigations exist for the respective commercial TEEs;
hence, we consider the problem of information leakage from
any specific TEE, as well as TEE-specific vulnerabilities in
security services, orthogonal to the scope of this paper. We dis-
cuss some mitigations to side-channel attacks to TrustZone, as
well as the possible grave consequences of a compromised or
leaking TEE for the executed smart contract, in Section VII-B.
A1.2: We further assume the adversaries to be unable to exploit
memory corruption vulnerabilities in the enclave program. This
could be ensured using a number of different approaches, e.g.,
by using memory-safe languages, by deploying a run-time
defense like CFI [11], or by proving the correctness of the
enclave program using formal methods. The existence of these
defenses can be proven through remote attestation (cf. A3).
A2: We assume the TEE to provide a good source of random-
ness to all its enclaves and to have access to a relative clock
according to the GlobalPlatform TEE specification [32].
A3: We assume the TEE to support secure remote attestation,
i.e., to be able to provide unforgeable cryptographic proof that
a specific program is running inside of a genuine, authentic
enclave. Further, we assume the attestation primitive to allow
differentiation of two enclaves running the same code under the
same data. Note that today’s industrial TEEs support remote
attestation [3], [6], [8], [35], [56].
A4: We assume the TEE operators, i.e., the persons or or-
ganizations owning the TEE-enabled machines, to have full
control over those machines, including root access and control
over the network. The operators can, for instance, provide
wrong data to an enclave, delay the transmission of mes-
sages to it, or drop messages completely. The operators can
also completely disconnect an enclave from the network or
(equivalently) power off the machine containing it. However,
as stated in A1.1, the operators cannot leak data from any
enclave or influence its computation in any way besides by
sending (potentially malicious) messages to it through the
official software interfaces.
A5: We assume static corruption by the adversary. More
precisely, a fixed fraction of all operators is corrupted while an
arbitrary number of users can be malicious (including the case
where they all are). We model each of the malicious parties as
byzantine adversaries, i.e., they can behave in arbitrary ways.
A6: We assume the blockchain used by the parties to satisfy

2

the following standard security properties: common prefix (ig-
noring the last γ blocks, honest miners have an identical chain
prefix), chain quality (blockchain of honest miner contains
significant fraction of blocks created by honest miners), and
chain growth (new blocks are added continuously). These
properties imply that valid transactions are included in one
of the next α blocks and that no valid blockchain fork of
length at least γ can grow with the same block creation rate
as the main chain. We deem protection against network attacks
(e.g., network partition attacks), which violate these standard
properties, orthogonal to our work.

III. DESIGN

POSE is a novel off-chain protocol for highly efficient
smart contract execution, while providing strong correctness,
privacy, and liveness guarantees. To achieve this, POSE lever-
ages the integrity and confidentiality guarantees of TEEs to
speed up contract execution and make significantly more
complex contracts practical1. This is in contrast to execut-
ing contracts on-chain, where computation and verification
is distributed over many parties during the mining process.
POSE supports contracts with arbitrary lifetime and number
of users, which includes complex applications like the well-
known CryptoKitties [2]. We elaborate more on interaction
between contracts in Appendix B. Our protocol involves users,
operators and a single on-chain smart contract. Users aim to
interact with smart contracts by providing inputs and obtaining
outputs in return. Operators own and manage the TEE-enabled
systems and contribute computing power to the POSE network
by creating protected execution units, called enclaves, using
their TEEs. These enclaves perform the actual state transitions
triggered by users. A simple on-chain smart contract, which
we call manager, is used to manage the off-chain enclave
execution units. In the optimistic case, when all parties behave
honestly, POSE requires only on-chain transactions for the
creation of a POSE contract as well as the locking and
unlocking of user funds. The smart contract execution itself
is done without any on-chain transactions.

A. Architecture Overview

Figure 1 illustrates the high-level working of POSE . Before
contract creation, there is already a set of enclaves that are
registered with the on-chain manager contract. The registration
process is explained in detail in Section V-E1. To create a
POSE contract, a user will initialize a contract creation with
the manager (Step 1), which includes a chosen enclave—out of
the registered set—to execute the off-chain contract creation.
In Step 2, the chosen creator enclave will setup the execution
pool for the given smart contract. In Figure 1, the pool size
is set to three; thus, the creator enclave will randomly select
three enclaves from the set of all enclaves registered in the
system (Step 3). In Step 4, the creator enclave will submit the
finalized contract information to the manager. This includes
the composition of the execution pool, i.e., a selected executor
enclave, which is responsible for executing the POSE contract,
as well as the watchdogs, ensuring availability. We elaborate
on this in-depth in Section V-E2. In Step 5, another user can

1We design POSE without depending on any specific TEE implementation.
In Section VII-B, we discuss the implications of using ARM TrustZone to
realize our scheme.

1. Contract
creation

initialization

 Manager

6. Execute call
& sync Pool

3. Setup
Operator

Pool

4. Contract
creation

finalization

2. Contract
creation
request

5. Call on Contract

Contract
User

Creator
Enclave

Watchdog
Enclave

Watchdog
Enclave

Executor
Enclave

Contract

Blockchain

Fig. 1. Exemplary overview how POSE contracts are created (in blue) and
executed (in green).

now call the new contract by directly contacting the execu-
tor. Finally, for Step 6, the executor will execute the user’s
contract call and distribute the resulting state to the watchdog
enclaves, which confirm the state update. See Section V-E3
for a detailed specification of the execution protocol. If one
of the enclaves stops participating (e.g., due to a crash), the
dependent parties can challenge the enclave on the blockchain
(see Section V-E4). The dependent party can either be the user
awaiting response from the executor or the executor waiting
for the watchdogs’ confirmation. For example, if the executor
stops executing the contract, the executor is challenged by the
user. A timely response constitutes a successful state transition
as requested by the user. Otherwise, if the current executor
does not respond, one of the watchdogs will fill in as the new
executor. This makes POSE highly available, as long as at least
one watchdog enclave is dependable; thus, avoiding the need
for collateral to incentivize correct behavior. Further, POSE
supports private state, as the state is only securely shared with
other enclaves.

B. Design Challenges

We encountered a number of challenges while designing
POSE . We briefly discuss them below.

Protection Against Malicious Operators. POSE ’s creator,
executor, and watchdogs are protected in isolated enclaves
running within the system, which is itself still under control of
a potentially malicious operator. Hence, operators can provide
arbitrary inputs, modify honest users’ messages, execute replay
attacks, and withhold incoming messages. Moreover, the sys-
tem and its TEE (i.e., enclaves) can be turned off completely
by its operator. In order to protect honest users from malicious
operators, we incorporate several security mechanisms. While
malicious inputs and modification of honest users’ messages
can easily be prevented using standard measures like a se-
cure signature scheme, preventing withholding of messages is
more challenging. One particular reason is that for unreceived
messages, an enclave cannot differentiate between unsent and
stalled messages by the operator. Hence, we incorporate an on-
chain challenge-response procedure, which provides evidence
about the execution request and the existence of a response to
the enclave.

3

Achieving Strong Liveness Guarantees. We enable de-
pendent parties to challenge unresponsive operators via the
blockchain. The challenged operators either provide valid
responses over the blockchain that dependent parties can use
to finalize the state transition, or they are dropped from the
execution pool. In case an executor operator has been dropped,
we use the execution pool to resume the execution; this
requires state updates to be distributed to all watchdogs. With
at least one honest operator in the execution pool, the pool will
produce a valid state transition. Our protocol tolerates a fixed
fraction of malicious operators as stated in our adversary model
(cf. Section II). By selecting the pool members randomly, we
guarantee with high probability that at least one enclave—
controlled by an honest operator—is part of the execution pool.
We show in Section VII-A that our protocol achieves strong
liveness guarantees.

Synchronization with the Blockchain. Some of the actions
taken by an enclave depend on blockchain data, e.g., de-
posits made by clients. Hence, it is crucial to ensure that
the blockchain data available to an enclave is consistent and
synchronized with the main chain. As an enclave does not
necessarily have direct access to the (blockchain) network, it
has to rely on the blockchain data provided by the operator.
However, the operator can tamper with the blockchain data
and, e.g., withhold blocks for a certain time. Thus, a major
challenge is designing a synchronization mechanism that (i)
imposes an upper bound on the time an enclave may lag behind
the main chain, (ii) prevents an operator from isolating an
enclave onto a fake side-chain, and (iii) ensures correctness and
completeness of the blockchain data provided to the enclave,
without (iv) requiring the enclave to validate or store the
entire blockchain. We present our synchronization mechanism
addressing these challenges in Section V-D.

Reducing Blockchain Interactions. Our system aims to min-
imize the necessary blockchain interactions to avoid expensive
on-chain computations. In the optimistic scenario, the only
on-chain transactions necessary are the contract creation and
the transfer of coins. The transfer transactions can also be
bundled to further reduce blockchain interactions. Note that the
virtualization paradigm known from state channels [26] can be
applied to our system. This enables parties to install virtual
smart contracts within existing smart contracts, and hence,
without any on-chain interactions at all. In the pessimistic
scenario, i.e., if operators fail to provide valid responses, they
have to be challenged, which requires additional blockchain
interactions.

Support of Private State. To support private state of ran-
domized contracts, careful design is required to avoid leakage.
While the confidentiality guarantees of TEEs prevent any
data leakage during contract execution, our protocol needs
to ensure that an adversary cannot learn any information
except the output of a successful execution. In particular, in a
system where the contract state is distributed between several
parties, we need to prevent the adversary from performing an
execution on one enclave, learning the result, and exploiting
this knowledge when rolling back to an old state with another
enclave. This is due to the fact that a re-execution may use
different randomness or different inputs resulting in a different
output. We prevent these attacks by outputting state updates
to the users only if all pool members are aware of the new

state. Moreover, by solving the challenge of synchronization
between enclaves and the blockchain, we prevent an adversary
from providing a fake chain to the enclave, in which honest
operators are kicked from the execution pool. Such a fake
chain would allow an attacker to perform a parallel execution.
While results of the parallel (fake) execution cannot affect the
real execution, they can prematurely leak private data, e.g. the
winner in a private auction.

IV. DEFINITIONS & NOTATIONS

In the following, we introduce the cryptography primitives,
definition, and notations used in the POSE protocol.

Cryptographic Primitives. Our protocol utilizes a pub-
lic key encryption scheme (GenPK ,Enc,Dec), a signature
scheme (GenSig ,Sign,Verify), and a secure hash function
H(·). All messages sent within our protocol are signed by the
sending party. We denote a message m signed by party P as
(m;P). The verification algorithm Verify(m′) takes as input a
signed message m′ := (m;P) and outputs ok if the signature
of P on m is valid and bad otherwise. We identify parties by
their public keys and abuse notation by using P and P ’s public
key pkP interchangeably. This can be seen as a direct mapping
from the identity of a party to the corresponding public key.

TEE. We comprise the hardware and software compo-
nents required to create confidential and integrity-protected
execution environments under the term TEE. An operator can
instruct her TEE to create new enclaves, i.e., new execution
environments running a specified program. We follow the
approach of Pass et al. [50] to model the TEE functionality.
We briefly describe the operations provided by the ideal
functionality formally specified in [50, Fig. 1]. A TEE provides
a TEE .install(prog) operation which creates a new enclave
running the program prog . The operation returns an enclave
id eid . An enclave with id eid can be executed multiple times
using the TEE .resume(eid , inp) operation. It executes prog
of eid on input inp and updates the internal state. This means
in particular that the state is stored across invocations. The
resume operation returns the output out of the program. We
slightly deviate from Pass et al. [50] and include an attestation
mechanism provided by a TEE that generates an attestation
quote ρ over (eid , prog). ρ can be verified by using method
VerifyQuote(ρ). We consider only one instance E running the
POSE program per TEE. Therefore, we simplify the notation
and write E(inp) for TEE .resume(eid , inp).

Blockchain. We denote the blockchain by BC and the
average block time by τ . A block is considered final if it
has at least γ confirmation blocks. Throughout the protocol
description in Section V-E, enclaves consider only transactions
included in final blocks. Finally, we define that any smart
contact deployed to the blockchain is able to access the current
timestamp using the method BC.now and the hash of the most
recent 265 blocks [7] using the method BC.bh(i) where i is
the number of the accessed block. These features are available
on Ethereum.

V. THE POSE PROTOCOL

The POSE protocol considers four different roles: a man-
ager smart contract deployed to the blockchain, operators that
run TEEs, enclaves that are installed within TEEs, and users

4

that create and interact with POSE contracts. In the following,
we will shortly elaborate on the on-chain smart contract and
the program executed by the enclaves, explain the POSE
protocol, and finally explain further security mechanisms that
are omitted in the protocol description.

A. Manager

We utilize an on-chain smart contract in order to manage
the POSE system’s on-chain interactions. We call this smart
contract manager and denote it by M . On the one hand, M
keeps track of all registered POSE enclaves. This enables
the setup of an execution pool whenever an off-chain smart
contract instance is created. On the other hand, it serves as a
registry of all POSE contract instances. M stores parameters
about each contract to determine the instance’s status. We
denote the tuple describing a contract with identifier id as M id .
In particular, the manager stores the creator enclave (creator),
a hash of the program code (codeHash), the set of enclaves
forming the execution pool (pool), a total amount of locked
coins (balance), and a counter of withdrawals (payouts). We
set the field creator to ⊥ after the creation process has
been completed to identify that a contract is ready to be
executed. Moreover, for both executor and watchdog chal-
lenges, the contract allocates storage for a tuple containing the
challenge message (c1Msg resp. c2Msg), responses (c1Res
resp. c2Res), and the timestamp of the challenge submission
(c1Time resp. c2Time). A non-empty field c1Time resp.
c2Time signals that there is a running challenge.

Every POSE enclave maintains a local version of the man-
ager state extracted from the blockchain data it receives from
the operator when being executed. This enables all enclaves to
be aware of on-chain events, e.g., ongoing challenges.

B. POSE Program

All enclaves registered within the system run the POSE
program that enforces correct execution and creation of POSE
contracts. In practice, the POSE program’s source code will
be publicly available, e.g., in a public repository, so that
the community can audit it. Our protocol ensures that all
registered enclaves run this code using remote attestation
(cf. Section V-E1: Enclave registration). We present methods
required for the execution protocol in Program 1 and defer
methods for the contract creation to the full version of this
paper [31].

Whenever an enclave is invoked, it synchronizes itself with
the blockchain network and receives the relevant blockchain
data in a reliable way (cf. Section V-D). This way, the POSE
program has access to the current state of the manager. In order
to support arbitrary contracts, we define a common interface
in Section V-C that is used by the POSE program to invoke
contracts.

Enclaves running the POSE program only accept signed
messages as input. The public keys of pool members for signa-
ture verification are derived from the synchronized blockchain
data. According to our adversary model (cf. Section II),
the adversary cannot read or tamper messages originating
from honest users or the enclave itself. Further, the contracts
themselves keep track of already received execution requests
and do not perform state transitions for duplicated requests.

Program 1: POSE Program (execution) executed by
enclave T

Upon invocation with input blockchain data BC, store BC.
Upon receiving m := (execute, id , r,move;U), do:

1) If M id .pool [0] 6= T or T id
wait 6= ∅, return (bad).

2) Execute Cid .nextState(U,BC,move, H(m)).
3) Store T id

wait = M id .pool and hid = H(m), set
c = Enc(Cid .getState(all); key id) and return
(update, id , c, hid ;T).

Upon receiving m := (update, id , c, h;T ′), do:
1) If T ′ 6= M id .pool [0] or T /∈M id .pool , return (bad).
2) Define state = Dec(c; key id) and call

Cid .update(state, h).
3) Return (confirm, id , h;T).

Upon receiving {mi := (confirm, id , hi;Ti)}i, do:
1) If M id .pool [0] 6= T or T id

wait = ∅, return (bad).
2) Set T id

wait = T id
wait ∩M id .pool .

3) For each mi do:
• If hi 6= hid or Ti /∈ T id

wait , skip mi.
• Otherwise remove Ti from T id

wait .
4) If T id

wait 6= {T}, return (bad). Otherwise, set T id
wait = ∅,

state := Cid .getState(pub) and return
(ok, id , state, hid ;T).

(cf. Section V-C). This prevents replay attacks against both,
executive and watchdog enclaves.

C. POSE Contracts

Although our system supports the execution of arbitrary
smart contracts, the contracts need to implement a specific
interface (cf. Program 2). This allows any POSE enclave
to trigger the execution without knowing details about the
smart contract functionality. Upon an execution request from
some user, the POSE enclave provides the user’s identity
U , blockchain data BC, the description of the user’s request,
move , and the request hash, h, to the smart contract’s method
nextState . The smart contract first processes the relevant
blockchain data and marks the current length of the blockchain
as processed. This feature is mainly used to enable smart
contracts to deal with money, i.e., to detect on-chain deposits
and withdrawals. We elaborate on the processing of blockchain
data in Section V-D, and on the money mechanism of the
POSE system in Appendix E. Note that double spending
within a contract is prevented due to sequential processing
of any execution request, and double spending of on-chain
payouts is prevented by the mechanism explained in Ap-
pendix E. After the blockchain data is processed, nextState
executes the move requested by the user and updates the
state accordingly. Method update takes state new and hash
h (for preventing replay attacks) as input and sets new as the
contract state. This includes the length of the blockchain that
is marked as processed. Further, the smart contract provides
method getState . If called with flag = all , it returns the whole
smart contract state. Otherwise, if called with flag = pub,
it returns only the public state. In order to prevent replay
attacks, each smart contract maintains a list with the hashes of
already received execution requests, Rec. In case of duplicated
requests, i.e., h ∈ Rec, both the nextState method and the
update method, do not perform any state transition. Instead,
they interpret the request as a dummy move that has no effect
on the state. If executed successfully, the nextState method

5

Program 2: Interface of a contract C executed within
a POSE enclave

Function: nextState(U,BC,move, h)
Function: update(new, h)
Function: getState(flag)

adds the executed request to Rec, i.e., Rec = Rec ∪ {h}. As
Rec is part of the state, it is updated by the update method
as well. While it might seem counter intuitive to overwrite the
list of received requests, this feature is required to ensure that
all enclaves are aware of the same transition history; even if an
executor distributes a state update to just a subset of watchdogs
before getting kicked 2.

We consider the initial state of a smart contract to be
hard-coded into the smart contract description. If an enclave
creates a new smart contract instance, the initial state is
automatically initialized. A contract state additionally contains
a variable to store the highest block number of the already
processed blockchain data. This variable is used to detect
which transactions of received blockchain data have already
been handled.

D. Synchronization

As some of the actions taken by an enclave depend on
blockchain data, e.g., deposits to the contract, it is crucial
to ensure that the blockchain state available to a registered
enclave E is consistent and synchronized with the main chain.
In particular, blocks that are considered final by some party,
will eventually be considered final by all parties. We design a
synchronization mechanism that allows E to synchronize itself
without having to validate whole blocks. Note that E has access
to a relative time source according to our adversary model (see
Section II).

Upon initialization, E receives a chain of block headers
BCH of length γ + 1. Note that the first block p of BCH can
be considered final since it has γ confirmation blocks. First, E
checks that BCH is consistent in itself and sets its own clock
to be the one of the latest block’s timestamp. Second, E signs
block p as blockchain evidence that needs to be provided to
the manager. The registration mechanism (cf. Section V-E1)
uses this evidence to ensure that E has been initialized with
a valid sub-chain of the main-chain up to block p. Further,
the registration mechanism checks that p is at most τon

slack
blocks behind the current one; τon

slack needs to account for
the confirmation blocks and the fact that transactions are not
always mined immediately. Via this parameter, we can set an
upper bound to the time τoff

slack an enclave may lag behind;
τoff

slack additionally considers potential block variance and the
fact that miners have some margin to set timestamps. In the
following, we call τoff

slack slack 3. Clients that want a contract
execution to capture on-chain effects, e.g., deposits, wait until

2In practice, the state update removes at most the last element from the
request history; a fact that can be exploited to reduce the size of state updates.

3We can reduce the slack assuming an absolute source of time realized
via trusted NTP servers, cf. [20], by enabling the enclave to check if she
was invoked with the most recent block headers up to some variance of the
timestamps.

the enclave considers the corresponding block as final, even
when being at slack.

Once successfully initialized, E synchronizes itself with
the blockchain. Whenever a registered enclave is executed
throughout the protocol, it receives the sub-chain of block
headers BCH′ that have been mined since the last execution. E
checks that BCH′ is a valid successor of BCH where blocks in
BCH that have not been final may change. Further, E checks
that the latest block in BCH′ is at most τvariance behind
the own clock; τvariance captures the variance in the block
creation time and the fact that miners have some margin to
set timestamps. When receiving a block that is before the own
clock, the clock is adjusted.

Finally, we need to prevent an operator from isolating
its enclave by setting up a valid sidechain with manipulated
timestamps. To this end, we require the operators to period-
ically provide new blocks to E even if E does not need to
take any action. In particular, we require that the operator
provides at least L blocks within time τp where τp accounts for
potential block time variances. The system is secure as long
as the attacker cannot mine L blocks within time τp while the
honest miners can. Hence, the selection of τp and L has some
implications on the fraction of adversarial computing power
that can be tolerated by the system. Since 2018, an interval of
50 (100, 200, 300) blocks took at most 33 (28, 26, 25) seconds
per block [10], which might all be reasonable choices for L
and τp

L . As the average block time is around 13 seconds [4], the
adversary gets 2−3 times more time to mine the blocks of its
sidechain. This means that the system can tolerate adversarial
fractions from a third (when instantiated with L = 300 and
τp = 25 ·L) to a forth (when instantiated with 50 and 33 ·L).

While the above techniques allow an enclave to synchro-
nize itself, the enclave does not have access to the block data,
yet. Instead of requiring enclaves to validate whole blocks,
we require operators to filter the relevant transactions and
provide them to the enclave while enabling the enclaves to
check correctness and completeness of the received data itself.
For the latter, we introduce incrTxHash , a hash maintained
by the manager and all initialized enclaves that is based
on all relevant transactions. Whenever the manager receives
a relevant transaction tx, it updates incrTxHash , such that
incrTxHashi+1 is defined as

H(incrTxHashi || tx.data || tx.sender || tx.value)

where tx.data is the raw data of tx, tx.sender denotes the
creator of tx, and tx.value contains the amount of any deposits
or withdrawals. Whenever enclaves are invoked with new
blocks, operators additionally provide all relevant transactions.
This way, enclaves can re-compute the new incremental hash
and compare the result to the on-chain value of incrTxHash .
In order to verify that the on-chain incrTxHash is indeed part
of the main chain, operators additionally provide a Merkle
proof showing that incrTxHash is part of the state tree. The
proof can be validated using the state root, which is part of
the block headers provided to the enclaves. This way, enclaves
can ensure that operators have not omitted or manipulated any
relevant transactions.

6

E. Protocol Description

In this section, we dive into a detailed description of
our protocol. We present 1) enclave registration, 2) contract
creation, 3) contract execution, and 4) the challenge-response
parts of our protocol. The POSE program running inside the
operators’ enclaves is stated in Section V-B. For the sake of
exposition, we extracted the validation steps performed by the
manager on incoming messages into Program 3 in Appendix C.
Further, we elaborate in Appendix E on the coin flow within
the protocol.

1) Enclave Registration: Operator O controlling some TEE
unit can contribute to the POSE system by instructing his TEE
to create a new POSE enclave EO. The protected execution
environment EO needs to be initialized with the POSE program
presented in Section V-B. During the creation of EO, an
asymmetric key pair (pkO, skO) is generated. The secret key
skO is stored inside the enclave and hence is only accessible
by the POSE program running in EO. The public key pkO
is returned as output to the operator. Furthermore, operator O
uses the TEE to produce an attestation ρO stating that the
freshly generated enclave EO runs the POSE program and
controls the secret key corresponding to pkO.4

Finally, O sends the latest γ+1 block headers BCH together
with the relevant blockchain data to the enclave which validates
the consistency of the block headers and completeness of the
blockchain data (cf. Section V-D) and returns a blockchain
evidence ρBCO , i.e., a signed tuple containing the blockhash and
the number of the latest final block known to the enclave. After
operator O created a new POSE enclave EO, O can register EO
by sending m := (register, EO, ρO, ρBCO ;O) to manager M .
M verifies that ρO is a valid attestation and that ρBCO refers
to a block on the blockchain known to M that is not older
than τon

slack blocks. If the check holds and the signature of the
operator is valid, i.e., Verify(m) = ok, M adds EO (identified
by its public key pkO) to the set of registered enclaves, i.e.,
M.registered := M.registered∪{EO}. This procedure ensures
that all registered enclaves run the POSE program and that the
secret key skO remains private. Hence, re-attesting enclaves
during later protocol steps is not needed.

2) Contract Creation: The creation protocol is initiated by
a user U who wants to install a new smart contract, with
program code code, into the POSE system. We outline the
protocol in the following and provide a full explanation and
specification in the full version of this paper [31].

U picks an arbitrary registered enclave EC and sends
a creation initialization to M containing H(code) and EC .
The manager M allocates a new contract tuple with a fresh
identifier id . Next, U sends a creation request, containing code,
to EC which randomly selects n enclaves for the contract exe-
cution pool and samples a symmetric pool key. The generated
information is distributed in a confidential way to all pool
enclaves, which install a new smart contract with code code
and confirm the installation to EC . Finally, EC signs a creation

4An attestation mechanism can be designed based on a chain of trust, where
the TEEs manufacturer’s public key represents the root. This way a smart
contract knowing a list of public keys can verify an attestation quote without
further interaction. We omit further details about the practical implementation
and refer the reader to [50].

User: U Executer: E
(:= Mid .pool[0])

Watchdog: W
(∈ Mid .pool \ E)

On input (id,move)
r ∈R {0, 1}κ

m = (execute, id,
r,move;U)

Finalize current and pending
executions or challenges corresponding to id .

pre := TE(BC,m).

(pre)

confW := TW (BC, pre)
If confW = (bad, ·), abort.

(confW)

After time δ2off , res = TE(BC, {confW }).
If res = (bad), res = WatchdogChallenge(pre).

res = (ok, id, state, h;TE)

In time δ1off after sending m:
If res has not been received, Verify(res) = bad or h 6= H(m),
execute res := ExecutiveChallenge(m).
If res = (bad) and Mid .pool 6= ∅, restart execution with same r.

Fig. 2. Detailed execution protocol.

confirmation, which is submitted to M that marks the contract
as created.

If the contract is not created within a certain time, U starts
a creation challenge. If any pool member does not respond to
EC timely, EC starts a pool challenge (cf. Section V-E4).

3) Contract Execution: The execution protocol is initiated
by a user U who wants to execute an existing smart contract,
identified by id , with input move . The protocol is specified in
Figure 2. Program 1 specifies the parts of the POSE program
that are relevant for the contract execution.

To trigger the execution, U sends an execution request
to operator E controlling the executor enclave EE , the first
enclave in the contract pool stored at M . EE executes the
request and securely propagates the new state to all other pool
members, called watchdogs. If any watchdog does not confirm
in time, it is challenged by E (cf. Challenge-Response).
Eventually, EE receives confirmations from all watchdogs or
the unresponsive watchdogs are kicked out of the pool. Either
way, EE outputs the new public state to U . We want to stress
that this way no party gets to know the result of an update
before all pool members agree on the update. If E does
not respond in time, it is challenged by U (cf. Challenge-
Response). If E does not respond to the challenge, it is kicked
from the pool by U . The next enclave in the pool, E ′E , takes
over as the new executor. At this point, the new executor might
be on a different state than the other pool members, since E ′E
might have received the previous state update but some other
pool members not, or vice versa.

Our system automatically ensures that all enclaves share
the same contract state after the next successful execution, in
which E ′E distributes its state to the other enclaves. Let us call
the previous incompletely distributed update update and the
new updated initiated by E ′E update ′. In case E ′E has received
update, update ′ is a successor of update, and hence, covers
both updates. This way, a watchdog that updates to update ′

7

essentially contains both executions, update and update ′. In
case E ′E has not received update but the other watchdogs
have, E ′E either propagates the update already known to the
watchdogs, i.e., update = update ′, or a concurrent one, i.e.,
update 6= update ′. For the former, the watchdogs interpret
the update as a dummy update without any effect as the
corresponding execution request is already within their list
of received request hashes (cf. Section V-C). For the latter,
the update of the watchdogs is overwritten by the one of the
executive enclave. As update has been incomplete, and hence,
produced no public output, it is safe to overwrite this update.
To produce a public output for update, all pool enclaves
including E ′E would have to confirm update .

Finally, U can just submit the previous execution request
with the same random nonce r to E ′E . In case the enclave has
already seen this request, it is interpreted as empty dummy
move which prevents a duplicated execution.

4) Challenge-Response: If any party does not receive a
timely response to its messages during the off-chain execution,
it challenges the receiver on-chain. Therefore, all operators
need to monitor the blockchain for any on-chain challenges.
We will elaborate on the timeouts (δ†?), where † ∈ {0, 1}
and ? ∈ {off , on}, which define the notion of timely in
Appendix D. In particular, we describe the relation between
δ1∗ and δ2∗ . The challenge-response procedure is executed in
all of the following cases.

(a) The creator enclave has not responded to the user within
time δ1off during the contract creation protocol.

(b) At least one pool enclave has not responded to the creator
enclave within time δ2off during the contract creation
protocol.

(c) The executor enclave has not responded to the user within
time δ1off during the contract execution protocol.

(d) At least one watchdog enclave has not responded to the
executor enclave within time δ2off during the contract
execution protocol.

Since (a) is conceptually identically to (c) and (b) to (d), we
present the executor challenge (c) and the watchdog challenge
(d) in Figure 3 and Figure 4. The specifications of (a) and (b)
are provided in the full version of this paper [31].

For the executor challenge as shown in Figure 3, suppose
user U has not received a result from the executor enclave EE
within time δ1off , then, U starts the challenge-response proto-
col. To this end, U sends the execution request to the manager
M who verifies the validity of the message (cf. Program 3).
If all checks hold, M stores the challenge message and then
starts timeout δ1on by storing the current timestamp. As soon
as the challenge message is recorded on-chain, the operator of
the executor enclave EE extracts the execution request from the
challenge and starts the execution. Performing the execution
request is identical to the standard execution as described in
Section V-E3. However, the operator prioritizes challenges
over off-chain execution requests to avoid getting kicked.
Additionally, if EE already performed the state update and
state propagation, the operator may use the already obtained
result as response. Either way, if the operator sends a response
message in time, the manager M checks the validity of the
message and whether or not it matches the stored challenge.
If all checks succeed, M stores the result and removes the

User: U Manager: M Executer: E
(:= Mid .pool[0])

m
m = (execute, id,
n,move;U)

If Validate(1,m;Mid) = bad, discard.
Set Mid .c1Msg = m, Mid .c1Time = BC.now and Mid .c1Res = ⊥.

(m)

Handle m like a message directly received by U
until receiving res = (ok, . . .) from TE ,

but priortize it above other pendinging executions.

res = (ok, id,
state, h;TE)

If Validate(2, res;Mid) = bad, discard.
Set Mid .c1Msg = ⊥, Mid .c1Time = ⊥ and Mid .c1Res = res .

(res)
(res)

If (res) has not been received
within time δ1on after sending m.

(finalize, 1, id)

If Validate(3;Mid) = bad, discard.
Remove Mid .pool[0] from Mid .pool and set Mid .c1Time := ⊥.

(bad)

Fig. 3. Detailed executor challenge protocol.

challenge message. This finalizes the challenge procedure. If
the operator does not send a valid response in time δ1on , user U
sends message finalize to M . This triggers the manager to
kick EE from the execution pool of this contract and assign the
next enclave in the list as the new executor enclave, if possible.
Then, if the pool is not empty, U restarts the execution. As M
only accepts a response if the operator executed the challenged
request correctly, the described procedure ensures that there
is either a consistent state transition or EE is kicked from
the execution pool, hence, ensuring liveness as long as there
remains one active operator.

Since the executor enclave EE is dependent on the confir-
mation message from all watchdog enclaves, it is necessary
to allow EE to challenge the watchdog enclaves as well (Fig-
ure 4). In this case, the executor enclave acts as the challenger
and all watchdog enclaves need to provide a confirmation
message as response. At the end of this challenge-response
protocol, all unresponsive watchdog enclaves are removed
from the execution pool. The executor enclave then contin-
ues performing the execution with all confirmations obtained
during this procedure. Again, M only accepts responses if the
watchdog executed the state update correctly, hence, ensuring
that a watchdog either performs the correct state update or is
kicked from the pool.

F. Security Remarks

To keep the protocol description compact, we omitted some
security features from the specification, which we explain in
this section.

Allowing unrestricted execution requests comes with the
problem that malicious users can send requests whose exe-
cution takes a disproportional amount of time, e.g., due to
infinite loops. If the execution time exceeded the boundaries
defined by the on-chain timeouts, malicious users could exploit

8

Executor: E Manager: M Watchdog: W
(∈ Mid .pool \ E)

(pre)
pre = (update,
id, c, h;TE)

If Validate(4, pre;Mid) = bad, discard.
Otherwise, set Mid .c2Msg := pre, Mid .c2Msg := BC.now , and Mid .c2Res := ⊥.

(pre)

confW := TW (BC, pre)
If confW = (bad, ·), abort.

confW := (confirm,
id, h;TW)

If Validate(5, confW ;Mid) = bad, discard.
Otherwise, add confW to Mid .c2Res .

At time δ2on after sending pre.

(finalize, 2, id)

If Validate(6;Mid) = bad, discard.
Let Tok := {T ∈ Mid .pool : (· · · ;T) ∈ Mid .c2Res}.

Set Mid .pool := Tok ∪Mid .pool[0], and Mid .c2Time := ⊥.

res = TE(BC,Mid .c2Res)

(res)

Fig. 4. Detailed watchdog challenge protocol.

this behavior to kick honest operators from an execution
pool. This operator denial of service attack harms the liveness
property of the system. In order to mitigate the vulnerability,
we introduce an upper bound to the computation complexity
of a single contract execution. Once the bound is reached, the
executor enclave stops executing and reverts the state but still
provides a valid output. The timeouts in the system are set such
that an honest operator cannot be kicked from an execution
pool even if an execution takes the maximum amount of
computation. The same applies to update and creation requests,
where failed creations return a fail confirmation that can be
submitted to the manager instead of the creation confirmation.
A fail confirmation triggers the manager to mark the contract
as crashed. Note that the POSE system still supports the
execution of arbitrary complex smart contracts as the timeouts
and hence the upper bounds can be set arbitrarily high (cf.
Appendix D). Additionally, all contracts of an operator are
executed and challenged independently, and thus, contracts do
not block each other.

While we have assumed that all operators run only one
POSE enclave, multiple enclaves can be created in practice.
This enables the opportunity of a sybil attack, where a mali-
cious operator generates multiple POSE enclaves to increase
its share in the system and hence harm the liveness property.
This attack can be mitigated by forcing an operator to deposit
funds at each enclave registration and which will be paid back
to the operator only if she behaves honestly. We note that
this deposit is independent of any contract and its parties.
Now, such an attack is directly linked to financial loss. See
Section VI for more discussions about incentives and fees.

In order to enhance privacy, neither users nor operators
send inputs or respectively execution results in clear. Instead,
users encrypt inputs using hybrid encryption based on the
public key of the executor enclave. Additionally, users specify

a symmetric key in their execution request, which is used to
encrypt the result of the execution when sent back to the
user. This way, inputs and results are private and cannot be
eavesdropped by a malicious operator.

The term griefing denotes attacks where an adversary
forces an honest party to interact with the blockchain in order
to generate financial damage to this party. Especially when
blockchain transactions require high fees, such attacks pose
serious vulnerabilities. In regards to challenges within the
POSE protocol, we mitigate the attack surface for griefing
attacks by incorporating a mechanism in the manager that
fairly splits the fees for challenge and response between the
challenger and the challenged party. The same mechanism can
be used for the contract creation process.

An adversary executing a clogging attack sends many
transactions to the system to prevent honest users from issuing
transactions. In the context of POSE , an off-chain clogging
attack results in honest clients making an on-chain challenge
to ensure that their requests will be processed. Hence, a
successful clogging attack has to be performed on-chain. For
the on-chain challenge, our system inherits the vulnerabilities
of the underlying blockchain.

VI. EXTENSIONS

We simplified some protocol steps in order to make the
protocol description more compact and easier to understand.
We discuss the most important extensions and their benefits in
this section.

Contract & Operator Lifecycle. A mechanism that releases
enclaves from their execution duty can be integrated. This
allows operators to voluntarily withdraw their enclaves from an
execution pool. On the one hand, terminated contracts can be
closed, which releases all pool enclaves from their execution
duty. On the other hand, it enables to withdraw a single enclave
and exchanging it by a randomly chosen replacement enclave.
Additionally, a replacement strategy is also applicable to the
scenarios in which enclaves are kicked. The latter extension
reduces the chance of a contract crash, the event in which no
more operator remains. We stress that these extensions can
easily be achieved by adding the functionality to our POSE
program and the manager. In case a contract is idle for a long
time, an extension may be implemented that allows operators
to hibernate their respective enclave. The enclave state can
be stored on disk by encrypting it with a key that is kept
alive in the hibernating enclave; thus, only requiring minimal
overhead in memory. The POSE program ensures freshness by
synchronizing with the blockchain; thus, preventing rollback
attacks.

Incentives. Although POSE provides security not only against
rational but also byzantine adversaries, it is beneficial to
introduce incentives for operators to join the system and act
honestly. Moreover, operators can be compensated for on-chain
transactions. Such incentives can be achieved by introducing
execution fees paid by the users to the operators. We expect
these fees to be significantly lower than Ethereum transaction
fees since replication of computation is only required among a
small pool. Additionally, registration fees for operators can be
used to mitigate the risk for sybil attacks. By mitigating these

9

attacks and due to the random assignment of enclaves to con-
tract pools, operators can only actively enforce centralization
at high cost.

Efficiency Improvements. Instead of propagating each con-
tract invocation, a more fine-grained distinction based on the
action can be added. In particular, a simple state retrieval must
not be propagated. In order to improve the efficiency of the
manager, messages and responses are not stored persistently.
Instead, only their hashes are stored and the actual data is
propagated via events. Moreover, the total on-chain transac-
tions can be reduced by letting the executor enclave challenge
only the unresponsive watchdog enclaves.

VII. SECURITY ANALYSIS

In this section, we present security considerations of POSE
based on the adversary model stated in Section II.

A. Protocol Security

For the sake of brevity, we present the full security
analysis of our POSE protocol including formal theorems in
Appendix A. Here, we provide an intuition of our security
guarantees.

The POSE protocol satisfies correctness, ε-liveness and
state privacy.

(1) Intuitively, correctness means that an adversary cannot
influence the smart contract execution within an enclave such
that the result is invalid according to the contract logic. Our
creation protocol ensures that all enclaves of a pool store the
correct contract code. The TEE security guarantees and the
POSE code ensure that each enclave executes the stored code
correctly. Finally, the synchronization mechanism guarantees
that each enclave is up-to-date with the blockchain up to
some slack, τoff

slack . This ensures that on-chain transactions are
considered by the smart contract execution, at least after time
τoff

slack .
(2) The ε−liveness property states that every contract execu-
tion will eventually be processed with probability ε, unless
the contract crashes and prevents any further execution. Let n
be the number of enclaves in the system, m be the number
of malicious enclaves and s be the pool size, then it holds
that ε = 1 − Πs−1

i=0 (m−in−i) > 1 − (mn)s. We achieve these
high liveness guarantees by enabling the contract execution to
proceed even if only one operator out of a randomly selected
pool is honest. Our protocol ensures that honest operators
cannot be forced out of the pool.
(3) State privacy ensures that an adversary cannot obtain
additional information about a contract state besides what
she learns from the results of contract executions alone. The
integrity guarantees of the TEE protect the state of the contract
against the TEE’s operator during computation and at rest.
During transit, the state is hidden via encryption. Additionally,
our protocol ensures that each contract execution producing
an observable result is final. This ensures that the execution
cannot be reverted to a state in which a previously published
output contains private data that should not have been leaked.

B. Architectural Security

We further examine the architectural security of enclaves.
The case of a user or TEE operator going offline by turning
off their machine is covered in the protocol security (cf.
Section VII-A); here we focus on parties that follow the
protocol, trying to gain an unfair advantage in various ways.

The adversary might try to perform a memory corruption
attack on the client used by users to interact with the executor
(e.g., to send inputs). To mitigate this risk, the software should
be implemented in a memory-safe language, like Python or
Rust, and be open source so that it can be easily inspected.

A malicious TEE operator can also try mounting a
memory-corruption or a side-channel attack on its TEE. As
mentioned in A1.1, we assume that the TEE protects the con-
fidentiality of the enclave and prevents leakage. However, in
practice, cache-based side-channel attacks have been success-
fully demonstrated also on ARM processors [44]. While we
want to stress that our ARM TrustZone-based implementation
is a research prototype and the design is TEE-agnostic, the risk
of these attacks can be mitigated by making the TEE opt-out of
shared caches and flush private caches upon context switch, as
proposed in [19]. Alternatively, a more advanced TEE design
can be used [24], [19], [16]. Moreover, if the enclave code has
an exploitable memory-corruption vulnerability, it is possible
to mount a memory-corruption attack against it. One way to
mitigate this risk, and hence, realize our assumption A1.2, is
to use a memory-safe language for our smart contracts (in our
case, Lua), or to deploy a run-time mitigation (like CFI [11]).
Yet, in practice, an adversary might still be able to compromise
an enclave. In this case, only the contracts of this enclave are
affected. The consequences depend on the role of the enclave:
for an executor enclave, the adversary gets full control over
the contract; for a watchdog enclave, the adversary can only
break state privacy.

Finally, an adversary might build a malicious smart contract
with the goal of compromising secrets owned by other con-
tracts or blocking an enclave by entering into an infinite loop.
We mitigate against the first scenario by ensuring that only one
smart contract is executing at any given time in an enclave, so
that no foreign plain text secrets are present in memory at any
point during contract execution. In case of multiple enclaves
running on the same system, the TEE is isolating enclaves
from each other such that no contract can tamper with another
(cf. assumption A1.1). To handle infinite loops, we leverage a
Lua sandbox [14], which interrupts the execution of the Lua
code after a predetermined number of instructions has been
issued and disables access to unsafe functions and modules.

VIII. IMPLEMENTATION

In order to evaluate POSE , we implemented a prototype for
the manager and the enclaves, which uses TrustZone for the
enclaves themselves and Lua as the smart contract program-
ming language. We open source our prototype implementation
to foster future research in this area5. We describe each of
them in the following.

Manager. For the manager we use an Ethereum smart contract
written in Solidity, which we will refer to as manager in the

5https://github.com/AppliedCryptoGroup/PoseCode

10

following. Even if this implementation is based on Ethereum,
we note that our design can be realized on any blockchain
supporting rich smart contracts. The manager keeps a list
of all registered enclaves in the network as well as a list
of all deployed contracts, including their public information,
e.g., the address of the current executor. As mentioned in
the protocol described in Section V-E, the manager provides
functions to register an enclave, create a new POSE contract,
deposit or withdraw money, and functions to challenge the
current executor or any of the watchdogs. To synchronize all
participants, every time a challenge related function was called
it will throw an appropriate Solidity event.

Enclaves. The contract creator, executor, and watchdogs are
enclaves running in a TEE. As our protocol is TEE-agnostic
and all commercial TEEs exceed smart contracts’ on-chain re-
quirements on memory/computational-power capabilities sig-
nificantly, we chose to use ARM TrustZone [15] for our
prototype. TrustZone features a traditional programming model
(OS, and user-space applications with standard library), and
the Open Portable Trusted Execution Environment (OP-TEE)
OS [42] already supports a large fraction of standard function-
ality, and hence, does not force us to reimplement this for the
contract execution environment. TrustZone supports two exe-
cution modes: secure world and normal world. The system’s
memory can be freely distributed among these worlds. The
secure world is an trusted OS which is completely independent
from the normal OS, which in our case is Linux. Code running
in the secure world is called a Trusted App (TA). A TA may
only communicate with the normal world via shared memory
regions, which are explicitly allocated as such. We implement
the POSE enclaves as TAs. Computations in the secure world
have native performance; yet, switching between worlds has a
constant but negligible overhead (in our tests around 449µs).
TrustZone does not impose memory limits for secure world.
While we leverage the traditional TrustZone concept, recent
versions add support for a S-EL2 hypervisor to allow multiple
strongly isolated enclaves that allows POSE to scale better
on these platforms. Most basic cryptographic functions are
provided by the OP-TEE TA library, such as AES and TLS.
Note that TrustZone itself does not standardize a remote
attestation implementation itself, but industry [3], [6], [8] and
OP-TEE implementations exist6. Remote attestation can also
be used to prove a certain set of software defenses is active in
the enclave. In our prototype, we leveraged OP-TEE’s remote
attestation functionality to attest the enclave after setting up the
runtime. To leverage this feature, the POSE enclave requests
a signed attestation report from the attestation PTA (Pseudo
Trusted App), essentially a kernel module of the OP-TEE OS
in secure world. The keys for signing the attestation report
are derived using hardware device information and stored
persistently after generation (using Secure Storage, or ”Trusted
Storage”, as defined by GlobalPlatform’s TEE Internal Core
API specification).

To properly interact with the Ethereum-based manager, we
also adapted and deployed an Ethereum wallet for embedded
devices [13], enabling the enclaves to create ECDSA signa-
tures, Keccak hashes, handle encoding, and create transactions
to call the manager. For POSE contracts, we use the scripting
language Lua [53]. It is a well-established, fast, powerful, yet

6https://github.com/OP-TEE/optee os/pull/5025

simple language written in C. Lua as well as the enclave itself
allow arbitrary computation. We ported the Lua interpreter to
run inside the TA, by stripping out operations unsupported
by the TA, such as file access. After each execution step,
the enclave returns to the normal world while keeping the
contract’s Lua session alive. When the normal world receives
an input from a user, it invokes the TA with these inputs to
continue the Lua execution. To update the enclave runtime,
different approaches are possible in practice, e.g., the manager
could announce an update and all outdated enclaves would
shut themselves down after a timeout. Honest operators then
would incrementally trigger an enclave replacement during the
timeout period.

IX. EVALUATION

This section examines POSE regarding complexity and
performance. In the following, we will report absolute perfor-
mance numbers and discuss these in relation to Ethereum itself,
but also compare to existing works based on TEEs, namely
FastKitten and Bitcontracts. FastKitten has a highly similar set
of tested smart contracts, so a comparison can put our numbers
in perspective. For Bitcontracts, we reimplemented Quicksort
with the same experiment setup. Note, that the smart contracts
can still be implemented differently, and the performance and
the TEE differ.

Complexity. Running a POSE contract in the benign case,
i.e., if all involved enclaves respond, requires exactly two
blockchain interactions for the setup. Each user of a contract
also needs one blockchain interaction each time the user
deposits or withdraws money regarding the contract. However,
as POSE does not require a fixed collateral for the setup, the
money transactions do not inherently prevent the contract from
execution—except the specific contract demands it. Otherwise,
when either the executor or any watchdog fails to respond,
each challenge requires two blockchain interactions. The delay
incurred by our challenge protocol is dominated by the on-
chain transactions. This holds also for other off-chain solu-
tions, e.g., state-channels [46], [26], [22], Plasma [52], [37],
Rollups [48], [5] and FastKitten [25]. For instance, the time
it takes for an honest executor to kick a watchdog is 325s
on average. We discuss timeout parameters and the challenge
delay more thoroughly in Appendix D. In the worst-case, a
malicious operator does not respond to the off-chain messages
but to the challenges in every execution step, which would
effectively reduce POSE ’s execution speed beneath that of
the blockchain. However, such an attack requires continuous
blockchain interactions from the malicious party and hence en-
tails costs for every execution step (cf. Section IX “Manager”).

Test Setup. We deployed a test setup with our prototype
implementation for performance measurements. The test setup
consists of five devices. For the enclaves we deployed three
Raspberry Pi 3B+ with four cores running at 1.4GHz. These
are widely available and cheap devices that support ARM
TrustZone. As state updates are small (just the delta to the
previous state) and watchdogs receive and process the state
updates in parallel, we do not expect an increase of the pool
size to significantly influence the evaluation. Further, we used
ganache-cli (6.10.2) to emulate a Ethereum blockchain
in our local network, which runs the Solidity contract that

11

TABLE I. COST OF EXECUTING THE POSE MANAGER. THE USD
COSTS WERE ESTIMATED BASED ON THE PRICES (GAS TO GWEI AND ETH

TO USD) ON MAY. 8, 2022 [27], [21]. *FOR COMPARISON, THESE ARE
THE COSTS OF POPULAR OPERATIONS ON ETHEREUM.

Method Cost
Gas USD

registerEnclave 175 910 13.23
initCreation 198 436 14.91
finalizeCreation 79 545 5.98
deposit 37 255 2.80
withdraw 36 997 2.78

challengeExecutor 54 654 4.11
executorResponse 51 478 3.87
executorTimeout 53 327 4.01
challangeWatchdogsCreation 231 286 17.38
challengeWatchdog 131 362 9.87
watchdogResponse 36 257 2.72
watchdogTimeout 52 142 3.92

simple Ether transfer* 21 000 1.58
create CryptoKitty* 250 000 18.78

implements the manager. Finally, a fifth device emulates mul-
tiple users by simply sending out network requests to both the
manager and enclave operators, which are all connected via
Ethernet LAN.

Manager. As the POSE manager is implemented as an
Ethereum smart contract, interactions with it incur some costs
in the form of Gas. The costs of all implemented methods
of the Solidity contract are listed in Table I. The first five
methods are used for benign POSE contract execution. The
second part of the table shows methods that are required for
challenges, including the response and timeout methods to
resolve them. In terms of storage, each additionally registered
enclave will require 64 bytes and each contract 288 bytes +
(pool size × 32 bytes) of on-chain storage.

Contract Execution. To measure and demonstrate the effi-
ciency of POSE contract execution, we implemented three ap-
plications as Lua code in our test setup. All time measurements
are averaged over 100 runs. Regardless of the used contract,
setting up an executor or watchdog enclave with a Lua contract
takes 189ms. Creating an attestation report for the enclave
takes another 367ms with OP-TEE’s built-in remote attestation
using a one-line dummy contract. For our biggest contract,
Poker, the attestation takes 377ms, resulting in a total setup
time of 566ms. In contrast, FastKitten needs 2s for enclave
setup. Note that FastKitten needs an additional blockchain
interaction. Multiple contracts run by a single operator are
executed in parallel, including network communication. Thus,
the number of enclaves, contracts and transactions a single
operator can process depends on the operator’s hardware. As
modern servers CPUs feature 128 cores [23], and servers often
feature multiple CPUs, we do not expect parallel execution to
affect performance significantly. However, to prevent overload,
the number of pools an operator participates in can be limited.

Rock paper scissors. This is an implementation of the popular
game with two players. Unlike traditional smart contracts, we
can leverage POSE ’s private state to simply store each player’s
input, instead of having to use much more complex multi-
round commitments. The resulting smart contract is 27 lines of
code (LoC). Disregarding the delay caused by human players,

the execution time of one round with two user inputs is 32ms.
In comparison, FastKitten only needs 12ms, but is also running
on a much more powerful machine. In contrast, executing this
game on Ethereum would take around 5 minutes for each round
(20 confirmation blocks, 15s block time each).

Poker. We have also implemented Poker as a multi-party
contract running over multiple rounds. Note that in POSE ,
the poker game can be implemented as an ongoing cash game
table, i.e., players may join or leave the table at any time, as
contracts in POSE do not have to be finite. Each round consists
of three phases each requiring an input from all users. The
resulting smart contract is 209 lines of code (LoC). We execute
the contract with five players who have their deposit ready at
the start, with a total execution time of 199ms (vs. 45ms in
FastKitten, but again, on a more powerful machine). Playing
this game on Ethereum would take 5 minutes per player input.

Federated Machine Learning. For this application, users can
submit locally trained models, which will be aggregated to
a single model by the contract. Any user can then request
the new model from the contract. For our measurements,
each user trained a convolutional neural network consisting
of 431 080 individual weights on the MNIST handwritten
digits dataset [62]. For aggregation, the contract averages every
existing weight with the corresponding weight sent by the
user. The smart contract itself is only 5 LoCs, as we load
the existing weights separately. Each aggregation took 238ms,
which demonstrates the efficiency of POSE . Trying to execute
the same function on Ethereum, for each aggregation, storage
of the weights alone would exceed 1 billion gas (assuming 4
bytes float per weight) and the calculation over 3.4 million gas
(8 gas per weight).

Quicksort. We have also implemented Quicksort to sort a
hardcoded input array of 2048 random integers, as done in
Bitcontracts [59]. The resulting smart contract is 29 lines of
code (LoC). The total execution time of the contract is 20ms.
Compared to the 6ms in Bitcontracts, we use a less powerful
machine (Bitcontracts uses an AWS T2.micro instance with a
recent Intel processor at 3.3Ghz), while our performance mea-
surement also includes additional steps like context switches
and the setup of the enclave runtime. Executing this Quicksort
contract on Ethereum would cost around 6.5 million gas.

Watchdog State Updates. When an executor operator has
been dropped, a watchdog takes over execution. For this to
work, state changes are distributed to the watchdogs. Storing
the current state and restoring it on a watchdog takes 17ms
for the poker contract (averaged over 100 runs, corrected for
network latency), which also has the biggest state among the
ones we implemented.

Enclave Teardown. After an executor enclave is not expecting
further inputs and finished the smart contract execution, the
execution environment has to be cleaned up for the next smart
contract, i.e., cryptographic secrets and the smart contract in
the shared memory need to be zeroed. This takes 25ms.

X. RELATED WORK

Ethereum [58] is the most prominent decentralized cryp-
tocurrency with support for smart contract execution. However,
it is suffering from very high transaction costs and data used
by smart contracts is inherently public.

12

TABLE II. OVERVIEW OF RELATED WORK, n IS #TRANSACTIONS.

N
o

co
lla

te
ra

l

Pr
iv

at
e

st
at

e

B
lo

ck
ch

ai
n

in
te

ra
ct

io
ns

(o
pt

im
is

tic
al

ly
)

N
on

-fi
xe

d
lif

et
im

e
&

gr
ou

p

Ethereum [58] 3 7 O(n) 3
MPC [40], [41], [39] 7 3 O(1) 7
State Channels [46], [26], [22] 7 7 O(1) 7
VM-based [36], [60], [59] 7 7 O(n) 3

Ekiden [20] 7 3 O(n) 7
FastKitten [25] 7 3 O(1) 7

POSE 3 3 O(1) 3

Hawk [38] aims for improving the privacy by automatically
creating a cryptographic protocol from a high-level program in
order to allow computation on private data without disclosing
it. However, this complex cryptographic layer further decreases
performance of the system and increases costs. Similarly, ap-
proaches based on Multiparty Computation (MPC) [40], [41],
[39] distribute the computation between multiple parties such
that no party can access the cleartext data. These approaches
have substantial overhead in performance, communication and
collateral required.

One approach to alleviate the complexity limitation are
state channels [46], [26], [22], which enable parties to lock
some funds on the blockchain, execute complex contracts off-
chain, and finally commit the results of the contract to the
blockchain. This is efficient if all parties agree on the results;
otherwise, the dispute can be solved on-chain, which takes
longer and is more expensive.

Arbitrum [36] represents a smart contract as a virtual
machine (VM), which is executed privately by a number of
“managers”. After execution, if all managers agree on the
result of the computation, this result can be simply signed and
committed to the blockchain, without the need to perform the
computation on chain. In case managers disagree, a bisection
algorithm is used to compare subsets of the execution on chain
and find which is the first instruction on which the managers
disagree, then punish the malicious manager(s). Hence, as
long as at least one manager is honest, the correct result
is computed. While computationally efficient, this on-chain
protocol is still relatively expensive, so Arbitrum also includes
financial incentives to encourage the managers to behave. The
managers have full access to the VM’s data, so confidentiality
is broken if even one manager is malicious. Unlike Arbitrum,
POSE does not require multiple parties to execute the smart
contract: the watchdog enclaves just need to acknowledge the
new states, unless the executor enclave fails.

ACE [60] and Bitcontracts [59] are similar to Arbitrum, but
they allow the results of contract executions to be approved by
a configurable quorum of service providers, not necessarily all
of them. Unlike POSE , ACE does not support private state
and requires on-chain communication per contract invocation.
Although the transaction is computed off-chain, the invocation
and the result are registered on-chain. Further, Arbitrum and
ACE require changes to the blockchain infrastructure, hence,
they are harder to deploy in practice.

Ekiden [20] is also an off-chain execution system that lever-
ages TEE-enabled compute nodes to perform computation and
regular consensus nodes that interact with a blockchain. The
major drawback of Ekiden is that it requires every computation
step to retrieve its initial status from the blockchain, and it
only supports input from one client at a time. Moreover, the
atomic delivery of the output of each step requires to wait
for publication of the updated state before the output is made
available to the client. Hence, any highly interactive protocol
with multiple participants (e.g., a card game) would incur
significant delays between turns just to wait for the blockchain.
The paper evaluates on a fast blockchain, Tendermint, but
does not quantify its latency for interactive protocols on
mainstream blockchains like Ethereum. The Oasis Network
uses an updated version of Ekiden [30]; yet, this version still
requires to store state on the blockchain after each call.

FastKitten [25] also leverages TEEs to perform off-chain
computation. It assumes a rational attacker model, with fi-
nancial incentives to convince all participants to follow the
protocols. If they all do, the communication happens directly
between the TEE and them, thus dispensing with the high
latency due to blockchain roundtrips. However, FastKitten only
supports contracts with a predefined list of participants and a
limited lifespan. It also requires the TEE operator to deposit
as much as every participant combined as collateral. POSE
lifts those restrictions: it enables long-lived smart contracts
with an unknown set of participants and requires no collateral
from the TEE owners. Further, POSE achieves strong liveness
guarantees in the presence of byzantine adversaries, while
FastKitten assumes a rational adversary.

ROTE [45] is an approach to detect rollback attacks on
TEEs by storing a counter on other TEEs. This approach
is similar to the watchdog enclaves used in POSE to en-
sure that execution of a smart contract continues. However,
unlike POSE , ROTE can only detect rollback attacks, but
cannot prevent malicious operators from withholding the state.
SlimChain [61] primarily aims at reducing on-chain storage,
while still requiring blockchain interactions to store state
commitments. Further, the paper does not address storage
nodes crashing, which would lead to a liveness violation.
Pointproofs [33] proposes a new vector commitment scheme
to reduce the storage requirements on blockchain validators.
Although validators do not need to store all values of a
smart contract, once a transaction provides these values, the
execution is still performed on-chain. In contrast, POSE works
entirely off-chain in the optimistic case and ensures liveness.

Chainspace [12] proposes an entirely new distributed
ledger platform focusing on sharding combined with a di-
rected acyclic graph structure, while POSE extends established
blockchains (e.g., Ethereum). ResilientDB [54] proposes a
consensus protocol that clusters validators’ geo-location to
minimize network overheads. In contrast, POSE is a off-chain
execution protocol for smart contracts. Hyperledger Fabric Pri-
vate Chaincode [29] requires trust in handling the encryption
key by the client or an admin; thus, we deem it not applicable
to permissionless blockchains, targeted by POSE . Hyperledger
Private Data Objects [18], an alternative to Private Chaincode,
requires periodic blockchain interactions to store the state on-
chain. This slows execution on contract calls to the speed of
the blockchain, unlike POSE , which executes contracts entirely

13

off-chain in the optimistic case. Hyperledger Avalon [28]
can outsource workloads to TEE enclaves. However, these
workloads have to be self-contained, and thus, interactions by
participants still require on-chain transactions, while POSE can
run interactive contracts completely off-chain (e.g., Poker).

XI. CONCLUSION

Smart contracts have become an indispensable tool in
the era of blockchains; yet, current approaches suffer from
various shortcomings. In this paper, we introduce POSE , a
novel off-chain execution protocol that addresses all of these
shortcomings to enable much more versatile smart contracts.
We showed POSE ’s security and demonstrated its feasibility
with a prototype implementation.

ACKNOWLEDGEMENTS

This work was supported by the European Space Op-
erations Centre with the Networking/Partnering Initiative,
the German Federal Ministry of Education and Research
within Sanctuary (16KIS1417) and within the iBlockchain
project (16KIS0902), by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) SFB 1119 –
236615297 (CROSSING Project S7), by the European Union’s
Horizon 2020 Research and Innovation program under Grant
Agreement No. 952697 (ASSURED), by the BMBF and the
Hessian Ministry of Higher Education, Research, Science and
the Arts within their joint support of the National Research
Center for Applied Cybersecurity ATHENE.

REFERENCES

[1] Cardano. https://cardano.org/. (Accessed on 05/20/2021).
[2] Cryptokitties - collect and bread furrever friends! https://www.

cryptokitties.co/. Accessed 14-08-2022.
[3] Enhanced attestation (v3). https://docs.samsungknox.com/dev/knox-

attestation/about-attestation.htm. Accessed 20-04-2022.
[4] Etherscan - ethereum average block time chart. https://etherscan.io/

chart/blocktime. Accessed 20-09-2021.
[5] Optimistic rollups - ethhub. https://docs.ethhub.io/ethereum-roadmap/

layer-2-scaling/optimistic rollups/. (Accessed on 05/20/2021).
[6] Qualcomm® trusted execution environment (tee) v5.8 on qualcomm®

snapdragon™ 865 security target lite. https://www.tuv-nederland.nl/
assets/files/cerfiticaten/2021/08/nscib-cc-0244671-stlite.pdf. Accessed
20-04-2022.

[7] Solidity documentation. https://docs.soliditylang.org/en/v0.8.7/. Ac-
cessed 20-09-2021.

[8] Upgrading android attestation: Remote provisioning. https:
//android-developers.googleblog.com/2022/03/upgrading-android-
attestation-remote.html. Accessed 20-04-2022.

[9] Proxy bid. https://en.wikipedia.org/w/index.php?title=Proxy
bid&oldid=968758683, July 2020.

[10] Google cloud bigquery: Block variance. https://console.cloud.
google.com/bigquery, 2021. Query: SELECT b.timestamp FROM
‘bigquery-public-data.ethereum blockchain.live blocks‘ AS b ORDER
BY b.timestamp; Accessed 20-09-2021.

[11] Martın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. CFI:
Principles, implementations, and applications. In Proc. ACM Confer-
ence and Computer and Communications Security (CCS), 2005.

[12] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn,
and George Danezis. Chainspace: A sharded smart contracts platform.
In 25th Annual Network and Distributed System Security Symposium,
(NDSS 2018), 2018.

[13] AnyLedger. Embedded Ethereum wallet library GitHub. https://github.
com/Anylsite/embedded-ethereum-wallet, 2020.

[14] APItools. sandbox.lua. https://github.com/APItools/sandbox.lua, 2017.
[15] ARM Limited. ARM Security Technology: Building a Secure System

using TrustZone Technology. http://infocenter.arm.com/help/topic/com.
arm.doc.prd29-genc-009492c/PRD29-GENC-009492C trustzone
security whitepaper.pdf, 2008.

[16] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
CURE: A security architecture with CUstomizable and Resilient En-
claves. In 30th USENIX Security Symposium (USENIX Security 21),
2021.

[17] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and
Ari Juels. Tesseract: Real-time cryptocurrency exchange using trusted
hardware. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1521–1538, 2019.

[18] Mic Bowman, Andrea Miele, Michael Steiner, and Bruno Vavala.
Private data objects: an overview. CoRR, abs/1807.05686, 2018.

[19] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. SANCTUARY: ARMing TrustZone with user-
space enclaves. In NDSS, 2019.

[20] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes,
Noah Johnson, Ari Juels, Andrew Miller, and Dawn Song. Ekiden:
A platform for confidentiality-preserving, trustworthy, and performant
smart contracts. In 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 185–200. IEEE, 2019.

[21] CoinMarketCap. Ethereum (ETH) price. https://coinmarketcap.com/
currencies/ethereum/, 2020.

[22] Jeff Coleman, Liam Horne, and Li Xuanji. Counterfactual: Generalized
state channels, Jun 2018. https://l4.ventures/papers/statechannels.pdf.

[23] Ampere Computing. Ampere Altra Max 64-Bit Multi-Core Processor
Features. https://amperecomputing.com/processors/ampere-altra/, 2022.

[24] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th USENIX
Security Symposium (USENIX Security 16), 2016.

[25] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina
Hostáková, Patrick Jauernig, Sebastian Faust, and Ahmad-Reza
Sadeghi. Fastkitten: practical smart contracts on bitcoin. In 28th
USENIX Security Symposium (USENIX Security 19), 2019.

[26] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General
state channel networks. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, 2018.

[27] Etherscan. Ethereum Average Gas Price Chart. https://etherscan.io/
chart/gasprice, 2020.

[28] Hyperledger Foundation. Hyperledger avalon. https://wiki.hyperledger.
org/display/avalon/Hyperledger+Avalon. Accessed 04-08-2022.

[29] Hyperledger Foundation. Hyperledger fabric private chaincode. https:
//github.com/hyperledger/fabric-private-chaincode. Accessed 04-08-
2022.

[30] Oasis Foundation. An implementation of ekiden on the oasis network.
https://oasisprotocol.org/papers. Accessed 04-08-2022.

[31] Tommaso Frassetto, Patrick Jauernig, David Koisser, David Kretzler,
Benjamin Schlosser, Sebastian Faust, and Ahmad-Reza Sadeghi. POSE:
Practical off-chain smart contract execution. CoRR, abs/2210.07110,
2022.

[32] GlobalPlatform. TEE Internal Core API Specification.
https://globalplatform.org/specs-library/tee-internal-core-api-
specification-v1-2/, 2019.

[33] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang.
Pointproofs: Aggregating proofs for multiple vector commitments. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 2007–2023, 2020.

[34] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY
technology overview series, consensus system. CoRR, abs/1805.04548,
2018.

[35] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and
Frank Mckeen. Intel software guard extensions: Epid provisioning and
attestation services. White Paper, 1(1-10):119, 2016.

[36] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew
Weinberg, and Edward W. Felten. Arbitrum: Scalable, private smart

14

contracts. In 27th USENIX Security Symposium (USENIX Security
2018). USENIX Association, 2018.

[37] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-
Sanchez, and Arthur Gervais. Commit-chains: Secure, scalable off-chain
payments. Cryptology ePrint Archive, Report 2018/642, 2018.

[38] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In Security and Privacy (SP), 2016
IEEE Symposium on. IEEE, 2016.

[39] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation
with penalties. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, 2016.

[40] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin
to play decentralized poker. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015.

[41] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Va-
sudevan. Improvements to secure computation with penalties. In
Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security, 2016.

[42] Linaro, Inc. OP-TEE Documentation. https://readthedocs.org/projects/
optee/downloads/pdf/latest/, 2020.

[43] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Peter Pietzuch, and
Emin Gün Sirer. Teechain: Reducing storage costs on the blockchain
with offline payment channels. In Proceedings of the 11th ACM
International Systems and Storage Conference, pages 125–125, 2018.

[44] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. ARMageddon: Cache attacks on mobile devices. In
25th USENIX Security Symposium (USENIX Security 16), 2016.

[45] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David
Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun. ROTE:
Rollback protection for trusted execution. In 26th USENIX Security
Symposium (USENIX Security 17), 2017.

[46] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry.
Sprites: Payment channels that go faster than lightning. CoRR,
abs/1702.05812, 2017.

[47] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Technical report, 2008.

[48] Offchain Labs, Inc. Arbitrum rollup: Off-chain contracts with on-chain
security. 2020.

[49] Gustavo A Oliva, Ahmed E Hassan, and Zhen Ming Jack Jiang.
An exploratory study of smart contracts in the Ethereum blockchain
platform. Empirical Software Engineering, 2020.

[50] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for
attested execution secure processors. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 2017.

[51] Travis Patron. What’s the big idea behind Ethereum’s world com-
puter. https://www.coindesk.com/whats-big-idea-behind-ethereums-
world-computer/, 2016.

[52] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart
contracts. 2017.

[53] PUC-Rio. The programming language Lua. https://www.lua.org/, 2020.
[54] Sajjad Rahnama, Suyash Gupta, Thamir M Qadah, Jelle Hellings, and

Mohammad Sadoghi. Scalable, resilient, and configurable permissioned
blockchain fabric. Proceedings of the VLDB Endowment, 13(12), 2020.

[55] Andrey Sergeenkov. How to check your ethereum transac-
tion. https://www.coindesk.com/learn/how-to-check-your-ethereum-
transaction/. Accessed 24-08-2022.

[56] AMD SEV-SNP. Strengthening vm isolation with integrity protection
and more. White Paper, January, 2020.

[57] Jason Teutsch and Christian Reitwießner. A scalable verification
solution for blockchains. CoRR, abs/1908.04756, 2019.

[58] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 2014.

[59] Karl Wüst, Loris Diana, Kari Kostiainen, Ghassan Karame, Sinisa
Matetic, and Srdjan Capkun. Bitcontracts: Adding expressive smart
contracts to legacy cryptocurrencies. 2019.

[60] Karl Wüst, Sinisa Matetic, Silvan Egli, Kari Kostiainen, and Srdjan
Capkun. ACE: asynchronous and concurrent execution of complex
smart contracts. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020.

[61] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. Slimchain: scaling
blockchain transactions through off-chain storage and parallel process-
ing. Proceedings of the VLDB Endowment, 14(11):2314–2326, 2021.

[62] Yann LeCun and Corinna Cortes and Christopher J.C. Burges. THE
MNIST DATABASE. http://yann.lecun.com/exdb/mnist/, 2020.

[63] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine
Shi. Town crier: An authenticated data feed for smart contracts. In
Proceedings of the 2016 aCM sIGSAC conference on computer and
communications security, pages 270–282, 2016.

[64] Fan Zhang, Philip Daian, Iddo Bentov, and Ari Juels. Paralysis proofs:
Safe access-structure updates for cryptocurrencies and more. IACR
Cryptol. ePrint Arch., 2018:96, 2018.

APPENDIX

A. Protocol Security

We analyze the security of our protocol under the as-
sumption of an IND-CPA secure encryption scheme, an EU-
CMA secure signature scheme and a collision resistant hash
function in the following. We present definitions of correctness,
ε-liveness and state privacy.

1) Correctness: We define a state update as the evaluation
of a transition function f , which receives as inputs a user U ,
a user input move and a copy of the blockchain BC. The
correctness property states that each state update evaluates the
transition function as defined by the contract code with valid
inputs, i.e., U is the (potentially malicious) client triggering
the transition, move the input of U and BC a valid copy of
the blockchain that is at most τoff

slack behind the main chain.

Claim 1 (Correctness): POSE satisfies correctness.

We first note that according to our adversary model, a
corrupted operator may delete any message intended for her
enclave or generated from her enclave. However, the correct
execution of the POSE program inside the enclave cannot
be influenced. When an operator creates a POSE enclave,
the registration process ensures that the new enclave indeed
runs the POSE program. To this end, our protocol utilizes
the TEE attestation mechanism, which generates a verifiable
statement that the enclave is running a specific program. Upon
registration with the manager M , M checks the validity of
the attestation statement as well as the blockchain evidence,
the signed hash and number of the latest block known to
the enclave. M only registers the enclave in the system if
the new enclave is running the POSE program and is not
further behind than maximally τoff

slack . Finally, the TEE integrity
and confidentiality guarantees ensure that a malicious operator
cannot modify the enclave’s code, tamper with its state or
access its private data, in particular, its signature keys.

During the creation of a contract, the pool enclaves attest
the code of the installed contract to the creation enclave. The
creator checks that the code is consistent with the hash stored
in the manager before signing a creation confirmation. Hence,
it is not possible, without breaking the EU-CMA security of
the signature scheme or the collision resistance of the hash
function, to create a valid creation confirmation for a contract
with different code than specified by the creation request.

15

Next, contract state updates can only be triggered by
invoking the executor enclave with an execution request or
invoking a watchdog enclave with an update request. The
correctness of the latter is reduced to the correctness of the
former. To see this, we observe that any update request to
a watchdog enclave requires to be signed by the executor
enclave. Clearly, the executor enclave only signs updates
corresponding to its own executions. Therefore, an adversary
cannot forge incorrect update request without breaking the
unforgeability of the signature scheme. Also, the executor
enclave can only issue a new state update if all watchdogs
confirmed the previous one. Hence, it is not possible to tamper
with the order in which the update requests are provided
to a watchdog enclave. As stated before, the TEE integrity
guarantees ensure the correct execution of the program code
and hence the correct execution of the smart contract. It follows
that a state update can only be achieved by providing inputs to
the executor enclave. The executor enclave receives a signed
message containing the action move from user U and the
relevant blockchain data from its operator. In Section V-D,
we describe how our protocol achieves secure synchronization
between the executor enclave and the blockchain. In particular,
the synchronization mechanism ensures that the blockchain
data accepted by an enclave is correct and complete in regard
to a correct blockchain copy that is at most τoff

slack behind
the main chain. This guarantees that BC, represented by the
received blockchain data, is a synchronized copy of the current
blockchain. In order to protect inputs by honest users U , move
needs to be signed by U . This means an adversary cannot
tamper with the input without breaking the signature scheme.

Finally, we note that each POSE enclave maintains a list
of received messages. Since an honest user randomly selects a
fresh nonce for each execution request, replay attacks can be
detected and prevented by any executor enclave.

2) Liveness: The liveness property states that every con-
tract execution initiated by an honest user U will eventually be
processed with high probability. For a successful execution, a
valid execution response is given by the executor. Unsuccessful
execution can only happen in case of a contract crash. In
this event, the contract execution halts and neither honest nor
malicious users can perform successful contract executions
anymore. We emphasize that the pool size can be set such that
crashes happen only with negligible probability. In particular,
for ε-liveness, the probability of a crash is bounded by 1− ε.
Claim 2 (ε-Liveness): Let n be the total number of enclaves in
the system, m be the number of malicious operators’ enclaves
and s be the contract pool size. POSE satisfies ε-liveness for
ε = 1−Πs−1

i=0 (m−in−i) > 1− (mn)s.

Whenever user U sends an execution request to the execu-
tor enclave EE , U either directly receives a response or U chal-
lenges EE via the manager M . If EE does not respond within
some predefined timeout, it will be kicked out of the execution
pool and one of the watchdog enclaves takes over the executor
role. User U can now trigger the execution again by interacting
with the new executor enclave. During execution, the executor
enclave EE requires confirmations from all watchdog enclaves
in order to produce a valid result. However, watchdog enclaves
cannot stall the execution forever, as EE is able to challenge
them via the manager. All unresponsive watchdog enclaves will

be kicked out of the execution pool—the confirmations from
the remaining watchdogs suffice to create a result. We stress
that all timeouts are defined in Appendix D with great care to
ensure that honest operators have enough time to respond. For
example, the timeout for the executor challenge is sufficient to
allow the executor enclave to challenge the watchdog enclaves
twice; once for a currently running off-chain execution and
once for the challenged on-chain execution. Although POSE
guarantees that honest operators’ enclaves will never be kicked,
there is a small probability that an execution pool consists only
of malicious operators’ enclaves. If all enclaves are kicked
out of the execution pool, the contract execution crashes.
Let n be the number of total registered enclaves, m denote
the number of enclaves controlled by malicious operators,
and s the execution pool size. The probability of a crash
is equal to the probability that only malicious operators’
enclaves are within an execution pool. This is bounded by
ε = 1 − Πs−1

i=0 (m−in−i) > 1 − (mn)s. Hence, POSE achieves
ε-liveness.

Assuming a total of n = 100 registered enclaves and
m = 70 of them are controlled by malicious operators. Even
in this setting with a large share of malicious operators, POSE
achieves liveness with ε > 92% for a pool size of just 7. If
only half of the operators are malicious, i.e., m = 50, POSE
achieves liveness with ε > 99% for the same pool size of
7. For m = 10 malicious operators, a pool size of only 3
yields a liveness with ε > 99%. For the same scenario of
10% malicious operators and assuming 40 millions contracts
running in POSE , the pool size of 11 results in a probability of
more than 99% that there is no crash at all in the whole system.
See Fig. 5 for an illustration of the probability of no crashes
depending on the number of contracts for different pool sizes.

3) State Privacy: The state privacy property says that the
adversary cannot obtain additional information about a contract
state besides what she learns from the results of contract
executions alone.

Claim 3 (State Privacy): POSE satisfies state privacy.

The smart contract’s state is maintained by the enclaves
within the execution pool. According to our adversary model
(see Section II), the TEE provides confidentiality guarantees,
i.e., the execution of an enclave does not leak any data. Hence,
the smart contract’s state is hidden from the adversary, even
if the enclave’s operator is corrupted. The only point in time
when information about the contract’s state is revealed is at
the end of the execution protocol. However, the data provided
as a result contains only public state and hence does not reveal
anything about the private state. During the execution protocol,
the executor enclave propagates the new state to all watchdog
enclaves. However, the transferred data is encrypted using
an IND-CPA secure encryption scheme. The security of the
scheme guarantees that an adversary seeing the message cannot
extract information from it. While an enclave only publishes
outputs after successful executions, we need to show that each
produced output is final. In particular, a succeeding executor
must not be able to revert to a state in which a published output
should not have been produced. To this end, the state of the
executor enclave producing a particular output needs to be
replicated among all other enclaves before revealing the actual
output. This property is achieved by the state propagation

16

mechanism of POSE . An enclave only returns an output
if all enclaves in the pool confirm the corresponding state
update. The EU-CMA secure signature scheme guarantees
unforgeability of the confirmations. Hence, each confirmation
guarantees that the corresponding enclave has updated its state
correctly. Further, the correctness property of our protocol (cf.
Section A1) ensures an enclave is always executed with a
correct blockchain copy; thus, is always aware of the correct
pool composition. This means an output can only be returned
if the whole pool received the corresponding state update.

B. Supported Contracts

POSE supports contracts with a dynamic set of users of
arbitrary size and an unrestricted lifetime. The timeouts need to
be set reasonable with respect to the expected execution time of
the contracts to allow the execution of complex contracts and to
prevent denial of service attacks at the same time. Interaction
between POSE contracts can be realized by letting the TEE of
the calling contract instruct its operator to request an execution
of the second contract via the respective executive operator
and wait for the response. We deem the exact specification,
e.g., enforce an upper bound on (potentially recursive) external
calls to guarantee timely request termination, an engineering
effort. Calls from POSE contracts to on-chain contracts can be
supported similarly to our payout concept (Appendix E).

C. Further Protocol Blocks

To keep the specification of the POSE protocol in the main
body simple and compact, we have excluded the formal spec-
ification of the creation process and the validation algorithms.
In this section, we present the validation algorithms. For the
formal specification of the creation process, we refer the reader
to the full version of the paper [31].

All of the different messages sent to the manager through-
out the protocol need to be validated with several checks. In
order to keep the description compact, we did not include the
validation steps in the protocol figures but extracted them into
a validation algorithm specified in Program 3. The algorithm is
invoked with an counter specifying the checks that should be
performed, an optional message that should be checked and the
contract state tuple maintained by the manager. The validation
returns ok if all requirements are satisfied and M can continue
executing and bad if M should discard the received request.

D. Timeouts

Our protocol incorporates several timeouts δ∗off , which
define until when an honest user or operator expects a response
to a request, and δ∗on , which define until when the manager
expects a response to a challenge. These timeouts have to be
selected carefully s.t. each honest party has the chance to an-
swer each message and challenge before the respective timeout
expires. In this section, we elaborate on the requirements on
the timeouts. We neglect message transmission delays and also
assume that each challenge sent to the manager will directly
be received by all operators (already before it is included
into a final block)7. We recall the maximum blockchain delay
which is defined as δBC = α · τ (cf. II and IV). The off-chain

7We could also add twice the max. message delay to each off-chain timeout
and the blockchain confirmation time ∆ = τ · γ to each on-chain timeout.

Program 3: Algorithm Validate

The validation algorithm performs the following checks. If input
C = ⊥, the parsing of a message fails or any require is not
satisfied, the algorithm outputs bad. Otherwise, it outputs ok.
• On input (1,m;C), parse m to (execute, id , ·, ·;U). Require

that C.creator = ⊥, C.c1Time = ⊥ and Verify(m) = ok.
• On input (2, res;C), parse res to (ok, id , ·, h;T). Require that
C.creator = ⊥, H(C.c1Msg) = h,
C.c1Time + δ1on > BC.now , Verify(res) = ok and
C.pool [0] = T .

• On input (3;C), require that C 6= ⊥, C.creator = ⊥,
Cc1Msg 6= ⊥ and C.c1Time + δ1on ≤ BC.now .

• On input (4, pre;C), parse pre to (update, id , c, h;T).
Require that C.creator = ⊥, C.c2Time = ⊥, C.pool [0] = T
and Verify(pre) = ok.

• On input (5, conf ;C), parse conf to (confirm, id , h;Ti) and
C.c2Msg to (·, ·, ·, h′; ·). Require that C.creator = ⊥,
C.c2Time + δ2on > BC.now , Verify(conf) = ok, h = h′ and
T ∈ C.pool .

• On input (6;C), require that C.creator = ⊥, C.c2Time 6= ⊥
and C.c2Time + δ2on ≤ BC.now .

propagation timeout δ2off describes the time an execution or
creation operator maximally waits for a confirmation from the
(other) pool members. It needs to be larger than the maximal
update respectively installation time of a contract. Timeout
δ2on ≥ δ2off + δBC describes the maximal time after which M
expects a response to any watchdog challenge, either during
creation or execution. The off-chain execution timeout δ1off
describes the maximal time a user waits for a response to
an execution request. Note that there might be a running
execution and both running and new execution might require
a watchdog challenge. In case watchdogs are dropped in the
process of such a challenge, the executor needs to be able
to notify its enclave about the new pool constellation, and
hence, wait until the finalization of the challenge is within
a final block. This takes additional time ∆ = τ · γ (cf. IV).
Hence, δ1off needs to be high enough to enable the challenged
executor to perform two contract executions and run two
watchdog challenges each taking up to time δ2on + δBC + ∆.
We elaborate on maximal execution, update, and installation
times of contracts in Section V-F. Finally, δ1on ≥ δ1off + δBC
defines the maximal time after which M expects a response
to an execution challenge. As the creation is comparable to
the execution, we set the timeouts for off-chain creation and
creation-challenge accordingly. The timeouts are the upper
bound of the delay that can be enforced by malicious operators
by withholding messages. To decrease the delays in practice,
our implementation incorporates dynamic timeouts. Such a
timeout is initially set to match an optimistic scenario where
all operators answer directly. Only if the executor signals that
a watchdog is not responding, the timeout is increased. For
example, δ1on is initially set by the manager just high enough to
allow the executor to perform the execution offline and to send
one on-chain transaction. This on-chain transaction is either the
response or a watchdog challenge. In case the executor creates
a watchdog challenge, this triggers the manager to increase
the δ1on timeout for the executor. Similarly, the timeout δ1on is
increased by the manager if any watchdog is not responding
and the executor sends a transaction that kicks this watchdog.
The increased timeout allows the executor to provide the
kick transaction together with enough confirmation blocks to

17

its enclave to finalize the execution. This dynamic timeout
mechanism still allows the executor to respond in time even
if a watchdog is not responding, but at the same prevents
the executor to stall execution to the maximum although the
watchdogs have already responded. While the executor still
can create a watchdog challenge to increase the delay, this
attack is costly as the executor needs to pay for the on-
chain transaction. The value of the off-chain timeout δ1off
is handled similarly. The client only needs to account for
watchdog challenges in the previous execution if there is a
running on-chain challenge. If there are no running challenges,
a client can decrease δ1off to δBC plus two times the time for
the TEE to execute and update a contract. If the executor is
unresponsive, the client submits its executor challenge much
earlier. We give a concrete evaluation for the case of Ethereum,
as this is the platform on which our implementation works. Let
α = 20 be the number of blocks until a transaction is included
in the blockchain in the worst case, and αavg = 10 in the
average case. Further, we consider the block creation time to
be τ = 44s per block in the worst case and τavg = 15s in
the average case8. Finally, we assume that blocks are final,
when they are confirmed by γ = 15 successive blocks. Since
the network delay and the computation time of enclaves are at
most just a few seconds, which is insignificant compared to the
time it requires to post on-chain transactions, we neglect these
numbers for simplicity in the following example. In case the
executor (resp. a watchdog) is not responding, it is challenged
by the the client (resp. the executor). The creation of such a
challenge takes αavg ·τavg = 150s on average. In what follows,
due to the dynamic timeout mechanism, the on-chain timeout
for both, executor challenge (δ1on) and watchdog challenge
(δ2on), is initially set to α · τ = 880s. For on-chain timeouts,
we need to consider the worst-case parameters to allow honest
operators to respond timely in every situation. While a dis-
honest operator can delay up to the defined timeout, an honest
operator responds, and hence, finalizes the challenge in 150s
on average. In case the challenged operator gets kicked, the
(next) executor enclave needs to provide the kick transaction
together with enough confirmation blocks to its enclave to
finalize the execution. This takes (αavg + γ) · τavg = 375s
on average. For executor challenges, it can happen that the
executor submits a watchdog challenge during the timeout
period. In this case, which can happen at most twice, the
timeout is increased by 880s. If the challenged watchdog
does not reply, and consequently is kicked from the pool, the
timeout is increased by (α+ γ) · τ = 1 540s. Note, this worst
case is very costly to provoke, and in the general case, an
honest executor can finalize the kick of the watchdog in 375s.

E. Coin Flow

The POSE protocol supports the off-chain execution of
smart contracts that deal with coins, e.g., games with monetary
stakes. To this end, we provide means to send coins to and
receive coins from a contract. In this section, we explain the
mechanisms that enable the transfer of money and the intended
coin flow of POSE contracts. In order to deposit money to a

8For setting α and αavg , we consider a transaction to be included into the
blockchain after at most 20 resp. 10 blocks according to [55]. To determine
τ , we analyzed the Ethereum history via Google-BigQuery and identified that
since 2018 every interval of 20 blocks took at most 44s per block. For τavg , we
take the avg. parameter for Ethereum (cf. https://etherscan.io/chart/blocktime).

Fig. 5. Cumulative probabilities of no contracts crashing w. large number of
POSE contracts for different pool sizes s and adversary shares m, “s/m”.

POSE contract, identified by id , a user U sends a message
(deposit, id , amount ;U) with amount coins to M . Upon
receiving a deposit message, M checks whether a contract
with identifier id exists and validates the signature, i.e.,
M id 6= ⊥ and Verify(deposit, id , amount ;U) = ok. If the
checks hold, M increases the contract balance M id .balance
by amount . As deposits are part of blockchain data that are
provided by the operator to an enclave (cf. V-D) and the
enclave forwards the data to the nextState function of the
contract Cid , U is ensure that Cid processes the deposit once
the corresponding block is final. However, it is upon to the ap-
plication logic to decide how deposits are processed. A contract
C can transfer coins to users by outputting withdrawals as part
of the public state. It is upon the application logic to decide
how and when coins are transferred to the users. For example,
a game can issue withdrawals once the winner has been
determined or leave the coins locked for another round unless a
user explicitly requests a withdrawal via a contract execution.
However, once a withdrawal has been issued, the coins are
irreversible transferred. Technically, contract C with identifier
id maintains a list of all unspent withdrawals {amount i, Ui}
and a counter payouts for the number of spent payouts. Each
public state returned by C contains a payout, a signed message
m := (withdraw, id , payouts, {amount i, Ui}; EE) where EE
is the executor enclave of the contract. This message can be
sent to M to spent all withdrawals within the payout. M
checks the validity of the payout, i.e., Verify(m) = ok, EE =
M id .pool [0], and payouts = M id .payouts . If the checks hold,
M transfers coins to the users according to the withdrawal list
{amount i, Ui}. Finally, M sets M id .payouts := payouts + 1
and M id .balance := M id .balance − sum , where sum is
the sum of all withdrawals. Once C processes a final block
with a payout transaction, it updates its list of unspent with-
drawals {amount i, Ui} accordingly and increments payouts
by 1.This mechanism ensures that a malicious user can neither
double spent withdrawals nor prevent an honest user from
withdrawing his coins—as long as the contract remains live.
Note that for each value of payouts , only one payout can be
submitted successfully, and a contract only issues a payout
for the next value of payouts once it has processed a final
block containing the current value of payouts . As the contract
removes already spent withdrawals from the list, double-
spending of any withdrawal is prevented. Although a payout
temporarily invalidates all other payouts for the same payouts ,
and hence, might invalidate same withdrawals, the unspent
withdrawals will be included in each payout of the incremented
payouts and spent with the next payout submission.

18

F. Prisma : A Tierless Language for
Enforcing Contract-client
Protocols in Decentralized
Applications

This chapter corresponds to the following publication. The full version is available

at [153].

[152] D. Richter, D. Kretzler, P. Weisenburger, G. Salvaneschi, S. Faust, and M. Mezini.

“Prisma : A Tierless Language for Enforcing Contract-client Protocols in Decen-

tralized Applications”. In: ACM Trans. Program. Lang. Syst. 3 (2023), 17:1–

17:41. Part of this thesis.

218

1

Prisma: A Tierless Language for Enforcing Contract-Client
Protocols in Decentralized Applications

DAVID RICHTER and DAVID KRETZLER, Technical University of Darmstadt, Germany
PASCAL WEISENBURGER and GUIDO SALVANESCHI, University of St. Gallen, Switzerland
SEBASTIAN FAUST and MIRA MEZINI, Technical University of Darmstadt, Germany

Decentralized applications (dApps) consist of smart contracts that run on blockchains and clients that model
collaborating parties. dApps are used to model financial and legal business functionality. Today, contracts
and clients are written as separate programs – in different programming languages – communicating via
send and receive operations. This makes distributed program flow awkward to express and reason about,
increasing the potential for mismatches in the client-contract interface, which can be exploited by malicious
clients, potentially leading to huge financial losses.

In this paper, we present Prisma, a language for tierless decentralized applications, where the contract and
its clients are defined in one unit and pairs of send and receive actions that “belong together” are encapsulated
into a single direct-style operation, which is executed differently by sending and receiving parties. This enables
expressing distributed program flow via standard control flow and renders mismatching communication
impossible. We prove formally that our compiler preserves program behavior in presence of an attacker
controlling the client code. We systematically compare Prisma with mainstream and advanced programming
models for dApps and provide empirical evidence for its expressiveness and performance.

CCS Concepts: • Software and its engineering→Distributed programming languages; Domain specific
languages; Compilers.

Additional Key Words and Phrases: Domain Specific Languages, Smart Contracts, Scala

ACM Reference Format:
David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini.
2022. Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications.
ACM Trans. Program. Lang. Syst. 1, ECOOP, Article 1 (January 2022), 44 pages.

1 INTRODUCTION
dApps enable multiple parties sharing state to jointly execute functionality according to a predefined
agreement. This predefined agreement is called a smart contract and regulates the interaction
between the dApp’s clients. Such client–contract interactions can be logically described by state
machines [55, 56, 79, 84] specifying which party is allowed to do what and when.

dApps can operate without centralized trusted intermediaries by relying on a blockchain and its
consensus protocol. To this end, a contract is deployed to and executed on the blockchain, which
guarantees its correct execution; clients that run outside of the blockchain can interact with the
contract via transactions. A key feature of dApps is that they can directly link application logic with
transfer of monetary assets. This enables a wide range of correctness/security-sensitive business

Authors’ addresses: David Richter, david.richter@tu-darmstadt.de; David Kretzler, david.kretzler@tu-darmstadt.de, Techni-
cal University of Darmstadt, Hochschulstr. 10, 2052, 64289, Germany; Pascal Weisenburger, pascal.weisenburger@unisg.ch;
Guido Salvaneschi, guido.salvaneschi@unisg.ch, University of St. Gallen, Torstrasse 25, 9000, St. Gallen, Switzerland;
Sebastian Faust, sebastian.faust@tu-darmstadt.de; Mira Mezini, mezini@informatik.tu-darmstadt.de, Technical University
of Darmstadt, Pankratiusstraße 2, 2052, 64289, Germany.

2022. 0164-0925/2022/1-ART1 $15.00
https://doi.org/

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:2 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

applications, e.g., for cryptocurrencies, crowdfunding, and public offerings,1 and the same feature
makes them an attractive target for attackers. The attack surface is wide since contracts can be
called by any client in the network, including malicious ones that try to force the contract to deviate
from the intended behavior [36]. In recent years, there have been several large attacks exploiting
flawed program flow control in smart contracts. Most famously, attackers managed to steal around
50M USD [23, 36] from a decentralized autonomous organization, the DAO. In two attacks on
the Parity multi-signature wallet, attackers stole cryptocurrencies worth 30M USD [12] and froze
150M USD [65].

Programming dApps. In this paper, we explore a programming model that ensures the correctness
and security of the client–contract interaction of dApps by-design. Deviations from the intended
interaction protocols due to implementation errors and/or malicious attacks are a critical threat
(besides other issues such as arithmetic or buffer overflows, etc.) as demonstrated e.g., by the DAO
attack [23, 36] mentioned above.
dApps are multi-party applications. For such applications, there are two options for the pro-

gramming model: a local and a global model. In a local model, parties are defined each in a separate
local program and their interactions are encoded via effectful send and receive instructions. Ap-
proaches that follow this model stem from process calculi [46] and include actor systems [2] and
approaches using session types [27], and linear logic [86]. In contrast, in a global model, there
is a single program shared by both parties and interactions are encoded via combined send-and-
receive operations with no effects visible to the outside world. This model is represented by
tierless [16, 22, 38, 69, 70, 80, 81, 87] and choreographic [40, 47, 59] languages. The local model
requires an explicitly specified protocol to ensure that every send effect has a corresponding receive
operation in an interacting – separately defined – process. With a global model, there is no need to
separately specify such a protocol. All parties run the same program in lock-step, where a single
send-and-receive operation performs a send when executed by one party and a receive by the other
party. Due to encapsulating communication effects, there is no non-local information to track – the
program’s control flow defines the correct interaction and a simple type system is sufficient.

Current approaches to dApp programming – industrial or research ones – follow a local model,
Contract and client are implemented in separate programs, thus safety relies on explicitly specifying
the client–contract interaction protocol. Moreover, the contract and clients are implemented in
different languages, hence, developers have to master two technology stacks.

The dominating approach in industry uses Solidity [58] for the contract and JavaScript for clients.
Solidity relies on developers following best practices recommending to express the protocol as
runtime assertions integrated into the contract code [33]. Failing to correctly introduce assertions
may give parties illegal access to monetary values to the detriment of others [52, 60].
The currently dominant encoding style of the protocol as finite state machine (FSM) uses one

contract-side function per FSM transition [18–20, 58, 75, 76]. While FSMs model a useful class
of programs that can be efficiently verified, writing programs in such style directly has several
shortcomings. First, an FSM corresponds to a control-flow graph of basic blocks, which is low-level
and more suited as an internal compiler representation than as a front-end language for humans.
Second, with the FSM style, the contract is a passive entity whose execution is driven by clients.
This design puts the burden of enforcing the protocol on the programmers of the contract, as they
have to explicitly consider in what state which messages are valid and reject all invalid messages
from the clients. Otherwise, malicious clients would be able to force the contract to deviate from

1700 K to 2.7M contracts have been deployed per month between July 2020 and June 2021 [43] on the Ethereum blockchain –
the most popular dApps platform [24]. Some dApps manage tremendous amounts of assets, e.g., Uniswap [85] – the largest
Ethereum trading platform had a daily trading volume of 0.5 B – 1.5 B USD in June 2021.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:3

its intended behavior by sending messages that are invalid in the current state. Third, ensuring
protocol compliance statically to guarantee safety requires advanced types, as the type of the next
action depends on the current state.
In research, some smart contract languages [9, 18–20, 25, 61, 75, 76] have been proposed to

overcome the FSM-style shortcomings. They rely on advanced type systems such as session types,
type states, and linear types. There, processes are typed by the protocol (of side-effects such as
sending and receiving) that they follow and non-compliant processes are rejected by the type-
checker.
The global model has not been explored for dApp programming – which is unfortunate given

the potential to get by with a standard typing discipline and to avoid intricacies and potential
mismatches of a two-language stack. Our work fills this gap by proposing Prisma – the first language
that features a global programming model for Ethereum dApps. While we focus on the Ethereum
blockchain, we believe our techniques to be applicable to other smart contract platforms as well.

Prisma. Prisma enables interleaving contract and client logic within the same program and
adopts a direct style (DS) notation for encoding send-and-receive operations akin to languages with
baked-in support for asynchronous interactions, e.g., via async/await [8, 73]. Prisma leaves it to
the compiler to map down high-level declarative DS to low-level FSM style. It avoids the need for
advanced typing discipline and allows the contract to actively ask clients for input, promoting an
execution model where a dominant acting role controls the execution and diverts control to other
parties when their input is needed, which matches well the dApp setting.

Overall, Prisma relieves the developer from the responsibility of correctly managing distributed,
asynchronous program flows and the heterogeneous technology stack. Instead, the burden is on the
compiler, which distributes the program flow bymeans of selective continuation-passing-style (CPS)
translation and defunctionalisation, as well as inserts guards against malicious client interactions.

For this, we needed to develop a CPS translation for the code that runs on the Ethereum Virtual
Machine (EVM), since the EVM has no built-in support for concurrency primitives to suspend
execution and resume later – which could be used, otherwise, to implement asynchronous com-
munication. Given that CPS translations reify control flow, without proper guarding, malicious
clients could force the contract to deviate from the intended flow by passing a spoofed value to the
contract. Thus, it is imperative to prove that our distributed CPS translation ensures control-flow
integrity of the contract, which we do on top of a formal definition of the compilation steps. The
formally proven secure Prisma compiler eliminates the risk of programmers implementing unsafe
interactions that can potentially be exploited.

Contributions. We make the following contributions:
(1) We introduce Prisma,2 a global language for tierless dApps with direct-style client–contract

interactions and explicit access control, implemented as an embedded DSL in Scala. Crucially,
Prisma automatically enforces the correct program flow (Section 2).

(2) A core calculus, MiniPrisma, which formalizes both Prisma and its compiler, as well as a
proof that our compiler guarantees the preservation of control flow in presence of an attacker
that controls the client code (Section 3).

(3) Case studies which show that Prisma can be used to implement common applications without
prohibitive performance overhead (Section 5).

(4) A comparison of Prisma with a session type and a type state smart contract programming
language and the mainstream Solidity/JavaScript programming model (Section 6).

2Prisma implementation and case studies are publicly available: https://github.com/stg-tud/prisma

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:4 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

T0 T1

T2T3

Fund(𝑐)

Fund(𝑐)

Move(𝑥, 𝑦)

Move(𝑥, 𝑦)

Payout()

Payout() Payout()

Fig. 1. TicTacToe control flow.

Table 2. Location annotations.

Annotations Description

@co on contract
@cl on clients

@co @cl independent copies
on clients and contract

@co @cross on contract, but also
accessible by client

@cl @cross (illegal combination)

1 @prisma object TicTacToeModule {

2
3 @co @cl case class UU(x: U8, y: U8)

4
5 class TicTacToe(

6 val players: Arr[Address],

7 val fundingGoal: Uint) {

8
9 // u8 is an unsigned 8-bit integer

10 @co @cross var moves: U8 = "0".u8

11 @co @cross var winner: U8 = "0".u8

12 @co @cross val board: Arr[Arr[U8]] =

13 Arr.ofDim("3".u, "3".u)

14
15 @co def performMove(x: U8, y: U8): Unit =

16 { /* ... */ }

17 @cl def updateBoard(): Unit =

18 { /* ... */ }

19 @cl def fund(): (U256, Unit) =

20 (readLine("How much?").u, ())

21 @cl def move(): (U256, UU) =

22 ("0".u, UU(readLine("x-pos?"),

23 readLine("y-pos?"))

24 @cl def payout(): (U256, Unit) = {

25 readLine("Press (enter) for payout")

26 ("0".u, ())

27 }

28 @co val init: Unit = {

29 while (balance() < FUNDING_GOAL) {

30 awaitCl(_ => true) { fund() }

31 }

32 while (moves < "9".u && winner == "0".u) {

33 val pair: UU = awaitCl(a =>

34 a == players(moves % "2".u)) { move() }

35 performMove(pair.x, pair.y)

36 }

37 awaitCl(a => true) { payout() }

38 if (winner != "0".u) {

39 players(winner - "1".u).transfer(balance())

40 } else {

41 players("0".u).transfer(balance() / "2".u)

42 players("1".u).transfer(balance()) // remainder

43 }

44 }

45 }

46 }

Fig. 3. TicTacToe dApp.

2 PRISMA IN A NUTSHELL
We present Prisma by the example of a TicTacToe game, demonstrating that client and contract are
written in a single language, where protocols are expressed by control flow (instead of relying on
advanced typing disciplines) and enforced by the compiler.

Example. TicTacToe is a two-player game over a 3 × 3 board. Players take turns in writing their
sign into one of the free fields until all fields are occupied, or one player wins by owning three
fields in any row, column, or diagonal. The main transaction of a TicTacToe dApp is Move(x,y) used
by a player to occupy field (x,y). A Move(x,y) is valid if it is the sender’s turn and (x,y) is empty.
Before the game, players deposit their stakes, and after the game, the stakes are paid to the winner.

Fig. 1 depicts possible control flows with transitions labeled by client actions that trigger them.
Black arrows depict intended control flows. The dApp starts in the funding state where both parties
deposit stakes via Fund(𝑐). Next, parties execute Move(𝑥,𝑦) until one party wins or the game ends

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:5

in a draw. Finally, any party can invoke a payout of the stakes via Payout().3 Red dashed arrows
illustrate the effects of a mismanaged control flow: a malicious player could trigger a premature
payout preventing the counterpart to get financial gains.

Tierless dApps. Prisma is implemented as a DSL embedded into Scala, and Prisma programs are
also valid Scala programs.4 Prisma interleaves contract and client logic within the same program.
Annotations @co and @cl explicitly place declarations on the contract and on the client, respectively
(cf. Tab. 2). A declaration marked as both @co and @cl has two copies. For security, code placed in one
location cannot access definitions from the other — an attempt to do so yields a compile-time error.
Developers can overrule this constraint to enable clients to read contract variables or call contract
functions by combining @co with @cross. Combining @cl with @cross is not allowed – information can
only flow from client to contract as part of a client–contract interaction protocol.
There are three kinds of classes. Located classes are placed in one location (annotated with

either @co or @cl); they cannot contain located members (annotated with either @co or @cl) and their
instances cannot cross the client–contract boundary, e.g., be passed to or returned from @cross

functions. Portable classes are annotated with both @co and @cl. Their instances can be passed to and
returned from @cross functions; they must not contain mutable fields. Split classes have no location
annotation; their instances live partly in both locations; they cannot be passed to or returned from
@cross functions and their members must be located.

Prisma code is grouped into modules. While client declarations can use and be used from standard
(non-Prisma) Scala code, contract declarations are not accessible from Scala, and can only reference
contract code from other Prisma modules (because contract/client code lives in different VMs).
For illustration, consider the TicTacToe dApp (Fig. 3). The TicTacToeModule (Line 1) – modules

are called object in Scala – contains a portable class UU (Line 3) and a split class TicTacToe (Line 5).
Variables moves, winner, board (Lines 10, 11, 13) are placed on the contract and can be read by clients
(@co @cross). The updateBoard function (Line 17) is placed on the client and updates client state (e.g.,
client’s UI). The move function (Line 15) is placed on the contract and changes the game state (move).
move is not annotated with @cross, because @cross is intended for functions that do not change contract
state and can be executed out-of-order without tampering with the client–contract interaction
protocol. While Scala only has signed integers and signed longs literals, these are uncommon in
Ethereum. Therefore, Prisma provides portable unsigned and signed integers for power-of-two
bitsizes between 23 to 28, with common arithmetic operations, e.g., "0".u8 is an unsigned 8-bit
integer of value 0 (Line 10).

Encoding client–contract protocols. In Prisma, a client-contract protocol is encoded as a split
class containing dedicated awaitCl expressions for actively requesting and awaiting messages from
specific clients and standard control-flow constructs. Hence, creating a new contract instance
corresponds to creating a new instance of a protocol; once created, the contract instance actively
triggers interactions with clients. The awaitCl expressions have the following syntax:

def awaitCl[T](who: Addr => Bool)(body: => (Ether, T)): T

They take two arguments. The first (who) is a predicate used by clients to decide whether it is
their turn and by the contract to decide whether to accept a message from a client. This is unlike
Solidity, where a function may be called by any party by default. By forcing developers to explicitly
define access control, Prisma reduces the risk of human failure. The second argument (body) is the
expression to be executed by the client. The client returns a pair of values to the contract: the

3We omit handling timeouts on funding and execution for brevity.
4In Scala val/var definitions are used for mutable/immutable fields and variables, def for methods, class for classes, and
object for singletons. A case class is a class whose instances are compared by structure and not by reference.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:6 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

amount of Ether and the message. The former can be accessed by the contract via the built-in
expression value, the latter is returned by awaitCl. Besides receiving funds via awaitCl, a contract can
also check its current balance (balance()), and transfer funds to an account (account.transfer(amount))).

Prisma’s programming model is specifically designed to accommodate blockchain use cases. In
contrast to other tierless models like client-server, we emphasise inversion of control such that the
code is written as if the contract was the active driver of the protocol, while clients are passive and
only react to requests by the contract. This enables to enforce the protocol on the contract side. For
this reason, for example, we support the awaitCl construct on the active contract side whereas there
is no corresponding construct on the passive client side.

For illustration, consider the definition of init on the right-hand side of Fig. 3, Line 28. It defines the
protocol of TicTacToe as follows. From the beginning of init, the flow reaches awaitCl in Line 30 where
the contract waits for clients to provide funding (by calling fund). Next, the contract continues until
awaitCl in Line 33 and clients execute move (Line 21) until the game ends with a winner (winner != 0)
or a draw (moves >= 9). At this point – awaitCl in Line 37 – any party can request a payout and the
contract executes to the end. The example illustrates how direct-style awaitCl expressions and the
tierless model enable encoding multiparty protocols as standard control flow, with protocol phases
corresponding to basic blocks between awaitCl expressions.

Compiling Prisma to Solidity. Abstractly, Prisma’s compiler takes a Prisma dApp program and
splits it into two separate programs: A Scala client program and a Solidity contract program (Fig. 4a).
In more detail, the compiler (1) places all definitions according to their annotations and (2) splits
contract methods that contain awaitCl expressions into a method that contains the code up to the
awaitCl and a method that contains the continuation after the awaitCl (taking the result of the awaitCl

as an argument). Once deployed, a contract is public and can be messaged by arbitrary clients –
not exclusively the ones generated by Prisma – hence, we cannot assume that clients will actually
execute the body passed to them by an awaitCl expression. To cope with malicious clients trying to
tamper with the control flow of the contract, the compiler hardens contract code by generating
code to enforce control flow integrity: storing the current phase before giving control to the client
and rejecting methods invoked by wrong clients or in the wrong phase.
For illustration, the code generated from Fig. 3 is schematically shown in Fig. 4b and 4c. The

methods updateBoard, fund, move, and payout are annotated @cl and thus compiled into the client program
(Fig. 4b). The variables moves, winner and board, and the method performMove are annotated @co and thus
compiled into the contract program (Fig. 4c). Further, three new methods are generated on both
the client and the contract – one for each awaitCl expression in init – corresponding to phases in
the logical protocol (Fig. 1). The Funding method of the client (Line 16) is generated from the body
of the first awaitCl. Similarly, the Move method (Line 18) is generated from the second awaitCl and the
Payout method (Line 20) from the third awaitCl. In the example, the generated methods are given
meaningful names by capitalizing the single method called in the body of the awaitCl expressions
form which they were generated. In the actual implementation, generated methods are simply
enumerated. The code up to the first awaitCl (Line 30, Fig. 3) is placed in the constructor of the
generated contract, which ends by setting the active phase to Funding. The code between the first
and the second awaitCl either loops back to the first awaitCl or continues to the second one (Line 33).
The code is placed in the Fund method that requires the phase to be Funding, and may change it to
Exec if the loop condition fails. Similarly, the method Move is generated to contain the loop between
the second and the third awaitCl (Line 37); and the method Payout contains the code from the third
awaitCl to the end of init. Only the second awaitCl contains a (non-trivial) access control predicate,
which results in an additional assertion in the body of Move (Line 46, Fig. 4a). Observe that the

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:7

𝑃𝑟𝑖𝑠𝑚𝑎

[𝐶𝑜𝑚𝑝𝑖𝑙𝑒𝑟]

𝑆𝑐𝑎𝑙𝑎 𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦

(a) Compilation scheme

1 class TTT {

2
3 // @cl annotated definitions

4 def updateBoard(): Unit =

5 { /* ... */ }

6 def fund(): (U256, Unit) =

7 (readLine("How much?").u, ())

8 def move(): (U256, UU) =

9 ("0".u, UU(readLine("x-pos?"),

10 readLine("y-pos?"))

11 def payout(): (Ether, Unit) = {

12 readLine("Press (enter) for payout")

13 ("0".u, ()) }

14
15 // body of awaitCl expressions

16 def Fund(): (Ether, Unit) =

17 fund()

18 def Move(): (Ether, UU) =

19 move()

20 def Payout(): (Ether, Unit) =

21 payout()

22
23 /* ... */

24
25
26
27
28 }

(b) Scala client

29 contract TTT {

30 State phase = T0; enum State {T0, T1, T2, T3}

31
32 // @co annotated definitions

33 int moves = 0;

34 int winner = 0;

35 int[][] board;

36 function peformMove(int x, int y) private { /*...*/ }

37
38 // continuation of awaitCl expressions

39 function Fund() public {

40 require(phase == T0);

41 /*...*/;

42 if (!(balance < FUNDING_GOAL)) phase = T1;

43 /* else phase remains T0; this models the first while loop */

44 }

45 function Move(int x, int y) public {

46 require(phase == T1 && sender == players(moves % 2));

47 /*...*/;

48 if (!(moves < 9 && winner == 0)) phase = T2;

49 /* else phase remains T2; this models the second while loop */

50 }

51 function Payout() public {

52 require(phase == T2);

53 /*...*/;

54 phase = T3;

55 }

56 }

(c) Solidity contract

Fig. 4. TicTacToe dApp after compilation, simplified

return types of the generated client methods are the argument types of the corresponding contract
methods.

Compilation Techniques. While CPS is a key step in our translation pipeline, the example shows
the final defunctionalised, trampolined code. The final output does not contain explicit continuations
(i.e., a function that takes another function as an argument and calls that as its continuation). Instead,
after defunctionalizing and trampolinizing the CPS translation, only one top-level function (Fund,
Move, Payout) is callable at each phase, which is ensured by the require statement at the beginning of
each function, and each function sets the next phase at the end. These functions play the role of the
continuations.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:8 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

Let us look at the correspondence between the original Prisma code (Fig. 3) and the generated
Solidity code (Fig. 4c) from a higher-level perspective: To verify that the Prisma code matches the
generated Solidity code, we proceed as follows.

First, we verify that the control flow of Fig. 3 is accurately described by the automaton diagram
in Fig. 1. In particular, we observe that there are two loops in the automaton and there are also two
while loops in the Prisma code. Further, there are three awaitCl expressions in the code, and there
are three states in the automaton (plus a final state).
Second, we verify that the automaton in Fig. 3 corresponds to the program flow of the Solidity

code in Fig. 4c. In particular, we observe that there are four states in the automaton and there are
four states in the Solidity code. Three of those have an associated function (T0 is Fund, T1 is Move,
T2 is Payout), which are the only public functions that can be invoked in that state, thanks to the
require statements. In the final state T3, no public function can be invoked. Furthermore, we can
see that the automaton has two loops. It is possible to go from T0 either to T1 or stay in T0. This
is represented in the Solidity code, by checking for the loop condition at the end of the function
associated to T0, and then either changing the phase to T1, or doing nothing, which means staying
in T0. Similarly, the loop in state T1 is encoded with an if at the end of the function to conditionally
move to the next phase.

These two steps should illustrate how the control flow of the Prisma program –which is abstractly
visualized by the automaton – is implemented and enforced by the generated Solidity program.

3 COMPILATION AND ITS CORRECTNESS
We informally introduce Prisma’s compilation process and our notion of correctness before formally
specifying and proving the compiler correct.

3.1 High-level Overview of Prisma’s Secure Compilation
To implement the contract-client interaction, we CPS-translate Prisma code and execute con-
tinuations alternately between contract and client. A standard CPS translation is, however, not
sufficient because the control flow is distributed and we need to send function calls (i.e., the current
continuation) over the network – or, more specifically, send the name and the arguments of the
next function to execute. For this, we defunctionalise [71] the code to turn functions calls (which
represent continuations) into data. This compilation process performs an inversion of control be-
tween the contract and the client. With Prisma’s contract–client communication in direct style, we
can write dApps as if the contract was in control of the execution; Prisma allows the contract to
request messages from clients and to process only responses that it requested.
After the compilation process, clients are in control of the execution because, in blockchains,

contracts purely respond to messages from clients. As a result, dApps may become the target of
malicious attacks. In our security model, we trust the contract to execute the code that we generate
for it, whereas we consider the client code untrusted, i.e., the client side can run arbitrary code.
Crucially, it could pass unintended continuations to the contract to force the execution to continue
in an arbitrary state. For example, in the source code of the TicTacToe game (Section 2), one needs
to go through the game loop after funding and before payout. Yet, the compiled code is separated
and distributed into small chunks. Parties execute a chunk and then wait for other parties to decide
on a move that influences how to proceed with the execution. For this reason, the client could
send a message at any time telling the contract to go into the payout phase. We need to guard the
contract against such attempts to make it deviate from the protocol. Conceptually, if the client was
able to force the execution to continue in an arbitrary state, the control flow in the Prisma source
would be violated. Execution would ’jump’ from one client expression to another one skipping the
code in between, which is not possible with the semantics of the source language.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:9

source target

Terms Termt

Traces Tracet

Trace∗s Trace∗t

𝑐𝑜𝑚𝑝𝑖𝑙𝑒

𝑒𝑣𝑎𝑙𝑠

𝑒𝑣𝑎𝑙𝑠,𝑏

𝑒𝑣𝑎𝑙𝑡

𝑒𝑣𝑎𝑙𝑡,𝑏𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦

Fig. 5. Secure Compilation

Prisma’s compiler avoids such attacks and preserves control flow by inserting guards on the
contract side. Guards are in places where the basic blocks of the program have been separated
and distributed onto different hosts by CPS translation – to reject any improper continuations
from clients. Guarding ensures the control flow integrity [1] of the contract in the presence of
malicious clients by excluding any behavior of the compilation target that cannot be observed from
the source. Informally, this is our notion of secure compilation, which we rigorously define and
prove for Prisma’s compiler in this section. The compilation process is key in hiding the complexity
of enforcing distributed control flow from the developer – hence, a formal proof of its correctness
is critical.
To formalize the compiler, we specify a source and a target language. Fig. 5 shows a schema of

our compilation and the proof. The compiler (Fig. 5, top) is a function that maps terms in the source
language (𝑇𝑒𝑟𝑚𝑠) into terms in the target language (𝑇𝑒𝑟𝑚𝑡). A correct compiler preserves some
properties of the code – depending on the notion of correctness. For example, typeability-preserving
and semantics-preserving compilers have been extensively studied [63]. Because types are not the
focus of this paper, we omitted them from the figure. In the middle part of Fig. 5, we show the
evaluation of source and target to traces (𝑒𝑣𝑎𝑙𝑠 and 𝑒𝑣𝑎𝑙𝑡 , respectively) – and traditional compiler
correctness as the equivalence between traces generated from the sources (𝑇𝑟𝑎𝑐𝑒𝑠) and from the
target (𝑇𝑟𝑎𝑐𝑒𝑡). But compiler correctness5 in this traditional sense is not sufficient in the presence
of malicious attackers that can tamper with parts of the code. Instead, we need to prove that Prisma
is a secure abstraction, i.e., if security problems can arise on the target, they must be visible in the
Prisma source code, too, so that developers do not need to look at target code to reason about
potentially misbehaving clients. To this end, we define a hypothetical attacker model on the source
code as the ability to only replace the body of a Prisma client expression and show that, with the
contract part hardened with guards, the target attacker does not gain additional power over the
hypothetical source attacker. Specifically, we define malicious semantics 𝑒𝑣𝑎𝑙𝑡,𝑏 and 𝑒𝑣𝑎𝑙𝑠,𝑏 for the
target and the source language, respectively, and show that 𝑒𝑣𝑎𝑙𝑡,𝑏 (𝑐𝑜𝑚𝑝𝑖𝑙𝑒 𝑒) = 𝑐𝑜𝑚𝑝𝑖𝑙𝑒 (𝑒𝑣𝑎𝑙𝑠,𝑏 𝑒)
(security property in Fig. 5).

In the reminder of this section:
• We present the core calculus (Section 3.2) MiniPrisma∗ – a hybrid language that includes
elements of both the source (MiniPrisma𝑠) and the compilation target (MiniPrisma𝑡), while
abstracting over details of both Scala and Solidity. We define a hybrid language because the
source and the target share many constructs – the hybrid language allows us to focus on
how the differences are compiled.

5Type and semantics preservation is not the focus of this paper; we presume them for our compiler without a formal proof.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:10 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

𝑖𝑑 ∈ 𝐼𝐷 𝑖 ∈ 𝐼 𝑗 ∈ {who, state, clfn, cofn}

(definition) 𝑑 ::=@co this.𝑖 = 𝑣 ; 𝑑 | @cl this.𝑖 = 𝑣 ; 𝑑 | ()
(synthetic definition) 𝑏 ::= @co this. 𝑗 = 𝑣 ; 𝑏 | @cl this. 𝑗 = 𝑣 ; 𝑏 | ()
(program) 𝑃 ::= 𝑑 ; 𝑏;𝑚

(constant) 𝑐 ::= 0 | 1 | 2 | ... | true | false | () | && | + | == | < | try
| »= | trmp | Done | More

(value) 𝑣 ::= 𝑐 | 𝑣 :: 𝑣 | 𝑥→𝑒
(pattern) 𝑥 ::= 𝑐 | 𝑥 :: 𝑥 | 𝑖𝑑
(expression) 𝑒 ::= 𝑐 | 𝑒 :: 𝑒 | 𝑥→𝑒 | 𝑖𝑑 | 𝑥=𝑒; 𝑒 | 𝑒 𝑒

| this.𝑖 | this.𝑖 := 𝑒 | this. 𝑗 | this. 𝑗 := 𝑒
(main expression) 𝑚 ::= 𝑐 |𝑚 ::𝑚 | 𝑥→𝑒 | 𝑖𝑑 | 𝑥=𝑚;𝑚 |𝑚𝑚

| this.𝑖 | this.𝑖 :=𝑚 | this. 𝑗 | this. 𝑗 :=𝑚
| awaitCl𝑠 (𝑒, ()→𝑒) | awaitCl𝑡 (𝑐, ()→𝑒)

Fig. 6. MiniPrisma∗ syntax.

• We model the compiler (Section 3.3) as a sequence of steps that transform MiniPrisma∗
programs via several intermediate representations.
• We defineMiniPrisma∗ semantics as a reduction relation over configurations consisting of
traces of evaluation events and expressions being evaluated (Section 3.4). We distinguish
between a good semantics, which evaluates the program in the usual way, and a bad semantics,
which models attackers by ignoring client instructions and producing arbitrary values that
are sent to the contract.
• We prove secure compilation by showing that the observable behavior of the programs before
and after compilation is equivalent (Section 3.5). We capture the observable program behavior
by the trace of events generated during program evaluation (as guided by the semantic
definition) and show trace equivalence of programs before and after compilation.

3.2 Syntax
The syntax of MiniPrisma∗ (Fig. 6), has three kinds of identifiers 𝑖𝑑 , 𝑖 , 𝑗 , from unspecified sets
of distinct names. Pure identifiers 𝑖𝑑 are for function arguments and let bindings; mutable vari-
ables 𝑖 are for heap variable assignment and access. In the target program, mutable variables
𝑗 (who, state, clfn, cofn) generated by the compiler can also appear. We call compiler-generated
identifiers synthetic. Normal identifiers are separated from synthetic ones to distinguish compiler
generated and developer code. Definitions 𝑑 and definitions for synthetic identifiers 𝑏 are semicolon-
separated lists of declarations that assign values to variables and annotate either the contract or
the client location. Each program 𝑃 consists of definitions 𝑑 and synthetic definitions 𝑏 followed by
the main contract expression𝑚. Program 𝑃 corresponds to a single Prisma split class, 𝑑 and 𝑏 to
methods and generated methods, and𝑚 to a constructor containing the initialisation of its class
members (such as the body of init, Fig. 3).
Constants 𝑐 are unsigned 256 bit integer literals and built-in operators.MiniPrisma∗ supports

tuples introduced by nesting pairs (::) and eliminated by pattern matching. Tuples allow multiple
values to cross tiers in a single message. Values 𝑣 are constants, value pairs, and lambdas. Patterns
𝑥 are constants, pattern pairs, and variables. Expressions 𝑒 are constants, expression pairs, lambdas,
variables, variable accesses/assignments, bindings and function applications.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:11

𝑚0 𝑐 𝑚1 = 𝑐 (𝑚0,𝑚1)
(𝑚0, ...,𝑚𝑛) = 𝑚0 :: ... ::𝑚𝑛 :: ()

𝑚0; 𝑚1 = () =𝑚0; 𝑚1
assert(𝑚0); 𝑚1 = true =𝑚0; 𝑚1

𝑥 ← 𝑒1; 𝑚2 = 𝑥 = awaitCl𝑡 (() → 𝑒1); 𝑚2
if let 𝑥 =𝑚1 then 𝑒2 else 𝑒3 = try(𝑚1, 𝑥 → 𝑒2, () → 𝑒3)

Fig. 7. Syntactic sugar.

Main expressions 𝑚 may further contain remote client expressions, embedding client code
into contract code and waiting for its result. The source client expression awaitCl𝑠 (𝑒, () → 𝑒)
can be answered by any client whose address fulfills the predicate specified as first argument.
awaitCl𝑠 corresponds to direct-style remote access via awaitCl in Prisma. We use the syntax form
awaitCl𝑡 (𝑐, () → 𝑒) to model the execution of code 𝑒 on the specified client 𝑐 . awaitCl𝑡 has no
correspondence in the source syntax. Our compilation first splits the predicate from the source client
expressions into a separate access control guard. Then, it eliminates client expressions, turning the
contract into a passive entity that stops and waits for client input.

We now map the hybrid languageMiniPrisma∗ to the source and target languages,MiniPrisma𝑠
and MiniPrisma𝑡 . MiniPrisma𝑠 has all expressions of MiniPrisma∗, except those that contain ≫=
(bind), trmp (trampoline), Done, More, awaitCl𝑡 , or synthetic identifiers 𝑗 . MiniPrisma𝑡 has all
expressions of MiniPrisma∗ except those that contain awaitCl𝑠 , awaitCl𝑡 , ≫= .
≫= and awaitCl𝑡 may not appear neither in source nor target programs; the former is used only

as an intermediate construction for the compiler, the latter only during evaluation to track the
current location.

Syntactic sugar. In Fig. 7, we define some syntactic sugar to improve readability. We use infix
binary operators and tuple syntax for nested pairs ending in the unit value (); we elide the let
expression head for let bindings matching (), assert(𝑥) is a let binding matching true; we use
monadic syntax for let bindings of effectful expressions; if let 𝑥 =𝑚 then 𝑒 else 𝑒 is the application
of the built-in try function.

Events and configurations. In Fig. 8, we define left-to-right evaluation contexts 𝐸 [34]; and
compilation frames 𝐹 [66], such that every expression decomposes into a frame-redex pair 𝐹 𝑒 or is
an atom 𝑎. Events 𝑝 and 𝑞 are lists that capture the observable side-effects of evaluating expressions.
They are either (a) state changes wr(𝑐, 𝑖, 𝑣) and wr(𝑐, 𝑗, 𝑣), from the initial definitions or variable
assignment, where 𝑖 and 𝑗 are the variable being assigned, 𝑐 the location, and 𝑣 the assigned value,
or (b) client-to-contract communication msg(𝑐, 𝑣), where 𝑐 is the address of the client and 𝑣 the
sent value. Configurations 𝐶 = 𝑝 ;𝑞; 𝑐𝑚, represent a particular execution state, where 𝑝 (and 𝑞) are
traces of normal (and synthetic) events produced by the evaluation, 𝑐 is the evaluating location,
and𝑚 is the expression under evaluation.

Initialization. Initialization in Fig. 9 generates the initial program configuration, which models
the decentralized application with a single contract and multiple clients. We model a fixed set
of clients 𝐴 interacting with a contract. The initialization of a program 𝑑 ;𝑏;𝑚 to a configuration
𝑝;𝑞; 0;𝑚 leaves the expression𝑚 untouched and generates a list of events – one write event for
each normal and synthetic definition. Location 0 represents the contract.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:12 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

(frame) 𝐹 ::= awaitCl𝑠 (□, () → 𝑒) | □ 𝑒 | 𝑒 □ | □ :: 𝑒 | 𝑒 :: □
| 𝑥 = □; 𝑒 | 𝑥 = 𝑒; □ | this.𝑖 := □ | this. 𝑗 := □

(atom) 𝑎 ::= this.𝑖 | this. 𝑗 | 𝑐 | 𝑖𝑑 | 𝑥 → 𝑒

(context) 𝐸 ::= □ | 𝐸 ::𝑚 | 𝑣 :: 𝐸 | 𝐸 𝑚 | 𝑣 𝐸 | 𝑥 = 𝐸;𝑚 | this.𝑖 := 𝐸 | this. 𝑗 := 𝐸

(event) 𝑝 ::= wr(𝑐, 𝑖, 𝑣) 𝑝 | msg(𝑐, 𝑣) 𝑝 | ()
(synthetic event) 𝑞 ::= wr(𝑐, 𝑗, 𝑣) 𝑞 | ()
(configuration) 𝐶 ::= 𝑝; 𝑞; 𝑐;𝑚

Fig. 8. Frames, Events and configurations.

𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏;𝑚) = 𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏); 0; 𝑚
𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏) = (𝑤𝑟 (0, 𝑖 , 𝑣) | ∀ (@co this.𝑖 = 𝑣) ∈ 𝑑)

(𝑤𝑟 (0, 𝑗, 𝑣) | ∀ (@co this. 𝑗 = 𝑣) ∈ 𝑏)
(𝑤𝑟 (𝑐, 𝑖 , 𝑣) | ∀ (@cl this.𝑖 = 𝑣) ∈ 𝑑, 𝑐 ∈ 𝐴)
(𝑤𝑟 (𝑐, 𝑗, 𝑣) | ∀ (@cl this. 𝑗 = 𝑣) ∈ 𝑏, 𝑐 ∈ 𝐴)

Fig. 9. Initialization.

3.3 Compilation
The compiler eliminates language features not supported by the compilation target one by one,
lowering the abstraction level from (1) direct style communication (DS) – which needs language
support for !-notation [10] – through the intermediate representations of (2) monadic normal form
(MNF) – which needs support for do-notation [53] – and (3) continuation-passing style (CPS) – which
needs higher-order functions – to (4) explicitly encoding finite state machines (FSM) – for which
first-order functions suffice. In the following, we provide an intuition for the compiler steps and
subsequently their formal definitions.

First, the compilation stepsmnf and assoc transformDS remote communication awaitCl𝑠 (𝑒, () →
𝑒) to variable bindings (𝑖𝑑 := 𝑒) and nested let bindings are flattened such that a program is prefixed
by a sequence of let expressions. Second, step guard generates access control guards around client
expressions to enforce correct execution even when clients behave maliciously. Third, step cps
transforms previously generated let bindings for remote communication (𝑥 ← 𝑒1; 𝑚2) to monadic
bindings 𝑒1 ≫= 𝑥 →𝑚2. Fourth, step defun transforms functions into data structures that can be
sent over the network and are interpreted by a function (i.e., an FSM) on the other side. Compared
to standard defunctionalization, we handle two more issues. First, we defunctionalize the built-
in higher-order operator (≫=) by wrapping the program expression into a call to a trampoline
trmp(...) and transforming the bind operator (... ≫= 𝑥 → ...) to the (More, ..., ...) data structure;
the trampoline repeatedly interprets the argument ofMore until it returns Done instead ofMore
signaling the program’s result. Second, we keep contract and client functions separate by generating
separate synthesized interpreter functions, called cofn and clfn, thereby splitting the code into the
parts specific to contract and client.

MNF transformation (Fig. 10). The mnf ′ function wraps the main expression𝑚 into a call to
the trampoline with the pair (Done,𝑚) – signaling the final result – as argument. Then, mnf
transforms expressions recursively, binding sub-expressions to variables, resulting in a program
prefixed by a sequence of let bindings. As recursive calls to mnf may return chains of let bindings,
we apply assoc to produce a flat chain of let bindings. Given a let binding, whose sub-expressions
are in MNF, associativity recursively flattens the expression, by moving nested let bindings to the

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:13

mnf ′(𝑑 ;𝑏;𝑚) = 𝑑 ;𝑏; trmp(mnf ((Done,𝑚)))
mnf (𝐹 𝑒) = assoc(𝑖𝑑0=𝑒; mnf (𝐹 𝑖𝑑0))
mnf (𝑎) = 𝑎

assoc(𝑥0=(𝑥1=𝑚1; 𝑚0); 𝑚2) = assoc(𝑥1=𝑚1; assoc(𝑥0=𝑚0; 𝑚2))
assoc(𝑚) =𝑚

Fig. 10. Monadic normal form transformation.

guard ′(𝑑 ;𝑏; trmp(𝑚)) = 𝑑 ;𝑏; trmp(guard (𝑚))

guard
(
𝑥 ←𝑠 (𝑒0, () → 𝑒1);
𝑚2

)
=

©«

this.who := 𝑒0; this. state := 𝑐;
𝑥 ←𝑠 (() → true, () → 𝑒1);
assert(this. state == 𝑐 &&

this.who(this. sender));
this. state := 0; guard (𝑚2)

ª®®®®®¬
where 𝑐 fresh

guard (𝑥 = 𝑒0; 𝑚1) = 𝑥 = 𝑒0; guard (𝑚1)
guard (𝑚) = 𝑚

Fig. 11. Guarding.

cps′(𝑑 ;𝑏; trmp(𝑚)) = 𝑑 ;𝑏; trmp(cps(𝑚))
cps(𝑥 ←𝑠 (() → true, 𝑒0); 𝑚1) = 𝑒0 ≫= (𝑥 → cps(𝑚1))
cps(𝑥 = 𝑒0; 𝑚1) = 𝑥 = 𝑒0; cps(𝑚1)
cps(𝑚) = 𝑚

Fig. 12. Continuation-passing style transformation.

front, (... (... 𝑚0; 𝑚1); 𝑚2 = ... 𝑚0; (... 𝑚0; 𝑚2)), creating a single MNF expression (i.e., assoc is
composition for MNF terms).

Guarding (Fig. 11). We insert access control guards for remote communication expressions←𝑠

to enforce (i) the execution order of contract code after running the client expression and (ii) that
the correct client invokes the contract continuation. The transformation sets the synthetic variable
state to a unique value before the client expression, and stores the predicate to designate valid
clients in the synthetic variable who. After the client expression, the generated code asserts that
the contract is in the same state, and checks that the sender fulfills the predicate. The assertion
trivially holds in the sequential execution of the source language, but after more compilation steps
the client will be responsible for calling the correct continuation on the contract. Since client code
is untrusted, the contract needs to ensure that only the correct client can invoke only the correct
continuation.

CPS transformation (Fig. 12). The cps transformation turns the chains of let bindings produced by
mnf into CPS. The chain contains three cases of syntax forms: (1) monadic binding (𝑥 ← ...; 𝑚1),
(2) let binding (𝑥 = 𝑒0; 𝑚1), or (3) final expression. For (1), cps replaces the monadic binding with
an explicit call to the bind operator (... ≫= (𝑥 → 𝑐𝑝𝑠 (𝑚1))). For (2) and (3), cps recurses into the
tail of the chain. This resembles do-notation desugaring (e.g., in Haskell).

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:14 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

defun′(𝑑 ;𝑏; 𝑒) = defun(𝑑 ; coclfn(𝑏, 𝑖𝑑, assert(false), assert(false)); 𝑒)
where 𝑖𝑑 fresh

defun

©«

𝑑 ; coclfn(𝑏, 𝑖𝑑,
𝑒1,𝑎𝑙𝑡 ,

𝑒2,𝑎𝑙𝑡
);
(() → 𝑒1) ≫= (𝑥 → 𝑒2)

ª®®®®®®®¬
=

©«

𝑑 ; coclfn(𝑏, 𝑖𝑑,
if let (𝑐 :: fv(() → 𝑒1)) = 𝑖𝑑
then 𝑒1 else 𝑒 ′1,𝑎𝑙𝑡 ,
if let (𝑐 :: 𝑥 :: fv(𝑥 → 𝑒 ′2)) = 𝑖𝑑
then 𝑒 ′2 else 𝑒 ′2,𝑎𝑙𝑡);
(More, 𝑐 :: fv(() → 𝑒1), 𝑐 :: fv(𝑥 → 𝑒 ′2))

ª®®®®®®®¬
where 𝑐 fresh
and 𝑑 ; coclfn(𝑏, 𝑖𝑑, 𝑒 ′1,𝑎𝑙𝑡 , 𝑒 ′2,𝑎𝑙𝑡); 𝑒 ′2 =

defun(𝑑 ; coclfn(𝑏, 𝑖𝑑, 𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡); 𝑒2)

defun ©«
𝑑 ; coclfn(𝑏, 𝑖𝑑,
𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡);
𝑥 = 𝑒0; 𝑒1

ª®¬
= 𝑑 ; coclfn(𝑏, 𝑖𝑑, 𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡);𝑥 = 𝑒0; defun(𝑒1)

defun ©«
𝑑 ; coclfn(𝑏, 𝑖𝑑,
𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡);
𝑒

ª®¬
= 𝑑 ; coclfn(𝑏, 𝑖𝑑, 𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡); 𝑒

coclfn(𝑏, 𝑖𝑑, 𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡) = @cl this. clfn = 𝑖𝑑 → 𝑒1,𝑎𝑙𝑡 ;
@co this. cofn = 𝑖𝑑 → 𝑒2,𝑎𝑙𝑡 ;𝑏

Fig. 13. Defunctionalization.

Defunctionalization (Fig. 13). The defun function transforms the chains of let bindings and bind
operators produced by cps, which contains three cases of syntax forms: (1) a bind operator (𝑒1 ≫= 𝑒2),
or (2) a let binding (𝑥 = 𝑒1; 𝑒2), or (3) the final expression. For (1), 𝑒1 and 𝑒2 are replaced by data
structures that contain values for the free variables in 𝑒1 and 𝑒2 and are tagged with a fresh ID.
The body of the expression is lifted to top-level synthetic definitions. For this, defun modifies the
synthetic definitions 𝑏 by extracting the body 𝑒1,𝑎𝑙𝑡 of the synthetic clfn definition and the body
𝑒2,𝑎𝑙𝑡 of cofn, and by adding an additional conditional clause to these definitions. The added clause
answers to requests for a given ID with evaluating the original expression. For (2) and (3), defun
recurses into the expressions.
After defunctionalization, lambdas 𝑥 → 𝑒0 are lifted and assigned a top-level identifier 𝑖𝑑0 and

lambda applications, 𝑖𝑑0 (𝑒1), are replaced with calls to a synthesized interpreter function fn(𝑖𝑑0, 𝑒1).
The latter branches on the identifier and executes the code that was lifted out of the original
function.

Compiling. The comp function composes the compiler steps (not including mnf). We also define
the comp′ function, which jumps over the wrapping 𝑡𝑟𝑚𝑝 expression and initialises the defunc-
tionalisation with an environment that contains the two functions cofn and clfn, which assert
false.

comp = defun ◦ cps ◦ guard
comp′ = defun′ ◦ cps′ ◦ guard ′

3.4 Semantics
We model the semantics as a reduction relation over configurations 𝑝;𝑞; 𝑐;𝑚 → 𝑝 ′;𝑞′; 𝑐 ′;𝑚′.
Location 𝑐 = 0 denotes contract execution, otherwise execution of client of address 𝑐 . We distinguish

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:15

(Rgs) 𝑝 ;𝑞; 0; awaitCl𝑠 (𝑣, () → 𝑒) →𝑔 𝑝 ;𝑞; 0; awaitCl𝑡 (𝑐, () → 𝑒) if 𝑝 ;𝑞; 0; 𝑣 (𝑐) →∗ 𝑝 ;𝑞; 0; true
(Rbs) 𝑝 ;𝑞; 0; awaitCl𝑠 (𝑣, () → 𝑒) →𝑏 𝑝 ;𝑞; 0; awaitCl𝑡 (𝑐, () → 𝑒)

(Rtm) 𝑝 ;𝑞; 0; trmp

(More,
𝑣1 :: 𝑒1,
𝑣2 :: 𝑒2

)
→ 𝑝 ;𝑞; 0;

(
𝑖𝑑 = awaitCl𝑡 (𝑐, this.clfn(𝑣1 :: 𝑒1)) ;
trmp(this.cofn(𝑣2 :: 𝑖𝑑 :: 𝑒2))

)
(Rtd) 𝑝 ;𝑞; 0; trmp(Done, 𝑣) → 𝑝 ;𝑞; 0; 𝑣
(Rg) 𝑝 ;𝑞; 0; awaitCl𝑡 (𝑐, () → 𝑒) →𝑔 𝑝 ;𝑞 msg(𝑐, 𝑣) wr(0, sender, 𝑐) ; 0; 𝑣 if 𝑝 ;𝑞;𝑐 ;𝑒 →∗ 𝑝′;𝑞′;𝑐 ; 𝑣
(Rb) 𝑝 ;𝑞; 0; awaitCl𝑡 (𝑐, () → 𝑒) →𝑏 𝑝 ;𝑞 msg(𝑐, 𝑣′) wr(0, sender, 𝑐) ; 0; 𝑣′

Fig. 14. Evaluation (1/2).

good (→𝑔) and bad (→𝑏) evaluations (Fig. 14 and 15); shared rules are in black, without subscript
(→).

Attacker model. Attackers can control an arbitrary number of clients and make them send
arbitrary messages. Hence, the bad semantics can answer a request to a client with an arbitrary
message from an arbitrary 𝑖𝑑 . We use evaluation with bad semantics to show that our compiler
enforces access control against malicious clients.

Good evaluations of client expressions in the source language (Rgs) reduce to a client expression
with a fixed client that fulfils the given predicate. We require that predicates evaluate purely. Hence,
𝑝 and 𝑞 do not change in the evaluation. On the other hand, bad evaluation of client expressions
in the source language (Rbs) ignores the predicate, choosing an arbitrary client. Similarly, bad
evaluation also chooses an arbitrary client for the evaluation of a trampoline in the target (Rtm),
which does not specify a predicate. The trampoline ends when it reaches Done (Rtd). Further, after
choosing a client to evaluate, the good evaluation (Rg) continues to reduce the client expression to a
value, while the bad evaluation (Rb) replaces the expression 𝑒 with a (manipulated) arbitrary value
𝑣 ′. Both evaluations (Rg, Rb) emit the message event msg(𝑐, 𝑣) and an assignment to the special
variable sender, when a client expressions is reduced to a value 𝑣 , to record the client–contract
interaction.

Common Evaluation (Fig. 15). Expressions are reduced under the evaluation context 𝐸 on the
current location (Re), assignment to variables is recorded in the trace (Rset◦), accessing a variable
is answered by the most recent assignment to it from the trace in the current location (Rget◦).
For synthetic variables, we use the synthetic store (Rget†, Rset†). Binary operators are defined
as unsigned 256 bit integer arithmetic; we only show the rule for addition (Rop). Further, we give
rules for conditionals (Rt, Rf), let binding (Rlet) and function application (Rlam) using pattern
matching.

Pattern matching (Fig. 16). Matching [𝑥 Z⇒𝑣] is a partial function, matching patterns 𝑥 with
values 𝑣 , returning substitution of variables 𝑖𝑑 to values. Matching is recursively defined over
pairs; it matches constants to constants, identifiers to values by generating substitutions, and fails
otherwise. Substitutions [𝑖𝑑 ↦→𝑣], in turn, can be applied to terms 𝑒 , written [𝑖𝑑 ↦→𝑣] 𝑒 (capture-
avoiding substitution). Substitutions 𝜎 compose right-to-left (𝜎𝜎 ′)𝑥 = 𝜎 (𝜎 ′𝑥).

3.5 Secure Compilation
We prove that the observable behavior of the contract before and after compilation is equivalent.
We capture the observable behavior by execution traces and show that trace equivalence holds
even when the program is attacked, i.e., reduced by →∗

𝑏
.

Modelling Observable Behavior. The only source of observable nondeterminism in the bad se-
mantics is the evaluation of awaitCl𝑠 and awaitCl𝑡 . As clients decisions on message sending are
influenced by the state of contract variables, tracking incoming client messages and state changes in

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:16 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

(Re) 𝑝;𝑞; 0; 𝐸 [𝑚] → 𝑝 ′;𝑞′; 0; 𝐸 [𝑚′] if 𝑝;𝑞; 0;𝑚→ 𝑝 ′;𝑞′; 0;𝑚′
(Rget◦) 𝑝;𝑞; 𝑐; this.𝑖 → 𝑝;𝑞; 𝑐; 𝑣 if wr(𝑐, 𝑖, 𝑣) ∈ 𝑝
(Rget†) 𝑝;𝑞; 𝑐; this. 𝑗 → 𝑝;𝑞; 𝑐; 𝑣 if wr(𝑐, 𝑗, 𝑣) ∈ 𝑞
(Rset◦) 𝑝;𝑞; 𝑐; this.𝑖 := 𝑣 → 𝑝 wr(𝑐, 𝑖, 𝑣);𝑞; 𝑐; ()
(Rset†) 𝑝;𝑞; 𝑐; this. 𝑗 := 𝑣 → 𝑝;𝑞 wr(𝑐, 𝑗, 𝑣); 𝑐; ()
(Rop) 𝑝;𝑞; 𝑐; 𝑣0 + 𝑣1 → 𝑝;𝑞; 𝑐; 𝑣 ′ if 𝑣 ′ = 𝑣0 + 𝑣1

(Rt) 𝑝;𝑞; 𝑐;
(
if let 𝑥 = 𝑣
then 𝑒0 else 𝑒1

)
→ 𝑝;𝑞; 𝑐; 𝑒 ′0 if 𝑒 ′0 = [𝑥 Z⇒𝑣] 𝑒0

(Rf) 𝑝;𝑞; 𝑐;
(
if let 𝑥 = 𝑣
then 𝑒0 else 𝑒1

)
→ 𝑝;𝑞; 𝑐; 𝑒1 otherwise

(Rapp) 𝑝;𝑞; 𝑐; (𝑥 → 𝑒) 𝑣 → 𝑝;𝑞; 𝑐; 𝑒 ′ if 𝑒 ′ = [𝑥 Z⇒𝑣] 𝑒
(Rlet) 𝑝;𝑞; 𝑐; (𝑥 = 𝑣 ; 𝑚) → 𝑝;𝑞; 𝑐; 𝑚′ if 𝑚′ = [𝑥 Z⇒𝑣] 𝑚

Fig. 15. Evaluation (2/2).

[𝑐 Z⇒ 𝑐] = []
[𝑖𝑑 Z⇒ 𝑣] = [𝑖𝑑 ↦→ 𝑣]

[(𝑒0 :: 𝑒1) Z⇒ (𝑒 ′0 :: 𝑒 ′1)] = [𝑒0 Z⇒ 𝑒 ′0] · [𝑒1 Z⇒ 𝑒 ′1]

Fig. 16. Pattern matching.

the trace suffices to capture the observable program behavior. If the observable behavior is the same
for the source and the compiled programs, they are indistinguishable. Thus, behavior preservation
amounts to trace equality on programs before and after compilation. Further, it suffices to model
equality for non-stuck traces. The evaluation gets stuck (program crash) on assertions that guard
against deviations from the intended program flow. The Ethereum Virtual Machine reverts contract
calls that crash, i.e., state changes of crashed calls do not take effect, hence, stuck traces are not
observable.
Since bad evaluation is nondeterministic, we work with not just programs, expressions and

configurations, but program sets, expression sets, and configuration sets. Let 𝑝 ;𝑞;𝑚 ⇓ be the trace
set of the configuration 𝑝;𝑞; 0;𝑚, e.g., the set of tuples of the final event sequence 𝑝 ′ and value
𝑣 of all reduction chains that start in 𝑝;𝑞; 0;𝑚 and end in 𝑝 ′; 0;𝑞′; 𝑣 . Our trace set definition does
not include synthetic events 𝑞′ of the final configuration. Synthetic events are introduced through
compilation; excluding them allows us to put source and target trace sets in relation. Further, let
the trace set of a configuration set 𝑇 ⇓, be the union of the trace sets for each element:

𝑝;𝑞;𝑚 ⇓ = { (𝑝 ′, 𝑣) | (𝑝;𝑞; 0;𝑚) →∗𝑏 (𝑝 ′;𝑞′; 0; 𝑣) }

𝑇 ⇓ =
⋃

𝑝 ;𝑞;𝑚∈𝑇
𝑝;𝑞;𝑚 ⇓

We say that two configuration sets 𝑇 and 𝑆 are equivalent, denoted by 𝑇 ≈ 𝑆 , iff 𝑇 and 𝑆 have
the same traces sets:

(𝑇 ≈ 𝑆) ⇔ (𝑇 ⇓ = 𝑆 ⇓)
By this definition, two expressions that eventually evaluate to the same value with the same trace

are related by trace equality. We use this notion of trace equality to prove that a source program
is trace-equal to its compiled version by evaluating the compiled program forward→∗

𝑏
and the

original program backward←∗
𝑏
until configurations converge.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:17

Secure Compilation. Theorem 1 states our correctness property, which says that observable traces
generated by the malicious evaluation of programs are preserved (≈) by compilation. The malicious
evaluation models that client code has been replaced with arbitrary code, while contract code is
unchanged. The preservation of observable traces implies the integrity of the (unchanged) contract
code. Secure compilation guarantees that developers can write safe programs in the source language
without knowledge about the compilation or the distributed execution of client/contract tiers.

Theorem 1 (Secure Compilation). For each program 𝑃 over closed terms, the trace set of the
program under attack equals the trace set of the compiled program under attack:
∀𝑃 . { 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 ′(𝑚𝑛𝑓 ′((𝑃)))) } ≈ { 𝑖𝑛𝑖𝑡𝐴 (𝑃) }.

We first show that trace equality holds for the different compiler steps. Some compiler steps are
defined as a recursive term-to-term transformation on open terms, whereas traceset equality is
defined by reducing terms to values, i.e., on closed terms. Since all evaluable programs are closed
terms, we show that the compiler steps preserve the traceset of an open term 𝑒 that is closed by
substitution [𝑥 Z⇒ 𝑣]. We formulate the necessary lemmas and sketch the proofs – the detailed
proof is in Appendix C.

Lemma 1 (assoc correct). { 𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (𝑚) } ≈ { 𝑝;𝑞; [𝑥 Z⇒𝑣]𝑚 }
Lemma 2 (mnf correct). { 𝑝;𝑞; [𝑥 Z⇒𝑣]𝑚𝑛𝑓 (𝑚) } ≈ { 𝑝;𝑞; [𝑥 Z⇒𝑣]𝑚 }
Lemma 3 (mnf’ correct). { 𝑖𝑛𝑖𝑡𝐶 (𝑚𝑛𝑓 ′(𝑑 ;𝑏;𝑚)) } ≈ { 𝑖𝑛𝑖𝑡𝐶 (𝑑 ;𝑏;𝑚) }
Lemma 4 (comp correct). { [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 (𝑑 ;𝑏; trmp(𝑚))) } ≈ { 𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏; trmp([𝑥 Z⇒𝑣]𝑚)) }
Lemma 5 (comp’ correct). { [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 ′(𝑑 ;𝑏; trmp(𝑚))) } ≈ { 𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏; trmp([𝑥 Z⇒𝑣]𝑚)) }
Proof sketch. Lemma 1–5 hold by chain of transitive trace equality relations. We show that a

term is trace-equal to the same term after compilation, by evaluating the compiled program (→∗)
and the original program (←∗) until configurations converge. In the inductive case, we can remove
the current compiler step in redex position under traceset equality (≈) since traces before and after
applying the compiler step are equal by induction hypothesis.
An interesting case is the proof of comp for 𝑃 = 𝑑 ;𝑏; awaitCl(𝑒0, () → 𝑒1). The compiler trans-

forms the remote communication awaitCl𝑠 into the use of a guard and a trampoline. The compiled
program steps to the use of awaitCl𝑡 , the source program to awaitCl𝑠 . In the attacker relation
→𝑏 , arbitrary clients can send arbitrary values with awaitCl𝑡 , leading to additional traces com-
pared to the ones permitted in the source program where communication is modeled by awaitCl𝑠 .
We observe that awaitCl𝑠 generates the trace elements msg(𝑐, 𝑣),wr(0, sender, 𝑐) for all 𝑣 and that
awaitCl𝑡 generates the trace elementsmsg(𝑐 ′, 𝑣),wr(0, sender, 𝑐 ′) for all 𝑣, 𝑐 ′, which differ for 𝑐 ′ ≠ 𝑐 .
Compilation adds an assert expression (Fig. 11) evaluated after receiving a value from a client.

The assert gets stuck for configurations that produce trace elements with 𝑐 ′ ≠ 𝑐 , removing the
traces of such configurations from the trace set, leaving only the traces where 𝑐 ′ = 𝑐 . Hence, the
trace set before and after compilation is equal under attack.

4 IMPLEMENTATION
Prisma is embedded into Scala (the host language) with its features implemented as a source-to-
source macro expansion.6
6The implementation entails 21 Scala files, 3 412 lines of Scala source code (non-blank, non-comment) licensed under
Apache 2.0 Open Source. The compiler phases are macros that recurse over the Scala AST: (a) the guarding phase, (b)
the “simplifying” phase (including MNF translation, CPS translation of terms, defunctionalisation), and (c) the translation
phase of (a subset) of Scala expressions and types to a custom intermediate representation based on Scala case classes. The
intermediate representation is translated to Solidity code and passed to the Solidity compiler (solc).

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:18 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

The backend generating Solidity code is well separated. One could disable the compilation step
to Solidity in the compilation pipeline, e.g., to run distributed code on multiple JVMs instead. In this
case, the “contract code” would be executed by one computer (the “server”), and other computers
would run the “client code”.

The Scala runtime of Prisma contains the implementation of the serialisable datatypes, portable
between Scala and the EVM (fixed-size arrays, dynamic arrays, unsigned integers of length of
powers of two up to 256 bit). Our runtime wraps web3j [50] (for invoking transactions and interacting
with the blockchain in general), headlong [72] (for serialisation/deserialisation in the Ethereum-
specific serialisation format), as well as code to parse Solidity and Ethereum error messages and to
translate them to Scala error messages.

5 EVALUATION
We evaluate Prisma along two research questions:

RQ1 Does Prisma support the most common dApps scenarios?
RQ2 Do Prisma’s abstractions affect performance?

Case Studies and Expressiveness (RQ1). Five classes of smart contract applications have been
identified [7]: Financial, Wallet, Notary, Game, and Library. To answer RQ1, we implemented at
least one case study per category in Prisma. We implemented an ERC-20 Token,7 a Crowdfunding,
and an Escrowing dApp as representatives of financial dApps. We cover wallets by implementing a
multi-signature wallet, a special type of wallet that provides a transaction voting mechanism by only
executing transactions, which are signed by a fixed fraction of the set of owners. We implemented
a general-purpose notary contract enabling users to store arbitrary data, e.g., document hashes
or images, together with a submission timestamp and the data owner. As games, we implemented
TicTacToe (Section 2), Rock-Paper-Scissors, Hangman and Chinese Checkers. Rock-Paper-Scissors
makes use of timed commitments [3], i.e., all parties commit to a random seed share and open it
after all commitments have been posted. The same technique can be used to generate randomness
for dApps in a secure way. To reduce expensive code deployment, developers outsource commonly
used logic to library contracts. We demonstrate library-based development in Prisma by including
a TicTacToe library to our case studies and another TicTacToe dApp which uses that library instead
of deploying the logic itself.

We also implemented a state channel [29, 30, 57] for TicTacToe in Prisma, which is an example
for the class of scalability solutions that have emerged more recently. State channels enable parties
to move parts of their dApp to a non-blockchain consensus system, falling-back to the blockchain
in case of disputes, thereby making the dApps more efficient where possible.

Our case studies are between 1 K and 7.5 K bytes which is a representative size: Smart contracts
are not built for large-scale applications since the gas model limits the maximal computation
and storage volumes and causes huge fees for complex applications. The median (average, lower
quantile, upper quantile) of the bytecode size of distinct contracts deployed at the time of writing
is at 4 K (5.5 K, 1.5 K, 7.5 K) [44]. We further elaborate on the case studies including a comparison of
the lines of code in Prisma compared to the equivalent lines in Solidity and Javascript in Appendix
A. Our case studies demonstrate that Prisma supports most common dApps scenarios.

Performance of PrismaDApps (RQ2). Performance on the Ethereum blockchain is usuallymeasured
in terms of an Ethereum-specificmetric called gas. Each instruction of the EthereumVirtual Machine
(EVM) consumes gas which needs to be paid for by the users in form of transaction fees credited to

7A study investigating all blocks mined until Sep 15, 2018 [62], found that 72.9 % of the high-activity contracts are token
contracts compliant to ERC-20 or ERC-721, with an accumulated market capitalization of 12.7 B USD.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:19

0 500 1,000 1,500

Wallet

Token

Fund

Escrow

Channel

Notary

Hangman
TicTacToe

Rock-P-S

CCheckers
Library

Reuse

Gas usage [kGas]

Prisma

Solidity

(a) Gas usage per deploy-
ment.

−10 −5 0 5 10

W

T

F

E

Ch

N

Hm
T3

RPS

CC

Lib

Re

Gas overhead [%]

(b) Gas overhead per de-
ployment.

0 50 100 150

W

T

F

E

Ch

N

Hm
T3

RPS

CC

Re

Lib

Gas usage [kGas]

Prisma

Solidity

(c) Gas usage per interac-
tion.

−20 −10 0 10 20
Ch

Re

Lib

CC

Hm
T3

RPS

N

W

E

F

T

Gas overhead [%]

(d) Gas overhead per inter-
action.

Fig. 17. The cost of abstraction. Gas overhead of contracts written with Prisma vs. Solidity.
(The right plot displays minima, averages, maxima.)

the miner. We refer to the Ethereum yellow paper [91] for an overview of the gas consumption of
the different EVM instructions. To answer RQ2, we implement our case studies in both Prisma and
in Solidity/JavaScript and compare their gas consumption. Unlike prior work, we do not model a
custom gas structure, but consider the real EVM gas costs [90].

Experimental setup.We execute each case study on different inputs to achieve different execution
patterns that cover all contract functions. Each contract invocation that includes parameters with
various sizes (e.g., dynamic length arrays) is executed with a range of realistic inputs, e.g., for
Hangman, we consider several words (2 to 40 characters) and different order of guesses, covering
games in which the guesser wins and those in which they lose. Prisma and Solidity/JavaScript
implementations are executed on the same inputs.

We perform the measurements on a local setup. As the execution in the Ethereum VM is determin-
istic, a single measurement suffices. We set up the local Ethereum blockchain with Ganache (Core
v2.13.2) on the latest supported hard fork (Muir Glacier). All contracts are compiled to EVM byte
code with solc (v0.8.1, optimized on 20 runs). We differentiate contract deployment and contract
interaction. Deployment means uploading the contract to the blockchain and initializing its state,
which occurs just once per application instance. A single instance typically involves several contract
interactions, i.e., transactions calling public contract functions.
Results. Fig. 17 shows the average gas consumption of contract deployment (Fig. 17a) and

interaction (Fig. 17c) as well as the relative overhead of Prisma vs. Solidity/JS of deployment
(Fig. 17b) and interaction (Fig. 17d). As the gas consumption of contract invocations depends
heavily on the executed function, the contract state, and the inputs, we provide the maximal,
minimal and averaged overhead. The results show that the average gas consumption of Prisma
is close to the one of Solidity/JS. Our compiler achieves a deployment overhead of maximally 6 %
(TicTacToe) or 86 K gas (TicTacToe Channel). The interaction overhead is below 10% for all case
studies which at most amounts to 3.55 K gas.8

Prisma’s deployment overhead is mainly due to the automated flow control. To guarantee correct
execution, Prisma manages a state variable for dApps with more than one state. The storage
reserved for and the code deployed to maintain the state variable cause a constant cost of around
8equals 0.59 USD based on gas price and exchange course of April 15, 2021

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:20 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

Table 18. Related work.

Language Encoding Perspective Protocol

Solidity FSM Local Assertions
Obsidian FSM Local Type states
Nomos MNF Local Session types

Prisma DS Global Control flow

45K gas. In Solidity, developers manually check whether flow control is needed and, if so, may
derive the state from existing contract variables to avoid a state variable if possible.
The Token, Notary, Wallet and Library case studies do not require flow control: each function

can be called by any client at any time. Hence, their overhead is small. Escrow, Hangman and
Rock-Paper-Scissors require a state variable, also in Solidity – which partially compensates the
overhead of Prisma’s automated flow control. Crowdfunding, Chinese Checkers, TicTacToe (Library
and Channel) do not require an explicit state variable in Solidity, as the state can be derived from the
contract variables, e.g., the number of moves. Thus, these case studies have the largest deployment
overhead.

While the average relative interaction overhead is constantly below 10%, some contract invoca-
tions are far above, e.g., in Crowdfunding, TicTacToe Channel, and Rock-Paper-Scissors. Yet, case
studies with such spikes also involve interactions that are executed within the same dApp instance
with a negative overhead and amortize the costs of more costly transactions. These deviations are
also mainly due to automated flow control. In EVM, setting a zero variable to some non-zero value
costs more gas (20 K gas) than changing its value (5 K gas) [90], and setting the value to zero saves
gas. Occupying and releasing storage via the state variable can cost or save gas in a different way
than in traditional dApps without an explicit state variable, leading to different (and even negative)
overhead in different transactions.
Besides the gas-overhead, we also consider the time-overhead of Prisma. In Ethereum, the

estimated confirmation time for transactions is 3-5 minutes (assuming no congestion), which makes
the number of on-chain interactions dominate the total execution time. As Prisma preserves the
number of on-chain interactions, we assess the time-overhead of Prisma, if any, to be negligible.

Note that per se it is not possible to achieve a better gas consumption in Prisma than in Solidity
– every contract compiled from Prisma can be implemented in Solidity. Given the abstractions we
offer beyond the traditional development approach, and the sensibility of smart contracts to small
changes in instructions, we conclude that our abstractions come with acceptable overhead. We are
confident that further engineering effort can eliminate the observed overhead.
Threats to validity. The main threat is that the manually written code may be optimized better

or worse than the code generated by the compiler. We mitigate this threat by applying all gas
optimizations, our compiler performs automatically, to the Solidity implementations. An external
threat is that changes in the gas pricing of Ethereum may affect our evaluation. For reproducibility,
we state the Ethereum version (hard fork), we used in the paper.

6 DISCUSSION AND RELATEDWORK
6.1 Smart Contract Languages for Enforcing Protocols
We compare Prisma to Solidity, Obsidian [18–20], and Nomos [25, 26]. We highlight these languages
as those also address the correctness of the client–contract interactions. Tab. 18 overviews the
features of the surveyed languages for (a) the perspective of defining interacting parties, (b) the used
encoding of the interaction effects, and (c) the method used to check the contract-client interaction

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:21

1 asset contract TTT {

2 state Funding{}; state Executing{}; state Finished{}; state Closed{}

3 transaction Fund(TTT@Funding>>(Funding|Executing) this, int c) {

4 /*...*/; if (/* enough funds? */) -> Executing else -> Funding }

5 transaction Move(TTT@Executing>>(Executing|Finished) this, int x, int y) {

6 /*...*/; if (/* game over? */) -> Finished else -> Executing }

7 transaction Payout(TTT@Finished>>Closed this) {

8 /*...*/; -> Closed } }

Fig. 19. Obsidian.

1 type Funding = int -> +{ notenough: Funding, enough: Executing }

2 type Executing = int -> int -> +{ notdone: Executing, done: Finished }

3 type Finished = int -> 1

4 proc contract funding : . |{*}- ($s : Funding) = {

5 a = recv $s; /* ... */

6 if /* enough funds? */ then $s.notenough; $s <- funding

7 else $s.enough; $s <- executing }

8 proc contract executing : . |{*}- ($s : Executing) = {

9 x = recv $s; y = recv $s; /* ... */

10 if /* game over? */ then $s.notdone; $s <- executing

11 else $s.done; z = recv $s; close $s }

Fig. 20. Nomos.

NomosR
Ψ; Γ, (𝑦:𝐴) ⊢ 𝑃 :: (𝑐 : 𝐵)

Ψ; Γ ⊢ (𝑦←recv 𝑐; 𝑃) :: (𝑐 : 𝐴 ⊸ 𝐵)

NomosS
Ψ; Γ ⊢ 𝑃 :: (𝑐 : 𝐵)

Ψ; Γ, (𝑤 :𝐴) ⊢ (send 𝑐 𝑤 ; 𝑃) :: (𝑐 : 𝐴 ⊗ 𝐵)

Obsidian
(transaction 𝑇 𝑚(𝑡 .(𝑠»𝑠 ′) 𝑥){...}) ∈ members𝑡0

Δ, 𝑒:𝑡 .𝑠 ⊢ 𝑒0 .𝑚(𝑒) : 𝑇 ⊣ Δ, 𝑒:𝑡 .𝑠 ′

Fig. 21. Excerpts of simplified Nomos and Obsidian typing rules.

protocol. Fig. 4c, 19, and 20 show code snippets in these languages, each encoding the TicTacToe
state machine from Fig. 1. All three languages focus solely on the contract and do not state how
clients are developed, hence only contract code is shown.
All three approaches take a local perspective on interacting parties: Contract and clients are

defined separately, and their interaction is encoded by explicit send and receive side effects. In
Solidity and Obsidian, receive corresponds to arguments and send to return values of methods
defined in the contract classes. In Nomos, send and receive are expressed as procedures operating
over a channel – given a channel c, sending and receiving is represented by explicit statements
(x = recv c; ... and send c x; ...).

The approaches differ in the encoding style of communication effects. Solidity and Obsidian
adopt an FSM-style encoding: Contract fields encode states, methods encode transitions. The contract
in Fig. 4c represents FSM states via the phase field with initial state Funding (Line 30). The Fund, Move
and Payout methods are transitions, e.g., Payout transitions the contract into the final state Closed

(Line 51). The FSM-style encoding results in an implicitly-everywhere concurrent programming

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:22 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

model, which is complex to reason about and unfitting for dApps because the execution model
of blockchains is inherently sequential – all method invocations are brought into a world-wide
total order. Nomos adopts the monadic normal form (MNF) via do-notation to order effects. While
the implementation of TicTacToe in FSM style requires three methods(Fund, Move, Payout – one per
transition), we only need two methods in MNF-style (funding, executing – one per state with multiple
entry points), and a single method in DS-style (init). For instance, the sequence of states and
transitions 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔 𝑀𝑜𝑣𝑒 (𝑥,𝑦)−−−−−−→ 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑃𝑎𝑦𝑜𝑢𝑡 ()−−−−−−→ 𝐶𝑙𝑜𝑠𝑒𝑑 in Nomos can be written sequentially
in do-notation by inlining the last function which only has a single entry point. Still, do-notation
can be cumbersome (e.g., funding and executing in Nomos are separate methods that cannot be
inlined since they have multiple entry points and model loops).
All three languages require an explicit protocol for governing the send–receive interactions,

to ensure that every send effect has a corresponding receive effect in an interacting – separately
defined – party. In Solidity, developers express the protocol via run-time assertions to guard against
invoking the methods in an incorrect order (e.g., require(phase==Finished) in Fig. 4c, Line 40). Unlike
Solidity, which does not support statically checking protocol compliance, Nomos and Obsidian
employ behavioral typing for static checks. Deployed contracts may interact with third-party, po-
tentially manipulated clients. Compile-time checking alone cannot provide security guarantees. Yet,
complementing run-time enforcement with static checks helps detecting cases that are guaranteed
to fail at run time ahead of time.

Obsidian. Obsidian employs typestates to increase safety of contract–client communication.
Contracts define a number of typestates; A method call can change the typestate of an object, and
calling a method on a receiver that is in the wrong typestate results in a typing error. Each method
in Fig. 19 is annotated with the state in which it can be called, e.g., Payout requires state Finished,
and transitions to Closed (Line 7).

Nomos. Nomos employs session types. The session types Funding, Executing, Finished in Fig. 20
encode the protocol. Receiving a message is represented by a function type, e.g., in the Funding

state, we receive an integer int -> ... (Line 1). We respond by either repeating the funding (Funding),
or continuing to the next state of the protocol (Executing). This is represented by internal choice
+{ ... } that takes multiple possible responses giving each of them a unique label (notenough and
enough). Type 1 indicates the end of a protocol (Line 3). The contract processes funding (Line 4) and
executing (Line 8) implement the protocol. The recv operation (Line 5) takes a session-typed channel
of form T -> U, returns a value of type T and changes the type of the channel to U. A session type for
internal choice (+{ ... }), requires the program to select one of the offered labels (e.g., $s.notenough
in Line 6 and $s.enough in Line 7), e.g., in the left and right branch of a conditional statement.

Type systems. We show excerpts of simplified typing rules for Nomos and Obsidian (Fig. 21).
Nomos rules have the form Ψ; Γ ⊢ 𝑃 :: (𝑐:𝐴). A process 𝑃 offers a channel 𝑐 of type 𝐴 with values in
context Ψ and channels in Γ. We can see that variables change their type to model the linearity of
session types in the NomosS (and NomosR) rule: Sending (and receiving) changes the type of the
channel 𝑐 from𝐴⊸𝐵 to 𝐵 (and𝐴⊗𝐵 to 𝐵). Obsidian rules have the form Δ ⊢ 𝑒:𝑡 ⊣ Δ′. An expression
𝑒 has type 𝑡 in context Δ and changes Δ to Δ′. We can see that variables change their type on
method invocation (Obsidian): A method𝑚 in class 𝑡0 with arguments 𝑒𝑖 of type 𝑡𝑖 , returning 𝑇,
changes the type state of the arguments from 𝑠𝑖 to 𝑠 ′𝑖 . For Prisma, instead, a standard judgement
Γ ⊢ 𝑒 : 𝑇 suffices for communication. Variables do not change their type. awaitCl(𝑝){𝑏} has type 𝑇
in context Γ if 𝑝 is a predicate of 𝐴𝑑𝑑𝑟 and 𝑏 is a pair of 𝐸𝑡ℎ𝑒𝑟 and 𝑇 :

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:23

Prisma
Γ ⊢ 𝑝 : 𝐴𝑑𝑑𝑟 → 𝐵𝑜𝑜𝑙 Γ ⊢ 𝑏 : 𝐸𝑡ℎ𝑒𝑟 ×𝑇

Γ ⊢ awaitCl(𝑝){ 𝑏 } : 𝑇
Prisma. As shown in Tab. 18, Prisma occupies an unexplored point in the design space: global

instead of local perspective on interacting parties, direct style (DS) instead of FSM or MNF encoding
of effects, and control flow instead of extra protocol for governing interactions.

Prisma takes a global perspective on interacting parties. The parties execute the same program,
where pairs of send and receive actions that “belong together” are encapsulated into a single direct-
style operation, which is executed differently by sending and receiving parties. Hence, dApps are
modeled as sequences and loops of send-receive-instructions shared by interacting parties. Due to
the global direct style perspective, it is syntactically impossible to define parties with mismatching
send and receive pairs. Hence, a standard System-F-like type system suffices. The interaction
protocol follows directly from the sequential control flow of interaction points in the program –
the compiler can automatically generate access and control guards with correctness guarantees.
Semantically, Prisma features a by-default-sequential programming model, intentionally making
the sequential execution of methods explicit, including interaction effects.
The global direct-style model also leads to improved design of dApps: No programmatic state

management on the contract and no so-called callback hell [31] on the client. The direct style is
also superior to Nomos’ MNF style. The tierless model avoids boilerplate: Client code can directly
access public contract variables, unlike JavaScript code, which has to access them via a function
call that requires either an await expression or a callback.9 Additionally, the developer has to
implement getters for public variables with complex data types such as arrays.10 We provide some
code measurements (lines of code and number of cross-tier control-flow calls) of our Prisma and
Solidity/JS dApp case studies in Appendix B.
Finally, using one language for both the contract and the clients naturally enables static type

safety of values that cross the contract–client boundary: an honest, non-compromized client cannot
provide inconsistent input, e.g., with wrong number of parameters or falsely encoded types.11 In a
setting with different language stacks, it is not possible to statically detect type mismatches in the
client–contract interaction; e.g., Solidity has a type bytes for byte arrays, which does not exist in
JavaScript (commonly used to implement clients of a Solidity contract). Client developers need to
encode byte arrays using hexadecimal string representations starting with “0x”, otherwise they
cannot be interpreted by the contract.

6.2 Other Related Work
Smart contract languages. Harz and Knottenbelt [45] survey smart contract languages, Hu et

al. [48] survey smart contract tools and systems, Wöhrer and Zdun [89] give an overview of
design patterns in smart contracts. Brünjes and Gabbay [13] distinguish between imperative and
functional smart contract programming. Imperative contracts are based on the account model;
the most prominent language is Solidity [32]. Functional ones [14, 77, 78] are based on EUTxO
(Extended Unspent Transaction Output) model [39]. State channels [15, 29, 30, 57] optimistically
optimize contracts for the functional model. Prisma does not yet support compilation to state
channels but we plan to treat them as another kind of tier.

9Obsidian and Nomos do not provide any client design, so we can only compare to Solidity/JavaScript.
10For simple data types the getter is generated automatically.
11Recall that in dApps checking cross-tier type-safety is not a security feature but a design-time safety feature (due to the
open-world assumption of the execution model of public ledgers).

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:24 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

Smart contracts as state machines. Scilla [79] is an automata-based compiler for contracts.
FSolidM [55] enables creating contracts via a graphical interface. VeriSolid [56] generates con-
tracts from graphical models enriched with predicates based on computational tree logic. EFSM
tools [84] generate contracts from state machines and linear temporal logic. Prisma avoids a separate
specification but infers transactions and their order from the control flow of a multitier dApp.

Analysis tools. Durieux et al. [28] and Ferreira et al. [35] empirically validate languages and
tools and relate design patterns to security vulnerabilities, extending the survey by Di Angelo and
Salzer [4]. Our work is complementary, targeting the correctness of the distributed program flow.
For vulnerabilities not related to program flow (e.g., front-running, or bad randomness), developers
(using Solidity/JavaScript or Prisma) can use the surveyed analysis tools.

Multitier languages. Multitier programming was pioneered by Hop [80, 81]. Modeling a persistent
session in client–server applications with continuations was mentioned by Queinnec [69] and
elaborated in Links [22, 38]. Eliom [70] supports bidirectional client–server communication for web
applications. ScalaLoci [87] generalizes the multitier model to generic distributed architectures. Our
work specializes it to the dApp domain and its specific properties. Giallorenzo et al. [41] establish
interesting connections between multitier (subjective) and choreographic (objective) languages
– two variants of the global model. Prisma adopts the subjective view, which naturally fits the
dApp domain, where a dominant role (contract) controls the execution and diverts control to other
parties (clients) to collect their input.

Mashic [51] is a compiler for amashup between two JavaScript programs: the untrusted embedded
(iframe) gadget(s) and the trustworthy hosting integrator program, which communicate viamessages.
The authors prove that the compiler guarantees integrity and confidentiality. More specifically,
the gadget(s) cannot learn more than what the integrator sends and, analogously, the gadget’s
influence is limited to the integrators interface. In Mashic, the two programs are separate and the
compiler checks that they communicate only via specified messages. In contrast, in Prisma, client
and contract code are mixed. Thus, in addition to checking that only the specified messages are
used, we can also check the interaction protocol – expressed by the structure of the control flow of
the program – and ensure that it is followed by the target program after compilation.
Swift’s [17] secure automatic partitioning approach uses information flow policies to derive

placements. Based on the policies, a constraint solver with integer programming heuristically picks
a placement such that network traffic is minimal and information flow integrity is preserved. In
contrast, placements in Prisma are explicit to the developer. Further, in blockchain programming,
every single instruction generated by the compiler potentially incurs high costs. Therefore, we
demonstrated that our compiler generates inexpensive programs, whereas Swift does not consider
the program’s execution cost.

Effectful programs and meta-programming. MNF and CSP are widely discussed as intermediate
compiler forms [6, 21, 37, 49, 54]. F# computation expressions [64] support control-flow operators
in monadic expressions. OCaml supports a monadic and applicative let [88]: more flexible than
do-notation but still restricted to MNF. Idris’ !-notation [10] inspired the GHC proposal for monadic
inline binding [68]. Scala supports effectful programs through coroutines [67], async/await [73],
monadic inline binding [11], Dsl.scala [92] and a (deprecated) compiler plugin for CPS transla-
tion [74]. The dotty-cps-async macro [82] supports async/await and similar effects for the Dotty
compiler.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:25

7 CONCLUSION
We proposed Prisma, the first global language for dApps that features direct style communication.
Compared to the state of the art, Prisma (a) enables the implementation of contract and client logic
within the same development unit, rendering intricacies of the heterogeneous technology stack
obsolete and avoiding boilerplate code, (b) provides support for explicitly encoding the intended
program flow and (c) reduces the risk of human failures by enforcing the intended program flow
and forcing developers to specify access control.
Unlike previous work that targeted challenges in the development of dApps with advanced

typing disciplines e.g., session types, our model does not exhibit visible side effects and gets away
with a standard System-F-style type system. We describe the design and the main features of Prisma
informally, define its formal semantics, formalize the compilation process and prove it correct. We
demonstrate Prisma’s applicability via case studies and performance benchmarks.

We plan to generate state channels – to optimistically cost-optimize dApps – similar to how we
generate state machines from high-level logic. Further, we believe that our technique for deriving
the communication protocol from direct-style control flow generalizes beyond the domain of smart
contracts and we will explore its further applicability.

ACKNOWLEDGMENTS
This work has been funded by the German Federal Ministry of Education and Research iBlockchain
project (BMBF No. 16KIS0902), by the German Research Foundation (DFG, SFB 1119 – CROSSING
Project), by the BMBF and the Hessian Ministry of Higher Education, Research, Science and the
Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE,
by the Hessian LOEWE initiative (emergenCITY), by the Swiss National Science Foundation (SNSF,
No. 200429), and by the University of St. Gallen (IPF, No. 1031569).

Thanks to George Zakhour for feedback on the initial draft.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow integrity principles, implementations,

and applications. ACM Trans. Inf. Syst. Secur. 13, 1 (2009), 4:1–4:40. https://doi.org/10.1145/1609956.1609960
[2] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, MA, USA.
[3] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. 2014. Secure Multiparty

Computations on Bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014.
IEEE Computer Society, 443–458. https://doi.org/10.1109/SP.2014.35

[4] Monika Di Angelo and Gernot Salzer. 2019. A Survey of Tools for Analyzing Ethereum Smart Contracts. In IEEE
International Conference on Decentralized Applications and Infrastructures, DAPPCON 2019, Newark, CA, USA, April 4-9,
2019. IEEE, 69–78. https://doi.org/10.1109/DAPPCON.2019.00018

[5] Monika Di Angelo and Gernot Salzer. 2020. Wallet Contracts on Ethereum. CoRR abs/2001.06909 (2020).
arXiv:2001.06909 https://arxiv.org/abs/2001.06909

[6] Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press.
[7] Massimo Bartoletti and Livio Pompianu. 2017. An empirical analysis of smart contracts: platforms, applications, and

design patterns. In International conference on financial cryptography and data security. Springer, 494–509.
[8] Gavin M. Bierman, Claudio V. Russo, Geoffrey Mainland, Erik Meijer, and Mads Torgersen. 2012. Pause ’n’ Play:

Formalizing Asynchronous C#. In ECOOP 2012 - Object-Oriented Programming - 26th European Conference, Beijing,
China, June 11-16, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7313), James Noble (Ed.). Springer, 233–257.
https://doi.org/10.1007/978-3-642-31057-7_12

[9] Sam Blackshear, Evan Cheng, D. Dill, Victor Gao, B. Maurer, T. Nowacki, Alistair Pott, S. Qadeer, Dario Russi,
Stephane Sezer, Tim Zakian, and Run tian Zhou. 2019. Move: A Language With Programmable Resources. https:
//developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2019-06-18.pdf.

[10] Edwin Brady. 2007. The Idris Tutorial. Interfaces. Monads and do-notation. !-notation. http://docs.idris-lang.org/en/
latest/tutorial/interfaces.html#notation. Accessed 14-11-2020.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:26 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

[11] Flavio W. Brasil and Sameer Brenn. 2017. Monadless – Syntactic sugar for monad composition in Scala. https:
//github.com/monadless/monadless.

[12] Lorenz Breidenbach, Phil Daian, Ari Juels, and Emin Gün Sirer. 2016. An In-Depth Look at the Parity Multisig Bug.
hackingdistributed.com/2017/07/22/deep-dive-parity-bug/. Accessed 14-11-2020.

[13] Lars Brünjes and Murdoch James Gabbay. 2020. UTxO- vs Account-Based Smart Contract Blockchain Programming
Paradigms. In Leveraging Applications of Formal Methods, Verification and Validation: Applications - 9th International
Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings,
Part III (Lecture Notes in Computer Science, Vol. 12478), Tiziana Margaria and Bernhard Steffen (Eds.). Springer, 73–88.
https://doi.org/10.1007/978-3-030-61467-6_6

[14] Manuel Chakravarty, Roman Kireev, Kenneth MacKenzie, Vanessa McHale, Jann Müller, Alexander Nemish, Chad
Nester, Michael Peyton Jones, Simon Thompson, Rebecca Valentine, and Philip Wadler. 2019. Functional Blockchain
Contracts. (2019). https://iohk.io/en/research/library/papers/functional-blockchain-contracts/

[15] Manuel M. T. Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gazi, Philipp Kant, Aggelos Kiayias, and Alexander
Russell. 2020. Hydra: Fast Isomorphic State Channels. IACR Cryptol. ePrint Arch. 2020 (2020), 299. https://eprint.iacr.
org/2020/299

[16] Kwanghoon Choi and Byeong-Mo Chang. 2019. A Theory of RPC Calculi for Client–Server Model. Journal of Functional
Programming 29 (2019). https://doi.org/10.1017/S0956796819000029

[17] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin Zheng. 2007. Secure web
applications via automatic partitioning. In Symposium on Operating Systems Principles.

[18] Michael J. Coblenz. 2017. Obsidian: a safer blockchain programming language. In Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume, Sebastián
Uchitel, Alessandro Orso, and Martin P. Robillard (Eds.). IEEE Computer Society, 97–99. https://doi.org/10.1109/ICSE-
C.2017.150

[19] Michael J. Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste Barnaby, Jonathan Aldrich, Joshua
Sunshine, and Brad A. Myers. 2019. User-Centered Programming Language Design in the Obsidian Smart Contract
Language. CoRR abs/1912.04719 (2019). arXiv:1912.04719 http://arxiv.org/abs/1912.04719

[20] Michael J. Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker, Yannick Bloem, Brad A. Myers, Joshua
Sunshine, and Jonathan Aldrich. 2019. Obsidian: Typestate and Assets for Safer Blockchain Programming. CoRR
abs/1909.03523 (2019). arXiv:1909.03523 http://arxiv.org/abs/1909.03523

[21] Youyou Cong, Leo Osvald, Grégory M. Essertel, and Tiark Rompf. 2019. Compiling with continuations, or without?
whatever. Proc. ACM Program. Lang. 3, ICFP (2019), 79:1–79:28. https://doi.org/10.1145/3341643

[22] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007. Links: Web Programming Without Tiers. In
Proceedings of the 5th International Conference on Formal Methods for Components and Objects (Amsterdam, The
Netherlands) (FMCO’06). Springer-Verlag, Berlin, Heidelberg, 266–296. http://dl.acm.org/citation.cfm?id=1777707.
1777724

[23] Phil Daian. 2016. Analysis of the DAO exploit. https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/.
Accessed 14-11-2020.

[24] Dapp.com. 2020. 2020 Q2 Dapp Market Report. https://www.dapp.com/article/q2-2020-dapp-market-report.
[25] Ankush Das, S. Balzer, J. Hoffmann, and F. Pfenning. 2019. Resource-Aware Session Types for Digital Contracts. ArXiv

abs/1902.06056 (2019).
[26] Ankush Das, Jan Hoffmann, and Frank Pfenning. 2021. Nomos: A Protocol-Enforcing, Asset-Tracking, and Gas-Aware

Language for Smart Contracts. (2021).
[27] Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. 2009. Sessions and Session Types: An Overview. In Web Services

and Formal Methods, 6th International Workshop, WS-FM 2009, Bologna, Italy, September 4-5, 2009, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 6194), Cosimo Laneve and Jianwen Su (Eds.). Springer, 1–28. https:
//doi.org/10.1007/978-3-642-14458-5_1

[28] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical review of automated analysis tools on 47,
587 Ethereum smart contracts. In ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27
June - 19 July, 2020, Gregg Rothermel andDoo-Hwan Bae (Eds.). ACM, 530–541. https://doi.org/10.1145/3377811.3380364

[29] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina Hostáková. 2019. Multi-party Virtual State
Channels. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 11476), Yuval Ishai and Vincent Rijmen (Eds.). Springer, 625–656. https://doi.org/10.1007/978-3-
030-17653-2_21

[30] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. 2018. General State Channel Networks. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM, 949–966.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:27

https://doi.org/10.1145/3243734.3243856
[31] Jonathan Edwards. 2009. Coherent reaction. In Companion to the 24th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA,
Shail Arora and Gary T. Leavens (Eds.). ACM, 925–932. https://doi.org/10.1145/1639950.1640058

[32] Ethereum Foundation. 2015. Solidity Documentation. https://docs.soliditylang.org/en/v0.8.1/. Accessed 14-11-2020.
[33] Ethereum Foundation. 2015. Solidity Documentation – Common Patterns. https://docs.soliditylang.org/en/v0.7.4/

common-patterns.html. Accessed 14-11-2020.
[34] Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and

State. Theor. Comput. Sci. 103, 2 (1992), 235–271. https://doi.org/10.1016/0304-3975(92)90014-7
[35] João F. Ferreira, Pedro Cruz, Thomas Durieux, and Rui Abreu. 2020. SmartBugs: A Framework to Analyze Solidity

Smart Contracts. CoRR abs/2007.04771 (2020). arXiv:2007.04771 https://arxiv.org/abs/2007.04771
[36] Klint Finley. 2016. A $50 Million Hack Just Showed That the DAO Was All Too Human. Wired (6 2016).
[37] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Con-

tinuations. In Proceedings of the ACM SIGPLAN’93 Conference on Programming Language Design and Implemen-
tation (PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993, Robert Cartwright (Ed.). ACM, 237–247. https:
//doi.org/10.1145/155090.155113

[38] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional Asynchronous Session Types: Session
Types without Tiers. Proceedings of the ACM on Programming Languages 3, POPL, Article 28 (Jan. 2019), 29 pages.
https://doi.org/10.1145/3290341

[39] Murdoch James Gabbay. 2020. What is an EUTxO blockchain? CoRR abs/2007.12404 (2020). arXiv:2007.12404
https://arxiv.org/abs/2007.12404

[40] Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2020. Choreographies as Objects. arXiv:2005.09520 [cs.PL]
[41] Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi, and Pascal Weisenburger.

2021. Multiparty Languages: The Choreographic and Multitier Cases (Pearl). In 35th European Conference on Object-
Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference) (LIPIcs, Vol. 194), Anders
Møller and Manu Sridharan (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:27. https://doi.org/10.
4230/LIPIcs.ECOOP.2021.22

[42] PolyCrypt GmbH. 2020. Perun Network. https://perun.network.
[43] Google Inc. 2021. Google Cloud BigQuery: Contract deployment per month. https://console.cloud.google.com/bigquery.

Query: SELECT EXTRACT(MONTH FROM c.block_timestamp) AS m, EXTRACT(YEAR FROM c.block_timestamp) AS
y, COUNT(c.address) FROM ‘bigquery-public-data.ethereum_blockchain.live_contracts‘ AS c GROUP BY m, y ORDER
BY y, m; Accessed 07-07-2021.

[44] Google Inc. 2021. Google Cloud BigQuery: Contract size. https://console.cloud.google.com/bigquery. Query:
WITH d as (SELECT DISTINCT c.bytecode,(LENGTH(c.bytecode)-2)/2 as s FROM ‘[...]live_contracts‘ AS c) SELECT
PERCENTILE_CONT(d.s, [0, 0.25, 0.5, 0.75, 1]) OVER () AS M FROM d LIMIT 1; Accessed 14-11-2021.

[45] Dominik Harz andWilliam J. Knottenbelt. 2018. Towards Safer Smart Contracts: A Survey of Languages and Verification
Methods. CoRR abs/1809.09805 (2018). arXiv:1809.09805 http://arxiv.org/abs/1809.09805

[46] C. A. R. Hoare. 1978. Communicating Sequential Processes. Commun. ACM 21, 8 (Aug. 1978), 666–677. https:
//doi.org/10.1145/359576.359585

[47] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida. 2011. Scribbling Interactions
with a Formal Foundation. In Distributed Computing and Internet Technology - 7th International Conference, ICDCIT 2011,
Bhubaneshwar, India, February 9-12, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6536), Raja Natarajan and
Adegboyega K. Ojo (Eds.). Springer, 55–75. https://doi.org/10.1007/978-3-642-19056-8_4

[48] Bin Hu, Zongyang Zhang, Jianwei Liu, Yizhong Liu, Jiayuan Yin, Rongxing Lu, and Xiaodong Lin. 2020. A Compre-
hensive Survey on Smart Contract Construction and Execution: Paradigms, Tools and Systems. CoRR abs/2008.13413
(2020). arXiv:2008.13413 https://arxiv.org/abs/2008.13413

[49] Andrew Kennedy. 2007. Compiling with continuations, continued. In Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007, Ralf Hinze and Norman Ramsey
(Eds.). ACM, 177–190. https://doi.org/10.1145/1291151.1291179

[50] Web3 Labs. 2016. Web3j: Web3 Java Ethereum Ðapp API (GitHub Repository). https://github.com/web3j/web3j.
[51] Zhengqin Luo and Tamara Rezk. 2012. Mashic Compiler: Mashup Sandboxing Based on Inter-frame Communication.

In 25th IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012, Stephen
Chong (Ed.). IEEE Computer Society, 157–170. https://doi.org/10.1109/CSF.2012.22

[52] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making Smart Contracts Smarter.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:28 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

[53] Simon Marlow. 2010. Haskell 2010: Language Report. Expressions. Do Expressions. https://www.haskell.org/
onlinereport/haskell2010/haskellch3.html#x8-470003.14. Accessed 14-11-2020.

[54] Luke Maurer, Paul Downen, Zena M. Ariola, and Simon L. Peyton Jones. 2017. Compiling without continuations. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 482–494. https://doi.org/10.1145/
3062341.3062380

[55] Anastasia Mavridou and Aron Laszka. 2018. Designing Secure Ethereum Smart Contracts: A Finite State Machine
Based Approach. In Financial Cryptography and Data Security - 22nd International Conference, FC 2018, Nieuwpoort,
Curaçao, February 26 - March 2, 2018, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 10957), Sarah
Meiklejohn and Kazue Sako (Eds.). Springer, 523–540. https://doi.org/10.1007/978-3-662-58387-6_28

[56] Anastasia Mavridou, Aron Laszka, Emmanouela Stachtiari, and Abhishek Dubey. 2019. VeriSolid: Correct-by-Design
Smart Contracts for Ethereum. In Financial Cryptography and Data Security - 23rd International Conference, FC 2019,
Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 11598),
Ian Goldberg and Tyler Moore (Eds.). Springer, 446–465. https://doi.org/10.1007/978-3-030-32101-7_27

[57] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick McCorry. 2019. Sprites and State Channels:
Payment Networks that Go Faster Than Lightning. In Financial Cryptography and Data Security - 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 11598), Ian Goldberg and Tyler Moore (Eds.). Springer, 508–526. https://doi.org/10.1007/978-3-
030-32101-7_30

[58] Mix. 2019. These are the top 10 programming languages in blockchain. https://thenextweb.com/hardfork/2019/05/24/
javascript-programming-java-cryptocurrency/. Accessed 14-11-2020.

[59] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. 2014. Service-Oriented Programming with Jolie. InWeb
Services Foundations, Athman Bouguettaya, Quan Z. Sheng, and Florian Daniel (Eds.). Springer, 81–107. https:
//doi.org/10.1007/978-1-4614-7518-7_4

[60] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. 2018. Finding The Greedy, Prodigal,
and Suicidal Contracts at Scale. In Proceedings of the 34th Annual Computer Security Applications Conference (San Juan,
PR, USA) (ACSAC ’18). Association for Computing Machinery, New York, NY, USA, 653–663. https://doi.org/10.1145/
3274694.3274743

[61] Reed Oei, Michael J. Coblenz, and Jonathan Aldrich. 2020. Psamathe: A DSL with Flows for Safe Blockchain Assets.
CoRR abs/2010.04800 (2020). arXiv:2010.04800 https://arxiv.org/abs/2010.04800

[62] Gustavo A Oliva, Ahmed E Hassan, and Zhen Ming Jack Jiang. 2020. An exploratory study of smart contracts in the
Ethereum blockchain platform. Empirical Software Engineering 25 (2020), 1864–1904. Issue 3. https://doi.org/10.1007/
s10664-019-09796-5

[63] Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal Approaches to Secure Compilation: A Survey of Fully
Abstract Compilation and Related Work. ACM Comput. Surv. 51, 6 (2019), 125:1–125:36. https://doi.org/10.1145/3280984

[64] Tomas Petricek and Don Syme. 2014. The F# Computation Expression Zoo. In PADL (Lecture Notes in Computer Science,
Vol. 8324). Springer, 33–48.

[65] Sergey Petrov. 2017. Another Parity Wallet hack explained. https://medium.com/@Pr0Ger/another-parity-wallet-
hack-explained-847ca46a2e1c

[66] Andrew M. Pitts. 2000. Operational Semantics and Program Equivalence. In Applied Semantics, International Summer
School, APPSEM 2000, Caminha, Portugal, September 9-15, 2000, Advanced Lectures (Lecture Notes in Computer Science,
Vol. 2395), Gilles Barthe, Peter Dybjer, Luís Pinto, and João Saraiva (Eds.). Springer, 378–412. https://doi.org/10.1007/3-
540-45699-6_8

[67] Aleksandar Prokopec. 2015. Scala Coroutines. https://github.com/storm-enroute/coroutines.
[68] Jon Purdy. 2017. Discussion on GHC Pre-Proposal: Add InlineBindings proposal. https://github.com/ghc-proposals/ghc-

proposals/pull/64. Accessed 14-11-2020.
[69] Christian Queinnec. 2000. The influence of browsers on evaluators or, continuations to program web servers. In

Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, 23–33. https://doi.org/10.1145/351240.351243

[70] Gabriel Radanne, Jérôme Vouillon, and Vincent Balat. 2016. Eliom: A core ML language for Tierless Web Programming.
In Proceedings of the 14th Asian Symposium on Programming Languages and Systems (Hanoi, Vietnam) (APLAS ’16),
Atsushi Igarashi (Ed.). Springer-Verlag, Berlin, Heidelberg, 377–397. https://doi.org/10.1007/978-3-319-47958-3_20

[71] John C. Reynolds. 1972. Definitional interpreters for higher-order programming languages. In ACM ’72.
[72] Evan Saulpaugh. 2018. Headlong (GitHub Repository). https://github.com/esaulpaugh/headlong.
[73] Scala Development Team. 2012. scala-async. A Scala DSL to enable a direct style of coding when composing Futures.

https://github.com/scala/scala-async.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:29

[74] Scala Development Team. 2013. scala-continuations. The Scala delimited continuations plugin and library. https:
//github.com/scala/scala-continuations.

[75] Franklin Schrans, Susan Eisenbach, and Sophia Drossopoulou. 2018. Writing safe smart contracts in Flint. In Conference
Companion of the 2nd International Conference on Art, Science, and Engineering of Programming, Nice, France, April
09-12, 2018, Stefan Marr and Jennifer B. Sartor (Eds.). ACM, 218–219. https://doi.org/10.1145/3191697.3213790

[76] Franklin Schrans, Daniel Hails, Alexander Harkness, Sophia Drossopoulou, and Susan Eisenbach. 2019. Flint for Safer
Smart Contracts. CoRR abs/1904.06534 (2019). arXiv:1904.06534 http://arxiv.org/abs/1904.06534

[77] Pablo Lamela Seijas, Alexander Nemish, David Smith, and Simon THompson. 2020. Marlowe: implementing and
analysing financial contracts on blockchain, Tiziana Margaria and Bernhard Steffen (Eds.). Workshop on Trusted Smart
Contracts @ FC 2020. https://iohk.io/en/research/library/papers/marloweimplementing-and-analysing-financial-
contracts-on-blockchain/

[78] Pablo Lamela Seijas and Simon J. Thompson. 2018. Marlowe: Financial Contracts on Blockchain. In Leveraging
Applications of Formal Methods, Verification and Validation. Industrial Practice - 8th International Symposium, ISoLA
2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part IV (Lecture Notes in Computer Science, Vol. 11247), Tiziana
Margaria and Bernhard Steffen (Eds.). Springer, 356–375. https://doi.org/10.1007/978-3-030-03427-6_27

[79] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao. 2019. Safer
smart contract programming with Scilla. PACMPL 3, OOPSLA (2019), 185:1–185:30. https://doi.org/10.1145/3360611

[80] Manuel Serrano, Erick Gallesio, and Florian Loitsch. 2006. Hop, A Language for Programming theWeb 2.0. InCompanion
to the 21th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (Portland,
OR, USA) (OOPSLA Companion ’06). ACM, New York, NY, USA.

[81] Manuel Serrano and Vincent Prunet. 2016. A Glimpse of Hopjs. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming (Nara, Japan) (ICFP ’16). ACM, New York, NY, USA, 180–192. https://doi.org/
10.1145/2951913.2951916

[82] Ruslan Shevchenko. 2020. dotty-cps-async. https://github.com/rssh/dotty-cps-async.
[83] State Channels contributors. 2020. State Channels. https://statechannels.org/.
[84] Dmitrii Suvorov and Vladimir Ulyantsev. 2019. Smart Contract Design Meets State Machine Synthesis: Case Studies.

CoRR abs/1906.02906 (2019). arXiv:1906.02906 http://arxiv.org/abs/1906.02906
[85] Uniswap Labs. 2021. Uniswap Info. https://v2.info.uniswap.org/home. Accessed 07-07-2021.
[86] Philip Wadler. 2012. Propositions as sessions. In ACM SIGPLAN International Conference on Functional Programming,

ICFP’12, Copenhagen, Denmark, September 9-15, 2012, Peter Thiemann and Robby Bruce Findler (Eds.). ACM, 273–286.
https://doi.org/10.1145/2364527.2364568

[87] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. 2018. Distributed System Development with ScalaLoci.
Proceedings of the ACM on Programming Languages 2, OOPSLA, Article 129 (Oct. 2018), 30 pages. https://doi.org/10.
1145/3276499

[88] Leo White. 2018. OCaml: Add "monadic" let operators. https://github.com/ocaml/ocaml/pull/1947.
[89] MaximilianWöhrer andUweZdun. 2020. FromDomain-Specific Language to Code: Smart Contracts and theApplication

of Design Patterns. IEEE Softw. 37, 4 (2020), 37–42. https://doi.org/10.1109/MS.2020.2993470
[90] Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction Ledger. https://ethereum.github.io/

yellowpaper/paper.pdf. Ethereum Yellow Paper: A Formal Specification of Ethereum, a Programmable Blockchain.
BERLIN VERSION 0e0eba8 – 2021-11-02. Accessed 14-11-2020.

[91] Gavin Wood. 2022. Ethereum Yellow Paper. https://ethereum.github.io/yellowpaper/paper.pdf.
[92] Bo Yang. 2016. Dsl.scala – A framework to create embedded Domain-Specific Languages in Scala. https://github.com/

ThoughtWorksInc/Dsl.scala.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:30 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

A CASE STUDIES
This section describes the implemented case studies in detail. Bartoletti and Pompianu [7] identify
five classes of smart contract applications: Financial, Notary, Game, Wallet, and Library. Our case
studies include at least one application per category (Table 22). In addition, we consider scalability
solutions.
Financial. These apps include digital tokens, crowdfunding, escrowing, advertisement, insur-

ances and sometimes Ponzi schemes. A study investigating all blocks mined until September 15th,
2018 [62], found that 72.9 % of the high-activity contracts are token contracts compliant to ERC-20
or ERC-721, which have an accumulated market capitalization of US $ 12.7 billion. We have imple-
mented a fungible Prisma token of the ERC-20 standard. Further, we implemented crowdfunding
and escrowing case studies. These case studies demonstrate how to send and receive coins with
Prisma, which is the basic functionality of financial applications. Other financial use cases can be
implemented in Prisma with similar techniques.
Notary. These contracts use the blockchain to store data immutably and persistently, e.g., to

certify their ownership. We implemented a general-purpose notary contract enabling users to store
arbitrary data, e.g., document hashes or images, together with a submission timestamp and the
data owner. This case study demonstrates that Notaries are expressible with Prisma.
Games. We implemented TicTacToe (Section 2), Rock-Paper-Scissors, Hangman and Chinese

Checkers. Hangman evolves through multiple phases and hence benefits from the explicit control
flow definition in Prismamore than the other game case studies. The game Chinese Checkers is more
complex than the others, in regard to the number of parties, the game logic and the number of rounds,
and hence, represents larger applications. Rock-Paper-Scissors illustrates how randomness for
dApps is securely generated. Every Ethereum transaction, including the executions of contracts, is
deterministic – all participants can validate the generation of new blocks. Hence, secure randomness
is negotiated among parties: in this case, by making use of timed commitments [3], i.e., all parties
commit to a random seed share and open it after all commitments have been posted. The contract
uses the sum of all seed shares as randomness. If one party aborts prior to opening its commitment,
it is penalized. In Rock-Paper-Scissors both parties commit to their choice – their random share –
and open it afterwards. Other games of chance, e.g., gambling contracts, use the same technique.
Wallet. A wallet contract manages digital assets, i.e., cryptocurrencies and tokens, and offers

additional features such as shared ownership or daily transaction limits. At August 30, 2019, 3.9 M
of 17.9 M (21 %) deployed smart contracts have been different types of wallet contracts [5]. Multi-
signature wallets are a special type of wallet that provides a transaction voting mechanism by only
executing transactions, which are signed by a fixed fraction of the set of owners. Wallets transfer
money and call other contracts in their users stead depending on run-time input, demonstrating calls
among contracts in Prisma. Further, a multi-signature wallet uses built-in features of the Ethereum
VM for signature validation, i.e., data encoding, hash calculation, and signature verification, showing
that these features are supported in Prisma.
Libraries. As the cost of deploying a contract increases with the amount of code in Ethereum,

developers try to avoid code repetitions. Contract inheritance does not help: child contracts simply
copy the attributes and functions from the parent. Yet, one can outsource commonly used logic to
library contracts that are deployed once and called by other contracts. For example, the TicTacToe
dApp and the TicTacToe channel in our case studies share some logic, e.g., to check the win
condition. To demonstrate libraries in Prisma, we include a TicTacToe library to our case studies
and another on-chain executed TicTacToe dApp which uses such library instead of deploying the
logic itself. Libraries use a call instruction similar to wallets, although the call target is typically
known at deployment and can be hard-coded.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:31

Fig. 22. Categories and Cross-tier calls.

Category Case study Cross-tier calls Prisma LoC Solidity + JavaScript LoC

Financial Token 4 79 48 + 50
Crowdfunding 11 59 27 + 63
Escrow 9 63 33 + 56

Wallet Multi-signature wallet 3 76 41 + 52

Notary General-purpose notary 3 32 16 + 36

Game Rock Paper Scissors 12 79 41 + 77
TicTacToe 5 61 31 + 52
Hangman 15 119 86 + 83
Chinese Checkers 4 167 141 + 47

Library TicTacToe library – 167 141 + –
TicTacToe using library 5 53 29 + 52

Scalability TicTacToe channel 9 177 56 + 177

0 20 40 60 80 100 120 140 160 180 200 220 240

TTT Channel

Token
Crowdfunding

Escrow

Notary

Hangman

TicTacToe
Rock-Paper-Scissors

Chinese Checkers

Wallet

TTT Library
TTT via Library

Solidity
JavaScript
Prisma

Fig. 23. LOC in Solidity/JavaScript and Prisma.

Scalability solutions. State channels [29, 30, 57] are scalability solutions, which enable a fixed
group of parties to move their dApp to a non-blockchain consensus protocol: the execution falls-
back to the blockchain in case of disputes. Similar to multi-signature wallets, state channels use
built-in signature validation. We implemented a state channel for TicTacToe12 to demonstrate that
Prisma supports state channels.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:32 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

B EMPIRICAL EVALUATION OF DESIGN QUALITY
In Section 6, we argued that with Prisma, (a) we provide communication safety with a standard
system-F-like type-system, (b) the program flow can be defined explicitly and is enforced automati-
cally, (c) dApp developers need to master a single technology that covers both tiers, (d) cross-tier
type-safety can be checked at compile-time, and (e) the code is simpler and less verbose due to
reduced boilerplate code for communication and less control flow jumps. The claims (a), (c), and
(d) are a direct consequence of Prisma’s design and do not require further evidence. Claim (c) has
been formally proven in Section 3. It remains to investigate claim (e), i.e., in which extent Prisma
reduces the amount of code and error-prone control-flow jumps.
To this end, we implemented all case studies with equivalent functionality in Prisma and in

Solidity/JavaScript. The JavaScript client logic is in direct style using async/await – the Solidity
contract needs to be implemented as a finite-state-machine. We keep the client logic of our case
studies (in both, the Prisma and the Solidity implementation) as basic as possible, not to compare
the client logic in Scala and in JavaScript but rather focus on the dApp semantics. A complex
client logic would shadow the interaction with the contract logic – limited in size due to the gas
semantics.
We start with comparing LOCs in the case studies (Figure 23). The results in Figure 23 show

that case studies written in Prisma require only 55 – 89 % LOC compared to those implemented in
Solidity/JavaScript. One exception is the standalone library, which has no client code and hence
does not directly profit from the tierless design.

Second, we consider occurrences of explicit cross-tier control-flow calls in the Solidity/JavaScript
dApps (cf. Table 22), which complicate control flow, compared to Prisma, where cross-tier access is
seamless. In the client implementations, 6 – 18 % of all lines trigger a contract interaction passing
the control flow to the contract and waiting for the control flow to return. From the contract
code in finite-state-machine style, it is not directly apparent at which position the program flow
continues, once passed back from clients to contract, i.e., which function is called by the clients
next. Direct-style code, on the other hand, ensures that the control flow of the contract always
continues in the line that passed the control flow to the client by invoking an awaitCl expression.

12A general solution is a much larger engineering effort and subject of industrial projects [42, 83]

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:33

𝑐𝑜𝑚𝑝 ′(𝑑 ;𝑏; trmp(𝑚)) = 𝑑 ; coclfn(𝑏, 𝑖𝑑, assert(false), assert(false)); trmp(𝑐𝑜𝑚𝑝 (𝑚))
where 𝑖𝑑 fresh

𝑐𝑜𝑚𝑝
©«

𝑑 ; coclfn(𝑏, 𝑖𝑑,
𝑒1,𝑎𝑙𝑡 ,
𝑒2,𝑎𝑙𝑡);
𝑡𝑚𝑝 ←𝑠 (() → 𝑒1); 𝑒2

ª®®®¬
=

©«

𝑑 ; coclfn(𝑏, 𝑖𝑑,
if let (𝑐 :: fv(() → 𝑒1)) = 𝑖𝑑 then 𝑒1 else 𝑒 ′1,𝑎𝑙𝑡 ,
if let (𝑐 :: 𝑥 :: fv(𝑥 → 𝑒 ′2)) = 𝑖𝑑 then
assert(this. state == 𝑐 && this.who(this. sender));
this. state := 0; 𝑒 ′2
else
𝑒 ′2,𝑎𝑙𝑡);
this.who := 𝑒0; this. state := 𝑐;
(More, 𝑐 :: fv(() → 𝑒1), 𝑐 :: fv(𝑥 → 𝑒 ′2))

ª®®®®®®®®®®®®®¬
where 𝑐 fresh
and 𝑑 ; coclfn(𝑏, 𝑖𝑑, 𝑒 ′1,𝑎𝑙𝑡 , 𝑒 ′2,𝑎𝑙𝑡); 𝑒 ′2 =

defun(𝑑 ; coclfn(𝑏, 𝑖𝑑, 𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡); 𝑒2)
𝑐𝑜𝑚𝑝

(
𝑑 ; coclfn(𝑏, 𝑖𝑑, 𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡);
𝑥 = 𝑒0; 𝑒1

)
=

(
𝑑 ; coclfn(𝑏, 𝑖𝑑, 𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡);
𝑥 = 𝑒0; defun(𝑒1)

)

𝑐𝑜𝑚𝑝

(
𝑑 ; coclfn(𝑏, 𝑖𝑑, 𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡);
𝑒

)
=

(
𝑑 ; coclfn(𝑏, 𝑖𝑑, 𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡);
𝑒

)

coclfn(𝑏, 𝑖𝑑, 𝑒1,𝑎𝑙𝑡 , 𝑒2,𝑎𝑙𝑡) = (@cl this. clfn = 𝑖𝑑 → 𝑒1,𝑎𝑙𝑡); (@co this. cofn = 𝑖𝑑 → 𝑒2,𝑎𝑙𝑡);𝑏

Fig. 24. comp′ and comp.

fv(𝑚0 ::𝑚1) = fv(𝑚0) ∪ fv(𝑚1)
fv(𝑥 →𝑚) = fv(𝑚) \ fv(𝑥)
fv(𝑖𝑑) = {𝑖𝑑}
fv(𝑚0 𝑚1) = fv(𝑚0) ∪ fv(𝑚1)
fv(awaitCl∗ ((𝑚0, () →𝑚1) = fv(𝑚0) ∪ fv(𝑚1)
fv(let 𝑥 =𝑚0;𝑚1) = fv(𝑚0) ∪ fv(𝑚1) \ fv(𝑥)
fv(this.𝑖 :=𝑚0) = fv(𝑚0)
fv(this. 𝑗 :=𝑚0) = fv(𝑚0)
fv(this.𝑖) = {}
fv(this. 𝑗) = {}
fv(𝑐) = {}

Fig. 25. Free variables.

C PROOFS
We provide the definition of comp′ and comp in Figure 24, the definition for the free variables for a
given term fv in Figure 25 and the detailed proofs for the theorem and the lemmas on the following
pages.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:34 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

Theorem 1 (Secure Compilation). For all programs 𝑃 over closed terms, the trace set of
evaluating the program under attack equals the trace set of evaluating the compiled program under
attack, i.e.,

∀𝑃 . { 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 ′(𝑚𝑛𝑓 ′((𝑃)))) } ≈ ... ≈ { 𝑖𝑛𝑖𝑡𝐴 (𝑃) }
Proof.

𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 ′(𝑚𝑛𝑓 ′(𝑃)))
Lemma 3≈ 𝑖𝑛𝑖𝑡𝐴 (𝑚𝑛𝑓 ′(𝑃))
Lemma 5≈ 𝑖𝑛𝑖𝑡𝐴 (𝑃)

□

Extensions. For simplicity, our definition of initialization uses a fixed set of clients. Yet, the
malicious semantics does not actually depend on the fixed set of clients, but instead models an
attacker that is in control of all clients with the capability of sending messages from any client, not
bound to the fixed set. Hence, it is straightforward to extend the proofs to the setting of a dynamic
set of clients, e.g., clients joining and leaving at run time.

Further, our trace equality relation defines that all programs in the relation eventually reduce to
values, filtering out programs that loop or get stuck. Below, we outline an approach to prove trace
equality for looping or stuck programs by showing that such programs loop with the same infinite
trace or get stuck at the same trace, respectively. To this end, we track the number of steps done
via a step-indexed trace equality relation:

𝑝;𝑞; 𝑒 ⇓𝑛 = { (𝑝 ′, 𝑣) | (𝑝;𝑞; 𝑒) →𝑛 (𝑝 ′;𝑞′; 𝑣) } 𝑇 ⇓𝑛 =
⋃

𝑝 ;𝑞;𝑒∈𝑇
𝑝;𝑞; 𝑒 ⇓𝑛

With this definition, we can no longer use just equality of traces as the left and right program
may take a different number of steps to produce the same events. Instead, we move from an equality
relation to a relation stating non-disagreement, which says that – independently of how long we
run either statement – the traces will never be in disagreement:

(𝑇 ≈𝑛 𝑆) ⇔ (𝑇 ⇓𝑛 #set 𝑆 ⇓𝑛)
where #set is defined on trace sets as

𝑇 #set𝑆 ⇔ (∀𝑡∈𝑇 . ∃𝑠∈𝑆. 𝑡 #trace 𝑠) ∧ (∀𝑠∈𝑆. ∃𝑡∈𝑇 . 𝑡 #trace 𝑠)
and #trace on event traces as

(𝑒𝑣, ()) #trace (𝑒𝑣, 𝑡𝑎𝑖𝑙2) = 𝑡𝑟𝑢𝑒
(𝑒𝑣, 𝑡𝑎𝑖𝑙1) #trace (𝑒𝑣, ()) = 𝑡𝑟𝑢𝑒
(𝑒𝑣1, 𝑡𝑎𝑖𝑙1) #trace (𝑒𝑣2, 𝑡𝑎𝑖𝑙2) = 𝑓 𝑎𝑙𝑠𝑒
(𝑒𝑣, 𝑡𝑎𝑖𝑙1) #trace (𝑒𝑣, 𝑡𝑎𝑖𝑙2) = 𝑡𝑎𝑖𝑙1 #trace 𝑡𝑎𝑖𝑙2

.

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:35

Lemma 1 (assoc preserves traces). 𝑎𝑠𝑠𝑜𝑐 is defined as a recursive term-to-term transformation
on open terms, whereas traceset equality is defined by reducing terms to values, i.e., on closed
terms. Since all valid programs are closed terms, we show that 𝑎𝑠𝑠𝑜𝑐 preserves the traceset of an
open term 𝑒 that is closed by substitution [𝑥 Z⇒ 𝑣].

For all terms 𝑒 , traces 𝑝 , traces 𝑞, values 𝑣 , patterns 𝑥 ,
{ 𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (𝑒) } ≈ ... ≈ { 𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑒 }

Proof. By induction over term structure.

Case. 𝑒 = (let 𝑥1 = (let 𝑥0 = 𝑒0; 𝑒1); 𝑒2).
We know 𝑥0 ∉ fv(𝑒2) since 𝑒2 is not in the scope of the 𝑥0 binding, and that all identifiers are

distinct, which can always be achieved by 𝛼-renaming.

𝑥0 ∉ fv(𝑒2)

According to ≈, we only consider terms that reduce to a value. Therefore, let 𝜙 be the judgement
that the term 𝑒0 closed by [𝑥 Z⇒𝑣] with trace 𝑝 evaluates to a value 𝑣0 producing trace 𝑝0.

𝜙 ≡ (𝑝;𝑞; [𝑥 Z⇒𝑣]𝑒0→∗ 𝑝 𝑝0;𝑞; 𝑣0)

The lemma holds by the following chain of transitive relations.We evaluate the compiled program
from top to bottom (→∗) and the original program from bottom to top (←∗) until configurations
converge. The induction hypothesis (IH) allows the removal of 𝑎𝑠𝑠𝑜𝑐 in redex position under traceset
equality (≈). {

𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (𝑒) }
def. 𝑒
=

{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (let 𝑥1 = (let 𝑥0 = 𝑒0; 𝑒1); 𝑒2)

}
def. 𝑎𝑠𝑠𝑜𝑐

=
{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (let 𝑥0 = 𝑒0; 𝑎𝑠𝑠𝑜𝑐 (let 𝑥1 = 𝑒1; 𝑒2))

}
𝐼𝐻≈ {

𝑝;𝑞; [𝑥 Z⇒𝑣] let 𝑥0 = 𝑒0; 𝑎𝑠𝑠𝑜𝑐 (let 𝑥1 = 𝑒1; 𝑒2)
}

def. Z⇒
=

{
𝑝;𝑞; let 𝑥0 = [𝑥 Z⇒𝑣] 𝑒0; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (let 𝑥1 = 𝑒1; 𝑒2)

}
𝜙
→∗ {

𝑝 𝑝0;𝑞; let 𝑥0 = 𝑣0; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (let 𝑥1 = 𝑒1; 𝑒2) | ∀ 𝑣0 𝑝0, 𝜙
}

Rlet→ {
𝑝 𝑝0;𝑞; [𝑥0 Z⇒𝑣0, 𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (let 𝑥1 = 𝑒1; 𝑒2) | ∀ 𝑣0 𝑝0, 𝜙

}
𝐼𝐻≈ {

𝑝 𝑝0;𝑞; [𝑥0 Z⇒𝑣0, 𝑥 Z⇒𝑣] let 𝑥1 = 𝑒1; 𝑒2 | ∀ 𝑣0 𝑝0, 𝜙
}

def. Z⇒; 𝑥0 ∉ fv (𝑒2)
=

{
𝑝 𝑝0;𝑞; let 𝑥1 = [𝑥0 Z⇒𝑣0, 𝑥 Z⇒𝑣]𝑒1; [𝑥 Z⇒𝑣]𝑒2 | ∀ 𝑣0 𝑝0, 𝜙

}
Rlet← {

𝑝 𝑝0;𝑞; let 𝑥1 = (let 𝑥0 = 𝑣0; [𝑥 Z⇒𝑣]𝑒1); [𝑥 Z⇒𝑣]𝑒2 | ∀ 𝑣0 𝑝0, 𝜙
}

𝜙
←∗ {

𝑝;𝑞; let 𝑥1 = (let 𝑥0 = [𝑥 Z⇒𝑣]𝑒0; [𝑥 Z⇒𝑣]𝑒1); [𝑥 Z⇒𝑣]𝑒2
}

def. Z⇒
=

{
𝑝;𝑞; [𝑥 Z⇒𝑣] let 𝑥1 = (let 𝑥0 = 𝑒0; 𝑒1); 𝑒2

}
def. 𝑒
=

{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑒 }

Case. 𝑒 ≠ (let 𝑥1 = (let 𝑥0 = 𝑒0; 𝑒1); 𝑒2).

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:36 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

If 𝑒 is not of nested let form, we simply apply the definition of 𝑎𝑠𝑠𝑜𝑐 .{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (𝑒) }

def. 𝑎𝑠𝑠𝑜𝑐
=

{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑒 }

□

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:37

Lemma 2 (mnf preserves traces). 𝑚𝑛𝑓 is defined as a recursive term-to-term transformation
on open terms, whereas traceset equality is defined by reducing terms to values, i.e., on closed
terms. Since all valid programs are closed terms, we show that𝑚𝑛𝑓 preserves the traceset of an
open term 𝑒 that is closed by substitution [𝑥 Z⇒ 𝑣].

For all terms 𝑒 , traces 𝑝 , traces 𝑞, values 𝑣 , patterns 𝑥 ,
{ 𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (𝑒) } ≈ ... ≈ { 𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑒 }

Proof. By induction over term structure.

Case. 𝑒 = 𝑒0 𝑒1.
According to ≈, we only consider terms that reduce to a value. Therefore, let 𝜙0 be the judgement

that the term 𝑒0 closed by [𝑥 Z⇒𝑣] with trace 𝑝 evaluates to a value 𝑣0 producing trace 𝑝0. Let 𝜙1 be
the judgement that the term 𝑒1 closed by [𝑥 Z⇒𝑣] with trace 𝑝 𝑝0 evaluates to a value 𝑣1 producing
trace 𝑝 𝑝0 𝑝1.

𝜙0 ≡ (𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑒0→∗ 𝑝 𝑝0;𝑞; 𝑣0)
𝜙1 ≡ (𝑝 𝑝0;𝑞; [𝑥 Z⇒𝑣] 𝑒1→∗ 𝑝 𝑝0 𝑝1;𝑞; 𝑣1)

Let 𝑖𝑑0 be the fresh identifier𝑚𝑛𝑓 produces.

𝑖𝑑0 fresh

The lemma holds by the following chain of transitive relations.We evaluate the compiled program
from top to bottom (→∗) and the original program from bottom to top (←∗) until configurations
converge. The induction hypothesis (IH) allows the removal of𝑚𝑛𝑓 in redex position under traceset
equality (≈). {

𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (𝑒) }
def. 𝑒
=

{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (𝑒0 𝑒1)

}
def.𝑚𝑛𝑓

=
{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (let 𝑖𝑑0 =𝑚𝑛𝑓 (𝑒0); 𝑎𝑠𝑠𝑜𝑐 (let 𝑖𝑑1 =𝑚𝑛𝑓 (𝑒1); 𝑖𝑑0 𝑖𝑑1))

}
Lemma 1≈ {

𝑝;𝑞; [𝑥 Z⇒𝑣] let 𝑖𝑑0 =𝑚𝑛𝑓 (𝑒0); 𝑎𝑠𝑠𝑜𝑐 (let 𝑖𝑑1 =𝑚𝑛𝑓 (𝑒1); 𝑖𝑑0 𝑖𝑑1)
}

def. Z⇒
=

{
𝑝;𝑞; let 𝑖𝑑0 = [𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (𝑒0); [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (let 𝑖𝑑1 =𝑚𝑛𝑓 (𝑒1); 𝑖𝑑0 𝑖𝑑1)

}
𝐼𝐻≈ {

𝑝;𝑞; let 𝑖𝑑0 = [𝑥 Z⇒𝑣] 𝑒0; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (let 𝑖𝑑1 =𝑚𝑛𝑓 (𝑒1); 𝑖𝑑0 𝑖𝑑1))
}

𝜙0
→∗ {

𝑝 𝑝0;𝑞; let 𝑖𝑑0 = 𝑣0; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (let 𝑖𝑑1 =𝑚𝑛𝑓 (𝑒1); 𝑖𝑑0 𝑖𝑑1) | ∀ 𝑣0 𝑝0, if 𝜙0
}

Rlet→ {
𝑝 𝑝0;𝑞; [𝑖𝑑0 ↦→𝑣0, 𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (let 𝑖𝑑1 =𝑚𝑛𝑓 (𝑒1); 𝑖𝑑0 𝑖𝑑1) | ∀ 𝑣0 𝑝0, if 𝜙0

}
Lemma 1≈ {

𝑝 𝑝0;𝑞; [𝑖𝑑0 ↦→𝑣0, 𝑥 Z⇒𝑣] let 𝑖𝑑1 =𝑚𝑛𝑓 (𝑒1); 𝑖𝑑0 𝑖𝑑1 | ∀ 𝑣0 𝑝0, if 𝜙0
}

def. Z⇒
=

{
𝑝 𝑝0;𝑞; let 𝑖𝑑1 = [𝑖𝑑0 ↦→𝑣0, 𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (𝑒1); 𝑣0 𝑖𝑑1 | ∀ 𝑣0 𝑝0, if 𝜙0

}
𝐼𝐻
=

{
𝑝 𝑝0;𝑞; let 𝑖𝑑1 = [𝑖𝑑0 ↦→𝑣0, 𝑥 Z⇒𝑣] 𝑒1; 𝑣0 𝑖𝑑1 | ∀ 𝑣0 𝑝0, if 𝜙0

}
𝑖𝑑0 fresh

=
{
𝑝 𝑝0;𝑞; let 𝑖𝑑1 = [𝑥 Z⇒𝑣] 𝑒1; 𝑣0 𝑖𝑑1 | ∀ 𝑣0 𝑝0, if 𝜙0

}
𝜙1
→∗ {

𝑝 𝑝0 𝑝1;𝑞; let 𝑖𝑑1 = 𝑣1; 𝑣0 𝑖𝑑1 | ∀ 𝑣0 𝑣1 𝑝0 𝑝1, if 𝜙0, 𝜙1
}

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:38 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

Rlet→ {
𝑝 𝑝0 𝑝1;𝑞; 𝑣0 𝑣1 | ∀ 𝑣0 𝑣1 𝑝0 𝑝1, if 𝜙0, 𝜙1

}
𝜙1
←∗ {

𝑝 𝑝0;𝑞; 𝑣0 [𝑥 Z⇒𝑣] 𝑒1 | ∀ 𝑣0 𝑝0, if 𝜙0
}

𝜙0
←∗ {

𝑝;𝑞; ([𝑥 Z⇒𝑣] 𝑒0) [𝑥 Z⇒𝑣] 𝑒1
}

def. Z⇒
=

{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑒0 𝑒1

}
def. 𝑒
=

{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑒 }

Case. 𝑒 = let 𝑖𝑑0 = 𝑒0; 𝑒1.
According to ≈, we only consider terms that reduce to a value. Therefore, let 𝜙 be the judgement

that the term 𝑒0 closed by [𝑥 Z⇒𝑣] with trace 𝑝 evaluates to a value 𝑣0 producing trace 𝑝0.

𝜙0 ≡ (𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑒0→∗ 𝑝 𝑝0;𝑞; 𝑣0)

The lemma holds by the following chain of transitive relations.We evaluate the compiled program
from top to bottom (→∗) and the original program from bottom to top (←∗) until configurations
converge. The induction hypothesis (IH) allows the removal of𝑚𝑛𝑓 in redex position under traceset
equality (≈). {

𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (𝑒) }
def. 𝑒
=

{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (let 𝑖𝑑0 = 𝑣0; 𝑒1)

}
def.𝑚𝑛𝑓

=
{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑎𝑠𝑠𝑜𝑐 (let 𝑖𝑑0 =𝑚𝑛𝑓 (𝑒0); 𝑚𝑛𝑓 (𝑒1))

}
Lemma 1≈ {

𝑝;𝑞; [𝑥 Z⇒𝑣] let 𝑖𝑑0 =𝑚𝑛𝑓 (𝑒0); 𝑚𝑛𝑓 (𝑒1)
}

def. Z⇒
=

{
𝑝;𝑞; let 𝑖𝑑0 = [𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (𝑒0); [𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (𝑒1)

}
𝐼𝐻≈ {

𝑝;𝑞; let 𝑖𝑑0 = [𝑥 Z⇒𝑣] 𝑒0; [𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (𝑒1)
}

𝜙0
→∗ {

𝑝 𝑝0;𝑞; let 𝑖𝑑0 = 𝑣0; [𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (𝑒1) | ∀ 𝑣0 𝑝0, if 𝜙0
}

Rlet→ {
𝑝 𝑝0;𝑞; [𝑖𝑑0 ↦→𝑣0, 𝑥 Z⇒𝑣] 𝑚𝑛𝑓 (𝑒1) | ∀ 𝑣0 𝑝0, if 𝜙0

}
𝐼𝐻≈ {

𝑝 𝑝0;𝑞; [𝑖𝑑0 ↦→𝑣0, 𝑥 Z⇒𝑣] 𝑒1 | ∀ 𝑣0 𝑝0, if 𝜙0
}

Rlet← {
𝑝 𝑝0;𝑞; [𝑥 Z⇒𝑣] let 𝑖𝑑0 = 𝑣0; 𝑒1 | ∀ 𝑣0 𝑝0, if 𝜙0

}
𝜙0
←∗ {

𝑝;𝑞; [𝑥 Z⇒𝑣] let 𝑖𝑑0 = 𝑒0; 𝑒1
}

def. 𝑒
=

{
𝑝;𝑞; [𝑥 Z⇒𝑣] 𝑒 }

Case. The other cases of 𝑒 are proved analogously.
□

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:39

Lemma 3 (mnf’ preserves trace). 𝑚𝑛𝑓 ′ is defined on programs. To evaluate a program, it is
initialized with a set of clients 𝐴.𝑚𝑛𝑓 ′ preserves the traceset of (closed) programs 𝑃 for any set of
clients 𝐴.

For all 𝑃 ,
{ 𝑖𝑛𝑖𝑡𝐴 (𝑚𝑛𝑓 ′(𝑃)) } ≈ ... ≈ { 𝑖𝑛𝑖𝑡𝐴 (𝑃) }

Proof. By induction over term structure.

Case. 𝑃 = (𝑑 ;𝑏; 𝑒0).
Initializing the definitions 𝑑 ;𝑏 with 𝐴 produces the trace 𝑝 and the state 𝑞.

𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏) = 𝑝;𝑞

According to ≈, we only consider terms that reduce to a value. Therefore, let 𝜙 be the judgement
that the term 𝑒0 closed by [𝑥 Z⇒𝑣] in trace 𝑝 produces a value 𝑣0 and trace 𝑝0.

𝜙 ≡ (𝑝;𝑞; 𝑒0→∗ 𝑝 𝑝0;𝑞; 𝑣0)

The lemma holds by the following chain of transitive relations.We evaluate the compiled program
from top to bottom (→∗) and the original program from bottom to top (←∗) until configurations
converge, using Lemma 2. {

𝑖𝑛𝑖𝑡𝐴 (𝑚𝑛𝑓 ′(𝑃)) }
def. 𝑃
=

{
𝑖𝑛𝑖𝑡𝐴 (𝑚𝑛𝑓 ′(𝑑 ;𝑏; 𝑒0))

}
def.𝑚𝑛𝑓 ′

=
{
𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏; trmp(𝑚𝑛𝑓 𝑒 (Done(𝑒0))))

}
def. 𝑖𝑛𝑖𝑡𝐴=

{
𝑝;𝑞; trmp(𝑚𝑛𝑓 𝑒 (Done(𝑒0)))

}
Lemma 2≈ {

𝑝;𝑞; trmp(Done(𝑒0))
}

𝜙
→∗ {

𝑝 𝑝0;𝑞; trmp(Done(𝑣0)) | ∀ 𝑣0 𝑝0, if 𝜙
}

Rdone→ {
𝑝 𝑝0;𝑞; 𝑣0 | ∀ 𝑣0 𝑝0, if 𝜙

}
𝜙
←∗ {

𝑝;𝑞; 𝑒0
}

def. 𝑖𝑛𝑖𝑡𝐴=
{
𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏; 𝑒0)

}
def. 𝑃
=

{
𝑖𝑛𝑖𝑡𝐴 (𝑃)

}

□

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:40 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

Lemma 4 (comp preserves traces). 𝑐𝑜𝑚𝑝 is defined on programs. To evaluate a program, it is
initialized with a set of clients 𝐴. 𝑐𝑜𝑚𝑝 preserves the traceset of (closed) programs 𝑃 for any set of
clients 𝐴.

For all definitions 𝑏, definitions 𝑑 , terms 𝑒 , values 𝑣 , patterns 𝑥 ,
{ [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 (𝑑 ;𝑏; trmp(𝑒))) } ≈ ... ≈ { 𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏; trmp([𝑥 Z⇒𝑣] 𝑒)) }

Proof. By induction over term structure.

Case. 𝑒 = let 𝑥 = awaitCl𝑠 ((𝑒0, () →𝑒1)); 𝑒2.
𝑐𝑜𝑚𝑝 expects the definitions 𝑏 to be of form:

𝑏 =
©«

@cl this.clfn = 𝑖𝑑 → 𝑒1,𝑎𝑙𝑡 ;
@co this.cofn = 𝑖𝑑 → 𝑒2,𝑎𝑙𝑡 ;
𝑏𝑟𝑒𝑠𝑡

ª®¬
𝑐𝑜𝑚𝑝 is defined recursively and applied to the term 𝑒2. Intuitively, 𝑐𝑜𝑚𝑝 transforms 𝑒2 to 𝑒 ′2 and

𝑏 to 𝑏 ′ by moving the part of 𝑒2 that comes after the awaitCl𝑠 call into the cofn definition inside 𝑏.
The recursive call is given as follows:

(𝑑 ;𝑏 ′; trmp(𝑒 ′2)) = 𝑐𝑜𝑚𝑝 (𝑑 ;𝑏; trmp(𝑒2))

𝑏 ′ =
©«

@cl this.clfn = 𝑖𝑑 → 𝑒 ′1,𝑎𝑙𝑡 ;
@co this.cofn = 𝑖𝑑 → 𝑒 ′2,𝑎𝑙𝑡 ;
𝑏𝑟𝑒𝑠𝑡

ª®®¬
After the recursive call, 𝑐𝑜𝑚𝑝 moves the transformed 𝑒 ′2 into the cofn definition, resulting in 𝑒 ′

and 𝑏 ′′ with 𝑒 ′′1,𝑎𝑙𝑡 and 𝑒
′′
2,𝑎𝑙𝑡 .

𝜙 ≡ ({ 𝑑 ;𝑏 ′′; trmp(𝑒 ′) } =
{
𝑐𝑜𝑚𝑝 (𝑑 ;𝑏; trmp(𝑒)) })

𝑏 ′′ =
©«

@cl this.clfn = 𝑖𝑑 → 𝑒 ′′1,𝑎𝑙𝑡 ;
@co this.cofn = 𝑖𝑑 → 𝑒 ′′2,𝑎𝑙𝑡 ;
𝑏𝑟𝑒𝑠𝑡

ª®®¬
𝑒 ′′1,𝑎𝑙𝑡 =

©«
if let (𝑐 :: fv(() →𝑒1)) = 𝑖𝑑
then 𝑒1
else 𝑒 ′2,𝑎𝑙𝑡

ª®¬
𝑒 ′′2,𝑎𝑙𝑡 =

©«

if let (𝑐 :: 𝑥 :: fv(𝑥 →𝑒 ′2)) = 𝑖𝑑
then assert(this.state == 𝑐 && this.sender == this.who);
this.state := 0; 𝑒 ′2
else 𝑒 ′2,𝑎𝑙𝑡

ª®®®¬
Let 𝑝;𝑞 be the trace and state produced by initializing 𝑑 ;𝑏 with 𝐴, and 𝑝;𝑞′ for initializing 𝑑 ;𝑏 ′,

and 𝑝;𝑞′′ for initializing 𝑑 ;𝑏 ′′.

𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏) = 𝑝;𝑞
𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏 ′) = 𝑝;𝑞′

𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏 ′′) = 𝑝;𝑞′′

According to ≈, we only consider terms that reduce to a value. Therefore, let 𝜙0 be the judgement
that the term 𝑒0 closed by [𝑥 Z⇒𝑣] in trace 𝑝 produces a value 𝑣0 and trace 𝑝1.

𝜙0 (𝑞𝜙) = (𝑝;𝑞𝜙 ; [𝑥 Z⇒𝑣] 𝑒0→ 𝑝 𝑝1;𝑞𝜙 ; 𝑣0)

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:41

We define 𝜙1 based on 𝜙 :

𝜙

={
𝑑 ;𝑏 ′′; trmp(𝑒 ′) } =

{
𝑐𝑜𝑚𝑝 (𝑑 ;𝑏; trmp(𝑒)) }

→ 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒 [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (...){ [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏 ′′; trmp(𝑒 ′)) } =
{ [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 (𝑑 ;𝑏; trmp(𝑒))) }

→ (= → ≈){ [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏 ′′; trmp(𝑒 ′)) } ≈ { [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 (𝑑 ;𝑏; trmp(𝑒))) }
→ 𝐼𝐻{ [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏 ′′; trmp(𝑒 ′)) } ≈ {

𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏; trmp([𝑥 Z⇒𝑣] 𝑒)) }
→ def. 𝑖𝑛𝑖𝑡𝐴{

𝑝;𝑞′′; trmp([𝑥 Z⇒𝑣] 𝑒 ′) } ≈ {
𝑝;𝑞; trmp([𝑥 Z⇒𝑣] 𝑒) }

≡
𝜙1

The lemma holds by the following chain of transitive relations.We evaluate the compiled program
from top to bottom (→∗) and the original program from bottom to top (←∗) until configurations
converge. { [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 (𝑑 ;𝑏; trmp(𝑒))) }

def. 𝑒
=

{ [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 (𝑑 ;𝑏; trmp(let 𝑥3 = awaitCl𝑠 ((𝑒0, () →𝑒1))); 𝑒2))
}

def. 𝑐𝑜𝑚𝑝
=

[𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏 ′′; trmp(
this.who := 𝑒0; this.state := 𝑐;
More(𝑐 :: fv(() →𝑒1), 𝑐 :: fv(𝑥 →𝑒 ′2))))

def. 𝑖𝑛𝑖𝑡𝐴=

𝑝;𝑞′′; [𝑥 Z⇒𝑣] trmp(
this.who := 𝑒0; this.state := 𝑐;
More(𝑐 :: fv(() →𝑒1), 𝑐 :: fv(𝑥 →𝑒 ′2))

def. Z⇒
=

𝑝;𝑞′′; trmp(
this.who := [𝑥 Z⇒𝑣] 𝑒0; this.state := 𝑐;
More(𝑐 :: [𝑥 Z⇒𝑣] fv(() →𝑒1), 𝑐 :: [𝑥 Z⇒𝑣] fv(𝑥 →𝑒 ′2)))

𝜙0 (𝑞′′)
→∗

𝑝 𝑝1; 𝑞′′; trmp(
this.who := 𝑣0; this.state := 𝑐;
More(𝑐 :: [𝑥 Z⇒𝑣] fv(() →𝑒1), 𝑐 :: [𝑥 Z⇒𝑣] fv(𝑥 →𝑒 ′2)))
| ∀ 𝑣0 𝑝1, if 𝜙0

Rset†, Rset†→

𝑝 𝑝1; 𝑞′′ [who↦→𝑣0, state↦→𝑐];
trmp(More(𝑐 :: [𝑥 Z⇒𝑣] fv(() →𝑒1)), 𝑐 :: [𝑥 Z⇒𝑣] fv(𝑥 →𝑒 ′2))
| ∀ 𝑣0 𝑝1, if 𝜙0

Rmore→

𝑝 𝑝1; 𝑞′′ [who↦→𝑣0, state↦→𝑐];
𝑡𝑚𝑝 ←𝑡 this.clfn(𝑐 :: [𝑥 Z⇒𝑣] fv(() →𝑒1));
trmp(this.cofn(𝑐 :: 𝑡𝑚𝑝 :: [𝑥 Z⇒𝑣] fv(𝑥 →𝑒 ′2)))
| ∀ 𝑣0 𝑝1, if 𝜙0

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:42 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

Rbt→

𝑝 𝑝1 msg(𝑣 ′0, 𝑣 ′2) wr(0, sender, 𝑣 ′0); 𝑞′′ [who↦→𝑣0, state↦→𝑐];
let 𝑡𝑚𝑝 = 𝑣 ′2; trmp(this.cofn(𝑐 :: 𝑡𝑚𝑝 :: [𝑥 Z⇒𝑣] fv(𝑥 →𝑒 ′2)))
| ∀ 𝑣0 𝑝1 𝑣 ′0 𝑣 ′2, if 𝜙0

𝑐𝑎𝑠𝑒 𝑣′0 = 𝑣0
=

𝑝 𝑝1 msg(𝑣 ′0, 𝑣 ′2) wr(0, sender, 𝑣 ′0); 𝑞′′ [who↦→𝑣0, state↦→𝑐];
let 𝑡𝑚𝑝 = 𝑣 ′2; trmp(this.cofn(𝑐 :: 𝑡𝑚𝑝 :: [𝑥 Z⇒𝑣] fv(𝑥 →𝑒 ′2)))
| ∀ 𝑣0 𝑝1 𝑣 ′0 𝑣 ′2, if 𝑣 ′0 ≠ 𝑣0, 𝜙0

𝑝 𝑝1 msg(𝑣 ′0, 𝑣 ′2) wr(0, sender, 𝑣 ′0); 𝑞′′ [who↦→𝑣0, state↦→𝑐];
let 𝑡𝑚𝑝 = 𝑣 ′2; trmp(this.cofn(𝑐 :: 𝑡𝑚𝑝 :: [𝑥 Z⇒𝑣] fv(𝑥 →𝑒 ′2)))
| ∀ 𝑣0 𝑝1 𝑣 ′0 𝑣 ′2, if 𝑣 ′0 = 𝑣0, 𝜙0

Rlet, Rget, Rapp, Rt,
Rget, Rop, Rget,
Rget, Rop, Rop
→∗

𝑝 𝑝1 msg(𝑣 ′0, 𝑣 ′2) wr(0, sender, 𝑣 ′0); 𝑞′′ [who↦→𝑣0, state↦→𝑐];
trmp(assert(false); this.state := 0; [𝑥 Z⇒𝑣 ′2, 𝑥 Z⇒𝑣] 𝑒 ′2))
| ∀ 𝑣0 𝑝1 𝑣 ′0 𝑣 ′2, if 𝑣 ′0 ≠ 𝑣0, 𝜙0

𝑝 𝑝1 msg(𝑣 ′0, 𝑣 ′2) wr(0, sender, 𝑣 ′0); 𝑞′′ [who↦→𝑣0, state↦→𝑐];
trmp(assert(true); this.state := 0; [𝑥 Z⇒𝑣 ′2, 𝑥 Z⇒𝑣] 𝑒 ′2)
| ∀ 𝑣0 𝑝1 𝑣 ′0 𝑣 ′2, if 𝑣 ′0 = 𝑣0, 𝜙0

def. ≈≈

𝑝 𝑝1 msg(𝑣 ′0, 𝑣 ′2) wr(0, sender, 𝑣 ′0); 𝑞′′ [who↦→𝑣0, state↦→𝑐];
trmp(assert(true); this.state := 0; [𝑥 Z⇒𝑣 ′2, 𝑥 Z⇒𝑣] 𝑒 ′2)
| ∀ 𝑣0 𝑝1 𝑣 ′0 𝑣 ′2, if 𝑣 ′0 = 𝑣0, 𝜙0

Rlet, Rset→

𝑝 𝑝1 msg(𝑣 ′0, 𝑣 ′2) wr(0, sender, 𝑣 ′0); 𝑞′′ [who↦→𝑣0, state↦→0];
trmp([𝑥 Z⇒𝑣 ′2, 𝑥 Z⇒𝑣] 𝑒 ′2)
| ∀ 𝑣0 𝑝1 𝑣 ′0 𝑣 ′2, if 𝑣 ′0 = 𝑣0, 𝜙0

𝑣′0 = 𝑣0
=

𝑝 𝑝1 msg(𝑣0, 𝑣 ′2) wr(0, sender, 𝑣0); 𝑞′′ [who↦→𝑣0, state↦→0];
trmp([𝑥 Z⇒𝑣 ′2, 𝑥 Z⇒𝑣] 𝑒 ′2)
| ∀ 𝑣0 𝑝1 𝑣 ′2, if 𝜙0

𝜙1≈

𝑝 𝑝1 msg(𝑣0, 𝑣 ′2) wr(0, sender, 𝑣0); 𝑞;
trmp([𝑥 Z⇒𝑣 ′2, 𝑥 Z⇒𝑣] 𝑒2)
| ∀ 𝑣0 𝑝1 𝑣 ′2, if 𝜙0

Rlet, Rbs←
{

𝑝 𝑝1; 𝑞; trmp(let 𝑥 = awaitCl𝑠 (𝑣0, () →[𝑥 Z⇒𝑣] 𝑒1); [𝑥 Z⇒𝑣] 𝑒2)
| ∀ 𝑣0 𝑝1, if 𝜙0

}
𝜙0 (𝑞)
←∗ {

𝑝;𝑞; trmp(let 𝑥 = awaitCl𝑠 ([𝑥 Z⇒𝑣] 𝑒0, () →[𝑥 Z⇒𝑣] 𝑒1); [𝑥 Z⇒𝑣] 𝑒2)
}

def. Z⇒
=

{
𝑝;𝑞; trmp([𝑥 Z⇒𝑣] let 𝑥 = awaitCl𝑠 (𝑒0, () →𝑒1); 𝑒2)

}
def. 𝑒
=

{
𝑝;𝑞; trmp([𝑥 Z⇒𝑣] 𝑒) }

def. 𝑖𝑛𝑖𝑡𝐴=
{
𝑖𝑛𝑖𝑡𝐴 (𝑏;𝑑 ; trmp([𝑥 Z⇒𝑣] 𝑒)) }

Case. 𝑒 = 𝑥0.
Let 𝑝;𝑞 be the trace and state produced by initializing 𝑑 ;𝑏 with 𝐴.

𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏) = 𝑝;𝑞

The traceset equality holds by definition of 𝑐𝑜𝑚𝑝 and 𝑖𝑛𝑖𝑡𝐴.{ [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 (𝑑 ;𝑏; trmp(𝑒))) }
def. 𝑒
=

{ [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 (𝑑 ;𝑏; trmp(𝑥0)))
}

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 1:43

def. 𝑐𝑜𝑚𝑝
=

{ [𝑥 Z⇒𝑣] 𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏; 𝑐𝑜𝑚𝑝 (trmp(𝑥0)))
}

def. 𝑖𝑛𝑖𝑡𝐴=
{
𝑝;𝑞; [𝑥 Z⇒𝑣] trmp(𝑥0)

}
def. Z⇒
=

{
𝑝;𝑞; trmp([𝑥 Z⇒𝑣] 𝑥0)

}
def. 𝑒
=

{
𝑝;𝑞; trmp([𝑥 Z⇒𝑣] 𝑒) }

def. 𝑖𝑛𝑖𝑡𝐴=
{
𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏; trmp([𝑥 Z⇒𝑣] 𝑒)) }

□

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

1:44 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

Lemma 5 (comp’ preserves traces). 𝑐𝑜𝑚𝑝 ′ is defined on programs. To evaluate a program, it is
initialized with a set of clients 𝐴. 𝑐𝑜𝑚𝑝 ′ preserves the traceset of (closed) programs 𝑃 for any set of
clients 𝐴.

For all definitions 𝑏, definitions 𝑑 , terms 𝑒0,
{ 𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 ′(𝑑 ;𝑏; trmp(𝑒0))) } ≈ ... ≈ { 𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏 ′; trmp(𝑒0)) }

Proof. By induction over term structure.

Case. 𝑃 = (𝑑 ;𝑏; 𝑒0).
Intuitively, 𝑐𝑜𝑚𝑝 ′ prepends the definitions 𝑏 with initial definitions for clfn and cofn that only

contain assert(false), such that 𝑐𝑜𝑚𝑝 can be applied.

𝑏 ′ =
©«

@cl this.clfn = 𝑖𝑑 → assert(false);
@co this.cofn = 𝑖𝑑 → assert(false);
𝑏

ª®¬
The lemma holds by definition of 𝑐𝑜𝑚𝑝 ′, and Lemma 4.{

𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 ′(𝑑 ;𝑏; trmp(𝑒0)))
}

def. 𝑐𝑜𝑚𝑝′
=

{
𝑖𝑛𝑖𝑡𝐴 (𝑐𝑜𝑚𝑝 (𝑑 ;𝑏 ′; trmp(𝑒0))

}
Lemma 4≈ {

𝑖𝑛𝑖𝑡𝐴 (𝑑 ;𝑏 ′; trmp(𝑒0))
}

□

ACM Trans. Program. Lang. Syst., Vol. 1, No. ECOOP, Article 1. Publication date: January 2022.

	Introduction
	Financially Backed Covert Security
	Statement Oblivious Witness Encryption
	Virtual Trusted Third Party
	Modern Programming Language for Decentralized Applications
	Thesis Outline

	Preliminaries
	Notation and Convention
	(Publicly Verifiable) Covert Secure Multiparty Computation
	Covert Security
	Publicly Verifiable Covert Security

	Cryptographic Building Blocks
	Blockchain and Smart Contracts
	Trusted Execution Environments

	Financially Backed Covert Security
	Our Contribution
	Key results
	Generic Compiler for Publicly Verifiable Covert Security
	Financially Backed Covert Security
	Covert Security From Short MACs

	Related Work

	Statement Oblivious Witness Encryption
	Our Contribution
	Key Results
	Related Work

	Virtual Trusted Third Parties
	Contribution
	Key Results
	Related Work

	Modern Programming Language for Decentralized Applications
	Our Contribution
	Key Results
	Related Work

	Conclusion
	Bibliography
	Appendix Generic Compiler for Publicly Verifiable Covert Multi-Party Computation
	Appendix Financially Backed Covert Security
	Appendix Putting the Online Phase on a Diet: Covert Security from Short MACs
	Appendix Statement-Oblivious Threshold Witness Encryption
	Appendix POSE: Practical Off-chain Smart Contract Execution
	Appendix Prisma : A Tierless Language for Enforcing Contract-client Protocols in Decentralized Applications

