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Abstract
Federated Byzantine Agreement Systems (FBASs) are a fascinating new paradigm in the context of consensus protocols.
Originally proposed for powering the Stellar payment network, FBASs can instantiate Byzantine quorum systems without
requiring out-of-band agreement on a common set of validators; every node is free to decide for itself with whom it requires
agreement. Sybil-resistant and yet energy-efficient consensus protocols can therefore be built upon FBASs, and the “decentral-
ity” possible with the FBAS paradigm might be sufficient to reduce the use of environmentally unsustainable proof-of-work
protocols. In this paper, we first demonstrate how the robustness of individual FBASs can be determined, by precisely deter-
mining their safety and liveness buffers and therefore enabling a comparison with threshold-based quorum systems. Using
simulations and example node configuration strategies, we then empirically investigate the hypothesis that while FBASs can
be bootstrapped in a bottom-up fashion from individual preferences, strategic considerations should additionally be applied
by node operators in order to arrive at FBASs that are robust and amenable to monitoring. Finally, we investigate the reported
“open-membership” property of FBASs. We observe that an often small group of nodes is exclusively relevant for deter-
mining liveness buffers and prove that membership in this top tier is conditional on the approval by current top tier nodes if
maintaining safety is a core requirement.

Keywords Byzantine quorum systems · Asymmetric trust · Byzantine faults · Consensus · Stellar · Blockchain

1 Introduction

We study Federated Byzantine Agreement Systems (FBASs),
as originally proposed by Mazières [16]. FBASs are con-
ceptually related to Asymmetric Quorum Systems [2] and
Personal Byzantine Quorum Systems [14]. While research
on consensus protocols has accelerated in the wake of
global blockchain enthusiasm, developments still mostly
fall in two extreme categories: permissionless, i.e., open-
membership, as exemplified byBitcoin’s notoriously energy-
hungry “Nakamoto consensus” [17], and permissioned, with
a closed group of validators, as assumed both in the classi-
cal Byzantine fault tolerance (BFT) literature (e.g., [4]) and
many state-of-the art protocols from the blockchain world
(e.g., [22]). The FBASparadigm and theworks it has inspired
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suggest a middle way: Each node defines its own rules about
which groups of nodes itwill consider as sufficient validators.
If the sumof all such configurations fulfills a set of properties,
protocols like the Stellar Consensus Protocol (SCP) [16] can
be defined that leverage the resulting structure for establish-
ing a live and safe consensus system [3,8,9,13,14].

In the original FBAS model [16], which this paper is
based on, these properties are foremost quorum availabil-
ity despite faulty nodes, which enables liveness, and quorum
intersection despite faulty nodes, which makes it possible for
consensus protocols to prevent forks and thus enables safety.
In a practical deployment, it is seldom clear which nodes are
faulty, and in this way the level of risk w.r.t. to liveness and
safety is uncertain. We propose an intuitive and yet precise
analysis approach for determining the level of risk, based
on enumerating minimal blocking sets and minimal splitting
sets—minimal sets of nodes that, if faulty, can by themselves
compromise liveness and safety. We provide algorithms for
determining these sets in arbitrary FBASs andmake available
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an efficient software-based analysis framework1. To the best
of our knowledge, we are the first to propose and implement
an analysis methodology for the assessment of the liveness
and safety guarantees of FBAS instances that yields precise
results as opposed to heuristic estimations. As previously
shown in [8], FBASs induce Byzantine quorum systems as
per Malkhi and Reiter [15]—hence our results might be of
interest to more classical formalizations as well. For exam-
ple, we explicitly distinguish between sets of nodes that can
undermine liveness and such sets that can undermine safety,
highlighting that in an actual system the threat to liveness and
the threat to safety can differ both in structure and in severity.

We apply our analysis approach and tooling in an empir-
ical study that investigates the emergence of FBASs from
existing inter-node relationships, as encoded in, e.g., trust
graphs. Based on example configuration policies, we demon-
strate that while FBASs can be bootstrapped in a bottom-up
fashion from individual preferences, strategic considerations
should additionally be applied by node operators in order to
arrive at FBASs that are robust and amenable to monitoring.

Strategic considerations can increase centralization, on
top of what is already implied by individual preferences. We
observe that centralization manifests as a top tier of nodes
that is solely relevant when determining liveness buffers. We
contribute a proof that if maintaining basic safety guarantees
is a minimal strategic requirement of node operators, top
tiers are effectively “closed-membership” in the sense that
a top tier’s composition can only change with cooperation
of current top tier nodes. This casts doubt on the reported
“open-membership” property of FBASs—while any node
can become part of the FBAS, our results show that only
nodes approved by the current top tier can become relevant
for consensus.

Following an overview of related work (Sec. 2) and the
formal introduction of the FBASmodel and its interpretation
in practical deployments (Sec. 3), we structure our paper
around our main original contributions:

– An analysis framework for reasoning about safety and
liveness guarantees in concrete FBASs (Sec. 4).

– Algorithms for efficiently performing the proposed anal-
yses (Sec. 5).

– A simulation-based exploration of possible configuration
policies and their effects (Sec. 6).

– Formal proof that membership in an FBAS’ top tier is
only “open” if a violation of safety is considered accept-
able (Sec. 7).

As appendices, we prove a number of additional corol-
laries and theorems (Appendix A) and present results from
applying our analysis methodology to an interesting toy

1 https://github.com/wiberlin/fbas_analyzer

network (Appendix B) and the current Stellar network
(Appendix C).

2 Related work

FederatedByzantineAgreements Systemswere first proposed
in [16], together with the Stellar Consensus Protocol (SCP),
a first protocol for this setting. The viability of SCP has been
proven formally [8,9,13] and the protocol is in active use in
two large-scale payment networks [13,18]. The FBAS notion
has furthermore been generalized and reformulated in dif-
ferent ways, creating bridges to more classical models and
enabling the development of additional protocols [2,3,14].
Among other things, as shown by García-Pérez and Gots-
man [8], FBASswith “safe” configurations induce Byzantine
quorum systems [15]. In this work, we are less interested
in the mechanics of specific protocols for the FBAS set-
ting but instead investigate the conditions they require for
achieving safety, liveness and performance. We investigate
how many node failures (and of which nodes) an FBAS can
tolerate before the conditions to safety and liveness are com-
promised, and how individual node configuration policies
influence these “buffers”.

Previously, consensus protocols relevant in practice (such
as PBFT [4]) have relied on a symmetric threshold model.
In a typical instantiation with 3 f + 1 nodes that can toler-
ated up to f Byzantine node failures, each 2 f + 1 nodes
form a (minimal) quorum. This model naturally gives rise to
quorum systems that are trivial to analyze, i.e., for which it
is trivial to determine under which maximal fail-prone sets
[15] consensus is still possible. The possibility for quorum
systems that lack symmetry (that is opened up by the FBAS
paradigm and related notions) makes the investigation of a
more general analysis approach necessary.

A heuristics-based methodology for analyzing FBAS
instances was previously proposed in [11], focusing on the
identification of central nodes and threats to FBAS liveness.
We propose a novel analysis approach that is not heuristics-
based and hence yields precise insights, based on a solid
theoretic foundation. As in [11], we apply our methodology
to snapshots of the live Stellar network (cf. Appendix C).

Bracciali et al. [1] explore fundamental bounds on the
decentrality in open quorum systems. One of their cen-
tral arguments with regards to the FBAS paradigm is that
quorum intersection, a crucial requirement to guaranteeing
safety in protocols like SCP, is computationally intractable to
determine andmaintain, necessitating centralization if safety
is a requirement. The NP-hardness of determining quorum
intersection was previously also proven by Lachowski [12],
together, however, with practical algorithms for nevertheless
determining safety-critical properties of non-trivial FBASs.
We develop new algorithms that incorporate the possibility
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that some nodes may fail, enumeratingminimal blocking sets
andminimal splitting sets. We evaluate their performance for
different FBAS sizes, providing insights into the computa-
tional limitations that are relevant in practice.While, basedon
our analysis approach and its application to specific FBASs,
we can confirm that nodes of higher influence (top tier nodes
according to our choice of words) naturally emerge, we argue
that it is not only the existence and size of such a group
that determines “centralization” but also the fluidity of that
group’s membership (which we explicitly investigate).

An alternative analysis methodology and software frame-
work has recently been presented in [10]. Among other
things, the authors provide algorithms for determining the
consequences of specific sets of nodes becoming faulty,
whereas we propose and implement approaches for identify-
ing all minimal sets of nodes that need to become faulty for
an FBAS to lose safety and liveness guarantees.

3 Federated byzantine agreement

In the following, we introduce core concepts of the FBAS
paradigm that form our basis for reasoning about specific
FBAS instances. We use terminology based on [12,13,16]
and the Stellar codebase (stellar-core).

Our FBAS model is based on the concept of nodes.
Whereas nodes usually represent individual machines, for
the purposes of this paper we typically assume that each node
represents a distinct entity or organization. We will illustrate
introduced concepts using examples, with nodes represented
as integers. For example, {0, 1, 2} denotes a set of three dis-
tinct nodes. We will occasionally also use established terms
in the context of consensus protocols, such as “slot”, “exter-
nalize” and “faulty”, without formally introducing them. As
an informal and approximate adaptation to the blockchain
setting, a slot is a block of a given height, to externalize a
value is to decide the contents of a block2, and a faulty node is
one that violates protocol rules in arbitraryways, e.g., assum-
ing the worst-case scenario, via being under the control of an
attacker that also controls all other faulty nodes.

We first introduce the formal foundation of the FBAS
paradigm as originally proposed in [16]. Following that,
we formally define the quorum set configuration format
for FBAS nodes that was previously only used in a prac-
tical implementation (of the Stellar network software) but
whose convenience for defining specific FBAS instances also
benefits the theoretical discussion. Based on the introduced
foundations, we finally derive the necessary properties an

2 Consensus protocols for the FBAS setting typically provide immedi-
ate finality, in the sense that once the value for a slot
has been externalized, it cannot be reverted or changed.

FBAS must exhibit in order to enable liveness and safety
guarantees.

3.1 Quorum slice and FBAS

In an FBAS, each node (respectively its human administra-
tor) individually configures which other nodes’ opinions it
should consider when participating in consensus. Configu-
rations can express individual expectations, such as “out of
these n nodes, at most f will simultaneously cooperate to
attack the system”, and can be used to strategically influence
global system parameters. On a conceptual level, the config-
uration of an FBAS node consists in the definition of quorum
slices.

Definition 3.1 (FBAS;adapted from [16])AFederatedByzan-
tineAgreement System (FBAS) is a pair (V,Q) comprising a
set of nodesV and a quorum functionQ : V → 22

V
specify-

ing quorum slices for each node, where a node belongs to all
of its own quorum slices—i.e., ∀v ∈ V,∀q ∈ Q(v), v ∈ q.

Informally, each quorum slice of a node v describes a set
of nodes that, should they all agree to externalize a value in
a given slot, is sufficient to also cause v to externalize that
value.

Clearly, an FBAS cannot be modeled as a regular graph
(with FBAS nodes as graph edges) without losing informa-
tion.Graph-based analyses as in [11] can therefore result only
in heuristic insights. An FBAS can be modeled as a directed
hypergraph [7]. However, we find the quorum set abstraction
(presented next) more suitable for subsequent analysis. In
Sec. 6, we explore strategies for bootstrapping robust FBASs
from graphs.

3.2 Quorum set

While a useful abstraction for formally describing protocols
for the FBAS setting, quorum slices are an unwieldy format
for describing concrete FBAS instances. In Stellar, the cur-
rently most relevant practical deployment of an FBAS, nodes
are configured not via quorum slices but via quorum sets [13].
Each quorum set defines a set of validator nodes U ⊆ V, a
set of inner quorum sets I and a threshold value t . Intuitively,
this representation enables the encoding of notions such as
“out of these nodes U , at least t must agree” (satisfying the
quorum set) or “the sum of agreeing nodes inU and satisfied
inner quorum sets in I must be at least t”.

Definition 3.2 (quorum set; adapted from Stellar codebase)
A quorum set is a recursive tuple (U , I, t) ∈ D, D :=
2V × 2D × Z

+. For quorum sets of the form D = (U , I, t),
we recursively define that a set of nodes q ⊆ V satisfies D
iff (|q ∩U | + |{I ∈ I : q satisfies I }|) ≥ t .

123



402 M. Florian et al.

For example, ({0, 1},∅, 1) encodes that agreement is
required from either node 0 or node 1, whereas ({0}, I, 1)
with I = {({1, 2, 3},∅, 2)} encodes that either node 0 or two
out of {1, 2, 3} must agree. Inner quorum sets (members of
I) are often used for grouping nodes belonging to the same
entity (respectively organization), so that the importance of
an entity can be decoupled from the number of nodes it con-
trols.

Quorum sets are useful for defining the quorum slices of
a node. To ease notation, we define the formalism qset(v, D)

that expresses the set of quorum slices of a node v ∈ V based
on a quorum set D ∈ D.

Definition 3.3 (quorum set→ quorum slices) For a node v ∈
V and a quorum set D ∈ D, qset(v, D) maps to the set of
all valid quorum slices for v that satisfy D, i.e., qset(v, D) :
V× D → 22

V := {q ⊆ V | v ∈ q ∧ q satisfies D}.

Via the qset notation, quorum sets and quorum slices
become equivalent representations that can be transformed
into one another. A straightforward (but generally not space-
efficient) way to express any k quorum slices {qi ∈ 2V |}
i ∈ [0, k), v ∈ qi of a node v ∈ V via a quorum set is
qset(v, (∅, I, 1)), with I = {(qi ,∅, |qi |) | i ∈ [0, k)}. Quo-
rum sets are translated to quorum slices (values of Q) by
applying the qset function. For example (withV = {0, 1, 2}):

Q(0) = qset(0, ({1, 2},∅, 1)) = {{0, 1}, {0, 2}, {0, 1, 2}}
Q(1) = qset(1, ({0, 2},∅, 2)) = {{0, 1, 2}}
Q(2) = qset(2, ({0, 1, 2},∅, 2)) = {{0, 2}, {1, 2}, {0, 1, 2}}

In the above example, V = {0, 1, 2} and their quorum sets
(as per Q) form the FBAS (V,Q). As a way to visualize
(V,Q), it can heuristically be represented as a graph where
the existence of an edge (vi , v j ) implies that v j is included
in at least one of vi ’s quorum slices:

0

1 2

3.3 Preconditions to liveness

A consensus system is live if it can externalize new values3.
A consensus system built upon an FBAS is live if the FBAS
contains an intact quorum—a group of FBAS nodes that can
externalize new values by itself.

3 We content ourselves with a weak notion of liveness whereby a
system is live as long as it is non-blocking [9] for one or more non-
faulty nodes, i.e., as long as an execution path exists that allows one
or more non-faulty nodes to make progress. This can also be called
plausible liveness.

Definition 3.4 (quorum [16]) A set of nodesU ⊆ V in FBAS
(V,Q) is a quorum iffU 
= ∅ andU contains a quorum slice
for each member—i.e., ∀v ∈ U ∃q ∈ Q(v) : q ⊆ U .

This is equivalent to stating that U satisfies the quorum
sets of all v ∈ U . Quorums are therefore determined by the
sum of all individual quorum set configurations. Continu-
ing the previous example with nodes V = {0, 1, 2}, we get
the quorums U = {{0, 2}, {0, 1, 2}}. We capture part of the
semantics behind quorums by defining what it means for a
consensus protocol to honor a given FBAS —namely that
whenever values are externalized for a slot, at least one quo-
rum of nodes must eventually externalize values as well.

Definition 3.5 (protocol that honors an FBAS) Let (V,Q)

be an FBAS such that V contains only non-faulty nodes, P
a consensus protocol, and Ni ⊆ V the set of all nodes that,
following P , eventually externalize a value for a given slot i .
We say that P honors (V,Q) iff any nonempty Ni contains a
quorum, i.e., ∀i : Ni = ∅∨∃U ⊆ N such thatU is a quorum
for (V,Q).

We say that (V,Q) has quorum availability despite faulty
nodes iff there exists a U ⊆ V that is a quorum in (V,Q)

and consists of only non-faulty nodes. Quorum availability
despite faulty nodes is a necessary condition to achieving
liveness in an FBAS, i.e., ensuring that non-faulty nodes
can externalize new values independently of the behavior
of faulty nodes [16].

Theorem 3.1 (quorumavailability⇐� liveness)Let (V,Q)

be an FBAS and P a consensus protocol that honors (V,Q).
If P can provide liveness for (V,Q) independently of the
behavior of faulty nodes, then (V,Q) enjoys quorum avail-
ability despite faulty nodes.

Proof Let F ⊆ V be the set of all faulty nodes and (V \F,Q′)
a sub-FBAS that contains all non-faulty nodes, withQ′(v) :=
{q ∈ Q(v) | q ⊆ V \F} for∀v ∈ V \F . P honors (V,Q) and
can provide liveness independently of the behavior of nodes
in F , therefore theremust exist a protocol P ′ that can provide
liveness while honoring (V \F,Q′). Based on Def. 3.5, there
is therefore at least one U ⊆ V \F that is a quorum for
(V \F,Q′). U is, trivially, also a quorum for (V,Q). ��

Given quorum availability despite faulty nodes, proto-
cols like SCP can provide liveness [16]. In the case of SCP,
this was previously demonstrated through correctness proofs
[9] as well as formal verification and practical deployment
experience [13]. Additional conditions to achieving live-
ness include the reaction (via quorum set adaptations, i.e.,
changes to Q) to (detectable) timing attacks [13]. We defer
to works such as [2,3,14,16] for an in-depth exploration of
the mechanics and guarantees of consensus protocols for the
FBAS setting.
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3.4 Preconditions to safety

A set of nodes in an FBAS enjoy safety if no two of them
ever externalize different values for the same slot [16]. In
a blockchain context, a lack of safety guarantees translates
into the possibility of forks and double spends. Protocols that
honor an FBAS can only guarantee safety if the FBAS enjoys
quorum intersection.

Definition 3.6 (quorum intersection [16]) A given FBAS
enjoys quorum intersection iff any two of its quorums share
a node—i.e., for all quorums U1 and U2, U1 ∩U2 
= ∅.

For example, the set of quorums {{0, 2}, {0, 1, 2}} inter-
sects,whereas introducing an additional quorum {1, 4}would
break quorum intersection. In the latter scenario, {0, 2} and
{1, 4} could induce two new, separated FBASs [14]. We say
that anFBASenjoysquorum intersectiondespite faulty nodes
if every two quorums that contain non-faulty nodes intersect
in at least one non-faulty node, even if all faulty nodes change
their quorum sets in arbitraryways or report different quorum
sets to different peers. Formally, quorum intersection despite
faulty nodes is defined via a delete operation that transforms
an FBAS based on the assumption that a given set of nodes
is acting in the most harmful (to safety) way possible.

Definition 3.7 (delete [16]) If (V,Q) is an FBAS and F ⊆ V
a set of nodes, then to delete F from (V,Q), written (V,Q)F ,
means to compute the modified FBAS (V \F,QF ) where
QF (v) = {q \ F, q ∈ Q(v)}.

If F ⊆ V is the set of all faulty nodes, then an FBAS
(V,Q) enjoys quorums intersection despite faulty nodes iff
(V,Q)F enjoys quorum intersection. If quorum intersection
despite faulty nodes is not given, safety cannot be guaranteed
(although it can be maintained by chance).

Theorem 3.2 (quorumintersection⇐�guaranteed safety)
Let (V,Q) be an FBAS and P a consensus protocol that
can provide liveness for any FBAS with quorum availability
despite faulty nodes, while honoring the respective FBAS.
Let P furthermore be non-trivial, in the sense that external-
ized values are non-deterministic and depend on user input.
If P can guarantee safety for all non-faulty nodes in V, then
(V,Q) enjoys quorum intersection despite faulty nodes.

Proof Let F ⊆ V be the set of all faulty nodes and
(V′,Q′) := (V,Q)F . If (V′,Q′) does not enjoy quorum
intersection, then there are two quorums U1,U2 ⊂ V′ so
that U1 ∩ U2 = ∅. For i ∈ {1, 2}, let Qi be defined such
that ∀v ∈ Ui : Qi (v) := {q ∈ Q′(v) | q ⊆ Ui }. Then both
(U1, Q1) and (U2, Q2) form FBASs with quorum availabil-
ity. As P can provide liveness for any FBAS with quorum
availability,

Fig. 1 Example FBAS (V,Q)

(U1, Q1) and (U2, Q2) can externalize values for the same
slotswithout any communication taking place between nodes
in U1 and nodes in U2.

As P is non-trivial, the externalized values can differ, i.e.,
safety cannot be guaranteed. ��

As formally proven by García-Pérez and Gotsman [8],
an FBAS that enjoys quorum intersection induces a Byzan-
tine quorum system [15], and an FBAS that enjoys quorum
intersection despite faulty nodes can induce a dissemina-
tion quorum system [15]. These results are independent of
attempts by faulty nodes to lie about their quorum set config-
uration [8]. There is strong evidence that protocols like SCP
can guarantee safety in any FBAS with quorum intersection
despite faulty nodes [2,9,13,14].

4 Concepts for further analysis

In the following, we define new concepts for capturing rel-
evant properties of concrete FBAS instances. While it is
typical in the BFT literature to construct proofs based on
assuming which sets of nodes can fail simultaneously (i.e.,
which are the fail-prone sets [15]), we instead investigate
which sets of nodes have to fail in order for global live-
ness and safety guarantees to become void. This perspective
uncovers the liveness and safety buffers a given (potentially
non-trivial) quorum system has and is thus highly relevant for
the monitoring and evaluation of systems deployed in prac-
tice. While defined based on the FBAS model, the proposed
concepts are readily transferable tomore general quorumsys-
tem formalizations (e.g., recall that safety-enabling FBASs
induce Byzantine quorum systems [8]).

For illustration, we will be using the example FBAS
defined via Fig. 1. An analysis of a slightly larger example
FBAS is presented in Appendix B. Appendix A contains for-
mal write-ups and proofs of various corollaries and theorems
relevant to this section.

4.1 Starting point: Minimal quorums

As a prerequisite to subsequent analyses, it is helpful to
understand which quorums (cf. Def. 3.4) exist in an FBAS.
We will be focusing on minimal quorums, i.e., quorums
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Û ⊆ V for which there is no proper subset U ⊂ Û that is
also a quorum. Informally, the set of all minimal quorums
Û carries sufficient information for precisely determining
FBAS-wide liveness properties, while being of significantly
smaller size than the set of all quorums U .
Definition 4.1 (minimal node set) Within the set of node sets
N ⊆ 2V, a member set N̂ ∈ N is minimal iff none of its
proper subsets is included in N—i.e., ∀N ∈ N , N 
⊂ N̂ .

The FBAS depicted in Fig. 1 has the quorums U =
{{0, 1, 2}, {0, 3, 4}, {0, 1, 2, 3, 4}} and consequently themin-
imal quorums Û = {{0, 1, 2}, {0, 3, 4}}.

The notion of minimal quorums is helpful, among other
things, for efficiently determining whether an FBAS enjoys
quorum intersection [12]: it can be shown that an FBAS
enjoys quorum intersection iff every two of its minimal quo-
rums intersect (Cor. A.1).

4.2 Minimal blocking sets

As per Thm. 3.1, an FBAS (V,Q) cannot enjoy liveness if it
doesn’t contain at least one non-faulty quorum. Considering
the state of the art in consensus protocols for the FBAS setting
and their formal verification (s.a. Sec. 3.3), quorum availabil-
ity despite faulty nodes is furthermore the only precondition
to achieving liveness that depends on (V,Q) and arguably the
most difficult to satisfy in a practical deployment. However,
while quorum availability can easily be checked based on
Q, faulty nodes are usually not readily identifiable as such
in practice. We therefore propose, as a means to grasping
liveness risks, to look at sets of nodes that, if faulty, can
undermine quorum availability.

Definition 4.2 (blocking set) Let U ⊆ 2V be the set of all
quorums of the FBAS (V,Q). We denote the set B ⊆ V as
blocking iff it intersects every quorum of the FBAS—i.e.,
∀U ∈ U , B ∩U 
= ∅

For example: {0} and {1, 3} are both blocking sets for
U = {{0, 1, 2}, {0, 3, 4}, {0, 1, 2, 3, 4}}.
Corollary 4.1 (blocking sets and liveness) Control over any
blocking set B is sufficient for compromising the liveness of
an FBAS (V,Q).

Proof As B intersects all quorums of the FBAS, there is no
quorum that can be formed without cooperation by B. With-
out at least one non-faulty quorum, liveness is not possible
as per Thm 3.1. ��

Notably, blocking sets can also block liveness selectively,
enabling censorship. As nodes from the blocking set are
present in every quorum, consensus will never be reached
on any value that the blocking set opposes to. For example,

in the context of Stellar, the blocking set could block the
ratification of transactions involving specific accounts. We
chose the term blocking in analogy to the v-blocking sets
introduced in [16]. As an important distinction, we use the
term blocking set to refer to a property of the whole FBAS
(V,Q), as opposed to a property of an individual node v ∈ V.

In the above example, {0} and {1, 3} are not only blocking
sets with respect to U , they are minimal blocking sets, i.e.,
none of their proper subsets is a blocking set4. In essence,
minimal blocking sets describe minimal threat (respectively,
fail) scenarios w.r.t. liveness.

4.3 Minimal splitting sets

As per Thm. 3.2, an FBAS can only be considered safe (as
one coherent system) as long as it enjoys quorum intersection
despite faulty nodes, i.e., as long as each two of its quorums
intersect even after all faulty nodes have been deleted (as
per Def. 3.7). For practical purposes, quorum intersection
despite faulty nodes is furthermore a sufficient condition for
achieving safety in an FBAS, considering protocols like SCP
and the correctness proofs surrounding them (s.a. Sec. 3.4).
Hence, for assessing the risk to safety, it is interesting to iden-
tify sets of nodes that can cause an FBAS to effectively lose
quorum intersection. We call such a set of nodes a splitting
set, as it can, if faulty, cause at least two quorums to diverge,
splitting the FBAS.

Definition 4.3 (splitting set)We denote the set S ⊆ V a split-
ting set iff (V,Q)S lacks quorum intersection—i.e., there are
distinct quorumsU1 andU2 of (V,Q)S so thatU1 ∩U2 = ∅.

In the above example with Û = {{0, 1, 2}, {0, 3, 4}}, {0}
is already a splitting set, as (V,Q){0} induces the two non-
intersecting quorums {1, 2} and {3, 4}. Intuitively, {0} is a
splitting set of (V,Q) because it forms the intersection of
the quorums {0, 1, 2} and {0, 3, 4}.

The existence of a faulty splitting set violates quo-
rum intersection despite faulty nodes and therefore, as per
Thm. 3.2, threatens safety. Informally, the members of a
splitting set can perform two types of actions to compromise
safety in practice (s.a. Thm. A.1). On the one hand, they can
change their quorum configurations (or lie about them) to
cause existing quorums to shrink or new quorums to emerge,
both with the goal of reducing the overlap between quorums.
On the other hand, whenever the intersection of two (min-
imal) quorums is comprised entirely of faulty nodes, these
nodes can agree to different statements in each quorum, caus-
ing the quorums to externalize conflicting values and in this
way diverge.

4 For completeness, the set of all minimal blocking sets w.r.t. U is
B̂ = {{0}, {1, 3}, {1, 4}, {2, 3}, {2, 4}}.
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Aswith blocking sets, we are especially interested in find-
ing the minimal splitting sets Ŝ ⊂ 2V of an FBAS 5 (V,Q).
Minimal splitting sets describeminimal threat scenariosw.r.t.
safety.

4.4 Top tier

For narrowing down notions of “centralization” with respect
to FBASs, we propose the concept of a top tier. Informally,
the top tier is the set of nodes in the FBAS that is exclusively
relevant when determining minimal blocking sets and hence
the liveness buffers of an FBAS.

Definition 4.4 (top tier) The top tier of an FBAS (V,Q) is
the set of all nodes that are contained in one or more minimal
quorums—i.e., if Û ⊆ 2V is the set of all minimal quorums
of the FBAS, T = ⋃ Û is its top tier.

In the above example, it in fact holds thatT = {0, 1, 2, 3, 4}
= V.

It can be shown that each minimal blocking set consists
exclusively of top tier nodes (Cor.A.5), and each top tier node
is included in at least one minimal blocking set (Thm. A.2).
The FBAS (V,Q) with top tier T has therefore the same
properties w.r.t. global liveness as the FBAS induced by T ,
i.e., the FBAS (T ,Q′) with Q′(v) := {q ∩ T | q ∈ Q(v)}.

This observation has direct implications for the com-
putational complexity of FBAS analysis (further discussed
in Sec. 5), and for the performance of FBAS-based con-
sensus protocols. A consensus round in SCP (the so far
only production-ready protocol for the FBAS setting, to the
best of our knowledge) can demonstrably be completed in
O(|T |2)messages.While classical consensus protocols with
quadratic message complexity (such as PBFT [4]) are notori-
ous for becoming unusable in larger validator groups, several
improved protocols have recently emerged that target the
blockchain use case and scenarios with 100 and more valida-
tors [20,22]. As a possible avenue for future exploration—
for FBASs with a symmetric top tier, existing permissioned
protocols could be adapted without much modification.

Definition 4.5 (symmetric top tier) The top tier T of anFBAS
(V,Q) is a symmetric top tier iff all top tier nodes have
identical quorum sets—i.e., ∃D ∈ D,∀v ∈ T : Q(v) =
qset(v, D).

Symmetric top tiers are also significantly more amenable
to analysis. For example, in FBASs with a symmetric top tier
T and a non-nested top tier quorum set (T ,∅, t), it holds that
any minimal blocking set has cardinality |B̂| = |T | − t + 1
(Thm. A.3) and any minimal splitting set that can cause two
top tier nodes to diverge fromeach other has cardinality |Ŝ| =
2t − |T | (Thm. A.4).

5 In the above example, {0} is the only minimal splitting set w.r.t. U ,
i.e., the set of all minimal splitting sets is Ŝ = {{0}}.

5 Analysis algorithms

In the following, we propose algorithms for performing the
analyses introduced in Sec. 4. We describe them as pseu-
docode that necessarily abstracts away some implementation
details and optimizations. As a companion to this paper, we
release a well-tested implementation of the presented algo-
rithms as open source (fbas_analyzer6). After outlining
algorithms for enumerating minimal quorums (foundation
for further analyses), determining quorum intersection (nec-
essary condition for safety), enumerating minimal blocking
sets (liveness “buffers”), enumerating minimal splitting sets
(safety “buffers”), and efficiently dealingwith symmetric top
tiers, the section concludes with a short empirical study on
analysis scalability.

5.1 Minimal quorums

Algorithm 1 describes a branch-and-bound algorithm for
finding all minimal quorums. It is based on a quorum enu-
meration procedure originally described in [12]. Previous
algorithms did not rigorously filter out non-minimal quo-
rums, which we realize through is_minimal_quorum.
The set of all minimal quorums of an FBAS defines its top
tier (cf. Sec. 4.4) and can be used for determining whether
the FBAS enjoys quorum intersection.

The keystone of the algorithm is the function fmq_step
that takes a current quorum candidate U , a sorted list of yet-
to-be-considered nodes V and a reference to Q for mapping
nodes to their quorum sets. The algorithm implements a clas-
sical branching pattern: at each invocation of fmq_step
in which U is not already a quorum, the next node in V
is taken out and, in one branch, added to U , and, in the
other, not. Hopeless branches are identified early using the
is_satisfiable function.

As proposed in [12], we initially sort V using a heuristic
such as PageRank [19] which can improve the algorithm’s
performance in practice. Another important optimization
from [12], that we leave out in our pseudocode for greater
clarity, is the partitioning of V into strongly connected
components7 so that find_minimal_quorums must be
applied only to (often significantly smaller) subsets ofV. Tar-
jan [21] gives an algorithm for performing this preprocessing
step in linear time.

As noted in other works (e.g., [1,12]), determining
quorum intersection, and hence also enumerating all min-

6 https://github.com/wiberlin/fbas_analyzer; Our Rust-based library
has been integrated into https://stellarbeat.io/ (a popular monitoring
service for the Stellar network) and supports in-browser usage—cf.
our interactive analysis website at https://trudi.weizenbaum-institut.de/
stellar_analysis/.
7 Based on the heuristic representation of the FBAS as a directed graph.
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Algorithm 1: Find minimal quorums

1 Function find_minimal_quorums((V,Q)):
Data: An FBAS (V,Q).
Result: Û , the set of all minimal quorums of (V,Q).

2 V ← V sorted by, e.g., PageRank [19] (cf. [12]);
3 return fmq_step(∅, V , Q);

4 Function fmq_step(U, V , Q):
5 if is_quorum(U, Q) then
6 if is_minimal_for_quorum(U, Q) then
7 return {U };
8 else return ∅;
9 else if is_satisfiable(U, V , Q) then

10 v ← next in V ;
11 return fmq_step(U ∪ {v}, V \ {v}, Q) ∪

fmq_step(U, V \ {v}, Q);
12 else return ∅;
13 Function is_quorum(U, Q):
14 return ∀v ∈ U ∃q ∈ Q(v) : q ⊆ U ;

15 Function is_satisfiable(U, V , Q):
16 return ∀v ∈ U ∃q ∈ Q(v) : q ⊆ U ∪ V ;

17 Function is_minimal_for_quorum(U, Q):
18 for v ∈ U do
19 if contains_quorum(U \ {v}, Q) then
20 return false;
21 end
22 return true;

23 Function contains_quorum(U, Q):
// remove non-satisfiable nodes

24 while ∃v ∈ U ∀q ∈ Q(v) : q � U do
25 U ← {v ∈ U | ∃q ∈ Q(v) : q ⊆ U };
26 end
27 return U 
= ∅;

imal quorums, is NP-hard. Consequently, our algorithm
has exponential time complexity. For an FBAS with n =
|V| nodes and a top tier of size m = |T | we find all
k ≤ ( m

�m
2 �

)
minimal quorums in O(2n). Note that in prac-

tice the number of de-facto considered nodes n is greatly
reduced through polynomial-time preprocessing steps such
as strongly-connected-component analysis and heuristics-
based sorting, yielding actual running times that are close
to the O(2m) bound.

5.2 Quorum intersection

Quorum intersection is a central property for being able to
guarantee safety in an FBAS (cf. Sec. 4.3). Quorum intersec-
tion can be determined by checking the pairwise intersection
of all minimal quorums (Cor. A.1). This straightforward
approach, that was also proposed in [12], is embodied in
Algorithm 2.

In this paper, we propose an additional, alternative algo-
rithm (Algorithm 3), that doesn’t check for pairwise inter-
sections but instead checks whether the complement sets
of found quorums contain quorums themselves. If this is

Algorithm 2: Checking for quorum intersection via
approach from [12].

1 Function has_quorum_intersection((V,Q)):
Data: An FBAS (V,Q).
Result: true if the FBAS enjoys quorum intersection, false

else.

2 Û ← find_minimal_quorums((V,Q));

3 return ∀Ûi , Û j ∈ Û : Ûi ∩ Û j 
= ∅;

never the case, the FBAS enjoys quorum intersection. This
approach for checking for quorum intersection has the ben-
efit that only a constant number of node sets must be held in
memory at the same time, as opposed to all minimal quorum
sets as in Algorithm 2. The space complexity of the check is
therefore reduced from exponential to linear.

Algorithm 3: Checking for quorum intersection via
alternative approach with linear space complexity.

1 Function has_quorum_intersection((V,Q)):
Data: An FBAS (V,Q).
Result: true if the FBAS enjoys quorum intersection, false

else.

2 for Û ∈ find_minimal_quorums((V,Q)) do
3 if contains_quorum(V \Û) then
4 return false;
5 end
6 return true;

Our implementation of Algorithm 3 is also empiri-
cally faster for many FBASs, probably because contains
_quorum scales better than iterating once over all minimal
quorums, and because less data must be written to memory.
For both algorithms,we leave out optimization details such as
leveraging the fact that quorum intersection is guaranteed to
hold if all minimal quorums Û ∈ Û have cardinality greater

than |⋃ Û |
2 . In Algorithm 3, for example, it suffices to check

only minimal quorums with fewer than |⋃ Û |
2 members.

5.3 Minimal blocking sets

Algorithm 4 presents our algorithm for enumerating all min-
imal blocking sets based on a branch-and-bound strategy.
The checkwhether a given candidate set B is blocking is per-
formed by checkingwhether the FBAScontains any quorums
after B is removed from the node population. If a blocking
set can still be formed from B and the yet-to-be-considered
nodes V (this is the pruning rule), the enumeration continues,
branching via either adding the next node in V to the candi-
date set or discarding it altogether. The order in which nodes
are visited can be tuned using a suitable heuristic—we sort
nodes using PageRank [19] (as for findingminimal quorums)
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in the example pseudocode and our current implementation.
Like for Algorithm 1, the complexity of Algorithm 4 is in
O(2n) (for an FBAS with n nodes) with a likely practical
average case complexity of O(2m) (m being the size of the
top tier).

Algorithm 4: Find minimal blocking sets

1 Function find_minimal_blocking_sets((V,Q)):
Data: An FBAS (V,Q).
Result: B̂, the set of all minimal blocking sets of (V,Q).

2 V ← V sorted by, e.g., PageRank [19];
3 return fmb_step(∅, V , Q);

4 Function fmb_step(B, V , Q):
5 if is_blocking(B, V , Q) then
6 if is_minimal_for_blocking(B, V , Q) then
7 return {B};
8 else return ∅;
9 else if is_blocking(B ∪ V , V , Q) then

10 v ← next in V ;
11 return fmb_step(B ∪ {v}, V \ {v}, Q) ∪

fmb_step(B, V \ {v}, Q);
12 else return ∅;
13 Function is_blocking(B, V , Q):
14 return ¬contains_quorum(V \ B, Q);

15 Function is_minimal_for_blocking(B, V , Q):
16 for v ∈ B do
17 if is_blocking(B \ {v}, V , Q) then
18 return false;
19 end
20 return true;

5.4 Minimal splitting sets

Algorithm 5 presents our algorithm for enumerating all min-
imal splitting sets. We again perform a branch-and-bound
search. The final condition for accepting a candidate set S is
whether deleting it (cf. Def. 3.7) from the FBAS causes the
FBAS to lose quorum intersection.

This check is significantly more expensive than the corre-
sponding checks in Algorithm 1 and Algorithm 4. Addition-
ally, unlike the previously presented algorithms, Algorithm 5
also needs to consider non-top tier nodes as candidates. We
incorporate the observation (from Thm. A.1) that a node can
only be part of a minimal splitting set if it is part of a min-
imal quorum (only then can it be part of an intersection of
minimal quorums) or if a change of its quorum set can poten-
tially cause new, smaller quorums to emerge. Consequently,
we consider as candidates all top tier nodes and all nodes that
are quorum expanders: nodes that are part of a quorum slice
of another node that is a not a quorum slice for themselves
(formal definition in Def. A.1). Informally, by not sharing
a quorum slice with a node they affect, quorum expanders
may force quorums to expand beyond this quorum slice. By

changing their quorum set, quorum expanders could reverse
this effect, leading to smaller quorums and, accordingly, an
increased risk to quorum intersection.

The has_potential function embodies an explicit
pruning condition for the branch-and-bound search. Here,
we check whether a change in the FBAS’s minimal quo-
rums is possible if some or all outstanding candidate nodes
V are joined with the current candidate set S. As a heuris-
tic to avoid actually calculating minimal quorums, we check
whether the quorum-containing strongly connected compo-
nents of the FBAS change after deleting V in addition to
S.

For improving readability and comprehension, we leave
out various details and smaller optimizations from our pseu-
docode listing for Algorithm 5. Among other things, we
don’t include our full algorithms for enumerating quorum
_expanders and deliberately ignore opportunities for
caching and reusing the results of costly operations.

Algorithm 5: Find minimal splitting sets

1 Function find_minimal_splitting_sets((V,Q)):
Data: An FBAS (V,Q).
Result: Ŝ, the set of all minimal splitting sets of (V,Q).

2 V ← ⋃
find_minimal_quorums((V,Q));

3 V ← V ∪ quorum_expanders((V,Q));
4 V ← V sorted by, e.g., number of affected nodes;
5 A ← V;
6 S ← fs_step(∅, V , A, (V,Q));
7 return reduce_to_minimal_sets(S);
8 Function fs_step(S, V , (V,Q)):
9 if ¬has_quorum_intersection((V,Q)S) then

10 return {S};
11 else if has_potential(S, V , (V,Q)) then
12 v ← next in V ;
13 return fs_step(S ∪ {v}, V \ {v}, (V,Q)) ∪
14 fs_step(S, V \ {v}, (V,Q));
15 else return ∅;
16 Function quorum_expanders((V,Q)):
17 return

{v ∈ V | ∃v′ ∈ V, q ′ ∈ Q(v′) : v ∈ q ′ ∧ (∀q ∈ Q(v) : q � q ′)};

18 Function has_potential(S, V , (V,Q)):
19 return (∃v ∈ V ∃q ∈ Q(v) : q ⊆ S ∪ V ) ∨
20 (quorum_clusters((V,Q)S∪V) 
=

quorum_clusters((V,Q)S));

21 Function quorum_clusters((V,Q)):
22 N ← strongly connected components of (V,Q);
23 return {N ∈ N | contains_quorum(N)};
24 Function reduce_to_minimal_sets(S):
25 return {Ŝ ∈ S | ∀S ∈ S : S 
⊂ Ŝ};

The asymptotic complexity of Algorithm 5 remains in
O(2n), respectively O(2|T∪X |)where T is the top tier and X
the set of all quorum expanders. However, due to the costly
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acceptance check for splitting sets and the larger number of
nodes that need to be considered, the algorithm is signifi-
cantly slower than Algorithm 1 and Algorithm 4 in practice.

5.5 Symmetric clusters

As a generalization of symmetric top tiers (Def. 4.5), we
define symmetric clusters of an FBAS (V,Q) as groups of
nodes Y ⊆ V such that ∃D ∈ D,∀v ∈ Y : Q(v) =
qset(v, D) and

⋃ ⋃ {Q(v), v ∈ Y } = Y . If an FBAS has
one symmetric cluster Y and V \Y does not contain a quo-
rum, Y is the symmetric top tier of (V,Q)8.

Symmetric clusters can be found in polynomial time, by
grouping nodes with identical quorum set configurations
(values for Q) and checking the above condition for each
thus formed candidate set.

Symmetric clusters can be analyzed significantly more
efficiently. For example, an FBAS with a non-nested sym-
metric top tier is isomorphic to a classical, threshold-based
quorum system (s.a. Thm. A.3 and A.4). For symmetric clus-
ters formed around a nested quorum set, minimal quorums
and minimal blocking sets can be enumerated without the
overhead of checking candidate sets, by recursively listing
combinations and forming their Cartesian product. If the
interest is to find only such splitting sets that can cause nodes
within the symmetric cluster to diverge, then the same is true
for minimal splitting sets.

5.6 Analysis performance

Our analysis approach requires the enumeration of minimal
quorums, minimal blocking sets andminimal splitting sets—
which in all three cases is an NP-hard problem. It is unclear,
however, what this means for the practical limitations of
thoroughly determining the safety and liveness buffers of
an FBAS. Practical limitations are difficult to conclusively
determine as the real-life performance of analyses depends
heavily on the topology of analyzed FBASs and the imple-
mentation of the algorithms.

In the following, we present a short exploratory study into
the scalability of our own implementation.We construct syn-
thetic FBASs of increasing size that consist of only a top tier.
In the first series of presented experiments (Fig. 2), we con-
struct FBASs (V,Q) resembling classical 3 f + 1 quorum
systems:

∀v ∈ V : Q(v) = qset(v, (V,∅, �2|V| + 1

3
�))

In a second series of experiments (Fig. 3),we approximate the
structure of the Stellar network’s top tier where each organi-

8 If an FBAS has l > 1 symmetric clusters or V \Y does contain a
quorum, (V,Q) does not enjoy quorum intersection.

Fig. 2 Analysis duration for FBASs resembling classical 3 f + 1 quo-
rum systems. Analysis optimizations for symmetric top tiers were
turned off

Fig. 3 Analysis duration for FBASs resembling the structure of the
Stellar network top tier. Analysis optimizations for symmetric top tiers
were turned off

zation is represented by (usually) 3 physical nodes arranged
in crash failure-tolerating 2 f + 1 inner quorum sets:

V = {v0, v1, ...vn−1}, n = 3m

I = {({v3i , v3i+1, v3i+2},∅, 2) | i ∈ [0,m)}
∀v ∈ V : Q(v) = qset(v, (∅, I, �2m + 1

3
�))

We enumerate all minimal quorums, minimal blocking
sets and minimal splitting sets of thus generated FBASs and
record the time to completion of each of these operations.
All analyses were single-threaded and performed on regular
server-class hardware.Weexplicitly deactivated all optimiza-
tions based on detecting and exploiting symmetric clusters,
so that the results of this study reflect the performance of the
more expensive Algorithms 1, 4 and 5.
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Figures 2 and 3 depict the median measured times on a
log scale, from a set of 10 measurements per FBAS size (we
performed the same analysis 10 times, recording individual
times). As was expected, analysis durations raise exponen-
tially with growing top tier sizes m. Analyses start requiring
more than an hour to finish at m ≥ 23 for flat symmetric top
tiers and m ≥ 24 for Stellar-like topologies. This is a cau-
tiously positive result—top tier sizes observed in practice
are currently in the range of 7 organizations (23 raw nodes)
for the Stellar network (cf. Appendix C) and 7 organizations
(10 raw nodes) for the MobileCoin network [18]. It is likely
that, for example through parallelization or the development
of additional optimizations for “almost symmetric” FBASs,
the analysis durations for naturally occurring FBASs can be
reduced further.

6 Bootstrapping FBASs

The reported openness enabled through the FBAS paradigm
comes at the cost of increased configuration responsibilities
for node operators. As discussed in Sec. 3, each node must
become associated with a quorum set (respectively quorum
slices) in order to become a useful part of an FBAS. We
will refer to this process as quorum set configuration (QSC).
But how should a node operator go about QSC? Based on the
analytical toolset introduced inSec. 4,we can now investigate
what kinds ofQSC policies are plausible and in what kind of
FBASs they result.

Notably, we explore how individual preferences (such as
which nodes should be “trusted”) can be mapped to the quo-
rum set formalism. Based on experiments that use Internet
topology as a representative graph representation of interde-
pendence and trust, we conclude that purely individualistic
configuration policies can result in systems with low live-
ness and high complexity. We outline possible directions for
future research by sketching policies with a strategic element
and empirically demonstrating their effectiveness.

6.1 QSC policies and their evaluation

AQSCpolicy is individually and repeatedly invoked for each
node v ∈ V. It takes information about a current FBAS
instance (V,Q) as input and returns a quorum set for v,
setting a new value for Q(v). We use the quorum set for-
malization introduced in Sec. 3.2. For illustration, consider
the following trivial policy:

∀v ∈ V : Q(v) = qset(v, (V,∅, |V|)) (Super Safe QSC)

If implemented by all nodes inV, Super Safe QSC leads to
each node having only one quorum slice—V itself (Q(v) =
{V}). The policy maximizes safety but leads to blocking sets

of cardinality 1—any node can block the single quorum in
the induced FBAS.

As an improvement, the threshold of the formed quorum
sets can be set in resemblance to classical BFT protocols:

∀v ∈ V : Q(v) = qset(v, (V,∅, �2|V| + 1

3
�))

(Ideal Open QSC)

For |V| = 3 f + 1 with an f ∈ Z
+, setting the threshold

to t = � 2|V|+1
3 � leads to FBASs in which any 2 f + 1 nodes

form a (minimal) quorum. This results in both all minimal
blocking sets and all minimal splitting sets of the induced
FBAS having cardinality f +1, i.e., both safety and liveness
can be maintained in the face of up to f node failures.

6.1.1 Choosing validators

The preceding example policies construct non-nested quo-
rum sets that use as validators U the set of all nodes in the
FBAS (U = V). These are clearly toy examples—if anything
else, without additional mechanisms to restrict or filter the
membership in V, V can easily become dominated by faulty
Sybil [5] nodes.

In the scope of this work, and in line with the motivation
behind the FBAS paradigm, we consider V to enjoy open
membership, with no universally trusted whitelist or ranking.
For arriving at sensible choices for U , QSC policies must
therefore take individual knowledge into account.

6.1.2 Modeling individual preferences

QSC policies based on individual preferences contribute
node-local knowledge to the collective FBAS configuration.
For example:

– Which nodes are trusted to be (and stay) non-faulty. It
is often implied that QSC should reflect some form of
trust, e.g., in wordings such as “flexible trust” [16] or
“asymmetric distributed trust” [2].While reasoning about
the future behavior of participants in a consensus proto-
col might be an overwhelming task for node operators,
they may at least encode plausible beliefs about non-
Sybilness [5] (i.e., which groups of nodes are (un)likely
to be controlled by the same entity).

– To which nodes do dependencies exist (e.g., for business
reasons).
Adding nodes of organizations one interacts with to one’s
quorum sets might be necessary to maintain “sync” with
these organizations [13], as opposed to ending up with
diverging ledgers in the event of a fork.
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In the following discussion, we will use graph repre-
sentations for modeling individual preferences. It is an
intriguing hypothesis that the FBAS paradigm can enable
Sybil-resistant and yet energy-efficient permissionless con-
sensus by bootstrapping quorum systems along existing trust
graphs or interdependence graphs. In Sec. 3.1 we saw that
transforming an FBAS into an equally sized regular graph
leads to a loss of information, i.e., can yield only heuristic
representations. In the following sections we pose the inverse
question: How can a “good” FBAS (V,Q) be instantiated
from a given graph G = (V, E)?

For evaluating example policies incorporating individual
preferences, we will use the autonomous system (AS) rela-
tionships graph inferred by theCAIDAproject9—a reflection
of the interdependence and trust between networks that form
the Internet. The topological structure of the Internet has
repeatedly been cited as an argument for the viability of the
FBAS model [13,16]. We discuss results based on two snap-
shots of the AS relations graph: from January 1998—the
earliest available snapshot describing a younger Internet with
3233 ASs connected via 4921 (directed) customer/provider
links and 852 (undirected) peering links—and from Jan-
uary 2020—with 67308 ASs connected via 133864 cus-
tomer/provider links and 312763 peering links. We will refer
to the graphs as GAS98 and GAS20.

6.2 Naive individualistic QSC

Weconsider aQSCpolicy naively individualistic if it is based
entirely on individual preferences. Wemodel “preference for
a node” as edges in a graph G = (V, E), with nodes being
aware only of their own graph neighborhood.

Consider a simple representative of this class—forming
quorum sets using the entire graph neighborhood of a node,
weighing each neighbor equally within a 3 f + 1 threshold
logic (that models the assumption that strictly less than a
third of all neighbors can be faulty):

∀v ∈ V : U = {v} ∪ {v′ ∈ V | (v, v′) ∈ E}
Q(v) = qset(v, (U ,∅, �2|U | + 1

3
�))

(All Neighbors QSC)

If G is a complete graph, we get the same result as with
Ideal Open QSC. If G is not connected, we cannot have quo-
rum intersection (and hence safety). The latter is also true if
G contains more than one cluster of sufficient size and weak
(relative) connectedness to the rest of the graph. We can con-
firm that this is the case for the AS graph snapshots GAS98

and GAS20. Using them, All Neighbors QSC induces FBASs

9 The CAIDA AS Relationships Dataset, 1998-01-01 (serial-1) and
2020-01-01 (serial-2), https://www.caida.org/data/as-relationships/

that do not enjoy quorum intersection10. The high prevalence
ofAS peering is a likely explanation for why sufficientlywell
intraconnected clusters can emerge outside of the “natural”
top tier of the AS graph.

A lack of quorum intersection implies that the induced
FBASs may split into multiple sub-FBASs. This might be a
desirable effect when bootstrapping from individual prefer-
ences. For example, separated communities with low levels
of inter-community interaction and trust might prefer the
added sovereignty of an “own” FBAS. We repeated the anal-
ysis for the respectively largest sub-FBASs, with an upper
bound on top tier size11 of, respectively, 355 and 14339
nodes. Potential top tier sizes of this magnitude make a
complete analysis unfeasible (s.a. the discussion on analysis
scalability in Sec. 5.6). This is problematic, as the robust-
ness of the resulting FBASs, in terms of safety and liveness,
cannot be reliably determined. Existing weaknesses in the
global quorum structure cannot be identified and (strategi-
cally) fixed. Weaknesses, however, are likely to exist. For
example, preliminary analysis results for the FBAS instanti-
ated from GAS98 imply the existence of blocking sets with
only 3 members.

6.3 Tier-based QSC

Towards making resulting top tiers more focused (and hence,
the resulting FBASs more efficient and more amenable to
analysis), QSC policies can incorporate strategic consider-
ations in addition to individual preferences. We explore a
prudent example strategy in the following: the weighing of
nodes based on tierness, or relative importance. Tierness
is an established notion for ASs in the Internet graph. For
FBASs, a tiered quorum structure with every node including
only higher-tier neighbors in its quorum sets was proposed
(as an example) as early as in the original FBAS proposal
[16]. Classifying nodes based on their tierness is also related
to the quality-based configuration format currently used by
the Stellar software [13]. Lastly, it is a plausible assumption
that the relative tierness of graph neighbors can be estimated
locally, enabling QSC decisions that do not require a global
view.

We sketch an example QSC policy in which nodes use
only higher-tier nodes in their quorum sets, or same-tier
nodes if none of their neighbor appears to be of higher
tier. We assume that nodes can infer the relative tierness of
their graph neighbors. Specifically, that they can determine
which of their neighbors are of a higher tier than themselves.
For simulation, we use the PageRank [19] score of nodes
(calculated without dampening) as a proxy for their tier-

10 As determined using fbas_analyzer (Sec. 5).
11 Based on the size of the largest quorum that is fully contained in a
strongly connected component (which is the union of all such quorums).
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ness. Each simulated node considers a neighbor of higher
(lower) tier if the neighbor’s PageRank score is twice as
high (low) as its own. More formally, with R(v) denoting
the PageRank score of node v, edges+(v) the set of its neigh-
bors (edges+(v) := {v′ ∈ V | (v, v′) ∈ E}), H its higher-tier
neighbors and P its same-tier neighbors (“peers”):

H(v) = {v′ ∈ edges+(v) | R(v′) ≥ 2R(v)}
P(v) = {v′ ∈ edges+(v) | 1

2
R(v) < R(v′) < 2R(v)}

(Tierness Heuristics)

Based on this heuristic, we can define the following QSC
policy:

∀v ∈ V : U =
{

{v} ∪ H(v) if H(v) 
= ∅
{v} ∪ P(v) else

Q(v) = qset(v, (U ,∅, �2|U | + 1

3
�))

(Higher-Tier Neighbors QSC)

Our results show that improvements to the naive case are
possiblewhen incorporating strategic considerations, despite
the fact that the quorum structure is heavily influenced by
individual preferences.More prominently—top tiers become
ofmoremanageable size (both for analysis and for consensus
protocols leveraging the FBAS).

We simulated the application of Higher-Tier Neighbors
QSC using the AS graph snapshots GAS98 and GAS20. The
two thus induced FBASs contained, respectively, 2 and 6
nodes with one-node quorums sets which we filter our for
the subsequent analysis. We apply fbas_analyzer, our
software-based analysis framework (cf. Sec. 5), to the result-
ing FBASs.

Figure 4 presents the analysis findings. It depicts his-
tograms of the relevant sets, i.e., how many minimal quo-
rums, minimal blocking sets or minimal splitting sets of a
given size exist for the given FBAS. For the GAS98 case, we
restricted our minimal splitting sets analysis to the core of
the FBAS, i.e., to its top tier and all nodes that are referenced
by top tier nodes either directly or transitively12. We find that
doing so yields more informative results; the full FBAS con-
tains a large number of splitting sets with cardinality 1 that
only split off very small groups of nodes from the rest. Even
when restricting the analysis to core nodes only, we were not
able to fully enumerate the minimal splitting sets for GAS20

in reasonable time, due to the size and specific structure of
the resulting FBAS.

Strikingly, our analysis reveals that the liveness of both
FBASs is easily compromised. Despite their relatively large

12 This corresponds to the union of all strongly connected components
that contain a quorum.

(a)

(b)

Fig. 4 Histogramof the cardinalities of relevant sets in FBASs resulting
from the application of Higher-Tier Neighbors QSC using snapshots of
the AS relationship graph (GAS98, GAS20)

top tiers (of 15 and 36 nodes, respectively), groups of only
2 nodes, and in the GAS20 case even one group of only one
node, exist that are sufficient to completely block (or cen-
sor) the FBAS. For comparison, symmetric top tiers of the
same size would result in all minimal blocking sets having
sizes of, respectively, 5 and 12. This liveness-threatening dis-
crepancy can be explained through cascading failures: If (for
example) two nodes fail, this can result in a third node with
a “weak” quorum set becoming unsatisfiable, so that three
nodes have now de-facto failed, which can result in a fourth
node becoming unsatisfiable, et cetera. It can be concluded
that the composition and size of smallest blocking sets for
an FBAS is heavily influenced by the “weakest” quorum sets
in the FBAS’ top tier. An additional example for cascading
failures is given Appendix B.

6.4 Symmetry enforcement

The graph-based QSC policies discussed so far easily result
in systems that are brittle (in the sense of small minimal
blocking sets) and hard to analyze. Both of these character-
istics are vastly improved, relative to top tier size, in FBASs
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with symmetric top tiers. However, symmetric top tiers
emerge organically from a preexisting relationship graph G
only if the top tier nodes form a complete subgraph of G,
which is not the case in the graphs investigated so far. As a
policy enhancement, nodes believing themselves to be top
tier can mirror the quorum sets of other apparently top tier
nodes, strategically including non-neighbors in their quorum
sets for improving the global FBAS structure. A behavior
along this lines can, in fact, be observed in the live Stellar
network (s.a. Appendix C).

Yet, by making validator decisions independent of the
local knowledge representation G, new assumptions become
necessary to be able to rule out attacks. Mirroring makes it
easier for malicious top tier nodes to introduce Sybil nodes
into the top tier. The approach is therefore only secure (w.r.t.
both safety and liveness) if it can be assumed that nodes in
T make plausibility checks before expanding their quorum
sets, so that attempted (Sybil) attacks can be detected. Given
the lack of explicit incentives for running validator nodes in
systems like Stellar, such a burden on the operators of top tier
nodes might be viewed as problematic [11]. However, simi-
lar critique can also be voiced against systems (like Bitcoin)
that base their security arguments on notions of economic
rationality, as economic rationality can also be leveraged by
attackers [6].

7 Limits on openness and top tier fluidity

The FBAS paradigm reportedly enables the instantiation
of consensus systems with open membership [13,16]. And
clearly, arbitrary nodes can join an FBAS, causing new quo-
rums to be formed that contain them. Based on the preceding
discussion, however, we recognize that without creating a
new, de-facto disjoint FBAS, or the active reconfiguration of
existing nodes, new nodes cannot become part of minimal
quorums and hence minimal blocking sets. Thereby, their
existence is irrelevant as far as the discussed liveness indica-
tors are concerned, and their importance for safety is limited.
In Sec. 4 we defined the notion of a top tier to reflect the set
of nodes in an FBAS that is central to liveness, i.e., the set
of nodes from which all minimal quorums and blocking sets
are formed. The top tier wields absolute power to censor and
block the whole FBAS.

In the following,we investigate the question towhat extent
this top tier can be considered a groupwith openmembership.
How can its power be diluted by promoting additional nodes
to top tier status? Can nodes be “fired” from the top tier? We
make the case that, in general, a top tier T can neither grow
nor shrink without either the active involvement of existing
top tier nodes or a loss of safety guarantees. We base all
subsequent projections on the status quo of an FBAS that

enjoys quorum intersection despite faulty nodes (a safeFBAS
as per the discussion in Sec. 3.4).

7.1 Top-down top tier change

As a preliminary remark, recall that, as per Def. 4.4, we
define the top tier T of an FBAS (V,Q) as the union of
all its minimal quorums. T is therefore also a quorum and
intersects every quorum in (V,Q).

Theorem 7.1 (top tier can safely change itself) Let T ⊂ V
be the top tier of an FBAS (V,Q) that enjoys quorum avail-
ability and quorum intersection. Then it is possible, without
compromising neither quorum availability nor quorum inter-
section, to instantiate a new top tier T ′ ⊆ V, T ′ 
= ∅ by
changing only the quorum sets of new and old top tier nodes
v ∈ T ∪ T ′.

Proof Let T ′ ⊆ V, T ′ 
= ∅ be the target top tier. Let Q′ be
a modification of Q so that ∀v ∈ T ∪ T ′ : Q′(v) = {T ′}13
and ∀v /∈ T ∪ T ′ : Q′(v) = Q(v). As T ′ is a quorum w.r.t.
Q′, (T ′,Q′) enjoys quorum availability. Therefore, (V,Q′)
enjoys quorum availability. (V \T ′,Q′) does not enjoy quo-
rum availability, because no node in T is satisfied without T ′
and no node inV \T can form a quorumwithout a node from
T (otherwise T would not have been the top tier w.r.t. Q, cf.
Def. 4.4). There are therefore no quorums w.r.t. Q′ that are
disjoint of T ′. (V,Q′) therefore enjoys quorum intersection
iff (T ′,Q′) enjoys quorum intersection, which it (trivially)
does. ��

The situation is less clear if some nodes T \ T ′ do not
wish to leave T . Note, however, that single nodes can always
endanger safety via trivial configurations such as Q(v) =
{{v}}. If performed by one or more nodes in T , such an act of
sabotage can have an impact on the safety of large portions
of the FBAS.

7.2 Bottom-up top tier change

In the following, we assume a “self-centered” top tier in the
sense that all top tier nodes include only other top tier nodes
in quorum sets. Symmetric top tiers (Def. 4.5) have this prop-
erty, as do top tiers observed in the wild in the Stellar network
(cf. Appendix C).

Theorem 7.2 (no safe top tier change with uncooperative
top tier) Let (V,Q) be an FBAS that enjoys quorum intersec-
tion and has a “self-centered” top tier T ⊂ V such that all
top tier quorum slices are comprised of only top tier nodes
(∀v ∈ V : ⋃

Q(v) ⊆ T ). Then it is not possible, without

13 Without loss of generality.Clearly,more robust top tier constructions
are possible.
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compromising quorum intersection, to instantiate a new top
tier T ′ ⊆ V, T ′ 
= T by changing only the quorum sets of
non-top tier nodes v ∈ V \T .

Proof Let T ′ ⊆ V, T ′ 
= T be the top tier of a new FBAS
(V,Q′) that enjoys quorum intersection. Let Û and Û ′ be the
sets of all minimal quorums of (V,Q) and (V,Q′), respec-
tively. As per Def. 4.4, T ′ 
= T implies that Û 
= Û ′.

Assume there exists a Û ∈ Û \ Û ′. Then Û is a quorum
w.r.t.Q and either (a) not a quorumw.r.t.Q′ or (b) notminimal
w.r.t. Q′.

However, we require that the quorum sets of top tier nodes
don’t change: ∀v ∈ T : Q′(v) = Q(v). Therefore Û is
a quorum also w.r.t. Q′, contradicting (a). Hence, (b) must
hold and there must be a Û ′ ∈ Û ′ such that Û ′ ⊂ Û (cf.
Def. 4.1). As Û ′ ⊆ Û ⊆ T , Û ′ being a quorum w.r.t. Q′
implies it also being a quorum w.r.t. Q. But then Û is not
minimal w.r.t. Q, implying Û /∈ Û and thus again leading to
a contradiction. This proves that Û ⊆ Û ′.

Assume now there exists a Û ′ ∈ Û ′ \ Û and let Û ∈ Û .
As (V,Q′) enjoys quorum intersection, Û ′ ∩ Û 
= ∅ and Û ′
containsmembers of the “old” top tier T . Û ′ is a quorumw.r.t.
Q′, but Û ′ ∩ T cannot be a quorum w.r.t.Q′ as otherwise Û ′
would not be a minimal quorum. There must therefore exist
a node v ∈ Û ′ ∩ T with a quorum slice q ∈ Q′(v) such that
(Û ′ ∩ T ) ⊂ q ⊆ Û ′ (cf. Def. 3.4), i.e., q \ T 
= ∅. As v ∈ T ,
we require thatQ′(v) = Q(v) and

⋃
Q(v) ⊆ T , which leads

to a contradiction since q ∈ Q(v) and q \ T 
= ∅. It must
therefore hold that Û \ Û ′ = ∅, Û = Û ′ and T = T ′. ��

7.3 Consequences

Who determines which FBAS nodes get to form the top tier?
Our results imply that, if maintaining safety is seen as an
untouchable requirement, the top tier Ti of an FBAS (Vi ,Qi )

at “iteration” i is legitimated by decisions of, exclusively,
members of Ti−1 ∪ Ti (if none of them cooperates, we lose
safety, if all of them cooperate, we don’t). Because of the
top tier’s importance to the liveness, safety and performance
achievable within a given FBAS, open membership in Vi is
of little benefit without open membership in Ti .

How closed is the membership in Ti? It might be suffi-
cient that only some nodes in Ti−1 support a transition to Ti .
If reactive QSC policies are used (e.g., for enforcing top tier
symmetry as discussed in Sec. 6.4), one cooperative top tier
node v ∈ Ti−1 might already be enough for growing the top
tier in a way that is robust and doesn’t only dilute the rela-
tive influence of v. How partially supported top tier changes
would play out must be investigated based on more specific
scenarios. We expect the safe “firing” of top tier nodes to be
especially challenging.

Which begs the question—can the safety requirement
be weakened? For example, given sufficiently good (out-

of-band) coordination between members of Vi−1 \Ti−1, a
(Vi ,Qi )might be instantiated inwhich at least (Vi \Ti−1,Qi )

enjoys quorum intersection. It is conceivable that novel pro-
tocols can be developed, possibly also leveraging the FBAS
structure, that reduce the notorious difficulty of coordinating
such bottom-up actions.

8 Conclusion

We demonstrate in this paper that, despite the complexity of
the FBAS model, the properties of concrete FBAS instances
can be described in a way that is both precise and intuitive,
and allows comparisonswithmore classicalByzantine agree-
ment systems. We propose the notions of minimal blocking
sets, minimal splitting sets and top tiers to describe which
groups of nodes can compromise liveness and safety. In
essence, minimal blocking sets and minimal splitting sets
describe minimal viable threat scenarios, thereby enabling a
comprehensive risk assessment in FBAS-based systems like
the Stellar network. While some analyses imply computa-
tional problems of exponential complexity,we developed and
implemented algorithms that enable the exact analysis of a
wide range of interesting FBASs.

Our implemented analysis framework also enables us to
investigate how individual configurations result in global
properties. We find that overly strategic configuration poli-
cies result in FBASs that are indistinguishable from per-
missioned systems. Individualistic approaches, on the other
hand, cannot guarantee safe results while quickly resulting
in systems that are infeasible to analyze. Adding some strate-
gic decision-making at organically emerging top tier nodes
offers a potential middle way towards robust FBASs instan-
tiated from the sum of individual preferences.

Independently of the way in which a given FBAS came to
be, however, the composition of a once established top tier
cannot be influenced without the cooperation of existing top
tier nodes, without at the same time threatening safety. This
seems to place the FBAS paradigm closer to the “permis-
sioned consensus” camp than hoped. More investigation is
needed to determine the exact impact of bottom-up top tier
changes (as in number of nodes affected by a loss of safety or
liveness, for example) and to formulate possible coordination
strategies to keep such impacts low.
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AAdditional corollaries, theoremsandproofs

A.1 Minimal quorums

Corollary A.1 (minimal quorum intersection ⇐⇒ quo-
rum intersection) Let U ⊆ 2V be the set of all quorums of
the FBAS (V,Q), Û ⊆ U be the set of all minimal quorums.
All pairs of U1,U2 ∈ U intersect iff all pairs of Û1, Û2 ∈ Û
intersect.

Proof Since Û ⊆ U , ∀U1,U2 ∈ U : U1 ∩ U2 
= ∅ trivially
implies that ∀Û1, Û2 ∈ Û : Û1∩Û2 
= ∅. The other direction
follows because ∀U1,U2 ∈ U ∃Û1, Û2 ∈ Û : Û1 ⊆ U1 ∧
Û2 ⊆ U2 (Û being the set of all minimal sets w.r.t. U ; s.a.
Def. 4.1). If all pairs in Û intersect, so must therefore all pairs
in U . ��

This was previously also shown in [12].

A.2 Blocking sets

Corollary A.2 (blocking for all �⇒ blocking for all min-
imal) Let U ⊆ 2V be the set of all quorums of the FBAS
(V,Q), and Û ⊆ U be the set of all minimal quorums. If B
is a blocking set for U , then it is also a blocking set for Û .
Proof B is a blocking set for U ⇐⇒ ∀U ∈ U : B ∩U 
= ∅
(Def. 4.2). Û ⊆ U �⇒ ∀Û ∈ Û : B ∩ Û 
= ∅, so that B is
also a blocking set for Û . ��
Corollary A.3 (blocking for all minimal �⇒ blocking for
all) LetU ⊆ 2V be the set of all quorums of the FBAS (V,Q),
and Û ⊆ U be the set of all minimal quorums. If B is blocking
set for Û , then it is also a blocking set for U .
Proof B is a blocking set for Û �⇒ ∀U ∈ Û : B ∩U 
= ∅
(Def. 4.2). Û ⊆ U and all U ∈ Û are minimal w.r.t. U
�⇒ ∀U ∈ U ∃Û ∈ Û : Û ⊆ U (cf. Def. 4.1) �⇒

U ∩ B 
= ∅ �⇒ B is blocking for all U ∈ U . ��
Corollary A.4 (minimal blocking sets result fromminimal
quorums) Let U ⊆ 2V be the set of all quorums of the FBAS

(V,Q), Û ⊆ U be the set of all minimal quorums, and B̂ ⊆
2V be the set of all minimal blocking sets. Then each minimal
blocking set B̂ ∈ B̂ of the FBAS is minimally blocking w.r.t.
Û , i.e., B̂ intersects every minimal quorum Û ∈ Û and no
B ′ ⊂ B̂ intersects every minimal quorum Û ∈ Û .
Proof Let B ⊆ 2V be the set of all blocking sets w.r.t. Û .
Based on Cor. A.2 and Cor. A.3, B is exactly the set of all
blocking sets for U . Hence the set of all minimal sets w.r.t.
B is exactly the set of all minimal blocking sets w.r.t. U and
therefore the set of all minimal blocking sets for (V,Q), or
B̂ ⊆ B. Likewise, as B is the set of all blocking sets w.r.t. Û ,
B̂ is the set of all minimal blocking sets w.r.t. Û . ��

A.3 Splitting sets

Definition A.1 (quorum expanders) For an FBAS (V,Q), a
quorum expander is any node v ∈ V that is part of a quorum
slice q ∈ Q(v′) of another node v′ ∈ V that is a not a quorum
slice for v, i.e., any node v ∈ V for which ∃v′ ∈ V, q ′ ∈
Q(v′) : v ∈ q ′ ∧ (∀q ∈ Q(v) : q � q ′).
Theorem A.1 (minimal splitting sets formed exclusively of
quorum expanders and top tier nodes) Let Ŝ ⊆ 2V be the
set of all minimal splitting sets of the FBAS (V,Q), X ⊆ V
the set of all quorum expanders of the FBAS (Def. A.1) and
T ⊆ V the top tier of the FBAS (the union of all minimal
quorums, Def. 4.4). Then it holds that

⋃ Ŝ ⊆ T ∪ X.

Proof Let Ŝ ∈ Ŝ and s ∈ Ŝ be an arbitrary node in that
splitting set. We show that s ∈ T or s ∈ X must hold.

Ŝ is a minimal splitting set, therefore Ŝ \ {s} is not a

splitting set for any s. Consequently, (V,Q)Ŝ\{s} enjoys

quorum intersection while (V,Q)Ŝ doesn’t. Let Û1, Û2 ⊂
V, Û1 ∩ Û2 = ∅ be two non-intersecting minimal quo-

rums in (V,Q)Ŝ such that Û1 does not contain a quorum

in (V,Q)Ŝ\{s}. (If both Û1 and Û2 contained quorums in

(V,Q)Ŝ\{s}, the FBAS would lack quorum intersection.)

If Û1∪{s} contains a quorum in (V,Q)Ŝ\{s}, then Û1∪{s}
contains a minimal quorum Û ′

1 ⊆ Û1 ∪ {s} that contains s.
Consequently, s is part of the top tier T ′ of (V,Q)Ŝ\{s}, i.e.,
s ∈ T ′. As the only effect of the delete operation (Def. 3.7) on
Q is to remove nodes fromquorum slices and both (V,Q) and

(V,Q)Ŝ\{s} enjoy quorum intersection, it holds that T ′ ⊆ T
(the proof is analogous to the proof of Thm. 7.2). Conse-
quently, s ∈ T .

If Û1 ∪ {s} does not contain a quorum in (V,Q)Ŝ\{s},
then, because Û1 is a quorum in (V,Q)Ŝ , the forming of a

quorum fails because of s. For (V′,Q′) := (V,Q)Ŝ\{s}, it
must hold that ∃v ∈ Û1, ∃q ∈ Q′(v) : q ⊆ Û1 ∪ {s} while
∀q ′ ∈ Q′(s) : q � Û1 ∪ {s}. The node s is therefore one

of the quorum expanders X ′ of (V,Q)Ŝ\{s}, i.e., s ∈ X ′. It
trivially holds that X ′ ⊆ X and, therefore, s ∈ X . ��
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A.4 Top tier

Corollary A.5 (minimal blocking sets formed exclusively
of top tier nodes) Let T be the top tier of an FBAS (V,Q),
and B̂ ⊆ 2V be the set of all minimal blocking sets of (V,Q).
Then ∀B̂ ∈ B̂ : B̂ ⊆ T .

Proof From Cor. A.4 it follows that all B̂ ∈ B̂ are formed of
nodes contained in at least one minimal quorum Û ∈ Û . As
T = ⋃ Û (Def. 4.4), ∀B̂ ∈ B̂ : B̂ ⊆ T . ��
Theorem A.2 (each top tier node in at least one minimal
blocking set) Let T be the top tier of an FBAS (V,Q), and
B̂ ⊆ 2V be the set of allminimal blocking sets of (V,Q). Then
for each top tier node v ∈ T there is at least one minimal
blocking set B̂ ∈ B̂ such that v ∈ B̂.

Proof Let v ∈ T be an arbitrary top tier node and Û ∈ Û
an arbitrary minimal quorum such that v ∈ Û (recall that
T = ⋃ Û ; Def. 4.4). T \ Û intersects every Û ′ ∈ Û \ {Û },
as otherwise there would be a Û ′ ∈ Û such that Û ′ ⊂ Û
(i.e., Û would not be a minimal quorum). Therefore, T \ Û
is a blocking set w.r.t. Û \ {Û } and B ′ = {v} ∪ T \ Û is a
blocking set w.r.t. Û . B ′ \ {v} is not a blocking set w.r.t. Û
because it doesn’t intersect Û . Hence, all B̂ ∈ B̂ such that
B̂ ⊆ B ′ (and there must be at least one—B ′—because B ′ is
a blocking set w.r.t. Û) must contain v. Hence the FBAS has
at least one B̂ ∈ B̂ that contains v. ��
Theorem A.3 (Bocking sets in non-nested symmetric top
tier) For an FBAS (V,Q) with a symmetric top tier T ⊆ V,
m := |T | such that ∀v ∈ T : Q(v) = qset(v, (T ,∅, t)) it
holds that: All minimal blocking sets B̂ ∈ B̂ have cardinality
max(m − t + 1, 0).

Proof Weobserve that for anyv ∈ T ,Q(v) = {q ⊆ V : v ∈ q}
∧|q ∩ T | ≥ t (Def. 3.2 and 3.3). A U ⊂ T is therefore a
quorum in (V,Q) iff |U | ≥ t (Def. 3.4). As all U ⊂ T with
|U | ≥ t are quorums in (V,Q), the minimal quorums in
(V,Q) are exactly Û = {Û ⊆ T , |Û | = t}. Then:

For all B ⊆ T with |B| = m − t + 1 it holds that ∀U ′ ⊆
T \ B : |U ′| = t − 1 < t . Hence, no U ′ ⊆ T \ B is a
quorum, there are no quorums that are disjoint with B and
B is a blocking set (Def. 4.2). B is furthermore a minimal
blocking set, as for any B ′ ⊂ B it holds that U = T \ B ′ is
a quorum (as |U | ≥ t), and so B ′ is not a blocking set. ��
Theorem A.4 (Splitting sets in non-nested symmetric top
tier)For anFBAS (V,Q) that consists entirely of a symmetric
top tier T = V, m := |T | such that ∀v ∈ V : Q(v) =
qset(v, (V,∅, t)) it holds that allminimal splitting sets Ŝ ∈ Ŝ
have cardinality max(2t − m, 0).

Proof Like in Thm. A.3, we observe that the minimal quo-
rums in (V,Q) are exactly Û = {Û ⊆ T , |Û | = t}. Then:

Let Ŝ ∈ Ŝ be an arbitrary minimal splitting set for (V,Q).
If 2t −m ≤ 0, there exist two minimal quorums Û1, Û2 ∈ Û
(with cardinality t) that do not intersect. There is then only
one Ŝ = ∅ and the cardinality of all minimal splitting sets
is trivially 0. In the following, we assume that 2t − m >

0 and (V,Q) therefore enjoys quorum intersection. Since
(V,Q) consists entirely of a symmetric top tier, no v ∈ V
is a quorum expander. Splitting sets must therefore contain
an intersection of at least one pair of minimal quorums (for
illustration, cf. the proof of Thm. A.1). There are therefore
at least two minimal quorums Û1, Û2 ∈ Û such that Ŝ =
Û1 ∩ Û2. Let U = Û1 ∪ Û2. N ′ = T \ U must be empty,
otherwise we could, with an arbitrary N ′′ ⊆ Ŝ, |N ′′| = |N ′|
find a minimal quorum Û3 = (Û2 \ N ′′) ∪ N ′ such that
Û1 ∩ Û3 ⊂ Ŝ (i.e., Ŝ is not minimal). It therefore holds that
U = T and, since, |Û1| = |Û2| = t , |Ŝ| = 2t − m. ��

BExample analysis: Toynetworkwith cascad-
ing failures

Consider the FBAS (V,Q) with V = {0, 1, 2, 3, 4, 5, 6} and
Q such that:

Q(0) = qset(0, ({0, 1, 2},∅, 3))
Q(1) = qset(1, ({0, 1, 2, 3},∅, 3))
Q(2) = qset(2, ({0, 1, 2, 3, 4, 5, 6},∅, 5))
Q(3) = qset(3, ({0, 1, 2, 3, 4, 5, 6},∅, 5))
Q(4) = qset(4, ({0, 1, 2, 3, 4, 5, 6},∅, 5))
Q(5) = qset(5, ({0, 1, 2, 3, 4, 5, 6},∅, 5))
Q(6) = qset(6, ({0, 1, 2, 3, 4, 5, 6},∅, 5))

This Q can be the result of a scenario in which all v ∈ V
apply the QSC policy All Neighbors QSC (Sec. 6.2) based
on following graph G (unidirectional edges highlighted as
dashed lines):

0
1

2

3

45

6

Wefind theminimal blocking sets B̂ ⊂ 2V of (V,Q) using
our analysis tool (cf. Sec. 5):

B̂ = {{2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {0, 3}, {3, 4, 5},
{3, 4, 6}, {3, 5, 6}, {0, 4, 5}, {0, 4, 6}, {0, 5, 6},
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{4, 5, 6}}

Despite the fact that most nodes in V have very “robust”
quorum sets— being able to tolerate up to f = 2 failures,
which corresponds to a minimal blocking set of cardinality
3— the smallest blocking set of (V,Q), {2}, actually has
cardinality 1. Consider a failure of node 2. Node 0’s quo-
rum set (Q(0)) is not satisfiable anymore, so that 0 de-facto
fails as well. With both 0 and 2 failed, node 1, being able
to tolerate only f = 1 failures, becomes unsatisfiable as
well. With three nodes having de-facto failed, none of the
remaining nodes’ quorum sets can be satisfied anymore, so
that (V,Q) loses quorum availability. Enabled through the
“weak” quorum sets of nodes 0 and 1, the failure of 2 trig-
gers what we would call a cascading failure. The liveness
“buffer” of (V,Q), as represented by its smallest blocking
sets, is determined by the most easily dissatisfied nodes in its
top tier.

We see a similar, although weaker effect with regards to
minimal splitting sets. In the present example, there are fewer
minimal splitting sets Ŝ ⊂ 2V than in an “ideal” FBAS of
the same size (cf. Ideal Open QSC in Sec. 6.1) but all but one
of them have the “ideal” cardinality 3 or a larger cardinality:

Ŝ = {{1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 2, 3}, {0, 2, 4}, {0, 3, 4},
{1, 3, 4, 5}, {2, 3, 4, 5}}

Note that unlike blocking sets that can compromise live-
ness for all nodes in an FBAS, splitting sets are usually more
relevant to some nodes than they are to others. For example,
the smallest splitting set of (V,Q), {1, 2}, can potentially
cause node 0 to diverge from the remainder of the network—
this is likely a bigger problem for node 0 than for nodes
{3, 4, 5} which would remain “in sync”.

C Example analysis: Stellar network

As an example for the results obtainable using the proposed
methodology and tooling, we will now present a short study
into the Stellar FBAS [13]14. Our analysis methodology has
furthermore been integrated into Stellarbeat15, a popular
monitoring website for the Stellar network.

For the presented study, we obtain daily snapshots of the
Stellar FBAS from Stellarbeat16, for the interval July 2019 –
January 2022. From the same source, we also obtain data for
allocating nodes, here individual network hosts running the

14 We maintain an interactive version of this study at: https://trudi.
weizenbaum-institut.de/stellar_analysis/
15 https://stellarbeat.io/
16 Data from Stellarbeat was also used in previous academic studies
such as [11].

Fig. 5 Analysis results for daily snapshots of the Stellar network. For
each presented FBAS snapshot, the plot charts the size of its top tier as
well as themean cardinalities ofminimal blocking andminimal splitting
sets, with area boundaries marking the cardinalities of the smallest and
largest respective set

Stellar software, to the organizations they belong to. We use
this data to merge nodes belonging to the same organization,
so that nodes in the subsequent discussion represent distinct
organizations as opposed to individual physical machines17.
For maintaining the correctness of our results, we merge
nodes in this way after completing the analyses. Prior to
analysis, we filter out all nodes that are marked as inactive
or induce one-node quorums (i.e., nodes v with a configu-
ration such as Q(v) = {v}; we assume that this represents
an accidental misconfiguration). We furthermore restrict our
minimal splitting sets analyses to a core subset of nodes for
each FBAS snapshot, namely to the top tier and all nodes
transitively referenced by top tier nodes’ quorum sets. Doing
so gives us more informative aggregate results as forming a
splitting set that affects only a few edge nodes is both signif-
icantly easier and less impactful than forming a splitting set
that can cause top tier nodes to diverge. All analyses were
performed using the algorithms and implementation intro-
duced in Sec. 5. The results of our study are presented in
Fig. 5.

The top tier of the Stellar network is growing mono-
tonically through time in the studied interval, reaching
7 organizations in February 2020. The top tiers of most
analyzed snapshots are symmetric and resemble (on the
organizations level) a classical (non-nested) threshold-based
quorum system. In Fig. 5, symmetric top tiers of such a type
manifest themselves as data points in which the cardinalities

17 Nodes can also be merged based on other criteria, such as their
country or ISP, revealing different threat scenarios. For example, for a
Footnote 17 continued
snapshot of the Stellar FBAS from November 2020, we determine that
a certain large cloud hosting provider forms a blocking set—i.e., has
the power to unilaterally compromise liveness.
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of all minimal blocking sets are identical, as are the cardi-
nalities of all minimal splitting sets. During February 2020,
the top tier grew by one organization, disturbing the sym-
metry for a few days. However, eventually all top tier nodes
included the new organization into their quorum sets. This
adaptation suggests that top tier nodes might be reacting to
each others’ decisions and actively strive towards a symmet-
ric configuration, as proposed in Sec. 6.4. Furthermore, the
thresholds of top tier quorum sets appear to be chosen based
on a 67% logic (balancing liveness and safety risks), as do
most example policies we discuss in Sec. 6.
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