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Abstract. In this paper, a new approach is presented to prove the efficiency of the direct Monte
Carlo method combined with the Elementary Effect method to quantify structural data uncer-
tainty under uncertain input parameters of a beam structure. Normally, the application of the
direct Monte Carlo method requires high computational cost when all input parameters are
taken into account. It is proposed to use a combination of the direct Monte Carlo method
and the Elementary Effect method for the variance-based sensitivity analysis, named the com-
bined Monte Carlo method. By the application of the Elementary Effect method as a screening
method, the truely influential input parameters are identified. Then, the parametric uncertainty
is analyzed only under these influential input parameters’ uncertainty by the use of the Monte
Carlo method. Through a combination of these two methods, the number of simulations can be
significantly reduced due to the reduction of the number of analyzed input parameters.

The novelty of this paper is to investigate the accuracy and the efficiency of this combined
approach by the use of a beam structure with piezo-elastic supports for buckling and vibration
control as a reference structure. The uncertain structural input parameters are the geomet-
ric, material, and stiffness parameters of the piezo-elastic supports. The output variable is the
first lateral resonance frequency of the beam structure. Its uncertainty will be analyzed by the
application of the combined Monte Carlo method applied for only a few but influential input
parameters and will also be analyzed by the application of the direct Monte Carlo method for
all input parameters. The results by the two methods will be compared based on the analy-
sis accuracy to estimate the sensitivity of the input parameters on the first lateral resonance
frequency and the minimal required number of the simulations.
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1 INTRODUCTION

Global sensitivity analysis shows how the uncertainty of a structure is apportioned to the un-
certainty of its input parameters by quantifying the relative importance of each input parameter
[1]. The underlying goal of the sensitivity analysis is to identify the influential input parameters
and then, through controlling and reducing the uncertainty of the influential input parameters,
to reduce the uncertainty of the structure [2], e.g., to reduce the uncertainty of the structural
vibration amplitude.

The methods that are used for global sensitivity analysis can be divided into two categories,
the qualitative analysis methods and the quantitative analysis methods [2]. The qualitative anal-
ysis methods, also named screening methods, are feasible to identify if the input parameters
have relevant influence on the structure or not [3]. Commonly, they identify the relevant influ-
ence based on a small number of simulations. In most cases, “a small number” implies that
the simulations do not result in convergence or trustworthy outcomes. Similarly, “a relatively
large number” implies that the simulations do converge and trustworthy outcomes are reached,
but usually with high costs in simulation time. Therefore, a small number of simulations in
the qualitative analysis is commonly not sufficient for ranking the relevant influence of the in-
put parameters on the structure. In contrast, the quantitative analysis methods aim at precisely
quantifying and ranking the influence of the input parameters on the structure, based on a rel-
atively large number of simulations [3]. Hence, an approach by combination of the qualitative
and the quantitative analysis method can be an efficient approach in sensitivity analysis.

The global sensitivity analysis methods are classified in terms of required number of simula-
tions and the structure’s complexity in [2]. Based on this classification it can be concluded that
the Elementary Effect method, which was proposed by Morris in 1991 [4], is a simple but effec-
tive screening method [5]. The studies in [6, 7] also support this statement. In the category of
the quantitative analysis methods, the Monte Carlo method for variance-based sensitivity anal-
ysis is more feasible than other methods, e.g., the Fourier Amplitude Sensitivity Test (FAST),
as it requires no assumption and considers not only the linear relation between the input param-
eters and output variable but also the nonlinear relation [8]. The studies in [9, 10] also support
this statement. In this study, the Elementary Effect method is applied at first for screening the
sensitivity of each input parameter to identify the input parameters having dynamic influence on
the structure. Based on the screening results, the parametric uncertainty is analyzed only under
the uncertainty of the influential input parameters by the Monte Carlo method for variance-
based sensitivity analysis. The idea of the combination of these two methods is to reduce the
number of simulations without losing the accuracy of the uncertainty analysis. This approach
was recommended by Saltelli in [5]. The efficiency of this approach will be tested on a real
beam structure subject to buckling and vibration control under axial loading with piezo-elastic
supports

The beam structure is described in section 2 and modeled mathematically in section 3. The
Elementary Effect method, the direct Monte Carlo method, and the combined Monte Carlo
method are introduced in section 4. The Elementary Effect method is applied to the beam
structure and the screening results are described in section 5. The sensitivity analysis results
of the beam structure based on the direct Monte Carlo method and the combined Monte Carlo
method are also described and compared in section 5 with respect to their analysis accuracy and
computational costs. The goal of this paper is to investigate if the efficiency of the quantification
of uncertainty is improved through the combination of the sensitivity analysis methods without
losing the accuracy of the uncertainty analysis.
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2 STRUCTURE DESCRIPTION

The reference structure for the application of the global sensitivity analysis is a beam with
piezo-elastic supports that is used for two different applications of passive and active struc-
tural control: active buckling control [11] and passive lateral vibration attenuation [12]. Fig-
ure 1 shows the beam structure with piezo-elastic supports and the sectional view of the piezo-
elastic support. It consists of a membrane-like spring element, an axial extension of the beam,
and two piezoelectric stack transducers, which are mechanically prestressd by a stack of disc
springs [13].

(a) (b)

support A

support B

transducer P
3

axial extension

disc springs

membrane-like
spring element

beam

Figure 1: (a) CAD model of the beam with piezo-elastic supports, (b) Sectional view of piezo-elastic support B

The various components of the piezo-elastic supports may each influence the dynamic be-
havior of the beam structure. The input parameters of the piezo-elastic supports that have sig-
nificant influence on the dynamic behavior of the beam structure will be identified. The first
lateral resonance frequency f

1

is an important measure for active buckling control and passive
lateral vibration attenuation. Therefore, it is chosen as the output variable in this study for the
global sensitivity analysis.

The mechanical sketch of the beam structure with piezo-elastic supports is shown in Figure 2.
The beam is made of aluminum alloy EN AW-7075 with Young’s modulus E

b

, density %

b

,
length l

b

, and circular solid cross-section of radius r

b

. The circumferential lateral stiffness is
homogeneous and has no preferred direction of lateral deflection, so the beam may deflect in
any plane lateral to the longitudinal x-axis.

Two piezo-elastic supports A and B are located at x = 0 mm and x = l

b

. The elastic
membrane-like spring elements made of spring steel 1.1248 in both supports A and B are rep-
resented by lateral stiffness ky,A = kz,A = k

l,A and ky,B = kz,B = k

l,B in y- and z-direction and
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Figure 2: Simplified model of the beam structure with piezo-elastic supports A and B[12]

rotational stiffness k'y ,A = k'z ,A = k

r,A and k'y ,B = k'z ,B = k

r,B around the y- and z-axes.
The spring stiffness values are assumed to be equal in y- and z-direction for this study since both
directions are modeled symmetric and independent of each other. The spring element stiffness
values are obtained from experimental static load measurements.

In each piezo-elastic support A and B at x = �l

ext

and x = l

b

+ l

ext

, two piezoelectric stack
transducers P

1

and P

2

as well as P
3

and P

4

are arranged in the support housing at an angle of
90

� to each other orthogonal to the beam’s x-axis, Figure 2. All transducers are mechanically
prestressd by a stack of disc springs with stiffness k

pre

. The value of k
pre

is smaller than 5%
of the stiffness of the piezoelectric transducers. Therefore, its influence is neglected in this
study. The transducers in supports A and B are connected to the beam via relatively stiff axial
extensions made of hardened steel 1.2312 with Young’s moduli E

ext,A and E

ext,B, densities
%

ext,A and %

ext,B, lengths l

ext,A and l

ext,B, as well as edge lengths t

ext,A and t

ext,B. With that,
lateral beam deflections in y- and z-direction are transformed into the stack transducer’s axial
deformation in y- and z-direction and vice versa. The piezoelectric transducers P

1

and P

2

in
support A and P

3

and P

4

in support B are P-885.51 stack transducers by PI Ceramic with
mechanical stiffness k

p,A and k

p,B [12].
The sensitivity analysis identifies the input parameters of the piezo-elastic supports that have

significant influence on the first lateral natural frequency of the beam structure. For that, only
the geometric and material properties of the beam, E

b

, ⇢
b

, l
b

, r
b

, are constant, Table 1. The
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geometric, material, and stiffness parameters of the components in the piezo-elastic supports
are assumed uncertain parameters pk with k = 1, 2, · · · , K = 14, Table 1. Their assumed
normal or uniform distribution functions N and U are also given in Table 1. For the normal dis-
tribution function N (µ; �), the mean µ and standard deviation � are given and for the uniform
distribution U(min;max), the minimum and maximum values are given.

Table 1: Geometric, material, and stiffness properties of the beam structure

input parameters deterministic distribution
value function

E

b

beam Young’s modulus in GPa 73.9 –
⇢

b

beam density in kg/m

3

2 775 –
l

b

beam length in mm 400 –
r

b

beam radius in mm 5 –
E

ext,A p

1

axial extension Young’s modulus in GPa 210 N (210; 3.35)

⇢

ext,A p

2

extension density in kg/m

3

7800 N (7800; 130)

l

ext,A p

3

extension length in mm 7.8 U(7.4; 8.2)
t

ext,A p

4

extension radius in mm 6 U(6; 6.1)
E

ext,B p

5

axial extension Young’s modulus in GPa 210 N (210; 3.35)

⇢

ext,B p

6

extension density in kg/m

3

7800 N (7800; 130)

l

ext,B p

7

extension length in mm 7.8 U(7.4; 8.2)
t

ext,B p

8

extension radius in mm 6 U(6; 6.1)
k

l,A p

9

spring lateral stiffness in N/m 22 · 106 N (22 · 106; 7.3 · 105)
k

r,A p

10

spring rotational stiffness in N ·m/rad 449.7 N (449.7; 30)

k

l,B p

11

spring lateral stiffness in N/m 22 · 106 N (22 · 106; 7.3 · 105)
k

r,B p

12

spring rotational stiffness in N ·m/rad 449.7 N (449.7; 30)

k

p,A p

13

piezo transducer A lateral stiffness in N/m 49 · 106 N (49 · 106; 3.3 · 106)
k

p,B p

14

piezo transducer B lateral stiffness in N/m 49 · 106 N (49 · 106; 3.3 · 106)

Table 1 summarizes the constant and varied geometric, material, and stiffness properties for
the following study. The input parameters relating to the axial extensions are p

1

–p
8

. Due to
the manufacturing tolerances the geometric properties p

3

, p
4

, p
7

, as well as p

8

are assumed
uniformly distributed. The variation of the material properties p

1

, p
2

, p
5

, and p

6

are assumed
normally distributed. Their distribution functions are defined according to the tolerance’s spec-
ifications and material data found in literature. The input parameters describing the stiffness of
the membrane-like spring elements are p

9

–p
12

. The spring elements are produced by an actively
controlled forming process. Thus, the variation of the spring stiffness properties are assumed to
be normally distributed. Their distribution functions are defined according to the authors’ static
stiffness measurements. Finally, the lateral stiffnesses of the piezoelectric stack transducers are
p

13

and p

14

. As they depend on the material properties, they are assumed normally distributed
and their distribution functions are defined according to manufacturer data by PI Ceramic [14].

3 MATHEMATICAL MODEL

To calculate the first lateral resonance frequency f

1

of the beam, a finite element (FE) model
was derived in [11]. The free vibration of the beam with piezo-elastic supports in Figure 2 is
modeled by the homogeneous FE equation of motion

M ¨r +K r = 0. (1)

445
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Damping in equation (1) is neglected because it is insignificantly small according to the
authors’ experimental measurements. In equation (1), r is the [4I ⇥ 1] FE displacement vector
for a beam discretized by (I�1) elements with 4I degrees of freedom, two translational and two
rotational displacements in and around y- and z-direction. M is the [4I ⇥ 4I] mass matrix and
K is the [4I ⇥ 4I] stiffness matrix. The discrete stiffness parameters of the elastic membrane
springs, disk springs, and piezoelectric stack actuators are included in stiffness matrix K.

The first lateral resonance frequency of the beam f

1

is calculated by the solution of the
characteristic equation

det

⇥
K � (2⇡ f

1

)

2M
⇤
= 0. (2)

The influence of the K varied input parameters, which are contained in the [1 ⇥ K] vector
p = [p

1

, p

2

, · · · , pk, · · · , pK ] with k = 1, 2, · · · , K = 14, on the output parameter, which is the
first lateral resonance frequency f

1

in equation (2), will be identified by the sensitivity analysis.

4 METHODS FOR SENSITIVITY ANALYSIS

As already mentioned, the goal of this study is to prove the accuracy and the efficiency of the
combination of the Elementary Effect method and the Monte Carlo method for the variance-
based sensitivity analysis according to [5] for adequate sensitivity analysis. The Elementary
Effect method, the direct Monte Carlo method for the variance-based sensitivity analysis, and
the combined Monte Carlo method for the variance-based sensitivity analysis are briefly intro-
duced in this section.

4.1 Screening method: the Elementary Effect method

The Elementary Effect method is a commonly used screening method as it can identify the
influential input parameters of most structures [5]. After sampling and numerical simulations,
the elementary effect of each input parameter is calculated. For analyzing a structure with K

independent input parameters pk, k = 1, 2, · · · , K, which spans a K-dimensional input space
⌦

K , the Elementary Effect method identifies the input parameters having an influence on the
output variable by comparing the mean and the standard deviation of the elementary effects of
each input parameter.

For a structure with K input parameters, the sampling process for the Elementary Effect
method begins by randomly choosing simulation points pr,0 = [pr,0,1, pr,0,2, · · · , pr,0,K ] in ⌦

K

with r = 0, 1, 2, · · · , R. These simulation points are used as base points and R represents the
number of the base points used in the screening. Based on the base point pr,0, simulation points
pr,k = [pr,k,1, pr,k,2, · · · , pr,k,K ] are generated by randomly varying the k-th input parameter for
k = 1, 2, · · · , K inside ⌦

K . As the Elementary Effect method is used for parameter screening,
it is suggested that the number of the base points R = 10 is sufficient to produce valuable
results [5].

The sampling process is illustrated by using a structure with only two input parameters
K = 2 as an example, Figure 3:

• For r = 1,

Step 1.0: The first base point p
1,0 is randomly chosen in ⌦

K ,

Step 1.1: based on p
1,0, the input parameter p

1

is varied with a random length inside ⌦

K

for the simulation point pr,k = p
1,1,
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r = 1 r = 2 r = 3

...

r = R = 10
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Figure 3: Sampling process by using the Elementary Effect method for a structure with two input parameters

Step 1.2: based on p
1,0, the input parameter p

2

is varied with a random length inside ⌦

K

for the simulation point pr,k = p
1,2;

• For r = 2,

Step 2.0: The second base point p
2,0 is randomly chosen in ⌦

K ,

Step 2.1: based on p
2,0, the input parameter p

1

is varied with a random length inside ⌦

K

for the simulation point pr,k = p
2,1,

Step 2.2: based on p
2,0, the input parameter p

2

is varied with a random length inside ⌦

K

for the simulation point pr,k = p
2,2;

• For r = 3,

Step 3.0: The third base point p
3,0 is randomly chosen in ⌦

K ,

Step 3.1 and step 3.2: repeat the processes as in steps 1.1 and 1.2 but based on the third
base point p

3,0;

• ... ;

• For r = R = 10,

Step 10.0: The tenth base point p
10,0 is randomly chosen in ⌦

2, also the last base point,

Step 10.1 and step 10.2: repeat the processes as in steps 1.1 ... 1.2 but based on the tenth
base point p

10,0.

For a structure with K input parameters, based on each base point pr,0, K simulation points
pr,1,pr,2, · · · ,pr,K are sampled. Hence, the number of simulations are N

EE

= R · (1 + K).
The function f(p) describes the relation between the input parameters p = [p

1

, p

2

, · · · , pK ] and
the output variable of the structure. Therefore, the results at the base points pr,0 are f(pr,0) and
the results at the simulation points pr,k are f(pr,k). In this study the function f(p) is evaluated
according to equations (2) with f(p) = f

1

. The simulations provide R ·K elementary effects
EE

r
k; one elementary effect per input parameter pk based on each base point. The elementary

effects EE

r
k of each input parameter are

EE

r
k =

f(pr,k)� f(pr,0)

�

, (3)

� =

pr,k,k � pr,0,k

pk,max

� pk,min

(4)
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[5], with [1⇥K] simulation point vector pr,k = [pr,k,1, pr,k,2, · · · , pr,k,k, · · · , pr,k,K ], [1⇥K] base
point vector pr,0 = [pr,0,1, pr,0,2, · · · , pr,0,k, · · · , pr,0,K ], r = 1, 2, · · · , R, and k = 1, 2, · · · , K.
The values of pk,max

and pk,min

represent the maximal and the minimal values of the k-th input
parameter.

The distribution of the elementary effects EE

r
k for each input parameter is evaluated by the

mean bµk and the standard deviation b�k of the elementary effects EE

r
k. They are estimated as

follows [5]:

bµk =
1

R

RX

r=1

|EE

r
k| , (5)

b�k =

vuut 1

R� 1

RX

r=1

(EE

r
k � bµk) . (6)

The mean bµk of the elementary effect for the k-th input parameter is a sensitivity measure
proposed to assess the overall influence of the k-th input parameter on the output variable [6].
A relatively high value of bµk indicates that the k-th input parameter has a significant influence
on the result of the calculated output variable. In contrast, a relatively low value of bµk implies
that the k-th input parameter has only minor influence on the result of the output variable.

Another measure is the standard deviation b�k of the elementary effect for the k-th input
parameter, which estimates whether the effect of the k-th input parameter is linear or nonlinear
or whether this input parameter has a interacted functional relation with other input parameters
to calculate the output variable or not [4, 6]. In case the k-th input parameter’s functional
relation is linear, the elementary effects would be identical everywhere in the input space ⌦

K .
Therefore, b�k is close to 0. In contrast, if the input parameter’s functional relation is nonlinear
and/or interacts with other input parameters, the elementary effects would vary in the input
space ⌦

K . As a result, b�k is larger than 0. The scale ratio b�k/bµk is used to decide if the b�k is
close to 0 or larger than 0 by comparing b�k to bµk.

Through the screening based on the Elementary Effect method, a number of M < K input
parameters is identified as the relevant influential input parameters. Then the structure sensitiv-
ity is analyzed only under the uncertainty of these M influential input parameters by the Monte
Carlo method for variance-based sensitivity analysis.

4.2 Quantitative method: the direct Monte Carlo simulation for variance-based sensitiv-
ity analysis

Variance-based sensitivity analysis is a widely used approach to quantify the influence of
the K input parameters p = [p

1

, p

2

, · · · , pk, · · · pK ] on the output variable f(p). The direct
Monte Carlo method is used for the variance-based sensitivity analysis to generate a large num-
ber of random samples to obtain numerical results without prior knowledge of the investigated
structure. To reduce the number of samples, the direct Quasi Monte Carlo method is used as a
sub-method of the direct Monte Carlo method [8]. It uses a Quasi random number generator,
e.g., the Latin-Hypercube generator or the Sobol’ generator. The Quasi random number gener-
ators are designed to generate random samples for a faster convergence. The drawback of the
Latin-Hypercube generator is that its algorithm for the randomness of the input parameters is
dependent on the sample size. The sample size cannot be changed without starting the simu-
lation again from the beginning. In contrast, the Sobol’ random number generator can freely
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extend the sample size even after finishing the simulation [8]. Therefore, the Sobol’ random
number generator is used in this study to generate random samples of the input parameters
according to their defined distribution functions N and U in Table 1.

The associated sensitivity indices for variance-based sensitivity analysis are the main effect
index Sk and the total effect index S

Tk
[5, 8]. The main effect index Sk is a quantitative measure

of the direct influence of the k-th input parameter on the output variable. The total effect index
S

Tk
sums the main effect Sk and the interaction effects of the k-th input parameter with other

input parameters. The analytical calculation of the main effect Sk and total effects S
Tk

of the
input parameters is not possible for complex structures such as the described beam structure.
They can only be approximated by application of the Monte Carlo method.

The main effect Sk of each input parameter pk is approximated according to the Sobol’
Estimator b

Sk = g(N,A,B,A(k)
B ) [15] as a function g of N numbers of the sampling trials and

the simulation results of sampling matrices A, B, and A(k)
B . The total effect S

Tk
of each input

parameter pk is approximated according to the Jansen Estimator b
S

Tk
= h(N,A,B,A(k)

B ) [1,
16] as a function h of N , A, B, and A(k)

B . These two estimators are proven to work well for
analyzing many different kinds of complex structures [1, 9]. The sampling steps to generate the
sampling matrices A, B, and A(k)

B for calculating the estimators are described in detail in [8].
For the estimation of b

Sk and b
S

Tk
of a structure with K varied input parameters, 2N simu-

lations are carried out for A and B and N · K simulations are carried out for A(k)
B . Totally,

the number of the direct Monte Carlo simulations for variance-based sensitivity analysis is
N

DMC

= N · (2 +K) [8].

4.3 Quantitative method: the combined Monte Carlo method for variance-based sensi-
tivity analysis

The number of the direct Monte Carlo simulations for calculating the sensitivity indices
depends on the number of sampling trials N and the number of the varied input parame-
ters K. If either N or K can be reduced, the sensitivity analysis can be more efficient. In
case of not changing the random number generator, to ensure the accuracy of the sensitiv-
ity analysis, the number of sampling trials N should not be reduced. However, based on
the Elementary Effect method, the varied input parameters are sorted as influential and non-
influential parameters. Therefore, by combining the Elementary Effect method and the Monte
Carlo method for variance-based sensitivity analysis, only the M influential input parameters
are analyzed. The (K � M) non-influential input parameters are fixed at their determinis-
tic values. In this way, the number of the combined Monte Carlo simulations is reduced to
N

C

= N

EE

+N

CMC

= R · (1 +K) +N · (2 +M), with M < K, which is the sum of the
number of the simulations for the Elementary Effect method N

EE

and the number of the simu-
lations for the direct Monte Carlo method N

CMC

for M < K influential input parameters.

5 RESULTS AND COMPARISON OF RESULTS BASED ON THE DIRECT AND THE
COMBINED MONTE CARLO METHOD

The simulations of the beam structure based on the direct Monte Carlo method and the
combination of the Elementary Effect method and the Monte Carlo method are carried out
according to the description in section 4. The results are discussed and compared in this section.
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5.1 The screening results based on the Elementary Effect method

In this case study, R = 10 base points are randomly chosen for screening the influence of
the K = 14 input parameters in Table 1 of the beam structure on the first lateral resonance
frequency f

1

from equation (2). The number of the simulations based on the Elementary Effect
method is N

EE

= R · (1 +K) = 150. After the simulations, the mean bµk and the standard de-
viation b�k of each input parameter’s elementary effect are estimated according to equations (5)
and (6) and illustrated in Figure 4.

st
an

da
rd

de
vi

at
io

n
b
�

k
fo

rf
1

in
H
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0.20
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0.05

0

mean bµk for f
1

in Hz
32.521.510.50

k
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r,B
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k
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l,B

l
ext,A

l
ext,B

Figure 4: Screening results of the beam structure based on the Elementary Effect method

By looking at Figure 4 it can be concluded that the lateral and rotational stiffness properties
of the springs k

l,A, k
r,A, k

l,B, as well as k
r,B and the stiffness of the piezo transducers k

p,A and
k

p,B have influence on f

1

when they are varied in the range shown in Table 1. The length of the
axial extension on both beam ends l

ext,A and l

ext,B also affects f
1

. This is seen by the high value
of the mean bµk. The input parameters located in the lower left corner in Figure 4 are E

ext,A,
⇢

ext,A, t
ext,A, E

ext,B, ⇢
ext,B, and t

ext,B. As their bµk is close to 0, they do not show relevant
influence on f

1

. For the eight influential input parameters k
l,A, k

r,A, k
l,B, k

r,B, k
p,A, k

p,B, l
ext,A,

as well as l
ext,B, their scale ratios b�k/bµk are between 5% for l

ext,A and 16% for k
p,B. That means

the standard deviation b�k of these eight input parameters is fairly small in comparison to their
mean bµk and implies that these eight influential input parameters’ functional relations to f

1

are
practically linear.

According to the screening result, the M = 8 input parameters k

l,A, k
r,A, k

l,B, k
r,B, k

p,A,
k

p,B, l
ext,A, as well as l

ext,B are concluded as influential input parameters and their influences on
f

1

will be quantified by application of the Monte Carlo method.

5.2 The convergence of the sensitivity analysis results based on the direct Monte Carlo
method

In this case study, the number of sampling trials is defined as N = 50 000. Therefore, the
number of the direct Monte Carlo simulations is N

DMC

= N · (2 +K) = 800 000. The conver-
gence of the sensitivity indices b

Sk and b
S

Tk
according to the Sobol’ estimator [15] and the Jansen

estimator [1, 16] of each input parameter is analyzed to examine if the sample size N = 50 000

is high enough to adequately estimate the sensitivity indices b
Sk and b

S

Tk
. Both sensitivity in-

dices of each input parameter are calculated by every increase of 250 samples. In this study, all
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sensitivity indices b
Sk and b

S

Tk
are assumed to have converged when they stay within a variation

range ±0.05 of the value that is approximated with the sample size N = 50 000, see the hori-
zontal dashed lines in Figure 5. The estimated sensitivity indices of the spring rotation stiffness
of the support A p

10

= k

r,A by increasing the sample size N are illustrated in Figure 5 as an
example.
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Figure 5: Convergence of sensitivity indices of kr,A based on the direct Monte Carlo method

For the beam structure, the sensitivity index b
S

10

of p
10

= k

r,A is converged when the esti-
mation is based on more than N = 16 250 samples, the sensitivity index b

S

T

10

of p
10

= k

r,A

is converged when the estimation is based on more than N = 31 250 samples. These are the
highest required numbers for the convergence among all K = 14 input parameters in Table 1.
Therefore, the sample size N = 50 000 is sufficient for the sensitivity analysis in this case study.

The values of b
Sk and b

S

Tk
of each input parameter on the output variable f

1

are illustrated
as solid bars in Figure 7. The results are discussed and compared with the results based on the
combination of the Elementary Effect method and the Monte Carlo method in section 5.4.

5.3 The convergence of the sensitivity analysis results based on the combined Monte
Carlo method

The number of sampling trials is also defined as N = 50 000. Therefore, the number of the
combined Monte Carlo simulations is N

CMD

= N · (2+M) = 500 000. The same convergence
analysis as for the direct Monte Carlo simulation is carried out to examine if the sample size
N = 50 000 is high enough to adequately estimate the sensitivity indices b

Sk and b
S

Tk
. The

convergence criterion is the same as that for the direct Monte Carlo Simulation in Figure 5,
sensitivity indices are assumed to have converged when they stay within a variation range ±0.05

of the value that is, again, approximated with the sample size N = 50 000, see the horizontal
dashed lines in Figure 6. The estimated sensitivity indices b

S

10

and b
S

T

10

of the spring rotation
stiffness of the support A p

10

= k

r,A are illustrated in Figure 6 as an example.
For the beam structure, the sensitivity index b

S

10

is converged when the estimation is based on
more than N = 9 500 samples, and the sensitivity index b

S

T

10

is converged when the estimation
is based on more than N = 26 500 samples. These are the highest numbers for the convergence
among the M = 8 input parameters. In comparison to the direct Monte Carlo simulation, the
combined Monte Carlo simulation requires a smaller number of sampling trials.

The values of b
Sk and b

S

Tk
of the eight influential input parameters with k = 3, 7, 9, · · · , 14
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Figure 6: Convergence of sensitivity indices based on the combined Monte Carlo method

in Table 1 are illustrated as non-solid bars in Figure 7. The results are discussed and compared
with the results based on the direct Monte Carlo method in section 5.4.

5.4 Comparison of the results based on the direct Monte Carlo method and the combined
Monte Carlo method

The sensitivity indices of the main effect b
Sk and the total effect b

S

Tk
of the K = 14 input

parameters based on the direct Monte Carlo method and the combined Monte Carlo method
based on the M = 8 influential input parameters are illustrated in Figure 7.
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Figure 7: Sensitivity indices bSk and bSTk based on the direct Monte Carlo method (DMC) and the combined Monte
Carlo method (CMC)

The black solid bars in Figure 7 represent the main effect b
Sk,DMC

and the blue solid bars in
Figure 7 represent the total effect bS

Tk,DMC

of the K = 14 input parameters based on the direct
Monte Carlo simulation. By comparing b

Sk,DMC

with b
S

Tk,DMC

, it can be observed that the value
of b

Sk,DMC

is almost equal to the value of b
S

Tk,DMC

for each input parameter. It indicates that the
functional relations between the input parameters and the output variable are nearly linear. This
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conclusion agrees with the result based on the Elementary Effect method in section 5.1.
The estimated main and total effects b

Sk,DMC

and b
S

Tk,DMC

in Figure 7 based on the direct
Monte Carlo method show that the varied input parameters p

3

= l

ext,A and p

7

= l

ext,B have
more influence on f

1

than the other varied input parameters with highest values of b
Sk,DMC

⇡
b
S

Tk,DMC

⇡ 0.25. Second highest are p

10

= k

r,A, and p

12

= k

r,B with b
Sk,DMC

⇡ b
S

Tk,DMC

⇡
0.15. Third highest are p

9

= k

l,A, p
11

= k

l,B, p
13

= k

p,A, and p

14

= k

p,B with small values of
0.05  b

Sk,DMC

⇡ b
S

Tk,DMC

 0.1. Moreover, by comparing the sensitivity indices of the input
parameters of the support A and those of the support B it can be found that they are almost
equal, b

S

3,DMC

⇡ b
S

7,DMC

, b
S

9,DMC

⇡ b
S

11,DMC

, b
S

10,DMC

⇡ b
S

12,DMC

, and b
S

13,DMC

⇡ b
S

14,DMC

.
This is reasonable since the beam structure is symmetric and the two supports are built based
on the same design.

The rest of the varied input parameters, p
1

= E

ext,A, p
2

= ⇢

ext,A, p
4

= t

ext,A, p
5

= E

ext,B,
p

6

= ⇢

ext,B, and p

8

= t

ext,B, show no relevant influence on f

1

with b
Sk,DMC

⇡ b
S

Tk,DMC

⇡ 0.
These six input parameters are concluded as non-influential input parameters by screening based
on the Elementary Effect method. Therefore, they are kept constant at their deterministic values
in the combined Monte Carlo method. Their values b

Sk,DMC

⇡ b
S

Tk,DMC

⇡ 0 indicate that none
of the influential input parameters is incorrectly identified as non-influential input parameter by
screening based on the Elementary Effect method.

The non-solid bars in Figure 7 represent the sensitivity indices b
Sk,CMC

and b
S

Tk,CMC

of the
M = 8 influential input parameters based on the combined Monte Carlo simulation.

In the visual comparison of bSk,DMC

and b
Sk,CMC

, as well as b
S

Tk,DMC

and b
S

Tk,CMC

in Figure 7,
it can be concluded that the results based on the direct Monte Carlo method and the combined
Monte Carlo method are in good agreement. To quantify the difference of the results based on
these two methods, the absolute deviations of

��� bSk,DMC

� b
Sk,CMC

��� and
��� bS

Tk,DMC

� b
S

Tk,CMC

��� of
the M = 8 influential input parameters are calculated. All of them are smaller than 0.01. It
can be concluded that the analysis accuracy of the direct Monte Carlo method and that of the
combined Monte Carlo method for variance-based sensitivity analysis is adequate.

The efficiencies of the direct Monte Carlo method and the combined Monte Carlo method
for variance-based sensitivity analysis are compared according to the minimal required number
of the simulations N

DMC,min

for the direct Monte Carlo method and N

C,min

for the combination
of the Elementary Effect method and the Monte Carlo method, Table 2. It is known from
the description in section 5.2 and 5.3 that the combined Monte Carlo simulation requires a
lower sampling size in comparison to the direct Monte Carlo method. In this study, the sum
of the minimal required number of simulations based on the direct Monte Carlo method is
N

DMC,min

= 500 000 and the sum of the minimal required number of simulations based on the
combination of the Elementary Effect method and the Monte Carlo method is only N

C,min

=

N

EE

+N

CMC

= 265 150. The numerical cost of the combined Monte Carlo method is only half
the cost of the direct Monte Carlo method.

6 CONCLUSION

The combined Monte Carlo method that includes a screening of the relevant influential pa-
rameters by the Elementary Effect method was proposed as an efficient application of the Monte
Carlo method to quantify structure uncertainty under input parameter uncertainty. The accuracy
and the efficiency of the combined Monte Carlo method was investigated in this study by using
a beam structure with piezo-elastic supports for buckling and vibration control as a reference
structure. Its uncertain structural input parameters are geometric, material, and stiffness pa-
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Table 2: The minimal required number of simulations based on the direct Monte Carlo method and the combined
Monte Carlo method

the direct the combined
Monte Carlo method Monte Carlo method

number of simulations 0
N

EE

= R(1 +K)

for screening = 10 · (1 + 14)

= 150

min. sample size for b
Sk 16 250 9 500

min. sample size for b
S

Tk
31 250 26 500

min. sample size N

min

N

DMC,min

= 31 250 N

CMC,min

= 26 500

min. number of simulations N

DMC

= N

DMC,min

· (2 +K) N

CMC

= N

CMC,min

· (2 +M)

for b
Sk and b

S

Tk
= 31 250 · (2 + 14) = 26 500 · (2 + 8)

= 500 000 = 265 000

sum of minimal number
N

DMC,min

= 500 000

N

C,min

= N

EE

+N

CMC

of simulations = 150 + 265 000

= 265 150

rameters of the piezo-elastic supports. The first lateral natural frequency of the beam structure
is subject to be estimated as the output variable. The influence of each varied input param-
eter on the first lateral resonance frequency was quantified by estimated sensitivity indices.
The proposed combination of the Elementary Effect method and the Monte Carlo method was
compared with the direct Monte Carlo method. According to the convergence analysis, the
combined Monte Carlo method required only half the number of simulations as for the direct
Monte Carlo simulation in analyzing the uncertainty of the first lateral resonance frequency of
the beam structure. The comparison showed that the result based on the combined Monte Carlo
method is similar to the result based on the direct Monte Carlo simulation. Consequently, the
combined Monte Carlo method is proven to be an efficient method for uncertainty quantification
in comparison to the direct Monte Carlo simulation in the structural design phase.
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