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A B S T R A C T

The utilization of point clouds, a three-dimensional (3D) data representation, has re-
cently experienced a significant rise in popularity. Recent advancements and afford-
ability in 3D sensor hardware have played an essential role in driving the widespread
adoption of 3D point clouds across diverse domains. These domains include virtual
reality, augmented reality, volumetric video, 3D sensing for robotics, smart cities,
telepresence, and automated driving applications. Consequently, the availability of
point clouds, characterized by millions of data points per frame, has been increasing
steadily since. However, the substantial size of point cloud data presents significant
challenges regarding efficient transmission, compression, and processing. Existing
methods for point cloud compression tend to prioritize data quality preservation, of-
ten overlooking the practical utilization of the data. For instance, the primary concern
in autonomous vehicles is machine perception tasks, such as vehicle positioning and
object detection. Thus, the focus should be more on relevant objects and less, or not
on other irrelevant surrounding objects. Dedicating resources to these task-specific
objects conserves valuable transmission bandwidth and enhances the overall utility
of the point cloud data at the recipient’s end.

In this thesis, we consider the unique characteristics of point clouds, particularly
the capability to extract individual objects from the original point cloud, which are
then processed and streamed independently. Our first contribution improves the
understanding of how various configurations, including compression-related param-
eters, distance, and reduced frame rate, influence the quality of point cloud objects.
For our second contribution, we investigate how these configurations affect both
output quality and resource demands. Examining these relationships aims to iden-
tify configurations that maximize quality while minimizing resource consumption.
Based on the collected data, we generalize our contributions by building a machine
learning-based model to predict the quality of a given point cloud.

To enable the adaptability of the point cloud content to changing conditions, our
third contribution explores how incorporating object-related information, such as ob-
ject semantics, into point cloud content streaming impacts adaptability and delivery
efficiency compared to conventional methods. Through experiments, we extensively
evaluate our contributions and show the significant benefits of content-aware stream-
ing. This approach has the potential to enhance point cloud streaming by enabling
dynamic content delivery that adapts to changing scenarios.

In conclusion, this thesis introduces the concept of content-aware point cloud adap-
tation and compares it with alternative state-of-the-art approaches. The contributions
of this thesis represent an initial step towards demonstrating the feasibility of content-
aware adaptation for enhancing point cloud delivery efficiency.
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K U R Z FA S S U N G

In den letzten Jahren haben 3D-Point Clouds, die Darstellungen von dreidimensio-
nalen (3D) Daten sind, aufgrund von technologischen Fortschritten und günstigeren
3D-Sensoren in zahlreichen Bereichen, wie z. B. virtueller Realität, erweiterter Reali-
tät, 3D-Videos, Robotik, intelligenten Städten, Telepräsenz und autonomem Fahren,
stark an Popularität gewonnen. Die zunehmende Größe und Komplexität von Point
Clouds, die Millionen von Datenpunkten pro Szene enthalten können, stellen jedoch
Herausforderungen bei der effizienten Übertragung, Komprimierung und Verarbei-
tung dar. Bisherige Methoden zur Point Cloud Kompression konzentrieren sich in
der Regel eine möglichst konstante Datenqualität und vernachlässigen dabei oft die
praktische Nutzbarkeit der Daten. So steht bei autonomen Fahrzeugen beispielswei-
se die Wahrnehmung durch die Maschine im Vordergrund, insbesondere Aufgaben
wie Fahrzeugortung und Objekterkennung. Daraus folgt, dass der Fokus stärker auf
relevanten Objekten liegen sollte und weniger oder gar nicht auf weniger relevanten
Umgebungsobjekten. Priorisierung dieser aufgabenspezifischen Objekte spart wert-
volle Übertragungsbandbreite und erhöht den allgemeinen Nutzen der Point Cloud
Daten beim Empfänger.

In dieser Arbeit betrachten wir die besonderen Eigenschaften von Point Clouds,
insbesondere die Möglichkeit, einzelne Objekte aus der ursprünglichen Point Cloud
zu extrahieren, die anschließend unabhängig voneinander verarbeitet und gestreamt
werden. Unser erster Beitrag verbessert das Verständnis, wie verschiedene Konfigu-
rationen, einschließlich komprimierungsrelevanter Parameter, Entfernung des Objek-
tes und reduzierte Bildwiederholrate, die Qualität von Point Cloud-Objekten beein-
flussen. In unserem zweiten Beitrag untersuchen wir, wie sich diese Konfigurationen
auf die Qualität und den Ressourcenbedarf auswirken. Durch die Untersuchung
dieser Zusammenhänge sollen Konfigurationen identifiziert werden, die die Qua-
lität maximieren und gleichzeitig den Ressourcenverbrauch minimieren. Auf Basis
der gesammelten Daten generalisieren wir unsere Beiträge durch die Entwicklung
eines Maschine-Learning-basierten Modells zur Vorhersage der Qualität einer vor-
gegebenen Point Cloud. Um die Anpassungsfähigkeit von Point Cloud-Inhalten an
wechselnde Bedingungen zu ermöglichen, untersucht unser dritter Beitrag, wie sich
die Integration objektbezogener Informationen, wie beispielsweise Objektsemantik,
in das Point Cloud-Streaming auf die Anpassungsfähigkeit und die Übertragungs-
leistung im Vergleich zu herkömmlichen Methoden auswirkt. Mittels umfangreicher
Experimente evaluieren wir unsere Beiträge detailliert und belegen die erheblichen
Vorteile von inhaltsbasiertem Streaming.

Zusammenfassend führt diese Arbeit das Konzept der inhaltsbasierten Point Cloud-
Anpassung ein und vergleicht sie mit alternativen, modernen Ansätzen. Die Beiträ-
ge dieser Arbeit stellen einen ersten Schritt dar, um die Machbarkeit der inhalts-
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basierten Point Cloud-Anpassung zur Verbesserung der Effizienz der Point Cloud-
Übertragung zu demonstrieren.
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P R E V I O U S LY P U B L I S H E D M AT E R I A L

This thesis incorporates research previously presented at scientific conferences and
workshops. However, no content from these publications is directly reproduced in
this thesis. Table 1 outlines these previous publications, none of which are directly
replicated within this thesis, except for tables and figures, primarily for evaluation
purposes. A full list of the authors publications can be found in Chapter B.

Chapter Publications

2 [11] , [13] , [177] , [10]

3 [13]

4 [177]

5 [10]

Table 1: Previously published material.

The contributions presented in this thesis are outcomes of collaborative endeav-
ours and collective teamwork conducted at the Multimedia Communications Lab
(KOM) within the Technical University of Darmstadt (TU Darmstadt). Unless ex-
plicitly mentioned otherwise, the individuals referenced herein were affiliated with
KOM during their involvement. This thesis employs the term "we" to denote the col-
laborative efforts underlying each contribution. In this section, I offer an overview of
the contributions made by co-authors and contributors to the respective works.

In addition to the supervision of Prof. Dr.-Ing. Ralf Steinmetz and Prof. Dr. An-
dreas Mauthe, Prof. Dr. Ing. Amr Rizk, Prof. Dr. Boris Koldehofe, and Dr.-Ing. Tobias
Meuser, listed in alphabetical order, oversaw the development of this thesis and its
contributions. During their period of office at KOM, they offered invaluable insights
and feedback on the proposed approach, development process, implementation, and
methodologies employed. While their input greatly influenced this work, I will ac-
knowledge their specific contributions to each section individually.

Chapter 2 offers a comprehensive overview of the existing research in point cloud
processing, compression, and streaming. It examines the state-of-the-art to identify
relevant research gaps. While preparing previous publications, I conducted various
literature reviews for the related work sections. This work incorporates a more recent
review, superseding our outdated survey paper on point cloud content streaming
published in [12], which was based on work done by Stefano Acquaviti and Yumeng
Chen, students at TU Darmstadt. As a result, much of the analysis of related work
has already been published, with the primary analysis conducted in [10, 11, 13, 177].
The related work chapter in this thesis is a refined, reorganized, and restructured
compilation of these sections. In conducting the literature reviews, I received sup-
port from Anam Tahir (Self-Organizing Systems Lab - TU Darmstadt) and Jannis
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Weil (KOM), with whom I shared and discussed relevant papers and identified re-
search gaps. The idea of point cloud adaptation using machine learning and neural
networks emerged from frequent discussions with Amr Rizk, Boris Koldehofe, and
Tobias Meuser regarding recent advancements in deep and machine learning meth-
ods for point cloud processing.

The implemented system presented in Chapter 3, an evaluation tool for point
cloud streaming, was developed based on the initial system design collaboratively
created with Boris Koldehofe, Andreas Mauthe (University of Koblenz, Germany),
Tobias Meuser, Anam Tahir, Jannis Weil, and myself. Tobias Meuser initially devel-
oped the implementation. With Thomas Gruczyk, a student at TU Darmstadt, I de-
vised the concept of point cloud adaptations using HTTP-DASH. Thomas Gruczyk
and I then developed a prototype based on my multidimensional content stream-
ing system, which was published in [13]. The system’s implementation underwent
continuous enhancement with valuable feedback and assistance from Tobias Meuser.
Although not within the main contributions of this thesis, parts of the implemented
prototype are used to generate the video content for the user study presented in
Chapter 4.

The user study in Chapter 4, which explores the effect of compression and adap-
tation of point clouds on their quality, was conducted with equal contributions from
Anam Tahir, Jannis Weila, and myself [177]. We collaborated on the user studys de-
sign and the data analysis. Jannis Weil helped develop a web-based tool for collecting
survey participants’ feedback. Tobias Meuser provided feedback at the conceptual
level, while Prof. Mu Mu (University of Northampton, UK) offered insights into the
soundness of the conducted user study. I assembled the users input and validated
it. Additionally, Mu Mu supported us (Jannis, Anam, and myself) in authoring the
material by proposing useful manuscript revisions. Furthermore, discussions with
Prof Dr. Antonio Fernández Anta (IMDEA institute, Spain), Andreas Mauthe, and
Mu Mu contributed to our collective understanding of the results’ scope and poten-
tial interpretation. Jannis Weil also assisted in visualizing the results. Anam Tahir
and Jannis Weil supported the research efforts in our weekly research meetings with
iterative feedback.

We present a content-aware point cloud adapter in Chapter 5 and evaluate its per-
formance compared to conventional methods. The concept of point cloud adaptation
based on semantics was presented at the ACM MMSys 2022 Doctoral Symposium.
The final system design evolved through research meetings at the Multimedia Com-
munications Lab. Tobias Meuser provided ongoing support and feedback during
our weekly research meetings. I proposed and refined the initial design based on
feedback from Tobias Meuser and Antonio Fernández Anta. Once I implemented
the design into a technical prototype with Thomas Gruczyk’s assistance, I wrote the
manuscript [10]. Furthermore, Tobias Meuser and Antonio Fernández Anta helped
review the written manuscript. The evaluation presented in this thesis was conducted
with valuable feedback from Antonio Fernández Anta and Tobias Meuser.
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1
I N T R O D U C T I O N

“The ability to simplify means to
eliminate the unnecessary so that
the necessary may speak.”

Hans Hofmann

The emergence of ultra-high-definition video content and display devices has
transformed the viewing experience of 2D videos. The progress in resolution

has also paved the way for the next wave of innovation that is anticipated to go
beyond flat screens and provide a fully immersive experience with increased view-
ing freedom. The proposed innovation will generate a more realistic and engaging
viewer experience by incorporating 3D information. Concurrently, the recent ad-
vancements in depth-sensing technologies and their increasing affordability have
re-energized the utilization of the 3D information in various applications, such as
autonomous driving [197] and Extended Reality (XR)1 [28]. Additionally, the deploy-
ment of 5G networks utilizing millimeter-wave technology for high-speed data trans-
fer allows for the transmission of large amounts of data within milliseconds. Thus,
it offers a solution to the high demand for bandwidth and low-latency transmission
requirements in various applications. Furthermore, the recent advancements in GPU Advance-

ments in
capturing,
transmitting,
and
displaying 3D
information

capabilities enable efficient, real-time processing and analysis of complex data, revo-
lutionizing various fields such as artificial intelligence and computer graphics. These
developments present an opportunity for researchers to explore new and innova-
tive ways to utilize this 3D information, from improving the safety and reliability of
autonomous vehicles to creating more immersive and interactive experiences in XR
applications.

3D information can be represented using point clouds. Point clouds are a set of
points in a 3D coordinate system with optional attributes such as colour and normals.
Point cloud delivers accurate distance measurements for autonomous vehicles and
robotic applications and enables a realistic representation of 3D objects and scenes
in the metaverse. This inherently allows for content consumption with six degrees
of freedom. Besides, the point cloud provides a unified representation of 3D content The promising

potential of
point cloud

that may combine natural and synthetic objects. This convergence of natural and syn-
thetic 3D data creates highly immersive and interactive applications in the domain
of XR. For instance, point cloud data generated by depth RGB cameras can enhance
remote collaboration among workers by delivering a more engaging and interactive
experience. As a result, workers can experience the scene from different perspectives

1 We use XR to refer to related concepts such as Virtual Reality (VR), Mixed Reality (MR), and Aug-
mented Reality (AR).
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2 introduction

and go beyond the limitations of a flat screen by using advanced hardware such
as high-refresh-rate head-mounted devices and handheld controllers. Thus, workers
can exchange information and collaborate effectively in real time and more realisti-
cally.Challenges for

communica-
tion systems

Point clouds hold significant potential for representing 3D information. However,
their adoption in areas such as XR faces several challenges. Firstly, point cloud
streams are expected to primarily rely on mobile networks, which may exhibit unpre-
dictable and fluctuating performance. For instance, to fully exploit the high-speed
data transfer capabilities of 5G [107], point cloud delivery needs to be network-
adaptive and able to handle the inherent volatility of mobile network connections.
Secondly, the continuous high data generation rate of raw point clouds, reaching
many gigabits per second in real-time, makes direct usage unfeasible for practical
usage; for instance, devices like the Velodyne VLS-128 Light Detection and Ranging
(LiDAR) can produce up to 9.6 million points per second [140]. Also, most point
cloud-based applications have strict low-delay network requirements, as demon-
strated by the current virtual reality video applications, which demand a network
latency of less than nine milliseconds for an acceptable quality of experience[135,
158], Lastly, the intensive computation required during content decoding at the re-
ceiver side further complicates the issue. For example, top-of-the-line mobile phones
like the Samsung Galaxy S8 can decode 1.5 frames per second with 100k points per
frame [133].

Therefore, handling and transmission of large amounts of point cloud data with
strict low-delay network requirements exceeding the transfer and computing capac-
ity of 5G networks presents significant challenges for modern communication sys-
tems [65, 100, 169, 183]. These limitations include managing the volume of data and
adjusting the bit rate to accommodate variable network conditions, receiver compu-
tation abilities, and different environments and applications.

This thesis proposes a methodology for adapting point cloud content to address
some challenges and evaluate its effectiveness. The motivation behind our approach
to adaptive point cloud delivery is discussed in the following section.

1.1 motivation for adaptive point cloud delivery

A point cloud is a collection of disordered points in a 3D space, each having several
attributes, including point coordinates along (X, Y, and Z) axes, colour values en-
coded in RGB format, among other properties. Point clouds offer a highly accurateWhat is a

point cloud? and realistic 3D representation and can represent various objects, such as natural ob-
jects. The added advantage is that they provide six Degrees of Freedom (6DoF) for an
immersive and interactive viewing experience. In comparison, traditional 2D videos
offer limited interaction with zero degrees of freedom (0DoF), while 360-degree
videos offer three Degrees of Freedom (3DoF) through head rotation. However, the
full 6DoF experience can be achieved using a VR headset and hand-held controllers,
allowing for body movement and rotation in three axes. The creation of high-quality
3D representations of complex objects, such as the human body depicted in Fig-
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(a)                                                         (b)

x
Y

Z

viewer

Figure 1.1: Example visualizations of point cloud data. Figure (a) depicts a dense point
cloud object that can be viewed from different perspectives. Figure (b) represents

a sparse point cloud obtained from an automotive LiDAR, providing accurate
measurements of the surrounding objects of the vehicle. The model in (a) and

the LiDAR scan in (b) are taken from [184], [18], respectively.

ure 1.1 (a), using point cloud representation requires a substantial number of points,
typically in the hundreds of thousands or millions [27]. Similarly, the representation
of data generated from an automotive LiDAR sensor using point cloud, as shown in
Figure 1.1 (b), requires handling a significant volume of data. For example, devices
like the Velodyne VLS-128 can generate up to 9.6M points per second [140], which
can result in a large bandwidth requirement for streaming these uncompressed scans:
6 bytes

point × 9.6M points
second × 8 bits = 460.8Mbps. There still needs to be optimized point

cloud content compression for real-time systems, and there currently needs to be
dedicated hardware specifically designed for this purpose.

The motivation behind adaptive point cloud mechanisms is to optimize exchang-
ing point clouds in dynamic applications and fully utilize their potential. These
mechanisms adapt the point cloud data based on changing network conditions, user
interactivity levels, receiver device capabilities, and application requirements. This
ensures the effective fulfillment of point cloud content’s intended purpose while
reducing data transmission rates. It is crucial in virtual and augmented reality appli-
cations, where real-time updates and high-quality content are necessary to create an
immersive experience. The user’s experience can be optimized by employing adap-
tive point cloud mechanisms, making the content more accessible and enjoyable [73,
133, 169].

To address the challenges mentioned so far, academia and industry are exploring
new and innovative methods to enhance the efficiency of point cloud delivery. The
importance of compression in optimizing the performance of point cloud delivery
has been established in previous studies [114, 119]. Considerably, previous research



4 introduction

has proposed novel point cloud data compression methods [7, 27, 84, 142, 143, 148,
191, 203]. However, despite these advancements, the bandwidth and computing re-
quirements for compressed point cloud sequences remain substantial [26, 98].

It is widely understood that compressing data alone will not effectively manage
the challenges of delivering point cloud data. A combination of compression and
other methods is necessary to overcome these challenges [55, 100]. Several mecha-
nisms focus on reducing the amount of transferred data by employing techniques
such as subsampling or encoding point clouds into multiple representations of vary-
ing quality [58, 99, 133, 160, 169, 203]. This approach aims to make the system more
adaptive to bandwidth constraints and select a representation suitable for the avail-
able bandwidth. To further enhance this method, utility-adaptive approaches are
investigated [57, 128]. These approaches allocate bandwidth resources based on the
utility of different regions, considering factors like the user’s view frustum, the dis-
tance between the user and objects, device size, and display resolution. Exploiting
redundancies in the original data can help decrease the rate requirements for point
cloud data delivery. In some instances, background regions may be deemed less
critical, and allocating weighted bitrates or bandwidth resources can be based on the
user’s field of view [142, 151, 175]. Another mechanism involves frame-skipping [119,
120], such as when the current frame closely resembles the previous frame. Moreover,
some data parts might not be visible at any given moment, for example, when an
object is occluded by other 3D objects or outside the field of view. Predicting the
user’s position and field of view while viewing volumetric content can significantly
reduce network requirements without impacting visual quality [49, 50, 92, 130, 151].
The adaptation of well-established methods from the 2D video streaming field to
point cloud data is evident in the DASH-PC approach [21, 166]. This method is both
bandwidth- and user-adaptive, offering multiple representations with varying levels
of detail for a point cloud [58]. Consequently, users can select the optimal repre-
sentation based on their preferences or network conditions. Furthermore, offloading
processing to the edge server can significantly reduce the client device’s required
bandwidth and computing power [41, 101, 133, 191].

Current methods for point cloud compression focus on preserving data fidelity
without considering real-world usage at the receiving end. Meanwhile, streaming
optimization techniques are adapted from 2D video methods, overlooking the 3D
characteristics of point clouds, such as the ability to extract individual objects from
the original data. This is then processed and streamed independently. Furthermore,
these approaches often lack integration with machine learning for adaptive point
cloud delivery.Understand-

ing content
for improved

point cloud
delivery

Our proposed approach addresses this challenge by selectively encoding and trans-
mitting only the crucial portion of the point cloud data based on the content’s object-
related information, thus reducing the transmission bandwidth and improving the
performance of the received data. For instance, in virtual reality applications, partic-
ular objects may be more critical to the user than others [144, 181]. Our proposed
methodology can adapt by selectively adapting and transmitting those significant
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parts of the point cloud data, leading to improvement in the user experience or meet-
ing the resource requirements.

1.2 research challenges

The proposed methodology for adaptive point cloud delivery faces the following
research challenges.

Challenge 1: The lack of well-established assessment methods and metrics for
point cloud data quality

Compression and adaptation of point cloud data can lead to various types of distor-
tions, including reductions in the number of points and changes in their positions
and colours. These distortions can negatively affect the user’s experience of the point
cloud content. To mitigate this, it is crucial to have a robust and precise mechanism
to evaluate the compressed point cloud data quality. This model can help identify the
best compression algorithms and parameters while adapting the content to chang-
ing conditions. However, developing such reliable mechanisms is challenging due
to the diversity of distortions that compression and adaptation can introduce. The 6

degrees of freedom viewing process also makes traditional objective quality evalua-
tion metrics inapplicable to point cloud video quality assessment. Given that point
clouds are frequently used in real-time applications, an efficient and fast evaluation
method is essential.

Challenge 2: While compression methods are essential for point cloud streaming,
achieving efficient delivery requires a multifaceted approach. The challenge lies
in integrating complementary methods such as frame skipping, filtration, and dy-
namic adaptation alongside compression methods.

To provide an accurate perception of surrounding objects for autonomous vehicles
or create interactive and personalized immersive experiences for XR viewers, it is
essential to stream point cloud data consistently with usable quality in real time.
However, this task is challenging due to the bulky and bandwidth-intensive nature
of point cloud sequences and the high data rate from hardware sensors. Process-
ing these point cloud sequences requires significant computation and can still be
excessively large even after being compressed with state-of-the-art methods. Thus,
additional adaptation mechanisms are necessary to control the network load while
streaming point cloud sequences and enable content bitrate adaptation in networks
with varying bandwidths. This involves adjusting the compression parameters and
frame rate or filtering unrelated points to meet the application’s requirements and
provide the best possible quality to the end user. By leveraging the partitionability of
the point cloud content, each point cloud object can be streamed independently and
with variable quality.
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1.3 research goals and contributions

This work aims to establish and evaluate a methodology for efficiently transmitting
critical point cloud data, incorporating the semantic information of the streamed
content. In Figure 4.1, we present an architecture that encompasses the encoding,
transmission, decoding, and quality assessment processes, demonstrating the contri-
butions of this thesis. In the following, we list the research goals and their contribu-
tions to them.

Human Perception

Machine Perception

Communication

Cloud Server

Edge Server

Sensing               Encoding                

Applications

Transmission

Decoding

Bitstream

Point 
Clouds Bitstream

Decoded 
Point 

Clouds

RG 3 Ch. 5

Ch. 4

Quality
Assessment

RG 1 RG 2

Figure 1.2: This thesis’s contributions and research goals (RGs) are presented in an
architecture. The quality assessment part encompasses the first and second

research goals, which involve conducting a user study to evaluate compressed
point cloud sequences and developing a QoE model based on the results. The

encoding part corresponds to the third research goal, which involves
investigating the impact of incorporating object-related information in point
cloud content streaming on the quality and efficiency of the delivery process.

Research Goal 1: Investigating the impact of compression-related distortions and reduced
frame rate on the quality of point cloud objects

We aim to conduct a user study using state-of-the-art compression methods to as-
sess the impact of various compression quantization levels, frame rates, and camera
distances on the perceived quality of point cloud content. The study aims to gain
valuable insights into how these factors impact the perception and experience of
point cloud content. It will also help to determine how these factors affect the qual-
ity of the content. While other extrinsic factors, such as the display resolution, screen
size, lighting conditions, and user demographic information, may also impact the
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perceived quality of point cloud content, they are not the main focus of the study
and will not be explored in detail. The results can be used to compare the perfor-
mance of different compression methods and evaluate their ability to preserve the
quality of the point cloud data. The study’s results can be used to predict the quality
of point cloud sequences and inform the next research goal.

Research Goal 2: Investigating the correlation between quality and resource demands, with
the objective of developing a predictive model for evaluating the quality of point cloud se-
quences

The user study results in RG1 are then utilized to determine the trade-offs between
resource requirements and quality levels. Moreover, it can be used to develop a Qual-
ity of Experience (QoE) model that can predict the perceived quality of point cloud
sequences, enabling optimization and adaptation of point cloud streaming mecha-
nisms. Notably, while the objective of Research Goal 2 is to develop a QoE model, it
does not aim to find the ultimate solution for all point cloud scenarios or determine
the absolute best compression method. Additionally, the QoE model is not intended
to replace other quality assessment methods, such as objective metrics, but instead
aims to complement them and provide additional insights into the perceived quality
of point cloud sequences.

Research Goal 3: Investigating the impact of incorporating object-related information in
point cloud content streaming on the quality and efficiency of the delivery process compared
to conventional methods

This research goal is focused on validating the proposed concept of using high-level
clues, such as object semantics, to improve the efficiency of point cloud content deliv-
ery through an exhaustive evaluation. This will demonstrate the improved efficiency
of the proposed method compared to existing methods by leveraging the high parti-
tionability of the point cloud content for independent processing and variable quality
of point cloud objects. The proposed approach aims to enhance the efficiency of point
cloud content delivery by adapting the content to meet bandwidth or computational
requirements using object-related knowledge. It can be combined with any under-
lying adaptation mechanisms, including compression. The experimental results will
illustrate the effectiveness of the proposed approach in enabling better utilization of
the available bandwidth and dynamic adaptation of content bitrate based on chang-
ing network bandwidth, the application need, or personalized user preferences. This
research goal does not focus on developing a new compression method but rather
on incorporating object-related information to enhance the efficiency of point cloud
content delivery in combination with existing compression methods.

1.4 structure of the thesis

The structure of the thesis is as follows: Chapter 1 outlines the research goals and
provides insight into the proposed methodology for delivering adaptive point clouds.
Chapter 2 provides the necessary background information for understanding the
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contributions. This includes an overview of 3D content, compression and visual-
ization, point cloud content adaptation, edge computing, viewport prediction, and
point cloud quality assessment. The chapter also identifies research gaps, and re-
views related approaches. Chapter 3 presents an experimental tool for point cloud
streaming, which generates content for the user study. Chapter 4 focuses on the
first and second research goal, which involves conducting a user study to evaluate
compressed point cloud sequences, understanding the trade-offs between resource
requirements and quality levels, and developing a QoE model based on the user
study results. Chapter 5 focuses on the third research goal, which involves investi-
gating the impact of incorporating object-related information in point cloud content
streaming on the quality and efficiency of the delivery process. The effectiveness of
this approach in facilitating adaptations will be evaluated and compared to conven-
tional methods. Chapter 6 provides the summary of the thesis. It also entails the
contributions and future opportunities for further work.



2
B A C K G R O U N D A N D R E L AT E D W O R K

This chapter provides an overview of the key concepts of various types of 3D
data representation and the compression, adaptation, and quality assessment

of point cloud content. Figure 2.1 provides an overview of the topics covered in this
chapter. This chapter has three main sections, focusing on (i) 3D representation and
compression, (ii) adaptation, and (iii) quality assessment of point clouds. Section 2.1
investigates the possible representations of 3D data and examines various point
cloud compression mechanisms, including conventional and cutting-edge methods.
Section 2.2 explores the core concepts of point cloud adaptation, including adaptive
bitrate streaming, viewport predication, and edge computing assistant mechanisms.
This section also reviews the most relevant machine learning approaches in this area.
Section 2.3 assesses point cloud quality and provides an in-depth review of related
research, covering essential topics such as Quality of Service (QoS), Quality of Ex-
perience (QoE), and motion-to-photon latency. Additionally, we examine the use of
machine learning for QoE modelling. In this thesis, the terms ‘point cloud’, ‘point
clouds’, ‘3D’, and ‘volumetric’ were used interchangeably throughout the text when
used in conjunction with ‘sequence’, ‘video’ or ‘content’.
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Figure 2.1: Chapter structure: background and related work based on the topics covered in
this thesis.
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2.1 3d data representation and associated compression methods

The amount and type of 3D data required for 3D data content applications burden
data processing resources. This section considers the representation of 3D data con-
tent and the compression methods used to enable adaptive and faster processing.

2.1.1 Background

3D data refers to three-dimensional information of objects or characters [113]. This
type of data, often featuring realistic details and textures, is utilized to enhance the
immersion and realism in multimedia applications, particularly in the context of
Extended Reality (XR) [70, 87, 124, 125], and immersive communications [32]. In
robotics and autonomous vehicle systems, 3D data creates a map of the surrounding
objects and their relative positions, and is used to perceive and navigate the environ-
ment [1, 140].

There are various ways to represent 3D data [71], each with its strengths and weak-
nesses. The selected 3D data representation, such as depth images [108], volumetric
grids [112], polygon meshes [16], or point clouds [97], plays a significant role in deter-
mining the feasibility and constraints of the content streaming experience in virtual
and augmented realities [200]. According to Hughes [71], the two most widely used
methods are point clouds and polygonal mesh representations. Point clouds storeRepresenta-

tions for 3D
Data

3D data as individual points on an underlying sampled surface with their associated
attributes, such as colour, while polygonal meshes represent 3D objects using ver-
tices, edges, and faces [26]. Faces are typically triangles but can also be squares or
other shapes [105]. Compared to 3D meshes, point clouds provide a simpler, denser,
more naturalistic representation [25, 26, 89]. Emin Zerman et al. [193] concluded that
meshes offer superior visualization and are particularly beneficial for applications re-
quiring high-bitrate bandwidth, such as those exceeding 50 Mbps. Point clouds are
better suited for scenarios characterized by constrained bandwidth, typically under
20 Mbps.

Polygonal mesh representations are commonly used in computer graphics, anima-
tion, and gaming applications. Point clouds are simpler to generate since they do not
require creating a connected surface like meshes. Therefore, point clouds are often
better suited than meshes for applications that involve capturing and analyzing raw
3D data, particularly in cases where the data is acquired from sensors such as Light
Detection and Ranging (LiDAR) scanners or RGB-Depth cameras [140]. However,Contrasting

point clouds
and mesh rep-

resentations

meshes are frequently utilized to represent the output of 3D modelling software. Fig-
ure 2.2 compares mesh and point cloud representations for a 3D object. The mesh
representation on the right accurately captures fine details of the object, while the
point cloud representation on the left offers a lightweight alternative [148]. How-
ever, many natural objects, such as hair or forests, have a special shape that cannot
be easily shown using polygonal meshes. Furthermore, meshes present challenges
due to their significant data volume and high rendering complexity. While various
compression methods have been developed for meshes in previous research [60, 67],
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these methods have primarily concentrated on computer-generated 3D models. The
choice between point clouds and meshes will depend on the specific requirements
of a given application.

                            Point Cloud                                                                                  Mesh

Figure 2.2: Comparison of point cloud and mesh representations. A 3D object, "Stanford
Bunny" [86], rendered in two different formats.

The critical distinction between point clouds and polygonal meshes is their struc-
ture. Point clouds are unstructured representations of the surface of an object, while
polygonal meshes are structured representations. Point clouds lack the concept of
edges, faces, and polygons that are present in meshes, and they do not have ordering
relations. Point clouds lack connectivity information that can help predict neighbor-
ing points and establish geometric correlations among them [147]. However, point
clouds are faster to acquire and more straightforward than mesh representations
[115]. Because they lack connectivity restraints, point clouds are more convenient for
computing, transmitting, and storing real-time acquired 3D scenes. Point clouds are
not new, but in recent years, there has been growing interest in their use as a repre-
sentation of 3D data from both academia and industry. This is due to the adaptability
of point clouds to different data sources, such as LiDAR and depth RGB cameras. In
indoor uses, point clouds can be captured with an RGB-Depth camera [167]. The
RGB-D sensor can capture both RGB and depth data and has become widely avail-
able in commercial devices, such as Intel RealSense or Apple Truth Depth Camera.
Due to their limited range, RGB-D sensors are typically used to acquire point cloud
data only in indoor settings.

A 3D point cloud is a set of points {x1, x2, x3, . . . , xn} that exist in the three-
dimensional space. An illustrative example is depicted in Figure 2.3 with each point
representing a data sample with its spatial coordinates encoded along the X, Y, and
Z axes. Each cloud point contains geometric and attribute information, which helps
describe its visual characteristics. These attributes can vary depending on the use
case, but they often include colour values (R, G, B), normal vectors (nx, ny, nz), and
sometimes reflectance information. The geometric information of a point cloud re-
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Figure 2.3: Visualization of a random point cloud: A collection of three-dimensional points
scattered in space.

lates to the position of each point within a Cartesian coordinate system. Point clouds
are typically represented by the (X, Y, Z) coordinates, indicating the spatial location
of the points. Table 2.1 illustrates a selection of attributes associated with points in
a point cloud. The attributes listed in this table are incomplete, and a point cloud
may contain components that are not included in this list. The choice of attributes
in a point cloud is application-dependent, meaning that each application may re-
quire specific attributes. The term “cloud” is used to convey the unstructured and
unordered nature of the point set [123], comparable to a scattered collection of points
rather than a well-defined geometric object. In most scenarios, the geometric coordi-
nates in a 3D point cloud are typically represented as floating point values. However,
in specific specialized applications, such as real-time systems, utilizing an integer
representation for the coordinates can be advantageous. This alternative approach
offers benefits such as saving CPU cycles and optimizing memory usage [26].

Attribute Description

X-coordinate Position of the point along the X-axis

Y-coordinate Position of the point along the Y-axis

Z-coordinate Position of the point along the Z-axis

Colour (R, G, B) Colour information of the point

Intensity Level of the intensity of the returned pulse

Normal Vector (nx, ny, nz) Surface normal vector of the point

Confidence Measurement of the point’s confidence level

Classification
Categorizes a point into classes,

such as ground, building, vegetation, and others

Scan angle The angle of the pulse that the point was scanned at

Timestamp The time when the point measurement was taken

Table 2.1: Attributes associated with points in a point cloud.

This thesis focuses specifically on point cloud data rather than other forms of 3D
data representation, such as polygonal mesh or voxel-based models. Point clouds
offer a representation of 3D data that can be easily captured and processed from
real-world scenes using LiDAR or other sensing hardware [169]. Additionally, point
clouds are becoming increasingly important for applications such as autonomous
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driving, robotics, and virtual and augmented reality, where capturing and process-
ing 3D spatial data accurately is critical. Therefore, this thesis seeks to address the
challenges and opportunities associated with point cloud data to contribute to this
field’s ongoing advancement.

Degrees of Freedom

In the XR context, the term Degrees of Freedom (DoF) refers to the extent of inter-
action and movement that a user can experience within a virtual environment [121,
169]. In traditional videos, users have limited interactivity. Using the interface but-
tons, they can only control playback through essential functions such as play, pause,
stop, rewind, and fast-forward, resulting in zero Degrees of Freedom (0DoF) [13]. In
360-degree videos, users who are wearing a Virtual Reality (VR) headset can move
and experience three Degrees of Freedom (3DoF). This allows them to look around
in all directions by rotating their head. With six Degrees of Freedom (6DoF) VR en-
vironments, users are not limited to simply changing their head orientations but are
also able to move and position themselves within the virtual reality freely. This is
achieved through a VR headset and hand-held controllers, allowing for movement
and rotation in the X, Y, Z, pitch, yaw, and roll axes. This additional freedom offers
a more immersive and interactive experience for the user [169]. Figure 2.4 showcases
the interaction with the content at various DoF levels.

0DoF                                                    3Dof                                                  6Dof

Figure 2.4: Comparing Degrees of Freedom. User interaction with content at 0DoF, 3DoF,
and 6DoF. Image source1

6DoF data can represent the movement and rotation of various types of objects
within a virtual environment. For example, the movement and rotation of human
body parts, such as arms or legs, can be represented as 6DoF data, which can be
used in virtual reality applications. Additionally, LiDAR can be used to measure the
movement and rotation of any physical object, such as cars and pedestrians, that can
be represented as 6DoF data [73]. 6DoF data can be represented using meshes and
point clouds, as discussed in the previous section.

1 https://venturebeat.com/games/how-virtual-reality-positional-tracking-works/ last accessed:
December 2, 2024.

https://venturebeat.com/games/how-virtual-reality-positional-tracking-works/
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Static and Dynamic Point Clouds

Static 3D point clouds refer to data representing stationary or unchanging scenes or
objects. These point clouds are generated by scanning or capturing the geometry and
spatial information of a fixed object or scene at a specific moment. Static point clouds
find applications in architectural modelling, 3D mapping, and digital preservation.
An example of a static point cloud is the Stanford Bunny, depicted in Figure 2.2.

Dynamic 3D point clouds capture objects or scenes in motion or that experience
changes over time. These point clouds depict the spatio-temporal evolution of ob-
jects or environments. To create dynamic point clouds, multiple scans or frames of
a moving object or scene are captured and then aligned and integrated to form a
sequence of point cloud data. This enables capturing time-varying information, in-
cluding object motion, deformations, and interactions. Dynamic point clouds are
utilized in autonomous driving, virtual reality, augmented reality, volumetric video,
and telepresence applications.

          Dancer                                      Thaidancer

Dancer Thaidancer

Approximate point count in a frame 2,592,758 3,197,804

Approximate 30 FPS bitrate (uncompressed) in MB/s 1,245.6 1,504.8

Figure 2.5: Two examples of dynamic point clouds are presented, with the number of points
per frame and the bandwidth required for transmitting their uncompressed data.

It should be noted that the count of points can fluctuate from one frame to
another.
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To achieve visually appealing and naturalistic 3D representations, it is important
to work with high-density point clouds. Figure 2.5 illustrates two dynamic point
clouds: the “Dancer” from the Owlii dynamic human mesh sequence dataset [184]
and “Thidancer” from the 8i Voxelized Surface Light Field dataset [83], along with a
representative frame. These examples provide information on the uncompressed con-
tent’s point count and corresponding bitrates (in MBytes/s). The high correspond-
ing bitrates, around 1500 MB/s, highlight the necessity for efficient compression
and adaptation mechanisms to handle such high-bandwidth data. The primary em-
phasis of this thesis will be on dynamic point clouds. Consequently, the following
sections will explore and discuss only compression methods specifically designed
for dynamic point clouds.

2.1.2 Point Cloud Compression

Point cloud compression reduces the size of point cloud data while maintaining a suf-
ficient level of fidelity for the intended application [185]. Compressing point clouds
can significantly reduce the storage and transmission requirements while maintain-
ing essential information [26]. The two primary compression approaches are lossy
and lossless compression [162]. Lossless compression minimizes data size by de-
tecting and eliminating statistical redundancy, thereby keeping all the original data
intact. Lossy compression decreases data size by discarding unnecessary information
(e.g., visually insignificant) through quantization. Quantization reduces the number
of bits used to represent the point data. For example, the X, Y, and Z coordinates
may be quantized to a smaller number of bits, reducing the total size of the point
cloud data.

Dynamic point cloud data is typically captured at a high resolution and contains
much redundant information, leading to large file sizes and significant storage and
transmission costs [100]. Thus, dynamic point cloud data, with high spatial and tem-
poral redundancy, is often massive. According to Cao [26], point cloud data has
different compression mechanisms, including 1D traversal compression, 2D projec-
tion utilizing existing 2D video compression methods, and 3D correlations through
direct 3D data analysis.

The methodology of 1D traversal compression is popular in point cloud compres-
sion. The fundamental principle of 1D prediction methods is constructing tree-based
connectivity that uses geometric distances between points to establish neighborhood
relations [147]. This converts geometry data into a 1D structure. Several studies [66,
88, 134] have explored this concept, using mechanisms such as minimization of pre-
diction residuals and multiple geometry predictors to address correlations between
neighbouring points. These compression methods are simple to implement; however,
tree-based traversal methods have limited compression performance because they
do not fully consider the 3D spatial correlations, indicating the need for exploiting
higher dimensional correlations [26].

Additionally, differential coding serves as a compression technique employed for
point cloud data, leveraging the spatial correlation among adjacent points. This
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method represents each point within a point cloud as the disparity between its co-
ordinates and those of its nearest neighbour. This approach remarkably reduces the
required number of bits for storing the point cloud. One advantage of differential
coding is that it can be combined with other compression methods, such as octree
and kd-tree compression. The algorithm can achieve even higher compression ratios
by applying differential coding to the point cloud and other compression methods,
as demonstrated by Huang et al. in [68].

3-D-to-2-D projection-based approaches convert the 3D point cloud into 2D images
or videos through projection or mapping methods and then use existing image or
video coding algorithms to compress the data. Various studies [5, 62] have employed
methods for this purpose. Some involve dividing the point cloud into patches and
representing each patch as a height field, while others project a grid pattern onto the
object and compress the resulting 3D curves. Additional approaches include using
view representation combining octree and projection-based methods and utilizing
video codecs to compress the geometry and texture information of dynamic point
clouds. The advantage of projection-based methods lies in their efficiency and abil-
ity to leverage existing image or video compression methods. These methods are
expected to benefit from future advancements in image or video codecs.

Finally, the 3D correlation methodology has three main approaches to point cloud
compression: voxel-based, clustering-based, and geometric-based. Voxel-based meth-
ods divide the point cloud into a regular grid of voxels and then encode each voxel
as either occupied or not occupied. This is a simple and efficient way to compress
point clouds, but it can only be helpful if the voxel size is manageable. Many deep
learning methods for point clouds utilize a voxel representation, similar to the ap-
proach taken by Qi et al. in their study [132]. This representation offers a structured
and regular format that seamlessly integrates the grid-based architecture of neural
networks.

The clustering-based approach can reduce the data needed to represent a point
cloud by grouping points with similar attributes. This approach’s efficiency relies on
successfully identifying meaningful clusters within the point cloud’s overall struc-
ture. The hierarchical segmentation method introduced by Zhang et al. [196] is an
excellent example of how colour information can effectively compress point clouds.
By initially performing a global colour segmentation, points are grouped based on
their colours. Following this, local segmentation within the geometric space is per-
formed to ensure colour consistency within the resulting clusters. This combined
approach of color and geometric segmentation allows for efficient intra-prediction.
Similarly, the method proposed by Lien et al. [96] uses a skeleton-based motion es-
timation approach for kinematic parameter extraction. This approach clusters the
point cloud into point sets associated with skeletons, which allows for more accurate
motion estimation. However, the noise present in the point clouds can significantly
affect the accuracy of the clustering, which could potentially hinder the compres-
sion process. Geometric-driven methods, the technique introduced by Navarrete et al.
[122], showcase the effective use of geometric and color features for point cloud com-
pression. The points are clustered into planar patches, approximated using Gaussian
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Mixture Models (GMMs). By adjusting the configuration of the model, it is possible
to create multiple Level Of Detail (LoD), which adds flexibility to the compression
process. Overall, while each method presents a unique approach to the point cloud
compression problem, they all use some form of clustering to reduce the complexity
of the point clouds. These methods allow for efficient representation and transmis-
sion of 3D point cloud data, whether based on color, geometry, or a combination of
both. However, they also highlight the challenges involved in this process, such as
the effect of noise on the accuracy of clustering or the need to balance compression
efficiency with quality.

2.1.3 Standardized Point Cloud Compression

The recently standardized MPEG Video codec based Point Cloud Compression (V-
PCC) and Geometry codec based Point Cloud Compression (G-PCC) codecs are the
most current and efficient solutions available for point cloud compression [46]. These
codecs are part of the MPEG-I set of standards, which aim to develop critical mecha-
nisms for immersive media [148]. As the MPEG G-PCC and V-PCC codecs are often
utilized in this thesis, they will be examined in this section. These codecs embody
the two primary mechanisms for organizing point cloud data for coding purposes:
surface-based and patch-based approaches. A surface is a data structure in which
points are represented by a parametrized surface model, e.g., a collection of trian-
gles. A patch organizes points into clusters of a certain size appropriate for 3D to
2D projections. This thesis focuses exclusively on coding geometry and colour for
dynamic point clouds.

V-PCC

V-PCC breaks the input point cloud into patches based on vector similarity. These
patches are then orthogonally projected onto a 2D plane, generating geometry and
attribute images by assembling the 2D patches into an image [46, 72]. V-PCC can
provide real-time decoding capabilities for virtual and augmented reality applica-
tions and immersive communications. It leverages existing and future video compres-
sion mechanisms and the broader video ecosystem, including hardware acceleration,
transmission services, and infrastructure.

G-PCC

G-PCC [148] focuses on efficient lossless and lossy compression for various applica-
tions, including autonomous driving and 3D mapping that utilize LiDAR-generated
point clouds. It includes several geometric-driven approaches within its framework.
The main objective is to reduce the size of the point cloud data while keeping it as
accurate as possible in terms of shapes and important details.

In summary, point cloud compression is an essential technique for managing the
storage and transmission of large 3D data sets. A popular approach to point cloud
compression involves using hierarchical data structures such as kd-trees and octrees.
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However, the compression ratio must be balanced against the fidelity of the recon-
structed data to ensure high-quality representation.

2.1.4 Recent Point Cloud Compression Methods

In recent years, machine learning methods, particularly deep learning, have been
employed for point cloud compression [3, 141]. Autoencoders, a type of neural net-
work, can be trained to encode and decode point cloud data, resulting in compact
representations that minimize the reconstruction error [127]. Graph neural networks
and Convolutional Neural Networks (CNNs) adapted for 3D data have been used to
exploit spatial and attribute correlations for more efficient compression [149].

2.1.5 Deep Learning for Point Cloud Compression

While the application of deep learning for point cloud compression is still in its early
stages, we can expect that the current pace of research will soon result in robust and
effective methods [51]. Deep learning methods have shown an unparalleled ability
to learn patterns and correlations in complex and high-dimensional data, making
them potentially well-suited for 3D point cloud compression [8, 141]. One exam-
ple of this is the application of CNNs to point cloud compression. CNNs can learn
spatial hierarchies and local and global patterns in data, which could be highly use-
ful in identifying and representing redundancies in point cloud data. Some recent
work has begun to explore the use of CNNs for point cloud compression, such as
PointCNN [94], and the results are promising. Generative models like Generative
Adversarial Networks (GANs) [34] also have the potential for point cloud compres-
sion. A GANs could be trained to generate point clouds that resemble those in the
training set. The latent vector used to create these point clouds could then serve as a
compact representation of the original point cloud. This is an area of active research,
and there is much to explore. Furthermore, the application of transformer-based ar-
chitectures, such as the ones used in large language models [176], to point cloud
compression could be another promising direction. Transformers have shown an un-
paralleled ability to model complex patterns and correlations in data, which could
make them well-suited for this task. Finally, the idea of using machine learning not
just for compression itself but also to optimize the various stages involved in com-
pression schemes is interesting. This could involve using machine learning to predict
the optimal parameters for a given compression scheme or choose the most effective
one for a given point cloud.

2.1.6 Neural Radiance Fields (NeRFs) in 3D Vision

NeRFs are a new way to create 3D models from 2D images. They work by training a
machine learning model to predict the light intensity at any point in a 2D image. This
allows the model to generate new views of the object or scene from different angles.
NeRFs are more efficient than other 3D modelling methods because they only store
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the information needed to predict the light intensity. This means they can represent
complex objects and scenes in a much smaller file size. NeRFs have the potential to
revolutionize 3D graphics. They could be used to create realistic 3D models of objects
and scenes that would be impossible to create with traditional methods. They could
also compress 3D models into a much smaller file size, making them easier to share
and use. NeRFs are still a new technology, but they can potentially be very important
in the future of 3D graphics [43].

2.1.7 Discussion

Point clouds can consist of billions of points and their associated attributes, making
coding crucial for storage and transmission. Various coding approaches for point
cloud coding exist in the literature. Point cloud representation and compression are
critical for enabling efficient storage, transmission, and visualization of 3D data. Dif-
ferent methods offer trade-offs regarding compression efficiency, visual quality, and
computational complexity. The choice of representation and compression methods
depends on the application’s specific requirements and constraints, such as the de-
sired level of detail, the available processing power, and the importance of preserving
the original data’s fidelity. While there are different approaches to point cloud com-
pression, they are still in their early stages. The need for efficient and real-time meth-
ods remains high.Therefore, several studies [55, 100] highlights the need for further
research into methods that complement compression for point cloud delivery.

Future research directions could explore the integration of content-aware approaches
with compression methods to achieve better resource allocation and user experience.
For instance, a content-aware compression algorithm could dynamically adjust the
LoD based on the importance of specific point cloud features for the receiver’s task.
This could lead to more efficient transmission of point cloud data, while still preserv-
ing the receiver’s ability to perceive critical information. However, it is important to The need for

content-aware
approaches

acknowledge the limitations of content-aware approaches. One challenge lies in the
computational overhead of content analysis can itself be a resource burden. There-
fore, future research should also explore methods for lightweight content analysis
to ensure the efficiency of content-based adaptation methods. Consequently, content-
aware approaches are often very much application-tailored. A method that optimizes
point cloud quality for virtual reality application might not be suitable for real-time
autonomous driving application. Developing generalizable content-aware methods
that can be adapted to different applications remains an open research gap.

2.2 point cloud adaptation

Point cloud adaptation involves adjusting the properties of a point cloud, such as
its resolution, level of detail, or attributes, to accommodate varying requirements or
constraints. This can include bandwidth limitations, device capabilities, user pref-
erences, or the specific application context. The following subsections will provide
an overview of various approaches and methods. Regular video streaming adapta-
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tion will be discussed first, as it greatly influenced the adaptation of point cloud
streaming. Then, we will explain edge computing and viewport considerations be-
fore diving into the state-of-the-art point cloud adaptation mechanisms.
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Figure 2.6: This figure overviews a point cloud streaming system and highlights the main
mechanisms involved. The figure shows two point cloud streams. The upper

stream is supported by edge computing to reduce the computation burden on
mobile clients.

2.2.1 Background

Edge Computing

Edge computing refers to processing data geographically close to the source or end-
users rather than relying solely on centralized data centers. In point cloud adaptation,
edge computing can offload computationally intensive tasks, such as compression or
rendering, to edge devices. This can reduce the latency and bandwidth requirements,
allowing for more efficient and responsive streaming and processing. Edge comput-
ing can also facilitate collaborative and distributed processing, enabling low-latency
adaptation. Several studies demonstrate the effectiveness and limitations of incorpo-
rating edge computing in point cloud streaming [29, 41, 109, 150, 183, 191, 198].

Viewport in 2D and 3D Perspectives

Leveraging the viewport is commonly used in 360° video streaming, involving the se-
lective streaming of only the portion of the frame within the user’s field of view [80,
151]. Similarly, in point cloud streaming, the technique can be extended to send only
the points that fall within the user’s view frustum [174]. This frustum represents the
intersection of six planes determined by the user’s view and projection matrices, as
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depicted in Figure 2.7. This approach involves calculating the six planes and evaluat-
ing each point to determine if it falls within the frustum, using view frustum culling
[52].

Viewport prediction estimates the user’s Field of View (FOV) or Region Of Interest
(ROI) in a 3D scene based on their previous viewing behavior, head movements, or
other contextual information. Accurate viewport prediction can enable more efficient
point cloud adaptation by prioritizing the streaming and rendering of points likely to
be visible to the user. Various methods have been proposed for viewport prediction,
including machine learning approaches, such as Recurrent Neural Networks (RNNs)
and reinforcement learning, as well as traditional heuristics and algorithms [53].

            2D Viewport                                               3D Frustum

Figure 2.7: Field of view (FOV) in both 2D and 3D perspectives. Image source [37]

2.2.2 Adaptive 2D Content Streaming

Numerous previous studies [79, 85, 145, 178] have focused on enhancing the QoE in
2D media streaming systems by employing rule-based or heuristic-based approaches
on the client side. These traditional adaptive bitrate approaches can be grouped into
three classes based on the measured inputs: throughput-based, buffer-based, and
hybrid.

Throughput-Based Approaches: In this category of heuristic-based Adaptive Bitrate
Streaming (ABR) approaches, the media bitrate prediction relies solely on the esti-
mated network throughput of the content client. The bitrate for the upcoming seg-
ment is determined based on the calculated estimated bandwidth, which is derived
from the rate of the previously downloaded segment. This approach addresses the
challenge of video rate variations [189]. Notable algorithms in this category include
PANDA, which stands for "Probe AND Adapt", [95] and FESTIVE [74]. FESTIVE
focuses on adapting the bitrate while prioritizing efficiency, fairness, and stability. It
is also the first algorithm to consider balancing multiple bandwidth-sharing clients.
The algorithm calculates the harmonic mean of the throughput measured during the
download of the previous 20 segments and uses the result to determine a reference
rate proportional to the bitrate. In cases where the buffer size is below the maximum,
a download is scheduled immediately; otherwise, a randomized delay is introduced
to mitigate start time biases. The evaluation of FESTIVE is based on simulated videos
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and throughput traces, demonstrating improvements in various aspects compared to
commercial players at the time.

Similarly, PANDA is a client-side rate adaptation algorithm proposed by Xiao-
qing et al. [95]. Prior to each segment download, the bandwidth is estimated and
smoothed. The video bitrate is then selected, and the segment download is sched-
uled. PANDA’s optimization goals include avoiding buffer underruns, ensuring high-
quality smoothness, achieving high average quality, and promoting fairness. The
algorithm’s key focus is its probing technique, where the targeted average bitrate
is gradually increased by K ∗w per time unit. Here, K represents the probing con-
vergence rate multiplied by the additive increase rate w. This probing mechanism
explores the available channel capacity and directly addresses the problem of bitrate
fluctuation. PANDA outperformed its competitors by approximately 75% in cases
of instability and exhibited higher fairness. However, it was less responsive to band-
width drops.

Buffer-Based Approaches: The QoE objectives of the following approaches are achieved
by considering only the buffer occupancy of the video client. The aim is to ensure a
smooth streaming experience and minimize stalling time by selecting an appropriate
bitrate based on the buffer level [69]. In the buffer-based approaches, an algorithm
proposed by the authors of this paper [69], the algorithm relies solely on the buffer
level. This can lead to the user requesting a high-quality streaming experience as the
buffer size approaches minimum levels. The algorithm includes different versions,
namely BBA-0, BBA-1, BBA-2, and BBA-O, which map the buffer size to a corre-
sponding video bitrate to enhance the quality. Each version operates within different
zones of the mapping function. For instance, BBA-2 utilizes the risky zone, result-
ing in more frequent rebuffering than BBA-1, which operates only within the safe
zone. BBA-2 also incorporates a capacity estimation on startups to achieve higher
video rates. Evaluation results indicate a reduction in rebuffering by 10-20% com-
pared to the default algorithm used by Netflix at the time [69]. Another notable
buffer-based approach is the BOLA, which stands for Buffer Occupancy-based Lya-
punov Algorithm, [154], which formulates the problem as a utility maximization
problem considering the average bitrate and rebuffer duration as critical components.
The simplest implementation, BOLA-BASIC, triggers the decision-making process
before each download. However, this may result in stalling if the bandwidth sud-
denly drops. To address this, BOLA-FINITE allows for restarting a download with a
different bitrate. The authors identified the potential for oscillation in BOLA-FINITE
when the difference in download time is smaller than the segment duration. They
proposed two solutions: capping the bitrate (BOLA-O) or allowing a higher bitrate
level than sustainable (BOLA-U). These improvements aim to reduce freezing while
maximizing viewing quality without the need to predict the current network condi-
tions.

Hybrid ABR Approaches: The final traditional approach combines the two heuristic-
based adaptive bitrate methods discussed earlier, incorporating both throughput and
buffer size as state variables to further enhance the overall QoE. Notable examples
of this approach include ELASTIC [35] and FastMPC [190]. ELASTIC addresses the
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fairness issues that arise when multiple video streaming clients coexist in the same
network domain or stream the same media. To overcome this challenge, Luca et al.
developed ELASTIC (fEedback Linearization Adaptive STreamIng Controller) as a
hybrid client-side ABR algorithm that leverages control theory to provide solutions.
The algorithm dynamically prefetches video resolution based on current network
conditions, using a single controller on the user side to ensure smooth video stream-
ing even with a small buffer. Unlike throughput-based approaches like PANDA and
FESTIVE, ELASTIC improves fairness and channel utilization. In [190], FastMPC is
introduced as a control theoretic mechanism on the client side to adapt the video
quality to the available network conditions. The problem is formulated as a maxi-
mization problem of the QoE. This mathematical model enables flexible QoE opti-
mization based on throughput and buffer size information. The deployment of the
algorithm involves three steps: (1) predict the throughput using existing methods,
(2) solve the optimization problem, and (3) apply the results and download the seg-
ment. However, throughput estimations may need to be more reliable in situations
with limited network capabilities. The authors upgraded the model to RobustMPC to
address this limitation by introducing throughput estimate boundaries and choosing
the lower bound for the optimization step.

Another client-side ABR algorithm, QUETRA [186], leverages queuing theory by
designing the Dynamic Adaptive Streaming over HTTP (DASH) client as an M/D/1/K
queuing system with the assumption that the arriving segments follow a Poisson
distribution. Throughput measurements are obtained using methods such as the
last measurement, moving average, Exponential Moving Average (EMA), Gradient
Adaptive EMA, Low Pass EMA, and Kaufman’s Adaptive Moving Average (KAMA).
It was found that EMA and moving average methods could increase the streamed
video bitrate by up to 4.5%. However, other estimation methods with larger time
frames were not successful. The measurement then determines the next segment’s
quality level to ensure the buffer occupancy level matches the buffer slack, represent-
ing the absolute difference between the actual buffer occupancy and the mean buffer
occupancy. This approach improved measured QoE compared to the dash.js [136]
default algorithm and BBA.

Lastly, we examined DYNAMIC [153], the current default algorithm of the dash.js
project. DYNAMIC works in conjunction with the previously introduced BOLA al-
gorithm. It was observed that BOLA does not download segments in the highest
sustainable quality when the buffer level is low or empty, particularly at the start of
a video stream or when seeking another position on the timeline. To address this,
the authors introduced THROUGHPUT, which only downloads segments based on
the measured throughput. The role of DYNAMIC in this system is to switch between
both algorithms based on the client’s buffer level and the bitrate chosen by the al-
gorithms using switching rules. DYNAMIC achieves higher bitrate streaming and
lower rebuffering time than a pure BOLA approach.
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2.2.3 Point Cloud Adaptation with Traditional Approaches

Adaptive 2D video streaming methods have inspired similar approaches for point
cloud streaming [58, 78, 169]. Adaptive 2D video streaming concepts, such as bitrate
adaptation, adaptive chunking, and buffering, can be adapted and extended for point
cloud streaming to enhance the user experience. For instance, the adaptive streaming
methods used for 2D content, like DASH [42, 156] and Apple’s HTTP Live Streaming
(HLS) [40], can be applied to 3D content. These methods dynamically adjust video
quality based on network conditions, user preferences, or device capabilities.

A variety of Point Cloud Compression (PCC) methods, such as the V-PCC encoder
[46], that compress original point cloud data. By altering the quantization parame-
ters, multiple versions of the data can be generated, each with a distinct bit rate and
quality. A user can then access these compressed versions for rendering a 3D scene
with 6DoF. This DASH-compliant approach offers dynamic adaptability, view aware-
ness, and bandwidth efficiency. To address the fluctuating bandwidth requirements
of streaming point cloud content, the proposed system utilizes a DASH-compliant
Media Presentation Description (MPD) manifest explicitly designed for point cloud
objects. Rather than employing a dedicated encoder for point cloud objects, they em-
ploy sampling methods to generate a range of quality variations. Subsequently, the
point cloud object is fetched on a per-frame basis, resulting in a number of HTTP
GET requests comparable to the frame rate. One limitation of this work is that it
only supports a single point cloud object. This approach may give rise to significant
challenges, particularly regarding network latency. In a subsequent work, Hosseini
expanded upon their research by proposing rate adaptation methods for streaming
multiple point cloud objects [57]. The algorithmic heuristics prioritize point cloud
objects based on their visibility, distance from the camera, and camera view. Con-
sequently, point cloud objects closer to the camera are assigned higher priority and
transmitted in higher-quality representations. Conversely, objects farther away are
assigned lower priority and transmitted in less demanding quality representations.

Van der Hooft et al. introduced PC-DASH, a framework for streaming scenes that
comprise multiple point cloud objects [169]. They used PCC to create various quality
versions of the objects and suggested several rate adaptation heuristics considering
the users position and viewing angle.

2.2.4 Point Cloud Adaptation with Machine Learning Methods

In addition to traditional approaches, new machine learning models have become
evident in recent years [75]. Utilizing large datasets during the learning phase holds
the promise of self-tuning numerous parameters to achieve optimal results in various
scenarios [19, 63, 145]. This section presents the current alternatives to traditional
point cloud adaptive streaming approaches.

Machine learning methods, particularly reinforcement [164] and deep learning [44,
126], have shown promise in the area of point cloud adaptation [51, 181]. Neural net-
works can be trained to learn efficient representations of point cloud data, enabling
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adaptive compression and streaming [47, 51, 64]. Moreover, machine learning algo-
rithms can be applied to predict user behaviour [49, 50, 92] and viewport prediction
[90], or to optimize point cloud rendering based on device capabilities and user
preferences [133, 170]. These methods can lead to more personalized and respon-
sive point cloud experiences while minimizing the computational and bandwidth
requirements [53].

Machine learning adaptive bitrate algorithms can be divided into two main cat-
egories. The first category includes predictive algorithms, which operate similarly
to heuristic approaches by directly predicting streaming parameters to optimize the
quality of experience. The second category includes augmenting approaches, which
do not provide standalone results but are used with traditional approaches to en-
hance their performance. These approaches cannot be used independently and re-
quire integration with existing methods.

Predictive Approaches: The authors in this paper [110] have developed a Reinforce-
ment Learning model called “Pensieve” to minimize suboptimal bitrate changes
caused by inflexible algorithms. Starting from zero experience, the Pensieve model
utilizes its own prediction results to optimize future decision-making during train-
ing by generating ABR models on the fly. The model focuses solely on video deliv-
ery quality without considering external network factors. For instance, if the video
provides a high QoE without buffering, the reinforcement mechanism rewards the
model; otherwise, it penalizes it. The fundamental architecture of Pensieve combines
Long Short-Term Memory (LSTM) and CNNs architectures within a reinforcement
learning model. To optimize chunk selection for the QoE formula, the authors have
built an Actor-Critic Network that chooses the optimal bitrate based on the current
client state. The state consists of sequential data, including the last 16 throughput
measurements, download times, chunk sizes, instantaneous input data buffer size,
remaining chunks, and the bitrate of the last chunk. Training is performed simulta-
neously on both the actor and critic networks, but only the actor network is deployed
for testing.

Supervised learning approaches have been introduced to enhance algorithm per-
formance in the adaptive video streaming domain. An example of this approach is in
the paper SMASH [146], where the supervised technique utilizes classification meth-
ods with labelled data, representing the encoding of streaming chunks at different
qualities and resolutions. SMASH is implemented as a model prediction of adap-
tive video streaming on the user side. Additionally, the bitrate prediction is achieved
through learning from the output of nine different ABR algorithms, which vary be-
tween throughput-based, buffer-based, and hybrid algorithms. To collect input data,
the streaming video is conducted over three different network traces, including 3G,
4G, and Wi-Fi. The dataset mainly consists of logged features, such as stalls, codec,
and chunk index, that help predict the quality of the next selected segment. Vari-
ous classifier models are selected for evaluation, including Logistic Regression (LR),
Quadratic Discriminant Analysis (QDA), K-Nearest Neighbors (KNN), Decision Tree
Classifier (DTC), Gaussian Naive Bayes (GNB), Ada Boost Classifier (ABC), Ran-
dom Forest Classifier (RFC), and Multilayer Perceptron (MLP). After evaluating each
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model using a 10-fold cross-validation, the authors find that the RFC achieves the
highest accuracy. The evaluation metrics used include bitrate, number of switches,
number of stalls, and stall duration.

Augmenting Approaches: In Oboe [6], the authors take an interesting approach by
augmenting existing algorithms instead of creating new ones. They optimize the
runtime parameters of the algorithms based on the current network conditions. The
approach consists of two processes. First, an offline process creates a config map by
exploring different ABR configurations for a given throughput trace. The best config-
uration is saved in a file that maps network states to the calculated optimum configu-
ration. This map is used in the online stage to choose the best parameter combination
relative to the observed network state. The model continuously monitors for signif-
icant changes that warrant a parameter change and reconfigures accordingly. This
approach was applied to BOLA [154], MPC [190], and Pensieve [110], demonstrating
performance improvements of up to 24% for each model.

The ERUDITE paper [36] follows a similar direction by optimizing the parame-
ters of models. Building on Oboe’s principles, the authors extend the approach by
leveraging data on bandwidth fluctuations and video features. Various MLP and
CNNs architectures with different segment durations were implemented and evalu-
ated. The CNNs model outperformed the MLP in terms of QoE. A "trigger module"
was also introduced before the neural network to update the model parameters when
necessary.

In another paper by Yan et al. [187], Fugu is introduced as a hybrid ABR model
that combines a control technique similar to MPC with a Transmission Time Pre-
dictor (TTP). The MPC controller selects the bitrate linearly based on the predicted
throughput. At the same time, Fugu replaces the throughput predictor with TTP,
which predicts the time for file download as a statistical variable. Based on the last
eight segment sizes, the predicted transmission time is passed to the MPC controller
for bitrate selection. Fugu’s TTP model is trained using classical supervised learn-
ing. The training takes place in situ, in a real environment, with daily retraining. It
utilizes a large-scale streaming environment accumulated over 14.2 years of video
streaming time. The authors conducted experiments on Puffer, their own TV stream-
ing platform, revealing significant variations in results based on streaming time.

Park et al. presented a utility-based rate adaptation heuristic for point cloud con-
tent in augmented reality, incorporating network and user adaptation [128]. Their
system dynamically adjusts the LoD of point cloud objects based on their proximity
to the user’s location. They proposed a greedy algorithm to optimize rate and util-
ity that allocates bits among different tiles across multiple objects. Specifically, the
system reduces bandwidth requirements by decreasing the level of detail of objects
based on their position and distance from the user’s viewport. In order to mini-
mize latency, they introduced a window-based buffer that enables swift response to
user interactions. The evaluation results demonstrate that their proposed heuristic
offers enhanced utility and user experience when dealing with varying throughput-
constrained networks, surpassing existing video streaming approaches.
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Qian et al. introduced a system known as Nebula, which offers a novel approach
to point cloud video streaming on regular 2D video-capable smartphones to alleviate
the computational load [133]. Their approach involves offloading resource-intensive
operations to a remote render server and implementing rate adaptation mechanisms
to optimize video quality based on network conditions. To minimize the photon-
to-motion latency, they propose a viewport prediction mechanism and the concept
of a mega-viewport. They also present various optimization methods to reduce the
perceived latency, dynamically adjust to varying network bandwidth, and optimize
resource utilization while ensuring a high QoE.

In their research, Hoog et al. investigated the viability of compressing point cloud
data for sharing across inland vessels while preserving usable point cloud quality
for situational awareness [56]. Their findings revealed that lossless compression with
BZip2 reduced the point cloud size by 50% without sacrificing any information. Ad-
ditionally, they observed that lossy compression using Draco [45] achieved a point
cloud size of 25%

2.2.5 Discussion

Point clouds can consist of billions of points and their associated attributes, making
coding and compression crucial for transmission. Various approaches for point cloud
coding exist in the literature. Point cloud adaptation is essential for ensuring efficient
and high-quality user experiences across various devices, network conditions, and
applications, including XR and autonomous driving. Methods inspired by adaptive
2D video streaming, edge computing, and viewport prediction can be combined
and extended for point cloud adaptation. The literature shows that incorporation
of machine learning approaches offers the potential for further improvements in
adaptability and responsiveness, enabling more effective resource utilization and
improved user experiences.

However, achieving a balance between quality and resource allocation during
streaming for the intended application of the point cloud remains a challenge. Exist- Research gap

in advancing
machine
learning for
point cloud
adaptation

ing methods often rely on pre-defined rules or user preferences to adjust the stream-
ing parameters. The integration of machine learning offers a potential path toward
more intelligent and dynamic point cloud adaptation. However, a significant research
gap exists in developing efficient learning models for real-time point cloud adapta-
tion. Challenges include the need for large, labelled datasets specifically designed for
point cloud adaptation tasks. Additionally, designing lightweight and computation-
ally efficient learning models is crucial to avoid introducing latency in the streaming
process. Future research efforts should focus on addressing these challenges. This
could involve exploring techniques like deep learning to leverage existing knowl-
edge from related domains like 3D object recognition. By closing this research gap,
machine learning-driven point cloud adaptation has the potential to significantly
improve streaming experiences. This approach could ensure high quality content
delivery while optimizing resource utilization across diverse applications.
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2.3 point cloud quality assessment

Point cloud content can provide the required 6DoF for truly immersive media. How-
ever, achieving 6DoF is limited by the current bandwidth limitations of best-effort
networks. Therefore, recent efforts have focused on the efficient delivery of point
clouds using a combination of compression and adaptive streaming mechanisms.
The impact of these mechanisms on the user-perceived quality needs to be accurately
evaluated. Assessing the quality of point cloud content is crucial for evaluating the
effectiveness of compression, adaptation, and rendering mechanisms and optimizing
user experiences [54]. Point cloud quality assessment involves evaluating the visual
quality or other performance metrics of point cloud content, considering the spe-
cific application context and user requirements [82, 173]. This section provides an
overview of approaches and concepts related to point cloud quality assessment.

2.3.1 Background

QoS and QoE

In evaluating the quality of a content streaming service, it is important to understand
the difference between QoS and QoE.

QoS focuses on ensuring uninterrupted multimedia transmission, which is criti-
cally important when network capacity is insufficient [106]. This is particularly rel-
evant for real-time multimedia transmissions like video conferencing, Internet tele-
phony, IPTV, and online gaming [155]. While specific applications may prioritize
minimal latency and reliable response time, others may demand high-quality visual
content. For instance, real-time conversational services such as voice calls and live-
streaming are highly sensitive to delay but somewhat tolerant of errors. Services like
real-time gaming are intolerant to errors, whereas audio and video streaming ser-
vices are error-tolerant and have less strict delay requirements. Interactive services
function based on request-response patterns and allow prioritization based on the
end-user or service type. Services like email notifications are the least sensitive to
delay; for these, best-effort data delivery is acceptable. QoS is a technical measure
of the performance of a network or system and includes metrics such as latency,
packet loss, and bit rate [131]. Service providers often use it to monitor and optimize
network performance.

QoE refers to the user’s subjective experience and considers factors such as the
content itself, visual and audio quality, and interactivity [59, 157]. The EU Qualinet
community defines QoE as "the degree of delight or annoyance of the user of an
application or service. It results from the fulfillment of his or her expectations with
respect to the utility and/or enjoyment of the application or service in the light of the
users personality and current state" [24]. QoE is a more holistic measure of the overall
user experience. QoS contributes to QoE, see Figure 2.8. While QoS can provide help-
ful information about the technical performance of a network, it does not necessarily
reflect the user’s experience. Therefore, it is important to consider both QoS and QoE
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when evaluating the quality of a media streaming service [20]. In the context of point
cloud quality assessment, the end-users satisfaction is directly tied to the perceived
quality of the content received on the client side. Numerous research studies have
utilized QoE as a primary metric for evaluating the performance of their proposed
methods [91, 93, 129, 161, 173, 174, 194, 198]. Hence, QoE plays a pivotal role in eval-
uating the quality of the delivered service. Therefore, both QoS and QoE metrics can
be employed to evaluate the performance of compression, adaptation, and rendering
methods, as well as to guide the optimization of streaming mechanisms [17].

QoE evaluation methods can be categorized into subjective, objective, and hybrid
methods, as discussed by Maia et al. [106]. Subjective methods are based on ITU
standards [116] and involve experts rating the quality of delivered video content.
These ratings are typically provided using metrics like Mean Opinion Score (MOS)
or Degradation MOS (DMOS). MOS, a subjective measure serving as a simpler alter-
native to Peak Signal-to-Noise Ratio (PSNR), calculates multimedia visual quality by
considering network conditions and specific traffic traits [172]. MOS and DMOS are
usually computed as averages of the collected ratings for each content piece. How-
ever, this subjective approach is often considered inefficient due to its reliance on
limited observers, distortions, and high costs.

In contrast, objective quality assessment methods evaluate factors through QoS
metrics such as packet loss rate, latency, jitter, bitrate, and frame rate, along with
external variables like content type, viewer demographics, and device type [106]. Ob-
jective models commonly use metrics like Moving Picture Quality Metric (MPQM),
Perceptual Video Quality Measure (PVQM), and Visual Signal-to-Noise Ratio (VSNR)
[118].

User Application

Network

QoE: Quality of Experience (e.g. MOS)

QoS: Quality of Service
(e.g. Latency )

Figure 2.8: Comparing QoS and QoE. QoS is the network’s contribution to QoE.

2.3.2 Objective Evaluation for Point Cloud Content

Various objective metrics have been employed in the past to measure the quality of
point clouds. It is important to differentiate between assessing the quality of a point
cloud object relative to a modified version of the same object and the quality of the
displayed field of view, i.e., what a user sees when using a head-mounted display.
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In order to compare the quality of modified point clouds, MPEG has suggested two
PSNR-based metrics, known as point-to-point and point-to-plane geometry distor-
tion metrics [165]. The former computes the mean square error (MSE) between the
original and reconstructed points for both geometry and colour. The latter deter-
mines the MSE between the surface plane and reconstructed points. PSNR values
are derived from the volume resolution for geometry and colour depths for each
colour channel. While these metrics are pertinent for evaluating the effectiveness of
compression methods for volumetric media, they do not provide insight into how a
user visually perceives the related point cloud object(s) from a particular viewpoint
or angle. Established metrics for traditional video streaming have recently been used
to gauge the visual quality of displayed point cloud content relative to a certain stan-
dard, such as uncompressed point cloud objects. These metrics include the PSNR, the
structured similarity index (SSIM) [159], and the multiscale SSIM [7], among others.

Despite providing insight into the visual quality of displayed content, these metrics
factor in the background of the viewed scenes. The background contributes less to
perceived quality, as users are expected to concentrate mainly on foreground objects.
One study explored background removal for images generated from point cloud
data, utilizing a MATLAB-based tool for assisted removal [163]. Although this fea-
ture is valid, it incurs a substantial computational cost when video is involved.

2.3.3 Subjective Evaluation for Point Cloud Content

The subjective quality of 3D content has been studied less extensively than that of 2D
video. A recent summary of previous research on subjective evaluation and objective
metrics for point clouds is provided by Dumic et al. [39]. Furthermore, extensive
surveys exist on using machine learning models for QoE assessment and prediction
[4, 81]. In the following, we describe selected works on QoE assessment in more
detail.

Various subjective evaluation methods can be broadly classified into single-stimulus
and double-stimulus methods based on how the evaluated content is presented to
the observer [159]. Single stimulus methods show the observer a single version of
the content and ask them to rate its quality on a scale or make a binary decision
such as "Yes" or "No". For example, in a single stimulus method, an observer might
be shown an image and asked to rate its quality on a scale of 1 to 5. Double stimulus
methods show the observer two versions of the content and ask them to compare the
quality of the two versions. For example, an observer might be shown two versions
of an image and asked to indicate which one is of higher quality. Double stimulus
methods are also known as side-by-side or paired comparison methods.

2.3.4 Motion-to-Photon Latency

Motion-to-photon latency is a critical metric in virtual and augmented reality appli-
cations. It measures the time it takes for a user’s motion or input to be reflected
in the rendered content. High motion-to-photon latency can lead to degraded user



2.3 point cloud quality assessment 31

Motion 
Detection

Visual 
Processing Display

Sensor Data 
collection, 

processing, and 
transmission.

Rendering 
computation time

Refresh time

Motion-to-Photon Latency
Motion Photon

t t’

Figure 2.9: The primary contributors to motion-to-photon latency in the head-mounted
display setup.

experiences, such as motion sickness or disorientation. In the context of point cloud
quality assessment, motion-to-photon latency can be used to evaluate the responsive-
ness and interactivity of point cloud rendering and adaptation methods, particularly
in immersive VR/Augmented Reality (AR) applications [199].

2.3.5 Point Cloud Quality Assessment with Machine Learning

Machine learning methods have been increasingly employed for point cloud quality
assessment because they can learn complex relationships between point cloud data
and perceived quality. Supervised learning approaches, such as deep learning mod-
els, can be trained on labeled datasets to predict quality scores or classify point cloud
data based on visual quality, accuracy, or other performance metrics. These machine
learning models can then be used to guide the optimization of compression, adap-
tation, and rendering methods and to evaluate the quality of point cloud data in
various application contexts.

2.3.6 Discussion

Point cloud quality assessment is essential for evaluating and optimizing the per-
formance of point cloud compression, adaptation, and rendering methods and for
ensuring high-quality user experiences. Both objective QoS and subjective QoE met-
rics can be employed to assess the quality of point cloud data, depending on the
specific application context and user requirements.

Machine learning approaches offer promising solutions for point cloud quality
assessment. They can learn complex relationships between point cloud data and
perceived quality, enabling more accurate and efficient quality evaluation and opti-
mization.
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In the literature, point cloud quality assessment methods are still limited and need
to be integrated into the point cloud streaming process. Therefore, further research
is required to understand the impact of compression on the overall quality of point
cloud perception, in addition to the necessary knowledge of resource demands for
each quality setting. This is a prerequisite for optimizing point cloud streaming mech-
anisms. Machine learning methods offer promising advances for point cloud quality
assessment. They can learn complex relationships between point cloud data and
perceived quality, enabling more accurate and efficient quality evaluation. While ex-Research gap

in point cloud
quality

assessment

isting machine learning models excel at assessing pre-recorded point cloud quality,
assessing the generalisability of machine learning quality models in the dynamic na-
ture of streaming point clouds is still required. The point cloud streaming process
requires real-time quality assessment that can process point clouds incrementally,
adapting their evaluation as new data arrives. Additionally, computational efficiency
becomes paramount to avoid introducing latency into the streaming process. There-
fore, future research should focus on developing lightweight and real-time capable
machine learning models for point cloud streaming. This could involve exploring
learning approaches to leverage pre-trained models and investigating efficient pro-
cessing of streaming data. Furthermore, developing new metrics that accurately cap-
ture user experience in the context of point cloud streaming is crucial for effective
model training and evaluation. Addressing this gap can unlock the full potential
of machine learning for ensuring an adaptive and real-time point cloud streaming
process.

2.4 summary

This chapter has provided a background, concepts, and methods related to point
cloud representation, compression, adaptation, and quality assessment. Future re-
search should focus on integrating machine learning methods for adaptive point
cloud processing, addressing challenges such as quality assessment, real-time adap-
tation and efficient resource utilization.
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S T R E A M I N G . K O M : E X P E R I M E N TA L T O O L F O R P O I N T C L O U D
S T R E A M I N G

Experimental platforms have become indispensable research tools because they
provide a controlled and customizable way to test newly proposed mechanisms.

The efficiency of the researchers’ proposed mechanisms can be investigated and val-
idated under various settings and scenarios. These platforms also provide a founda-
tion for reproducibility, enabling other researchers to build upon existing work and
expand the knowledge base. Experimental platforms are helpful in the context of
point cloud streaming for investigating innovative adaptive streaming mechanisms
and evaluating the quality of compressed point cloud data. Researchers can replicate
various network situations and Quality of Service (QoS) setups. The availability of
such an environment is helpful for researchers as it can be controlled and allows
them to evaluate the effects of various adaption mechanisms on streaming perfor-
mance. However, there is currently no open-source codebase that can be used for
this purpose.

This chapter introduces a tool, Streaming. KOM, to close the gap in open-source
platforms for streaming point cloud content. This tool expands the capabilities of
the Dynamic Adaptive Streaming over HTTP (DASH) protocol to enable point cloud
streaming. Additionally, it utilizes the Unity game engine as a powerful rendering
platform for visualizing the streamed point cloud data. The Streaming.KOM tool is
intended to stream point cloud content in a controlled manner, allowing empirical
bandwidth measurements at runtime. These measurements help researchers under-
stand specific bandwidth overhead and other critical factors affecting the Quality of
Experience (QoE) of point cloud content streaming, thereby pinpointing areas for
improvement. This tool provides an interface for the community to implement and
assess their suggested mechanisms. Streaming.KOM is made accessible as an open
source1 for the betterment of the community and to promote further investigation
into point cloud quality and adaptive point cloud streaming mechanisms.

This chapter presents Streaming.KOM is a tool that expands the DASH frame-
work for point cloud streaming. The contribution of this work can be summarized as
follows. Firstly, designing a platform for point cloud streaming based on the Unity
and DASH methods, providing a platform to evaluate the performance of streaming
mechanisms. To our knowledge, this is the first experimental platform that combines
both methods for point cloud streaming. Secondly, open-sourcing the platform code
makes it readily available for other researchers to use and adapt for their experi-
ments. This is a relevant contribution to the field. According to our information, it
is the only open-source point cloud experimental streaming platform currently avail-
able.

1 https://github.com/yaseenit/Streaming.KOM
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This contribution allows for a better understanding of the performance character-
istics of point cloud streaming and can help to establish more effective streaming
mechanisms in the future.

3.1 conceptual overview of streaming .kom

The Streaming.KOM tool is a client-server-based platform that enables dynamic
adaptive streaming of point cloud data over a network by combining the DASH stan-
dard with the Unity game engine to visualize the point cloud data on the client side.
Streaming.KOM is designed to enable empirical bandwidth measurements at run-
time, facilitating a better understanding of specific bandwidth overhead and other
critical factors that affect the QoE of point cloud content streaming. Additionally, it
provides a controllable and configurable testing environment for point cloud stream-
ing experiments. It allows researchers to introduce various network impairments
and QoS configurations during experiments and evaluate the streaming’s perfor-
mance under different circumstances. Figure 3.1 provides a conceptual overview of
the architecture of the tool, consisting of three main components: the DASH manifest
generator, the server, and the client.
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Figure 3.1: Conceptual overview of the Streaming.KOM architecture.

The DASH manifest generator component is responsible for reading raw point
cloud data from local storage, compressing it using a compression algorithm, and
converting it into DASH segments. These segments are then used to generate a Me-
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dia Media Presentation Description (MPD) file, which describes the different bitrates
and qualities of the point cloud data available for streaming.

The server component of the Streaming.KOM stores the compressed point cloud
data and serves it over HTTP using the DASH protocol. A traffic shaper is imple-
mented in the tool to enable researchers to introduce various network impairments
and QoS configurations during streaming experiments. The traffic shaper sits be-
tween the client and the server, allowing researchers to simulate different network
conditions and evaluate the performance of the point cloud streaming under various
circumstances.

The client component of the Streaming.KOM is a Unity-based client that retrieves
DASH segments from the server, decodes and renders the point cloud data, and
adapts to changing network conditions using a QoE manager. The client incorpo-
rates several subcomponents, including a DASH player for handling the streaming
of DASH segment, a data buffering module for managing data buffering to prevent
playback interruptions, a point cloud decoder for decoding the compressed point
cloud data, and a point cloud renderer for rendering the decoded point cloud data
in the Unity game engine.

Overall, the Streaming.KOM is intended to offer a flexible and adaptable platform
for evaluating the efficacy of newly developed mechanisms for streaming point cloud
data. In the following section, we comprehensively describe the tool’s implementa-
tion and the associated technologies.

3.2 tool design and implementation

In this section, we provide details of the implementation of the Streaming.KOM tool
components, including the server, DASH Manifest Generator, and client.

3.2.1 Server Implementation

The server component of the Streaming.KOM is implemented using Python and is
responsible for managing the storage and delivery of compressed point cloud data.
It also serves as a bridge between the client and the compressed point cloud data,
receiving requests from the client for specific DASH segments and sending those seg-
ments to the client in response. It is implemented using the open-source Hypercorn
web server software, commonly used for HTTP-based content delivery. The server
leverages FastAPI, a Python web framework, to build APIs that enable communica-
tion between the server and the Unity-based client. To optimize I/O operations, the
server employs an in-memory database as a cache to speed up data retrieval from
disks.

3.2.2 Point Cloud DASH Manifest Generator

The DASH Manifest Generator component converts the raw point cloud data into dif-
ferent quality DASH segments. The DASH segments are used for adaptive streaming,
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where only the necessary segments are streamed based on the client’s requests and
network conditions.

The generator utilizes the Open3D Python library to convert raw point cloud data
into the Polygon File Format (PLY) if needed. Once the data is in PLY format, it can
be compressed into different levels. The compression level can be adjusted based
on the desired trade-off between visual quality and file size. Higher compression re-
sults in smaller file sizes but potentially lower visual quality. In Streaming.KOM, the
Draco compression library developed by Google is utilized to compress the data with
varying qualities and bit rates. Draco provides high compression ratios while main-
taining the visual quality of the point cloud data with reasonable compression time.
Once the PLY files have been compressed, the DASH Manifest Generator groups the
compressed files into DASH segments with varying qualities and bit rates. The ZIP
format packages the segments for a specific duration, typically 2 seconds. The DASH
Manifest Generator generates the MPEG-DASH manifest file (MPD), which contains
essential metadata for the client to request and receive the appropriate DASH seg-
ments. The manifest file provides the client with information about the available
qualities and bit rates of the point cloud data, enabling the client to choose the ap-
propriate segments based on current network conditions, device capabilities, and
desired quality of experience. An example of a DASH manifest file for point cloud
media content is shown in Listing 1, showing that a given point cloud has multiple
representations with varying bitrates.

<?xml vers ion="1.0" encoding="UTF -8"?>
<MPD type="static" minBufferTime="1.0" mediaPresentat ionDuration="20.0">

<BaseURL>D:/ Datasets/dash/ow1 i i\_dancer\_360 </BaseURL>
<Period id="0" s t a r t ="PT0.0S" end="PT1.0S" duration="PT1.0S">

<AdaptationSet mimeType="pointcloud/plY+zip" id="0">
<Representat ion id="1" bandwidth="2476617K">

<BaseURL>qp7 /0 . ply . zip </BaseURL>
</Representat ion >
<Representat ion id="2" bandwidth="9614801K">

<BaseURL>qp8 /0 . ply . zip </BaseURL>
</Representat ion >
<Representat ion id="3" bandwidth="36467553K">

<BaseURL>qp9 /0 . ply . zip </BaseURL>
</Representat ion >
<Representat ion id="4" bandwidth="135473006K">

<BaseURL>qp10 /0 . ply . zip </BaseURL>
</Representat ion >

</AdaptationSet >
</Period >

Listing 1: Example of a DASH manifest file for point cloud media content illustrating that a
given point cloud has multiple representations with varying bitrates.

3.2.3 Client Implementation

The DASH segments are requested and received from the server by the Stream-
ing.KOM client is also in charge of decoding them and presenting the point cloud
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data. It is created utilizing the C# programming language and the Unity game engine.
The client includes the following subcomponents:

DASH Player. Based on the current network conditions, the DASH player
requests DASH segments from the server. It uses the UnityWebRequest
API to request the DASH segments over HTTP. The DASH player also
adapts to changing network conditions using the QoE manager, which
determines the appropriate quality level of DASH segments to request
based on the current network bandwidth.

Point Cloud Decoder. The point cloud decoder decodes the compressed
point cloud data received from the server into a format that the Unity
game engine can render. It uses the Draco library to decode the point
cloud data. First, the compressed frames of a given segment are extracted
by decompressing them from the ZIP format.

Point Cloud Renderer. The point cloud renderer renders the point cloud
data in the Unity game engine. It uses the Point Cloud Visualization plu-
gin for Unity.

QoE Manager. The QoE manager is responsible for adapting to chang-
ing network conditions by requesting appropriate quality levels of DASH
segments based on the current network bandwidth. It uses the buffer
occupancy and network bandwidth measurements to estimate the cur-
rent network conditions and determine the appropriate quality level of
DASH segments to request. Notably, Streaming.KOM provides flexibility
in easily implementing different adaptation policies. Hence, researchers
can customize and replace the default policy according to their research
needs.

Overall, the Streaming.KOM client is built to request and receive point cloud data
over a network, utilizing a combination of Unity and the Draco compression library
in its implementation.

3.3 configuration and customization

One of the advantages of the Streaming.KOM tool is its flexibility and configurability,
thus, researchers can customize the tool according to their specific requirements.
Streaming.KOM provides various configuration options that can be adjusted to fit
the needs of specific experiments. In this section, we describe some key configuration
options that can be customized in the Streaming.KOM tool environment.

Network and QoS Configuration.

The Streaming.KOM tool allows researchers to introduce various net-
work impairments during experiments to evaluate the streaming’s per-
formance under different circumstances. This feature enables researchers
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to gain insights into the streaming’s performance and identify areas for
improvement under various network conditions. For example, the tool
can be configured to simulate bandwidth limitations, latency, and packet
loss, enabling researchers to evaluate the streaming’s performance under
realistic network conditions and identify areas for improvement. To test
the impact of bandwidth impairments in a real-world situation, the server
can be run in a docker container on a Linux system, and the docker-tc
tool2 can be used to manipulate the outgoing traffic. The tool limits band-
width, adds delays, randomly drops packets, and manipulates packets. A
command-line interface can control the traffic between the client and the
server. Figure 3.2 shows the integration of the Streaming.KOM tool with
a traffic shaper tool using Docker containers.

Streaming.KOM Client 
(Unity)

Streaming.KOM Server

    Jupyter Server

Docker Container

Linux System

Command Line Interface docker-tc

Traffic

Control

Figure 3.2: Integration of Streaming.KOM client and server with Docker container-based
traffic shaper for evaluating system performance under different network

conditions.

DASH Configuration The tool provides various DASH configuration op-
tions that can be customized according to the requirements of the exper-
iment. These options include the segment duration, the number of seg-
ments per representation, and the representation bitrate, which can be
adjusted using different compression quantization levels and object rates
per segment.

Unity Configuration The Streaming.KOM test is built using the Unity
game engine; hence, it provides various configuration options for Unity
that can be customized to suit the experiment’s requirements. These op-
tions include the rendering quality, the graphics settings, and the point
cloud shaders.

Customizing Adaptation Mechanisms The tool’s customizability allows
researchers to implement their adaptation mechanisms to replace the de-

2 https://github.com/lukaszlach/docker-tc
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fault one according to their specific research needs. Researchers can im-
plement different policies for buffer management, bitrate adaptation, and
segment selection. This feature allows researchers to experiment with
new mechanisms and evaluate their impact on streaming’s overall per-
formance. For instance, the tool offers multiple options for adaptive bi-
trate policies, including the lowest bandwidth policy, which continuously
streams at the lowest possible quality based on the available bandwidth,
the highest bandwidth policy, which continuously streams at the high-
est possible quality based on the available bandwidth, and the available
bandwidth policy, which continuously streams at the highest possible
quality that can be downloaded promptly.

In summary, the Streaming.KOM system provides a range of configuration options
that can be customized to fit the experiment’s needs. This flexibility and configura-
bility enable researchers to evaluate the system’s performance under different con-
ditions. Therefore, researchers can conduct experiments and measure results more
effectively.

3.4 performance indicators

In order to evaluate the performance of the point cloud streaming, several perfor-
mance indicators can be measured during experiments. These indicators provide
insights into the streaming’s performance and can be used to identify areas for im-
provement. The following sections describe the different performance indicators mea-
sured during the experiments.

• Throughput: refers to the amount of data transmitted per unit of time, mea-
sured in bits per second (bps). Throughput is a critical performance indicator
as it can affect the quality of the point cloud representation.

• Buffer Occupancy: refers to the amount of data stored in the client’s buffer.
Buffer occupancy can determine the time required to accurately render the
point cloud representation.

Using these performance indicators, a series of experiments can be conducted to
evaluate a proposed streaming mechanism under various network conditions and
configurations.

3.5 discussion and conclusion

In this section, the limitations of the proposed tool, potential future research direc-
tions, and summary of the contributions of Streaming are discussed.KOM tool are
discussed.

First, it is unavoidable to highlight the limitations of the proposed tool. A lim-
itation of Streaming.KOM tool currently supports only the Draco compression li-
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brary for point cloud data, which may be insufficient for specific experiments. There-
fore, future work could incorporate other compression algorithms such as Geometry
codec based Point Cloud Compression (G-PCC) and Video codec based Point Cloud
Compression (V-PCC) to address this limitation. Another limitation of the tool is that
it only supports streaming over a local network. As more applications move to the
cloud, there is a growing need for a cloud-based point cloud streaming tool. Thus,
future work can focus on developing a cloud-based version of Streaming.KOM tool
that supports streaming over the internet and enabling edge computing.

Moreover, the Streaming.KOM tool does not include QoE as a performance indi-
cator, considering factors such as visual quality, smoothness, and interactivity. These
are crucial performance indicators for point cloud streaming. Future work can fo-
cus on developing a QoE model to measure the overall quality of the point cloud
streaming while considering factors such as visual quality and interactivity.

In summary, Streaming.KOM tool provides a controllable and configurable test-
ing environment for point cloud streaming experiments. It also leverages the DASH
protocol and Unity game engine methods to enable dynamic adaptive streaming of
point cloud data, enabling empirical bandwidth and latency measurements at run-
time. While the tool has some limitations, it provides a foundation for future research
in point cloud streaming. We hope to encourage further research and development
in this field by offering the tool as open-source.
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E VA L U AT I N G A N D M O D E L L I N G T H E Q U A L I T Y O F P O I N T
C L O U D D ATA

4.1 introduction

This chapter aims to understand how adaptation variables, such as quantization
levels, distances to the camera, and frame rates, impact the perceived quality

of point cloud content. Compressing and adapting point cloud data can result in
various forms of distortion, including changes in the number of points, their posi-
tions, and colours [165]. These distortions can have a negative impact on the user’s
perception and experience of the point cloud content. Therefore, it is crucial to have
an accurate Quality of Experience (QoE) model in order to evaluate the quality of the
compressed point cloud data [201]. This model can help to identify the best compres-
sion algorithms and parameters while adapting the content to changing conditions.
However, developing a reliable QoE model is still challenging due to the variety of
distortions introduced by the compression and adaptation processes [100]. The six
Degrees of Freedom (6DoF) viewing process also makes traditional objective qual-
ity evaluation metrics inapplicable to point cloud video quality assessment [182].
Despite the increasing popularity of point cloud content streaming, there is limited Challenges in

the evaluation
of point cloud
content

research on QoE models for this type of streaming, making it challenging to optimize
the performance of the streaming systems. Given that point clouds are often used in
real-time applications, having an efficient and fast QoE model is crucial.

As illustrated in Figure 4.1, this chapter explores two research goals. We investigate
the first research goal (RG1): Investigating the impact of compression-related distortions
and reduced frame rate on the quality of point cloud objects. This research will analyse
the specific types of distortions introduced by compression and how they influence
the user visual perception. Additionally, we will examine the impact of lower frame
rates, a common compression technique, on the user experience. The second research
goal: Investigating the correlation between quality and resource demands, with the objective
of developing a predictive model for evaluating the quality of point cloud sequences. By ad-
dressing both perceptual impact (RG1) and resource allocation (RG2), this chapter
aims to pave the way for creating a method for content-aware point cloud streams
that achieves the intended application of the point cloud content while minimizing
resource demands, as we will see in the next chapter.

Meeting users’ expectations requires understanding the factors influencing QoE
and efficiently managing resources to optimize video quality. Understanding how
adaptations affect the perceived quality of point cloud content is crucial for effec-
tively adapting such content to dynamically changing conditions during streaming.
We conduct a user study to gather valuable insights and data to achieve this. Our
study results will provide important information regarding the effectiveness of dif-
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ferent state-of-the-art compression mechanisms in maintaining the quality of point
cloud data. Moreover, the study will help us understand the trade-offs between re-
source requirements and quality levels, which is essential for developing mecha-
nisms that can adapt the point cloud content to dynamic conditions and device ca-
pabilities through mechanism transitions, contributing to shaping the development
of an effective adaptation mechanism and streamlining transitions between various
mechanisms. Mechanism transitions have been widely applied in communicationChallenges in

the evaluation
of point cloud

content

systems to meet quality requirements [14, 138]. This concept has been utilized to
address a range of problems, such as ensuring quality requirements and handling
unpredictable network conditions [76, 80, 103, 104, 137, 179]. The collected data of
the user study will be leveraged to construct a QoE model. This model will serve as a
predictive tool for assessing the perceived quality of point cloud sequences, enabling
the adaptation of point cloud streaming mechanisms accordingly.
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Figure 4.1: Point cloud streaming pipeline from the creation of content via sensing to the
consumption by users in an application. The quality assessment part

encompasses the first and second research goals, which will be addressed in this
chapter.

This chapter explores the subjective perception of quality in compressed point
cloud sequences, examining the influence of adaptation variables like quantization
level, frame rate, and camera distance on perceived quality. We utilized two dynamic
human figure point cloud sequences and evaluated their perceived quality through
subjective user study to gather users’ opinions on the compressed point cloud qual-
ity. We considered five levels of compression degradation, three different camera
distances, and three different frame rates. To attain these different compression lev-
els, we employed two state-of-the-art point cloud compression mechanisms, Video
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codec based Point Cloud Compression (V-PCC) by MPEG [48] and Draco by Google
[45]. The Mean Opinion Score (MOS), usually referred to as MOS score, was used to
measure the overall video quality. In accordance with the International Telecommuni-
cations Union (ITU-T) standards [168], a five-point Absolute Category Rating (ACR)
scale was used, with a range from 1 for bad quality to 5 for excellent quality [15].
The resulting MOS scores refer to a numerical measure of the human-judged over-
all quality of video. Our investigation explored how different quality levels in the
point cloud affect resource requirements during streaming, e.g., bandwidth usage,
and latency. Furthermore, we develop models for predicting the QoE of point cloud
sequences using various machine learning algorithms. We assess their accuracy by
comparing the prediction results to the MOS obtained from our subjective study. The
results suggest that the proposed models can accurately predict and reflect the users’
perceived quality.

The remainder of this chapter is organized as follows. Section 4.2 provides an
overview of the user study setup, outlining the methodology employed, including
point cloud sequences selection, experimental design, and data collection procedures.
In Section 4.3, we detail the conducting of the user study. Section 4.4 presents and
analyses the findings, discussing the implications of the results. Section 4.5 is dedi-
cated to developing and evaluating the machine learning models. Finally, Section 4.6
concludes the chapter with a summary of key findings and directions for future
research.

4.2 experiment design and user study setup

This section provides an overview of our user study setup, covering the procedures
undertaken, including selecting point cloud sequences, compression methods, and
content generation.

4.2.1 Selection of Point Cloud Sequences

In our study, we selected two naturalistic full-body human figures, the Dancer from
the Owlii dynamic human mesh sequence dataset [184] and Thaidancer from the 8i
voxelized surface light field dataset [83], which are publicly available datasets. These
figures were chosen as they demonstrate a range of variations. The Dancer has mini-
mal texture details, as they wear a simple white shirt and jeans, while the Thaidancer
has more intricate features, especially in their dress, neck pieces, and crown. The
movements of the Dancer are fast and energetic, while the Thaidancer’s movements
are slow and fluid. Our goal was to include two distinct objects to examine the
extent to which the perceived quality depends on the characteristics of the objects.
Figure 4.2(a) shows the Dancer at a near distance. This point cloud sequence was
recorded at 30 frames per second and comprises 600 frames, each containing ap-
proximately 2.6 million points. Figure 4.2(d) shows the Thaidancer at a near distance.
This point cloud sequence was captured at 30 frames per second and consists of 300

frames, each containing more than 3 million points. Each point in the point cloud
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sequences has 3D coordinates and red, green, and blue colour channels. As commod-
ity hardware like the Realsense LiDAR and D-RGB camera do not directly provide
normals, we only retain point position and colour information.

(a)                                 (b)                   (c)                                    (d)                                           (e)

Figure 4.2: Example visual views of the point cloud objects used in this study. Figures (a),
(b), and (c) show the Dancer point cloud at near, medium, and far distances,

respectively. Figures (d) and (e) show the Thaidancer point cloud encoded using
V-PCC with m5 and mb quantization parameters, respectively.

4.2.2 Point Cloud Compression and Videos Generation

In our study, we evaluated two state-of-the-art point cloud compression methods,
V-PCC [48] and Draco [45]. V-PCC, which is by far the most used codec for point
clouds, utilizes an advanced 2D video codec by projecting point clouds onto frames.
At the same time, Draco achieves compression by quantizing each point’s informa-
tion and conducting mesh compression. Both methods can be customized, leading to
file size and quality variations. We defined five quantization levels for each compres-
sion method applied to the raw point cloud sequences, labelled as (mb, m0, m1, m3,
m5) for MPEG V-PCC and (d8, d9, d10, d11, d16) for Draco. Each quantization level
behaves differently. For instance, quantization levels like m5 are designed to deliver
higher quality but require more bandwidth than other quantization levels, such as
m3. To vary the compression levels of V-PCC, we adjusted the geometry quantization
parameter geometryQP, attribute quantization parameter attributeQP, and occupancy
precision occupancyPrecision. The lowest quality level, denoted as mb, was generated
with geometryQP = 51, attributeQP = 51, and occupancyPrecision = 4. For Draco, only
the position quantization parameter positionQP was set to the desired quantization



4.3 conducting the user study 45

Compression Method Quantization Levels
Parameters

GeometryQP AttributeQP OccupancyPrecision

V-PCC

0 mb 51 51 4

1 m0 36 44 4

2 m1 24 32 4

3 m3 20 27 4

4 m5 16 22 2

PositionQP (number of bits)

Draco

0 d8 8

1 d9 9

2 d10 10

3 d11 11

4 d16 16

Table 4.1: Quantization levels and parameters for V-PCC and Draco compression methods.

level. For instance, to achieve the d8 quantization level, positionQP was set to 8. Ta-
ble 4.1 summarizes the quantization levels and parameters for both MPEG V-PCC
and Draco compression methods. Figure 4.2(d) and Figure 4.2(e) show the Thaidancer
object compressed using V-PCC at the m5 and mb quantization levels, respectively.

The point cloud sequences were encoded at each of the five quantization levels. Be-
cause of the limitations in participants’ commodity PC hardware, real-time playback
was not feasible for the user to experiment with V-PCC due to the heavy decoding
computations. Hence, we rendered the point cloud sequences from fixed camera per-
spectives using lossless encoding and stored the results as H.264 video files, which
did not add any compression loss or artefacts to the content. The point cloud se-
quences were also rendered at three different distances (near, medium, and far), and
the object’s size appeared smaller as the distance increased. Figure 4.2(a), (b), and
(c) respectively depict the dancer at near, medium, and far distances. To evaluate the
performance of V-PCC, we also explored different frame rates, rendering the point
cloud sequence at frame rates of 30, 15, and 10 frames per second. The higher the
frame rate is, the more fluid the animation is. For Draco, the frame rate was fixed
at 30 frames per second to reduce the workload on study participants and minimize
the number of videos that needed to be rated. This resulted in a total of 120 different
configurations to be evaluated.

4.3 conducting the user study

This part of the work aims to conduct a subjective user study to investigate the
human responses to the combined effect of compression levels and methods, frame
rate, distance, and object type. At the end, we should obtain data showing each
parameter’s effect on MOS.
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A remote testing paradigm can be employed to evaluate point clouds, as con-
cluded in this recent research study [152]. We implemented a webpage-based rating
application to evaluate the quality of the generated videos with a large number of
participants. The user study was conducted offline on each participant’s computer to
minimize the effect of video buffering delay. This allows the quality to be estimated
based only on content-related factors when the transmission is free from degrada-
tion. Participants were instructed to download and extract an archive containing all
the study files. The experiment was initiated by opening a webpage using a local
web browser, which provided a step-by-step guide for completing the study.

The video quality evaluation was divided into two parts, one for each point cloud
object sequence, i.e., Dancer and Thaidancer. The participants were presented with
45 videos for each part, based on the different experiment configurations such as
encoding method, quantization level, distance, and frame rate. Each participant was
randomly assigned the order of the objects and the videos for each object. Before
starting each part, participants were shown a reference video of ideal quality gen-
erated from uncompressed point cloud data at a frame rate of 30 fps and a near
distance. After viewing a point cloud video for at least 3 seconds, participants could
select one of five quality levels: ‘bad’, ‘poor’, ‘fair’, ‘good’, or ‘excellent’, with corre-
sponding scores of 1, 2, 3, 4, and 5, respectively.

Once a quality level was chosen, the survey would proceed to the following video.
The data was collected locally and saved as a JSON file in the participant’s down-
load directory at the end of the survey. Participants were then allowed to upload
their results to our servers anonymously. The entire assessment process takes ap-
proximately 15 to 20 minutes to complete. We utilized the Prolific crowdsourcing
platform 1, involving a total of 102 participants. Each participant was incentivized
with a monetary reward of approximately 5 euros.

4.4 evaluation results from user study

This section presents the findings from our examination of user study results. The
following subsections dive into a focused analysis of specific configurations.

Figure 4.3 visually presents the MOS for each experiment configuration, arranged
in ascending order along the Y-axis, and each subplot showcases the corresponding
independent variable. The data reveals that the range of MOS spans from a minimum
of 1.12 to a maximum of 4.37. The first 20 configurations represent the lowest quality
level and show that MOS significantly increases with higher distance This makes
sense as higher distances tend to obscure the nuances of quality. At low-quality lev-
els, the compressor becomes more tolerant of errors; consequently, more artifacts
appear in the content. The frame rate does not significantly impact the outcomes,
regardless of whether it is high or low when the quantization level is low. Beyond
configuration 20, the increase in MOS is relatively linear. Subplot (a) highlights the
notable influence of quantization level on MOS, demonstrating higher scores in ex-
periments with increased quantization levels. Subplot (c) highlights the impact of

1 https://www.prolific.com/ last accessed: December 2, 2024.

https://www.prolific.com/
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Figure 4.3: This visual breakdown presents a view of MOS across various experiment
configurations, sorted in ascending order. Each subplot highlights a distinct

factor’s impact on MOS: (a) Quantization Level, (b) Distance, (c) Frame Rate, (d)
Object, and (e) Compression Method. Refer to Table 4.1 for details on the

quantization levels.
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frame rate on MOS, indicating higher scores for experiments using 15 or 30 frames
per second, with the latter resulting in higher scores. In subplot (b), we observe that
the highest MOS values are achieved at near distances. This could be due to two
factors. First, participants may be biased towards giving higher scores to near ob-
jects, as the reference object was also at a near distance. Second, users may be more
reluctant to give the highest score to far objects. In subplot (d), configurations 100 to
119 illustrate that participants consistently assigned higher scores to the Dancer ob-
ject compared to the Thaidancer object. We will delve into a more detailed discussion
of the impact of objects on the MOS in an upcoming subsection. It is worth noting
that these results cover both Draco and V-PCC compression methods. As illustrated
in subplot (d), most configurations belong to V-PCC, as Draco configurations are
limited to a frame rate of 30. Notably, we observe that Draco configurations are pre-
dominantly in the upper half of the experiment configurations, as only 30 fps was
used, and therefore have a comparatively high MOS. In the following subsections,
we will detail the findings concerning each compression method.

4.4.1 Video Codec Based Compressed Point Clouds

The results of the MOS ratings for the point cloud sequences compressed using
the V-PCC method are shown in Figure 4.7. This figure illustrates the aggregated
MOS values for the V-PCC compression method at various distance levels (a) near,
(b) medium, and (c) far, as well as different frame rates and quantization levels for
the aggregated data of both objects.Despite the individual ratings falling within the
range [1, 5], the highest MOS across all configurations was 4.37 (near, 30 fps, m5).
This can be attributed to the aggregated nature of the MOS, wherein participants
might have been cautious about assigning the highest rating of 5 due to subtle dif-
ferences in quality. Additionally, it is possible that the visual quality of the content
could have appeared more impressive, as users often seek better quality even if it is
already satisfactory. As shown in Figure 4.7(a), when the participants were close to
the object, the MOS steadily increased with the quantization level. The results indi-
cate that higher frame rates had a positive impact on the MOS for quantization levels
m0 to m5, but had little effect on the lowest quantization level (mb).

At a medium distance, as shown in Figure 4.7(b), the MOS levels become more
consistent. The highest MOS reached is 4.02 for (medium, 30 fps, m5). Most quan-
tization levels at 30 fps have similar MOS values as the near setting, with slightly
higher values for the lower quantization levels mb and m0. Notably, the impact of
frame rate is more significant in this setting compared to the near setting, where
lower frame rates of 10 and 15 at medium distance result in a noticeable decrease in
MOS compared to the near setting.

The results for far objects, as shown in Figure 4.7(c), exhibit a more flattened sur-
face. The highest MOS of 3.87 is achieved at (far, 30 fps, m5) with lower MOS values
compared to the other two distance settings for high quantization levels. On the other
hand, the mb and m0 quantization levels result in higher MOS values compared to
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(a) Distance: near (b) Distance: medium

(c) Distance: far

Figure 4.7: Aggregated MOS for the V-PCC compression method with distance levels: (a)
near, (b) medium, and (c) far. Each subplot shows the MOS over both objects for

individual frame rate and quantization levels.



50 evaluating and modelling the quality of point cloud data

the near or medium distance levels. When considering a fixed frame rate, the results
for quantization levels m1 to m5 are similar to the medium distance setting.

Our findings suggest that changes in an object’s compression quality become less
noticeable as it moves further away. In comparison, the impact of different frame
rates is still recognizable and significantly impacts the MOS. For instance, increasing
the frame rate of a far object with a quantization level of m0 from 10 to 30 has a
more significant positive effect on the MOS than upgrading its quantization level to
m5. These results can aid in optimizing future point cloud streaming mechanisms,
particularly when the current distance to the user is known.

4.4.2 Draco Compressed Point Clouds
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Figure 4.8: Summary of Draco MOS analysis, including: (a) aggregated MOS for 30 objects
per second using Draco compression in distance levels near, medium, and far for

both objects. (b) comparison of MOS difference between Draco and V-PCC
quality settings with the same configurations. A positive value suggests that

Draco achieved a higher MOS.

The results for Draco compression are shown in Figure 4.8(a). With a fixed frame
rate of 30 frames per second, the trend observed is similar to that of V-PCC. As
the viewing distance increases, the influence of the quantization level on the MOS
score becomes less noticeable. Users appear less inclined to assign either high or low
scores, suggesting a convergence of perceived quality as the object moves further
away.

To facilitate a comparative analysis between Draco and V-PCC, both operating at
30 frames per second, Figure 4.8(b) compares their respective results. The findings
reveal that at the first quantization level d8-mb, Draco received a significantly higher
MOS score compared to V-PCC, while V-PCC performed better at the subsequent
quantization levels. As the quality levels increased, the difference in MOS between
the two methods became negligible. Except for the pair d8-mb, the results suggest
that users preferred V-PCC as the viewing distance increased. Conversely, Draco
was favoured over V-PCC in the near setting.



4.4 evaluation results from user study 51

4.4.3 Differences in User Study Objects
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Figure 4.9: Variation in MOS between the Dancer and Thaidancer objects across all distance
and quantization levels for both Draco and V-PCC. A positive value implies that

the Dancer object received a higher MOS

As depicted in Figure 4.3(d), the results indicate that the Dancer object consistently
receives higher scores compared to the Thaidancer object. This observation is further
emphasized in Figure 4.9, where the plot illustrates that the Dancer object generally
receives superior scores in comparison to the Thaidancer object. The only exception
is when the Thaidancer is viewed at medium and far distances using the Draco com-
pression method and lower quality settings d8 and d9 (only for far), where it receives
higher scores. However, the difference between the two objects is more significant
for higher-quality Draco settings. The results from our user study suggest a possi-
ble correlation between the level of detail in the objects and the perceived quality
of the compressed point clouds. With its higher level of detail, the Thaidancer object
appears to result in more recognizable artefacts for Draco and V-PCC compression
methods. Therefore, the participants become more demanding in terms of perceived
quality. Fine details are difficult to distinguish at lower quality settings, and partici-
pants become less demanding and may prefer the Thaidancer object due to smoother
movements. Further investigation into the impact of different objects on perceived
quality is needed.

4.4.4 Analyzing the Tradeoff Between Quality and Resource Utilization

Video streaming content may be viewed on various devices with distinct capabilities
and transmitted via networks characterized by limited bandwidth and varying video
display resolutions. The compression of point clouds involves balancing the desired
visual quality against the resources required to attain that quality [9]. This balance
is influenced by several factors, such as the bit rate of the point cloud stream, the
encoding and decoding latency for each frame, and the processing capability of the
end devices.
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Decoding / Encoding time

(in seconds)

Object / Quantization Level

Dancer

Method FR mb m0 m1 m3 m5

V-PCC
10 33.59 / 1023.31 37.10 / 1051.17 40.58 / 1092.50 43.516 / 1150.33 44.37 / 1243.30

15 50.41 / 1535.56 55.64 / 1576.68 60.88 / 1638.72 65.26 / 1725.75 66.51 / 1864.69

30 100.7 / 3068.65 111.33 / 3151.56 121.72 / 3275.63 130.49 / 3449.40 133.09 / 3727.24

Draco 30
d8 d9 d10 d11 d16

6.57 / 27.85 7.54 / 31.50 8.27 / 34.55 8.40 / 36.70 8.14 / 46.96

Decoding / Encoding time

(in seconds)

Object / Quantization Level

Thaidancer

Method FR mb m0 m1 m3 m5

V-PCC
10 50.82 / 1360.86 52.67 / 1365.07 52.88 / 1373.88 55.99 / 1419.66 56.91 / 1556.75

15 76.03 / 2029.22 78.76 / 2035.84 79.20 / 2047.24 83.76 / 2117.65 85.11 / 2321.84

30 152.20 / 4064.36 157.69 / 4076.65 158.42 / 4100.52 167.62 / 4239.62 170.40 / 4650.21

Draco 30
d8 d9 d10 d11 d16

8.23 / 34.25 8.94 / 38.08 9.61 / 41.66 9.86 / 44.56 9.73 / 57.06

Table 4.2: Decoding and encoding time (in seconds) for V-PCC and Draco compression
methods at different frame rates and quantization levels for Dancer and Thaidancer

sequences. Lower values are better as they indicate faster processing.

Bitrate

(in Mbits/s)

Object / Quantization Level

Dancer Thaidancer

Method FR mb m0 m1 m3 m5 mb m0 m1 m3 m5

V-PCC
10 0.96 1.67 2.02 4.40 13.46 1.55 3.50 4.38 10.59 28.56

15 1.45 2.51 3.03 6.60 20.19 2.33 5.26 6.57 15.89 42.93

30 2.91 5.03 6.07 13.21 40.43 4.66 10.52 13.14 31.77 85.76

Draco 30
d8 d9 d10 d11 d16 d8 d9 d10 d11 d16

547.28 735.53 963.34 1215.62 2420.79 860.27 1076.05 1325.23 1602.85 3006.42

Table 4.3: Bitrates (in Mbits/s) for Draco and V-PCC compression methods at various frame
rates and quantization levels for Dancer and Thaidancer Sequences. Lower bitrates

are preferable as they represent more efficient compression.

Our study uncovered that although the MOS for Draco and V-PCC compression
methods are relatively similar to our selected configurations, there is a substantial
difference in the bit rates for the compressed streams. The raw point cloud sequences
have an average data rate of approximately 3.6 Gbit/s, 5.5 Gbit/s, and 10.9 Gbit/s
for 10 fps, 15 fps, and 30 fps, respectively. The results showed that while the bit rates
of Draco streams are much higher than those of V-PCC streams, they are still lower
than the raw point cloud sequences. However, Draco’s encoding and decoding times
were much faster than those of V-PCC on our system with an AMD Ryzen 7 5800X
processor. The average encoding time for V-PCC ranges from 119.2 to 140 seconds
per frame, and the average decoding time is from 4.2 to 5 seconds per frame. In con-
trast, Draco’s encoding time ranges from 1 to 1.7 seconds per frame, and its decoding
time is from 0.24 to 0.29 seconds per frame. Table 4.2 provides a comparison of the
time it takes for decoding and encoding with V-PCC and Draco methods at various
frame rates and levels of quantization for the Dancer and Thaidancer sequences. It is
important to note that to support live streaming, a delay-intolerant service, compres-
sion methods that combine low data rates with fast encoding and decoding times
are required.
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Thaidancer MOS
Distance / Quantization Level

Near Medium Far

Method FR mb m0 m1 m3 m5 mb m0 m1 m3 m5 mb m0 m1 m3 m5

V-PCC
10 1.11 2.48 2.71 3.05 3.12 1.37 2.53 2.67 2.69 2.77 1.89 2.72 2.51 2.61 2.71

15 1.18 2.55 2.99 3.17 3.27 1.14 2.98 2.92 3.13 3.18 2.26 2.99 3.19 3.18 3.11

30 1.18 3.01 3.33 3.58 3.75 1.62 3.43 3.52 3.67 3.69 2.69 3.58 3.59 3.67 3.67

Draco 30
d8 d9 d10 d11 d16 d8 d9 d10 d11 d16 d8 d9 d10 d11 d16

1.41 3.01 3.74 3.59 3.76 2.30 3.53 3.56 3.67 3.68 3.10 3.38 3.60 3.49 3.65

Dancer MOS
Distance / Quantization Level

Near Medium Far

Method FR mb m0 m1 m3 m5 mb m0 m1 m3 m5 mb m0 m1 m3 m5

V-PCC
10 1.17 2.42 2.71 2.83 2.94 1.37 2.57 2.61 2.61 2.67 2.01 2.50 2.53 2.58 2.57

15 1.15 2.84 3.16 3.34 3.58 1.49 3.0 3.21 3.26 3.25 2.12 3.23 3.20 3.13 3.12

30 1.28 3.54 3.98 4.27 4.37 1.76 3.87 3.94 4.16 4.34 2.83 3.95 4.03 4.07 4.06

Draco 30
d8 d9 d10 d11 d16 d8 d9 d10 d11 d16 d8 d9 d10 d11 d16

1.60 3.35 4.10 4.37 4.36 2.10 3.12 3.94 4.14 4.25 3.05 3.39 3.79 4.06 3.99

Table 4.4: MOS for Thaidancer and Dancer sequences are provided for both Draco and
V-PCC compression methods at different distances and quantization levels.

Higher MOS values indicate better perceived quality.

The results from previous sections indicated that higher quantization levels and
frame rates lead to a higher MOS. However, this also means an increase in data rates.
Table 4.3 shows a comparison of bitrates for V-PCC and Draco compression methods
at various frame rates and quantization levels, providing insights into the efficiency
of compression for both Dancer and Thaidancer sequences. In some instances, the par-
ticipants may prefer a lower bit rate stream. For this discussion, let us disregard the
encoding and decoding timing requirements. Moreover, let us concentrate on a sce-
nario in which a client is equipped with a 50 Mbit/s connection in a near distance
setting viewing Thaidancer sequence. With V-PCC, the client has the option to stream
content, such as quantization level m5 at 15 fps or quantization level m3 at 30 fps
(as shown in Table 4.3). Notably, based on Table 4.4, an inspection of the data in the
first table clearly shows that m3 at 30 fps yields a higher MOS rating, even though
it has a lower bit rate, compared to m5 at 15 fps. Figure 4.10 illustrates the relation-
ship between different configurations of V-PCC and Draco quantization levels and
frame rates and their impact on bitrates, encoding, and decoding time, affecting the
quality of point cloud sequences for the Dancer object at a near distance. The figure
reveals that various configurations can yield equivalent MOS scores while imposing
differing bit rates and computation requirements. Figure 4.10 shows that the configu-
rations within the same colour zone can be interchanged to achieve comparable MOS
scores while exhibiting varying resource demands. For instance, consider the config-
urations (m3, 30fps) and (m5, 30fps) in Figure 4.10. Both configurations yield a high
MOS score; however, the latter configurations demand a significantly higher bit rate,
approximately three times more, than the former. Furthermore, these configurations,
i.e. (m3, 30fps), require less encoding and decoding time.

Combining the expected resource requirements with estimating the MOS is crucial
for effective adaptation schemes [145]. Therefore, leveraging the QoE knowledge
obtained from the user study, we can develop an adaptive bitrate scheme to ensure a
consistent and uninterrupted streaming experience for users, especially in the face of
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varying network conditions and diverse computing capabilities at the receiver side.
We will provide more details on streaming adaptivity in the next chapter.

4.5 modelling qoe with machine learning

This part of the work aims to calculate MOS using a machine learning algorithm
based on a data set of rated videos, i.e., subjective MOS, with various parameters,
including distance, quantization parameters, and frame rate. We aim to extend the
reach of our findings beyond our experimental configurations. We want to improve
our understanding by making our results applicable to scenarios that were not part
of our study or training phase. To do this, we will use supervised machine learning,
which enables us to apply our previous findings more broadly. These QoE models
could then be utilized in an adaptive streaming system considering a more compre-
hensive range of configurations. The adaptive streaming system can utilize the QoE
model to determine the configurations for adjusting the point cloud video to match
specific network conditions, such as decreasing throughput between the server and
the client. If the MOS falls below a predefined threshold, the system responds by
modifying parameters such as compression methods, quantization parameters, and
frame rate, followed by recalculating the MOS. Figure 4.11 illustrates how the QoE
model can be integrated with the adaptive streaming server.

In the context of this study, we treat users’ MOS assessments as synonymous with
QoE. These MOS scores, reflecting users’ personal judgments on point cloud content,
play a crucial role in shaping the overall perception of quality and user satisfaction.
Our study centres around MOS scores, deliberately omitting factors such as buffer-
ing, network parameters, and user interface considerations. This intentional focus
allows us to concentrate on users’ subjective evaluations of the quality of point cloud
content.

The modelling of QoE has been done in three steps: feature extraction, training
of the machine learning model, and evaluation of the predictions. The data used in
this process included approximately 9,000 samples, each comprising five features:
frame rate, distance, V-PCC parameters including geometryQP, attributeQP, and occu-
pancyPrecision which are listed in detail in Table 4.1, along with the corresponding
user-rated scores ranging from 1 to 5. These user ratings acted as the targets for
our models. To improve the reliability of the model, outliers were removed through
boxplot-based outlier detection [38].

SHapley Additive exPlanations (SHAP) [102] was employed to determine feature
importance. The results indicate that the occupancyPrecision is not a significant fac-
tor in the model’s accuracy. This is attributed to the limited variability of values,
primarily 2 and 4, across all configurations. Such a narrow range may not provide
sufficient information for occupancyPrecision to predict the target variable effectively.
Figure 4.12 illustrates the absolute mean SHAP values. These values generally indi-
cate the importance of features and highlight their significant contributions to the
model’s predictions. The insights from SHAP analysis reveal that the FrameRate is
the most crucial feature influencing the target, i.e., MOS. Both attributeQP and geom-
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Figure 4.10: Impact of (a) bit rate, (b) encoding time, and (c) decoding time on MOS for
Dancer object at near distance under different V-PCC and Draco quantizations

and frame rate configurations.
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Figure 4.11: Conceptual diagram illustrating the integration of a pre-trained QoE model
with an adaptive streaming system.

etryQP have nearly equal impacts on predicted values, while Distance has the most
minor influence. Additionally, these insights aid in refining models by identifying
occupancyPrecision as an unimportant feature.
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Figure 4.12: A visual representation illustrating the importance of features based on the
absolute mean SHAP values. Each bar represents the significance of a specific

feature in influencing the model’s predictions, and higher values indicate
greater importance.

The evaluation of the machine learning model involved a leave-one-out cross-
validation technique [180]. This process involved dividing the data into 45 folds, with
44 folds used for training and one for testing. This cycle was repeated 45 times, with
each fold as the test set once. We grouped the user study responses based on these
folds to ensure fairness and accuracy. This cross-validation approach provides an un-
biased evaluation of the model’s performance and helps detect overfitting, thereby
ensuring the robustness and reliability of the model.

Table 4.5 displays the results of evaluating the performance of regression and clas-
sification models using the Scikit-learn2 Python library. The table presents the R-
squared (R2) score and the Mean Squared Error (MSE) [2] statistical metrics of the
MOS providing insights into prediction accuracy, averaged across all cross-validation

2 https://scikit-learn.org/stable/, last accessed on December 2, 2024

https://scikit-learn.org/stable/
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QoE Model Type R2 score ↓ MSE

Gradient Boosting Regressor 0.9754 0.0174

Polynomial Regression (Degree 2) 0.9677 0.0229

Random Forest Regressor 0,9560 0,0312

Decision Tree Regressor 0.9456 0.0386

Decision Tree Classifier 0.9439 0.0398

MLP Classifier 0.9424 0.0409

Gradient Boosting Classifier 0,9323 0,0480

Random Forest Classifier 0,9063 0,0665

MLP Regressor 0,9021 0,0695

Logistic Regression 0,8503 0,1063

Ridge Regression 0,8183 0,1291

Linear Regression 0,8183 0,1291

K Neighbors Regressor 0,7343 0,1887

Lasso Regression 0,6998 0,2133

Table 4.5: Performance of various machine learning models evaluated using the R2 score
(higher is better) and the Mean Squared Error (lower is better), sorted by

decreasing performance.

rounds. Our analysis showed that the Gradient Boosting Regression model per-
formed best, as indicated by its high R2 score and low MSE.

Additionally, we investigated the advantages of using classification models, where
the probability per class prediction serves as a QoE distribution instead of predicting
the MOS, as in the regression models. Figure 4.13 compares the actual QoE distri-
bution to the predicted distribution for a chosen configuration. As an illustration,
the Decision Tree Classifier can accurately predict the perceived quality distribution,
even though none of the related samples were seen during training. For instance, Fig-
ure 4.13 suggests that less than 11% of users are likely to view this specific configura-
tion as poor or bad, providing additional insights by predicting the score distribution
rather than the MOS.

Bad Poor Fair Good Excellent
0.0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n

Target
Predicted

Figure 4.13: Actual and predicted QoE distributions for the test fold with medium distance,
30 fps, and m1 quantization level using the Decision Tree Classifier.
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4.6 discussion and conclusions

This chapter aimed to comprehend the impact of different adaptations and create a
QoE model for lossy compressed point cloud sequences. This information is essen-
tial for developing adaptive mechanisms for the streaming of point cloud sequences.
Analysing how a single parameter can influence the viewer’s satisfaction can assist in
determining the optimal balance between various parameters, ultimately improving
video quality for users. Therefore, we investigated how various adaptation variables,
such as quantization levels, distances from the camera, and frame rates, affect point
cloud quality perception. To understand the user’s experience, we conducted a sub-
jective user study, gathering data on the performance of two popular compression
methods, Draco and V-PCC, and their trade-offs between resource requirements and
quality levels. Our user study aimed to investigate the impact of varying frame rates,
quantization levels, and distances on point cloud objects using both Draco and V-
PCC compression methods. The user’s perception is evaluated using ACR, a scale
from 1 to 5. Building upon this foundation, we employed machine learning to model
the QoE of point cloud sequences. We assessed their accuracy by comparing the
prediction results to the MOS scores obtained from the user study. By feeding the
machine learning models with different factors like precision and geometry qual-
ity, we aimed to predicate the QoE for configurations the model had not previously
encountered.

We concluded that the quantization level is important in assessing the video qual-
ity and frame rate, directly affecting customer satisfaction. Our user study findings
showed that the frame rate’s impact on quality is negligible when the quantization
level is low, but it becomes positive at higher quantization levels. Additionally, there
is an inverse correlation between distance and MOS, meaning greater distance leads
to lower MOS scores.

When the V-PCC compression method was used on point cloud sequences with
participants in close proximity to the object, MOS steadily increased with the quan-
tization level. Moreover, our findings demonstrated that higher frame rates had a
positive impact on MOS scores for quantization levels m0 to m5 but had minimal ef-
fect on the lowest quantization level mb. Interestingly, the influence of frame rate was
more pronounced in specific scenarios, mainly when the frame rate was lower (10

and 15 FPS) at medium distances, leading to a noticeable decrease in MOS compared
to the near setting. Conversely, the quantization levels mb and m0 at far distance level
resulted in higher MOS values compared to the near or medium distance levels. For
example, increasing the frame rate of a distant object with a quantization level of
m0 from 10 to 30 had a more significant positive effect on MOS than upgrading its
quantization level to m5.

We also noticed that the type of point cloud object affects the user’s acceptance.
Our results indicate that the level of detail in point cloud objects may correlate with
the perceived quality of compressed point clouds. With its greater detail, the Thaid-
ancer object produced more noticeable artifacts in Draco and V-PCC compression,
especially at lower-quality settings. Consequently, participants tended to give higher
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scores to the Dancer object, which had minimal texture details and a simpler appear-
ance.

While Draco and V-PCC MOS scores for our selected configurations are relatively
similar, there is a substantial difference in the bit rates for the compressed streams.
Notably, encoding and decoding times for Draco were significantly faster than those
for V-PCC. The study results reveal that different configurations can achieve sim-
ilar MOS scores while imposing varying bit rate, encoding, and decoding latency
requirements. Our findings indicated that increasing frame rates and quantization
levels individually improve perceived quality. However, we also found that a higher
bitrate does not necessarily equate to a higher MOS. Additionally, the degradation in
quality due to quantization becomes less noticeable with increasing distance from the
camera. Understanding the correlation between different configurations, MOS scores,
and resource requirements is essential for developing multi-mechanism transition-
based adaptive bitrate schemes that ensure a consistent streaming experience under
changing network conditions.

Modelling the QoE based on data collected from the subjective user study revealed
that occupancyPrecision does not significantly impact the model’s predictability. The
FrameRate is the most critical feature influencing the target variable, namely the MOS.
Additionally, our analysis offers additional insights through predictions of score dis-
tributions using a classification model rather than relying solely on the actual MOS.

Our exploration of point cloud quality based on real user experiences and ma-
chine predictions deepened our understanding. We now possess insights that can
steer improvements in immersive experiences. The developed model can predict the
perceived quality of point cloud sequences, enabling optimization and adaptation
in real-world scenarios. While our study is based on reliable QoE derived from
user feedback, it is essential to acknowledge the limitations. The user study was
conducted on a small scale with a hundred participants, and the perceptual scores
provided by users in a controlled environment may not reflect quality in real-world
scenarios. Future research can explore larger datasets, explore the results obtained
using standard desktop PCs versus more immersive end devices, such as VR/AR
headsets, and use enhanced machine learning methods to further refine our under-
standing.

4.7 summary

In this chapter, our objective was to explore the influence of various adaptations on
the quality of compressed point cloud sequences and to construct a MOS model.
To achieve this, we conducted a user study, gathering data on the performance of
different compression methods and pinpointing the critical factors that affect QoE.
Subsequently, we leveraged machine learning techniques to predict MOS. The pro-
posed machine learning model estimates MOS based on content and quantization
parameters. This approach allowed us to gain deeper insights into the impact of
these adaptations on the overall user experience and refine our understanding of the
QoE landscape.





5
C O N T E N T - AWA R E P O I N T C L O U D S T R E A M I N G

In the previous chapter, we examined the different factors that affect the Quality
of Experience (QoE) with point cloud content. Our main goal was to understand

better how various adaptations can impact the overall quality of point cloud content.
Therefore, we conducted a user study that equipped us with a clear understanding of
QoE of point cloud content and its resource demands, which enabled us to develop
a machine learning model to predict QoE scores effectively. This chapter represents
a logical progression from our findings in Chapter 4. Here, we aim to explore how
to integrate semantic and object-level information, focusing on how these elements
can be leveraged to enhance the efficacy and adaptability of point cloud content
streaming.

In this chapter, we will explore the role of semantics and object knowledge in
adapting point cloud content while streaming. We will examine how semantic in-
formation can influence adaptation decisions, from prioritizing particular objects
to optimizing resource allocation. This chapter explores a mechanism for enhanc-
ing content adaptation by considering the contextual information in the point cloud
content. Additionally, we will investigate how this proposed approach impacts the
overall QoE, aiming to meet the requirements of the intended point cloud applica-
tions. These requirements could include accuracy, latency, compatibility with chang-
ing bandwidth, or any other specifications necessary for the intended applications to
function optimally. Through a series of experiments, we will demonstrate the practi-
cal applications of this approach and the benefits it can bring to point cloud content
delivery. We discuss the challenges we may encounter and the exciting possibilities
that arise as we integrate semantics and object knowledge into an adaptive streaming
point cloud system.

As illustrated in Figure 5.1, in this chapter, we investigate the third research goal:
Investigating the impact of incorporating object-related information in point cloud content
streaming on the quality and efficiency of the delivery process compared to conventional
methods. We assume that point cloud content is heterogeneous and can be prioritized
based on specific application requirements. This assumption paves the way for a
thorough investigation of how this prioritization can be integrated into the content
streaming process, which could significantly improve both the quality of the final
output and the delivery system’s efficiency.

The structure of this chapter is as follows. In Section 5.1, we discuss the proposed
adaptive point cloud compression method based on incorporating semantic content
information. We introduce our mechanism for adapting point cloud content based
on the importance of each object. We then elaborate on our approach to integrat-
ing semantic information into the data encoding phase, presenting how we encode
point cloud scans to adapt to changing bandwidth for efficient delivery. We rely on
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Figure 5.1: Point cloud streaming pipeline from the creation of content via sensing to the
consumption by users in an application. In this chapter, we explore the third

research goal: a thorough investigation into the influence of object-related
information inclusion in point cloud content streaming on the delivery process’s

quality and efficiency.

semantic information prediction to assign different criticality levels point-wise. Ad-
ditionally, we discuss how quantization and frame rate can be adjusted to enable
bit rate adaptability. In Section 5.2, we present the evaluation of our approach, con-
solidating the implementation of the proposed method, along with details about
the dataset and metrics used to measure performance compared to the traditional
methods. Finally, we discuss in Section 5.3 the contributions and limitations of the
proposed method.

5.1 methodology : content-aware adaptive point cloud streaming

In this section, we propose a method that enables the adaptive compression of point
cloud objects based on their significance in the scene. This approach’s philosophy
is based on the recognition that different areas of point clouds can exhibit varying
levels of importance. Prioritizing points based on significance allows for efficient re-
source allocation, investing more resources on important points while saving them
on less relevant points [23]. This approach provides dual benefits: first, it reduces the
data volume by minimizing the number of irrelevant points by removing them, thus
optimizing resource usage; second, it maintains or enhances the quality of relevant
points to serve the intended goals of the data for a given application. We leverage se-
mantic analysis, which detects foreground objects and background regions in point
cloud scenes. We categorize foreground object points into stationary and moving
points. For stationary points, we obtain benefits by separating them from the other
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points; this allows us to send them only once and efficiently reconstruct them by
referencing their location in the previous frames, thereby minimizing resource con-
sumption, including bandwidth and computation. Furthermore, moving points are
compressed based on the intended goal of the point cloud data application. For appli-
cations that utilize moving points, fine compression configuration is applied, achiev-
ing compression of relevant objects with minimal quality degradation. Alternatively,
for applications that do not require information about moving points, which may be
considered noise in some cases, a harsher compression configuration is applied, or
these points are eliminated altogether to save resources on these objects.
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Figure 5.2: Our point cloud streaming system consists of a point cloud server (left) and a
client (right). We propose a content-aware adapter that is running on the server.

This approach utilizes different components: a point cloud semantic segmentation
model, a point cloud encoder, and a decoder. First, we use a semantic segmenta-
tion model to analyse the scene by identifying the objects and their semantics in
the point cloud. This information is then used to construct a point cloud adaptor,
which selectively assigns weights to the points in the scene according to their im-
portance, preparing them for efficient delivery. Our proposed content-aware adaptor
aims to enhance the adaptability of point cloud streaming systems and reduce the
bandwidth and computational demands of these streams. The adaptor is designed
as a software component between the point cloud content producer, such as a Li-
DAR sensor or recorded files, and the content encoder, as illustrated in Figure 5.2.
It is used with the encoder to selectively compress and prepare the objects in the
point cloud scene for streaming. Importantly, our design does not require any modi-
fications to the existing encoder, allowing seamless integration into existing systems.
Our proposed adaptor can adjust the bitrate during the encoding process to meet
the desired requirements.
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The server’s point cloud scans undergo various modifications before being deliv-
ered to the client. The point cloud server acquires the scans from the content source
and uses monitoring information about the current client and network conditions
[139] to optimize the quality accordingly. These scans are then passed to the encoder,
which generates the encoded scenes to be sent to the client. The encoder utilizes
weights provided by the adaptor component to compress the point cloud selectively.
Weights are used to assign importance to each point in the point cloud, allowing
adaptive compression.

Our approach is based on the assumption that different regions of the point cloud
scan have distinct importance, influencing their relevance to the user’s interest or the
application’s needs. Thus, it is necessary to compress the entire scan at a different
quality and frame rate. To address this, we aim to reduce the transmitted point cloud
sequence bitrate by allowing for varying update frequencies and allocating different
amounts of bits to various objects in each point cloud scan based on their importance.
This is achieved by assigning different criticality levels to objects (set of points) in the
point cloud. A primary component of the proposed method involves determining
the criticality levels of different objects in the point cloud. This information is then
utilized to optimize the compression and delivery of the point cloud.

The proposed adaptive point cloud compression method is not limited to content
with multiple objects. It can also be applied to single-object point clouds, as different
areas of an object can exhibit varying levels of importance. For instance, in a single-
object point cloud featuring a singer, the singer’s face will likely be the most visually
salient area for viewers, justifying higher prioritization during compression.

5.1.1 Criticality Assignment

Traditionally, point cloud compression has primarily focused on preserving the in-
tegrity and quality of the point cloud data [200], often to optimize the quality [171,
192, 204]. However, from a practical standpoint, the content of a point cloud can vary
greatly depending on the specific application. As such, it is important to consider
the intended purpose of the point cloud data at the receiving end when designing
adaptive streaming mechanisms. For example, consider exchanging point cloud data
between multiple vehicles equipped with 3D sensors from various locations [197].
These sensors are inherently limited by susceptibility to occlusion and loss of detail
for distant objects. Combining the vehicles’ individual views allows for a more com-
prehensive and higher-resolution view, significantly improving perception quality
for the participating vehicles [197]. To further clarify this matter, in the case of point
cloud data intended for localization tasks, it may be more beneficial to remove points
from moving objects during the encoding phase in order to decrease the number of
noisy points, improve localization accuracy, and save on bitrate, as demonstrated by
Zhao et al. [200]. On the contrary, the optimal approach for applications involving
point clouds in traffic surveillance may involve removing points related to stationary
objects during the encoding phase. This step can effectively decrease the number
of irrelevant points, ultimately improving the accuracy of the intended surveillance
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Figure 5.3: Detailed view of our proposed content-aware adapter. The point-wise semantic
segmentation allows assigning a criticality level to each point (C1, C2, and C3

are criticality levels in the figure). The specific assignment of criticality levels to
object classes depends on the specific application in question. This enables the

encoder to assign different quantization levels and/or frame rates to points
depending on their criticality level. X means no data.

task. Therefore, our proposed approach shifts the focus from maximizing Level Of
Detail (LoD) to optimizing point cloud content for specific use cases.

As part of our approach, we assign different criticality levels to objects’ points in
the point cloud based on their importance to the user’s attention or the informa-
tive part of the scan. Our strategy is to assign more weight to the most informative
objects essential for the tasks being carried out by the point cloud application. By
considering the objectives and semantics of the intended point cloud-based appli-
cation, we can ensure that the reduction in quality primarily impacts less relevant
points while preserving the most critical information during point cloud data com-
pression. The proposed approach allows for flexibility in assigning criticality lev-
els to the point cloud content, as different levels can be offered depending on the
goals and semantics of the planned point cloud-based application. This approach
enables content-aware compression, resulting in higher efficiency compared to tradi-
tional blind compression methods. This ensures that crucial information is preserved
while minimizing transmitted data. Therefore, we propose incorporating metadata
associated with the point cloud to indicate the varying levels of importance of dif-
ferent objects within the point cloud. One example of such information could be a
hierarchy of the objects’ criticality in the scene. By leveraging this information, we
establish criticality classes for the objects in the point cloud. For instance, an automo-
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tive point cloud scan may comprise multiple objects, such as vegetation, buildings,
and other vehicles. While some of these objects may be essential for the intended
task, such as identifying other vehicles on the road, other stationary objects, such as
vegetation and buildings in an urban street scene, may not contribute to the task. By
assigning criticality classes based on this information, we can selectively compress
the most informative objects while discarding the less important ones, thus reducing
the transmitted data and improving the overall performance [22, 197].

One approach to obtain semantic information for point cloud-based content is to
utilize deep learning models. There are various methods for analysing semantic in-
formation of point clouds [30, 61, 188, 195]. However, to our knowledge, this is the
first work demonstrating how to utilize this information in adaptive point cloud de-
livery. Figure 5.3 provides an overview of the criticality assignment process. Here, a
pre-trained semantic segmentation model is used to semantically partition a scene
with multiple objects into different criticality levels. Each point in the scene is then as-
signed a criticality label based on the semantic information obtained from the model.
This enables selective compression of the point cloud data, with the most informa-
tive objects encoded in a high quality level and the less important ones assigned a
lower quality. This ultimately may lead to more efficient point cloud delivery.

(A)                                                    (B)                                            (C) 

Figure 5.4: Visualization of one scan of the SemanticKITTI dataset: (A) The scan with no
annotation, (B) The scan with annotation, (C) The scan after adaptation, in this

specific case, only the most critical objects, i.e., cars (or pedestrians), were
considered.

As seen in Figure 5.4 (A) and (B), an example of the difference between an au-
tomotive point cloud scan before and after applying semantic segmentation can be
observed. Figure 5.4 (A) displays a raw scan, while Figure 5.4 (B) shows the same
scan after applying semantic segmentation. In Figure 5.4 (B), each point in the scan
belonging to a car object is coloured blue, and each point belonging to a road is
coloured pink. In Figure 5.4 (C) displays only the critical objects in the scan, which
are cars in this case. By gaining this point-wise semantic knowledge, we can estimate
the relevance of each object in the scan, which allows for more efficient and effective
point cloud compression and delivery. This semantic segmentation provides a way
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to identify the objects present in the point cloud scan and their relative importance,
which can then be used to selectively compress the data. By assigning higher critical-
ity levels to the more informative objects and lower levels to the less important ones,
we can effectively transmit only the most relevant data, allowing optimized bitrate
utilization.

5.1.2 Adaptive Quantization and Frame-rate

Our goal is to adapt the content bitrate to the available bandwidth while ensuring
that the overall quality and the intended task are not compromised when delivering
point cloud streams to users. To achieve this, during the exchange of point cloud
scans, the sender adjusts the bitrate to match the network conditions. By reducing
the bitrate when the network connection deteriorates and increasing the bitrate to
provide a richer experience when the network connection improves. For instance,
cars with limited network connectivity, streaming point clouds effectively requires
reducing the bitrate. With our proposed approach, this reduction prioritizes details
of pedestrians, vehicles, and buildings, while less critical background elements can
undergo heavier compression. The rate control component of the encoder is respon-
sible for allocating bits to scans under the available bit budget. To achieve a balance
between the average encoding bitrate and the bandwidth requirements, we propose
to use three levels of granularity for allocating bits: (i) group of scans level, (ii) scan
level, and (iii) object level. Group of scans level refers to adjusting the bitrate for
a group of point cloud scans together. Scan level involves adjusting the bitrate for
individual point cloud scans, allowing for finer-grained control based on the content
of each scan. The object level is the most granular level, where the bitrate is adjusted
for specific objects within a point cloud scan, enabling selective compression based
on object importance. The greater the granularity, the higher the level of bitrate con-
trol, which allows for a more fine-tuned adaptation of the point cloud streams to the
changing network conditions. By increasing the granularity, the encoder can better
understand each object within the point cloud and quantize its data while maintain-
ing the overall quality. Therefore, knowledge of the weights or content awareness
is a piece of crucial information that can be exploited to increase the granularity of
content bitrate control. However, it is important to note that this increased content
awareness also adds complexity to the rate control procedure, as bits must be dis-
tributed in a way that accurately represents the importance of each object while still
maintaining the target bitrate and avoiding large spatial and temporal fluctuations.

To effectively adapt the bitrate requirements, our approach allows non-informative
objects in the point cloud to be updated infrequently, use low quantization levels, or
even be omitted entirely, depending on the application’s needs. By assessing the
relevance level of each object within a streamed scene, we can make more informed
decisions about compressing and transmitting the data, resulting in a more efficient
and adaptable point cloud delivery. This approach of selectively compressing the
point cloud data based on the relevance of each object allows for more efficient use
of resources and ensures that the most important information is transmitted without
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compromising on quality or the intended task. In this work, our primary focus will
not be on the rate control algorithm but rather on how understanding the content
of the point cloud can help achieve the adaptability of the point cloud streams. By
identifying the relevance level of each object within a point cloud, we can make more
informed decisions about compressing and transmitting the data, resulting in a more
adaptable point cloud delivery. While the rate control algorithm plays a crucial role
in achieving this goal, our focus will be on demonstrating how understanding the
point cloud’s content can help achieve more efficient and adaptable streaming.

To prepare objects present in a point cloud scene for adaptation by the encoder, we
propose the following approach. First, we define a priority hierarchy for the objects
present in the scene. Next, we use semantic segmentation techniques to partition the
scene into its semantic objects. Finally, we assign appropriate quantization and frame
rate amounts to each criticality class based on the semantic information obtained
from the segmentation process.

In summary, our approach involves identifying the relative importance of each ob-
ject in the point cloud and using this information to selectively compress the data,
ensuring that the most important information is transmitted while adapting the data
bitrate to the available bandwidth. In this work, we aim to investigate how under-
standing the content of the point cloud and utilizing this information can lead to
more efficient and adaptive delivery. By adapting the compression and transmission
of the data based on the relative importance of each object, we can ensure that the
most crucial information is transmitted. This ultimately may result in more efficient
and effective point cloud delivery, adapting to changing network conditions while
maintaining the overall quality and intended task of the point cloud data.

5.2 evaluation

Our proposed approach, integrating semantic information with a content bitrate
adaptation mechanism to enhance point cloud delivery, requires evaluation. To achieve
this, we utilize the SemanticKITTI point cloud datasets [18], providing a dataset of
semantically annotated point cloud scans as the foundation for our evaluation. This
section will introduce our scenario and experimental setup, shaping the evaluation
process. We will demonstrate the performance of our proposed content bitrate adap-
tation method and analyse its efficiency and runtime compared to a baseline ap-
proach. A detailed overview of the implementation details of our proposed method
will also be provided. The experimental setup includes a description of the dataset
and hardware, the parameters, the settings used for the implementation, and any
relevant details for result reproduction.

5.2.1 Evaluation Dataset

This study utilizes the SemanticKITTI dataset [18], a large-scale, real-world point
cloud dataset originally designed for semantic scene understanding. It provides 22

consistent point-wise semantic annotated point cloud sequences comprising around
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43k scans. The data originates from a rotating automotive 3D LiDAR sensor, which
covers a 360-degree field of view with a frequency of 10 scans per second. However,
it should be noted that the back-facing part of the objects is always occluded. Gen-
erated point cloud scans include multiple street objects. Figure 5.4 (A) illustrates a
birds-eye perspective of a LiDAR scan, where a variable number of urban objects
surround the invisible LiDAR sensor in the center of the image. The dataset includes
28 different urban object classes: car, person, motorcycle, building, sidewalk, and
vegetation. Each urban object can be identified as one of the 28 classes, such as dif-
ferent types of ground, structure, vehicle, nature, and human. Each point in the point
cloud has attributes that include its (x, y, z) coordinates in a 3D space. The dataset
provides annotated, real-world point cloud data that can be used to evaluate and test
the performance of our proposed method.

We did not consider a video point cloud dataset similar to what we used in Chap-
ter 4 because we need a semantically labelled dataset for point cloud video sequences.
Therefore, we opted for a LiDAR-based dataset, which is more common in automo-
tive use cases [111]. For example, consider exchanging point cloud data between
vehicles equipped with 3D sensors from various locations [77, 117, 197]. These sen-
sors are inherently limited by susceptibility to occlusion and loss of detail for distant
objects. To address these limitations, raw sensor data from multiple vehicles from
various locations can be shared with a nearby edge server, so objects occluded in the
views of some vehicles can be easily perceived by others, like, for example, blind
spots. Other researchers, such as in [31], tried to share processed data, but these
approaches are limited to data granularity, meaning that missed detections will still
be missed after sharing. Additionally, shared, processed data need more generality.
Therefore, sharing the raw data in a universal format that is compatible with various
applications and combining sensor data can lead to a higher resolution and over-
come loss of detail for distance objects. A shared server then fuses the individual
views into a more comprehensive and higher-resolution representation, significantly
enhancing perception quality for all participating vehicles [197]. Another use case
involves exchanging raw point cloud data between river vessels to enhance the per-
ception of their surroundings [56]. The case study of automotive point cloud data
[111] is chosen because it represents a real-world scenario with multiple objects and
complex scenes, thus providing a meaningful and challenging tool for evaluating the
proposed method. The case study results will provide insights into the performance
of the proposed method in a real-world scenario and demonstrate its effectiveness
in adapting the point cloud data transmission to the changing network conditions
while maintaining the overall quality and intended task.

5.2.2 Semantic Segmentation Deep Learning Model

To achieve adaptability in point cloud delivery, the proposed method utilizes real-
time point-wise semantic prediction. This involves employing a deep learning model,
namely SalsaNext [33], to analyse the semantic content of the point cloud and as-
sign criticality labels to individual points within the scene. These criticality labels
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indicate the relative importance of each point, enabling the system to prioritize the
transmission of highly relevant information while reducing the bitrate for less critical
elements.

Several modifications have been made to the original architecture to adapt the
SalsaNext model for point-wise semantic prediction of criticality levels: first, the
input to the model is modified to accept criticality labels instead of object labels. This
allows the model to focus on identifying the relative importance of each point rather
than classifying them into specific object categories. Secondly, a new training dataset
is created, where each point in the point cloud is assigned a corresponding criticality
label. This training data is used to train the model from scratch, enabling it to learn
the relationships between point features and criticality levels. Lastly, the output layer
of the deep neural network is modified to predict criticality levels instead of object
classes. This ensures that the model’s output directly corresponds to the desired
information for adaptable point cloud delivery. By implementing these modifications,
the SalsaNext model is effectively transformed into a point-wise semantic prediction
tool that can analyse the content of the point cloud scan and assign criticality labels
to individual points.

5.2.3 Evaluation Metrics

To assess the feasibility and effectiveness of our proposed method in the context
of exchanging automotive point cloud data, the evaluation of our approach consid-
ers two key aspects: (1) The communication cost metric is the average data volume
exchanged between two nodes in megabytes per scan. This metric allows us to evalu-
ate the efficiency of our method in terms of the amount of data transmitted between
the sender and the receiver. (2) The data processing latency in milliseconds per scan.
This metric allows us to evaluate the time it takes to process the point cloud data and
prepare it for transmission. By considering these two aspects, we can assess the over-
all performance of our proposed method in terms of communication cost and data
processing latency, which are important factors in real-world point cloud streaming
applications.

5.2.4 Baseline Approaches And Criticality Level Settings

To evaluate the performance of our proposed method, we use the communication
cost and data processing latency metrics mentioned above. Additionally, we com-
pare our method against a baseline that encodes the scans without considering the
content semantics. In order to do this, we use two common point cloud encoding
mechanisms, Draco1 and G-PCC2, in our experiments.

The experiment setup for Draco and G-PCC is summarized in Table 5.1. This table
summarizes the parameters and settings used for the experiments, including the en-
coder configurations and the version used.The parameters section includes various

1 https://github.com/google/draco last accessed: December 2, 2024.
2 https://github.com/MPEGGroup/mpeg-pcc-tmc13 last accessed: December 2, 2024.

https://github.com/google/draco
https://github.com/MPEGGroup/mpeg-pcc-tmc13
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Method Version Parameters

Draco DracoPy 1.2.0
Compression level=1

Quantization Parameter (QP) = 15 / 12 / 10

G-PCC release-v 14.0 geomTreeType = Octree

positionQuantisationEnabled = 1 (True)

sequenceScale = 0.100

codingScale = 0.100

inputScale = 1000

transformType = Prediction

srcUnit = Metre

srcUnitLength = 1

outputUnitLength = 0.001

neighbourAvailBoundaryLog2 = 8

outputBinaryPly = 1 (True)

Table 5.1: Experiment setup parameters

settings used during the compression process. For the Draco method, the compres-
sion level is set to 1, indicating a low compression ratio but with the benefit of faster
decompression. Different parts of the point cloud use different Quantization Param-
eter (QP) values. For example, we use QP values of 15, 12, and 10 to represent three
quality levels: low, medium, and high. For the G-PCC method, the geometry tree
type is set to Octree, a common choice for 3D point cloud compression. Position
quantization is enabled, which helps reduce the compressed data size. The sequence
and coding scales are set to 0.1, and the input scale is set to 1000. The transform type
is set to Prediction, and the source and output units are set to Metre with a source unit
length of 1 and an output unit length of 0.001. The neighbour availability boundary,
log2, is set to 8, defining the volume within which octree nodes are available for occu-
pancy contextualization and intra-occupancy prediction. Finally, the output binary
Polygon File Format (PLY) is enabled, indicating that the output will be in binary
PLY format. Default values are applied for parameters not listed in Table 5.1. For
more details, please refer to the official documentation available online3. By compar-
ing our method against the baseline, the two commonly used encoding mechanisms,
we can evaluate its performance and demonstrate its effectiveness in improving the
adaptability and efficiency of point cloud data transmission.

Since the dataset has a known number of object classes, we create a three-level
hierarchy, i.e., criticality levels, based on object relevance. This is exemplified by the
most relevant objects, such as cars and pedestrians, which fall under criticality 1.
Road objects, like road signs and side-walks, are less critical and fall under criticality
2. The last critical level, i.e., criticality 3, includes all other object classes, including
buildings and vegetation. Figure 5.5 illustrates these criticality levels in a priority
hierarchy. The higher the criticality, the more relevant this example hierarchy is, and

3 https://github.com/MPEGGroup/mpeg-pcc-tmc13/blob/master/doc/README.options.md last accessed:
January 30, 2024.

https://github.com/MPEGGroup/mpeg-pcc-tmc13/blob/master/doc/README.options.md
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Figure 5.5: Utilizing the object’s level of dynamicity in an automotive scan exemplifies that

the priority of objects can be ranked in a hierarchy.

fewer requirements like bandwidth and computation are needed. Each criticality
level includes the previous one; for example, criticality 2 contains the classes of criti-
cality 1 besides its object classes. We attach one of the three criticality levels to each
object class and use this as the relevance indicator. The hierarchy, which should be
defined in advance, is application-dependent and ought to reflect the relevance of
points within the transmitted data.

As a visual validation, referring back to Figure 5.4 (C), which shows a scan after
applying adaptation with only objects belonging to criticality 1. This leads to signifi-
cant bandwidth savings assuming that removing less relevant objects does not com-
promise the intended task. To illustrate this further, Figure 5.6 shows a point cloud
sequence throughout around 4017 scans. The figure illustrates the bandwidth re-
quirements for each class. By decomposing the original stream into multiple streams,
our approach enables adaptation, allowing data to be adapted based on resource
constraints, such as bandwidth in this case. This enables each cumulative semantic
group of points to have different bandwidth requirements. This highlights the impor-
tance of assigning different criticality levels to different objects points, as it enables
adaptivity in point cloud delivery and ensures that the most important objects are
transmitted with high quality. In contrast, less important objects are transmitted with
lower quality or omitted altogether, depending on the network conditions.

5.2.5 Evaluation Results and Comparisons

This section is dedicated to the experimentation of the proposed method regarding
our implementation. In the experimental study, we apply our approach to sequence
number 8 from the SemanticKITTI dataset [18]. This sequence comprises 4071 scans,
each with an average size of 1.34 megabytes and a standard deviation of 76 kilobytes.
To evaluate the performance of our approach, we measure the scan size and the
encoding and decoding latency time (LT) for each criticality group.

Bandwidth Savings

Our approach reduces the transmitted point cloud sequence bitrate by enabling dif-
ferentframe rates or allocating different amounts of bits to scan points according to
the assigned criticality level of the scan points. This is compared to a baseline sce-
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Figure 5.6: Bandwidth required by the points of each criticality level. Enable point cloud
sequence adaptability by applying semantic segmentation. Allowing each

cumulative semantic group of points to require a different bandwidth. This data
was collected throughout around 4017 scans. The bandwidth fluctuates due to

changing point density generated at a given point in time.

nario, where the scans are compressed with the same frame rate and a quantization
parameter.

To demonstrate the effectiveness of our approach, we start by showing the band-
width saving that can be achieved by applying different frame rates based on the sig-
nificance of the transmitted points. The Figure 5.7 compares bandwidth usage across
various data streams before and after implementing adaptive frame rates based on crit-
icality levels. It shows the bitrate achieved when the frame rate is equal to 10 for all
points and when the frame rate is equal to 10, 5, and 2 for criticality 1, 2, and 3 points,
respectively. The X-axis represents time in seconds (ranging from 0 to 400 seconds),
while the Y-axis denotes bandwidth in MBit/s. The c1 (Criticality Level 1) stream,
representing data with the highest criticality, maintains a bandwidth of around 2

MBit/s in both figure segments, indicating no applied adaptation. In the c2 stream,
in the left part (without adaptation), this stream’s bandwidth fluctuates around 5

MBit/s. After applying adaptation (right part), the bandwidth reduces to approxi-
mately 3 MBit/s due to a frame rate decrease from 10 to 5 frames per second. In the
c3 steam, looking at the left part, the bandwidth of the stream fluctuates around 12

MBit/s. Following adaptation, the bandwidth significantly drops to around 3 MBit/s
due to a harsher reduction in frame rate, from 10 to 2 frames per second. The joint
stream represents the combined bandwidth usage of all three streams (C1 + C2 +
C3). Without adaptation, the total bandwidth fluctuates around 20 MBit/s, while af-
ter adaptation, the joint bandwidth drops significantly to approximately 7 MBit/s,
showcasing substantial savings. Adapting frame rates based on criticality levels leads
to significant bandwidth savings, particularly for less critical data streams. Among
them, the c3 stream experiences the most substantial reduction in bandwidth due to
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the applied harsh adaptation. The jointly represented stream demonstrates the over-
all effectiveness of the approach by exhibiting a substantial drop in bandwidth after
adaptation.
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Figure 5.7: Bitrates savings by adopting frame rates 10, 5, and 2 for criticality 1, 2, and 3

points, respectively, against fixed frame rate for all points.
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Figure 5.8: Bitrates savings by adopting quantization parameters (QP) 15, 12, and 10 for
criticality 1, 2, and 3 points, respectively, against fixed quantization parameter 15

for all points.

Next, we show the bitrate savings achieved by applying different quantization lev-
els per criticality points compared to a baseline with a fixed quantization parameters
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for all the scan points. The compression algorithm employed here is Draco. In Fig-
ure 5.8, we plot the bitrate achieved when the quantization parameters is equal to 15

for all points, and when it is equal to 15, 12, and 10 for criticality 1, 2, and 3 points,
respectively. The figure shows a significant data reduction in the bitrates of the trans-
ferred scan’s overall stream. Additionally, As in the previous adaption, C1 stream
bandwidth usage remains constant at around 2 MBit/s in both parts of the figure,
indicating no adaptation applied. C2 stream without adaptation (in the left part), its
bandwidth fluctuates around 5 MBit/s. After applying adaptation (right part), the
bandwidth is reduced to approximately 2 MBit/s due to a decrease in quantization
level from 15 to 12. C3 stream, in the left part, its bandwidth fluctuates around 12

MBit/s. After adaptation, the bandwidth drops significantly to around 3 MBit/s due
to a harsher quantization level (from 15 to 10). Jointly stream represents the com-
bined bandwidth usage of all three streams (c1 + c2 + c3). In the left part (without
adaptation), the bandwidth fluctuates around 20 MBit/s. After adaptation, the joint
bandwidth is significantly reduced to approximately 6 MBit/s, demonstrating the
overall effectiveness of the approach, this method provides fine-grained control over
the quality of the point cloud based on criticality levels. It allows for dynamic adapta-
tion of specific parts of the point cloud, enabling transitions between different frame
rates (e.g., from 10,10,10 FPS to 10,5,2 FPS). This ensures that all data is transmitted
(if necessary) while prioritizing the more important sections.
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Figure 5.9: Bitrates savings by adopting frame rates (FPS) 10, 5, and 2, and quantization
parameters (QP) 15, 12, and 10 for criticality 1, 2, and 3 points, respectively,

against fixed frame rate and quantization parameters for all points.

We also show in Figure 5.9 the bitrate savings achieved by applying different
quantization levels and frame rates per criticality points in comparison to a base-
line with fixed quantization parameters and frame rate for all the scan points. These
figures demonstrate that our content-aware adaptation approach can achieve signif-



76 content-aware point cloud streaming

Enc. Baseline (FPS=10) Enc. + overhead (FPS=10/5/2) Dec. Baseline (FPS=10) Dec. (FPS=10/5/2)
0

200
400
600
800

1000
1200
1400
1600
1800

La
te

nc
y 

(m
s)

634 ms
219 ms

1658 ms

692 ms

-59 %1693 ms

648 ms
920 ms

396 ms

-57 %363 ms
-8 %

363 ms
-41 %

Draco
G-PCC
Inference

Figure 5.10: A comparison of encoding and decoding latency under different frame rates.
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all frame rates for the evaluated sequence of the dataset. The inference latency

attributed to criticality assignment.

icant bitrate savings compared to the classic Draco baseline. This figure compares
the bandwidth usage of different data streams before and after applying adaptive
quantization levels and frame rates based on criticality levels. C1 bandwidth usage
remains constant at around 2 MBit/s throughout the figure, as no adaptation is ap-
plied (fixed quantization level of 15 and frame rate of 10). For the C2 stream, the
bandwidth in the left part (without adaptation) fluctuates around 5 MBit/s, with
original values of a 15 quantization level and a 10 frame rate. In the right part (with
adaptation), the bandwidth reduces to approximately 3 MBit/s due to a combined
adaptation of decreased quantization level (15 to 10) and lower frame rate (10 to 5).
For the C3 stream, the bandwidth in the left part (without adaptation) fluctuates
around 12 MBit/s, with original values of a 15 quantization level and a 10 frame rate.
In the right part (with adaptation), the bandwidth significantly drops to around 1

MBit/s due to a combined adaptation of a harsher quantization level reduction (15

to 10) and a lower frame rate (10 to 2). Overall, our approach outperforms the classic
Draco baseline by achieving 65% to 82% lower bitrates.

Influence on Computational Resources

Our approach reduces the transmitted point cloud sequence bitrate and improves the
encoding and decoding latency time by applying different frame rates for the points
based on their assigned criticality level. This is demonstrated in Figure 5.10, where
we compare the encoding and decoding latency of two common point cloud encod-
ing mechanisms, Draco and G-PCC, under different frame rates. Encoding latency is
the time to compress a point cloud frame, and decoding latency is the time to decom-
press it. The results show that using adaptive frame rates results in lower latency than
a baseline scenario with a fixed frame rate for all points. Additionally, it is worth
noting that the average SalsaNext inference time per scan is 4560 milliseconds on
the CPU and 36.19 milliseconds on the GPU. This further highlights the potential of
our approach in reducing computational requirements when adaptation is necessary
to meet computational constraints. It is worth mentioning that when full quality is
used, our method might introduce unnecessary inference latency. In that case, the
inference component can be deactivated.
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Figure 5.11: A comparison of average PSNR under different adaptations. Higher values are
better. The first bar from the right represents the PSNR when using fixed frame

rate and fixed quantization, serving as a reference point.

The figure analyses how compression techniques impact processing speed, consid-
ering fixed and adapted frame rates. Draco and G-PCC are compared at a fixed frame
rate (10 FPS) for encoding and decoding times. Draco encodes faster (634 ms) than
G-PCC (1693 ms), but G-PCC decodes quicker (920 ms) compared to Draco (1658

ms). Interestingly, adapting the frame rate (10/5/2 FPS) with our exemplary criti-
cality levels (C1, C2, C3) significantly improves the average encoding times (Draco:
from 634 seconds to 582 seconds, G-PCC: from 1693 seconds to 1011 seconds) and
decoding times (Draco: from 1658 seconds to 692 seconds, G-PCC: from 920 seconds
396 Y seconds) for both methods. This highlights the potential benefits of frame rate
adaptation, even when factoring in the overhead generated by semantic segmenta-
tion inference calculations.

Quality Evaluation

To evaluate the impact of our proposed method on the quality of the scanned point
cloud data, we measure the quality using Peak Signal-to-Noise Ratio (PSNR). PSNR
is a widely-used objective quality measurement tool4 that compares the original and
modified point cloud data. By using the PSNR metric, we can quantify the difference
in quality between the original and the adapted point clouds. This allows us to
understand how the criticality-based adaptations affect the quality of the point cloud
data and how it compares to the baseline scenario where no adaptations are applied.

Maintaining high quality for critical points is crucial, but it is also good to main-
tain decent quality for less important points. We propose a technique that can be
applied at the receiver side to mitigate the loss of quality due to a reduced frame
rate. The technique involves introducing in-between frames, which are created by
estimating the positions of points between two actual frames using the relative posi-
tion and orientation of the LiDAR. The SemanticKITTI dataset contains information
on the LiDAR’s relative location and orientation, which can be used to generate
these in-between frames. Additionally, using the LiDAR’s position and orientation,
piggybacked on higher criticality frames, has minimal impact on bandwidth and
computing cost.

4 https://github.com/MPEGGroup/mpeg-pcc-tmc2 last accessed: February 1, 2024.

https://github.com/MPEGGroup/mpeg-pcc-tmc2
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In Figure 5.11, we present the average PSNR measurements achieved by our ap-
proach across the entire point cloud sequence under different adaptations. The re-
sults demonstrate that the overall quality of the point cloud data, as estimated by
the PSNR metric, remained relatively high despite the adaptations made to the data.
This results from our content-aware approach, which prioritizes the preservation of
high-criticality points while still maintaining good quality for less relevant points.

Implementation Details

Our point cloud semantic segmentation model implementation was built using Python
3.7 and PyTorch 1.1. The training was conducted on a server running Ubuntu 18.04,
equipped with two NVIDIA RTX 2080 GPUs and an Intel Xeon Silver 4112 CPU.
The model inference was executed on a Windows 10 based system, using a single
RTX 3080 Ti in combination with an AMD Ryzen 7 5800X CPU. The model’s archi-
tecture is mainly based on SalsaNext, with some modifications to adapt it to our
specific use case. We reduced the batch size to six to optimize the model’s perfor-
mance and turned off the K-Nearest Neighbors (KNN) post-processing. The original
label configuration was replaced with criticality labels instead of object labels. The
training process was carried out over 150 epochs, with an initial learning rate of 0.01

using Stochastic Gradient Descend (SGD). For visualizing the LiDAR point clouds,
we leveraged the API for SemanticKITTI 5. All scripts and resources used to repro-
duce the results of this paper will be made publicly available on GitHub 6 for further
study and replication.

5.3 discussion and conclusions

In this section, we discuss the results and interpret findings obtained from enabling
point cloud adaptation based on content awareness. In this chapter, we addressed
the research goal: Investigating the impact of incorporating object-related information in
point cloud content streaming on the quality and efficiency of the delivery process compared
to conventional methods. We proposed a content-aware adaptor that integrates seman-
tic and object-level information. Our method enables fine-grained control over the
quality of the point cloud, depending on the criticality levels originating from user
preferences or specific application requirements. It allows for dynamic adaptation of
certain parts of the point cloud (e.g., transitioning from 10,10,10 FPS to 10,5,2 FPS)
so that the overall data is still transmitted if necessary, while prioritizing the impor-
tant parts. This fine-grained control allows for bandwidth reduction by allocating
higher bitrates to critical objects for enhanced quality, while less critical objects are
assigned lower bitrates. We evaluated our proposed adaptor using real-world data
and exemplary criticality assignment, resulting in significant bandwidth savings and
latency improvements compared to using fixed frame rate and fixed quantization

5 https://github.com/PRBonn/semantic-kitti-api last accessed: December 2, 2024.
6 https://github.com/yaseenit/Content-Aware-Adaptive-Point-Cloud-Delivery.git last accessed:

December 2, 2024.

https://github.com/PRBonn/semantic-kitti-api
https://github.com/yaseenit/Content-Aware-Adaptive-Point-Cloud-Delivery.git
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level for the whole point cloud. Our approach effectively lowered the required bi-
trate of transmitted point cloud sequences by adjusting frame rates and quantization
levels based on assigned criticality levels. This results in bandwidth savings, partic-
ularly for less critical data streams. With our exemplary criticality assessment, our
results showed that our approach can achieve significant bitrate savings from 65%
up to 82% compared to classic Draco baseline. We further showcased the benefits of
our content-aware adaptation approach by illustrating its positive effects on encod-
ing and decoding latency. By adjusting frame rates based on criticality, we achieved
lower latency, enhancing the processing speed for point cloud streaming. For encod-
ing, our approach achieved a latency reduction of 8% for Draco and 41% for G-PCC,
with our exemplary criticality assessment. Similarly, for decoding, our approach re-
sulted in a latency reduction of 59% for Draco and 57% for G-PCC. Our findings
emphasize two key points: (1) adaptive frame rates lead to decreased encoding and
decoding latency compared to a fixed frame rate approach, resulting in faster pro-
cessing times. (2) despite the additional overhead of criticality assignment, frame
rate adaptation enhances overall processing speed, potentially reducing the compu-
tational resources required for streaming. Additionally, we addressed the potential
impact of our content-aware adaptation on point cloud data quality. Our approach
prioritizes maintaining high PSNR for critical points while permitting some quality
reduction in less critical areas to balance bandwidth savings with acceptable qual-
ity levels. To mitigate potential quality loss, we introduced in-between frames by
leveraging relative position and orientation information from Light Detection and
Ranging (LiDAR) to estimate missing points between actual frames on the receiver
side. This technique offers improved visual quality in areas with less critical data
while incurring minimal overhead. The overall PSNR of the adapted scans remains
relatively close to the PSNR of the original scans despite the adaptations, indicating
successful quality preservation through prioritization and in-between frame inter-
polation. Overall, our content-aware adaptation proves to be a valuable mechanism
for optimizing point cloud streaming efficiency, including bandwidth and computa-
tional resources, without significantly compromising quality.

While the presented findings presented offer valuable insights, it is important to
acknowledge the limitations of this work. For example, the effectiveness of this ap-
proach relies heavily on accurately assigning criticality levels to different objects.
Consequently, if the semantic segmentation model performs poorly, this could result
in incorrectly assigned criticality levels and yield undesirable outcomes. Moreover, a
limitation relates to the need for a manual definition of the hierarchy of importance
within the streaming system. The other limitation concerns computational cost. As-
signing criticality levels and potentially performing real-time adaptation can add
computational overhead, impact processing speed, and potentially negate some of
the efficiency gains. Also, the overall system becomes more complex with additional
components for criticality assignment and adaptation. This can make it more chal-
lenging to implement and maintain. While the approach aims to minimize quality
loss, reducing the bitrate and frame rate for less critical areas will still decrease visual
quality. This might be unacceptable for specific applications requiring high fidelity
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across the entire scene. The technique of introducing in-between frames to improve
visual quality might introduce artefacts (distortions or inconsistencies) if the estima-
tion of missing points is not accurate. The suggested content-aware model focuses
solely on encoding and decoding each raw input frame, implying that two consec-
utive frames are transmitted similarly without considering the motion and spatial
relationships between them. A limitation could also appear when streaming in full
quality. In this case, point cloud analysis, i.e. criticality assignment, is not required,
and if it is kept active, it introduces inference latency without any significant gains.
In addition, the current evaluation relies on a specific real-world dataset. This dataset
might need to be more generic to represent the full range of potential use cases for
point cloud streaming. For example, the dataset might not include the requirements
of virtual reality applications, which often demand high fidelity across the entire
scene.

Future work could address some of these limitations. It could use machine learn-
ing techniques to dynamically assign criticality levels based on real-time context.
This could involve analysing the scene content, user preferences, and application
requirements to adjust criticality on the fly. It can also develop mechanisms to in-
corporate user feedback into criticality assignments. This could allow users to spec-
ify which objects they consider important, improving personalization. Future work
could involve evaluating the overall perceived quality when the adapted scene has
different qualities within it. Evaluating our proposed approach using datasets that
reflect various use cases, including virtual reality, could also a future work direction.
This will provide a more comprehensive understanding of the approach’s effective-
ness in different scenarios.

5.4 summary

The chapter investigates the impact of incorporating object information on the qual-
ity and efficiency of point cloud delivery compared to conventional methods, speci-
ficity, Draco and Geometry codec based Point Cloud Compression (G-PCC). A content-
aware adaptor is proposed, which integrates semantic and object-level details. The
method prioritizes critical objects based on user preferences or application require-
ments, reducing bandwidth and improving latency. Real-world data evaluation demon-
strates significant bandwidth savings and latency improvements compared to tradi-
tional approaches. The approach effectively reduces required bitrate transmission
by adjusting frame rates and quantization levels , particularly for less critical data
streams, based on a criticality assessment using a deep learning model. Furthermore,
the method positively affects encoding and decoding latency, enhancing processing
speed. Overall, this work represents the initial step towards demonstrating the feasi-
bility of content-aware adaptation for enhancing point cloud delivery efficiency.
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C O N C L U S I O N S A N D O U T L O O K

To conclude our work, we provide a summary of the content covered in the previ-
ous chapters and highlight the main contributions of this research. Additionally,

we identify potential areas for future work.

6.1 summary of the thesis

In Chapter 1, we described the challenges for point cloud delivery and provided
insight into the proposed methodology for adaptive point cloud delivery. We moti-
vated the potential benefits of using the semantic information of the streamed con-
tent. Following the motivation and challenges, we described the research goals re-
lated to the aforementioned task in detail. In Chapter 2, the background and context
of the research are established. A comprehensive analysis of relevant literature to
our contributions is presented. In Chapter 3, we proposed a tool to evaluate adap-
tive point cloud streaming. In Chapter 4, we addressed the first and second research
goals. A user study was conducted to evaluate compressed point cloud sequences.
This study helped to understand the trade-offs between resource requirements and
perceived quality. Additionally, a QoE model was developed based on the user study
results. In Chapter 5, the third research goal was investigated. The focus was on
the impact of incorporating object-related information within point cloud content
streaming. The research explored how this approach affects the quality and efficiency
of the delivery process. In the following, we present the contributions of this thesis.

6.1.1 Contributions

For the first research goal: "Investigating the impact of compression-related distortions
and reduced frame rate on the quality of point cloud objects". This work established an
understanding of how different adaptations affect the quality of compressed point
cloud sequences. This knowledge is a prerequisite for creating adaptive methods
for streaming such sequences. Therefore, we studied how factors like quantization
levels, distances from the camera, and frame rates influence point cloud quality per-
ception. To grasp the user’s experience, we conducted a subjective study, comparing
two popular compression methods, Draco and Video codec based Point Cloud Com-
pression (V-PCC), to see how they balance resource usage and quality levels. We
found that both the quantization level and frame rate play important roles in deter-
mining video quality and customer satisfaction. Our study revealed that when the
quantization level is low, the impact of frame rate on quality is minimal. However,
as the quantization level increases, the frame rate begins to positively influence qual-
ity. Additionally, we observed an inverse relationship between distance and Mean
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Opinion Score (MOS), indicating that greater distance leads to lower MOS scores.
When we applied the V-PCC compression method to point cloud sequences with
participants close to the object, MOS consistently increased as the quantization level
increased. Interestingly, the influence of frame rate was more noticeable in specific
scenarios, especially when the frame rate was lower (10 and 15 FPS) at medium
distances, resulting in a noticeable decrease in MOS compared to the near setting.

Building upon the user study results, we investigate the second research goal:
"Investigating the correlation between quality and resource demands, with the objective of de-
veloping a predictive model for evaluating the quality of point cloud sequences". Although
Draco and V-PCC MOS for our selected configurations were similar, there was a
significant difference in the bit rates for the compressed streams. Notably, Draco’s
encoding and decoding times were considerably faster than V-PCC’s. Our study re-
vealed that different configurations can achieve similar MOS while requiring varying
bit rates, encoding, and decoding latency. We also found that increasing frame rates
and quantization levels individually improved perceived quality. However, we ob-
served that a higher bitrate did not necessarily lead to a higher MOS. Additionally,
the degradation in quality due to quantization became less noticeable with increas-
ing distance from the camera. Expanding on that, we utilized machine learning to
create a model for the MOS of point cloud sequences and assessed its accuracy by
comparing its predictions to MOS obtained from the user study. By providing var-
ious factors like precision and geometry quality to the machine learning models,
we aimed to predict MOS for configurations not encountered before. The results re-
vealed that the frame rate emerged as the most crucial feature influencing the MOS.
Furthermore, our analysis provided additional insights by predicting score distri-
butions using a classification model rather than relying solely on the actual MOS
scores.

For the third research goal: "Investigating the impact of incorporating object-related
information in point cloud content streaming on the quality and efficiency of the delivery pro-
cess compared to conventional methods". We introduced a content-aware adapter that
incorporates both semantic and object-level details. Our approach focuses on pri-
oritizing important objects based on either user preferences or specific application
needs. This prioritization enables us to reduce bandwidth by allocating higher bi-
trates to critical objects, ensuring better quality while assigning lower bitrates to
less critical objects. As a result, overall bandwidth usage decreases, and latency im-
proves because crucial data is transmitted faster, leading to lower latency. We tested
our proposed adapter using real-world data, which resulted in significant savings
in bandwidth and improvements in latency compared to traditional streaming meth-
ods. By adapting frame rates and quantization levels based on assigned weights,
our approach effectively reduced the bitrate of transmitted point cloud sequences.
This led to bandwidth savings, especially for less critical data streams. With exem-
plary criticality assessment, our results demonstrated that our approach can achieve
substantial bitrate savings, ranging from 65% up to 82% compared to the classic
Draco baseline. Furthermore, we highlighted the benefits of our content-aware adap-
tation approach by showing its positive effects on encoding and decoding latency.



6.2 future outlook 83

By adapting frame rates based on weights, we achieved lower latency times, en-
hancing the processing speed for point cloud streaming. Specifically, our approach
reduced encoding latency by 8% for Draco and 41% for G-PCC with our exemplary
criticality assessment. Similarly, for decoding, our approach resulted in a latency re-
duction of 59% for Draco and 57% for G-PCC. Our findings underscore two key
points: Firstly, adaptive frame rates lead to decreased encoding and decoding la-
tency compared to a fixed frame rate approach, resulting in faster processing times.
Secondly, despite the additional overhead of criticality assignment, i.e. point cloud
analysis, frame rate adaptation enhances overall processing speed, potentially reduc-
ing the computational resources required for streaming. Furthermore, we explored
how our content-aware adaptation could affect the quality of point cloud data. Our
method focuses on maintaining a high PSNR for crucial points, while allowing for
some reduction in quality in less critical areas.To address potential quality loss, we
introduced in-between frames using information from LiDAR to estimate missing
points between actual frames on the receiver side. This enhances visual quality in
areas with less critical data while incurring minimal overhead.

6.2 future outlook

The user study was relatively small, with only a hundred participants, and the scores
provided by users in a controlled environment may not fully represent quality in
real-world settings and may not capture the full range of factors present in real-
world scenarios. Larger study with a more participant pool could provide more
statistically significant and generalizable results. Future research could expand on
this by using larger point cloud datasets and comparing results between standard
desktop PCs and more immersive devices like VR/AR headsets. Future work could
investigate more compression protocols and parameters, considering not only the
bitrate-quality trade-off but also factors like computational complexity and decoding
latency. We could further refine our understanding of quality-influencing factors and
create a more general quality model by leveraging machine learning methods with
richer datasets.

Further exploration could involve using machine learning methods to dynamically
assign criticality levels based on real-time context, incorporating user feedback into
criticality assignment, and investigating alternative methods for data adaptation be-
yond frame rate and quantization adjustments. This might include techniques like
downsampling point clouds for less critical areas. Future work could also involve
evaluating the approach using datasets that reflect a broader variety of use cases,
including virtual reality, to gain a more comprehensive understanding of its effec-
tiveness in different scenarios. This will allow for a more comprehensive evaluation
of our content-aware approach efficiency gains across diverse use cases.

Building on the findings of this work on content-aware adaptation for improved
point cloud delivery efficiency, future research could investigate mechanisms tran-
sitions for handling varying network and receiver conditions in the context of the
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Multi-Mechanisms Adaptation for the Futrue Internet (MAKI) to further enhance
the adaptability and efficiency of the streaming system.

Our proposed content-aware approach is strongly application-dependent. A content-
aware method that optimizes point cloud quality for autonomous driving applica-
tion might not be suitable for for virtual reality application. Developing generaliz-
able content-aware methods that can be adapted to different applications remains an
open research question. Future research could address this by investigating methods
for transferring knowledge between applications or by exploring domain-agnostic
features for point cloud analysis.

Future research should focus on the integration of advanced AI methods, such
as Generative AI and Large Language Models (LLMs), which are significantly trans-
forming key sectors of video-related research fields [202]. However, this advancement
also introduces unique challenges, including the need for large-scale datasets, and
high computational demands. Consequently, academia must approach the rapid de-
velopment of these advancements. Future work might aiming to develop advanced
adaptive approaches that maximize the benefits of AI, which lies in their ability to
automate processes.
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a.1 list of acronyms

0DoF zero Degrees of Freedom

3DoF three Degrees of Freedom

6DoF six Degrees of Freedom

ABR Adaptive Bitrate Streaming

ACR Absolute Category Rating

AR Augmented Reality

CNNs Convolutional Neural Networks

DASH Dynamic Adaptive Streaming over HTTP

DoF Degrees of Freedom

FOV Field of View

G-PCC Geometry codec based Point Cloud Compression

GANs Generative Adversarial Networks

GMMs Gaussian Mixture Models

KNN K-Nearest Neighbors

LiDAR Light Detection and Ranging

LoD Level Of Detail

LSTM Long Short-Term Memory

MAKI Multi-Mechanisms Adaptation for the Futrue Internet

MLP Multilayer Perceptron

MOS Mean Opinion Score

MPD Media Presentation Description

MR Mixed Reality

NeRFs Neural Radiance Fields
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PCC Point Cloud Compression

PLY Polygon File Format

PSNR Peak Signal-to-Noise Ratio

QoE Quality of Experience

QoS Quality of Service

RNNs Recurrent Neural Networks

ROI Region Of Interest

SGD Stochastic Gradient Descend

SHAP SHapley Additive exPlanations

V-PCC Video codec based Point Cloud Compression

VR Virtual Reality

XR Extended Reality
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