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"Essentially, all models are wrong, but some are useful."

— George Box & Norman Draper [1]





Abstract

This work contributes to predictive circuit simulation of emerging semiconductor devices by
proposing two approaches to obtain characteristic device data from technology simulation,
resulting in table models. From these intermediate table models, two different machine learning
approaches provide candidates of machine learning based compact models. The methods are
demonstrated for an ambipolar transistor, called the planar RFET, which allows dynamic
reconfiguration of channel polarity at runtime through an additional gate electrode. As a first
approach, a cluster simulation tool PyTaurus is proposed and allows efficient setup, simulation
and refinement of table models from a factorial setup of DC parameter sweeps. To reduce
model building time, PyTaurus provides a cluster simulation functionality and distributes the
simulation deck to available computation nodes. A second approach, pseudo transient simulation,
covers the bias space of the device under test within a single slowly proceeding transient
simulation. Nesting of input voltages is achieved by a systematic setup of frequencies, that
drive the respective harmonic electrode voltage signals. The resulting data sets satisfy structural
constraints for table models in Verilog-A.

Beyond the use as plain table models, however, the obtained data sets are transformed
to predictive compact models using machine learning. The high dynamic range, that the
drive current of the planar reconfigurable FET (RFET) features throughout the operating
regions, leads to a solution with an ensemble model. A linear model focuses on high drive
currents, while a second model is trained on logarithmically transformed current samples to
provide accuracy into the regime of leakage current. For the respective models, two approaches
are evaluated: The deep learning approach leads to multilayer perceptrons, which are then
sequentially implemented in Verilog-A. The predictions are obtained through inference of the
compact model voltages in each simulator step. As a second approach, symbolic regression is
employed to optimize an analytical model without structural constraints. The obtained closed
form expressions can directly be implemented in Verilog-A. In addition to the DC drive current
model, a transient model is formed by symbolic regression, exclusively, as the dynamic range
and the expected complexity of the charge model are lower than with drive current.

The resulting neural network-based models show improvement over table models when
it comes to DC simulation of digital cells. Transient simulation for timing characterization
leads to similar accuracy than the table models, with a maximum deviation of 5.1% from the
technology CAD (TCAD) reference. Neural network-based models accelerate the simulation
with a factor of up to 17×. Symbolic regression-based drive current models further improve
computational efficiency, but show insufficient accuracy for predictive circuit simulation.

The concluding result of this work is that it is recommended to transform a table model into a
neural network-based compact model using the proposed data driven approach, which requires
minimal domain knowledge. Symbolic regression is successfully employed for modeling of
electrode charges, but accurate drive current modeling requires further work.
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Zusammenfassung

Diese Arbeit trägt zur prognostischen Schaltungssimulation von neuartigen Halbleiterbau-
elementen bei, indem zwei Ansätze für das Erstellen von charakteristischen Datensätzen aus
Technologiesimulation gezeigt werden, die in Tabellenmodellen resultieren. Basierend auf
diesen vorläufigen Tabellenmodellen erzeugen zwei unterschiedliche Ansätze aus dem Bereich
des maschinellen Lernens Kompaktmodellkandidaten. Die Methoden werden anhand eines
ambipolaren Transistors, genannt planarer RFET, gezeigt, welcher die dynamische Rekonfigura-
tion der Kanalpolarität zur Laufzeit mit Hilfe eines einer zusätzlichen Gate-Elektrode erlaubt.
Als erster Ansatz wird ein Programm zur Verteilung Simulationsanordnungen, welches das ef-
fiziente Erstellen, Simulieren und Verbessern von Tabellenmodellsimulationen aus faktoriellen
Anordnungen von DC Parameter-Sweeps. Um die Modellierungszeit zu verkürzen erlaubt es
PyTaurus die Simulationen an verfügbare Netzwerkknoten zu verteilen. Ein zweiter Ansatz,
die pseudotransiente Simulation, deckt den Raum der Eingangsspannungen des Bauelements
innerhalb einer einzelnen langsam voranschreitenden Transientensimulation ab. Die Verschach-
telung von Eingangsspannungen wird hierbei durch die systematischen Anordnungen von
Frequenzen der harmonischen Eingangsspanungssignalen erreicht. Der resultierende Datensatz
erfüllt die strukturellen Bedingungen für Tabellenmodelle in Verilog-A.

Über die direkte Nutzung als Tabellenmodell hinausgehend, werden die generierten Daten-
sätze durch Methoden des maschinellen Lernens in prognostische Kompaktmodelle überführt.
Der große Dynamikumfang, den der Kanalstrom des planaren RFET in verschiedenen Arbeits-
bereichen zur Verfügung stellt, führt zu einer Lösung mit einem zusammengesetzten Modell.
Ein lineares Modell fokussiert sich auf hohe Kanalströme, während ein weiteres Modell auf
den Daten von logarithmisch transformierten Kanalströmen trainiert wird um Genauigkeit bis
in den Bereich von Leckströmen zu erhalten. Für die jeweiligen Modelle werden zwei Ansätze
evaluiert: Der Deep-Learning Ansatz führt zur Struktur eines Multilayer Perceptrons, welches
dann sequenziell in Verilog-A implementiert wird. Die Vorhersagen werden durch Inferenz
mit den Eingangsspannungen des Kompaktmodells in jedem Simulatorschritt erzeugt. Als
zweiten Ansatz wird symbolische Regression eingesetzt, welche ein analytisches Modell ohne
strukturelle Eingrenzungen optimiert. Die dadurch erhaltenen Ausdrücke in geschlossener
Form können direkt in Verilog-A implementiert werden. Zusätzlich zum DC Kanalstrommo-
dell wird ein Transientenmodell ausschließlich durch symbolische Regression erzeugt, da der
Dynamikumfang und die erwartete Komplexität des Ladungsmodells geringer sind als des
Kanalstrommodells.

Die resultierenden auf neuronalen Netzen basierenden Modelle zeigen Verbesserungen
gegenüber den Tabellenmodellen bezüglich DC Simulation von digitalen Zellen. Transien-
tensimulation für die Charakterisierung von Zeitverhalten führt, mit einer Abweichung von
der TCAD-Referenz von maximal 5.1%, zu einer ähnlichen Genauigkeit, wie sie die Tabellen-
modelle zeigen. Die auf neuronalen Netzen basierenden Modelle beschleunigen außerdem die
Schaltungssimulation um bis zu 17×. Auf symbolischer Regression basierende Kanalstrommo-
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delle verbessern die Effizienz der Berechnung noch weiter, bieten jedoch nicht die notwendige
Genauigkeit für prognostische Schaltungssimulation.

Das zusammenfassende Ergebnis dieser Arbeit ist die Empfehlung ein Tabellenmodell in ein
auf neuronalen Netzen basierendes Kompaktmodell zu überführen, indem der vorgeschlagene,
auf wenig Spezialwissen basierende Ansatz verwendet wird. Symbolische Regression wird
erfolgreich für Ladungsmodelle der Elektroden eingesetzt, für die präzise Modellierung von
Kanalströmen ist jedoch weitere Arbeit nötig.
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1 Introduction

The world we live in today embraces emerging technologies more than ever, and this is only
partly owed to a spirit of pioneering and curiosity. We foresee that continuous improvement of
existing technologies is unlikely to be the solution for the challenges of the 21st century. A fair
amount of work should be dedicated to enable and facilitate progress during the early stages
of inventions, that shape our environment.

Particularly, semiconductors enhance our life in various aspects, as they provide processing
of information in an increasing number of every-day appliances. Processing capabilities largely
depend on the amount of transistors integrated into a unit area, so that integration density
has become one of the most important figures to describe the performance of a semiconductor
technology. A key to success of very-large-scale integration (VLSI), however, lies not only in
the actual manufacturing capabilities. Sophisticated device models, based mostly on analytical
formulations of the physical mechanisms in a transistor, enable reliable design processes for
well established technologies. On the one hand, the semiconductor industry owes at least part
of its success to the traditionally rather incremental improvements [2]. On the other hand,
incremental improvements of a device or a process sooner or later run into limitations, which
are typically physical in nature. In order to extend Moore’s law [3] into the next decades, the
search for disruption is, to the present day, in full swing and allows novel device concepts to
emerge.

In the domain of field-effect transistors (FETs), the journey to a robust and powerful semi-
conductor model, a compact model, is challenging. It is often easier to refine models along
with modest changes in the target technology, than to describe fundamentally new mecha-
nisms and structures. Accuracy of a productively used compact model is essential to design a
functioning integrated circuit. In emerging technologies, however, the focus is typically not on
conducting a complete integrated circuit design flow. Required is rather the prediction of the
performance of a device, characterized either by measurement or technology simulation, in
the simulation of circuits. Although accuracy remains one of the central aspects, this imposes
different requirements on predictive models: Predictive device models can spare many of the
parameters, which do not contribute to technology assessment at an early stage. Parameters
such as temperature or channel length, featured by industrial compact model, are typically not
of interest for predictive circuit simulation. Instead, the creation of the model has to be quick
and straightforward, in order to gain performance estimates in an early phase of the endeavor,
and most importantly to predict behavior in a system-environment. These estimations can then
be incorporated into the decision about adoption of a technology.

1.1 Research Scope and Objective

This work contributes to predictive circuit modeling of emerging devices, by streamlining the
generation of table models and the subsequent transition to analytic compact models. The focus

1



2 introduction

lies on the methods to be data driven with as little domain knowledge as possible, in order to
apply them to semiconductor devices, where detailed analytic models of conduction are not
yet available. In particular, the predictive, and yet accurate, simulation of digital circuits is the
goal, which requires the model to provide accuracy over a wide range of bias regions. Efficient
implementation is a key factor to allow the simulation of circuits with a high transistor count.
The specific device under test (DUT) and subject of demonstration is a planar reconfigurable
FET (RFET), which, due to its reconfigurable polarity, cannot be represented by conventional
and industry-standardized compact models.

The scope of this work starts where the technology model of the DUT is available. Improve-
ments on technology level are not subject of this work and neither is physical characterization.
In consequence, this ensures that the proposed methods of generation and transformation of
the data remain general and applicable to a wide range of emerging technologies. Table models
are an established method for circuit simulation of emerging devices, but the methods to
generate them are often cumbersome. The intermediate objective is therefore the generation of
characteristic device data, which allow direct use as a table model. Particular attention is paid
to efficient simulation design of technology simulation, as generation of characteristic datasets
from technology simulation is the most time-consuming step in this work. Table models are
typically inferior to compact models, with respect to performance and accuracy. The main
objective is therefore to exploit the generated data set to form predictive compact models for
the planar RFET by using machine-learning based modeling approaches.

The fundamental question that resonates with these objectives is: Is the machine learning-
based compact model an improvement over the direct use of the original table model?
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Figure 1.1: The implementation part of this work includes two methods of generating characteristic
device data, which are then used to build data driven compact models using machine learning.
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1.2 Thesis Outline

The remainder of this work is structured as follows: The fundamentals of RFET technologies, the
DUT and possible application in circuits are explained in Section 2.1. The various semiconductor
modeling approaches on different abstraction levels, from technology modeling and data
generation to compact models, are subject of Section 2.2. Lastly, the fundamentals of this work
comprise the topic of regression-based machine learning and introduce deep learning and
symbolic regression in Section 2.3.

Figure 1.1 provides an overview over the implementation part of this thesis. The proposed
methods to obtain characteristic device data for table models, the factorial simulation cluster
PyTaurus and the pseudo transient approach, are described in Chapter 3 and lead to 2 table
models. Having generated a data set of bias points, in Chapter 4 symbolic regression is applied
to the electrode charges, in order to obtain analytic equations for a transient model. One
modeling approach for a DC model is based on deep learning, while a competing candidate
is created by using symbolic regression. In total, two approaches to data sets (PyTaurus and
pseudo transient approach) and two approaches to DC models (deep learning and symbolic
regression) result in 4 compact model candidates.

The 4 compact model candidates, along with the 2 table model candidates are evaluated in
Chapter 5.





2 Fundamentals and State of the Art

The technology modeling approaches proposed in this work, although based on data-driven
methods, require understanding of the target technology to some extent. The modeled tech-
nology, RFETs, are described in Section 2.1. Within the scope of data driven modeling, the
fundamentals consist of the methodology to produce device characteristic data (Section 2.2.1),
state-of-the-art modeling techniques, such as compact models (Section 2.2.2), and how to con-
struct data driven device models (Section 2.2.3). The proposed compact modeling approaches
rely on machine learning methods, namely symbolic regression and deep learning, which are
introduced in Section 2.3.

2.1 Reconfigurable FETs

Conventional metal-oxide-semiconductor field effect transistors (MOSFETs) technologies rely
on chemically doped semiconductors, providing two complementary device types: n-type
(NMOS) and p-type (PMOS). The distinction comes from the type of dopant and is therefore
decided at design time. Static complementary MOS (CMOS) logic design incorporates both
transistor types, achieving rail-to-rail output with strong drive capability. In this section, an
emerging device type, the RFET, is introduced, which features tuneable polarity at runtime.
The mechanisms behind this feature are analyzed in Section 2.1.1. In order to provide general
insights into the device which serves as DUT in this thesis, the planar RFET, Section 2.1.2
presents structure and characteristics. The proposed modeling approach in this work targets
circuit simulation of logic cells, hence Section 2.1.3 provides an overview of established circuit
topologies, which feature RFETs. The predicted implications and opportunities for circuit
design are summarized.

2.1.1 RFET Fundamentals and Prototypes

Coming from the background of conventional MOSFETs, where digital circuits typically consist
of two types of devices with similar structure and complementary chemical dopants, the
general principle of RFETs is not far off: Doping is still required, but instead of chemically
induced impurity doping, the effect is caused by the electric field in semiconductor material
and hence called electrostatic doping [4], [5]. Conventional CMOS FETs use the electric field
caused by applying a voltage between gate and bulk electrode to create an inversion layer
near the gate dielectric interface, which leads to a conductive channel. This channel then
enables charge transport by providing free minority carriers. Similarly, electrostatic doping
describes the influence on the concentration of free charge carriers in semiconductor material by
biasing an adjacent gate [6]. However, one of the main differences is, that electrostatic doping
leads to volume inversion or volume accumulation – a feature of ultrathin-body technologies,
with a maximum body thickness of approximately 10nm [7]. This distinction can be seen in
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6 fundamentals and state of the art

Figure 2.1, where a metal-oxide-semiconductor capacitor (MOSCAP) in thick-body Silicon-
On-Insulator (SOI) technology is shown, along with an ultrathin-body fully depleted silicon
on insulator (FD-SOI) MOSCAP. While the 2D inversion layer of the thick-body structure is
described by classical physics, quantum mechanical effects in ultrathin bodies cause the charge
carriers to escape 2D confinement at the interface, when a sufficiently high electrostatic field
is applied. The substrate then enters volume inversion/-accumulation [8], [9]. As a result,
the concentration of free carriers is distributed throughout the ultrathin body, resembling a
chemically doped region in the semiconductor [5].

Unlike chemical doping, however, electrostatic doping can be applied dynamically at any
time by biasing the according gate electrode. A typical application for electrostatic doping is
when it comes to low dimensional materials such as transition-metal dichalcogenides (TMDs)
and graphene, where the introduction of impurities into the atomic lattice without damaging
the device is challenging. For these materials, electrostatic doping is already the standard
doping technique [10]. Further, it is likely, that electrostatic doping can compensate increasing
issues of chemical doping in highly scaled semiconductors, such as the formation of high
doping gradients and the general spatial distribution due to complex geometry and growth
dynamics [10]–[13].

Surface
Inversion

Volume-
Inversion

Volume-
Accumulation

Oxide

Thick-Body
FDSOI Ultrathin-Body FDSOI

Neutral region

BOX

Gate

Space charge
region

BOX

Gate

BOX

Gate

Figure 2.1: Unlike thick body technologies, ultrathin bodies down from ≈ 10nm thickness offer volume
inversion/accumulation, providing free charge carriers. The effect is similar to impurity doping [5].

Electrostatic doping is one of the enabling mechanisms for RFETs, as it allows the reconfigu-
ration of device polarity between n-type and p-type by providing the respective spatial carrier
concentration. While there are other working principles, such as band-to-band tunneling [14],
single-electron and spin transport [13], [15], this work focuses on the large group of Schottky
barrier implementations. The principle of Schottky barrier RFETs is to program the doping
of the transistor body, causing band bending with respect to Schottky barrier junctions at
source and drain and selecting the conduction type [13]. Source and drain are typically silicide
contacts. Two types of Schottky barrier implementations are distinguished by Mikolajick et al.



2.1 reconfigurable fets 7

[13] as shown in Figure 2.2. In type a) the polarity of the body region is selected by a buried
program gate (PG) over the entire channel length. The electrostatic doping caused by VPG in
type a) results in band bending along the channel with respect to the Schottky barriers and
enables either n- or p-type conduction between the silicide regions, which form source and
drain. Charge transport is then controlled via a centered gate electrode, the control gate (CG),
which modulates a potential barrier in the respective channel segment below. Depending on
VCG, a depletion region forms in the middle of the channel and impedes the drive current.

on

off

on

off

n-type

p-type

on

off

on

off

a) Control via Central Barrier b) Control at Source

Energy

x

DS DS

Figure 2.2: Two types of Schottky barrier RFETs are distinguished by Mikolajick et al. [13]: Type a) tunes
polarity through the back gate (BG) and locally depletes the channel through a central top gate (TG).
Type b.) directly influences the Schottky barriers at source and drain.

Type a) is attributed to Lin et al. [16], [17] in 2004, who achieve the elimination of ambipolar
charge transport in favor of clear n-/p-type conduction in a carbon nanotube channel, placed
over an aluminum gate electrode, as shown in Figure 2.3a. The BG electrode is used for polarity
configuration, while the centered aluminum gate between BG oxide and the carbon nanotube
switches the transistor on and off. In pursuit of improving the programming capabilities, which
have up to then typically been offered by the BG [18], [19], De Marchi et al. [20] present a
top-down fabricated stacked silicon nanowire RFET, shown in Figure 2.3b. Placing the PG
over and especially around the Schottky junctions at source and drain increases the on-/off
current ratio and the use of weakly p-doped nanowires benefit symmetry of n- and p-type
conduction. Vertically stacking the nanowire channels further increases the drive current
without demanding more area. The resulting device achieves drive currents up to 75µA for
the n-type configuration at a programming voltage of VPG = −4V ; a logic gate demonstration
shows a symmetric inverter with a steep transition for VDD = 1V . Another device with a
central CG emerges by Wessely et al. [21], [22] in 2012, who use a silicon nanowire channel
above which the CG electrode is placed. The trend at Technical University of Darmstadt,
however, moves towards planar devices as Krauss et al. [23]–[27] show reconfigurability of
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(a) Carbon nanotube RFET with BG
programming [16]

(b) Stacked nanowire RFET [20]

(c) Planar channel with BG program-
ming [26]

(d) Dually gated Schottky barrier
nanowire RFET [19]

Figure 2.3: Distinct RFET prototypes, based on different structures and materials, have been proposed
in literature.

FD-SOI based planar channel geometries down to a length of 250nm, as shown in Figure 2.3c.
Drive currents in µA region are reached by a BG bias of at least |VPG| = 2V and |VDS | = 1V .
These planar devices are the predecessors of the planar RFET, which is characterized in this
work and described in Section 2.1.2.

Devices of type b) in Figure 2.2 allow the control of carrier injection directly at source, while
the PG bias at drain blocks the respectively other carrier type [13]. This RFET type goes back
to Weber et al. [19] who propose a dually gated silicon nanowire FET. During annealing, the
nanowire forms nickel-silicide (NiSi) segments, extending the nickel source and drain regions
from both sides towards the channel [18]. As shown in Figure 2.3d, the CG is placed over the
Schottky junction at source to control the on/off state of the device. Located at the drain side,
the PG allows selection of device polarity. Heinzig et al. [28] propose a similar top-gated silicon
nanowire RFET but achieve an enhancement regarding Ion/Ioff ratio from ≈ 103, reported by
Weber et al. [19], to 108/109 in highly symmetrical p-/n-type mode. Follow-up devices feature
further improvements by inducing mechanical stress as a measure to precisely tune symmetry,
which then allows the fabrication of a CMOS style inverter [29], [30]. Another significant step
ahead is the co-integration of back gated RFETs within the GlobalFoundries 22FDX platform
by introducing NiSi drain and source regions without changes to design rules and without the
need for additional masks [31], [32]. Logic operation at VDD = 0.8V is enabled by a program
voltage of |VPG| = 5.2V at the BG, which allows currents of up to 10µA/µm [31].

Symmetry between p- and n-type conduction is particularly important for a device, which
aims at providing the flexibility of runtime polarity configuration. Conventional CMOS tech-
nologies can adapt to material properties and allow scaling of n-type MOSFET (NMOS) and



2.1 reconfigurable fets 9

p-type MOSFET (PMOS) channel width according to their targeted drive capabilities, but this is
only possible because their respective role within the circuit is predetermined at design time. For
devices where the decision between n- or p-type conduction is not made ahead of fabrication,
structural adaptations cannot be exploited to balance drive strength and switching symmetry.
As a consequence and similar to conventional CMOS scaling attempts, other materials are
explored to eventually replace silicon and provide better symmetry, higher Ion/Ioff ratios and
lower supply voltages [33]. An important path is taken by Trommer et al. [34], who compensate
the lower band gap energy (0.66 eV ) of a germanium nanowire transistor with electrostatic
control over the respective Schottky barriers. With this approach, off-state leakage is suppressed
and the advantages of germanium, i. e. low threshold voltages Vth,n = 0.4V ,Vth,p = −0.2V and
high on currents, can be exploited. Germanium nanowire FETs offer an additional feature:
Böckle et al. [35] find distinctive electrostatically tuneable negative differential resistance at
room temperature in a germanium nanowire transistors, which is subsequently incorporated
into a germanium nanowire RFET by Sistani et al. [36].

From a material point of view, the combination of Schottky junctions with fully depleted body
appears to be suitable for operation in an extended temperature range, as two major sources of
temperature dependent leakage are avoided: Firstly, the PN junctions between source/drain
and the channel, and secondly the body diode between drain and bulk [37]–[39]. Especially for
RFETs with virtually intrinsic body, the lack of chemical doping induced impurities is expected
to further reduce phonon scattering effects and carrier freezeout, and therefore temperature
dependence [37], [40]. Galderisi et al. [41] analyze the characteristic of a three-gated RFET over
the temperature range of 80K to 475K and observe that the leading conduction mechanism
at low temperature, thermionic field emission (TFE), leads to increasing threshold voltage at
decreasing drive current towards the lower end of the observed temperature range. It is further
stated, that this effect can be mitigated with thinner Schottky barriers, e. g. through higher PG
bias, which increases temperature independent tunneling [41]. In high temperature regions
up to 425K, the threshold voltage decreases only marginally for ambipolar conduction mode,
indicating that the device proposed in [41] can be a suitable candidate for harsh temperature
environments. In general, the Ion/Ioff -ratio in Schottky barrier FETs is limited by the band gap
of the channel material, and the respective range of current, in case of the three-gated RFET,
shifts significantly within the analyzed temperature range [41]. However, apart from material
engineering, there is a second way to influence Ion/Ioff , which is the suppression of leakage
by exploiting additional PGs [34], [42]. Inherently provided by RFET devices, PGs allow the
adjustment of Ion and Ioff independently, as the Schottky barrier can be actively adjusted by
electrostatic doping depending on device state and operating temperature.

2.1.2 The Planar RFET

The device subject to characterization in this work follows the line of top-down planar devices
by Krauss et al. [23]–[27]. The name of the device concept originates from a specific switching
principle, which can be understood as a combination of enhancement- and depletion mode
transistor, as described by type a) in Figure 2.2. Similarity to enhancement mode devices arises
as the virtually intrinsic body, with a p-type boron background doping of 1 · 1015 cm−3, is
electrostatically doped via the BG. The BG, in form of an n-type substrate with chemical doping
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planar RFET

VFG
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Figure 2.4: The planar RFET is based on a ultrathin-body FD-SOI technology. The BG and the top
gates (TGs) allow programming of device polarity, while the front gate (FG) modulates the drive current.
Only one TG is drawn in the schematic symbol, as the TGs are electrically connected. Figure is not to
scale. [43]

of 5 · 1019 cm−3, generates the respective n- or p-type channel in the body. From the top side of
the device, the centered front gate (FG) locally depletes the channel by formation of a potential
barrier, resembling depletion mode operation. The name Dehancement Mode FET, or short
DeFET, emerges and Krauss [27] describes the respective technology simulation, fabrication
and design space evaluation of the dual gate RFET.

In an attempt to increase the control over the mid-gap Schottky barriers at source and drain,
and similar to the stacked nanowire approach [20], Krauss et al. [27], [44] propose an extension
to the dual gated DeFET concept. To enhance electrostatic doping of the Schottky barriers at
source and drain, two gate electrodes, called top gates, are placed over the junctions, as shown
in Figure 2.4. For the TG variant on a 6nm thin and 210nm long body the name planar RFET is
adopted from [45] to make a clear distinction to the predominantly low dimensional material
based RFET prototypes referred to in Section 2.1.1. The FG control mechanism is similar to the
devices of type a) in Figure 2.2, while the arrangement of the TGs resembles the structure of
type b). The two TGs are, to this date, exclusively used in combination and therefore regarded
as a single electrode, modulating channel polarity and therefore Schottky barrier height at the
source and drain junctions equally. What started out as an enhancement to BG programming
was found to be a good replacement instead, as TG-only programming allows a threshold
voltage of Vth ≈ 500mV in logic cells of VDD = 1.4V . The symmetric structure of the device
allows both channel adjacent terminals to act as source and drain of the charge transport,
depending on the respective operating point. For the purpose of modeling, this work refers to
both channel adjacent terminals as Lat1 and Lat2.

The structure of the planar RFET along with the circuit symbol, which represents the planar
RFET in this work, proposed in [46], are shown in Figure 2.4. Although both TGs are used in
a configuration where they are electrically connected, the symbol is designed to show only
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one TG connection to improve schematic readability. The one input at VTG represents both
electrically connected TGs.
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Figure 2.5: The planar RFET, shows a balanced maximum drive current for |VLat21| = 1.4V . The
Ion/Ioff ratio for n- and p-type conduction modes, however, lacks symmetry [43].

With a background doping of 5 · 1017 cm−3 and work functions WTG = 5 eV and WFG =

4.75 eV , the RFET is optimized for symmetric Ion in digital cells of VDD = 1.6V . Following
the approach in [43], in this work, the device is employed to digital cells with VDD = 1.4V ,
which leads to the characteristic shown in Figure 2.5. At VLat21 = 1.4V , the Ion/Ioff ratio of
p-type conduction with ≈ 109 exceeds the n-type conduction Ion/Ioff ratio of ≈ 104, while the
maximum drive current remains in a similar regime of 40µA.

2.1.3 Circuits with Reconfigurable Devices

The goal to reduce chip area, aligned with the typical VLSI trends, extends to RFETs on device
level, where a FG length of 20nm is already demonstrated [31]. In general, conventional static
CMOS circuits can be implemented in RFET technologies, by programming the electrostatic
doping of the respective devices in a static way, e. g. by hard-wiring PGs to a supply voltage.
With only VDD and VSS available, the involved voltages between PGs and the respective source
terminal have to be brought to the range of |VPGS | ≤ 2V and still provide clear polarity control.
Enabled by the high symmetry between p- and n-type conduction in [28], Heinzig et al. [29]
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present the first inverter circuit based on two statically configured silicon nanowire transistors
for VDD = 2V , as shown in Figure 2.6. The proposed RFET inverter resembles the conventional
static CMOS inverter, with the PG of the pull-down device connected to VDD and the PG of
the pull-up devices connected to VSS . In the schematic drawing of Figure 2.6 the inverter is
depicted as a dual gate device and uses a circuit symbol representation from [13]. The principle
of replicating static CMOS logic topology with RFETs can be applied to other common logic
gates. INV, NAND, NOR gates show correct switching behavior in technology CAD (TCAD)
simulation and their performance is comparable to an SOI technology of similar feature size, as
shown in [45]. Using RFETs as statically configured devices in CMOS-style topologies further
allows threshold voltage scaling over a wide range, similar to the body-biasing in FD-SOI
[47]. A possible use-case for the wide range tuning ability of the planar RFET is region-based
dynamic scaling of threshold voltage, e. g. in field-programmable gate arrays (FPGAs), as
proposed by Pfau et al. [48].

Silicon Nanowire RFET
by Heinzig et al., 2013

Planar RFET, TCAD simulation
by Reuter et al., 2021

Inverter NAND

Vin Vout

VDD = 2V

n-type: VPGS = VDD

p-type: VPGS = -VDD
VB

Vout

VA

VB

VA

VB

Vout

VA

VB

VA

NOR
VDD = 1.6V

Figure 2.6: RFETs can be programmed statically, by hard-wiring the PG to a supply rail. This allows
static CMOS topologies to be adopted for RFET technologies. Heinzig et al. [29] propose a silicon
nanowire inverter, NAND and NOR implementations with the planar RFET are demonstrated in [45].

The mere replacement of NMOS/PMOS devices with statically configured RFETs, however,
subjects the success of the RFET technology to a similar down scaling pace as conventional
CMOS technologies. Instead, a way to outperform chemically doped CMOS technology can
be to exploit the inherent features, such as dynamic reconfiguration. RFETs allow the design
of circuits which either change behavior in order to provide multiple functions or to use the
PG as additional signal input for reduced transistor count per logic function [49]. Examples
of both cases have already been demonstrated in the early phases of RFETs, after Lin et al.
[16] proposed the polarity tuneable carbon nanotube RFETs. With similar carbon nanotube
structures as [16], O’Connor et al. [50] propose two stage dynamic logic cells, where the PG of
the logic devices is used to configure the cell function. Pre-charge and evaluation transistors
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are configured with static polarity. 8 different forms of binary logic functions using AND and
OR conjunctions are possible with 3 logic transistors in [50]. XOR operation requires 5 logic
transistors implemented with RFETs.

Fully complementary digital circuits with full output swing are subject to structural con-
straints: The pull-up branch consists of p-type devices and the pull-down branch consists of
n-type devices. Deviation from this topology results in reduced output swing, and devices with
wrong polarity in their respective branch are called misconfigured [51], [52]. A basic example
for this constraint is the transmission gate, where two complementary devices are required
for strong drive, to avoid the loss of threshold voltage Vth,n/p over the driving transistor. For
conventional doped CMOS, this requirement can easily be regarded during logic cell design.
But reconfiguring an RFET from n- to p-type conduction in a pull-down branch, and vice versa
for a pull-up branch, results in a significant deterioration of output swing. Ben Jamaa et al.
[53] conclude that polarity reconfiguration with full output swing in CMOS-style topologies
can be established by providing the branches in each pull network as parallel RFETs. The
resulting topology is similar to a transmission gate and pairs devices of the respectively wrong
polarity configuration with their complementary counterpart. The demonstration, based on a
carbon nanotube RFET, includes statically configured circuits, such as the logic cells shown
in Figure 2.6, but extends up to more complex static CMOS gates. Y = (A⊕B) · (C ⊕D) is
realized with 8 devices, where signal inputs are used for polarity configuration of transmission
gate pull branches [53].
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Figure 2.7: The XOR gate shows how RFETs can reduce the transistor count by providing higher
expressiveness than a conventional MOSFET [45], [54].

A basic example for transistor count reduction, by using PGs as inputs, is the XOR gate
proposed by Gaillardon et al. [54]. The core of the XOR cell consists of 4 RFETs and relies
on the availability of inverted inputs. This XOR core is analyzed with 4 planar RFETs in [52],
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as shown in Figure 2.7. The key to the transistor count reduction is the integration of the
logic functionality of two serial MOSFETs into one, by using the PG as signal input [53]. The
resulting polarity states of each device for each input combination of A and B of the planar
RFET implementation is shown in Figure 2.7 and reveals that the active pulling branches in
every state consist of a strong pull device, paired with a weak pull device [52]. The left side of
the XOR core, M1 and M2, can be interpreted as an inverter of A, if B = 1, as both devices
are configured with correct polarity and therefore provide strong pull, respectively. Therefore,
the transitions of A with VB = VDD are dominated by the FG switching behavior of the RFET.
Further, there are transitions where the switching comes from flipping the polarity of strong
pulling devices, such as the transition of A, if B = 0. Here, the full swing output is provided by
the planar RFET in particular, and for a sufficiently high Ion/Ioff ratio in general. The principle
of integrating the functionality of multiple MOSFETs into one extends to more than two inputs:
Trommer et al. [55] show an RFET with 4 independent gates, which provides wired-AND
functionality.

While the higher expressiveness of the single device provides further benefits on circuit level,
e. g. for compact multiplexing [56], implementation of area-efficient neuromorphic circuits [57],
hardware security through key based authentication [58] and tuneable differential stages [59],
at the point of physical implementation, this can come at a cost. The availability of additional
PGs aggravates routing congestion and calls for novel place and route strategies [49], [60]–[62].

The scope of this work is restricted to basic digital circuits, such as the shown INV, NAND,
NOR and XOR cell, which have been demonstrated with the planar RFET in [45], in order to
evaluate the proposed device modeling approaches on fundamental static and reconfigurable
logic gates.

2.2 Modeling Semiconductor Devices

On a low technology readiness level (TRL), the evaluation of fabricated emerging devices
typically focuses on device level characteristics, such as leakage, drive current and sub-threshold
slope. Early prototype devices are typically fabricated in arrays of solitary devices, which can
be subject to substantial process variation. On the one hand, evaluation in form of comparison
against devices from established technology nodes is fair, as the plain characteristic values allow
to grasp the achieved performance of the emerging device. On the other hand, semiconductor
devices are typically parts of integrated circuits, rendering circuit level evaluation a convincing
argument for acceptance of emerging device concepts. And then there are devices with novel
features, such as RFETs, which are unlikely to compete with established and highly scaled
technology nodes on device level, while their benefits play out on circuit level [13]. One way to
demonstrate these benefits is the actual fabrication and measurement of circuits. But fabrication
of emerging technologies typically means going off the beaten track and the resulting DUTs
often suffer from issues such as low yield, high process variation and degradation during
measurement. For compact circuits with low transistor count, such as logic cells, this can
be a feasible approach [29], [54]. Simulation is, in turn, often more cost-efficient and leads
to reproducible results with fully controllable device variation without degradation during
characterization. As this work contributes to predictive modeling and simulation of emerging
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semiconductor devices, it is important to inspect existing tools and work out capabilities and
limitations.

Available for conventional devices
Subject of this work

Simulation
Effort

Technology Computer-Aided 
Design (TCAD)

Circuit Design
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Figure 2.8: Conventional semiconductor devices can be modeled using industry standard compact
models. A typical approach for emerging devices is to build a table model. Further, this work explores
machine learning-based regression methods.

Two abstraction levels of simulation models are relevant for this work and therefore shown
in Figure 2.8, namely technology models and circuit models. In circuit simulation physical
details of conduction mechanisms become less relevant and efficiency gains importance. In
consequence, models with less computational effort, e. g. through abstraction, have to be
constructed. The step from technology simulation to circuit simulation can be overcome in
various ways. Figure 2.8 shows the three commonly taken paths. On the technology level, TCAD
suites provide tools for model parameter extraction, such as TCAD2SPICE in Synopsys TCAD.
If structure and working principles of the DUT are represented by an existing and supported
compact model, the path from technology model to a parameter set for an already established
compact model is quick and typically automatic. In this work, conventional parameter extraction
methods are not possible, as there are no available compact models for the planar RFET device
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concept. Because of their importance in the state of the art, compact models are introduced
in Section 2.2.2. The second approach, the table model, is a data driven approach, where the
characteristic data from TCAD simulation are provided to the circuit simulator and interpolated
at runtime. Performance and accuracy are to be balanced, as higher sample count leads to
higher sample density, which in turn negatively affects memory requirement and execution
time of the interpolation algorithm. Table models are covered in Section 2.2.3. A third way is
using the characteristic data, e. g. the table model, to perform regression and obtain analytic
expressions which then form a compact model. Previous work in the area of regression-based
modeling, to which this work contributes, is summarized in Section 2.2.2.

The particular TCAD suite used for this work is Sentaurus TCAD by Synopsys and the
program structure on which the methods in Chapter 3 are build upon are introduced in
Section 2.2.1. Circuit level simulation is conducted in Cadence Custom IC Design Environment
(2022) [63], using the Simulation Program with Integrated Circuit Emphasis (SPICE) simulator
SPECTRE.

2.2.1 Technology Models and TCAD Simulation

TCAD refers to a suite of tools for design technology co-optimization (DTCO), which target
predictive technology- and process modeling. Technology modeling resorts to physical models
implemented by the TCAD tool, to be solved numerically in discretized parts of a structural
semiconductor model. The computational effort of technology simulation depends on the
granularity of the computational mesh and is typically substantial, compared to circuit level
device models. In return, technology simulation provides insights into the internal physical
parameters of the model beyond measurement capabilities. Another strong argument for the
use of technology simulation is the arbitrary variation of boundary conditions and material
parameters for prediction and optimization. Today, the employed physical models can be
considered reliable for extensively studied semiconductor materials such as silicon, decreasing
the number of exploratory fabrication runs required [64].

In this work, Sentaurus TCAD is used for generating device characteristic data, which are
then either used as a table model or transformed into a compact model. The main use of TCAD
for this work lies in generating characteristic device data for the data driven modeling ap-
proaches. This section provides an overview of the features relevant to efficiently generate these
data samples. Further, details about the Sentaurus TCAD device simulator implementation
with respect to the efficient generation of data are provided.

This work builds upon a structural technology model developed in [27] using Sentaurus
Structure Editor and focuses on electrical device simulation using Sentaurus Device. The topic
of process simulation is out of scope of this work. A typical simulation flow of a structural
technology model in Sentaurus TCAD is shown in Figure 2.9. The first step is to create
a structural technology model, which defines device geometry along with the respective
materials, doping profiles and other spatial properties in either 2 or 3 dimensions. After
definition of structural parameters, a mesh is placed onto the structure and defines the
discretized volume in which the semiconductor equations are to be solved during electrical
simulation using finite volume method (FVM). The interface to electrical simulation is provided
in form of equipotential electrode definitions, which form part of the boundary conditions of
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the simulation. For electrical device simulation it is important to recognize that convergence
and computational effort depends, aside from the numeric setup of the device simulator,
heavily on the meshing of the structure model.
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Figure 2.9: The tool-flow to generate device characteristic data (without process simulation) typically
involves a structure editor along with a meshing tool, the actual electrical simulation, e. g. DC or
transient simulation, and the export or visualization. For this purpose, Sentaurus TCAD provides
Sentaurus Structure Editor, Sentaurus Mesh, Sentaurus Device and Sentaurus Visual.

Electrical device simulation solves relevant physical equations, such as the drift-diffusion
equation, to obtain characteristic device data in the constrained bias points. As shown in
Figure 2.9, device simulation further enables predictive circuit simulation, which allows
evaluation of DUTs in digital cells or small analog circuits. SPICE-like simulation types,
such as quasistationary and transient simulations are possible; SPICE models can be included.
Due to the high simulation effort of the physical models in technology simulation, however,
the available computational resources typically restrict the netlist to a transistor count short
of 10 technology model instances. Apart from the mesh files of all technology models to be
instantiated, a user defined command file describes the particular device simulation setup
including netlist, sources, DUTs and solver parameters. The simulation result, which in this
work consists only of the electrical traces with respect to time or sweep variable, is stored in
the plot file, a structured text file. Synopsys further, provides the tool Sentaurus Visual for
visualization and script based export of simulation results, which is not used in this work.

Simulation on Technology Level

When probing and measuring a DUT in hardware, the structure of the resulting data set, i. e.
respective independent variables, their range and granularity, can be selected freely within
the electrical boundaries of the DUT and measurement equipment. In technology simulation,
the availability of a data sample S(Ve), where S is an observed characteristic such as drive
current IDC or electrode charge Qe,i of electrode i ∈ N, at a boundary condition defined by
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a tuple of electrode voltages Ve = (Ve,1, Ve,2, ..., Ve,N ) depends mainly on convergence of the
semiconductor equations at the respective simulator step. This section describes briefly the
working principle of quasistationary and transient simulation in Sentaurus TCAD, with an
emphasis on how solutions for the constrained simulator steps are obtained.

The first simulation type relevant for this work is quasistationary simulation [65]. The
physical perspective on quasistationary electromagnetic fields is set by the assumption that
field propagation is much faster than their respective change in time. All structures are
small compared to the wavelength of the field change in time [66]. In approximation, all
electromagnetic disturbances therefore propagate through the system with infinite velocity [67].
As a consequence, the solution of a quasistationary simulation step is calculated based on the
momentary boundary conditions alone, and without dependence on time or time-derivatives.
During a quasistationary simulation, boundary conditions of the device or circuit are ramped to
a specified goal, e. g. until a specified sweep electrode voltage Ve,sweep reaches Ve,sweep = Vgoal.
The partial differential equation systems of the respective electrical properties, such as I,Q, ...,
are solved for every step.

The solution of each simulation step is found through linearization of coupled semiconductor
equations using a Newton-like solver [65]. Solutions of the linearized partial differential
equations are found using a direct linear solver. For electrical simulations of the planar RFET
PARallel Direct SOlver (PARDISO) ([68], [69]) has shown the best convergence of all available
solvers when used together with the provided planar RFET technology model and is therefore
used exclusively throughout this work. The respective semiconductor equations are not subject
of the proposed data driven modeling approach and the reader is referred to Bank et al.
[70] for detailed descriptions on the matter. The Newton iterations are configured mainly by
specifying the maximum allowed iterations, damping of iterations and error figures as criteria
for accepting a solution. For a robust configuration of the linearization method, the user has to
decide between the competing factors convergence, precision and simulation time.

Adaptive stepping leads to a higher sample density in operating regions with low conver-
gence. Unlike in circuit simulation, technology simulation often faces convergence difficulties,
preventing the solution to converge at arbitrary boundary conditions. It is crucial to start
simulation at an initial condition with good convergence, usually with all electrode voltages
Ve,i = 0V , and adapt step size towards the designated goal. This means, that device simulations
typically consist of an initial sweep which ramps up all initial electrode voltages, such as supply
voltages and set input voltages required at t = 0 s, after which the actual simulation of interest
can be performed. The allowed step sizes throughout the quasistationary ramp are constrained
by specifying a minimum and maximum. Solutions that are accepted result in an increase in
step size by a specified increment factor until the maximum allowed time step is reached. If a
step fails to converge with the maximum allowed number of Newton-iterations, the current
step size is decreased by a decrement factor. At the point where the minimum allowed step
constraint is met without an accepted solution, the quasistationary simulation fails.

Figure 2.10 shows a typical quasistationary simulation, with an initial step size of 3.2mV .
The step size is observed to increase until Vsweep ≈ −0.5V , where steps fail to converge and
therefore step size decreases to a low level. The operating region of −0.5V < Vsweep < 0.5V

shows convergence difficulties and therefore step size remains low. The increment factor leads
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Figure 2.10: The size of simulation steps depends on convergence. Non-uniform sampling is the result.

then to an increase in step size at Vsweep ≈ 0.5V until simulation completes at the designated
goal of Vsweep = 1.6V .

The second important simulation type in this work is transient simulation. Similar to the
quasistationary parameter sweep with adaptive stepping, the transient solver operates on
discrete points in time. Transient simulation in Sentaurus Device solves the set of ordinary
differential equations

d

dt
q(z(t)) + f(t, z(t)) = 0, (2.1)

with the transient solution q(z(t)), the respective change over time z(t), and the external
excitation vector f(t, z(t)) [70]. Discretization of time steps is performed using trapezoid rule
and the backward differentiation formula, which adapts the step size to the estimated transient
error.

Sentaurus Device further features a plot function CurrentPlot, which saves solutions at defined
simulation steps to a plot file [65]. While the adaptive stepping aims at good convergence
with low simulation time, the plot function allows the user to shape the sample density by
specifying the sampling constraints. A general constraint is the range of acquisition, which
results in all solutions within the specified range to be extracted. The range can be combined
with the specification of uniform or minimum intervals. Further, explicit steps or conditions are
supported. The additional steps to be exported do not alter the state of the adaptive stepping
algorithm. Plot constraints can be omitted, causing the simulator to save every complete
simulation step, which results from the adaptive stepping.

Apart from the substantial computational effort that is required to conduct technology
simulation, there are two main issues to occur. When convergence cannot be achieved within
the solver and stepping constraints, the simulation fails. Typically, user interaction is required,
as refinement of numeric parameters, such as the number of Newton iterations or the incre-
ment factor, often enable convergence at cost of increased resource requirements. Aside from
convergence issues simulations can stall and cease to progress further. In this condition neither
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log file nor output file(s) advance, although the simulation process does not return. For the
technology model used in this work, a simulation is assumed to be in a stalled state, e. g. in a
deadlock, if no progress is written to the log file for more than 40 minutes of time (wall clock).
Both described fail states can be handled manually if the number of conducted technology
simulations is manageable. In a large simulation deck, e. g. to build a table model, the user
benefits from systematic handling of all issues that impede the completion of simulations, as
soon as all convergence aids are exhausted.

Design of TCAD Experiments

Design of Experiments (DoE) describes methods to obtain the maximum information about an
observable process with the minimum amount of resources [71]. Typically, DoE aims at extract-
ing information about a process with the intention of screening, optimizing or characterizing
the output (response), with respect to inputs (factors) [72]. In general, the computational cost of
conducting experiments in technology simulation is high, and so is the reward for reducing
the number of experiments required. However, the goal of the experiments in this work has
to be kept in mind: On the one hand, technology simulation can serve the purpose of finding
specific properties, such as a maximum drive current or the onset of inversion, where strategic
DoE can reduce the required simulation deck. On the other hand, when creating a data driven
circuit-level model, such as a table model, the focus shifts from the response variable back to
the expected factor values during runtime of the model. DoE only helps with the former.
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Figure 2.11: The sample space R3 comprises Ve,1, Ve,2 and Ve,3. Characteristic samples can be generated
by a full factorial setup with respect to Ve,1 and Ve,2 on which the Ve,3-sweeps are executed.
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Instead, the key question for data driven modeling is about the range of the input features and
the required granularity to obtain a sufficiently accurate model. The lookup table structure for
table model simulation, explained in Section 2.2.3, almost dictates the method of conducting the
experiments, as it is tailored to parametric sweeps. The parametric sweep is an implementation
of the one-factor-at-a-time (OFAT) method of experiments, in which all but one parameter
are fixed, and the remaining parameter is changed over a specified range [73]. Figure 2.11
shows the simulation setup, where the samples are determined by a tuples of three electrode
voltages Ve = (Ve,1, Ve,2, Ve,3). The setup is full factorial with respect to Ve,1, Ve,2, excluding the
sweep variable. The sets of voltage steps in each dimension have a cardinality of |Se,1| = 6

and |Se,2| = 4, resulting in |Se,1| · |Se,2| = 24 parameter sweeps of VC to cover the remaining
dimension in R3.

The example of Figure 2.11 can be generalized to Ne ∈ N∗ electrodes. After assessment of
the model use case, i. e. the range of input voltages and their required accuracy, the granularity
and range of every Se,i in each dimension i = 1, ..., Ne − 1 are selected. The TCAD parameter
sweeps of VNe are configured according to the principles explained in Section 2.2.1. The factorial
setup of the sets Se,1,...,SNe−1 then generates a set of tuples, which represents the simulation
deck

Sdeck =

Ne−1∏
i=1

Se,i = Se,1 × Se,2 × ...× SNe−1, (2.2)

and accordingly, the amount of simulations to be conducted follows

|Sdeck| =
Ne−1∏
i=1

|Se,i| = |Se,1| · |Se,2| · ... · |SNe−1| . (2.3)

2.2.2 Compact Models

This section provides an overview of established and commonly used compact models imple-
mentations and their basic functionalities. At first, prominent bulk CMOS compact models are
presented to provide general insight into compact modeling techniques. The fundamentals
of a model for multi gate structures with high similarity to the planar RFET, the Berkeley
Short-Channel IGFET Model - Independent Multi-Gate (BSIM-IMG), is then analyzed. At last,
this section elaborates on how existing models can be applied to the planar RFET. Detailed
physical equations are reduced to a minimum, as they do not contribute to understanding the
data driven predictive modeling approaches proposed in this work.

Compact models bridge the gap between technology and circuit design [74]. While technology
simulation typically serves the purpose of understanding internal physical behavior, the
compact model aims for an efficient and more abstract implementation, in order to conduct
fast and reliable circuit simulation. And having suitable compact models available for circuit
simulation was initially one of the main success factors of SPICE simulation, after all [75].
Compact models abstract from technology level and implement the device behavior regarding
current - voltage, I-V, and capacitance - voltage, C-V, in form of closed-form analytic equations
[76]. Both abstraction levels require accurate models, but while technology simulation aims at
implementing true physical behavior, compact models target computational performance. It is
therefore common to introduce mathematical fitting parameters, along with the comprehensive
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physical parameters, which are extracted either from technology simulation or measurement
[77], [78]. Typically, a compact model is composed of two parts: The core represents the ideal
physical understanding of the device. In order to account for parasitic effects, short channel
effects, process variability and other realistic influences, a second layer, the real model, adapts
the compact model to provide accurate prediction [74], [78].

Modeling in Verilog-A

When implementations of algorithms have to meet strict performance goals, programmers
typically resort to the C language. In the history of compact modeling this is no different
[79]. However, the trend shifted towards Verilog-A when compact modeling support was
greatly extended with version 2.2 in 2004 [80]. Following recommendations of Lemaitre et al.
[81], the access to derivatives and simulator variables, among other improvements, facilitates
development and debugging of models. The runtimes of Verilog-A models are, according to
[80] and in the worst case, at a factor of 2 with respect to C. Zhou et al. [82] even demonstrate
a Verilog-A model that even exceeds the C implementation in performance with a benchmark
circuit.

As Verilog-A models are evaluated in circuit simulation, it is important to write models
which are computationally efficient and avoid constructs which lead to convergence issues.
Simulators are typically SPICE-like and solve a system of non-linear differential equations,
which represents the circuit [83]. A way to reduce variables during modified nodal analysis ([84])
is to avoid voltage sources and to express device behavior as voltage controlled current elements
I(V ). For transient simulation, time derivative of voltage controlled charge elements dQ(V )

dt

provide good convergence [80]. Especially for capacitive currents, in fundamental literature
for constant capacitance often expressed as Ic = C · dV

dt , it is best practice to construct a
charge-based expression, such as q = f(V(b_cap)); I(b_cap)<+ ddt(q); for node b_cap [80].
In general, continuity and differentiability, play an important role for a robust model [85].
Ideally the model equations are continuous, not section wise defined, and their derivatives are
C∞ continuous [80]. In practice, continuity of the derivatives until 3rd degree (for harmonic
distortion simulation at least 5th degree) is sufficient for circuit simulation [85].

Threshold Voltage-, Charge- and Surface Potential-Based Compact Models

There are mainly three conventional types of compact model implementations, namely thresh-
old voltage-based, surface potential-based and charge-based [86]. Threshold voltage-based
compact models divide the operating region into segments, depending on the strength of inver-
sion and the conduction properties of the channel, accordingly. A prominent representative of
threshold voltage-based compact models is the Berkeley Short-Channel IGFET Model (BSIM)
[87]. The first version of the BSIM compact model from 1987 provides drain current equation for
cut-off, linear and saturation region, similar to the commonly used textbook MOSFET model by
Shichman and Hodges [88]. Mathematical simplifications, such as the numeric approximation
of the effect of barrier lowering on Vth caused by substrate bias, allowed fast computation
during circuit simulation [87]. With version 3v3 [89], the BSIM group created the first model to
be standardized by the Compact Model Council (CMC), today called Compact Model Coalition,
in 1996 [77]. Aside from accuracy and computational performance, a significant contributor
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to the success of BSIM 3v3 is the continuous modeling of the I-V characteristic in form of a
single equation for all operating regions, which boosts convergence. BSIM 4 has been presented
shortly after and was widely adopted by semiconductor manufacturers and designers, as it
allows parameterization for a wide range of technologies from 0.35µm to 28nm [77].
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Figure 2.12: The three typical compact model approaches are either threshold voltage Vth-, inversion
charge Qinv-, or surface potential Ψs-based.

Charge-based approaches express the inversion charge densities and the electrode charges in
dependence of the input voltages, inherently providing charge conservation [90]. The inversion
charge formulation allows highly physical modeling of the sub-threshold region in weak
inversion, which is an inherent weakness of threshold voltage-based modeling [91]. Today
widely used for bulk MOSFETs is BSIM version 6 [74], which relies in its core on a charge-based
modeling approach to solve the Poisson equation, similar to surface potential-based models.
Analog and radio frequency (RF) designs often require the drain current and its derivative
to be symmetric to VDS = 0V , which is a common point of criticism in BSIM 4 [92]. The
charge based approach of BSIM 6 solves this issue and, within the allowed parameterization,
derivatives of at least up to the order of 3 are continuous. The real model, on top of the core
model, is mostly adopted from BSIM 4.

The third type, surface potential-based compact models, derive the I-V and C-V characteristics
from the surface potential of the channel at the oxide interface, which is constrained by the
given input voltages at both ends of the channel [86]. A physical model of the surface potential
Ψs related to substrate [93]

(VGB − Vfb −Ψs)
2 = γ2

(
Ψs − Vt + Vt · e

Ψ−2Φb−Φn
Vt

)
, (2.4)

with gate-bulk voltage VGB , flat band voltage Vfb, body effect factor γ, thermal voltage Vt, bulk
potential Φb and source/drain-bulk potential Φn, was proposed by and named after Pao and
Sah [94] in 1966. A drawback of Equation 2.4 is that it is an implicit function. Solutions for
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Figure 2.13: BSIM-IMG targets FD-SOI devices with two independent gates on both sides of the body
[104].

the Pao-Sah model are either based on iterative methods or analytic approximation, with one
of the latter proposed by Gildenblat et al. [95]. For early surface potential-based models the
computational effort was therefore substantially higher than contemporary threshold voltage
based compact models [90]. Fast converging and highly accurate iterative solutions, such as
[96] and [97] contributed to the success of metal-oxide-semiconductor (MOS) Model 11 [97]
and Hiroshima-University STARC IGFET Model (HiSIM) [98], [99]. An example of analytic
approximation of Equation 2.4 is implemented in the SP compact model [95] and reduces the
number of complex operations required to one logarithm, one exponent and 3 square-roots
[93]. PSP [91] emerges in 2006 as a fusion between SP and MOS Model 11 with the analytic
approximation of the surface potential from [95], and is the most commonly used surface
potential-based compact model for bulk MOSFETs.

BSIM-IMG: A Compact Model for Multiple Gates on FD-SOI

Semiconductor devices evolve along with materials, structures and features, and so do, nec-
essarily, compact models. While change in the semiconductor industry is often incremental,
disruptive technologies, such as FinFETs and FD-SOI emerge at times and require accurate
compact modeling. This section deals with existing compact models in the vicinity of structure,
materials and working principles of the planar RFET. Multi-gate devices are divided into
two groups, depending on whether the respective gates are electrically connected, such as
FinFETs, or independent, such as FD-SOI with front- and back gate. A cross section of a dual
gate FD-SOI FET is shown in Figure 2.13. The most widely supported and CMC standard-
ized compact models for independent gate devices are BSIM-IMG [100], L-UTSOI [101] and
HiSIM-SOTB [102]. All three models are based on surface potential and target ultrathin body
devices. The solutions are found through an iterative method in HiSIM-SOTB, while both
former compact models provide analytical expressions. To provide an example of the surface
potential calculation of a multiple independent gate FET on FD-SOI, such as the planar RFET,
the core of BSIM-IMG is presented in the following. The model outline is mainly based on the
technical manual of BSIM-IMG [103] and the work of Khandelwal et al. [100].
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In BSIM-IMG the multiple gates are allowed to have different work functions, dielectric
thickness and dielectric constants. The typical target for BSIM-IMG is a planar FD-SOI device,
where the two independent gates are located at the opposite side of the fully depleted channel,
as shown in Figure 2.13 and described in [104]. The two gates, FG and BG are denoted 1 (FG)
and 2 (BG). The core model approach is surface potential-based, and solves the one-dimensional
poisson equation of the channel in x-direction in form of

εsi
d2Ψ(x, y)

dx2
= qNc · e

(Ψ(x,y)−Vch(y))

Vt , (2.5)

with the dielectric constant of silicon εsi, elementary charge q, thermal voltage Vt, density of
states in the conduction band in silicon Nc, and channel voltage, i. e. the electron quasi-Fermi
potential relative to source potential, Vch(y) [104]. In general and unlike in [93], surface poten-
tials (Ψ) computed by the BSIM-IMG model are all source-relative, as there is no bulk potential
available to reference to. The body is considered lightly-doped, therefore ionized dopants are
not considered for the charge density calculation within the channel. The total charge density
of the inversion carriers in Equation 2.5 is therefore represented using Boltzmann’s distribution.
After integration, the surface potentials Ψs1 and Ψs2 are formulated in

E2
s1 − E2

s2 =
2qNcVt

εsi

(
e

Ψs1−Vch
Vt − e

Ψs2−Vch
V t

)
, (2.6)

where Es{1,2} is the electric field at the respective surface. Inversion charge at the interface
of the back-oxide is explicitly regarded in BSIM-IMG [100]. In addition to Equation 2.6, two
boundary conditions at the surfaces s1 and s2, which stem from continuity of displacement
fields,

Cox{1,2}(Vg{1,2} −∆Φ{1,2} −Ψs{1,2}) = εsiEs{1,2} (2.7)

with C{si,ox1,ox2} =
T{si,ox1,ox2}
ε{si,ox1,ox2}

(2.8)

are formulated. As a second independent equation of the two unknown Ψs1 and Ψs2 is obtained
under two assumptions [105]: Firstly, the charge distribution towards the FG is represented by
charge sheet approximation. And as the BG is only in weak inversion, secondly, the inversion
charge distribution is not considered to be volumetric. Subsequently, assuming a constant
displacement field in x-direction between the two gates allows the formulation of the second
independent equation of the surface potentials [106]

Ψs2 =
Csi

Csi + Cox2
·Ψs1 +

Cox2

Csi + Cox2
(Vg2 −∆Φ2). (2.9)

The solution to the implicit relation of Equation 2.6 with Equation 2.9 is then calculated by using
the approximate solution proposed by Lu et al. [104] for Es2, and serves as initial guess for Ψs1,
i. e. Ψ′

s1. However, the assumption of constant displacement field in the vertical direction of the
device is valid for weak inversion with low carrier density within the body [106]. A final step,
generalizes the surface potential for moderate and strong inversion by using the initial guess
Ψ′

s1 for Ψs1 in Equation 2.9, and provides solutions for both surface potentials Ψs1 and Ψs2.
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Compact Models for RFETs

Although not yet standardized by CMC, there are compact models which target reconfigurable
FETs. This section provides a brief overview of existing and relevant compact models.

For the early carbon nanotube RFETs with heavily doped source and drain regions O’Connor
et al. [50] and Goguet et al. [107] propose a purely physical compact model. The polarity (n/p)
is modeled as a binary parameter and the simulation of digital for statically configured devices
is demonstrated.

Martinie et al. [101] provide a simplistic and surface potential-based compact model for a
device with similar structure as the planar RFET. The main difference is that the PGs are not
aligned with the Schottky barriers at source and drain. The proposed compact model in [101]
does, however, not allow dynamic reconfiguration via an externalized PG node.

Another and equally surface potential-based approach is proposed by Roemer et al. [108],
[109], who provide the PG voltage Vpg of a dual gate RFET, attributed to type b) in Figure 2.2,
as a direct input. [109] identifies the main on-current contribution of the type b) device to
stem from field emission over the source-side Schottky barrier and models the total current
as a superposition of electron current and hole current. Dynamic reconfiguration via Vpg is,
however, not demonstrated, and the model is not publicly available. Ni et al. [110] propose
a compact model for a structure similar to [109], but do not show dynamic reconfiguration,
either.

While the existing compact models in this section fall short of demonstrating the integration
of multiple independent gate electrodes for dynamic reconfiguration into a closed form
expression, especially [101], [109] and [110] can be a promising starting point for physical
compact modeling of the planar RFET.

Machine Learning-Based Compact Modeling Approaches

The increasing adoption of machine learning methods in engineering disciplines does not
spare the domain of compact modeling. Especially neural networks, introduced in detail in
Section 2.3.1, are chosen by various groups as model architecture. This section provides an
overview of machine learning-based approaches for compact modeling.

In 1992 Litovski et al. [111] already exploit the continuous derivative provided by an artificial
neural network (ANN) to replicate the characteristics of an existing compact model. The
network contains a single hidden layer, which depends in size on an initial estimation of device
complexity. This approach represents a baseline for machine learning-based modeling, which
has been refined by various groups mentioned in this section.

Hutchins et al. [112] describe a modeling framework for multi state devices, e. g. a hafnium
oxide memristor, using a neural network with 3 hidden layers. The inputs of the models are
electrode voltages, a one-hot encoded device state and device specific parameters, such as size
and temperature. Training data are generated from an available compact model and the neural
network is implemented in Verilog-A. In order to improve robustness of the model, Gaussian
noise augmentation, further explained in Section 4.2.3, is applied.

With special attention on drain-source symmetry, Xu et al. [113] propose a neural network
based modeling flow for MOSFETs in high frequency applications. The symmetry constraints
allow the applications in circuits where Vds = 0V is crossed, such as mixer circuits. Training
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data for the neural network are only required for one of the symmetric half-spaces around
Vds = 0V . The trained model is then duplicated and the identiacal copy of the original neural
network is operated with inverted input voltages to predict the current and charges of the
respective other half-space.

Wang et al. [114] and Zhao et al. [115] propose a single neural network, which generates
outputs for current and charges. The output values of the neural network are transformed
using dedicated functions, such as

Ids = I0 · Vds/1V · 10y (2.10)

for the drive current, with a linear scaling factor I0 in A and neural network output y [114].
For sake of dimensional consistency, the division by 1V is added by the author of the present
work. A valuable finding in [115] is that out of three investigated activation functions, which
are logistic function, rectified linear unit (ReLU) and tangens hyperbolicus (tanh), for neurons
of the hidden layer, tanh performs best in terms of mean squared error (MSE). The use of tanh
results in an MSE of 0.01, while ReLU and the logistic function score an MSE of 0.07 and 0.23.
The modeling approach in [114] targets DTCO and is therefore embedded into an optimization
flow for model accuracy, modeling turnaround time and SPICE simulation effort.

A similar approach is taken by Klemme et al. [116], who propose a neural network-based
approach to model a FinFET. The drive current model consists of two neural networks: A model
trained from logarithmically transformed input data represents currents below the threshold
voltage Vth, similar to [114], while a model trained on the raw input data represents all currents
above Vth. At Vgs = Vth, the model is interpolated within a fixed width of Vth±0.1V to mitigate
the discontinuity between both segments.

Habal et al. [117] propose a bulk MOSFET model in form of a neural network. Features are
constructed from expanding the polynomials of the Shichman-Hodges model [88], which results
in terms such as V 2

ds, V
2
bsVds, VdsVgs/L and others. Two hidden layers with 52 and 26 neurons,

respectively, provide sufficient accuracy for predictive circuit simulation. A requirement for
this modeling approach is to have physical insights into charge transport mechanisms in order
to construct suitable features.

A physics inspired neural network is proposed by Li et al. [118], who stray away from the
concept of a homogeneous structure of the hidden neurons. Instead, the model is partitioned
into subnets with different activation functions and available parameters. The relationship
between drain current Id and channel voltage Vds comes from a subnet with tanh activation
function, inspired by the expected physical context. Further, the Id(Vds = 0V ) = 0A is ensured
by removing all bias parameters from the subnet. The influence of the gate voltage VTG on the
channel current Id, however is expected to experience an exponential and a polynomial phase,
which is represented by the logistic function and justifies a separate subnet.

2.2.3 Table Models

Table models provide a straight forward data driven modeling approach. Instead of modeling
behavior or physical structure of a device, available data points, are organized in form of a
table. Essentially, a table model is a data set

Dtable = {(X(i), y(i))}Ns
i=1 (2.11)
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which contains Nd-dimensional tuples X(i) = (x
(i)
1 , x

(i)
2 , ..., x

(i)
Nd

) ∈ RNd of individual variables
and a dependent value y(i). The total sample count in Dtable is then Ns and the number of
values to be stored is Ns ·(Nd+1). Table 2.1 shows a structured table of Dtable. During evaluation
of a device model, the required data tuple X(i) is looked up in the table and the result y(i)

is provided to the simulator. Data tuples that are not explicitly included in the table, but
are contained within the convex hull of the set {X(i)}Ns

i=1, can be obtained by interpolation.
Commonly used interpolation methods are nearest neighbor, piece-wise linear and piece-wise
polynomial. Extrapolation of table models is typically discouraged due to the inherently weak
generalization of non-linear systems outside the available data.

Table 2.1: A lookup table assigns an output value y to an Nd-dimensional input tuple.

i x1 x2 x3 ... xNd
y

1 x
(1)
1 x

(1)
2 x

(1)
3 ... x

(1)
Nd

y(1)

2 x
(2)
1 x

(2)
2 x

(2)
3 ... x

(2)
Nd

y(2)

3 x
(3)
1 x

(3)
2 x

(3)
3 ... x

(3)
Nd

y(3)

... ... ... ... ... ...

Ns x
(Ns)
1 x

(Ns)
2 x

(Ns)
3 ... x

(Ns)
Nd

y(Ns)

Table models are used in a multitude of circumstances, where the true system transfer
function fsystem(X) = y is not available or not convenient to compute. It is common to use
lookup tables for trigonometric functions in embedded systems in order to avoid costly floating
point-based algorithms [119]. Further, lookup tables are a convenient method to model and
compensate non-linearity of sensors [120] on microcontrollers. Saripalli et al. represent band-to-
band tunneling transistors (TFETs) with table models for simulation of various static random
access memory (SRAM) cells [121].

Another use case for lookup tables, and subject of this work, lies in modeling of semicon-
ductor devices for circuit simulation, which is a common approach for emerging devices
[122], [123]. Device models which invoke lookup tables, further called table models, are typ-
ically provided in form of Verilog-A modules. Verilog-A specifies the function $table_model

to handle lookup, interpolation and extrapolation of data table regarding a single input tuple
Xin = (x1,in, x2,in, ..., xNd,in) [124]. The function $table_model operates on data that are typi-
cally generated from one-dimensional parametric sweeps, a typical method of finite element
simulation further elaborated on in Section 2.2.1. A one-dimensional parametric sweep maps
an input line X ∈ R1 to an output line Y ∈ R1. This is a common use case for linearization of
non-linear sensor values, as a scalar input from the sensor (xsweep) value is transformed into a
scalar output value (y). Adding dependencies, e.g. operating temperature as x1, the parameter
sweep of xsweep requires the setup of a factorial experiment design, explained in Section 2.2.1.

The Verilog-A function $table_model provides multiple interpolation methods such as linear
interpolation, closest point lookup, quadratic and cubic splines, which can be freely selected
for arbitrary dimensions [124]. In continuation of [43], this work restricts itself to linear interpo-
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lation, as spline interpolation has shown to often impede convergence in circuit simulation and
to introduce oscillations. The general approach to optimize model accuracy and to limit linear
interpolation error in this work is to constrain sufficiently fine granularity of the generated
data set.

A parametric sweep of xsweep(= xNd
) with constant x1, ..., xNd−1 generates a subset of the

table model called iso line. Verilog-A’s $table_model function requires all data points to be part
of iso lines, as a prerequisite for applying a simple multivariate interpolation algorithm [124].
An example of the multivariate linear interpolation with Nd = 2 and X = (x1, x2) = (Vgs, Vds)

is shown for an NMOS device in Figure 2.14. The iso lines are described by parameter sweep of
xNd

= Vds over a constant x1 = Vgs. Multivariate interpolation for a bias point (Vgs,i, Vds,i) starts
with finding the adjacent iso lines with respect to Vgs (step I) and performing 1-dimensional
interpolation first on the respective iso lines (step II and II) at Vds = Vds,i. The obtained points
on the adjacent iso lines then allow linear interpolation (step IV) of the point (Vgs,i, Vds,i), which
returns a prediction of drain current Id,i. Details of the interpolation algorithm are not relevant
for this work, as the entire table model functionality is implemented by the simulator and
cannot be altered by the user. However, it is important to understand that the requirement of
the iso line structure means that available data points cannot be added at random. Either the
data to be added are part of an existing iso line or, in case of multiple data points to be added,
they form a new iso line of at least two members.
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Figure 2.14: The data which are interpolated by Verilog-A’s table model function have to feature iso
lines for all but the sweep variable, which enables a simple multivariate interpolation mechanism.
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There are inherent limitations in what a table model can represent. As tables consist of
quasistationary data points and therefore hysteresis and memory effects cannot be represented.
Modeling of interface traps or memristive devices cannot be achieved with I-V or Q-V tables,
while tables state information and other behavioral data are conceivable. Further, there are
properties, such as the inversion capacitance, which cannot be exactly represented by a table
model from a DC data set. Figure 2.15 demonstrates in an excerpt of the characteristic of
the planar RFET, that inversion capacitances depend heavily on frequency. The capacitance
that is computed from the charge table Q-V clearly follows the DC capacitance, while the
characteristic diverges for AC simulation in TCAD. The table model then assumes a higher,
pessimistic, capacitance.
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C-V Plot at VTGLat1 = 0V and VLat21 = −1.6V

Figure 2.15: Inversion capacitance is frequency dependent. As the table model data set is typically
generated from DC data, predictive circuit simulation is prone to errors.

2.3 Fundamentals of Machine Learning Models

The fascination with the working principles of the human brain is ancient. In an attempt to
grasp the structure of human information-processing and decision-making, Aristotle describes
a physical process to compare and distinguish sensations, already in 300 B.C. [125]. Aristotle’s
theory of Associationism is based on the assumption of discrete psychological processes and the
capabilities of the human mind are enabled by associating these processes [126]. More than two
millennia later and regardless of the applicability of Associationism on the human brain, we see
that this concept of densely interconnected computational units is what became an important
subset of machine learning methods: deep learning.

Regression analysis is a technique in the domain of statistical analysis, which in general aims
at finding the influence that one or many independent variables have on others [127]. Today,
regression is often associated with machine learning and the optimization of model predictions
based on a set of training data, similar to curve fitting. Curve fitting is efficient when the
complexity and the general structure of the process to be modeled is known ahead of time. A
generic model can be constructed and then be optimized by altering the respective parameters.
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However, without insights about the structure of the process available, good parameterization
cannot make up for an inaccurate mathematical model structure. With the premise of a black
box process, an approach called symbolic regression aims at finding symbolic equations for the
respective training data.

In general, both methods reside in the field of machine learning, which thrives to find a
hypothesis h(x) to approximate the ground-truth of a data set D [128]. Subject of this section
is to explain the fundamental mechanisms and properties of deep learning and symbolic
regression that are used for modeling of semiconductor devices.

2.3.1 Deep Learning

Deep learning revolves around interconnected layers of artificial neurons, called artificial
neural networks (ANNs). An early neuron model is proposed by McCulloch and Pitts in 1943
[129] and describes neural events by means of propositional logic. To account for the "all-or-
none character of nervous activity" [129], the output of each McCulloch-Pitts (MP) neuron is
either 1, if the sum of all binary inputs exceeds a threshold, or 0 otherwise. This basic neural
model maps the binary input numbers to a binary output value, which already enables the
implementation of logic functions, such as binary AND, OR and inversion. The abstraction
from biologically inspired neural models to more numerically expressive mathematic models
is shown by Rosenblatt [130] in 1958, who introduces custom weight and bias parameters for a
cell that they name perceptron, shown in Figure 2.16. The perceptron attaches a weight wi to
each input i and many implementations store an additional constant b as invariant bias [131].
Similar to the MP neuron, the perceptron relies on a binary activation function g(u), but here
the sign function maps the sum of weighted inputs and bias to the output values y ∈ {−1, 1}.
The mathematical model of the perceptron for i ∈ Nin inputs is

y = sign
( Nin∑
i=1

wi · xi + b
)
. (2.12)

. .
 .

Perceptron

Figure 2.16: The original form of the perceptron by Rosenblatt [130] features weights, bias and sign as a
binary activation function g(u).

The concept of Rosenblatt’s perceptron in 1958 [130] was not substantially different from what
were already established machine learning methods at that time. The relevance rather lies in the
understanding of the perceptron as a computational unit, which can be aggregated as a network
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to create models more powerful than those enabled by traditional machine learning [131]. The
idea of – by then still linear – multilayer perceptrons (MLPs) was marginalized by Minsky
and Papert [132] in 1969 for providing little benefit over an elementary perceptron. And yet,
aside from increase of computational resources, two advances are key to the substantial impact
that neural network have exerted in the last decades: Firstly, backpropagation, derived from
Leibniz product rule, was established as an efficient gradient based optimization algorithm
by Linnainmaa [133], which allows training of MLPs. Martens [134] further enables deep
networks by proposing a second order method to deal with vanishing gradients during
training. Secondly, applying backpropagation to MLPs with smooth and non-linear activation
functions, e. g. by Werbos [135] and Rumelhart et al. [136], enables universal approximation of
non-linear processes [137], [138].

The Multilayer Perceptron
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Figure 2.17: The choice of activation function has a significant impact in ANN performance [139].

Linear activation functions restrict the approximation capabilities of MLPs to linear functions,
and while the biological inspiration for the perceptron suggests an abrupt and not necessarily
continuous step activation, Mitchell [138] proposes differentiable non-linear activation. A
special type of sigmoid function, the logistic function, shown in Figure 2.17, suffices these
criteria and maps (squashes) the sum of weighted inputs to the range g(u) ∈ (0, 1). The
advantage of the logistic function is that it provides distinct gradients for small |u|, beneficial
for gradient based training, such as gradient descent. An alternative to the logistic function
is tangens hyperbolicus, providing a similar differentiable and monotonous slope. Although
worse in terms of computational effort, tanh is zero-centered, which improves convergence
during training [140]. An issue which both activation functions, logistic function and tanh,
introduce is the problem of vanishing gradients, where early parameters in deep networks
experience only little change during training due to the diminishing derivatives [141]. The
tanh function is less prone to the vanishing gradient problem, as its derivative is greater in
magnitude and therefore typically declines more slowly towards earlier layers of the MLP
than the derivative of the logistic function [131]. More prominent as an activation function
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today is the computationally efficient ReLU function, shown in Figure 2.17, introduced by
Hahnloser and Seung in 2000 [142]. Although the strategy of introducing a piece wise linear
function seems counterintuitive for gradient based learning due to the fact that ReLU is not
differentiable in u = 0, the constant slope of du

dx = 1 for u > 0 allows strong gradients to
propagate back to early layers during backpropagation. Still, there are circumstances in which
ReLU is not optimal: If the combination of trained weights (positive/negative) and cell inputs
(negative/positive) lead to u < 0 and forces the output to ReLU(u) = 0, the unit is called dead
neuron and does not contribute to the overall MLP [131].
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Figure 2.18: The MLP is a feed-forward network with of densely connected layers.

The MLP, as shown in Figure 2.18, is a feedforward neural network where all outputs of
perceptrons of a layer are inputs to all perceptrons of the subsequent layer [128]. There are no
loops and the flow is unidirectional. Input values of the MLP are provided directly without
computation. The performance of an MLP comes mainly from the deep architecture, which
introduces multiple hidden processing layers consisting of elementary perceptron units. While
size of input and output layer, i. e. number of features and predictions, are constrained by the
application the hidden layer count and the size of each individual layer are freely selectable.
The densely connected layers require each perceptron unit of index n within layer l to compute
their respective output xl,n by

xl,n = g
(Nu,l−1∑

i=1

wl,n,i · xl−1,i + bl,n
)
, (2.13)

where the previous layer contains Nu,l−1 units. Each unit contains an invariant bias bl,n and
each input i of each unit is attributed with an individual weight wl,n,i. The detailed structure
of an MLP is shown in Figure 2.19.
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Figure 2.19: Each unit n in layer l of the MLP features trainable parameters wl,n,i to weigh every of its
inputs i and bl,n to provide a general offset for the summation stage. After weighted summation, the
activation function g(u) is applied.

The forward pass through the MLP, which requires each unit to compute Equation 2.13,
allows formulation as matrix multiplication for each layer l as

Xl = g(WlXl−1) = g


wl,1,1 wl,1,2 wl,1,3 bl,1
wl,2,1 wl,2,2 wl,2,3 bl,2
wl,3,1 wl,3,2 wl,3,3 bl,3



xl−1,1

xl−1,2

xl−1,3

1


 =

xl,1xl,2
xl,3

 , (2.14)

where xl=0,i = xin,i, Xl ∈ RNu,l and Wl ∈ RNu,l×(Nu,l−1)+1. The addition of the invariant bias
bl,n can be included into the matrix multiplication, to spare one operation. The advantage
of the formulation as matrix multiplication is that implementations can leverage parallel
computational capabilities such as single instruction/multiple data (SIMD) instructions to
speed up computation.

Weight and bias parameters are subject to algorithmic optimization during training of the
MLP. Training MLPs typically relies on backpropagation [135], [136] to optimize the weight
and bias parameters as described in Section 2.3.1. Training data are taken from a dataset
D = {(X(i)

in , y(i))}Nsamples

i=1 with a total sample count of Nsamples. Backpropagation relies on two
phases with opposite propagation directions [136]. The first phase is a forward pass of an input
Xin in order to compute the loss L(Xin, y). In the second phase, the gradients of L(Xin, y)

with respect to all weight and bias parameters are determined using the Leibniz chain rule.
These derivatives are then used to find the optimum with respect to all wl,n,i and bl,n, i. e. the
minimum of L(Xin, y). Due to the deep architecture of the model, the learned weight and bias
parameters are highly incomprehensible for humans and therefore typically left untouched by
the user.
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Hyperparameter Tuning

What the user can, in turn, configure are the hyperparameters and this section describes meth-
ods to find them. Hyperparameters are algorithmic parameters, which influence the training
process, such as choice of optimizer, learning rate and MLP structure, i. e. number of layers and
sizes of layers. Typically, there are fewer hyperparameters than model parameters and their
causal relationship to the deep learning approach is comprehensible [128]. Hyperparameters
are specified before training, either by making an educated guess about the structural and
algorithmic constraining leading to an acceptable solution, or by employing a tuning algorithm.
Figure 2.20 shows a hyperparameter tuning loop for two hyperparameters A ∈ R and the
discrete valued B ∈ {B0, B1, ..., }. The loop trains with the current hyperparameter set using
the training set. The performance is then evaluated using the validation set and a termination
criterion, such as a maximum number of iterations or a target accuracy is checked. Based on
this evaluation, tuner either returns or generates a new set of hyperparameters to continue
in the tuning loop. Each trial, i. e. training a model for a respective set of hyperparameters λ,
is costly, so that the hyperparameter search space for algorithmic tuning has to be as small
as possible. Even for a small set of hyperparameters to be tuned, the optimization is costly
because of the partly discrete and partly continuous nature of parameters such as layer count
and learning rate. Often, for the task of hyperparameter tuning, gradient based optimization is
inefficient because of the high cost for training of the model.
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E.g. Learn. Rate E.g. Layer Count

Data Set 
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Continue tuning ...

Hyperparameter Tuning Loop

Figure 2.20: Hyperparameter tuning is typically performed in a loop of generating new hyperparameter,
training the according model and evaluating the new model on the validation set. Once a termination
criterion is met, the tuning loop returns.

The most basic tuning approach when it comes to derivative-free optimization is grid search,
which exhaustively tests combinations of the hyperparameter search space, discretizing the
continuous hyperparameters. Grid search is feasible if the number of hyperparameters to be
fitted is low, as the number of trials increases exponentially with the number of hyperparameters
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[143]. Typically, random search is more efficient, as decisions about hyperparameter for future
trials are made based on the result of the previous trial [144], instead of a predefined grid.
This work, however, focuses on more recent algorithms, namely hyperband tuner and Bayesian
optimization.
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Figure 2.21: Bayesian optimization approximates an objective function f(λ) using a surrogate model.
An acquisition heuristic determines which value λ to probe next, in order to improve the overall
approximation.

Bayesian optimization is a derivative-free black-box approach proposed by Kushner [145]
in 1964, which gained popularity as a hyperparameter tuner for machine learning models in
the last decades [146]–[148]. The underlying concept of Bayesian optimization is to construct
a surrogate model to predict an objective function over the hyperparameter search space,
modeling the conditional probability p(f |λ), with objective function f and hyperparameter
(-set) λ [149]. This surrogate model is typically a Gaussian process, which provides continuous
mean and variance of the hyperparameter prediction by postulating a certain smoothness of
the unknown function with respect to the hyperparameters. As can be seen in Figure 2.21
with a single hyperparameter λ ∈ R, the confidence intervals show little correlation with the
unknown function f(λ) when the number of observations is low (e. g. 3). The optimization
principle of Bayesian optimization involves an acquisition heuristic. The acquisition function
makes a decision based on the current surrogate model (called prior) which hyperparameter
combination to sample next in order to reduce the confidence interval around f(λ) and to
improve the function approximation [150]. A commonly used acquisition heuristic is the
expected improvement (EI) by Mockus et al. [151], [152], which places the subsequent λ to be
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observed at the point where the improvement of the surrogate model is expected to be highest,
by selecting the maximum of

EI(λ) = E[max(0, f(λ)− f(λ̂))], (2.15)

where E[h] is the expected value of h, and λ̂ is the hyperparameter with the highest observed
value f(λ̂). Figure 2.21 shows that the surrogate model improves by the additional observa-
tions placed on the maximum of EI(λ) through Bayesian inference, which leads to a good
estimate of f(λ̂) = max(f(λ)) and therefore argmaxλ(f(λ)). Bayesian optimization based on
Gaussian processes is efficient in noisy processes, as the surrogate model allows observations
to be afflicted with uncertainty. However, Bayesian optimization is typically used for a low
number of hyperparameters (< 20), owed to sharp acquisition functions in higher dimensional
optimization problems [148], [153].
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Figure 2.22: A single successive halving step does not necessarily expose the best model. In the
constructed example, the halving step at epoch 50 drops the model (b), although it would turn out
best at epoch 100. Hyperband therefore conducts a system of successive halving steps with distinctive
numbers of trials.

A different approach is taken in Hyperband. Hyperband is a multi-fidelity tuning algorithm
by Li et al. [149], which allocates an available resource budget B (e. g. number of epochs) to an
exploratory problem. Hyperparameters can be found by the successive halving method [154],
which uniformly allocates B (e. g. training epochs) to a set of Nλ different hyperparameter
combinations λ = {(λi)}Nλ

i=1, resulting in budget bi = B/Nλ for each trial of λi, i ∈ 1, ..., Nλ.
When reaching the maximum number of allowed epochs during a trial, the trial is stopped (early
stopping). Successive halving then means to keep the best 50% of the trials and their respective
λi, allocating the same budget B to the now Nλ/2 combinations of λi. The resulting budget
per trial bi doubles after every halving step and only the best performing hyperparameter
combinations of λi are kept a single candidate remains with a tuned hyperparameter set. A
drawback of using the plain successive halving for tuning is that different trials are likely to
have different convergence properties, so that the limited budget per trial bi is not necessarily
informative about the overall performance of the respective hyperparameter set with a larger
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budget. Figure 2.22 shows that a hyperparameter set that converges quickly to a loss La can
be preferred over one that converges to a lower loss Lb < La, but at a flatter descent, which
results in a less than optimal result. The choice of Nλ, which influences the amount of budget
allocated to each trial before the respective halvings, is therefore highly relevant for an optimal
outcome. However, it is often unknown how early the quality of the trials stands out from
each other for a certain deep learning model, and a suitable Nλ is therefore difficult to select
manually. Hyperband aims at mitigating this issue by conducting multiple successive halving
runs with a different amount of combinations Nλ in a grid search fashion. In the beginning
a maximum budget B for any succesive halving step within a specific value of Nλ, called a
bracket, and a factor η are specified manually. The first bracket, is performed with a maximum
Nλ that is possible for B epochs, resulting in Nλ = B combinations with one epoch each. Every
subsequent bracket b ∈ {bmax, ..., 1, 0} permits Nλ,b = Nλ/η

b combinations with a respective
epoch budget of Bb = B/Nλ · ηb. With every bracket the number of halving steps are reduced
by one, until the last bracket b = 0 allocates the maximum allowed budget B without halving
steps, which resembles a random search.

The question which hyperparameter tuning method to use for a given machine learning
model is typically answered with reserved advice, if at all. Even the computational effort
of each method depends on the number of the hyperparameters and the size of the search
space. A general principle that this thesis follows is to prefer Hyperband when discrete valued
hyperparameters such as layer count and units per layer are involved. Bayesian optimization
is designed for continuous value hyperparameters, although rounding methods allows opti-
mization of discrete values [155]. Still, to converge towards an optimal solution when tuning a
small number (< 20) of continuous hyperparameters, Bayesian optimization is often the tuner
of choice.

2.3.2 Symbolic Regression

Neural networks, as explained in Section 2.3.1, require structural constraints, e. g. in form of
model architecture. During training the parameters are fitted to the underlying and unknown
distribution of the data set D = {(x(i), y(i))}Ns

1 , so the structural constraints are crucial for
model performance as much as the structure of a polynomial equation is for a curve fitting
problem. And the complexity of an MLP, i. e. the number of hidden layers and their respective
units, can only partially make up for the fact that the distribution of D is only approximated by
a large combination of multiplication-summation-activation. This limitation becomes apparent
when training an MLP with a periodic distribution, which typically leads to poor generalization
behavior [156], [157]. So the question if an MLP can really grasp and represent a mathematical
principle sampled in D is at times not so much a question about the complexity of the described
principle, but rather about the expressiveness introduced by activation functions. A very basic
example by Minsky et al. [132] demonstrates this principle early on: when using only linear
activation functions, the MLP can only represent linear distributions. It is common to choose
the activation function mainly based on convergence and performance during training, as the
single computations of the respective units are not comprehensible to humans anyhow. The
resulting model provides a deep network of solitary computations that fit the training data
well and ideally all data in close proximity [158]. However, if the true physical or mathematical
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principle behind the distribution is apparent, e. g. because it represents a harmonic function
within a waveguide or the exponential decay of an unstable material, it is preferable to obtain
a simple and short equation which models the general causality. This path can lead from deep
learning back to curve fitting, if the underlying principle is known ahead and well understood,
so the only computational task is to perform regression with respect to manually introduced
parameters. But in case it is too costly to manually analyze and characterize D, which is
usually the main motivation to lean towards deep learning, symbolic regression is a promising
candidate.

Symbolic regression is the task of optimizing structure and parameters of an analytical model
with respect to a given distribution

y(X) = ϕ(X, θ) + ϵ, (2.16)

with variables X = (x1, x2, ..., xNd
), space of analytical expressions ϕ and space of parameters

θ and white noise ϵ [159], [160]. The result of symbolic regression on observations from
Equation 2.16 is a closed form analytical expression

ŷ(X) = ϕ̂(X, θ̂) : Rd → R, (2.17)

with feature count Nd and X ∈ RNd [159]. One advantage of optimizing the structure along
with its parameters is that the bias introduced by human constraining, e. g. in form of a neural
network architecture, is avoided. Further, the interpretation of the resulting analytic equation
can provide insights into underlying principles of the sampled process [159]. The value of
interpretable models is particularly high if predictions lead to decisions which impact human
life, e. g. in health care or justice [161]. Another finding by Wilstrup et al. [162] indicates
that symbolic regression often outperforms other machine learning methods, such as lasso
regression, gradient boosting, random forest and decision trees, when the available data set D
is small.

There are several approaches to symbolic regression, which rely on different optimization
techniques. A traditional approach to symbolic regression is genetic programming, which
generates a population of solutions and defines genetic operations such as mutation and
recombination among them [163], [164]. The general aim is to increase the fitness of the
population by selective breeding, which results in a generation of novel solutions. Ideally,
selective breeding provides one or more acceptable solution after multiple generations. Typically,
the outcome of symbolic regression through genetic programming can show good fitness,
however a drawback is that complexity of the promising candidates is high [165]. As a
consequence, computation effort for prediction rises, but more importantly, overly complex
models are difficult to interpret. Recently, approaches aim for minimum complexity and the
possibility to incorporate prior knowledge such as Bayesian Symbolic Regression by Jin et al.
[166] and AI Feynman by Udrescu et al. [167], which exploits structural assumptions in physical
equations. Operon by Burlacu et al. [168] is based on genetic programming incorporating
gradient based optimization. Deep Symbolic Regression by Petersen, Landajuela et al. [169],
[170] exploits reinforcement learning and recurrent neural networks. Fast Function Extraction
by [171] generates linear and non-linear base functions, extracts promising candidates using
pathwise regularized learning and combines them in a linear model.
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Two assessments facilitate the choice of method and implementation for this work. Cava et al.
[159] propose SRBench in 2021, a benchmark set with 252 regression problems and compares
14 contemporary symbolic regression implementations against 7 traditional machine learning
implementations, such as MLP and random forest. The two types of problems for which the
candidates are evaluated are black box regression, where y(X) is unknown, and ground truth
regression, for with the sample set D is created from an analytic function y(X). As the best
performing implementations for black box regression, Operon stands out with high accuracy.
Among the approaches that do not rely on genetic programming, Deep Symbolic Regression
and fast function extraction share the first place. For ground truth regression, AI Feynman
shows low accuracy when the target function is afflicted with noise, rendering its use with real
world data, e. g. measurements, questionable. Even in the presence of noise, Deep Symbolic
Regression significantly outperforms Operon and AI Feynman and often recovers the exact
solution y(X).

In 2022, a new competitor enters the SRBench Competition [172], a showdown of symbolic
regression implementations at the Genetic and Evolutionary Computation Conference in Boston,
MA. The synthetic track rewards among others the discovery of the true y(X), extrapolation
and sensitivity to noise. QLattice [173], [174] relegates Deep Symbolic Regression to the third
place and significantly outperforms Operon. A second track deals with generation of models
for COVID-19 prediction, where Deep Symbolic Regression outscores QLattice by little. Being
among the first two/three places in both disciplines, QLattice and Deep Symbolic Regression
are both deemed promising candidates for technology modeling. In early evaluations, which
aimed at modeling the channel current of the planar RFET from simulation data, QLattice
consequently outperformed Deep Symbolic Regression. Therefore, this section – and this work
in general – focuses on QLattice.

QLatticeGraph

. . .

+

Figure 2.23: QLattice finds symbolic equations by optimizing pathes through a structure, where the
nodes represent arithmetic operations, called interactions. The symbolic equations are represented by
graphs.

It has to be noted that Qlattice is a commercial product by Abzu and that source code
and detailed working principles are not publicly available. The description is therefore based
on a US patent about the derivation of correlations [173] by Abzu founder and CEO Caspar
Wilstrup, a publication about QLattice by Broløs et al. [174] and documentation of its application
programming interface (API) [175]. QLattice treats analytic equations as unidirectional acyclic



2.3 fundamentals of machine learning models 41

graphs where the analytic operations are represented by the nodes. Nodes therefore describe
the interactions between terms or variables, which can range from simple functions, such
as addition/subtraction to more complex functions such as exponential, logarithmic and
trigonometric functions. Inspiration for QLattice comes from Richard Feynman’s perspective
on quantum mechanics: Similar to the infinite number of trajectories that are summed up
in Feynman’s path integral formulation [176] a large amount of paths, [174] proposes more
than 1000, are created through the lattice with the aim of fitting the given distribution y(X)

represented by the set of samples D. Convergence towards the most useful path, in analogy to
the convergence to the path of the least action that leads to Newtonian mechanics, then results
in sound solutions. The singular solution is a unidirectional and acyclic graph which represents
a symbolic equation as shown in Figure 2.23. As the interactions are sampled from a probability
distribution, typically more than one solution exist and a set of useful solution graphs is
available in a structure called QGraph. As shown in Figure 2.24 with the reconstruction of
the sinc(x) function, the QGraph proposes a ranking of solutions. The solution ranking is
based on a loss function in combination with information criteria such as Bayesian information
criterion (BIC) or Akaike information criterion (AIC), which penalize model complexity. A
useful feature of QLattice is to further allow the user to manually select promising candidates
from the QGraph, based on which the lattice probabilities adapt for further optimization runs.
This manual selection allows incorporating prior assumptions into the optimization.
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Figure 2.24: Symbolic regression using QLattice generates multiple model candidates in form of graphs,
accumulated and ranked in the QGraph structure. Models, which are symbolic equations, can be
interpreted to gain insights into underlying causalities and mechanisms in the distribution of D.

2.3.3 Ensemble Models

If one model performs subpar, an ensemble of multiple models can lead to improvement. On
the one hand this approach seems intuitive, as increased overall model size can be related to
better fitting capability and possibly better generalization, given that the distribution behind
the data is complex. On the other hand, there is Ockham’s Razor:

"Nunquam ponenda est pluralitas sin necesitate."
– William Ockham, 1285-1347, [177], [178]
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William Ockham claims in a philosophical context that the multitude of entities is not to be
adopted without necessity. If the simpler theory shows the same accuracy, it is the preferable
theory. Ockham’s Razor is found frequently throughout machine learning literature as a plea
to stick to the minimal possible model complexity [128], [138], [179]–[181]. Domingos [178]
extracts a specific guideline with respect to modeling and machine learning: Knowing that the
generalization error of two models is equal, the simpler model is to be preferred. Still, there
are situations in which it is beneficial to combine the predictions of multiple individual models
to provide a more robust overall prediction and the result is called ensemble model [182].

Ensemble models often come into play when generalization ability of individual learners is
not sufficient for a classification task. There are two criteria for success [183]: The individual
classifiers need to have a better accuracy of prediction than random guessing when it comes to
generalization, i. e. prediction on unseen data. Further, the individual classifiers are required
to be diverse, meaning that they show different errors when generalizing. Increasing the
generalization ability of the model is often difficult, which is why an ensemble model approach
is selected in the first place [184]. The question of how to generate diversity between the set of
models remains.

Li et al. [184] divides the task of introducing diversity between individual neural networks
into transform training data, change neural network characteristics and lastly individual neural
network optimization. Transformation of training data refers to providing a different set of
training data to each individual learner. An intuitive and broadly used example is the random
forest classifier, which combines the predictions of multiple decision trees. Each decision tree
is trained on a specific subset of the complete training set Dtrain. For regression problems,
common strategies are variants of boosting [185], attributing a weight to each learning sample.
After training the model, the weights are then updated depending on their learning effect
and all obtained models are combined to create strong predictions. Changing neural network
characteristics can be as simple as changing initial weights of the model [184], but can also
mean to substantially change model structure [186] or loss function [187]. Individual neural
network optimization refers to the task of selecting the ideal individual models to contribute to
the ensemble model, which is not part of this work.

After having established an accurate and diverse set of individual models, the individual
predictions are combined to obtain the ensemble prediction. A commonly used strategy for
merging Nens individual predictions ŷi with i ∈ {1, ..., Nens} into an ensemble prediction ŷ is
averaging [128], [184]

ŷ =
1

Nens

Nens∑
i=1

ŷi . (2.18)

Further, weighted averaging in form of

ŷ =

Nens∑
i=1

wi · ŷi (2.19)

allows to attribute a weight wi ∈ R to each individual prediction and therefore adapt the
individual influence of each learner to the prediction. This concept can be driven even further
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by assigning dynamic weights, as shown by Adhikari et al. [188], who assign time-varying
weights for time series forecasting such as stock prizes and inflation rate.

2.3.4 The Importance of the Data Source

Machine learning methods in general rely on data sets, which express the characteristic of a
process. The data set D = {(Xi, yi)}|D|

i=1 represents the available information for the modeling
approach to learn, and optimal learning imposes certain quality requirements on the data.
A baseline quality requirement for a data set is balance. In classification problems, balance
corresponds to the similar distribution of samples over all classes. Likewise, regression models
benefit from uniform sampling as prediction quality depends on the sample density of the
respective area, if the importance of prediction is distributed uniformly over the sample space
[158], [189], [190]. However, data sets are often byproducts of real world processes, or in general
processes where observability is limited, and therefore a balanced sample distribution may
not be available. In case of imbalanced sample distributions, the mitigation strategies can be
threefold [191]: One approach is modifying the sample set D. A mitigation strategy especially
in chemical and biomedical settings is to resample the data in order to balance their distribution
over target classes [192]. Resampling is also useful when it comes to regression methods and
there are various strategies such as random over-/under-sampling in combination with the
addition of noise [193]. The second approach targets algorithm level, which balances existing
biases within the data set during regression and the third approach combines advantages of
both methods in a hybrid manner. In this thesis the focus is placed on modifications of the
sample set, as it is preferred to alter the design of experiments and conduct post-processing to
tackle the root cause of the imbalance.

Learning requires testing, and if the entire available information is seen during training,
evaluation of the learning result is restricted to check if the candidate can reproduce what
is known. In the spirit of keeping new exam questions undisclosed ahead of the exam to
evaluate a candidate’s transfer knowledge, machine learning models are typically not tested
with the same data set which they are trained on. Instead, the available information D is split
up into a training set and at least one other set on which the model is evaluated to assess
its generalization ability. This additional set, in this work called test set Dtest ⊂ D, is unseen
during training and allows the comparison of generalization between distinct models, e. g. by
comparing loss or other metrics on the test set, as shown in Figure 2.25.

A typical pitfall when training machine learning models is overfitting. Machine learning
models are optimized with respect to a training set, but the goal is to achieve good general-
ization on data unseen during training, characterized by a low test error [194]. The training
error, being the optimization target, is typically lower than the test error and the discrepancy
indicates a failure to generalize. The model then overfits. Overfitting may occur if the complexity
of the model structure, and therefore its ability to fit complex functions, exceeds the complexity
of the distribution behind the available data. It is possible to detect overfitting during training
by monitoring the training loss along with the loss on an additional set, on which the model
is not trained. Especially deep learning approaches therefore benefit from further splitting to
create a third set, the validation set Dval, while QLattice only works on training- and test set. As
QLattice is efficient on small training sets and does not require hyperparameter tuning or early
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stopping, the test set can make up a larger share of the available data, as shown in Figure 2.25.
The situation to be avoided is a decreasing training loss without decreasing validation loss and
the best generalization is achieved at the minimum of the validation loss. When suspecting
a minimum in the validation loss, the optimization can be stopped early and the parameter
values leading to a minimal validation loss are returned as result. The validation set is further
used for evaluation of hyperparameter combinations, as explained in Section 2.3.1. This leaves
the test set for final assessment of model performance on data which are neither seen during
training, unlike the training set, nor used to steer modeling decisions, such as the validation
set. Splitting the data set prior to training is called hold-out, and there are other methods such
as cross-validation, where the data set is split up into multiple groups which change between
training and validation role during fitting [128]. Hold-out is a popular choice for deep learning,
as it is simple to implement and efficient [131].

Prevent Overfitting
Tune Hyperparameters

Data Sets

Train Set Val. Set Test Set
Deep Learning Approach

Symbolic Regression Approach

Train Set Test Set

Evaluate Model on Test Set

Evaluate Model on Test Set

Figure 2.25: Deep Learning typically features a split of three sets: A validation set is evaluated during
training to allow early stopping and to tune hyperparameters. Symbolic regression in general does not
feature hyperparameters, and QLattice in particular does not allow early stopping. A validation set is
therefore not required.

The design of machine learning based methods involves many decisions based on experience,
such as model selection and hyperparameter constraints. The ideal split between training,
validation and test set is another. Typical splits between train and test set found throughout
literature are 20%/80% and 30%/70% [128], [194]. The goal of splitting is to preserve the
statistical properties of the original data set within train, validation and test set and a typical
way for large datasets is a randomized strategy [195]. A more sophisticated but intuitive
splitting strategy is proposed by Kennard and Stone [196]. Kennard and Stone propose to
define a distance metric, the Euclidean distance

D2
νµ = ||Xν −Xµ||2 =

d∑
i=1

(xν,i − xµ,i), (2.20)
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where Xi ∈ Rd, and interpret each tuple Xα in D as vectors to a point Pα. An empty set D∗ is
created and the first two points to be appended are either two a priori selected points, or the
points Pβ and Pγ with the highest Euclidean distance D2 = max

β,γ
(||Xβ −Xγ ||2). Each additional

point is then the point with the highest Euclidean distance to any member of D∗. The results
of Kennard-Stone splitting are two data sets, where a set D∗ ⊂ D shows high uniformity of
sample distribution with respect to the Euclidean distance and is therefore well suited for
training. The set of remaining samples Dremaining = D −D∗ is held out for test and validation.
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Figure 2.26: The algorithm of Kennard and Stone [196] next picks the sample which shows the highest
euclidean distance to all samples in the present set. The resulting data set shows high regularity with
respect to the input x.

Machine learning methods develop their potential with the amount of data available to learn
from – at least to a certain extent. There are saturating effects which diminish the benefit of
additional samples, for example the increasing information overlap which Cui et al. [197] show
for classification through deep learning. However, it is typical for machine learning approaches
to work on a limited amount of data, be it due to the cost of each data point, e. g. because
simulation requires resources, or the inherent limitations of available data, e. g. when predicting
health related issues from a low incidence. A cheap way of obtaining more data is to append
a transformation of the existing data set D, which is called augmentation [194]. Especially in
classification, where the classifier is expected to be invariant regarding a specific transformation
t(X), this transformation t(X) can be applied to all (Xi, y) ∈ D, improving generalization of
the model [131]. The vast majority of augmentation methods is traditionally centered around
classification tasks, in particular image classification. Sietsma and Dow [198] propose to afflict
input vectors with Gaussian noise for training of a classifier and discover that generalization
for noisy inputs improves. Yaeger et al. [199] augment the data with stroke variations of
handwritten characters. But regression methods can benefit from data augmentation as well,
as recently shown by Hwang and Whang [200]: RegMix creates mixtures between samples
after identifying the nearest neighbors, respectively. Noise augmentation is used by Raju et al.
[201], who improve generalization of a linear regression model for failure analysis and reverse
engineering of semiconductor models [202]. Raju et al. replicate the training set and add white
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Gaussian noise to the labels of the replica, achieving a higher robustness in generalization.
Hutchins et al. [112] use Gaussian noise augmentation for compact modeling of a memristor.

2.3.5 Metrics and Loss Functions

An integral part of optimization is the calculation of errors. The intention is to either minimize
a certain loss function or to evaluate a model with respect to a ground truth data set of size n.
A basic loss function is the mean absolute error (MAE)

MAE =
1

n

n∑
i=1

|yi − ŷi| , (2.21)

which is intuitive to interpret, as it preserves the unit. When using the MAE as a loss function,
the errors are included linearly and the function is not smooth or differentiable because it
considers the respective absolute errors. A commonly utilized error metric therefore is the MSE

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (2.22)

which is smooth, differentiable and sensitive to outliers due to their squared contribution. Both
MAE and MSE can be considered absolute metrics, because they depend on the magnitude of
the deviation. The R2 score

R2 = 1−
∑n

i=1(ŷi − yi)
2∑n

i=1(ŷi − ȳ)2
, (2.23)

with average ground truth result ȳ reduces the influence of the magnitude of the deviation
because it references to the total variance. The R2 score is a commonly used metric to compare
accuracy of multiple models which are not necessarily trained on the same data set [112], [116],
[203].

Situations where the relative error is of interest require the deviation to be referenced to the
magnitude of the ground truth result. The mean absolute percentage error (MAPE)

MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (2.24)

is an extension of the MAE, which divides by the respective ground truth result. A drawback
of the MAPE is that the division by yi is not defined for yi = 0 and enables a large contribution
for sumands with yi that are low in magnitude, such as leakage current. Following on from the
MAPE [204], the symmetric mean absolute percentage error (sMAPE)

sMAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yi
(ŷi + yi)/2

∣∣∣∣ (2.25)

divides by the average of prediction and ground truth, which avoids the singularity at yi = 0.
The disadvantage of the sMAPE with respect to MAPE is that interpretation is less intuitive.



3 Generating Device Data

Fast and accurate modeling requires information about the key characteristics of a device. For
technology-aware modeling of conventional semiconductor devices these key characteristics
can be extracted by measurement or simulation and then be introduced as model parameters, as
described in Section 2.2.2. In the domain of emerging devices, however, often either conventional
compact models or detailed physical insights into operating principles are unavailable, so that
a more general approach is required.
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Figure 3.1: In this work, characteristic data are generated either by the factorial simulation cluster
PyTaurus, or by the pseudo transient simulation approach. The simulation results, currents and charges,
are stored in a database and lead to two table models, derived from the same technology model.

The modeling approach in this work is data driven, in order to be versatile and generally
applicable for novel device concepts. Data driven approaches have the advantage of being
mostly technology-agnostic and can therefore, after definition of key parameters, be carried out
as a fully automated tool flow. The data source this work is based on physical simulation, which
is costly to conduct, as described in Section 2.2.1. For this reason, this chapter is dedicated to
efficiently generate characteristic device data.

This section describes the generation of representative data sets for predictive circuit simula-
tion of emerging semiconductor devices by sampling a DUT, as depicted in Figure 3.2. The
purpose of the presented data generation methods is to obtain

1. IDC , being the DC drive current of the planar RFET, and

2. Qe,{0,...,Ne}, being the electric charge of the Ne actively driven electrodes and a passive
reference electrode E0.

Description of the methodology in this chapter is centered around the DC drive current IDC ,
for sake of simplicity, but extends to the electrode charges. The generated data sets also satisfy
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the constraints for Verilog-A table models discussed in Section 2.2.3 and can directly be used
for circuit simulation in Cadence SPECTRE. The methods are built around Sentaurus TCAD, to
carry out the respective electrical device simulations of the planar RFET, but are designed to be
generally applicable to other TCAD suites and other semiconductor devices. With availability
of structured device data, the path for table model simulation is open.
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Figure 3.2: Device characterization is done by sampling the DUT over a predefined structure of bias
point and extracting the respective DC drive current and electrode charges. The resulting data points
can be used as table model for circuit simulation.

The requirements for a data set which accurately represents a transistor in logic cell simula-
tion are discussed in Section 3.1. PyTaurus, a Python tool suite to set up, conduct and evaluate
a factorial setup of quasistationary physical simulations for generation of a table model, is
presented in Section 3.2. A fundamentally different approach is proposed in Section 3.3: A
single slowly proceeding transient simulation with nested harmonic functions returns a dataset,
which can directly be extracted as a table model.

3.1 Data Driven Models for Logic Cell Simulation

The modeling process of a semiconductor device for circuit simulation starts with the assess-
ment of input variables, which are typically the input voltages. Although other methods are
possible, it is common to select a single reference potential as shown in Figure 3.2 and then
define the voltage of each electrode with respect to this reference. In case of targeting static logic
cell simulation the range of DC input voltages is constrained to [VSS , VDD]. As the potential
of the reference electrode Ve,0 lies within the supply voltages, so does the magnitude of all
remaining electrode voltages

∣∣Ve,{1,2,...}
∣∣, referencing to Ve,0. The use case of the model then

determines the input voltage range that is required to be represented by the model. In the
case of conventional static CMOS, such as the inverter cell shown in Figure 3.3, a dedicated
PMOS model operates with the electrode voltages VGS , VDS ∈ [−VDD, 0V ], using source as
reference. Complementary to the PMOS, all NMOS electrode voltages are positive, and so
it is sufficient for the NMOS model to support input voltages within quadrant I . The strict
structural requirements of static CMOS allow the input voltages of each of the two device
models to be confined to their respective quadrant.

RFETs, however, provide p-type, n-type and ambipolar conduction modes, which a model is
required to represent accurately. After various approaches of composing RFET models from a
dedicated p- and n-type model such as [101], [107] described in Section 2.2.2, this work aims
at creating monolithic RFET models for digital cell simulation. The example of the XOR in
Figure 3.3, as introduced in Section 2.1.3, shows that when the same model is instantiated for
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Figure 3.3: CMOS devices feature a limited range of input voltage, as they are constrained to their
respective pull branch (-up, or -down). The versatility of RFETs requires characterization over a wider
range, e. g. over two quadrants for the XOR cell.

all devices M1 to M4, the range of input voltages VTGLat1, VFGLat1, VLat21 spans quadrants I

and IV . DC simulation confines all electrode voltages within a static CMOS circuit to [0, VDD]

with respect to VSS . However, over/undershoots and other transient effects can exceed the
supply rails, which is why a robust model ideally features an input range, which exceeds
[−VDD,+VDD]. Estimation of transient effects is not part of this work, so a lump sum of
VDD±0.2V is assumed. This leads to a basic requirement regarding the range of input voltages
for a versatile compact model of the RFET:

Ve,{1,...,Ne} ∈ [−VDD − 0.2V,+VDD + 0.2V ]. (3.1)

3.2 PyTaurus – A Factorial Simulation Cluster for TCAD

PyTaurus is a tool suite developed in the scope of this work, to facilitate generation, execution
and evaluation of structured, i. e. factorial, experiments for Sentaurus TCAD. There are three
main goals, which justify the development of a custom solution, specifically dedicated to
table model generation: Firstly, with the multitude of technology simulations required for to
generate a table model, easy setup of the model becomes important. Ideally, only constraints
are formulated, handing generation and execution of the respective technology simulations
over to the tool suite. Especially with a rising number of gate electrodes, the complexity of
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Figure 3.4: The PyTaurus simulation cluster generates the data structure for factorial simulation and
distributes the simulation deck to available runners over WebSocket.

table model building cannot efficiently be handled manually. Secondly, if a table model is to
be extended, e. g. by adding custom voltage steps to an arbitrary dimension, the tool suite
should reuse as many data points as possible and propagate the change with a minimum
number of additional simulations. It is emphasized, that the extension of the table model
should happen automatically at a change of the underlying table model building constraints.
Thirdly, technology simulation is prone to convergence issues. Due to model complexity,
convergence aids should be available to the user which require minimal user action to alter
numeric parameters, when necessary.

In PyTaurus, simulations are set up as DC parameter sweeps to fulfill the table model
constraints for Verilog-A, as described in Section 2.2.1. Multiple parameter sweeps are set
up and conducted to cover the bias space of the model with respect to its NE electrodes in
the tuple of electrodes E, excluding the reference electrode, with the purpose of exploring
the bias space RNE . For NE > 2 and a sweep electrode ENE

, the design of experiments can
be described as a full factorial experiment for E1, ..., ENE−1, where each obtained data tuple
(Ve1, Ve2, ..., Ve(NE−1)) results in a unique OFAT experiment, a parameter sweep of ENE

. The
discrete values of each electrode voltage step within the full factorial design can be chosen
individually.

To generate and manage large data sets, it is imperative to develop versatile generation
functions and flexible data structures. PyTaurus Figure 3.4 is designed for systematic setup
and simulation of bias tables from TCAD models according to the conventional quasistationary
sweep method explained in Section 2.2.1. The numeric parameters of a table model, e. g.
operating range and granularity of each electrode, can be specified in detail along with all
technology parameters of the respective TCAD device model. The resulting set of TCAD
simulations is then scheduled to available computing nodes to execute simulations in parallel.
All simulation files, e. g. results and log files, are stored on the file system to maintain database
performance. All obtained bias point are then united in a Pandas [205] DataFrame object and
finally exported to .csv tables to be referenced as Verilog-A table models.
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actual simulation data, e. g. input- and result files, are placed on the file system for performance. The
proposed structure facilitates reuse of definitions and, most importantly, of existing simulation results
in subsequent characterization runs.

PyTaurus Program- and Data-Structure

The PyTaurus host application interfaces with a Not only SQL (NoSQL) database, to store
internal data structures and, after post-processing, the electric results of each TCAD simulation.
A non-relational database architecture is preferred over a tabular architecture, because it allows
expansion of all data objects ("documents") with additional fields at any time. A collection of a
NoSQL database can therefore contain documents which differ in content without the need to
propagate changes over an entire table, as would be required for relational databases.

The main entity of PyTaurus’ internal data structure, shown in Figure 3.5, is named run
and represents all data required to generate a complete table model in TCAD, respecting the
requirements set out in Section 2.2.3. The data structure distinguishes between entities that
are created from user input over the console user interface (UI) and structures that PyTaurus
generates internally – the Sentaurus Device input files. The underlying principle of the program
structure is to reuse user defined entities like cmd_template and run_parameter_set for multiple
runs in order to minimize user interaction required for the creation of a new run with altered
parameters. In fact, a new table model run can be created and simulated from similar and
already partially existing dependencies without redefining any of the aggregated entities. In



52 generating device data

this chapter, all references to entities of the NoSQL database structure are emphasized with
italic font-decoration, such as run.

Every TCAD simulation features the run parameter set of its respective run, shared by all
generated simulations. Run parameters are typically device specific parameters, e. g. Schottky
barrier height, material work functions, and solver specific parameters, e. g. minimal-/ maximal-
step and step increment. The run_parameter_set document further includes the content of the
parameter file which defines material parameters for Sentaurus Device simulation.

Each run aggregates a command template, which contains the string of a Sentaurus Device
command file. In order to restrict adaptions of a Sentaurus Workbench originated Sentaurus
Device command file to a minimum, PyTaurus supports the available @-parameter notation for
run specific parameters stored in run_parameter_set. A second type of preprocessor parameters
is supported with $-notation as shown in Listing 3.1. Unlike @-parameters, $-parameters
are simulation specific parameters and distinguish simulations from each other within a
table model run. $-parameters typically contain goals of set- and sweep-electrodes and their
respective voltages, further explained in Section 2.2.3, and are therefore determined individually
by PyTaurus for every generated simulation.

Listing 3.1: A command file for PyTaurus continues the Sentaurus TCAD @-notation for run specific
paramters and introduces an additional $-notation for simulation specific-parameters.

1 ...

2 Quasistationary(

3 DoZero

4 InitialStep = @initial_step@ Increment = @step_increment@

5 Minstep = @min_step@ MaxStep = @max_step@

6

7 Goal{ Name = "$pyt_electrode_sweep$" Voltage = $pyt_Velectrode_sweep_goal$}

8 Plot {Range = (0 1) Intervals = 0}

9 ...

The third user defined entity within a PyTaurus run is the simulation plan, which consists
of the numeric table model parameters. The simulation plan aggregates electrodes, which
defines a set of explicit voltage samples Vx, ..., Vy for the dimension of the respective electrode
within the biasing space of the table model. Voltage samples of different electrodes do not
have to be correlated, nor are the sample sets required to have the same cardinality. The main
benefit of this electrode-wise definition of bias samples is that granularity can be adapted to the
circuit simulation target of the resulting table model. A table model for a MOSFET targeting
a digital circuit simulation of an inverter can therefore be set up with a single bulk electrode
voltage of Se,Bulk = {VB} = {VS} = {0V }, if source potential is used as reference for the TCAD
simulation. The remaining electrodes i can then independently feature larger sample sets Se,i.

PyTaurus produces all Sentaurus Device simulations required for a complete table model.
The first step is to generate each prospective Sentaurus Device simulation of a run as database
document. Each simulation document contains mainly simulation parameters, status and, after
successful TCAD simulation, the simulation results I and Qe along with their respective tuple
of input voltages Ve. In the further course of the run, described in Section 3.2.1, PyTaurus
writes all files of a respective simulation to the file system, identifiable by the folder name
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matching the MongoDB object ID. The simulation files required to run the TCAD simulation
are stored on the host file system to achieve high database performance at queries over a large
document count and to obey the document size limit of MongoDB (16MB). In general, all
simulation-related information, which is intended to be queried by PyTaurus, is placed into
the simulation document, while large (device structure related results) and raw files (plot files,
log files) are kept on the file system.

3.2.1 Setting up a Table Model Simulation Run

Setting up a table model simulation run starts with creating all user defined data structures
and ends when preprocessed simulation data for every required TCAD simulation are available
in the database and on the file system, as shown in Figure 3.5. User defined data structures are
created through the console UI, which provides dedicated commands for each user defined
entity. The command template can be read directly from the file system and the simulation plan
along with the electrode voltage sets are given as console command arguments. Specification of
run parameters from the run parameter set along with their respective values is uncomfortable
with the console UI, as the planar RFET TCAD model already features 20 run parameters.
Instead, as shown in the sequence diagram Figure 3.6, the run parameter set (RPS) can be
extracted directly from an already provided command (CMD) template. After extraction of
all run specific parameters, the obtained parameter list is written to a temporary Java Script
Object Notation (JSON) file. The JSON format, an easy-to-read text file format, allows the user
to edit all parameter values in the temporary file, before triggering PyTaurus console UI to
load the manually provided parameters into the run parameter set database document.

After all user defined data structures shown in Figure 3.5 become available in the database,
simulation setup is divided into three sequential steps: generate, plan and preprocess. For
explanation of the internal functionality of PyTaurus, it is assumed that the considered DUT
exhibits Ne + 1 electrodes E0, E1, ..., ENe . The respective voltage-step sets Se,i = {V1, V2, V3, ...}
for all Ei with i ∈ {1, 2, ..., Ne} are aggregated in the simulation plan document. There is
no voltage-step set Se,0, as E0 is the reference electrode with constant Ve,0 = 0V . The sweep
electrode is assumed to be ENe .

Generation Step

Generating run simulations means creating the simulation database documents shown in
Figure 3.5. PyTaurus always generates simulations that consist of an initial phase and a sweep
phase, as explained in Section 2.2.1. Each run can aggregate simulations to create Ne table
models in total, each table model with a different electrode Esweep. Typically, however, only
one table model with a single sweep electrode Esweep is desired, so the generation command
receives the name of the desired sweep electrode Esweep as parameter. A user can decide to
further generate simulations for table models based on other sweep electrodes to a specified
run at any time without producing duplicates or overwriting existing simulations. The feature
of allowing a joint table model, which consists of sub-models with different sweep electrode is
available and tested, but left out of scope of this work.
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Figure 3.6: The setup of all user defined data structures involves the console UI, which writes the
respective data to file system and database. Input of large data structures, such as simulation parameters,
is optimized by supporting JSON files, which the user can edit.

The first step towards the simulation deck, described by Equation 2.2 in Section 2.2.1, is to
generate a simulation document for each element in the Cartesian product of the all i ∈ 1, ..., Ne

electrode voltage sets Se,i, resulting in a set of

Sbias,min =

Ne∏
i=1

Se,i = Se,1 × Se,2 × ...× Se,Ne , (3.2)

where × is the Cartesian product and set Sbias,min has the cardinality

|Sbias,min| =
Ne∏
i=1

|Se,i| . (3.3)

In the generation step PyTaurus creates a separate TCAD simulation for each tuple in Sbias,min

as shown in Figure 3.7.
Each member of Sbias,min is at this point available as a separate simulation document. However,

not all of the generated simulation documents are required to be conducted in order to obtain a
working table model: As described in Section 2.2.1 and illustrated in Figure 3.8, it is sufficient
to conduct a parameter sweep for each input tuple

Stable,min =

Ne−1∏
i=1

Se,i, (3.4)
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Figure 3.7: The simulation plan is translated to a set of tuples, consisting of the Cartesian product of
the respective electrode sample sets Se,i. For each tuple, a simulation document is set up.

and then drive the respective parameter sweep of Ve,Ne to Vgoal = max(Se,Ne). The sweep
dimension is then covered in the range of Ve,Ne ∈ [0V,max(Se,Ne)] and |Se,Ne | − 1 simulations
are avoided. The implemented algorithm allows easy adaptation of a data set, e. g. by adding
voltage steps in every dimension, even after a table model run has completed. For that purpose,
the user is allowed to change the sample sets Se,i in the database, e. g. by adding a voltage
Vj to Se,i in entity electrode, and the re-execution of the generation step sets up the required
additional simulations. It is therefore explicitly necessary in the generation step to iterate
over all existing simulation documents of the respective run, instead of directly querying for
xNe = max(Se,Ne). The simulations, which are not required for the table model are flagged
accordingly.

Planning Step

Planning is the step to select which simulation documents will, in the course of the table model
generation, be conducted as TCAD simulations. These simulations form the simulation deck
Sbias,planned. These simulation documents are therefore edited to contain a status field status

: ’planned’. The flags for already contained simulation and therefore avoided documents
from the generation step are evaluated and each document flagged as such is left untouched.
Documents that are not flagged, are staged for preprocessing by setting the according status to
status : ’planned’, as shown in Figure 3.8.

Preprocessing Step

Preprocessing simulations means to interpret the simulation document and assemble the
files which Sentaurus Device requires for simulation of the respective parameter sweep. For
every planned simulation, PyTaurus creates a directory with the respective NoSQL database
document identifier as name and writes parameter file (from run parameter set), command file
(from simulation), and mesh file (from run), as shown in Figure 3.5. Each formerly planned
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Figure 3.8: Not all created simulation documents are required. Only those, which drive a parameter
sweep to the maximum entry of the sweep dimension, are selected for the final simulation deck.

simulation document is finally annotated with status : ’preprocessed’. After the preprocessing
step, the simulation run is set up and ready for execution.

3.2.2 From Start to Finish – Simulating the Run

PyTaurus provides a cluster computation interface, which distributes TCAD simulations to
available hosts on the networks. The executing counterpart is the PyTaurus Runner, which
accepts jobs, conducts the associated TCAD simulation and reports back the simulation result.
The runner node requires access to the executable TCAD binaries.

PyTaurus Cluster Host

The host node provides a server, which accepts incoming WebSocket requests. Once the server
is activated via the console UI, a specified simulation run can be started. The simulation run is
started by enabling a scheduler, which distributes simulation jobs to runner nodes.

The scheduler iterates over available runner nodes and queries the runner status. When an
idle runner is found, the scheduler fetches the next available preprocessed simulation document
of the active run from the NoSQL database. The document is provided in form of a Binary
Java Script Object Notation (BSON) structure, to which the scheduler adds all file contents of
the corresponding file-system folder, as shown in Figure 3.9. This BSON structure, consisting
of simulation file contents and simulation document is further called job object. The job object
at this point contains the simulation document, created during the generation step, and the
content of the simulation files, created during the preprocessing step. The job object is then
sent to the respective idle runner. The underlying principle of data handling between host
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Figure 3.9: The data flow of simulation starts with PyTaurus host assembling the job object from the
simulation files and the respective database simulation object. The job object is sent to a runner, which
carries out the simulation. The complete or failed simulation job is sent back to the host and written
back to database and file system.

and runner determines that the host sends the entire available data regarding a preprocessed
simulation to the runner, and all data manipulation, e. g. appending of simulation results or
setting the field simulation.status, is performed on the runner’s side. A job object returned from
the runner is therefore directly split into files and database document and written back to the
respective destination.

PyTaurus Runner

The runner node connects to a PyTaurus Host via WebSocket and goes to superstate Available,
as shown in Figure 3.10. During Available, the runner awaits status requests and simulation
assignments. All status requests are contested with the runner state and the current central
processing unit (CPU) load.

When a simulation job is assigned, the runner receives a job object containing simulation
files and simulation document. The simulation files are written to a temporary folder and the
TCAD simulation is started as a subprocess. There are three possible outcomes of a TCAD
simulation:

1. The simulation finishes with a complete curve trace,

2. the simulation fails to converge, or

3. the simulation stalls.

Finished simulations are annotated with status: ’done’ and failed simulations are annotated
with status: ’failed_returncode’ as soon as the subprocess ends.

Mitigation of stalling effects is important, as runners occupied with stalling simulations
are blocked and cannot conduct further simulations. Detecting a stalling simulation, however,
requires monitoring of the TCAD simulation. Concurrent with the TCAD simulation, a stall
detection thread monitors the simulation progress, as shown in Figure 3.10. The stall detection
mechanism works on a user defined stall detection window tstall, which specifies the time in
minutes in which the simulation is allowed to execute without progress. If the log file does
not show progress within tstall, the TCAD simulation is stopped and the respective simulation
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Figure 3.10: The runner conducts the simulation and monitors the progress. If a simulation finishes,
fails or stalls, the job is returned with the respective files and annotation. Further, the runner responds
to status requests by the host.

document is annotated with status: ’failed_stall’. PyTaurus can, however, not detect if the
stalling simulation is in a non-recoverable deadlock or only takes exceptionally long for the
further Newtonian iteration.

After simulation and subsequent annotation, the simulation files are stored in the job object
and returned to the host along with the annotated simulation document. The runner then
returns to substate idle and stands by for further job assignments.

During the scheduling table model simulation run, the share of completed simulation (status
’done’) increases. These simulations can be post-processed at any time during the runtime of
PyTaurus. In a post-processing step, PyTaurus iterates over all ’done’ simulations and reads
the plot file of the respective simulation. From the plot files, all electrode voltages, -currents
and -charges data points are extracted and stored into the respective simulation document.
Post-processed simulations are annotated with ’post-processed’. At this point, all individual
samples generated within the parameter sweep of a simulation are stored within the NoSQL
database.

3.2.3 Mitigating Convergence- and Stall Issues

The goal of PyTaurus is to generate a complete table model, which features all planned
simulations, as described in Section 3.2.1 to run to completion. If simulations fail due to stalling
or do not converge, the resulting table model misses data points which can make the table fail
to represent the iso line criterion explained in Section 2.2.3.

Stalling simulations, i. e. simulations that do not progress within the stall window tstall,
are found by querying status: ’failed_stall’. Deadlocks cannot be told from slow executing
simulations, as explained in Section 2.2.1, so the strategy for stall mitigation is to reschedule
the respective simulations with a larger stall window to increase the chance of completion
without causing congestion of the scheduler. After a table model simulation run finishes
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Figure 3.11: PyTaurus offers a meshing diagram, which visualizes the locations of all rejected solutions
among the failed simulations, along with their respective magnitude for the different semiconductor
equations. Based on the diagrams, the user can quickly make decisions about mesh refinements.

and all simulations are conducted, the scheduler increases tstall by 60min and resets the
simulation status of all queried simulations to ’preprocessed’. This causes simulations, which
are problematic with respect to stalling, to be scheduled again with a larger stall window after
all regularly executing simulations are done. Congestion of runners is avoided and regularly
executing simulations are preferred. The user can interrupt the table model simulation run
with increased tstall at any time when chances of completion are deemed to be too low to
continue. In this situation, a user typically resorts to convergence aids.

Convergence of a Sentaurus Device simulation depends mostly on the meshing of the
technology model, solver parameters and electrical boundary conditions. Simulations that
show convergence issues typically require mesh refinement or increase of solver steps, which
in turn increases computational effort. A practical approach to efficiently simulate a table
model run is to constrain a mesh with a reasonable amount of vertices and the solver with
a low number of iterations, with the intention of generating low computational effort for
the vast majority of simulations. For refinement of the failed simulations, it is important to
analyze the root cause of the convergence issues. As PyTaurus stores all simulation data,
i. e. the preprocessed simulations and the simulation results, every individual simulation
log is accessible. The PyTaurus tool suite includes a script based mesh analysis, shown in
Figure 3.11, which evaluates the log files of all simulations and gathers all critical vertices.
Position, equation type and respective error are plotted, so that the user can identify areas with
large accumulated errors and make refinements, accordingly. The exemplary mesh analysis
plot shown in Figure 3.11 exposes multiple critical vertices across body and spacer regions with
a high error regarding the Poisson equation in the middle of the FG oxide. The quasi-fermi
potential has two critical vertices at the corner of electrodes lat2/lat1, body area and FG oxide.
This information supports the user in development of a refinement strategy for meshing and
solver parameters.
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For the remaining simulations, which fail to converge in the original run, a parameter
variation strategy has to be found. As scheduling of simulations always considers a run entity
with all available ’preprocessed’ simulations, the principle of parameter variation is to derive
a new table model run, as shown in Figure 3.12. The derived run contains only the failed
and stalled simulations from the original run. The separation between generation, planning
and preprocessing step allows the user to derive a new run, e. g. run_derived1, modify one
or multiple parameters and then set the derived run up for scheduling by performing the
preprocessing step. Each parameter which is present in a user defined structure shown in
Section 3.2 can be varied and is then considered during the preprocessing step for the derived
run. As shown with the example in Figure 3.12, multiple derivations with variation of different
parameters can be necessary until all simulations of the original run are completed.

- name: run_original
- mesh file: 'coarse'
- device_rev: 'R'

- cmd template: C

- name: 'RPS1'
- min_step:  'S'
- iterations: '10'

- name: 'SimA'
- status: 'failed'

Database

- name: 'SimB'
- status: 'stalled'

- cmd template: C

- name: 'RPS1'
- min_step:  '1/2 S'
- iterations: '20'

- name: 'SimA'
- status: 'failed'

- name: 'SimB'
- status: 'done'

- cmd template: C

- name: 'SimA'
- status: 'done'

I.

II.

- name: 'RPS1'
- min_step:  '1/2 S'
- iterations: '20'

- Field: Value

- name: run_derived2
- mesh file: 'fine'
- device_rev: 'R'
- derived_from:
  'run_derived1'

- name: run_derived1
- mesh file: 'coarse'
- device_rev: 'R'
- derived_from:
  'run_original'

Run

RPS

simulation

cmd_template

simulation

Run
derive run (I)

Run

adopt only
failed/stalled

RPS

simulation

cmd_template

simulation

RPS

simulation

cmd_template

adopt only
failed/stalled

derive run (II)

Database Entity
Param. Variation

Failed/Stalled

Completed

Figure 3.12: Refinement of simulations is important in technology simulation, as convergence issues
are common. PyTaurus offers the simple refinement of all failed simulations of a respective run, by
generating a derived run with one or multiple altered parameters. Refinement can be carried out for all
parameters, including mesh file or numeric solver parameters.

Exporting the Table Model from the PyTaurus Database

After successful simulation and post-processing of a simulation run in PyTaurus, all data
required for the table model, namely all nested parameter sweeps, are present in the NoSQL
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database. For the extraction flow of the table model data, a script based approach is preferred
over the console UI, as it provides flexible processing and monitoring of the data extraction.

The first step of the extraction is to gather all simulations from a specified run and regarding a
specific sweep electrode, which have not been flagged to be disabled during the generation step.
This set of simulations contains all required simulations for the table model. The original run
typically contains a share of uncompleted simulations, due to failing or stalling, as described in
Section 3.2.3, which are therefore neither disabled nor post-processed. For each uncompleted,
i. e. failed or stalled, simulation in the original run, a post-processed variant has to be found,
contained in the scope of one of the derived runs. There is, however, no need to specify all
derived runs manually. Any simulation which features the same boundary conditions and the
same device model, specified by the field run.device_revision, serves as replacement regardless
of the respective run it is aggregated to.

In case the set of incomplete simulations cannot be replaced entirely, linear grid interpolation
is used to generate all data points in Stable,min from Equation 3.2, as required by the $table_

model function. The resulting data set is split up into lookup table files for IDC and the electrode
charges Qe,n with n ∈ {0, ..., Ne}, which are later referenced by $table_model .

Short Summary

In conclusion, PyTaurus is a tool for cluster simulation of factorial data models, which targets
technology simulation. The focus is on easy setup, reuse and refinement of table model
simulation decks, as typically the high number of simulations is difficult to manage manually.
This section introduces the integral components, data structures and intended use of PyTaurus.
In the course of this work, PyTaurus is used to generate a factorial table model for the planar
RFET.

3.3 The Pseudo Transient Method

In technology simulation, true DC data can be created by conducting quasistationary simu-
lations. In an initial step, the boundary conditions of the DUT are ramped from 0V to the
specified electrode biases. Afterwards the parameter sweep is conducted, creating a set of true
DC data points. In a system of parameter sweeps, such as a table model, ramp-ups to the
starting conditions of the parameter sweep significantly contribute to the overall simulation
time of the data set [206]. Compared to real measurements, the characterization time technology
simulation is typically substantially larger than for technology simulation of an equivalent data
set.

The goal of this section is to establish a simulation method, which mitigates the recurring
ramp-ups of the conventional nested parameter sweep setups. Inspired by the inherent time
affliction of all real world measurements, all data points are reached in a single Sentaurus
Device simulation. The method is named pseudo transient because it represents the setup of a
transient method, while aiming to suppress transient effects [206]. The means of suppressing
transient effects comprise driving excitation signals over a large time base and a method for
estimation and mitigation of remaining transients are presented in Section 3.3.2.
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The basic principles of the pseudo transient method extend to an arbitrary number of
electrodes Ne, therefore all mathematic formulations are generalized for electrodes E1, ..., ENe .
Visualization of the method, however, restricts to Ne = 3 for sake of clarity and readability.

Parts of this section were developed within the scope of the master’s thesis by Dakyung Lee
and published in [206] and [207].

3.3.1 Fundamental Functions to Generate the Bias Space

The boundary conditions of device electrodes within table models are formulated as Ne-tuples
Ve = (Ve,1, Ve,2, ..., Ve,Ne) within the bias space RNe , as explained in Section 2.2.3. In general, a
good simulation setup covers the spatial structure of multidimensional table data efficiently,
e. g. with high regularity and minimizing redundancies. Another important goal is to omit
any simulation steps, which do not result in extractable information, such as the initial ramp
up to specified boundary conditions for a parameter sweep. Still, stepping through a regular
grid in multiple dimensions requires a form of nesting. The pseudo transient method is best
introduced by portraying a real world measurement in time domain: In time domain and
without concurrency, nesting of excitatory parameters is based on periodic, or at least non-
monotonic functions, repeating each Ve,i(t) ∈ Se,i, stepping through all boundary conditions Ve

to conduct all targeted parameter sweeps for Ve,Ne .
Typically, electrical simulation tools, e. g. SPICE and Sentaurus Device, provide periodic

excitation sources in form of pulse- and harmonic functions for transient simulation. These
pulse sources allow configuration of rectangular, trapezoid and triangular functions and allow
shaping through various parameters. In a first attempt to replicate the procedure of performing
real measurements, a triangular function, similar to a series of parameter sweeps described in
Section 3.2, comes into focus. Assuming that each voltage Ve,i of electrode i covers a range of
Ve,i ∈ [−Va, Va], a suitable function for the most outer and therefore slowest changing, excitation
function Ve,1 is a single ramp, as shown in Figure 3.13. The single ramp represents half a period
of a triangle signal within a simulation time of t ∈ [0, T ]. In general, the frequency of subsequent
electrodes Ei+1 for i ∈ [1, ..., N − 1] increases, in order to obtain a spatial distribution of all
Ne-tuples Ve(t) in RNe . Figure 3.13 shows in a), b) and c) a basic setup of 3 electrodes with
each Ei+1 doubling the signal frequency of the previous electrode. In this particular case of
doubling frequencies, the coverage of the bias space in R3, shown in d), is low. For practical
implementations, it is useful to have the electrode voltage frequencies increase with integer
multiples for ideal coverage of the bias space.

The triangle function provides linear ramps, ideal for equidistant stepping of a factorial
simulation setup and similar to quasistationary simulation. When ramps are nested in form
of triangle functions, however, turning points that occur at n · Tp,triangle/2, n ∈ N∗ cause high
transient currents and reduce chance of convergence of the simulation. As convergence is
crucial for a characterization method that relies on a single simulation, the ideal function is
smooth and continuously differentiable in every point. This brings harmonic functions into
focus. Figure 3.13 shows an implementation with triangle functions and cosine functions,
respectively. Although the piece-wise linear triangle function promises higher regularity of
the generated data set, the trade-off between both fundamental function goes in favor of
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Figure 3.13: Triangle- and harmonic curves can be used as fundamental functions to generate a bias
space in RNe by nesting their respective periods. In general, nested simulations or nested electrode
voltages are a typical pattern in table model generation.

the harmonic function for allowing better convergence. The electrode voltages waveforms
Ve,{1,2,3}(t) are generated by

Ve,i = Va · cos
(
2π · ki ·

1

T
· t
)
, with k1 =

1

2
and ki+1 = 2 · ki. (3.5)

The approach generalizes to an arbitrary number Ne of electrodes, where the electrodes
Ei ∈ {E1, ..., ENe} are in order with the magnitude of their respective frequencies ki/T with
T = const. In general, the nesting factor between the frequency of an electrode function and
the frequency of the subsequent electrode function can be expressed as

fe,i+1

fe,i
= mi, with mi ∈ N∗\{1} (3.6)

The nesting factor mi directly affects the granularity of the data set with respect to dimension i.
If nesting is intended to be constant throughout the dimensions, a single nesting factor m can
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be used. In analogy to PyTaurus’ electrode structure within a simulation_plan in Section 3.2, a
pseudo transient simulation can therefore be conducted with an arbitrary granularity for each
electrode voltage.

Nested cosine functions cover the full range of the bias space Ve,i ∈ [−Va, Va] within the
first half of the period, where the phase of the most outer electrode φe,1 = ω1t ∈ [0, π]. Still,
an initial ramp-up to the boundary conditions Ve,i = Va at phase φe,1 = 0 is required before
time step t = 0 s of the pseudo transient simulation. Instead of ramping to the initial boundary
conditions of the cosine function at t = 0 s, a phase shift of π/2, effectively transforming the
fundamental function to a sine function, naturally constrains a time step t = 0 s with Ve,i = 0V .
The first interval is then a preamble before the table data range and the generated data set is
ignored. Figure 3.14 shows that the most outer electrode E1 within the nested configuration is
excited with a falling edge between phase φe,1 = (π4 , 3

π
4 ). Within this falling edge of E1, the

simulated table data cover the full range of Ve,i ∈ [−Va, Va], so the interval provides data for a
complete table model. The most important argument for the use of sine functions, however, is
that there are simulation environments where cosine functions, or in general a phase shifted
sine function, are not available as excitation source. In Sentaurus Device, for example, the
possibility to use a cosine function was added by introducing a phase shift parameter for the
pulse source compact model in version S-2021.06. Previous versions do not allow phase shifts
of the sinusoidal source. In this work, the pseudo transient method is therefore based on sine
functions for broad applicability in characterization tasks and model building. The general
form of the fundamental sine function as source for electrode Ei is therefore

Ve,i(t) = Va,i · sin(2π · fe,i · t). (3.7)

The simulation principle can then be adapted individually to the features of the respective
simulation environment.
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Figure 3.14: Using a sine, instead of cosine, as fundamental function avoids initial ramps, as all pulse
sources feature Ve,i(t = 0 s) = 0V . The shown pseudo transient setup features a nesting factor of m = 5.
A table model data set can be sampled from t ∈ [ttable,start, Tsim/2].
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3.3.2 Estimating and Suppressing Remaining Transients

The pseudo transient simulation method is based on harmonic excitation functions, which
simulation tools provide for time domain simulation. The resulting data are therefore afflicted
with transient currents, depending on the respective time-related setup, i. e. excitation frequen-
cies. Quasistationary simulation environments, on the other hand, typically do not provide
excitation functions which are periodic with respect to a simulation variable, such as a sweep
parameter. Time, as a parameter, is not available in quasistationary simulation and the resulting
data set consists of stationary operating points. This section describes how to combine the
benefits of both simulation types: the harmonic excitation functions in time domain are used to
generate a nested data set, which is then transformed to approximately quasistationary data,
as required for accurate table models. First, it is described how to set up simulations where
the influence of capacitive elements is attenuated during simulation. In a second step, the
remaining transient part of the respective current samples is estimated. Finally, a mathematical
transformation for canceling out transient currents in linear RC networks is presented.

Before simulating, a decision has to be made which physical electrode is assigned to which
position in the nesting chain of E1,...,Ne . Capacitive currents increase with the frequency of
the applied excitation, and the frequencies of the electrode sources Ve,1 to Ve,Ne increase as an
inherent property of the harmonic nesting. Electrodes are ideally assigned E1, ..., ENe with the
descending order of their estimated capacitance, in order to drive high capacitance electrodes
with low frequencies and vice versa. For a conventional MOSFET, for example, it is reasonable
to define the gate electrode as E1, because it is a valid assumption that the gate features a
higher capacitance with respect to the source electrode, than the drain electrode.

The quasistationary context restricts the impact on the characteristic current to the momentary
values of the electrode voltages Ve,{1,...,Ne} and disregards a steepness of the exciting source
voltage, as time derivatives are not defined. Within a transient simulation, however, the
terms that depend on time derivatives decrease in magnitude with increasing excitation
signal periods Tp,e,{1,...,Ne} and therefore Tsim. Terms with time derivatives, such as capacitive
currents Ic(t) = C dV (t)

dt , are then attenuated when increasing Tsim. These, with the time base
monotonically decreasing, transients eventually reach (numeric) noise floor level and therefore
become negligible. If this condition holds true for every extracted data point, the simulated
device characteristic can be considered quasistationary and the dataset can be used to produce
an accurate table model.

Following the recommendations for electrode order and increasing simulation time helps to
reduce transient currents, but the question arises if the transient component of one or even all
obtained samples can be estimated. A performance metric for the pseudo transient method is
aspired, which allows for assessment of the resulting data set.

Within a quasistationary context, a stateless device without hysteretic effects is expected to
generate the same characteristic current for two points in time tx and t′x, where

Ve,{1,...,Ne}(t = tx) = Ve,{1,...,Ne}(t = t′x) (3.8)

and

dVe,{1,...,Ne}(t = tx)

dt
̸=

dVe,{1,...,Ne}(t = t′1)

dt
, (3.9)
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Figure 3.15: In linear networks the mean current that is excited by two harmonic voltage sources with
ϕ = 0 and ϕ = 0 is the exact DC current. In non-linear networks, the DC current is only approximated.
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as time derivatives are neglected in general. In turn, a transient simulation setup, where the
structure of the data set allows to cancel out the terms that depend on time derivatives, is
expected to result in a model without transient components and therefore equally accurate as a
quasistationary table model approach. A strategy for quasistationary verification of a sample
at tx in pseudo transient simulation is therefore to provide a second sample with electrode
voltages V ′

e at time tx with V ′
e (tx) = Ve(tx), but respectively opposite time related slopes

dV ′
e,i(t = tx)

dt
= −dVe,i(t = tx)

dt
, (3.10)

for every i ∈ {1, 2, ..., Ne}. The difference in the resulting current- and charge values which
stem from Ve(tx) and V ′

e (tx) can then be used for estimation of transient effects.
The principle behind this transient suppression strategy can be demonstrated when reducing

the simulation setup to a single harmonic source which drives characteristic current through a
DUT, as shown in Figure 3.15. All described simulations are performed in LTSpice by Analog
Devices [208]. The DUT model features either a linear RC network, or includes non-linear
effects. In both cases two transient simulations are conducted, with

Ve,1(t) = 0.5V + 1V · cos(ωt+ ϕ) (3.11)

as sinusoidal source, including a phase shift ϕ, which is to be defined. The parameters
R = 100Ω, C = 2nF and ω0 = 2π · 2 kHz are selected for demonstration, to ensure that the
resulting current I(t) shows a significant transient component. Both DUTs are simulated for
half a period of the cosine source (t ∈ [0ms, 0.5ms]) with ϕ = 0, which results in a falling edge
for Ve,1,ϕ=0 in Figure 3.15 a). A second simulation is performed in Figure 3.15 a), where ϕ = π

and therefore the voltage source Ve,1,ϕ=π drives a rising edge. In case of the non-linear DUT
model, the same simulations are conducted once more for ω = ω0/2. The current response
Iϕ=0(t) and Iϕ=π(t) in Figure 3.15 b) both expose transfer characteristics of the respective DUT,
but the resulting data sets differ due to transient currents caused by the capacitive element C.
When ignoring the time annotation and expressing the DUT current as a function of the input
voltage I(Ve,1), as done in Figure 3.15 c), it becomes evident that depending on the slope of the
voltage source within the transient information, the reference current IDC(Ve,1) is either over-
or underestimated. For the linear DUT, the arithmetic mean

Imean(Ve,1) = mean(Iϕ=0(Ve,1), Iϕ=π(Ve,1)) = IDC(Ve,1) (3.12)

replicates the exact DC current IDC , that is obtained by a true DC analysis. The non-linear
DUT similarly shows over- and underestimation of the true reference current, depending
on the input slope. However, it is observed in Figure 3.15 c) that the true DC current is not
recovered by calculating the arithmetic mean. Unlike for the linear DUT, the arithmetic mean
deviates from the reference for ω = ω0 with a non-linear DUT, but it is noteworthy that
the error is still significantly lower than for Iϕ=0(Ve,1) or Iϕ=π(Ve,1). The remaining option to
further increase correlation between Imean(Ve,1) and IDC(Ve,1) at this point is to reduce the
source frequency ω to ω = ω0/2. As a consequence, transient currents are further suppressed.
Iϕ=0(Ve,1), Iϕ=π(Ve,1) and especially Imean(Ve,1) then show higher correlation with IDC(Ve,1)

and the accuracy of the current samples increases. The example of Figure 3.15 focuses on
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Figure 3.16: The voltage sources Ve,i of a pseudo transient simulation of N = 3 electrodes are driven
with a nesting factor m = 5 and amplitudes Va,i = Va for all electrodes Ei, i ∈ [1, 2, 3]. The pseudo
transient simulation can be constrained to create symmetry axis at t = Tsim/2, which provides two
symmetrical intervals with same biases but opposite time-related slope in order to estimate the transient
component of the current.

transient current, but the principles extend to electrode charges, due to the linearity of the
integral operation Qe,i =

∫ t2
t1

Ie,i(t)dt, with two arbitrary points in time t1 and t2, electrode
charge Qe,i and electrode current Ie,i.

In the next step, a pseudo transient simulation is constructed, which fulfills the requirement
of providing for each sample I(Ve) a second sample Iref (Ve) with the same electrode voltage
tuple Ve but opposite slope, and therefore obeying Equation 3.8, Equation 3.9 and Equation 3.10.
One solution can be to drive a second simulation, similar to the two opposite cosine edges
simulated in Figure 3.15. A disadvantage is that an initial phase parameter has to be supported
for sinusoidal sources, possibly limiting the application scope. A more elegant solution comes
from the periodic nature of the sine function. While the interval [ttable,start, Tsim/2], as shown
in Figure 3.14, covers a full table data set, the subsequent interval [Tsim/2, tverif,start] replicates
this set but provides the opposite slope for each electrode voltage sample in the respective
mirror sample. Figure 3.16 shows that Tmid = Tsim/2 represents a mirror axis, enabled by the
constraint

Ve,i(t = Tmid) = −Va,i, (3.13)

which provides symmetry between two points

Ve,i(Tmid − tn) = Ve,i(Tmid + tn), (3.14)
d

dt
Ve,i(t)

∣∣∣∣
t=Tmid−tn

= − d

dt
Ve,i(t)

∣∣∣∣
t=Tmid+tn

, (3.15)
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with tn ∈ (0, ttable,start]. The frequency constraints for all frequencies fe,i of all electrodes Ei

can then be formulated as

Va,i · sin(2πfe,i · Tmid) = −Va,i. (3.16)

(3.17)

For Va,i ̸= 0, this equation is fulfilled if and only if the following condition is true

2πfe,i · Tmid =
4k − 1

2
π, (3.18)

(3.19)

and therefore

⇒ fe,i =
1

Tmid
· (k − 1

4
), (3.20)

with k ∈ N∗.
Having constrained the electrode waveforms Ve,i(t), the cancellation of transient effects

in linear circuits by taking the arithmetic mean between opposing slope samples can be
shown. Due to superposition in linear systems, it is sufficient to show this property for a
simple equivalent circuit with a single voltage source. For the parallel RC equivalent circuit
illustrated in Figure 3.17, the current I(t) is driven by the pseudo transient voltage source from
Equation 3.7 with the frequency constraint of Equation 3.20, resulting in

Ve,i(t) = Va,i · sin
( =:ωi︷ ︸︸ ︷
2π · 1

Tmid
· (k − 1

4
) ·t

)
= Va,i · sin(ωi · t). (3.21)

The total current in the time domain, with I(t), IC(t) and IR(t) defined in Figure 3.17, can be
formulated as

I(t) = IC(t) + IR(t) (3.22)

= C
dVe,i(t)

dt
+

Ve,i(t)

R
, (3.23)

and the arithmetic mean between two symmetric points Tmid − tn and Tmid + tn in discrete
time has to be shown to be equal to the resistive current for all tn ∈ R+, following

Imean(tn) =
I(Tmid − tn) + I(Tmid + tn)

2

!
= IR(Tmid ± tn). (3.24)
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The explicit current equation can then be formulated as

Ve,i(Tmid ± tn)

R

!
=

C
dVe,i(t)

dt

∣∣
t=Tmid−tn

+
Ve,i(Tmid−tn)

R

2

+
C

dVe,i(t)
dt

∣∣
t=Tmid+tn

+
Ve,i(Tmid+tn)

R

2
. (3.25)

Here, the equality of resistive currents IR(Tmid ± tn) is assumed due to symmetry of Ve,i

with respect to Tmid, as constrained in Equation 3.14 and Equation 3.24, and the general time
invariance of the resistive impedance R. Equation 3.25 therefore further reduces to

Ve,i(Tmid ± tn)

R
=

C

2

dVe,i(t)

dt

∣∣∣∣
t=Tmid−tn

+
C

2

dVe,i(t)

dt

∣∣∣∣
t=Tmid+tn

+
Ve,i(Tmid ± tn)

R
(3.26)

0 =
dVe,i(t)

dt

∣∣∣∣
t=Tmid−tn

+
dVe,i(t)

dt

∣∣∣∣
t=Tmid+tn

. (3.27)

Deriving the source voltage Ve,i with respect to time results in

d

dt
Ve,i = Va,i · ωi · cos(ωit), (3.28)

to be inserted into Equation 3.27 for

dVe,i(t)

dt

∣∣∣∣
t=Tmid−tn

= −dVe,i(t)

dt

∣∣∣∣
t=Tmid+tn

, (3.29)

Va,i · ωi · cos(ωi(Tmid − tn)) = −Va,i · ωi · cos(ωi(Tmid + tn)). (3.30)

In the further course of the transformation, the cosine angle addition theorem for cos(α± β) is
applied to obtain

cos(2π·(k− 1
4
))=0︷ ︸︸ ︷

cos(ωiTmid) cos(ωitn) +

sin(2π·(k− 1
4
))=−1︷ ︸︸ ︷

sin(ωiTmid) sin(ωitn)

=− cos(ωiTmid)︸ ︷︷ ︸
cos(2π·(k− 1

4
))=0

cos(ωitn)− sin(ωiTmid)︸ ︷︷ ︸
sin(2π·(k− 1

4
))=−1

sin(ωitn). (3.31)

For k ∈ N∗ the constant harmonic functions are evaluated at Tmid, which results in 0 for cosine
and −1 for sine and leads to the tautology

sin(ωitn) = sin(ωitn), (3.32)

which holds true for all tn ∈ R+.
FVM simulation, however, operates on discrete time steps, returning time-descrete samples.

With transient simulations, the placement of time steps typically depends on multiple factors
during simulation and some bias situations require shorter time steps than others to converge.
In order to obtain sample pairs, which allow evaluation of Equation 3.24, the sampling points are
required to be distributed with mirror axis Tmid, likewise. In Sentaurus Device the CurrentPlot
feature explained in Section 2.2.1 can be used to define the number of plot intervals and
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therefore enforce a specific sampling rate. If regular sampling or in general sampling with
symmetry axis Tmid is unavailable in the respective simulation environment, resampling to a
custom grid is a viable option as a fall back strategy to still obtain a transient current estimation.
The pseudo transient sampling strategy is illustrated in Section 3.3.3.

For a linear approximation of the DUT, the arithmetic mean is shown to cancel out transient
currents for continuous time. For DUT of non-linear nature the transients do not cancel out,
yet the difference in current of two sample pairs

∆I(tn) = I(Tmid − tn)− I(Tmid + tn) (3.33)

is proportional to the transient components of the DUT current and can therefore be used as
performance metric. A current mismatch of ∆I(tn) < Inoise is the goal of transient suppression
and leaves little room for improvement. With the availability of an estimator for transient
currents, mitigation strategies beyond increasing Tsim and electrode order optimization can be
designed.

3.3.3 Sampling Strategy

Goal of the pseudo transient method is to provide one or more data sets from which data
tuples can be extracted to construct a table model. The data set to be extracted typically comes
from the table data region, which is denoted by the time interval [ttable,start, Tmid] as shown
in Figure 3.16. In this segment, the set of electrode voltages Ve(t) with t ∈ [ttable,start, Tmid] is
further denoted as Spt,table, while the data set that stems from the interval [tmid, Tverif,end] is
named Spt,verif .

A fundamental requirement comes from the transient estimation and cancellation approach
described in Section 3.3.2. The sample distribution is required to be symmetrical to Tmid, in
order to allow comparison between data points in Spt,table and Spt,verif . Uniform sampling with

fs =
a

Tsim
, (3.34)

and a ∈ N∗\{1}, which includes the points t = 0 s, Tmid and Tsim, fulfills this criterion.
Verilog-A’s $table_model function requires the data to be structures as parameter sweeps

over iso lines, as described in Section 2.2.3. However, unlike with the parameter sweep based
approach of PyTaurus in Section 3.2, the condition to obtain at least two samples of Ve,Ne for
each (Ve,1, Ve,2, ..., Ve,(Ne−1)) is not fulfilled for the Ne electrodes E{1,...,Ne} sorted for ascending
fe,i. The strict monotonicity of Ve,1 within Spt,table and Spt,verif prevents the existence of iso
lines with respect to Ve,{1,...,Ne−1}, as each sample features a unique voltage Ve,1. One way of
solving this issue is to interpolate and resample the data set to a regular grid with respect to
Ve,{1,...,Ne}, where ENe can then be interpreted as sweep variable. However, this interpolation
and resampling introduces errors, which depend in magnitude on the targeted interpolation
grid. In search for a more elegant approach, a way of creating the required iso lines, in
resemblance of a parameter sweep, is developed. Ve,1 is the only (strictly) monotonic function
within the respective data sets and is therefore selected as independent sweep voltage. The
electrode voltages Ve,i, with i ∈ [2, Ne], are then used to construct the iso lines, as they sample
the same set of voltages Se,i in every period of the respective Ve,i. For demonstration, Figure 3.18
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shows a period of a voltage Ve,i with their discrete samples. The iso line criterion implies that
the voltage samples Se,i of Ve,i(t) have to be equal within every period of Ve,i(t). As every
dimension Ve,{2,...,Ne} provides then a fixed set of Se,i which holds true for every period of the
pseudo transient simulation, the set of iso lines is the Cartesian product

Siso_lines =

Ne∏
i=2

Se,i = Se,2 × Se,3 × ... × Se,Ne . (3.35)

The sample rate fs has to be constrained with the targeted value range [−Va,i, Va,i] of each
electrode Ve,i with i ∈ [2, Ne] in mind. A minimum requirement for fs is therefore to place at
least one sample in every peak of Ve,i. Along with the samples in the turning points of the
harmonic functions, the minimum sampling frequency can be formulated as

fs,min = 4 · fe,Ne . (3.36)

To increase the precision of the obtained data set with respect to the dimension of ENe , the
sampling frequency fs can be further increased by introducing an oversampling factor Nos ∈ N∗

for

fs = Nos · 4 · fe,Ne . (3.37)

The number of uniform sample intervals to be enforced during simulation by Sentaurus Device
CurrentPlot feature is therefore calculated as

Nintervals = fe,Ne · Tsim ·Nos. (3.38)

0 t0 t1 t2 t3 t4 2 · Tp of Ve,i
Timestep t in s
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Ve,i(t1)

Ve,i(t2)

Ve,i(t3)

−Va,i = Ve,i(t4)

T
a

b
le

m
o

d
el

is
o

li
n

es
in
V

Is
o

li
n

e
ro

u
n

d
in

g
in

te
rv

a
ls

Se,i,ref

Rounding All Voltage Samples to Iso Line Values

ideal Ve,i

TCAD Ve,i

Se,i,ref

εb

εa

Figure 3.18: Limited numeric precision of functions and constants leads to deviations with respect to
the periods Tp,i and therefore the voltages Ve,i at the respective samples throughout the simulation. As
the voltage samples form iso lines of the table model, rounding is required.
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Figure 3.18 shows an oversampling of Nos = 2, which results in 8 samples per period of Ve,i

and 5 samples per rising or falling edge when i = Ne is assumed. Due to symmetry between
rising and falling edge of the harmonic functions Ve,i(t), the voltage samples of rising and
falling edge are equal. The resulting sample set Se,i is therefore restricted to the voltage samples
of a single edge, demonstrated as t0, t1, ..., tk, where

k =
4 ·Nos

2
+ 1 = 2 ·Nos + 1. (3.39)

The sampling of all other edges of Ve,i(t) during the pseudo transient simulation results in the
same voltage samples Ve,i(t0), Ve,i(t1), ..., Ve,i(t4). Having specified all parameters of the pseudo
transient voltage sources along with the sampling constraints, the total number of samples of a
respective pseudo transient simulation constrained by m, Nos and Ne is

|Dpstrans,total| = fe,Ne−1 · Tsim · 4 ·Nos (3.40)

= fe,1 ·mNe−1 · 1.5
fe,1

· 4 ·Nos

= 6 ·mNe−1 ·Nos,

which includes the first sample at t = 0 s. However, the actual table model size is only

|Dpstrans| = 1/3 · |Dpstrans,total| , (3.41)

because the extracted data come only from the arithmetic mean of table data range and
verification data range, as shown in Figure 3.16.

With analytic expressions, the period of a harmonic functions such as Ve,{1,...,Ne} can be
constrained exactly. The sample frequency fs can be set to obtain respective sets Se,i which
are exactly equal for every period. In simulation, however, finite precision of operations,
such as cos(x), and numeric constants, such as π, leads to deviations from the proposed
analytic expressions. The periods Tp,i of the respective electrode voltages lack precision and
as a consequence, the harmonic voltage sources exhibit drift in time domain. As shown in
Figure 3.18, this leads to unique sample sets Se,i in every period of Ve,i with i > 1, drifting
further with progress of time t. The rounding errors ε are typically small compared to source
voltages in the simulation, rendering εa and εb negligible. But the iso line criterion requires
numeric exactness between the voltage samples in Se,i of every Ve,i(t) in every period. In order
to emulate sampling of Ve,i(t) at the numerically equal Se,i throughout the whole pseudo
transient simulation, a reference edge is selected and the resulting set Se,i,ref is denoted as a
reference set. Figure 3.18 shows this reference set extracted from t ∈ [14Tp,i,

3
4Tp,i]. Each sample

Ve,i(t) within the entire pseudo transient simulation is then rounded to the respectively nearest
reference sample Ve,i(t{0,...,k}), distributing the value range in k − 1 rounding intervals. During
this rounding step only the voltage tuples Ve(t) ∈ Spt are modified. Unlike with true resampling,
the associated current- and charge samples I(Ve(t)) and Qe,i(Ve(t)) remain unchanged.



74 generating device data

0 20 40 60 80 100 120 140

Sample Index
(sorted for simulation time t)

−1.0

−0.5

0.0

0.5

1.0

E
le

ct
ro

d
e

V
o

lt
a

g
e
V
e
,i

in
V

Points from Iso Line
(Ve,3, Ve,2) =
(−0.50V,−0.10V )

a) Pseudo Transient Simulation Plot

Ve,1

Ve,2

Ve,3

0 20 40 60 80 100 120 140

Sample Index
(sorted for [Ve,3, Ve,2, Ve,1])

−1.0

−0.5

0.0

0.5

1.0

E
le

ct
ro

d
e

V
o

lt
a

g
e
V
e
,i

in
V

Ve,2 changes on iso
lines of Ve,2 and Ve,3

b) Sorted Data Points with Iso Lines

Figure 3.19: Sorting the samples from pseudo transient simulation by Ve,Ne
, ..., Ve,1, exposes the iso

lines of the obtained data set. Unlike a full factorial data set, the pseudo transient simulation shows less
regularity.

To illustrate the structure of a pseudo transient data set, the simulation result of a setup
with Tsim = 1 s, m = 5 and Nos = 3 is shown in Figure 3.19. With respect to simulation
time, the data points are the time-discrete points on harmonic waves, as shown in a). Sorting
for Ve,3, Ve,2, Ve,1, Figure 3.19 b) exposes the iso lines formed by Ve,3 and Ve,2, which are the
subsets with constant Ve,3 and Ve,2. The number of voltage steps in every dimension Ve,i for
i ∈ 1, ..., Ne − 1 varies with Ve,i+1. Further, the respective voltage steps are not uniformly
distributed on their respective iso line.

Short Summary

To conclude this section, the pseudo transient simulation is a novel simulation to cover a param-
eter space RN

e using frequency-nested harmonic signals in a single transient simulation. This
section describes the setup for a general fundamental function, sine, and lays the mathematical
foundation for selection of basic parameters, which then allow the attenuation of transient
components in the data samples. The proposed approach is used to generate a table model of
the planar RFET in this work.



4 Data Driven Compact Modeling

Typically, data driven device modeling approaches stop at a point where a characteristic
data set is obtained and Verilog-A’s table model functionality takes over interpolation during
circuit simulation. Limitations of table models, such as the strict structural constraints, difficult
convergence and high computational cost, however, justify exploration of post-processing
methods. This section goes one step further and presents methods to transform characteristic
data sets into analytic equation based models, i. e. compact models, to achieve higher robustness
and performance.

NNF

Qe= 

SRF

NNP

SRP

IDC = 

Qe= 

IDC = 

Qe= 

IDC = 

Qe= 

IDC = 

Q

I Neural Network

Factorial
Data

Pseudo Transient
Data

Database Regression Compact Model

Symbolic 
Regression

a+b/c

DC Model

Transient Model

Figure 4.1: Two types of data sets, factorial data and pseudo transient data, along with two types of
two modeling approaches for IDC generate a total of 4 compact models, NNF, NNP, SRF and SRP. The
charge models are all generated by symbolic regression.

This chapter explains on the methodology of model building using machine learning methods
following the fundamentals in Section 2.3. The goal of the proposed methods is to form
a versatile characterization platform for semiconductor device characterization and model
building, where little domain knowledge is available. The underlying data set does not have
structural constraints, such as the iso line criterion, and every data sample IDC(Ve,1, ..., Ve,Ne)

and Qe,i(Ve,0, ..., Ve,Ne) of with i ∈ 0, ..., Ne can be used for training. Parameters of the regression
flow are selected with the planar RFET in mind and the designated target environment is
digital cell simulation. In particular, this chapter describes the transformation from either
quasistationary- or pseudo transient data, presented in Chapter 3, to equation based Verilog-A
device models. The modeling flow is shown in Figure 4.1. The regression methods employed to
form the respective equations are deep learning and symbolic regression. The DC drive current
is therefore either modeled as a neural network or as a symbolic equation. All electrode charge
behavior for the transient model is generated using symbolic regression. Considering that the

75
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source data set is either generated by a factorial approach or a pseudo transient approach, 4
different compact models, NNF, NNP, SRF and SRP are formed.

Parts of this chapter have been developed within the scope of the master’s thesis by Johannes
Wilm and published in [43].

4.1 The Compact Model Architecture

Although the presented techniques are developed with an unrestricted number of independent
gates in mind, this work restricts the number of independent gates to two, to focus on the
methodology. The methods are shown with the planar RFET as an example and the electrodes
of interest are top gate (TG), front gate (FG) and the two lateral channel electrodes lateral
terminal 1 (Lat1) and lateral terminal 2 (Lat2). The back gate (BG) electrode is assumed to be
hard-wired to Lat1, so that VBGLat1 = 0 . With the BG tied to Lat1, the device is optimized for
operation in digital circuits [45], which is the target application in this work. However, the BG
charge QBG is relevant for the transient behavior, so that a charge model for BG is required.

The architecture of the compact model consists of two levels, as shown in Figure 4.2: The
electric model distinguishes between gates and channel adjacent terminals. For the DC model,
the conduction of the channel is represented by a single current source, while gates are only
regarded as infinite impedance inputs. The transient model adds a capacitive current to every
electrode. Following the good practice for Verilog-A compact modeling from Section 2.2.2, the
capacitive currents are obtained by deriving the respective electrode charges with respect to
time.

The parameters of the sources on the electric level stem from the machine learning level,
which provides the numeric predictions of DC drive current and electrode charges. The DC
current model is an ensemble of two models. The linear model is trained on the data set, where
the only allowed transformation is linear scaling. Within the high dynamic range of the RFET
currents, the linear model is expected to perform well for high currents and lack accuracy at low
currents. To compensate for the lack of accuracy with low currents, the logarithmic model is
trained on logarithmically transformed data with the expectation of good overall performance
over the entire dynamic range. A dynamic weight function then combines both predictions Ilin
and Ilog into a single ensemble prediction IDC , which then serves as the DC current parameter
for the current ILat12 = IDC . The electrode charges are predicted individually by 4 symbolic
regression models, which are analytic equations. The features and therefore the inputs of all
machine learning models are identically: The currents and charges are solely predicted from
the electrode voltages with respect to the reference electrode Lat1.

4.2 Data Set Operations

Properties of the available data sets, such as the distribution of samples within the sample space
have to be taken into account when designing regression methods. The density of samples is
treated in Section 4.2.1. The split between the training-, test- and validation set is elaborated on
in Section 4.2 and augmentation of the data set is described in Section 4.2.3.
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78 data driven compact modeling

4.2.1 Sample Density of Quasistationary Sweeps

The internal sample structure within Sentaurus Device, be it from quasistationary- or transient
simulation, shows variable step size. Internally, the steps on which a solution is available
depend on convergence or discretization of the transient solver, as explained in Section 2.2.1.
A typical sample distribution over a parameter- or transient sweep features a low initial
step size, which increments towards the maximum constrained step size. If operating ranges
with low convergence are crossed, the step size can drop to the constrained minimum. The
consequence of this adaptive step size approach is that the sample density is generally higher
at the beginning of a sweep and in low convergence regions, providing more data samples
in these regions. When regression algorithms execute on uneven sample distributions, the
imbalanced loss leads to reduced performance compared to a data set of same size and uniform
distribution [158], [197]. Further, focusing the precision on high sample density regions, i. e.
initial sweep region and low convergence regions, does not have benefits in circuit simulation.
Convergence depends on other factors in circuit simulation, as the underlying equation systems
are different from the semiconductor equations of a technology simulation. Therefore, the
approaches proposed in this chapter target uniform model precision over the full operating
range. In this work, it is decided to follow a data driven approach to reduce imbalances in the
source data, as described in Section 2.3.4, because processing of input data is deemed simpler
and more generally applicable than algorithmic adaptions.

The data from Sentaurus Device can generally be exported on a regular grid, uniformly
distributed with respect to the sweep parameter, using the CurrentPlot feature described in
Section 2.2.1. However, if a regular grid is not strictly required, the explicit intervals that can
be specified for the CurrentPlot cause loss of available information. The steps, constrained
by the respective intervals, are exported, while the solutions of the remaining steps, placed
through adaptive stepping, are discarded. As a consequence, efficiency, interpreted in terms of
information outcome per simulation, is reduced by constraining a regular grid export.

Imbalance in the sample distribution, as proposed in [191], does not have to be eliminated
entirely. It is not an algorithmic requirement for the machine learning methods employed in
this work, to have an exactly regular structure, such as the iso line constraint in Verilog-A’s
$table_model function. The goal of an introduced preprocessing step is rather to reduce the
granularity in ranges where quasistationary technology simulation produces a high sample
density due to a low step size. To achieve this, each parameter sweep is pruned in a post-
processing step until a specified minimum step size ∆Vsweep,prune is reached. The prune
algorithm removes the sample step n with the minimum preceding step size

∆Vsweep(n) = Vsweep(n)− Vsweep(n− 1), (4.1)

for n > 0, and repeats until no more samples with

∆Vsweep(n) ≤ ∆Vsweep,prune (4.2)

are found. Figure 4.3 demonstrates how a parameter sweep is pruned to a step size of
Vsweep,prune = 25mV within 369 iterations in total. The imbalance in the distribution of samples
is reduced without introducing resampling errors from interpolation. From the perspective of
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the machine learning modeling approach, this is a preprocessing step and results in the dataset
Dpp.
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Figure 4.3: In order to improve balance of a data set from a parameter sweep with adaptive step size,
iterative pruning removes all samples which contribute to a granularity with a step size of less than
∆Vsweep. Resampling is avoided.

The pruning step is only performed for the factorial data set, as the pseudo transient dataset
inherently features a higher regularity due to the uniform sampling of the harmonic functions
in time domain.

4.2.2 Splitting into Training-, Validation- and Test Set

Having reduced imbalances in the sample distribution in Section 4.2.1, the question arises
which samples are selected for model training, leaving the remaining samples for testing and
validation.

Acceptable balance assumed, deep learning is usually performed on as many data points as
available and the question is typically which part of the data can be spared to allow validation
and testing. Symbolic regression methods on the other hand do not rely as strongly on the
size of the data set as neural networks (see Section 2.3.2). In fact, the benefit of additional
data points are expected to diminish at increasing cost in form of computational time of
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the regression method as well as the cost of generating the data points through technology
simulation or measurement. Unlike for neural network approaches, there are no commonly
used splits to be found throughout literature, and it is likely that what is considered a good
split is highly dependent of the specific symbolic regression method used. Therefore, and for
the sake of comparability, the training-, test- and validation sets for symbolic regression and
neural network methods are chosen to be equal in this work. For both machine learning current
models, the available preprocessed data set Dpp is divided threefold into 10%/13.5%/76.5% for
Dtest/Dval/Dtrain as shown in Figure 4.4. The symbolic regression approach does not require
a validation set, as neither hyperparameter training, nor early stopping take place. For that
reason, the validation set of the symbolic regression approach is only used for hyperparameter
training of the respective ensemble backends of SRF and SRP. Symbolic regression based charge
models feature neither hyperparameters to be tuned nor is there early stopping available. The
split ratio is, however, kept even for the charge models, in order to establish comparability
between all machine learning approaches. In these cases, the validation set is unused.

Data Split

Available data set
(preprocessed)

Ensemble
tuning

Early 
Stopping

Only for 
NN Models

+

Training, until...

Only for
DC Models

Figure 4.4: The split of the data set is equal for all proposed machine learning models, in order to
establish comparability. Models that do not require the validation set, such as symbolic regression
models, ignore Dval.

4.2.3 Data Augmentation

As described in Section 2.3.4, the addition of noise to the training set, can improve the
generalization ability of a neural network model [201]. The idea of data augmentation, to apply
a mathematical transformation for which the model is intended to be invariant, to a copy of
the data set, is appealing to increase the size of the available data and can be adapted for
transistor modeling. Particularly noise augmentation comes into focus, when considering that
both, generation of characteristic data and also circuit simulation, introduce numeric noise to
model evaluation. The noise model does not have to be derived from expected influences for
the targeted use-case, still the, in electronic circuits commonly found, Gaussian noise model is
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expected to be a reasonable choice [209], [210]. Gaussian noise, characterized by the probability
density

φ(x) =
1

σ
√
2π

e
−(x−µ)2

2σ2 , (4.3)

is adapted by specifying expected value µ and standard deviation σ.
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Figure 4.5: The data set on which the logarithmic model is trained, is augmented with Gaussian noise.
3 copies of the original set are each superimposed with a noise set of µ = 0A and a reasonable σa.

After selecting a suitable noise model, the training set is replicated 3 times, in order to obtain
4 identical sets D{1,...,4}

train . Figure 4.5 shows that 3 individual sets with length |Dtrain| are sampled
from the Gaussian probability density function Equation 4.3 with a specific σa. To each ground
truth result yi of the training sets D{2,...,4}

train the respective individual noise samples are added.
The introduction of a bias into the training data has to be avoided, leading to the constraint

µ = 0A for the Gaussian probability density function φ(x). The selection of a reasonable
standard deviation σ is key and needs to be sufficiently high to improve generalization but
low enough to not disturb the characteristic of the device. Figure 4.6 shows an excerpt from
an exemplary training set Dtrain, which is a VLat21 ∈ [−1.6V, 1.6V ] sweep at VFGLat1 = −1V

and VTGLat1 = 1V . Two figures can be taken into account: Firstly, the DC drive current IDC is
expected to be monotonic with respect to the lateral channel voltage VLat21. I can be seen in
Figure 4.6 that this relationship holds true down to |IDC | ≈ 10−17A rendering it a reasonable
estimation of the noise floor. And secondly, the lowest expected current to occur in a simulated
digital circuit can be considered. In the scope of this work, digital cells with a maximum of
two inputs are considered, and therefore the lowest current is expected to be within a decade
of the minimum current in an inverter voltage transfer characteristic (VTC). Using the same
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technology model, the inverter simulation with two statically configured planar RFET devices
in [43], results in IINV,min = 2.12 · 10−12A. Further, Figure 4.6 shows the effect of different σa
at and above IINV,min, which introduce high disturbance of the characteristic of the device.
It is therefore safe to place the noise augmentation closely to the observed noise floor and a
standard deviation of σa = 10−17A ensures that 99.7% of introduced Gaussian noise samples
lie within 3σa = 3 · 10−17A.
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Figure 4.6: Screening the parameter sweeps performed in technology simulation exposes numeric noise
below 1 · 10−14 mA. This figure shows the effects of different σa on the augmented data set.

Not all modeling approaches benefit from the described noise augmentation strategy. In the
presence of logarithmic models, the linear models are only consulted for peak currents. Further,
symbolic regression methods do not necessarily benefit from increased training set size, as
described in Section 2.3.2. This work therefore considers the noise augmentation strategy only
for the logarithmic neural network model.

4.2.4 The Ensemble Backend

The objective of the ensemble backend is to provide a prediction of the DC drive current
IDC based on the linear- and the logarithmic model. The logarithmic model is expected to
outperform the linear model for low currents and vice versa. A practical solution is therefore to
prefer the logarithmic model for low currents and the linear model for high currents. Regardless
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of what is considered high- and what is considered low current, a handover between both
models has to be designed for a threshold Iβ,th.

The choice of the right model to emphasize for the overall prediction resembles a classification
task. But instead of training a separate classifier, a robust estimation can be derived from the
logarithmic prediction: Although lacking accuracy for high currents, in experiments with planar
RFET data the logarithmic model has shown to provide more overall relative accuracy over
the whole dynamic range than the linear model. It is therefore possible to use the logarithmic
current prediction to dynamically weigh both predictions accordingly. The decision where to
place the threshold Iβ,th, the current which marks the handover between both models, depends
on the relative accuracy between the models. With the accuracy of the linear model expected
to decrease with the DC drive current prediction, Iβ,th then marks the threshold at which the
logarithmic model outperforms the linear model. A straightforward optimization method is to
construct Iβ,th from hyperparameters in the continuous domain and tune them accordingly.

Accuracy of the ensemble is not the only criterion for a good compact model, because
the resulting ensemble predictions IDC are interpreted as a physical process within numeric
simulation. As explained in Section 2.2.2, robust Verilog-A models are continuous and differen-
tiable and these criteria therefore apply to the ensemble backend. Instead of an instantaneous
handover between linear and logarithmic model at Iβ,th, a smooth transition is required. The
transition function consists of a weighted average function with a dynamic weight. The general
weighted average function from Equation 2.19 for Nens = 2 reduces to

ÎDC =

2∑
i=1

wi · ŷi = wlinÎlin + wlog Îlog. (4.4)
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Figure 4.7: The dynamic weight function β(Îlog) provides a smooth transition between linear- and
logarithmic model. The width of the transition region and the threshold current, at which both models
are weighted equally, are found during hyperparameter training of Hslope and Hoffset.
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Both weight factors are required to add up to 1, which allows their formulation with a single
parameter β ∈ (0, 1)

wlin = β, (4.5)

wlog = 1− β. (4.6)

The overall ensemble function can then be formulated as

ÎDC = β(Îlog) · Îlin + (1− β(Îlog)) · Îlog. (4.7)

A function that is commonly used whenever the application demands a smooth monotonic
transition is the sigmoid function. A special type of sigmoid function, tanh, is in fact provided
by Verilog-A, and is therefore employed for the ensemble model. To provide monotonic
transition between for β ∈ (0, 1), the dynamic parameter then equates to

β(Îlog) =
1

2
(1 + tanh(Hslope · u(Îlog) +Hoffset)), (4.8)

with the hyperparameters Hslope and Hoffset, and the transformation u(Îlog). The hyperpa-
rameters Hslope and Hoffset constrain the width of the transition region and the location of
Iβ,th, as shown in Figure 4.7. The definition of u(Îlog) remains, which is required to follow the
magnitude of Îlog. The transition is designed to be sensitive to the orders of magnitude of Îlog,
and it is therefore suitable to transform the relevant criterion Îlog logarithmically. The function
u(Îlog) then follows

u(Îlog) =
1

2
log10((Îlog)

2 + ε), (4.9)

where ε = 10−100A2 is introduced to avoid the evaluation of the logarithm at Îlog = 0A, while
the occurrence of (Îlog)2 + ε = 0A is expected to be less likely within the circuit simulation
environment. The inverse function β−1 to obtain the characteristic current-related values, such
as the location and width of the transition region shown in Figure 4.7, is

β−1 = Îlog(β) = 10
tanh−1(2β−1)−Hoffset

Hslope . (4.10)

The result is a dynamic weight function β(Îlog), which provides a smooth and monotonic
transition between logarithmic and linear model, where slope and offset can be optimized.

4.3 The Neural Network Models

The choice of the deep learning library is expected to play a minor role in model performance
and is therefore based on convenience. In this work, the neural network approach is imple-
mented in TensorFlow [211], partially by making use of Keras API [212] with TensorFlow as
backend. Neural networks are exclusively used for IDC prediction, consisting of a linear and a
logarithmic model, respectively. This work does not consider neural network implementations
for charge prediction as part of the transient model, because the relation between electrode
charges and the electrode voltages is expected to be less complex to fit and therefore a good
use-case for symbolic regression as described in Section 4.4.
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Figure 4.8: The histograms of samples in logarithmic bin size shows that the distribution of current and
charges is greatly different. Instead of covering a wide range, as seen for IDC , the electrode charges are
concentrated around 10−15 C.

An important issue when training machine learning models is to achieve accuracy over
the value space of the respective use-case. In the use-case of circuit simulation for digital
cells, IDC covers a high dynamic range, as active devices cross multiple operating regions
during switching. Considering the simulation of a basic logic cell, the CMOS-style inverter,
the drive current of the planar RFET typically lies within 5.43 · 10−6A and 2.12 · 10−12A in
DC analysis, spanning 6 decades [43]. For the planar RFET technology model, the dynamic
of the distribution differs between DC drive current IDC and electrode charges Qe, as can be
seen in factorial table model of the planar RFET on a regular grid. Figure 4.8 shows that, in
the biasing range of V{FGLat1,TGLat1,Lat21} ∈ [−1.6V, 1.6V ] and VBGLat1 = 0V , IDC spans the
range of (3.29 · 10−22A, 1.61 · 10−3A). There are two regions where samples accumulate: The
highest concentration of samples is around IDC ≈ 10−17A. Further, many samples show drive
current in the range of IDC ∈ (10−5A, 10−2.5A). The modeling approach has to account for
both regions, including the transition in between. The ranges of the electrode charges, on the
other hand, are more narrow and the vast majority of sample lie around 10−15C, as depicted
in Figure 4.8. The lower dynamic range of the electrode charge values lead to the assumption
that charge modeling is more straightforward than modeling IDC .

It is essential for a compact model to project the low off currents as well as the high on
currents, to enable accurate simulation of digital cells. Problems arise, when training a model
with a loss function that depends on the absolute error, e. g. the MSE. A higher relative error
would be accepted for low currents, biasing optimization towards the prediction of high
currents. This is less than ideal, as the relative error of device characteristics is expected to
be important for simulation of digital circuits, where the steady state output depends on the
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prediction of low currents of the complementary devices, for either low channel voltage or
low gate voltage. While an absolute error of ε = ±1µA in on-current prediction can possibly
be neglected, an absolute error ε = ±1µA error for a switched off device likely leads to
a wrong logic level, for example. One way of achieving a constant relative accuracy over
the entire current range is to utilize a relative loss function, such as MAPE or sMAPE as
presented in Section 2.3.5. Of course, this requires the respective machine learning model to
have the expressiveness to fit the respective data accurately, in the first place. Another way is to
transform the training data, compressing the dynamic range, and then utilize an absolute loss
function, such as the MSE. In this work logarithmic transformation is used to compress the
DC drive currents and then train the logarithmic model on them. A second model, the linear
model, is trained on the plain data set without prior transformations, to complement possible
inaccuracies of the compressed logarithmic model with respect to high currents. The decision
is based mainly on two factors: Firstly, splitting the coverage of the dynamic range of the DC
drive current into two models increases expressiveness. The compression, secondly, allows the
use of the MSE, which is sensitive to outliers and cheap to compute, as a loss function for both
models. Although evaluation of different loss functions is not part of this work, preliminary
tests on data sets of the planar RFET evaluated in favor of the MSE, when evaluated on linear
model and logarithmic DC drive current model. After training, percentage error metrics are
applied for performance evaluation of the obtained models.

Logarithmic- and linear neural network models are two separate MLPs with distinct structure,
following the basic concepts presented in Section 2.3.1. Both models consist of 3 densely
connected hidden layers, inspired by Hutchins et al. [112] and Tung et al. [203], who deem
3 hidden layers to provide a good trade-off between complexity and accuracy for transistor
models. The structural distinction comes from the different size of the respective hidden
layers of each model. Within a model, all 3 hidden layers have the same size. To find the
optimal hidden layer size the hyperparameter Hhl−size,<model> is introduced and optimized,
as described in Section 4.5. However, the optimal Hhl−size is not necessarily the one which
causes the best score on the validation set, as increasing complexity of a model reduces its
generalization power according to Aggarwal [131]. In addition, computation effort of the
compact model rises with the layer size. A good practice is therefore to screen the results
of the best Hhl−size make a trade-off between score and layer size. If the second-best model
achieves similar performance to the best model at a fraction of the hidden layer size Hhl−size, it
is reasonable to prefer the second-best model, for instance.

Two mathematical properties make MLPs suitable for compact models: they can be designed
to be continuous and differentiable with respect to their inputs. Differentiability is provided,
according to Leibniz’ chain rule, if the MLP consists solely of differentiable functions. The
linear combinations of weighted inputs fulfill this criterion naturally, so the choice of activation
function is the decisive factor. As explained in Section 2.3.1, the commonly used activation
function ReLU is not differentiable. Further, at a hidden layer count of 3, the MLPs are on the
shallow side of deep learning and therefore vanishing gradients, which would be a strong
argument for the use of ReLU, are not expected to be an issue. Instead, logistic function and
tanh come into focus. Similar to the ensemble model presented in Section 4.2.4, the decision is
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made in favor of tanh, as its implementation is provided in Verilog-A. All hidden layer neurons
use tanh as activation function, while the output neuron features linear activation.

4.3.1 The Linear Neural Network Model
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Figure 4.9: A lower bound of the current samples improves accuracy in the prediction of high currents.
Before training of the linear neural network model, the data sets are scaled to mA.

The training method of the linear model is shown in Figure 4.9. Unlike the logarithmic model,
the linear model is not trained on the entire available data set, because the ensemble backend
renders its predictions irrelevant for low currents. The logarithmic model is expected to
outperform the linear model for low |IDC |, and therefore receives the dynamic weight for low
current regions. It is therefore reasonable to design the linear model to ignore low currents
at all by removing them from the data set, effectively introducing a lower bound Ilb before
performing the split. Accuracy of the linear model improves, as a large share of ground truth
values for irrelevant bias regions is left out. The lower bound Ilb = 10−11A is set well below the
lower bound of the transition region for the ensemble hyperparameter corner of Hoffset = 40

and Hslope = 8, described in Section 4.5.
The remaining data set is split according to Section 4.2. The distribution of the DC drive

current has a peak of 1.61mA in magnitude, as described in Section 4.3, and a typical approach
is to scale output values to the input feature ranges to aid convergence during neural network
optimization. The input features all have ranges of Ve,i ∈ [−1.6V, 1.6V ] for all electrodes Ei.
Accordingly, training, validation and test set are scaled linearly by a factor SI = 1000, which
corresponds to a transformation from A to mA. The linear model is then trained on the training
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set Dtrain, allowing a maximum of 5000 training epochs. The validation set is used for early
stopping and interrupts training when the loss on validation data reaches a plateau. Further,
the validation set is used for tuning of the layer size hyperparameter Hhl−size,lin along with the
learning rate HLR,lin as further described in Section 4.5.

4.3.2 The Logarithmic Neural Network Model

Figure 4.10 illustrates the data flow for building the logarithmic model. The logarithmic model
is trained on the entire available data set, as the dynamic weight parameter β depends on the
prediction of the logarithmic model Îlog. Accuracy over the entire dynamic range of available
data is therefore required. Augmentation is used to increase the set of available training data
and therefore improve the overall model performance. The augmentation strategy of choice
in this work is Gaussian noise augmentation, as described in Section 4.2.3. In addition to
the increase of training data, the transformation of adding noise to the training samples can
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Figure 4.10: Training of the logarithmic model involves noise augmentation of the training set and the
actual logarithmic transformation. The validation set is, further used for tuning of the hyperparameters
of the ensemble model.
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increase robustness of the model against noise, which can occur in circuit simulation. As the
excerpt from the factorial data set in Figure 4.6 shows numeric noise with amplitudes in the
range of 10−17A, the introduction of further noise is deemed uncritical. After splitting the
available data into training-, validation- and test set, the training set is therefore augmented
with Gaussian noise of µa = 0A and σa = 10−17A. The noise augmentation step replicates the
available training set 3 times and appends random noise to the replicas.

The resulting 4 training sets D1
train and D{2,3,4},σa

train are then transformed logarithmically. In
order to compress the dynamic range of the drive current, the transformation is performed
according to Tung et al. [203] as

IHlog = H(I) = ln

(
IDC

VLat21

)
, (4.11)

where IDC is the ground truth DC drive current and VLat21 the according channel voltage.
The natural logarithm is defined for arguments in R+, and it is expected that IDC always has
the same sign as the channel voltage VLat21, that causes it. The division by VLat21 forces the
argument of the natural logarithm to be positive. During measurement or simulation, noise can
cause the sign of voltage VLat21 and current IDC to differ for certain samples. These samples
cannot be transformed and are excluded from training. Further, division by VLat21 = 0V

has to be avoided, and in order to preserve as many samples as possible a lower bound of
|VLat21| = 1mV is implemented by modification of the respective samples. After the described
preprocessing steps the argument of the natural logarithm in Equation 4.11 is forced to R+.

Table 4.1: The QLattice composes symbolic models from various arithmetic functions, called interactions
[174].

Name Interaction

Addition a+ b

Multiply a · b

Squared a · a

Linear a · weight + bias

Tanh tanh (a)

Single-legged Gaussian e−a2

Double-legged Gaussian e−(a2+b2)

Exponential ea

Logarithmic log(a)

Inverse 1
a

4.4 The Symbolic Regression Models

Similar to the neural network approach, the symbolic regression approach is treated as a black
box flow in this work. In addition, it is possible to interpret the resulting model equations and
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prefer physically reasonable candidates for further optimization, as described in Section 2.3.2.
However, the scope of this work is limited to conduct a data driven modeling approach with as
little domain knowledge as possible and therefore the physical sense of the generated equations
is not inspected. Instead, the only criterion for the quality of the symbolic regression model is
its performance on a test set and the performance in digital circuit simulation.

Of the symbolic regression implementations described in Section 2.3.2, QLattice shows
convincing performance and is therefore chosen for the compact modeling approach conducted
in the scope of this work. The symbolic regression models are obtained by using the available
data set to train the QLattice through the Feyn API [175]. The set of arithmetic interactions
which QLattice provides for symbolic regression is shown in Table 4.1. It is possible to restrict
the set of interactions if preliminary knowledge about the distribution to be modeled is
available. In this work, however, all interactions are allowed, in order to avoid the introduction
of bias through constraining without specific domain knowledge.

The computational effort to execute a symbolic regression model in Verilog-A cannot be
constrained as finely as the execution of a neural network model, where all node operations
are known ahead of training. However, it is possible to influence the complexity of a symbolic
regression model by limiting the allowed number of edges of the solution graphs. As the
solution of non-linear models in a SPICE-like solver requires an a priori unknown number of
iterations, the constrained complexity of the model does not necessarily reflect the performance
in simulation. Preliminary trials, show that solution graphs for the planar RFET have not
exceeded 50 edges. In this work a maximum complexity of 100 edges is permitted.

4.4.1 The Symbolic Regression-Based Logarithmic Current Model

Similar to the neural network modeling approach presented in Section 4.3, the symbolic
regression based DC drive current model consists of a logarithmic and a linear model. The
linear modeling approach can be explained together with the charge models, as they feature
high similarity. Both training approaches are therefore described together in Section 4.4.2. The
logarithmic model training, outlined in Figure 4.11, does provide a validation set for tuning
the hyperparameters of the ensemble model, similar to the neural network modeling approach.
However, in training of the symbolic regression model, the validation set cannot be used and is
therefore ignored. The logarithmic symbolic regression approach shows another fundamental
difference to its neural network counterpart, as there is no noise augmentation of the training
data. The reason why the symbolic regression model does not rely on noise augmentation is
that symbolic regression methods are expected to improve little with the amount of training
samples, if the original training data set already expresses the key characteristics of the device,
as presented in Section 2.3.2. Therefore the artifical augmentation of the training set is not
expected to increase accuracy of the prediction. The logarithmic transformation of the training
data H(Ve, I) is performed for the symbolic regression approach equally as for the neural
network-based logarithmic model, described as Equation 4.11 and Equation 4.13. Evaluation of
the model performance is done on the test set after backtransformation of the model.
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Figure 4.11: The logarithmic model generated by symbolic regression does not feature noise augmenta-
tion, as symbolic regression is less variant to the size of the training set. The validation set is only used
to train the hyperparameters of the respective ensemble model.

4.4.2 Linear Current Model and Charge Model with Symbolic Regression

The linear DC drive current model training and the charge model training for the transient
model are strongly related and shown in Figure 4.12. There is also high similarity to the linear
neural network modeling approach. The main difference between the symbolic regression ap-
proach and the neural network approach lies in the lack of a validation set, as user-implemented
early stopping is not available and no hyperparameter tuning of learning rate or hidden layer
size is required. Further, the symbolic regression electrode charge models do not have a lower
bound in contrast to the linear model. The dynamic range of electrode charges is narrow
compared to IDC , and the charge models are therefore designed to cover the entire range
directly.

There are two different scale parameters SI and SQ, because the value ranges of DC drive
current IDC and electrode charges Qe,j of electrodes Ej with j ∈ {0, ..., Ne} are distinct. In
accordance to the linear neural network approach, a linear scaling factor of SI = 1000 is chosen
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to obtain the same train set for the symbolic regression model. The charge values of the planar
RFET lie in the range of |Qe,j | ∈ [9.5 · 10−21C, 7.7 · 10−15C], so that SQ = 1015 is selected as
scaling factor, bringing electrode charges into the approximate range of [−10C, 10C].
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Figure 4.12: Symbolic regression is used for one of the linear IDC model candidates and for all charge
models. Model building is similar in both cases, only that the IDC model applies a lower bound, similar
to the linear neural network-based current model.

4.5 Hyperparameter Training

Hyperparameter tuning in this work comprises two distinct sets of hyperparameters, which are
tuned using different methods. Table 4.2 lists the hyperparameters along with their datatype
and a respective tuning range. The hyperparameters of the linear and logarithmic neural
network-based current models Hhl−size,{lin,log} and HLR,{lin,log} are tuned during the respective
model training, as shown in Figure 4.13. From Section 4.2.2 stem two different splits for linear
and logarithmic model, which result in distinct validation- and test sets for the respective
models.

The hidden layer sizes Hhl−size,{lin,log} are integer parameters and therefore this work resorts
to Hyperband for drive current model hyperparameter tuning. The neural network models
are expected to provide acceptable accuracy with a maximum of 50 units per hidden layer.
Hyperband depends on the convergence rate of the loss function, as explained in Section 2.3.1
and therefore typically benefits from a higher learning rate. However, the faster convergence
of the initial epochs does not necessarily lead to the optimal solution at the maximum epoch
count. Due to this interdepence the learning rate is only tuned within one decade. During early
tests of the modeling approach a learning rate of 1.6 · 10−3 lead to acceptable accuracy and the
tuning range for HLR,{lin,log} is therefore selected to be [5 · 10−4, 5 · 10−3]. All current model
specific hyperparameters tuned using Hyperband are sampled linearly within their respective
tuning range, listed in Table 4.2. The computational budget is selected to be B = 2000 training



4.5 hyperparameter training 93

epochs and a factor of η = 3. The Hyperband implementation of choice in this work is provided
by Keras Tuner [212], which tunes the hyperparameters on the respective validation sets of
linear and logarithmic neural network model.

Table 4.2: Hyperparameters of the linear- and logarithmic neural network-based models are trained
with Hyperband. Ensemble model parameters are continuous, which justifies the use of Bayesian
optimization.

Tuner Hyperparameter Type Range

Hyperband
Hhl−size,{lin,log} Integer [10, 40]

HLR,{lin,log} Float [5 · 10−4, 5 · 10−3]

Bayesian
Optimization

Hoffset Float [−1, 40]

Hslope Float [2, 8]

Validation Set

Split from Linear
Model Training

Split from Log.
Model Training

Bayesian
Opt. Dynamic 

Weighted 
Average

Validation Set

Test Set Test Set

Linear 
Current
Model

Logarithmic
Current
Model

tunetune

tune

test

test

test

Hyperband
Tuner.

Hyperband
Tuner

Figure 4.13: The sets for validation and testing during and after hyperparameter tuning come from the
splits of the logarithmic models.

The second set {Hslope, Hoffset} constrains the dynamic weighted average function β in its
slope and location of the threshold current Iβ,th. The ensemble backend hyperparameters
are trained after the respective model parameters, as the dynamic weighted average function
is required to adapt to the performance of the current models which is determined by the
model specific hyperparameters. Both ensemble backend hyperparameters are tuned within a
continuous domain, and the unknown objective function with respect to Hslope and Hoffset is
expected to be smooth. Therefore, Bayesian optimization with a Gaussian process as surrogate
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function, is selected for hyperparameter tuning. The specific implementation used in this work
is BayesSearchCV, provided by scikit-optimize [213].

Slope and offset of the ensemble backend are tuned within the continuous intervals of
Hoffset ∈ [−1, 40] and Hslope ∈ [2, 8]. The corner cases drawn in Figure 4.14 show that with a
sharp transition caused by a high slope, the offset shifts the threshold current Iβ,th between
1.33mA and 10.00nA. The effect of the slope parameter has to be considered linearly, which
allows the transition to vanish in favor of the linear model, as shown for Hoffset = 40, Hslope = 2.
Towards the maximum current of IDC,max = 1.63mA, the combination of Hoffset = −1,
Hslope = 2 allows significant influence of the logarithmic current model into the mA range. The
optimal threshold current location at the optimal slope is to be found during hyperparameter
tuning, using n_iter = 32 samples.
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Figure 4.14: The corner cases of the dynamic weight function β cover the entire range of possible
values. Width and position of the threshold point Iβ,th is tuned during hyperparameter training of the
ensemble.

4.6 Model Deployment

In order to deploy the machine learning models to the compact model, the transformations,
which are applied before training of the respective model, have to be reversed, as shown in
Figure 4.15. The linear model is trained on linearly scaled data and the back transformation is
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Figure 4.15: The concrete data flow within the Verilog-A model is similar between neural network- and
symbolic regression-based DC models. After evaluation of the respective models, backtransformations
are applied and the overall predictions are weighted by the ensemble model function.

performed by a division by the scale factor SI . The current prediction of the linear model is
therefore expressed as

Îlin =
ÎSlin
SI

, (4.12)

where ÎSlin is the linearly scaled prediction. Back transformation of the logarithmic model is
performed as

Îlog = H−1(ÎHlog) = VLat21 · eÎ
H
log , (4.13)

where VLat21 is evaluated from the biasing of the respective simulation step.
Implementation of the symbolic regression model means translating the graph of the selected

model into symbolic equations, which can then directly be implemented in Verilog-A. This is
straightforward, as QLattice provides an interface to the symbolic computing Python library
SymPy [214]. The model graph object can be extracted as a string, which contains the symbolic
equation and satisfies the syntax requirements of Verilog-A.

Deployment of the neural networks is more cumbersome, because Verilog-A does not support
matrix multiplication, as described in Section 2.3.1. A fall-back solution in environments that
are not optimized for deep learning can be the implementation of every node equations of the
MLP as a standalone expression. Figure 4.16 shows an exemplary model with 3 hidden layers
along with a listing of the equations implemented for layer 2. Computation of the symbolic
perceptron equation Equation 2.12 for each node within a layer is performed within the scope
of a for loop for each layer. Lines 4-9 perform the weighted sum of inputs and bias, while
line 10 applies the activation function tanh. Weight and bias parameters are provided with
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Inputs

Layer 1

Layer 2

Layer 3

Output

L1_N0 L1_N1 L1_N2 L1_N3

L2_N1

W2_1W2_0

1 ...

2 // --- Hidden Layer 2

3 for (j=0;j<4;j=j+1) begin

4 L2_N_temp =

5 W2_0[j]*L1_N[0] +

6 W2_1[j]*L1_N[1] +

7 W2_2[j]*L1_N[2] +

8 W2_3[j]*L1_N[3] +

9 B2[j];

10 L2_N[j] = tanh(L2_N_temp);

11 end

12 // --- Hidden Layer 3

13 ...

Figure 4.16: As Verilog-A does not support matrix operations, all equations of the computational units
have to be implemented separately.

4 significant digits. The computational effort for a single solution using the neural network
approach depends on the structure of the model, which is predetermined before training. It is
therefore possible to target a specific computational budget and constrain a model structure
accordingly. The operation count for the MLP implementation with Hhl−size neurons per
hidden layer and 3 hidden layers can be calculated as

Nops,nn =Nops,hl1 +Nops,hl2 +Nops,hl3 +Nops,out, (4.14)

=

current layer nodes︷ ︸︸ ︷
Hhl−size · ((

ADD︷︸︸︷
1 +

MUL︷︸︸︷
1 ) ·

previous layer nodes︷︸︸︷
|Ve| +

activation func.︷︸︸︷
1 )

+Hhl−size · (2 ·Hhl−size + 1)

+Hhl−size · (2 ·Hhl−size + 1)

+ 2 ·Hhl−size + 2,

(4.15)

for example. Here, each node in its respective layer performs one addition and one multiplica-
tion for each preceding layer, or in case of the first hidden layer each input from Ve, along with
a bias constant and the respective activation function. The computational effort required for
the entire solution of a time step, however, also depends on the number of required iterative
steps that the solver requires to converge to a solution.

Short Summary

This chapter describes the machine learning-based methods to transform a data set, e. g. a
table model, into a equation based compact model. The DC drive current, depending on the
electrode voltages, is represented by an ensemble model of a linear and a logarithmic prediction.
This ensemble model is implemented with neural networks and, as a reference, in symbolic
regression. As the dynamic range of electrode charges is observed to be more restricted for the
planar RFET, every electrode charge is modeled with a single, individual model. The ground
truth distribution of the charge samples is expected to be less complex to model than the drive
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current, so that all charge models are formed by symbolic regression. This chapter further
shows the training, tuning and the implementation of the proposed models.





5 Evaluation

Two perspectives are considered in this evaluation: The device modeling perspective typically
seeks accuracy and low modeling effort, saving computational- and human resources. At the
core of the evaluation are therefore the accuracy that the presented modeling approaches
provide and the simulation times of the data generation methods. In comparison with the
TCAD-based data generation, resources for training the machine learning models can be
neglected. The perspective of the circuit designer further demands, aside from accuracy,
high computational performance of the device model in order to conduct large scale circuit
simulation. This chapter therefore analyzes the simulation times for the proposed models in
DC and transient simulation of digital cell.

Pseudo Transient

PyTaurus

Evaluate and
Compare

Table Models Compact Models

Evaluate and
Compare

Neural Network

Symbolic 
Regression

(5.1 Eval. of Table Model Approaches) (5.2 Eval. of Compact Model Approaches)

a+b/c

Figure 5.1: Evaluation is first performed for the table models, and then for the compact models. The
performance of the compact model approaches is then compared to the table models.

From the two table model generation approaches, factorial and pseudo transient, and two
machine learning approaches, neural network and symbolic regression, stem 2 table model
candidates and 4 compact model candidates. The candidates are referred to with nomenclature
<ARCHITECTURE><datasource>. The model candidates are TABF, TABP, NNF, NNP, SRF, SRP,
emphasized in the shown diagrams by the indicated color scheme.

The evaluation of the proposed methods is tailored to the planar RFET as DUT and targets
digital cell simulation on circuit level. The two table model approaches, the PyTaurus table
model simulation cluster proposed in Section 3.2 and the pseudo transient method proposed in

99
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Section 3.3, are evaluated with respect to their performance and modeling effort in Section 5.1,
as shown in Figure 5.1. The subsequent step after obtaining the table model is to transform the
underlying database into compact models, as described in Chapter 4. The respective accuracy
and performance of the compact modeling approaches are then compared to the table models
and evaluated in Section 5.2.

5.1 Evaluation of Table Model Approaches

This section evaluates the generation of a table model using PyTaurus against the pseudo
transient method. Firstly, the required resources and the structure of the resulting data sets are
evaluated in Section 5.1.1 and Section 5.1.2. Both models are then used as table models and
their circuit level performance is evaluated in Section 5.1.3 in order to obtain baseline models
to which the compact models are then compared in Section 5.2.

Each data generation method is set up with the planar RFET technology model. The lateral
channel electrode Lat1 is used as reference electrode and the remaining electrode voltages cover
the range of Ve,{Lat2,FG,TG} ∈ [−VDD − 0.2V,+VDD + 0.2V ], with VDD = 1.4V , to account for
transient overshoots. The BG electrode potential is set to the model internal reference potential,
i. e. the potential of Lat1. Electrical quantities of interest are drive current IDC = ILat2 and
electrode charges Q{Lat1,Lat2,BG,FG,TG}.

5.1.1 Generation Flow: PyTaurus

The configuration of the PyTaurus simulation flow requires the selection of a sweep electrode.
The choice of reference electrode is arbitrary, but the choice of sweep electrode influences
circuit simulation accuracy, as the sweep electrode typically features finer granularity than
the remaining electrode voltages within the factorial simulation design. For the planar RFET
it is practical to have the independent gates FG and TG feature similar granularity, in order
to achieve similar accuracy when using them interchangeably as signal input in digital cells.
In this work, the sweep variable is therefore selected to be Lat2. The gate voltage steps are
arranged in a regular grid with equal S{FG,TG} = {−1.6V,−1.4V, ..., 1.6V } and therefore∣∣S{FG,TG}

∣∣ = 17. A voltage step size of 200mV is deemed an acceptable trade off between
model accuracy and data generation effort. The full factorial simulation design with respect to
the gates therefore leads to a simulation deck of

Sdeck =SLat1 × SFG × STG (5.1)

={(0 ,−1.6V,−1.6V ), (5.2)

(0V,−1.6V,−1.4V ),

(0V,−1.6V,−1.2V ),

...}

with SLat1 = {0V }. The size of the simulation deck after generation and planning step, as
described in Section 3.2.1 is therefore

|Sdeck| = |SLat1| · |SFG| · |STG| = 289. (5.3)
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The step size of the quasistationary solver for the sweep electrode Lat1 is constrained to a
maximum of ∆VLat1 = 50mV , and allowed to decrease to ∆VLat1 = 1nV for bias regions with
convergence difficulties.

The simulation run is conducted on a simulation cluster, as described in Section 3.2.2.
As typical for technology simulation, not all simulations converge in the originally created
simulation run. Figure 5.2 shows that out of the 289 scheduled simulations only 80% finish right
away The refinement function of PyTaurus, as described in Section 3.2.3, can then be employed.
In order to bring the remaining 59 simulations to convergence, the first refinement attempt
increases the allowed Newton-iterations of the solver from 35 to 60, which provides convergence
for further 26 simulations. After analyzing the maximum errors of the failed simulations using
the mesh plot feature introduced in Section 3.2.3, the second refinement increases the density of
the simulation mesh. The 3 following refinement steps alter the solver step increment parameter
within [1.15, 1.21] to provide different seeding to the numeric simulation, which eventually
leads to convergence for the remaining 9 + 1 + 1 simulations. Since all simulations from the
simulation deck converge after refinement, all data points of the factorial simulation grid are
provided and interpolation steps are not required.
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Figure 5.2: Out of the simulation deck of size 17 · 17 = 289, only 230 simulations finish successfully in
the first attempt. The remaining 59 simulations are gradually refined within 5 refinement steps.

The simulations are distributed over various hosts in the simulation cluster, which feature
different computational resources, and therefore the CPU times of the respective simulations
are not directly comparable. In this work the CPU times are therefore normalized to the
computational resources of a specific cluster runner with an Intel i9-9900K CPU and 64GB

memory. The normalization is achieved by computing a performance score from randomly
selecting 10 simulations of the original run and executing these simulations on all cluster hosts.
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The respective CPU time tCPU,r,s on each runner r for a simulation s is then referenced to the
respective CPU time tCPU,ref,s of the reference runner, to obtain a performance score

ηr =
1

10

s=10∑
s=1

tCPU,r,s

tCPU,ref,s
(5.4)

for each runner. The normalized CPU time tCPU,norm,r,s of every simulation s is then obtained
through

tCPU,norm,r,s =
tCPU,r,s

ηr
. (5.5)

All simulation times in this work are either CPU times of the reference runner or normalized,
to be directly comparable.

As a result, the total CPU time of all completed simulations is 1.23 · 106 s and the simulation
with the overall longest CPU time takes 9.4 · 104s to run to completion. The outcome of the
completed simulation run is a total of |Dfact| = 58, 474 data points, each representing drive
current and all electrode charges of the respective bias points.

5.1.2 Generation Flow: Pseudo Transient Approach

In this section the model candidate generated through pseudo transient simulation TABP is
evaluated. Unlike the factorial simulation approach followed by PyTaurus, where the novelties
lie in usability and practicality, the pseudo transient simulation is a fundamentally new concept.
Therefore, this section ends with a study about the influence of the basic parameterization on
the results of the pseudo transient method.

While PyTaurus generates table models from a factorial simulation setup, where a regular
grid can be constrained, the pseudo transient approach results in variable granularity within
the bias space Ve ∈ RNe . For sake of comparability with the PyTaurus table model, the pseudo
transient approach is constrained for the same divisions per dimension and therefore m = 17 is
specified. The order of electrodes, from lowest to highest frequency, is TG, FG, Lat1, to account
for the high capacitance estimation of TG, due to the 50% overlap at Lat1/Lat2. To match the
size of the PyTaurus generated data set |Dfact| = 58, 474, the required oversampling factor is
obtained using Equation 3.40 and Equation 3.41 in form of

Nos = ⌈
|3 · Dfact|
6 ·mNe−1

⌉ = ⌈58, 474
6 · 172

⌉ = ⌈33.77⌉ = 102, (5.6)

to obtain a positive integer, as specified in Section 3.3.3. The resulting count of extracted
samples, i. e. the amount of samples in the table model Dpstrans, is then |Dpstrans| = 58, 956, as
described by Equation 3.40 and the total number of samples of the pseudo transient simulation
from t ∈ [0, Tsim] is 176, 869.

With the selection of Tsim = 100 s, which empirically showed sufficiently low transients in
test runs with the planar RFET, the selection of basic parameters Va = 1.6V , Nos = 108, m = 17

and Tsim = 100 s is complete.
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Figure 5.3: The transient mismatch ∆I becomes evident when plotting the difference between the table
data region and the (mirrored) verification data region. The sample-wise arithmetic mean between the
currents in both regions features a attenuated transient component [207].

Performance and Limitations of the Table Model Candidate

Since the data points are extracted from transient simulation, it is necessary to check the
samples for transient error to decide if intrinsic accuracy, characterized by the size of transient
mismatch, is acceptable and the data set can be considered for a device model. Figure 5.3
a) displays the magnitude of the simulated current of the table model region Spt,table (blue),
overlaid with the magnitude of the mirrored simulated current from the verification region
Spt,verif (red), in order to provide the similar electrode bias Ve(t) for both traces at each point
in simulation time, respectively. In addition to both raw simulation data traces, the respective
mean absolute current Imean is drawn for each point in time, which serves as the estimator of
a corresponding DC current IDC , as explained in Section 3.3.2. The respective magnitude of
the transient mismatch ∆I can be extracted from diagram Figure 5.3 b). The key figure for
intrinsic accuracy is the MAE over all samples, which is found to be εtransient = 7.76 · 10−13A.
The individual ∆I(t) of every sample shows high fluctuation between ∆Imin = 2 · 10−18A and
∆Imax = 2.04 · 10−9A, with the majority of samples, 80%, below the mean. As εtransient lies
below the minimum inverter current IINV,min = 2.12 ·10−12A from Section 4.2.3 it is reasonable
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to accept this pseudo transient simulation result as a model candidate and transform Imean

into a table model.
The variable granularity of the pseudo transient data set in the time domain is emphasized in

Figure 5.4, where Ve,1 changes with the lowest frequency fe,1 =
1.5
Tsim

and Ve,3 changes with the

highest frequency fe,3 =
1.5·m2

Tsim
. The time steps are uniform, which causes the voltage resolution

to be more coarse around Ve,i = 0V . The voltage resolution increases towards the turning
points of the harmonic functions.
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Figure 5.4: From the inner to the outer electrode of the nested setup, the number of samples per
half-period increases by the nesting factor m = 17.

After forming the table model through sorting by the inverted sequence of electrodes,
i. e. Ve,3, Ve,2, Ve,1, the granularity of the respective dimensions is screened in the resolution
histogram in Figure 5.5. In order to analyze the distribution of granularity within all dimensions,
Figure 5.5 shows the step sized, i. e. the resolution, of each dimension. The step sizes are
accumulated and divided by the average number of divisions m in the previous dimension
Ve,i+1 for normalization. This normalization step allows to compare the resolution of all
dimensions by cancelling out the increase in samples, which is introduced by the parameter
nesting.

Screening the described normalized resolution of samples in each dimension then confirms
that although the number of divisions matches the full factorial PyTaurus approach, the
resolution of Ve,1 and Ve,2 varies between 31.33µV and 585.49mV , as shown in Table 5.1. As
Ve,3 is the most outer dimension in the table model and creates 2 · Nos + 1 = 205 samples.
The respective voltage steps, i. e. the resolution, are shown in the histogram of Equation 3.39.
The voltage steps of Ve,3 are fine granular due to the high Nos and show a mean resolution
of 16mV . Accumulating the step sizes throughout the remaining dimensions Ve,2 and Ve,1,
increases the respective step counts by mi for Ve,i and i < 3. In order to compare the distribution
of the respective step sizes, it is therefore suitable to normalize the histogram accordingly.
After normalization, the step sizes show equal distribution with mean resolution of 200mV ,
corresponding to the uniform resolution of the iso lines in the factorial table model. This
shows, that control of resolution is only partially possible as the granularity of the table model
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depends on the respective bias region and can either be finer or coarser than a corresponding
factorial design. The mean resolution, however, can be influenced by m and Nos.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Voltage granularity bins, 0.1V width

0

50

100

150

200

N
or

m
.

R
es

o
lu

ti
o

n
H

is
to

g
ra

m

Fixed resolution of Pytaurus table model: 200mV

Mean resolution of Ve,2, Ve,1: 199.835612mV

Normalized Resolution Histogram of the Pseudo Transient Table Model

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

Voltage granularity bins, 0.005V width

0

20

40

60

80

R
es

o
lu

ti
o

n
H

is
to

g
ra

m Mean resolution of Ve,3: 16mV

Ve,3 resolution hist. Ve,2 resolution hist. / 17 Ve,1 resolution hist. / 172

Figure 5.5: The mean voltage step of the pseudo transient data set is equal to the factorial model
(200mV ), but the individual steps vary throughout the bias space. The granularity of the most outer
function of the nested setup Ve,3 is highest.

Table 5.1 further shows that the generation time of the pseudo transient table model is a
factor of 2.5× higher than the generation time of the factorial model through PyTaurus. This
can be attributed to the fact that the pseudo transient simulation computes 3× the sample
count of the actually extracted data, expressed by Equation 3.41. It is, however, possible to set
up a pseudo transient simulation using cosine as fundamental function, which only simulates
the table data range, as explained in Section 3.3. This reduces the sample count by a factor of
3×, which, in extrapolation, shifts the advantage of computational efficiency from the factorial
method to the pseudo transient method for the shown simulation environment and technology
model. In general the relative performance between both methods depends substantially on
the respective performance of the employed quasistationary solver and transient solver.

An important finding from this evaluation is that even though the resolution of a pseudo
transient table model can be influenced, and a mean resolution can be constrained, it is not
possible to set up continuous iso lines for specific dimensions, which exist in all divisions of
that respective dimension. Where the full factorial simulation design of PyTaurus can explicitly
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Table 5.1: The proposed pseudo transient data set is not structured as regularly as the factorial set. A
higher generation time is observed, if the the entire range t ∈ [0 s, Tsim] is simulated.

Characteristic Factorial Pseudo Transient

Resolution per (fact.)
dimension (Ve,{1,2})

200mV [31.33µV, 585.49mV ],
mean: 199.84mV

Resolution of sweep
dimension (Ve,3)

[11.82 pV, 160mV ],
mean: 15.89mV

[189.72µV, 24.64mV ],
mean: 15.69mV

Sample count 58,474 Table: 58,956
Total: 176,869

Generation time (CPU) 1.23 · 106 s 3.10 · 106 s

provide data points for the electrode voltages Ve,i = VDD, the pseudo transient can only target
a mean resolution. Introducing arbitrary electrode voltages into the simulation design is not
supported. Further, the complete pseudo transient approach generates 3× the sample count
of a factorial and quasistationary approach, when executed as described in Section 3.3. The
generic approach with sine as the fundamental function and a verification range can be reduced
in size: If the simulation environment supports cosine voltage sources and a verification range
is not required, due to low capacitance of the DUT, the simulation time can be reduced to
t ∈ [0, Tsim/3], reducing the number computed samples accordingly.

Influence of Basic Parameters

After evaluating transient mismatch and table model structure from the pseudo transient
generation approach, the influence of the basic parameters is analyzed in this section. The most
important parameters to constrain the pseudo transient simulation method are the nesting
factor m, the oversampling factor Nos and the simulation time Tsim, as described in Section 3.3.
The resources of interest are the time tCPU , the CPU time which the respective simulation
requires, and quality of the data set, measured in the transient mismatch.

For evaluation of the respective influences a basic example of m = 9, Nos = 10 and Tsim = 1 s

is assumed, which is complex enough to deliver an accurate table model of the planar RFET
but does not feature the full complexity of the table model candidate TABP. From the basic
example on, the parameters m, Nos and Tsim are varied and the respective change in tCPU and
transient mismatch are shown in Figure 5.6.

The variation of m in Figure 5.6 a) shows that a higher nesting factor increases the transient
mismatch and leads to higher computational effort manifested through rising CPU time. Both
observed effects go approximately linear with m. The correlation of nesting parameter m and
transient mismatch εtransient matches with the expectation, as the excitation frequencies of all
Ve,{2,...}, which drive the total currents with DC and transient component, are proportional to
m.

In turn, increasing the oversampling factor Nos in Figure 5.6 b) leads to a decrease in mean
transient mismatch, proportional to 1

Nos
. This trend supports the assumption that the mean

transient mismatch is dominated by minor regions of the bias space, which feature high
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capacitive current. However, increasing only Nos to reduce εtransient is not recommended, if
the relevant electrical parameters that cause the transient component, such as frequency and
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Figure 5.6: The influence of the parameters m, Nos and Tsim are analyzed [207]. Higher nesting without
increasing Tsim in a) leads to higher generation time and higher transient components. Oversampling
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time base remain unchanged. Only the change in sample distribution leads to a change in the
mean-related figure of merit. The CPU time for simulation increases with Nos, as the number
of inserted time steps to be solved increases.
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Figure 5.7: The transient suppression method is evaluated by comparing 3 simulations with a decreasing
time base. The arithmetic mean remains a good estimate even in situations where a single sided (table
data range or verification range) data export leads to heavy distortions in circuit simulation.

A possibility to influence only the transient mismatch leads through Tsim: The increase of
Tsim leads to a decrease of εtransient with a slope approximately proportional to 1

Tsim
. The

inverse proportionality of the transient mismatch is consistent with the simplification of
Section 3.3.2, where the example of a linear capacitance is introduced to describe the occurrence
and cancellation of transient currents. The magnitude of the current of a linear capacitive
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element IC(t) = C · dV
dt , or in the frequency domain IC(jω) = Vc · jωC, is proportional to 1

dt or
ω ∝ 1

T . The declining presence of transient currents in Section 3.3.2 c) therefore approximates
the behavior of the described linear elements. With respect to CPU time a systematic correlation
with Tsim is not depicted, rendering the increase of Tsim a suitable measure to increase accuracy
of the data points without penalty for the observed range. However, as transient simulations
require step size constraints, which are described in Section 2.2.1, further increasing Tsim with
constant step size constraints eventually leads to more time steps to be solved and the CPU
time is expected to increase.

The effect of variation of Tsim in combination with the proposed transient suppression
strategy can be seen in Figure 5.7. Three pseudo transient simulations are conducted with the
technology model of the planar RFET, using Tsim ∈ {10−2 s, 10−6 s, 10−7 s}. The resulting table
models, one for table range, verification range and the arithmetic mean current, are employed
in a VTC simulation of a CMOS inverter. For Tsim = 10−2 s table range (left), verification range
(right) and the mean current, the estimator for the dc drive current, are visually identical, as
the transient components of the table model data is low. With increasing Tsim, the separation
between the three extracted table models increases substantially. However, it can be clearly
seen that in the given example, the arithmetic mean remains a useable estimator for the DC
characteristic of the DUT.

5.1.3 Circuit Level Evaluation

In the final step of table model evaluation, circuit simulation results, which instantiates TABP

and TABF, are analyzed in detail. This evaluation focuses on the performance in fundamental
digital cells INV and XOR. A perfectly accurate table model from TCAD data is expected
correlate exactly with a separately conducted simulation of the identical circuits in TCAD.
Therefore, model accuracy in this work references to mixed-mode simulation of the respective
circuit in TCAD.

Inverter - DC and Transient Analysis

The inverter cell is a suitable candidate for basic model evaluation, because it features a
low transistor count on one hand, while still being able to expose convergence issues and
inaccuracies, on the other hand. A single voltage (Vout) and a single current (cross current
ILat2,n) characterize the transition. The VTC of the inverter in Figure 5.8 is drawn for the
two table models, the TABF and TABP, along with the reference from TCAD mixed-mode
simulation. The switching threshold is predicted accurately by both table models. At the onset
of switching, however, both table models deviate from the reference. The reason for these
deviations become evident with the cross current ILat2,n: The accuracy of the factorial model is
tied to a regular grid with 200mV , which is the voltage step size of the FG voltage VFG = Vin.
Between the table data points, where the factorial model correlates closely with the reference,
the linear interpolation of the table model causes deviations from the reference current.

The same principle holds true for the pseudo transient model. Here, however, the distance of
the iso lines with respect to VFG is not uniform, so that the width of the interpolation artifacts
vary with up to approximately 400mV for the inverter VTC. The low granularity of the pseudo
transient data set with respect to Vin is especially high before and after the transition region,
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which is why at these points the largest deviation from the reference VTC can be seen. Overall,
the higher granularity of the factorial table model leads to better correlation with the reference
in the transition region. The output swing, however shows a better fit with the pseudo transient
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Figure 5.8: Inverter simulation featuring the table models exposes the artifacts that come from linear
interpolation. Although the factorial model has iso lines at VDD, the output swing is slightly reduced.
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model, while the factorial model shows output offsets of 9mV /13mV for high/low output.
Although, VDD is not an iso line of the pseudo transient model, the granularity of the data set
increases towards Vin = 0V and Vin = VDD, while the factorial model shows more uniform
granularity.

Further, Figure 5.8 shows a transient analysis of the inverter with an input pulse of trise =
tfall = 0.06ns, and an output capacitor of 140 fF . In this work, all transition times are given for
a transition between 20% and 80% of VDD. Again, the factorial table model shows output offset,
while the pseudo transient model has full output swing. The transition region is matched
closely by both table models. However, the current trace shows substantial lack of dynamic
range in both table models, which fail to predict currents below 1 pA (factorial model) and
10 pA (pseudo transient model), while the reference reaches a minimum absolute current of
3.52 · 10−19A. The falling transition, with a rising edge of Vin, the table models both show
higher deviation than for the rising transition. Especially the high mismatch in pull-down
operation implies that the table models show better accuracy of the p-type behavior than the
n-type behavior in the inspected bias region. The slightly reduced output swing of TABF is
exposed, similarly to the VTC simulation.

DC simulations with both table models compute 200 equidistant simulation steps, each and
the resulting simulation time in Cadence SPECTRE is similar for both models, with a minimal
advantage of TABF. For the DC simulation in Figure 5.11, TABP requires 6% more CPU time,
compared to the factorial model. The sample count is left unconstrained for the transient
simulation, resulting in 132/134 samples for pseudo transient/factorial model. Computing a
similar sample count, the pseudo transient model again exceeds the CPU time of the factorial
model by 14%. Over all, the pseudo transient model shows up to 14% higher simulation time at
a close to equal table size with less than 1% difference amount of samples, and an equal/similar
amount of computed simulation steps for DC/transient simulation. This trend indicates that
the structure of the factorial table model contributes to a slightly faster simulator performance.

XOR Core - DC Analysis

As illustrated in Section 2.1.3, RFETs allow the area efficient implementation of logic cells,
such as the XOR gate, by exploiting the polarity gate as a logic input. The analysis of the core
of the XOR gate, i. e. the logic stage after the input inverters, is presented in this work, and
demonstrates the capabilities of dynamic reconfiguration of the proposed models. Analysis
without the input inverters exposes the detailed switching characteristic depending on the
linear input sweep, as the transition region becomes wider. Figure 5.9 shows a simulation setup
with two DC voltage sources for the non-inverted inputs A/B and the inverted inputs A/B,
and the simulation is again performed for the factorial- and the pseudo transient table model,
respectively.

In general, both models show close correlation with the reference in most parts and mostly
succeed in predicting switching thresholds. Similarly as for the inverter, the deviations are
largest with the pseudo transient table model, as pronounced in case d), where VB is swept
with VA = VDD. The lack of smoothness, especially of the pseudo transient table model curves,
compared to the reference is, again, a result of interpolation. The simulation time in Figure 5.9
confirms the findings of the inverter simulation, namely that the pseudo transient model
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requires approximately 15% more simulation time for the computation of 200 simulation steps
than the factorial model at also slightly reduced accuracy.

5.2 Evaluation of Compact Model Approaches

The purpose of the machine learning based compact model approach is to improve on existing
data sets, such as the factorial and the pseudo transient table models, which are evaluated
in Section 5.1. First the hyperparameter tuning result is analyzed in Section 5.2.1. Then, the
regression results of the machine learning models are analyzed in Section 5.2.2, where structure
and accuracy scores are presented for each model. This section further answers the question of
what are the benefits and drawbacks in transforming the table models into machine learning
based compact models. Consequently, detailed circuit level analysis is performed on INV and
XOR cell in Section 5.2.3. Timing analysis of a set of standard cells, consisting of NAND, NOR,
and XOR, all resorting to the proposed planar RFET compact models, is shown in Section 5.2.4.
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Figure 5.9: Simulation of the XOR core shows correct logic behavior, while interpolation artifacts are
clearly visible. The factorial table model shows better correlation with the reference than the pseudo
transient table model.
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This comparison of logic cell timings between simulations with the proposed models gives an
estimate of their respective accuracy.

For the compact model from factorial data, a pruning step is conducted with a minimum
step size ∆Vsweep,prune = 0.02V , according to Section 4.2.1. This results in a sample count of
|Dpp,fact| = 7370. For sake of comparability, the pseudo transient data set is pruned similarly,
by extracting only every 8th sample. This approach is equal to reducing Nos by a factor of 8
and leads to a sample count after preprocessing of |Dpp,pstrans| = 7941.

5.2.1 Ensemble Model Hyperparameters
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Figure 5.10: Hyperparameter training of the ensemble model exposes that the logarithmic models
outperform the linear models over a wide range, except for SRP.

The hyperparameters Hoffset and Hslope specify the dynamic weight function β, which
provides the transition of the linear (β = 1) and the logarithmic current models (β = 0),
as described in Section 4.2.4. Hoffset and Hslope are tuned for accuracy of the ensemble
prediction of the DC drive current ÎDC . The location of the transition in Figure 5.10 therefore
represents the absolute magnitude of current for which the transition is optimal, according to
the tuning result. This transition offset can be interpreted as the relative performance between
the respective linear and logarithmic models. If the optimal ensemble is achieved with a high
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Hoffset, the transition is shifted to the left, as seen for SRP with a transition threshold of
Iβ,th = 857.18 pA. This can either be explained with poor performance of the logarithmic model
or outstanding performance of the linear model well into the low current region. Similarly,
the second symbolic regression-based model SRF shows a relatively high upper bound of
transition area, which almost includes the entire current range of the Dfact. Tuning of the
neural network-based models results in a transition threshold between Iβ,th,NNP

= 92.32µA

and Iβ,th,SRF
= 111.29µA. Consequently, the contribution of the linear model lies only in the

peak current region for NNP, NNF and SRF.

5.2.2 Structure and Accuracy of Individual Models

A baseline estimate of model accuracy and the benefits of the ensemble model technique over
the individual machine learning models can be gained by applying the error metrics from
Section 2.3.5 along with ground truth data unseen during training. To provide a common
ground for comparison between the individual models, especially between linear and logarith-
mic models, all metrics are applied after back transformation to mA and C, respectively. The
training sets for linear and logarithmic current model are initially transformed to mA, using a
scaling factor of SI = 103, as described in Section 4.3 and Section 4.4. While this already sets
the linear model up for evaluation, the logarithmic model requires a back transformation of
H−1 (Equation 4.13) to be scaled to mA. The charge models are scaled to C using the linear
back transformation 1/SQ = 10−15. Further, 4 different test sets are used for evaluation in this
section: the split for the linear model is taken from a data set, where a lower bound is enforced,
as explained in Section 4.3.1. The resulting test set is used to evaluate the linear models only.
The other test set, resulting from a split of the entire available data set, is then used to evaluate
all logarithmic models and ensemble models. Test models from the linear and the logarithmic
split are available for both data sources, factorial and pseudo transient, which results in a total
of 4 test sets.

Current Models

Depending on the employed regression method, the resulting model structure is distinct.
Table 5.2 lists the required operations with their respective count for the symbolic regression-
based drive current models. The two data sources for each model, factorial and pseudo
transient, result in a similar involvement of arithmetic operations for the respective logarithmic
models. During training of the symbolic regression-based current models the edge count is
constrained to a maximum of 100 edges, as described in Section 4.4. The resulting models
feature a maximum of 18 operations and 31 graph edges in case of the logarithmic models,
hence the available complexity of 100 edges is far from being exploited.
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Table 5.2: All symbolic regression based models show similar complexity, which is below the constrained
maximum of 100 edges.

Arch. Mdl. Data Edges OPs +− × 1
a ea

√
a a2 Lin. Gauss. tanh

SR

Îlin
Fact. 29 15 5 3 0 0 1 0 0 5 1

P.T. 30 17 6 3 0 1 0 0 2 3 2

Îlog
Fact. 31 18 6 3 0 0 0 0 2 3 4

P.T. 31 18 6 3 1 0 0 1 0 3 4

Table 5.3: The operation count distinguishes neural network- and symbolic regression approach clearly,
as matrix operations are not supported in Verilog-A.

Arch. Mdl. Data Hhl−size OPs +− × 1
a ea

√
a a2 Lin. Gauss. tanh

NN

Îlin
Fact. 35 5286 2590 2590 0 0 0 0 0 0 106

P.T. 35 5286 2590 2590 0 0 0 0 0 0 106

Îlog
Fact. 34 4999 2448 2448 0 0 0 0 0 0 103

P.T. 40 6841 3360 3360 0 0 0 0 0 0 121

The neural network-based current model show substantially larger model size than the
symbolic regression-based models, as shown in Table 5.3. Hyperparameter tuning of the
hidden layer sizes results in Hhl−size between 34 and 40 units per hidden layer. The logarithmic
model from pseudo transient data stands out as it exploits the maximum available hidden
layer size, which is constrained during hyperparameter tuning, as described in Section 4.5.
The proposed neural network-based current models are all similar in size, with a minimum
operation count of 4999 in total for the logarithmic model from factorial data and a maximum of
6841 operations for the logarithmic model from pseudo transient data. The respective addition,
multiplication and tanh-activation, required for sequential computation of forward propagation,
are calculated using Equation 4.14. Other functions are not used for implementation of the
MLP. At a similar count of iterations per solution and a similar amount of simulator steps,
NNF and NNP are expected to result in substantially higher resource requirements than SRF

and SRP.
Having performed all back transformations to mA and C, the individual models are evaluated

using R2, MAE, MSE, and sMAPE, introduced in Section 2.3.5. The R2 score abstracts from
the magnitude of the data samples and is therefore adequate to compare all models – current
and charge – with each other. Similarly, the sMAPE is chosen to provide a relative error figure.
Further, the MAE is used for its intuitive expression of the average error and the MSE represents
the loss after training of the neural network models, both after back transformation to mA.
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Table 5.4 shows the individual current model scores with respect to the data source on which
they are trained and evaluated. It becomes evident that the neural network-based models
show a substantially higher accuracy with respect to symbolic regression-based models in all
employed metrics. Especially the logarithmic symbolic regression model shows high deviation
from the ground truth when predicting on the respective test set. This confirms that the high
offset of the dynamic weight function β for SRP, evaluated in Section 5.2.1, stems from an
inaccurate logarithmic model. In the set of symbolic regression models, the pseudo transient
data set results in slightly better relative accuracy, expressed by a lower sMAPE. However,
the overall quality of the symbolic regression models is low and the distribution of the drive
current samples appears to be difficult to fit with the proposed symbolic regression approach.
Considering that the available complexity of 100 edges for the symbolic regression has only
been used by approximately 30%, it can be concluded that either the set of available functions
in QLattice does not suffice or the regression algorithm does not allow accuracy comparable to
the neural network approach.

Table 5.4: Evaluation of the individual models confirms that the ensemble strategy improves the relative
error (sMAPE) for all models but SRP. Symbolic regression current models show substantially lower
accuracy than the neural network-based models.

Arch. Model Data
R2

≤ 1

MAE MSE/loss
(mA2)

sMAPE
∈ [0%, 200%]

NN

Îlin
Fact. 0.99988 1.75µA 7.38 · 10−6 72.16

Ps. Trans. 0.99998 1.44µA 4.48 · 10−6 62.01

Îlog
Fact. 0.99870 2.05µA 4.64 · 10−5 34.22

Ps. Trans. 0.99938 3.66µA 9.68 · 10−5 8.96

ÎDC

Fact. 0.99996 482.42nA 1.49 · 10−6 33.87

Ps. Trans. 0.99999 685.00nA 9.68 · 10−5 8.51

SR

Îlin
Fact. 0.99772 7.34µA 1.44 · 10−4 91.20

Ps. Trans. 0.99921 8.19µA 1.61 · 10−4 76.19

Îlog
Fact. 0.67312 31.91µA 1.17 · 10−2 87.78

Ps. Trans. 0.94313 44.88µA 8.94 · 10−3 72.89

ÎDC

Fact. 0.93666 16.76µA 2.27 · 10−3 84.24

Ps. Trans. 0.99925 5.93µA 8.94 · 10−3 79.65

Neural network-based models expose how the ensemble model improves the overall accuracy.
The rationale for using the ensemble model technique is to compensate the high relative error
for low currents, that the linear model accepts during training, with a logarithmic model.
Although the logarithmic model is expected to show less absolute accuracy, expressed by the
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MAE, the accuracy can be more consistent throughout the entire value space, compared to
the linear model, which is in turn expressed by the sMAPE. This is confirmed in Table 5.4, as
the linear models consequently show a higher sMAPE and a lower MAE than the logarithmic
models. It can therefore be assumed that that substantial contributors to this high relative error
of the linear models lie, in fact, in the low current regime, which emphasizes the relevance of
the ensemble model approach for the DC drive current of NNF and NNP.

Table 5.5: The operation count of the charge models is almost identical throughout the electrodes and
data sets.

Model Data Edges Total +− × ea
√
a a2 Lin. Gauss. tanh

Q̂FG

Fact. 29 14 7 3 0 0 0 0 4 0

Ps. Trans 31 16 5 4 0 0 0 1 5 1

Q̂TG

Fact. 29 14 7 2 0 0 0 0 5 0

Ps. Trans 31 16 8 1 0 1 0 0 5 1

Q̂BG

Fact. 31 16 5 6 0 0 0 1 4 0

Ps. Trans 31 16 3 5 1 1 0 0 6 0

Q̂Lat1

Fact. 30 15 5 3 0 0 1 0 6 0

Ps. Trans 31 15 8 2 0 0 0 0 5 0

Q̂Lat2

Fact. 31 15 8 2 0 0 0 0 5 0

Ps. Trans 31 15 5 2 0 0 0 0 8 0

Charge Models

Another assumption on which the compact modeling approach is designed, is that the mathe-
matical distribution of charge of each electrode with respect to the electrode voltages is less
complex, in the sense of suitability for regression-based fitting, than the distribution of the
drive current. Hence, the charge models are exclusively obtained by symbolic regression, as
described in Section 4.4.2. In fact, the charge models show a similar structural complexity as
the symbolic regression-based current models, as shown in Table 5.5. The number of edges
per graph and the types of operations used for charge modeling are highly similar throughout
electrodes and data sets of the charge samples, and also to the current models in Table 5.2.

However, evaluating the score on their respective test set in Table 5.6, exposes a substantially
lower sMAPE than the symbolic regression-based current models in Table 5.4. Hence, even
though the resource requirement between current models and charge models are similar, the
better fit renders the symbolic regression approach appropriate for charge modeling. The best
relative accuracy is seen with the TG charge model, which features a 50% overlap at Lat1
and Lat2, respectively. Q̂FG appears as slightly more difficult to fit, as it features the highest
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relative error and the lowest R2 of all charge models. However, the relative error (sMAPE) is
still considerably lower than all symbolic regression-based DC current models in Table 5.4.

Table 5.6: The symbolic regression based charge models show significantly higher accuracy than the
symbolic regression-based current models.

Arch. Model Data
R2

≤ 1

MAE
(C)

MSE/loss
(C2)

sMAPE
∈ [0%, 200%]

SR

Q̂FG

Fact. 0.99517 1.06 · 10−16 2.03 · 10−32 26.37

Ps. Trans. 0.99481 1.69 · 10−16 5.67 · 10−32 22.30

Q̂TG

Fact. 0.99991 2.10 · 10−17 6.81 · 10−34 2.30

Ps. Trans. 0.99993 2.22 · 10−17 7.95 · 10−34 2.41

Q̂BG

Fact. 0.99723 7.12 · 10−18 9.28 · 10−35 8.66

Ps. Trans. 0.99643 1.22 · 10−17 3.00 · 10−34 14.94

Q̂Lat1

Fact. 0.99692 6.23 · 10−17 6.46 · 10−33 15.80

Ps. Trans. 0.99605 1.05 · 10−16 2.09 · 10−32 15.24

Q̂Lat2

Fact. 0.99819 7.00 · 10−17 8.59 · 10−33 13.35

Ps. Trans. 0.99816 1.07 · 10−16 2.26 · 10−32 15.50

5.2.3 Circuit Level Analysis

Similarly to the evaluation of the table models in Section 5.1.3, INV and XOR cells are presented
for a detailed performance analysis of the machine learning based compact models. Evaluation
of an unstable feedback circuit exposes the accuracy of the models in transient simulation. For
this purpose, a 5-stage ring oscillator circuit is simulated with all proposed models.

Inverter - DC and Transient Analysis

Figure 5.11 shows the characteristic of an inverter for the 4 compact model candidates. Neural
network- and symbolic regression based simulations are separated for better visual distinction.
The prediction of the VTC in a) and the according cross current in e), demonstrate the high
accuracy of the neural network models for both data sources. Correlation with the TCAD
reference is close and interpolation artifacts, seen in the table model simulation of Figure 5.8
are avoided entirely. The neural network approach appears as an adequate method to replace
interpolation for non-polynomial distributions in DC simulation.

When the inverter circuit is extended with an output capacitance of C = 140 fF , transient
simulation shows close correlation with the reference for Vout. The reduced output swing,
shown by TABF in Figure 5.8, is compensated. Further, the neural network approach allows the
pseudo transient data set to show a higher accuracy after the falling transition in Figure 5.11 g).
In general the difference between both data sources, factorial method and pseudo transient
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Figure 5.11: The neural network-based models show excellent accuracy in DC simulation, while SRF

and SRP show high deviations. Symbolic regression, although with higher deviation, is substantially
faster than neural network-based models or table models.
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method, shrinks after transformation to a neural network based compact model and in case of
DC simulation, the accuracy improves substantially.

0.00

0.35

0.70

1.05

1.40

V
o
u
t

in
V

0.81 s
0.96 s

0.03 s
0.04 s

11.00 s
9.26 stCPU :

a) VB = 0V

NNP

NNF

SRP

SRF

Ref. (TCAD)

0.83 s
0.95 s

0.03 s
0.04 s

10.80 s
9.26 s

b) VB = VDD

0.89 s
0.95 s

0.04 s
0.03 s

10.70 s
9.23 s

c) VA = 0V

0.83 s
0.96 s

0.04 s
0.04 s

11.00 s
9.29 s

d) VA = VDD

0.00 0.35 0.70 1.05 1.40

VA in V

0.00

0.35

0.70

1.05

1.40

V
o
u
t

in
V

0.00 0.35 0.70 1.05 1.40

VA in V

0.00 0.35 0.70 1.05 1.40

VB in V

0.00 0.35 0.70 1.05 1.40

VB in V

Neural Network

Symbolic Regression

Reference

Vout Vout Vout/ / 
VA

XOR-Core

=1
VA VB

VBVA / VB

/ 

Figure 5.12: The neural network based approach performs accurately when dynamic reconfiguration is
simulated. Similar to the inverter demonstration, the symbolic regression approach fails at providing
the full output swing.

However, the symbolic regression-based compact models fail to predict the transition region
and introduce a shift towards higher Vin, as shown for the DC simulation in Figure 5.11 b).
The logarithmic cross current diagram of SRF and SRP in f) shows that the correlation with
the reference is poor in most parts and sharp transitions between the respective linear and
logarithmic models cause an overly steep VTC. Further, SRP does not reach full swing output as
it shows considerable offset to VDD for Vin = 0V . Transient simulation of SRP shows substantial
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deviation from the reference, accordingly. Along with clear shifts of rising and falling transition,
this prevents the recommendation of SRP and SRF for predictive circuit simulation.

When analyzing the simulation times (tCPU ), however, the ranking changes. All proposed
models speed up circuit simulation, with respect to the TCAD reference. The machine learning-
based compact models are in general more efficient than the table models. SRF brings an
acceleration of up to 25× with respect to NNP while a factor of up to 17× distinguishes the
simulation time of TABP and NNP. This result reflects the low operation count of the symbolic
regression models, with respect to the neural networks.

XOR Core - DC Analysis

The simulation of the XOR core cell in Figure 5.12 agrees with the findings of the inverter
simulation and provides, with the neural network-based compact models, close to perfect
correlation with the reference transitions for both inputs A and B. Similar to the inverter VTC
in Figure 5.11, interpolation artifacts are suppressed, and the traces are visibly smooth.

Again, SRP and SRF show large deviations the transition region and, especially SRP, fails to
provide a full swing output in transition a), b) and c). The transitions, especially in b), c) and d)
are overly steep and lack smoothness.

The simulation time with 4 compact model instances confirms the advantage of neural
network- and symbolic regression architecture. The symbolic regression-based models extend
their lead in computational efficiency of to up to 27×, when comparing NNP with SRF for the
transition in a). The neural network based models have their peak acceleration of 13× with
NNF, compared to the TABP in a).

A 5-Stage Ring Oscillator

The simulation of a ring oscillator imposes high transient accuracy on the instantiated compact
models. A typical method to prevent a static solution at Vout = 0.5 · VDD for all inverters of the
unstable feedback circuit is to either constrain an initial condition or to insert another FET to
release one of the switching nodes with a pulse waveform at the start of the simulation. While
both of these methods are available for RFETs, controllable polarity enables an additional way
of starting and stopping the oscillator: When flipping the polarity of both RFETs of an inverter,
the cell transforms into a buffer, which decrements the number of inverters in the ring and
stops oscillation. In Figure 5.13 reconfiguration from buffer to inverter is used to start the
5-stage ring oscillator. Before the start of the oscillation at t ≈ 30ns, the steady state solution
can be seen to deviate from the reference, with TABP, SRF and SRP.

The waveform of the ring oscillator in Figure 5.13 shows that the table models and both
neural network-based compact models and SRP show a similar period Tp between 4.69ns and
4.96ns. The outlier is SRF with Tp = 7.43ns, and while the former models deviate from the
reference period with a factor of less than 1.3, the ring oscillator with SRF models almost
doubles the period of the reference. The similar waveforms of the table models and the neural
network compact models indicate that the underlying quasistationary data sets limit the
accurate prediction of frequency dependent capacitances in transient simulation, as described
in Section 2.2.3.
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Figure 5.13: Simulation of a 5 stage ring oscillator expose limitations of the data driven methods. The
ring oscillator is enabled by reconfiguring one cell in the chain from buffer to inverter.

5.2.4 Cell Timing Analysis

During the detailed model evaluation with respect to accuracy figures and circuit simulation,
SRF and SRP turn out to provide insufficient accuracy for reliable circuit simulation. Although
the symbolic regression approach shows excellent efficiency, i. e. simulation time, in its current
state the evaluation in form of cell characterization is not considered useful. This section
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therefore focuses on the neural network-based models NNF and NNP along with the proposed
table models TABF and TABP. The extracted characterization values are put in comparison
with the respective TCAD reference.

The principal objective of this work is to obtain models, which unite accuracy and efficiency
for the simulation of digital circuits. In the final part of the evaluation, this objective is evaluated
for a set of logic cells: NAND, NOR and XOR. The respective cells are terminated with Cout =

140 fF towards VSS and the linear input edges have a transition time of ttr,rise = ttr,fall = 60 ps

– all equal to the detailed analyses of circuit simulation in this chapter. These constraints
approximately correspond to a fan-out of 10 XOR gates, each with an input capacitance
of Cin,xor ≈ 10 fF and a line capacitance of 40 fF according to [45]. The input transition
is exemplary to provoke a representative transient characteristic in the output voltage. The
respective simulation time for each cell, input transition and model are not subject of this
section and can be found in Appendix A.

The characterization tables, Table 5.7 to Table 5.10 show a characterization of the respective
digital cell for input transitions with two inputs A and B. 4 input transitions are possible:
a transition of A with B = 0, a transition of A with B = 1, a transition of B with A = 0

and a transition of B with A = 1. The transitions are conducted with rising- and falling
edge, respectively. NAND and NOR cell only switch for two out of the four possible input
transitions of A and B. For each characteristic value of ttr and td the best prediction and the
worst prediction are displayed with green and red cell background. The resulting waveforms
are time-discrete and, in order to obtain accurate characteristic values at 20%, 50% and 80% of
VDD, the respective samples are obtained by linear interpolation. The relative deviation from
the TCAD reference of the worst predicting model in percent is listed in the bottom row.

Table 5.7: Transition and delay figures of the NAND cell favor the table models TABF and TABP.

Cell NAND
Param. Transition ttr in s Delay td in s

Edge A01_B1 A1_B01 A01_B1 A1_B01
Dir (In) Rise Fall Rise Fall Rise Fall Rise Fall

Ref. 1.36e-8 7.87e-9 1.36e-8 7.96e-9 7.44e-9 3.63e-9 7.51e-9 3.70e-9
TABF 1.37e-8 7.94e-9 1.37e-8 8.03e-9 7.39e-9 3.50e-9 7.46e-9 3.57e-9
TABP 1.32e-8 7.88e-9 1.32e-8 7.96e-9 7.26e-9 3.61e-9 7.34e-9 3.69e-9
NNF 1.31e-8 7.74e-9 1.31e-8 7.82e-9 7.16e-9 3.57e-9 7.23e-9 3.63e-9
NNP 1.38e-8 7.60e-9 1.38e-8 7.65e-9 7.71e-9 3.58e-9 7.77e-9 3.64e-9

∆ ≤ 3.8 % 3.4 % 3.8 % 3.8 % 3.7 % 3.5 % 3.8 % 3.6 %

The NAND cell, characterized in Table 5.7, shows clear patterns with respect to the best
prediction. Over all, the table models provide the best predictions for all transitions, while
the underlying data set depends on the direction of the transition: A rising transition at the
input is accurately predicted by the factorial data set, while the falling transition exposes the
pseudo transient data set to predict best. For all transition characteristics of the NAND cell,
the same data set that results in the best prediction when used as a table model, leads to the
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highest deviation when used with the neural network approach. While the pattern of the best
prediction extends to the delay figures, the TABF and TABP deviate by 3.6% and 3.5% with a
falling input transition.

Table 5.8: Transition and delay figures of the NOR cell favor TABP, consequently.

Cell NOR
Param. Transition ttr in s Delay td in s

Edge A01_B0 A0_B01 A01_B0 A0_B01
Dir (In) Rise Fall Rise Fall Rise Fall Rise Fall

Ref. 5.03e-9 1.58e-8 4.92e-9 1.58e-8 2.33e-9 8.06e-9 2.27e-9 7.88e-9
TABF 5.05e-9 1.63e-8 4.93e-9 1.63e-8 2.30e-9 7.96e-9 2.23e-9 7.79e-9
TABP 5.03e-9 1.59e-8 4.91e-9 1.59e-8 2.36e-9 8.05e-9 2.29e-9 7.88e-9
NNF 5.00e-9 1.56e-8 4.89e-9 1.56e-8 2.40e-9 7.92e-9 2.33e-9 7.75e-9
NNP 5.09e-9 1.50e-8 4.98e-9 1.50e-8 2.37e-9 7.74e-9 2.30e-9 7.58e-9

∆ ≤ 1.2 % 5.1 % 1.3 % 5.1 % 2.8 % 4.0 % 2.6 % 3.8 %

In general, the highest deviations (∆) are all from consequent underestimation of the
transition time by a relative amount of 3.4% to 3.8%. The accuracy of the best predictions is,
however, well within 1%.

The NOR cell in Table 5.8 shows an even more clearly recognizable pattern. TABP always
predicts best. And, similar to the transition figures of the NAND cell, the same data set – the
pseudo transient data set – is responsible for the highest deviation, which reaches 5.1% for
the transition times with a falling input edge. The falling input, in case of the NOR gate,
corresponds to a rising edge at the output and the charging process is dominated by the p-type
behavior of the planar RFET. The higher deviation in these cases confirms the findings of
Figure 5.11, in which NNP shows slightly reduced correlation in the pull-up region of the VTC.
For pull-down (n-type) behavior, the transition figures all correlate closely with the reference.
Delay figures for the NOR cell are more balanced between 2.6% and 4.0% of maximum
deviation. The models with the largest deviations, respectively, overestimate transition- and
delay timings with a rising input edge and underestimate with a falling input edge.

The demonstrator of dynamic reconfiguration, the XOR cell, shows less structure in its
characteristic figures. All evaluated models shine in at least two characteristics, as shown in
Table 5.9 and Table 5.10. In case of the falling input transition of A with B = 0 the maximum
deviation is less than 1%. Responsible for the largest deviation of 4.6% is the neural network-
based model from the pseudo transient data set for a rising edge of A with B = 0.

The take-away from the evaluation of timing characteristics is that all models perform within
a maximum relative error of 5.1%, for the given input transition time and output capacitance,
so that all interpretation of causality is made based on a low overall deviation, in the first place.
Unlike with the 5-stage ring oscillator, even the largest deviations are not constantly over- or
underestimation of transition- and delay characteristics. A major systematic error, e. g. from a
consequently overestimated inversion capacitance, is therefore difficult to conclude. Quite the
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Table 5.9: Transition and delay figures of the XOR cell expose accuracy in all evaluated timing figures.

Cell XOR
Param. Transition ttr in s Delay td in s

Edge A01_B0 A0_B01 A01_B0 A0_B01
Dir (In) Rise Fall Rise Fall Rise Fall Rise Fall

Ref. 7.79e-9 4.30e-9 7.62e-9 4.13e-9 2.94e-9 1.25e-9 2.91e-9 1.13e-9
TABF 7.91e-9 4.35e-9 7.80e-9 4.26e-9 2.99e-9 1.25e-9 2.92e-9 1.15e-9
TABP 7.64e-9 4.25e-9 7.59e-9 4.16e-9 2.82e-9 1.26e-9 2.82e-9 1.17e-9
NNF 7.61e-9 4.15e-9 7.55e-9 4.05e-9 2.88e-9 1.25e-9 2.85e-9 1.15e-9
NNP 7.43e-9 4.26e-9 7.40e-9 4.17e-9 2.92e-9 1.24e-9 2.92e-9 1.15e-9

∆ ≤ 4.6 % 3.5 % 2.8 % 3.2 % 4.0 % 0.89 % 3.1 % 3.6 %

Table 5.10: A clear causality of the origin of the maximum deviation is not apparent, as the relative
error of models over all evaluated cells is ≤ 5.1%.

Cell XOR
Param. Transition ttr in s Delay td in s

Edge A01_B1 A1_B01 A01_B1 A1_B01
Dir (In) Rise Fall Rise Fall Rise Fall Rise Fall

Ref. 3.91e-9 7.60e-9 3.90e-9 7.77e-9 1.15e-9 3.20e-9 1.13e-9 3.15e-9
TABF 3.93e-9 7.81e-9 3.92e-9 7.90e-9 1.15e-9 3.20e-9 1.13e-9 3.25e-9
TABP 3.92e-9 7.62e-9 3.91e-9 7.69e-9 1.17e-9 3.12e-9 1.15e-9 3.13e-9
NNF 3.82e-9 7.58e-9 3.82e-9 7.64e-9 1.15e-9 3.19e-9 1.13e-9 3.22e-9
NNP 3.95e-9 7.42e-9 3.94e-9 7.45e-9 1.16e-9 3.22e-9 1.14e-9 3.23e-9

∆ ≤ 2.2 % 2.7 % 2.1 % 4.0 % 1.3 % 2.5 % 2.0 % 3.2 %

opposite is the case, as the maximum error of 5.1% demonstrates the confidence and suitability
of the proposed methods for table model and neural network-based compact models.





6 Summary, Conclusion and Outlook

In the course of this work, data driven methods for modeling of emerging semiconductor
devices are proposed, which lead to the first compact models of the planar RFET. The first step
is to generate data sets for DC drive current and electrode charges, which requires efficient
handling of resources in technology simulation. Two approaches are proposed:

• The factorial cluster simulator PyTaurus allows efficient setup, reuse and then distributed
simulation of parameter sweeps. The proposed tool provides functionalities to mitigate
convergence issues in large simulation decks, which is an important asset when going off
the beaten track of conventional materials and widely explored conduction mechanisms.

• Pseudo transient simulation is a fundamentally different approach, which does not rely
on quasistationary parameter sweeps. Instead, all samples are generated by conducting a
single slowly proceeding transient simulation. While PyTaurus generates a factorial set
through a nested setup of parameter sweeps, pseudo transient simulations realize nesting
by applying voltages with harmonic waveforms and distinct frequencies to the electrodes
of the DUT.

For comparison of both characterization approaches, the average amount of voltage steps per
dimension and the input voltage space are set equal. Both simulation approaches fulfill formal
requirements to be used as table models in Verilog-A, as shown in Figure 6.1.

The obtained characteristic values of DC channel current and electrode charges are then
transformed into equation based models, i. e. compact models. The DC drive current is rep-
resented by an ensemble model, which combines the predictions of two machine learning
models. While the linear model is trained on channel current samples in mA, a logarithmic
model compensates the decreasing accuracy towards low currents. To obtain the respective
linear and logarithmic models, two approaches are demonstrated for the DC drive current:

• The deep learning approach provides models in form of MLPs, where the respective
predictions for the ensemble model are obtained by forward propagation. Hidden layer
sizes and learning rate are treated as hyperparameters and tuned accordingly. The
computations of each neuron have to be conducted sequentially, as Verilog-A does not
support matrix operations.

• Symbolic regression using QLattice provides a model in form of an analytic and closed
form expression, which can directly be implemented in Verilog-A. Hyperparameter
tuning is not required.

For the charge models, analytic equations are obtained solely by symbolic regression. Four
compact models result from a permutation of the two data sets, factorial and pseudo transient,
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Figure 6.1: Two data generation approaches are proposed in this work. The permutation of factorial-
and pseudo transient data with deep learning and symbolic regression results in four models NNF, NNP,
SRF and SRP.

and two machine learning approaches for the DC drive current, deep learning and symbolic
regression, as shown in Figure 6.1.

6.1 Conclusion

The two data generation approaches for a factorial and a pseudo transient data set produce table
models, which both satisfy the structural constraints of Verilog-A and show similar accuracy
and computational efficiency in circuit simulation. PyTaurus allows distributed simulation
and the convergence aids are employed to run all required simulation to completion. Pseudo
transient simulation is in its general implementation less resource efficient as the generation of
a factorial set through PyTaurus. Perspectively, however, by choosing according parameters
such as a high Tsim, transient estimation can be omitted and simulation time can be reduced.
With further adaptions in implementation, such as the use of cosine as fundamental harmonic
function, the simulation time can be reduced further. In this case, it can be extrapolated that
The pseudo transient simulation has the advantage in terms of resource efficiency for the
considered simulation environment and technology model.

Raised in Section 1.1 and clarified in this work is the key question: Is the machine learning-
based compact model an improvement over the direct use of the original table model? From a
detailed evaluation, it can be concluded that compact models with a symbolic regression-based
DC drive current modeling show subpar performance with respect to error figures and lead
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to substantial deviations from the reference in circuit simulation. Their use is discouraged.
However, the remaining models, the table models TABP and TABF, and the models with
neural network-based DC drive current modeling NNF and NNP, provide sufficient accuracy for
predictive circuit simulation. In a detailed analysis, these models show correct logic behavior
of the inspected digital cells INV and the XOR, which exploits dynamic reconfiguration of
the planar RFET. Of all proposed models, NNF and NNP show the best correlation with the
TCAD reference in simulation of the respective VTCs. Compared to the TCAD reference, the
relative error in a characterization of transition time and propagation delay is ≤ 5.1%, which
confirms the suitability, especially of the neural network-based compact models, for predictive
simulation of digital cells.

With respect to computational efficiency, the symbolic regression-based compact models
show the most efficient simulations. SRF and SRP speed up circuit simulation time by a factor
of up to 27× in the demonstrated simulations of INV and XOR, compared to the neural
network-based models. Table models show the lowest computational efficiency and require
are up to 17× more CPU time for circuit simulation than neural network-based models in the
analyzed simulations.

To wrap up the evaluation of all proposed models, a reasonable recommendation is to clearly
prefer the neural network-based compact modeling approach for DC simulation of digital cells,
as accuracy and computational efficiency improve. When it comes to simulations with a focus is
on transient behavior, such as ring oscillators, the inherent limitations of data driven modeling
are exposed and the accuracy of neural network-based modeling and the plain table models
is similar. But as the neural network-based approach speeds up simulation substantially, it
should still be the preferred approach. When characterizing digital cells, the accuracy of table
models and neural network-based models both show sufficient accuracy for reliable prediction
of timing characteristics. Overall, the findings confirm that the straightforward neural network
approach, without introducing further effort in manual characterization, leads to a better
predictive circuit model with respect to accuracy and computational performance, than using
the table model directly.

6.2 Outlook

The methods shown in this work form a versatile foundation for data driven modeling of
emerging semiconductor devices, which are demonstrated with a planar RFET. The methodol-
ogy itself is designed to be generic and applicable when domain knowledge is limited. Further
work can extend the proposed modeling flow for other devices, that not necessarily have to be
stateless.

As domain knowledge gradually becomes available during technology optimization, either
based on TCAD or on fabrication of prototypes, generalization can be traded for accuracy by
introducing further constraints. One way of introducing domain knowledge is to use symbolic
regression in an iterative manner, by selecting model candidates which resemble physical
processes. The model building flow then becomes interactive and allows the user to bias the
outcome towards an expected model structure. Further, custom specification of initial symbolic
regression models is possible.
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The table model approaches are conducted with a single sweep electrode in structured
experiment designs, which is required to fulfill constraints of the interpolation algorithm. With
the machine learning based compact model approaches it is no longer necessary to satisfy
structural constraints, as training samples only have to be in the same feature space. This
enables selective refinement of the compact models by appending arbitrary characteristic data
to the training set.

The substantial advantages in computational efficiency justify further optimization of the
symbolic regression approach, e. g. either with a different algorithm, iterative candidate se-
lection or feature transformation. With the neural network approach, further generalization,
e. g. in form of hyperparameters for the number of hidden layers and the amplitude of noise
augmentation, can lead to better model accuracy. It is imaginable, that the introduction of con-
volution into the neural networks leads to a better representation of patterns in the conduction
characteristics of a device.

The state of the art already comprises various machine learning approaches for compact
modeling. This work joins these ranks, and it is likely that, with similar pace as the introduction
of machine learning into more and more areas of our life, machine learning based compact
models will experience a boost and bring predictive VLSI simulation to early phases of
technology optimization.

In the end, it is questionable, if in the 21st century Gordon Moore is right about the trend of
semiconductors. Remains the hope that George Box and Norman Draper are, and all models in
this work are "wrong, but some are useful" [1].
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A Appendix

A.1 Simulation Times of Timing Characterization Simulations

Table A.1: Simulation times (CPU) in s

Cell NAND
Edge A01_B1 A1_B01

Ref. 4.15e+4 4.51e+4
TABF 7.19e+01 1.01e+02
TABP 8.75e+01 1.02e+02
NNF 5.47e+00 6.22e+00
NNP 7.07e+00 7.52e+00

Table A.2: Simulation times (CPU) in s

Cell NOR
Edge A01_B0 A0_B01

Ref. 4.32e+4 4.57e+4
TABF 9.48e+01 8.01e+01
TABP 1.01e+02 8.79e+01
NNF 7.58e+00 7.15e+00
NNP 8.82e+00 8.08e+00

Table A.3: Simulation times (CPU) in s

Cell XOR
Edge A01_B0 A0_B01

Ref. 1.05e+5 1.05e+5
TABF 1.78e+02 1.78e+02
TABP 2.03e+02 2.10e+02
NNF 1.26e+01 1.25e+01
NNP 1.52e+01 1.55e+01
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Table A.4: Simulation times (CPU) in s

Cell XOR
Edge A01_B1 A1_B01

Ref. 8.85e+4 8.53e+4
TABF 1.74e+02 1.83e+02
TABP 2.09e+02 2.14e+02
NNF 1.27e+01 1.30e+01
NNP 1.53e+01 1.57e+01
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