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Abstract
Today, design and operation of manufacturing processes heavily rely on the use of models, some analytical, empirical or 
numerical i.e. finite element simulations. Models do reflect reality as best as their design and structure may appear, but in 
many cases, they are based on simplifying assumptions and abstractions. Reality in production, i.e. reflected by measures 
such as forces, deflections, travels, vibrations etc. during the process execution, is tremendously characterised by noise and 
fluctuations revealing a stochastic nature. In metal forming such kind of impact on produced product today in detail is neither 
explainable nor supported by the aforementioned models. In industrial manufacturing the game to deal with process data 
changed completely and engineers learned to value the high significance of information included in such digital signals. It 
should be acknowledged that process data gained from real process environments in many cases contain plenty of technologi-
cal information, which may lead to increase efficiency of production, to reduce downtime or to avoid scrap. For this reason, 
authors started to focus on process data gained from numerous metal forming technologies and sheet metal blanking in order 
to use them for process design objectives. The supporting idea was found in a potential combination of conventional process 
design strategies with new models purely based on digital signals captured by sensors, actuators and production equipment in 
general. To utilise established models combined with process data, the following obstacles have to be addressed: (1) acquired 
process data is biased by sensor artifacts and often lacks data quality requirements; (2) mathematical models such as neural 
networks heavily rely on high quantities of training data with good quality and sufficient context, but such quantities often 
are not available or impossible to gain; (3) data-driven black-box models often lack interpretability of containing results, 
further opposing difficulties to assess their plausibility and extract new knowledge. In this paper, an insight on usage of avail-
able data science methods like feature-engineering and clustering on metal forming and blanking process data is presented. 
Therefore, the paper is complemented with recent approaches of data-driven models and methods for capturing, revealing and 
explaining previously invisible process interactions. In addition, authors follow with descriptions about recent findings and 
current challenges of four practical use cases taken from different domains in metal forming and blanking. Finally, authors 
present and discuss a structure for data-driven process modelling as an approach to extent existing data-driven models and 
derive process knowledge from process data objecting a robust metal forming system design. The paper also aims to figure 
out future demands in research in this challenging field of increasing robustness for such kind of manufacturing processes.
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1  Introduction

A model is a consciously constructed reproduction of 
reality and is based on structures, functions or analogies. 
Models are used to solve tasks, where direct operations 
on the original are possible only with difficulty, are too 
costly or not expedient [1]. In production technology, the 
design and operation of manufacturing processes relies on 
different types of models for process layout, observation, 
improvement and control. However, solving these tasks 
does require a detailed multi-level procedure starting 
with engineering and designing manufacturing equipment 
allowing to integrate measuring devices, sensors and addi-
tional actuators to a certain extent. Also, suitable sensors 
and signal amplifier have to be specified to ensure the suf-
ficient quality of raw process data. Using comprehensive 
data management, a reduction of the data dimension usu-
ally must be carried out in order to generate suitable data 
sets enabled by modern feature engineering techniques [2].

In the following literature review, we cover these 
aspects by displaying current trends in developing data-
driven models for different objectives in sheet and bulk 
metal forming. Also, recent research is briefly discussed 
to illustrate and to disclose current use of white-, grey- 
and black-box models in this field of manufacturing. Also 
feature extraction and feature selection plays an important 
role in data science, since feature extraction can be per-
formed by time, frequency or mixed domains. The pre-
sented overview tries to introduce current trends in using 
neural networks and other tools in artificial intelligence 
(AI) in the field of process control and prediction of metal 
formed or blanked part quality. It is motivated by the fact 
that using state-of-the-art models such as numerical pro-
cess simulation in engineering and operating metal form-
ing processes are limited. Unfortunately, a sophisticated 
explainability of effects and impacts of uncritical process 
noise and critical process fluctuations on the component 
quality appear unreachable. Literature in that field unfor-
tunately disclose limited and only incremental progress 
in performing numerical process simulation codes during 
last two decades in terms of prediction capabilities of part 
quality and explainability of transient process interac-
tions. For that very reason, the authors recognise a future-
oriented approach in supplementing existing numerical 
process simulations and sensitivity calculations by data-
driven (black-box) models based on heuristic empirical 
knowledge. This is due to particular challenge in metal 
forming, that numerous physical effects (e.g. wear, elastic 
deflections, thermal expansion) often show a simultaneous 
and spatially resolved nonlinear effect on forming stages or 
the process sequence at all and thus also on the part quality 
[3]. These complex interrelationships are accompanied by 

various impacts of the process noise, e.g. batch variations 
of the ingoing semi-finished product, which is sequen-
tially processed in one or more forming tools. Currently, 
these so far unexploited effects can be observed in large 
amounts of process data captured by multiple sensors 
[4]. The main chapter of this contribution for that reason 
contains four use cases to highlight specific challenges in 
gaining sufficient process data, an efficient feature extrac-
tion and reliable interpretation of process outcome. Thus, 
the final discussion in this context raises the question to 
which extent process data gained from previous production 
runs and process simulations can be used for data-driven 
modelling by informed machine learning algorithms [5]. 
Next to the integration of domain knowledge, newly avail-
able explainable artificial intelligence (XAI) may help to 
increase transparency, interpretability and explainability 
[6] to derive an optimised design of forming tools and 
its active surfaces to be manufactured for the next serial 
production.

2 � State of the art

2.1 � Classification

Volk et al. reviewed the classification and characterisation 
of models, focusing on the field of metal forming technol-
ogy [7]. To identify and evaluate proper models for specific 
purposes, an evaluation of capability of existing models in 
terms of the following criteria supports the selection pro-
cedure. Accuracy describes the deviation between real and 
modelled output and precision refers to consistent results 
and low spread [8]. Execution and response time of models 
do evaluate the computational efforts and latency. Model 
robustness refers to a constant precision of results under 
different boundary conditions. Transferability and adaption 
of models for different and non-intended tasks is described 
by flexibility. Explainability and transparency of models are 
evaluated by the degree of knowledge gain. Production engi-
neers therefore mainly are interested to increase the degree 
of process knowledge gain, which may base on physically 
influenced models.

A white-box model bases completely on physical and 
mathematical correlations and therefore provides a high 
degree of knowledge gain and transparency. Those determin-
istic models, based on valid physical correlations, may often 
reduce complexity with the aid of simplifying assumptions 
to reach suitable response time and often accompanied by 
lack of accuracy. In the field of metal forming, such closed 
mathematical descriptions and semi-analytical methods are 
limited for simple load cases, e.g. the estimation of bending 
processes [9]. Nevertheless, these models do serve as a basis 
for the development of numerical process simulations by e.g. 



609Production Engineering (2022) 16:607–625	

1 3

finite element method (FEM). Hybrid modelling involving 
physical and empirical knowledge, so called grey-box mod-
els are commonly used and further developed over the last 
decades in many use cases in the tool and process design of 
metal forming applications. Therefore, recent developments 
of grey-box models in this field do consider the description 
of general physical phenomena like friction or impact of 
varying material properties in combination with fundamen-
tal physical experiments. Current and future developments 
address the modelling of series production effects by sto-
chastic methods and an increased computational effort [10]. 
On contrary, empirical black-box models are based exclu-
sively on data [2]. Correlations between input and output can 
be determined by stochastic or physically supported methods 
or self-learning algorithms. This results into high performant 
data-driven models regarding accuracy of the prediction of 
process outcome, execution and response time but appears 
disadvantageous with respect to transparency and gain of 
knowledge [2]. In the field of metal forming, black-box mod-
els based on process data may help to describe complex phe-
nomena in series production like wear or material scatter 
and other superimposed effects without increased effort in 
modelling and computation.

2.2 � Data acquisition, transformation and modelling

During last few years, great efforts have been made to dig-
itise metal forming manufacturing processes and to analyse 
process characteristics in real time or based on historical 
data to predict their outcome and to improve process under-
standing [11]. However, in a metal forming process the com-
plexity in many cases is increased by the variety of operat-
ing principles, which hinders the procedure of knowledge 
discovery from one process to another.

In manufacturing industries, the quality of a produced 
product is often characterised by data with respect to mate-
rial and geometric specifications. Also, the product quality 
can be associated with corresponding process data. Recent 
developments were made in the combination of product and 
process data and the data acquisition gained from sensors, 
actuators and the forming machine itself. Their transforma-
tion onto mathematical spaces for data modelling may allow 
in the future a reduction of error propagation within process 
sequence and to increase process robustness. [12]

2.2.1 � Data acquisition

Data sets are usually captured by sensors gained from 
actuators, drives, deformation or force gauges and other 
electrical components consuming energy. Measurement 
normally is based on direct or indirect measurement prin-
ciples [13]. Direct measurement requires capability of the 
sensor to directly capture the desired physical value. In 

indirect measurement, sensors are used to determine indi-
rect values of corresponding physical measures, whose 
correlation to the actual desired physical value is known 
through a non-deterministic transfer function [14]. In 
manufacturing processes, a multitude of sensors, e.g. pres-
sure, temperature, speed, position sensors and others are 
used to acquire real-time status information from different 
physical actions and effects [15], being observed in the e.g. 
forming machine or tool. Considering the technological 
context of metal forming technologies, each forming pro-
cess is characterised by specific measurement conditions, 
which pose technology-related challenges for data acquisi-
tion that have to be taken into account. For instance, hot 
forming processes such as drop forging can be character-
ised by high temperature and forming forces as well as 
long motion paths of workpiece volume on the active die 
surface during the process [16]. Therefore, the sensors to 
be used must be suitable for corresponding temperature or 
force ranges. The occurring temperatures as well as high 
mechanical loads during forging are applied in a cyclic 
manner resulting into alternating loads. High stroke rates 
and correspondingly high frequencies are often also asso-
ciated [17] to a harsh forging manufacturing environment, 
which requires high speed and high volume data recording 
[18]. In addition, the potential spray cooling or dust poses 
yet further challenges to capture the exact process status 
in hot forging technologies [19]. Comparable constraints 
in data acquisition are found also in other bulk forming 
technologies. Commonly and in another field of form-
ing technologies, metal blanking, forces result from peak 
loads when the tool hits the workpiece and the material 
breaks are measured. This leads to nonlinear and transient 
time series that represent the physics of these processes. 
Thereby, high accelerations and short tool engagement 
times have to be considered by integrated sensors into 
blanking tools as well as designing the measurement chain 
[20]. In this context, the sensor type as well as its location 
in the tool or process should be taking into account [21].

Referring to the term “garbage in–garbage out” in the 
context of data processing, high demands should be placed 
on data acquisition, validity check of data as well as on 
data quality [22]. Data quality is often comprised of mul-
tiple dimensions [23] covering accuracy, consistency, time 
series data und completeness as being the most commonly 
referenced and widely respected dimensions [24] of data 
featuring. Considering those dimensions, it needs to be 
taken into account that, having a poor data quality results 
into poor data output [25]. This leads to the necessity of 
an evaluation of collected data for quality levels [18]. In 
addition to the challenge of ensuring good data quality, 
three main aspects in terms of variety, volume and velocity 
data acquisition must be addressed [23].
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•	 Variety The data acquired originates from a multitude 
of sources and has a heterogeneous character [26]. In 
general, data can be divided into structured, semi-struc-
tured and unstructured types of data. While structured 
data is tagged and ready to be sorted as well as analysed, 
unstructured data is random, which makes it difficult to 
process [27].

•	 Volume The sensors and other measurement devices 
normally do generate time-dependent series data during 
operation, which increasingly accumulate into very large 
data sets. Therefore, distributed storage of massive sensor 
data is required [15].

•	 Velocity The expression velocity depends primarily on 
the speed of data acquisition as well as the reliability 
of data transmission. Besides that, the efficiency of data 
storage and the speed of discovery of useful knowledge 
also needs to be considered when use of data is aimed on 
advanced feature engineering objectives [18].

Given these aspects, the vast amount of data sets, which 
also include a great amount of data contents having many 
attributes, in fact do make manual data analysis unfeasible 
[28]. Automated methods and approaches for data trans-
formation and modeling are needed, which are presented 
hereafter.

2.2.2 � Data transformation

Following recent trends in digitisation of manufacturing 
processes and the related optimisation of sensor systems as 
well as the development of high-performance measurement 
software, companies in the field of metal forming technol-
ogy are faced with heterogeneous nature of data captured 
in manufacturing due to different data types, properties or 
sources.

Bellmann [29] describes this problem from the perspec-
tive of machine learning as the "curse of high dimensional-
ity" in order to point out the fact that algorithms that work 
well in low dimensions become intractable with high dimen-
sional inputs. The complexity of models grow exponentially 
with higher dimensionality (number of features), which 
obviously hinders the generalisability of such models [30]. 
Furthermore, an advanced data acquisition procedure results 
into a data space including redundant features adding no 
further information to the model while drastically increasing 
computational effort of the learning algorithm. Thus, feature 
reduction techniques aim to reduce the dimensionality as 
well as remove noise and redundancy of given data without 
removing relevant information [31]. For practical application 
of black-box modelling approaches, this data transformation 
is divided into the two steps of feature extraction and feature 
selection (see Fig. 1).

During feature extraction, the dimensionality of data 
is automatically reduced by a transformation operation. 
However, this leads to a reduction of the engineering inter-
pretability of extracted features and a loss of information. 
According to Li [32], extracting features from time signals 
is performed either from the time domain, the frequency 
domain, the time–frequency domain or it is based on a 
model approach. Features in the time domain do not require 
a special transformation operation and can be determined 
directly from the given data set. Mostly, these features are 
statistical parameters such as extreme values, the statisti-
cal moments of first to fourth order such as mean values, 
standard deviations, skewness, kurtosis or the root mean 
square [33]. Spectral and frequency analyses can be used to 
transform the time signals into the frequency domain, where 
spectral features such as the power spectrum, maximum 
frequencies, spectral entropy can be determined. Since in 
forming technology mainly sensor-based data such as forces, 
accelerations or torques etc., which have a transient signal 
characteristic, are acquired, the use of conventional spectral 
analysis techniques is limited [34]. In this context, advanced 
transformation techniques in the frequency domain such as 
the Haar and Hilbert–Hung transformation techniques are 
becoming increasingly important [35, 36]. Since spectral 
transformations in the time domain show poor resolution 
and information is lost when transforming to the frequency 
domain, approaches from the time–frequency domain such 
as the wavelet transform or the Wigner–Ville distribution do 
offer the possibility to consider features from both domains 
simultaneously [37]. In addition, model-based approaches 
for the feature extraction in manufacturing processes, 
which transform a high-dimensional data for visualisation 
into a lower two- or three-dimensional space, can more and 
more be found in literature. The most important examples 

Time signal

Feature 
Selection

max. informational value

Feature Space

Feature Sub-Space

Feature 
Extraction

Fig. 1   Reduction of dimensionality by feature extraction and feature 
selection
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are autoregressive models, principal component analysis 
(PCA) and t-distributed stochastic neighbour embedding 
approach (t-SNE). One of the most promising learning tech-
niques for dimensionality reduction is the Uniform Manifold 
Approximation and Projection, which is based on the t-SNE 
approach, and receives increasing attention in literature due 
to its low computational cost and good graphical separability 
of classes [38].

In the following step of feature selection, irrelevant fea-
tures are removed and an optimised feature space for the 
model is derived. In addition to the use of automated algo-
rithms, feature selection techniques often use a heuristic 
approach and consequently challenge the engineer with 
high demands. Therefore, selecting relevant features manu-
ally requires a deep process knowledge [39]. In principle, 
techniques of feature selection approaches can be divided 
into filter, wrapper as well as hybrid methods. When apply-
ing the filter method, a criterion is defined which quantifies 
the information value of single features for the performance 
of the model. The selection of the relevant features is per-
formed by statistical evaluation of the correlation between 
the used feature and the performance of the model. In con-
trast, wrapper methods do not quantify the informational 
value of each feature for the model, but estimate the per-
formance of the model selecting a certain feature subset. 
Hybrid methods do combine the advantages of filter and 
wrapper methods. While filter methods exclusively investi-
gate the influence of specific features on model performance 
and therefore are computationally efficient. Wrapper meth-
ods establish correlations between model performance and 
a specific feature space, which needs high computational 
effort [40].

Table 1 gives an overview of feature extraction and selec-
tion approaches in metal forming technology which currently 
belongs to the state of the art. This survey shows that in a 
manufacturing context the transformation of data is mainly 

based on statistical features. Thereby, these features are used 
for monitoring the actual process state by thresholds, envel-
ops or flat lines. Since transformation approaches in the time 
or time–frequency domain are mainly suitable for periodic 
or transient signals, they are rarely used for applications in 
the forming technology. Although the use of model-based 
transformation approaches has a great potential to reduce 
the amount of data with very little loss of information, they 
are also rarely implemented in real production environment. 
This is mainly due to the fact that the generated features are 
not interpretable by qualified personnel, but represent the 
physics of the process through abstract features. Here, tech-
niques of explainable artificial intelligence (XAI) may help 
to derive correlations between these abstract features and the 
physical state of the process and thus provide acceptance for 
the increased use of such transformation approaches.

2.2.3 � Modelling

After data transformation, models solely based on data 
are used to identify correlations between the transformed 
data (features) and the system output, which is typically 
experimentally measured. Especially the recently emerging 
black-box models generally show a performant capability in 
determining and representing those correlations. However, 
the disadvantage of this approach is often given by a high 
computational effort in finding the most useful model and, 
depending on its type, a gradual loss of explainability [2]. 
Here, explainability refers to the amount of reliable gain of 
knowledge and allows deeper insights into the phenomena 
acting in processes [7]. While common black-box models 
like regressions and support vector machines (SVM) are 
comprehensible and therefore widely used in the production 
engineering environment, the results generated by a neural 
network training are usually no longer transparent for the 

Table 1   Sample of feature extraction and selection methods in forming technology

Feature extraction

Time domain Frequency domain Time–frequency domain Model-based

Blanking (force and displacement) [41] Deep drawing (AE) [44] Blanking (acceleration and force) [47] Forging (force) [50]
Stamping (force) [51]

Roll forming (temperature and force) [42] Blanking (acceleration and 
force) [45]

Progressive stamping (force) [48] Fine blanking (force) [52]

Blanking (force and AE) [43] Deep drawing (AE) [46] Blanking (acceleration and force) [49] Blanking (force) [53]

Feature selection

Wrapper method Filter method

Blanking and bending (force) [54] Blanking (force) [55]
Forging (force) [50] Roll forming (force 

and rotational speed) 
[56]
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user [2], which opens future demands in extended research 
in the field of an explainable black-box-modelling.

A selection of typical examples for use cases of black-
box models in the field of metal forming production engi-
neering are given in Table 2. These so-called ´deep learning 
approaches´ are indispensable with regard to further perfor-
mance improvements, since they allow to determine cor-
relations for universal problems without specific proximity 
functions. Belfiore et al. [57] for example presented a novel 
approach for the calculation of abrasive wear in grinding 
processes using neural networks. Analogous to the Archard 
model, the variables contact pressure, sliding velocity and 
temperature are employed to determine a functional relation-
ship for wear estimation but without presuming the initial 
equation of Archard. This approach was able to achieve a 
high prediction quality with regard to wear evaluation with-
out the restriction of an analytic model given by the need of 
proximity functions. However, it must be mentioned that the 
neural network has already been provided with pre-selected 
data channels for training, which are known to correlate 
highly with wear. Yet this circumstance generally encounters 
the typical problem in industrial applications that already 
today ‘any’ data is often recorded, which may not offer any 
significance for the modelling with regard to the result vari-
able. For this reason, common scientific approaches in metal 
forming for other investigation objectives in production 

engineering often include the evaluation of highly relevant 
process parameters, for example the press force or a meas-
urement of produced parts or tool geometries. With mod-
els derived this way, it was possible in individual cases to 
achieve a high level of predictive quality for the considered 
problem. Due to the specific use of the black-box models, 
however, the transferability to other specific applications is 
hindered, since efforts have so far been limited to demon-
strate the general applicability. Following this statement, 
there is a lack of a commonly accepted understanding of 
which practical guidelines black-box modelling approaches 
have to follow in order to be firmly adopted into the reper-
toire of knowledge-building techniques.

For future investigations, the importance of explainability 
appears extremely high for targeting a wide acceptance of 
models and new dimensions of process related calculations. 
A more far-reaching but practical example, in which trace-
ability of calculations is required by law, is given by the 
development of the open accessible code_aster FE-calcu-
lation kernel, which was initially intended for the design of 
nuclear facilities [58]. In doing so, the authors see this exam-
ple as transferable to manufacturing processes of the future, 
which with increasing complexity will also very likely have 
to withstand increasingly complex legal testing processes. 
To overcome this general issue, two main solutions appear 
conceivable. Initially, novel modelling approaches can be 

Table 2   Selection of use cases 
for black-box models in forming 
technology

classifying

use cases – support vector machine

• fine blanking – roll height prediction based on FE-calculated training data [65]
• stamping – identification of critical process states (poor workpiece quality) by moni-

toring press force signals [48]

prognostic

regression

• sheet metal forming – forming force prediction based on other process parameters 
and flexible rolling – quality prediction based on sheet thickness measurement [56]

• sheet metal forming – spring back control by evaluation of press force and tool ge-
ometry [66]

• deep drawing and bending – real-time process model based on historical force data 
to predict part quality of cutting, operations [67]

• metal forming – estimating product-to-product variations in metal forming using 
force measurements [68]

neural network

• hot steel rolling – defect prediction by evaluation of self-organizing maps [69]
• bulge testing – identification of material parameters using pressure displacement 

curves [70]
• incremental sheet metal forming – machine learning-based parameterization of lo-

cal support in robot-based incremental sheet forming [71]
• flow forming – wear prediction based on experimental block-on-ring testing [57]
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supported by existing domain knowledge, but this limits 
the expected development steps. The research field of XAI-
algorithms do present promising potential by trying to trans-
form the results of neural networks back into an explainable 
dimension space by means of further processing techniques 
[59].

Recently developed XAI models like the SHAP Model 
introduces the possibility to automatically generate new 
"surrogate parameters" from the individual inputs [60]. 
Other models such as the DEEPLIFT use a scoring approach 
to identify relevant features for dimension reduction [61], 
while the LIME approach aims for an explanation of the 
initial black-box prediction through representation of local 
approximations [62]. However, according to literature, the 
evaluation of time series or sensor data sets presents a major 
challenge, since a time signal itself is unsuitable as an input 
parameter for a learning process and thus requires segmen-
tation (feature engineering) [63]. Hu et al. [64] concluded 
that error deviations of less than 10% can be achieved when 
using perfectly time-synchronised data sets. In the field of 
metal forming technology, this time segmentation is well 
implementable via a time trigger synchronised e.g. to the 
top dead center of the press ram. In this way, individual 
features can be extracted from the data signals and related 
to a defined number of cycles or strokes, whereby the time 
series challenge described in the literature can be circum-
vented. Despite the steadily increasing number of new model 
approaches, XAI modeling is considerable as a relatively new 
approach in the scientific world and no prominent examples 
of its application in the field of metal forming are known 
up to date. However, there are high expectation to cover 
location and time dependent phenomena in complex form-
ing processes with the help of prospectus XAI models. 
Compared to the capabilities of the models shown so far, 
high model prediction accuracies can be expected for the 
evaluation of serial forming processes, which is supported 
by the following use cases in the field of forging and blank-
ing technology.

3 � Practical approaches of data science 
in metal forming

As a result of the state of the art, the authors recognise in 
the long term a high potential of data-driven models in 
answering questions in metal forming technology far beyond 
numerical process simulation. The traditional and com-
monly used approach for gaining engineering knowledge 
about metal forming process interactions so far consists of 
building a feed forward model, starting with domain knowl-
edge based on experience, physical analysis and numeri-
cal simulation code. Following conventional capability of 

numerical models and calculation methods for achieving 
low-scrap production in sheet and bulk metal forming tech-
nologies, respective improvements in prediction accuracy 
of the expected part quality in fact will be needed in future. 
This target can be achieved by the use of data-driven mod-
els based on large quantities of process data recorded from 
continuously running series production processes. Further-
more, the incorporation of existing knowledge by informed 
machine learning technologies ensures an enhanced model 
quality and explainability. By following this approach, a 
reusable knowledge gain that does not require a time con-
suming and experienced based representation of formalised 
knowledge is enabled. However, the challenge here is to find 
a new generalised methodology with which the described 
modelling approaches can be implemented. In the follow-
ing section, authors do present four exemplary use cases in 
which multiple aspects, current limitations and potentials of 
data-driven modelling were applied to achieve mentioned 
goals on the long term by focusing on conventional hot 
forming and metal cutting processes.

3.1 � Hot forging

Bulk forming is one of the oldest disciplines in production 
and metal forming technology. New process management 
strategies address a higher forging process capability by 
means of reduced press force levels and preheating of the 
components. However, the additional temperature depend-
ent process control results in conflicting objectives arising 
during the manufacturing of components. On the one hand, 
preheating of the material and tools lead to a significant 
thermo-mechanical load onto the tool active surface, which 
during series production leads to an increase of wear. On the 
other hand, the controlled temperature management in the 
components volume offers a high potential for the specific 
adjustment of e.g. lifetime properties and thus for an over-
all increase of quality of component. The following chap-
ter therefore presents two current research trends, in which 
digitisation concepts are used to improve the prediction and 
assurance of component quality and tool wear under consid-
eration of thermo-mechanical loading.

3.1.1 � Digitisation in hot forging of processes of aluminum

The joint research project ‘Increase of Performance of forg-
ing through development and integration of digital technol-
ogies—EMuDig 4.0’ being performed at the Institute for 
Metal Forming Technology Stuttgart together with partners 
addressed the implementation of digitisation in bulk form-
ing technologies. The publicly funded project aims to create 
a self-learning database for improved end-to-end product 
engineering and a significant increase in drop forging pro-
cess capability. High requirements on forged components 
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and corresponding tools under varying conditions in pro-
duction like in-going material composition or lubrication 
during pressing set high demands on the quality and explain-
ability of a suitable model. To meet those requirements, a 
feed forward controllable and digitised process sequence of 
exemplary aluminum hot forging was initially designed and 
operated successfully under laboratory conditions. After-
wards, the elaborated data-driven modelling methodology 
was transferred to real series production processes of project 
partners in forging companies, in particular to improve pro-
cess control and failure detection during manufacturing of 
steel components and aluminum wheel forgings efficiently.

Figure 2 provides a schematic representation of realised 
laboratory forging process chain showing also the flow of 
material and data. Delivered raw material was separated into 
billets while geometric and material properties were manu-
ally captured. After a controlled and supervised inductive 
heating stage, the aluminum billet subsequently was formed 
by a two-step hot forging process and conclusively annealed. 
The part handling between forming and optical measurement 
operations as well as lubrication was realised by a 6-axis 
robot. Real time process data management was supported 
by a factory cloud based work piece tracking aided by a 
newly developed online analytical processing (OLAP) data 
base [72].

Besides the development and implementation of sensors, 
actuators and automation components, a valid numerical 
modelling of realised two-stage forging process served as a 
knowledge and data base of tool design and process control. 
Here, both forming operations were modelled by 2D-finite 
element method, considering simplifications like part sym-
metry and rigid tool structure. Afterwards, results of more 
than 1,200 stochastic numerical experiments were used as 
the initial database of data-driven modelling both forging 
stages to identify relevant actuated variables and first estima-
tions of most sensitive parameter correlations.

With the help of the numerical gained synthetic forging 
domain knowledge, a recurrent neuronal network with auto-
encoder structure (RNN) was pre-structured for each form-
ing operation (see Fig. 3). This informed machine learning 
technology provided explainable correlations between input 
and output parameters such as in-going material properties, 
heating time, dimension of workpiece and microstructure 
as an advantage on the one hand. On the other hand, batch 
variations of raw materials, process fluctuations and numeri-
cal modelling assumptions, data-driven model accuracy was 
not sufficient enough for proper part quality prediction and 
process control. Therefore, real heterogeneous process data 
gained from production experiments were recorded and 
unified by a programmable logic controller (PLC). Figure 3 
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represents an iteratively refinement of the knowledge based 
RNN by experimental data, thereby increasing model pre-
dictive quality after only a short time and number of strokes 
[74]. Now, the data-driven model overcomes existing lack of 
accuracy. Furthermore, implemented control logic on labo-
ratory scale suggested autonomous decisions for each part 
and different materials and a change of the process sequence 
according to specific situations in order to keep the window 
of tolerances of the final product as small as possible [73].

The previously described and elaborated method devel-
oped within the framework of the joint research project 
EMuDig 4.0 was transferred for quality assurance and con-
trol objectives to two different forging companies. Both 
industrial partners belonged to the project consortium in 
order to support the transfer of elaborated method into real 

forging processes such as car steering components made of 
steel and a hot forging process sequence of aluminum wheel 
rims. To detect process anomalies on data-driven modelling 
such as underfilling and other kinds of scrap, a long short-
term memory network (LSTM) for time dependent behavior 
combined with a sequence-to-sequence network for expected 
part quality prediction objectives was applied. By means 
of feature extraction on process force signals with discrete-
wavelet-transformation (DWT) and Autoencoder, a high data 
volume reduction and minimum loss of information for vari-
ous recorded heterogeneous process signals was achieved. 
In doing so, the numerical pre-structured data-driven model 
was capable to judge between nominal and abnormal process 
signals (see Fig. 4), an automated suggestion of counter-
measures for part quality robustification and to additionally 
predict wear of active tool surfaces as a correlation of data 
reconstruction error [75].
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Conclusively, this project carried out an enhanced data-
driven model for quality prediction of hot forged parts by 
an informed machine learning, based on domain knowl-
edge of numerical simulation and enhanced by process 
data. This enhancement exhibits a typical black-box char-
acteristic which makes comprehensibility difficult and 
impede the use in forging tool and process design. This 
raises research questions in terms of transparency and 
explainability of data-driven models. The contained infor-
mation in collected process data like correlations, anoma-
lies and interactions may be uncovered by newly emerged 
data science technologies like XAI. In future work, pro-
cess and material fluctuations might be considered with-
out such an increased effort in numerical modeling, which 
makes data-driven modelling accessible for a robust tool 
and process design in metal forming.

3.1.2 � Tool life prediction in hot forging determined 
by digital process data enhanced by FE‑simulation

The dimensional precision of forged component mainly is 
joined with the durability of active surface of forging tools, 
process condition and scatter of material properties. The 
large scale production of forgings until today severely do 
suffer under unavoidable wear and structural damage due to 
extreme hot forging process conditions such as high cyclical 
mechanical as well as thermo-mechanical load applied onto 
active surface of forging tool. Subsequently the service life 
of the tools in hot forging is typically subjected to significant 
fluctuations [76] as depicted in Fig. 5. Reasons for that can 
be found in various causes of failure, e.g. crack formation 
propagating from active surface of the tool into its depth, 
and abrasive wear, which occurs unpredictably due to fluc-
tuations of process parameters in general.

In manufacturing, there are no in-situ measurable param-
eters available for proper defect identification or prognosis. 

Tool changes or tool rework are carried out often in advance 
and based on experience. On contrary, FE-simulations pre-
viously were used to calculate individual types of wear in 
isolation and rely on specific and mostly empirical models. 
A well-known white-box model is given by the Archard 
model for calculating abrasive wear. This model enables a 
comprehensible calculation of wear locations by evaluat-
ing local contact stresses, material sliding velocity and local 
tool hardness [77]. While the conventional Archard model 
considers the tool hardness as constant, current literature 
agrees that cyclic thermomechanical loading to the surface 
leads to extensive changes of microstructure and hardness 
of the layer during the running production [78, 79]. With 
regard to a data-driven modelling of this phenomenon, a test 
methodology was developed at the Institute of Metal Form-
ing and Forming Machines (IFUM) to realistically replicate 
this load accumulation using a forming dilatometer to later 
analyze the resulting changes in the hardness of forging tool 
material [80, 81]. These measurements generate detailed and 
applicable domain knowledge that reduces uncertainties of 
existing models to predict local wear effects in the forging 
tool more reliable. Gained results finally were processed into 
hardness evolution curves (H = f(T,σ,n)), so that a realistic 
changes of hardness values can be estimated over the course 
of the forging operation. Process planners in industry do 
need such a function considering calculated process peak 
temperature T and comparative stress σ in conjunction with 
a specified number of forging cycles n. This function was 
successfully implemented into common FE codes by means 
of self-developed user subroutines and now can be directly 
applied to asses wear in more detail after a typical process 
calculation of a hot forging process [82].

However, we must acknowledge, that the results of a 
FE calculation model always represent one particular out-
come or set of results based on a specific set of model and 
process parameters originating from a complex system of 
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interactions in reality. Due to lack of data coverage and fluc-
tuations in the process (see Fig. 5) Errors or deviations from 
the calculated results are hardly predictable and explainable 
by FE-models. A new approach to overcome such problems 
is expected by the authors to be achieved in future research 
by using data-driven models, which can lead to a signifi-
cant improvement of wear prediction capabilities in forg-
ing process engineering. To generate suiting input data, the 
continuous recording of extensive sensor data (for instance 
of stroke paths, press forces, temperatures, etc.) is of high 
interest. These data could serve as input for a dynamic fea-
ture processing model (Fig. 6) that provides a continuously 
updated tool life based on a pre-teached prediction data pro-
cessing model. Pre-teaching is carried out on the one hand 
by incorporating the domain knowledge available for the 
specific forming operation, which is specifically integrated 
by means of FE simulations or material charts experimen-
tally gathered as demonstrated by a recent examples in the 
literature [83]. On the other hand, XAI algorithms could be 
used to transform the features and mechanisms of the data 
models into a comprehensible domain, which in turn will 
enable a deeper understanding for further optimisation of 
tooling surfaces or process settings. Following this approach, 
a basis for future process enhancements is generated, which 
for example allows the implementation of a continuously 
updated tool life counter directly at the press control center. 
Therefore, the wear mechanism has to be precisely modelled 
considering the full range of process conditions as well as 
material of tool and part. The future approach of data-driven 

modelling may fulfill the requirements of tool life prediction 
and enable an increased explainability of wear mechanisms 
and apparently stochastic tool life.

3.2 � Digitisation in sheet metal blanking 
technologies

Shear cutting in general as well as fine-blanking of sheet 
metal both belong to the group of material separating pro-
cesses that share a similar operating principle. Beyond that, 
both processes do have in common that the economic effi-
ciency of the process is significantly influenced by the wear 
of the blanking tool components, which directly impacts the 
punched workpiece quality. However, in situ wear detection 
itself poses a challenge, since the tool remains completely 
closed during the shearing process of the sheet metal, thus 
emerging physical effects and technological interactions 
cannot be observed visually and assessed directly. Recent 
research proposes to measure the wear indirectly during the 
running process. Indirect measures of signals such as forces 
or vibration show considerable variations on a stroke-to-
stroke basis as well as long-term trends, but are influences 
not only by effect of wear, but also by e.g. inhomogeneous 
in-going material properties or dynamics of the machine tool 
[84]. Together with the sensitivity of the sensor opposes 
challenges to potential wear monitoring systems that need 
to filter important wear related information from auxiliary 
signals and derive estimators for specific wear effect in 
complex tool geometries. The first presented study shows 

Fig. 6   Concept of a feature-based data processing for real time tool life calculation based on numerical process design and real time data meas-
urement
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a visualisation of long-term trends in force and mechanical 
vibration signals captured during running fine blanking pro-
cesses. This is followed by a further study presenting a new 
approach to predict the current wear state in shear cutting 
within an experimental environment.

3.2.1 � Long‑ and short‑term variations in fine‑blanking 
process data

Fine-blanking as well as shear cutting processes in general 
can, once setup correctly, be regarded as stable processes 
that can produce consistent high-quality outcomes in mass 
production. However, when executing extended stroke 
series, quality and process variations occur due to varying 
material properties and increasing wear of active tool com-
ponents, both affecting the process performance. To under-
stand occurring variations of the signals, the quantification 
and individual analysis of the fluctuations on a stroke-to-
stroke basis as well as long-term trends is a prerequisite to 
discover their causal relationship to specific physical condi-
tions defining the process, e.g. wear of tool components.

In the used fine-blanking press machine of this study, 
nine piezoelectric sensors have been integrated into the tool 
structure to measure the relevant process forces, namely 
punch, counterpunch and part holder force [52]. In addition, 
acoustic emission sensors have been applied to the upper 
pressure plate close to the punch positions [85]. These sen-
sors detect elastic structural deflections as complex vibra-
tion signals, which are emitted from various points in the 
tool structure and press machine (Fig. 7). Force [86] as well 

as acoustic sensors [87] have proven to capture important 
information about development of wear of tool components 
such as rounding emerging at cutting edges of punch and 
matrices during the life time of tool. Each fine-blanking 
operation was represented by a number of time series repre-
senting sensor signals during the operation from start to end. 
In this study each time series consisted of at least 10,500 
data points that were regarded as input features originating 
from the blanking operation for subsequent analysis pur-
poses. To reduce the number of features and to increase data 
point density, feature engineering describes the process of 
manipulating the raw sensor signals to extract, select and to 
condense relevant features for further processing steps. In 
the presented case, the raw sensor signal was first cleaned 
and subsequently segmented into phases that represent 
the stages during the shearing operation, such as blanking 
and stripping. In a next step, features of different feature 
domains, namely spectral, temporal and statistical features, 
were extracted using feature templates from the time series 
feature extraction library (TSFEL) [33]. Using the prede-
fined feature templates, a total of 360 features, partly highly 
correlated, have been extracted for each stage of the forming 
process. To further reduce the redundancy and the amount 
of data, the dimensionality reduction technique uniform 
manifold approximation and projection (UMAP) [88] was 
utilised. UMAP is based on manifold learning techniques 
and ideas from topological data analysis and is basically to 
project the dimension of large dimensional data into lower 
dimensions while preserving the local structure of the signal.

Fig. 7   Mounting position of 
sensors in fine-blanking and the 
corresponding acoustic emis-
sion signal
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The presented feature engineering approach has been 
applied to two case studies on fine blanking including force 
measurements of 1488 consecutive strokes as well as the 
variation in acoustic emission (AE) signals over the course 
of 14,000 strokes in an industrial setting of a blanking pro-
cess. The data sets were modeled by use of an unsupervised 
non-linear projection algorithm UMAP [88]. In this con-
text, UMAP embeds the signals extracted features into two-
dimensional Euclidean space for visualisation purposes by 
computing two dimensionless components. Results achieved 
in this study are presented in the two-dimensional plots in 
Fig. 8 that show the embedding of the force and acoustic 
emission at 1488 and 14,000 consecutive strokes, respec-
tively. Both signals show a long-term trend of the derived 
two-dimensional representations, correlating with the stroke 
index (specifically features from time, statistical and fre-
quency domain of the acoustic emission data), as well as 
stroke-to-stroke based and short-term variations (specifi-
cally force data). This embedding was also found in higher 
dimensions and is researched to understand the presented 
variations, to quantify them, e.g. by stroke-wise Euclidean 
distance, and to correlate this derived metric with increase 
of wear or other phenomena observable during process exe-
cution. Recent studies already indicate that this variation 
indeed can be connected to tool wear phenomena [89].

The presented plots are found representative for several 
series of experiments conducted with the fine-blanking pro-
cess. For further analysis, reliable metrics that can grasp the 
amount of variation on a stroke-to-stroke basis [85] as well 
as long-term trends [90] need to be researched in detail.

The current results gained in this study are limited due 
to the following reasons: (1) The UMAP approach as well 
as other non-linear projection methods are only margin-
ally explainable. Thus, an automated extraction of knowl-
edge about which specific data points are important for the 

projection is missing and limiting the value of the approach. 
(2) Neural networks do offer the possibility to automatically 
learn and extract compact features and representations of 
process signals but require large quantities of sample data for 
reliable training. The current data sets are large, but still do 
not fit to the amount needed for deep neural network train-
ing. This can be countered by using data augmentation tech-
niques together with domain knowledge to support neural 
networks during the learning process and lower the amount 
of data needed for training. (3) The projections presented 
above utilize only one sensors data, while several more sen-
sor data are available. Potentially, each forming operation 
can potentially be represented by sets of sensors based on 
force, mechanical vibration, tensions or power consumption. 
Additionally, data from the process itself can be further com-
plimented by sensors detecting varying material properties 
online during process execution that further increases the 
complexity to the analysis. Finally, iv) the results have to be 
validated by measuring process outcome and wear increase 
of active tool components and complimented by white-box 
model that are already available, instead of relying only on 
(explainable) black-box models. In order to meet mentioned 
challenges and to overcome listed limitations in the near 
future, the future potential of XAI models to understand, and 
eventually reduce the amount of variations and trends in the 
execution of sheet metal forming processes can be leveraged.

3.2.2 � Wear prediction during blanking using a multiclass 
support vector machine

Almost every product manufactured by sheet metal forming 
involves one or more cutting operations within its manufac-
turing process. Especially due to increasing requirements for 
processing high-strength materials combined with increas-
ing production rates, wear is a phenomenon that significantly 
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influences the quality and productivity of this process [91]. 
In this context, workpiece quality is influenced by severe 
wash out of sheared edges as well as outline of workpiece, 
productivity of process is influenced by tool break down 
time, increased maintenance and high risk of breakage of 
highly loaded punch corners.

Currently, this challenge is addressed by conventional 
monitoring systems that provide binary control of the pro-
cess state (e.g. scrap part/good part) [92]. However, pre-
dicting the amount of wear at cutting tools during series 
production is currently not possible. In this context and 
in a preliminary work, a black-box model based on a sup-
port vector machine (SVM), which allows for prediction of 
current wear state based on ´in-process force-signals´ was 
developed [53]. Therefore, five abrasive wear states were 
characterised by the increase of cutting edge radii r

i
 of the 

blanking tool during processing and are estimated by a 
classification model based on a SVM. Force signals were 
acquired with a sampling rate of 90 kHz by multisensory 
blanking tool on a BRUDERER mechanical blanking press 
operated at a stroke rate of 200 strokes per minute using 
two different sensor types, a strain gauge applicated at the 
press frame S and a piezo electrical force washer integrated 
to the upper part of the tool (P). For each wear state, 100 
experiments (time series with 4950 data points) were con-
ducted per wear state leading to an aggraded force matrix 
F whereby F ∈ ℝ

600×4950 . Figure 9 shows the experimental 
setup and a representative time series of each sensor type. In 
addition, it was necessary to link gained process data with a 
label quantified by the cutting edge radii r

i
 (quality data) of 

the blanking tool. Since the wear state was not measured for 
each captured time series and a small amount of labeled data 
is combined with a large amount of unlabeled data to train 
the model, the case shown is considered as a semi-super-
vised learning approach. A cold rolled steel (1.0347) with 
a thickness of 2 ± 0.002 mm was used for the experiments.

Due to the high stroke rates of industrial blanking pro-
cesses the amount of data provided for modeling increases 
rapidly. To reduce the amount of data with as little loss 
of information as possible the model-based transforma-
tion technique PCA was used. For further investigations 
only these two principals were used as input for the SVM. 
Finally, to show that a classification of the wear state dur-
ing blanking is possible, the SVM model was trained based 
on these two principal axis from the force signals. A grid 
search afterwards was used to optimise the hyper parameters 
of the SVM and to find a suitable kernel function (kernel 
function: linear; regularisation parameter: 4.9321; margin 
of tolerance: 0.0042). In order to validate the model, the 
data set was split into a training data set (80%) and a test 
data set (20%).

Fig. 9   Experimental setup for 
the data acquisition within a 
multisensory blanking cutting 
tool [53]
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Figure 10 shows the results of the classification model 
delivering reliable results of both types of sensors. To quan-
tify the performance of the number of correctly predicted 
wear classes in relation to the total number of predictors, 
as well as the separability of the classes quantified by the 
“Mahalanobis distance” was determined [93]. Thereby, the 
wear state classified by the model based on the signal of the 
strain gauge sensor shows a twenty times worse separability 
than the model based on the signal of the piezo electrical 
sensor. This is due to the physical distance of strain gauge 
sensor towards the actual forming zone as well as the ten-
dency of this sensors type to electrical noise that is superim-
poses the physical relevant component of the forces signal. 
Despite the worse signal quality gained from the strain gauge 
sensor, an intelligent transformation of the data in combi-
nation with optimised SVM improves the accuracy of the 
model to 97%.

However, it must be conceded that the black-box mod-
els are able to quantify process states based on sensorial 
acquired data, but fail to derive knowledge for a system 
improvement. Especially, an abstract description of non-lin-
ear interlinkages through black-box models between varying 
process states such as wear, tool and press elasticity or mate-
rial fluctuation and acquired process variables is difficult to 
interpret from an engineering point of view. However, to 
be able to identify system improvements for the reduction 
of varying process states it is necessary to explain the used 
black-box models as well as the transformation techniques 
and their system knowledge that is stored in terms of abstract 
models or features. Especially, these correlations between 
features or the model itself to physical states of the blank-
ing process are enabled by XAI. This allows to generalise 
black-box models by creating an understanding of the inter-
dependencies between the process state, extracted features 
and the structure of the model. In addition, XAI can help to 
select robust data based on features to ensure a model-based 
description of production systems via black-box models even 
with varying process parameters and increasing uncertainty.

4 � Research objectives for an explainable 
data‑driven modelling in metal forming

The complexity of metal forming processes is essentially 
caused by the contact conditions in the deformed zone 
between the workpiece and the tool. Furthermore, the vari-
ation within time and location, depending on the geometry, 
the state of the process and the material properties increase 
the level of complexity. As a result of those process condi-
tions, the microstructure of the component and its entire 
geometry in fact do change after each forming step. In addi-
tion, high force densities in bulk forming or large area loads 
in sheet metal forming, for example, can cause considerable 

elastic deformation of the acting structure. An accurate 
physical modelling of these deformations is limited, but 
in reality, a detrimental effect on the surfaces between the 
die and the workpiece under load must be acknowledged. 
In many forming operations, these interactions are always 
superimposed by unavoidable process noise, i.e., transient 
process effects, so that their overall stochastic effects on the 
final component quality are often not comprehensible and 
their causality remains unclear.

Indicated by the aforementioned use cases, the current 
challenge to grasp and to model the stochastic nature of 
forming process by using black-box approaches yield to 
promising intermediate results. This motivates further inves-
tigations on the combination of existing domain knowledge 
with new data-driven models. Specifically, presented results 
lack the interpretability to validate the plausibility of black-
box model behaviour. A combination of white-, grey- and 
black-box approaches, together with cutting edge methods 
to enhance the explainability of data-driven models based 
on production as well as experimental data sets may over-
come the current limits in modelling stochastic effects. Fur-
thermore, it may improve the understanding and design of 
forming processes and tools. This can be achieved by taking 
explicitly available heuristic expert knowledge, numerical 
calculation results and digitized information on the semi-
finished product, the condition of the forming tool and press 
machine as well as transient process conditions into account.

In this context, the following scientific questions contain 
consecutive hypotheses and subsequently define important 
milestones along future work in this field:

1.	 How can sufficiently accurate digital representations of 
metal forming operations be described mathematically 
and combined with domain-specific knowledge in an 
explicit manner?

2.	 How can the combined use of explicit knowledge and 
process data isolate process noise, decompose it into 
short- and long-term variations, quantify and relate it to 
key characteristics for influencing factors of the forming 
process and tool surface geometries?

3.	 How can the integration of the derived models into real 
production environments provide new and more explain-
able knowledge for a more efficient, demand-oriented 
determination of the process parameters and the effec-
tive surface of the die, and how can the explanatory 
power be increased?

4.	 How can the newly developed method and derived 
model be used to draw conclusions about process design 
to adjust system parameters based on a domain knowl-
edge-supported, data-driven evaluation of process data?

For this purpose, use cases in Sect. 3 do represent those 
first working steps towards answering the above-mentioned 
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research questions on a laboratory scale. While the first and 
second research questions can be tackled by interdiscipli-
nary research between mathematics, computer science and 
engineering departments alone, the third and fourth require 
extensive involvement of industry partners to gather data 
and sharpen the studied cases. For production engineering 
researcher, the claim is to disclose new scientific cause-
effect relationships in industrial relevant metal forming pro-
cesses. At the same time, characteristics of acquired process 
data can be explored and used to develop and compare new 
methods for the evaluation of these data. Finally, the model 
quality and transferability are assessed by a comparison with 
existing, state of the art methods for tool and process design 
as well as an application on new and unknown data sets of 
comparable forming processes. Thus, the need for research 
is to decode the interrelationships and isolate the scatter of 
different process stages, while at the same time exploring 
new, transparent, mathematical modelling approaches that 
exhibit high interpretability and accuracy (see Fig. 11). New 
data science techniques like XAI can be used for decoding 
and interpretable modelling of previously unknown depend-
encies. In doing so, new approaches for the optimization of 
the processes within one or several forming stages can be 
derived and new statements about process stability and tool 
design can be made. Only with the combination of explicit 
domain knowledge in various forms derived by years of 
research, aided by modern emerging tools in mathematics 
as well as computer science the potential of the increasing 
amount of field and experimental data can be leveraged.
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