
Fachbereich Maschinenbau
Fachgebiet für
Strömungsdynamik

The Extended Discontinuous
Galerkin Method for
Evaporation and Contact Lines
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation von Matthias Rieckmann aus Seligenstadt
Tag der Einreichung: 20.07.2024, Tag der Prüfung: 29.10.2024

1. Gutachten: Prof. Dr.-Ing. M. Oberlack
2. Gutachten: Prof. Dr.-Ing. P. Stephan
Darmstadt, Technische Universität Darmstadt



The Extended Discontinuous Galerkin Method for Evaporation and Contact Lines

Genehmigte Dissertation von Matthias Rieckmann

Tag der Einreichung: 20.07.2024
Tag der Prüfung: 29.10.2024

Darmstadt, Technische Universität Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-286262
URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/28626
DOI: https://doi.org/10.26083/tuprints-00028626
Jahr der Veröffentlichung auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/
This work is licensed under a Creative Commons License:
Attribution–ShareAlike 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

https://tuprints.ulb.tu-darmstadt.de/id/eprint/28626
https://doi.org/10.26083/tuprints-00028626
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen
Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde.
In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis
dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation – abgesehen von den in ihr ausdrücklich
genannten Hilfen – selbstständig verfasst wurde und dass die „Grundsätze zur Sicherung guter
wissenschaftlicher Praxis an der Technischen Universität Darmstadt“ und die „Leitlinien zum
Umgang mit digitalen Forschungsdaten an der TU Darmstadt“ in den jeweils aktuellen Versionen
bei der Verfassung der Dissertation beachtet wurden.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 20.07.2024
M. Rieckmann

iii





Abstract

In many technical and industrial applications, the wetting of surfaces by various fluids plays a
decisive role. The interplay of wetting and evaporation processes, for example in drying processes,
is also of particular importance. A good understanding of the underlying physical principles is
therefore crucial in order to precisely control these processes.

In this work, a numerical solver based on the extended discontinuous Galerkin (XDG) method
is developed for the calculation of multiphase flows with evaporation and contact lines. The
basis functions used, which are adapted to the phase boundaries, allow the highly accurate
representation of the solution fields for pressure, velocity and temperature. By using a sharp
interface model and corresponding jump conditions, discontinuities in the solution fields can be
represented directly at the interfaces. The interfaces themselves are represented in the solver
by the level set method. The movement of the contact line is enabled and modeled by using the
generalized Navier boundary condition (GNBC).

The developed solver is then used to simulate various multiphase problems. When investigating
the flow through the nip between two printing cylinders, the behavior of the solution fields
with vanishing nip width and the occurrence of viscous vortices in the nip can be mapped. The
implementation of the coupled momentum and energy balance, including evaporation at the
phase boundary, is then verified with established test cases. In investigations of the moving contact
line, the behavior of the contact line in the implementation can then be confirmed according to
the boundary conditions used. In particular, singular behavior can be observed in the solution
fields when unsuitable boundary conditions are employed. This is of particular importance when
considering contact lines and evaporation at the same time, where a contradiction can be identified
in the model used. This inconsistency leads to a drastic reduction in the convergence order of the
method. By using slip on the phase boundary, a possible resolution of the contradiction is then
tested, and the convergence order is partially restored. Finally, a real experiment is considered
in a highly simplified form. During the dewetting of a heated wall pulled out of a liquid bath, a
reduction of the liquid film on the wall can be observed with increasing evaporation.

The XDG method extended in this work for evaporation and contact line problems allows a highly
accurate simulation of the pressure, velocity and temperature fields, especially in the vicinity of
interfaces and contact lines. However, this higher order method is very sensitive to contradictory
boundary conditions or irregular solutions. Nevertheless, this sensitivity allows the method to be
used to develop and test novel models, especially for modeling contact line motion.
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Zusammenfassung

In vielen technischen und industriellen Anwendungen spielt die Benetzung von Oberflächen
durch verschiedene Fluide eine entscheidende Rolle. Von besonderer Bedeutung ist dabei auch
das Zusammenspiel von Benetzungs- und Verdampfungsvorgängen, beispielsweise bei Trock-
nungsprozessen. Ein gutes Verständnis der zugrundeliegenden physikalischen Prinzipien ist daher
entscheidend, um diese Prozesse präzise zu kontrollieren.

Im Rahmen dieser Arbeit wird ein numerischer Löser auf Basis der erweiterte diskontinuierli-
che Galerkin (XDG) Methode zur Berechnung von Mehrphasenströmungen mit Verdampfung
und Kontaktlinien entwickelt. Die dazu verwendeten, an die Phasengrenzen angepassten Basis-
funktionen erlauben die hochgenaue Darstellung der Lösungsfelder für Druck, Geschwindigkeit
und Temperatur. Durch die Verwendung eines scharfen Interface Modells und entsprechenden
Sprungbedingungen können so insbesondere Unstetigkeiten in den Lösungsfeldern direkt an den
Grenzflächen abgebildet werden. Die Grenzflächen selbst werden in dem Löser durch die Level
Set Methode dargestellt. Die Bewegung der Kontaktlinie wird durch die generalisierte Navier
Randbedingung (GNBC) ermöglicht und modelliert.

Mit dem entwickelten Löser erfolgt dann die Simulation verschiedener Mehrphasenprobleme. Bei
der Untersuchung der Strömung durch den Spalt zwischen zwei Druckwalzen kann das Verhalten
der Lösungsfelder bei verschwindender Spaltbreite, sowie das Auftreten von viskosen Wirbeln
im Druckspalt, abgebildet werden. Anschließend wird die Implementierung von Verdampfung
an der Phasengrenze mit etablierten Testfällen verifiziert. Bei Untersuchungen der bewegten
Kontaktlinie kann dann das Verhalten der Kontaktlinie in der Implementierung entsprechend der
verwendeten Randbedinungen bestätigt werden. Insbesondere kann singuläres Verhalten in den
Lösungsfeldern bei der Verwendung von ungeeigneten Randbedingungen beobachtet werden.
Von besonderer Bedeutung ist dies bei der gleichzeitigen Berücksichtigung von Kontaktlinien
und Verdampfung, bei welcher ein Widerspruch in dem verwendeten Modell festgestellt werden
kann. Dieser führt zu einer drastischen Reduktion der Konvergenzordnung des Verfahrens. Durch
die Verwendung von Schlupf auf der Phasengrenzfläche wird dann eine mögliche Auflösung des
Widerspruchs getestet, und es gelingt die Konvergenzordnung zum Teil wiederherzustellen. Zuletzt
folgt die Betrachtung eines realen Experiments in stark vereinfachter Form. Bei der Entnetzung
einer aus einem Flüssigkeitsbad herausgezogenen, beheizten Wand kann so eine Reduktion des
Flüssigkeitsfilms auf der Wand bei zunehmender Verdampfung beobachtet werden.

Die in dieser Arbeit für Verdampfungs- und Kontaktlinienprobleme erweiterte XDG Methode
erlaubt eine hochgenaue Simulation von Druck-, Geschwindigkeits- und Temperaturfeldern,
insbesondere in der Nähe von Grenzflächen und Kontaktlinien. Diese Methode höherer Ordnung
ist allerdings sehr sensitiv gegenüber widersprüchlichen Randbedingungen beziehungsweise
irregulären Lösungen. Dies ermöglicht jedoch eine Verwendung der Methode um neuartige
Modelle, vor allem zur Modellierung der Kontaktlinienbewegung, zu entwickeln und zu erproben.
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ṁ Mass flux,

[
kg/(m2 s)

]
m Mass, [kg]
n Unit normal vector
n̂L Contact line normal vector, tangential to the (rigid)

fluid-solid interface
nΓ Edge normal vector
nL Contact line normal vector, tangential to the fluid-fluid

interface
nΣ Interface normal vector
n∂Ω Boundary normal vector
n(i) Normal vector to boundary of phase Ω(i)

n(i,j) Normal vector to boundary of the interface between
phases Ω(i),Ω(j)

p Momentum, [kgm/s]
p Pressure, [Pa]
q Heat flux,

[
W/m2

]
q Continuity equation test function
q∂Ω Boundary heat flux,

[
W/m2

]
r Heat equation test function
r̂ Radiant energy transfer, or volumetric energy

sink/source, [W/kg]
s Boundary velocity, [m/s]
s(i) Boundary velocity of ∂Ω(i), [m/s]
s(i,j) Boundary velocity of ∂Σ(i,j), [m/s]
t Time coordinate, [s]
t Unit tangent vector
tL Contact line tangent vector
tΣ Interface tangent vector, at contact lines equal to nL

xxiii
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1 Introduction

1.1 Motivation

To give an intuitive understanding of the topic of this thesis we want to start with an everyday
example, water in a glass. Along the inner surface of the glass a line is visible, where air, water
and glass meet. This is called three-phase contact line. At this line, three distinct phases can be
distinguished, these being the air, water and glass phases. Further, between each phase in contact
with another phase an interface forms, e.g. the air-water interface. It is clear from everyday
experience, that the contact line and interfaces influence how the water moves in the glass, e.g.
through the formation of a so-called meniscus near the walls, where the water rises slightly above
the gauge further away from the wall. This behavior how the fluid (water) wets the wall is what
is known as wetting or dewetting (if the fluid recedes).
Wetting and dewetting, eventually in combination with evaporation, play an important role
in many industrial and natural processes. As common examples the coating of surfaces or
drying of liquid films can be mentioned. The dynamics of such processes are determined by
the behavior of the three-phase contact line, between the liquid, air and the solid. To date the
mechanics governing the behavior of the contact line are still not fully understood. As part of
the Sonderforschungsbereich/Collaborative Research Center 1194 (SFB/CRC 1194), where the
interaction between transport and wetting processes is investigated, this work aims to close this
gap a little further.

1.1.1 Aim

To understand and predict the mechanisms taking place at the contact line it is necessary to develop
practical mathematical models. These range from molecular models (molecular kinetic theory
(MKT)/molecular dynamics (MD)), focusing on microscopic scales (< µm), to hydrodynamic
models, focusing more on the macroscopic scale (> µm). Some survey works on these models
include the works of Blake (2006), Bonn et al. (2009), and Snoeijer and Andreotti (2013). In
the design of such models special attention has to be paid with regard to conditions on the
boundaries and interfaces. Through numerous works it is known that careless modeling can result
in singularities at the contact line, as is the case for example when the wall is modeled as a no-slip
wall (Huh and Scriven, 1971; Sprittles and Shikhmurzaev, 2011). If in reality the wall really
does not allow slip, the contact line could not move. To resolve this issue a commonly employed
adaption in the model is to allow slip between the fluid and the wall as well as the contact line
and the wall.
Introducing heat transport and evaporation into the model can give rise to additional singularities.
For example the most basic evaporation models assume the fluid-fluid interface to keep a constant

1



temperature. Bringing such an interface in contact with a super-heated or sub-cooled wall
(meaning the wall temperature is higher or lower than the saturation temperature of the liquid-
vapor interface) would result in infinitely large heat fluxes (and consequently mass fluxes through
evaporation/condensation) at the contact line (Colinet and Rednikov, 2011). This example
illustrates that successful modeling of contact lines is decisive. The non-trivial task in modeling is
to find the appropriate balance between simplicity and accuracy for the respective application.
Related to the evaporation example it is possible to get rid of the singularities by including several
microscopic effects, like the Kelvin-Thomson effect or the Hertz-Knudsen kinetic theory in Rednikov
and Colinet (2013) and Rednikov and Colinet (2019). However, these approaches are very likely
to require a much finer resolution then one would like when solving a macroscopic problem.
Therefore, it may be suitable to implement a model that is less accurate, but computationally
more efficient. For example, introducing a thermal resistance at the fluid-solid interface would
limit the heat flux to a large but finite amount.
The objective of this work is to model and simulate contact lines, including momentum and heat
transfer, using the extended discontinuous Galerkin (XDG) method (Kummer, 2017; Smuda and
Kummer, 2021; Rieckmann et al., 2023e). The method can then be used as a kind of magnifying
glass to zoom into the contact line and visualize for example temperature or velocity fields there.
The assumption is that by investigating scales not accessible in experiments further insight into
the contact line dynamics can be generated. The future perspective is then to have the method
available as a tool to evaluate and develop new models to describe and predict the contact line
hydrodynamics.

1.1.2 Novelty

The main novelty of this work lies in the implementation of the coupled momentum and heat
transfer, including evaporation, in the XDG method, while also simulating moving contact lines. To
this end the already existing XDG solver Bounded Support Spectral Solver (BoSSS), see (Kummer,
2017; Smuda and Kummer, 2021; Smuda and Kummer, 2022; Kummer et al., 2023), is expanded
in its capability. Results using this extension are compiled in Sections 6.4, 7.1 and 7.3 in particular.
As minor advancements two level set methods, an adapted one and a new one, are presented in
this work, Section 4.3, and a suggestion for an extended sharp interface model for evaporation is
made in Section 7.2.
As a side project, which slightly deviates from the main topic of this work as no interface is
present, Chapter 5 covers numerical solutions of a Stokes flow through the nip between to
rotating cylinders, as the distance between these asymptotically approaches zero. Furthermore,
homogeneous solutions to the same problem are determined analytically, which in that extend
has not been previously attempted.

1.2 Review of modeling and computational methods

In the latter motivation already a few buzz words were mentioned that may not be commonly
known. To further explain and also give an overview of the state of the art regarding the simulation
of fluids, interfaces and contact lines, this section will review the mathematical description and
also numerical solution of such problems. Some of the discussed presented here were part of the
introduction in Rieckmann et al. (2023e).
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1.2.1 Modeling of multiphase flows

To be able to calculate and predict the movement of fluids, interfaces and contact lines it is
necessary to adopt a mathematical model. In principle we need to make two major choices, how
to represent the fluid bulk and how to treat the interface. These choices are considered in this
subsection.

Continuum mechanics It is common knowledge that the matter around us consists of discrete
particles, molecules, atoms and the subatomic particles they consist of. However, this view is
somewhat in conflict with our everyday experience, where these particles are not perceptible and
instead matter usually presents itself as homogeneous and continuous, like the water in a bottle.
Therefore, two different approaches arise when trying to describe the behavior of real materials.
The first based on discrete interacting particles is explored in the fields of classical mechanics
(using Lagrange or Hamilton equations), statistical physics and quantum mechanics, e.g. (Baus
and Tejero, 2021). For wetting problems this approach is taken for example in the work of Blake
(2006) in the framework of MKT.
The second, which we adapt in this work, is the continuum model giving rise to the overarching
field of continuum mechanics. In this approach matter is not viewed as the collection of discretely
distributed molecules or similar, but as the name suggests as a continuous distribution, a so-called
continuum. This model is less accurate than the molecular approach, but through its simplicity
allows to calculate much larger systems. It should be noted, however, that this “continuum
hypothesis” is not always applicable (Holland and Bragg, 1995).

Interface modeling When following the continuum consideration for the description of multiple
interacting materials, e.g. water and air at the surface of an ocean, it is again possible to distinguish
two broad classes of models for the interface. In the first class, called diffuse interface models,
such phase transitions are continuous. The second class, so-called sharp interface models, which
are used in this work, regard the transition regions between phases as sharp interfaces of zero-
thickness. In reality, the transition between phases is known to be rapid but continuous, which
justifies either approach to be taken.
A good introduction to the first class of interface models, the diffuse interface models, is given by
Anderson et al. (1998). To sum up, the interface is smeared out over a region of finite thickness,
and additional equations, which are only applicable at the interface, are integrated into the bulk
equations. Thus, the solution is obtained by solving a unified set of equations that applies to
the entire domain. These approaches give rise to very elegant one-fluid models, such as the
Cahn-Hilliard Navier-Stokes equations, cf. Gal and Grasselli (2010). A sharp-interface limit, is
only obtained in the asymptotic limit of vanishing interface thickness, as shown for example in
the work on contact lines by Yue et al. (2010).
In recent years, many numerical methods, some of which differ greatly from one another, have
been adapted and used for the simulation of two-phase fluid flow and heat transfer during pool
boiling. A review is given by Dhir et al. (2013). In this context, the diffuse interface method was,
e.g., successfully applied to pool boiling of single bubbles by Kunkelmann and Stephan (2009)
and Kunkelmann and Stephan (2010), Wang and Cai (2017) or Franz et al. (2021). However, the
diffuse interface approach has the inherent disadvantage of not providing sharp solutions in the
interface region, which typically leads to an inaccurate computation of the local interface shape.
This directly affects the temperature gradients near the interface and thus the liquid-vapor phase
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change rates. Furthermore, an inaccurate calculation of the interface curvature might lead to
spurious currents near the interface (Franz et al., 2021). All these inaccuracies are specifically high
for small vapor bubbles with high surface tension. As a consequence, applying diffuse interface
methods to such boiling configurations at least requires extremely small mesh sizes and therefore
a high use of computational resources to reach an acceptable accuracy. Compared with diffuse
interface methods, sharp interface methods do not have these inherent disadvantages. In this
work, we adopt the sharp interface approach to circumvent the aforementioned limitations. The
transition between phases occurs on a length scale much smaller than the resolution of numerical
methods. Therefore, the interface is modeled as a lower dimensional manifold of zero thickness,
embedded in the domain, and a separate set of equations is employed in each phase. Suitable
couplings between the phases are established at the interface.

Contact line modeling As part of this thesis the behavior of three-phase contact lines in combi-
nation with evaporation is to be simulated. To this end, a good understanding of the contact line
hydrodynamics is necessary. Therefore, we want to compile here a list of some influential works
dealing with the dynamics of contact lines. Some of the earliest works dealing with hydrodynamic
modeling of three-phase contact lines are those by Huh and Scriven (1971) and Voinov (1976)
investigating the hydrodynamics of contact lines in creeping flows. More recent review works
include (Blake, 2006; Snoeijer and Andreotti, 2013) comparing different contact line models,
not necessarily limited to hydrodynamic ones. In the work of Lukyanov and Pryer (2017), on
the other hand, the interface is not regarded to be massless, as is usually the case. From the
aforementioned works it is known that careless modeling of boundary conditions and contact
line behavior can lead to singularities at the contact line. These singularities are investigated in
(Rednikov and Colinet, 2013; Rednikov and Colinet, 2019). Finally, Deegan et al. (2000) and
Marengo and Coninck (2022) review the influence of evaporation on the wetting behavior.

1.2.2 Computational fluid dynamics

From the mathematical description of the problem it is usually not possible to directly obtain
solutions for these models. Therefore, a numerical scheme is needed to achieve this task. At this
point it should be mentioned that there exist also meso-scale methods, which work on scales
between the microscopic molecular approach and the macroscopic continuum approach. Examples
for such methods are the particle based Lattice Boltzmann Method (LBM) or the smoothed particle
hydrodynamics (SPH). Apart from these two methods Fig. 1.2 shows a “two-fluid” and “one-fluid”
model. “Two-fluid” models are a separate descriptor to a class of models where a kind of mixture
model is used to describe the multiphase flow. Thus, not a single but multiple fluid equations are
solved in the domain, which are extended by suitable interaction terms, see also Prosperetti and
Tryggvason (2009) and Ishii and Hibiki (2011). In contrast, in so-called “one-fluid” models from
Mirjalili et al. (2017), a single set of equations for each fluid region is used. From here on we
focus solely on these latter models, which additionally necessitate a scheme to treat the interface
numerically.

Computational methods For the molecular approach a very common numerical method is MD,
for which a good overview is given in Marengo and Coninck (2022). However, as specified in the
last paragraphs the focus in this work lies on continuum models for multiphase flows within a
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sharp interface formulation. To solve these kind of models numerically a variety of numerical
methods exist, for which we want to give a short overview of the most common ones, including a
very rough sketch of the schemes. The mathematical description of the multiphase problem leads
to a set of coupled differential equations called partial differential equation (PDE) or system of
PDEs. The most intuitive approach to solve such systems is to construct a grid of equidistant points
and approximate the derivatives arising in the PDE at each of these points using a difference
scheme. E.g. the forward difference

∂f(x)

∂x

∣∣∣∣
xi

≈ f(xi+1)− f(xi)

xi+1 − xi
(1.1)

uses the value of the function at two neighboring grid points. The so constructed method is
called a finite difference (FD) method. We refer to Tryggvason et al. (1998) for an example of a
so-devised scheme for multiphase flow.
Another approach is called finite volume method (FVM). In this method the domain in which the
flow is to be solved is divided into many cells or elements. In each element an approximation
of the average value of the solution variable is determined as the solution to the problem. To
this end, the PDE system, e.g. for a variable u, is integrated over the whole mesh and Gauss’s
theorem is applied to get rid of derivatives ∂f(x, u)/∂x of the so-called fluxes f(x, u). Subsequently,
a suitable numerical flux f̂ is employed using values from multiple cells to approximate the flux
across element boundaries, giving

∇ · (f(x, u)) = g(x)→
∑
K∈Ω

∫
K

∇ · (f) dV ≈
∑
K∈Ω

∫
∂K

f̂ · n∂K dS =

∫
Ω

g dV. (1.2)

In this way, in each element a constant value is obtained for the solution variable. This value can
change discontinuously across element boundaries. By clever construction of the numerical fluxes,
methods which uphold conservation properties can be constructed. A few examples of multiphase
solvers employing the FVM (with evaporation) are given by Gibou et al. (2007), Tanguy et al.
(2007), Bureš and Sato (2021a), and Bureš and Sato (2021b).
The finite element method (FEM) follows a very similar approach. However, instead of constant
values the solution variables are given as a series expansion of a basis for a finite dimensional
functionspace in each element. Usually this function space is globally continuous, meaning the
solution does not have discontinuities across cell boundaries. Again the PDE is transferred to a
variational formulation, however this time the arising integrals are weighted by so called test
functions v. This gives

∇ · (f(x, u)) = g(x)→
∑
K∈Ω

∫
K

∇ · (f(x, u)) v dV =
∑
K∈Ω

∫
K

−f · ∇v dV =

∫
Ω

gv dV. (1.3)

Due to the continuity of the solution and test functions the fluxes on element boundaries usually
vanish, when summing over all elements (boundary treatment is omitted here for brevity). A few
works employing the FEM to simulate multiphase flow with contact lines and/or evaporation are
those of Gerbeau and Lelièvre (2009), Diddens (2017), and Reusken et al. (2017).
A sub-type of the FEM and a mix between the continuous finite element (FE) and discontinuous
finite volume (FV) methods is the discontinuous Galerkin (DG) method. It also makes use of
higher order basis functions like the FEM. However, these are locally defined and the solution
can have discontinuities across element boundaries as in the FVM. This necessitates the use of
numerical fluxes, once again enabling the relatively easy construction of a conservative scheme.
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Figure 1.1: Comparison of the projections uh(x) of the function u(x) = tanh(5πx)+ sin(2πx) onto
the FV, FE and DG approximation spaces. Above each plot the global L2-error and
total number of DOFs is displayed.

Apart from that a variational formulation is used again, with the same basis for the test functions
as used for the solution. This class of methods was first developed by Reed and Hill (1973)
and became popular for (hyperbolic) conservation laws, cf. Marsden et al. (2008). It has also
been further developed for elliptic problems (Arnold et al., 2002; Dolejší and Feistauer, 2015)
and employed for the Navier-Stokes equations (Di Pietro and Ern, 2012; Dolejší and Feistauer,
2015). When applying DG methods it is possible to achieve high order convergence, while still
employing simple numerical fluxes. Additionally, the local nature of the functional basis makes
mesh refinement and parallelization much easier. For this reason, DG is used in the preliminary
works of this thesis in the context of multiphase flows with evaporation or wetting (Kummer, 2017;
Smuda and Kummer, 2021; Rieckmann et al., 2023e).
Figure 1.1 shows a comparison of the projection of a given function u(x) onto the solution spaces
of the FV, FE and DG methods, using 3 elements and second order polynomials for the higher
order methods. For the FVM the element-wise constant values of the projection uh(x) are clearly
visible. For the FE space, on the other hand, it can be seen that uh(x) is globally continuous, while
there are jumps in the DG approximation. The slight improvement in accuracy for the DG method
comes at the cost of an increase in degrees of freedom (DOFs).

Interface treatment

In Fig. 1.2 an overview of several models for two-phase flow is given. For the “one-fluid” models
it is visible that the numeric interface treatment can be divided into two approaches as either
interface-tracking (e.g. splines, particles, markers) or interface-capturing (e.g. volume-of-fluid,
level set) techniques, depending on whether they explicitly or implicitly discretize the interface
location. Even though the “two-fluid” models also use PDE systems, usually no explicit interface
treatment is necessary as the surface effects are included in the interaction terms, for example
an additional term in the momentum balance for the liquid fraction of a gas-liquid mixture to
consider interfacial momentum transfer. A discussion and good starting point for further inquiries
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Figure 1.2: Overview of different mathematical models and their interface representation from
Mirjalili et al. (2017). For the abbreviations not specified here, we refer to the original
work. Shaded gray methods are diffuse interface methods. All other follow the sharp
interface approach.

can be found in the work of Mirjalili et al. (2017).
To summarize, interface-tracking implies explicit tracking of the interface, for example by markers
that are advected with the flow or a body-fitted mesh as for arbitrary Lagrangian-Eulerian (ALE)
methods. On the other hand, interface capturing describes an implicit description of the interface.
Common examples are the usage of auxiliary volume fraction field describing how much of a
certain fluid is contained in any cell in the volume-of-fluid (VOF) method or a level set field,
whose zero set marks the position of the interface. In that categorization the phase field in the
aforementioned Cahn-Hilliard Navier-Stokes model is another example of the interface-capturing
approach in the diffuse interface context.
In a certain sense a variant of the interface-tracking approach is used for a single simulation
in Section 7.1, where the interface is described by a spline and the interpolation points of the
spline are advected explicitly. Apart from this exception we will use a level set method with some
adaptations regarding the special needs of our DG based method throughout this work. The level
set method was first proposed by Osher and Sethian (1988), see also Osher and Fedkiw (2001).
The idea is to represent the interface as the zero (or level) set of a scalar field. This field is typically
required to be a signed-distance function w.r.t. the interface. However, in general, this property is
lost when advecting the interface, thus necessitating the need for a reinitialization procedure. To
this end, we adopt the approach given by Basting and Kuzmin (2013).
It should also be mentioned that another way to categorize the interface representation would be
as whether the method uses a body-fitted mesh or an unfitted mesh, as done here. For further
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insights, refer to the benchmark study of Gründing et al. (2020), where representatives of both
approaches are compared.
Summarizing, we can note that to discretize the set of equations in each phase, we use the
discontinuous Galerkin (DG) method. The approach suggested in this work follows the ideas of
the extended finite element method (XFEM) proposed by Mos et al. (1999), and in analogy to
this is known as extended discontinuous Galerkin (XDG) method, or otherwise known as unfitted
DG (Bastian and Engwer, 2009). Unlike many finite volume based sharp interface methods that
rely on reconstructing values and gradients at the interface, e.g, the ghost fluid method used by
Bureš and Sato (2021a), the XDG method represents the solution using high-order functions in
each phase, eliminating the need for such reconstruction. Instead the high-order functions can be
directly evaluated at the interface.

1.3 Content

To conclude the brief introduction to the topic of this thesis, we want to give a short summary of
the structure and content of this work.

In Chapter 2 the hydrodynamic model(s), which will be used subsequently, is presented. From the
fundamental conservation laws for mass, momentum and energy we will go through the steps to
derive a differential form of these laws including especially the necessary extensions for interfaces
and contact lines. By clearly highlighting which assumptions and simplifications are used, this
should give a good overview of how to model the contact line hydrodynamics in a sharp interface
setting.

After having specified which model is used, it is usually wanted to obtain analytical or numerical
solutions for it. In this work this task is accomplished numerically by use of the XDG method. The
working principle and a coarse heuristic derivation for which is presented in Chapter 3.

To actually compute solutions with the XDG method a working implementation as a computer
software is necessary. Such a software to solve the coupled continuity, momentum and heat
equations including evaporation at interfaces and contact lines is first implemented in this work.
The building blocks of this algorithm are described in Chapter 4, which gives an overview of how
to obtain a solvable linear system starting from the differential equations of the hydrodynamic
model.

At this point all necessary tools are available to actually solve fluid dynamic problems. The
results obtained during this work are compiled as three separate chapters. In Chapter 5 a pure
single-phase flow through the gap between two cylinders is considered. There are no interfaces or
contact lines involved yet. In Chapter 6, on the other hand, two-phase simulations are presented
including interfaces, but no contact lines. The main result of this chapter is the validation of the
evaporation implementation. Finally, Chapter 7 also includes contact lines. Several parameter
studies give insights into the behavior of the fluids near the contact line in the used model and
implementation.

In Chapter 8 the achieved progress and findings are summarized, concluding the work and
evaluating the fulfillment of the postulated goal.

At last an expanded presentation of the XDG discretization is presented in Appendix A, as well as
further details for the implementation of a slip on the fluid-fluid interface used in Section 7.2.
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2 Conservation equations for incompressible
multiphase flows with thermal evaporation

The different approaches of modeling the behavior of materials have already been briefly presented
in Section 1.2.1. As mentioned the present work follows the continuum approach. In the following
sections a summary of the continuum mechanical description of incompressible multiphase flows,
within a sharp interface context, will be given. The presentation is heavily leaned on the work
of Slattery et al. (2007). The focus lies on the conservation equations for mass, momentum and
energy and especially the description of those at phase interfaces and contact lines. The derivation
is limited to dividing interfaces embedded into R3. The chapter will close with considerations
regarding the necessary closure relations, also called constitutive equations and a presentation of
the so obtained models used later in this work.

2.1 Preliminaries

Before beginning the discussion of the continuum description of multiphase flows a few funda-
mental results from the study of continuums are given. In the form they occur in this work the
sum of some quantity at the dividing interfaces and contact lines may appear. These special sums
are called jumps and are defined as follows:

Definition 2.1 (Jump operators). On the dividing interface Σ(i,j) between phase Ω(i) and Ω(j) the
jump operator for some variable Ψ is defined as[[

ΨnΣ
]]
= Ψ(i)n(i) +Ψ(j)n(j). (2.1)

The normal vector n(i) is pointing outward from Ω(i). Without loss of generality, it is assumed from
here on that nΣ = n(i) uniquely along an interface, such that additionally[[

ΨnΣ
]]
= Ψ(i)nΣ −Ψ(j)nΣ = [[Ψ]]nΣ. (2.2)

The jump operator at the three phase contact line L(i,j,k), where three phases Ω(i), Ω(j) and Ω(k) meet,
is defined as ((

ΨΣnL
))

= Ψ(i,j)n(i,j) +Ψ(i,k)n(i,k) +Ψ(j,k)n(j,k), (2.3)

taking into account the surface quantity ΨΣ on the intersecting interfaces. Here, the normal vector
n(i,j) is tangential and outwards facing to the interface Σ(i,j). Note that n(i,j) = n(j,i). This situation
is depicted in Fig. 2.1.
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Figure 2.1: Depiction of three phases with the respective dividing interfaces and three phase
contact line.

To make the text easier to understand, it should be noted that in contrast to the presentation in
(Slattery et al., 2007) the direction of interface normals is reversed. Here, it is assumed that e.g.
n(i) is the outer normal of the phase Ω(i), while in (Slattery et al., 2007) inner normals are used.

One fundamental result of continuum mechanics are the so-called transport theorems. These are
useful to pull the material time derivative of an integral of some quantity into said integral.

Definition 2.2 (Bulk transport theorem). For the volume term the transport theorem for some
bulk (scalar, vector or tensor) quantity Ψ is (Slattery et al., 2007, p. 68ff.)

d
dt

∫
Ω

Ψ dV =

∫
Ω

∂Ψ

∂t
+∇ · (Ψ⊗ u) dV −

∫
Σ

[[
Ψ(u− uΣ) · nΣ

]]
dS, (2.4)

using the material velocity u and the interface velocity uΣ.

To arrive at this result consider the decomposition of the full volume into the separate phases
Ω =

∑NΩ
i=1Ω

(i):

d
dt

∫
Ω

Ψ dV =

NΩ∑
i=1

d
dt

∫
Ω(i)

Ψ(i) dV. (2.5)

For each of these phases the transport theorem in the following form is valid (Slattery et al., 2007,
p. 68):

d
dt

∫
Ω(i)

Ψ(i) dV =

∫
Ω(i)

∂Ψ(i)

∂t
dV +

∫
∂Ω(i)

Ψ(i)s(i) · n(i) dS

+

NΩ∑
j=1,j 6=i

∫
Σ(i,j)

Ψ(i)s(i,j) · n(i) dS.
(2.6)

The normals are chosen to point outwards from Ω(i). s(i) and s(i,j) denote the velocities of the
boundary ∂Ω(i), excluding the phase interfaces, and of these interfaces Σ(i,j). In the next step the
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divergence theorem

∫
∂Ω(i)

Ψ(i)s(i) · n(i) dS =

∫
Ω(i)

∇ ·
(
Ψ(i)s(i)

)
dV −

NΩ∑
j=1,j 6=i

∫
Σ(i,j)

Ψ(i)s(i) · n(i) dS (2.7)

is used and the phases and dividing interfaces are combined again. Then, Eq. (2.5) can be
rewritten to

d
dt

∫
Ω

Ψ dV =

∫
Ω

∂Ψ

∂t
+∇ · (Ψs) dV −

∫
Σ

[[
Ψ(s− uΣ) · nΣ

]]
dS. (2.8)

Finally, the volume is assumed to be material and it is possible to identify s = u as the fluid velocity.
However, the internal interfaces Σ(i,j) are not necessarily material and uΣ = s(i,j) = s(j,i) 6= u.
With these assumptions Eq. (2.4) is obtained. In the derivation of the transport theorem for the
dividing interfaces the same approach is used. I.e. decomposing the combined interface into
separate parts Σ =

∑NΩ
i=1

∑NΩ
j=i+1Σ

(i,j) and obtaining the occurring jumps by later recombination
of these partial interfaces.

Definition 2.3 (Surface transport theorem). The transport theorem for the dividing interfaces is
(Slattery et al., 2007, p. 75ff.)

d
dt

∫
Σ

ΨΣ dS =

∫
Σ

∂ΨΣ

∂t
−∇ΣΨ

Σ · vΣ +∇Σ ·
(
ΨΣ ⊗ uΣ

)
dS

−
∫
L

((
ΨΣ(uΣ − uL) · nL

))
dl.

(2.9)

The meaning of the velocity vΣ is not easy to grasp. The velocity uΣ = vΣ +wΣ of a surface particle
consists of the speed of displacement of a surface point vΣ and the intrinsic surface velocitywΣ related
to the reference configuration of the surface (Slattery et al., 2007, p. 19 ff.).

In principle it would be possible to extend this discussion even further to (four phase) contact
points. However, in this work such models are not considered, which is why no point jumps occur
in the line transport theorem:

Definition 2.4 (Line transport theorem). Analogous to the transport theorem at interfaces a
transport theorem for the contact lines can be obtained (Slattery et al., 2007, p. 75ff.). This is given
as

d
dt

∫
L

ΨL dl =
∫
L

∂ΨL

∂t
−∇LΨL · vL +∇L ·

(
ΨL ⊗ uL

)
dl. (2.10)

As will be visible later, that it is also necessary to transform integrals of the flux of a quantity over
the boundary of some manifold to integrals of the divergence of that quantity over the volume of
the manifold. To do this the divergence theorem, also known as Gauss’s theorem, as a special form
of the generalized Stokes theorem can be used. This is a classical result of multivariate calculus
and we state it here in specific forms useful for this work, limited to flat (volume) spaces (usually
Ω ⊆ R3) and embedded surfaces and lines, that may be curved.
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Definition 2.5 (Divergence theorem). For a bulk vector or tensor1 quantity the divergence theorem
states, that the divergence of that quantity over some volume equals its flux through the boundary of
that volume. For a body containing dividing interfaces it can be formulated as∫

Ω

∇ · (Ψ) dV =

∫
∂Ω

Ψ · n dS +

∫
Σ

[[
Ψ · nΣ

]]
dS. (2.11)

Definition 2.6 (Surface divergence theorem). For a surface tensor2 or vector quantity the surface
divergence theorem states, that the divergence of that quantity over some surface equals its flux
through the boundary of that surface. Additionally, such a surface is not usually flat, which is why
the mean curvature3

κ = ∇Σ ·
(
nΣ
)

(2.12)

is also taken into account. For a body containing intersecting dividing interfaces it can be formulated
as ∫

Σ

∇Σ ·
(
ΨΣ
)
− κΨΣ · nΣ dS =

∫
∂Σ

ΨΣ · n∂Σ dl +
∫
L

((
ΨΣ · nL

))
dl. (2.13)

The proof of the surface divergence theorem relies on the decomposition of ΨΣ in a surface
tangential and normal part,

∇Σ ·
(
ΨΣ
)
= ∇Σ ·

(
PΣ ·ΨΣ + (nΣ ⊗ nΣ) ·ΨΣ

)
, (2.14a)

∇Σ ·
(
(nΣ ⊗ nΣ) ·ΨΣ

)
= ∇Σ ·

(
nΣ
)
ΨΣ · nΣ︸ ︷︷ ︸

=κΨΣ·nΣ

+∇Σ(Ψ
Σ · nΣ) · nΣ︸ ︷︷ ︸
=0

, (2.14b)

by using the surface projection tensor PΣ = I − nΣ ⊗ nΣ. For the surface divergence of the
tangential part Gauss’s theorem can be applied (Slattery et al., 2007, p. 669ff.):∫

Σ

∇Σ ·
(
PΣ ·ΨΣ

)
dS =

∫
∂Σ

(PΣ ·ΨΣ) · n∂Σ dl +
∫
L

((
(PΣ ·ΨΣ) · nL

))
dl. (2.15)

Noticing that the scalar product of the normal part and the n∂Σ,n
L vectors vanish gives the final

result of Eq. (2.13).

Definition 2.7 (Line divergence theorem). The line divergence theorem gives a similar result.
Here, we made use of the decomposition of some vector or tensor property on the contact lines into a
line normal and tangential part, using the projection tensor in line tangent direction PL:∫

L

∇L ·
(
ΨL
)
−∇L ·

(
(I−PL) ·ΨL

)
dl =

∫
∂L

ΨL · n∂L ds. (2.16)

The integral on the right hand side is evaluated at the two end points of the line, if it is not closed.
Using differential geometric results, the normal component of ΨL could probably be further expanded
in terms of a curvature tensor, as has been done for surfaces using the mean curvature.
1This generalization is possible for cartesian spaces.
2The generalization at this point is possible due to the special structure of the regarded problem. If not surfaces
embedded in R3 are considered alternative ways to derive the balance of momentum may have to be explored, see
e.g. (Marsden and Hughes, 1994).

3also ∇Σ ·
(
PΣ

)
= −κnΣ
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2.2 Mass conservation

The meaning of mass conservation is probably the most intuitive of the various conservation laws
employed in physics and reflects an everyday observation, that : “Things come not into being
out of nothing.” Mathematically speaking the mass is obtained by integrating the density of any
body over its volume. This is intuitive to grasp, if we deviate for a moment from the continuum
hypothesis, e.g. (Baus and Tejero, 2021), we could think of that body as the sum of a finite amount
of particles. In that setting the mass of the body is the sum of all the masses of the particles and
its volume their distribution in space. As long as the body consists of the same particles as in the
beginning its mass does not change, no matter their configuration in space:

dm
dt

=
d
dt

∫
Ω(t)

ρ dV = 0. (2.17)

In the continuum setting instead of directly counting particles we average beforehand over
an infinitesimal small domain and call the resulting quantity a density. In what follows we
expand this consideration to surface and line densities. The complete body under investigation
consists now of the union of phases Ω =

∑NΩ
i=1Ω

(i), dividing interfaces between these phases
Σ =

∑NΩ
i=1

∑NΩ
j=i+1Σ

(i,j) and three phase contact lines L =
∑NΩ

i=1

∑NΩ
j=i+1

∑NΩ
k=i+2 L

(i,j,k), where
the phase interfaces intersect. With associated densities on each of these manifolds the total mass
in the system is

m =

∫
Ω

ρ dV +

∫
Σ

ρΣ dS +

∫
L

ρL dl. (2.18)

By employing the transport theorems, Definitions 2.2 to 2.4, to Eqs. (2.17) and (2.18) the time
derivative can be drawn under the integrals, to obtain

dm
dt

=

∫
Ω

∂ρ

∂t
+∇ · (ρu) dV

+

∫
Σ

∂ρΣ

∂t
−∇Σρ

Σ · vΣ +∇Σ ·
(
ρΣuΣ

)
−
[[
ρ(u− uΣ) · nΣ

]]
dS

+

∫
L

∂ρL

∂t
−∇LρL · vL +∇L ·

(
ρLuL

)
−
((
ρΣ(uΣ − uL) · nL

))
dl = 0.

(2.19)

This result is known as the integral mass balance for material volumes, containing intersecting
dividing interfaces. Equation (2.19) holds for every material volume, therefore, two observations
can be made. Firstly, each of the integrals has to be fulfilled separately. Secondly, the volume
can be chosen arbitrarily small. Through these observations we obtain the bulk mass balance in
differential form, commonly known as continuity equation

∂ρ

∂t
+∇ · (ρu) = 0, (2.20)

the differential jump mass balance on dividing interfaces

∂ρΣ

∂t
−∇Σρ

Σ · vΣ +∇Σ ·
(
ρΣuΣ

)
−
[[
ρ(u− uΣ) · nΣ

]]
= 0, (2.21)

and the jump mass balance at common lines

∂ρL

∂t
−∇LρL · vL +∇L ·

(
ρLuL

)
−
((
ρΣ(uΣ − uL) · nL

))
= 0. (2.22)
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2.3 Momentum conservation

Momentum conservation is arguably the core insight of classical “Newtonian” mechanics (Smith,
2008). It describes that a body changes its motion as the result of forces acting on said body. The
motion of a body can be quantified by the linear momentum, the product of mass and velocity of
the body. Put in terms of a momentum density for the bulk, dividing surfaces and contact lines
this becomes

p =

∫
Ω

ρu dV +

∫
Σ

ρΣuΣ dS +

∫
L

ρLuL dl, (2.23)

and the axiom can be written as
dp
dt

= F . (2.24)

The forces acting on the body can be distinguished as “volume” forces acting over the volume of
the manifolds and “surface” forces acting on their boundaries (Slattery et al., 2007, p. 113ff.):

F = F V + F S , (2.25a)

F V =

∫
Ω

ρf dV +

∫
Σ

ρΣfΣ dS +

∫
L

ρLfL dl, (2.25b)

F S =

∫
∂Ω

τ dS +

∫
∂Σ

τΣ dl +
∫
∂L

τL ds. (2.25c)

By employing Cauchy´s stress principle (Slattery et al., 2007, p. 114ff.) the forces acting on the
boundaries, in terms of traction vectors, can be represented by respective bulk, surface and line
stress tensors

τ = T · n∂Ω, (2.26a)
τΣ = TΣ · n∂Σ, (2.26b)
τL = TL · n∂L, (2.26c)

which are tangential tensor fields, w.r.t to their respective manifold. Finally, combining Eqs. (2.23)
to (2.26), making use of the transport theorems Definitions 2.2 to 2.4, divergence theorems Defi-
nitions 2.5 to 2.7 and the continuity equations Eqs. (2.20) to (2.22) the momentum conservation
in the following form is found:

0 =

∫
Ω

ρ

(
∂u

∂t
+ u · ∇u

)
− ρf −∇ · (T) dV

+

∫
Σ

ρΣ
(
∂uΣ

∂t
+ (uΣ − vΣ) · ∇Σu

Σ

)
− ρΣfΣ −∇Σ ·

(
TΣ
)

−
[[(
ρ(u− uΣ)(u− uΣ)−T

)
· nΣ

]]
dS

+

∫
L

ρL
(
∂uL

∂t
+ (uL − vL) · ∇LuL

)
− ρLfL −∇L ·

(
TL
)

−
(((
ρΣ(uΣ − uL)(uΣ − uL)−TΣ

)
· nL

))
dl.

(2.27)

From Eq. (2.27) we can immediately conclude that

ρ

(
∂u

∂t
+ u · ∇u

)
= ρf +∇ · (T) (2.28)

14



on the bulk. On the dividing interfaces we find

ρΣ
(
∂uΣ

∂t
+ (uΣ − vΣ) · ∇Σu

Σ

)
−
[[(
ρ(u− uΣ)(u− uΣ)−T

)
· nΣ

]]
= ρΣfΣ +∇Σ ·

(
TΣ
)
.

(2.29)

And finally on contact lines

ρL
(
∂uL

∂t
+ (uL − vL) · ∇LuL

)
−
(((
ρΣ(uΣ − uL)(uΣ − uL)−TΣ

)
· nL

))
= ρLfL +∇L ·

(
TL
) (2.30)

should uphold.

2.4 Energy conservation

The notion of energy conservation follows along the lines of momentum conservation. However,
in addition to energy related to the macroscoping movement of the system, called kinetic energy,
the microscoping state of the system contributes to its energy. This contribution is called called
inner energy. The total energy contained in the system is then

E =

∫
Ω

ρ

(
û+

1

2
|u|2

)
dV +

∫
Σ

ρΣ
(
ûΣ +

1

2
|uΣ|2

)
dS +

∫
L

ρL
(
ûL +

1

2
|uL|2

)
dl. (2.31)

The rate at which the energy in the system changes is identified as the work performed by the
forces and an additional rate of energy transfer. With these assumptions the energy change rate
becomes

dE
dt

= P +Q, (2.32)

which is commonly known as the first law of thermodynamics. Recognizing the findings of
Section 2.3, the work done by the external forces is defined as

P = PV + PS , (2.33a)

PV =

∫
Ω

ρu · f dV +

∫
Σ

ρΣuΣ · fΣ dS +

∫
L

ρLuL · fL dl, (2.33b)

PS =

∫
∂Ω

u · (T · n∂Ω) dS +

∫
∂Σ

uΣ · (TΣ · n∂Σ) dl +
∫
∂L

uL · (TL · n∂L) ds. (2.33c)

In analogy to the forces the energy transfer is postulated to have a volumetric, radiant energy
transmission, and boundary contribution, called contact energy transmission (Slattery et al., 2007,
p. 288ff.). The derivation is somewhat abbreviated here, but finally this energy transfer rate is
expressed in terms of a rate of radiant energy transmission and the energy flux vector:

Q = QV +QS , (2.34a)

QV =

∫
Ω

ρr̂ dV +

∫
Σ

ρΣr̂Σ dS +

∫
L

ρLr̂L dl, (2.34b)

QS =

∫
∂Ω

−q · n∂Ω dS +

∫
∂Σ

−qΣ · n∂Σ dl +
∫
∂L

−qL · n∂L ds. (2.34c)
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From multiplying Eqs. (2.28) to (2.30) by the respective velocities, the energy balances for the
kinetic energy can be obtained:

ρu ·
(
∂u

∂t
+ u · ∇u

)
= ρu · f + u · ∇ · (T) , (2.35)

ρΣuΣ ·
(
∂uΣ

∂t
+ (uΣ − vΣ) · ∇Σu

Σ

)
−
[[
uΣ ·

(
ρ(u− uΣ)(u− uΣ)−T

)
· nΣ

]]
= ρΣuΣ · fΣ + uΣ · ∇Σ ·

(
TΣ
)
,

(2.36)

ρLuL ·
(
∂uL

∂t
+ (uL − vL) · ∇LuL

)
−
((
uL ·

(
ρΣ(uΣ − uL)(uΣ − uL)−TΣ

)
· nL

))
= ρLuL · fL + uL · ∇L ·

(
TL
)
.

(2.37)

The energy balance for internal energy can be obtained by combining Eqs. (2.31) to (2.34),
applying the transport, Definitions 2.2 to 2.4, and divergence theorems, Definitions 2.5 to 2.7,
and using Eqs. (2.20) to (2.22) as well as Eqs. (2.35) to (2.35). Using the same argument as
before to separate bulk, interface and line contributions it is possible to obtain the bulk energy
balance

ρ

(
∂û

∂t
+ u · ∇û

)
= ρr̂ +∇ · (−q) + tr(T · ∇u), (2.38)

the interface or jump energy balance

ρΣ
(
∂ûΣ

∂t
+ (uΣ − vΣ) · ∇Σû

Σ

)
−
[[
q · nΣ − (u− uΣ) ·T · nΣ + ρ

(
(û− ûΣ) + 1

2
(u− uΣ)2

)
(u− uΣ) · nΣ

]]
= ρΣr̂Σ +∇Σ ·

(
−qΣ

)
+ tr(TΣ · ∇Σu

Σ),

(2.39)

and finally the line energy balance

ρL
(
∂ûL

∂t
+ (uL − vL) · ∇LûL

)
−
((

qΣ · nL − (uΣ − uL) ·TΣ · nL + ρΣ
(
(ûΣ − ûL) + 1

2
(uΣ − uL)2

)
(uΣ − uL) · nL

))
= ρLr̂L +∇L ·

(
−qL

)
+ tr(TL · ∇LuL).

(2.40)

2.5 Constitutive equations

In this section the various conservation laws are complemented with constitutive equations, in-
troducing the specific behavior of the materials to be calculated. In essence, there are various
arguments that can be made to justify the choice of constitutive equation. This includes phe-
nomenological material behavior, i.e., observations made in experiments. But also considerations
regarding the entropy inequality or independence from the observer (i.e. frame indifference).
Here, we will not dive into the details of such considerations, which can be found e.g. in Slattery
et al. (2007, p. 304-382), but specify the modeling assumptions used in this work.
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2.5.1 Bulk behavior

First, the behavior of the bulk shall be specified. From looking at Eqs. (2.20), (2.28) and (2.38)
one can gather the dependent bulk variables

V ∗ := {ρ,u, û,f , r̂,T, q} . (2.41)

It is immediately clear, that there are more variables than bulk equations available and the system
is unclosed. The first assumption is to identify the external forcings f , r̂ to be given functionals
depending on x and t. Next, the stress tensor is specified as that of a Newtonian fluid (Slattery,
2005, p. 41):

T =
(
−p+ λ̂∇ · (u)

)
I+ µ

(
∇u+∇uT

)
. (2.42)

This reduces the number of unknowns in the system, but at the same time introduces the pressure
p, volume viscosity ε = λ̂ + 2/3µ and shear viscosity µ. For the heat flux Fourier’s law states
(Stephan et al., 2013, p. 211)

q = −k̂∇T , (2.43)

making a connection between heat flux and temperature gradients, using the heat conductivity k̂.
At last, several thermodynamic/caloric relations are employed to reduce the number of variables.
Usually, a connection of the form ρ = f(p, T ) is made to define the density as a function of
temperature and pressure. In this work we will exclusively consider incompressible fluids, in
which case

ρ = const., (2.44)

is a known quantity. The inner energy of an incompressible material is specified by the caloric
equation

û = ĉT (2.45)

in dependence of the temperature and heat capacity ĉ. The newly introduced material properties
ρ, µ, ĉ and k̂ are assumed to be constant throughout this work. More generally they could be
defined as functions of e.g. temperature and pressure. Thus the conservation equations for
the bulk of an incompressible, single component, Newtonian fluid with Fourier’s law of heat
conductivity are given in terms of the dependent variables

V := {p,u, T} , (2.46)

to be
∇ · (u) = 0, (2.47)

ρ

(
∂u

∂t
+ u · ∇u

)
= ρf −∇p+∇ ·

(
µ
(
∇u+∇uT

))
, (2.48)

ρ

(
∂ĉT

∂t
+ u · ∇ĉT

)
= ρr̂ +∇ ·

(
k̂∇T

)
+ tr(T · ∇u). (2.49)

The last term in the energy equation, often called viscous dissipation, describes the conversion of
kinetic into thermal energy and is often neglected, also in this work, indicated by the grayed-out
color.
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2.5.2 Surface behavior

In similar fashion as for the bulk the behavior of the dividing interfaces can be specified. The
model used in this work makes some rigorous assumptions. First, the surface is assumed to be
mass-less, i.e.,

ρΣ = 0. (2.50)

Based on this assumption the (material) derivatives of surface density, momentum and inner
energy vanish, as well as volume forces or radiant energy transfer acting on the interface. What
remains is to define the surface stress tensor and surface heat transfer. In Slattery et al. (2007,
p. 358ff.) the constitutive modeling of these is discussed in more detail. In this work the surface
stress is modeled as isotropic and inviscid as the special case of the more general Boussinesq
surface fluid (Slattery et al., 2007, p. 359) as

TΣ =
(
σ + λ̂Σ∇Σ ·

(
uΣ
))

PΣ + µΣ
(
PΣ · ∇Σu

Σ +∇Σu
ΣT ·PΣ

)
, (2.51)

introducing the surface tension σ, to gather asymmetric molecular interactions in the interface
region on the sharp dividing interface. Note the similarity to the modeling of stresses for a
Newtonian fluid Eq. (2.42). In this sense, surface tension on the interface plays a similar role to
pressure in the bulk. Heat (energy) flux on the surface is not taken into account:

qΣ = 0. (2.52)

With these assumptions and by recognizing that at any point of the surface the massflux from
either bulk phase to the interface is ṁ = ṁ(i) = ρ(i)(u(i)−uΣ) ·nΣ the surface continuity equation
becomes [[

ρ(u− uΣ) · nΣ
]]
= [[ṁ]] = 0. (2.53)

Using this result it is possible to simplify the surface momentum equation Eq. (2.29) to

−ṁ [[u]] +
[[
T · nΣ

]]
= −σκnΣ +∇Σσ. (2.54)

Equation (2.54) can be further divided into an interface normal and tangential part:

−ṁ
[[
u · nΣ

]]
+
[[(

T · nΣ
)
· nΣ

]]
= −σκ, (2.55a)

−ṁ
[[
PΣu

]]
+
[[
PΣ
(
T · nΣ

)]]
= ∇Σσ. (2.55b)

This presentation highlights the effect which further assumptions have on these jump conditions.
In the remainder of this work the σ is assumed to be constant. The interfaces are not necessarily
material (ṁ 6= 0) and no-slip between bulk phases is assumed (

[[
PΣu

]]
= 0, with the exception

of Section 7.2). Finally, the energy equation is investigated. Under the assumption of a mass-less,
non energy conducting interface Eq. (2.39) can be simplified to

−
[[
q · nΣ + ṁ

(
p

ρ
+ û+

1

2
(u− uΣ)2

)
− (u− uΣ) ·

(
µ(∇u+∇uT )

)
· nΣ

]]
= tr(TΣ · ∇Σu

Σ),

where the model for the bulk stress tensor is already inserted. The terms marked in gray are
neglected, as usually thermal effects and pressure-volume work are much greater than energy
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transfer associated with the bulk viscous or surface stresses. At last, the enthalpy ĥ = p/ρ+ û is
introduced to obtain the final form

−
[[
q · nΣ

]]
+ ṁ

[[
ĥ
]]

= 0. (2.56)

In the course of this work either a model for material interfaces is employed, in which case

−
[[
q · nΣ

]]
= 0, (2.57a)

[[T ]] = 0, (2.57b)

or a simple evaporation model, with a constant saturation temperature from either bulk phase at
the interface: [[

ĥ
]]

= ĥvap, (2.58a)

T = Tsat. (2.58b)

This model is motivated by considering equilibrium thermodynamics, were it is assumed, that
liquids and their vapor are in mechanical, thermal (and chemical) equilibrium at the interface.
More involved models take into account the pressure dependency of the local saturation tem-
perature, which in turn depends on the local curvature (Kelvin effect), interfacial thermal and
kinetic resistances (Schrage molecular-kinetic theory of evaporation), molecular forces (disjoining
pressure), especially at the contact line and other microscopic effects that may be relevant, see
e.g. (Marengo and Coninck, 2022; Rednikov and Colinet, 2013; Rednikov and Colinet, 2019,
p. 133ff.).

2.5.3 Line behavior

At last the line behavior needs to be specified. By assuming a negligible line density

ρL = 0, (2.59)

together with mass-less interfaces, the left-hand side (LHS) of the jump mass balance on common
lines Eq. (2.22) vanishes identically. By using Eq. (2.51) and assuming a non-existing line stress
tensor

TL = 0, (2.60)

the jump momentum balance on common lines Eq. (2.30) immediately transforms to((
σnL

))
= 0. (2.61)

Finally, it is assumed that no energy transfer takes place along the common lines, in which case
Eq. (2.40) gives ((

σ(uΣ − uL) · nL
))

= 0, (2.62)

which reduces to Eq. (2.61), when assuming
((
uΣ · nL

))
= 0. Throughout the remainder of this

work not three separate fluid phases are considered, but usually two fluids that may both be in
contact with a solid body. Furthermore, this solid is often times very rigid, and it may be helpful to
consider it non-deformable. In that special case one usually neglects the force balance normal to
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Figure 2.2: Left: Depiction of the Neumann triangle (Slattery et al., 2007, p. 127), i.e. Eq. (2.61),
for the section through the normal plane of a general three-phase contact line.
Right: A fluid-fluid interface intersecting a rigid solid. This situation is described by
Young’s equation (2.65).

the fluid-solid interfaces and restricts it to the solid-fluid interface tangential plane at the contact
line:

PS
((
σnL

))
= 0. (2.63)

This situation is depicted in Fig. 2.2. Here, A and B describe the fluid phases and S the solid.
Using the respective interfacial energies and normal vectors as shown in the figure Eq. (2.63)
reduced to (

σABnAB + σASnAS + σBSnBS
)
· nAS = 0, (2.64)

σAB cos(θstat) + σAS − σBS = 0, (2.65)

known as Young’s equation (Marengo and Coninck, 2022, p. 6). Thus, in a model with this
exact three phases it is sufficient to prescribe the fluid-fluid surface tension σ = σAB and static
contact-angle

θstat = cos
(
−σ

AS − σBS

σ

)−1

. (2.66)

2.6 Systems of equations

With the description of multiphase flows established up to this point we can specify the complete
form of the systems of equations we want to solve, using the numerical method described later in
Chapter 4. Even though this section might be a bit repetitive we want to take the time to write
the complete set of differential equations, interfacial jump conditions and boundary conditions
used for the different kinds of multiphase flows investigated in this work. To shorten the notation
it is not explicitly distinguished which phase a variable belongs to, in other words, u denotes the
bulk velocity in any phase, based on location x. Throughout the actual simulations performed
in this work usually exactly two fluid phases are considered. In that case A and B are used to
denote the respective partial domains, cf. Fig. 2.2.
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2.6.1 Material incompressible multiphase flow

The first type of flow to be considered is based on the modeling described in the section before.
However, the energy equation is not included in the final system and the phases are assumed to
not exchange mass, i.e., ṁ = 0 on Σ and therefore

uΣ · nΣ = u · nΣ. (2.67)

With this we are prepared to state the complete system of equations for the incompressible
mutliphase flow without masstransfer.

Definition 2.8 (Bulk equations). The governing bulk equations valid in each phase separated by
sharp dividing interfaces are

∇ · (u) = 0, (2.68a)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇ ·

(
∇u+∇uT

)
+ ρg. (2.68b)

Each phase defines its own variables u and p as well as material parameters ρ and µ.

Definition 2.9 (Interface equations). On the interface the jump conditions are reduced to[[
u · nΣ

]]
= 0, (2.69a)[[

T · nΣ
]]
= −σκnΣ +∇Σσ. (2.69b)

With the no-slip closure condition (Slattery et al., 2007, p. 160)[[
PΣu

]]
= 0. (2.70)

Definition 2.10 (Boundary conditions). Finally, it is necessary to prescribe appropriate boundary
condition (BC)s. This is done here by Robin type boundary conditions, in somewhat unconventional
notation, splitting the boundary condition in a normal and tangential part, using the projection
tensor P∂Ω = I− n∂Ω ⊗ n∂Ω:

P∂Ω
((
−pI+ µ

(
∇u+∇uT

))
n∂Ω − τ ∂Ω

)
= −βP∂Ω (u− s) , (2.71a)

n∂Ω ·
((
−pI+ µ

(
∇u+∇uT

))
n∂Ω − τ ∂Ω

)
= −βNn∂Ω · (u− s) . (2.71b)

This formulation allows to switch between a no-slip wall for β →∞ (resembling a Dirichlet type BC),
a prescribed shear stress β = 0 (resembling a Neumann type BC) or a Navier-slip boundary condition
(Robin type) else45. In boundary normal direction the same condition is given. However, usually
either βN → ∞ for an impermeable wall or βN = 0 for an outlet is used. Equation (2.65) stated
Young’s equation, as a result from the contact line momentum balance at an idealized rigid solid. In
this work the following condition, commonly referred to as generalized Navier boundary condition, cf.
4The boundary stress is always assumed to be τ ∂Ω = 0 in case of a Robin boundary condition.
5The tangential slip boundary condition in the solver is always combined with a Dirichlet boundary condition in
boundary normal direction.
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Gerbeau and Lelièvre (2009) and Smuda and Kummer (2021), is set as a boundary condition for the
interface:

σ(cos(θstat)− cos(θ)) = βL(u
Σ − s) · n̂L. (2.72)

The formulation introducing the contact line friction parameter βL enables us to either consider an
immobile contact line β →∞, disregarding the static contact angle completely, or a freely moving
contact line β = 0, always ensuring the dynamic contact angle follows the equilibrium value. The
augmented normal n̂L is normal to the contact line, and tangential to the rigid solid, i.e., nAS in the
right image of Fig. 2.2.

2.6.2 Incompressible multiphase flow with evaporation

Next, multiphase flow with mass transfer, due to evaporation, is considered. The systems in
question are still single component in the fluid phases. Now, the energy equation is included and
in general ṁ 6= 0. Therefore, the interface normal velocity evaluated from either phase is

uΣ · nΣ = u · nΣ − ṁ

ρ
. (2.73)

Definition 2.11 (Bulk equations). For the incompressible multiphase flow with evaporation the
bulk equations are

∇ · (u) = 0, (2.74a)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇ ·

(
∇u+∇uT

)
+ ρg, (2.74b)

ρĉ

(
∂T

∂t
+ u · ∇T

)
= k̂∇ · (∇T ) . (2.74c)

Each phase defines its own variables u, p and T as well as material parameters ρ, µ, ĉ and k̂. By
omitting the momentum and mass balance it is possible to include a solid phase in which only the
conjugate heat transfer is calculated.

Definition 2.12 (Interface equations). Taking into account the mass flux, the jump equations on
the interface are

[[
u · nΣ

]]
= ṁ

[[
1

ρ

]]
, (2.75a)

−ṁ [[u]] +
[[
T · nΣ

]]
= −σκnΣ +∇Σσ, (2.75b)[[

q · nΣ
]]
= ṁĥvap. (2.75c)

With the closure conditions [[
PΣu

]]
= 0, (2.76a)

T = Tsat. (2.76b)
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The last condition enforces saturation temperature on the interface, on which evaporation takes place.
On all other interfaces the jump condition[[

q · nΣ
]]
= −QΣ, (2.77a)

taking into account a possible heat source on the interface and closure

[[T ]] = 0 (2.77b)

are employed instead.

Definition 2.13 (Boundary conditions). At last the boundary conditions have to be specified.
These follow the same considerations as in Section 2.6.1, but extended by the appropriate boundary
condition for the temperature:

P∂Ω
((
−pI+ µ

(
∇u+∇uT

))
n∂Ω − τ ∂Ω

)
= −βP∂Ω (u− s) , (2.78a)

n∂Ω ·
((
−pI+ µ

(
∇u+∇uT

))
n∂Ω − τ ∂Ω

)
= −βNn∂Ω · (u− s) , (2.78b)(

k̂∇T · n∂Ω − q∂Ω
)
= −βT (T − T∂Ω) . (2.78c)

The parameter βT can be thought of as a thermal resistance of the boundary, switching between a
prescribed boundary temperature or heat flux 6. The boundary condition for the interface remains
unchanged:

σ(cos(θstat)− cos(θ)) = βL(u
Σ − s) · n̂L. (2.79)

2.6.3 Free surface flows

In Section 7.1 the modeling of the boundary condition for the dynamic contact angle will be
investigated. To this end a free surface flow is considered. This is a special case of the system
presented in Section 2.6.1, where only one “active” phase exists. This means the opposing phase
at the dividing interface has no influence on the “active” phase and the jump conditions are
exchanged for boundary conditions on the interface. Additionally, the flow equations are solved
quasi-stationary and are non-dimensionalized, introducing the Reynolds Re, WeberWe and Froude
Fr numbers

Re =
ρUL

µ
, (2.80)

We =
ρU2L

σ
, (2.81)

Fr =
U2

|g|L
. (2.82)

For completeness we state again the whole system of equations and boundary conditions.

6The heat flux is always assumed to be q = 0 in case of a Robin boundary condition.
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Definition 2.14 (Bulk equations). For the bulk equations of the single phase flow with moving
boundary we find7

∇ · (u) = 0, (2.83a)

−∇p+ 1

Re
∇ · (µ∇u) + g

Fr
= 0. (2.83b)

Definition 2.15 (Interface equations). On the interface the jump conditions are exchanged for
boundary conditions

PΣ
((
−pI+ µ

Re
∇u
)
nΣ
)
=

1

We
∇Σσ, (2.84a)((

−pI+ µ

Re
∇u
)
nΣ
)
· nΣ − σ

We
κ = βΣu · nΣ, (2.84b)

describing a fixed, immobile interface for βΣ → ∞ or a movable interface and constant pressure
environment when βΣ = 0

Definition 2.16 (Boundary conditions). On the boundary the same boundary conditions as before
are considered:

P∂Ω
((
−pI+ µ

Re
∇u
)
n∂Ω − τ ∂Ω

)
= −βP∂Ω (u− s) , (2.85a)

n∂Ω ·
((
−pI+ µ

Re
∇u
)
n∂Ω − τ ∂Ω

)
= −βNn∂Ω · (u− s) . (2.85b)

As we wish to investigate the influence of the modeling for the dynamic contact angle with this system,
the condition for this angle is not fully specified yet, but merely given in implicit form:

f(u, s, θ, θstat) = 0. (2.86)

7Here, the viscosity, surface tension and gravitational direction vector g are non-dimensional parameters of O(1) to
capture spatial variations in magnitude (and direction).
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3 Fundamentals of the extended discontinuous
Galerkin method

In Chapter 2, sets of partial differential equations describing multiphase flows are introduced.
To make predictions of the behavior of real fluids, one needs to find a strategy to solve these
equations for the dependent variables. In practice, it is rare to find a closed-form solution for
these equations, although possible in individual cases, cf. (Slattery et al., 2007). It is therefore
practicable to search for numerical schemes to obtain approximate solutions. The method of
choice for this work is the discontinuous Galerkin (DG) method. In context of the multiphase
flows investigated in this work, an extension of the DG method working on unfitted meshes, called
extended discontinuous Galerkin (XDG) method, is used. In the following sections, the main ideas
and principles behind the DG and XDG method will be presented. The presentation of the DG
method is heavily influenced by the works of Arnold et al. (2002), Di Pietro and Ern (2012), and
Dolejší and Feistauer (2015).

3.1 Discontinuous Galerkin essentials

To motivate the discussion of the DG method, consider the following example: The task at hand
is to calculate the movement of a droplet sitting on a flat plate (Fig. 3.1). The way one would
proceed is to first make an abstraction in selecting only a part of the real problem to be computed.
This selection is called the computational domain Ω and the task at hand is to solve the equations
discussed in Chapter 2 on this domain. Three questions one may ask are:

1. How to represent the sought-after variables?

2. How to calculate a specific solution for this representation?

3. How accurate is the prediction obtained in this way?

How to represent the sought-after variables? Now, to answer the first question two natural
choices arise. One could imagine to only compute a solution at discrete points, kind of in the way a
printer creates a document by depositing small droplets of ink that in their entirety give a complete
picture. Or one could try to represent the solution by computing functions defined over the whole
domain, the way a painter creates a picture with many continuous strokes. Before continuing to
answer the questions above it is therefore practical to introduce some formal definitions for the
function spaces, from which the solution functions are taken. The overall goal is then to find a
solution in some vector space, solving a weak (integral) form of the original partial differential
equation (PDE).
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Definition 3.1 (Inner product and induced norms). The Lp-norm of a function f : x ∈ Ω ⊂
RD → R is defined as (Di Pietro and Ern, 2012; Dolejší and Feistauer, 2015)

||f ||Lp(Ω) =

(∫
Ω

|f |p dV
) 1

p

. (3.1)

Of special significance is the L2-norm, which is induced by the inner product

〈f, f〉L2(Ω) =

∫
Ω

f · f dV = ||f ||2L2(Ω). (3.2)

The Sobolev norm and seminorm are defined as

||f ||Wm,p(Ω) =

 ∑
α∈Am

D

||∂αf ||pLp(Ω)

 1
p

, (3.3a)

|f |Wm,p(Ω) =

 ∑
α∈Am

D

||∂αf ||pLp(Ω)

 1
p

, (3.3b)

where the degree of the derivatives is controled by multi-index α:

AmD :=

{
α ∈ ND |

∑
i

|αi| ≤ m

}
, (3.4a)

A
m
D :=

{
α ∈ ND |

∑
i

|αi| = m

}
. (3.4b)

Note the special cases

||f ||W 0,p(Ω) = ||f ||Lp(Ω), (3.5a)
||f ||Hm(Ω) = ||f ||Wm,2(Ω). (3.5b)

Definition 3.2 (Lebesgue spaces). The Lebesgue space Lp(Ω) is the space that contains all functions
that are Lebesgue measurable:

Lp(Ω) :=
{
f : Ω→ R | ||f ||Lp(Ω) <∞

}
. (3.6)

When equipped with the inner product inducing the L2-norm, L2(Ω) is a Hilbert space (a special
form of a metric space) (Di Pietro and Ern, 2012). In this sense the L2-norm defines the length
of a function (over some domain Ω) in the same way the euclidean norm defines the length of a
vector in RD. In the later analysis, we will not rely on these spaces too much, but for completeness
we shall also give the definition of Sobolev spaces.

Definition 3.3 (Sobolev spaces). TheWm,p Sobolev space not only makes demands on the integra-
bility of a function, but also its derivatives. It consists of those functions that are part of Lp(Ω) and
whose derivatives up to degree m are also part of Lp(Ω):

Wm,p(Ω) := {f ∈ Lp(Ω) | ∀α ∈ AmD , ∂αf ∈ Lp(Ω)} . (3.7)
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Commonly used are the special cases

H1(Ω) :=W 1,2(Ω), (3.8a)
H2(Ω) :=W 2,2(Ω). (3.8b)

The DG method proceeds then by dividing the computational domain in many disjunct sub-
domains, called cells, and representing the sought-after solution in each of these cells as a linear
combination of a set of smooth, differentiable (usually polynomial) functions. In this sense the
solution is an element of one of the above vector spaces defined over the set of all cells, called the
mesh. This procedure is sketched in Fig. 3.1, assuming already a two-phase problem.

Definition 3.4 (Computational Mesh). Given a computational domain

Ω ∈ RD, (3.9)

a numerical mesh divides this domain into a non-overlapping set of cells that covers the complete
domain:

Kh := {K1, . . . ,KNK
} , Ki ∩Kj = ∅ for i 6= j, Ω =

⋃
i

Ki. (3.10)

In many circumstances, e.g. when Ω is polygonal and simply connected the mesh covers the domain
exactly. The set of all edges in the mesh is defined by the union of cell boundaries, which can be
distinguished by inner Γint and boundary edges Γout:

Γ :=
⋃
i

∂Ki = Γint ∪ Γout = {Γ1, . . . ,ΓNΓ
} , Γint = Γ \ ∂Ω. (3.11)

For piecewise continuous functions f ∈ C1(Kh \ Γ) and f ∈
(
C1(Kh \ Γ)

)D the broken gradient and
divergence operators are denoted by∇hf and∇h ·(f), such that they return exactly the usual gradient
and divergence on each cell, i.e., Kh \ Γ. Furthermore, a normal field is defined on Γ, complying with
the definitions of Section 2.1, see also Fig. 2.1. Finally, to shorten the later notation the integration
over the whole computational mesh and set of edges describes the following operations

∫
Kh

f dV =

NK∑
i=1

∫
Ki

f dV, (3.12a)

∫
Γ

f dS =

NΓ∑
i=1

∫
Γi

f dS, (3.12b)

in the same fashion the Lp-norm over the whole mesh follows

||f ||Lp(Kh) =

(
NK∑
i=1

||f ||pLp(Ki)

) 1
p

. (3.13)
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A

B

Figure 3.1: Rough sketch of the discretization procedure. From a physical process, here a few
droplets sitting on a plate (Newbry, 2017), some subdomain considering a single
droplet (and excluding all others) is selected. Then amesh is defined on this subdomain.
The interface is highlighted in red, the liquid domainA in white and the vapor (gas/air)
domain B in blue. In each background cell of the mesh a set of functions as the basis
for the DG solution is defined (lower picture small plots), which can be superposed to
obtain the cell-local solution (lower picture central large plot). For the XDG method
these functions are subsequently restricted to their respective phase using the interface
position (not shown in the picture).
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Definition 3.5 (Jump and average operators). In analogy to Definition 2.1 we define the jump
and average operators for an arbitrary function f on the edges of the mesh as

[[f ]] =

{
f− − f+ onΓint

f− onΓout
, (3.14a)

{{f}} =

{
1
2 (f

− + f+) onΓint

f− onΓout
. (3.14b)

The inner f− and outer f+ values are defined w.r.t. to the normal on the edge

f− := lim
ε→0

f(x− εnΓ) forx ∈ Γ, (3.15a)

f+ := lim
ε→0

f(x+ εnΓ) forx ∈ Γint. (3.15b)

Note that especially for Γk = ∂K− ∩ ∂K+ we find∫
∂K−∩∂K+

f− · n∂K− + f+ · n∂K+ dS =

∫
Γk

[[f · nΓk
]] dS, (3.16a)∫

∂K−∩∂K+

1

2

(
f− + f+

)
dS =

∫
Γk

{{f}} dS. (3.16b)

For the DG method, in each cell of the mesh a dependent variable is represented by a linear
combination of a set of basis functions. Each of these basis functions is weighted by a coefficient,
called a degree of freedom (DOF). In principle the choice of basis is completely free. In most cases,
also in this work, the space of polynomials of a certain degree is chosen.

Definition 3.6 (Polynomial spaces). The polynomial space PCk (Ω) contains all polynomials up to
total degree k:

PCk (Ω) :=
{
f ∈ L2(Ω) | f is polynomialwith deg(f) ≤ k

}
. (3.17)

The adjective “discontinuous” in the DG method describes, that a variable can have discontinuities
at the edges between cells. This motivates the definition of broken polynomial spaces as a space
of piecewise polynomial functions.

Definition 3.7 (Broken polynomial spaces). The broken polynomial space Pk(Kh) contains all
elements of the piece-wise polynomial spaces over all cells and is defined as

Pk(Kh) :=
{
f ∈ L2(Ω) | f |K ∈ PCk (K), ∀K ∈ Kh

}
. (3.18)

Finally, a specific basis can be chosen for these finite dimensional spaces:

basis(PCk (Ki)) := Φi = (Φi,1, . . . ,Φi,Nk
)T , (3.19a)

basis(Pk(Kh)) := Φ = (Φ1, . . . ,ΦNK
)T , (3.19b)

taking into account the number of basis polynomials Nk = (k +D)!/(k!D!) (Di Pietro and Ern,
2012). There is an infinite number of specific bases that may be chosen. In practice, often either
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a modal or nodal basis is used, where in this work a modal basis is employed. For the first kind
the basis polynomials satisfy

〈Φi,n,Φi,m〉L2(Ki)
= δnm =

{
1, n = m

0, n 6= m
, (3.20)

whereas a nodal basis is defined by

Φi,n(xi,m) = δnm =

{
1, n = m

0, n 6= m
, (3.21)

at a set of distinct points xi,m ∈ Ki (Marsden et al., 2008).

In Fig. 3.1, the following steps to represent a specific variable in the DG space are outlined. First,
a computational domain is selected as a subdomain of the complete environment. Next, a mesh is
defined on this domain. Finally, on each cell a set of basis functions is specified, here exemplary
done for one cell. A discrete representation of a variable (e.g. fluid velocity) fh ∈ Pk(Kh) is then
given by the scalar product of a time-dependent DOF vector f̂ ∈ RNK×Nk and the basis functions:

fh(t,x) = f̂(t) ·Φ(x) =

NK∑
i=1

f̂ i(t) ·Φi(x) =

NK∑
i=1

Nk∑
j=1

f̂i,j(t)Φi,j(x). (3.22)

How to calculate a specific solution for this representation? Now, that it is defined how a
variable can be represented on the domain, it must be determined how a specific solution based
on a PDE can be computed. Before considering a PDE, first consider the optimal approximation
inside a given broken polynomial space of any function f ∈ L2(Ω) by fI ∈ Pk(Kh). This optimality
condition can be interpreted as minimizing the distance between f and fI . Which means

minfI∈Pk(Kh)
1

2
||f − fI ||L2(Kh), (3.23)

when choosing the L2-norm to compute this distance. It is immediately clear, that this distance is
minimal iff the deviation f − fI is orthogonal to the ansatz space Pk(Kh):

〈f − fI , v〉L2(Kh)
= 0, ∀v ∈ Pk(Kh). (3.24)

The heuristic approach to DG is to now apply this projection to the residual of some initial value
problem governed by a PDE. I.e. given a PDE

L (f) = 0 (3.25)

the goal is to minimize the residual w.r.t. the ansatz space of the approximate solution fh ∈ Pk(Kh):

〈L (f)− L (fh), v〉L2(Kh)
= 〈−L (fh), v〉L2(Kh)

= 0, ∀v ∈ Pk(Kh). (3.26)

Of course this is not the complete truth but this sketch outlines the idea behind DG very well. To
actually apply a DG method a few more steps are necessary. This includes the introduction of
numerical fluxes in order to couple the cell-wise solutions and ensure certain properties of the
discrete forms. Also it is still undefined how boundary conditions are enforced. An example for
the DG discretization of Poisson’s equation is given towards the end of this section.
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How accurate is the prediction obtained in this way? The last question is, how good this method
actually works. There are two different approaches to answer this question. As a first option,
a-priori error analysis (Di Pietro and Ern, 2012; Dolejší and Feistauer, 2015) aims to give an
upper bound of the error before computing a solution. As such it only depends on properties of
the (unknown) exact solution to the problem and the discretization, e.g.

||f − fh||L2(Kh) ≤ F (Kh, k, f) . (3.27)

A-posteriori error analysis (Di Pietro and Ern, 2012) does the opposite and tries to give upper and
lower bounds of the error after a numerical solution has been found. Its predictions depend on
properties of the numerical solution, discretization and potentially the source terms g:

||f − fh||L2(Kh) ≤ E (Kh, k, g, fh) ≤ C||f − fh||L2(Kh). (3.28)

Usually, there exists a cell-local expression for the error estimator E , such that it can be used to
locally refine the mesh or polynomial degree to ensure a certain error threshold. In this work, no
posterior estimates are used and we focus on the a-priori estimates to highlight a few properties
of the DG method. The analysis for these kind of estimates is very complex and depends on many
details, e.g. what kind of mesh is used (triangles, hexahedrals etc.), how does the PDE look
like (linear/non-linear) or which fluxes are used. Therefore, it is beyond the scope of this work
to answer this question to full extend. However, to underline one key advantage one hopes to
achieve in employing a high-order method like DG, we want to discuss an elemental result of
functional analysis regarding polynomial approximations.

Definition 3.8 (Bramble-Hilbert Lemma). The Lemma of Bramble-Hilbert, see e.g. (Dolejší and
Feistauer, 2015, Theorem 2.18), gives a bound for the projection error (on convex domains), when
fI ∈ PCk (K) is the projection of f and k ≤ n− 1:

|f − fI |Wm,p(K) ≤ Chn−m|f |Wn,p(K), (3.29)

the measure h denotes the diameter of the cell. For the special case n = k + 1 this becomes

|f − fI |Wm,p(K) ≤ Chk+1−m|f |Wk+1,p(K), (3.30a)

and when choosing m = 0
||f − fI ||Lp(K) ≤ Chk+1|f |Wk+1,p(K), (3.30b)

or p = 2
|f − fI |Hm(K) ≤ Chk+1−m|f |Hk+1(K). (3.30c)

Assuming a uniform diameter for all cells in the grid, it follows from Definition 3.8 and Eq. (3.13)
that for the projection (3.24)

||f − fI ||L2(Kh) ≤ Ch
k+1|f |Hk+1(Kh)

. (3.31)

This result may seem abstract at first, but gives quite a few insights into the expected performance
of the DG method. First, it should be clear that the error between numerical and exact solution
cannot be better than the projection error of the exact solution onto the approximation space.
In that regard an a-priori analysis is called optimal if it gives a similar upper bound of the
error in terms of the factor hk+1. Second, this scaling factor predicts the convergence slopes
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we expect when the method performs optimal. Higher approximation degrees mean a higher
convergence order under refinement of the mesh, which makes DG methods very efficient w.r.t. to
the achievable accuracy in relation to the total number of degrees of freedom (DOFs). Third, the
highest guaranteed convergence order depends on the regularity of the (usually unknown) exact
solution. In this work often times f ∈ H2(Ω), as the PDEs in focus are of second order, compare
Section 2.6. We will see later in Section 6.3 that it is not immediately clear how smooth a solution
is which heavily depends on the prescribed boundary conditions.
To estimate the actually obtained convergence order in practice, a simulation may be repeated on
different grids to estimate the errors. By computing the regression of the errors as a function of
grid size the convergence order can be calculated. If available, the exact solution to the problem
is used. However, often an exact solution is not known. In that case, the result computed on the
finest grid is used to compute the error estimates on all other grids, in which case the experimental
order of convergence (EOC) is measured.

A brief example - SIP To give more insight how the DG discretization for the equations in
Section 2.6 can be obtained, we want to give a brief example on how the DG method solves the
Poisson problem

−∇ · (µ∇u) = g on Ω, (3.32a)
u = uD on ∂ΩD, (3.32b)

µ∇u · n∂Ω = uN on ∂ΩN . (3.32c)

The assumption of a continuous right-hand side (RHS) g ∈ C0(Ω), sufficiently smooth and
differentiable boundary values uD, uN and parameter µ ∈ C1(Ω) implies, that we are looking for
a at least two times continuously differentiable solution u ∈ C2(Ω). First, Eq. (3.32) is multiplied
by a test-function v ∈ H1(Ω) and integrated over the whole domain, to obtain the variational
form, sometimes called strong-weak form,∫

Ω

−∇ · (µ∇u) v dV =

∫
Ω

gv dV ∀v ∈ H1(Ω). (3.33)

Note, how this step softens the requirements of the solution, as Eq. (3.33) does not need to
be fulfilled at every point but only in an integral sense, i.e., u ∈ H2(Ω) can be assumed. Next,
integration by parts is applied to obtain the continuous weak formulation∫

Ω

µ∇u · ∇v dV +

∫
∂Ω

−µ∇u · n∂Ωv dS =

∫
Ω

gv dV ∀v ∈ H1(Ω), (3.34)

weakening the solution requirements even further to u ∈ H1(Ω). The boundary conditions can
now be incorporated by directly replacing the flux on the boundary with the correct Neumann
value, while weakly enforcing the Dirichlet boundary condition through a penalty (Arnold et al.,
2002)∫

Ω

µ∇u · ∇v dV +

∫
∂ΩN

−uNv dS +

∫
∂ΩD

η(u− uD)v dS =

∫
Ω

gv dV ∀v ∈ H1(Ω). (3.35)

Now, we switch to the discrete setting by introducing a mesh for the domain and consider the
piecewise continuous functions u, v ∈ H2(Kh), defined by

H2(Kh) :=
{
f ∈ L2(Ω) | u|K ∈ H

2(K) ∀K ∈ Kh
}
. (3.36)
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As is customary for a Galerkin method, in this work these ansatz and test functions are elements
of the same space, though more generally they may be chosen from different spaces which is
then commonly referred to as a Petrov-Galerkin method. Then the integration by-parts formula
introduces cell boundary contributions, that can be collected by applying Eq. (3.16a), so that the
discrete weak-formulation becomes∫

Kh

µ∇u · ∇v dV +

∫
Γ

[[
−µ∇u · n∂Ωv

]]
dS =

∫
Kh

gv dV ∀v ∈ H2(Kh). (3.37)

However, Eq. (3.37) is not well-posed, as it does not possess a unique solution. For example a
solution may be shifted by an arbitrary constant in an inner cell and still be a valid solution to
Eq. (3.37), one can think of the cells not being coupled together yet. To ensure well-posedness,
i.e., the problem possesses a unique solution that changes continuously w.r.t. initial and boundary
conditions, the crucial step in a DG scheme is to replace the second term on the LHS in Eq. (3.37)
by a suitable numerical flux. A popular choice for this example, and also employed in this work
for the Laplacian term, is the symmetric interior penalty (SIP) flux, see Arnold et al. (2002), Di
Pietro and Ern (2012), and Dolejší and Feistauer (2015):∫

Kh

µ∇u · ∇v dV +

∫
Γ\∂ΩN

−
{{
µ∇u · nΓ

}}
[[v]]−

{{
µ∇v · nΓ

}}
[[u]] + η [[u]] [[v]] dS

=

∫
Kh

gv dV +

∫
∂ΩD

−
(
µ∇v · nΓ

)
uD + ηuDv dS +

∫
∂ΩN

uNv dS ∀v ∈ H2(Kh).

(3.38)

By collecting the RHS in a bilinear form Eq. (3.38) can be rewritten:

asip(u, v) = s(v). (3.39)

The motivation of this specific choice of flux is multifold. The consistency term
{{
µ∇u · nΓ

}}
[[v]]

ensures that a solution to Eq. (3.32) is also a solution of Eq. (3.38). The symmetry term{{
µ∇v · nΓ

}}
[[u]] preserves the identity asip(u, v) = asip(v, u), which can be used to show a

property of the bilinear form called adjoint consistency. In analogy to how the Dirichlet boundary
conditions are incorporated, the penalization η [[u]] [[v]] of jumps on the edges weakly enforces
continuity of the solution. For the right choice of penalty parameter, usually scaling inversely with
the mesh width, boundedness and coercivity of asip(u, v) can be proven. These specific features
(adjoint consistency, boundedness, coercivity) are mandatory to prove solvability, error estimates
and stability of the method (Arnold et al., 2002; Di Pietro and Ern, 2012; Dolejší and Feistauer,
2015). At last, the specific DG ansatz can be inserted. By choosing uh acccording to Eq. (3.22),
i.e., searching for a solution vector ûh for the DOFs, and calculating the integrals for every basis
function vh ∈ Pk(Kh) a system of linear equations can be constructed:

Aûh = b. (3.40)

Each column in the operator matrix A corresponds to a DOF in the ansatz and each row to a basis
function spanning the space Pk(Kh). Every row of the RHS vector b is given by evaluating the
RHS of Eq. (3.39) for a single test function.

3.2 Unfitted methods

In Section 3.1, we introduced the principles of the conventional DG method, which is suitable to
solve single phase equations. However, the problems regarded in this work often contain more than
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a single phase. Therefore, the discretization scheme has to be extended to take multiple phases,
their dividing interfaces and common lines into account. To this end, two major adjustments
are necessary. First, the representation of variables has to take the phase wise nature of the
multiphase problem into account. Second, the coupling through fluxes at the dividing interfaces
has to consider the interfacial equations defined in Section 2.6. To achieve these goals, we utilize
the XDG method proposed by Kummer (2017) and Smuda and Kummer (2021), following the
ideas presented by Mos et al. (1999) and Bastian and Engwer (2009). To consider all present
distinct phases these methods cut the static background mesh into parts, based on the interface
position. As thereby cells of arbitrary shape and size can occur a method of this type is called
“unfitted” or in our case “extended”. In this section the necessary adaptions to the mesh and
solution spaces are presented, and the extension to the DG method is applied to the Poisson
problem.

Extended approximation spaces As before, the first task is to define a representation for the
solution variables, which respects the existing phases.

Definition 3.9 (Phase-cells and cut-cell mesh). As defined by Kummer (2017) the domain of the
problem under investigation may be divided into several (potentially time-dependent) sub-domains
s(t) =

{
Ω(1)(t), . . . ,Ω(NΩ)(t)

}
called phases or species. These subdomains are disjunct and their

union forms the original domain. Each cell of the numerical mesh Kh from Definition 3.4 is then
divided into several time-dependent phase-cells

KX
i,Ω(j)(t) := Ki ∩ Ω(j)(t). (3.41)

The union of all these phase-cells defines the cut-cell mesh

KX
h(t) :=

{
KX

1,Ω(1)(t), . . . ,K
X
1,Ω(NΩ)(t), . . . ,K

X
NK ,Ω(1)(t), . . . ,K

X
NK ,Ω

(NΩ)(t)
}
. (3.42)

A phase-cell may be empty in which case the corresponding species is not present in the respective
background cell. If a background cell contains more than one species it is called a cut-cell, otherwise
the background cell is equal to the only present phase-cell, i.e.,

KX
i,Ω(j)(t) = Ki if KX

i,Ω(k)(t) = ∅, ∀Ω(k) ∈ s \ Ω(j). (3.43)

Now, cell boundaries occur not only between cells of the background mesh, but also between phase-cells
within a cut-cell. This means the set of all inner edges is now understood to contain as well the
separating interfaces between phases.

With the definition of the cut-cell mesh at hand, the approximation spaces can be extended as
well.

Definition 3.10 (Broken cut-polynomial Spaces). In principle the XDG method is a DG method
defined on this cut-cell mesh. Thus, a natural definition for the broken cut-polynomial space used as
the extended approximation space is

PX
k(K

X
h(t)) :=

{
f ∈ L2(Ω) | f |K ∈ PCk (K), ∀K ∈ KX

h(t)
}
. (3.44)

Note the theoretical maximum number of DOFs is dim(PX
k(K

X
h(t))) = NΩ ∗NK ∗Nk, which can be

reduced in the application of the method by disregarding empty phase-cells.
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Figure 3.2: Separation of the basis displayed in Fig. 3.1 into two phase-wise bases along the
interface, visible as a red line. On the left the basis for the gaseous phase is displayed
and on the right for the liquid phase.

To conclude the considerations of these extended approximation spaces, we present how to choose
a basis for these broken cut-polynomial spaces. Making use of the basis on the uncut mesh (3.19a)
and by restricting the basis to the respective phase we find:

basis(PX
k(K

X
h(t))) = ΦX =

(
ΦX

1,Ω(1) , . . . ,Φ
X
1,Ω(n) , . . . ,Φ

X
NK ,Ω(1) , . . . ,Φ

X
NK ,Ω(n)

)T
, (3.45a)

ΦX
i,Ω(j) = ΦiXi,Ω(j)(t,x), (3.45b)

Xi,Ω(j)(t,x) =

{
1, x ∈ KX

i,Ω(j)(t)

0, else
. (3.45c)

A visual example for such a cut-cell basis is displayed in Fig. 3.2.

The extension to XDG - SIP Apart from the formal extension from the DG to XDG spaces, it is
also necessary to adapt the discretization at the interfaces. In order to give an example for this we
reconsider the Poisson problem (3.32) in the context of multiple phases. The parameter µ may
change discontinuously across phase boundaries. In addition, it may not be desirable to enforce
continuity in the variable and flux at the interfaces but jump conditions in the following form
(Rieckmann et al., 2023e), compare also the jump conditions given in Section 2.6:

[[u]] = f1, (3.46a)[[
µ∇u · nΣ

]]
= f2. (3.46b)
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The question is then, how can these be incorporated? To show a heuristic derivation of the
necessary extensions, integration by parts is applied again to Eq. (3.38):∫

Kh

−∇ · (µ∇u)∇v dV

+

∫
Γ\∂ΩN

−
{{
µ∇u · nΓ

}}
[[v]]−

{{
µ∇v · nΓ

}}
[[u]] + η [[u]] [[v]] dS +

∫
Γ

[[
µ∇u · nΓv

]]
dS

=

∫
Kh

gv dV +

∫
∂ΩD

−
(
µ∇v · nΓ

)
uD + ηuDv dS +

∫
∂ΩN

uNv dS.

(3.47)
After summarizing terms and sorting after separate edges, we obtain∫

Kh

−∇ · (µ∇u)∇v dV︸ ︷︷ ︸
(1)

+

∫
∂ΩD

−
(
µ∇v · nΓ

)
u+ ηuv dS︸ ︷︷ ︸

(2)

+

∫
∂ΩN

µ∇u · nΓv dS︸ ︷︷ ︸
(3)

+

∫
Γint\Σ

[[
µ∇u · nΓ

]]
{{v}} −

{{
µ∇v · nΓ

}}
[[u]] + η [[u]] [[v]] dS︸ ︷︷ ︸

(4)

+

∫
Σ

[[
µ∇u · nΓ

]]
{{v}} −

{{
µ∇v · nΓ

}}
[[u]] + η [[u]] [[v]] dS︸ ︷︷ ︸

(5)

=

∫
Kh

gv dV︸ ︷︷ ︸
(1)

+

∫
∂ΩD

−
(
µ∇v · nΓ

)
uD + ηuDv dS︸ ︷︷ ︸

(2)

+

∫
∂ΩN

uNv dS︸ ︷︷ ︸
(3)

.

(3.48)

The goal is to obtain a consistent final discretization, in the context of this example this means
that a solution to Eqs. (3.32) and (3.46) also solves the discrete form (3.48) exactly. By inserting
such a solution into Eq. (3.48), the (1)-terms vanish as the bulk equation is fulfilled, the same
applies to the (2) and (3) terms as the solution abides to the boundary conditions. Due to the
continuity of the solution, the jumps on inner edges, excluding the interfaces, equate to zero
and the (4)-term vanishes as well. Thereby, only the (5)-term is left and it becomes visible which
correction to the RHS is necessary to obtain a consistent discretization:∫

Σ

[[
µ∇u · nΓ

]]
{{v}} −

{{
µ∇v · nΓ

}}
[[u]] + η [[u]] [[v]] dS

=

∫
Σ

f2 {{v}} −
{{
µ∇v · nΓ

}}
f1 + ηf1 [[v]] dS.

(3.49)

The same consideration is followed in the next chapter to obtain the XDG discretization for the
combinations of bulk equations and jump conditions presented in Section 2.6.

3.3 Summary of the XDG method

To summarize briefly, the XDG method is very similar to the conventional DG method. However,
in the design of the method two important differences arise. First, the method finds solutions
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on the unfitted cut-cell mesh. Second, the fluxes on the phase interfaces have to be adapted to
account for the physically motivated jump conditions, not necessarily preserving continuity in the
solution variables.
To conclude this presentation we want to emphasize the main reasons that motivate the pursuit
of this high order XDG method. First, the expected high convergence order proportional to hk+1

makes it possible to the same or higher accuracy with less DOFs than in a low order method.
Less DOFs means smaller systems and computationally more affordable solutions. Secondly,
the discontinuities between cells allow for a relatively easy parallelization of the method when
compared with continuous Galerkin methods. Also as no globally continuous basis has to be
constructed mesh refinement and local adaption of polynomial degree are straight-forward.
However, these topics are not further discussed within this work. Thirdly, the usage of the cut-cell
structure with the XDG bases conforming to the interface position makes it possible to obtain a
polynomial approximation of the solution right up to the interface. Thereby, solution variables
and their derivatives are obtained at the interface without the need for additional reconstruction.
The evaluation of these quantities is necessary to conform to the physical jump conditions.
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4 Numerical solution of conservation laws with
the extended discontinuous Galerkin method

In Chapter 3 the operation principle and fundamentals of the spatial DG and XDG discretization
are introduced. However, these methods only build up the core of a complete numerical scheme
designed to obtain solutions for the PDEs presented in Section 2.6. To obtain a complete solver,
additional auxiliary algorithms and methods are needed, which are described in this chapter.
The representation of the numerical scheme at this point extends that from Rieckmann et al.
(2023e). In Section 4.1 the abstract spatial discretization of the systems presented in Section 2.6
is introduced. The methods to evaluate the integrals arising in this abstract discretization are then
established in Section 4.2. In addition to the discretization of the fluid equations, a description for
the interface is needed. This is handled by the level set method, which is presented together with
the scheme to evolve the level set in time in Section 4.3. To finally obtain a completely discretized
system the temporal derivatives need also to be discretized. The methods used for this purpose
and also the coupling between level set and fluid solution are presented in Section 4.4. After
all these steps, one is left with a non-linear or linear system of equations, for which the solution
methods are presented in Section 4.5.

4.1 Spatial discretization

In Chapter 3 the fundamentals of the XDG discretization are presented. There the notion of a
bilinear form and retrieval of a linear algebraic system for a Poisson problem is discussed. In
this section this procedure is applied to the systems of equations presented in Section 2.6, by
specifying the appropriate solution spaces and a complete representation of the spatially discrete
problem in terms of linear, bilinear, trilinear and non-linear forms.
In Section 2.6 BCs are introduced in a mixed form, able to represent the limiting cases of Dirichlet,
Neumann and Robin BCs (e.g. Definition 2.13). Numerically these have to be treated differently,
which is why the boundary is distinguished by different parts, depending on the value of the
respective “slip” parameter β:

∂Ω =


∂ΩD β →∞
∂ΩN β = 0

∂ΩR else
. (4.1)

In Section 3.2 the subscript “h” was used to mark an approximate solution. For simplicity, this
subscript is dropped from here on, with the understanding that such approximate solutions and
corresponding test functions are implied.
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4.1.1 Material incompressible multiphase flow

The first considered system of equations is that of incompressible multiphase flow with material
interfaces Section 2.6.1, i.e., without evaporation. In that case, we want to find a solution

(u, p) ∈ VX
k,1 :=

(
PX
k(K

X
h(t))

D × PX
k−1(K

X
h(t))

)
(4.2)

such that
m(u,v)︸ ︷︷ ︸
ρ ∂u

∂t

+ c(u,u,v)︸ ︷︷ ︸
ρu·∇u

+ b(p,v)︸ ︷︷ ︸
∇p

− b(q,u)︸ ︷︷ ︸
−∇·(u)

+ a(u,v)︸ ︷︷ ︸
−µ∇·

(
∇u+∇uT

)
= s(v, q)︸ ︷︷ ︸
ρg,∇Σ·

(
σPΣ

) ∀ (v, q) ∈ VX
k,1.

(4.3)

The terms in the underbraces in Eq. (4.3) show which component from the orginal PDE is
discretized in which form, and a complete expansion in integral form is given in Appendix A.1.
The designations of m as temporal, c convective, b pressure gradient and velocity divergence, a as
viscous or diffusive and s as source and boundary term for the individual forms can be found in
this classification. The polynomial order for the pressure is chosen of one order lower than for
the velocity as described in Eq. (4.2). This mixed-order discretization is chosen to stabilize the
scheme and follows along the lines of the well-known Checker-Board instability, see (Di Pietro
and Ern, 2012, p. 266ff.).
The discretization of the surface tension diplayed in is obtained by applying the surface divergence
theorem (Definition 2.6) to the divergence of the surface stress tensor (weighted by the test
functions):∮

Σ

∇Σ ·
(
σPΣ

)
· {{v}} dS =

∮
Σ

−σPΣ : {{∇Σv}} dS +

∮
Σ∩(Γ)

σ
{{
tΣ
}}
· [[ {{v}}]] , (4.4)

on the intersection of the interface with edges of the mesh a central flux is applied for the coupling
between parts of the interface located in neighboring cells. The averages of the test function
( {{v}} and {{∇Σv}}) are taken over the interface (from both phases), while all other jumps and
averages denote the cell-wise jumps/averages. The vector tΣ is defined in Eq. (A.15).

4.1.2 Incompressible multiphase flow with evaporation

In the second considered system of equations from Section 2.6.2, evaporation and the energy
balance are considered. Thereby, the temperature is included in the sought-after solution variables.
For the new solution space we define

(u, p, T ) ∈ VX
k,2 :=

(
PX
k(K

X
h(t))

D × PX
k−1(K

X
h(t))× PX

k(K
X
h(t))

)
(4.5)

such that
m((u, T ), (v, r)) + c(u, (u, T ), (v, r)) + b((p, T ),v)

−b(q, (u, T )) + a((u, T ), (v, r)) + d(T,v)

=s(v, q, r) ∀ (v, q, r) ∈ VX
k,2.

(4.6)
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As the inclusion of evaporation means the interfaces may no longer be material and jumps in
interface normal velocity can occur, most fluxes on the interface have to be modified. The
expanded integral forms and necessary modifications from the implementation for material flows
are shown in Appendix A.1. In Eq. (4.5) the same order for the velocity and temperature solution
is chosen. In Section 6.3 a case study is considered, which implies this equal order approach to
be sub-optimal. Nevertheless, the finding requires verification through additional tests and was
obtained after the simulations for this work had already been conducted.
Compared with Eq. (4.3) one additional term, d(T,v), arises in Eq. (4.6). This term discretizes
the recoil pressure, see Eq. (2.75), which is physically connected to convection at the interface,
but numerically (partially owed to the employed splitting scheme Section 4.4) not treated in the
other forms.

4.1.3 Free surface flow

The difference of the last model in focus, the free surface flow from Section 2.6.3, to the material
incompressible multiphase flow is very nuanced. First, a simplified system is considered, in which
the temporal and convective terms are omitted. Secondly, the definition of the solution spaces
differs, as now a solution is sought in one phase only, i.e., on the augmented mesh

K̄h
X
(t) =

{
KX

1,Ω(1)(t), . . . ,K
X
NK ,Ω(1)(t)

}
, (4.7)

containing only the phase-cells of one phase. Thirdly, the boundary conditions of the interface are
altered, as an opposing phase is missing. Finally solutions

(u, p) ∈ VX
k,3 :=

(
PX
k(K̄h

X
(t))D × PX

k−1(K̄h
X
(t))
)

(4.8)

to the discrete system

b(p,v)− b(q,u) + a(u,v)

=s(v, q) ∀ (v, q) ∈ VX
k,3

(4.9)

are sought.

For completeness, the expansion in integral form is given in Appendix A.1. To shorten and
unify the notation there with the implementation of the other two systems of equations, the
dimensionless numbers are not explicitly mentioned.

4.2 Integrand evaluation

In Section 4.1 the solution of the flow equations of Section 2.6 is presented in a spatially discrete
form as a sequence of integrals. In the implementation of the method, these integrals over
volumes, surfaces and lines must be evaluated numerically. This evaluation is done with respect
to a mapping from any cell of the grid to a reference cell.
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4.2.1 Transformations

For each cell in the mesh a transformation from a reference element K∗ :=
{
ξ ∈ [−1, 1]D

}
(Kummer and Müller, 2021), to the physical cell Ki is defined as

T i : K
∗ → Ki, x = T i(ξ). (4.10)

The Jacobian of this transformation is
Ji =

∂T i

∂ξ
, (4.11)

and can be used to transform volume integrals∫
Ki

f(x) dV =

∫
K∗
f(T i(ξ))det(Ji)(ξ) dV ∗, (4.12)

and gradients, with ∇∗ = ∂(.)/∂ξ:

∇f(x) = J−1
i ∇

∗f(T i(ξ)). (4.13)

Surface integrals can be transformed by introducing additional face transformations from a
reference face F ∗ :=

{
η ∈ [−1, 1]D−1

}
to the respective face of the reference cell:

T F : F ∗ → ∂K∗, ξ = T F (η). (4.14a)

This allows to construct the metric

g = det
(
∂T F

∂η

T

JTi Ji
∂T F

∂η

)
, (4.15)

and finally transform surface integrals:∫
∂Ki

f(x) dS =

∫
F∗
f(T i(T F (η)))g dS∗. (4.16)

In this work, basis functions that are orthonormal in the physical cell are used exclusively, and
can be retrieved through a linear combination of orthonormal reference basis functions:

Φi,n = Φ∗
sBi,ns. (4.17)

The orthonormalization matrix B is obtained by performing the Cholesky factorization of an
intermediate mass matrix (Kummer and Müller, 2021):

δnm =

∫
Ki

Φi,nΦj,n dV =

∫
K∗

Φ∗
sBi,snΦ

∗
tBi,tm det(Ji)(ξ) dV ∗ (4.18a)

= Bi,sn︸︷︷︸
BT

i

∫
K∗

Φ∗
sΦ

∗
t det(Ji)(ξ) dV ∗︸ ︷︷ ︸

M∗
i

Bi,tm︸ ︷︷ ︸
Bi

,

M∗
i = QT

i Qi, (4.18b)
Bi = Q−1

i . (4.18c)

In case of a purely linear transformation, the determinant of the Jacobian matrix is constant and
Bi = I/

√
det(Ji). In this way, all integral and DG field evaluations can be pulled back to an

evaluation of the reference basis on the reference element and appropriate transformation to the
physical cell.
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B

Figure 4.1: Visualization of the cut-cell mesh. The domain from Fig. 3.1 is discretized by a
fixed background mesh. The interface divides cells containing both phases into two
phase-cells. The two hatched cells exemplify small phase-cells, which need to be
agglomerated to an appropriate neighbor.

4.2.2 Quadrature and cut-cell quadrature

For the construction of the discrete system, it is necessary to evaluate the forms in Section 4.1 on
the cut-cell mesh, shown e.g. in Fig. 4.1. This can be done by constructing appropriate quadrature
rules on the individual cut-cells, which discretize the evaluation of volume, surface and line
integrals using a set of quadrature nodes ξi and weights wi, i.e.,∫

K∗
f(ξ) dV ∗ ≈

∑
i

f(ξi)wi. (4.19)

This numeric evaluation of the integrals is performed on the reference elements by the procedure
described in the previous section. On affine linear uncut cells of the background mesh, the
common Gauss-Legendre quadrature rules are employed, with order 3k if convection is involved
and 2k else. For curved cells the order of the transformation must be taken into account as well.
For the cut-cells augmented quadrature rules, taking into account the interface position, have to be
constructed for each contained phase-cell. In this work, the procedure suggested by Saye (2015) is
employed. The basic idea behind that scheme is, analogous to the transformation from reference
to background cell, to construct a transformation from a reference to the phase-cell by expressing
the interface as a graph over a cell face. This may require a recursive subdivision of the cut-cell.
Finally, the so-found transformation for each of the subdivided parts is applied to a standard
Gauss-Legendre quadrature rule defined on the reference cell. Details of the implementation, as
well as an extension for handling of cut-cells that are divided by multiple level sets can be found
in the work of Beck and Kummer (2023). It should be noted that at the time of this writing the
handling of curved cut-cells is not yet implemented in the code.
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4.2.3 Handling of small phase-cells

In the handling of the cut-cell mesh a problem arises when phase-cells become very small, as
displayed in Fig. 4.1. In such cases, the discrete system may be poorly conditioned, which impairs
its solvability. To remedy this problem a cell agglomeration is performed, merging small phase-
cells, indicated by the the volume fraction αj,Ω(i) = Vol(KX

j,Ω(i))/Vol(Kj), to a suitable neighbor
cell. For all simulations in this work agglomeration is performed for phase-cells where αj,Ω(i) < 0.1.
Additional details on the implementation of this procedure can be found in (Smuda, 2021) and
(Toprak et al., 2024). In essence, cell agglomeration is a change of approximation basis. Such
changes of basis are employed multiple times during the solution procedure to achieve a better
condition of the discrete system, like here and in Section 4.5, or to handle the time evolution of
the interface and possible changes in cut-mesh topology, see Section 4.4.1.

4.2.4 Operator evaluation

Using the so-defined process of numerical integration it is possible to evaluate the abstract operators
defined in Section 4.1 for a specific solution guess and a single test function. As such a guess does
not usually solve the discrete problem, the residual is obtained. For Eq. (4.3) this becomes

r(u, p) = m(u,v) + c(u,u,v) + b(p,v)− b(q,u) + a(u,v)− s(v, q). (4.20)

The residual for the other systems introduced in Section 4.1 follows analogously. By repeating
this evaluation for all test functions, i.e., all basis polynomials according to Eq. (3.45), ΦX

i ∈
basis(PX

k(K
X
h(t))

D) and ΨX
i ∈ basis(PX

k−1(K
X
h(t))), and expanding the solution in terms of the DOF

vectors û and p̂, see Eq. (3.22), the residual vector can be expressed as

r(t, û, p̂) =

(
Mu(t) 0

0 0

)
∂

∂t

(
û
p̂

)
+ op (t, û, p̂) + af(t). (4.21)

In Eq. (4.21) three contributions can be identified. The temporal term is linear with respect to
the DOFs, which is why they can be pulled out of the integral to obtain the mass matrix

Mu :=Mu,i,j = m(ΦX
j ,Φ

X
i ). (4.22)

The XDG basis functions are generally time-dependent. However, owing to the splitting scheme the
interface is assumed fixed during a time-step of the flow solution, which is why the time derivative
of the XDG basis is neglected, cf. Section 4.4.1. The operator vector bundles all other terms,
excluding their affine contributions (that is the constant parts, not depending on the solution
coordinates):

op =

(
opu

opp

)
, (4.23a)

opu := opu,i =
(
c(ΦX

j ûj ,Φ
X
j ûj ,Φ

X
i )− c(0, 0,ΦX

i )
)
+
(
b(ΨX

j p̂j ,Φ
X
i )− b(0,ΦX

i )
)

+
(
a(ΦX

j ûj ,Φ
X
i )− a(0,ΦX

i )
)
,

(4.23b)

opp := opp,i = −
(
b(ΨX

i ,Φ
X
j ûj)− b(ΨX

i , 0)
)
. (4.23c)
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Finally, the affine vector contains all contributions that are independent from the coordinates of
the DOF vectors. However, it may still depend on the time coordinate. The affine vector is defined
as

af =

(
afu

afp

)
, (4.24a)

afu := afu,i = −s(Φi, 0) + c(0, 0,ΦX
i ) + b(0,ΦX

i ) + a(0,ΦX
i ), (4.24b)

afp := afp,i = −s(0,ΨX
i )− b(ΨX

i , 0). (4.24c)

By introducing a general vector, bundling the DOFs for all solution variables, z = (û, p̂), the
residual Eq. (4.21) can be written as

r(t, z) = M(t)
∂z

∂t
+ op(t, z) + af(t). (4.25)

Thus, it is possible to evaluate the residual of the method at a given time and for a specific solution
guess. The task of the solver is to find a solution for which the residual Eq. (4.25) vanishes. In
this case, Eqs. (4.21) and (4.25) give an ordinary differential equation (ODE) system for the DOF
vector. Owing to the structure of this system, notice how the time derivative of the pressure is
disregarded in Eq. (4.21), this is a special form of ODE called an Index-2 differential-algebraic
equation (DAE) system, cf. Hairer and Wanner (1996). The incompressibility acts as an algebraic
constraint, making the system very stiff and sensitive to deviations violating the incompressibility.
To solve such systems, an ODE solver must be able to handle these specific systems. The analysis
of DAE systems is very extensive and goes beyond the scope of this work, we instead refer to the
books of Hairer et al. (1993) and Hairer and Wanner (1996). In Section 4.4 the discretization of
the time derivative will be further specified and in Section 4.5 the process to obtain a solution for
which this residual vanishes will be discussed. Before proceeding with the description of the flow
solution, it is essential to explain the treatment of the interface.

4.3 Interface and phase representation - level sets

Up to this point, it was assumed that the separation of the domain into multiple phases and
dividing interfaces is known. In this section the representation of phase domains and associated
interfaces is discussed. As mentioned in Section 1.2.2 several approaches exist to represent the
interfaces and the level set method is used in this work to accomplish this task. In this work
exactly two phases are considered (with the exception of Section 7.3.3), hence the description of
the interface representation is restricted to this case.

Definition 4.1 (Level set field). We define a level set field ϕ(x, t) ∈ C0(Ω), whose zero set determines
the interface

Σ := {x ∈ Ω | ϕ(x, t) = 0} . (4.26a)

The phase domains separated by this interface, which we will call A and B, are given by

A := {x ∈ Ω | ϕ(x, t) < 0} , (4.26b)
B := {x ∈ Ω | ϕ(x, t) > 0} . (4.26c)
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The normals belonging to the respective interface are given as

nΣ =
∇ϕ
|∇ϕ|

, (4.27)

assuming non-vanishing gradients of the level set field at the zero set.

In general it is possible to extend this definition for extra phases and interfaces by introducing
additional level sets. In this way a third solid phase is considered in Section 7.3.3 by using a
second level set. The level set dividing the fluid phases is then only active on the fluid side of this
fluid-solid level set. Through the introduction of even more level sets and a level set hierarchy it
is then possible to treat arbitrary many phases.

4.3.1 Interface advection

Whenever the interface is considered to be moving in time, an auxiliary problem is solved to
obtain a temporal solution for the level set. In this section two possible methods to accomplish
this task are presented. Hinting on the characteristics of the methods these will be introduced as
“scalar advection” and “phase field” method.

Scalar advection method For the first method, the pure advection of the scalar level set field
according to a globally defined advection velocity is considered. In differential form this results in
the following PDE:

∂ϕ

∂t
+ uext∇ϕ = 0. (4.28)

In general, this advection velocity uext differs from the velocities defined in the bulk of the phases.
However, at the zero set, the normal component of this advection velocity should be equal to
interface velocity

uext · nΣ = uΣ · nΣ ∀x ∈ Σ, (4.29)

so the correct shape evolution of the interface is preserved. Equation (4.28) can also be rewritten:

∂ϕ

∂t
+∇ · (uextϕ)− ϕ∇ · (uext) = 0. (4.30)

If the velocity is solenoidal, the velocity divergence term vanishes and the level set advection
equation is given in conservative form:

∂ϕ

∂t
+∇ · (uextϕ) = 0. (4.31)

For such conservation laws, a variety of stable DG discretizations exists. Here, a standard upwind
DG scheme is employed, which can be found in any DG textbook, such as Di Pietro and Ern
(2012). As a result, the quality of the level set field is maintained for many time-steps and fewer
reinitializations are necessary compared to the marching scheme which was used in the work of
Smuda and Kummer (2022) or a discretization using a divergent extension velocity. However,
due to the treatment of the (inflow) boundary conditions, only considering the inner values, it is
important that the level set field is monotonous w.r.t. the distance from the interface. Otherwise,
it would be possible for new unphysical interfaces to spawn at the (inflow) boundaries. Therefore,
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occasional reinitialization is still necessary to maintain this monotonicity. The reinitialization
procedure is explained towards the end of this section in Section 4.3.4.

For completeness, we finally state the spatial discretization for the level set advection with
Eq. (4.30), used to find a solution ϕ ∈ PX

k(Kh(t)):∫
Kh

∂ϕ

∂t
v dV −

∫
Kh

ϕuext · ∇hv + ϕ∇h · (uext) v dV

+
∑
Γ

∫
Γ

f̂(ϕ−,u−
ext, ϕ

+,u+
ext,n

Γ)v dS = 0 ∀ v ∈ PX
k(Kh),

(4.32a)

f̂(ϕ−,u−
ext, ϕ

+,u+
ext,n

Γ) =


ϕ−u−

ext · nΓ ,
u−
ext+u+

ext
2 · nΓ ≥ 0

ϕ+u+
ext · nΓ ,

u−
ext+u+

ext
2 · nΓ < 0

ϕ−u−
ext · nΓ ,x ∈ ∂Ω

. (4.32b)

Herein, the velocity divergence is still included as a source term. In most simulations in this work,
the advection velocity is divergence free (in the weak sense), Eq. (4.31) is used and this term
neglected. For temporal integration of the level set equation (4.32) the total variation diminishing
(TVD) 3 scheme proposed by Gottlieb and Shu (1998) is employed. If not stated otherwise, this
“scalar advection” method is employed to evolve the level set throughout this work.

Phase field method The idea behind the second method stems from diffuse interface modeling.
Originally the Cahn-Hilliard equations were devised by the name giving authors in Cahn and
Hilliard (1958), Cahn (1959), and Cahn and Hilliard (1959) to describe the free energy in a
non-uniform system. In the context of diffuse interface models, the idea is developed to combine
the description of the phase transition through the so-called order parameter in the Cahn-Hilliard
with e.g. (but not necessarily) the Navier-Stokes equations, e.g. (Caginalp, 1986; Seppecher,
1996; Badalassi et al., 2003; Yue et al., 2010). Implementations of these kind of models in the
context of DG methods are already investigated in e.g. (Wells et al., 2006; Xia et al., 2007;
Kay et al., 2009; Feng et al., 2016; Liu and Riviere, 2018; Manzanero et al., 2020). In original
diffuse interface modeling, the order parameter is then used in the Navier-Stokes equations to
introduce an additional stress (basically the surface tension) in the transition region between
the phases. Furthermore, material parameters are functions of this order parameter to mark the
transition from one phase to another, while only using one system of equations for both phases.
This coupling is omitted here, instead the sharp interface models, deploying separate systems for
each phase coupled at the sharp interface, described in Section 2.6 are used. Therefore, the order
parameter is identified only as the level set and used to obtain the interface position. Compared
to the scalar advection equation, Eq. (4.28) is modified with a non-linear RHS. The Cahn-Hilliard
equation, see (Kay et al., 2009) reads as

∂ϕ

∂t
+ uext∇ϕ = ∇ · (M∇γ) , (4.33a)

γ = ϕ3 − ϕ− ξ2∆ϕ, (4.33b)

using the same extension velocity as for the “scalar advection” method. The additional vari-
ables/parameters are called the chemical potential γ, mobilityM and gradient energy coefficient
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ξ. The Cahn-Hilliard method basically aims to minimize the free-energy functional, e.g. Yue et al.
(2010),

F (ϕ) =

∫
Ω

1

2

(
ϕ2 − 1

)2
+
ξ2

2
|∇ϕ|2 dV. (4.34)

The first contribution, modeled here in the form of a double-well potential, is called the local energy
and the second the gradient energy (Cahn, 1959). Equation (4.34) is minimal when the double-
well potential is minimized, forcing the order parameter towards the limiting values ±1, while
simultaneously minimizing the gradient energy, i.e., the length and thickness of phase boundaries.
The balance between these contributions is influenced by the gradient energy coefficient ξ,
determining the equilibrium thickness of the transition region. The RHS of Eq. (4.33a) therefore
“pulls” the transition region back to its equilibrium shape, which for a plane interface is given by

ϕ (x, t) = tanh
(
x− xΣ(t)√

2ξ

)
. (4.35)

If the profile of ϕ becomes too steep, the gradient energy contribution grows and the minimization
of the free energy pushes the transition region apart again. On the other hand if the profile is too
shallow, the local energy is not minimized and causes the transition region to be pulled together,
approaching a step profile. The mobility or diffusion parameterM controls the amount of these
regularizing effects. However, too largeM leads to an artificial smoothing of sharp curvatures in
the interface, e.g. filaments arising in rising bubble simulations. Finally, the boundary conditions
used to close Eq. (4.33a) need to be specified. Here, we limit the consideration of possible
boundary conditions to impenetrable walls in which case

∇ϕ · n∂Ω = −cos(θstat)√
2ξ

(
1− ϕ2

)
onx ∈ ∂Ω, (4.36a)

γ = 0 onx ∈ ∂Ω. (4.36b)

The Neumann type boundary condition for ϕ takes into account the equilibrium contact-angle
(Yue et al., 2010). The numerical solution for the level set is found by solving Eq. (4.33a) as a
system of two coupled second order equations, employing the method introduced in Section 3.1.
For temporal discretization a singly diagonal implicit Runge Kutta (SDIRK) scheme, e.g. implicit
euler or SDIRK22 (Kennedy and Carpenter, 2016), is employed, in conjunction with a Newton
solver to treat the nonlinearity of the system. The implementation of Eq. (4.33a) follows along the
lines of the implementation for the fluid equations, cf. Section 4.1, Appendix A.1, and Eq. (4.32),
using an upwind scheme for the convective flux and the SIP method for the Laplacian terms.
Aspects on the choice of parameters and also why this method was ultimately not further pursued
as a level set evolution technique are discussed later in Section 6.2.

4.3.2 Advection velocity

To evolve the interface in time, knowledge of the normal component of the interface velocity is
required. For the three different systems presented in Section 2.6 varying expressions can be
found, which are presented here. The first step is to determine the velocity of the interface, which
in case of non-vanishing mass fluxes differs from the bulk phase velocities. After the velocity at
the interface is known, it has to be extended to the whole domain in a suitable manner to solve
the level set equations presented in Section 4.3.1
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Interface velocity In case of the material multiphase flow described in Section 2.6.1, Eq. (2.67)
is found, meaning the normal components of the interface velocity and velocities of either phase
are equal. As the tangential interface velocity has no influence on the shape evolution of the
interface it can be freely chosen. Furthermore, the interface velocity can be evaluated from either
phase as they lead to the same result. Therefore, every weighted average is also a valid expression.
The final expression

uΣ =
{{ρu}}
{{ρ}}

(4.37)

follows from a density averaging of the interface velocity, while neglecting the restriction to the
normal components. It is evident from Eq. (4.29) that only the normal component of the interface
velocity is ultimately used. However, the choice of interface velocity in Eq. (4.37) is due to the
implementation, where it is favorable to not project the normal component uΣ ·nΣ on an auxiliary
field. For the case of multiphase flows with evaporation (Section 2.6.2), the mass flux appears
in the expression for the interface velocity, Eq. (2.73). By employing the jump condition for the
energy equation and otherwise following the same steps as for material flows, the expression

uΣ =
{{ρu}} − [[−k∇T ]]

ĥvap

{{ρ}}
(4.38)

is found for the interface velocity with evaporation. The most convenient case is that of the free
surface flow (Section 2.6.3), which is also assumed to be material. Here no opposing phase exists
and therefore, the interface and fluid velocities coincide:

uΣ = u (4.39)

Velocity extension over the domain Now, that the interface velocity at the interface is known by
Eqs. (4.37) to (4.39), it is still necessary to extend it over the whole domain, to obtain a globally
defined velocity field for the level set advection by Eq. (4.28) or Eq. (4.33a). In Smuda (2021) and
Smuda and Kummer (2022) the presented method employs a marching scheme for computing
the extension velocity in a narrow band around the interface. For most calculations in this work,
a different approach is chosen, which was first presented in Rieckmann et al. (2023e). To obtain
the velocity extension on the whole domain, the following system is solved:

∇ · (uext) = 0, x ∈ Ω, (4.40a)
−∇pext +∆uext = 0, x ∈ Ω, (4.40b)

(−pextI+∇uext) · n∂Ω = 0, x ∈ ∂Ω, (4.40c)
uext · nΣ = uΣ · nΣ, x ∈ Σ. (4.40d)

Homogeneous Neumann boundary conditions are applied on all outer domain boundaries, while
a Dirichlet-type condition is imposed on the interface to ensure the correct advection velocity
(using only the normal component). In general, these boundary conditions differ from those
employed during the flow solution. The similarity of Eq. (4.40) to the Stokes equations is evident.
The auxiliary variable pext represents an artificial pressure (without direct physical meaning)
that is necessary to obtain a solenoidal extension velocity uext. The discretiziation of this system
follows the same procedure as of the fluid system described in Section 4.1. The divergence,
gradient and Laplacian are discretized in the same way as the corresponding operators in the flow
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solution described. However, it is fully single-phase, supplemented with an additional penalty
term enforcing the Dirichlet condition for the velocity at the interface. Finally, the resulting
discrete problem is to find (uext, pext) ∈

(
PX
k(Kh(t))

D × PX
k−1(Kh)

)
, such that∫

Kh

∇h · (uext) q dV +
∑
Γ

∫
Γ

− [[uext]] · nΓ {{q}} dS = 0∫
Kh

−∇h · (v) pext dV +
∑
Γ

∫
Γ

[[v]] · nΓ {{pext}} dS +

∫
Kh

∇huext : ∇hv dV

+
∑
Γ

∫
Γ

−
{{
∇huext · nΓ

}}
· [[v]]−

{{
∇hv · nΓ

}}
· [[uext]] + η [[uext]] · [[v]] dS

+

∫
Σ

η(uext − uΣ) · nΣ(v · nΣ) dS = 0 ∀ (v, q) ∈
(
PX
k(Kh)

D × PX
k−1(Kh)

)
.

(4.41)

The penalty parameter η is chosen according to Shahbazi (2005), i.e., on each edge as the
maximum penalty for the neighboring cells i and j with an arbitrarily chosen safety factor of 4:

η = max(ηi, ηj),

ηi = 4(k + 1)2
Vol(∂Ki)

Vol(Ki)
.

(4.42)

The Vol(·) operator denotes the measure (D dimensional volume) of the cell or its surface (D − 1
dimensional volume). The details of the boundary treatment are omitted for brevity. Two choices
are implemented, for the former all boundaries are homogeneous Neumann boundaries, as in
Eq. (4.40). In the latter boundaries that are impermeable in the flow solver are impermeable
during the level set evolution as well. The former approach allows more flexibility, when interface
and fluid velocity are different, as common in problems involving evaporation. In the test cases
involving evaporation the area enclosed by domain boundaries and the interface is not conserved.
Therefore, a solenoidal extension velocity needs to allow an in- or outflow at the domain boundaries.
After inserting the DG ansatz from Eq. (3.22) and solving the system, the extension velocity uext
can finally be obtained. Owing to the form of the system, this approach is called the Stokes
extension.
As an alternative also the Fast Marching method from Smuda and Kummer (2022) can be employed.
If not stated otherwise all calculations with a moving interface are done using the Stokes extension
with all around homogeneous Neumann boundaries. This approach also allows an augmented
scheme, omitting the velocity divergence and artificial pressure. Then, only a Laplace problem is
solved, which motivates the description as Laplace extension. However, in this case the advection
velocity is no longer solenoidal and an additional source term appears in the advection equation,
see Eq. (4.30). This approach is not used for results displayed in this work and therefore not
presented in detail.

4.3.3 Projection onto a continuous field

As defined in Definition 4.1 the level set has to be a continuous field, such that the interfaces
are compact submanifolds without any holes. However, for DG solutions of Eq. (4.28) this is not
guaranteed. The situation is more likely to resemble what is shown in Fig. 4.2. From the figure,
it is evident that the cell faces for neither the white nor blue phase-cells align in neighboring
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Figure 4.2: The cut-cell mesh from Fig. 4.1 is depicted. In the magnification a possible situation
of an initially discontinuous interface (dashed red) and a continuous representation
of the same interface (solid red) is shown.

cells. This is caused by a discontinuity of the initial interface representation shown by the dashed
red line. The necessary integrals over cell faces occuring in the discretization, e.g. Eq. (4.28),
are thus no longer uniquely defined. To the best of our knowledge, there is no way to devise
a well-posed method in this case. Therefore, these faces need to align from either cell. This is
achieved by computing a continuous representation of the level set field ϕc in a narrow band
of cells Knb around the zero-set, which will then subsequently be used during the flow solution
to obtain the division of the domain into the different phases. The continuous representation
is shown in the figure as the solid red line. To compute this continuous interface, the following
quadratic optimization problem is solved (Smuda, 2021):

min ‖ϕ− ϕc‖2L2(Knb)
, Knb ⊂ Kh, (4.43a)

s.t. ϕc,jin |Γi = ϕc,jout |Γi , ∀Γi ∈ Knb. (4.43b)

4.3.4 Reinitialization

The reinitialization procedure is partially motivated by the need to enforce non-diminishing
gradients and monotonicity of the level set field w.r.t. the distance from the interface. In relevant
literature, this is usually done by using a signed-distance level set, see e.g. Mirjalili et al. (2017) or
Owkes and Desjardins (2013). The signed-distance property is generally not preserved during the
advection step. Therefore, starting from the current interface, the reinitialization seeks to restore
this property. Several procedures are proposed in the literature, for which a good overview is given
in Basting and Kuzmin (2013). For this work, a variation of the elliptic reinitialization proposed
in Basting and Kuzmin (2013) is used. Details on the implementation can be found in the work of
Utz et al. (2017). In our method the level set is not required to be an exact signed-distance field,
as this property is not leveraged. Consequently, it is not necessary to perform the reinitialization
on every time-step. In case of the phase field level set, the RHS terms of Eq. (4.33a) serve to
contract the transition region around the interface, while forcing the level set values to the bounds
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of ±1 elsewhere. Therefore, there is no need to reinitialize the level set in that method, which is
one of its main advantages.

4.4 Temporal discretization

In Sections 4.1 to 4.3 the components of the spatial discretization for the flow solution and interface
representation are introduced. To obtain a working numerical method, these components need to
be combined to allow a temporal evolution of the flow and interface solutions. In this section first
the interplay between interface and flow solution is presented and the schemes used to discretize
the temporal terms, i.e., the partial time derivatives in Eq. (4.21), are described.

4.4.1 Interface flow coupling

Even though the equations describing the fluid flow are solved in a monolithic system (i.e. velocity,
pressure and temperature are solved simultaneously) the solution to the interface evolution is
excluded from this monolithic block. Therefore, the method basically acts as a series of DG and
XDG schemes strung together. For a single time-step, the solver proceed as follows, splitting the
complete problem into three parts:

1. Using the current flow solution, compute the extension velocity uext, as described in Sec-
tion 4.3.2

2. Solve the level set evolution, as described in Section 4.3.1

3. Solve the flow equations, Sections 4.1, 4.2, 4.4 and 4.5

Lie splitting The basic idea of the splitting approach is to solve coupled systems sequentially
instead of simultaneously. To illustrate this, consider the ODE system

∂f

∂t
= H1(t, f, g), (4.44a)

∂g

∂t
= H2(t, f, g). (4.44b)

In the present method, the first equation could be thought of as the level set evolution problem,
which depends not only on the level set but also the solution of the second equation, representing
the flow problem. The flow problem in turn also depends on the level set, namely the interface
position, in a non-trivial way. During the splitting procedure these equations are decoupled and
solved sequentially. First the interface evolution problem is solved, using the initial flow solution:

∂fn+1

∂t
= H1(t

n+1, fn+1, gn). (4.45)

Then, the flow solution is updated, using the new interface position:

∂gn+1

∂t
= H2(t

n+1, fn+1, gn+1). (4.46)
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This simple, first order accurate, splitting procedure is called Lie-Splitting (or Lie-Trotter Splitting)
(Holden et al., 2010). As the interface is assumed fixed during one step of the flow solution, the
mass matrices stay constant during one time-step, as mentioned already in Section 4.2. However,
the new flow solution is dependent on the old one (through the approximation of the time
derivative), which is given with respect to the old interface position. Therefore, a method is
needed to extrapolate the old solution from the old onto the new cut-cell mesh. An alternative
to this splitting procedure is the moving interface approach presented by Kummer et al. (2018).
However, the discretization for that approach is more involved and not explored in this work.
Compared to the splitting approach , the advantage is that higher temporal convergence orders
can be achieved and the extrapolation procedure becomes obsolete.

Extrapolation In each cell Kj the solution for a single phase s is given in terms of a coordinate
vector zj,s, Eq. (4.25), and a basis for the broken cut-polynomial space VX

k, see e.g. Eq. (4.2).
These cut-cell bases are constructed as displayed in Eq. (3.45). To transfer the old solution to the
new cut-mesh two different situations have to be distinguished: In the first instance, the interface
stays within the same cell, i.e., the species s exists in cell Kj at the current as well as all required
previous time-steps, e.g., KX

j,s(t) 6= ∅, t = {tn, tn−1}. In this case the transformation is done by
projecting the previous solution onto the current basis. Concretely, the solution coordinates are
reused and the characteristic function from Eq. (3.45) is updated to the current time:

zj,s(tn−1)
TΦj(x)Xj,s(x, tn−1)→ zj,s(tn−1)

TΦj(x)Xj,s(x, tn). (4.47)

In the second instance, the interface moves across the boundary between cells, i.e., Kj is a newly
formed cut-cell, e.g.,KX

j,s(tn) 6= ∅ butKX
j,s(tn−1) = ∅. In this case, no solution-coordinates exist for

Kj that can be reused. Instead, solution coordinates ẑj,s(tn−1) are obtained by extrapolating the
solution from a neighbor cell with KX

i,s(tn−1) 6= ∅. This situation and the extrapolation procedure
is illustrated in Fig. 4.3. The two cells are then agglomerated together and a combined basis is
formed by extending the basis Φi, i.e.,

ΦAgg = ΦiXKi∪Kj = ΦiXKi +ΦiXKj = ΦiXKi +MΦjXKj . (4.48)

The transformation matrix M to convert Φj to Φi is obtained by solving the projection〈
ΦT
j ,Φj

〉
Kj

M =
〈
ΦT
j ,Φi

〉
Kj
. (4.49)

Finally, by expressing the solution on the agglomerated cell

zAggs (tn−1,x) = zi,s(tn−1)
TΦi(x)XKi∪Kj

= zi,s(tn−1)
TΦi(x)XKi + zi,s(tn−1)

TMΦj(x)XKj (4.50)
= zi,s(tn−1)

TΦi(x)XKi + zj,s(tn−1)
TΦj(x)XKj ,

we obtain the required solution coordinates

zj,s(tn−1)
T = zi,s(tn−1)

TM. (4.51)

Once again applying Eq. (4.47) completes the procedure. Note that this whole process is basically
a cell agglomeration as done in Section 4.2.3, but performed in the opposite direction.
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Figure 4.3: Extrapolation procedure of a solution onto a newly formed cut-cell. Dashed lines
indicate the basis functions in each cell.
Top: At the previous time-step the solution (solid black line) in the left phase is only
known in the cell KX

i,s with respect to the old interface position (dashed red line).
Middle: The cells Ki and Kj are agglomerated together to form the cell KAgg. By
reusing the basis and coefficients of the solution from cell Ki for KAgg the solution is
extrapolated. Additionally, the transformation between the basis of Kj and that of
KAgg is computed.
Bottom: Finally the basis transformation is reused to obtain the solution in the newly
formed cell KX

j,s (solid red line).

4.4.2 Timestepping schemes

In Section 4.2 it is described how the abstractly discretized systems from Section 4.1 can be brought
in the form of a DAE system. To solve these systems, two different methods are implemented and
available in the solver. These are the SDIRK and backward differentiation formula (BDF) schemes
(Hairer andWanner, 1996). Given the equation (4.25) for the residual and demanding this residual
to vanish, the goal is to find a solution for the next time-step z(n+1) = z(t(n) +∆t(n)) = z(t(n+1)).
In this section it will be shown how the solver accomplishes this task, following closely the actual
implementation of the mentioned schemes.

Runge Kutta methods Runge Kutta (RK) methods are single-step methods, but using multiple
intermediate stages (Hairer et al., 1993; Hairer and Wanner, 1996). An s-stage method is
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Table 4.1: Butcher tableaus for Runge-Kutta methods employed in this work (Gottlieb and Shu,
1998; Kennedy and Carpenter, 2016)

Scheme a b c

Implicit Euler
(
1
) (

1
) (

1
)

SDIRK22
(
1−
√
2/2√

2/2 1−
√
2/2

) (√
2/2 1−

√
2/2
) (

1−
√
2/2 1

)
TVD3

 0
1 0

0.25 0.5 0

 (
1/6 1/6 2/3

) (
0 1 0.5

)

characterized by three sets of coefficients, a ∈ Rs×s, and b, c ∈ Rs. Here, we limit our presentation
to those methods, whose coefficient matrix a is of lower triangular shape, in case of an explicit
scheme even strictly lower triangular. The intermediate solution vector z(i,n) for the i-th RK stage
(here counting starts at 1) in the n-th time-step is then obtained by solving

1

∆t(n)
Mz(i,n) + ai,iop(t

(n) + ci∆t
(n), z(i,n)) =

1

∆t(n)
Mz(n) −

i−1∑
j=1

ai,jkj − ai,iaf(t(n) + ci∆t
(n)).

(4.52)
For an explicit stage, the diagonal coefficient vanishes, ai,i = 0. The values for the change-rate
are defined as

kj = op(t(n) + cj∆t
(n), z(j,n)) + af(t(n) + cj∆t

(n)). (4.53)

If the scheme is stiffly accurate (Hairer and Wanner, 1996; Kennedy and Carpenter, 2016), i.e.
cs = 1 and as,i = bi, the intermediate solution for the final stage is the solution for the next
time-step:

z(n+1) = z(s,n). (4.54)

Otherwise, the value for the new time-step is found by performing a last explicit step:

1

∆t(n)
Mz(n+1) =

1

∆t(n)
Mz(n) −

s∑
j=1

bjkj . (4.55)

Usually, the RK schemes are classified with an abbreviation, hinting on the characteristics of the
scheme, e.g. SDIRK or TVD and two numbers indicating the number of stages and order of the
scheme. The Butcher tableaus for the methods used within this work are displayed in Table 4.1.

Backwards differentiation formulas The BDF schemes are so-called multi-step methods, which
means the solution at the next time-step can depend on multiple past steps (Hairer and Wanner,
1996). In the current solver this method is implemented as

1

∆t
Mz(n+1) +Θop(t(n+1), z(n+1)) =

K−1∑
i=0

θi
1

∆t
Mz(n−i) −Θaf(t(n+1)), (4.56)

using a fixed time-step size ∆t(n) = ∆t and BDF order K. In Table 4.2 the coefficients for the BDF
methods up to order 3 are displayed.
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Table 4.2: Coefficients for BDF1 - BDF3
Scheme Θ θ

Implicit Euler (BDF1) 1
(
1
)

BDF2 2/3
(
4/3,−1/3

)
BDF3 6/11

(
18/11,−9/11, 2/11

)
Unification of timestepping methods Looking at Eqs. (4.52) and (4.56) it can be observed
that both schemes possess a similar structure. The LHS of Eqs. (4.52) and (4.56) depends on
the unknown solution vector, while the RHS solely depends on already known quantities. This
motivates the following reformulation in a solution dependent LHS and an independent RHS
vector:

F (y) = lhs(y)− rhs = 0. (4.57)

In case of the BDF method, y would mean the solution at the next time-step z(n+1), while the
meaning for a RK scheme is the intermediate solution value for the current stage zi. Compared
with the BDF method the implicit RK methods allow an uncomplicated implementation of adaptive
time-steps. Additionally, there are stable high-order methods available, while BDF is unstable
from BDF6 onward. On the other hand, the BDF method is computationally more efficient, as
only a single step is solved.

4.4.3 Selection of time-step size

In Eqs. (4.52) and (4.56) the time-step size ∆t(n) appears as a parameter in the temporal dis-
cretization. For the evolution of the interface, Section 4.3.1, the same time-step size is used.
Some caution must be exercised in choosing ∆t(n). If ∆t(n) is chosen too large, the interface
may skip a whole cell which is fatal for the solver, because then it is unclear how the solution
can be extrapolated onto the newly formed cut-cells. However, in most cases the scalar level set
advection equation is used and solved using the explicit TVD3 scheme, Table 4.1. In that case a
Courant-Friedrichs-Lewy (CFL) condition must be respected, limiting the maximum admissible
time-step

∆tu ≤
min(h)

max(uext)(2k + 1)
, (4.58)

depending on the maximum velocity max(uext), minimum grid size min(h) and polynomial degree
k of the level set field. In most setups the (static) capillary time-step restriction1 (Denner and van
Wachem, 2015)

∆t ≤

√√√√ {{ρ}}(min(h)
k+1

)3
πσ

(4.59)

is even more severe, as it scales super-linearly with min(h). Recent works suggest that this super-
linear (w.r.t. the grid size) restriction can be circumvented by a fully implicit method (Denner
et al., 2022). However, in this work, an explicit splitting between interface and flow solution is
1For the more precise dynamic restriction the fluid velocity parallel to the interface is also taken into account (Denner
and van Wachem, 2015), this velocity is usually not known a-priori, which is why we use the static restriction.
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employed and the restriction is binding. In Section 6.1 the derivation of Eq. (4.59) is displayed,
followed by an analysis on the severity of this restriction.

4.5 Nonlinear solution

After introducing the temporal discretization in Section 4.4, we are left with the root-finding
problem of Eq. (4.57). The lhs-term may depend non-linearly on the solution vector y. In this
case, a non-linear solver has to be employed. In the numerical scheme in this work two different
approaches are implemented. Both resemble a fixed point iteration, one using an approximation
of the Jacobian of F and the other one being Newton’s method with the exact Jacobian.

4.5.1 Linearization

Both implemented fixpoint iterations aim to obtain a correction ∆yn to the current solution guess
yn by solving

J(y∗)∆yn = −F (yn). (4.60)

The matrix J is an approximation of the Jacobian of F at the linearization point y∗ = yn. The
next solution iterate is obtained by inserting the calculated correction in the iteration rule

yn+1 = g(yn,∆yn). (4.61)

The solver repeats this procedure of solving Eq. (4.60) and evaluating Eq. (4.61) until a specified
termination criterion

‖F (yn)‖ < ε(1 + ‖F (y0)‖) ε > 0, (4.62)

or a maximum number of iterations is reached. As a starting guess for the non-linear solver usually
the last time-step is used y0 = zn.

Fixpoint iteration The first approach approximates the non-linear problem as a fixed point
iteration around some linearization point y∗

F (y) ≈ F̃ (y) = J̃(y∗)y − rhs, (4.63)

such that F (y∗) = F̃ (y∗). In this case the approximate Jacobian of the system is given as

J(y∗) =
∂F̃

∂y
|y=y∗ = J̃(y∗). (4.64)

For this method, the linearization has to be implemented in the abstract operator manually, which
is not shown explicitly in the integral forms shown in Appendix A.1. The iteration rule for the
fixed-point iteration is implemented as a simple under-relaxation:

g(yn,∆yn) = yn + λ∆yn λ ∈ (0, 1]. (4.65)
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Newton method The second approach employs a Taylor expansion around the current lineariza-
tion point y∗:

F (y) ≈ F̃ (y) = F (y∗) +
∂lhs

∂y
|y=y∗ (y − y∗) , (4.66)

This approach is therefore a true Newton method and the Jacobian is the exact one of Eq. (4.57):

J(y∗) =
∂F

∂y
|y∗ =

∂lhs

∂y
|y=y∗ . (4.67)

In the solver the Jacobian can either be implemented explicitly or, which is done in this work,
is obtained by a forward finite difference scheme based on the forms as given in the appendix
Appendix A.1, i.e., it is calculated by

J−,i(y
∗) ≈ lhs(y∗ + δyiei)− lhs(y∗)

δyi
. (4.68)

For the iteration rule, the dogleg method, also known as trust-region method, is employed
(Pawlowski et al., 2006).

4.6 Linear solution

After performing the spatial and temporal discretization with respect to the current linearization
point in each non-linear solver iteration (for a completely linear system the linearization and
non-linear solver iteration can be skipped), a linear system of the form of Eq. (4.60) has to be
solved using a linear solver. Equation (4.60) can be expressed in the more common form

Ax = b, (4.69)

using a general coefficient matrix A, unknown vector x and RHS vector b. Methods for solving
such linear systems of equations can be classified in two branches. Direct solvers obtain an
exact solution to the linear problem, while iterative solvers search for an approximate solution by
employing an inexpensive iteration rule. In this work solely direct solvers, MUMPS (Amestoy et al.,
2001; Amestoy et al., 2006) and PARDISO (Schenk and Gärtner, 2006), are deployed. However,
the direct solution of Eq. (4.60) can be challenging if the condition number of the matrix A is very
high. Therefore, the performance of the solver and quality of numerical solution can be improved
by employing a suitable preconditioning.

4.6.1 Preconditioning

A preconditioning of the linear system can be performed using left L and right R preconditioning
matrices, like so

LARx̃ = Lb, (4.70a)
x = Rx̃. (4.70b)

The interpretation of this procedure can be purely numerical, to change some characteristic of
the system, e.g. the condition number, but also of geometric nature. The left preconditioning
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can be read as a change of basis of the test function space, while the same is true for the right
preconditioning and the space of ansatz functions. The first such manipulation is the small cell
agglomeration mentioned in Section 4.2.3. Afterwards, also the zero rows and columns, corre-
sponding to empty phase-cells, are filtered out, which can also be interpreted as a preconditioning.
Additionally, depending on the boundary conditions, the system may be underdetermined. This
occurs when only Dirichlet boundary conditions are used for the velocity. In that case, the pressure
is only unique up to an arbitrary constant. Therefore, the average pressure in an arbitrary cell
(usually the cell with lowest index that has a minimum distance to a cut-cell) is set to zero, i.e., the
first DG coordinate for the pressure in the selected cell. Given the global index for that coordinate
i the corresponding entries in A−,i, Ai,− and bi are set to zero and a single unit entry is set on the
diagonal Ai,i = 1.
Finally, the preconditioning is applied to the system, to improve its condition number. One reason
for a poor condition of the system can be the discrepancy in scales between the discretized equa-
tions, e.g. ĉρ� ρ, or across the phases, e.g. ρA � ρB or a poorly conditioned mass matrix block
in a cut-cell. In the solver different methods for the preconditioning of the system are available in
the form of block preconditioners. These act locally on the matrix and RHS entries corresponding
to a single cell, and even single variable. To understand their procedure, it is necessary to keep
in mind that the coefficient matrix in the solver has two contributions, the mass matrix and the
operator matrix (stemming from the linearization of the operator)

A = M+Op. (4.71)

Throughout this work three preconditioners are applied. In the following presentation it is
understood, that the matrices denote a single block, corresponding to only one cell, species and
variable. The first preconditioner is basically a re-orthonormalization along the lines of Eq. (4.18),
using a (modified) Cholesky/LDL decomposition, such that

QTMQ = D, (4.72a)
R = Q, (4.72b)
L = RT , (4.72c)

D being a diagonal matrix. This procedure basically only affects cut-cells, as in all other cells the
mass matrix is already diagonal by design. In the actual implementation in unique cases the mass
matrix in a cut-cell may become indefinite, in that case D can contain zero entries on its diagonal.
These indefinite parts are detected by the solver and skipped during the preconditioning. This
preconditioner is applied for the contributions corresponding to the discrete continuity equation.
The second preconditioner uses a similar procedure, but applied to the symmetric part of the
operator matrix:

QT 1

2

(
Op+OpT

)
Q = D, (4.73a)

R = Q, (4.73b)
L = RT . (4.73c)

In the solver this procedure is applied for the momentum equation and temperature equation (only
in Section 7.2). For all other simulations carried out as part of this work a third preconditioner is
employed for the temperature equation. Here, the left and right preconditioning matrices are
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constructed as

R = I, (4.74a)
L = Op−1. (4.74b)

During various simple test cases, where the condition number is investigated in dependence of the
grid resolution, this method gave the best results. However, more recent extended tests indicate
that the second preconditioner is the most suitable method to precondition the discretized heat
equation. In Kummer (2017) the influence these matrix manipulations (small cell agglomeration
and preconditioning) can have on the condition of the system is discussed in more detail.
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5 Results for single-phase flows

The first chapter displaying results of the solver described in Chapter 4 deals with pure single-phase
flows. Basis is the system of equations stated in Section 2.6.1, restricted to a single domain, without
the occurrence of phase interfaces or contact lines. In addition, the temporal and convective terms
are omitted and the pure Stokes problem is considered. The chapter contains two sections which
originated as part of the present thesis. Both are concerned with the flow of a fluid through the
nip between two cylinders. Because of the technical relevance in gravure printing this nip will be
called the printing nip. Section 5.1 focuses on the position of stagnation points in the printing
nip in dependence of the inhomogeneous boundary conditions. In Section 5.2 the focus is then
shifted towards homogeneous solutions of the Stokes problem. Analytical results are presented
and compared with a numerical investigation of the predicted viscous eddies in the printing nip.

5.1 Numerical investigation of printing nip hydrodynamics

This sections is largely identical in terms of text, equations and figures to the publication of
the author of this thesis (Rieckmann et al., 2023c). In the cited publication the contributing
authors combined analytical, numerical and experimental methods to obtain insights into the
hydrodynamics of the printing nip. The following section focuses on the numerical results, which
have emerged from this work and were written by the author of this thesis. With the exception
of individual corrections and minor textual adjustments to fit within the scope of this thesis,
this section is a direct quote from the publication mentioned. For better readability, additional
indentation has been omitted.
Special attention is paid towards the position and pressure gradients at stagnation points, as an
estimate of the meniscus position, in the printing nip. To provide an introduction into the topic
and a literature overview, the introduction from Rieckmann et al. (2023c), originally written
mostly by H. M. Sauer, is repeated here, emphasized by an indentation.

The first aim of this section is to show how the extreme conditions in fluid flow in
the printing nip can be made accessible to numerical simulation, in spite of the fact
that pressure and shear singularities are associated with partly ill-defined boundary
conditions.
The hydrodynamics of the printing nip comprises different aspects. The ink filling and
emptying of gravure cells, the formation of liquid filaments between the diverging
cylinder surfaces have been intensively studied by Dodds, Carvalho & Kumar (Dodds
et al., 2009; Dodds et al., 2011b; Dodds et al., 2011a; Dodds et al., 2012), Hoda
& Kumar (Hoda and Kumar, 2008), Huang et al. (Huang et al., 2008), and Huang,
Carvalho & Kumar (Huang et al., 2016), who employ numerical models, Cen et al.
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(Cen et al., 2014), Khandavalli et al. (Khandavalli et al., 2015). Khandavalli & Roth-
stein (Khandavalli and Rothstein, 2017) also include fluids with complex rheology.
All these studies apply to the flow problem in succession of passing the nip, excluding
the singularity. In our former work (Sauer et al., 2018), some of the authors have
argued that a distinction of fluid splitting into an early and a late phase is useful here.
According to this distinction, liquid-air interface dynamics and filament formation
counts as a late phenomenon. In contrast, the early phase of ink splitting refers to
the hydrodynamics prior to the contact with the compressible gas phase. Pressure
and liquid shear exceed the late phase, where air entrainments are present, by orders
of magnitude. We also emphasize the effects of ink rheology and of the printing
substrate material. Usually, printing ink viscosity is shear-thinning. This feature was
also recognized in our emperiments, and has been studied by Wu, Carvalho & Kumar
(Wu et al., 2019b; Wu et al., 2019a). The important case of paper web has been
studied by Elsayad (Elsayad et al., 2002), who identified the most relevant ink and
surface parameters. The specific features of paper porosity has been studied by Yang
(Yang, 2013).
Principal insight into rotative printing nip flows date back to the studies on gravure
coating technology by Gaskell et al. (Gaskell et al., 1998), Coyle et al. (Coyle et al.,
1990), and Benkreira (Benkreira and Cohu, 1998), making the analogy to the re-
tracting liquid meniscus in the cuvette experiment of Saffman and Taylor (Saffman
and Taylor, 1958) evident. Similar phenomena have also been observed in models
using alternative geometries. E.g., Voss (Voß, 2002) considered ink splitting in an
opening wedge geometry, with solid half planes, where a viscous finger instabil-
ity occurs as well. A stability analysis based on lubrication-models was presented
by Carvalho & Scriven (Carvalho and Scriven, 1997) who also discuss the effect
of surface elasticity. The particular effect of the gravure raster on film formation
on the substrate has been studied by Schwarz (Schwartz, 2002) using lubrication
models. The crucial point here is that a closed liquid film persists in the nip even
under very high mechanical pressure. The gravure printing studies of Bornemann
et al. (Bornemann et al., 2011) use, quite different from industrial custom, rigid
surfaces for both cylinder and substrate. This excluded that extra space could form
due to surface compressibility. Sauer et al. (Sauer et al., 2015), and Brumm et al.
(Brumm et al., 2019) have proposed a lubrication model for the ink flow close to
the center of the nip. This access differs from the model of Carvalho & Scriven by
the feature that nip width is not considered as fixed parameter. Rather, the view of
Casademunt (Casademunt, 2004) is adopted, and the nip width is scaling with elastic
and hydrodynamical forces, and steady-state operation appears as a fixed point of
a highly non-linear, self-stabilizing dynamical system. Being developed for elastic
printing cylinders, where no nip singularity appears, the gravure printing case can
formally be obtained by setting the elastic moduli of the surfaces to infinity. However,
this requires to renormalize the hydrodynamical fields to avoid a singularity, and to
have them floating with the arbitrary residual nip width. We have implemented here
a concept based on the renormalization group ideas of Stueckelberg & Petermann
(Stückelberg and Petermann, 1953), and of Gell-Mann & Low (Gell-Mann and Low,
1954). We use this to identify the invariant, macroscopically controlled features of
the nip flow.
A somewhat complementary view on ink splitting in the gravure press has been
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pursued by Hübner (Hübner, 1991). Remarkable here is the predicted transition
phenomenon between point and lamella splitting which has been reported to exist in
practical experience and in countless studies. The existence of a transition regime
has been stated by Brumm et al. (Brumm et al., 2021) and a classification scheme
for point splitting, lamella splitting and transition regime has been presented. Point
splitting means that each gravure cell deposits an individual ink drop on the substrate,
without drop coalescence to occur. Lamella splitting, however, is characterized by the
development of a continuous liquid meniscus across the complete nip width. Capillary
forces retain an excess of ink in the nip, which is also the origin of the viscous fingering
instability, known to the printer as ribbing effect. Finally, one must admit that all
these studies on gravure contribute well to a closed macroscopic understanding, but
could not resolve the question about the nature of singular ink flow in the nip.
Current progress in this question came from the direct high-speed video observations
of nip dynamics by Schäfer (Schäfer et al., 2019), who could resolve some of the
hydrodynamic boundary conditions of the nip flow by pinching down the residual gap
((Schäfer, 2020), subsection 6.2.3) on rigid surfaces using a mechanical pressure of
order of 10 MPa. In view of this, and also regarding the complex cell flow profiles
observed by Yin & Kumar (Yin and Kumar, 2006), one begins to understand that
Hübner’s distinction of regimes is an essentially macroscopic one. On the microscopic
scale, however, a delicate dynamics evolves, and the principal distinction of point and
lamella becomes vague. Instead, fluid splitting appears to be related to the extreme
pressure and ink shear in the nip, initialized milliseconds in advance of the actual
process of ink splitting, i.e., of the creation of the liquid-air interface. The physics of
a complex coupled system of hydrodynamic, elastic, and surface related degrees of
freedom is revealed here, and appears as the key to proper understanding. It has up
to now remained open whether vapor bubble cavitation, breakdown of liquid-solid
adhesion, elastic deformation of even hardened metal surfaces are the weak point in
this multiply interdependent system which finally smooths the apparent singularity
into physically reasonable limits.
As a part of this program the simulation of the fluid flows in the nip in the early phase,
we present here our recent progress in setting up a numerical simulation on the fluid
flow, which can deal with the singular situation. As the nature of the printing nip
geometry and its singular geometry is 2D, we restrict simulation strategy to the 2D
boundary-value problem. This approximation already captures the full strength of
divergence of pressure and shear in the nip. Simulation algorithm, mesh definition
and features of algorithmic convergence can be transferred to the full 3D problem. We
also benchmark the simulation with analytic lubrication results (Sauer et al., 2015),
which handle the divergent features in an apparently correct manner, at least to linear
order in the velocities. We emphasize that one can simulate aspects of the early, but
not of the late ink splitting phase in 2D as the, e.g., viscous finger instabilities and
liquid filament dynamics are essential 3D phenomena.
For numerical studies the printing nip offers principal challenges in various respect.
The Stokes boundary-value in the printing nip involves both macroscopic and micro-
scopic length scales between 100 nm and few mm. This large ratio of relevant scales
requires particular strategies in simulation mesh definition. The second challenge is
due to the feature of the Stokes or Navier-Stokes models that they sensitively depend
on the boundary conditions at singular positions such as three-phase wetting contact
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Figure 5.1: Geometry of printing nip with gravure and substrate cylinder, fluid volume, converging
and diverging menisci, residual gap ε, and gravure cells. Cell size is vastly exaggerated
compared to the other dimensions.

lines or the nip. When approaching these points liquid velocity, pressure, or their
gradients tend to grow without obvious upper bound. Small variations, due either to
inevitable imperfections of surfaces or process control, or deliberately seeded by ever-
changing printing patterns and subjects, cause large fluctuations in liquid pressure
and shear.
A typical question concerning the gravure printing press is on the shear rate in the nip.
Actually, this question is an ill-defined one. Our access to the nip relies on a small but
finite additional length, the residual gap height ε between cylinder and substrate. We
shall not make the attempt to eludicate the physical origin of this microscopic length,
and admit that the gap is not more than a virtual one. We compare situations which
are distinct in ε, and identify the asymptotic scaling of the divergent hydrodynamical
parameters. This does not only yield the actually finite and useful parameters, but also
yields the corresponding scaling exponents of divergent quantities like pressure and
shear. The simulated results are related to analytical and a selection of experimental
ones.
Simulation codes and original data from printing experiments are available for further
use, see (Rieckmann et al., 2023a).

5.1.1 Hydrodynamic model of the nip

Wemodel the nip hydrodynamics by using the following strategy. First, we define the 2D-restricted
hydrodynamic boundary value problem of a liquid between two synchronously rotating cylinders
or disks, and present an appropriate coordinate system for the simulation mesh in the highly
distorted liquid domain. Before doing so, we take a lubrication theory preview on the velocity and
pressure profiles and on the particular singularities to be expected in the nip center, quantified by
the scaling exponents of the hydrodynamic quantities, which depend on the height ε between
the disks. With this image in mind, we apply a specific Discontinuous Galerkin algorithm, and
compare simulated with approximate numerical results. We consider an incompressible Stokes
fluid between rigid disks of radius R, synchronously rotating with revolution velocity VW . The
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Figure 5.2: Grid used for the numerical simulation. The cells are aligned in a bipolar coordinate
system.

mutual distance ε � R is considered small compared to all other physical dimensions. The
boundary value problem of cylinder and plate is depicted in Fig. 5.1. Note that our model does
not explicitly take account of the gravure cells of the printing cylinder and of the fluid flow therein.
The actual cell depth on the printing cylinder is of microscopic size, with a depth of few µm
and thus comparable to the residual gap height ε. There are cylinders with larger cells as well.
However, typical gravure cells have a rather shallow profile. The ratio of depth and width is
smaller than unity. We thus assume that their effect on pressure and shear in the nip is well
captured by our scaling proceedure. In order to calculate pressure and shear in the close vicinity
of a cell one could simply rescale these quantities by augmenting ε by the cell depth. Note that this
is applicable for a one-phase flow only, but should not be adequate for cell filling and emptying
flows at the menisci.
While we stay with standard Cartesian coordinates in the lubrication model, an adapted curved
coordinate setup is used for mesh definition as depicted in Fig. 5.2. The simulation grid is
extended horizontally by 2R, with this value fixed to R = 0.1 m if not stated otherwise. The grid
cells are aligned in a bipolar coordinate system (ξ, η), with the vertical grid lines representing
constant ξ and the horizontal lines constant η. The transformation from these bipolar to Cartesian
coordinates (x, y) is given by

x(ξ, η) = − c sin(ξ)
cosh(η)− cos(ξ)

, y(ξ, η) =
c sinh(η)

cosh(η)− cos(ξ)
, (5.1)

and the parameter c = |R sinh(acosh(1 + ε
R))|. Consequently, the distance between the opposing

cylinder surfaces at point x is

H(x) = ε +
x2

2rn
+ O

(
x

2rn

)4

, (5.2)

where rn = R/2 is the total curvature radius of substrate of an printing cylinder.
For the first series of simulations the Stokes equations are considered, the nip width varies
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between ε ∈ [10−3 m, 10−6 m] and the boundary conditions are set as the impermeability and no
slip condition on substrate and gravure cylinder respectively, Eq. (5.3a), and fixed stress on the
other two boundaries, Eq. (5.3b).

u · n∂Ω = 0, u · t = VW x ∈ ∂ΩI ∪ ∂ΩIII , (5.3a)

(
−p1+ µ

(
∇u+ (∇u)T

))
· n∂Ω = τ in/out, τ in/out =

{
−∆pn∂Ω, x ∈ ∂ΩII
∆pn∂Ω, x ∈ ∂ΩIV

, (5.3b)

where u is the flow velocity, p the pressure, and µ is the viscosity.

5.1.2 Discussion of numerical procedure

The question arises how a simple numerical solution of the Stokes equations that is obviously not
suitable to portray any instability or capillarity effect observed experimentally can be compared to
a real gravure printing process. To this end we shall perform a parameter study where we vary the
boundary conditions given by Eq. (5.3a) and Eq. (5.3b) as well as the nip width ε. Our attention
will then be focused on the positions of stagnating flow and the pressure gradients measured there,
which can be compared to experimentally obtained results. As we shall show in this section, these
pressure gradients are independent of the nip width — if chosen sufficiently small. Therefore,
the exact choice of nip width does not matter. For all simulations the radii of both cylinders are
fixed to R = 0.1 m and the viscosity of the fluid is µ = 0.0395 Pa s. Before presenting the final
parameter study, we discuss how the stagnation points depend on the boundary conditions, and
how the flow behaves in the limit of ε→ 0.

Flow properties in dependence of nip width First, we set a homogenous boundary condition
for the pressure ∆p = 0 Pa and vary the surface velocity of the cylinders VW ∈ [0.1, 10] m/s and
ε ∈ [10−6, 10−3] m. For brevity we refer to this setup as case A. Then, we swap the role of the
boundary conditions, set VW = 0 m/s, and vary ∆p ∈ [102, 1010]Pa and ε ∈ [10−6, 10−3] m, which
we will denote case B.
We first investigate how the following set of properties behave as the nip widths tends towards
zero:

• Maximum pressure range ∆pmax

• Maximum velocity in ξ-direction umax

• Mass flux through the nip ṁ

• Pressure gradient in x-direction in symmetry plane in the nip ∂p
∂x

∣∣∣
nip

• Shear rate on either cylinder in the nip γ∂ΩI

• Shear force acting on either cylinder F∂ΩI
, viscous stress integrated over whole boundary

∂ΩI

• Position of stagnating flow xstag, point where ux(xstag) = 0
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Table 5.1: Exponents of measured quantities in dependence of nip width
∆pmax umax ṁ ∂p

∂x

∣∣∣
nip

γ∂ΩI
F∂ΩI

xstag xsync ε

Case A -1.498 -0.001 1.0 -2.001 -1.002 -0.527 0.5 0.499 -0.526
Case B 0.0 1.5 2.5 -0.5 0.5 1.0 — — 2.5

• Position of synchronous flow xsync, point where ux(xsync) = VW

• Total viscous dissipation ε, viscous dissipation integrated over the whole numerical domain
Ω

Table 5.1 shows the measured exponents of the aforementioned flow properties for cases A and B.
Each measurement includes 35 simulations, i.e., five different values for the boundary conditions
ranging from VW ∈ [0.1, 10] m/s in case A and ∆p ∈ [102, 1010] Pa in case B, and seven data
points for the nip width ε ∈ [10−6, 10−3] m. For each data line a linear regression in log-log
space is performed, and the values displayed in Table 5.1 are the ensemble averages. A graphical
representation of these relations is given in Fig. 5.3 for the maximum velocities and the pressure
gradients in the nip in Fig. 5.4. The results for case A are shown on the left, whereas the results
for case B are shown on the right. As a reference the predicted slopes from lubrication theory
Section 5.1.11 are also included. It is immediately visible that these results match very well.
Next, we consider the pressure and axidirectional velocity profiles along the ξ-axis. These are
1The presentation of the lubrication theory is shortened in the present work, the complete discussion is available in
the original publication (Rieckmann et al., 2023c).

Figure 5.3: Maximum velocity in the nip. Results for case A are displayed on the left, for case B
on the right. The slopes predicted by lubrication theory are included for reference.
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Figure 5.4: Axidirectional pressure gradient in the nip. Results for case A are displayed on the
left, for case B on the right. The slopes predicted by lubrication theory are included
for reference.

displayed for cases A and B as solid lines in Fig. 5.5 and Fig. 5.6. The nip width for all displayed
lines is ε = 10−4 m, in Fig. 5.5 the velocity is VW = 1 m/s and for Fig. 5.6 the pressure difference
is ∆p = 105 Pa.
For case A the pressure is an uneven function around the printing nip, asymptotically tending
towards zero. Furthermore, the pressure possesses two extremas at the positions of synchronous
flow. In case B the pressure is an uneven function as well, however without extremes and
approaching the set pressure in the outer regions of the printing nip. For both cases the velocity
profiles are even functions around the nip. The most notable difference is that in case B the profile
of the velocity does not become zero at any point. Therefore no stagnation points are present.
Due to the linear nature of the Stokes system solutions can be superpositioned. How this influences
pressure and velocity can be seen in Fig. 5.5 as well as in Fig. 5.6. Starting from case A or B
respectively, we superpose the boundary condition of the opposite case, with increasingly strong
influence. It is notable in Fig. 5.5 that the stagnation points shift outwards when increasing
the pressure difference. However, to effect a significant outwards shift, this pressure difference
quickly dominates the shape of the pressure profile. On the other hand, it is visible from Fig. 5.6
that with increasing velocity the stagnation points move inward. For higher velocity the pressure
extremes originating from the case A solution are clearly visible. Using these results we obtain
the expressions Eq. (5.4a) and Eq. (5.4b), showing how the pressure difference has to be chosen
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Figure 5.5: The upper figure shows the axidirectional velocity along the center of the printing
nip. The lower figure displays the respective pressure profile. Starting from the setup
ε = 10−4 m, VW = 1 m/s,∆p = 0 Pa visible as the solid line, the pressure is increased
and the resulting profiles are superimposed.

in order to shift the stagnation points to a specific location:

u(x, VW ,∆p, ε) =
VW
VW,0

uA

(
x

√
ε0
ε

)
+

∆p

∆p0

(
ε

ε0

)1.5

uB

(
x

√
ε0
ε

)
, (5.4a)

∆p(xstag, VW , ε) =−∆p0

(ε0
ε

)1.5 VW
VW,0

uA
(
xstag

√
ε0
ε

)
uB
(
xstag

√
ε0
ε

) . (5.4b)

Here, uA and uB denote the profiles along the symmetry plane evaluated from some reference
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Figure 5.6: The upper figure shows the axidirectional velocity along the center of the printing
nip. The lower figure displays the respective pressure profile. Starting from the setup
ε = 10−4 m, VW = 0m/s,∆p = 105 Pa visible as the solid line, the velocity is increased
and the resulting profiles are superimposed.

simulations of case A using VW,0, ε0 and case B with ∆p0, ε0. The rest of the construction follows
from the proportionalities found above.

Flow properties at constant stagnation point Using Eq. (5.4b) we are now able to predict the
necessary pressure difference to tune the position of the stagnating flow. Therefore, we continue
by setting xstag = 0.01 m. First, we verify that the procedure suggested above does give the
right prediction. Indeed, in Fig. 5.7 it is immediately visible, that the stagnation point, while
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Figure 5.7: Position of stagnation point. All data series are lying on top of each other.

choosing the pressure boundary in accordance to Eq. (5.4b), is not a function of VW or ε any
more, as this dependency is included in the pressure boundary condition. Now, the property we
are interested in is the pressure gradient in x-direction at the stagnation points. Our hypothesis
is that this measure is independent of the nip width, while fixing the stagnation point. This is a
crucial property, as the nip width cannot be measured experimentally and is therefore unknown
to us. If the pressure gradient at the stagnation point is not dependant on nip width, we can
choose an arbitrary ε in the simulation. In Fig. 5.8 the pressure gradient is plotted over the nip
width. Clearly, while xstag ≈

√
ε, there is a dependence between pressure gradient and nip width.

However, in the limit lim ε→ 0 it can be assumed that the pressure gradient is independent of
the nip width. Therefore, the specific choice of ε is arbitrary when measuring these pressure
gradients.

In Fig. 5.9 we give an impression of the flow conditions in the printing nip. As the pressure is
almost constant over the nip-width, which verifies the justification for the usage of lubrication
approximation in Section 5.1.1, we skip its display here. Instead we choose to plot the shear rate
and axidirectional velocity in the printing nip. This properties nicely illustrates the high dissipation
and forces at work in the nip. The upper pictures illustrates the results for an exemplary case
A simulation (ε = 10−5 m, VW = 1 m/s,∆p = 0 Pa), the middle for case B (ε = 10−5 m, VW =
0 m/s,∆p = 106 Pa) and the lower pictures for a simulation with fixed stagnation point (ε =
10−5 m, VW = 1 m/s, xstag = 0.01 m). To enhance the visibility of the flow features, the domain
is scaled in y-direction by a factor of 100. Subsequently, we cut out a circle of radius 0.015 m
around the origin before elevating the plots by the respective variable itself. To give a reference,
the streamlines crossing through the origin are illustrated as well. Probably, the most interesting
region, apart from the origin itself, is the point of synchronous flow present in the upper and
lower pictures. Here, the velocity is constant across the nip and matches the printing velocity. At
these points we note how the velocity profile is turned over and the shear rate exhibits a clear
minimum.
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Figure 5.8: Axidirectional pressure gradient at the stagnation point.

Comparison to experimental results Finally, we can draw a comparison to the experimental
results. In the experiment samples were printed using different printing speeds and patterns of
gravure cups on the cylinders, while staying in the lamella splitting regime. The samples were
then digitalized and by Fast Fourier Transformation (FFT) finger frequencies were determined.
These frequencies are related to the pressure gradient at the diverging ink meniscus according to

n2F =
1

16σ

∂p

∂x

∣∣∣∣
xm

. (5.5)

Approximating the flow in the printing nip as a channel flow relates the pressure gradient to
printing velocity and meniscus height (i.e. the height of the nip at the meniscus position):

VW = −H
2
m

8µ

∂p

∂x

∣∣∣∣
xm

. (5.6)

Finally, using Eq. (5.2) an estimate for the position of the meniscus can be obtained to be

xm =
√

2rn(Hm − ε) ≈
√
2rnHm. (5.7)

This predicted meniscus position is then used as an input for the simulation to place the stagnation
points accordingly (xstag = xm). The experimental procedure is described in more detail in
Rieckmann et al. (2023c). Using Eq. (5.4b) and the result that the pressure gradients at the
stagnation points are independent of the chosen nip width, we set ε = 10−5 m and perform a
parameter study with varying xstag and VW . As a result, we measure the pressure gradient in
x-direction at the stagnation points, i. e., their absolute values. Due to the symmetries explained
in Fig. 5.5 and Fig. 5.6 it does not matter whether we choose the stagnation point before or
after the nip. With this at hand, we can draw a surface plot in Fig. 5.10. Using the procedure
described in the next section, we can also obtain these three quantities experimentally. This has
been done, and the experimental results are superimposed in Fig. 5.10 as blue squares. As can be
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seen these lie exactly on the surface of the numerically obtained results. This is a direct result
of the approximate applicability of Darcy’s law, i.e., the assumption of the flow in the nip as a
Poisseuille flow, in the printing nip with ε� R.
Therefore, the scaling of pressure gradients at the stagnation point as a function of printing
velocity, displayed in Fig. 5.11, which we found numerically and experimentally, is unsurprisingly
identical. To conclude this section we give here the exponents α of ∂p/∂x|stag ∝ V α

W as measured
in the experiments for different raster densities:

• 60 lines/cm : α = 0.479± 0.03613

• 70 lines/cm : α = 0.683± 0.0767

• 80 lines/cm : α = 0.60834± 0.082

Figure 5.9: Display of the shear rate (left) and x-directional velocity in the printing nip (right).
Streamlines through the origin are represented as white lines. The domain is stretched
by a factor of 100 in y-direction and we display a cutout of radius 0.015 m around
the origin. Upper pictures : ε = 10−5 m, VW = 1 m/s,∆p = 0 Pa , middle pictures
: ε = 10−5 m, VW = 0 m/s,∆p = 106 Pa, lower pictures : ε = 10−5 m, VW =
1 m/s, xstag = 0.01 m
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Figure 5.10: Pressure gradients predicted from experiments, using Eq. (5.2), Eq. (5.5) and
Eq. (5.7) overlayed with simulated pressure gradients for different printing velocities
and stagnation point positions. All axes use a logarithmic scale.

• 100 lines/cm : α = 0.732± 0.072138

The raster size references the geometry of the gravure cylinder, indicating how many lines of cups
are imprinted on the surface of the cylinder per length. The error is given as the standard error
in the coefficient, when fitting the mean values from the measurements to a power law. For the
smallest raster size the data point for the highest velocity was excluded.
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Figure 5.11: Comparison of experimental and simulation results. Each picture shows the experi-
mentally predicted pressure gradient for a certain cylinder geometry and different
printing velocities. These results are overlayed with the simulated pressure gradients,
using the experimentally obtained stagnation point as input. Red dashed lines denote
the standard deviation of the experimental measurements.

5.2 Occurence of viscous vortices in the printing nip

In Section 5.1 the solution of the Stokes flow in the printing nip using inhomogeneous boundary
conditions is considered. In this section the consideration of the Stokes problem in the printing
nip is extended to homogeneous solutions. The analytic results presented in this section were
generated as part of the bachelor’s thesis of Anton Erbach, which the author supervised. In
addition numerical simulations are performed to verify the occurrence of the analytically predicted
viscous vortices in the nip.

5.2.1 Introduction

The two-roller printing problem deals with the two-dimensional Stokes flow in the nip of two
counter-rotating rollers. The term “printing” comes from the possible application of this flow
in the nip of two printing rollers. In the, at the time of this writing unpublished, work on
which this section is based on, the Stokes equation for this flow is solved completely with both
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inhomogeneous and homogeneous boundary conditions (BC). However, in this section we will
focus on the homogeneous solutions only. These describe highly complex flow patterns, which
form the core of the present section. In contrast to the analytical approach chosen in Section 5.1,
where the lubrication theory was deployed, in this section the Stokes problem is solved in bipolar
coordinates.
Jeffery (1922) transforms the Stokes equation into a bipolar coordinate system, probably for
the first time, which allows the two cylinder surfaces to be represented as coordinate lines. He
also constructed the first solutions to the inhomogeneous problem. Another specific solution
for the problem at hand has also been published in German by Müller (1942). However, this
work is limited to rollers with the same rotational speeds. Pitts and Greiller (1961) analyzed the
flow between two cylinders partially immersed in liquid experimentally and then theoretically,
neglecting the inertia term. A specific solution for the Stokes flow in bipolar coordinates is also
given by Wakiya (1975b) in the second part of his three-part work. In it, he first provides a general
solution for the behavior of the Stokes flow in the vicinity of two cylinders. He starts from the
solution of the biharmonic equation in the bipolar coordinate system given in (Jeffery, 1922). He
further assumes that the cylinders cannot rotate independently, i.e., at different speeds.
A more general approach to the problem is taken by Dorrepaal and O’Neill (1979), who solve
the biharmonic equation of the stream function using ’matched asymptotic expansions’. In the
following works, the Stokes flow is also considered in the bipolar coordinate system, but with
different boundary conditions. In the first part of (Wakiya, 1975a) he deals with the ’flow along a
plane with a projection or a depression’. And in the third part (Wakiya, 1978) the Stokes flow
within a cylinder in which another cylinder is placed eccentrically, not unlike a hydrodynamic
bearing, is considered. The latter setup is also investigated by Kazakova (2020).
The solution of the problem with homogeneous boundary conditions leads to an eigenvalue
problem for the assumed stream function, which can only be solved numerically. The resulting
eigenvalues generate various associated flow patterns, which are characterized by a chain of
counter-rotating vortices in the printing nip. A very well-known phenomenon of viscous vortex
formation, and related to the present flow, is that in a corner with a moving wall, which was
described by Moffatt (1964). Moffat shows that a cascade of increasingly smaller counter-rotating
vortices forms between two rigid walls at an opening angle of less than 146° within the corner.
In this section, the mathematical model of Section 2.6.1 for a single phase and without temporal
and convective terms, namely the stationary Stokes equation is considered. The Stokes equation
is reformulated to the biharmonic equation in terms of a stream function and solved in a bipolar
coordinate (BPC) system. By using the BPC system, the boundary conditions on the surfaces of
the rollers are defined by constant coordinate lines. By means of a further transformation, see e.g.
(Bluman and Gregory, 1985), the biharmonic equation for the stream function is converted into a
linear differential equation with constant coefficients in the BPC system. Using a general solution
for the problem formulated in the BPC, the series of homogeneous solutions are constructed and
investigated. Due to the linearity of the probleme these homogeneous solutions can be superposed
at will, also with solutions to the inhomogeneous boundary value problem. For the inhomogeneous
boundary conditions, the speeds at the two roller surfaces are specified independently of each
other. Since the correct physical boundary conditions are already solved by the inhomogeneous
problem, the rollers are “virtually” at rest for the homogeneous boundary conditions. For both
cases, the roller surfaces are considered as impenetrable walls. In this sections solutions to the
inhomogeneous problem are not discussed.
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5.2.2 2D Stokes equation in bipolar coordinates

First, this subsection introduces the BPC and presents the transformation of Stokes’ equation into
these coordinates. At last the boundary conditions for the homogeneous solution are defined.

Bipolar coordinates Contrary to an often used definition, see Happel and Brenner (1981, p. 498)
or Moon and Spencer (1971, p. 89), the BPC are rotated by 90◦ in this work to uphold a main flow
direction in the horizontal plane. In complex notation the transformation from BPC to cartesian
coordinates is

z = x+ iy = −c cot
(
1

2
(ξ + iη)

)
= −c cot

(
1

2
(ζ)

)
, (5.8)

c controls the position of so-called focal points and is described in Eq. (5.14) below. Here, z = x+iy
describes the cartesian and ζ = ξ + iη the bipolar coordinates. The BPC has the following limits
to map to the entire plan, −∞ < η < ∞ and 0 ≤ ξ < 2π. At (x, y) = (0, c) and (x, y) = (0,−c)
constant ξ-lines meet, simultaneously these focal points denote values of η = ∞ in the upper
and η = −∞ in the lower half-plane. Resolving Eq. (5.8) into imaginary and real part explicit
expressions for the coordinate transformation can be found, this is also the form used in Eq. (5.1):

x =
−c sin ξ

cosh η − cos ξ
, y =

c sinh η
cosh η − cos ξ

. (5.9)

The Jacobi determinant J (Bluman and Gregory, 1985) is an important metric factor for this
transformation and will be used intensively throughout this section

J =

∣∣∣∣dzdζ
∣∣∣∣ = c

cosh η − cos ξ
. (5.10)

Half the nip width h and the radius of the rollersR serve as the specified length scales, see Fig. 5.12.
The center of the rollers is yRC = ±h+R and the surfaces of the two rollers are each described
by constant η coordinate lines, where η0 stands for the upper roller and η1 for the lower roller.
This can subsequently be used to define the boundary conditions on constant η coordinate lines,
i.e., on the roller surfaces, which allows a comparatively simple solution construction. According
to Happel and Brenner (1981, p. 498), the center and the roller radius are related to constant η
coordinate lines by

yRC = c coth(η) = h+R, (5.11)

and
R =

c

| sinh(η)|
. (5.12)

From Eqs. (5.11) and (5.12) the constant η0 for the surface of the upper rollers as a function of
the dimensionless gap ratio h/R can be determined to

η0 = cosh−1

(
h

R
+ 1

)
. (5.13)

Inserting this relationship into equation Eq. (5.12) results in the pre-factor c of the BPC as a
function of h/R:

c = R sinh
[
cosh−1

(
h

R
+ 1

)]
. (5.14)
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This prefactor can also be understood as the limiting point of the constant ξ lines: At the points
(x, y) = (0,±c) all arcs of the constant ξ-lines begin or end, (Happel and Brenner, 1981, p. 499).

In this section upper and lower rollers have the same radius R and are placed in a distance of 2h,
which results in

η1 = −η0. (5.15)

Figure 5.12: Coordinate lines of the bipolar coordinate system for c = const.. The blue lines
represent the constant η lines. The red dashed lines represent the constant ξ lines
with π

8 spacing in each case. In the black crosses at (x, y) = (0, c) and (x, y) = (0,−c)
all constant ξ-lines meet, at the same time it also represents the points η =∞ in the
upper half and η = −∞ in the lower half. The red vertical dashed lines above and
below the black crosses are ξ = 0, while ξ = π lies between the black crosses. As an
example, the rollers with radius R and half the gap width h are shown with a thick
black line. The center points (x) and the contour lines η0 and −η0 result from the
given h and R.

Transformation of the Stokes stream function equation to bipolar coordinates The 2D Stokes
equation in dimensionless variables,

∇p = ∆u, (5.16)

can also be written as the biharmonic equation for a newly introduced stream function, see
(Happel and Brenner, 1981, p. 60). To this end the velocities are defined in terms of the stream
function as

ux =
∂ψ

∂y
, uy = −

∂ψ

∂x
, (5.17)
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Table 5.2: General solutions for Eq. (5.23)

I. P = E cosh(αξ) + F sinh(αξ)
Q = A cosh η cos(αη) +B cosh η sin(αη) + C sinh η cos(αη) +D sinh η sin(αη)

II. P = E cos(αξ) + F sin(αξ)
Q = A cosh(α+ 1)η +B sinh(α+ 1)η + C cosh(α− 1)η +D sinh(α− 1)η

III. P = E cos(β − 1)ξ + F sin(β − 1)ξ +G cos(β + 1)ξ +H sin(β + 1)ξ
Q = A cosh(βη) +B sinh(βη)

IV. P = E cosh(βξ) cos ξ + F sinh(βξ) cos ξ +G cosh(βξ) sin ξ +H sinh(βξ) sin ξ
Q = A cos(βη) +B sin(βη)

in Eq. (5.16). By taking the curl of Eq. (5.16), imagining a third coordinate, we obtain

∆2ψ = 0. (5.18)

Using the BPC the velocity components in coordinate unit vector direction become

uξ =
1

J

∂ψ

∂η
, uη = −

1

J

∂ψ

∂ξ
. (5.19)

Similar to Wakiya (1975a), the pressure gradient can be extracted from Eq. (5.16):

∂p

∂ξ
=
∂(∆ψ)

∂η
,

∂p

∂η
= −∂(∆ψ)

∂ξ
. (5.20)

According to Bluman and Gregory (1985) the biharmonic equation in the BPC can be transformed
to a linear PDE with constant coefficients by modifying the stream function

ψ(ξ, η) = JΦ(ξ, η). (5.21)

Explicitly expanding the Laplacian in BPC gives

∆ =
∂2

∂x2
+

∂2

∂y2
=

1

J2

(
∂2

∂ξ2
+

∂2

∂η2

)
. (5.22)

And by inserting Eq. (5.21) into Eq. (5.18) the desired form of the equation is obtained:

∆2ψ(ξ, η) =
1

J3

[(
∂2

∂ξ2
+

∂2

∂η2

)2

+ 2

(
∂2

∂ξ2
− ∂2

∂η2

)
+ 1

]
Φ(ξ, η) = 0. (5.23)

For Eq. (5.23) the solutions displayed in Table 5.2 can be found by inserting a generic product
ansatz

ψ(ξ, η) = JΦ(ξ, η) = JP (ξ)Q(η). (5.24)
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Table 5.3: Summary of the constants to the homogeneous Stokes problem
asymmetric flow (a) symmetric flow (s)

C = − cosh((α+1)η0)
cosh((α−1)η0)

A A = C = 0

odd stream function (o) B = D = 0 D = − sinh((α+1)η0)
sinh((α−1)η0)

B

F = − cot(πα)E F = − cot(πα)E

C = − cosh((α+1)η0)
cosh((α−1)η0)

A A = C = 0

even stream function (e) B = D = 0 D = − sinh((α+1)η0)
sinh((α−1)η0)

B

F = tan(πα)E F = tan(πα)E

Formulation of boundary conditions To identify the solution constants in Table 5.2 the solution
is demanded to fulfill a set of boundary conditions. Here, we focus solely on homogeneous BC. As
in the BPC is constant η coordinate lines meet at ξ = 0 and ξ = 2π a continuity condition on ψ
and p or uξ and uη is enforced:

ψ(ξ = 0, η) = ψ(ξ = 2π, η), p(ξ = 0, η) = p(ξ = 2π, η)

uξ(ξ = 0, η) = uξ(ξ = 2π, η), uη(ξ = 0, η) = uη(ξ = 2π, η)

}
. (5.25)

It should already be pointed out here that this continuity condition can only be fulfilled for two
of the mentioned field quantities at the same time. For the other two field quantities, there
are discontinuities that increase with the distance to the roller. This gives rise to two distinct
forms of the stream function, being either odd or even in ξ around ξ = π. Further the rollers are
impermeable:

uη(ξ, η = η0) = uη(ξ, η = −η0) = 0. (5.26)

And for homogeneous solutions at rest:

uξ(ξ, η = η0) = uξ(ξ, η = −η0) = 0. (5.27)

5.2.3 Solution of the homogeneous Stokes problem, eigenvalues and vortex solutions

When searching for solutions of the type presented in Table 5.2 fulfilling the homogeneous BC,
Eqs. (5.25) to (5.27), it can be shown that the paths I and II collapse and III and IV only give
trivial solutions. Thus, solutions can be sought for the following unified stream function:

ψ(ξ, η;α) =
c

cosh(η)− cos(ξ)
[
E cos(αξ) + F sin(αξ)

][
A cosh((α+ 1)η)

+ B sinh((α+ 1)η) + C cosh((α− 1)η) +D sinh((α− 1)η)
]
.

(5.28)

For the still to be determined eigenvalues α ∈ C \ {−i,−1, 0, 1, i} applies. The excluded values
are used for the construction of particular solutions, which is not shown here. Over the course
of inserting the boundary condition a total of 4 different solution paths arise. These are either
asymmetric (a) or symmetric (s) around η = 0 and even (e) or odd (o) in relation to ξ = π.
Therefore, we distinguish the resulting stream functions like so:

Ψe/o,a/s. (5.29)
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Table 5.4: Numerically calculated eigenvalues
h/R = 0.01 h/R = 0.005 h/R = 0.0025

asym. (a)
α1 8.0152 + 14.896i 11.294 + 21.064i 15.944 + 29.788i
α2 11.028 + 37.902i 15.556 + 53.582i 21.971 + 75.763i
α3 12.613 + 60.411i 17.796 + 85.4i 25.139 + 120.75i

sym. (s)
α1 9.8456 + 26.525i 13.884 + 37.5i 19.606 + 53.025i
α2 11.909 + 49.181i 16.802 + 69.526i 23.733 + 98.306i
α3 13.199 + 71.611i 18.625 + 101.23i 26.309 + 143.14i

The solution constants for each of these branches are displayed in Table 5.3. Furthermore, Table 5.4
shows the first three eigenvalues for different relations h/R, and Fig. 5.13 the position of the
eigenvalues in the complex plane when assuming α = p+ iq. Note that the stream functions are
scaled by a constant factor when the real part of α switches sign, while they are indifferent to sign
changes in the imaginary part. Thus it suffices to consider the eigenvalues in the first quadrant.
Four possible flow patterns can be derived from these results. They are the combinations of
asymmetric, symmetric flow and odd, even stream function around ξ = π. The different flow
patterns are discussed in the following paragraphs. The upcoming Figs. 5.14 to 5.19c show
constant streamlines of the real part of the stream function of the respective flow with a given
eigenvalue αn and nip width to radius ratio h/R. The streamlines have a distance of a power of
ten to each other and the thick lines denote zero sets of the stream function. The blue and red
colors indicate counter-rotating flow directions dictated by the stream function.

Figure 5.13: Numerically calculated eigenvalues in the complex plane: αn,−αn, αn,−αn for three
different nip ratios h/R = 0.005, 0.01, 0.02. The arrow indicates a decreasing nip
ratio.
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(a) α1 = 8.0152 + 14.896i

(b) α2 = 11.028 + 37.902i

(c) α3 = 12.613 + 60.411i

Figure 5.14: Constant stream lines of Ψo,a around ξ = π for increasing αn with h/R = 0.01. The
blue and red streamlines indicate clockwise and counterclockwise flow directions.

Solution for the asymmetric flow and odd stream function For asymmetric flow and odd stream
function the solution has the form

Ψo,a(ξ, η;αn) =AE
c

cosh(η)− cos(ξ)
[cos(αnξ)− cot(παn) sin(αnξ)]

×
[
cosh((αn + 1)η)− cosh((αn + 1)η0)

cosh((αn − 1)η0)
cosh((αn − 1)η)

]
.

(5.30)

The diagrams in Fig. 5.14 show the constant streamlines of the first three eigenvalues. A vertical
dividing line forms between the left and right halves. In addition, vortices form with alternating
direction of rotation. The magnitude of the stream function decreases towards the center of the
gap and increases again after passing the narrowest point. Stagnation points only form at the
walls and in the center of the vortices. For the second eigenvalue (Fig. 5.14b) two co-rotating
vortices are formed on the walls, enveloped by a larger vortex, that extends as a “finger-like”
structure along the axis of the printing nip. This is shown enlarged in Fig. 5.15 for the center
of the nip, but the same pattern can be observed for all vortices. In addition, the vortex density,
i.e. the number of vortices per unit length, increases compared to the first eigenvalue. At the
narrowest point of the nip, two additional free stagnation points are formed in the flow, at the
position of intersection zero stream lines, see Fig. 5.15.
With the third eigenvalue (Fig. 5.14c) it can be seen that the tendency to develop “finger-like”
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Figure 5.15: Magnification of Ψo,a around ξ = π for α2 = 11.028 + 37.902i, hR = 0.01

(a) α1 = 11.294 + 21.064i, h
R = 0.005

(b) α1 = 15.944 + 29.788i, h
R = 0.0025

Figure 5.16: Constant stream lines of Ψo,a around ξ = π for varying h/R

elongated flow patterns continues. As with the second eigenvalue, vortices form at the both
boundaries with the same direction of rotation. These vortex patterns are elongated and staggered
in a step-like profile along the axis forming even more pronounced “finger-like” structures. The
vortex density continues to increase with growing eigenvalue. At the narrowest point, four free
stagnation points form in the flow. In Fig. 5.16 constant streamlines of the first eigenvalues of the
nip ratios h/R = 0.005, 0.0025 are plotted. It can be seen that the overall structure of the vortices
remains unchanged at lower nip ratios.

Solution for the asymmetric flow and even stream function For asymmetric flow and even
stream function around ξ = π the solution has the form

Ψe,a(ξ, η;αn) =AE
c

cosh(η)− cos(ξ)
[cos(αnξ) + tan(παn) sin(αnξ)]

×
[
cosh((αn + 1)η)− cosh((αn + 1)η0)

cosh((αn − 1)η0)
cosh((αn − 1)η)

]
.

(5.31)

Figure 5.17a,b shows constant streamlines of the even stream function from equation Eq. (5.31)
for the first two eigenvalues. Compared to the odd stream function around ξ = π, the even stream
function has no vertical dividing line in the center of the nip. As can be seen in Fig. 5.17b, this
means that no free stagnation points occur for higher eigenvalues. In the center of the nip, the
first vortices on both sides join together to form a vortex structure. Outside the nip center, the
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(a) α1 = 8.0152 + 14.896i, h
R = 0.01

(b) α2 = 11.028 + 37.902i, h
R = 0.01

(c) α1 = 11.294 + 21.064i, h
R = 0.005

Figure 5.17: Constant stream lines of Ψe,a around ξ = π

structure remains unchanged in relation to the odd stream function, while the direction of rotation
of the vortices in the right half is reversed. The stream function also decreases in magnitude
towards the center of the nip, as it is the case for the odd stream function. Another parallel is the
increasing vortex density for decreasing nip ratios, as can be seen by comparing Fig. 5.17a and
Fig. 5.17c.

Solution for the symmetric flow and odd stream function For symmetric flow and odd stream
function the solution has the form

Ψo,s(ξ, η;αn) =BE
c

cosh(η)− cos(ξ)
[cos(αnξ)− cot(παn) sin(αnξ)]

×
[
sinh((αn + 1)η)− sinh((αn + 1)η0)

sinh((αn − 1)η0)
sinh((αn − 1)η)

]
.

(5.32)

Figure 5.18a,b shows constant streamlines of this stream function for the first two eigenvalues.
First of all, it can be seen that there is a horizontal dividing line in the flow. This means that
there are several free stagnation points in the flow along the horizontal dividing line. There is
also a vertical separation line in the center of the gap, which leads to free stagnation points along
this axis at higher eigenvalues. Above and below the horizontal dividing line, vortices form with
alternating direction of rotation. The magnitude of the stream function decreases towards the
center of the nip.
For higher eigenvalues, a “finger-like” flow results, similar to the asymmetric flow, whereby, in
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(a) α1 = 9.8456 + 26.525i, h
R = 0.01

(b) α2 = 11.909 + 49.181i, h
R = 0.01

(c) α1 = 13.884 + 37.5i, h
R = 0.005

Figure 5.18: Constant stream lines of Ψo,s around ξ = π

contrast to the asymmetric flow, no central vortex forms on the horizontal axis of symmetry. The
vortex density increases for further increasing eigenvalues.
Figure 5.18c shows the first eigenvalue for the nip ratio h/R = 0.005. It can be seen that the
vortex density increases as the nip ratio decreases. The arrangement of the vortices in relation to
each other remains unchanged.

Solution for the symmetric flow and even stream function For symmetric flow and even stream
function the solution has the form

Ψe,s(ξ, η;αn) =BE
c

cosh(η)− cos(ξ)
[cos(αnξ) + tan(παn) sin(αnξ)]

×
[
sinh((αn + 1)η)− sinh((αn + 1)η0)

sinh((αn − 1)η0)
sinh((αn − 1)η)

]
.

(5.33)

Figure 5.19a,b shows constant streamlines of the first two eigenvalues of the even stream function.
Compared to the odd flow, the vertical separation line is omitted, but the horizontal separation
line still exists. The position of the vortices that are not in the direct vicinity of the center of the
nip remains unchanged, while the direction of rotation of the vortices in the right half is reversed.
The upper and lower vortices converge in the center of the nip.
Figure 5.19c shows constant streamlines of the first eigenvalue of the even current function
for h/R = 0.005. The arrangement of the vortices remains unchanged, but the vortex density
increases.
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(a) α1 = 9.8456 + 26.525i, h
R = 0.01

(b) α2 = 11.909 + 49.181i, h
R = 0.01

(c) α1 = 13.884 + 37.5i, h
R = 0.005

Figure 5.19: Constant stream lines of Ψe,s around ξ = π

5.2.4 Numerical simulation of viscous eddies in the printing nip

To combine the analytical results presented in the previous section numerical simulations of these
viscous vortex structures are performed. The setup is similar to that presented in Fig. 5.2. The
radius is chosen to be R = 1, the nip width ε = 2h = 0.02, such that the nip ratio is h/R = 0.01.
On ∂ΩI and ∂ΩIII impermeable slip walls are prescribed, while the velocity on ∂ΩII and ∂ΩIV is
prescribed according to the investigated stream function, i.e. using Eq. (5.19). The polynomial
degree for velocity is k = 5 and the grid is meshed with 200× 10 cells in ξ and η direction. The ξ
limits are set such the extend of the domain in x-direction is −0.25R < x < 0.25R.
For the simulation, limited to finite precision arithmetic, it proved to be more robust to rewrite
the ξ depend factors determining if the stream function is odd or even in the following form:

[cos(αnξ)− cot(παn) sin(αnξ)] = −
sin(αn(ξ − π))

sin(αnπ)
, (5.34a)

[cos(αnξ) + tan(παn) sin(αnξ)] =
cos(αn(ξ − π))

cos(αnπ)
. (5.34b)

Thereby, the summation/substraction of the potentially extremely large factors (e.g. cos(αnξ) ∝
e=(αn)|ξ−π|) is replaced by a division, which can be evaluated with higher precision. This form
also helps to illustrate the role of the imaginary and real part of the eigenvalues. The real part
controls the periodicity, i.e. the vortex density, while the imaginary part is responsible to the
decay behavior of the stream function towards the nip center.
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In Figs. 5.20 to 5.23 the streamlines for the numerical simulations are plotted for each of the
four solution branches and the first two eigenvalues. The shape and position of the numerically
found vortices agrees well with the analytical prediction (Figs. 5.14 to 5.19) thus validating that
the so-found solution are real solution to the Stokes problem. Due to the fast decay of the flow
towards the nip center the simulation is not able to obtain significant results over the whole nip.

(a) α1 = 8.0152 + 14.896i, h
R = 0.01

(b) α2 = 11.028 + 37.902i, h
R = 0.01

Figure 5.20: Constant stream lines of Ψo,a around ξ = π
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(a) α1 = 8.0152 + 14.896i, h
R = 0.01

(b) α2 = 11.028 + 37.902i, h
R = 0.01

Figure 5.21: Constant stream lines of Ψe,a around ξ = π

(a) α1 = 9.8456 + 26.525i, h
R = 0.01

(b) α2 = 11.909 + 49.181i, h
R = 0.01

Figure 5.22: Constant stream lines of Ψo,s around ξ = π
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(a) α1 = 9.8456 + 26.525i, h
R = 0.01

(b) α2 = 11.909 + 49.181i, h
R = 0.01

Figure 5.23: Constant stream lines of Ψe,s around ξ = π

5.3 Conclusion

Two studies were conducted in this chapter. Both dealt with the flow through the nip between
two printing cylinders. In Section 5.1 the focus was on finding solutions to the inhomogeneous
problem under a variation of printing velocity and a prescribed pressure difference before and
after the nip. Special attention was then paid to the behavior of the flow quantities as the nip
width tends towards zero. For this the simulation was able to confirm the analytically, using
lubrication theory, predicted behavior. In a second step, the boundary conditions in the simulation
were used to create free stagnation points at precise locations in the printing nip. These can
be seen as an approximation for the meniscus position without actually computing a two-phase
problem. The pressure gradients at these stagnation points were then measured and compared
to values extracted from experimental results, which agreed well. The pressure gradient in turn
indicates the emergence of an instability at the diverging meniscus, responsible for the formation
of finger-like structures in real printing. Thus, an accurate prediction of the pressure gradients
allows to navigate the printing regime between point- and lamella-splitting, i.e., with or without
these finger-like structures, better.

The second study, Section 5.2, focused on homogeneous solutions to Stokes’ problem in the
printing nip. By using the BPC we were able to find analytical solutions to this problem. Four
distinct solution paths were identified, differing by their behavior in the ξ and η coordinates.
In each of these solution branches an infinite number of modes, characterized by a complex
eigenvalue, can be superposed to construct the final solution. In addition to the flow patterns
arising for each of the solution branches, the influence of the nip width to cylinder radius ratio
and the effect of choosing a higher mode were investigated. Higher modes lead to more complex
structures and a faster decay of the flow towards the nip center. A reduction in nip ratio effects
an increase in vortex density, i.e., amount of vortices per unit length. Depending of the solution
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branch and observed mode free stagnation point may emerge from the flow. The section finally
presents numerical simulations of these structures for the first two modes. The simulation was able
to confirm the analytical findings, however due to the fast decay of the flow the arising structures
could not be simulated over the whole extend of the printing nip.
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6 Results for two-phase flows without contact
lines

In this chapter we proceed to investigate two-phase problems with and without evaporation. With
a single exception these simulations do not yet contain a three phase contact line.
The discussion starts with a detailed look into the capillary time-step restriction in Section 6.1.
We analyze the origin and cause of this restriction and try to determine its severity in actual
simulations. To this end a precisely defined capillary wave is propagated in an isolated setup and
we intentionally breach the restriction to see if this leads to a failure of the simulation.
Afterwards, in Section 6.2 the phase field level set method presented in Section 4.3.1 is investigated.
Two test cases are considered. With the well established rising bubble benchmark we illustrate the
influence of the mobility parameter, adjusting the amount of diffusion in the phase field equation,
on the interface evolution. To demonstrate the handling of contact lines, we consider a droplet
sitting on a flat plate. Theoretically, the droplet should remain completely stationary, which for
the phase field level set is only true in the sharp interface limit. Thus a conflict between phase
field and flow solution arises in this hybrid method. The section concludes with a comparison of
the presented level sets methods and justifies the choice made for the subsequent simulations.
In Section 6.3 the sensitivity to the EOC of the method to appropriate boundary conditions is
investigated. In addition we establish a simple test case in order to find out which coupling of
approximation orders between temperature and velocity is optimal.
Finally, Section 6.4 presents the verification of the XDG method for two-phase flows with evap-
oration. For this purpose a series of well established 1D, 2D and 3D test cases is computed and
the findings are compared to results from literature and analytical solutions. The contents of this
section are published in (Rieckmann et al., 2023e). Section 6.5 concludes the chapter summarizing
the findings of the sections mentioned.

6.1 Selection of stable time-step sizes

When simulating two-phase flows with a moving interface using the method presented in Chapter 4,
an upper bound for the time-step size arises. In this section some context is provided, where this
time-step restriction originates and also some results are presented illustrating the severity of this
restriction.

Capillary waves - Dispersion relation and time-step restriction Capillary waves are surface
waves occurring at dividing interfaces, whose driving mechanism are capillary forces. For a flat
two-phase interface in an inviscid (µ ≈ 0) setting and without external forces a dispersion relation
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for these capillary waves can be derived. It is obtained by means of linear stability analysis, using
a normal mode ansatz, cf. (Chandrasekhar, 1961, p 428ff.). This dispersion relation

ω(α) =

√
σα3

ρA + ρB
(6.1)

describes the angular frequency of the capillary waves as a function of the wavenumber (or
wavelength) α = 2π/λ. It can be utilized to obtain the phase velocity

c(α) =
ω(α)

α
=

√
σα

ρA + ρB
(6.2)

of these waves. Using the phase velocity, it is possible to identify the time δt the crest in a wave
with a certain wavelength needs to propagate a distance δx as

δt =
δx

c(λ)
=

√
(ρA + ρB) δx2λ

2πσ
. (6.3)

The last step in the analysis is to identify the smallest resolved wavelengths and the assumed
propagation distance with the resolution of the method

λ = δx ≈ ∆x ≈ hmin
2k + 1

, (6.4)

where k is the polynomial degree of the level set field and hmin the diameter of the smallest cell
in the mesh. The dependence on h and k is chosen in analogy to the CFL condition in explicit
compressible DG methods, e.g. (Cockburn and Shu, 2001). Owing to the explicit coupling
between interface movement and flow solution described in Section 4.4, the numerical time-step
∆t has to be smaller than δt, which is very similar to a common CFL condition. Thereby, the
capillary time-step restriction

∆t ≤

√√√√(ρA + ρB)
(
hmin
2k+1

)3
2πσ

(6.5)

arises, see also (Denner and van Wachem, 2015). Note, that other sources, e.g. Smuda (2021),
give a slightly different expression (which is used e.g. in Section 6.4, replacing 2k + 1 with
k + 1), deviating by a constant factor, which in practice accounts to a different safety factor.
Equation (6.5) should not be used as an exact limit, but more as a guideline. However, it is
important to observe that the permissible time step decreases super-linearly with the refinement
of the polynomial order and the grid. In addition, it should be noted that this restriction applies to
the case, where no additional fluid motion is considered. If such a movement is present, Denner
and van Wachem (2015) propose to take into account both the phase velocity of the capillary
waves and the additional interfacial velocity when calculating the appropriate time-step size. As
in this work usually fixed time-steps are used and the interface velocity is not always known
beforehand, only the static restriction is used.

Severity of a breach in capillary time-step restriction To gain an insight into how severe this
time-step restriction is in actual simulations, a numerical experiment is performed. In the setup a
standing capillary wave is set as initial condition by the level set field

ϕ(x, y) = y − ŷ

j
sin(αjx) (6.6)
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in an otherwise undisturbed domain, as shown in Fig. 6.1 on the left. The material parameters are
set to be ρA = ρB = 1, µA = µB = 0.0001 and σ = 1, such that the approximation for capillary
waves derived in the last section is applicable. For the amplitude ŷ = 0.01 is chosen and the wave
number is varied as

αj = 2πj, j = 1 . . . 4. (6.7)

The grid is constructed to accurately resolve the capillary wave, with minimum cell size hmin ≈
0.074. The left and right boundaries are periodic, while the upper and lower ones are homogeneous
Neumann boundaries. The simulations are performed with approximation order k = 2 . . . 4 for
the velocity and level set field. For this specific capillary wave, the prediction for the maximum
admissible time-step is

∆tmax =
hmin
2k + 1

√
ρA + ρB
αjσ

. (6.8)

Equation (6.8) is based on Eq. (6.3), with the distinction compared with Eq. (6.5) that δx ≈ ∆x,
while for the wavelength the relation λ = 2π/αj is used. We now want to compute one oscillation
period tend = 1/(cj) in the evolution of this oscillating interface with different time-steps,

∆ti =
5

5 + i
∆tmax, i = 0 . . . 5, (6.9)

exactly on and slightly below the predicted maximum time-step size ∆tmax (Eq. (6.8)). Figure 6.1
shows the progression of a simulation, which failed after 12 time-steps. The first few time-steps
seem inconspicuous. However, by the eighth time-step some raggedness becomes visible in the in-
terface and the simulation degrades quickly afterwards. To circumvent this instability a time-step

(−1,−1)

(1, 1)

x

y

Figure 6.1: Failed simulation for j = 1, i = 0, k = 2. The initial interface and the grid is displayed
on the left. The right images show the interface evolution, from top left to bottom
right t(1) . . . t(12), for the red cutout. Some raggedness in the interface can be seen with
the naked eye by the eighth time-step at the latest. The simulation then deteriorates
quickly and irreversibly fails at time-step t(12).
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Table 6.1: Success of capillary time-step simulations
i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

k 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

j = 1

j = 2

j = 3

j = 4

sufficiently below the predicted capillary time-step must be chosen.
The results for all tested waves, approximation degrees and time-step sizes are displayed in Ta-
ble 6.1. Simulations that finished are marked in green, while those marked red ended prematurely.
The overall trend is very clear, smaller time-steps perform better. The estimation for the time-step
size fits better for smaller approximation order. And when the wavenumber is higher, which
corresponds also to a smaller time-step and shorter oscillation period, the simulation is more
likely to finish. We therefore conclude that abiding to this restriction is extremely important and
violating it can lead to a solver crash very fast.
Also in contrast to this setup, in real simulations the occurring capillary wavelengths are not
known a-priori. This means the restriction must be selected according to the estimate for the
smallest resolved wavelength. It should be noted, that this setup can also fail when simulating
for an extended duration, especially for the higher polynomial orders. Long term stability is a
sensitive topic and requires a careful selection of material parameters, grid and time-step size and
additional schemes like reinitialization.
A recent work by Denner et al. (2022) suggests, that this time-step limit can be breached by
employing a fully implicit method. However, due to the explicit splitting between interface and
flow solver, the capillary time-step restriction must be adhered to in this work.

6.2 Phase field level set results

In this section some results for two phase flows, under usage of the phase field level set method
introduced in Section 4.3, are presented. Two problems will be considered. These test cases
serve to emphasize the influence the phase field parameters (mobility M and gradient energy
coefficient ξ, Eq. (4.33a)) have on the observed physical behavior.
First, a rising bubble simulation, cf. (Smuda, 2021; Hysing et al., 2009), is performed with
different choices for the mobility parameter. Secondly, a static droplet on a plane surface is
simulated. For this setup the contact angle boundary condition for the phase field equation and
the influence of the gradient energy coefficient are examined.
The section will conclude with a brief comparison of the phase field and scalar advection method
and motivate the choice of interface evolution for the remainder of this work. For the computation
of the extension velocity according to Section 4.3.2 the impermeability boundary condition is
used for those boundaries that are impermeable for the flow solver as well.
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6.2.1 Influence of the mobility parameter

The setup for the rising bubble benchmark case from Hysing et al. (2009) is displayed in Fig. 6.2.
Only the test case 2 will be considered, with non-dimensional parameters ρA = 1, ρB = 1000,
µA = 0.1, µB = 10, σ = 1.96 and g = 0.98. The domain of size Ω = [0, 1]× [0, 2] is meshed with
cells of size h = 0.1, two levels (l = 2) of adaptive mesh refinement (AMR) are performed at
the interface and an approximation degree of k = 2 is chosen. The bubble of radius r = 0.25 is
initialized at (xc, yc) = (0.5, 0.5) with the phase field

ϕ(x) = tanh


√
(x− xc)2 + (y − y2c )− r√

2ξ

 . (6.10)

Due to the buoyancy force acting on the bubble in the gravitational field, it will move upwards and
assume at first an oblique shape. Due to the drag along the upper contour of the bubble, it starts
to develop filaments at its lower side. In this test case the surface tension is too low to inhibit the
development of these filaments and enforce a convex shape of the bubble. The simulated interface
shapes at different times, for mobility parameter

M = 10i, i = −4 . . . 0, (6.11)

are displayed in Fig. 6.3. For all simulations the transition length (cf. Eq. (4.33a)) is set to

ξ =
4h

(2k + 1)2l
, (6.12)

and the SDIRK22 scheme, Table 4.1, is used for timestepping with non-dimensional time-step
∆t = 0.001. For higher mobility parameters the trailing edges of the filaments are smoothed
away by the additional diffusion, observable at t = 2. This additional smoothing is so strong that
full development of filaments and the emergence of satellite bubbles only occurs for the lowest
mobility parameter, as can be seen at t = 3. At the second lowest value, satellite bubbles are also
split off, but the filaments recede afterwards. For the two highest mobility values, the bubble
shape is so strongly influenced that the rise velocity of the bubble differs considerably. At the
highest value, the bubble even retains an ellipsoidal shape at all times. In the original benchmark
by Hysing et al. (2009) several benchmark quantities are introduced to compare the results of
different methods. However, for the means to discuss the qualitative influence of the mobility
parameter, the visual analysis suffices.

6.2.2 Influence of the phase field contact line boundary condition

The second test case does not fit completely into this chapter, as a contact line is considered
already. However, it serves to evaluate the phase field level set method and justify a decision on
which evolution algorithm to use before moving on to more complex simulations. A droplet of
radius r = 0.5 is placed in a box of size Ω = [−1, 1]× [0, 1]. Its center is shifted from the origin,
such that different contact angles,

θi =
π

4
+ i

π

12
, i = 0 . . . 3, (6.13a)

yi = r cos(θi), (6.13b)
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Figure 6.2: Setup for the rising bubble test case, image source (Smuda, 2021)

t = 0 t = 2 t = 3t = 1

M = 10−1 M = 10−2 M = 10−3 M = 10−4M = 100

Figure 6.3: Interface shape at different times, for different mobility parameters.
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are prescribed at the contact points between interface and wall, see Fig. 6.4. The non-dimensional
material parameters are chosen arbitrarily to ρA = 1000, ρB = 1000, µA = 1, µB = 1, σ = 1. The
static contact angle is deliberately chosen as θstat = θi to match the geometrically prescribed angle
in each test case. The domain is meshed with cells of size h = 0.1 and three levels (l = 3) of AMR
at the interface. The approximation degree is chosen as k = 2. The droplet is initialized with the
phase field

ϕ(x, y) = tanh


√
(x)2 + (y − y2i )− r√

2ξj

 . (6.14)

The transition length is varied with

ξj =
(4− j)4h
(2k + 1)2l

, j = 0 . . . 3, (6.15)

while the mobility is chosen asM = 1. With the different transition lengths the result in the sharp
interface limit ξ → 0 can be investigated. The high value of the mobility exaggerates the effect of
the phase field boundary condition for the contact angle Eq. (4.36a), which as we will see clashes
with the contact angle boundary condition employed during the flow solution Eq. (2.72). For
both the flow and phase field solution, the implicit Euler scheme is used and 1000 time-steps of
size ∆t = 0.001 are performed.
In principle, the prescribed initial state is in equilibrium already, therefore the contact angle and
contact point position should not change. Also the kinetic energy should be very small, i.e., only
non-zero due to parasitic currents originating from inaccuracies of the surface tension computation
at the interface.
In Fig. 6.5 the deviation of the contact angle and position from the prescribed equilibrium value
and kinetic energy is displayed for the different transition lengths over the simulation time. As a
reference the same simulation performed with the scalar advection evolution (Section 4.3.1) is
displayed (initial interface shape according to Eq. (6.14) with j = 0).
From the contact angle plot it is visible that larger transition lengths (triangles and squares) lead
to larger deviations in the observed contact angle. This effect is especially pronounced when the
contact angle is sharper (red and green lines). In the sharp interface limit, as ξ → 0 (i.e. for
increasing j), the deviation in contact angle diminishes for all test cases, apart from one outlier
(blue diamonds). Furthermore, a few abrupt changes in the contact angle are visible. These are
usually related to time-steps, in which the contact line enters a new cell.
The contact point position, displayed below the contact angle, is influenced by two effects. For
one, the initial phase field profile is not the exact equilibrium one, which causes the zero set to
move. The tanh profile (Eq. (6.15)) is only a good approximation to the true equilibrium profile
as ξ � 1/κ. The second effect is the induced contact line velocity, due to the deviation in contact
angle.
This effect becomes even more visible in the plot for the kinetic energy. The kinetic energy, which
should vanish in this test case, does not disappear, as the phase field evolution computes an
equilibrium contact angle significantly differing from the prescribed static one. This causes the
contact line to move and slightly distorts the interface causing a flow due to unbalanced capillary
forces. From the reference simulations using the scalar advection, it is visible that the movement
of the contact point and the kinetic energy approximately disappear. However, depending on
the contact angle a small deviation is still observed, which can be attributed to the projection
of the tanh profile. This shape was chosen to ensure the comparability and highlight the effects
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Figure 6.4: Setup for the static droplet test case

attributable to the phase field. In more complex simulations a different profile would be used, e.g.
a signed-distance profile.

6.2.3 Discussion of phase field level set findings

Even though the Cahn-Hilliard equation is conservative w.r.t the order parameter, i.e., the scalar
level set variable, it does not conserve the mass enclosed by its zero set. In addition, the diffusive
terms introduce an artificial smoothing of sharp contours, whose dominance scales with the
mobility parameter. However, choosing the mobility parameter too low basically results in
the scalar advection equation, and the advantages of the phase field level set method are lost.
Therefore, the mobility parameter must be chosen so that there is enough diffusion to contract
or expand the interface in its normal direction towards its equilibrium shape, while limiting the
unwanted tangential diffusion.
The results for the static droplet show that the boundary condition for the contact angle in the
phase field only results in the equilibrium contact angle at the zero set in the sharp interface limit.
In practice this means that the two contact angle boundary conditions in the level set and fluid
equations do not match and an artificial movement of the contact line is introduced.
The main advantage of the phase field level set is its robustness. The diffusive terms work to hold
the transition of the order parameter in the tanh shape normal to the interface. Furthermore,
there are also indications that the additional diffusion in the phase field level set method serves
to go beyond the capillary time-step limit. However, this is not further explored in this work.
In contrast to this stand the disadvantages of the method. Due to the fourth order nature of
the non-linear Cahn-Hilliard equation, an implicit timestepping with a non-linear solver has to
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Figure 6.5: Deviation of the measured contact angle and position and kinetic energy from the
prescribed equilibrium values in the static droplet test. Colors decode the prescribed
angle θ0, θ1, θ2, θ3, markers the transition length ξ0, ξ1, ξ2, ξ3 and the reference
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be employed to solve the phase field evolution. This is much more expensive than the explicit
timestepping used for the scalar advection equation. Furthermore, the choice of the additional
parameters is not straightforward and significantly influences or even distorts the results.
Summarizing all this, we conclude that the downsides of the hybrid diffuse-sharp interface phase
field level set method outweigh its advantages and the scalar advection is chosen as the primary
interface evolution method for the remainder of this work.

∂Ωu

∂Ωl
x

y

Figure 6.6: 16×8 O-Grid, meshed with biquadratic cells. 8×4 cells are used for the center section
of size R×R/2 and another 4 cells in the radial direction of the outer ring.

6.3 Consideration of DG convergence in dependence of boundary
conditions

In this section a few small convergence studies are collected. Two investigations are performed.
In the first investigation the steady heat equation (basically Poisson’s problem) is solved on
a semi-circular domain. It will be shown that even smooth boundary values can result in a
suboptimal convergence order for the temperature. The second investigation considers a free
floating evaporating liquid drop and compares the convergence orders for velocity and pressure
in dependence of the convergence order for the temperature. The results serve to justify the
choice of equal approximation order for the velocity and temperature fields, as determined in
Section 4.1.

6.3.1 Sensitivity to non-obvious non-smooth solutions

The purpose of the first presented investigation is to underline the importance of carefully selected
temperature boundary conditions, especially in the context of contact line problems, when high
order convergence is to be achieved. The setup is chosen to resemble a semi-circular 2D droplet
of radius R = 0.8, in which the temperature distribution is to be solved. In this investigation the
scope is limited to pure single phase flow and the droplet is meshed using an O-Grid, as displayed
in Fig. 6.6. On this mesh the steady heat equation, Eq. (2.74c) ρĉ = 0 and k̂ = 1, is solved. The
boundary of the droplet is split in two parts, the upper half ∂Ωu, representing the fluid-fluid
interface and the flat lower part ∂Ωl, representing the fluid-solid interface. Over the course of the
study the boundary conditions, as well as the polynomial order for the temperature are changed.
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Table 6.2: EOC ||T − Tref ||L2(Ω), for the steady heat equation
∂Ωu ∂Ωl k = 2 k = 3 k = 4 k = 5

T = sin(x)ey T = sin(x)ey 3.27 4.15 5.04 6.15
T = ln(r0) T = ln(r0) 0.84 0.91 0.90 0.91
T = ln(r0.01) T = ln(r0.01) 1.34 1.62 1.81 1.89
T = ln(r0.1) T = ln(r0.1) 2.26 2.86 3.46 4.13
T = ln(r1) T = ln(r1) 3.24 4.17 4.88 5.89
T = 0 T = sin(π(x−R)/(R)) 2.94 3.35 3.30 3.19
T = 0 Eq. (A.28) 3.02 3.90 4.70 4.88

The EOC, which is determined using five different grids of size 4× 2, 8× 4, 16× 8, 32× 16, 64× 32,
is displayed in Table 6.2.
The first row of Table 6.2 uses a smooth, exact, non-polynomial solution to Poisson’s problem and
serves as a baseline, verifying the optimal EOC of k+1 of the method. Afterwards a solution to the
problem in polar coordinates is used, exhibiting a singularity at ra =

√
x2 + (y + a)2 = 0. The

results clearly show the loss of optimal convergence for this low regularity solution. Subsequently,
the center point of this solution is shifted outside the domain and it is visible that the EOC recovers,
the further the singularity is moved outside of the computational domain. We then shift to a
setting resembling the evaporation setup, where the upper fluid-fluid interface is held at saturation
temperature T = 0 and the lower wall is heated. However, the results show a decrease in EOC
even though the boundary conditions are smooth.
For the last row an exact solution, based on the procedure described by Polyanin (2015, p. 788),
is used for the boundary conditions. From Fig. 6.7 it is visible that the BC chosen in this way
differs only slightly from the sine BC. Even though these conditions look very similar, Table 6.2
clearly shows an increase in EOC for the carefully crafted BC, approaching the optimal order
again, up to k = 4. When increasing the approximation order to k = 5, again a stagnation in EOC
is visible. It is not clear what is causing this diminution.
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)

Figure 6.7: Comparison of the boundary condition on ∂Ωl of Eq. (A.28) and a sine function
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6.3.2 Temperature velocity coupling

In Eq. (4.5) the same approximation order is chosen for the temperature and velocity solution. In
this section a test case is presented, whose purpose is to investigate the justification of this choice.
To this end, consider the setup depicted in Fig. 6.8. A droplet of radius R = 0.8 is placed in a
closed box of size Ω = [−1.5,−1.5]× [1.5, 1.5], using the level set field

ϕ(x, y) =
( x
R

)2
+
( y
R

)2
− 1. (6.16)

The walls of the box employ the freeslip boundary condition for velocity/pressure (Eq. (2.78)
with β, βN = 0) and Dirichlet boundaries for the temperature with three different choices:

T0(x, y) = x, (6.17a)
T1(x, y) = xy, (6.17b)

T2(x, y) = sin
(πx

3

)
sin
(πy

3

)
. (6.17c)

The steady state solution is computed, neglecting convective terms, with arbitrarily chosen material
parameters as ρA = 1, ρB = 0.1, µA = 0.5, µB = 0.05, k̂A = 1, k̂B = 0.1. Surface tension is
neglected (σ = 0) to avoid flow due to capillarity and focus on the flow due to evaporation.
The thermal parameters for the interface are chosen as Tsat = 0 and ĥvap = 1000. As in prior
investigations the EOC, using a series of grids with 8× 8, 16× 16, 32× 32, 64× 64, 128× 128 cells,
for the solution variables is investigated.
In Table 6.3 the results for different pairings of temperature and velocity degree are shown.
It is not suprising that the EOC for pressure/velocity depends on the approximation order for
the temperature, as the test case is designed in such a way that the flow is only generated by
evaporation. Therefore, the solution of velocity and pressure should be heavily influenced by
the quality of the temperature solution at the interface. From Eq. (2.75) it is visible that the
jump in velocity at the interface is proportional to the jump in temperature gradients. Hence, the

x

y

Figure 6.8: Temperature and velocity field for T1, i.e. Eq. (6.17b), in a free floating evaporating
droplet
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Table 6.3: EOC, for the temperature velocity coupling
ku | kp 2 | 1 3 | 2 4 | 3

kT 1 2 3 4 2 3 4 5 3 4 5 6

‖p− pref‖
T0 -.02 1.06 1.87 2.09 1.08 1.85 2.98 2.99 1.53 3.06 3.40 2.46
T1 0.14 0.92 1.78 2.47 0.81 1.64 2.94 2.85 1.32 2.89 3.22 2.44
T2 0.20 0.95 1.77 2.48 0.85 1.59 2.88 2.72 1.27 2.90 3.05 2.42

‖u− uref‖
T0 0.76 2.10 3.21 3.40 2.10 2.88 4.03 4.06 2.85 4.12 4.88 3.63
T1 0.99 2.09 3.13 2.90 2.12 3.20 3.98 3.71 3.22 4.21 4.97 3.93
T2 0.93 2.08 3.14 2.85 2.11 3.21 3.92 3.59 3.24 4.17 4.81 3.97

‖T − Tref‖
T0 1.41 3.43 3.88 4.96 3.43 3.88 4.96 5.76 3.88 4.96 5.76 5.39
T1 1.44 3.36 3.96 4.91 3.36 3.96 4.91 5.79 3.96 4.91 5.79 6.29
T2 1.18 3.15 3.35 3.12 3.15 3.35 3.12 3.05 3.35 3.12 3.05 3.01

hypothesis to test is whether the temperature order should be chosen one degree higher than
the velocity order. From looking at the first entry of every multicolumn in Table 6.3 it becomes
evident that the temperature order should not be chosen smaller than that of the velocity. Even
for the same approximation order, the EOC for velocity/pressure seem reduced compared to the
expected optimum. When chosen of one order higher the EOC finally reaches the optimal value.
A further increase in approximation order for the temperature seems to have a negative impact
on the convergence of velocity and pressure. It is Interesting to note that this overall behavior
does not change even when the global EOC for the temperature solution is reduced, as is the case
for the BC T2 from Eq. (6.17c). The findings support the hypothesis that the polynomial order for
the temperature should be chosen one degree higher than that of the velocity. However, these
results were obtained towards the end of this work, which is why equal approximation orders
are used for the evaporation calculations carried out as part of this thesis. Additionally, the short
investigation presented here does not deal with the coupling in the convective terms and overall
stability of the method. Further investigations into this matter are required in order to reach a
final conclusion.

6.4 Verification of the evaporation solver

The following section is an excerpt of the publication of the author of this thesis (Rieckmann
et al., 2023e) on the implementation of evaporation in the XDG method. With the exception
of individual corrections and minor textual adjustments to fit within the scope of this thesis,
this section is a direct quote from the publication mentioned. For better readability, additional
indentation has been omitted. This publication originated as part of this thesis and presented
the XDG evaporation solver to solve the system described in Section 2.6.2 for the first time. The
details of the method are discussed in more depth in Chapter 4. To conclude this chapter a variety
of well established evaporation test cases, not involving contact lines, are computed. The results
of these simulations in 1− 3 dimensions serve to validate the method. First, two 1D test cases,
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known as the Stefan & Sucking problem, see e.g. (Welch and Wilson, 2000; Gibou et al., 2007;
Sato and Ničeno, 2013; Bureš and Sato, 2021a), are considered. Next, a 2D film boiling, similar
to (Son and Dhir, 1998; Welch and Wilson, 2000; Gibou et al., 2007), is simulated. And finally
the growth of a vapor bubble in superheated liquid, as known from (Scriven, 1959; Sato and
Ničeno, 2013; Bureš and Sato, 2021a), serves as a 3D test case.1,2

6.4.1 1D: Stefan problem & Sucking problem

Setup The first two test cases are known as the Stefan and Sucking problem. For completeness,
we repeat their problem statement and material properties used here, following Bureš and Sato
(2021a). Both cases have a similar setup, which is displayed in Fig. 6.9: a linear cavity of total
length L (closed on its left side) contains a vapor adjacent to its liquid. The right boundary is open,
allowing liquid to enter or exit the domain. However, in addition to the different initial conditions
and size of the cavity, the test cases differ in the way heat is supplied to the system to cause
evaporation at the vapor-liquid interface. Both cases use water and its vapor at the conditions
given in Table 6.4. In the Stefan problem, the left wall is kept at a temperature higher than the
saturation temperature, resulting in a heat flux from the wall towards the interface through the
vapor. In the Sucking problem, the liquid is initially superheated, resulting in a heat flow from
the liquid bulk towards the interface.
For these test cases, an analytical solution for the interface position over time is known:

xΣ(t) = 2βv
√
αvt,

αv =
k̂v

ρv ĉp,v
,

ε = 1− ρv
ρl
.

(6.18)

The velocity is constant throughout the phases, with a discontinuity at the interface. Of particular
interest is the temperature profile in the active phase (i.e. the vapor phase in the Stefan problem
1The software used to obtain the presented results is open source and available from (Kummer et al., 2023)
2The data sets containing the results of the numerical simulations are available online (Rieckmann et al., 2023b)

Figure 6.9: Stefan & Sucking problem setup. The simulation setup for the 1D test cases is sketched.
The qualitative temperature profiles for the Stefan problem (in blue) and Sucking
problem (in red) are plotted in the upper image.

104



Table 6.4: Material properties of water at saturation for atmospheric pressure
Density
ρ [kg/m3]

Heat capacity
ĉp [J/(kgK)]

Thermal conductivity
k̂ [W/(mK)]

Dyn. viscosity
µ [Pa s]

Liquid 958.4 4216 0.679 2.8× 10−4

Vapor 0.597 2030 0.025 1.26× 10−5

Latent heat ĥvap [J/kg] = 2.258× 106, Surface tension σ [N/m] = 0.059,
Saturation temperature Tsat [K] = 373.15

Table 6.5: Parameters for the Stefan and Sucking problem
∆T [K] βv [−] t0 [s] xΣ(t0) [mm] L [mm]

Stefan 10 0.0669 0.03 0.0105 1
Sucking 5 0.7677 0.1 2.21 10

and the liquid phase in the Sucking problem). Solutions for velocity and temperature can be
found in the work of Welch and Wilson (2000). The specific parameters used in the simulations
are listed in Table 6.5. Both test cases are initialized at a time t0 > 0 such that xΣ(t0) > 0.
For both simulations, we investigate the solutions under refinement of the grid and polynomial
degree. The grid sequence includes grids with n = [8, 16, 32, 64] equal-sized cells, and the
polynomial order varies within k = [1, 2, 3] Eq. (4.5). Both test cases use the fields defined by the
analytical solution as initial values for velocity and temperature. Although the surface tension does
not play a role in the analytical solution, it limits the stable time-step size of our numerical method,
according to Eq. (6.5). To obtain a practical step size, we reduce the surface tension by a factor of
106 for the Stefan problem and 103 for the Sucking problem, resulting in σ = 0.059× 10−6 N/m
and σ = 0.059 × 10−3 N/m, respectively. For both cases, we simulate until tE = 0.6 s with a
constant time-step of ∆t = 1.4× 10−4 s in all runs. Furthermore, the temperature is rescaled to
Θ = (T − Tsat)/∆T .

Results With the setup established, we provide a brief discussion of the results. Simulations
using the same polynomial degree are grouped together, and the interface position in time is
considered. The results for the Stefan problem are shown in Fig. 6.10, and those for the Sucking
problem are shown in Fig. 6.11.
In case of the Stefan problem, Fig. 6.10, all plot lines are nearly identical, indicating that the
numerical solution reproduces the analytical one very well. Only when substantially magnifying,
as shown int the cutouts in Fig. 6.10, some differences become visible. For simulations using
the lowest polynomial order, a convergence towards a slightly offset solution compared to the
analytical one is apparent. For simulations with polynomial order k = 2 and k = 3, the numerical
solution does not vary noticeable when refining the grid. In all three cases, there exist a deviation
from the analytical solution that does not vanishing with hk-refinement and remains nearly
constant. This is most likely due to the temporal error arising through the first order coupling
between flow solution and interface movement.
Proceeding to the Sucking problem, the results shown in Fig. 6.11 are more interesting, as the
temperature profile is more complex. Overall, there is a convergence towards the analytical
solution for all polynomial degrees. Even the simulations using the coarsest grid and a thereby
under-resolved temperature profile, are able to reproduce the qualitative behavior of the interface
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Figure 6.10: Stefan problem results. The interface position for simulations of the Stefan problem
with different polynomial degree k = [1, 2, 3] under grid refinement with n =
[8, 16, 32, 64] cells is displayed, the exact solution Eq. (6.18) is given in red.
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Figure 6.11: Sucking problem results. The interface position for simulations of the Sucking
problem with different polynomial degree k = [1, 2, 3] under grid refinement with
n = [8, 16, 32, 64] cells is displayed, the exact solution Eq. (6.18) is given in red.
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movement. The magnifications also reveal some noteworthy findings. The best solution is
obtained for k = 1, n = 64, whereas one would expect the best result for k = 3, n = 64. A
detailed investigation of this observation is beyond the scope of this paper, but we can offer a
short explanation for this phenomenon.
From the results in Fig. 6.10, where the error in interface position is mainly attributable to the
temporal error, we can deduce that the temporal discretization overestimates the movement of the
interface. On the other hand, from the simulations in Fig. 6.11 using coarse meshes, it is apparent
that the spatial discretization tends to underestimate the interface speed. Together, these two
error components can lead to an annihilation, leading to the observed phenomenon.
To relate these results to alternative methods, Fig. 6.12 shows the l1-mean value of the relative
error in interface position, i.e.,

Ē1 =
1

N

∑
i

∣∣∣∣ xΣ,i
xΣ,theor(ti)

− 1

∣∣∣∣ , (6.19)

in comparison to the results obtained by Bureš and Sato (2021a). The formula Eq. (6.19) is
slightly modified, taking into account the fixed time-step size and total number of time-steps N in
our simulations. On the abscissa the inverse of number of cells per domain length is displayed,
normalized by the coarsest grid level. The normalization constant is n = 8 in both our simulations
for the Stefan and Sucking problems, whereas it differs in the reference between n = 50 and
n = 400. For the Stefan problem the simulations for all polynomial degrees converge towards
the same residual error, without displaying a clear order of convergence. This suggests that
the flow solution is approximated well even for k = 1 and the majority of the error arises from
the time discretization and coupling between flow solution and interface movement. For the
Sucking problem all simulations display a similar, approximately first order convergence. For
the simulations with k = 3 similar relative errors as by Bureš and Sato (2021a) are achieved.
This is particularly significant when taking into account the total number of DOFs. Looking at

(a) Stefan problem (b) Sucking problem

Figure 6.12: Relative error in interface position, Eq. (6.19), in comparison to the results of Bureš
and Sato (2021a). The abscissa shows the inverse cell length scale normalized for
the coarsest grid n = 8 (different values for Bureš and Sato (2021a) a) n = 50, b)
n = 400). As in the reference the dashed lines show power-law fits of the data points.
A different scaling for the ordinate was chosen for the two test cases.
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Table 6.6: Material properties for the 2D film boiling
Density
ρ [kg/m3]

Heat capacity
ĉp [J/(kgK)]

Thermal conductivity
k̂ [W/(mK)]

Dyn. viscosity
µ [Pa s]

Liquid 200 400 40 0.1
Vapor 5 200 1 0.005

Latent heat ĥvap [J/kg] = 104, Surface tension σ [N/m] = 0.1,
Saturation temperature Tsat [K] = 500

the data points at grid level 8 we have 2340 DOFs in our simulation whereas Bureš and Sato
(2021a) use ∼ 400× 8× 4 = 12800 DOFs. Thereby, it is possible to achieve the same accuracy
with only a fraction of the DOFs in our method. It is important to note that for DG methods,
usual convergence theorems hold for integral properties on fixed domains. However, the interface
position in time is no such integral property, instead depending only on values evaluated at the
exact interface position, on a time dependent domain. Therefore, high-order convergence for the
interface position is not guaranteed.

6.4.2 2D: Film boiling

Setup In the second test case, we consider the 2D film boiling problem proposed in Welch and
Wilson (2000) and also studied in Gibou et al. (2007). We focus solely on the setup with wall
superheat ∆T = 5 K. The physical parameters for the test case are given in Table 6.6. The level
set is initialized according to

ϕ(~x, 0) =
λ

128

(
4 + cos

(
2π
x

λ

))
− y,

λ = 2π

√
3σ

g |ρl − ρv|
,

(6.20)

using the most unstable wavelength λ of the developing Rayleigh-Taylor instability. The temper-
ature profile is set to resemble a linear profile assuming Tsat at the interface and Tsat +∆T at
the wall. The domain size is chosen as [−λ/2, λ/2]× [0, λ]. The lower boundary is a wall held at
constant temperature, while the upper boundary employs a homogeneous Neumann boundary
condition (−p1+ µ(∇u+∇uT ))n = 0, the left and right boundaries are periodic.
All simulations use a base grid of 4× 4 equal-sized cells (n = 2/(λ/2)). However, different levels
l = 2...4 of AMR are employed. Each level corresponds to a division of the refined cell in its center,
meaning for l = 1 one cell is divided into four and so on. The refinement is applied to all cut-cells
and their neighbor cells. The polynomial degrees used are k = 2 and k = 3, and the time-step
used in all simulations is ∆T = 4.867× 10−5 s.

Results As the main result the interface shape under polynomial and grid refinement is regarded.
For comparison the bubble shape from Gibou et al. (2007) is included at time t = 0.425 s. In
Fig. 6.13 the final interface shape for the k = 2 simulations is shown. Under increasing AMR they
converge towards a similar shape as in the reference, but without reaching the identical shape.
The simulation on the coarsest mesh stands out, in that it gives a significantly different result,
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Figure 6.13: Film boiling results for k = 2, comparing the bubble shapes at t = 0.425 s for k = 2,
n = 2 and different levels of AMR l = [2, 3, 4]

where the bubble that is forming is still in an earlier stage of development.
For the k = 3 simulations, shown in Fig. 6.14, an identical result is found, however this time the
coarsest simulation does not deviate that far and the two other results are practically lying on top
of each other.
Under polynomial refinement the same trend is visible, see Fig. 6.15. Here, the interface shape
again seems to converge toward the reference, although not quite reaching it.
It is interesting to note the direction of convergence here. In both cases (k = 2 and k = 3) the
bubble becomes larger under refinement. In the reference the direction is exactly inversed, with the
bubble becoming smaller under refinement. By this observation our method and the one employed
in Gibou et al. (2007) converge towards the same solution, although from a different direction. A
very similar effect, regarding the direction of convergence, was noticed in the comparative work
on capillary rise by Gründing et al. (2020), where a similar version of our solver was compared
to finite volume based schemes. There the direction of convergence between the finite volume
methods and the XDG method was also inversed.
To gain more insight into this phenomenon the temporal evolution of the interface for k = 2, l = 2
and k = 2, l = 4 is compared in Fig. 6.16. At the beginning of both simulations, there is no notable
difference, with the interface almost uniformly moving upwards until t = 0.167 s. However, as
soon as the instability starts to form, the two simulations begin to diverge, visible at t = 0.333 s.
In the low resolution simulation the development of the instability is delayed compared to the
fine resolution. Our interpretation is the presence of additional numerical diffusion in the coarse
simulation. This slows down the formation of the instability, leading to a different final state at
t = 0.5 s.
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Figure 6.14: Film boiling results for k = 3, comparing the bubble shapes at t = 0.425 s for k = 3,
n = 2 and different levels of AMR l = [2, 3, 4]

Figure 6.15: Comparison of film boiling results for k = 2 and k = 3 at t = 0.425 s for different
polynomial degrees k = [2, 3], n = 2 and l = 4
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Figure 6.16: Evolution of the interface shape during the film boiling simulations with k = 2, n = 2,
and different levels of AMR, l = 2 and l = 4. The formation of the instability is
significantly delayed for the simulation with less AMR.

6.4.3 3D: Scriven test case

Setup The final test case presented in this work is the 3D growth of a vapor bubble in superheated
liquid, commonly referred to as the Scriven test case, see e.g. Sato and Ničeno (2013) and Bureš
and Sato (2021a). As in the 1D test cases, the material properties from Table 6.4 are used. The
interface position over time is given by Eq. (6.18), where xΣ represents the bubble radius rΣ.
When expressed in a spherical coordinate system all solution fields are only dependent on the
radial coordinate. In such a coordinate system this test case is therefore very similar to the 1D
test cases. However, here a cartesian coordinate system is used, for which no such dimensional
reduction can be made. The computational domain is a cube with edge length L, containing
1/8-th of the vapor bubble. The additional parameters for superheat, start time and length scale
are summarized in Table 6.7.
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Table 6.7: Parameters for the Scriven test case
∆T [K] βv [−] t0 [s] rΣ(t0) [mm] L [mm]

1.25 4.063 0.000225 0.05 0.1875

The exact solutions for the radial-velocity and temperature are expressed in terms of the radial
coordinate, given by r =

√
x2 + y2 + z2, cf. Scriven (1959) or Sato and Ničeno (2013). The initial

conditions are projected from these solutions, as shown in the top of Fig. 6.17. Symmetry boundary
conditions are employed on the boundaries intersecting with the interface, while homogeneous
Neumann boundary conditions are used on the three other boundaries. Although this is a small
deviation from the expected analytical solution, we do not expect it to significantly influence the
overall solution in terms of the interface position.
Similar to the film boiling case discussed in Section 6.4.2, we investigate the vapor bubble growth
for different levels of AMR l = 0...2. The base grid consists 8× 8× 8 equal-sized cells, denoted
as n = 8. In all simulations, the polynomial degree is k = 2. The final time is chosen such that
the analytical result gives double the initial radius, i.e. rΣ(tE) = 2rΣ(t0). As in Section 6.4.1, the
surface tension is rescaled by a factor of 5× 104 (σ = 0.0118× 10−4 N/m) to obtain a larger stable
time-step, without influencing the growth behavior in this particular case. The temperature is

Figure 6.17: Scriven test case initial and final states. The section of the velocity (left) and
temperature (right) fields with the x-y-plane is plotted. The projection of initial
values (top) is compared to the final state (bottom). The white grid shows the
section of the computational mesh. The interface can be seen by the position of the
discontinuities.
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rescaled according to Θ = (T − Tsat)/∆T . The time-step size used is then ∆T = 5.488× 10−6 s.
To investigate the effect of the time-step size, we perform the simulations with original and half
time-step size ∆T,∆T/2.

Results The growth of the bubble radius over time is shown in Fig. 6.18. As the level of AMR is
increased, the numerical solution converges towards the analytical one. All simulations use the
same time-step, so this increase in accuracy is solely attributable to the spatial refinement. To
investigate the role of the time-step in this particular test case, the simulation using AMR level
l = 1 is repeated with half the time-step size. The result is shown in the lower image of Fig. 6.18.
There is no significant increase in accuracy under temporal refinement. Only when magnified a
difference between the lines for ∆T/2 and ∆T becomes visible.
Figure 6.19 shows the initial temperature field in the x-y-plane for the l = 2 and l = 0 simulations.
The initial values for the coarse simulation differ substantially from the exact solution (note the
pronounced discontinuities), including the solution at the interface. Despite this, even the coarse
simulation can reproduce the qualitative behavior of the bubble growth without employing any
reconstruction or filtering of the values at the interface.
Finally, the results obtained with our method are compared to the findings of Bureš and Sato
(2021a). Figure 6.20 displays the l1-mean value of the relative error in interface position,
Eq. (6.19), plotted over the inverse cell length scale, normalized by the length scale on the
coarsest grid, with n = 8 for our data and n = 24 for the reference. The power-law fit of our

Figure 6.18: Scriven test case results. The radius of the vapor bubble over time is displayed, using
k = 2, n = 8 and different levels of AMR l = [0, 1, 2]. The upper picture shows the
solution under AMR. The lower plot compares the l = 1 simulation with original and
halved time-step size.
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Figure 6.19: Scriven test case comparison of refinement level. The section of the temperature
field with the x-y-plane is plotted for (from left to right) l = 2 and l = 0 after the
projection of initial values (top) and after 10 time-steps (bottom).

Figure 6.20: Relative error in interface position, Eq. (6.19), in comparison to the results of Bureš
and Sato (2021a). The abscissa shows the inverse cell length scale normalized for the
coarsest grid n = 8 (different value for Bureš and Sato (2021a) n = 24, “Cartesian
case”). As in the reference the dashed lines show power-law fits of the data points.
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data shows approximately second order convergence under grid refinement. To be able to classify
these results, two important differences must be mentioned. First, our simulations use interface
based AMR instead of uniform refinement over the whole domain. This reduces the number of
DOF used in the simulations. E.g., For the data points at grid level 0.25 we used ∼ 17612 DOF
(varying with number of refined cell), whereas the reference used ∼ 243 × 43 × 4 = 3538944 DOF.
Again, the results show that with only a fraction of the DOF the same level of accuracy can be
achieved. A large part of this reduction can be attributed to the refinement. Second, the end time
is smaller than in the reference (∼ 0.9 ms to ∼ 1.5 ms). This means that a certain discrepancy in
the absolute values of the measured errors is to be expected.

6.5 Conclusion

Over the course of this chapter several results obtained with the solver described in Chapter 4
are presented. With one exception they are all limited to flows not involving a contact line. Two
variants of the solver are employed, without and with evaporation, see Sections 2.6.1 and 2.6.2.
In the beginning, Section 6.1, the dynamics of capillary waves and their relevance in determining
a suitable time-step size for the numerical method are reviewed. We were able to confirm the
findings of other authors that owing to the explicit coupling between interface and flow solution,
a rigid restriction to the time-step arises. This restriction is based on the propagation speed of the
resolved capillary waves.

This analysis is followed by an investigation of the phase field level set method combining the
ideas of diffuse and sharp interface methods, in Section 6.2. In this approach the phase field,
as used in diffuse interface methods, is utilized as the level set field, describing the interface
location for the otherwise sharp interface method. The additional diffusion in the phase field
equation is a double-edged sword. On the one hand, it serves to stabilize the method in that it
pulls the interface towards an equilibrium shape, eliminating the need for reinitialization. On
the other hand, it smooths out sharp curvatures, serving as a kind of low-pass filter for capillary
waves. This behavior has the advantage of relaxing the time-step restriction, even though this
was not reviewed in detail. However, it also hides interface shapes or movements one would be
interested in. Finally, there is also the question of computational cost. The phase field method,
which requires an implicit time-stepping scheme and a non-linear solver, is considerably more
expensive than the explicit scalar advection approach. Due to the uncertainty in how to choose
the values for the parameters in this hybrid approach, namely the mobility and gradient energy
coefficients, the distortion of the interface behavior by the phase field solution and the higher
computational cost, the method was ultimately not further pursued.

In Section 6.3 two convergence studies are carried out. The first focuses on the impact the choice
of boundary conditions has on the overall convergence of the method. This is investigated using
the steady heat equation. It is found that the convergence order can be very sensitive to “hidden”
irregularities. The observed EOC is reduced in simulations where the BC are described such that a
singularity lies outside of the domain, and the solution inside is supposed to be smooth. Further,
it is recognized that describing arbitrary but smooth BC can also yield reduced EOC. These results
underline the importance of carefully choosing appropriate BCs when high order convergence is
to be achieved. It is not always possible to sense if the chosen conditions are suitable to accomplish
this task, especially on domains involving complex shapes. This is particularly relevant when
considering evaporation at any interface.
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The second convergence study examines the optimal order for the coupling between the ap-
proximation orders of the velocity and temperature fields. To this end, several combinations of
velocity and temperature degree are tested. The hypothesis is inspected that optimal results can
be achieved, when the temperature is one order higher than the velocity. The findings seem to
confirm this hypothesis, returning optimal convergence orders in velocity and pressure for that
case. A further increase does not seem to have a positive impact on the EOC. This behavior is even
observed when an unfit boundary condition is used for the temperature, such that the EOC for the
temperature is reduced. However, the analysis is limited to steady flow without convective terms,
i.e., a one way coupling between temperature and velocity solution. To come to a conclusive
result, further research into the matter is necessary. Also these results are obtained too late to
impact the calculations in this thesis, for which equal approximation orders are used.

In the last section of this chapter, Section 6.4, the solver, Chapter 4, including evaporation, Sec-
tion 2.6.2, is validated. It is based on the publication by Rieckmann et al. (2023e), which was
created as part of this thesis. There the solver, as described in Chapter 4, was first presented.
This newly devised method provides a direct coupling of mass, momentum and energy transport.
The solution is available in both phases using independent high-order ansatz functions. Thereby,
jumps and kinks arising at the interface can be sharply represented without any reconstruction
of temperature and velocity gradients. Instead the higher-order ansatz functions are evaluated
at the interface position to obtain the required (gradient) values. For a sharp representation of
the interface itself, the level set method using the scalar advection approach from Section 4.3 is
employed. From the level set the cut-cell quadrature is constructed and crucial in discretizing the
interfacial jump conditions at the exact location of the interface, see Section 4.2.
The method is verified using a variety of well known evaporation test cases in 1, 2 and 3 dimen-
sions. Convergence towards analytical or other numerical solutions under refinement of grid and
polynomial degree is observed. The XDG based method was able to obtain results displaying the
same accuracy as finite volume simulations but using only a fraction of the number of degrees of
freedom. Even on very coarse grids the method was able to qualitatively predict the behavior of
the interface.

As the results for the temperature velocity coupling and capillary time-step show, there is further
potential for improvement in the coupling between interface and flow solution. The current
splitting approach is limited to first order accuracy, restricted to the capillary time-step size and
the results of Section 6.3 indicate that the equal order approximation might be sub optimal. These
topics, aiming for a tighter coupling and higher convergence orders, can be revisited in future
works.
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7 Results for two-phase flows with contact lines

Over the course of this chapter several computations involving two-phase (or even three-phase)
flows with contact lines are collected. The discussion starts with a review of singularities occurring
at the contact line, in Section 7.1, while evaporation is excluded. Several models for the dynamic
contact angle are introduced and the influence of the contact angle condition and wall boundary
condition on the velocity and pressure behavior towards the contact line is investigated. A few
test cases are presented to illustrate the capability of the method to implement different models
for the dynamic contact angle as well as take into account more complex behavior like contact
angle hysteresis.
Afterwards, the implemented evaporation model is examined in Section 7.2. We find that there
exists a conflict between the no-slip condition on the interface and the impermeability of the wall
at the contact line. The severity of this conflict is investigated by determining the EOC with and
without this conflict present in a carefully selected setup. As a possible remedy the introduction
of slip on the interface is considered.
To conclude the section a test case from the super ordinate project of this work is simulated.
Section 7.3 begins with a discussion of the technical limitations of the method to simulate large
real experimental problems. Motivated by this limitations a drastically simplified setup is proposed,
simulated and analyzed. The section concludes with a showcase, which includes conjugate heat
transfer in the solid phase. The evaporative heat flux is heavily influenced by the temperature
boundary conditions chosen and drastically changes when heat transport is also computed in the
solid phase. The findings of these three sections are summarized in Section 7.4.

7.1 Review of contact line dynamics

First, Section 7.1.1 focuses on either the movement of a material contact line or the pressure/ve-
locities at this particular line. To this end, the free surface problem, Section 2.6.3, is solved
using the solver described in Chapter 4. The first part of this section focuses on the pressure
and velocity fields close to the contact line. Depending on the employed model for boundary
conditions, contact angle and viscosity, singularities of various severity are observed at the contact
line. In these simulations the temporal evolution of the interface is omitted. The second part
(Section 7.1.2) then moves on to investigate different conditions for the dynamic contact angle,
Eq. (2.86), namely of the form

f(u, s, θ, θstat) = σ(cos(θstat)− cos(θ))− sgn
((
uΣ − s

)
· n̂L

)
βL
∣∣(uΣ − s) · n̂L

∣∣α = 0, (7.1)

and contact angle hysteresis. This describes the situation where the contact line pins, i.e. remains
stationary, when the measured contact angle is between the advancing (θadv) and receding (θrec)
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Figure 7.1: Setup to test the pressure and velocity behavior towards the contact line. A freesurface
droplet with R = 10 sits on a slip wall. At the contact line very fine scales are resolved.

contact angle. In this case the contact line velocity is enforced to be

UL = (uΣ − s) · n̂L = 0 if θrec < θ < θadv, (7.2)

while Eq. (7.1) is used otherwise.

7.1.1 Pressure and velocity singularities towards the contact line

Influence of the wall boundary condition In the works of Sprittles and Shikhmurzaev (2011)
and Fricke et al. (2019) the Stokes flow in the corner between an impermeable free slip wall
dragged over another impermeable wall is investigated. When slip is enforced on the lower wall
according to Eq. (2.85) with

β = β0x̃
γ−2, (7.3)

stream functions of the form
Ψ = x̃λF (ψ) (7.4)

can be assumed. Here x̃ and ψ denote the radial and angular coordinates of a polar coordinate
system, whose origin is placed on the contact line. From the stream function the leading order
behavior of the pressure and velocities as the radial coordinate approaches zero, hence x̃→ 0,
can be derived as

u ∝ x̃γ−1, (7.5a)

p ∝
∫
x̃γ−3, (7.5b)

by inserting Eq. (7.4) into the slip boundary condition written in polar coordinates

1

x̃2
∂2Ψ

∂ψ2
+ β0x̃

γ−2

(
Vwall −

1

x̃

∂Ψ

∂ψ

)
for x̃ > 0, ψ = 0. (7.6)
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This case is tested in the setup depicted in Fig. 7.1. A circular 2D droplet of radius R = 10 is
placed on a flat surface, such that the contact angle is θ = π/4. The boundary condition on the
lower wall is varied according to Eq. (7.3), with γ = [1, 2, 3]. This covers the three cases, where β
either becomes singular, constant or vanishes at the contact line, corresponding to no-slip, slip and
free-slip at the contact line. Surface tension is switched off in Eq. (2.84), i.e. 1/We = 0 and we set
1/Re = 1. The domain is set to Ω = [−1.1R, 0]× [1.1R, 2.2R] and meshed with 4× 4 cells with 20
levels of mesh refinement at the contact points, giving a minimum cell size hmin = 2.623× 10−6.
The velocity of the lower wall is set to s = (−1, 0)T and the approximation order for the velocity
is set to k = 5. For each simulation, applying one of the three functions for the slip coefficient,
the velocity and pressure are evaluated using

f̃(x̃) = |f(x0 − x̃, 0)− f(0, 0)| , (7.7a)

when rational (e.g. 1/x̃) scaling is expected. When polynomial or logarithmic scalings are expected
the value at the contact point is subtracted

f̃(x̃) = |f(x0 − x̃, 0)− f(x0, 0)| . (7.7b)

The results for these augmented pressure and velocity profiles at the right contact point are
displayed in Fig. 7.2. In the log-log or semi-logarithmic representations the behavior as expected
from Eq. (7.5) is confirmed. The plots demonstrate the capability of the high-order XDG method
to even reproduce the logarithmic or rational behavior as the contact line is approached. However,
it is not possible to completely resolve the singularity itself using polynomial approximations.

Influence of the contact line boundary condition In the next step, the setup is maintained with
two adjustments. Firstly, surface tension is included by setting 1/We = 1 and the interface is not
enforced to be impermeable, i.e., it can move now if a time-stepping scheme for the level set is
employed. Secondly, the wall velocity is switched off with s = 0 and instead the equilibrium
contact angle is set to θstat = 0, such that the contact line is not in equilibrium in the initial
setup. The slip coefficient on the lower wall is varied again as before, Eq. (7.3) with γ = [1, 2, 3].
Additionally, Eq. (7.1) is employed with βL = 0, α = 1 and βL = 1, α = 1. Therefore, either
a quasi-stationary contact angle, trying to always enforce the equilibrium angle, or a dynamic
contact angle, using a linear relation between the contact line (slip) velocity and deviation in
contact angle, is enforced.
The results for these calculations are displayed in Fig. 7.3. The first row shows the situation
where the wall boundary condition behaves as no-slip at the contact line. This immediately
poses a problem, as the contact angle boundary condition forces the contact line to move to
regain the equilibrium angle, while the wall boundary condition inhibits this movement. From
the plot this contradiction becomes visible as a singular behavior in both pressure p̃ ∝ x̃−2 and
velocity ũx ∝ x̃−1. There is no noticeable difference in whether the quasi-stationary or dynamic
contact angle condition is applied. The results in the second and third row do not contain the
contradiction between the two boundary conditions. However, still they display singular behavior
in both fields as p̃ ∝ x̃−1 and ũx ∝ ln(x̃). To explain how this behavior arises it is helpful to
consider the Stokeslet problem. This describes the introduction of a (bounded) point force in the
Stokes equation, which is similar to the effect of the contact angle boundary condition, which
introduces a line force. For a 3D point force introduced in the Stokes equation, i.e.

∇ · (u) = 0, (7.8a)
−∇p+ µ∆u = F δ(x̃), (7.8b)
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Figure 7.2: Pressure and velocity as the right contact point is approached for the flow in the wedge
between two walls, using different wall slip functions for the lower moving wall, see
Fig. 7.1
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the Green solutions for the velocity and pressure are

u3D =
F ·
(
I|x̃|2 + x̃⊗ x̃

)
8πµ|x̃|3

, (7.9a)

p3D =
F · x̃
4π|x̃|3

. (7.9b)

By integration along the contact line the effect of a line force or 2D point force can be obtained:

u2D ∝
∫

u3Ddz ≈ ln(x̃), (7.10a)

p2D ∝
∫
p3Ddz ≈ |x̃|−1. (7.10b)

Another explanation is offered in the work by Fullana et al. (2023). There boundary conditions
for the contact line and the slip wall are combined to obtain a single boundary condition:

σ (cos(θ)− cos(θstat)) δ(x̃) +
(
P∂Ω

(
µ
(
∇u+ (∇u)T

)
n∂Ω

))
· n̂L

= − (β + βL)︸ ︷︷ ︸
β

(
P∂Ω (u− s)

)
· n̂L. (7.11)

Under the assumption that the friction parameter is just a constant and the velocity slip is smooth
and bounded everywhere, the RHS of the above equation is a regular function. This means the
LHS has to be a regular function as well. However, looking at the two LHS terms it is clear, that the
contact line force is actually a distribution, located at the contact line, and not a regular function.
Therefore, the shear stress must also possess a distributive character, to balance the contact line
force. In their work, Fullana et al. (2023) suggest to relax the contact line force to a volumetric
force, smeared out over a finite region around the contact line. This effectively regularizes the
problem and the shear stress stays bounded at the contact line. However, this comes at the cost of
loosing the sharpness of the original sharp interface model.

Regularization using a singular viscosity From the previous analysis we deduct that there are
two main courses of action one may take. Either the distribution character of the contact line
force is relaxed, by smearing the force over a finite region, as suggested by Fullana et al. (2023).
Or the stresses must also possess distribution character at the contact line. At this point we follow
the latter approach, while trying to obtain bounded velocity gradients. To achieve this goal the
distribution, originally found in the velocity gradients, is shifted over to the viscosity. Two cases
are investigated in which the viscosity is modeled to become infinite at the contact line, according
to 1/Re = [x̃−1, x̃−2]1. From the study of the Stokeslet we then expect the velocity to behave as
u ∝ [x̃, x̃2] towards the contact point, which would also mean the velocity gradients stay bounded.
Indeed, Fig. 7.4 shows exactly this behavior for the velocity in wall parallel direction. It is not
shown here explicitly, but the pressure behavior is untouched by this adaption, except for the case
β = x̃−1, where now also p ∝ x̃−1. By introducing a viscosity that becomes singular at the contact
line we are thus able to obtain a solution with bounded behavior of the velocity gradients as the
contact line is approached.
1At this point this is merely a modeling experiment, missing a rigorous physical motivation for such a viscosity
behavior.

123



10−7 10−5 10−3 10−1 101
10−10

10−6

10−2

102

106

p̃

βL = 0
βL = 1

10−6x̃−2

10−7 10−5 10−3 10−1 101

10−4

10−2

100

102

104

106

p̃

βL = 0
βL = 1

x̃−1

10−7 10−5 10−3 10−1 101
10−4

10−2

100

102

104

106

x̃

p̃

βL = 0
βL = 1

x̃−1

10−7 10−5 10−3 10−1 101
10−11

10−9

10−7

10−5

10−3

10−1

ũ
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Figure 7.3: Pressure and velocity as the right contact point is approached for the flow in the wedge
between a wall and free surface, using different wall and contact line slip functions.
The flow is induced by the condition for the dynamic contact angle, as it is moved
out-of-equilibrium.
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Figure 7.4: Velocity as the right contact point is approached for the flow in the wedge between
a wall and free surface, using different wall and contact line slip functions. On the
left and right results for different singular expressions for the viscosity as x̃→ 0 are
compared.
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7.1.2 Modeling of complex contact line behavior

In the previous subsection the qualitative influence of various types of models, for the boundary
conditions, contact line conditions and viscous bulk modeling, on the pressure and velocity
behavior towards the contact line are investigated. In this subsection we want to focus on the
application of the direct introduction of a contact line force to enforce a condition of type Eqs. (7.1)
and (7.2).

Dynamic contact angles in dependence of the velocity First, the capability of the method
to adequately model relations between contact angle and contact line velocity, Eq. (7.1), is
demonstrated by computing a two-phase Couette flow, cf. (Smuda and Kummer, 2021). In the
domain of size Ω = [−5, 5]× [−1, 1] a liquid slug is placed with the level set2

ϕ(x, y) = (x− 1.1)(x+ 1.1). (7.12)

The domain is meshed with a grid of size 15×3 and 2 levels of AMR are performed at the interface,
the approximation degree is k = 4. The material parameters are set to θstat = π/2, We = Re = 1.
The upper and lower wall are dragged in opposing direction according to the velocity

uy(x, y) = y. (7.13)

Different combinations of wall boundary and contact line conditions are tried out. The wall
the friction parameter is varied as β = [0.0, 1.0,∞] and at the contact line friction parameter
as βL = [0.0, 0.5]. Additionally, for the dynamic contact angle (βL = 0.5) the exponent for
the velocity-to-angle relation is varied as α = [0.5, 1.0, 2.0]. The value of βL = 0.5 is chosen
deliberately, such that a dynamic equilibrium state with θ = π/2± π/6 at the advancing/receding
contact line is approached. The simulation is then run until a time tend = 3, with ∆t = 0.01.
In Fig. 7.5 the interface position is displayed at t = 0, 1, 2 and 3 for the simulations with a linear
dynamic contact angle, under variation of the wall boundary condition. The influence of the
imposed boundary condition is immediately visible. For no-slip, β =∞ the fluid sticks to the wall
and moves with it. When a slip condition is assumed, β = 1, there is some slip involved and the
contact points move relative to the wall. Finally, for freeslip, β = 0, force transmission between
fluid and wall takes place only at the contact points, which results in even more slip and less
overall movement of the interface.
Figure 7.6 shows the x-position, x-velocity and dynamic contact angle for the two contact points
at the upper wall. The colors denote different contact anlge conditions and the marker types
different conditions for the slip walls. There are two limiting cases. If the slip wall is set to no-slip,
the contact line is moving with the wall, no matter what contact angle condition is chosen. In
that sense, the no-slip condition overwrites the condition set at the contact line. The other limit
is when no force is transmitted between wall and fluid, i.e., a freeslip wall together with the
quasi-stationary contact angle condition is chosen. Then, as expected, nothing happens as no
force is acting from the wall on the fluid. All other test cases display behavior between these two
limits, evolving towards a dynamic equilibrium, where the amount of slip, the dynamic contact
angle and the stresses are in balance.
2For this test case a variation of the level set algorithm is used, where each interface is described by a cubic spline
with 30 equally spaced interpolation points. During the simulation the x-coordinate of these interpolation points is
updated according to the point-wise interface velocity.
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Figure 7.5: Interface positions for the two-phase Couette flow at different times and for differing
slip boundary conditions. For the contact angle condition (7.1) βL = 0.5, α = 1.0
is chosen. The initially vertical liquid plug in the channel is sheared differently,
depending on the wall slip in the specific simulation.
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Finally, Fig. 7.7 plots the relation between contact line velocity and measured deviation in contact
angle. As a reference the desired behavior is plotted as a thin solid line in the respective color.
For a freeslip wall the dynamic contact angle approaches the prescribed behavior after a startup
period. This is visible from the data points marked with circles. However, when β 6= 0, this
relation is skewed towards the results obtained for a no-slip wall. When setting no slip the contact
angle condition is completely overwritten and the behavior of the contact line is dominated by
the bulk boundary condition. So as expected at least some slip has to be allowed for the contact
line to be able to move relative to the wall. Additionally, there seems to be an intricate feedback
between the wall and contact line boundary conditions, which makes it hard to predict the exact
behavior of the contact line a-priori.

Contact angle hysteresis

In the last paragraph the capability of the method to handle different models for the dynamic
contact angle is demonstrated. Another contact line behavior observed in experiments is contact
angle hysteresis. In practice this is a result of the imperfection, e.g. surface roughness or chemical
inhomogeneity, of technical surfaces (Wang et al., 2020; Marengo and Coninck, 2022). It describes
the situation, where a contact line can pin until a certain threshold value for the contact angle is
achieved. Only then the contact line starts to move. Additionally, this hysteresis may depend on the
direction of movement of the contact line, described by the advancing and receding contact angle.
To model this behavior without explicit meshing, e.g. surface roughness, the implementation
shown in Eq. (A.14) is extended on the slip boundaries ΓR to

∮
Σ∩(ΓR)

(
σtΣ − η4

(
(uΣ − s) · n̂L

)
n̂L
)
· v dl if θrec < θ < θadv∮

Σ∩(ΓR)

(
σ
(
n∂Ω · tΣ

)
n∂Ω + σ cos(θstat)n̂L

)
· v

−
(
sgn((uΣ − s) · n̂L)βL

∣∣(uΣ − s) · n̂L
∣∣α) · v dl

else
, (7.14)

imposing a no-slip condition through a penalty when the contact angle is between the receding
or advancing contact angle. The value for the penalty is chosen arbitrarily3 to η4 = 100. If the
dynamic contact angle is outside these hysteresis limits, the condition for the dynamic contact
angle (Eq. (7.1)) is employed.
To test whether this enables the numerical method to simulate this behavior, a droplet is placed
on a plane vertical surface under the influence of gravity. We choose the values for the advancing
and receding contact angle such that a static equilibrium is reached eventually. In this equilibrium
state the forces at the contact line and the gravitational force are in balance. For an initially
semi-circular 2D droplet of radius R, see Fig. 7.8, this equates to

V

Fr
+

1

We
(cos(θadv)− cos(θrec)) = 0, (7.15a)

(cos(θadv)− cos(θrec)) = −
πR2We
2Fr

. (7.15b)

Two series of simulations are performed, with the equilibrium angle set to θstat = π/2 = 90◦. One
time the advancing contact angle is set to θadv = θstat+15◦ and the receding contact angle is set to
θrec = 0. In this situation the receding contact line always pins, while the advancing contact line
3Further investigations are necessary to determine how this value should be chosen.
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Figure 7.6: Temporal evolution of the position, velocity and angle of the contact points on the upper
wall. The colors decode the contact angle condition, βL = 0, α = 1, βL = 0.5, α = 0.5,
βL = 0.5, α = 1 and βL = 0.5, α = 2. The symbols distinguish the boundary
conditions β = 0, β = 1 and β =∞. Solid lines mark the right and dashed lines
the left contact point.
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g gg

Figure 7.8: From left to right, initial state, and final states at t = 3 using a pinned receding and
advancing contact line are shown.

pins until θadv is reached. Then it moves until the contact angle falls below this limit value again
and the contact line pins again. With R = 1, We = Re = 1 and Fr = π/2R2 we should observe
a receding contact angle of θrec ≈ 42.17◦, when the equilibrium state according to Eq. (7.15)
is reached. For the second setup the situation is reversed. The receding contact angle is set to
θrec = θstat − 15◦, and the advancing to θadv = π. Now, the advancing contact line always pins
and the receding one exhibits a stick-slip kind of motion. The equilibrium value for the advancing
contact angle is then θadv ≈ 137.83◦. The same variation of boundary and contact line conditions
as in the last section is employed, however here we display and discuss only the simulations using
β = 0. The Froude number is chosen such that if one of the contact points does not carry any
weight, i.e. θ = π/2, the other one is still able to support the complete weight of the droplet, i.e.
with θ = 0 or π, which means Fr = π/2R2We. The droplet is initialized with the level set

ϕ(x, y) = x2 + y2 −R2, (7.16)

on the domain Ω = [0, 2.2R]× [−2.2R, 2.2R]. The degree for the velocity is chosen to k = 4, the
base grid has 3× 6 cells and 2 levels of AMR are performed at the interface. The simulations run
until tend = 3, using a fixed time-step of ∆t = 0.01. The initial state and final states for both test
cases are displayed in Fig. 7.8.
In Fig. 7.9 the deviation from initial position, contact line velocity and contact angle for the
receding and advancing contact point and both test cases are displayed. The first observation,
which is especially noticeable when βL = 0, is the stick-slip behavior of the moving contact point.
The pinned contact point remains stationary, moving only slightly, which is probably a result of
numerical diffusion or similar effects. When a dynamic contact angle model is employed the
contact line velocity does not achieve as high values as in the quasi-stationary case, resulting in
a less pronounced stick-slip behavior, with a higher frequency of slip events. The contact line
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Figure 7.9: Contact point position, velocity and contact angle. Black denotes the advancing
contact point, red the receding one. The hysteresis values for the two test cases are
plotted as blue dashed lines for reference.
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position and contact angle approached asymptotically are not impacted by the choice of contact
angle condition. Additionally, the hysteresis values for the two test-cases are displayed in Fig. 7.9.
It is visible, that as soon as the hysteresis value is reached, a slip event occurs, allowing the contact
line to slip towards the equilibrium contact angle. Thus, the contact angle in the next time-step
lies again in the range where the contact line pins. The contact line is then pinned until the
hysteresis value is reached again.

7.2 Resolution of model contradicitions in contact line evaporation
through interfacial slip

Scope of the following section is the investigation of a contradiction in the boundary and interfacial
conditions at the three phase contact line when employing the model presented in Section 2.6.2.
Firstly, the origin of this contradiction is discussed, followed by a numerical investigation of its
influence on simulation results. Secondly, a model adaption, namely introduction of slip on the
fluid-fluid interfaces, to alleviate this contradiction is introduced and the simulations are repeated
to measure the effectiveness of this adaption.
The hypothesis is that in the optimal case, when using the XDG method presented in Chapter 4,
a convergence order of hk+1 can be achieved, where h is a measure of the grid width and k
the polynomial degree used to approximate the solution (Arnold et al., 2002; Di Pietro and
Ern, 2012; Dolejší and Feistauer, 2015). However, having singularities in the solution or its
derivatives prevents the method to achieve optimal performance. Therefore, this high-order
method is sensitive to the presence of singularities and makes it possible to examine models for
their regularity.
To investigate the influence the aforementioned contradiction and the proposed solution have on
the numerical solution, we follow the approach chosen in the work of Smuda and Kummer (2021)
for similar considerations in context of the generalized Navier boundary condition (Gerbeau and
Lelièvre, 2009). Essentially, the idea is to compare the convergence order for a problem with
singularities to a reference case without singularities, for example by disregarding evaporation.
Afterwards, the solution approach is introduced and it is investigated whether the original order
of convergence can be regained.

7.2.1 Evaporation Model

Starting point for the present investigation is the two-phasemodel and corresponding discretization
for the incompressible Navier-Stokes and heat equations, including evaporation, presented in the
work by Rieckmann et al. (2023e). In addition, this work introduces the handling of the contact
line described in Smuda and Kummer (2021) into the evaporation model. The problem statement
and its discretization are also discussed in Section 2.6.2 and Chapter 4.

Model contradiction at the contact line It was noted by Fricke et al. (2019) that this simple
evaporation model possesses a contradiction at the contact line. This can be made visible by
decomposition of the velocity jump in wall normal direction at the contact line. Due to the
impermeability condition (Eq. (2.78), βN = 0) it vanishes at the contact line. Simultaneously, the
velocity can be expressed in terms of components normal to the surface, normal to the contact line
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Figure 7.10: A fluid-fluid interface Σ, dividing the domain Ω into two phases A and B, intersects
a solid wall, the boundary ∂Ω of the displayed box. On the left the contact line
tangent tL and its corresponding sectional plane are displayed at one of the contact
lines. On the right this section is enlarged and the normal vectors for interface nΣ,
contact line nL and wall n∂Ω are depicted. For the tangent tL = nΣ × nL applies.
The interface forms the angle θ with the solid wall at the contact line in the sectional
plane.

(and tangential to the interface) and tangential to the contact line, given the respective projections
PΣ = nΣ ⊗ nΣ, PL = nL ⊗ nL and Pt = tL ⊗ tL (Fig. 7.10):

[[u]] · n∂Ω =
(
PΣ [[u]] +PL [[u]] +Pt [[u]]

)
· n∂Ω = 0. (7.17)

As tL ·n∂Ω = 0 the last term vanishes. By inserting the contact angle θ, i.e., employing nΣ ·n∂Ω =
− cos(θ) and nL · n∂Ω = sin(θ), the wall normal velocity jump equals

− cos(θ) [[u]] · nΣ + sin(θ) [[u]] · nL = 0, (7.18)

or

− cos(θ)ṁ
[[

1

ρ

]]
+ sin(θ) [[u]] · nL = 0, (7.19)

by inserting Eq. (2.75) for the interface normal velocity jump. When assuming no-slip on the
interface, this condition is only fulfilled in three special cases, when [[ρ]] = 0, θ = π/2 or ṁ = 0.
In general, the two phases have different densities, the (dynamic) contact angle can assume
arbitrary values and through the employed model (Eq. (2.75)) the (evaporative) massflux does
not necessarily vanish at the contact line. Thus, we arrive at the conclusion that the evaporation
model in the present formulation contains a contradiction at the contact line.
One possible remedy is to allow interfacial slip, such that an equilibrium between the surface
normal and contact line normal velocity jump in Eq. (7.18) can develop. In the subsequent
sections we will investigate the effect of this contradiction in the model on the numerical results
and explore the impact of an interfacial slip as a possible remedy.
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Table 7.1: Material properties for the numerical experiment
Density
ρ [kg/m3]

Heat capacity
ĉp [J/(kgK)]

Thermal conductivity
k̂ [W/(mK)]

Dyn. viscosity
µ [Pa s]

A 1.0 1.0 1.0 0.5
B 0.1 1.0 0.1 0.05

Latent heat ĥvap [J/kg] = [103,∞]4, Surface tension σ [N/m] = [0.0, 0.1],
Saturation temperature Tsat [K] = 0.05, Static contact angle θstat = [80◦, 90◦]

Adapted model, introducing interfacial slip For the adapted model an interfacial slip is intro-
duced in analogy to the Navier-slip boundary condition, i.e., on the interface the condition for the
tangential jump in velocity is replaced by

−βΣPΣ [[u]] = PΣ
( {{

µ
(
∇u+∇uT

)}}
nΣ
)
. (7.20)

To arrive at this result, we start from assuming a slip from either side of the interface:

−PΣ
(
uA/B − uΣ

)
= αA/BP

Σ
(
SA/B · nA/B

)
, αA/B ≥ 0. (7.21)

In the present model the irreversible part of the stress tensor is S = µ
(
∇u+∇uT

)
. Choosing

α = 0 would result in the usual no-slip interface. Applying Eq. (7.21) from both phases to
eliminate the interface velocity we recover

−PΣ [[u]] = PΣ
(
αASA · nΣ + αBSB · nΣ

)
. (7.22)

Equation (7.20) is then obtained by choosing the same slip coefficients from both sides (αA/B = α)
and introducing a new unified friction coefficient βΣ = 1/(2α). For the numerical method we
define α = LΣ/(µA + µB), introducing the interfacial slip length LΣ as the sole parameter to tune
the interfacial slip condition. The introduction of such a slip condition necessitates an adaption in
the discretization of the interfacial terms. The required adaption is discussed in Appendix A.2.
Therein, a few test cases are collected, which verify the slip implementation.

7.2.2 Numerical-experimental setup

In Smuda and Kummer (2021) a quasi-stationary solution for an out-of equilibrium ellipsoidal
droplet was calculated. The authors continued to vary the friction parameters β, βL and the
equilibrium contact-angle θstat and assessed the experimental order of convergence (EOC) in
velocity and pressure for each of these cases. In the present work we will follow the same approach
to investigate the influence of the contradiction in the unmodified model. We will then introduce
the interfacial slip and repeat the analysis for the adapted model. To simplify the analysis all
calculations are quasi-steady state and linear, by omitting the temporal derivatives and non-linear
terms (convective terms and recoil pressure) in Eq. (2.74) and Eq. (2.75). For all of the investigated
cases the domain is a box of size Ω := [−1.5, 1.5] m× [0, 1.5] m. On all boundaries we prescribe
4A formally infinite latent heat disables evaporation. On the solver side the corresponding term (ṁĥvap in Eq. (2.75))
is excluded from the calculation if this value is detected.

5The temperature range is shifted for numerical reasons, the occurrence of absolute zero at this point has no physical
significance.
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Figure 7.11: Prescribed temperature T∂Ω along the lower wall in A, for both investigated values
of θstat. The functions resemble sin functions but not exactly.

freeslip (β = 0, βN = ∞) and the wall temperature (βT = ∞). The material properties for
the setup are shown in Table 7.1. The interface is prescribed as an slightly out of equilibrium
ellipsoidal droplet, to induce a capillary flow, with geometric contact angle θ = θstat:

Σ := {x ∈ Ω | x2/a2 + (y − y0)2/b2 − 1 = 0}. (7.23)

The shape parameters are set to a = 0.816m and b = 0.784m. The center offset y0 of the
ellipsoid is chosen such that the geometric contact angle matches the static contact angle
y0 = −b/

√
1 + a2/b2 tan(θ)2 the intersection points of the interface with the lower wall ±x0 =

±a cos(arcsin(y0/b)) are used to set the temperature boundary condition, see Fig. 7.11. It may
seem simple to prescribe some boundary condition for the temperature. However, it proved to
be quite challenging to choose a boundary condition such that the heat flux at the contact line
is non-vanishing and the solution is sufficiently smooth to measure an close to optimal EOC.
The profiles in Fig. 7.11 are based on an exact solution for the (temperature) Poisson equation
(Polyanin, 2015, p. 788) in compliance with constant temperature Tsat along the interface of a
circular droplet in the positive half plane.
In the first stage the analysis will still be restricted to material interfaces. The mass flux is excluded
from the discrete system (ĥvap →∞) and no coupling between Navier-Stokes and heat equation
takes place. We then vary the interfacial condition from no slip to free-slip LΣ = [0, 0.1,∞] m and
the prescribed contact angles θstat = [80◦, 90◦]. This allows us to observe the EOC for pressure,
velocity and temperature in absence of the contradiction occurring for non-zero mass fluxes. This
analysis serves as the reference for the subsequent investigations.
In the second stage the influence of the contradiction in the evaporation model will be assessed.
The enthalpy of evaporation is set to a finite value (ĥvap = 103 J/kg) and therefore a coupling
between temperature and velocity is included. Due to evaporation a flow is induced, origi-
nating from the interface. By again varying the interfacial condition from no slip to free-slip
LΣ = [0, 0.1,∞] m and the prescribed contact angles θstat = [80◦, 90◦], we are able to observe the
effects of evaporation and the contradiction on the EOC.
In the third stage the surface tension will be set to zero σ = 0 N/m, eliminating the influence of
the capillary background flow. We then repeat the investigation carried out in the second stage.
This allows us to purely focus on the flow resulting from evaporation.
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Definition 7.1 (Case identification). The cases will be labeled, explicitly containing the information
about each of the free parameters, i.e.,[

LΣ,[0,0.1,∞], hv,[103,∞], σ[0,0.1], θ[80◦,90◦]
]
. (7.24)

Numerical procedure In the following paragraphs the results for the 3-staged investigation
described in Section 7.2.2 are presented. We proceed exactly in the order of stages described and
characterize the test cases based on the driving mechanism of the flow. To determine the EOC, the
analysis is carried out on grids of size Kh = [8×4, 16×8, 32×16, 64×32, 128×64, 256×128] and
for polynomial orders k = [2, 3, 4] for temperature and velocity field and k − 1 for the pressure
field. The finest grid serves as the reference to calculate the approximate error in each field on
the coarser grid levels. The optimal result for sufficiently smooth solutions is an EOC of hk+1, see
e.g. Arnold et al. (2002), a drastically reduced EOC implies limited smoothness of the solution.

Purely capillary flow In the first stage of the analysis no coupling between heat equation and
Navier Stokes equation is established. Therefore, the flow in Fig. 7.13 is induced purely through
capillarity, as the droplet is slightly deviated out of its equilibrium shape. Table 7.2 shows the EOC
for the pressure, velocity and temperature fields for this stage, under variation of contact-angle
and interfacial slip length. For θstat = 90◦ the EOC for pressure, velocity and temperature are
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Figure 7.12: For the numerical experiments a slightly ellipsoidal droplet is placed on a free-slip
wall at a prescribed temperature. The other three sides of the box are closed with
constant temperature, freeslip walls. Due to the ellipsoidal shape, a capillary driven
flow is induced. This is superposed with a flow due to evaporation, when the coupling
between temperature and velocity is turned on (ĥvap <∞). The temperature on the
lower wall is prescribed according to Fig. 7.11 such that the same mass of fluid is
evaporated on the left as vapor is condensed on the right side of the droplet.
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Table 7.2: EOC, without evaporation ĥvap =∞, with capillarity σ 6= 0

θstat = 90◦ θstat = 80◦

k LΣ = 0 LΣ = 0.1 LΣ =∞ LΣ = 0 LΣ = 0.1 LΣ =∞
||p− pref ||L2(Ω)

1 2.08 2.16 2.34 1.77 1.81 1.63
2 3.02 3.17 3.45 1.93 1.95 1.61
3 3.84 3.78 4.03 2.29 2.24 1.84

||u− uref ||L2(Ω)

2 3.09 2.99 3.24 2.67 2.81 2.37
3 3.96 3.83 4.00 2.95 3.04 2.42
4 4.81 4.67 4.68 2.76 2.81 2.09

||T − Tref ||L2(Ω)

2 3.21 3.21 3.21 3.25 3.25 3.25
3 3.90 3.90 3.90 3.89 3.89 3.89
4 4.53 4.53 4.53 4.58 4.58 4.58

close to the optimal order. The introduction of slip on the interface has no significant impact on
the EOC. When changing the contact-angle to θstat = 80◦ the EOC for pressure and velocity is
reduced, with diminishing effect of a variation in polynomial degree. For the temperature the
convergence order is higher, reaching almost the optimal order. Again, a variation of slip length
has no significant impact on the EOC of pressure and velocity.

Superposed capillary and evaporative flow In the second stage of the analysis, a coupling
between temperature gradients and velocity is introduced on the interface. The capillary flow,
already present in the first stage, is thereby superposed by a flow driven through evaporation, as
shown in Fig. 7.14. There, the jumps in interface normal velocity are visible in the discontinues
change in arrow colors and size, especially at the contact points. The results of this study are
assembled in Table 7.3. For the droplet with θstat = 90◦ the EOC for pressure and velocity are
reduced to order 1 and 2 respectively. A variation of polynomial degrees and interfacial slip
has no impact on the observed EOC. As no convective terms are included, there is no coupling

Figure 7.13: Vector field u for [LΣ,0.1, hv,∞, σ0.1, θ80◦ ]. The flow induced by capillarity in this
testcase is symmetric w.r.t. the y-axis.
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Table 7.3: EOC, with evaporation ĥvap 6=∞, with capillarity σ 6= 0

θstat = 90◦ θstat = 80◦

k LΣ = 0 LΣ = 0.1 LΣ =∞ LΣ = 0 LΣ = 0.1 LΣ =∞
||p− pref ||L2(Ω)

1 1.18 1.16 1.05 0.49 0.97 0.93
2 1.10 1.04 1.03 0.19 1.00 1.10
3 1.17 1.05 1.05 0.07 0.78 1.01

||u− uref ||L2(Ω)

2 2.28 2.30 2.34 1.48 2.19 2.36
3 2.51 2.53 2.56 1.23 2.08 2.31
4 2.49 2.51 2.57 1.13 1.88 2.32

||T − Tref ||L2(Ω)

2 3.21 3.21 3.21 3.25 3.25 3.25
3 3.90 3.90 3.90 3.89 3.89 3.89
4 4.53 4.53 4.53 4.58 4.58 4.58

from velocities to temperature and the EOC for temperature is the same as in Table 7.2. The
results for θstat = 80◦ are those in the center of this work, as here the effect of the observed model
contradiction and its proposed solution can be investigated. The EOC for pressure in this case and
a no-slip interface is reduced to 0.5 for the lowest investigated polynomial degree and decreases
even further when increasing the polynomial degree. The EOC for velocity is around one order
higher, but still reduced in comparison to the results without evaporation in Table 7.2. This loss of
high-order convergence indicates some sort of singularity arising in the solution, which can be
attributed to the contradiction Eq. (7.18) in the model, Figs. 7.17 to 7.16. When introducing slip
on the interface, the model contradiction is resolved and the EOC for the θstat = 90◦ case, where
the contradiction is also not present, is recovered. A further increase in slip on the interface, to
free-slip, has no additional effect.

Purely evaporative flow In the final stage capillarity is turned off and the flow resulting from
pure evaporation is investigated, see Fig. 7.15. This enables us to make a statement about the

Figure 7.14: Vector field u for
[
LΣ,0.1, hv,103 , σ0.1, θ80◦

]
. The flow induced by capillarity in this

testcase is superposed with the anti-symmetric flow due to evaporation.
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Table 7.4: EOC, with evaporation ĥvap 6=∞, without capillarity σ = 0

θstat = 90◦ θstat = 80◦

k LΣ = 0 LΣ = 0.1 LΣ =∞ LΣ = 0 LΣ = 0.1 LΣ =∞
||p− pref ||L2(Ω)

1 1.18 1.17 1.07 0.49 0.97 0.94
2 1.11 1.07 1.07 0.19 1.01 1.12
3 1.20 1.14 1.13 0.07 0.85 1.08

||u− uref ||L2(Ω)

2 2.28 2.30 2.34 1.48 2.19 2.36
3 2.51 2.53 2.56 1.23 2.08 2.31
4 2.49 2.51 2.57 1.13 1.87 2.32

||T − Tref ||L2(Ω)

2 3.21 3.21 3.21 3.25 3.25 3.25
3 3.90 3.90 3.90 3.89 3.89 3.89
4 4.53 4.53 4.53 4.58 4.58 4.58

interaction between evaporation induced and capillary flow. The results assembled in Table 7.4
show good agreement with the results from Table 7.3. This indicates, that the results and
discussion of Table 7.3 are already dominated by the evaporative flow, without the capillary flow
from Table 7.2 having too much of a regularizing influence.
In Fig. 7.16 the temperature field and pressure field near the right contact point are displayed.
For the pressure a simulation without the contradiction

([
LΣ,0.0, hv,103 , σ0.0, θ80◦

])
is displayed on

top and with contradiction
([
LΣ,∞, hv,103 , σ0.0, θ80◦

])
on the bottom. Clearly, the pressure field is

irregular in the lower picture and the magnitude of pressure 1− 2 order higher than in the upper
one. This indicates some sort of singularity in the pressure caused by the contradiction in the
model.
To complete the presentation and discussion we directly evaluate the LHS of Eq. (7.18) at the
right point of contact. These results, together with the respective jumps in velocity are displayed
in Table 7.5. As the boundary and interface conditions are enforced only weakly, even in absence
of the contradiction, the jump in wall normal direction and the LHS of Eq. (7.18) do not vanish
completely. However, in presence of the contradiction these values are several orders of magnitude

Figure 7.15: Vector field u for
[
LΣ,0.1, hv,103 , σ0.0, θ80◦

]
. In this isolated setup the anti-symmetric

structure of the flow field induced by evaporation is visible.
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Table 7.5: Velocity jumps at the right contact point. The results are obtained for the finest grid
and highest degree.

Case
[[
u · n∂Ω

]] [[
u · nΣ

]] [[
u · nL

]]
Eq. (7.18)[

LΣ,0.0, hv,103 , σ0.0, θ90◦
]

1.23× 10−6 3.27× 10−2 1.23× 10−6 1.23× 10−6

[LΣ,0.0, hv,∞, σ0.1, θ80◦ ] 1.15× 10−8 −3.54× 10−9 1.10× 10−8 1.15× 10−8[
LΣ,0.0, hv,103 , σ0.0, θ80◦

]
−5.40× 10−3 3.63× 10−2 9.24× 10−4 −5.40× 10−3[

LΣ,0.1, hv,103 , σ0.0, θ80◦
]
−1.29× 10−5 3.65× 10−2 6.42× 10−3 −1.29× 10−5[

LΣ,∞, hv,103 , σ0.0, θ80◦
]

2.10× 10−6 3.65× 10−2 6.44× 10−3 2.10× 10−6

higher. By introducing slip on the interface it is possible to recover the same magnitude for these
measurements

([
LΣ,∞, hv,103 , σ0.0, θ80◦

])
as for the case where the contradiction is not present([

LΣ,0.0, hv,103 , σ0.0, θ90◦
])
.

Flow behavior at the contact line To gain an even better insight into the flow at the con-
tact line, the cases

[
LΣ,0.0, hv,103 , σ0.0, θ90◦

]
,
[
LΣ,∞, hv,103 , σ0.0, θ90◦

]
,
[
LΣ,0.0, hv,103 , σ0.0, θ80◦

]
, and[

LΣ,∞, hv,103 , σ0.0, θ80◦
]
are computed again on a highly resolved grid near the contact lines. The

coarsest base grid (8 × 4) is used with 6 levels of AMR on the boundary and interface and 16
levels at the contact line, giving a minimum cell size of hmin = 5.722 × 10−6 m. This very fine
resolution allows to resolve the fields very accurately towards the contact line and investigate the
nature of still present singularities.
In Fig. 7.17 the pressure and velocities resulting from these calculations are plotted as a graph
over the lower wall. The left images show the results for

[
LΣ,0.0, hv,103 , σ0.0, θ80◦

]
and the right

for
[
LΣ,∞, hv,103 , σ0.0, θ80◦

]
. Both simulations exhibit sharp pressure spikes at the contact points.

However, for the left side, using the no-slip interface, these spikes have a much larger magnitude
and seem sharper. At first glance the x-component of the velocity seems smooth and of overall
same behavior in both simulations. When looking closely though a small spike is visible in the left
images at the contact points. The y-component of the velocity should vanish exactly, due to the

Figure 7.16: On the left the temperature field for the θ = 80◦ droplet is shown. The right pictures
show the magnitude of the pressure field for the simulations

[
LΣ,∞, hv,103 , σ0.0, θ80◦

]
(top) and

[
LΣ,0.0, hv,103 , σ0.0, θ80◦

]
(bottom) at the right contact point. In the lower

picture the effect of the model contradiction is visible in the ragged pressure field.
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Figure 7.17: Profiles of pressure and velocities along the lower wall for no-slip
(
[
LΣ,0.0, hv,103 , σ0.0, θ80◦

]
) on the left, and for freeslip (

[
LΣ,∞, hv,103 , σ0.0, θ80◦

]
) on

the right
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Figure 7.18: Log-log representation of the augmented pressure and velocities (Eq. (7.25)). The
behavior from both sides (A,B) of the interface is displayed for the test cases shown
in the key.
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Table 7.6: Exponents for the pressure behavior towards the contact point as p̃ ∝ x̃ϑ

Case ϑA ϑB[
LΣ,0.0, hv,103 , σ0.0, θ90◦

]
−0.18 −0.22[

LΣ,∞, hv,103 , σ0.0, θ90◦
]

−0.20 −0.20[
LΣ,0.0, hv,103 , σ0.0, θ80◦

]
−1.09 −1.12[

LΣ,∞, hv,103 , σ0.0, θ80◦
]

−0.18 −0.15

impermeable wall. Both simulations violate this condition, especially towards the contact-points.
As was seen for the pressure, the magnitude of this velocity component is again much larger for
the simulation using a no-slip interface.
To even better understand the behavior of the fields at the contact points, we zoom in on the right
contact point. In Fig. 7.18 the inner (A, left) and outer (B, right) solutions are distinguished.
The fields are drawn in double logarithmic representation as

f̃A(x̃) = |fA(x0 − x̃, 0)− fA(0, 0)| , (7.25a)
f̃B(x̃) = |fB(x0 + x̃, 0)− fB(1.5, 0)| . (7.25b)

The pressure profile in the inner and outer solution displays very similar behavior. For the
simulation

[
LΣ,0.0, hv,103 , σ0.0, θ80◦

]
a p̃ ∝ 1/x̃ relation is visible, explaining the low convergence

orders for this case in Table 7.4, as this would mean a singular pressure at the contact point. For
all other cases the pressure becomes singular towards the contact point as well, however, with a
much less severe exponent, measured to approximately p̃ ∝ 1/x̃0.2. The measured exponents for
the pressure are given in Table 7.6, and calculated from the range x̃ = [hmin/10, 1000hmin] by a
linear regression from the log-log representation. The data lines for the x-velocity are smooth
and do not diverge towards the contact point. The only interesting behavior here is the slight
bump in the result of the case

[
LΣ,0.0, hv,103 , σ0.0, θ80◦

]
, forcing the θ80◦ velocity towards the same

value as measured for θ90◦ at the contact point. This behavior is displayed in both the inner and
outer solution. At last the data lines for the y-velocity shall be discussed. The first impression is,
that these are very irregular, oscillating in the range 10−12 to 10−8 m/s. When the contact point
is approached the velocity in the

[
LΣ,0.0, hv,103 , σ0.0, θ80◦

]
simulation is about 4 magnitudes larger

than in the other simulations. After a certain distance to the contact point (x̃ ≈ 0.01 m), the
velocities for all simulations start to decline with approximately ũy ∝ 1/x̃2.5. Overall the log-log
plots confirm the aforementioned observation, that the slip interface condition eliminates the
contradiction Eq. (7.18) and the behavior of the θ90◦ case, where the contradiction is absent as
well, can be recovered.

7.3 Transient simulations of contact line evaporation

A major part of the work conducted throughout this thesis was dedicated to performing simulations
of the experiments conducted in the work of Schweikert et al. (2019). In those experiments
a superheated wall is dragged out of a reservoir of some liquid (ethanol or the coolant FC-72)
superposed by its vapor, both held at the saturation point, here this experiment is referred to as
“heated wall” experiment. Depending on the dewetting velocity and superheat supplied through
the wall either a contact line evaporation or microlayer evaporation is observed. The former
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Table 7.7: Material properties of saturated ethanol at 300K (Springer-Verlag GmbH, 2013)
Density
ρ [kg/m3]

Heat capacity
ĉp [J/(kgK)]

Thermal conductivity
10−3, k̂ [W/(mK)]

Dyn. viscosity
10−6, µ [Pa s]

liquid A 783.82 2.597 175.1 1043
vapor B 0.164 1.605 15.1 8.65

Latent heat ĥvap [kJ/kg] = 919.7, Surface tension σ [N/m] = 21.95 ∗ 10−3,
Saturation temperature Tsat [K] = 300, Gravitational acceleration g [m/s2] = 9.81

describes a regime, where the contact line only rises a small distance with the wall and evaporation
mainly occurs at said contact line. Evaporation in this regime is strong enough to inhibit the
formation of a liquid film on the wall. In the latter regime the contact line rises a considerable
amount with the wall, until a nearly stationary thin film is developed. Evaporation occurs then
not only at the contact line, but also over the length of this thin film. The aim of the numerical
study was to retrieve better insight into the transition between these two regimes.
However, over the course of the simulations conducted towards this goal the real experimental
setup proved too challenging to simulate directly. In Section 7.3.1 the difficulties hindering
the simulation of the full setup are discussed. An extremely simplified simulation of the setup,
allowing at least some insights is presented in Section 7.3.2. Finally, it was found that it may be
necessary to include conjugate heat transfer in the solid wall. This is showcased in Section 7.3.3.

7.3.1 Heated wall - simulation runtime

The difficulties in simulating the setup presented in Schweikert et al. (2019) can be mainly
attributed to computational cost. To this end we first review some relevant length scales in
the plate coating process, cf. (Landau and Levich, 1942; Ryck and Quéré, 1998), for ethanol
(Table 7.7). First, and independent we compute the capillary length, which we can use in the
simulation to estimate the necessary extent of the domain to include for example the unperturbed
formation of the meniscus at the wall:

a =

√
σ

ρAg
≈ 0.0017m. (7.26)

Next, we calculate the capillary number, which depends on the dewetting velocity V of the wall.
From the experiments we know these to be V ≈ O(10−3)−O(10−2) m/s, which means

Ca =
µAV

σ
= O(10−4). (7.27)

From the Landau-Levich theory (Landau and Levich, 1942; Ryck and Quéré, 1998) for this regime
where Ca << 1 the film thickness is expected to be

δ = 0.94 aCa
2
3 ≈ 3µm. (7.28)

Now we have the difficulty that on the one hand we need to resolve length scales of a and on
the other hand those of δ. Which means that the cell size is approximately hmin ≈ δ. Using the
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Table 7.8: Material properties for the simplified setup
Density
ρ [kg/m3]

Heat capacity
ĉp [J/(kgK)]

Thermal conductivity
k̂ [W/(mK)]

Dyn. viscosity
µ [Pa s]

liquid A 1 0 1 1
vapor B 1 0 1 0.001
solid S 1 0 1 −
Latent heat ĥvap [J/kg] = 1, Surface tension σ [N/m] = 1,
Saturation temperature Tsat [K] = 06, Gravitational acceleration g [m/s2] = 4

capillary time-step from Section 6.1 we find a time-step size of

∆t ≈

√
ρA + ρB
2πσ

(
hmin
2k + 1

)3

≈ 3.5× 10−8 s (7.29)

for a moderate polynomial degree of k = 2. Also from the experiment we know the intended
duration of the simulation to be tend ≈ 1 s. Putting all of this together we would therefore need

N∆t = tend/∆t = O(107) (7.30)

time-steps. Resolving the macroscopic length a and film thickness δ would mean we employ
around

NK =≈ O((a/δ)2) ≈ O((103)2) = O(106) (7.31)

cells in a 2D simulation. In practice this would be somewhat less by employing AMR, so lets
assume NK = 105. With k = 2 there are (6, 6, 3) = 15 DOFs for the two velocities and the pressure
in each cell and finally the total number of DOFs becomes

Ndof = O(106). (7.32)

Now, we are not able to provide an exact number but from experience we estimate the solver
needs around τ = 1 to 10 min for a time-step with that amount of DOFs, which would mean the
total simulation runtime would succumb to

T = N∆tτ ≈ 107 min ≈ 105 h ≈ 104 d ≈ 19 years. (7.33)

Thus, it is beyond the capabilities of the solver at the current time to compute this experiment to
its full extent. This estimation emphasizes the considerations made in Section 6.1 and the need
for a fully implicit level set coupling able to handle larger time-steps. These considerations are
valid even before taking into account long term stability of the solver, especially of the interface,
which is very challenging for such inviscid materials.

6The temperature range is shifted for numerical reasons, the occurrence of absolute zero at this point has no physical
significance.
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7.3.2 Heated wall - simplified setup

To compute a simplified version of the heated wall experiment, using the system of equations from
Section 2.6.2, the first drastic simplification is the choice of fictive material parameters. Table 7.8
shows the values chosen in this setup. Most noticeable vapor and liquid have the same density.
So it is obvious that this setup is completely artificial, but this simplification together with the
neglected heat capacities effectively decouples the solution of the heat equation and the flow
solution, as according to Eq. (2.75) the velocity jump vanishes for equal densities and therefore
the contradiction discussed in Section 7.2 is not present. This means the interface movement as
described by Eq. (2.73) is influenced by evaporation, but there is no additional flow induced in
the liquid/vapor bulks. These fluids are then placed in a domain of size Ω = [−5, 0] m× [0, 15] m
and subject to an gravitational acceleration of g = 4 m/s2 in negative y-direction, such that
the capillary length is a = 0.5 m. The equilibrium contact angle is set to θstat = π/2 and the
quasi-stationary contact angle model is employed (βL = 0, Eq. (2.79)). The upper and lower walls
are pressure outlets, with the pressure value prescribed according to the hydrostatic pressure for
the initial state with a flat interface at y0 = 1 m, shown on the left in Fig. 7.19, for which the level
set

ϕ(x, y) = −y0 + y (7.34)

is used7. The left wall is set as a free-slip wall and the right one as a slip wall with βA = βB =
1000 Pa s/m, that is moving upward with Vwall = 1 m/s. The left, upper and lower boundaries are
assumed adiabatic for the heat equation and through the right wall a constant heat flux is supplied
only to the liquid phase. The domain is meshed with a 4× 12 grid and 3 levels of AMR are used
at the interface. The total duration for the simulations is tend = 12 s with a fixed time-step size of
∆t = 0.01 s.
In Fig. 7.19 the evolution of the liquid-vapor interface for heat fluxes of different intensity(
q∂Ω = [0, 0.05, 0.1, 0.2] W/m2

)8 is displayed. This effects evaporation of different amounts at the
interface, draining the liquid film on the wall. Initially the interface is horizontal. After 1.5 s the
formation of a dynamic meniscus is observable, due to the movement of the wall dragging the
fluids along. At 3 s the differences between the simulations using different heat fluxes become
more pronounced. The black line, where no heat flux is supplied and thus no evaporation occurs
is rising higher than the other interfaces. Additionally, the formation of an inflection point is
visible. Near the contact point the curvature is positive and becomes negative when moving away
from the contact point. This initially positive curvature is less pronounced in the simulations
with evaporation. At 6 s the “cold” interface starts to form a thin film on the wall, while the
other interfaces approach the wall asymptotically without a region of a near constant thickness.
Looking at the final time the simulations with the highest heat flux seem to have reached a nearly
stationary state, as the contact point did not climb noticeably between 6 and 12 s. In contrast the
“cold” interface still rises with the same constant velocity, now exhibiting a nicely formed film on
the wall. The simulation with the lowest heat flux lies somewhat in between, still rising but at a
considerably reduced velocity.
These observations are supported by the finding in Fig. 7.20. Here the contact point y-position,
y-velocity, and contact angle are displayed. For the cold interface the contact point rises with a
constant speed, slightly below the wall velocity due to the slip. The contact angle approaches a
constant value, not equal to the equilibrium value. We explain this with the high friction value of
7For these simulations the “Fast-Marching” scheme described in Smuda and Kummer (2022) is employed.
8A positive value effects a heat flux in opposite direction of the boundary normal, which means heat is flowing into
the domain.
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Figure 7.19: Evolution of the interface in the simplified setup for a heated wall getting dragged
out of a liquid reservoir. Results for heat fluxes of different amounts supplied through
the boundary are displayed. The dashed line in the last figure helps visualize the
formation of a film of almost constant thickness.

β = 1000 Pa s/m. In Section 7.1, we observed that a no-slip condition effectively overwrites the
contact line condition. This high friction value almost depicts a no-slip condition, and thus the
quasi-stationary contact angle condition is not able to pull the contact angle to θstat = π/2.
The blue data lines show the same measurements for the simulation with q∂Ω = 0.05 W/m2. The
contact point always rises slower than in the “cold” simulation. As the contact point rises, more
heat is supplied (as the whole wetted region is heated), which in turn means more evaporation
at the interface and thus more film drainage. Therefore, the movement of the contact point is
slowed down over the course of the simulation.
The green and orange lines display the same behavior. However, due to the higher heat fluxes the
equilibrium, where the amount of liquid dragged into the film and evaporated over the length of
the film is in balance, is reached sooner. This is noticeable as the point where the contact velocity
approaches zero.
At last we want to look at the contact angles in the simulations with evaporation. What is
somewhat surprising is that the approached asymptotic value for the lowest heat flux is furthest
away from the value in the “cold” simulation. However, these asymptotic angles are not random
and follow a strict pattern. When considering the equilibrium state we find uΣ · nΣ = 0, which
means

uA · nΣ =
ṁ

ρA
. (7.35)

For the high friction value we can estimate uA ≈ (0, Vwall)
T and the interface normal at the

contact point is nΣ = (− cos(θ), sin(θ))T . This gives a relation between the contact angle and the
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Figure 7.20: Contact point position, velocity and contact angle in the simplified heated wall
simulation over the duration of the simulation
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mass flux in the equilibrium state:

sin(θ) =
ṁ

ρAVwall
. (7.36)

To estimate the mass flux we repeat the same considerations for the temperature gradient. From
the interface conditions (Eq. (2.75)) it is known that

∇TA = −ṁĥvap
k̂A

nΣ. (7.37)

On the other hand, the heat flux at the boundary in wall normal direction is given by Eq. (2.78) as

∇TA · n∂Ω = q∂Ω. (7.38)

By inserting Eq. (7.37) in Eq. (7.38) the mass flux at the contact line in terms of the boundary
heat flux is obtained as

ṁ =
q∂Ω

ĥvap cos(θ)
. (7.39)

Inserting Eq. (7.39) in Eq. (7.36) and applying an addition theorem for the trigonometric functions
the expected contact angle for an equilibrium state is found to be

θ =
1

2
arcsin

(
2

q∂Ω

ĥvapρAVwall

)
. (7.40)

These predicted values are displayed as dashed lines in Fig. 7.20. It is visible, that these predictions
are accurate and approached in the actual simulations. At last we can calculate the film thickness
for the “cold” simulation. To this end, we average the film thickness over the region from y = 4 m
to y = 10 m to obtain δ ≈ 0.29 m. The capillary number for this setup is Ca = 1, which means we
should observe the film thickness according to the “crossover” regime given by Ryck and Quéré
(1998). There, the expression

Ca = 1.09

(
δ

a

)3/2

+

(
δ

a

)2

(7.41)

is given for the film thickness in dependence of the capillary number and capillary length, which
is here a = 0.5 m. Thus, they predict a thickness of δ ≈ 0.33 m, which agrees well with the
estimate derived from the simulation. It should be noted that the value from the simulation
depends on the upper and lower cut-off values, determining whether the dynamic meniscus and
the contact line still influence the instantaneous thickness. From this result also the discrepancy
in the length scales present in this experiment is highlighted. It is visible from Fig. 7.19, that we
need a domain size of several times the capillary length to capture the formation of the dynamic
meniscus accurately. In addition we need to resolve the film thickness or even smaller scales at
the contact line. We were able to simulate this setup for a capillary number of order O(1), where
the film thickness is also of the same magnitude as the capillary length. However, for the capillary
numbers used in real experiments the film would be much smaller, which underlines the point
made in Section 7.3.1.
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7.3.3 Heated wall - conjugate heat transfer

The results of the previous section emphasize how the heat flux from the wall into the liquid
at the contact line influences the dewetting behavior. There, we assumed a constant heat flux
in wall normal direction. However, in a realistic setup the heat flux is probably not constant at
every point on the wall. Another often employed boundary condition is that of a constant wall
temperature. But this is inappropriate for our simulation as a constant, compared to the saturation
temperature superheated, temperature would effect a diverging heat flux at the contact line in the
employed model. So the question is how can we obtain a boundary condition at the contact line
that models the heat fluxes more accurately. The approach we want to showcase in this section is
to actually include heat transfer in the wall to simulate the temperature field at the contact line
more realistically.
To this end, we adapt the setup presented in Section 7.3.2 slightly. The domain is now of size
Ω = [−5, 0]m×[0, 5]m or when including the solid explicitlyΩ = [−5, 1]m×[0, 5]m, see Fig. 7.21,
and the right wall is not moving. The fluid-fluid interface is placed at y0 = 2.2m and if present the
fluid-solid interface at x0 = 0 m. The mesh contains one cell per unit length and 5 levels of AMR
are employed at the fluid-fluid interface and 5 additional levels at the contact point. Two steady
state simulations are performed, in the first the heat flux is set to q∂Ω = 0.2 W/m2 and the solid
is not included, the second simulation uses Eq. (2.77a) with QΣ = 0.2 W/m2, while including
the solid explicitly. In both simulations the heating is done only along the liquid-solid interface,
while no additional heat is supplied along the vapor-solid interface. The second condition can
be thought of as a very thin film applied on the solid, which is then heated, e.g. by sending an
electric current through it, very similar to what is done in the actual experiments (Schweikert
et al., 2019).
The complex temperature field resulting from the three phase simulation is displayed in Fig. 7.21.
The fluid-fluid interface (red) stays at saturation temperature everywhere. The fluid-solid interface
(white) displays superheating whenmoving away from the contact point and approaches saturation

x

y

T

liquid

vapor

solid

Figure 7.21: Elevated temperature field for the three phase showcase. The image is rotated
such that the solid wall is on the left and the elevation is inverse to the calculated
temperature. The fluid-fluid interface is highlighted in red, the fluid-solid one in
white.
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temperature at the contact point. The solid also exhibits a temperature gradient in y-direction,
which corresponds to heat flowing from the heated part of the wall towards the passive part, that
is from the solid-liquid to the solid-vapor interface.
In Fig. 7.22 the temperature and wall normal heat fluxes are displayed along the fluid-solid
interface. In case of the three phase simulation these values are included from both sides of the
interface, i.e. in A or B and S. From the temperature profile the complete thermal decoupling of
the two fluid phases is visible. While the heated part of the wall (that in contact with A) reaches
a certain superheat, the passive part remains at saturation temperature. If the solid phase is
included this changes. Now the fluid phases are thermally coupled through the solid and heat can
flow from the heated to the passive side. The wall does not reach as high superheating values as
in the two phase case. However, now the passive part of the wall also exhibits some superheat. As
intended the measured temperatures from solid and fluid phase align. The profiles for the heat
flux show similar results. The dashed line, indicating the purely two phase setup, has a jump
at the contact point, separating the heated from the passive part of the wall. With three phases
it is possible to observe two non overlapping lines in the heated section. These lines show the
heat flux in wall normal direction measured from fluid and solid wall respectively. The distance
between these two lines is the heat source we placed on the interface. Further away from the
contact point the results are similar to the two phase case. In the heated section a constant heat
flux is approached and in the passive section it tends towards zero. In close proximity to the
contact line this changes. There, a significant spike in heat flux can be observed. On the other
side of the contact point no source is placed on the interface, which is why there the heat fluxes
from both sides overlap.
The same measurements are taken for the fluid-fluid interface. As intended from the interface
conditions the interface is at saturation temperature everywhere. Qualitatively the heat fluxes
behave also similar, with two notable differences. In the two phase setup the vapor is basically
completely passive, thus there is no heat flux from the vapor side to the interface. In the three
phase simulation heat is flowing towards the interface from the liquid and the vapor side, for the
latter mostly close to the contact point. The second observation is the amount of heat flowing to
the interface at the contact point. In both simulations it reaches its maximum at the contact point.
When all three phases are computed this maximum is considerably larger. In return the heat flux
from the liquid to the interface is slightly higher in the two phase simulation, when measuring
further away from the contact point.
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Figure 7.22: Temperature and (interface normal) heat flux along the fluid-solid interface

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

−2

0

2

4

6
·10−5

T
[K
]

3 Phases, A
3 Phases, B
2 Phases, A
2 Phases, B

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

−2

0

2

x [m]

−
k̂
∇
T
·n

Σ
[ W

/
m

2
]

Figure 7.23: Temperature and (interface normal) heat flux along the fluid-fluid interface
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7.4 Conclusion

In this chapter the focus is shifted from pure two-phase (or multiphase problems) to special
two-phase problems, containing a three phase contact line. For Section 7.1 evaporation and
even the computation of the second phase are neglected to focus purely on the dynamics of the
contact line in the XDG method presented in Chapter 4. The capability of the method handling
various contact line models to take into account complex behavior like contact angle hysteresis is
examined. Several independent studies are conducted. First, the contact line behavior excluded
and the focus lies on the behavior of the fluid pressure and velocity in a sharp corner depending
on the slip boundary condition set on the solid wall. We were able to confirm findings obtained
analytically and observed the presence of singularities, when a no-slip condition is enforced. This
first analysis also emphasized the capability of the method to make these singularities visible by
using high approximation orders and AMR. The second study shifted the focus to the behavior of
pressure and velocity towards the contact line in dependence of different contact line models. For
all variations a logarithmic singularity in the velocity and a rational singularity for the pressure is
observed when approaching the contact line. This result again agrees well with the analytical
study of the problem considering Green’s solutions to Stokes equation when introducing a line
force. To regularize the velocities we proposed to introduce a singular viscosity at the contact line.
With this adaption in the model we were indeed able to obtain regular behavior of the velocity
towards the contact line, while the pressure behavior remained unaltered. The last two studies
focused then on the possibilities offered through the introduction of such contact line forces. First,
different conditions for the dynamic contact angle were tested in a two-phase Couette flow. We
found that the method is indeed able to model the behavior of the contact line in accordance
to such dynamic conditions. However, it became evident that there is some kind of complex
interaction between the contact line and bulk boundary condition influencing the behavior of the
dynamic contact angle. In the limiting case of a no-slip boundary condition the dynamic contact
angle condition is even overwritten altogether. In the last study we examined if the method is
able to model contact angle hysteresis. For this we received a positive result with the method
replicating pinning and stick-slip behavior of the contact lines as expected from the prescribed
conditions.

In Section 7.2 evaporation and the second phase are included again, but for the moment any
movement of the interface is excluded. Over the course of that section the evaporation model,
Section 2.6.2, at the contact line is discussed. It is observed that this model is in contradiction
with the impermeability of the wall at the contact line. The effect and possible resolution of
this contradiction is investigated in a series of convergence studies. The experimental orders
of convergence in pressure, velocity and temperature in test cases excluding and including
evaporation and under conditions where the contradiction is or is not present are investigated.
Furthermore, a modification in the model to alleviate the contradiction, namely the introduction of
slip on the interface, is proposed. In the absence of evaporation we are able to confirm the optimal
convergence order for the XDG based discretization. With evaporation present the convergence
orders are reduced, but still of order higher than one. Under conditions where the contradiction
is present a further decrease in convergence order is observed, that could be recovered through
the introduction of slip on the interface. Finally, the findings are emphasized by displaying
the profiles of pressure and velocity in the limit as the contact line is approached. In double
logarithmic representation the severe singularity in the pressure profile when the contradiction is
present becomes visible. With the introduction of slip on the interface this singularity is defused
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substantially. The same pressure behavior as in the cases where the contradiction is not present
by design is regained.

Subsequently, an experiment of the superordinate project, Sonderforschungsbereich/Collaborative
Research Center 1194 (SFB/CRC 1194) (Schweikert et al., 2019), is examined in Section 7.3.
In this setup a heated wall is dragged out of a liquid reservoir and the dewetting of the wall
is investigated. The real experimental setup proofed to be too challenging for the method, in
terms of expected runtime and numerical stability, but a simplified version of this experiment is
simulated numerically. For this simplified version, the fluid velocities are assumed to be equal,
which effectively decouples the temperature and flow solutions, simplifying the problem, while
being an obviously non-physical assumption. We then computed the dewetting of the wall without
evaporation and with heat fluxes of different magnitude supplied through the wall. We were
able to match the observed contact angles when a stationary state is reached to an analytical
prediction derived from the boundary conditions. Additionally, the film thickness observed in
this plate coating simulation matches the analytical prediction closely. The chapter closes with
a showcase simulation, where heat conduction is calculating in the third phase, i.e. the solid
wall, explicitly. It is observed that the solid builds a thermal bridge between the two fluid phases,
coupling them thermally and forming a complex temperature field in proximity to the contact line.
This showcase emphasizes the importance of including heat transport in the solid, as it displayed
a huge impact on the heat fluxes measured at the contact line.
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8 Conclusion

To conclude this thesis we want to summarize the contents, highlighting the main advancements
and findings. Finally, a small outlook is given on which matters present themselves as most
pressing when trying to simulate contact lines and evaporation with the extended discontinuous
Galerkin (XDG) method.

8.1 Summary

After introducing the mathematical model used in Chapter 2 and the fundamentals of the numerical
method in Chapter 3, the XDG based solver to simulate multiphase flows with evaporation and
contact lines is described in Chapter 4. This work then features three chapters with results to
single-phase flows (Chapter 5), two-phase flows without contact lines (Chapter 6) and two-phase
flows with contact lines (Chapter 7).

Regarding the single-phase flow in Chapter 5, first the Stokes flow through the nip between two
printing cylinders is investigated in Section 5.1. The numerical results provide solutions for the
pressure and velocity fields as the distance between the cylinders tends towards zero. By following
this approach a connection is verified, relating the numerically measured pressure gradients at
stagnation points in the flow to experimentally observed finger patterns, belonging to the so-called
lamella splitting regime.
This analysis is extended in Section 5.2. There, analytical homogeneous solutions to the Stokes flow
between the two cylinders are constructed using the bipolar coordinate (BPC) system. According
to these analytical solutions the formation of viscous vortices is possible in the nip. These findings
are verified by numerical simulations, using the analytical solution as boundary conditions, and
resulting in the same flow patterns further away from the boundaries.

The role of capillary waves in multiphase simulations is reviewed in Section 6.1. It is postulated
and then verified that the propagation speed of these waves results in a severe time-step restriction
for the proposed method. This restricting necessitates to scale the time-step size in relation to the
grid size as ∆t ∝ h1.5.
In Section 6.2 the idea of a hybrid phase field level set method, combining a sharp interface flow
solution with a diffuse interface level set solution is explored. It is found that the phase field level
set method has some advantages with respect to overall stability and not requiring an additional
reinitialization. However, this is offset by the disadvantages, namely that it is not clear how to
choose the additional parameters for the phase field and that it is computationally more expensive
to solve, due to the implicit nonlinear solution procedure. Further, the contact angle boundary
condition for level set and flow solution do not have the same fix points. Therefore, this hybrid
method is not further pursued.
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Some additional insights on the behavior of the solver are presented in Section 6.3. First, the
sensitivity of the achievable convergence orders in dependence of the boundary conditions is
investigated. It turned out that even the prescription of smooth boundary values can result in
a decay of convergence order. It is therefore of utmost importance to appropriately choose the
boundary conditions if high order convergence is the aim. Second, the optimal approximation
orders for the coupling between temperature and velocity fields is tested. The results indicate
that in opposition to what is chosen throughout this work, a temperature field of one polynomial
order higher than the velocity field is optimal, when evaporation is included. However, the results
are not conclusive and additional numerical analysis of this matter is necessary.
Finally, Section 6.4 validates the implementation of evaporation in the XDG method. To this end a
series of established 1D, 2D and 3D test cases is computed. The results are compared to analytical
and other numerical solutions from literature and show good agreement. With the XDG based
method similar errors are achieved, while using less degrees of freedom (DOFs). For the 3D test
case even second order spatial convergence is obtained.

For the last result Chapter 7 finally the contact line is included. In Section 7.1 the dynamics of the
contact line are reviewed. First, a droplet is placed on a plate and fixed in place, while capillary
effects are turned off. The wall is then drawn out from under the droplet and the influence of the
wall boundary condition on the flow in the sharp corners are investigated. The singularities arising
in the pressure and velocity fields near the contact line match the predictions obtained from
theoretical analysis. For the second test, the plate is stationary and capillary effects are switched
on. The static contact angle is prescribed such that the droplet is not in equilibrium. Thereby, a
contact line force is present, trying to move the contact line towards the equilibrium state. Again,
singularities in the pressure and velocity fields are observable, caused by the introduction of a
line force into the model. Finally, an approach is suggested to transfer the singularity from the
velocity field into the viscosity, which is modeled based on the distance to the contact line. This
procedure makes it possible to regularize the velocity field.
Another test confirms the behavior of the dynamic contact angle in relation to the slip velocity
as prescribed by the contact angle model. A good agreement of the expected with the actually
obtained relation is achieved. However, the dynamic contact angle in actual simulations is not
only governed by the contact angle condition, but also influenced by the slip boundary condition
set for the bulk of the fluid. At last it is showcased how more complex wetting behavior can be
taken into account in the presented method. This is demonstrated at the example of contact angle
hysteresis for a sliding droplet.
When including evaporation into the simulation of wetting a contradiction in the interface and wall
boundary conditions of the used model can be observed. Section 7.2 investigates the influence
this contradiction poses onto the numerical solution. It is observed that the presence of this
contradiction results in a reduced convergence order of the scheme. To resolve this issue the
use of slip on the interface is proposed and implemented. This adapted model does not possess
the contradiction anymore and it is possible to regain a higher convergence order, albeit not the
optimal one.
In the last section, Section 7.3, it is attempted to calculate a real experiment, conducted as part
of the Sonderforschungsbereich/Collaborative Research Center 1194 (SFB/CRC 1194). There a
heated wall is dragged out of a liquid reservoir. The amount of heat supplied influences strongly
the observed wetting behavior. However, due to the limitations in solver stability and time-step
restriction the numerical setup is drastically simplified. Nevertheless, the simplified setup makes
it possible to draw a few meaningful conclusions. First, the thickness of the film forming on the
wall when no evaporation is presented is in good agreement with theoretical predictions. When
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evaporation is introduced in varying amounts, stronger evaporation leads to shorter and thinner
films. Additionally, the way the heat flux boundary condition is applied, makes it possible to
predict the contact angle that is approached when the system reaches a dynamic equilibrium.
Indeed the measured angles approach these predictions asymptotically. Finally, it is showcased
that to obtain a more accurate representation of the heat fluxes near the three-phase contact line
it is necessary to include heat transfer in the solid wall explicitly in the simulation.

Finally, we would like to return to the objective formulated at the beginning. We succeeded
in implementing the XDG method to simulate multiphase flows with evaporation and contact
lines. The method is verified in multiple test cases and then used as suggested to zoom into
the contact line. We presented multiple investigations focusing on the behavior of the used
wetting/evaporation model at the contact line and experimented with several extensions to the
models. Thereby, we were able to demonstrate the capability of the method to be used as a tool in
the development and evaluation of novel multiphase models. This work, therefore, contributes
significantly to the advancement of the XDG method for coupled multiphysics multiphase problems.

8.2 Outlook

During some of the test cases conducted as part of this thesis the capillary time-step restriction
proved to be very limiting, necessitating an otherwise unnecessary small time-step size. This
resulted in greatly prolonged simulation times and made the computation of some tests unfeasible.
This applies in particular to calculations in which material and process properties from practical
applications are to be used. It is therefore of great importance to breach this capillary time-
step restriction and also to stabilize the coupling between interface and flow solution. Possible
approaches include to construct an implicit fully coupled solver that computes the interface and
flow solutions without a splitting procedure. Another idea is to stabilize the method by blending
over from a diffuse interface solution to the sought after sharp interface one in an iterative
relaxation scheme.

The sole setting for evaporation in this work were single component systems, where the mass
transfer is caused by heat fluxes at the interface, staying at saturation temperature. However, there
are also other modes, which can play a role in real-life applications. This includes mass transfer
at the interface due to concentration gradients, e.g. the evaporation of a volatile liquid into a
surrounding gas, or isothermal evaporation/condensation caused by a change in ambient pressure.
In the implemented method such effects are not yet regarded and would require additional
extension or even different models to be considered.

At last it was discovered that the method can be used as a kind of detector for irregularities, in
particular near the contact line, in the models used. It is still an open question how to construct
a completely singularity free hydrodynamic sharp interface model. A possible route to achieve
this task could be to include several regularizing microscopic effects. However, there the question
arises how these can be made accessible without resolving microscopic scales explicitly, which is
usually not wanted for performance reasons, for example.
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A Appendix

A.1 Integral forms of the spatial discretization

When following the extended discontinuous Galerkin (XDG) discretization procedure as presented
in Section 3.2 we finally obtain a discrete equation of the form of Eq. (4.3), Eq. (4.6) or Eq. (4.9).
In this section we want to expand these abstract operators in integral form. Usually all terms
independent of the solution variables are collected on the right-hand side (RHS), in the form
denoted by the letter s. We deviate here a bit from this notation, to emphasize how the boundary
conditions are implemented for each contribution (convective, viscous etc.) separately. In Sec-
tion 2.6 the boundary conditions are written in a non-conventional form. Here we distinguish the
limiting cases of Dirichlet ΓD and Neumann ΓN and Robin ΓR boundaries (which may differ for
energy and momentum equations) explicitly. For all three systems presented in Section 2.6 the
integrals over the fluid bulk KX

h, inner edges Γint (excluding the interface) and boundaries are the
same. They only differ in the implementation of the interfacial integral over Σ. If different from
the interface discretization for the material two-phase flow Section 2.6.1, the interface terms used
for the two-phase flow with evaporation, Section 2.6.2, will be marked in red and for the free
surface flow, Section 2.6.3, in blue, completely replacing the “standard” black contribution. For
shorter notation and better readability the identity ṁ = (

[[
k̂∇hT

]]
· nΣ)/ĥvap is used. I.e. ṁ is

a function of T or to be precise its gradients. In case the third (solid) phase is included in the
computation the same fluxes as on boundary edges are employed on the respective interface, with
the exception of the diffusive term in the heat equations, where a separate remark will be made.

A.1.1 Temporal terms

The temporal form in Eq. (4.6) can be separated in a momentum and temperature contribution:

m((u, T ), (v, r)) = mu(u,v) +mT (T, r). (A.1)

The momentum contribution mu is exactly the temporal form used in Eq. (4.3) and Eq. (4.9),
where the subindex was dropped (the same is true for all other forms we will consider). Expanded
into the single contributions these forms become

mu(u,v) =

∫
KX
h

∂u

∂t
· v dV +

∮
Γint

0 dS +

∮
ΓD

0 dS +

∮
ΓN

0 dS +

∮
ΓR

0 dS +

∮
Σ

0 dS, (A.2)

mT (T, r) =

∫
KX
h

∂T

∂t
· r dV +

∮
Γint

0 dS +

∮
ΓD

0 dS +

∮
ΓN

0 dS +

∮
ΓR

0 dS +

∮
Σ

0 dS. (A.3)

For completeness, also integrals equating to 0 are included.
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A.1.2 Convective terms

Again the combined convective form containing momentum and energy contributions can be
splitted into the contributions from either equation:

c(u, (u, T ), (v, r)) = cu(u, (u, T ),v) + cT (u, T, r). (A.4)

In case evaporation is present the convective form does also depend on the temperature solution.
If no evaporation is considered, i.e. the systems of Eq. (4.3) or Eq. (4.9) are used, the red terms
can be ignored. The momentum contribution is implemented as

cu(u, (u, T ),v) =

∫
KX
h

−ρu⊗ u : ∇hv dV +

∮
Γint

ρ(( {{u⊗ u}}nΓ) + η1 [[u]]) · [[v]] dS

+

∮
ΓD

ρ(((
u⊗ u+ s⊗ s

2
)n∂Ω) + η1(u− s)) · v dS

+

∮
ΓN

ρ((u⊗ u)n∂Ω) · v dS +

∮
ΓR

ρ(((
u⊗ u+ s⊗ s

2
)n∂Ω) + η1(u− s)) · v dS

+

∮
Σ

ρ(( {{u⊗ u}}nΣ) + η1 [[u]]) · [[v]] dS

+

∮
Σ

ρ(( {{u⊗ u}}nΣ) + η1( [[u]]− ṁ
[[
ρ−1
]]
nΣ)) · [[ρv]]

+(( {{u}} · nΣ)ṁ
[[
ρ−1
]]
nΣ + {{u}} ( [[u]] · nΣ)) · {{ρv}} dS

+

∮
Σ

{
1
2ρ
(
(u⊗ u)nΣ + η1u

)
· (v)

ρ
(
(u⊗ u)nΣ

)
· (v) if βΣ 6=∞ in Eq. (2.84)

dS,

(A.5)
following the procedure proposed in Shahbazi et al. (2007). For each edge the maximum penalty
of the both neighboring cells i, j is chosen. The penalty is computed from the mean velocity ū in
those cells

η1 =
1

2
max(ηi, ηj),

ηi = 2|ūi · n∂Ω|,
(A.6)
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ensuring a sufficient stabilization of the convective term. For the heat equation we define

cT (u, T, r) =

∫
KX
h

ρĉu · ∇hTr dV

+

∮
Γint

−ρĉ

(
min

(
u− · nΓ,u+ · nΓ

)
− |min

(
u− · nΓ,u+ · nΓ

)
|

2
r−

+
max

(
u− · nΓ,u+ · nΓ

)
+ |max

(
u− · nΓ,u+ · nΓ

)
|

2
r+

)
[[T ]] dS

+

∮
ΓD

−ρĉ
(
u · n∂Ω − |u · n∂Ω|

2
− u · n∂Ω + |u · n∂Ω|

2

)
(T − TD)r dS

+

∮
ΓN

0 dS +

∮
ΓR

Not implemented!1 dS

+

∮
Σ

−ρAĉA
(
uA · nΣ − |uA · nΣ|

2
− uA · nΣ + |uA · nΣ|

2

)
(TA − Tsat)rA

− ρBĉB
(
uB · nΣ − |uB · nΣ|

2
− uB · nΣ + |uB · nΣ|

2

)
(TB − Tsat)rB dS,

(A.7)

employing a flux similar to Cheng and Shu (2007). By using the min,max functionals in the
numerical flux, the transport direction is taken into account and the convective term is stabilized
analogous to an upwind formulation.

1To simulate while using such conditions, convection in the heat equation has to be omitted. Usually the temperature
slip boundary is an impermeable wall, such that there is no convective flux through the wall though.
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A.1.3 Pressure gradient and velocity divergence terms

The pressure gradient and velocity divergence are discretized using a straight-forward central
flux as

b((p, T ),v) =

∫
KX
h

−p∇h · (v) dV +

∮
Γint

{{p}} [[v]] · nΓ dS

+

∮
ΓD

pv · n∂Ω dS +

∮
ΓN

0 dS +

∮
ΓR

pv · n∂Ω dS

+

∮
Σ

{{p}} [[v]] · nΣ dS

+

∮
Σ

{
p
(
v · nΣ

)
0 if interface is moveable (βΣ 6=∞ in Eq. (2.84))

dS,

(A.8)

−b(q, (u, T )) =
∫
KX
h

−q∇h · (u) dV +

∮
Γint

{{q}} [[u]] · nΓ dS

+

∮
ΓD

q(u− s) · n∂Ω dS +

∮
ΓN

0 dS +

∮
ΓR

q(u− s) · n∂Ω dS

+

∮
Σ

{{q}} [[u]] · nΣ dS +

∮
Σ

{{q}} ( [[u]] · nΣ − ṁ
[[
ρ−1
]]
) dS

+

∮
Σ

{
q
(
u · nΣ

)
0 if interface is moveable (βΣ 6=∞ in Eq. (2.84))

dS.

(A.9)

A.1.4 Diffusion terms

In the momentum and heat equation a diffusive term is present:

a((u, T ), (v, r)) = au((u, T ),v) + aT (T, r). (A.10)
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These are discretized as

au((u, T ),v) =

∫
KX
h

µ(∇hu+∇huT) : ∇hv dV

+

∮
Γint

−(
{{
µ(∇hu+∇huT)

}}
nΓ) · [[v]]− (

{{
µ(∇hv +∇hvT)

}}
nΓ) · [[u]]

+ 2η2 [[u]] · [[v]] dS

+

∮
ΓD

−µ((∇hu+∇huT)n∂Ω) · v − µ((∇hv +∇hvT)n∂Ω) · (u− s)

+ 2η2(u− s) · v dS +

∮
ΓN

−gN · v dS

+

∮
ΓR

β
(
P∂Ω(u− s)

)
·
(
P∂Ωv

)
− µ

(
(∇hu+∇huT)n∂Ω

)
· n∂Ω

(
v · n∂Ω

)
− µ

(
(∇hv +∇hvT)n∂Ω

)
· n∂Ω

(
(u− s) · n∂Ω

)
+ 2η2

(
(u− s) · n∂Ω

) (
v · n∂Ω

)
dS

+

∮
Σ

−(
{{
µ(∇hu+∇huT)

}}
nΣ) · [[v]]− (

{{
µ(∇hv +∇hvT)

}}
nΣ) · [[u]]

+ η2 [[u]] · [[v]] dS

+

∮
Σ

−(
{{
µ(∇hu+∇huT)

}}
nΣ) · [[v]]− (

{{
µ(∇hv +∇hvT)

}}
nΣ) · [[u]]

+ η2 [[u]] · [[v]] + (ṁ
[[
ρ−1
]]
nΣ) · (

{{
µ(∇hv +∇hvT)

}}
nΣ − η2 [[v]]) dS

+

∮
Σ


− µ

(
(∇hu)nΣ

)
· nΣ

(
v · nΣ

)
− µ

(
(∇hv)nΣ

)
· nΣ

(
u · nΣ

)
+ η2

(
u · nΣ

) (
v · nΣ

)
0 if interface is moveable (βΣ 6=∞ in Eq. (2.84))

dS,

(A.11)

and

aT (T, r) =

∫
KX
h

k̂∇hT · ∇hr dV

+

∮
Γint

−
{{
k̂∇hT

}}
· nΓ [[r]]−

{{
k̂∇hr

}}
· nΓ [[T ]] + η3 [[T ]] [[r]] dS

+

∮
ΓD

−k̂∇hT · n∂Ωr − k̂∇hr · n∂Ω(T − TD) + η3(T − TD)r dS

+

∮
ΓN

−qNr dS +

∮
ΓR

βT (T − TD)r dS

+

∮
Σ

−k̂A∇hTA · nΣrA − k̂A∇hrA · nΣ(TA − Tsat)

− k̂B∇hTB · (−nΣ)rB − k̂B∇hrB · (−nΣ)(TB − Tsat)
+ η3(TA − Tsat)rA + η3(TB − Tsat)rB dS

+

∮
Σ

−QΣ {{r}} −
{{
k̂∇hT

}}
· nΓ [[r]]−

{{
k̂∇hr

}}
· nΓ [[T ]] + η3 [[T ]] [[r]] dS.

(A.12)

The penalties η2, η3 are again chosen in accordance to Shahbazi (2005), see Eq. (4.42). Note the
orange interface integral in Eq. (A.12). This integral is used on the fluid-solid interface if present.
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Keep in mind, that the free surface system, Section 2.6.3, does not use the transpose of the velocity
gradient and potentially employs dimensionless numbers instead of material parameters. This
is of course considered in the actual implementation, but not explicitly shown here, as it would
unnecessarily inflate the presentation. Additionally, as the free surface system only computes one
phase no averages or jumps occur on the interface, instead the values of the only active phase are
used.

A.1.5 Recoil pressure

The recoil pressure −ṁ [[u]], see Eq. (2.75), is the only interface contribution that is not dissolved
in the forms given above. Therefore, it is included by

d(T,v) =

∮
Σ

−ṁ2
[[
ρ−1
]]
nΣ · {{v}} dS. (A.13)

Note that this is a nonlinear form due to the occurrence of ṁ2.

A.1.6 Surface tension

Usually the boundary contributions not dependent on the solution are collected in the right hand
side. However, here we have written them into the differential forms on the left hand side for
traceability. Thus, the right hand side only contains the surface tension force and source terms
such as gravitational forces (or other volume sources):

s(v, q, r) =

∫
KX
h

ρg · v dV

+

∮
Σ

−σPΣ : {{∇Σv}} dS +

∮
Σ∩(Γint)

σ
{{
tΣ
}}
· [[ {{v}}]] dl

+

∮
Σ∩(ΓD)

σ
(
n∂Ω · tΣ

)
n∂Ω · {{v}} dl +

∮
Σ∩(ΓN)

σtΣ · {{v}} dl

+

∮
Σ∩(ΓR)

(
σ
(
n∂Ω · tΣ

)
n∂Ω + σ cos(θstat)n̂L − βL

(
(uΣ − s) · n̂L

)
n̂L
)
· {{v}} dl.

(A.14)
These are dependent on the interface position, but not on the flow solution. The implementation
uses the Laplace-Beltrami operator and surface divergence theorem, cf. Smuda (2021) and Gallot
et al. (2004), and Definition 2.6. Note the occurence of the term [[ {{v}}]] on the intersection of
interface and inner edges. To be more specific, what is meant here is the jump (from one cell to
the other) of the average (from both sides of the interface) in the test function. tΣ is the vector
that is tangential to the interface and normal to the respective edge, i.e.

tΣ =
PΣnΓ

|PΣnΓ|
. (A.15)
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A.2 Adapted discretization for interfacial slip

To account for the presence of slip on the interface, a few modifications to the discretization
introduced in Rieckmann et al. (2023e), or Appendix A.1 respectively, are necessary. To allow slip
at all, the SIP form in the viscous terms is splitted into the surface normal and tangential part.
Then the tangential slip can be introduced analogous to a Neumann boundary condition:∮

Σ

− (
{{
µ(∇hu+∇huT)

}}
nΣ)·nΣ( [[v]] ·nΣ)− (

{{
µ(∇hv +∇hvT)

}}
nΣ)·nΣ( [[u]] ·nΣ)

+ η2( [[u]] ·nΣ)( [[v]] ·nΣ) + (ṁ
[[
ρ−1
]]
nΣ) · (

{{
µ(∇hv +∇hvT)

}}
nΣ − η2 [[v]])

+βΣ(P
Σ [[u]]) · (PΣ [[v]]) dS. (A.16)

All additions/modifications are marked in red. As the tangential velocities are not necessarily
continuous anymore the recoil pressure is not acting solely in interface normal direction. This is
accounted for by introducing a tangential recoil:∮

Σ

−ṁ(ṁ
[[
ρ−1
]]
nΣ+PΣ [[u]]) · {{v}} dS. (A.17)

Finally, the original implementation of the convective term in the momentum balance implicitly
enforces continuity in tangential velocity. By omitting the tangential velocity jump from the
convective flux on the interface this restriction is removed. The final interface form is∮

Σ

(( {{u⊗ u}}nΣ) + η1( [[u]]− ṁ
[[
ρ−1
]]
nΣ)) · [[ρv]] + (( {{u}} · nΣ)ṁ

[[
ρ−1
]]
nΣ

+ {{u}} ( [[u]] · nΣ)) · {{ρv}}−PΣ [[u]] · (η1 [[ρv]]− ( {{u}} · nΣ) {{ρv}}) dS. (A.18)

In the next section these three necessary adaptions are verified with a series of testcase increasing
in complexity.

A.2.1 Verification of the interfacial slip implementation

The implementation of the interfacial slip is verified with a steady plane shear flow in three
stages. Firstly, a material interface is regarded. Due to the nature of the shear flow in that case
all convective terms vanish. There is no heat flow present, and the only non vanishing field is
the streamwise velocity. Secondly, heat flux is included and the interface is non-material. The
massflux across the interfacce, paired with the slip, causes a discontinuity in the tangential stresses.
The convective terms are artificially neglected, such that the fields are either constant or linear.
Thirdly, convection is included. Through the coupling of the streamwise and spanwise velocities
the streamwise velocity and temperature fields show exponential behavior. The pressure and
spanwise velocity fields remain constant with a jump at the interface. The boundary conditions are
chosen as periodic in streamwise direction. In all cases the fields are functions of the coordinate
y ∈ [−1, 1], the interface is positioned parallel to the plates at y = 0.
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Figure A.1: Streamwise velocity for (from left to right) µA = 1, µB = 1, LΣ = 0, µA = 1, µB =
1, LΣ = 1, µA = 1, µB = 0.1, LΣ = 1, µA = 1, µB = 0.11, LΣ =∞

Case 1 : Material interface, no convection For this case the lower plate is stationary and the
upper plate moves with a fixed velocity. On both plates no-slip conditions are imposed:

uA(−1) = (0, 0)T , (A.19a)
uB(1) = (1, 0)T . (A.19b)

The reduced system

∇ · (u) = 0, (A.20a)
0 = −∇p+ µ∇ ·

(
∇u+∇uT) , (A.20b)

is solved. Taking into account the slip length LΣ the solution is:

pA(y) = 0, (A.21a)
pB(y) = 0, (A.21b)

uA(y) =

(
µB(µA + µB)

µAµB + µ2
A + µ2

B + 2LΣµAµB
(y + 1), 0

)T
, (A.21c)

uB(y) =

(
µA(µA + µB)

µAµB + µ2
A + µ2

B + 2LΣµAµB
y +

µB(µA + µB + 2LΣµA)

µAµB + µ2
A + µ2

B + 2LΣµAµB
, 0

)T
. (A.21d)

Figure A.1 shows a sample of the streamwise velocity for different viscosities and slip lengths.

Case 2 : Non-Material interface, no convection Compared to the first case transpiation is added
on the lower wall, while the upper wall is substituted for a Neumann boundary condition:

uA(−1) = (0,
ṁ

ρA
)T , (A.22a)

(−pB(1)I+ µB(∇uB(1) +∇uB
T(1)))(n∂Ω) = (µBγ̇, 0)

T = (
1

2
µBe

−LΣ , 0)T , (A.22b)

k̂A∇T (0) · n∂Ω = ṁĥvap, (A.22c)
TB(1) = 0. (A.22d)
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Figure A.2: Streamwise velocity for (from left to right) µA = 1, µB = 1, LΣ = 0, ṁ = 1, µA =
1, µB = 1, LΣ = 1, ṁ = 1, µA = 1, µ7 = 0.1, LΣ = 1, ṁ = 1, µA = 1, µB = 0.11, LΣ =
∞, ṁ = 1

Remark on the temperature boundary condition. In the implementation of the testcase due to the
absence of convection the heatflux is prescribed not at the interface, but on the lower boundary.
Now the system

∇ · (u) = 0, (A.23a)
0 = −∇p+ µ∇ ·

(
∇u+∇uT) , (A.23b)

0 = k̂∇ · (∇T ) (A.23c)

is solved. Apart from viscosity the following material parameters are used, i.e., ρA = 1000, ρB =
1.2, ĉA = 2.5, ĉB = 1.85, k̂A = 0.6, k̂B = 0.02 and ĥvap = 12000. Taking into account the slip
length LΣ and massflux ṁ the solution is:

pA(y) = −ṁ2(
1

ρA
− 1

ρB
), (A.24a)

pB(y) = 0, (A.24b)

uA(y) =

(
γ̇
µB(µA + µB − ṁLΣ)

µAµB + µ2
A + LΣṁµA

(y + 1),
ṁ

ρA

)T
, (A.24c)

uB(y) =

(
γ̇y + γ̇

µB(µA + µB − ṁLΣ + 2LΣµA)

µAµB + µ2
A + LΣṁµA

,
ṁ

ρB

)T
, (A.24d)

TA(y) = −
ṁĥvap

k̂A
y, (A.24e)

TB(y) = 0. (A.24f)

Figure A.2 shows a sample of the streamwise velocity for different viscosities and slip lengths.
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Case 3 : Non-Material interface, convection In the last testcase the convective terms are
included. The same boundary conditions as in case 2 are used:

uA(−1) = (0,
ṁ

ρA
)T , (A.25a)

(−pB(1)I+ µB(∇uB(1) +∇uB
T(1)))(n∂Ω) = (µBγ̇, 0)

T = (
1

2
µBe

−LΣ , 0)T , (A.25b)

k̂A∇T (0) · n∂Ω = ṁĥvap, (A.25c)
TB(1) = 0. (A.25d)

For the implementation instead of a heat flux the temperature on the lower boundary, according
to the analytical solution presented here, is prescribed. The final system is then

∇ · (u) = 0, (A.26a)
ρu · ∇u = −∇p+ µ∇ ·

(
∇u+∇uT) , (A.26b)

ρĉu · ∇T = k̂∇ · (∇T ) . (A.26c)

The material parameters remain unchanged from case 2. The solution in streamwise velocity and
the temperature field is then, due to the superposed spanwise velocity, not linear in y anymore,
but shows exponential behavior:

pA(y) = −ṁ2(
1

ρA
− 1

ρB
), (A.27a)

pB(y) = 0, (A.27b)

uA(y) =

(
γ̇µBe

− ṁ
µB

µA + µB − ṁLΣ

ṁ(µA + µB + ṁLΣ)
e

ṁ
µA

y
,

+ γ̇µBe
− ṁ

µA e
− ṁ

µB
µA + µB − ṁLΣ

ṁ(µA + µB + ṁLΣ)
,
ṁ

ρA

)T , (A.27c)

uB(y) =

(
γ̇µBe

− ṁ
µB

1

ṁ
e

ṁ
µB

y − γ̇µBe
− ṁ

µA e
− ṁ

µB
µA + µB − ṁLΣ

ṁ(µA + µB + ṁLΣ)
,
ṁ

ρB

)T
, (A.27d)

TA(y) = −
ĥvap
ĉA

e
ṁĉA
k̂A

y
+
ĥvap
ĉA

, (A.27e)

TB(y) = 0. (A.27f)

Figure A.3 shows a sample of the streamwise velocity for different viscosities and slip lengths.

A.2.2 Sensitivity of temperature boundary condition

In Section 6.3 the sensitivity of XDG results w.r.t. the smoothness of boundary conditions and
exact solutions is discussed. While preparing the simulations presented in Section 7.2.2 it became
evident that these considerations were especially relevant for the studies performed there. Initially
an attempt was made to prescribe a simple sine profile on the lower wall in Fig. 7.12. However,
it was noted that special care has to be taken to prescribe a temperature boundary condition
corresponding to a smooth solution to the Poisson problem inside the droplet and obtain a high

180



-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

0 0.05 0.1 0.15

-1

-0.5

0

0.5

1

0 5 10 15

10
-3

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure A.3: Streamwise velocity for (from left to right) µA = 1, µB = 1, LΣ = 0, ṁ = 1, µA =
1, µB = 1, LΣ = 1, ṁ = 1, µA = 1, µB = 0.1, LΣ = 1, ṁ = 1, µA = 1, µB = 0.11, LΣ =
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EOC. To this end the solution to the Poisson problem inside a circle according to Polyanin (2015,
p. 788) is considered. The solution for the temperature is given by the convolution

T (r, ϕ) =
1

2π

∫ 2π

0

f(ψ)
R2 − r2

r2 − 2Rrcos(ϕ− ψ) +R2
dψ. (A.28)

The function f(ψ) corresponds to the temperature prescribed on the boundary of the circle at
r = R. For this the piecewise function

f(ψ) =



6(ψ−1.15π
0.1π )5 − 15(ψ−1.15π

0.1π )4 + 10(ψ−1.15π
0.1π )3 1.15π < ψ < 1.25π

1− 6(ψ−1.25π
0.1π )5 − 15(ψ−1.25π

0.1π )4 + 10(ψ−1.25π
0.1π )3 1.25π < ψ < 1.35π

−6(ψ−1.65π
0.1π )5 − 15(ψ−1.65π

0.1π )4 + 10(ψ−1.65π
0.1π )3 1.65π < ψ < 1.75π

−1 + 6(ψ−1.75π
0.1π )5 − 15(ψ−1.75π

0.1π )4 + 10(ψ−1.75π
0.1π )3 1.75π < ψ < 1.85π

0 else

(A.29)

is chosen. This function is C∞ and ensures saturation temperature Tsat = 0 along the boundary of
the circle in the positive half plane, as is the case in the testcases of Section 7.2. Various functions
were tested beforehand, giving different EOC when applied in the actual setup. Therefore, this
choice is somewhat arbitrary but complies with all the necessary conditions. These are saturation
temperature at the interface, a non-zero heat flux at the contact line, vanishing total heat flux and
a smooth solution for the temperature inside the droplet. To obtain the boundary condition on the
lower wall for the testcases considered in this work, Eq. (A.28) is evaluated at −y0 and mapped
to cartesian coordinates. Finally x is rescaled using x0, cf. Section 7.2.2, and the temperature
such that the extremal values are ±1, giving the shape displayed in Fig. 7.11.
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