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A B S T R A C T

Deep Learning (DL) has gained popularity in various online appli-
cations, including intelligent personal assistants, image and speech
recognition, and question interpretation. Serving applications com-
posed of DL models resource efficiently is challenging because of the
computational intensity of the DL models with multiple layers and a
large number of parameters, stringent Service Level Objective (SLO)
(e.g., end-to-end serving latency requirements), and data dependency
between the DL models. Efficiently managing computing resources
becomes even more challenging in the presence of dynamic workloads.

The primary focus of this thesis is the following overarching ques-
tion: How can we design, implement, and deploy resource-efficient
DL-based inference serving systems while ensuring a guaranteed SLO
under both predictable and unpredictable workloads? In response to
this question, this thesis presents four contributions aimed at enhanc-
ing the resource efficiency of DL-based applications and enabling the
serving of DL models on nontraditional computing resources, such as
programmable switches.

First, we improve the multi-model serving system efficiency by in-
creasing the system utilization in a work named, FA2: Fast, Accurate
Autoscaling for Serving Deep Learning Inference with SLA Guaran-
tees. FA2 introduces a graph-based model to capture the resource
allocation and batch size joint configurations and data dependency in
DL inference serving systems and presents a horizontal-scaling-based
resource allocation algorithm leveraging graph transformation and
dynamic programming.

Second, to guarantee the SLO while accounting for the dynamic con-
ditions on the communication network between the user device and
the serving system, we use the responsiveness benefit of vertical scal-
ing and propose a new work titled Sponge: Inference Serving with
Dynamic SLOs Using In-Place Vertical Scaling. Sponge employs in-
place vertical scaling mechanisms to instantaneously adjust computing
resources based on the demand, strategically reorders incoming re-
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quests to prioritize those with the most constrained remaining latency
budgets, and utilizes dynamic batching techniques to increase the
utilization of the system. Furthermore, to enhance user satisfaction,
we introduce model variants—different DL models with varying cost,
accuracy, and latency properties for the same request—by using verti-
cal scaling and changing the DL model and the computing resources
in a work named IPA: Inference Pipeline Adaptation to Achieve High
Accuracy and Cost-Efficiency. IPA introduces a multi-model accuracy
metric to calculate the end-to-end accuracy by defining a new accu-
racy metric and using multiplication on this metric to approximate
the overall accuracy of the application.

Third, we explore how to achieve both responsiveness and resource ef-
ficiency. When the workload becomes unpredictable, the SLO violation
can increase in the DL inference serving system. In-place vertical scal-
ing can respond quickly to dramatic workload changes, but it is not
as resource-efficient as horizontal scaling. We explore the use of both
horizontal and vertical scaling simultaneously in a paper called Bis-
cale: Integrating Horizontal and Vertical Scaling for Inference Serving
Systems. In Biscale, we analyze the effect of both scaling mechanisms
in terms of serving speed up using Amdahl’s law and address three
key questions of why, how, and when to switch between horizontal
and vertical scaling mechanisms to guarantee the SLO and optimize
the computing resources.

Finally, we investigate the feasibility of serving DL models in pro-
grammable network devices for network security tasks like intrusion
detection. Since programmable network devices are responsible for
moving the data (including inference requests), serving inference re-
quests directly on the programmable network devices accelerates the
computation and eliminates the need for external computing resources.
To achieve this, we design a novel method to divide a DL model into
multiple parts and assign each part, along with its specific computing
requirements, to a set of programmable network devices. We further
train an intrusion detection DL model and utilize this approach in a pa-
per titled NetNN: Neural Intrusion Detection System in Programmable
Networks.

In conclusion, this thesis comprehensively addresses the challenges
regarding the main research question, providing innovative solutions
to enhance the resource efficiency of DL inference serving systems
while ensuring stringent SLO guarantees under various workloads.
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Z U S A M M E N FA S S U N G

Deep Learning (DL) hat in verschiedenen Online-Anwendungen an Po-
pularität gewonnen, darunter intelligente persönliche Assistenten, Bild-
und Spracherkennung und Frageninterpretation. Die ressourceneffi-
ziente Bereitstellung von Anwendungen, die aus DL-Modellen beste-
hen, ist aufgrund der Rechenintensität der DL-Modelle mit mehreren
Schichten und einer großen Anzahl von Parametern, strengen Service
Level Objectives (SLO) (z. B. End-to-End-Latenzanforderungen) und
der Datenabhängigkeit zwischen den DL-Modellen eine Herausfor-
derung. Die effiziente Verwaltung von Rechenressourcen wird noch
schwieriger, wenn dynamische Arbeitslasten vorhanden sind.

Das Hauptaugenmerk dieser Arbeit liegt auf der folgenden über-
greifenden Frage: Wie können wir ressourceneffiziente DL-basierte
Inferenzservicesysteme entwerfen, implementieren und einsetzen und
dabei eine garantierte SLO sowohl unter vorhersehbaren als auch
unvorhersehbaren Arbeitslasten gewährleisten? Als Antwort auf diese
Frage werden in dieser Arbeit vier Beiträge vorgestellt, die darauf ab-
zielen, die Ressourceneffizienz DL-basierter Anwendungen zu verbes-
sern und die Bereitstellung von DL-Modellen auf nicht-traditionellen
Rechenressourcen, wie z.B. programmierbaren Switches, zu ermögli-
chen.

Erstens verbessern wir die Effizienz von Multi-Modell-Serving-Systemen
durch Erhöhung der Systemauslastung in einer Arbeit namens FA2:
Schnelle, genaue Autoskalierung für die Bereitstellung von Deep
Learning-Inferenzen mit SLA-Garantien. FA2 führt ein graphenba-
siertes Modell ein, um die Ressourcenzuweisung und die Stapelgrö-
ße gemeinsamer Konfigurationen und die Datenabhängigkeit in DL-
Inferenz-Servicing-Systemen zu erfassen, und stellt einen auf horizon-
taler Skalierung basierenden Ressourcenzuweisungsalgorithmus vor,
der Graphentransformation und dynamische Programmierung nutzt.

Zweitens, um die SLO zu garantieren und gleichzeitig die dynami-
schen Bedingungen im Kommunikationsnetzwerk zwischen dem Be-
nutzergerät und dem Serving-System zu berücksichtigen, nutzen wir
den Vorteil der vertikalen Skalierung und schlagen eine neue Arbeit
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mit dem Titel Sponge vor: Inference Serving mit dynamischen SLOs
mit vertikaler Skalierung vor Ort. Sponge verwendet Mechanismen
zur vertikalen Skalierung an Ort und Stelle, um Rechenressourcen
sofort an die Nachfrage anzupassen, ordnet eingehende Anfragen stra-
tegisch neu an, um diejenigen mit den am stärksten eingeschränkten
verbleibenden Latenzbudgets zu priorisieren, und nutzt dynamische
Stapelverarbeitungstechniken, um die Auslastung des Systems zu erhö-
hen. Um die Benutzerzufriedenheit zu erhöhen, führen wir außerdem
Modellvarianten ein - verschiedene DL-Modelle mit unterschiedlichen
Kosten-, Genauigkeits- und Latenz-Eigenschaften für dieselbe Anfrage
-, indem wir die vertikale Skalierung nutzen und das DL-Modell und
die Rechenressourcen in einer Arbeit namens IPA ändern: Inference
Pipeline Adaptation to Achieve High Accuracy and Cost-Efficiency.
IPA führt eine Multi-Modell-Genauigkeitsmetrik ein, um die End-to-
End-Genauigkeit zu berechnen, indem eine neue Genauigkeitsmetrik
definiert und die Multiplikation dieser Metrik verwendet wird, um
die Gesamtgenauigkeit der Anwendung zu approximieren.

Drittens untersuchen wir, wie man sowohl Reaktionsfähigkeit als auch
Ressourceneffizienz erreichen kann. Wenn die Arbeitslast unvorherseh-
bar wird, kann die SLO-Verletzung im DL Inference Serving System
zunehmen. Die vertikale Skalierung an Ort und Stelle kann schnell auf
dramatische Änderungen der Arbeitslast reagieren, ist aber nicht so
ressourceneffizient wie die horizontale Skalierung. Wir untersuchen
die gleichzeitige Verwendung von horizontaler und vertikaler Skalie-
rung in einem Papier mit dem Titel Biscale: Integrating Horizontal
and Vertical Scaling for Inference Serving Systems. In Biscale analysie-
ren wir die Auswirkungen beider Skalierungsmechanismen in Bezug
auf die Serving-Geschwindigkeit unter Verwendung des Amdahl-
Gesetzes und befassen uns mit den drei Schlüsselfragen, warum, wie
und wann zwischen horizontalen und vertikalen Skalierungsmecha-
nismen gewechselt werden sollte, um die SLO zu garantieren und die
Rechenressourcen zu optimieren.

Schließlich untersuchen wir die Machbarkeit der Bereitstellung von
DL-Modellen in programmierbaren Netzwerkgeräten für Netzwerk-
sicherheitsaufgaben wie die Erkennung von Eindringlingen. Da pro-
grammierbare Netzwerkgeräte für die Übertragung der Daten (ein-
schließlich der Inferenzanfragen) verantwortlich sind, beschleunigt die
Bereitstellung von Inferenzanfragen direkt auf den programmierbaren
Netzwerkgeräten die Berechnung und eliminiert den Bedarf an ex-
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ternen Rechenressourcen. Um dies zu erreichen, entwickeln wir eine
neuartige Methode, um ein DL-Modell in mehrere Teile aufzuteilen
und jeden Teil zusammen mit seinen spezifischen Rechenanforderun-
gen einer Reihe von programmierbaren Netzwerkgeräten zuzuweisen.
Darüber hinaus trainieren wir ein DL-Modell zur Erkennung von Ein-
dringlingen und verwenden diesen Ansatz in einem Papier mit dem
Titel NetNN: Neural Intrusion Detection System in programmierbaren
Netzwerken.

Zusammenfassend lässt sich sagen, dass diese Arbeit die Herausfor-
derungen in Bezug auf die Hauptforschungsfrage umfassend adres-
siert und innovative Lösungen bietet, um die Ressourceneffizienz von
DL-Inferenzsystemen zu verbessern und gleichzeitig strenge SLO-
Garantien unter verschiedenen Arbeitslasten zu gewährleisten.
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1
I N T R O D U C T I O N

Deep learning (DL) has been at the forefront of many recent advance-
ments in artificial intelligence. DL models have demonstrated extraor-
dinary performance in tasks such as intelligent personal assistant [10,
48], image and speech recognition [3, 12], question interpretation, and
text-to-speech/speech-to-text [28, 44]. This extraordinary performance
is primarily due to the complex architectures of DL models, which
consist of multiple layers [51]. These layers extract features from the
data and help the model understand and process complex patterns.
These layers are typically composed of neurons that transform the
input through weighted connections. During training, these weights
are adjusted to reduce errors and improve accuracy [8]. However,
the power of these models is not just in their ability to learn from
data (training phase) but also in their ability to make predictions or
“inferences" on new, unseen data (inference phase), where inference
serving systems come into play [11].

Inference serving systems take trained DL models and make them
available to applications that need to make predictions. These systems
handle the complexities of serving inferences from these DL models,
including load balancing, scaling to handle varying workloads, and en-
suring low latency responses [2, 37]. Providing low latency responses
and dealing with varying workloads are crucial for applications where
predictions need to be made in real time, such as in autonomous
driving, intrusion detection, and personalized recommendations [9,
16, 17, 28, 63].

One of the primary challenges in building an inference serving system
is managing resources efficiently [10, 43–45]. DL models are computa-
tionally expensive and demand significant memory and processing
power. They are becoming increasingly larger, with the current state-of-
the-art models having trillions of parameters [33]. Therefore, inference
serving systems need to be able to adjust computing resources quickly
in response to changes in the workload to avoid over-provisioning
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when the demand is low, but that capacity is available when the
demand is high.

In addition to managing resources, inference serving systems must
ensure that they meet the desired Service Level Objective (SLO) [10,
34, 35, 48]. These are measures of the quality of service provided
by the system, such as the latency of responses (the end-to-end la-
tency), accuracy (the percentage of correct predictions), or the system’s
throughput (the rate at which the system can process inference re-
quests over a given period). Meeting these requirements is crucial
for ensuring that the applications using the DL models can function
correctly and provide a good user experience.

Modern inference serving systems employ several techniques to man-
age resources while satisfying the requirements:

1. Resource Autoscaling. Resource autoscaling refers to dynami-
cally changing the number of instances, called horizontal scaling,
or the computing power of instances, named vertical scaling,
of a DL model in response to the changes in the workload
and SLOs [18, 48]. In this dissertation, we consider autoscaling
computing resources since the monetary expense from cloud
providers is primarily proportional to the allocated computing
resources [15].

2. Batching. Batching is a technique where several requests are
grouped and processed simultaneously. This method enhances
the system’s efficiency by improving the system’s throughput
by handling multiple requests at once, allowing the system to
process more requests per unit of time, thereby increasing the
overall resource utilization [4, 10].

3. Model Switching. Model variants are DL models with different
accuracy, latency, and resource consumption for the same DL
task. Prioritizing any property (accuracy, latency, or resource
consumption) affects other properties of the same DL model and
directly impacts the whole inference serving system regarding
accuracy, latency, and resource cost.

4. Request Reordering. Request reordering improves system per-
formance by strategically ordering the processing of tasks to
maximize resource utilization, where requests (with the least
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remaining latency budget) are prioritized to maximize system
utilization and user satisfaction [28].

5. Offloading. Inference offloading is the process of transferring
the inference computations from a local device to more powerful
remote processing units [4, 58]. Programmable network devices,
primarily used for network management simplification, have
been recently explored for application-specific computations,
known as in-network computing [46, 61, 62]. Network devices
are suitable candidates for DL-based network security tasks since
they have high performance (high throughput, low latency) for
packet processing and are strategically located inside the net-
work. However, they have limited memory (tens of hundreds of
megabytes) and limited processing operations (lacking support
for floating point operations, as well as integer division and
multiplication).

None of the above techniques, when considered in isolation, is capable
of deploying DL models that meet the requirements of modern appli-
cations. Moreover, these techniques, when applied together, can have
complex interactions and may even conflict with each other. Therefore,
we need DL inference serving systems that reconcile and integrate
these techniques and provide holistic solutions.

1.1 research questions

We are now aware of DL inference serving systems requirements
where the responses must be delivered within a tight SLO, the more
accurate model variants provide higher quality results but also may
harm the SLO, different resource scaling mechanisms, and the chal-
lenges regarding offloading DL models to the programmable network
devices. This leads us to ask the following overarching research ques-
tion and investigate the possible solutions in this thesis:

How to design, implement, and deploy resource-efficient DL inference serving
systems with SLO guarantee?

To answer the above research question, we investigate by asking the
following four sub-questions and aim to find answers to these sub-
questions.
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Q1: How can computing resources be optimally allocated to DL
models in a multi-model serving system to guarantee the SLO?

Q2: How can DL models be effectively deployed to provide fast
response to system dynamics and improve overall inference
accuracy?

Q3: How must multi-model serving systems respond to unpredictable
workload changes to achieve resource efficiency while minimiz-
ing the SLO violation rate?

Q4: How can non-conventional computing resources be leveraged to
improve the serving system efficiency?

1.1.1 Resource Efficiency

To answer Q1, we use horizontal scaling to allocate resources optimally
to multi-model serving systems while guaranteeing the SLO. Existing
work has focused on horizontal scaling in inference serving systems
due to its superior ability to handle increasing workloads and cost-
efficiency [10, 44]. However, the state-of-the-art designs of resource
scalers primarily rely on separating the batch size from the decision-
making process of autoscaling, employing simple heuristics to solve
the autoscaling problem, which results in sub-optimized resource
allocations for such systems.

Allocating resources optimally to DL models in multi-model serving
systems by considering the batch size and the resource allocation
jointly poses new challenges that need to be addressed. First, in a
multi-model serving system, one DL model’s output serves as the
next DL model’s input. The models for the application form a directed
acyclic graph (DAG), where the nodes are the models, and the links
indicate the flow of data and the order of the models’ execution. The
DAG structure allows the provisioning of each model to be done inde-
pendently. However, in the DAG structure, data dependency happens
between different models, meaning that changing a model’s configu-
ration may affect the downstream models. For example, increasing the
number of instances of a DL model in response to the increased work-
load results in an increased arrival rate of the downstream models.
When the arrival rate of a (downstream) model is changed, the num-
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ber of instances of the DL model may need to be changed to support
the incoming workload. Therefore, all the models in the application
should be considered when one of the model’s configurations is going
to be changed to avoid under or over-provisioning of resources in the
application.

Next, inference requests can be batched to increase the system’s per-
formance. Instead of processing requests one by one, requests can be
grouped and processed together to leverage the parallel processing
capabilities of the DL model and the hardware. Batch sizes can be
dynamically changed based on the current situation of the DL model,
such as the workload intensity and the allocated processing power
to the DL model. Dynamically changing batch sizes can enhance the
system’s efficiency by improving its throughput through the simulta-
neous handling of multiple requests. This allows the system to process
more requests per unit of time, thus increasing the overall resource
utilization. However, this method harms the request processing and
queuing latencies since the first request in the batch must wait for
the arrival of other requests to form a batch, and larger batches take
longer to process. Moreover, changing the batch size of a single model
results in changes to both its throughput and latency, which impacts
downstream models due to their interdependencies. It is crucial to
understand how inference processing latency is affected by DL models
under dynamic batch sizes.

Finally, applications with different objectives require different SLOs.
An autonomous driving application requires an end-to-end latency of
a few tens of milliseconds [52], while an intelligent personal assistant
application allows a deadline of a few hundred milliseconds or even
seconds [10, 44]. These deadline differences result in having multiple
latency requirements in the system. This requirement, in addition to
the batch size and the data dependency of the DL models in the system,
increases the solution space for finding the optimal resource allocation
exponentially [43]. Hence, exploring all possible solutions to find the
optimal solution in real time is hard. Therefore, having approaches to
provide solutions as close as possible to the optimal solutions is of the
most desire to avoid over-provisioning or under-provisioning.

By considering the above challenges, after analyzing the horizontal
scalers in different domains such as inference serving, stream pro-
cessing, and microservices, we propose a novel horizontal scaler that
considers both batch size and resource allocation jointly with dif-
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ferent SLOs for different applications to optimize resources while
guaranteeing the SLO, to answer the first research question.

1.1.2 Responsiveness and Accuracy

The network bandwidth fluctuates in mobile environments where
inference requests have to be sent from a mobile device to an inference
server over a non-stable network, e.g., WiFi or 4G/5G [34]. On the
other hand, the SLO is mainly defined from end to end, including the
variable network time required for transferring user requests and input
data [23, 56]. Ignoring the network latency, inference serving systems
might lack sufficient time to process requests adequately, leading to
violations of the SLOs. To account for this issue, the application on the
server side needs to consider network latency and compensate for the
reduced inference latency budget by adjusting its configurations.

Vertical scaling can be used to adjust the configurations (i.e., com-
puting resources or the model variant) of the DL models. Unlike
horizontal scaling that uses a base configuration (i.e., both computing
resources and the model variant), other affecting parameters, such
as batch sizes, are directly affected by changing those configurations.
Therefore, it becomes crucial to understand how inference processing
latency is affected by DL models under different computing resource
and batch size configurations.

In-place vertical scaling changes the computing resources of an in-
stance of a running DL model in-spot without the cold start to enable
responsiveness [24]. This feature can be used to capture the network
bandwidth fluctuations. The main challenge of in-place vertical scaling
is: How many cores or fractions of a core are sufficient to support the
workload for the DL model being executed on CPUs?

Moreover, model variants can be used to change the tradeoff between
accuracy, latency, and resource cost of the inference requests. We use
vertical scaling (with cold start) to change not only the computing
resources of the instances of the DL model but also a different model
variant to increase user satisfaction. However, finding relationships
between the three conflicting model variant properties (i.e., accuracy,
latency, and resource cost) in multi-model serving is challenging.
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We address Q2 by proposing two new inference serving systems: the
first one considers the unstable communication networks by using
the combination of in-place vertical scaling, dynamic batching, and
request reordering to guarantee the requests’ SLO, and the second
one incorporates the model variants into the vertical scaling with cold
start to increase the inference accuracy.

1.1.3 Unpredictable Workloads

As discussed above, in-place vertical scaling provides responsiveness
when more computing resources can be added to cut down the infer-
ence processing latency. Conversely, horizontal scaling is beneficial due
to its superior ability to handle increasing workloads and resource
efficiency. Therefore, a natural follow-up to the previous research
questions would be how to leverage in-place vertical scaling under un-
predictable workloads to enable responsiveness and how to leverage
the benefits of horizontal scaling to achieve resource efficiency when
the serving system does not require the expensive responsiveness that
comes with the in-place vertical scaling.

Combining these two scaling mechanisms is challenging since both of
them change the computing resources of the DL models. Horizontal
scaling changes the number of instances of the DL models with the
same base configurations. In contrast, vertical scaling changes the base
configurations, making the use of both scaling mechanisms simulta-
neously impractical. Thus, the question of which scaling mechanism
must be used should be answered based on the workload situation.
Consequently, the workload situation must be clarified, i.e., is the
workload stable enough to start saving resources, or is responsiveness
still the required criteria to guarantee the SLO?

Furthermore, if multiple instances are needed to support the workload,
how much computing resources should be allocated for each instance
of the same DL model? Should they all have the same base configura-
tion, or does a diverse set of computing configurations provide more
resource efficiency and responsiveness?

To address the above challenges regarding Q3, we introduce a new au-
toscaler that enables responsiveness in response to sudden changes in
the workload by using in-place vertical scaling and increases resource
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efficiency when the workload becomes stable by using horizontal
scaling.

1.1.4 In-Network DL Intrusion Detection

As DL progresses, the significance and complexity of inference serving
systems are growing in parallel, making DL inference serving highly
computation intensive.

Programmable network devices enhance application components by
leveraging their high throughput, low latency processing capabilities,
and strategic on-path placement. Specially, intrusion detection on pro-
grammable network devices (e.g., based on decision trees) has become
popular due to the increasing demand for real time network secu-
rity [6, 32, 61–63]. DL-based intrusion detection can extract features
from data, learn intricate relationships between input and output vari-
ables, and find new patterns without human intervention. Performing
DL-based intrusion detection directly in those devices reduces process-
ing overhead and network traffic, leading to faster and more efficient
detection.

However, programmable network devices must use simple packet
processing instructions in their data plane programs to ensure line
rate processing, which results in imposing a fixed processing time, lim-
iting the number and complexity of operations, such as floating-point
operations, loops, and even integer multiplication/division. Actions
associated with the memory of the programmable network devices
are restricted to simple operations like additions and bit shifts. Addi-
tionally, the memory architecture of those devices imposes constraints
on data structures. Moreover, the stateful memory available is limited
to tens of megabytes, and accessing all the available registers can be
challenging due to access restrictions within the processing stages.

To tackle Q4, we study the intersection of DL models for intrusion
detection and in-network computing. We analyze the feasibility of
deploying DL models within network devices to leverage their unique
capabilities without requiring hardware modifications. Our proposed
approach consists of three key steps: first, we partition the DL model
and map its components across a set of programmable network de-
vices; second, we emulate the inference execution flow using network
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packets; and finally, we issue precise mathematical execution instruc-
tions to these devices to perform the inference.

1.2 contributions

This thesis aims to advance state-of-the-art resource efficiency in in-
ference serving systems. The primary focus is introducing novel tech-
niques and algorithms to guarantee inference execution latency while
reducing the operational cost of serving inference requests. This the-
sis comprises six research papers (five peer-reviewed and published
and one currently under submission) between 2022 and 2024. Four
papers address the challenges of inference serving resource efficiency
on general-purpose computing resources such as CPUs and GPUs,
while the other two papers focus on enabling in-network inference
serving. Finally, To support developers and increase community en-
gagement, we have open-sourced four of our publications implemen-
tations (Sponge, IPA, NetNN, and Biscale). FA2 algorithm is used for
evaluating both IPA and Biscale and Distributed Serving does not have
an implementation.

The results of our contributions can be summarized as follows:

• Resource Efficiency: An autoscaling mechanism based on hor-
izontal scaling, FA2, that guarantees the requests SLO and in-
creases the system’s utilization (hence, reducing the required
amount of computing resources). FA2 uses the system’s DAG to
encapsulate the resource allocation problem into an optimization
problem and solves it using graph transformation and dynamic
programming.

• Responsiveness and Accuracy: A new in-place vertical resource
scaler, Sponge, adjusts the DL model’s computational resource
based on the requests’ remaining latency budget (thus avoiding
SLO violation). Sponge calculates the remaining request’s latency
budget caused by the dynamism in the network bandwidth and
provides a greedy algorithm to change the CPU resources of
the DL model instantly. Furthermore, we design a new resource
scaler, IPA, that uses model switching to reconcile DL appli-
cations’ latency, accuracy, and computational cost properties.
IPA guarantees SLOs by encapsulating the conflicting properties
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(latency, accuracy, and computational cost) into a mathematical
model and solving it using an optimizer, consequently increasing
inference accuracy and reducing operational costs.

• Unpredictable Workloads: A novel resource scaler that uses hori-
zontal and vertical scaling jointly, named Biscale. After analyzing
the advantages and disadvantages of each autoscaling mecha-
nism, Biscale leverages the responsiveness of vertical scaling to
absorb the sudden changes in the workload and then transitions
to horizontal scaling to save resources.

• In-Network DL Intrusion Detection: A novel distributed in-
network DL inference framework for fast in-network inference
execution. NetNN and Distributed Serving enable in-network DL
intrusion detection inference by mapping the weights of the DL
model to a set of network devices, mimicking the DL inference
dataflow with network packet routing, and instructing network
devices to execute DL model computations.

1.3 outline

This thesis consists of two parts. Part i contains the synopsis, and
Part ii contains the cumulative publications. Chapter 2 of Part i intro-
duces the general state-of-the-art inference serving systems (excluding
the contributions of this thesis). Chapter 3 introduces each contribu-
tion and its primary results. Finally, Chapter 4 provides a conclusion
of the thesis and outlines future work. Part ii is the cumulative part of
this thesis and introduces each publication in its original form with
minor edits for readability. Chapters P1-P6 each contains one publi-
cation. Chapter P4 has been submitted to 15

th ACM Symposium on
Cloud Computing (SoCC’24) and has been published to arXiv under a
different paper title (A Tale of Two Scales: Reconciling Horizontal and
Vertical Scaling for Inference Serving Systems) and a different system
name (Themis).



2
S TAT E O F T H E A RT

Inference serving systems primarily consist of multiple DL models
encapsulated within microservices [10, 28]. These microservices are
orchestrated in a graph-like structure, where the output of one DL
model acts as the input for the next downstream DL model, as depicted
in Figure 2.1.

The microservice-based architecture for inference serving allows for
complex workflows and data transformations, enabling the system to
handle complex tasks efficiently by leveraging the strengths of each
DL model in the sequence. Furthermore, the microservice-based archi-
tecture enables independent deployment, scaling, and management
of each DL model, allowing resources to be allocated precisely where
needed. When the demand for a particular DL model increases, only
the corresponding DL model needs to be scaled up rather than the
entire system. This granularity in scaling enhances resource utilization
and cost efficiency, as it prevents over-provisioning and ensures that
computational power is directed to the most critical components of
the system.

The following sections discuss the main resource scaling mechanisms,
namely horizontal and vertical scaling, and their advantages and
disadvantages. After that, we talk about the challenges regarding
in-network DL inference serving.

2.1 resource scaling in inference serving

Resource scaling can be achieved through horizontal and vertical
scaling techniques, as shown in Figure 2.2.

Horizontal Scaling: Horizontal scaling, also known as scaling in/out,
involves removing/adding more DL model instances to distribute
the load. This method effectively manages increased workloads by

11
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Inference Serving System

Model 1 Model 3

…Requests

Model 4

Model 2

Model 5

Queue

Queue

Queue Queue

Queue

Figure 2.1: An inference serving system with multiple DL models and execu-
tion paths.

distributing incoming requests across multiple instances, enhancing
the system’s capacity to handle higher workloads without compromis-
ing performance. By deploying multiple instances of a DL model, the
system can balance incoming requests across these instances, reducing
the risk of bottlenecks. Moreover, distributing the workload across
multiple instances allows the system to dynamically adjust resource
allocation based on the current demand, ensuring that resources are
neither under-provisioned nor wasted, thus maximizing efficiency and
effectiveness.

A notable challenge associated with horizontal scaling in DL inference
systems is the issue of cold start [10, 21, 43, 45]. When new instances
are added to handle increased demand, they often need to initialize
and load the DL models into memory, which can be time consuming.
This initialization delay, known as cold start, can significantly impact
the system’s ability to respond promptly to sudden changes in the
workload. Cold starts are particularly problematic for DL models that
require substantial computational resources and time to load large
library dependencies or substantial model data into memory. During
this period, the system may experience reduced performance and
increased latency, potentially leading to a suboptimal user experience
caused by violating the SLO. To mitigate the effects of cold start,
strategies such as pre-warming instances [58], maintaining a pool
of ready-to-use instances [34], or lightweight model variants can be
employed [60]. These approaches aim to minimize instance startup
time and ensure that new instances can quickly start serving requests.
However, their responsiveness comes with the reduced quality of the
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Horizontal Scaling

Model

Queue

Instance #1

Instance #2

Instance #3

Vertical Scaling

Model

Queue

Instance #1

Figure 2.2: Horizontal Scaling (left) and Vertical Scaling (right). Horizontal
scaling adjusts the number of instances for a DL model where
each instance comes with a base resource configuration and dis-
tributes the workload to multiple instances, while vertical scaling
changes the computing resources of the available instance(s).

generated results (lightweight model variants) or the extra operational
costs (keeping extra DL models running).

Vertical Scaling: Vertical scaling, or scaling up/down, involves in-
creasing/decreasing the computational resources of existing instances,
such as adding more CPU cores. Vertical scaling is mainly associated
with cold start, meaning that the instance needs to be restarted again.
During the restart, the computing resources of the instances can be
adjusted to allow using model variants. This approach enhances the
capacity of instances to handle more workloads

Vertical scaling is more straightforward to implement initially since
it does not require architectural changes or the management of mul-
tiple instances and implications like load balancing. Additionally,
vertical scaling allows for increased computing power of an instance,
which can reduce the end-to-end processing latency of the current
DL model or enable the use of a different model variant to optimize
accuracy-latency performance tradeoffs. Moreover, in-place vertical
scaling allows changing the computing resources of the instances on
the spot, increasing or decreasing the latency performance of the run-
ning DL models, which can be beneficial to reduce the SLO violation
in case of a surge of inference requests.

One of the primary limitations is the finite capacity for upgrades of an
instance. Each instance has a maximum upper limit for CPU, beyond
which it cannot be scaled up further. This constraint can become
a bottleneck, especially as the demands on the DL model grow or
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in cases of model variant switching. Another challenge in vertical
scaling is the cost and latency tradeoffs. Due to the sequential nature
of data pre-processing, the internal architecture of the DL model, and
post-processing, not all components of a DL model can benefit from
additional computing resources. These stages, including those that
must be executed sequentially, limit the overall scalability and resource
allocation efficiency of vertical scaling.

Hybrid Scaling: In practice, a combination of both scaling techniques
is desirable to maximize efficiency by employing horizontal scaling
to distribute the load across multiple instances and vertical scaling
to absorb the sudden changes in the workload. Vertical scaling is
particularly effective at absorbing sudden changes in the workload, as
it allows for rapidly adding computational power to existing instances.
This can significantly reduce inference times and improve throughput
for the DL models during unexpected surges in demand. Horizontal
scaling is beneficial when the workload becomes stable, as it enables
the system to bring up multiple instances with minimal computing
resources and distribute the load across them, avoiding resource waste
caused by the sequential nature of the DL model. This hybrid approach
allows microservice-based DL inference systems to maintain high
performance and cost-effectiveness.

One significant challenge is the increased complexity of system ar-
chitecture and management. Hybrid scaling requires sophisticated
orchestration to dynamically adjust both the number of instances (hor-
izontal scaling) and the resources of each instance (vertical scaling).
Coordinating resource allocations of both techniques with the tran-
sitions needed between the two scaling approaches in real-time to
ensure optimal performance without over-provisioning or underutiliz-
ing resources can be complex.

Table 2.1 summarizes the state-of-the-art approaches, excluding our
works in this dissertation, that use either horizontal scaling for re-
source efficiency or vertical scaling for responsiveness in response to
changes in the system. Additionally, we describe each approach and
point out its strengths and limitations.

INFaaS [43] gathers user preferences regarding accuracy, cost, or per-
formance and dynamically provides the most accurate model variant
that meets the specified latency and cost requirements based on the
workload. However, they do not consider the challenges regarding hor-
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Table 2.1: Efficiency: Does this work use horizontal scaling for the highest
resource efficiency? Responsiveness: Does this approach use in-
place vertical scaling to respond quickly to the changes in the
workload? Accuracy: Does this system use model variants as a way
of vertical scaling to increase accuracy?

System Multi-models Efficiency Responsiveness Accuracy

INFaaS [43] ✕ ✓ ✕ ✓

Rim [22] ✓ ✕ ✕ ✓

InferLine [10] ✓ ✓ ✕ ✕

GrandSLAm [28] ✓ ✕ ✕ ✕

Scrooge [21] ✓ ✓ ✕ ✕

Cocktail [19] ✕ ✕ ✓ ✓

InfAdapter [45] ✕ ✓ ✕ ✓

Llama [44] ✓ ✓ ✕ ✕

Model Switch [60] ✕ ✕ ✕ ✓

Jellyfish [34] ✕ ✕ ✓ ✓

Nexus [47] ✓ ✓ ✕ ✕

MArk [59] ✕ ✓ ✕ ✕

izontal scaling and data dependency caused by having multi-models
in their approach.

Rim [22] is a DL-based video and audio processing management
system that leverages model variants to increase accuracy while guar-
anteeing the application’s desired latency. However, they do not con-
sider horizontal scaling when the workload exceeds the available DL
models’ capacity.

InferLine [10] facilitates autoscaling by initially establishing a feasible
system configuration and subsequently optimizing it by adjusting
each DL model’s hardware and batch size. This approach aims to
enhance system performance and resource utilization through tailored
configurations for different workloads. However, the heuristic method
for selecting configurations for each model often results in signifi-
cant resource underutilization. This is because the heuristic may only
partially capture the complexities and dynamic nature of workloads,
leading to suboptimal allocation and efficiency in resource usage.

GrandSLAm [28] is a microservice-based inference framework de-
signed to enhance throughput while guaranteeing the SLO. It pro-
vides a robust solution for managing microservices to maintain high
performance and reliability. However, GrandSLAm does not address
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the challenge of autoscaling, either horizontal or vertical. This limi-
tation means that while it increases the system throughput, it lacks
mechanisms for dynamically adjusting resources in response to fluctu-
ating workloads, which is crucial for maintaining efficiency and cost
effectiveness.

Scrooge [21] proposes a scheduler for inference serving systems that
decouples the resource placement and resource allocations that dy-
namically re-adapt to the changes in the workload. However, they
do not consider the vertical scaling and the challenges regarding the
accuracy, latency, and cost of multi variants.

Cocktail [19] introduces an ensemble learning approach aimed at
reducing costs while maintaining the desired latency and accuracy.
By leveraging ensembling to maximize accuracy, Cocktail ensures
high-quality predictions. However, this method involves sending each
request to multiple multi variants, which can be costly. The need
to process requests across several multi variants increases resource
consumption and operational expenses, potentially offsetting the cost-
saving benefits that Cocktail aims to achieve. Also, they do not consider
pipelines in their approach.

InfAdapter [45] leverages multiple model variants for the same task
to increase the model’s overall accuracy. They also proactively use
horizontal scaling to react to changes in the workload. However, they
do not consider pipelines in their workload adaptation mechanism.

Llama [44] is a specialized pipeline configuration system designed for
video inference applications. It aims to minimize the computational
costs by dynamically changing the hardware type, ensuring efficient
video processing. However, they do not consider vertical scaling and
the accuracy of the results.

Model Switch [60] dynamically switches between lightweight and
heavier DL models in response to workload adaptation. It transitions
to a less accurate DL model to respond to sudden workload surges
efficiently, thereby maintaining responsiveness and performance under
varying load conditions. However, they do not consider horizontal
scaling and data dependency in their workload adaptation mechanism.

Jellyfish [34] is a GPU-based inference serving system that dynamically
switches to different model variants in response to network bandwidth
changes to guarantee the accuracy and latency requirements. However,
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they do not consider horizontal scaling, and their work supports a
single model.

Nexus [48] addresses the autoscaling problem by primarily targeting
scenarios involving simple tree-like dataflow graphs, simplifying the
complexity of managing dependencies and data flow within the sys-
tem. Additionally, Nexus allocates a significant portion of the SLO
to queuing delays, reserving half the time for these delays. While
this approach ensures that queuing delays do not excessively impact
performance, it also leads to reduced resource utilization.

MArk [59] proposes autoscaling policies based on request batching and
workload prediction and enhances resource utilization and efficiency
across diverse computational environments. However, MArk works on
a single model and does not consider the accuracy of the predictions
or vertical scaling.

While existing works have advanced the resource efficiency, respon-
siveness, and accuracy of DL inference serving systems, they still
fail to address challenges regarding the joint batch size and resource
allocation problem to increase the resource efficiency, vertical scaling
for multi-model serving with responsiveness and inference accuracy
improvements, and a joint horizontal and vertical resource scaler.

2.2 inference offloading to network devices

Programmable data planes have become a promising solution for
offloading a variety of tasks in the last few years with the rise in
demand for high-speed and low-latency data processing. As a result,
new opportunities have emerged for network applications in multiple
domains [25, 26, 53, 57]. Especially, there has been a growing interest
in exploring the potential of in-network computing to enhance the
performance of machine learning tasks [30, 31, 46]. Further attempts
have been made to leverage programmable switches and SmartNICs
to execute per-packet network security tasks like intrusion detection,
including decision trees, support vector machines, and binary neural
networks, thereby facilitating data-plane packet classification [49, 50,
55].



18 state of the art

Figure 2.3: Protocol Independent Switch Architecture (PISA).

Modern programmable switches use the Protocol Independent Switch
Architecture (PISA) as depicted in Figure 2.3. When a packet enters
the PISA switch, it undergoes a series of stages in the processing
pipeline. Each stage is capable of performing specific packet processing
operations instructed by the P4 programming language [7]. The packet
flows from one stage to the next, and at each stage, the processing
parts within that stage process the packet based on their configured
functionality.

Despite their flexibility and programmability, programmable switches
do have certain hardware limitations that can impact their performance
and capabilities; 1) Processing constraint: To ensure line-rate process-
ing in programmable switches, data plane programs (e.g., written in
P4) must use simple packet processing instructions. Each pipeline
stage in the switch imposes a fixed processing time on packets, lim-
iting the number and complexity of operations performed per stage.
Consequently, complex operations such as floating-point calculations,
loops, and integer multiplication/division are typically unsupported.
2) Memory constraint: The memory architecture of programmable
switches further constrains the data structures used in P4 programs.
The available stateful memory in programmable switches is limited,
typically in tens of megabytes. Accessing all available registers can also
be challenging, as registers within one stage of the processing pipeline
cannot be accessed from different stages. This architectural limitation
necessitates careful planning and optimizing memory usage to en-
sure efficient and effective packet processing within the constrained
environment.
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Table 2.2: In-network ML approaches. DT: Decision Tree, RF: Random Forest,
XGB: XGBoost, SVM: Support Vector Machines, NB: Naive Bayes,
KM: K-Means, BDT: Binary Decision Tree, BNN: Binary Neural
Network

System Task ML Algorithms Device

IIsy [61] Packet/Flow Classification DT, RF, XGB, Tofino
SVM, NB, KM FPGA

FlowLens [6] Flow Classification DT, RF Tofino
Mousika [54] Data Classification BDT Tofino
NetBeacon [63] Packet/Flow Classification DT, RF Tofino
N3IC [49] Traffic Analysis BNN SmartNIC

Table 2.2 summarizes the state-of-the-art in-network inference serving
deployed directly on the switch, excluding our works in this disser-
tation. Additionally, we describe each approach and point out their
strengths.

IIsy [61] can deploy various classification algorithms without hardware
modifications, including decision trees, random forest, XGBoost, K-
means, support vector machines, and Naïve Bayes. The framework
includes a control plane component that maps a trained model to the
switch hardware by converting model parameters into match-action
table entries, allowing model parameter changes without altering the
P4 program.

FlowLens [6] leverages programmable switches to enhance machine
learning-based network security applications. By collecting features of
packet distributions directly on the switches, FlowLens enables real-
time classification of network flows. This integration allows for efficient
and immediate network traffic analysis, improving the detection and
mitigation of security threats while minimizing latency.

Mousika [54] deploys binary decision trees into the data plane using
much fewer resources than other approaches by employing a top-
down knowledge distillation architecture to translate complex machine
learning models into simpler binary decision trees, resulting in fewer
classification rules.

NetBeacon [63] proposes a multi-phase sequential model architecture
for dynamic analysis of packets/flows. By analyzing packets at mul-
tiple stages, the model adapts to changes in flow state, enhancing
overall classification accuracy and reliability.
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N3IC [49] proposes a system that uses binary neural networks for
in-network traffic analysis. By deploying binary neural networks in
the network, they reduce the effect of the computing and memory
constraints, reduce the inference latency, and increase the throughput
of the traffic analysis.

Despite these advancements, the deployment of DL models, charac-
terized by hundreds of thousands of weights, across a network of
programmable network devices for user applications remains an un-
addressed challenge due to the main difficulties of complex neural
computations, communication between layers, feature preparation,
and the size of the DL model.
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T H E S I S O R G A N I Z AT I O N A N D C O N T R I B U T I O N S

In the previous chapters, we provided an overview of the state-of-the-
art and highlighted important research gaps in DL inference serving
systems. This chapter summarizes the contributions of this thesis
toward filling these research gaps.

3.1 resource efficiency

The first contribution of this thesis uses horizontal scaling to address
Q1: How can computing resources be optimally allocated to DL models in a
multi-model serving system to guarantee the SLO?

In our paper, FA2 [41], we analyze the relationship between processing
latency and allocated resources. Then, we propose a mathematical ap-
proach to capture the joint batch size and resource allocation problem
in inference serving systems and leverage graph transformation and
dynamic programming to accurately calculate each DL model instance
number and batch size in a single shot. The remainder of this section
consists of the contribution statement, the applied research approach,
and our main findings.

This contribution is based on the following publication:

Kamran Razavi, Manisha Luthra, Boris Koldehofe, Max Mühlhäuser,

and Lin Wang. “FA2: Fast, accurate autoscaling for serving deep

learning inference with SLA guarantees.” In: 2022 IEEE 28th Real-Time

and Embedded Technology and Applications Symposium (RTAS). IEEE.

2022, pp. 146–159

Contribution Statement: I led the idea generation, established
and coordinated the interdisciplinary and international group
of experts, and wrote the majority of the paper. All co-authors

21
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helped with critiques and comments on the concept design and
participated in creating the publication.

3.1.1 Research Approach

This contribution aims to enhance the horizontal autoscaling mecha-
nisms for DL inference serving systems. Resource autoscaling in infer-
ence serving systems concerns dynamically adjusting the resources
of each DL model in the system based on the changes in the work-
load to improve resource efficiency while guaranteeing service-level
agreements (SLAs). Resource autoscaling, in general, is a non-trivial
problem, and the unique properties of DL inference systems (data
dependency, batch size, and execution path uncertainty), while guar-
anteeing SLAs, make the resource autoscaling problem even more
challenging.

We address the resource autoscaling problem in inference serving
systems by first comprehensively analyzing autoscalers in different
domains, such as microservices and stream processing, and then
introducing a new horizontal autoscaler that decides the batch size and
the number of instances of each DL model in the system. Furthermore,
we provide an autoscaling problem formulation with the inference
serving properties encapsulated in an integer program (IP). We then
provide a close-to-optimal solution using a two-step approach to solve
the IP: graph transformation and dynamic programming.

There can be multiple applications with different SLAs in the system,
for which DL model sharing can be beneficial for resource efficiency.
However, prioritizing one application SLA over the other may violate
the latter SLA. To avoid such conflicts, we propose the following
solution: There should be at most one either egress aggregator or
ingress aggregator per DL model. Either of these options removes the
conflicts. In the case of having multiple egress/ingress aggregators
per DL model, the question of which egress/ingress to keep arises. To
address this issue, we define a new metric, called sharing degree,
that captures the number of execution paths passing through the
current DL models. We then remove the egress/ingress with the lowest
sharing degree and continue the same procedure until there is no
more conflict in the system. We choose to remove the egress/ingress
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with the lowest sharing degree since removing an egress/ingress
breaks each associated application into two independent applications.
However, the original application SLA should also be divided into
two to make both new applications fully independent. For this, we
define a new metric called Int, which denotes the intensity of the
processing latency of each application. The Int metric is calculated for
each application segment by calculating the average processing latency
of that segment with different batch sizes over the whole application.
Graph transformation gets the system’s DAG and transforms it to
have exactly one ingress/egress per DL model using the sharing

degree and Int metrics before sending it to the dynamic programming
part. The last step of graph transformation is to sort the DL models
topologically (topological sort) to indicate which DL models have
successors.

We use dynamic programming on the topologically sorted transformed
DAG to solve the autoscaling problem. We consider two cases: First, we
consider the DL models without successors, meaning the ones that are
the last DL models for processing the inference request. For this, we
calculate all possible configurations by iterating over the time, t, from
one to the SLA incrementally and calculate the optimal configuration
(batch size and number of instances) for the given time. Second, we
consider the DL models with successors. Using the topologically sorted
DAG, we get the immediate DL models with successors with optimal
configurations. Similarly, we iterate over t, from one to the application
SLA, one by one, and allocate t to the DL model with successors and
SLA− t to the DL model without successors. We then calculate the
optimal configuration for the current DL model with the given time t
and use the calculated optimal configuration with SLA− t in case one.
We follow the same procedure until we find the optimal configurations
for all the DL models in the system.

The above calculations require estimating each DL model’s queuing
and processing latency. For estimating the queuing latency, we con-
sider the worst-case queuing scenario, where the arriving request must
wait for the arrival of the last request to form the predefined batch
size (b), meaning that it needs to wait b−1

λ , where λ is the arrival rate.

Unlike state-of-the-art approaches which use a linear relationship
between batch size and processing latency for inference process-
ing latency estimation, we use a second-order quadratic polynomial,
d(b) = αb2 + βb + γ with b being the batch size and α, β, and γ being
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the fitted parameters, since it gives a lower mean squared error, result-
ing in higher estimation accuracy. In the next section, we discuss the
impact of FA2 on resource optimization by first comparing it to other
state-of-the-art approaches and, second, evaluating its components.

3.1.2 Main Findings

To show the capabilities of FA2 in handling different workload sce-
narios and hardware types, we evaluate FA2 on six workloads: Four
synthetics and two real-world workloads on CPUs and GPUs. We
use four servers, each equipped with Core i9-9980x or 10940x CPU
and an NVIDIA RTX 2080 GPU, supporting up to 60 one-core CPU
instances and 40 10%-GPU instances. We consider ten DL models in
three domains: computer vision, natural language processing, and
audio recognition. These DL models form six applications with vary-
ing SLAs ranging from 3020ms to 25710ms. To compare FA2 with
the other state-of-the-art autoscaler in inference serving systems [10]
and stream processing [27] and microservices [28] areas, we use four
metrics: Processing and queuing delay, SLA violation rate, resource
consumption, and instance utilization.

We execute each DL model 25000 times using five different batch
sizes (1, 2, 4, 8, 16). We then use the 99

th percentile as the reference
point and feed the result to the quadratic formulation to find the
fitted parameters. We use the fitted parameters in the optimization to
estimate and analyze the processing delay.

Under steady workloads, the state-of-the-art approaches demonstrate
SLA violation of less than 1%, while FA2 needs much less resources
due to the optimized batch sizes for all the DL models in the system.
The optimized batch size can be confirmed by the resource utilization
of the FA2, where the resources are not underutilized for small batches
and are not stalled by waiting for unnecessarily large batch sizes.

When there is a change in the workload due to fluctuating, random, or
real-world workloads, all approaches detect and provide new configu-
rations using the same time interval to have a fair comparison. When
scaling up, new instances require a few seconds to initialize before
they can begin serving inference requests. This initialization period
is shorter with FA2 compared to other approaches [10, 27, 28], which
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need more instances and experience higher management overheads.
This overhead slows down the scaling process due to performance
interference caused by co-locating multiple instances on the same
physical machine.

Finally, we assess the resource efficiency of FA2 and the number of
instances needed to serve requests under static workloads varying
from 6 (one request per application) to 60 (the maximum capacity
supported by the hardware infrastructure). FA2, on average, saves
19% when using CPUs (up to 62%) and saves 25% resources (up to
54%) when serving requests on GPUs while guaranteeing 99

th SLAs
of all applications. Moreover, the algorithms in FA2 perform close to
optimal in terms of finding the optimal resource allocation, matching
over 96.8% of the results the optimizer provides. Further details are
discussed in detail in Chapter P1.

3.2 responsiveness and accuracy

The second contribution of this thesis uses vertical scaling to investi-
gate Q2: How can DL models be effectively deployed to provide fast response
to system dynamics and improve overall inference accuracy?.

The first paper, Sponge [39], considers the dynamism in the network
bandwidth, e.g., 4G/5G or WiFi, and adjusts the computing resources
of a DL model using in-place vertical scaling in response to the sudden
changes in the network bandwidth. Sponge uses an integer program
to incorporate the communication latency caused by a non-stable net-
work and provides a greedy approach to find an optimal CPU resource
allocation for the DL model. The second paper, IPA [14], studies the
challenges of model variants in terms of reconciling accuracy, latency,
and resource cost in inference serving systems and proposes a multi-
objective adaptation system to reconcile these three main conflicting
properties. After the contribution statements, this section introduces
the research approach and our main results.

This contribution is based on the following publications:
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Kamran Razavi, Saeid Ghafouri, Max Mühlhäuser, Pooyan Jamshidi,

and Lin Wang. Sponge: Inference Serving with Dynamic SLOs Using

In-Place Vertical Scaling. 2024

Contribution Statement: I led the idea generation, established
and coordinated the interdisciplinary and international group of
experts, and wrote the majority of the paper. Saeid Ghafouri con-
tributed to the implementation and evaluation. All co-authors
helped with critiques and comments on the concept design and
participated in creating the publication.

Saeid Ghafouri, Kamran Razavi, Mehran Salmani, Alireza Sanaee,

Tania Lorido Botran, Lin Wang, Joseph Doyle, and Pooyan Jamshidi.

[Solution] IPA: Inference Pipeline Adaptation to achieve high accuracy and

cost-efficiency. 2024

Contribution Statement: As the second author, I helped to
shape the initial idea of multivariate inference serving and
design the problem formulation. I also contributed to the imple-
mentation by adapting the FA2 components (queuing design,
inter-intra parallelisms, and the Gurobi optimizer solver) to fit
the needs of Sponge. I helped with restructuring the text, de-
signing the evaluation and evaluation figures, and editing all of
the papers (scientific and writing proofreading). Furthermore,
I helped the first author prepare the response to the reviewer
letter JSys October submission by helping with ideas and the
scientific and writing proofreading of the letter. The first author,
Saeid Ghafouri, led the idea generation, did all the implemen-
tation, conducted all the evaluations, formulated the problem,
and was the main contributor to all of the sections of the paper.
His contributions also include writing the paper and prepar-
ing the revisions. He also coordinated the interdisciplinary and
international group of experts. This paper has previously ap-
peared as the primary chapter of the first author’s PhD thesis
entitled "Machine Learning in Container Orchestration Systems:
Applications and Deployment" defended at the Queen Mary
University of London on 15/3/2024 under the supervision of
Dr. Joseph Doyle and the main credit of Sponge remains with
the first author. All co-authors helped with critiques and com-
ments on the concept design and participated in creating the
publication.
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3.2.1 Research Approach

This contribution aims to investigate when to change resources in place
and when to use model variants to increase inference accuracy while
guaranteeing the SLO. In the first part of this contribution, we con-
sider changes in the network bandwidth, e.g., 4G/5G or WiFi, caused
by the user’s movement. When the network bandwidth changes, the
time that the request takes to reach a remote inference server varies
(known as the communication cost), resulting in varying remaining
latency budgets on the server side. To capture the dynamism in the re-
quirement latency, we propose a new autoscaling mechanism, Sponge,
using in-place vertical scaling, request reordering, and dynamic batch-
ing. In-place vertical scaling changes the computing resources of the
current running DL model without bringing them down and respawn-
ing them (no cold start). Request reordering prioritizes requests with
lower remaining latency budgets, and dynamic batching increases the
system performance by utilizing the resources more. Nevertheless, the
literature lacks performance modeling of inference execution latency
under varying CPU core allocations and batch sizes. To fill the gap,
we provide a mathematical performance modeling by incorporating
the linear relationship of the processing latency with the batch size
into the inverse relationship of the processing latency with CPU core
allocations. Next, leveraging the performance modeling and a greedy
algorithm, we explore all possible CPU core and batch size allocations
to identify the optimal configuration for serving requests with vary-
ing remaining latency requirements. In the next chapter, we discuss
the effectiveness of Sponge, the first inference serving system using
in-place vertical scaling. We focus on its ability to guarantee the SLO
by integrating communication latency to absorb changes caused by
fluctuations in the network bandwidth.

In the second part of this contribution, we investigate when and how
to switch to a different model variant for serving inference requests.
Model variants can perform the same inference task while offering
varying levels of accuracy, latency, and computational cost. The key
challenge lies in balancing these properties, especially when the SLO
must be guaranteed. A more accurate DL model increases the process-
ing latency, which in turn reduces the number of requests it can handle
per second. Consequently, more instances are needed to support the
same number of requests. Therefore, inference serving systems must
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consider all three pillars at the same time to optimize the resource
allocation cost or accuracy while guaranteeing the desired latency.
To achieve this, we first introduce a new metric to calculate the over-
all multi-model application accuracy. We then integrate this metric
into a mathematical model to optimize costs while adhering to the
predefined latency budget. We consider two approaches to define a
new accuracy metric: First, we sort the model variants based on the
accuracy from one to the number of model variants and then aggre-
gate the chosen model variants’ number. Second, we use the accuracy
metric defined by the model variant provider and multiply the chosen
model variants’ accuracy to derive the overall application accuracy.
In the first approach, we allocate zero to the lowest accurate model
variant and one to the highest accurate model variant. The remaining
model variants get a number between zero and one proportionally
aligned with their ordering. Then, the application accuracy will be
the summation of the chosen model variants. However, this approach
disproportionately favors more accurate model variants. For instance,
if one model variant has 78% accuracy and another variant has 69%,
the first one gets scaling of one and the second one gets zero while
their difference is just 9% in accuracy. The second approach, in terms
of the definition of application accuracy, suffers from diverse metrics
from different domains. For example, the accuracy metric in computer
vision DL models is usually in percentage, while in natural language
processing DL models, is the Word Error Rate. To unify the accuracy
metrics, we must delve into each domain and map each domain’s
metric into a unified metric. The second approach is preferred because
it maintains the integrity of the individual model accuracies, avoiding
the disproportionate weighting issue that can arise in the first ap-
proach. For ease of interpretation, we use the percentile metric as our
application accuracy metric and create a multi-objective optimization
problem that optimizes the application accuracy or computing cost
based on the user’s preference. Finally, we use an optimizer to solve
the multi-objective optimization and apply the results directly to the
system.

3.2.2 Main Findings

We use one physical machine with the Kubernetes in-place vertical
scaling feature [24] to evaluate Sponge. We design a workload generator



3.3 unpredictable workloads 29

that generates 20 requests per second asynchronously with predefined
latency requirements, similar to a real-world network bandwidth
dataset [20]. Our evaluation shows that the performance model pro-
vides a realistic estimation of processing latency given CPU core and
batch size allocations using two different DL models. Furthermore,
Sponge reduces resource consumption by over 20% while guaranteeing
over 99.6% of the requests when compared to statically assigned CPU
cores (over-provisioning). Compared to another autoscaler [5], Sponge
reduces latency violation by over 50% when the network bandwidth
becomes limited. Further details are discussed in detail in Chapter P2.

We use six physical machines to evaluate IPA, each equipped with
Intel(R) Xeon(R) Gold 6240R. We use eight different DL models, with
twenty-nine model variants, forming five applications in three do-
mains, and we analyze the applications using four real-world work-
loads. Our end-to-end performance evaluation demonstrates that IPA
enhances the end-to-end application accuracy by up to 21% while
having a comparable computing cost with the other state-of-the-art
approach [22]. Moreover, to demonstrate the scalability of IPA, we
progressively increase the workload, prompting the system to scale
up to over 500 CPU cores. This enables us to conduct a production-
level experiment that closely mirrors real-world demands, all while
maintaining critical performance requirements such as latency and
accuracy. Further details are discussed in detail in Chapter P3.

3.3 unpredictable workloads

The third contribution tackles the challenges of using horizontal and
vertical scaling mechanisms jointly in inference serving systems and
addresses Q3: How must multi-model serving systems respond to unpre-
dictable workload changes to achieve resource efficiency while minimizing the
SLO violation rate?.

Horizontal scaling offers a superior cost-efficiency, while vertical scal-
ing provides responsiveness. Consequently, a key consideration is
determining the conditions for using each scaling mechanism. We pro-
pose Biscale [42] that leverages the cost-efficiency of horizontal scaling
when the workload is stable and the responsiveness of in-place vertical
scaling to absorb sudden changes in the workload. Biscale achieves
cost-efficiency and responsiveness by proposing an integer program
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formulation to capture the resource allocation problem and solve it
according to the workload situation. After the contribution statements,
this section introduces the research approach and our main results.

This contribution is based on the following publication:

Kamran Razavi, Mehran Salmani, Max Mühlhäuser, Boris Koldehofe,

and Lin Wang. A Tale of Two Scales: Reconciling Horizontal and Vertical

Scaling for Inference Serving Systems. 2024. arXiv: 2407.14843 [cs.DC]

Contribution Statement: I led the idea generation, established
and coordinated the interdisciplinary and international group
of experts, and wrote the majority of the paper. Mehran Salmani
contributed to the idea generation, system design, implementa-
tion, and evaluation. All co-authors helped with critiques and
comments on the concept design and participated in creating
the publication.

3.3.1 Research Approach

In this contribution, we investigate the challenges regarding DL in-
ference serving systems that use both vertical scaling and horizontal
scaling mechanisms jointly. Horizontal scaling enables workload dis-
tribution by changing the number of instances of DL models, hence
processing more requests per second. On the other hand, vertical
scaling changes the computing resources of a DL model’s instance, re-
sulting in changes in both queuing and processing latencies of requests.
Therefore, the question of which one to use arises in the presence of
both scaling mechanisms.

In the previous work, FA2, we extensively studied the effect of horizon-
tal scaling on applications. In Biscale, we analyze vertical scaling effects
on applications with multiple DL models under different workloads
and configurations. Similar to horizontal scaling, data dependency
and batch size factors play important roles in responsiveness and cost
of serving inference requests in vertical scaling. Changing these factors
affects the downstream DL models’ processing, queuing latencies, and
workload. Unlike horizontal scaling, vertical scaling is constrained by

https://arxiv.org/abs/2407.14843
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hardware limitations. It is not possible to allocate more computing re-
sources to an instance than what is available on the physical hardware
where that instance resides.

To effectively address the challenges of joint scaling, it is crucial to
first understand why we should transition between vertical scaling
and horizontal scaling. Second, we must examine how to transition
between these two scaling mechanisms. Lastly, we must identify when

to transition between horizontal scaling and vertical scaling.

To answer the why challenge, we use Amdahl’s performance law
and prove that horizontal scaling provides better resource efficiency,
leading to lower costs. Therefore, we need to switch to horizontal
scaling whenever there is no need for responsiveness. To answer the
how question, we again use Amdahl’s performance law to show that
it is more resource-efficient to scale all the DL model’s instances to
the same computing resources. Finally, to answer the when question,
we design a long short-term memory (LSTM) model to predict the
next 10-second maximum workload and use it to identify whether the
system is stable or not. We feed the predicted and current workloads
to the horizontal scaling algorithm to check whether the current and
future configurations are the same. If the configurations are the same,
we switch to horizontal scaling to save resources.

We design a mathematical formulation for the joint resource scaling
mechanisms and solve it based on whether the system requires re-
sponsiveness or cost-efficiency. We use dynamic programming to solve
the mathematical formulation by iterating over the DL models in the
application with different batch sizes and CPU core allocations and
applying the new configurations to the system.

3.3.2 Main Findings

We evaluate Biscale using two physical machines with seven dif-
ferent DL models in computer vision, audio recognition, and nat-
ural language processing domains. With the DL models, we form
three pipelines with different tasks and different SLOs and evaluate
the created pipelines under a real-world workload. Our evaluations
demonstrate that Biscale reduces the SLO violation by over 10× on
all pipelines compared to just using one of the scaling mechanisms
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for resource allocation. Furthermore, Biscale reduces costs when the
workload becomes stable, showing Biscale’s potential to provide re-
sponsive and cost-effective inference serving solutions. Further details
are discussed in detail in Chapter P4.

3.4 in-network dl intrusion detection

The fourth contribution of this thesis addresses the in-network DL
inference challenges of Q4: How can non-conventional computing resources
be leveraged to improve the serving system efficiency?.

In our papers, Distributed Serving [40] and NetNN [38], after under-
standing the challenges in regards to the execution of DL inference
serving in programmable network devices, we propose an in-network
DL intrusion detection system for fast, end-to-end inference serving by
distributing a DL model across a network of programmable network
devices. For this purpose, we follow a three-step approach: DL model
mapping to a set of programmable network devices, generating pack-
ets mimicking the DL model execution, and instructing programmable
network devices to perform the DL model tasks. The remainder of this
section consists of the contribution statement, the applied research
approach, and our main findings.

This contribution is based on the following publications:

Kamran Razavi, George Karlos, Vinod Nigade, Max Mühlhäuser, and

Lin Wang. “Distributed DNN serving in the network data plane.” In:

EuroP4. 2022

Contribution Statement: I led the idea generation, established
and coordinated the interdisciplinary and international group
of experts, and wrote the majority of the paper. All co-authors
helped with critiques and comments on the concept design and
participated in creating the publication.

Kamran Razavi, Shayan Davari Fard, George Karlos, Vinod Nigade,

Max Mühlhäuser, and Lin Wang. NetNN: Neural Intrusion Detection

System in Programmable Networks. 2024. arXiv: 2406.19990 [cs.CR]

https://arxiv.org/abs/2406.19990
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Contribution Statement: I led the idea generation, established
and coordinated the interdisciplinary and international group
of experts, and wrote the majority of the paper. All co-authors
helped with critiques and comments on the concept design and
participated in creating the publication.

Note: NetNN has been awarded the Second Best Paper at the 29
th

IEEE Symposium on Computers and Communications (ISCC).

3.4.1 Research Approach

This contribution aims to enable DL inference serving on programmable
network devices residing inside the networks. To achieve this, we first
need to understand the limitations of the programmable network
devices for DL inference serving and then propose approaches to
resolve these limitations to leverage the high-performance capabilities
of such devices. Unlike advanced machine learning model execution,
such as serving DL models that rely on matrix multiplication with a
tremendous number of weights requiring floating point operations,
programmable network devices are designed primarily for packet
processing and forwarding. Consequently, they are equipped with
limited memory, primarily for storing routing tables, and they sup-
port only basic arithmetic operations, such as bit shifting and integer
aggregation. This fundamental difference highlights the challenge of
adapting such devices for serving complex DL models.

To tackle the memory and processing limitations, we propose using a
two-tier or three-tier Clos topology combined with the three-step ap-
proach. First, we outline a method for mapping a DL model into a set
of programmable network devices. Second, we detail the process for
generating and routing packets to emulate the DL model’s execution
flow. Finally, we describe how mathematical computations must be
executed on these devices to effectively perform inference, ensuring
efficient and scalable operation despite the inherent constraints of the
hardware.

For the mapping part, we propose to divide the DL model based on
the number of weighted layers, assigning each layer’s neurons and
associated weights to a single programmable network device. We also
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map the layers to the lowest-tier programmable network devices in
the multi-tier Clos topology to avoid stragglers in the synchronization.
We distribute the neurons within the same layer across multiple avail-
able programmable network device pipelines, as they do not require
intercommunication within the layer. This approach enables paral-
lelism by allowing neurons in the same layer to operate concurrently
across multiple pipelines. For the packet generation and routing, we
must create network packets similar to the DL model’s execution
dataflow. Once the processing on the current layer is finished, we
generate as many network packets as necessary to encapsulate the
input or intermediate data into the packet headers and emit them to
the next programmable network device with the next layer. Lastly, we
need to address the computing challenges regarding the on-device
execution. As we discussed above, programmable network devices
may not be able to perform multiplication or floating point operations.
Therefore, we use DL models with integer weights (quantized DL
models) and decompose the multiplication operation into bit shifting
and aggregation. With these techniques, we can perform the necessary
mathematical executions to get an inference.

Finally, to demonstrate the feasibility of getting inference in the net-
work, we design a new quantized DL model with an accuracy of 97%
for intrusion detection. Accurate intrusion detection requires statistics,
such as the standard deviation of the inter-arrival time and the length
of the packets. However, calculating standard deviation requires mul-
tiplication and division, which may not be available in programmable
network devices. Therefore, to avoid the feature calculation needed
for getting accurate inference on the programmable network devices,
we use the first 68 bytes of packets from the same flow (covering the
maximum UDP and IP header size) and use the hardware-provided
minimum and maximum timestamps of these packets to train the DL
model. We use the trained DL model and the three-step approach to
enable in-network DL intrusion detection.

3.4.2 Main Findings

In the first paper of this contribution, Distributed Serving, we demon-
strate that, in theory, in-network DL inference serving can reduce
inference execution latency of a real-world object detection DL model
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by over 50% compared to traditional CPU-based inference. Moreover,
this approach eliminates the need for dedicated inference servers by
leveraging programmable switches capable of delivering a throughput
of 12.8 Tbps. Further details are discussed in detail in Chapter P5.

In the second paper of this contribution, NetNN, we implement a pre-
liminary version of the quantized intrusion detection DL model using
the P4 language [7] with the behavioral model, bmv2 [36], which serves
as a P4 target. We create a network consisting of eighteen switches.
The first switch is responsible for generating the features, and the
last one finalizes the inference result. The other sixteen switches serve
as four layers with four pipelines, denoted as switches in the emu-
lation. Since we execute the quantized DL model on bmv2, and the
software emulation on bmv2 lacks the time precision needed for the
end-to-end performance measurements, we instead focus our analysis
on the packet generation process, the computational operations re-
quired per packet and the memory consumption of each layer, which
is distributed across four switches. Our evaluation shows that convo-
lutional layers require significantly more operations per packet than
dense layers. As a result, having additional switches is advantageous
for distributing these computations. While dense layers require more
memory than convolutional layers to store their weights, this demand
remains within the memory capacity of a programmable switch. Fur-
ther details are discussed in detail in Chapter P6.

3.5 summary

In summary, this thesis made four contributions spread across six
publications One of the publications (NetNN) was awarded the Best

Paper Award at the conference (second place).

We improved DL inference serving resource efficiency in the following
areas:

i. We proposed a new horizontal resource scaler to increase system
utilization and reduce operational costs.

ii. We proposed a new in-place vertical resource scaler to absorb the
network dynamism while guaranteeing the SLO. Furthermore,
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we designed a new resource scaler to use model variants to
reduce further the operational cost of serving requests.

iii. We analyzed the challenges of using vertical scaling and horizon-
tal scaling jointly. We then proposed a new two-step autoscaler
that uses either scaling mechanism based on the workload.

iv. We investigated the challenges regarding in-network DL intru-
sion detection. We proposed a three-step mapping approach to
enable complex DL models serving inside a set of programmable
network devices
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C O N C L U S I O N A N D O U T L O O K

Deep learning serving has become an essential component in various
modern applications. Numerous factors, often conflicting, must be
considered to efficiently allocate resources to deep learning models
while ensuring that the SLO is met. These conflicting factors include
the selection of resource allocation strategies, the trade-off between
accuracy and latency, and the decision of where to deploy the deep
learning models.

To achieve our goal of Resource Efficiency of Inference Serving with SLO
Guarantee, we divided the main research question, How to design,
implement, and deploy resource-efficient DL inference serving systems with
SLO guarantee?, into four sub-questions, each addressed in a separate
chapter of this dissertation.

4.1 summary of achievements

4.1.1 Resource Efficiency

FA2 provides a significant resource consumption improvement over
existing horizontal-based resource scalers in DL inference serving
that require SLO guarantees. FA2 encapsulates the resource scaling
problem into an integer program and adjusts the number of instances
and batch sizes of all the DL models in the system in a single shot.
By solving the resource scaling problem using graph transformation
and dynamic programming, FA2 reduces the resource consumption
by over half in some scenarios on both CPUs and GPUs under real-
world workloads. Moreover, approaches in FA2 can be applied to other
domains with predictable performance models in their cores.

37
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4.1.2 Responsiveness and Accuracy

Sponge enables guaranteeing SLO by considering the dynamic network
bandwidth caused by non-stable networks, e.g., 4G/5G or WiFi, using
in-place vertical scaling, dynamic batching, and request reordering. To
enable this, Sponge provides a performance modeling concerning the
inverse relationship of inference latency to the number of allocated
CPU cores and linear relationship of inference latency to the batch
sizes and designs a new in-place vertical resource scaler based on the
performance model. A prototype of Sponge demonstrates that it can
reduce the SLO violation by over 50% compared to a state-of-the-art
horizontal resource scaler.

IPA increases inference accuracy by designing a new resource scaler
that uses model variants and considers the trade-offs between the
execution latency, accuracy, and computational cost of such models.
IPA then proposes a new pipeline accuracy metric to calculate the
overall accuracy of a pipeline composed of multiple models. Extensive
evaluations show that IPA increases the pipeline accuracy by switching
between different model variants while guaranteeing the SLO.

4.1.3 Unpredictable Workloads

Biscale proposes a new resource scaler design that uses vertical scaling
to absorb sudden changes in the workload and transitions to hori-
zontal scaling to save resources when the workload becomes stable.
Biscale uses a two-stage resource scaling strategy: it starts with in-place
vertical scaling to manage workload surges and then switches to hori-
zontal scaling for resource efficiency once the workload stabilizes. The
system then profiles DL model latency, calculates queuing delays, and
uses dynamic programming algorithms to optimally allocate resources
and balance horizontal and vertical scaling based on the workload.
Evaluations with real-world workload traces show over 10× reduction
in the SLO violation compared to state-of-the-art horizontal or vertical
resource scaling methods while maintaining resource efficiency when
the workload is stable.
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4.1.4 In-Network DL Intrusion Detection

Distribute Serving and NetNN enable in-network DL inference by us-
ing the multi-tier Clos network architecture and a three-step design.
They propose mapping a DL model to a set of programmable net-
work devices, mimicking the DL inference execution flow similar to
how packets flow in the network, and directing the programmable
network devices to carry out the necessary computations for getting
an inference. Furthermore, NetNN proposes a new DL model that ad-
vances in-network intrusion detection and implements it on a network
emulator.

4.1.5 Open Source Inference Serving

In addition to our analytical achievements, we have developed and
presented four frameworks to aid others in research on inference
serving systems. All four frameworks are shared with the community
and can be accessed upon request.

IPA adaptable framework leverages state-of-the-art technologies such
as Kubernetes [13] and Grafana [29] and runs on a public cloud
provider (Chameleon Cloud [1]) to provide a realistic production
environment.

Sponge framework uses the experimental branch of Kubernetes [24] on
a single machine since the in-place vertical scaling feature is not yet in
the official releases, allowing researchers to experiment with inference
serving on the soon-to-be-available feature of a dominant container
orchestrator.

Biscale creates a multi-machines Kubernetes cluster and reconciles a
system’s in-place vertical scaling and horizontal scaling mechanisms.

NetNN P4 source code can be used to implement hardware-specific P4

code to allow DL inference execution on a set of network devices. More-
over, the network architecture proposed in NetNN is implemented on
a network emulator that can be directly used or modified based on
the DL model’s architecture.
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4.2 future work

Our research uncovered several new and remaining challenges within
the domain.

4.2.1 Heterogeneous Hardware Framework

As discussed in FA2, different hardware components, e.g., CPUs and
GPUs, have varying capabilities and performance characteristics, mak-
ing it challenging to allocate resources optimally. Moreover, there is
no unified library to serve and monitor inference requests on all types
of hardware, making it challenging to develop and maintain infer-
ence serving frameworks. Furthermore, a heterogeneous hardware
environment brings new challenges in data security, such as how to
ensure data and execution isolation and how to secure data trans-
mission across multiple hardware components. A generic inference
serving framework will be valuable for using each hardware charac-
teristic and serve inference based on the user and the system provider
requirements.

4.2.2 Inference Pipeline Accuracy

As we discussed in IPA, multiplying the accuracy of individual models
reflects the combined probability of each model correctly processing
its input and passing correct results to the next model. It captures
the cumulative effect of each model’s performance on the overall
system accuracy. However, we are assuming that each DL model’s
error is independent of others, which, in reality, errors might propagate
through the application, and the performance of one DL model could
affect the performance of subsequent models, resulting in a wrong
accuracy estimation. On top of that, model variants can be used for
the same inference request, adding an extra level of complexity to
calculating the multi-model applications’ accuracy. We must further
investigate how to calculate multi-model accuracy accurately to reduce
inference errors and increase user satisfaction.
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4.2.3 In-Network Mapper

As we demonstrated in NetNN, in-network DL inference has the poten-
tial to enable real-time low-latency DL inference within the network.
Nevertheless, achieving hardware-specific DL inference serving re-
quires addressing challenges regarding not only the resource and
processing limitations of the network devices but also the internal ar-
chitecture of DL models that we want to serve in the network. Some DL
models have complex relationships between their internal calculations,
making it challenging to implement on network devices with fast-
forwarding packet processing. Therefore, having a model-to-hardware
mapper that maps any DL model into any network hardware will be
beneficial.
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P1
FA 2 : FA S T, A C C U R AT E AU T O S C A L I N G F O R
S E RV I N G D E E P L E A R N I N G I N F E R E N C E W I T H S L A
G UA R A N T E E S

abstract

Deep learning (DL) inference has become an essential building
block in modern intelligent applications. Due to the high com-
putational intensity of DL, it is critical to scale DL inference
serving systems in response to fluctuating workloads to achieve
resource efficiency. Meanwhile, intelligent applications often
require strict service level agreements (SLAs), which need to be
guaranteed when the system is scaled. The problem is complex
and has been tackled only in simple scenarios so far.

This paper describes FA2, a fast and accurate autoscaler con-
cept for DL inference serving systems. In contrast to related
works, FA2 adopts a general, contrived two-phase approach.
Specifically, it starts by capturing the autoscaling challenges
in a comprehensive graph-based model. Then, FA2 applies tar-
geted graph transformation and makes autoscaling decisions
with an efficient algorithm based on dynamic programming. We
implemented FA2 and built and evaluated a prototype. Com-
pared with state-of-the-art autoscaling solutions, our experi-
ments showed FA2 to achieve significant resource reduction
(19% under CPUs and 25% under GPUs, on average) in combi-
nation with low SLA violations (less than 1.5%). FA2 performed
close to the theoretical optimum, matching exactly the optimal
decisions (with the least required resources) in 96.8% of all the
cases in our evaluation.

55
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p1.1 introduction

With the rapid advancements of deep learning (DL) techniques, DL
inference has become a popular component in various modern intelli-
gent applications and services [3, 12, 36, 47]. Some applications involve
a single deep neural network (DNN) for inference tasks like object
recognition or natural language understanding. Others, such as digital
assistant services (e.g., Amazon Alexa), involve a more complex chain
of DNNs for inference tasks, including speech recognition, question
interpretation, and text-to-speech to serve user requests [12, 62]. Most
of these applications are mission-critical or user-interactive, imposing
strict service-level agreements (SLAs) on the inference latency, e.g., the
end-to-end latency should be bounded by a deadline [8, 36, 47].

One critical concern in provisioning applications with DL inference is
on resource efficiency. Resource efficiency is essential simply because
DNNs typically require intensive computation, which imposes pro-
hibitive costs and stringent deployment constraints when the resources
are limited, e.g., in the edge environment [57]. Ideally, the amount of
resources assigned to each of the DNNs in an application should be
just right, matching the real-time workload (measured in requests per
second, RPS) of the application while guaranteeing the SLA. We refer
to this problem as “resource autoscaling,” which has become a critical
challenge in building efficient DL inference serving systems [12, 62].

Resource autoscaling is a non-trivial problem in general and has been
heavily explored in various contexts, including stream processing [14,
21, 46], serverless computing [53, 66], and microservices [18, 30, 72,
73]. The unique properties of DL inference serving systems make the
situation even worse. In particular, we identify the following factors
in DL inference serving systems, which, when combined, add new
challenges and significantly exacerbate existing ones: (a) The DNNs
for an application are orchestrated with data dependencies speci-
fied by a dataflow graph. Thus, the resource scaling decision for one
DNN may affect that for other (downstream) DNNs due to workload
changes [12, 47]. (b) Inference requests may follow uncertain execution
paths, where, depending on the output of a DNN, requests may be
forwarded to different succeeding DNNs (thus different paths) for
further processing [62]. (c) DL inference serving systems typically re-
quire strict SLA guarantee on the end-to-end latency over all possible
execution paths specified in the dataflow graph [36, 47]. (d) Request
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batching is widely used for DNNs to improve resource utilization by
trading processing time for throughput [8, 47, 65]. Thus, the batch size
for one DNN may affect the scaling decision of others and also the
end-to-end latency. These factors, when combined, make existing au-
toscalers inapplicable or inefficient for DL inference serving systems,
calling for new solutions.

In this paper, we present a comprehensive study of resource autoscal-
ing for DL inference serving systems and present FA2—a fast, ac-
curate resource autoscaler tailored for efficient provisioning of DL
inference-based applications. Given an application with a set of DNNs
orchestrated with a dataflow graph, FA2 makes collective resource
scaling decisions, including both the number of instances and the
corresponding batch size for each of the involved DNNs adaptively.
Our goal is to minimize the total amount of resources occupied by
all the DNNs of an application while ensuring the SLAs of all the
execution paths in the application.

To this end, we first present a graph-based model to capture all the
aforementioned factors holistically. In particular, we model the pro-
cessing time and the worst-case queuing delay at all DNNs explicitly
and take both into account when calculating the end-to-end delay for
all the execution paths. This design choice is critical in guaranteeing
SLAs on all the execution paths with dependency and uncertainty.
Through targeted graph transformation, we relax the problem and
present an efficient resource autoscaling algorithm based on dynamic
programming. The proposed algorithm runs fast and generates accu-
rate scaling decisions. In contrast to existing solutions where simple
heuristics are used for scaling decision-making [12, 62], our design is
principled and achieves almost optimal performance.

In short, this paper makes the following contributions. After present-
ing the background for DL inference serving systems and identifying
the challenges (§P1.2), we

• present the design of FA2, including its overall architecture and
components (§P1.3);

• introduce a comprehensive graph-based model to capture the
resource scaling problem in DL inference serving systems and
present our scaling algorithm based on graph transformation
and dynamic programming (§P1.4);



58 fa2

Object 

Recognition

Face Detection

Optical Character 
Recognition

Q&A

Face Recognition

Natural Language 
Understanding

HUMAN

TEXT

OTHERS

NULL

YES
NO

Path A1

Path C

Path A2

Path B

Path D

Noise 
Reduction

Figure P1.1: The execution graph of an example modern intelligent applica-
tion taking images as input. Depending on the object recognition
result, different execution paths will be taken for each inference
request.

• build a system prototype for FA2 (§P1.5) and evaluate it with
synthetic and real-world workload traces (§P1.6). Overall, FA2

outperforms the state-of-the-art autoscalers, achieves significant
resource reductions (19% under CPUs and 25% under GPUs),
while showing only slightly over 1% SLA-violation rates, mean-
ing that the latency at the 99-th perentile can mostly be guar-
anteed. Our results also reveal that FA2 matches the theoretical
optimum scaling decisions in around 96% of the cases.

§P1.7 summarizes related work. §P1.8 draws final conclusions.

p1.2 background and motivation

This section presents the background on deep learning (DL) inference
and discusses the resource autoscaling problem in DL inference serv-
ing systems. We then identify the challenges in efficient autoscaling
and motivate a new autoscaler design.

p1.2.1 Deep Learning Inference Serving

With the fast advancement of DL techniques, a variety of modern
applications such as intelligent personal assistants, augmented reality
(AR), and autonomous driving adopt deep neural networks (DNNs)
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as a fundamental building block [13, 45, 47]. Typically, DL is used
for inference tasks such as object detection and recognition and voice
recognition, where input data in the form of images or voice recordings
is sent to DNNs, producing predictions for the input. For sophisticated
applications, multiple DNNs may be involved in the process where
all these DNNs are chained or orchestrated into a complex dataflow
graph, represented by a direct acyclic graph (DAG), to process the
input data step by step. Each input to the system spawns an inference
request which needs to be handled by a subset of the DNNs specified in
the dataflow graph sequentially [12]. Figure P1.1 depicts the dataflow
graph of an example modern intelligent application.

One salient feature of these DL-based applications is being timed
critical since they are mostly either user-interactive (e.g., personal
assistant and AR) or mission-critical (e.g., autonomous driving) [3, 12,
45, 51]. It is often required that the end-to-end latency in serving each
inference request by the system has to meet a certain threshold dictated
by the application for the request to be useful. The DL inference
serving system provisioning such applications thus needs to provide
strict service-level agreements (SLAs) where the tail inference latency
has to be bounded by the threshold to guarantee the overall usability
of the application [36, 47].

p1.2.2 Resource Autoscaling

Resource scaling concerns dynamically adjusting the computing re-
sources assigned to applications according to their changing workload.
The goal is to improve resource efficiency while meeting the resource
demands of the application. Resource scaling has been extensively
explored in cloud-based systems, including stream processing [14, 21,
46], serverless computing [53, 66], and microservices [18, 30, 72, 73].

There are generally two types of resource scaling mechanisms: hor-
izontal scaling and vertical scaling. Horizontal scaling constructs a
base instance (with a fixed amount of resources) built into a virtual
machine or container and decides the number of instances required to
support the real-time workload (e.g., throughput) at runtime. Vertical
scaling adjusts the performance of every single instance by changing
the resource allocation for the instance. Most data-intensive computing
systems adopt horizontal scaling considering its simplicity [46]. Hori-
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Figure P1.2: Performance comparison between horizontal and vertical scaling
policies with respect to throughput and latency on the object
detection (OBJD) model in Table P1.2. Each data point repre-
sents the result obtained with a batch size in the range of [1,9]
respectively.

zontal scaling is also beneficial to DL inference serving, as confirmed
in Figure P1.2, where we show the latency-throughput comparison
for an object detection model (Inception V2) under three different
resource configurations. We observe that given the same total amount
of resources (four CPU cores here), the configuration with the smallest
instance provides higher throughout under the same latency. This
is mainly because, even with batching, DL inference cannot be fully
parallelized to take full advantage of the big instances. Therefore, we
focus on horizontal scaling in this paper.

Apart from the scaling mechanism, it is critical to answering questions
like when and how to scale, and these are typically handled by a
scaling controller known as the resource autoscaler [26, 29, 37, 46].
Through conventional monitoring tools, symptoms of under- and over-
provisioning can be detected, and whether to make a change is decided.
The resource autoscaler then identifies the causes of the symptoms
(e.g., bottleneck or underutilized components) and performs scaling
actions accordingly. Usually, the detection of suboptimal provisioning
is based on performance metrics such as CPU/memory utilization and
backpressure or congestion [21, 29]. Resource autoscalers then make
scaling decisions using simple threshold-based heuristics, leveraging
control-theoretic models, or adopting complex queuing theory models
based on workload prediction [26, 28].
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p1.2.3 Autoscaling Challenges in DL Inference Serving

Designing an efficient resource autoscaler for DL inference serving
systems is non-trivial. In particular, we identify the following chal-
lenges, all of which combined distinguish the autoscaling problem
in DL inference serving systems from those studied in other systems
such as stream processing [46].

• Dependency: Modern DL inference systems typically involve
multiple DNNs orchestrated with a DAG [12]. The edges in
the DAG indicate the data dependencies between the DNNs,
leading to the tight coupling of the scaling decisions for different
DNNs. Hence, the scaling decisions for all the DNNs need to be
coordinated holistically.

• Uncertainty: Depending on the output of the preceding DNN,
an inference request may follow different execution paths in
the dataflow graph [62]. This brings significant uncertainty in
the system workload and renders prediction models based on
queuing theory inaccurate.

• SLA guarantee: DL inference requests need to be processed
within a certain amount of time in order to be useful, which
refers to SLA guarantees [12, 47, 62]. It is particularly challeng-
ing to guarantee SLA in DL inference serving systems since
requests following different execution paths may be specified
with different SLAs, and due to uncertainty, the type (thus the
corresponding SLA) of a request cannot be known a priori.

• Batching: DL inference serving systems typically adopt request
batching, which is effective in improving resource utilization [8,
13, 65], as shown in Figure P1.2. In essence, we trade off latency
for throughput with SLA guaranteed. Changing the batch size
of one DNN leads to changes in the throughput and latency,
affecting other DNNs due to dependency and SLA guarantee.

Existing autoscaler designs for DL inference serving systems are
mainly based on decoupling the batch size and the autoscaling decision-
making problems using simple heuristics. A popular approach is
called “split-and-conquer” where we split the SLA over the DNNs
following a proportional policy and make scaling decisions locally for
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Figure P1.3: Number of instances required by different autoscaling policies.
InferLine neglects the combinatorial nature of the models and
iterates on all models one by one and GrandSLAm uses a prede-
fined stack allocation for DNN models, both resulting in need
of extra resources (3x and 2x, respectively) compared with the
optimal resources provided by Gruboi.

each DNN, as done in GrandSLAm [47] and InferLine [12]. Despite
convergence issues already noted in stream processing engines [46],
such an approach is conservative and can lead to significant resource
over-provisioning [62]. To confirm this observation, we perform an
experiment using a simple DL inference serving pipeline consisting
of two DNNs for object detection (OBJD) and image segmentation
(IMGS), respectively. The results are shown in Figure P1.3. With a
steady input of 30 RPS, GrandSLAm and InferLine require almost 2×
and 3× of the optimal number of instances (obtained by the Gurobi
solver), respectively. However, the exploration space for the optimal
solution is exponentially large, and thus exhaustive search is not prac-
tical. In the rest of this paper, we will adopt a principled approach to
tackle the autoscaling problem in DL inference serving systems. We
will show how FA2 achieves (almost) optimal scaling decisions while
being computationally efficient.
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Figure P1.4: An overview of the FA2 architecture. The monitoring service
collects the metric data from the DL inference serving system.
The optimizer makes scaling decisions for the DNNs. The con-
troller enforces the scaling decisions by configuring the inference
serving system.

p1.3 fa2 system design

In this section, we describe the design of FA2—fast, accurate autoscal-
ing for DL inference serving with SLA guarantee. We first provide
an overview of the system architecture and then discuss the system’s
major components.

System overview. An overview of the FA2 architecture is depicted in
Figure P1.4. Our system consists of three main components (monitor,
optimizer, and controller). The monitor keeps monitoring statistics
about the distribution of request arrivals, i.e., the average number of
requests that have followed each execution path in the execution graph.
The optimizer takes the application execution graph with specified
SLAs over execution paths as well as the request distribution from
the monitor as input and makes scaling decisions (i.e., number of
instances and batch size for every DNN in the execution graph) by
solving an optimization problem. Afterward, the controller informs the
DL inference serving system and reconfigures the system according
to the scaling decision. The DL inference serving system deploys the
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DNN instances, which serve requests from a central queue preceding
all the DNN instances of the same type at each server. The system
runs periodically to adapt to request rate changes as well as possible
request distribution drifts. Similar to DS2 [46] for stream processing
(which is not applicable to DL inference serving due to the challenges
we have identified), FA2 aims to make holistic scaling decisions for
all the DNNs in a single shot and satisfies the SASO properties (i.e.,
stability, accuracy, short settling time, and not overshooting) in control
theory [40].

Monitor. The monitor pulls two types of metrics from the DL inference
serving system in a predefined time interval: (a) the sequence of DNNs
(i.e., the execution path) each inference request has traversed while in
the system, and (b) the end-to-end processing time of each inference
request following the execution path. The former is used to calculate
the average number of requests that have followed a specific execution
path in the past, while the latter is used to decide if a scaling operation
is necessary depending on the ratio of SLA violations for the served
requests.

Optimizer. The optimizer aims to generate the scaling decision—the
optimal configuration (including the number of instances per DNN
and the corresponding batch size for each DNN) to achieve the highest
resource efficiency while respecting all the SLAs in the system using
the metrics reported from the monitor. To this end, the optimizer first
builds a graph-based model incorporating both the request process-
ing and queuing delays. Then, it performs graph transformation to
simplify the graph-based model and provides an efficient algorithm
based on dynamic programming to calculate the scaling decision. We
will elaborate them in §P1.4. Finally, the optimizer passes the scaling
decision to the controller to enforce the system configuration in the
system.

Controller. The controller is responsible for reconfiguring the system
according to the scaling decision generated by the optimizer. This
reconfiguration includes the batch size and the number of instances for
each DNN in the inference serving system. To this end, the controller
first compares the new configuration from the optimizer with the
current system configuration. If both configurations are the same, no
reconfiguration will be needed. Otherwise, the controller sends the
new batch size information to the queues at each DNN and brings
up/down DNN instances based on the difference between the two
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Table P1.1: Notations

Symbol Description

G Application’s dataflow graph (a DAG)
S Set of registered DNNs
s A DNN model from set S
P Set of possible execution paths
p An execution path in set P
ns Number of instances for DNN s
bs Batch size of DNN s
Ints Computation intensity of DNN s
ds(bs) Processing time for DNN s with batch size

bs

qs(bs) Max. queuing time at s with batch size bs

ls(bs) Total time spent at DNN s, i.e., ds(bs) +
qs(bs)

hs(bs) Throughput of s with batch size bs

SLAp Service-level agreement for path p ∈ P
λp Request rate for execution path p ∈ P
λs Request rate at DNN s
OPT(s, t) Optimal resources consumed by s and all

its successors under time budget t

configurations. Note that if the only change in the new configuration
is the batch size, the system can be reconfigured immediately without
any delay.

p1.4 autoscaling problem and algorithm

In this section, we focus on the optimization problem that the opti-
mizer needs to solve to produce accurate scaling decisions. In particu-
lar, we adopt a principled approach and model the system comprehen-
sively. We first model the processing time of DNNs and then provide
a model for the worst-case queuing delay at the queue preceding the
DNN instances of the same type. With these models, we formulate the
autoscaling problem with an integer program. We then propose an ef-
ficient algorithm to solve the problem based on graph transformation
and dynamic programming. Table P1.1 summarizes the notations we
use in the paper.
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p1.4.1 DNN Performance Modeling

To facilitate decision making at the optimizer, FA2 requires to know
the performance, i.e., throughput h(b) and latency d(b) with respect to
the batch size b, of each DNN instance. Prior work has demonstrated
that the performance of DL models is quite predictable, especially of
those for deep learning inference [13, 36, 47]. We follow the same line
and use profiling data and robust regressions [20] to build models for
all the DNNs in the system. Other more sophisticated performance
modeling methods [44] can also be employed. Such performance
models can be built offline and be reused throughout the lifecycle of
the DNNs as long as the size of the DNN instance stays the same,
which is true since only horizontal scaling will be considered.

In contrast to existing work [13, 47] which suggests a linear relation-
ship between batch size and latency, we apply some slight changes
that improve the prediction accuracy considering that a larger batch
size could potentially better utilize non-shareable resources such as
CPU caches other than the computing units. In particular, we use a
second-order quadratic polynomial d(b) = αb2 + βb + γ for latency
prediction under a given amount of resources, where α, β, and γ are
parameters and they will be fitted with profiling data. The throughput
of a DNN instance is directly given by h(b) = b/d(b). Our evaluation
with 100K inferences for each DNN latency profiling (see Figure P1.6)
confirms that the quadratic model is more accurate than a linear model
with a much smaller mean squared error.

p1.4.2 Queuing Delay Modeling

The queuing delay at a given DNN can be affected by the following
factors: the average request arrival rate λ reported by the monitor,
the batch size b, processing time of the DNN instance d(b), and the
number of DNN instances n. For a request at a specific DNN, the
worst-case queuing delay can be captured in two scenarios: (a) Assume
a DNN instance is idle and waiting to serve requests. When a request
arrives, it has to wait for another b− 1 requests to come until a batch
can be formed and served by the DNN instance. In this case, the
first request has to be queued for (b − 1)/λ time before it can be
processed. (b) Assume a DNN instance has been assigned a batch for
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processing, and following a round-robin policy, the next batch for the
same instance containing the (nb + 1)-th through (nb + b)-th requests
have arrived. Thus, the batch needs to wait for the DNN instance to be
freed from processing the previous batch before it can be processed,
even after the arrival of the last request of the new batch for the DNN
instance, with a queuing time of d(b)− (nb + 1)/λ (the worst case
happens to the first request in the new batch). By combining the above
two cases, the worst-case queuing latency at a DNN with batch size b
and n instances is given by

q(b,n) = max
(

b− 1
λ

,d(b)− nb + 1
λ

)
. (P1.1)

Meanwhile, the total throughput n · h(b) of all the n instances for
the same DNN has to match the arrival rate, i.e., n · h(b) = λ. With
some simple manipulation we can obtain d(b) = nb/λ. Plugging this
equation in the above queuing latency formula, we observe that the
second term is always negative. Therefore, the worst-case queuing
delay can be simplified as

q(b) =
b− 1

λ
. (P1.2)

We will use this equation for modeling the worst-case queuing delay
in the problem formulation and our algorithm.

p1.4.3 Problem Formulation

Based on the DNN performance model and the queuing delay model
we have introduced, we now provide a formal description for the
resource autoscaling problem. We denote the dataflow graph of the
application by G = (S, E) where node-set S represents the set of DNNs
and edge-set E represents the data dependencies between the DNNs.
On the dataflow graph, the application specifies a set of execution
paths denoted by set P. For each path p ∈ P, Sp ⊆ S denotes the set
of DNNs on p, and SLAp denotes the SLA specified on the end-to-
end latency of this path. The aggregate request arrival rate for the
application is denoted by λ, which may change over time. Due to the
uncertainty property of DL inference serving systems as discussed
in Section P1.2, SLA-aware request scheduling (e.g., priority-based
scheduling or earliest deadline first) at a DNN is not possible since it
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is unknown which execution path will be taken by each request before
the request leaves the system.

The monitoring system continuously reports to the controller the
execution path that has been taken by each of the inference requests
in a given period in the past. From such information, we derive the
average number of requests served by each of the execution paths p ∈
P, denoted by λp. To ensure system stability, the aggregate throughput
of all the instances for a DNN should be no less than the expected
request rate, i.e., for any DNN s ∈ S, hs(bs) · ns ≥ ∑s∈p:p∈P λp. Such a
constraint ensures that all the DNNs are sufficiently provisioned. As
a result, queuing of inference requests at each DNN will be under
control.

The optimization problem is to decide ns and bs for all s ∈ S such that
under a given workload, none of the SLAs specified by the execution
paths are violated. The goal is to minimize the aggregate amount of
resources used for all the DNNs. The problem can be formulated with
the following integer program (IP):

min ∑
s∈S

ns + δ(∑
s∈S

bs)

subject to ∑
s∈Sp

ds(bs) + qs(bs) ≤ SLAp,∀p ∈ P,

hs(bs) · ns ≥ ∑
s∈p:p∈P

λp,∀s ∈ S,

bs,ns ∈Z+,∀s ∈ S.

(P1.3)

In the objective function, in addition to the total number of instances,
we introduce a small penalty term δ(·) on the total batch sizes. This
penalty ensures we will use the minimal possible batch sizes under
the optimal number of instances due to the fact that a larger batch size
without enough queries in the system not only increases the processing
and queuing delay (which can be valuable for other DNNs) but also
does not increase the system’s utilization. The first constraint ensures
that all the SLAs will be satisfied. We omit the network latency as we
assume high-throughput, low-latency network links are available in
data centers. Our model is capable of incorporating network latency.
The second constraint enforces the stability of the system. The number
of instances and the batch size should both be positive integers, as
shown in the last line. The objective is to minimize the resources, i.e.,
the total number of DNN instances used by the application. Each DNN
can have a different batch size and number of instances. Thus, the
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Figure P1.5: Graph transformation example: (left) the original dataflow
graph, (right) the transformed graph containing only egress
aggregators.

solution space for the IP increases exponentially for every new DNN
added to the system, making it hard to explore the space to find the
optimal solution exhaustively. For example, for just 10 models with the
maximum batch size of 128 and the maximum number of instances of
8, the feasible space could be as large as (128× 8)10 = 102410 ≈ 1030).
To address this issue, we provide an efficient algorithm to solve the
IP based on graph transformation and dynamic programming, as
detailed in the following sections.

p1.4.4 Graph Transformation

Our autoscaling algorithm consists of two parts: graph transformation
and dynamic programming. We now describe why and how we trans-
form the graph model and elaborate on the dynamic programming
design in the next section.

The autoscaling problem is challenging due to the dataflow depen-
dency, combined with SLA guarantee and batching, as discussed in
Section P1.2. This problem is illustrated in Figure P1.5 (left), where
two execution paths (green and red-colored edges) share DNNs s1

and s4 in a fork-join fashion, leading to a deadlock situation in scaling
these DNNs if we look at these DNNs one by one. In this example, if
we decide the instance numbers and batch sizes for s1 and s4 from the
green-colored path, the configurations may be sub-optimal or even
infeasible for the same DL models in the red-colored path with a
different SLA and more DNNs on the path. More specifically, if an
application’s dataflow graph meets the following condition, the prob-
lem can be solved efficiently: The dataflow graph does not contain
both ingress and egress aggregators at more than one DNN. Here, an
ingress aggregator represents a DNN that receives requests from multi-
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ple preceding DNNs, and an egress aggregator represents a DNN that
sends requests to multiple succeeding DNNs. If we can avoid having
both types of aggregators in the dataflow graph, we can eliminate the
dependency issue explained in the above example. This property sig-
nificantly reduces the complexity of the autoscaling problem. Without
loss of generality, we choose to avoid ingress aggregators.

To ensure the above property, we apply graph transformations to
remove a subset of edges from the dataflow graph. To this end, we
define a new metric called sharing degree for each edge, which captures
the number of execution paths on which the edge is being used.
The calculation of the sharing degree for each edge can be done
by traversing through all the execution paths. After that, we loop
through all the ingress aggregator DNNs and pick the edge with the
lowest sharing degree to remove. Since removing the edge from the
dataflow graph requires splitting the execution paths that use this
edge to be partitioned into two parts, choosing the ones with the
lowest sharing degree leads to the least number of execution paths we
need to partition. To partition an execution path, we need to split the
SLA specified for that execution path into two parts, and then the two
path segments can be treated as entirely independent execution paths
with their own SLAs. We decide to split the SLA proportionally for the
two path segments based on a metric called intensity (denoted by Int),
which characterizes how intensive the computation is for the DNNs
on a path segment. Other optimizations considering the queuing delay
of the DNNs can also be applied. We compute the intensity of a DNN
by averaging the processing time of the DNN over a set of batch sizes
(here, we use batch sizes in [1,16] as the processing time with a larger
batch size may violate SLAs solely). For a path p to be split, we assume
p1 is the first segment before the edge to be removed, and p2 is the
other segment. The SLA for the first segment can thus be calculated
as

SLAp1 =
∑s∈p1

Ints

∑s∈p Ints
· SLAp. (P1.4)

The SLA for p2 can be computed analogously. We repeat the above
procedure until no ingress aggregators can be found in the dataflow
graph.

Finally, the number of requests to a DNN is directly calculated as the
sum of its preceding DNNs on the original dataflow graph (not the
one after transformation). To this end, we adopt a topological sort
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algorithm [9] to sort all the DNNs in the original dataflow graph and
calculate the workload for each execution path in the transformed
graph. The new graph with the workload information now can be
handled with dynamic programming to obtain the optimal scaling
decision, as we will explain in the next section.

p1.4.5 Scaling with Dynamic Programming

Now, we focus on how to solve the resource scaling problem with
dynamic programming on the transformed graph. We denote by
OPT(s, t) the optimal solution, i.e., the minimum resource consump-
tion, when we consider only DNN s and all its successors in the
transformed graph, given a time budget of t. We consider two cases
here:
Case 1: A DNN without successors. In this case, time t can be allo-
cated to the DNN entirely, and the optimal solution is achieved with
the maximum batch size that can be handled within time t:

OPT(s, t) = min
b:ls(b)≤t

(
⌈ λs

hs(b)
⌉
)

. (P1.5)

Case 2: A DNN with successors. Let us denote by M ⊂ S the set of
successors of s. In this case, time t can be split into two parts: one
part for the current DNN s and the other for all its succeeding path
segments. The optimal solution consists of the resources consumed by
s plus the sum of resources consumed by DNNs on all the succeeding
paths of s. For each DNN s we denote by rs the maximum time that
can be spent on DNN, which is calculated as the minimum of the
SLAs of paths that s is on, i.e.,

rs = min
p:s∈p∧p∈P

SLAp. (P1.6)

The optimal solution from DNN s given time budget t can be obtained
following the recursive function:

OPT(s, t) = min
b:ls(b)≤rs

(
⌈ λs

hs(b)
⌉+ ∑

m∈M
OPT(m, tm)

)
(P1.7)

where tm = min{SLAp, t − ls(b)} if m is the first DNN on path p
and t′ = t − ls(b) otherwise. Assuming s1 is the first DNN in the
transformed graph after the topological sort, we add an artificial node
s0 preceding s1 in the graph. The optimal resource consumption by
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the system is thus given by OPT(s0, tmax) where tmax = maxp∈P SLAp

denotes the maximum time any execution path on the graph can
spend.

The above recursive function leads to an algorithm based on dy-
namic programming, which leverages the optimal substructure of the
problem and avoids redundant computation. The pseudo-code for our
algorithm based on dynamic programming is listed in Algorithm 1. We
define a matrix dp containing tuples of (instance_number,batch_size).
We initialize dp in line 1. Then, we iterate over all the DNNs in a
reversed order of the topologically sorted dataflow graph, the possible
time budget, and the batch size. For each DNN under the given time
budget and batch size, we compute its processing time and queuing
time to see if the time budget is possible. If so, we apply fill the dp ma-
trix with Equation P1.5 (line 9) and Equation P1.7 (lines 10–14). Finally,
we use backtrack in the filled dp matrix to obtain the optimal number
of instances and batch size for each DNN. The time complexity of the
proposed algorithm is dominated by the dynamic programming part,
where we need to iterate over multiple dimensions to fill in the DP
table. This time is calculated as O(|S| · tmax · bmax · |S|) where |S| is the
number of DNNs, tmax is the number of time slots (of 1 ms length)
conditioned by the largest SLA, bmax is the maximum possible batch
size. Also, the dominant data space needed in Algorithm 1 is for the
DP table, an array of size |S| · tmax holding two-tuples of integers.

p1.5 implementation

We implemented FA2, including the monitor, optimizer, and the con-
troller in Python. The source code of the FA2 runtime framework is
available at [59]. The DNNs are implemented with TensorFlow [2]
which is an open-source framework for machine learning. Each DNN
instance is built with a Docker container [16] with a pre-specified
amount of resources running the target DNN inside the container. FA2

leverages Kubernetes [23] to orchestrate and manage the containers in
the system. In particular, FA2 sends control commands to Kubernetes
for scaling in/out the DNNs and reconfiguring the batch size for the
instances of each DNN.

Each DNN is built with two components: (a) a central queue in front
of all the instances for the DNN, and (b) a set of DNN instances (the
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Algorithm 1: Dynamic Programming
input : graph G (after transformation), {SLAp : p ∈ P}, {λs : s ∈ S}
output : OPT(s0, tmax)

1 dp← [|S|][tmax](∞,0)//(instance_number,batch_size)
2 for s in reversed(S) do
3 for t in [1, tmax] do
4 for b in [1,bmax] do
5 qs← bs−1

λs
, ps← ds(bs), ls← ps + qs

6 if ls > t then
7 break
8 else if s has no successors then
9 dp[s][t]← (⌈λs/(bs · ⌊t/ps⌋⌉,bs)

10 sum← ⌈λs/(bs · ⌊t/ps⌋⌉
11 for p in P do
12 for m in p do
13 if (s,m) ∈ p and t− ls <= SLAp then
14 sum← dp[m][t− ls].in + sum
15 if sum < dp[s][t].in then
16 dp[s][t]← (sum,b)

number of instances is given by FA2) running in Docker containers
which fetch requests from the central queue for processing. The central
queue holds pending requests and composes batches to feed the DNN
instances according to the batch size configuration given by FA2 for
the DNN. The central queue sends batched requests to the DNN
instances using a round-robin policy [6]. The interactions between
the queue and the DNN instances and the communication between
different DNNs are handled by gRPC [34].

p1.6 evaluation

In this section, we perform comprehensive experiments to demon-
strate the effectiveness of FA2 in real-world applications with various
realistic workloads. All experiments are performed based on the afore-
mentioned system implementation.
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Figure P1.6: Inference latency distribution for the considered DNNs under
varying batch sizes on CPU (an instance equipped with one
CPU core).

p1.6.1 Experimental Setup

We now describe the setup for our experiments, including the applica-
tion and its constituting DNNs, the SLAs, the evaluation metrics, the
baselines, and the workloads.

Hardware. We deploy FA2 on a testbed consisting of four servers
where two have Core i9-9980x CPUs, and the other two have Core
i9-10940x CPUs. Each server is equipped with an NVIDIA RTX2080

GPU. The servers can support up to 60 one-core CPU instances and 40

GPU instances, each taking 10% of the GPU share via CUDA MPS. The
servers run the Ubuntu 18.04 operating system and are interconnected
with a stable private Ethernet network (1Gbps). We evaluate FA2 on
both the CPU and GPU.

The Application and DNNs. To compare FA2 with existing solutions
in realistic environments, we use DNNs in the computer vision, natural
language processing, and audio recognition domains, which are also
heavily used in other DL inference serving systems [12, 47, 61, 62]. We
consider an application comprised of the DNNs listed in Table P1.2.
Each instance encapsulates the DNN with pre-specified resources: 1
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Figure P1.7: Inference latency distribution for the considered DNNs under
varying batch sizes on GPU (on an instance equipped with 10%
of the total GPU processing units specified using CUDA MPS).

CPU core or 10% GPU share, determined based on the observation
from Figure 2. The application contains multiple possible execution
paths over the involved DNNs as specified in Table P1.3. Note that
FA2 does not assume the path for a request is known a priori—the
next hop of a request is revealed only after the processing is done
at a DNN. We profile all the DNNs to obtain the throughput and
latency to build the performance model for the DNN processing with
varying batch sizes. Figure P1.6 and Figure P1.7 show the distribution
of the inference latency over more than 250K data points on CPU and
GPU, respectively. We use the data points at the 99-th percentile as
the reference numbers, as also done in [47], to build the performance
models following the methodology described in Section P1.4.1.

SLAs. SLAs are commitments between service providers and users
and are typically defined based on the processing time of the involved
DNNs. To set the application SLAs realistically, we calculate the tail
processing time (proved to be highly predictable [36]) required by
each of the execution paths under batch size b = 1 and multiply that
time by a factor of five following a similar methodology described
in [35]. This SLA setup serves as a suggestion, and FA2 can work
with other SLA setups. The actual SLA depends on the application
and can also be part of the service provider’s pricing scheme, where
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Table P1.2: DNNs Involved in the Application

Task Abbreviation DNN Model

Object Detection OBJD Inception V2

Object Recognition OBJR ResNet50

Not Safe For Work NSFW MobileNet V2

Car Recognition ALPR SSD
Face Recognition FACR ResNet50

Image Segmentation IMGS MobileNet V2

Question Answering QUAN DistilBERT
Text Summarization SUMR BART
Text Classification TCLS DistilBERT
Audio To Text AUTT Wav2Vec2

different prices will be offered under different SLAs. In the execution
paths in Table P1.3, the SLAs varying from 3020ms−25710ms and
960ms−4815ms, for the CPU and the GPU cases, respectively.
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Table P1.3: All Possible Execution Paths in the Application with Their SLAs When Deployed on CPUs and GPUs

Execution Path SLA-CPU (ms) SLA-GPU (ms) Description

OBJD→ALPR→QUAN 3020 1205 Provides answers to queries regarding a car in an image
OBJD→NSFW→FACR 3505 1670 Detects and recognizes a human if the image is safe for work
OBJD→OBJR→IMGS 3095 960 Detects, classifies an object, and provides segmentation of the

object
SUMR→QUAN 13580 2200 Summarizes texts and provides answers in the texts
AUTT→QUAN 12245 3005 Converts audios to texts then performs question answering on

them
AUTT→SUMR→TCLS 25710 4815 Performs text classification on summarized texts from audios
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Evaluation metrics. We consider the following four types of metrics
in our evaluation. (a) Processing and queuing delay: We use these data to
demonstrate the effectiveness of FA2 in predicting the processing and
queuing delay of DNNs. (b) SLA violation ratio: We measure the end-to-
end latency of every inference request and check whether the request
is processed within its SLA. (c) Resource consumption: We use the total
number of DNN instances to denote the resource consumption where
instances are homogeneous (1 core in the CPU case and 10% GPU
power set with CUDA MPS). (d) Instance utilization: We collect the
CPU utilization of each DNN instance captured in 100ms intervals.

Baselines. We compare FA2 with the recently proposed inference
serving frameworks, namely GrandSLAm [47] and InferLine [12], and
a state-of-the-art stream processing autoscaler called DS2 [46]. Grand-
SLAm maximizes the system’s throughput by using dynamic batching
and request reordering while guaranteeing SLAs. We consider the
same resource configuration as produced by FA2 for GrandSLAm
and examine its SLA violation. InferLine uses a greedy approach to
find the minimum cost by choosing the most affordable configuration
among different hardware and increasing the batch size for DNNs
while not violating any SLAs. DS2 is an autoscaler that uses the true
processing time and output rate to scale up/down stream process-
ing operators based on the workload. DS2 does not consider request
batching, so we use a fixed batch size b = 1. Finally, we compare FA2

with the optimal solutions generated by the Gurobi solver [39] to show
how close FA2 performs to the optimal.

Workloads. To evaluate FA2 under varying workload conditions, we
develop a workload generator that generates requests at different
rates (following different traces) and distributes these requests to the
application paths uniformly at random. Figure P1.8 shows the six
workload trace types we use for evaluating FA2: two steady traces
where the request rate follows a Poisson distribution (also used in [47,
61]) with an average arrival rate of around 8RPS (low) or 27RPS
(high), fluctuating trace where the average request rate jumps between
8RPS and 27RPS, a random trace following a normal distribution
with mean 15 and standard deviation 5 to have high-variance request
rates, and two different real-world traces where we use request arrival
rates directly from the Microsoft Azure FaaS (MAFS) traces provided
in [64]. The Azure traces consist of more than 46K functions, counting
invocation counts per minute per function. The invocation counts
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Figure P1.8: Workloads used in evaluation: two steady synthetic traces fol-
lowing Poisson distributions, a fluctuating synthetic trace with
a spike in the middle, a random workload following a normal
distribution, and two realistic traces from the Azure FaaS func-
tion invocation traces.

vary from 0 to over 150K per minute, per function. We take two
traces of function innovation counts for this experiment, which our
experimental environment can handle with the maximum utilization
and have different request arrival patterns.

p1.6.2 End-to-End Performance

In this part, we evaluate FA2 and compare its performance with the
baselines under different workloads.

p1.6.2.1 Steady Workloads

Under steady workloads, the number of DNN instances remains con-
stant, and the system is stable. We notice that the SLA violation rate is
less than 1% for all the approaches under such a situation. However,
FA2 needs less resources to serve the requests compared with the base-
lines (discussed in Section P1.6.3), which can be explained by the CPU
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Figure P1.9: CPU utilization of five DNN instances for all approaches under
the steady workload at a given time-window.

utilization statistics. As illustrated in Figure P1.9, with GrandSLAm
and InferLine, the DNN instances need to wait for request arrivals to
create the maximum possible batch at each DNN, resulting in consid-
erable CPU idle time, leading to resource waste. DS2 does not leverage
the batching technique, which also leads to CPU under-utilization.
With generally lower CPU utilization, the baseline approaches require
more computing resources than what is needed (shown as Optimal
in the figure). FA2 overcomes these issues by making holistic scaling
decisions where the number of instances and the batch size for each
DNN are determined jointly.

p1.6.2.2 Fluctuating and Random Workloads

When the request rate fluctuates, the system needs to adapt by pro-
viding a new set of configurations for all the DNNs. To this end, FA2

collects metrics in 10-second intervals and decides new configurations
for the next interval.

The adaptation interval of FA2 cannot be further reduced due to the
following system overheads: (a) FA2 optimizer needs around 500ms
to make a new adaptation decision, (b) the system needs up to 6s to
bring up new instances (Kubernetes pod cold-start time) in case of
scaling out, and (c) the runtime system needs a few seconds to drain
the queues and stabilize the system. One possible solution to this
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Figure P1.11: Resource usage and SLA violation over time under two (left
and right) Azure FaaS workload traces.

limitation is to use a workload predictor to make autoscaling decisions
proactively. To have a fair comparison, we set the same adaptation
interval for the baselines. Moreover, we use the same scaling decisions
produced by FA2 in GrandSLAm as their approach does not decide
the number of instances for each DNN.
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Figure P1.10 shows the number of instances required for the fluctu-
ating (left) and random (right) workloads in each approach and the
corresponding SLA violation rate. When a change in the arrival rate is
detected (after around three seconds, as shown in Figure P1.10), the
framework provides the new configuration to the Kubernetes cluster,
which brings up/down containers for the concerned DNNs. Before the
instances can start serving requests, a few seconds delay is observed
as the instances need to be initiated. After that, the framework starts
to serve the upcoming requests, and the system becomes stable again
gradually. This procedure takes longer for the baseline approaches as
the number of instances to add to the system is higher than that is
in FA2 and the management overhead (of Kubernetes) slows down
the scaling-out process of the instances due to performance interfer-
ence caused by that the instances are co-located on the same physical
machine, resulting in a higher SLA violation rate (up to 4% more).
Overall, the results from the fluctuating and random workloads are
consistent, except that a higher SLA violation rate is observed due to
the higher workload variation.

p1.6.2.3 Real-World Workload

We follow the same procedure described above and use five hours
of two of the real-world FaaS traces provided by Microsoft Azure.
Figure P1.11 depicts the required number of instances and the SLA
violation rate of all the approaches. As the number of queries suddenly
increases or decreases, the framework captures the changes within a
few seconds and adapts the system accordingly. Similar to the case
with the fluctuating and random workloads, FA2 needs up to 14.6%
less computational resources when compared with DS2 and InferLine
while reducing the SLA violation by 4.8% compared with DS2 and
GrandSLAm.

p1.6.3 Resource Efficiency

We assess the resource efficiency of FA2 compared with the baselines
under a steady workload with varying request rates, i.e., from 6 to
60. Figure P1.12 depicts the required number of instances for each
approach under each request arrival rate. InferLine tries to reduce the
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Figure P1.12: Comparison of resource consumption under varying request
rates on CPUs. FA2 shows clear advantages over all the existing
approaches and is comparable to the theoretical optimum.

number of instances by maximizing local batch sizes one by one until
there is no room to increase the batch size of any DNN. This approach
needs on average 19% (and up to 48%) more computational resources
when compared with FA2 as the InferLine approach does not consider
coordinating the scaling decisions of the DNNs on the same execution
path. DS2 does not leverage batching, leading to overall low resource
utilization. Consequently, the DS2 approach requires on average 26%
(and up to 62%) more computational resources when compared with
FA2. Also, FA2 performs close to the optimal (produced by Gurobi
solver) where the match to optimal decisions is over 96.8%. This
proves that FA2 is effective in improving the resource efficiency of DL
inference serving systems.

p1.6.4 Impact of Optimized Batch Sizes

We evaluate FA2 under static workloads and fixed computational
resources and compare it with the baselines and the optimal solution
produced by Gurobi. We feed the workload to the Gurobi solver to
obtain the optimal number of instances for each workload and apply
the results to all the approaches, including FA2. We also consider that
a request is dropped if its latency has exceeded 3× the SLA to avoid
constant queue overflow. We run the experiment for each approach
for 1200 seconds and collect the results when the system is stable.
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Figure P1.13: End-to-end latency distribution for the three execution paths
in the application under different scaling approaches on CPUs.
FA2 outperforms all the existing approaches to a large extent
with SLA violations less than 1%.

Figure P1.13 shows the CDF of the end-to-end latency of all the
approaches under fixed resources and static workload with more
than 300K queries over time. DS2 does not consider request batching,
leading to the least number of violations (less than 17% among the
other baseline approaches. However, due to the lack of resources,
over 32% of the requests are dropped. GrandSLAm adopts the “split-
and-conquer” approach with a static strategy for SLA partitioning,
resulting in poor adaptivity to the changes in workload distribution
over the execution paths. InferLine tries to maximize the system’s
throughput via local optimization, where it iterates over the DNNs
to increase the batch size of each DNN until there is no possibility
for further batch size increases. While resulting in numerous SLA
violations, the request dropout rate is the minimum among all the
baselines. FA2 overcomes all these issues by considering the current
workload and dynamic SLA allocations to all DNNs in a holistic
manner. Moreover, FA2 servers all the requests (0% dropout) with an
SLA violation rate as low as 1.4%, matching the optimal solution.
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Figure P1.14: Comparison of resource consumption under varying request
rates on GPUs. FA2 shows clear advantages over all the existing
approaches and is comparable to the theoretical optimum.

p1.6.5 Performance of FA2 on GPUs

This section evaluates the performance of FA2 under GPU resources
and different workloads and compares its performance with the base-
line approaches. We use CUDA Multi-Process Service (MPS) [10] to
share GPU processing power across multiple instances, as also used
in [15] recently. Each instance receives a subset of the available process-
ing units on the GPU enforced by CUDA MPS. We allocate 10% of the
GPU processing units (similar to [15]) and memory to each instance.
We show how FA2 saves GPU resources and achieves a better SLA
guarantee when compared with the baseline approaches.

Figure P1.14 shows the average required number of instances for all
the DNNs under the given workload with GPU. FA2 saves on average
25% (up to 50%) and 31% (up to 54%) GPU resources compared
to InferLine, and DS2 respectively. The results differ from the CPU
evaluations as the GPU instance has much better performance (higher
throughput, lower latency) than the CPU instance, thus being more
sensitive to the SLA division policy. FA2 achieves near-optimal SLA
division, but the heuristics-based baselines are poor in this respect,
thus amplifying the inefficiencies of these baselines.

Figure P1.15 illustrates the CDF of the end-to-end latency in all ap-
proaches under static GPU resource allocations and steady workloads
with more than 12K queries per approach. In static GPU resource
allocations, the number of instances for each DNN remains the same
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Figure P1.15: End-to-end latency distribution for the six execution paths in
the application under different scaling approaches on GPUs.
FA2 outperforms all the existing approaches to a large extent
with SLA violations around 1%.

during the experiment, but the batch size is different for different
approaches. The results confirm that FA2 can be effectively applied
on different computing platforms without obvious performance devi-
ations.

p1.7 related work

This section discusses resource autoscaling in four related research
areas: (a) inference serving, (b) microservices, (c) stream processing,
and (d) serverless computing. We note that there are autoscaling stud-
ies in batch processing systems (e.g., MapReduce) [58, 71]. However,
these systems differ significantly from inference serving systems in
that the tasks are transient, and the task dependency is simple and
deterministic (e.g., two stages as in MapReduce) in such systems.

Autoscaling for inference serving. InferLine [12] enables autoscaling
by starting from a feasible system configuration and then optimizing
the configuration by adapting the hardware and batch size for each of
the DNNs. InferLine does not account for the conditional execution,
and the heuristic approach in choosing the configuration for each
DNN leads to considerable resource underutilization. Clockwork [36]
focuses on inference serving with SLA guarantees without considering
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DNN dependency and conditional execution. Nexus [65] is addressing
a similar autoscaling problem. However, Nexus focuses mainly on
(a) simple tree-like dataflow graph while FA2 does not assume the
graph structure and can work with arbitrary graphs, (b) applications
specified with a single SLA while FA2 targets consolidated applica-
tions with different SLAs, (c) GPU-level resource allocation, while
FA2 allows fine-grained GPU resource allocation via CUDA MPS, and
(d) allocating half of the application SLAs to queuing delays leading
to reduced GPUs utilization, while FA2 carefully allocates the exact
amount of time for each DNN’s queue.

Microservice autoscaling. Existing microservice autoscaling mecha-
nisms are mostly rule-based heuristics [22, 33, 49, 67, 68, 72] or meta-
heuristics [7, 24, 70]. For microservices, request processing typically
follows a deterministic dataflow-graph, instead of one with conditional
execution paths as in inference serving systems. Machine learning
methods are also employed for workload prediction in microservice
systems for better autoscaling [4, 11]. Recently, DAGOR [73] provided
overloading detection and collaborative load shedding in microservice
systems. ATOM [30] is a model-driven microservice autoscaler based
on layered queuing networks [60], but it does not consider request
batching and end-to-end SLA guarantees. GrandSLAm is a microser-
vice management framework focusing on improving throughput while
guaranteeing application SLAs [47]. However, GrandSLAm does not
deal with the autoscaling issue.

Autoscaling for stream processing. A large body of work has been
dedicated to scaling operators in stream processing systems [1, 5,
14, 19, 21, 25, 29, 37, 42, 46, 52, 54, 55, 69]. Most of them rely on
coarse-grained metrics such as the CPU/memory utilization, system
throughput, queue size, and/or back-pressure and apply threshold-
based policies for scaling in/out operators. Some alternative solutions
such as DRS [25] or Nephele SPE [52] adopt queuing theory models to
characterize the system. DS2 focuses on estimating the true processing
and output rates of individual dataflow operators and figures out the
scaling decisions for all the operators in one shot [46]. Scaling DL
inference differs from scaling stream processing operators in that a
DL application may contain multiple (conditional) execution paths,
each with a specific SLA requirement [27]. While there exist stream
processing systems that provide SLA guarantees [14, 52], none of them
consider conditional execution while guaranteeing a set of SLAs over
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multiple execution paths. Therefore, none of the existing autoscaling
solutions for stream processing systems can be directly applied to
elastic DL inference serving.

Autoscaling for serverless computing. Serverless computing is a
widely adopted paradigm to provide autoscaling in cloud environ-
ments [45]. There exist numerous serverless platforms in academia
(e.g., [38, 41, 45, 48, 66]), industry (e.g., [31, 56, 63]) as well as open-
source solutions (e.g., [17, 43, 50]). Largely, autoscaling is achieved
using three approaches: (a) request-based, (b) concurrency value-based,
and (c) metric-based [53]. Most industry providers use a request-based
scaling approach in which the cloud resources are scaled up when
there are more requests for executing functions, while the resources
are scaled-down otherwise. However, this approach does not fulfill
SLAs. The second approach executes the function concurrently on
a given number of instances, and when this value is reached, the
resources are scaled down [32, 48]. Finally, most of the open-source
platforms such as OpenFaaS [17] and Kubeless [50] use a metric-based
scaling approach. This approach aims to maintain metrics such as
latency, throughput, and CPU usage within a predefined threshold.
However, this approach has the worst delay in adapting to fluctuat-
ing workloads. Overall, these solutions lack data dependency and
conditional execution support, as typically seen in inference serving
systems.

p1.8 conclusion

In this paper, we presented FA2, a fast, accurate resource autoscaler
tailored for efficiently provisioning DL inference serving while guar-
anteeing service-level agreements on the end-to-end latency. FA2 lever-
ages a graph-based model to capture the resource scaling problem and
makes resource scaling decisions for all the DNNs in a holistic manner.
Evaluation results based on an actual system prototype and real-world
workload traces show that FA2 improves the overall resource utiliza-
tion significantly compared with the state-of-the-art resource scaling
solutions. Overall, FA2 is able to match the optimal theoretical deci-
sions almost always. Although we only tested with CPUs and GPUs,
our design of FA2 is generally applicable to other mixed setups. In the
future, we plan to extend FA2 to more heterogeneous environments



P1.9 acknowledgments 89

(including CPUs, GPUs, TPUs, and other accelerators) by introducing
decision variables for hardware type for each DNN.
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P2
S P O N G E : I N F E R E N C E S E RV I N G W I T H D Y N A M I C
S L O S U S I N G I N - P L A C E V E RT I C A L S C A L I N G

abstract

Mobile and IoT applications increasingly adopt deep learning
inference to provide intelligence. Inference requests are typically
sent to a cloud infrastructure over a wireless network that is
highly variable, leading to the challenge of dynamic Service
Level Objectives (SLOs) at the request level.

This paper presents Sponge, a novel deep learning inference
serving system that maximizes resource efficiency while guaran-
teeing dynamic SLOs. Sponge achieves its goal by applying in-
place vertical scaling, dynamic batching, and request reordering.
Specifically, we introduce an Integer Programming formulation
to capture the resource allocation problem, providing a math-
ematical model of the relationship between latency, batch size,
and resources. We demonstrate the potential of Sponge through
a prototype implementation and preliminary experiments and
discuss future works.

p2.1 introduction

Within the domain of mobile and IoT applications, cloud-based Deep
Learning (DL) inference plays an important role, with user satisfaction
and resource efficiency serving as key performance indicators [1, 26,
27]. Since most DL-powered applications involve user interaction, they
must comply with strict requirements on the inference latency, a.k.a.
meeting the Service Level Objectives (SLOs) of the inference request.
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On the other hand, the resources needed to provision such a DL
inference serving system should be minimized to reduce the cost [10,
17, 18, 24, 29, 32].

SLOs are comprehensively defined from end to end, with the variable
network time required for transferring user requests and input data
introducing dynamic time budgets for serving inference requests.
Therefore, when setting expectations for mobile and IoT applications, it
is important to define SLOs that cover both the network and computing
aspects from start to finish. Ignoring the time it takes for information
to travel through the network, inference serving systems may find
themselves with not enough time to handle requests properly, resulting
in SLO violation. Hence, resource allocation must consider a variety
of time budgets of a single user using the same application. Managing
this dynamism poses a critical challenge for inference serving systems,
where the effective handling of diverse SLOs and the consideration of
fluctuating network conditions are imperative to ensure the fulfillment
of end-to-end SLOs.

Existing inference serving systems mostly consider only the inference
part with static SLOs, i.e., all requests have the same SLOs when
they reach computing units. Their horizontal scaling-based approach
cannot incorporate diverse SLOs at the request level [10, 12, 18]. For
example, FA2 [29] adjusts the number of minimum-resource instances
to achieve the highest resource efficiency (throughput). Moreover,
bringing new instances in horizontal scaling ties with the cold-start
issue (a few seconds [15, 30]), which cannot cope with the dynamically
changing network conditions. Jellyfish [28], on the other hand, aims to
guarantee end-to-end SLOs while achieving high inference accuracy
by using pre-loaded model-switching and trading accuracy for latency,
which may not always be possible for all applications.

We propose a new system, Sponge, aiming to address this research
gap. Our main insight is that the combination of in-place vertical
scaling, dynamic batching, and request reordering is a powerful tool
to combat request-level dynamism. In particular, the new in-place
vertical scaling feature of Kubernetes [3] allows developers to resize
CPU/memory resources allocated to containers without restarting
them, eliminating the cold-start issues of vertical scaling, while re-
quest reordering allows for requests with a lower remaining time
budget to be processed earlier. At the same time, dynamic batching
increases the system utilization to further reduce the needed comput-
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ing resources. We formulate the problem and propose a method for
inference serving with dynamic SLOs. Sponge relies on three adap-
tation strategies to capture per-request dynamic SLOs: 1 in-place
vertical scaling to change the computing resources of DL models in
spot, 2 request reordering to prioritize close-to-deadline requests,
and 3 dynamic batching to increase the utilization of the DL models.
More specifically, Sponge achieves dynamic SLOs guarantee and high
resource utilization by first providing a mathematical relation between
vertical scaling with batching and processing latency of the DL model
using historical data and then designing a request-based mathematical
modeling of the entire framework to guarantee SLOs of all requests
while minimizing the resources. Furthermore, we propose a simple
algorithm for small cases to iterate over all possible configurations and
find optimal resource and batch size allocations. The preliminary ex-
perimental results show a reduction in over 15× of the SLO violation
compared to the existing approaches.

Sponge currently does not consider pipelines of DL models. Complex
applications such as intelligent virtual assistants consist of multiple
DL models, coordinated with a Directed Acyclic Graph (DAG), collab-
oratively generating a meaningful output. Such applications require
a more intricate solution due to data dependencies among DL mod-
els, resulting in a strong coupling of scaling decisions for different
DL models. Furthermore, vertical scaling sustains workloads to some
extent due to the DL model parallelization level and availability of
computing resources in a sine node. Therefore, multiple instances of
the same DL model (horizontal scaling) may need to reside in differ-
ent computing nodes to support the incoming workload. We consider
these directions as future works of Sponge.

This paper contributes by discussing the challenges of dynamic SLOs
on DL inference serving systems. Then, we

• present the design of Sponge, a new DL inference serving system
for dynamic SLOs based on the idea of in-place vertical scaling,
request reordering, and dynamic batching.

• provide an Integer Programming formulation to encapsulate
the problem of dynamic SLOs by introducing a mathematical
modeling of the relation between latency, batch, and CPU in
inference serving systems.
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• build a prototype system for Sponge 1 and evaluate it using
4G/LTE bandwidth logs datasets. Sponge reduces the SLO vi-
olation by over 15× compared to a horizontal state-of-the-art
autoscaler.

p2.2 motivation

In this section, we first discuss the challenges raised by variable net-
works and then identify the challenges in efficient in-place vertical
scaling.

p2.2.1 Dynamic SLO

Fluctuations in network bandwidths, e.g., caused by user mobility, are
inevitable [8, 14], as illustrated in Figure P2.1 (top). This variability
influences the transmission overhead associated with sending data
across the network for remote processing, leading to a reduction in the
time budget available for server-side deployed services, as depicted in
Figure P2.1 (bottom). Consequently, service providers are compelled to
account for network latency to ensure compliance with the end-to-end
latency requirements specified in the SLO.

We use a simple human detection model trained on the ResNet archi-
tecture to motivate this work, where it detects a human in an image of
200 KB while the requests are being sent on a dynamically changing
network (e.g., 4G) under a static workload of 100 requests per second
with the SLO of 1000 ms (similar conditions to Figure P2.1). Table P2.1
shows the execution latency of the model with different allocated
CPU cores and batch sizes when considering the SLO. For calculating
the required number of instances per instance type (different core
numbers), we divide the incoming workload by the throughput of an
instance. Following the approach in FA2 [29], where they use one-core
instances, we need five instances to process a batch of 2 requests per
97 ms, which means that we can process a batch of 10 requests, or 20

requests per second (RPS), over a 1000 ms SLO. This approach works
perfectly if the network is static. However, if the network latency takes
up to half of the SLO, FA2 will drop all the requests, as there is no

1 https://github.com/saeid93/sponge

https://github.com/saeid93/sponge
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Figure P2.1: Bandwidth measurements in 4G networks provided by [20]. The
bandwidth varies from 0.5MB/s to 7MB/s in a 10-minute range
(top figure). The below figure demonstrates the remaining SLO
for processing when the user sends a 100 KB, a 200 KB, or a 500

KB image over the same network’s bandwidth.

possible solution in their approach with one-core instances, even with
the smallest batch size. Furthermore, even if the network latency takes
just 40 ms, the system needs to bring up a new instance to avoid
dropping requests or violating the SLO, meaning that the system will
suffer from the cold start of a new instance until the system stabilizes
again. Alternatively, meeting the SLO in the context of a dynamically
changing network bandwidth could have been achieved through the
dynamic modification of computing resources within the instance
(in-place vertical scaling). In the same scenario, if we had up to 600 ms
of network delay, we could still serve the requests without violating
or dropping any request by changing the instance core from 1 core
to 8 cores with a batch size of 4. InfAdapter [32] employs profiling
data to determine CPU core allocation for DL models. For instance,
under a workload of 100 RPS, the model’s computing resources and
batch size remain static. However, when faced with changes in the
SLO, it switches to a different model variant with predefined CPU
core allocation, encountering similar challenges as FA2 (cold start and
static CPU core allocation).
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Cores Batch Latency (ms) Throughput (RPS) Total Cores

1 1 55 18× 6 = 108 1× 6 = 6
1 2 97 20× 5 = 100 1× 5 = 5
2 4 94 40× 3 = 120 2× 3 = 6
4 8 92 80× 2 = 160 2× 4 = 8
8 4 37 108× 1 = 108 1× 8 = 8
8 8 62 128× 1 = 128 1× 8 = 8

Table P2.1: Execution latency (P99) of a ResNet model (human detector) with different CPU cores using different batch sizes while guaranteeing SLO of
1000 ms under the workload of 100 RPS.
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p2.2.2 Autoscaling Challenges

Creating an effective in-place vertical scaling system for DL infer-
ence serving is a complex task. Precisely, we pinpoint the following
challenges, which collectively differentiate the scaling problem in DL
inference serving systems from those examined in other systems.

Dynamic SLO at the request level. In wireless networks conditions
can change over time. This can be due to various factors, such as
changes in network traffic, hardware performance, signal strength, and
resource availability [23, 36]. These factors can cause variable delays
in network transmission for inference requests, leading to requests
with dynamic SLOs. Accommodating dynamic SLOs at the request
level requires fine-grained control over resource allocation to ensure
each request meets its SLO. This level of granularity is challenging to
achieve with vertical scaling since changing the resources to guarantee
one request SLO affects all the requests’ processing latency in the
system.

Batch size. DL inference serving systems commonly utilize request
batching to enhance resource efficiency [9–11, 33]. More precisely,
batching can increase throughput as more tasks or requests can be
processed in a given amount of time. Furthermore, batching can help
meet latency constraints with dynamic batching policies, where batch
sizes are determined online, during runtime, depending on the latency
constraints of each application [24, 29]. However, it is important to note
that large and small batch sizes can have drawbacks if not properly
managed. Large batch sizes can critically violate the latency of many
requests within a batch, while small batch sizes could cause excessive
queuing and may not exploit potential opportunities for increased
throughput.

In the next section, we provide an in-place vertical-based autoscaler to
capture the discussed challenges by first discussing how to reconcile
vertical scaling and batch size in the context of inference serving
systems, and second, providing a mathematical formulation to mimic
the autoscaling problem with the consideration of dynamic SLOs.
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Figure P2.2: An overview of the Sponge architecture. The monitoring service
collects metric data from the DL model. The queue prioritizes
requests according to the EDF policy. The scaler is responsible
for determining vertical scaling and batch size decisions for the
DL model and adjusting the system accordingly.

p2.3 system design

This section provides our solution for inference serving systems with
dynamic SLOs. Our goal is to use minimal resources to provision
the DL model with in-place vertical scaling, request reordering, and
dynamic batch sizing while guaranteeing all the requests’ SLO.

p2.3.1 Overview

Sponge consists of four components as is shown in Figure P2.2:

Monitoring. The monitoring component uses Prometheus [7] to ob-
serve the incoming workload to the system. It will monitor the work-
load destined for the model on a predefined time interval. Additionally,
it receives the end-to-end request latency from the processing com-
ponent to calculate the SLO violation rate and the accuracy of the
performance model.
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Queuing. The queuing component receives the request from the user,
reorders the request based on the remaining SLO (Earliest Deadline
First (EDF)), and creates a batch with the given batch size from the
solver. In addition, it sends the set of requests with their communica-
tion latency to the optimizer.

Processing. The processing component has the computing power to
execute inferences. It receives batches from the queue, processes them,
and sends them to the user. Furthermore, it sends the statistical data
(queuing latency and processing latency) to the monitoring compo-
nent.

Scaler. The scaler component first aims to find the vertical scaling
CPU cores and batch size decisions to achieve the highest resource
efficiency while respecting all the request SLOs in the system by
using the workload (reported by the monitoring component) and
the remaining SLOs of all the requests after being reordered by the
queuing component in the optimizer. Next, its adapter part adjusts the
system by sending a signal to the processing component with the new
CPU core allocation and a signal to the queueing component with the
new batch size configuration.

p2.3.2 Performance Model

For effective decision-making within the solver, Sponge needs knowl-
edge of the performance metrics, specifically the throughput h(b, c)
and latency d(b, c), associated with the DL model. Previous research
has indicated that the performance of DL inference tends to be highly
predictable [11, 18, 24, 35]. We follow the same line and use profiling
data and robust regressions [13] to build a model for any given DL
model. GrandSLAm [11, 24] suggests a linear relationship between
batch size and latency, that is, l(b, c) = α1 × b + β1, and FA2 [29] sug-
gests a second-order quadratic polynomial for a lower total MSE.
However, none of the above works consider changes in the computa-
tional resources (e.g., number of CPU cores) of the DL models. For
simplicity, we use the linear relation in the current work.

To have a relation between latency and CPU, we use Amdahl’s law [2]
for latency prediction under a given batch size:

L(b, c) =
α2

c
+ β2 (P2.1)
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Figure P2.3: Latency vs. different CPU core allocations and batch sizes using
real and predicted for the YOLOv5n and ResNet18 DL models.

Equation P2.1 states an inverse relation between the number of CPU
cores and latency if the model can use additional CPU cores, which is
the case in ML models.

On the other hand, the linear relation of batch size and latency sug-
gests that α1 and β1 have inverse relations with CPU cores, e.g.,
α1 = γ1/c + δ1 and β1 = ϵ1/c + η1 (otherwise, l(b, c) would become
linear in Equation P2.1). Therefore, to incorporate computational re-
sources into batch/latency profiling, we combine the linear relation of
batch/latency and the inverse relation of CPU/latency as follows.

l(b, c) =(
γ1

c
+ δ1)× b +

ϵ1

c
+ η1

=
γ1 × b

c
+

ϵ1

c
+ δ1 × b + η1

(P2.2)

Our preliminary evaluation with the data sets profiled from ResNet18

and YOLOv5n models used in Figure P2.3 confirms that the laten-
cy/CPU/batch model in Equation P2.2 provides a realistic estimation
of latency with different CPU cores and batch sizes on different DL
models. The throughput of a DL model is directly given as a function
of batch size and CPU cores, e.g., h(b, c) = b/l(b, c).
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Table P2.2: Notations

Symbol Description

R Set of all requests
b Model’s batch size
c Model’s CPU allocation
clr Communication latency associated with r ∈

R
clmax Highest clr in R
SLO Pre-defined SLO for R
l(b, c) Processing time of a model with allocation

core c and batch size b
qr(b, c) Queuing time of r ∈ R with allocation core

c and batch size b
h(b, c) Throughput of a model with allocation core

c and batch size b
λ Request arrival rate

p2.3.3 Problem Formulation

The optimizer generates scaling decisions by solving an optimization
problem. Now, we provide a formal formulation for the problem given
that the end-to-end latency for a request is the aggregation of the
communication latency (the time the request takes to be received by
the system from the user device), the queuing (the time the request
spends in the queue before being processed), and the processing
latencies (inference latency) of the request.

Suppose that we are given a model and a set of requests R with a
predefined SLO. Each request r ∈ R has communication latency clr.
The arrival rate of the application request is denoted by λ. Due to the
instability of the network, as we have already discussed in Section P2.2,
we apply the earliest-deadline-first (EDF) queue (q(b, c)), similar to
GradnSLAm [24], since request reordering prioritizes the processing
of requests with lower remaining SLOs due to their more stringent
completion deadlines.

Let us denote the number of CPU cores allocated and the batch size
of the model by c and b, respectively. In addition, we use clmax =

max(clr,r ∈ R) to indicate the highest communication latency in the
current requests.
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The monitoring system continuously reports to the adapter the average
number of requests served by the model in a given period. To ensure
the stability of the system, that is, no back pressure should form in
the queue, and the throughput of the model should be no less than
the expected request rate, that is, h(b, c)≥ λ. Such a constraint ensures
that the model is sufficiently provisioned. As a result, the queuing of
requests on the model will be under control.

The optimization problem is to decide c and b for the model such that
under the workload λ, none of the request SLOs are violated. The
goal is to minimize the amount of resources (CPU cores) used for the
model. The problem can be formulated with the following integer
program (IP):

Minimize c + δ× b

subject to l(b, c) + qr(b, c) + clmax ≤ SLO, ∀r ∈ R

h(b, c) ≥ λ

b, c ∈Z+

(P2.3)

In the objective function, in addition to CPU cores, we incorporate
an insignificant penalty term δ into the batch size to mitigate un-
necessary latencies. The first constraint ensures that all requests for
SLOs, including communication latency, will be satisfied. We use the
smallest SLO in the current batch for all requests in the same batch
because we do not intend to violate any remaining SLO requests. The
second and third constraints are designed to maintain system stability,
necessitating that the CPU cores and the batch size be constrained to
positive integer values. The objective is to minimize the total amount
of resources, that is, the total number of CPU cores given to the model.
All the notation used is available in Table P2.2.

p2.3.4 Solution

With IP and a single model, we use a brute force approach shown
in Algorithm 2. We feed the requests with their remaining SLOs to
a queue and then reorder them based on the EDF policy (lines 1–
2). After finding the maximum communication latency in the set of
requests (line 4), we then iterate over all possible batch sizes and
CPU core allocations (lines 5–6). Furthermore, we check if the current
configuration and all the requests in the subsequent batches will satisfy
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Algorithm 2: Optimal CPU and batch size finder
input : SLO, Set of requests r ∈ R with communication latency,

Performance model
output : c,b

1 q← R
2 Reorder q (EDF policy)
3 n = len(R)
4 Calculate clmax

5 for c in [1, cmax] do
6 for b in [1,bmax] do
7 Calculate l(b, c)
8 better = True
9 qr = 0
10 for i in [1,n,b] do
11 if l(b, c) + clmax + qr ≥ SLO then
12 better = False
13 break
14 qr = qr + l(b, c)
15 if better = True then
16 return c, b

their remaining SLOs (lines 10–15). Note that there will be a waiting
time for the subsequent batches equal to the processing latency of the
previous batches, calculated in line 14. Finally, if there is no objection
against the current batch size and CPU core allocation configurations
(line 15), we send the found configuration to be enforced to the system.
The algorithm generates the optimal CPU core allocation with the
smaller batch size with the current allocation, since it iterates from 1

to the maximum CPU core and batch size allocations.

p2.4 preliminary evaluation

Sponge is implemented in 6K lines of Python. For evaluation, we use a
physical machine from Chameleon Cloud [25] equipped with Intel(R)
Xeon(R) Gold 6240R (48 threads). To enable the in-place vertical scaling,
we install the experimental branch of minikube [6] since the in-place
vertical scaling feature is not yet in the official releases [3].

Baseline. We compare Sponge with a state-of-the-art horizontal au-
toscaler in inference serving systems, FA2, and static 8-core and 16-core
instances. All approaches (including Sponge) use a YOLOv5s [34] with



110 sponge

the performance modeling in Figure P2.3 to detect humans in images.
We also set bmax and cmax to 16 for Sponge as there is no significant
gain afterward. For the adaptation period, we set one second same as
the network bandwidth interval in the dataset.

Workload generator. In order to assess Sponge in scenarios with
dynamic network bandwidth, we design a workload generator that
produces requests asynchronously at a fixed rate of 20 RPS with
predefined SLOs similar to Figure P2.1. We use gRPC [16] to handle
communication between all components of the system, including the
workload generator.

Performance evaluation. Figure P2.4 demonstrates the overall per-
formance of Sponge, FA2, and statically assigned CPU cores under a
dynamic network bandwidth. Under a given workload and the remain-
ing SLOs, FA2 violates a large number of requests’ SLO (roughly 5%
and over 50% violation in some severe cases (Time = 1 and 360 in the
same Figure) when the bandwidth becomes limited since bringing new
instances is tied with the cold startup issue, and FA2 needs roughly
10 seconds to find a new configuration, adjust itself, and stabilize
the system. The statically assigned 8-core instance experiences SLO
violations after a few seconds due to insufficient computational re-
sources to handle the requests, necessitating a more powerful instance.
Conversely, the 16-core instance shows almost no SLO violations, indi-
cating potential over-provisioning of the DL model. Sponge solves the
resource waste by dynamically changing the allocated CPU cores in
response to the network bandwidth changes and reduces the amount
of allocated CPU by over 20% while sacrificing less that 0.3% of SLO
violations, compared to statically assigned 16-core instance.

p2.5 related work

Inference serving with SLO guarantee. Multiple works have been
proposed with SLO guarantees [12, 18, 32, 33]. Model switch [38]
switches to a different model architecture in response to workload
changes to ensure SLO. GrandSLAm [24] uses dynamic batching and
request reordering to increase system throughput with the SLO guar-
antee. InFaaS [30] gets user preferences about accuracy, cost, or per-
formance and provides a model variant to satisfy the requested SLO.
Jellyfish [28] trades accuracy with latency by model switching and
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Figure P2.4: SLO violations and allocated CPU cores.

data adaptation to match the input of the model variant to guarantee
latency SLO.

Autoscaling in inference serving. Autoscaling in inference serving
has been extensively studied [10, 21, 31, 37]. Kubernetes VPA [5] and
HPA [4] use threshold-based metrics such as CPU or memory usage
to change computing resources or the number of instances of DL-
based inference services. Clipper [11] provides an abstraction layer
to simplify model deployment across frameworks and uses adaptive
batching to increase system throughput. IPA [15] uses model switching
and horizontal scaling to increase system accuracy while minimizing
computing resources. Cocktail [19] uses a subset of model variants
with a weighted scaling policy to ensure low cost, a predefined accu-
racy, and latency SLOs archived. FA2 [29] uses graph transformation
and dynamic programming to design a new horizontal autoscaler to
increase system utilization with SLO guarantees.

The mentioned approaches neither consider dynamic networks (wire-
less and 4G/5G) without changing the model variant that affects other
metrics such as cost and accuracy nor use in-place vertical scaling,
which Sponge has shown a necessity for state-of-the-art autoscalers
to guarantee predefined latency SLO under a dynamic network band-
width.
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p2.6 conclusion & future work

In this work, we presented Sponge, the first inference serving system
that uses in-place vertical scaling, request reordering, and dynamic
batching with SLO guarantees. The preliminary evaluation shows that
Sponge reduces the SLO violation to 0.3% while minimizing the CPU
allocation in a dynamic network. We identify the following limitations
of Sponge and consider them as future directions:

Model variant. There are variations of the same DL model with
different configurations in terms of architecture that are capable of
doing similar tasks with different objectives such as accuracy [28, 30,
38]. Incorporating model variants requires careful system design, since
the three pillars of accuracy, latency, and CPU allocation (even without
vertical scaling) have conflicting relations [32].

Pipeline. Many modern applications are composed of multiple DL
models, such as Amazon Alexa, and are usually arranged as a DAG.
Generalizing Sponge to support such applications requires a new
algorithm design, since there is a data dependency [10, 15, 22, 29]
between DL models and finding an optimal resource allocation for
individual DL models requires consideration of all models in the
system.

Multidimensional scaling. The resource requirements of a DL model
can be influenced by the dynamic nature of workloads [17, 37], making
them difficult to predict. Vertical scaling can support the incoming
workload to a certain degree, meaning that horizontal scaling must be
considered if the workload is too much for a single instance of a DL
model. The joint optimization of horizontal scaling and vertical scaling
mechanisms brings new challenges, such as changing an upstream
DL model’s processing latency rate (vertical scaling), which affects the
input rates on downstream DL models and may require additional
instances (horizontal scaling).
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P3
I PA : I N F E R E N C E P I P E L I N E A D A P TAT I O N T O
A C H I E V E H I G H A C C U R A C Y A N D
C O S T- E F F I C I E N C Y

abstract

Efficiently optimizing multi-model inference pipelines for fast,
accurate, and cost-effective inference is a crucial challenge in
machine learning production systems, given their tight end-to-
end latency requirements. To simplify the exploration of the
vast and intricate trade-off space of latency, accuracy, and cost
in inference pipelines, providers frequently opt to consider one
of them. However, the challenge lies in reconciling latency, accu-
racy, and cost trade-offs. To address this challenge and propose
a solution to efficiently manage model variants in inference
pipelines, we present IPA, an online deep learning Inference
Pipeline Adaptation system that efficiently leverages model vari-
ants for each deep learning task. Model variants are different
versions of pre-trained models for the same deep learning task
with variations in resource requirements, latency, and accuracy.
IPA dynamically configures batch size, replication, and model
variants to optimize accuracy, minimize costs, and meet user-
defined latency Service Level Agreements (SLAs) using Integer
Programming. It supports multi-objective settings for achieving
different trade-offs between accuracy and cost objectives while
remaining adaptable to varying workloads and dynamic traffic
patterns. Navigating a wider variety of configurations allows
IPA to achieve better trade-offs between cost and accuracy ob-
jectives compared to existing methods. Extensive experiments
in a Kubernetes implementation with five real-world inference

115
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pipelines demonstrate that IPA improves end-to-end accuracy
by up to 21% with a minimal cost increase.

p3.1 introduction

Nowadays, companies run some or all of their Machine Learning (ML)
pipelines on cloud computing platforms [70]. The efficient deployment
of ML models is crucial in contemporary systems where ML inference
services consume more than 90% of datacenter resources dedicated to
ML workloads [2, 7]. In various critical applications, such as healthcare
systems [20], recommendation systems [52], question-answering, and
chatbots [11], a range of ML models, including computer vision models
[20] and speech models [38], play an essential role. It is imperative
to deploy these models cost-effectively while maintaining system
performance and scalability.

Automatic resource allocation is a complex problem that requires care-
ful consideration and has been extensively studied in various domains,
including stream processing [18, 22, 39], serverless computing [46,
65], and microservices [21, 24, 76, 77]. Static auto-configuration of
hardware resources [68], dynamic rightsizing of resources through
autoscaling [73], and maximizing utilization with batching [3] are
some of the techniques that have been used for resource management
of ML models. In addition to efficient resource allocation, accurate
prediction is another essential factor influencing ML model deploy-
ment. In many real-world scenarios, the predictions from these models
have significant implications for business [57], industry [15], or human
lives [1], and inaccuracies can lead to severe consequences [30, 43].
Hence, ensuring that ML models make accurate predictions is critical
to producing reliable and trustworthy outcomes.

ML inference pipelines, as a chain of ML models, will raise several
challenges for performance optimization. Unlike individually opti-
mizing each stage, optimizing end-to-end ML inference pipelines will
capture the correlation between configuration changes across multiple
pipeline steps. Previous works [16, 33, 40, 59] have proposed solu-
tions to address the challenges of efficient autoscaling, batching, and
pipeline scheduling not only to consider the above challenges but also
to consider the dynamic nature of ML workloads. However, none of
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Table P3.1: Comparison of IPA with previous works; Pipeline: A chain of
models inference or just single model inference? Cost: Whether
the work optimizes cost? Accuracy: Does it optimize accuracy?
Adaptive: Can it adapt to different accuracy/cost optimization
trade-offs?

System Pipeline Cost Accuracy Adaptive

Rim [34] ✓ ✕ ✓ ✕

INFaaS [58] ✕ ✓ ✓ ✕

Inferline [16] ✓ ✓ ✕ ✕

GPULet [13] ✓ ✓ ✕ ✕

Llama [59] ✓ ✓ ✕ ✕

FA2 [56] ✓ ✓ ✕ ✕

Model Switch [75] ✕ ✕ ✓ ✕

Scrooge [33] ✓ ✓ ✕ ✕

Nexus [63] ✓ ✓ ✕ ✕

Cocktail [28] ✕ ✓ ✓ ✕

InfAdapter [61] ✕ ✓ ✓ ✓

IPA ✓ ✓ ✓ ✓

Accuracy

C
os
t

Objective SpaceAdaptation Space

Model Variant
Resource

Figure P3.1: IPA provides a tunable framework for adjusting the system
based on two contradictory cost and accuracy objectives.

these approaches considers the combined optimization of accuracy
and resource allocation across pipelines.
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In ML inference pipelines, two adaptation techniques are commonly
used: Autoscaling, which adjusts resources based on workload, and
Model-switching, which employs different model variants with differ-
ent accuracies/latencies to vary resource demands and tasks, allowing
finer control over resource allocation and accuracy. The combination
of these two techniques has been advocated to achieve more precise
adjustments in accuracy and cost trade-offs. Previous autoscaling [60]
and model-switching [61, 75] works have argued that using both tech-
niques in conjunction with each other is beneficial in providing more
precise adjustments in terms of accuracy and cost trade-offs, provid-
ing greater flexibility and efficiency in ML model resource allocation.
However, none of the above works has considered optimizing accuracy
and cost jointly in a multi-stage pipeline setting. Table P3.1 presents an
overview of related inference serving works. Systems with inference
pipeline serving have often overlooked the presence of multiple model
variants for each inference task [16, 33, 40, 56, 59]. The heterogeneity
of these model variants presents an opportunity not only to configure
the pipeline to meet latency objectives but also to opportunistically
select the most suitable model variant to enhance the accuracy of the
pipeline output. On the other hand, previous works that have consid-
ered accuracy optimization of machine learning services [28, 58, 61, 75]
do not support inference pipelines with an end-to-end optimization
over all the stages of the inference pipeline.

In this paper, we propose IPA, a system for jointly optimizing accu-
racy and cost objectives. It can achieve multiple trade-offs between
these two conflicting objectives based on the pipeline designer’s pref-
erence. Figure P3.1 shows the premise of IPA that provides a tunable
framework for adapting the inference pipeline to achieve an optimal
trade-off between accuracy and cost objectives given constraints and
user preference. The choice of models in previous works was limited to
using just one pre-selected model variant. IPA can broaden this search
space by considering all model variants and dynamically adapting to a
suitable choice of models based on the pipeline designer’s preference.

The main contributions of this paper are as follows:

• We revisit the resource management design in inference pipelines
by incorporating model switching, autoscaling, and pipeline
reconfiguration (stage batch size). IPA proposes a new optimiza-
tion formulation to allow for a more granular trade-off between
the accuracy and cost objectives. It is also adaptable based on
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the inference pipeline designer’s preference for each accuracy
and cost objective.

• We propose a new optimization formulation based on the in-
teraction between model switching, replication, and batch size.
It can find (1) exact resources to allocate to each stage of the
pipeline, (2) variants to decide for each stage, and (3) depen-
dency between stages that enable accurate estimation of demand
while guaranteeing end-to-end latency.

• The full implementation of IPA is built on top of Kubernetes.
IPA integrates open-source technologies in its stack to facilitate
seamless integration into production clusters.

• Experimental results show that IPA can achieve more granular
trade-offs between the two contradictory objectives of cost and
accuracy. In some scenarios, it was able to provide an improve-
ment of up to 21% in the end-to-end pipeline accuracy metric
with a negligible increase in cost.

p3.2 background and motivation

This section provides the background of the inference pipeline and
discusses the challenges of reconciling cost and accuracy trade-offs.

p3.2.1 Search Space

Figure P3.2 illustrates the differences in latency and throughput be-
tween different versions of image classification models within the
ResNet family. In particular, there exists an inverse relationship be-
tween throughput with both latency and accuracy for each variant
of the model, considering the same number of CPU cores and fixed
batch sizes. The variability in performance across model variants adds
a new dimension to the configuration search space.

Choosing the best configuration among the highlighted parameters
is non-trivial and subjective to multiple objectives and constraints,
e.g., cost efficiency and Service Level Agreement (SLA) requirements
between cloud users and providers. Table P3.2 shows that under
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Figure P3.2: Performance difference across ResNet Family models for a batch
size of one and one CPU core allocation.

Table P3.2: Performance difference across ResNet family models under dif-
ferent CPU allocations for a batch size of one, both blue and
red core/model configuration can respond to 20 RPS and 75 ms
throughput and latency requirements with different accuracy and
costs.

CPU
Cores

ResNet18 ResNet50

Latency
(ms)

Throughput
(RPS)

Latency
(ms)

Throughput
(RPS)

1 75 20 135 9

4 23 37 57 21

8 14 62 32 29

the same 20 RPS incoming throughput and mutual SLA agreement
of 75 ms between the user and the service provider, a user with
high accuracy goals will choose a suitable configuration of four core
assignments in ResNet50 (marked red). However, a user with lower
accuracy demands will choose ResNet18 with one core, which can
respond to latency and throughput requirements under lower core
allocations (highlighted in blue).
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Accuracy Latency Throughput Cost

Model
Switch

Batching Scaling

Configuration
 Knob

Metric

Impacts

Figure P3.3: Impact of configuration knobs, batching indirectly affects the
cost, e.g., decreasing the throughput will affect the IPA to more
scaling and increase in the cost.

p3.2.2 Configuration Space

Batch Size Neural network structure provides parallel computation
capability. Batching multiple requests will leverage the parallelization
capability of neural networks and increase the utilization of assigned
resources while increasing the total latency. Previous works [3, 16, 33]
have shown that there is a relationship between the system utilization
and the request latency, resulting in a non-trivial trade-off between
maximizing the resource utilization without violating the latency SLA.

Replication There are mainly two resource provisioning techniques:
vertical and horizontal scaling of resources. In vertical scaling, the as-
signed resources are modified, while in horizontal scaling, the number
of replicas with the same amount of resources is adjusted to balance
performance and cost. Horizontal scaling allows predictable perfor-
mance using a similar environment [27], while vertical scaling allows
a more fine-grained resource allocation to the ML model. We use
horizontal scaling for the current work similar to [16, 56].

Variant Selection Previous works [58, 75] have shown that ML models
are abundant for a single ML task. This brings the opportunity to
abstract away the ML task from the underlying model and oppor-
tunistically switch the model based on the performance needs of the
system.

Figure P3.3 shows the complex relationship between changing each
configuration knob and performance objectives. Changing the batch
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size will affect the throughput and latency of each pipeline stage, while
changes in the replication factor will directly impact the pipeline de-
ployment cost. Model switching will result in changes both in accuracy
and cost as different models have different resource requirements.

p3.2.3 Inference Pipelines

Traditional ML applications revolve around the use of a singular deep
neural network (DNN) to perform inference tasks, such as identifying
objects or understanding natural language. On the contrary, modern
ML systems (ML inference pipelines) are more intricate scenarios,
such as digital assistant services like Amazon Alexa, where a series
of interconnected/chained DNNs (in the form of DAG structures)
are used to perform various inference tasks, ranging from speech
recognition, question interpretation, question answering, and text-to-
speech conversion, all of which contribute to satisfying user queries
and requirements [56, 59]. As these systems frequently interact with
users, it becomes essential to have a stringent SLA, which in our case
is end-to-end latency.

The nonlinear dependency between the three configuration knobs
(batch size, replication, and variant selection) and the pipeline vari-
ables introduces a complex decision space between multiple conflicting
goals.

Figure P3.6(a) depicts one of the evaluated pipelines consisting of two
stages, an object detection stage, and an object classifier. A subset of
the configuration space is presented in Table P3.3 with different batch
sizes, model variants, and deployment resources. We denote cost as
the number of replicas × allocated CPU cores per replica. The chosen
configuration at each stage should first support the incoming workload
into the pipeline while guaranteeing SLA, e.g., the sum of the latency
of both stages should be less than the SLA requirement. Under the
arrival rate of 20 RPS (Request Per Second) and the SLA requirement of
600 milliseconds, both combinations of (A1, B1) and (A2, B2) can meet
the latency threshold and accommodate the incoming throughput.
However, the first combination can support these requirements at the
cost of 2 + 2 = 4 CPU cores with a lower accuracy combination, while
the latter can support the same load at the cost of 10 + 3 = 13 CPU
cores and a higher possible accuracy combination.
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Table P3.3: Two-stage pipeline tasks options. Latency is in Milliseconds and
Cost is the number of physical cores.

Variant Scale Batch Latency Cost Accuracy

A1: YOLOv5n 2 1 80 2× 1 45.7
A2: YOLOv5m 5 1 347 5× 2 64.1
A3: YOLOv5n 2 8 481 2× 1 45.7
A4: YOLOv5m 5 8 1654 5× 2 64.1
B1: ResNet18 2 1 73 2× 1 69.75

B2: ResNet50 3 1 136 3× 1 76.13

B3: ResNet18 2 8 383 2× 1 69.75

B4: ResNet50 3 8 833 3× 1 76.13

Challenge 1 Multiple configurations can satisfy the latency con-
straints of the inference pipeline. The "optimal" configuration
depends on the accuracy and cost goals.

The next challenge is that in inference pipelines, the model selection at
an earlier stage of the pipeline will affect the optimal model selection
at downstream models, as the latency of a model at an earlier stage
will affect the end-to-end latency. Consequently, the options available
for the downstream models are more limited. In a similar example of
pipeline Figure P3.6(a) and Table P3.3, and under an SLA of 500 ms,
choosing a high latency and high accuracy configuration of A2 at the
first stage will eliminate the variant B2 from the second stage’s option.

Challenge 2 The choice of replication factor, batch size, and
model variant is a joint decision in multiple stages of the infer-
ence pipeline.

p3.3 system design

This section provides a high-level overview of the main system com-
ponents in IPA as illustrated in Figure P3.4.

Model Loader Users submit the models they intend to use for each
stage of a pipeline. These models should provide a reasonable span of
accuracy, latency, and resource footprint trade-offs.
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Figure P3.4: IPA system design. It consists of an offline phase for model
profiling and an online phase for adaptive inference serving.

Model variants can also be generated using model optimizers such
as TensorRT [66], and ONNX graph optimization by using different
quantization level of neural networks [23] and Neural Architectural
Search methods [12]. After the model submission, the profiler (dis-
cussed in Section P3.4.2) will be executed for each model variant and
store its latency under multiple batch sizes and resource assignments.
Furthermore, as discussed in Section P3.4, the optimizer uses offline
profiling to find the optimal solution during execution. Finally, the
models are stored in object storage to reduce container creation times.
In this work, we have used MinIO object storage [50].

Pipeline System After pipeline deployment through the model loader
the pipeline is now ready to operate. Users will send inference requests
to the pipeline to go through the models and return the inference pre-
dictions. Before models of each stage of the inference pipeline, a
centralized load balancer distributes the inference requests between
multiple stages of the inference pipeline. A centralized queue is be-
hind each stage of the pipeline. Centralized queues help to have a
deterministic queueing behavior and to efficiently model its latency, as
described in Section P3.4. The queues of each stage then distribute the
batched requests between model replicas. It uses a round-robin policy
for load-balancing the batched requests between model replicas. Com-
munications between multiple stages of the pipeline are implemented
using gRPC [25]. The load balance between multiple containers of the
same stage is achieved using Istio [36] sidecar containers. Each model
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container is deployed using Docker containers built from a forked
version of MLServer [51] and Seldon Core [62] to implement the gRPC
web servers and deployment on Kubernetes.

Monitoring The monitoring daemon uses the highly available time-
series database Prometheus [6] underneath to observe incoming load
to the system. It will periodically monitor the load destined for the
pipeline.

Predictor In our load forecasting process, we employ an LSTM (Long
Short-Term Memory), which is a type of recurrent neural network [32].
Our LSTM model is designed to predict the maximum workload for
the next 20 seconds based on a time series of loads per second collected
from the monitoring component over the past 2 minutes. To train the
LSTM model, we utilized the initial two weeks of the Twitter trace
dataset [5]. The architecture of our LSTM neural network consists of
two layers, a 25-unit LSTM layer followed by a one-unit dense layer
serving as the output layer.

Runtime decisions for reconfigurations The profiling data gathered
by the profiler provide the latency and throughput of each model
variant under different batch sizes. For runtime decision-making, a
discrete event simulator uses these profiling data to estimate the end-
to-end latency and throughput of the pipeline based on the number of
replicas, model variants, and batch sizes at each stage. The predicted
pipeline latencies and throughputs are then used by the optimizer
in the adapter to determine the optimal configuration in terms of
accuracy and cost objectives.

Adapter The Adapter is the auto-configuration module that period-
ically (1) fetches the incoming load from the monitoring daemon,
(2) predicts the next reference load based on the observed historical
load using the LSTM module, (3) obtains the optimal configuration in
terms of the variant used, batch size, and number of replicas for the
next timestep, and finally (4) the new configuration is applied to the
pipeline through the Kubernetes Python API [42].

Figure P3.5 shows a snapshot of the system with two available op-
tions per model in a video analysis pipeline; the first options are
{YOLO5l,YOLO5n} and the second are {ResNet18, ResNet152}. In
low loads (a), choosing more accurate models YOLO5l and ResNet152
with small batch sizes is preferable to ensure low latency. However,
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Figure P3.5: Switching between different configurations under (a) low and
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in higher loads, it is preferable to choose lightweight models such as
YOLO5n and ResNet18 with more replication and larger batch sizes
to ensure high throughput for the system.

p3.4 problem formulation

We now present the details of the optimizer discussed in Section P3.3.
Problem formulation requires a robust definition of the accuracy of the
inference pipeline and offline latency profiles of the model variants.
Sections P3.4.1 and P3.4.2 discuss details of the inference pipeline
accuracy definition and profiling methodology, respectively.

p3.4.1 Accuracy Definition over Pipeline

To the best of our knowledge, there is only a direct way to compute
the end-to-end accuracy of a pipeline if one evaluates the accuracy
of the entire pipeline on the labeled data designed for the pipeline.
However, for inference pipelines with stages having different semantics
(e.g., a speech model connected to a language model) and multiple
model options for each stage, finding the accuracy of all the options
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Table P3.4: Notations

Symbol Description

P Inference pipeline
s ∈ P Inference pipeline stage
SLAs Latency service-level agreement for each stage s
SLAP Latency service-level agreement for pipeline P
λP Request arrival rate of pipeline P
Ms Sets of available model variants for stage s
m A model variant
bs Batch size of stage s
Rm Resource allocation of variant m
Rs Resource allocation of stage s
am Accuracy rank of variant m
ns Number of replicas of stage s
Is,m Indicator of activeness of variant m in stage s
PAS Pipeline accuracy score
qs(bs) Queuing time of stage s under batch size b
ls,m(bs) Latency of variant m under batch size bs

hs,m(bs) Throughput of variant m under batch size bs

AP End-to-end accuracy of pipeline P
th Threshold RPS of base allocation of Rm

α Accuracy objective weight
β Resource allocation objective weight
δ Penalty term for batching

by curating handpicked datasets for each pipeline composition is
not feasible. In this work, we used a heuristic to rank the inference
pipelines. We have only considered linear inference pipelines with
one input and one output stage where a set of consecutive models are
connected. The accuracy of each model is computed offline and is part
of the model’s property.

In this work, we do not consider model drifts [47], therefore, we use the
per-stage statically computed accuracies to compute the end-to-end
inference pipeline accuracy. For models with a qualitative performance
measure other than accuracy (e.g., mAP for object detection, 1-WER
for speech recognition tasks, and ROUGE for NLP tasks), as long as
we have the specification higher (or lower) means better in the measure,
we can substitute accuracy with that measure. To define a metric over
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the accuracy in a pipeline, we use independent stage accuracy to
compute the end-to-end accuracy over the entire inference pipeline.
With the assumption of independence of errors between different
stages of the inference pipeline, we have used multiplying of each stage
of the inference pipeline accuracy as a heuristic to evaluate the overall
accuracy preference between different combinations of models in the
inference pipeline. We will refer to this metric for inference pipeline
accuracy as Pipeline Accuracy Score abbreviated as PAS metric.

The end-to-end accuracy is typically influenced by the combination
of errors at each stage, and the relationship between these errors may
not be accurately captured by multiplication. If errors are correlated
or there are dependencies between stages, this method might dete-
riorate the soundness of the proposed inference pipeline’s accuracy.
However, we argue that through the evaluation of alternative accuracy
metrics presented in Appendix P3.12, it becomes evident that until
this problem is fully addressed by the machine learning community,
the multiplication of individual stage accuracies serves as the most
practical measure for approximating end-to-end accuracy.

p3.4.2 Profiler

The formulation of the joint cost-accuracy problem needs informa-
tion on the latency, accuracy, and throughput of each model variant.
Previous works have discovered that [27, 33, 56, 58] the latency of
a model under a specific resource allocation is predictable based on
the incoming batch sizes. The profiler will record the latency on the
target hardware for different batch sizes under specific allocations
of resources. We found in our experiments that assigning memory
beyond a specific value to the models does not impact performance;
therefore, we only need to find enough memory allocation for each
node, which will be the memory requirement for running the largest
batch size.

Finding a minimum allocation to containers is necessary since we
have chosen horizontal scaling for workload adaptation in this work.
Previous works on CPU evaluation for inference graphs [40, 56] have
assigned one core to each container. Adapting a similar approach is
not practical in our case, as more resource-intensive models cannot
execute inference under given latency requirements with one core per
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Table P3.5: Sample CPU cores base allocation for different YOLO variants
under different RPS thresholds (Capped on maximum 32 cores).

load YOLOv5n YOLOv5s YOLO5m YOLOv5l YOLO5x

5 1 1 4 8 16

10 1 2 8 16 ✕

15 1 8 16 32 ✕

container. Therefore, we find a base allocation for each model variant
regarding the number of cores that can provide a reasonable base
performance. The solver selects the model variants and horizontally
scales them with the chosen base allocations.

Following previous works [26, 56], we define the per-stage latency
SLAs as the average latency of all available variants for the task
to serve batch size one under the base resource allocation multi-
plied by 5 as suggested by Swayam [26]. The pipeline SLAP that is
later used in Section P3.4.3 is defined as the sum of per-stage SLAs,
(SLAP = ∑s∈P SLAs). Table P3.5 provides some of the base CPU al-
locations under the 5 RPS, 10 RPS, and 15 RPS thresholds for five
variants (YOLO5n, YOLO5s, YOLO5m, YOLO5l, and YOLO5x) of
the object detection stage. The values in the allocation columns show
the minimum number of CPU allocations per container needed to
respond to a certain load in the stage SLAs. We refer to these values
as the base resource allocation to a model variant. The allocation of
base resources for all stages (∀s ∈ S) and their corresponding model
variants (∀m ∈ Ms) is the minimum number of resources in terms of
CPU cores (Equation P3.1a) that can respond to a certain threshold
(Equation P3.1b) and met the predefined base latency requirements
per stage SLAs for the largest batch size in our system (Equation P3.1c).
Therefore, the minimum number of resources per model variant can
be formulated as follows:

min Rm (P3.1a)

subject to th ≤ h(m, Rm) (P3.1b)

lm(max(bs)) ≤ SLAs, (P3.1c)

The value th in Equation P3.1b is a hyperparameter of the IPA solver,
and its values are empirically found for each pipeline. The hyperpa-
rameters used in IPA are reported in Appendix P3.10. In summary,
Equation P3.1a is used to find the base allocation for each model
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variant where the threshold th is fixed and Rm is the resource require-
ments of model variant m. Therefore, the base resource allocation
for all models can be found statistically. In the same Object Detector
task with different model variants, as shown in Table P3.5, we choose
the first configuration row, which supports the highest RPS with the
minimum resource allocation per container. As a consequence, the
allocation of base resources is fixed during runtime, and the perfor-
mance of each stage of the pipeline h(m, Rm) will be a function of used
model variant m, and its throughput h(m), and the number of replicas
ns.

For profiling, we follow [58] and record latency and throughput on the
power of two increments of 1 to 64 batch sizes. Profiling per all batch
sizes is costly; therefore, following [56] for each model variant, we fit
the observed results on the profiled batch sizes under the base resource
allocation to a quadratic polynomial function lm(bs) = αb2

s + βbs + γ

that can infer the latency for unmeasured batch sizes with a lower
Mean Squared Error (MSE) than a linear function, αbs + β. Multiple
model variants are available per-stage of the inference pipelines, and
the mentioned approach can decrease the profiling cost by an order of
magnitude.

p3.4.3 Optimization Formulation

We used Integer Programming (IP) as a robust optimization frame-
work to address the intricate challenges associated with configuring
inference pipelines. As we have discussed later in Section P3.4.4, due
to the optimality of the IP results compared to heuristic solutions, we
have chosen IP modeling alongside the Gurobi solver to guarantee
the optimality of the results. We have discussed the scalability and
limitations of the IP formulation and Gurobi solver in Section P3.5.3.
The goal of IPA is to maximize accuracy and minimize cost while
guaranteeing SLAs.

Objectives =

Maximizing the Accuracy

Minimizing the Cost
(P3.2)
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There are |Ms| model variants for each inference stage s ∈ P in the
pipeline P. Each m ∈ Ms model variant performs the same inference
tasks (e.g., image classification) that exhibit different resource require-
ments, latency, throughput, and accuracy. The resource requirements
of the models are estimated offline in the profiling step (Section P3.4.2).
The profiler provides the resource requirements of the model variants
per task and their latencies under different batch sizes. The two main
goals of IPA are maximizing the precision of the pipelines and min-
imizing the resource cost using lighter models. We define Is,m as an
indicator of whether a selected model variant is currently active for
task s or not:

Is,m =

1 if m is active in stage s

0 Otherwise
(P3.3)

At each point in time, only one model variant m can be active for
each inference stage; therefore, the resource requirement of each stage
model replicas Rs is equal to that stage active variant resource require-
ment Rm.

Rs = ∑
m∈Ms

Rm · Is,m (P3.4)

Similarly, the latency and throughput of each pipeline stage (ls and
hs) are calculated based on the latency and throughput of the active
model variant for that stage.

ls = ∑
m∈Ms

ls,m(bs) · Is,m (P3.5)

hs = ∑
m∈Ms

hs,m(bs) · Is,m (P3.6)

Another contributing factor to the pipeline’s end-to-end latency is the
time spent on the queue of each inference stage. For queue modeling,
we have used the theoretical upper bound formulation introduced in
[56]:

qs(bs) =
bs − 1

λ
(P3.7)
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Equation P3.7 illustrates the worst-case queuing delay based on the
arrival rate and the batch size. The first request that arrives in a batch
should wait for bs − 1 additional request before being sent to the
models.

The formal definition of the metric PAS (explained in Section P3.4.1)
for the accuracy of the end-to-end pipeline is defined in Equation P3.8.
PAS is computed by multiplying the accuracies of the active models
in each stage of the inference pipeline.

PAS = ∏
s∈P

( ∑
m∈Ms

as,m · Is,m) (P3.8)

The multi-objective goal (P3.9) is to maximize the end-to-end accuracy
of the pipeline and minimize the cost. The cost objective is achieved in
two ways, using smaller models (models with fewer resource require-
ments) and using the least number of replicas for them. The batch
size for each model should be chosen carefully, as larger batch sizes
will increase the utilization and throughput of the entire load and the
per batch latency. It is worth mentioning that the IPA multi-objective
formulation is agnostic to inference pipeline accuracy definition (as
also shown later in Appendix P3.12). The existing end-to-end inference
graph accuracy definition can be substituted with potentially better
future inference pipeline accuracy definitions.

f (n, s, I) = α · PAS

− β ∑
s∈P

ns · Rs

− δ ∑
s∈P

bs

(P3.9)

The two variables α and β adjust the preference level given to each
objective. We should find a batch that increases utilization on a rea-
sonable scale. Following [56], we have added a small penalty term for
batch size in the objective function δ that tries to minimize batch sizes
until lowering batch sizes causes instability in the system (the system
throughput becomes lower than the incoming workload). We now
can describe the auto-configuration of the three online configuration
knobs explained in Section P3.2.2 as an IP problem:
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max f (n, s, I) (P3.10a)

subject to ∑
s∈P

ls(bs) + qs(bs) ≤ SLAP, (P3.10b)

if Is,m = 1, then

ns · hs(bs) ≥ λp, ∀s ∈ P (P3.10c)

∑
m∈Ms

Is,m = 1, ∀s ∈ P (P3.10d)

ns,bs ∈Z+, Is,m ∈ {0,1}, ∀s ∈ S,∀m ∈ Ms

(P3.10e)

The chosen combination of models should be able to meet the latency
(P3.10b) constraint of the pipeline. The pipeline SLAP is the aggregate
of per-stage SLAs as described in Section P3.4.2. The end-to-end la-
tency of the pipeline is obtained by summing the inference latency of
the chosen model variant ls(bs) and the queueing time of each model
server qs(bs) in the inference path. Also, the sum of the throughput of
all replicas of an active model should be higher than the arrival rate
P3.10c into the pipeline.

In summary, the objective function tries to find the most accurate
combination of models in the inference pipeline while allocating the
least number of physical resources based on the pipeline designer’s
preference. This trade-off between the two objectives is configurable
by modifying the α and β weights for accuracy and resource allocation.
Therefore, the inputs of the optimization formulation are resource
requirements R, latency l, precision of all models a, and throughputs
h of all model variants m in all stages s under all possible batch sizes
b alongside the queueing latency model q under all batch sizes, the
incoming load λ coming to the pipeline and pipeline latency SLAp.
The output returns the optimal number of replicas n, batch size b, and
the chosen model variant I for each pipeline stage.

p3.4.4 Gurobi Solver

IPA has been designed to meet production-level requirements, (1) guar-
anteeing an optimal solution, (2) no need for additional pretraining or
retraining costs, and (3) negligible overhead. Other approaches like
heuristics are ad hoc solutions that are hard to generalize to different
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Figure P3.6: Representative pipelines used in this work.

systems, and ML approaches do not guarantee the optimal solution
(failing to find the optimal solution results in over-provisioning or
under-provisioning) and typically incur long training times (for ex-
ample, reinforcement learning). On the contrary, although the IP
formulation is NP-hard (as shown in [58]), it meets the above require-
ments for a production-ready system. In our case, we chose the Gurobi
solver [10] that guarantees the optimal solution; the downside of using
the solvers is that in the case of very large search spaces or under very
tight SLA requirements, it might take a long time to find the desirable
configuration. In our case, Gurobi solved the problem formulation in
Formula P3.10 in less than a second.
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Figure P3.7: Representative tested load patterns from the Twitter trace[5],
showing LSTM predictions.

p3.4.5 Dropping

High workloads may cause high back pressure in the upstream queues.
If a request has already passed its SLA at any stage in the inference
pipeline, then there might be no point in continuing to serve it until
the last stage and placing high pressure on the system. A mechanism
we have used is to drop a request at any stage of the pipeline if it
has already passed SLA in the previous steps. We also consider that a
request is dropped if its current latency exceeds 2× the SLA to avoid
constant back pressure on the queues.

p3.5 evaluation

In this section, we conduct extensive experiments to demonstrate the
practical efficacy of IPA in real-world scenarios using a diverse set of
workloads. The code and data for replicating the results are available
at Link-obscured-for-double-blind.

p3.5.1 Experimental Setup

Most previous works on inference pipelines [9, 16, 55, 59] have im-
plemented the entire pipeline on their self-made infrastructures. We
have implemented our frameworks on top of Kubernetes, the de facto

Link-obscured-for-double-blind


136 ipa

Table P3.6: per-stage and end-to-end SLA of inference pipelines (in seconds).

Pipelines Stage 1 Stage 2 Stage 3 E2E

Video Monitoring 4.62 2.27 ✕ 6.89

Audio QA 8.34 0.89 ✕ 9.23

Audio Sentiment 8.34 1.08 ✕ 9.42

Sum QA 2.52 1.32 ✕ 3.84

NLP 0.97 12.76 3.87 17.61

standard in the containerized world and widely used in industry. This
will enable easier access to the framework for future use by developers.
IPA is implemented in Python with over 8K lines of code, including
the adapter, simulator, queuing, load balancer, and model container
implementations.

Hardware We used six physical machines from Chameleon Cloud [41]
to evaluate IPA. Each server is equipped with 96 Intel(R) Xeon(R) Gold
6240R CPU @ 2.40GHz cores and 188 Gb of RAM.

Pipelines We used five descriptive pipelines with a wide variety of
models for each stage, as shown in Figure P3.6. The pipelines are
adapted from previous work and also from industrial examples. The
video monitoring pipeline (pipeline a) is a commonly used pipeline
in previous works [16, 74] and industry [14] which an object detector
sends the cropped images to a later model to perform classification
tasks like detecting a license plate or human recognition. The audio
and question answering / sentence analysis pipelines (pipelines b
and c) are adapted from use cases that comprise multiple types of
ML model [19]. NLP pipelines (pipelines d and e) are representative
examples of emerging use cases of language models [71, 72]. For a full
specification of the models used in each stage of the pipelines, refer to
Appendix P3.10. Also, for the α, β and δ values of Equation P3.9 used
for the experiments IPA, see Appendix P3.11.

Baselines We compare IPA with variations of two similar systems,
namely FA2 [56] and RIM [34]. FA2 is a recent system that achieves
cost efficiency using scaling and batching; however, compared to IPA,
it does not have model switching as an optimization angle. RIM, on
the other hand, does not have scaling as a configuration knob but
uses model switching to adapt to dynamic workloads. The original
RIM does not include batching; we also add batching to RIM for a fair
comparison. As RIM does not support scaling, we statically set the
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Figure P3.8: Performance analysis of the Video pipeline.

scaling of each stage of the inference pipeline to a high value. Similarly,
FA2 does not support model switching; therefore, we use two versions
of it, one FA2-low, which sets the model variants to the lightest models,
and FA2-high, which sets the model variants to a heavy combination
of models on each stage 1. The three systems compared benefit from
the LSTM predictor explained in Section P3.3.

Workload Figure P3.7 shows excerpts from Twitter trace [5] that have
been used to evaluate the performance of IPA against four parts of
the data set. It includes bursty, fluctuating, steady low, and steady

1 Ideally we should have set the FA2-high to the heaviest models but due to resource
limitations, we set it to models that on average give better accuracy compared to IPA
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Figure P3.9: Performance analysis of the Audio-qa pipeline.

high workloads. For the train and test split during the training of
the LSTM module, we trained the LSTM module on 14 days of the
Twitter trace and chose the four mentioned workload excerpts from the
other 7 unseen parts of the dataset. The LSTM predictor can predict
the workload in less than 50ms with a Symmetric Mean Absolute
Percentage Error (SMAPE) [31] of 6.6% that is comparable to the
predictors used in systems with similar context [78]. Furthermore, an
asynchronous load tester was implemented to emulate the behavior
of users in real-world data centers.

SLA Table P3.6 shows the pipeline SLA of each inference pipeline that
is calculated by summing the heuristic per-stage SLAs explained in
Section P3.4.2.
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Figure P3.10: Performance analysis of the Audio-sent pipeline.

p3.5.2 End-to-End Evaluation

Figure P3.8 shows the evaluation results for the video pipeline in
the four bursty, steady high, steady low, and fluctuating workloads.
Since FA2-high and FA2-low are always set to the lightest and heaviest
variants, they will always provide the lowest and highest possible
PAS despite load fluctuations. In the three bursty, steady low, and
fluctuating workloads IPA can always achieve a trade-off between
the cost objective and, in steady high workload IPA, diverge to a
configuration that uses the lowest-cost model variants to adapt to the
high resource demands of steady high workload. The only available
adaptation mechanism for RIM is to change the models; therefore,
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Figure P3.11: Performance analysis of the Sum-qa pipeline.

under load variations in bursty and fluctuating workload, it trades
off accuracy for meeting the incoming load burst throughput. Failing
to meet the incoming workload will result in request drops and SLA
violations. As expected, FA2-low and FA2-high have the highest and
lowest SLA attainment. In the video pipeline, IPA provides the same
resource efficiency as FA2-low, as the base allocation (explained in
Section P3.4) of variants used for the first stage in the video pipelines
is similar in most cases, and changing the model in favor of latency
reduction does not result in higher computational costs (this is the
reason for the overlap between FA2-low and IPA in the cost temporal
plots shown in Figure P3.8a.). In total, IPA can show a better balance
between the two cost and accuracy objectives. Although FA2-high and
RIM provide the highest accuracies, their cost efficiency is compro-
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Figure P3.12: Performance analysis of the NLP pipeline.

mised due to employing more accurate variants per stage and a high
scaling factor. FA2-low can meet the requirements of SLA and achieve
the same cost efficiency as IPA but cannot improve accuracy because it
is fixed in the lightest variants. The higher violation rate in FA2-high,
RIM, and IPA compared to FA2-low is because SLAs are defined using
the processing latency of average models, and SLAs become tighter
for more accurate models, resulting in a higher tail latency violation.
Figures P3.9a and P3.10a show the same temporal and average results
on the audio-qa and audio-sent inference pipelines. Due to the lower
number of variants used in these two pipelines (5× 5 = 25 for video
and 5× 2 and 5× 3 in the audio-qa and audio-sent pipelines), we
observe fewer fluctuations in RIM in all workloads. However, like the
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Figure P3.13: Decision time of Gurobi optimizer for IPA formulation with
respect to the number of models and tasks on the inference
graph.
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video pipeline, IPA achieved a trade-off between the accuracy and cost
objectives.

Compared to the stages in the three mentioned pipelines, the base
allocations for the summarization stage used in the sum-qa and NLP
pipelines provide a larger span of changes in the required CPU cores
(see Appendix P3.10). For example, the resource difference between
the heaviest and lightest model in the Object Detection stage of the
video pipeline is 8 − 1 = 7, while it is more than doubled in the
summarization stage (16− 1 = 15). Consequently, we observe a longer
span of differences between the FA2-low and FA2-high approaches
in these two pipelines. In both approaches, IPA can adapt to the load
using the second least heavy models, resulting in a cost reduction of
3x and 2x with only 2 and 1 loss value in the inference PAS. It should
be noted that the initial spikes in PAS are due to the initial setting.
The optimizer then immediately adjusts the models in response to the
workload.
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Figure P3.14: Comparison of IPA results for different trade-offs between ac-
curacy and cost objectives, IPA can navigate effectively between
the two cost and accuracy objectives.
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Figure P3.15: End-to-end latency distribution for the five tested inference
pipelines under different approaches. IPA can achieve latency
close to the FA2-low with light model variants, and only RIM
is achieving better latency at the expense of high resource over-
provisioning.

p3.5.3 IPA Scalability

System Scalability To examine the effectiveness of IPA in real-world
systems, we included the NLP pipeline in our evaluations, which
during bursts scales to more than 500 cores (Figure P3.12a). Due
to the use of best production-grade ML deployment practices, such
as lightweight containers and Kubernetes as the back-end with the
benefit of distributed scheduling and cluster management, we believe
IPA has the potential to scale to large clusters.

Optimizer Scalability As mentioned in Section P3.4, we have used
the Gurobi solver to solve the IP optimization problem. One critique
of using Gurobi is its limitations in the solvable problem space in the
time constraints of a real-world autoscaler. To guarantee fast autoscaler
adaptation to workload fluctuations, the autoscaler should be able to
find the next configuration in less than two seconds to leave enough
room for the adaptation process itself, which in our experiments was
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Figure P3.16: Effect of using predictor on reducing SLA violations on bursty
workload, IPA LSTM can reduce SLA violations up to 10x with
the same resource usage. Also, using baseline predictors with
perfect knowledge about the future reveals potential room for
reduction of SLA with better predictors.
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around the same number of eight seconds that sums up 8 + 2 = 10
which we used as our adaptation monitoring interval. We conducted
a set of simulated experiments shown in Figure P3.13 to examine the
decision-making time of the IPA growth with respect to the change
in the number of available model variants and the number of tasks
in the inference pipelines (length of the inference graph). IPA can
find the optimal configuration for inference pipelines with 10 stages,
each with 10 models, in less than 2 seconds. Having an effective
decision time for inference pipelines beyond these sizes requires faster
optimization solutions. In addition, IPA will adapt to workloads with
more SLA violations for pipelines that have SLA requirements lower
than the decision-making time of IPA (although it will eventually
adapt). However, most existing inference pipelines [53] rarely go
beyond 10 stages; therefore, IPA will be effective for real-world use
cases.
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p3.5.4 IPA Adaptability

The main premise of IPA is to provide an adaptable framework to
achieve a trade-off between the cost and accuracy objectives utilizing
the three configuration knobs of model switching, scaling, and batch-
ing. Instead of using a fixed value for α and β in previous experiments,
we examined the effect of changing the weights given to each objective
by modifying the values of α and β for each inference pipeline. Fig-
ure P3.14 shows a set of experiments carried out on all five pipelines,
where in one scenario, cost optimization (resource prioritize) is set
as a priority by setting β to a higher value, and in another scenario,
accuracy is set as a system priority by using a higher value for α. It is
evident that IPA provides an adaptable approach to optimize different
cost and accuracy preferences by the inference pipeline designer. For
example, a highly accurate adaptation scenario can be chosen for the
audio-sent pipeline with 28 CPU cores and an average PAS of 59 or a
lower accurate result of 53 with 11 CPU cores.

Figure P3.15 shows the end-to-end latency CDF of the five pipelines
tested to further show the flexibility of IPA in dynamic workloads.
IPA leverages its fast adaptation by using heavy models only when
the load is low and achieves nearly the same latency efficiency as FA2-
low (with a higher accuracy than FA2). Only RIM can provide better
latency compared to IPA, but as shown in the previous examples (e.g.,
Figure P3.9b for the Audio-qa pipeline) comes at the expense of high
resource allocations (3x compared to IPA in the same pipeline).

p3.5.5 IPA Predictor

Predictors are effective in reducing SLA violations. Most previous
work on inference pipeline serving [16, 33, 34, 56] has done reactive
auto-configuration. In reactive approaches, configuration changes oc-
cur with live load monitoring and in response to load changes. [73, 78]
for predicting load before load changes. IPA uses a proactive approach
using an LSTM predictor that takes advantage of historical data. The
ablation analysis provided in Figures P3.16 shows that using the LSTM
predictor is beneficial in reducing SLA violations in all pipelines with
a negligible difference in resource consumption. The LSTM module
is trained in less than ten minutes for the 14 days of Twitter traces;
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therefore, using it is practical in real-world scenarios. Furthermore,
comparing with the baseline, which is a predictor that has complete
knowledge of the load in the future interval (ground truth of the LSTM
predictor), shows that in the case of video, audio-qa and audio-sent
pipelines, the IPA predictor performs well with the baseline predictor.
Moreover, the baseline predictor results in sum-nlp and the nlp results
show that better load predictions in the prediction module can also
potentially result in further reduction in SLA.

p3.6 related works

Single stage inference serving: Several approaches have been pro-
posed in previous research to improve performance metrics with-
out considering multiple stage inference models [3, 17, 26, 68, 73].
They intend to enhance a set of performance metrics, e.g., latency
and throughput, and reduce resource utilization through adaptive
batching, horizontal and vertical resource scaling, model switching,
queue reordering, and efficient scheduling of models in heteroge-
neous clusters. A few works have considered joint optimization of
qualitative metrics like accuracy and performance for single-stage
inference-serving systems. Model Switching [75] proposes a quality
adaptive framework for image processing applications. It switches
between models trained for the same task configuration knob and
switches from heavier models to lighter models in response to load
spikes. However, the proposed prototype does not consider the in-
teraction of model switching between other resource configuration
knobs, such as autoscaling and batching. INFaaS [58] abstracts the
selection of model variants in the single-stage setting from the user
and automatically selects the best-performing model within the user-
defined SLOs. It also actively loads and unloads models based on
their usage frequency. InfAdapter [61] and Cocktail [28] propose joint
optimization formulations to maximize accuracy and minimize cost
with predictive autoscaling in single-stage inference scenarios.

Multi-stage inference serving: Several approaches have been pro-
posed in previous research to improve inference performance metrics
in multistage inference serving systems [16, 29, 33, 34, 37, 40, 45,
54–56, 59, 64, 69] since changing one model’s configuration affects
subsequent steps. InferLine [16] reduces the end-to-end latency of
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ML service delivery by heuristically optimizing configurations such
as batch sizes and horizontal scaling of each stage. Llama [59] is a
pipeline configuration system specific to the use case designed exclu-
sively for video inference systems. It attempts to reduce end-to-end
latency by interactively decreasing the latency of each stage in the
pipeline. Stages of the pipeline can be either ML inference or non-
ML video tasks like decoding. GrandSLAm [40] is a system designed
to minimize latency and ensure compliance with SLA requirements
in the context of a chain of microservices mainly dedicated to ML
tasks. The system achieves this by dynamically reordering incoming
requests, prioritizing those with minimal computational overhead,
and batching them to maximize each stage’s throughput. FA2 [56]
provides a graph transformation and dynamic programming solution
in inference pipelines with shared models. The graph transformation
part breaks the execution graph to make it solvable in real-time, and
the dynamic programming solution returns the optimal batch size
and scaling factor per each DNN stage of the pipeline. Multimodel
and Multitask inference VR/AR/Metaverse pipelines [8, 44] are other
emerging use cases of inference pipelines. However, unlike IPA, none
of the above approaches considers the three pillars of accuracy, cost,
and end-to-end latency/throughput jointly for multistage inference
serving systems.

p3.7 conclusion and future works

In this work, we introduced IPA, an online auto-configuration system
for jointly improving the resource cost and accuracy over inference
pipelines. IPA uses a combination of offline profiling with online op-
timization to find the suitable model variant, replication factor, and
batch sizes for each step of the inference pipeline. Real-world imple-
mentation of IPA and experiments using real-world traces showed
that it could preserve the same cost efficiency and SLA agreement
while also having an improvement of up to 21% in the proposed end-
to-end pipeline accuracy metric (PAS) compared to the two baseline
approaches. The following are some directions for future work.

Scalability. IPA leverages Gurobi solver for finding the suitable config-
urations. This worked fine in our problem setting, as a limited number
of model variants were used in each step of the pipeline. However,
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an interesting future direction for IPA is to examine its performance
where more model variants are available for each step of the pipeline
and also in cases where we have more complicated larger graphs [54].
The adapter needs to be able to respond to bursts in less than one
second, which demands either designing new heuristic methods that
can find a good enough but not necessarily optimal solution or data-
driven solutions like some of the methods that have been used before
in similar auto-configuration context like Bayesian Optimization [4],
Reinforcement [68] Learning or Causal Methods [35].

Emerging ML deployment paradigms. Multi-model serving [2] en-
ables more efficient usage of GPUs. This feature enables the simultane-
ous loading of several models on the same server instead of running
one microservice per model, as in IPA. Although the focus of IPA
was on the CPU service, using it on GPUs and containerized plat-
forms is not straightforward. To our knowledge, there is no built-in
mechanism for sharing GPUs on mainstream container orchestration
frameworks like Kubernetes. Making the IPA formulation consistent
with the sharing of GPUs and also considering interference between
multiple models on the scheduler [49] as part of the IPA is a potential
future extension.
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p3.9 appendix

p3.10 pipelines stages specifications

List of models used per stage of the pipeline with their specifications.
BA in the following tables refers to the Base Allocation explained in
Section P3.4.2 in terms of CPU cores.

Object Detection

Performance Measure: Mean Average Precision (mAP)

Number of Variants: Five

Source: Ultralytics YOLOV5 [67]

Threshold: 4 RPS

Table P3.7: Object Detection Task Models

Model Params (M) BA mAP

YOLOv5n 1.9 1 45.7
YOLOv5s 7.2 1 56.8
YOLOv5m 21.2 2 64.1
YOLOv5l 46.5 4 67.3
YOLOv5x 86.7 8 68.9

Object Classification

Performance Measure: Accuracy

Number of Variants: 5

Source: Torchvision [48]

Threshold: 4 RPS

Audio

Performance Measure: Word Error Rate (WER) 2

2 WER is the primary metric for evaluating audio-to-text models, however, to preserve
the higher means better property mentioned in Section P3.4.1 we used the 1-WER
which is similar to the accuracy measure for other types of model.
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Table P3.8: Object Classification Task Models

Model Params (M) BA Accuracy

ResNet18 11.7 1 69.75

ResNet34 21.8 1 73.31

ResNet50 25.5 1 76.13

ResNet101 44.54 1 77.37

ResNet152 60.2 2 78.31

Number of Variants: Five

Source: HuggingFace

HuggingFace Source: facebook

Threshold: 1 RPS

Table P3.9: Audio Task Models

Model Params (M) BA 1 - WER

s2t-small-librispeech 29.5 1 58.72

s2t-medium-librispeech 71.2 2 64.88

wav2vec2-base 94.4 2 66.15

s2t-large-librispeech 267.8 4 66.74

wav2vec2-large 315.5 8 72.35
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Question Answering

Performance Measure: F1 Score

Number of Variants: Two

Source: HuggingFace

HuggingFace Source: depeest

Threshold: 1 RPS

Table P3.10: Question Answering Task Models

Model Params (M) BA F1 Score

roberta-base 277.45 1 77.14

roberta-large 558.8 1 83.79

Summarisation

Performance Measure: Recall-Oriented Understudy for Gisting Evalu-
ation (ROUGE-L)

Number of Variants: Six

Source: HuggingFace

HuggingFace Source: sshleifer

Threshold: 5 RPS

Table P3.11: Summarisation Task Models

Model Params (M) BA ROUGE-L

distilbart-1-1 82.9 1 32.26

distilbart-12-1 221.5 2 33.37

distilbart-6-6 229.9 4 35.73

distilbart-12-3 255.1 8 36.39

distilbart-9-6 267.7 8 36.61

distilbart-12-6 305.5 16 36.99

Sentiment Analysis

Performance Measure: Accuracy

Number of Variants: Three
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Source: HuggingFace

HuggingFace Source: Souvikcmsa

Threshold: 1 RPS

Table P3.12: Sentiment Analysis Task Models

Model Params (M) BA Accuracy

DistillBerT 66.9 1 79.6
Bert 109.4 1 79.9
Roberta 355.3 1 83
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Language Identification Task Models

Performance Measure: Accuracy

Number of Variants: One

Source: HuggingFace

HuggingFace Source: dinalzein

Threshold: 4 RPS

Table P3.13: Language Identification Task Models

Model Params (M) BA Accuracy

roberta-base-finetuned 278 1 79.62

Neural Machine Translation

Performance Measure: Bilingual Evaluation Understudy (BELU)

Number of Variants: Two

Source: HuggingFace

HuggingFace Source: Helsinki-NLP

Threshold: 4 RPS

Table P3.14: Neural Machine Translation Task Models

Model Params (M) BA Accuracy

opus-mt-fr-en 74.6 4 33.1
opus-mt-tc-big-fr-en 230.6 8 34.4
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p3.11 constant multipliers values

In this part, we have presented the values used for the multiplier α, β,
and δ in Equation P3.9. These values were applied in the experiments
discussed in Section P3.5.2. It is important to mention that because
various objectives (like accuracy and cost) have different scales, the
multiplier’s scale is adjusted accordingly. We empirically found the
best values for each objective multiplier.

Table P3.15: Pipelines objectives multiplier values

Pipeline α β δ

Video 2 1 0.000001

Audio-qa 10 0.5 0.000001

Audio-sent 30 0.5 0.000001

Sum-qa 10 0.5 0.000001

NLP 40 0.5 0.000001

p3.12 alternate inference pipeline accuracy definition

In this section, we have presented results for an alternative accuracy
metric in inference pipelines that we will refer to as PAS′. Our goal
was to empirically show that two different accuracy metrics were able
to provide similar results. To define a metric over the accuracy in a
pipeline, we first sort the accuracy of each stage’s model variants from
lowest to highest. Then, we assign a zero scale to the least accurate
model and one to the most accurate model (normalizing the accuracy).
Intermediate model variants are assigned scaled accuracy values be-
tween zero and one, proportionally aligned with their rankings in
the ordered list. For example, if three model variants exist, the model
scaled accuracy is assigned 0, 0.5, and 1. The overall accuracy over
the pipeline is considered as the sum of each stage’s model variants’
scaled accuracy value. For example, a two-stage pipeline with three
model variants per stage and the second most accurate model chosen
in each pipeline will have an end-to-end accuracy rank of 0.5 + 0.5
= 1. As a consequence, this will also change Equation P3.8 for the
accuracy objective to sum up the normalized accuracy at each step
instead of multiplication. Also, the accuracy values of each model and
stage as,m are the normalized accuracy explained rather than the actual
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Figure P3.17: Performance analysis of the Video pipeline.

accuracy values. This transforms Equation P3.8 into Equation P3.11.
This PAS′ replaces the PAS metric in Equation P3.9. The rest of the IP
formulation presented in Section P3.4 will remain the same.

PAS′ = ∑
s∈P

( ∑
m∈Ms

as,m · Is,m) (P3.11)

We replicated the end-to-end experiments outlined in Section P3.5.1 by
substituting the accuracy metric with a new metric across all pipelines.
In all cases, this alternative metric exhibited the same trend of the
multiplication heuristic results across different methods. Figures P3.17

and P3.18 present the results obtained using this novel accuracy metric.
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Figure P3.18: Performance analysis of the Sum-qa pipeline.

A comparison with the results in Section P3.5.2, specifically Figures
P3.8 and P3.11, reveals that both sets of results align in terms of
resource allocation and accuracy optimization.
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P4
B I S C A L E : I N T E G R AT I N G H O R I Z O N TA L A N D
V E RT I C A L S C A L I N G F O R I N F E R E N C E S E RV I N G
S Y S T E M S

abstract

Inference serving is of great importance in deploying machine
learning models in real-world applications, ensuring efficient
processing and quick responses to inference requests. However,
managing resources in these systems poses significant chal-
lenges, particularly in maintaining performance under varying
and unpredictable workloads. Two primary scaling strategies,
horizontal and vertical scaling, offer different advantages and
limitations. Horizontal scaling adds more instances to handle in-
creased loads but can suffer from cold start issues and increased
management complexity. Vertical scaling boosts the capacity of
existing instances, allowing for quicker responses but is limited
by hardware and model parallelization capabilities.

This paper introduces Biscale, a system designed to leverage
the benefits of both horizontal and vertical scaling in inference
serving systems. Biscale employs a two-stage autoscaling strat-
egy: initially using in-place vertical scaling to handle workload
surges and then switching to horizontal scaling to optimize
resource efficiency once the workload stabilizes. The system pro-
files the processing latency of deep learning models, calculates
queuing delays, and employs different dynamic programming
algorithms to solve the joint horizontal and vertical scaling
problem optimally based on the workload situation. Extensive
evaluations with real-world workload traces demonstrate over
10× SLO violation reduction compared to the state-of-the-art
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horizontal or vertical autoscaling approaches while maintaining
resource efficiency when the workload is stable.

p4.1 introduction

Cloud-based deep learning (DL) inference is a common component
in modern intelligent applications and services, often involving mul-
tiple DL models interconnected in a dataflow multi-model (pipeline)
system [42]. An example is a real-time video analytics application
for traffic management, which may include models for video frame
extraction, object detection, object classification, and tracking [18].
The performance of such systems is mostly evaluated based on two
indicators: user satisfaction, quantified through Service Level Ob-
jectives (SLOs) mainly on the end-to-end latency [26], and resource
efficiency [57], referring to the optimal utilization of computational
resources. These performance indicators ensure the delivery of high-
quality results while efficiently using resources, which is crucial for
the scalability and sustainability of cloud-based DL applications [2, 28,
35, 36, 42, 57].

Efficient resource management in DL inference serving systems is
crucial to maintaining system performance, especially under variable
and unpredictable workloads [41, 47]. Two primary scaling strate-
gies are often used to manage these dynamic workloads: horizontal
and vertical scaling. Horizontal scaling involves the addition of more
instances of the same DL model to handle increased loads, facilitat-
ing workload distribution without altering the resource configuration
of existing instances. By distributing the workload across several in-
stances, horizontal scaling can handle large workloads and maintain
performance as demands grow. However, bringing up new instances
in horizontal scaling involves cold start issues [33, 35, 39, 43] due to
booting up additional instances, configuring them, and joining them
into the system, which can take several seconds to minutes. The cold
start issue reduces system responsiveness when the workload changes
unpredictably, leading to SLO violations and reduced user satisfac-
tion. Additionally, horizontal scaling increases system management’s
complexity, requiring more sophisticated load balancing.
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Vertical scaling, conversely, focuses on adding resources such as CPU
cores to existing DL model instances, thereby boosting the capac-
ity of existing instances to handle more tasks simultaneously. A re-
cently announced feature named in-place vertical scaling [5] by Ku-
bernetes [22]—a dominant open source system to orchestrate and
manage the containers in the system—allows additional resources
to be added to existing instances without the need for rebooting or
downtime, offering a significant advantage concerning the cold start
issue. Additional computing resources, such as extra CPU cores, allow
inference requests to be batched and processed concurrently, improv-
ing the system throughput. This capability enables a much quicker
response to increased load compared to setting up new instances as
required in horizontal scaling. While vertical scaling can provide rapid
speed-up by instantly increasing the resources of a single instance, it
is often limited by the physical capabilities of the hardware and the
parallelizability of the DL model. Once those limits are reached, no
further speed-up is possible, thus reaching the maximum throughput.
In contrast, horizontal scaling can continue to expand by adding more
instances. Furthermore, vertical scaling can lead to higher costs due
to the need for high-end hardware, and it presents a single point of
failure risk, where if the single instance fails, it can significantly impact
system stability.

Existing inference serving systems mainly focus on horizontal scaling
mainly due to the benefits of the scalability of horizontal scaling and
the limitations of vertical scaling. Studies like INFaaS [43] focus on
individual DL models where horizontal scaling is used in response
to workload changes by bringing up new virtual machines. Others
have considered DL pipelines and use horizontal scaling to optimize
resource costs by switching between hardware types or model variants
when the workload changes [12, 25, 42]. All of the mentioned ap-
proaches suffer from cold start issues when facing dramatic workload
increases. Sponge [41] uses in-place vertical scaling and changes the
CPU allocation of the running instance to absorb the sudden changes
in the workload. However, they only consider a single DL model
and ignore the challenges behind the data dependency of pipeline
inference serving systems. Moreover, their approach suffers from SLO
violations under high request rates that are beyond the capabilities of
one powerful instance due to parallelization and physical hardware
limitations, as discussed above. In short, existing autoscaling solu-
tions suffer from non-responsiveness under high workload variability,



170 biscale

and to compensate for that, they require a significant level of over-
provisioning. Ideal autoscaling should be responsive, meaning it can
immediately react to sudden workload changes, and resource-efficient,
avoiding over-provisioning, while limiting SLO violations by ensuring
end-to-end inference latency.

In this work, we explore how to reduce SLO violations and resource
costs by studying an autoscaling mechanism that combines both ver-
tical and horizontal scaling mechanisms and leverages the benefits
of both mechanisms in the pipeline inference serving system. Based
on the insights from such an exploration, we design an autoscaler,
named Biscale, that uses a two-stage autoscaling strategy, where it first
leverages the responsiveness characteristics of in-place vertical scaling
to absorb the unpredictable surge of requests in the workload. Second,
Biscale performs horizontal scaling to optimize resource efficiency
when the workload tends to stabilize by transitioning to a set of less
powerful instances.

To be precise for the vertical scaling strategy, after getting the applica-
tion pipeline with its SLO, Biscale addresses the challenges regarding
the in-place vertical scaling decision-making in pipelines by first pro-
filing the processing latency of all the DL models with respect to
different CPU and batch size allocations, and calculating the queuing
delay based on the given batch size and the arrival rate. Next, Biscale
finds the right amount of resources to serve the incoming workload
(avoiding under- or over-provisioning) for all the models in the sys-
tem, in a single shot, by encapsulating the autoscaling problem in an
Integer Program (IP) and solving it using dynamic programming. In
contrast to existing solutions where heuristics are used for scaling
decision-making that results in sub-optimal solutions, we use dynamic
programming to solve the IPs which generates optimal solutions by
breaking the problem into simpler subproblems and solving each
subproblem only once, storing their solutions to avoid redundant cal-
culations. For the transitions between vertical and horizontal scaling
strategies, Biscale analyzes why an autoscaler needs to switch between
scaling strategies, how to transit between them, and when to do it.
For that, Biscale designs a state transition policy to decide when to
use which autoscaling strategy and uses it during runtime to enable
responsiveness and resource efficiency while guaranteeing end-to-end
inference latency.
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In short, this paper makes the following contributions. After present-
ing the motivation and identifying the challenges (§P4.2), we

• present the design of Biscale, including its overall architecture
and system components (§P4.3);

• introduces an integer program to capture the vertical and hor-
izontal resource scaling problem in DL inference serving sys-
tems and present our solutions based on dynamic programming
(§P4.4);

• build a system prototype for Biscale and evaluate it with real-
world workload traces (§P4.6). Overall, Biscale reduces the SLO
violation by over 10× compared to the baselines.

§P4.7 summarizes related work. §P4.8 draws final conclusions.

p4.2 background and motivation

Inference services, a critical component of online platforms and mainly
composed of multiple models that are chained together, have unique
characteristics that make them both latency-sensitive and resource-
intensive. The latency sensitivity of these services arises from their
interaction with online users. Users expect quick responses when
interacting with these services, making delay or latency undesirable.
On the other hand, inference services are also resource-intensive due
to the heavy computations they need to perform [12, 27]. The dual
characteristics of latency sensitivity and resource-intensiveness make
designing and managing inference services challenging. It is essential
to find a balance between providing quick responses to user interac-
tions and managing the heavy computational resources required by
these services.

Figure P4.1 depicts the vertical and horizontal scaling response time of
a ResNet car detection model [29] to the workload changes under the
SLO of 1000 ms. The number of requests starts from 20 requests per
second (RPS) and then rises 6× (to 120 RPS) for 5 seconds and then
drops back to 20 RPS. If the system captures the workload changes im-
mediately and uses horizontal scaling, the new instances will become
available after 5-6 seconds as evaluated in [42]. In this scenario, all the
requests (100) in that short period will violate their SLO, and the scal-
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Figure P4.1: Vertical scaling vs. horizontal scaling reaction time in case of
workload bursts. Horizontal scaling is not responsive. The gray
area indicates SLO violation.
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Figure P4.2: Using vertical and horizontal scaling jointly to absorb bursts
and reduce operational costs. Vertical scaling provides respon-
siveness, while horizontal scaling provides cost efficiency. The
gray area indicates SLO violation.

ing decisions cannot capture the burstiness and waste resources until
a new scaling decision is made. On the other hand, by using in-place
vertical scaling, we can change the computational resources of the
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Table P4.1: Comparison of Biscale with previous works; Pipeline: A chain
of models or just a single model? Resource Efficiency: Does this
work use horizontal scaling for the highest resource efficiency?
Responsiveness: Does this approach use in-place vertical scaling
to respond quickly to the changes in the workload? (∗) uses
model-variants as a way of vertical scaling.

System Pipeline Resource Efficiency Responsiveness

INFaaS ✕ ✓ ✕∗
InferLine ✓ ✓ ✕

GrandSLAm ✓ ✕ ✕

FA2 ✓ ✓ ✕

Scrooge ✓ ✓ ✕

Cocktail ✕ ✕ ✓

InfAdapter ✕ ✓ ✕∗
IPA ✓ ✓ ✕∗
Sponge ✕ ✕ ✓

Biscale ✓ ✓ ✓

available DL models and absorb the burstiness almost instantly (with
an overhead of less than 100 ms). Next, as the workload decreases,
we reduce the allocated resources, reducing operational costs. Using
in-place vertical scaling for a short duration of 5 seconds, we could
reduce the SLO violation rate by roughly 5×. It should be noted that
the amount of resources in vertical scaling is higher than in horizontal
scaling, as discussed in the previous section, meaning that horizontal
scaling provides higher throughput. The next question arises: can we
switch to horizontal scaling after we absorb the burstiness with vertical
scaling? Figure P4.2 answers this question by suggesting that when
the workload becomes stable again (the stabilization is discussed in
Section P4.5.1.2), we can switch to horizontal scaling and reduce the
operational cost by 40% in this simple car detection scenario. There-
fore, a combination of vertical and horizontal scaling can react to
workload changes fast enough, simultaneously reducing total resource
consumption.

Table P4.1 presents an overview of related latency-sensitive inference
serving systems. While most of the previous works use only horizon-
tal scaling or model-variant changes for resource efficiency, they all
suffer significantly from rapid changes in the workload if they do
not over-provision their resources, which directly impacts operational
costs negatively. On the other hand, the only work that considers re-
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sponsiveness using vertical scaling in terms of changing the resources
(not the model variant or model ensemble) becomes unpractical when
the workload surpasses the capacity of one DL model with the highest
possible resource allocation (hardware limitation). Furthermore, it
does not consider pipeline, hence the challenges of data dependency
using in-place vertical scaling are not addressed.

p4.3 biscale

In this section, we first discuss the challenges of designing a new
autoscaler that benefits from both vertical and horizontal autoscaling
mechanisms. Next, we give an overview of Biscale, its architecture,
and the main components. Finally, we discuss the assumptions and
the limitations of Biscale.

p4.3.1 Challenges

We have identified the following challenges in designing a new strat-
egy that symbiotically combines both horizontal and vertical scaling:

Data dependency [dd]. The resource allocation decision becomes even
more challenging when DL models have data dependencies (pipelines)
in the serving system since the resource scaling decision for one DL
model may affect downstream DL models. Therefore, we need a fast
enough approach to find solutions for all the DL models in the pipeline
in a single shot.

Adaptation period [ap]. After using vertical scaling, we need to identify
when is a good time to switch to horizontal scaling to save resources.
To be precise, we need to find an answer to this question: “How to
correctly predict that the workload is stable enough that we do not
need to allocate extra resources for vertical scaling?”

Hardware limitation for vertical scaling [hl]. One of the drawbacks of
vertical scaling compared to horizontal scaling is that the DL model’s
maximum capacity is bound to the hardware capabilities. Every hard-
ware has a maximum limit for processing power; once it is reached,
the DL model cannot scale up any further. Thus, we must find a place-
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Figure P4.3: An overview of the Biscale architecture. The executor receives
the requests and processes them. The monitor service collects the
metric data from the stages. The optimizer makes both vertical
and horizontal scaling decisions for the DL models. The Adapter
enforces the scaling decisions by configuring the queues and the
executor.

ment algorithm for assigning DL models in a pipeline in a distributed
cluster.

Batch size [bs]. Apart from resource allocation and resource placement
in inference serving systems, there is a dominant factor that directly
affects the latency and throughput of DL models, named batch size.
The batch size can be changed online to increase the DL model’s
throughput based on the demand at the cost of higher inference latency.
As a result, we need to find the optimal batch size. Large batches can
significantly impact the response time of requests within a batch. On
the other hand, small batches might miss out on opportunities for
improved throughput and cost efficiency.

p4.3.2 System Design

Figure P4.3 provides an overview of Biscale. The system comprises five
main parts (profiler, executor, monitor, optimizer, and adapter). The
profiler creates a new performance model for any registered DL model
in the system. The stage component gets the requests and executes
the DL model. The monitor component keeps track of the pipeline’s
request rate (workload distribution). The optimizer uses data from
the monitor and the profiler components to find an optimal resource
allocation solution based on in-place vertical or horizontal scaling.
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Finally, the adapter enforces the decisions made by the optimizer to
the system.

The profiler component sends profiling requests to the DL model
with different configurations (different CPU and batch size allocations)
(answering [bs]). It then records the latencies under each configuration
and uses them to create the performance model of each DL model in
the system. Furthermore, these latency profiles are used for in-place
vertical scaling in the optimizer. Note that this component runs offline,
and the performance profiles generated by this component will be
used online.

The executor consists of multiple stages, each of which is composed
of the queuing and the model processing parts. Each stage has one
centralized queue and one or more processing model instances. The
queuing component fetches the requests from the user or other stages,
sends the arrival rate statistic to the optimizer, batches the requests
based on the optimizer’s decision, and sends the batches to their
associated models for inference. It uses a round-robin approach to
distribute batches among the processing instances (decided by the
optimizer) in its stage. The processing instance has the DL model
and the computing power (determined by the optimizer based on
the incoming workload) to process the batches sent by the stage
queuing component. After processing the batches, the instance sends
the results to the next stage or the user. Both components keep track
of the queuing and processing latencies. In the last stage, a query with
the gathered latencies is generated and sent to the monitor component
for further analysis.

The monitor gets the arrival rate statistics from the first stage queue
and the total request latency from the last model instances. The op-
timizer will fetch the arrival rate statistics to find optimal resources
and batch sizes for the whole system while guaranteeing end-to-end
request latencies, and the total request latency will be used to report
the system and the profiler’s performance. To reduce the monitor
overhead, we append the latencies to the same request as they pass
through different pipeline stages.

The optimizer gets the arrival rate from the first queuing component
and feeds it to the horizontal autoscaler. Next, it uses an LSTM predic-
tor to estimate the highest workload in the following 10-second time
window and feeds the predicted workload to the horizontal autoscaler
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(answering [ap]). The horizontal scaling results are sent to the adapter
if no additional resources are required. If not, the optimizer checks
if there are enough physical hardware resources for using in-place
vertical scaling to support the current workload (answering [hl]). If
there are enough resources, the system uses in-place vertical scaling to
respond to changes in the workload by finding the optimal resource al-
location for all the DL models in the system in a single shot (answering
[dd]). If not, the optimizer calculates the maximum throughput using
vertical scaling and switches to horizontal scaling for the remaining
requests.

The adapter is responsible for enforcing the configurations made by
the optimizer to the cluster. The configurations for each DL model in
the system are batch size, resource allocation of model instances, and
the number of instances. After the new configuration is received from
the optimizer, the adapter first compares the new set of configurations
with the current state of configurations. If there are changes, the
adapter makes two calls for each model’s new configuration, one to
the queue for adjusting the batch size and one to the executor to adjust
the computing resources of the models (vertical scaling) or change the
instance number of the model (horizontal scaling). The batch size will
be immediately updated, and changes in the computing resources will
be almost instant (less than 100 ms). The scale in/out of the instances
will take seconds (roughly 5-6 seconds).

p4.3.3 Assumptions and Limitations

The in-place vertical scaling part of Biscale uses the vertical scaling
feature of Kubernetes, which currently is on the alpha branch and only
supports CPU and memory real-time modification. However, inference
serving systems can benefit greatly from other accelerators, such as
GPUs and TPUs, which, unfortunately, are not supported at this mo-
ment. Also, Biscale uses simple queuing management, whereas a more
complex queuing simple may provide a more accurate queuing latency.
Moreover, multiple variants for the same DL models with different
properties, such as accuracy/latency trade-offs, can be leveraged to
reduce costs further. Finally, we consider uniform SLOs, where all DL
inference requests in the system have the same end-to-end latency
SLO requirement.
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p4.4 autoscaling problem

In this section, we provide a mathematical representation of the joint
horizontal-vertical autoscaling problem in an inference serving system
to react to the changes in the workload. We encapsulate the joint au-
toscaling problem into an Integer Program (IP) that decides the batch
size, computing resource, and the number of instances of each DL
model in the system in a single shot. The goal of the IP is to minimize
the cost while guaranteeing the requests SLO. It achieves it by using
vertical scaling when there are sudden changes in the workload to
capture the workload burstiness. Furthermore, when the workload
is stable (see Section P4.5.1.2), the IP switches to horizontal scaling
to save operational costs. We use different dynamic programming
approaches to solve the IP based on the workload status.

p4.4.1 Performance Profiling

A DL model processes requests with different latencies based on the
allocated computational resources and batch sizes. Previous works
have shown that processing latency has a linear/quadratic relationship
with batch size [31, 42]. Sponge [41] has shown that the processing
latency relationship is inverse to the core allocation in inference serving
systems. We follow the same guidelines and use the following formula
to build a performance profile for each DL model in the system:

l(b, c) =
γ× b

c
+

ϵ

c
+ δ× b + η. (P4.1)

Formula P4.1 predicts the processing latency with the given batch size
(b) and computing resources (c) of the DL model. We execute the DL
model with different batch sizes and resource allocation configurations
to find the static variables (γ,ϵ,δ,η) to get the processing latencies. We
then use the latency data and fit the above formulation to get the DL
performance profile. We perform the same approach offline for all the
DL models in the system and create a unique performance profile for
each.

All the used notations are available in Table P4.2.
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Table P4.2: Notations

Symbol Description

S Set of all models for an application
SLO Latency SLO of the application
ns number of instances of model s ∈ S
bs batch size of model s ∈ S
cs CPU core allocation of model s ∈ S
λ Request arrival rate
ls(b, c) Processing time of model s ∈ S with

allocation core c and batch size b
qs(b) Queuing time of model s ∈ S with

batch size b
hs(b, c) Throughput of model s ∈ S with allo-

cation core c and batch size b

p4.4.2 Queue

Due to the differences in the number of DL instances, computing
resources, and batch size, the DL model instances process requests
with different latencies. Also, to form the batches to increase the
system performance, the first request in the batch must wait for the
arrival of the last request in the batch, causing an extra queuing delay.
Because of the mentioned reasons, the requests in batches leave the
queue at different speeds (i.e., the last request in the batch leaves the
queue immediately, and the first request in the batch must wait the
longest, hence it has the slowest speed in terms of leaving the queue),
causing a dynamic queuing latency. FA2 [42] uses Equation (P4.2) for
the worst-case scenarios. The worst-case scenario can happen when
there are no available instances (out of the n instances for the same
DL model) to process the current batch (meaning that all n instances
are busy and the next batch needs to wait for one of the instances to
be free (l(b)− nb+1

λ )) or the first request waits for the arrival of the
last request in the same batch ( b−1

λ ). Therefore, the worst case is the
maximum of these two equations, as shown in the following equation.

q(b,n) = max
(

b− 1
λ

, l(b)− nb + 1
λ

)
. (P4.2)

However, they do not consider the speed-up/down caused by chang-
ing the computing resources of the DL model instances, which directly
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affects the queuing drainage. Therefore, we propose the following
equation to incorporate the computing resources in the DL model as
well:

q(b, c,n) = max
(

b− 1
λ

, l(b, c)− nb + 1
λ

)
. (P4.3)

Similar to FA2, we argue that the worst-case scenario happens for the
latter scenario, where the first request needs to wait for the last request
of the same batch due to the fact that by increasing the computing
resources and reducing the processing latency, the DL models catch
up with the workload. This means that the aggregate throughput of
all the instances will equal or exceed the workload, i.e., n× h(b, c)≥ λ,
i.e., the second part of the above equation is always less than zero.
Therefore, we use a simplified queuing latency prediction as:

q(b) =
b− 1

λ
. (P4.4)

p4.4.3 Problem Formulation

The goal of the optimizer is to decide the least amount of allocated
resources of all instances (∑s∈S ns × cs), subject to guaranteeing the
end-to-end latency of requests and supporting the workload.

The end-to-end latency of a request is the aggregation of queuing and
processing latencies of all the stages in the pipeline, which should be
lower than the given SLO:

End-to-End Latency = ∑
s∈S

ls(bs, cs) + qs(bs) ≤ SLO. (P4.5)

To maintain system stability, the combined throughput of all instances
of a stage must meet or exceed the request rate. Formally, for any stage,
the product of its instance’s throughput and the number of instances
should be greater than or equal to the sum of request rates across
all instances, i.e., s ∈ S, hs(bs, cs) × ns ≥ λ. This constraint ensures
adequate provisioning for all stages, effectively managing the queuing
of inference requests at each stage.
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The problem can be formulated with the following IP:

min ∑
s∈S

ns × cs

subject to ∑
s∈S

ls(bs, cs) + qs(bs) ≤ SLO

λ ≤ hs(bs, cs)× ns,∀s ∈ S

bs, cs,ns ∈Z+,∀s ∈ S

(P4.6)

The last constraint in Equation P4.6 states that the batch sizes and
number of instances should be positive. Next, we solve the above IP
with different approaches based on the current workload situation.

p4.4.4 Optimizer

Two dynamic variables per stage affect the total cost significantly
and can be adjusted in the IP from the previous section, namely
core allocation, c, and instance number, n. The former is used in
vertical scaling (changing the processing latency of a model), and
the latter is used in horizontal scaling (distributing the workload to
multiple instances). As we explain in Section P4.5, vertical scaling is
not the most cost-efficient mechanism for serving requests compared
to horizontal scaling, but the in-place vertical scaling feature is more
responsive when there are changes in the workload. Therefore, we
solve the IP with two different mindsets, using vertical scaling to
respond quickly or saving more resources with horizontal scaling.

However, a similar IP cannot be solved efficiently in real-time as the
problem grows exponentially as the number of stages grows [25, 42,
43]. Consequently, we need to use heuristics or limit the solver to
some extent (reducing the feasible space to explore). We leverage the
limited SLO (which is usually a few thousand milliseconds), limited
batch sizes (1-16), and limited core allocation (limited to the hardware
the model is placed on (1-16 CPU cores)) in inference serving systems
and provide dynamic programming algorithms to find the optimal
solution for either vertical or horizontal scaling. Both algorithms run
in O(SLO × bmax × cmax × |S|) time complexity, which reduces the
exponential execution time (dependent on the number of stages) to
the dominant SLO time by incorporating the space complexity using
dynamic programming. Section P4.5.1.3 discusses which algorithm to
be executed at a given time.
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p4.4.4.1 Vertical Scaling

As discussed above, we use dynamic programming to find the optimal
solution for the vertical scaling to absorb the sudden changes in the
workload.

Algorithm 3 aims to find the optimal CPU allocations for the given
pipeline considering their performance profile and the specified SLO.
The algorithm takes the pipeline SLO, a set of models denoted by S
with their corresponding performance profile, and the workload λ

as input and returns the values cs and bs for all the DL models s ∈ S.
Dynamic programming solves the IP by first solving the problem with
just having one stage and then increasing it to the pipeline one by
one. For any added model, we consider all possible SLOs (1 to SLO)
and divide the picked number into two parts, one for the current DL
model and one for the previous DL models. We check whether it is
possible with the current division to serve the workload in all the DL
models. We continue the procedure until all the models are visited.
In the end, if there is no possible solution, we use a binary search
on the workload to find the maximum possible workload supported
by vertical scaling and bring up new instances (horizontal scaling) to
support the remaining workloads.

To be precise, we iterate first over the stages (line 1) and then iterate on
all possible SLO values with different batch sizes and core allocations
(lines 2-5). Then, we estimate the total latency by calculating the pro-
cessing latency and then aggregating it with the queuing latency (lines
6-8). Next, if the current throughput supports the incoming workload
and the aggregated latency is lower than the SLO, we check if the cur-
rent model is the first in the pipeline since there is no need to divide
the current SLO. If so, we store the current configuration (current CPU
and batch size allocations) (lines 11-14). If not, we check if the current
configuration is the least total resource allocations with the current
SLO division (lines 15-20). After considering all the configurations,
we check if there is a possible candidate (line 21) by checking if the
algorithm has reached the last DL model in the pipeline. If not, we use
binary search on the workload and feed it to the same algorithm to
find how much of the workload vertical scaling can support (lines 22-
29). We then calculate the needed instances for serving the remaining
requests using horizontal scaling with the same CPU core allocations
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Algorithm 3: Vertical Scaling
input : SLO, Set of models S and their latency model, λ

output : cs,bs∀s ∈ S
1 for s in [0, |S|,1] do
2 for i in [SLO,−1,−1] do
3 if (s == 0 and dp[s][i]) or s (!= 0 and dp[s - 1][i]) then
4 for c in [1, cmax] do
5 for b in [1,bmax] do
6 l = calculate ls(b, c), q = b−1

λ

7 h = calculate hs(b, c)
8 l += q
9 if h ≤ λ and l ≤ SLO then
10 continue
11 if s == 0 then
12 if dp[s][i + l] is False then
13 dp[s][i + l] = True
14 best[s][i + l] = (c, c,b)
15 else if dp[s− 1][i] and i > 0 then
16 if dp[s][i + l] is False then
17 dp[s][i + l] = True
18 best[s][i + l] = (best[s− 1][i][0] + c, c,b)
19 else if best[s− 1][i][0] + c < best[s][i + l][0]

then
20 best[s][i + l] = (best[s− 1][i][0] + c, c,b)
21 Check if there is a solution in dp[|S| - 1].
22 if No solution then
23 left = 1, right = λ

24 while right - left > 1 do
25 mid = (right - left) // 2

26 if Vertical scaling with λ = mid then
27 right = mid
28 else
29 left = mid

30 return Vertical Scaling with λ = le f t and Horizontal Scaling with
λ = λ− le f t with the same CPU as Vertical Scaling.

31 else
32 result = calculate recursively the optimal configurations for all the

models using best.
33 return result

(line 30). If there is a valid configuration, we find the configurations
for all the models recursively (lines 31-33).
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Algorithm 4: Horizontal Scaling
input : SLO, Set of models S and their latency model, λ

output : ns,bs∀s ∈ S
1 for s in [0, |S|,1] do
2 for i in [SLO,−1,−1] do
3 if (s == 0 and dp[s][i]) or s (!= 0 and dp[s - 1][i]) then
4 for b in [1,bmax] do
5 l = calculate ls(b,1), q = b−1

λ

6 h = calculate hs(b,1)
7 l += q
8 if h ≤ λ and l ≤ SLO then
9 continue

10 ins = workload // throughput
11 if s == 0 then
12 if dp[s][i + l] is False then
13 dp[s][i + l] = True
14 best[s][i + l] = (ins, ins,b)
15 else if dp[s− 1][i] and i > 0 then
16 if dp[s][i + l] is False then
17 dp[s][i + l] = True
18 best[s][i + l] = (best[s− 1][i][0] + ins, ins,b)
19 else if best[s− 1][i][0] + ins < best[s][i + l][0] then
20 best[s][i + l] = (best[s− 1][i][0] + ins, ins,b)

p4.4.4.2 Horizontal Scaling

Similar to vertical scaling, we use dynamic programming to find the
optimal instance number (horizontal scaling) for all the DL models in
the system in a single shot. The main difference between the vertical
and horizontal scaling algorithms is that we can support any workload
using horizontal scaling. Hence, we calculate the number of needed
1-core instances (line 5), and we calculate the least total resource-
consuming configuration (lines 11-20) in Algorithm 4. Finally, we
recursively find the optimal number of instances for all the models
and send the results to the adapter for the system adaptation.

p4.5 transition

In this section, we explain the necessity of transitioning to horizon-
tal scaling after initially using in-place vertical scaling to respond
to changes in workload. We detail the circumstances under which
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Figure P4.4: Transition states between vertical and horizontal scaling strate-
gies.

vertical and horizontal scaling transitions should occur and provide a
comprehensive method for switching between these mechanisms.

First, we present a mathematical proof demonstrating the superior
performance of horizontal scaling in terms of throughput, addressing
the why of this transition, contrasting it with the responsiveness of-
fered by vertical scaling as discussed in Section P4.2. We outline the
horizontal and vertical scaling transition steps based on this proof
(answering how). Finally, to address the when of these transitions, we
develop an LSTM model to predict the maximum requests per second
(RPS) for the next few seconds, guiding the decision of when to switch
from vertical scaling to horizontal scaling. All the transition states are
available in Figure P4.4.

p4.5.1 Vertical Scaling to Horizontal Scaling

This part describes why we need to switch to horizontal scaling from
vertical scaling and discusses how and when it must be done.

p4.5.1.1 Why

Amdahl’s law describes the theoretical speed-up in the execution
time of a parallelizable task [3]. In Formula P4.7, L(r) calculates the
speed-up of a task with the given computational resources (r) and the
parallelization share (p) of the task.
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L(r) =
1

(1− p) + p
r

. (P4.7)

We use Amdahl’s law to show that 1-core instances always provide the
same or a higher throughput compared to the multiple-core instances
in DL models under a fixed workload using the same amount of
resources. We use induction to prove this statement by setting total
resources r = 2 and then r = n× (n + 1).

For r = 2, we have 2× 1-core instances which implies 2× L(1) and
1× 2-core instance which gives the task speed-up of 1× L(2). The
execution time of 2× L(1) instances is 2× ( 1

(1−p)+ p
1
) = 2× 1 = 2 while

the latency of the execution time of 1× L(2) instances is 1
(1−p)+ p

2
= 2

2−p

which can be at most 2 as the parallelization share can be between 0

and 1. Therefore, 2× L(1) ≥ 1× L(2), meaning that 2× 1− core has
a total higher speed-up 1× 2-core, resulting in the same or higher
throughput.

For r = n× (n + 1), we calculate (n + 1) n-core instances ((n + 1)×
L(n)) and n n + 1-core instances (n× L(n + 1)) as follows:

(n + 1)× L(n) = (n + 1)× 1
(1− p) + p

n
=

(n + 1)× n
n− np + p

. (P4.8)

n× L(n + 1) = n× 1
(1− p) + p

n+1
=

(n + 1)× n
n− np + 1

. (P4.9)

As 0≤ p ≤ 1, (n + 1)× L(n) process more requests than n× L(n + 1)
based on Formula P4.8 and Formula P4.9, (n + 1)× L(n) results in a
higher throughput.

Finally, as for any number of cores, more instances with a lower core
number achieve a higher throughput. We conclude that for any r = n,
n× 1− core instances achieve the highest possible throughput under
a fixed workload.

p4.5.1.2 How

There are two scenarios in which we switch to horizontal scaling from
vertical scaling: (i) when the workload is stable, as described in the
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next section, and (ii) when there are not enough hardware resources
for vertical scaling to support the workload.

For the former scenario, we use the argument in the previous part and
bring up as many 1-core instances as needed to serve the requests mi-
nus the currently running instances, which we reduce their resources
to 1-core as soon as the rest of the instances are up and running. For
instance, if currently, two 3-core instances are serving the requests and
four 1-core instances can serve the same number of requests, we bring
up two 1-core instances and reduce the 3-core instances’ resources to
1-core instances using in-place resource scaling.

For the latter scenario, when there is a hardware limitation, or there
is no speed-up possible because of the limited parallelism of the DL
model, we serve as many requests as possible with the currently
running instances by increasing their resources to the maximum to
reduce the SLO violations and simultaneously bring up new 1-core
instances to serve the remaining requests.

p4.5.1.3 When

To decide when to switch from vertical scaling to horizontal scaling
in case of workload stability, we design an LSTM to predict the next
ten seconds’ maximum RPS and feed the predicted value and the
current RPS to the horizontal scaling algorithm 4 to check whether
the current and future configurations are the same. If so, we switch
to horizontal scaling to save resources. We use the horizontal scaling
algorithm to check if the workload is stable since the currently run-
ning instances may be able to serve more requests than the current
workload. Therefore, more RPS may not need more resources.

For building the LSTM model, we use an input layer, a 25-unit LSTM
layer, followed by a one-unit dense output layer. We trained the net-
work using the Adam optimizer with the MSE loss function. Fig-
ure P4.5 shows the LSTM result, where we train it with 14 days of
the Twitter dataset [4] and seven days as validation (more details in
Section P4.6). The workload prediction takes less than 30 ms, with
a Mean Absolute Percentage Error of 5.8%, making it practical for
getting live inference.
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Figure P4.5: LSTM inference result.

p4.5.2 Horizontal Scaling to Vertical Scaling

This part describes why we need to switch to vertical scaling from
horizontal scaling and discusses how and when it must be done.

p4.5.2.1 Why and When

When there is an increase in the workload, horizontal scaling needs
to bring up new instances, load the required heavy libraries such as
Tensorflow or PyTorch, and initialize the model. These actions take a
few to tens of seconds, which drastically reduces the responsiveness
of horizontal scaling. On the other hand, in-place vertical scaling can
instantly increase the computing resources of the running instances,
making it a better option in terms of responsiveness. Therefore, when
there is a sudden surge of requests (when the current resource allo-
cation cannot support the increased requests), we switch to vertical
scaling to absorb as many extra requests as possible.

p4.5.2.2 How

Now, to answer how to transition from horizontal scaling to vertical
scaling, let’s assume that we have more than one 1-core instance in
a stage since with just one 1-core instance, the previous part states
how to scale. The following question arises when there is a change
in the workload requiring more resources: Should we increase the
resources of one instance, the resources of a subset of instances, or the
resources of all the instances to react to the changes in the workload?
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To answer this question, we use similar proof as in the previous section
by first considering two 1-core instances, analyzing how to scale them
vertically, and then generalizing them to any number of instances.

For r = 2× n, we calculate both configurations speed-up; once giving
all the resources to one instance (instance1 = 2× n− 1 and instance2 =

1) and once distribute the resources evenly (instance1 = instance2 = n).
The speed-up calculation for r = 2× n− 1 is as follows:

L(2× n− 1) =
1

(1− p) + p
2×n−1

= 1+
2× p× (n− 1)

2× (n− np + p)− 1
. (P4.10)

By having the second instance with 1-core and no speed-up, we have
the total speed-up of 2 + 2×p×(n−1)

2×(n−np+p)−1 . On the other hand, if we
distribute the resources evenly to both instances, each with n CPU
cores, we will have the total speed-up of:

2× L(n) = 2× 1
(1− p) + p

n
= 2 +

2× p× (n− 1)
n− np + p

. (P4.11)

Now, if n− np + p ≤ 2× (n− np + p)− 1, we have shown that dis-
tributing resources evenly has a higher total speed-up, resulting in a
higher throughput. The equation can be proven as follows:

n− np + p ≤ 2× (n− np + p)− 1

1≤ n− np + p

1− p ≤ n× (1− p)

(P4.12)

The last part is true since n (the number of allocated CPU cores) is
always greater than 1.

The same proof applies to any number of instances, which is omitted to
reduce repeatability. Therefore, evenly distributing resources generates
a higher throughput compared to giving a subset of instances more
resources. We follow the same practice in our system, and when
vertical scaling is needed, we scale all the instances to the same amount
of resources.

p4.6 experimental evaluation

We implemented the inference services using PyTorch [38] and Hug-
ging Face [19]. The queuing component is implemented using Python
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AsyncIO [21]. We implemented Biscale in Python 1. We evaluated
Biscale on a testbed consisting of two servers, each equipped with
Core i9-9940x CPUs at 3.3GHz and interconnected with a stable pri-
vate Ethernet network (1Gbps). We set up a Kubernetes cluster using
MicroK8s [50] on these two servers and configured the InPlaceVerti-
calScaling feature gate, an alpha-stage feature that enables in-place
vertical scaling.

Workload: To evaluate Biscale, we developed a workload generator
that uses the real-world Twitter traces [4] as the workload pattern
(requests per second) and sends requests to the pipelines following
a Poisson distribution to mimic the workloads on data centers. Fur-
thermore, we use roughly 10-minute traces from the validation data
discussed in Section P4.5.1.3 for evaluation purposes. The selected
traces show a steady workload and heavy bursts, demonstrating the
systems’ behavior under a realistic and dynamic workload. We scale
the traces for each pipeline to match the hardware capacity we run
the experiments on.

DL Models: To compare Biscale with existing solutions in realistic
environments, we use DL models across the computer vision, natural
language processing, and audio recognition domains. These domains
are also extensively used in other DL inference serving systems [12, 25,
31, 42–44]. Table P4.3 summarises the DL models we use to evaluate
Biscale. We further assessed the equation in Formula P4.1 with 512

requests per batch size and CPU core configuration as demonstrated
in Figure P4.6 to show the effectiveness of the equation.

Pipelines: We evaluate Biscale using three pipelines as specified in
Table P4.3 similar to the pipelines used in recent works [11, 16, 55,
58]. For the SLO of each pipeline, we follow a similar methodology
described in [26] and calculate the processing latency with the least
batch size and core allocation (b = c = 1), aggregate the processing
latencies of DL models, and multiply the result by a factor of three.

Baselines: We compare Biscale to a state-of-the-art horizontal scaling
(FA2 [42]) and an extended version of the recently proposed in-place
vertical scaling (Sponge [41]) in inference serving systems. FA2 solves
the horizontal autoscaling problem by simultaneously considering
the joint problem of batch size and number of instance selections. It
increases the resource utilization of the DL models’ instances, reducing

1 The source code will be available after the acceptance.



P4.6 experimental evaluation 191

Table P4.3: DL Models and Applications

DL Models

Task Architecture Abbreviation

Object Detection [52] YOLOv5n OD
Object Classifica-
tion [23]

ResNet18 OC

Audio to Text [54] FAIRSEQ S2T AT
Sentiment Analy-
sis [14]

DistillBERT SA

Language Identifica-
tion [56]

XLM-RoBERTa LI

Neural Machine
Translation [17]

Elan-mt NT

Text Summariza-
tion [34]

T5-small TS

Applications

Name Pipeline SLO

Video Monitoring OD→OC 780

Audio Sentiment Analysis AT→SA 1350

Natural Language Processing LI→NT→TS 2550

the needed instances. Sponge uses in-place vertical scaling to react
to sudden changes in the workload. However, their approach only
considers one model in the system. To be able to compare Biscale with
Sponge, we use the approach in Algorithm 3 without the horizontal
scaling part (one instance per DL model) as an extension of Sponge to
solve the in-place vertical autoscaling problem in inference pipelines.

Metrics: We consider the following metrics in the evaluation, collected
by Prometheus [8]:

• SLO violation rate: We collect each stage latency (consisting of
queuing and processing latencies), aggregate them, and use them
to check whether a request has violated the application’s SLO.

• Cost: We use the number of instances × allocation CPU cores
per instance of each DL model and report the aggregated results.

• Request dropping: We consider request dropping to avoid pend-
ing requests in the queues. We collect the dropped requests and
use them to calculate the total SLO violation rate.
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Figure P4.6: Performance profile of Translator and Classifier DL models with
different CPU and batch configurations.

• P99 latency: Each second, multiple requests are being served. We
pick the P99 of the requests to measure Biscale and compare it
with the P99 latency of the baselines.

p4.6.1 End-to-End Performance

Video Monitoring. Figure P4.7 provides a detailed evaluation of
Biscale, horizontal scaling, and vertical scaling used to handle the
Twitter trace workloads in the video monitoring pipeline. The top sub-
figure shows the workload, starting low and stable, sharply increasing
around the 50

th second, peaking near the 180
th second, and gradually

returning to the initial RPS around the 450
th second.

When the workload starts, horizontal scaling violates more than half
of the requests since the initial state with one instance on each DL
model is not capable of supporting the incoming workload. To support
the workload, horizontal scaling brings new instances up, where the
cold start-up issue kicks in and starts violating the requests until the
instances are spawned and warmed up. On the other hand, both Bis-
cale and vertical scaling immediately increase the number of CPUs for
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their running instances to increase their throughput, hence supporting
the starting workload.

After a few seconds, in Biscale, when the optimizer detects the work-
load is stable with the help of the LSTM, it switches to more 1-core
instances to reduce the costs and, at the same time, to increase the
DL models’ throughput (second 10). The situation becomes complex
when the workload increases to over 40RPS from 10RPS, where none
of the approaches have enough up-and-running resources to capture
the surge of requests, resulting in violating the SLOs. However, Biscale
and vertical scaling approaches change the computing resources of
the running instances to the maximum to reduce the SLO violations.
Biscale has a slightly lower SLO violation rate since, in the previous
seconds, it has brought up more 1-core instances to reduce the overall
cost. The horizontal scaling approach initially has the highest violation
rate since it needs to bring up new instances to support the current
workload, but after the instances are up and running, it distributes
the workload to multiple instances and stops violating the requests,
which takes roughly 15 seconds. The vertical scaling approach adapts
itself to the initial part of the workload. However, it starts suffering
from SLO violation since one instance, even with the maximum re-
source allocation per DL model, is insufficient to support the incoming
workload. After detecting the workload surge, Biscale changes the
computing resources of the running instances to maximum and simul-
taneously commands the system to bring up new instances to support
the increased workload. With this approach, Biscale violates the re-
quests in less than a few seconds by compensating it with more cost
at the 55

th second. After capturing the surge, the optimizer reduces
the allocated resources to half to save costs by switching to horizontal
scaling. After that, there are some fluctuations in the workload where
Biscale is capable of capturing immediately due to the responsiveness
of in-place vertical scaling, but horizontal scaling still shows lots of
SLO violations (over 10% in some seconds), where it needs to bring
up new instances and violates SLOs meanwhile. After the workload
reaches its initial RPS (450

th second), all the approaches serve requests
efficiently.

Audio Sentiment Analysis. Figure P4.8 depicts the end-to-end evalua-
tion over the audio sentiment analysis pipeline. Both models in the
audio sentiment analysis pipeline are heavier than the ones in video
monitoring, and with the same hardware, the system can process a
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Figure P4.7: End-to-end comparison on the video monitoring pipeline. Bis-
cale reduces the SLO violation to roughly 0.1% by using both
scaling mechanisms jointly. Horizontal and vertical scaling mech-
anisms violate 2.4% and 39.3% of the requests’ SLO, respectively.
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lower RPS. Therefore, we use almost half of the previous workload in
this experiment.

Unlike the video monitoring pipeline, the gap between the SLO and
the processing latency with b = c = 1 is greater, and Biscale uses the op-
portunity and increases the DL models’ batch size more aggressively,
resulting in higher throughput and lower needed resources. Because
of the bigger batch sizes, the system does not need to switch to lower
CPU cores using in-place vertical scaling, unlike the video monitoring
pipeline, which changes the CPU cores more frequently to keep up
with the workload. On the other hand, the bigger batch sizes increase
the pipeline SLO violation from 0.1% to 0.5%. The violation rate in-
creases to 6.5% in horizontal scaling due to the fact that the models are
heavier, and the initialization takes longer, thereby a slower reaction
time and a higher SLO violation rate. Vertical scaling suffers from the
queuing back pressure throughout the experiment, demonstrating the
importance of distributing the requests to multiple instances. Also, at
the moment, we depend on the LSTM and the performance profiles to
switch to horizontal scaling to improve resource efficiency. Our LSTM
might delay this process by predicting higher values for the maximum
workload of the next period, as depicted in the same figure.

Natural Language Processing. Figure P4.9 demonstrates the end-to-
end evaluation over the natural language processing pipeline. The
pipeline contains three DL models (compared to two DL models in
the other pipelines), which are the most resource-intensive DL models
in our experiments. Therefore, we scale the RPS to the range of (2,12).
Following the same pattern, Biscale scales the resources vertically at
the beginning, and after capturing the initial workload, it reduces the
resources to a minimum to match the workload. Horizontal scaling
suffers the most in this scenario since the DL models are heavy and
bring up new instances with the weight loading time taking over
10 seconds, resulting in violating roughly half of the requests SLO.
Vertical scaling drops almost all the requests (over 96%) due to not
having enough resources.

Overall, Biscale demonstrates adaptability to workload changes, effec-
tively scaling resources up and down in response to demand. Despite
workload spikes, the system manages to keep P99 latency mostly
within the SLO threshold, indicating efficient latency management.
The CPU usage graph reflects resource efficiency, increasing during
high demand and conserving resources when demand is low. The
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Figure P4.8: End-to-end comparison on the audio sentiment analysis pipeline.
Biscale reduces the SLO violation to less than 0.5%. Horizontal
scaling violates 6.5% of the requests, while vertical scaling vio-
lates most of the requests, reaching over 72% of the total SLO
violation.
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Figure P4.9: End-to-end comparison on the natural language processing
pipeline. Biscale reduces the SLO violation to less than 3.8%.
Horizontal scaling violates 50.7% of the requests SLO, and verti-
cal scaling violates 96.7% of the requests SLO.
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figure highlights the effectiveness of these strategies in managing vary-
ing workloads, maintaining low latency and low cost, and minimizing
SLO violations.

p4.6.2 Intra and Inter Parallelism

In deep learning frameworks like TensorFlow [1] and PyTorch [38],
two key parameters significantly impact request processing latency:
inter and intra operation parallelism. These parameters have been ex-
tensively studied to determine their optimal configurations for various
scenarios [59].

The intra operation parallelism parameter allows tasks within a single
batch of requests to be parallelized, thereby enhancing processing
efficiency within that batch. This parameter can be dynamically ad-
justed during runtime, offering flexibility and adaptability to changing
workloads. In contrast, the inter operation parallelism parameter en-
ables multiple tasks to be executed in parallel across different batches.
However, unlike intra operation parallelism, the inter operation param-
eter is initialized once and remains fixed. This static nature can pose
challenges, especially with in-place vertical scaling, where resource
allocation needs may shift dynamically.

As shown in Figure P4.10, the inter operation parameter has minimal
impact if new batches of requests are sent only after the previous
batches have been fully processed. This suggests that the effectiveness
of inter operation parallelism is context-dependent, proving more
beneficial in scenarios with concurrent batch processing rather than
sequential processing.

p4.6.3 Request Dropping Effect

When there is a surge of requests on the system, they may accumulate
in the queues, leading to violations not only of their SLOs but also of
new incoming requests, as older requests must be processed first. To
prevent this, inference serving systems implement request dropping
to alleviate queue back pressure [25, 42].
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Figure P4.10: The effect of Intra and Inter parallelism parameters on the
YOLOv5n and ResNet18 models with 4 CPU cores. Inter paral-
lelism parameter does not affect the processing latency when
there is one batch at a time in the DL model.

Different request-dropping strategies can be employed to minimize
SLO violations. One strategy is to drop any request already reaching
SLO at any processing or queuing stage. Another approach is to allow
a buffer, such as three times the SLO, acknowledging that some delay
might be acceptable. Finally, an approach is never to drop requests,
opting to serve all requests regardless of the cost.

Figure P4.11 compares these three strategies using Biscale and baseline
scaling approaches over the first 100 seconds of the workload depicted
in Figure P4.7, which includes a sudden increase in demand. Biscale
successfully serves almost all requests (over 99%) during this period
with virtually no SLO violations. In contrast, when the dropping strat-
egy is relaxed (3x SLO and No Dropping), both horizontal and vertical
scaling mechanisms experience significant request dropping, with
over 20% and 40% drop in horizontal and vertical scaling, respectively.
Thus, the 1x SLO strategy is the most effective in minimizing SLO
violations for these approaches.
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Figure P4.11: The effect of different dropping strategies. The 1xSLO dropping
strategy helps reduce the total number of SLO violations.

p4.7 related work

This section discusses autoscaling in inference serving systems and mi-
croservices since DL models are mainly encapsulated in microservices,
and the inference pipelines are composed of several interconnected
microservices as discussed in Section P4.2.

Autoscaling in Inference Serving Systems: Multiple approaches have
been proposed to reduce total resource consumption either using
vertical or horizontal scaling in inference serving systems while guar-
anteeing SLOs [12, 13, 15, 25, 27, 28, 30, 37, 43, 44, 47, 48]. FA2 [42]
uses graph transformation and dynamic programming techniques to
reduce the number of instances in horizontal scaling. The graph trans-
formation component deconstructs the execution graph, simplifying it
and enabling optimal solutions to be found in real time. Meanwhile,
the dynamic programming solution determines the optimal batch size
and scaling factor for each DL model within the pipeline, ensuring
efficiency and performance optimization. Sponge [41] uses a greedy
approach to guarantee end-to-end latency of one DL model under a
dynamic network using in-place vertical scaling. Similar to this work,
they encapsulate the autoscaling problem into an IP and solve it in
real time.

Autoscaling in Microservices: Current practices in microservice au-
toscaling mechanisms are mainly rule-based heuristics [6, 7, 20, 32,
49, 51, 60], meta-heuristics [10, 24, 53], or recently, machine learning
based [40, 45, 46]. Kubernetes Vertical Pod Autoscaler (VPA) [7] and
Horizontal Pod Autoscaler (HPA) [6] manage the allocation of com-
puting resources and the scaling of instances for microservices using
threshold-based metrics. VPA adjusts the CPU and memory resources
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allocated to individual pods based on their current usage to ensure op-
timal performance. Conversely, HPA scales the number of instances up
or down in response to real-time demands by monitoring metrics like
CPU and memory utilization. However, it is advised not to use VPA
and HPA together, as they may interfere with each other’s operations.
When both are set, their concurrent adjustments can lead to conflicting
actions, resulting in inefficient resource allocation and potential per-
formance degradation. A close work, SHOWAR [9], uses the empirical
variance in the historical resource usage for vertical scaling to have
an improved resource allocation compared to the default commonly
used metric-based Kubernetes Vertical Autoscaler [7] (VPA), and uses
CPU scheduler’s eBPF metrics to design a more accurate horizontal
autoscaler than Kubernetes Horizontal Autoscaler [6] (HPA). In verti-
cal scaling in SHOWAR and Kubernetes VPA, the microservices are
bounded by a maximum of 1-core CPU allocation since microservices
do not leverage multiple CPU cores to accelerate the microservices’
performance in contrast to DL models. Furthermore, the vertical au-
toscaler in SHOWAR does not react to changes in the workload but to
CPU and memory metrics, which results in SLO violations in terms of
unpredictable changes in the workload.

p4.8 conclusion

In this paper, we have presented Biscale, a novel system designed to
enhance inference serving through an innovative two-stage autoscal-
ing strategy. By combining in-place vertical scaling with horizontal
scaling, BoS effectively addresses the challenges of managing resource
allocation under variable and unpredictable workloads. Extensive
evaluation with real-world workloads demonstrates Biscale reduces
the SLO violation by over 10× and minimizes the cost when the de-
mand is low, showing Biscale’s potential to provide responsive and
cost-effective inference-serving solutions.

For future works, we consider enhancing Biscale’s capability to utilize
heterogeneous hardware resources effectively. Modern data centers
often comprise a mix of CPUs, GPUs, TPUs, and specialized acceler-
ators. Integrating Biscale with hardware-aware scaling policies can
optimize the allocation of tasks to the most suitable hardware, further
improving efficiency and performance. Moreover, different placement
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strategies can be employed where new instances should reside. It re-
quires answering the question of whether we should use a bin packing
approach to utilize the physical machines to the maximum, a fair
distribution of instances using a round-robin approach to not exhaust
the machines, or if the most sparse instance distribution generates the
ideal configuration in terms of guaranteeing SLOs.
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D I S T R I B U T E D D N N S E RV I N G I N T H E N E T W O R K
D ATA P L A N E

abstract

Programmable networks have received tremendous attention
recently. Apart from exciting network innovations, in-network
computing has been explored as a means to accelerate a variety
of distributed systems concerns, by leveraging programmable
network devices. In this paper, we extend in-network computing
to an important class of applications called deep neural network
(DNN) serving. In particular, we propose to run DNN inferences
in the network data plane in a distributed fashion and make
our programmable network a powerful accelerator for DNN
serving. We demonstrate the feasibility of this idea through
a case study with a real-world DNN on a typical data center
network architecture.

p5.1 introduction

The emergence of programmable, high-performance network switches
and SmartNICs, has not only enabled exciting innovations in network-
ing but also inspired a new computing paradigm called in-network
computing [6, 12]. With in-network computing, programmable net-
work devices are instructed to accelerate application components by
leveraging the high-throughput, low-latency processing capabilities,
and convenient on-path placement of these devices [2]. Example appli-
cations that have been proven to benefit from in-network computing
are caching [5], aggregation [10, 13], agreement [4], and database query
processing [18].

209
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Deep learning has become the de facto approach for various infer-
ence tasks such as object detection and speech recognition. With the
widespread adoption of deep learning, it becomes critical that we
can serve DNNs with high performance in terms of both throughput
and latency. DNN serving is usually done preferably with high-end
accelerators like GPUs/TPUs over CPUs due to higher efficiency and
lower costs [14]. GPUs/TPUs typically employ batching to improve
throughput, at the cost of increased inference latency [14].

Considering both the fast development of programmable network de-
vices and the high demand for DNN serving, we ask a bold question:
Can we leverage a programmable network to perform DNN serving? Given
that a modern Tofino2 switch can process packets with nanosecond la-
tency, and at the rate of billions of packets per second [1], DNN serving
would achieve an unprecedented level of performance if the DNN can
be executed entirely in the data plane of the programmable network.
Note that with this design the inference can be performed “on the fly”
while transferring DNN input data on the network, eliminating the
need of accelerators.

Prior work has explored the intersection of programmable networks
and machine learning. For example, in-network aggregation has been
used to accelerate the gradient synchronization in data-parallel DNN
training [10, 13]. Other work has explored data-plane packet classifica-
tion by running per-packet inference tasks, like decision trees, SVMs
and small (binary) neural networks, on programmable switches and
SmartNICs [16, 19]. Confined to a single device, such approaches limit
the size of the supported ML models, and work towards addressing
this issue only involves new hardware architectures [17]. So far, and to
the best of our knowledge, none of these efforts support the serving
of large DNNs (models with millions of weights) across a network of
programmable network devices targeting user applications.

In this paper, we propose an in-network system for fast, end-to-
end DNN serving by distributing a DNN across a network of pro-
grammable switches, as depicted in Figure P5.1. Our inspiration stems
from the observation that DNNs are dataflow computations similar to
how packets flow through a network. Based on that, we 1 map the
neurons in the DNN to the physical network switches, 2 craft and
route packets carrying the input/intermediate data to go through the
switches containing the corresponding neurons, and 3 instruct each
switch to perform the computations specified by the neurons assigned
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Figure P5.1: An overview of in-network DNN serving.

to the switch. In the rest of this paper, we demonstrate the feasibility
of this idea through a case study with a real-world DNN and a typical
data center network architecture. We also discuss further challenges.

p5.2 a case study with mini-alexnet

We use a simplified version of AlexNet [9] (mini-AlexNet) used
in [11] and trained on CIFAR-10 [8] with three dimensions (height,
width, and channel). We map the mini-AlexNet network to a set of
programmable switches using the data center network architecture
(spine/leaf) adapted from the Google infrastructure [15].

The mini-AlexNet neural network is described in Table P5.1. It consists
of an input layer and three convolutional layers followed by three fully
connected layers. The convolutional layers are composed of convolu-
tional filters, ReLU activation functions, and 2D Max Pooling (2x2)
layers. Due to the fact that the state-of-the-art programmable switches
(Barefoot Tofino2 [3]) are not equipped with Floating Point Units
(FPUs), we store the inputs and weights in 8-bit integers. To avoid mul-
tiplication and aggregation overflow, we can increase the input values
to 32-bit integers as it does not affect the number of operations and
the cost of storing results is either temporary, or minuscule compared
to weights. Previous work has shown that fixed-point arithmetic is
faster than floating point equivalent accuracy, and 8-bit precision is
sufficient for DNN inference [17].
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mini-AlexNet (CIFAR-10) Number of Parameters Number of Operations Memory (byte) Mapped Switch

Layer 1 Input: 32× 32× 3 0 0 3,072 S1

Layer 2 Conv1: 3× 3× 3× 64 1,792 3,110,400 16,192 S2

Layer 3 Conv2: 3× 3× 64× 192 110,784 37,347,648 117.696 S3

Layer 4 Conv3: 3× 3× 192× 384 663,939 21,227,520 665,475 S4

Layer 5 FC1: 4096 6,295,552 12,582,911 6,299,648 S5

Layer 6 FC2: 2048 8,390,656 16,777,215 8,392,704 S6

Layer 7 FC3 (Output): 10 20,490 40,959 20,500 S7

Table P5.1: The mini-AlexNet network. It contains seven layers, with over 15 million parameters and 91 million operations requiring less than 16MB of
memory to store.
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S1 S2 S3 S4 S5 S6 S7 S8

S9 S10 S11 S12 Spine
Leaf

Figure P5.2: The spine/leaf network architecture.

DNN-switch mapping. The data center network architecture we use
is depicted in Figure P5.2. It consists of four programmable switches
as spines and eight programmable switches as leaves. Each leaf switch
is connected to all spine switches with 400GbE links. The spine/leaf
architecture advantage is that any leaf (spine) switch is connected to
any other leaf (spine) switch in exactly two hops. We use this property
to map the layers of the DNN to just leaf switches (one layer is mapped
to one switch) to avoid stragglers in the synchronization.

The Tofino2 switch we consider here has four processing pipelines,
each equipped with eight 400GbE ports supporting up to 12.8Tb/s of
aggregate throughput. To leverage the processing power of all four
pipelines of each switch, we distribute the neurons of the same layer to
all the pipelines on the same switch (as the neurons in the same layer
do not need to communicate with each other) evenly based on the
layer type: For the convolutional layer we divide the number of filters by
the number of switch pipelines and allocate the convolutional filters to
the respective pipelines. For the dense layer, we divide the number of
dense neurons by the number of switch pipelines and store the dense
neurons’ weights in the respective pipelines.

In the mini-AlexNet scenario, after we get the input from the client (on
S1), we allocate and store 16 convolutional filters to each pipeline, as
the first convolutional layer (on S2) has 64 filters. After the on-switch
execution (detailed later), the packets for the next layer are generated
(detailed later) and are sent to the next convolutional layer (on S3).
We follow the same procedure until we reach the first dense layer (on
S5) with 4096 neurons. We divide the dense layer into four parts and
allocate each part containing 1024 neurons to each of the pipelines
and perform the neuron computations until we reach the output layer
(on S7), where we obtain the prediction result and send it back to the
client.
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Packet generation and routing. Once the DNN has been partitioned
and the neurons deployed on the switches, the next step is to generate
packets and route them on the network following the DNN dataflow.
For the input layer, the input data is encapsulated into as many packets
as are required (based on the input and the packet header size) and
is multicast to the switch’s pipelines (as the neurons are distributed
among all pipelines) hosting neurons that are directly connected to
that layer. Upon completing its computations, a layer will emit packets
encapsulating the input for the next layer to the spine switches, and
these packets will be multicast to the next associated switch hosting
the next layer. Each switch maintains a forwarding table applying the
above logic to route the packets inside the network. Each packet carries
a label through which its target layer can be identified. The switch
multicasts the packet based on the label to all the pipelines of the next
switch. Upon a packet’s arrival, the switch knows the computations to
apply to the data carried by that particular packet.

In the mini-AlexNet scenario, the input switch (S1) multicasts the
input to all the spine switches (with recirculation), and the switches in
the spine layer redirect the packets to the first convolutional layer (on
S2). After the processing of the first convolutional layer is done, each
pipeline has 1/4 of the input for the next layer. With the spine/leaf
design, we transfer each input segment to the spine switches, and
there we multicast the input segments to all four pipelines of the next
switch (on S3). Each pipeline in S3 receives packets from a switch in
the spine layer, shaping the current layer’s input. We follow the same
procedure until we reach the output layer, where we send back the
final prediction.

On-switch execution. Switches will perform computations for the neu-
rons they host upon packet arrivals. More specifically, as each pipeline
of the switch gets the entire input, we perform the computations based
on the layer type. If the layer is a convolutional layer, we apply the
filter to a subset of the input and store the result of the dot product. If
it is a dense layer, we multiply all the input values by all the weights
and aggregate their results.

We decompose each multiplication into a number of shifts. The input
is shifted left by i if the i-th bit of the 8-bit weight is set, otherwise
by 0. All shifts are performed in parallel, in a single stage, and the
intermediate results are stored in temporaries. This step takes one
stage, assuming predicate instructions (to check if the i-th bit is set),
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otherwise two. Then, a reduction step aggregates the intermediate
results. Since we use 8-bit weights, this step takes three stages. Given
N free ALUs in the first stage, we can perform N/8 multiplications
in parallel, each of which has a maximum depth of five stages. This
allows us to replicate the process a number of times without recircula-
tion. The (intermediate) result of each multiplication is accumulated
to a register, with a cost, in terms of stages, logarithmic to the num-
ber of multiplications performed. If the dot product requires more
multiplications, the packet is recirculated.

Then we apply the ReLU activation function to the result of the dot
product by checking whether the most significant bit (MSB) is 1 (sign
bit) and replacing the value with 0. For the max pooling part, we check
whether the current value is the last piece of the pooling window. A
major challenge here is to find the pooling elements due to the fact that
there is no mod operation in the switches available. To avoid this issue,
we process the inputs in the order of the max pooling window. For a
simple 2× 2 pooling window, after we processed all four window’s
values, we get the maximum of them in four cycles (three comparisons
in total; two cycles for the first two comparisons in parallel and storing
the result and two cycles for the second stage comparison). To meet
the promised 12.8Tb/s throughput, Tofino2 allows a limited number
of operations per packet traversal (few 10’s of multiplications like the
one described above). Therefore, we need to recirculate to process all
the inputs for all the filters in the same pipeline. For each filter/neuron
on a switch, the switch accumulates the multiplication results and
maintains a counter to ensure that packets from all weights have been
processed before emitting the result as a packet to the downstream
layers.

In Table P5.1 we calculate the number of operations and memory
requirements for each layer of mini-AlexNet. Even the most memory
hungry of the layers (Layer 6) requires less than 10% of the available
memory on the Tofino2 (a couple of hundred of MBs). However, the
number of operations greatly exceeds the 10’s of operations we can
perform in one traversal. To solve this issue, we recirculate the input
in the switch with a new set of operations until all the required
operations are done. In the most computation-intensive layer (Layer
3), each pipeline needs to compute roughly 10,000,000 operations,
we need to recirculate the same input less than 1,000,000 times. The
packet recirculating comes with a latency cost similar to parsing
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another packet. Tofino2 can potentially process six billion packets (1.5
billion packets per pipeline), resulting in less than 1ms to process
even the most computation-intensive layer in our scenario. In total,
a set of available switches in the data centers require less than 2ms
to perform inference in the mini-AlexNet scenario. Compared to the
evaluations reported in [11], our in-network DNN serving system not
only reduces the inference latency by over 2× and 2.5× compared to
CPU and GPU, respectively but also eliminates the necessity of having
inference servers.

p5.3 challenges and discussion

Accuracy improvement. Floating point addition on programmable
switches has been carefully explored in [20] while other more complex
arithmetic operations are still not feasible with the current switch
design. Currently, we use 8-bit fixed point weights as we are still
not able to implement the floating point multiplication operations in
the data plane respecting the memory access limitation of Tofino2

switches. We plan to explore how packet re-circulation can help work
around this limitation.

Support for more complex layer types. So far, we have only discussed
how to handle DNNs with convolutional and dense layers. How-
ever, popular DNNs typically involve a variety of layer types with
more complex structures and activation functions, calling for a careful
design of the data structure. There are also layers with nonlinear acti-
vation functions like tanh and sigmoid, which are currently hard to
perform on programmable switches.

Fault tolerance. Switches and links can fail, and ensuring that the
final prediction is generated without being affected by such failures is
essential. Also, a packet loss between switches could render a DNN
execution stagnation due to the use of the per-neuron counter. We ac-
knowledge that achieving reliability for stateful in-network computing
like DNN serving is a big challenge, which has not been extensively
studied yet [7]. We leave this for future work.
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P6
N E T N N : N E U R A L N E T W O R K I N T R U S I O N
D E T E C T I O N S Y S T E M I N P R O G R A M M A B L E
S W I T C H E S

abstract

The rise of deep learning has led to various successful attempts
to apply deep neural networks (DNNs) for important network-
ing tasks such as intrusion detection. Yet, running DNNs in the
network control plane, as typically done in existing proposals,
suffers from high latency that impedes the practicality of such
approaches.

This paper introduces NetNN, a novel DNN-based intrusion
detection system that runs completely in the network data plane
to achieve low latency. NetNN adopts raw packet information
as input, avoiding complicated feature engineering. NetNN
mimics the DNN dataflow execution by mapping DNN parts to
a network of programmable switches, executing partial DNN
computations on individual switches, and generating packets
carrying intermediate execution results between these switches.
We implement NetNN in P4 and demonstrate the feasibility of
such an approach. Experimental results show that NetNN can
improve the intrusion detection accuracy to 99% while meeting
the real-time requirement.

p6.1 introduction

In network security, Intrusion Detection Systems (IDSes) play an im-
portant role in identifying and responding to anomalous behaviors in
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network traffic. Traditional IDSes commonly employ statistical meth-
ods which rely on a prior knowledge of known attack patterns [13, 26].
However, these methods are limited in detecting unknown attacks, ne-
cessitating a more advanced and adaptive approach. Recently, machine
learning (ML) approaches, such as Decision Trees (DTs) and Random
Forests (RFs), have made their way into networking tasks such as
intrusion detection [1, 3, 27, 29]. While using DTs and RFs reduces the
required expertise in the field and provides insights about the deci-
sions similar to rule-based approaches, it still requires a critical step
called feature engineering—selecting the best features among many
to build the ML model. This step is known to suffer from missing or
sensitive features, and is prone to overfitting.

Deep learning has gained tremendous attention due to its successes in
various applications such as speech recognition, computer vision, and
natural language processing [8, 17]. Deep neural networks (DNNs)
can automatically extract features from large and complex data sets,
and learn nonlinear relationships between input and output variables,
making them a well-suited approach for complex decision-making
applications such as detecting intrusions in network traffic. As a result,
several successful attempts have been made to build IDSes based
on DNNs, with significant detection accuracy improvement [6, 21,
23]. However, these attempts implement the DNN-based intrusion
detection models in the network control plane, incurring high latency
and thus failing to meet stringent timing requirements.

Over the last decade, programmable network devices (e.g., programmable
switches and SmartNICs) have been increasingly adopted in modern
networks, allowing to implement customized network functions in
the network data plane. This has not only accelerated network in-
novations [16, 20, 21, 24], but also inspired new directions such as
in-network computing where computations (e.g., aggregation, caching,
and coordination) are offloaded to the network data plane for low-
latency high-throughput processing [9, 10, 18].

Given the ever-increasing need for real-time network security and
rapid advancements in programmable networks, it is imperative to ex-
plore the potential of leveraging programmable networks for efficient
intrusion detection using DNNs. This raises an important question:
Can we harness the capabilities of programmable networks, such as
the packet processing speed and nanosecond-level latency offered by
modern programmable switches, to effectively perform DNN-based



P6.1 introduction 223

intrusion detection in a timely and efficient manner? DNN serving
would achieve an unprecedented level of performance if the DNN
is executed entirely in the network data plane. Since programmable
switches are natively responsible for moving the DNN input data, with
this design, the inference can be performed “on the fly,” eliminating
the need for external accelerators. However, to achieve inference at the
line rate, it is essential to have pure data-plane DNN implementations
which expose unique challenges due to complex DNN computations
and limited hardware capabilities.

We present NetNN, the first intelligent data-plane system that enables
the execution of DNNs using a set of programmable switches for
intrusion detection. To this end, NetNN 1 maps the DNN neurons
and associated weights to a set of programmable switches, 2 mimics
the execution workflow of the DNN and routes the DNN execution
results with network packets, and 3 issues instructions to individual
switches, wherein each switch is tasked with executing the computa-
tions dictated by the neurons specifically assigned to it. Overall, this
paper makes the following contributions. After presenting the motiva-
tion for IDSes in network data planes and identifying the challenges
(Section P6.2), we

• present the design of NetNN, including its overall architecture
and components (Section P6.3);

• introduce a novel network design for DNN-based IDSes that not
only advances state-of-the-art intrusion detection accuracy but
also enables deep learning inference execution completely in the
data plane (Section P6.3.2);

• implement a system prototype for NetNN1. using the P4 lan-
guage, and evaluate it using a Covert Channel dataset (Sec-
tion P6.4). Overall, NetNN increases the accuracy of intrusion
detection systems on programmable switches to 83% without the
need for feature engineering and 99% by adding the hardware
timestamp when packets arrive (packets’ inter-arrival time) and
the majority voting of the same flow’s packets classification.

1 NetNN open source code: https://github.com/shynfard/netnn
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p6.2 motivation

p6.2.1 Feature Extraction for Intrusion Detection

To understand the importance of features engineering in traditional ap-
proaches for intrusion detection and the advantages of deep learning
based approaches, we compare the accuracy achieved by the state-
of-the-art decision-tree-based approach NetBeacon [29], an eXtreme
Gradient Boosting (XGBoost) [5] decision trees model with randomly
selected features, and NetNN, for both packet and flow classifica-
tion on a convert channel detection dataset [3]. The covert channel
detection dataset consists of 1000 flows encoded by two censorship
resistance tools: Facet [12] and DeltaShaper [2].

Packet classification. For NetNN, we use the first 68 (maximum of
UDP and IP header size) raw bytes of the packets (from the dataset [3])
and train a neural network with three layers (a 1D convolutional layer
with 32 filters, a dense layer with 50 neurons, and another dense layer
with 100 neurons) similar to [14]. For NetBeacon, we train an XGBoost
model using the packet’s length and inter-arrival time. For the random
selection approach, we select a random subset of the same features of
NetBeacon and train an XGBoost model. With only the packet features
(length and inter-arrival time), NetBeacon reaches the accuracy of
58% using the XGBoost classifier. The accuracy drops to 51% when
selecting a random set (10%) of lengths and inter-arrival times. On the
other hand, NetNN achieves an accuracy of 83% by just using the first
68 bytes of raw representation of the packets.

Flow classification. For the flow classification of NetNN, we train a
neural network (a 1D convolutional layer with 32 filters followed by
another 1D convolutional layer with 64 filters, a dense layer with 50

neurons, another dense layer with 100 neurons, and a final output
layer as depicted in Figure P6.1) with the first 68 bytes of the first
power of two packets (1st, 2nd, 4th, ..., 1024th) with the minimum and
maximum of inter-arrival times up to the 1024th packet. We injected
a flow identifier as a feature to the input to help the neural network
model generate similar outputs for the packets from the same flow.
At the end, we aggregate the classification results of the ten packets
and report the final category of the flow based on the majority votes.
For NetBeacon, similar to FlowLens [3], we use buckets for length
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and inter-arrival time distributions of all the packets in the dataset,
roughly 14 million packets (7 million malicious and 7 million benign).
Specifically, we use 1500 buckets for different lengths (1, 2, ..., 1500)
and 3000 buckets for inter-arrival times (0-60 seconds distributed to
3000 buckets with lengths of 12 milliseconds). We randomly select
10% of lengths and inter-arrival times buckets for the random feature
approach. With the flow level features, Netbeacon’s accuracy reaches
94% while selecting a random subset of features reduces the accuracy
considerably to 62%. On the contrary, NetNN achieves a validation
accuracy of over 99% with less information as shown in Figure P6.2.

Flow-level feature extraction is quite expensive in the data plane
as accurately calculating statistical features of packets such as inter-
arrival rate or length distribution requires floating-point arithmetic,
which is not available on the programmable switches data plane such
as Intel Tofino. Moreover, storing and updating features require careful
design and management of multiple hash tables [1, 3, 29]. On the other
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hand, we observe the importance of careful feature selection by using
a random set of 50 features from FlowLens [3], resulting in the lowest
accuracy. The above combined raises the question of how to reduce
the overhead of feature extraction.

p6.2.2 Our Goal

Our goal is to design a new intrusion detection system based on
DNNs that run completely in the network data plane, leveraging
the performance of modern programmable switches. With that, a
network operator can scan network traffic at the line rate and analyze it
accurately directly in the network data plane. The following objectives
encapsulate the underlying motivations guiding our design principles.

No feature engineering. We aim to avoid the use of features for
packet/flow classification since gathering features is both computing
and storage expensive, as we discuss in Section P6.2.1. Therefore, our
objective is mainly to use raw packet representation plus inter-arrival
time information to feed a DNN model for intrusion detection.

Model scalability. We aim to deploy large DNNs with hundreds of
thousands of operations per inference for high accuracy, which is not
possible on only one switch as discussed in Section P6.2.3. Therefore,
we propose to deploy a DNN by breaking it into multiple parts and
distributing each part’s weights to a different programmable switch
similar to [16].

p6.2.3 Intrusion Detection on Programmable Switches

Intrusion detection on programmable switches (e.g., based on deci-
sion trees) has become popular due to the increasing demand for
real-time network security [3, 13, 27–29]. By performing intrusion
detection directly in the data plane, the processing overhead and
the network traffic can be significantly reduced, resulting in faster
and more efficient intrusion detection. Additionally, since the pro-
grammable switches are located at strategic points in the network
topology, they can provide better visibility into the network traffic,
making it easier to detect and prevent network attacks.
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Processing constraint. To ensure line-rate processing in programmable
switches, the data plane programs (e.g., written in P4) must em-
ploy simple packet processing instructions. Each pipeline stage in the
switch imposes a fixed processing time on packets. This restriction
limits the number and complexity of operations performed within
each stage. Floating-point operations, loops, and even integer multipli-
cation/division are usually not supported. Also, the actions associated
with each table are constrained to restricted simpler operations, such
as additions and bit shifts.

Memory constraint. The memory architecture of programmable switches
imposes various constraints on the data structures used in P4 pro-
grams. Such switches incorporate two high-speed memory types:
TCAM (Ternary Content Addressable Memory), which facilitates
rapid table lookups, and SRAM (Static Random Access Memory),
which allows P4 programs to maintain state across packets. However,
the available stateful memory in programmable switches is limited,
typically in 10s of MB. Also, accessing all available registers can be
challenging since registers within one stage of the processing pipeline
cannot be accessed from different stages.
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p6.3 system design

We present NetNN, a system that leverages the network data plane for
fast and accurate intrusion detection. We start with a design overview
and then dive into the major components.

p6.3.1 System Overview

A DNN is characterized by its layered architecture, consisting of
multiple interconnected layers of neurons. This architecture typically
includes an initial layer, one or more intermediate layers, and a final
output layer. Within these layers, neurons are connected via weighted
connections, allowing for complex information processing. This work
focuses on three different layer types, Convolutional, MaxPooling, and
Dense layers, where each of the layers has different properties such as
convolutional kernel and maxpooling window.

Figure P6.3 (top left) shows a simple DNN and provides a high-
level overview of NetNN consisting of three key components: Mapper,
Packet Generator, and Neural Network Executor. The system takes a
trained model as input and decides the number of needed switches
by leveraging the layered architecture of the DNNs. Take the model
in Figure P6.1 as an example. After the model has been provided to
the system, the system decides the number of switches, in this case,
layer by layer (Convolutional and Dense layers) per switch. Moreover,
since switches have multiple pipelines to process packets in parallel,
we divide the convolutional layers filter by filter and, divide the dense
neurons by the number of neurons and map each partition to a switch
pipeline (details in Section P6.3.2).

When a packet enters the Feature Extractor switch we first extract the
packet identifier (5-tuple: src.ip, src.port, dst.ip, dst.port, and
proto) and capture the packet’s arrival time. Then, we check if the
packet belongs to a flow recorded before. If it is recorded in the flow
table, we calculate the simple inter-arrival time features of the flow up
to the current packet. We further check whether the current packet
should be treated as an inference point (see Section P6.3.3). If so,
we extract the packet’s first 68 bytes (maximum UDP/IP datagram
size) and take each bit as input to our model, including the inter-
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arrival time features. When the features are preprocessed, the feature
extractor switch generates packets from the set of features based on
the next layer type with respect to the network topology and the
mappings as described in Section P6.3.4. The packets are generated
using the convolution kernel if the next layer is a convolutional layer.
Finally, we execute the DNN operations based on the layer type (see
Section P6.3.3) using simple arithmetic operations (bit-shifting and
addition). If the layer is convolutional, we dot product the neurons
by the link weights and aggregate the results. After all the results
are computed for a layer, a similar approach for the first layer packet
generation is applied to the rest of the layers, e.g., the results are
treated as new packets, and based on the next layer type, the packets
are generated and routed.

p6.3.2 Mapper

In this part, we focus on the DNN partition problem to fit the model
on a set of programmable switches and provide an efficient execution
flow of the DNN. Most DNNs have a layered structure, and we decide
to partition the DNNs across switches layer by layer, as done similarly
in [16]. We follow the same practice and assign each layer to a switch.
There are layers without weights, such as MaxPooling layers, typically
employed after convolutional layers to reduce overfitting and increase
computational efficiency. MaxPooling layers, unlike other layers in a
neural network, do not involve learnable weight parameters. Instead,
they perform computations based on a fixed operation to downsample
and retain the most important information from the input data. Since
these layers do not have weight parameters, we fit them alongside
their previous convolutional layers. After mapping the layers/neurons
to switches, we store the model weights on switches as follows.
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Convolutional layers. We divide the filters by the pipelines on a
switch. The filter-splitting approach suits the switch architecture well
since there is no communication between any two filters in the same
convolutional layer, and computations can be done in parallel. For the
model in Figure P6.1, each pipeline in the first switch receives two
filters, while the second switch receives four filters per pipeline. In the
inference phase, after the convolutional layers, there are MaxPooling
layers, which will fit in the same switches as shown in Figure P6.4.

There are two different approaches to storing the weights of convolu-
tion layers: register arrays in the data plane and table entries through
the control plane. With register arrays, we can read and write them in
real-time during packet processing since it does not involve software
processing. However, register arrays often have limited capacity due
to hardware constraints, and they are typically designed for transient
data storage needed during packet processing and not for persistent
data. With table entries, we benefit from simplified management of
them since the modification is usually handled through APIs. How-
ever, accessing and processing entries in tables via the control plane
can introduce a higher latency compared to data plane register arrays.
This latency is due to software processing and lookup operations,
making tables less suitable for real-time packet processing. We use
table entries to access the persistent data (layers’ weights) and register
arrays for storing data(features)/intermediate data in real time.

To store the weights of the convolutional layers, we use the filter num-
ber and the position of the weight in that filter (Filter,Weigthi,Weightj)
as the identifier. However, we need a more complex 3D table entry on
the switch. Therefore, we need to map the 3D identifier to a 1D space,
which is usually done by their multiplication, Filter× Height×Width,
that maps a number from R3 −→R. However, calculating the multi-
plications on the data plane is computationally expensive as multi-
plications are not natively supported on the programmable switches.
Therefore, we use an available hash function on the data plane to create
a unique index using similar identifiers, i.e., Hash(Filter× Height×
Width).

Dense layers. We follow the same approach as in the convolutional
layer, we divide the layer by the number of dense neurons. Similar
arguments apply here as there is no communication between two
dense neurons in the same layer, and the dense neuron computations
can be executed in parallel. We use a similar data structure (table entry)
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for storing the weights of dense layers. However, storing dense weights
is simpler than convolutional weights as one can access the dense
weights by a number (weight identifier) instead of three numbers.

So far, we have mapped a DNN with different layers to a set of
switches. Next, we need to trigger the DNN computations through
the events of packet arrivals. When a packet arrives at a switch, we
need to mimic the DNN execution using network packets. We first
identify the next layer where the input/intermediate data should be
sent. Based on the layer type, we follow different strategies:

Convolutional layers. If the next layer type is a convolutional layer,
we put the related data based on the kernel size of the convolutional
layer to the packet header (including the necessary identifiers) and
multicast the packet to all the next switch pipelines. For instance, from
the feature extractor switch, we fetch a kernel size of features from
the feature register, add the filter number and weight positions in the
kernel (kerneli,kernelj) to the packet header, and create a packet. The
result of this approach is that when a packet arrives at a convolutional
switch, it can perform all the necessary computations related to that
exact packet header data, except the MaxPooling part (discussed in
Section P6.3.3) as it requires multiple packet headers. When the data
in the packet headers is processed, we get a final value for the current
packet header that will be used to generate the next packet header
based on the following layer type.

Dense layers. If the next layer is a dense layer, we multicast each
feature to all the next switch pipelines since each feature is used by
all the neurons of a dense layer. After all the computations regarding
the current data are completed, the result is stored in a register array
on the switch. After all the computations regarding a dense neuron
are finished, the finalized value is ready to be sent to the pipelines of
the next switch based on the next layer type.

p6.3.3 Neural Network Executor

When a packet arrives in the initial switch, we capture the inter-arrival
time and calculate the simple inter-arrival time features (min, max)
up to the current packet. After that, we need to identify if the current
packet is an inference point. Following NetBeacon [29], we check
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whether a packet is in the order of the power of two, namely (1, 2, 4,
...), as it can be easily identified in a programmable switch by using a
bitwise AND operation between the number and its decrement (if the
result is zero, it means that the number is a power of two). Upon an
inference point, we start generating packets as described before. We
use the following procedures (based on the layer type) to process the
generated packets.

Convolutional and MaxPooling layers. For convolutional layers, we
first create the hash of the indices (filter number, height, and width) of
the required weights. After fetching the weights from registers, we per-
form dot products for all the weights and the values. We break down
each multiplication operation into a series of bit shifts for the dot pro-
duction. Specifically, we shift the input left by an amount determined
by the corresponding bit in the 8-bit weight. These shifts are executed
concurrently in a single processing stage, and the interim results are
stored temporarily. Then, a reduction step combines the interim re-
sults. For 8-bit weights, this step necessitates three stages. Performing
integer multiplication in the data plane is viable for executing an
inference, but it takes too many switch resources (stages). Therefore,
we adopt an alternative approach where we store all the dot product
results in a table to reduce the number of required stages. We store all
possible dot products with 8-bit to 8-bit values and use a TCAM table
to access the dot product with value|weight. This approach requires
one stage instead of three stages for the dot product with the memory
requirement of 216

8-bit values (65 KB of memory). Next, we employ
the ReLU activation function to process the dot product result, which
involves examining the most significant bit (MSB), the sign bit, and
substituting the value with 0 when it is set to 1.

To perform MaxPooling operations, we need to be sure that all the
values regarding a MaxPooling window (a MaxPooling window is a
rectangular region of the values where the most important value is
selected) have arrived at the switch. To ensure that, we use a bitmap
(using a table) of each value and flag its indexes when they arrive.
Anytime a packet arrives, we check the bitmap of the value. If all
packets have arrived, we fetch the results of all the packets from
the convolutional layer regarding the same MaxPooling window and
find the maximum of the values within log(size(MaxPoolingwindow)).
After calculating the maximum value in the MaxPooling window, we
multicast it to the following switch pipelines.
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Figure P6.5: The target network architecture.

Dense layers. For the dense layer, finding the index of the dense
neuron is relatively straightforward. When a packet arrives at a switch
running part of a dense layer, we use a counter to access the dense
table entry (the data structure we use for storing the dense weights) to
iterate over all the dense weights. After the calculation, we store the
intermediate results in a register array and aggregate them as soon
as the processing associated with that neuron is finished. We repeat
the procedure until all variables from the previous layer are processed.
After that, we perform a ReLU activation function (explained above)
to see if we want to activate the neuron. Finally, we multicast the result
to the next switch pipelines.

p6.3.4 Packet Generator

The data center network architecture we use is depicted in Figure P6.5,
which represents a multi-tier Clos network topology [19]. Each tier has
four programmable switches, each with four pipelines with ingress
and egress parts. Each switch in a tier is connected to all the switches
in the above and bellow tiers (if available) with 400 GbE links. For
instance, there is exactly one link from Switch 1 (pipeline 4) in the
first tier to Switch 8 (pipeline 1) in the second tier. The advantage of
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Clos is that every switch from each tier is exactly two hops away from
another switch in the same tier. Leveraging this property, we map the
layers of the DNN exclusively to the lowest tier switches, mitigating
synchronization issues and eliminating potential stragglers within the
network. The downside of this architecture is that there is no direct
link between all the pipelines of a switch in a tier to another switch in
the above or below tier. Therefore, we may need another tier to send
packets to the correct switch pipeline. In a similar example, there is
no direct link between pipeline 1 of Switch 1 to pipeline 1 of Switch 8.
Consequently, if we want to have the packet emitting from pipeline 1

of Switch 1 in ingress part of pipeline 1 of Switch 8, we need to send
the packet to a middle switch and then get the packet from the middle
switch that is directly connected to pipeline 1 of Switch 8, which in
this scenario are pipeline 4 of Switch 1 and pipeline 4 of Switch 9.

After a packet arrives in a switch (say Switch 1 ( 1 ), the processing part
will start in the ingress part of the switch. If all the processing related
to the packet is finished in the ingress (see Section P6.3.3), we use
a 2-tier Clos network architecture as illustrated in Figure P6.5a. The
result in the ingress part will be distributed to all egress parts of the
switch using the traffic manager ( 2 ). Next, the result is encapsulated
into packets in the egress part and the packets are emitted to the
switches in a higher tier ( 3 ). Then, the switches in the higher tier
direct the packets to the corresponding pipelines to be sent to a specific
pipeline in the lower tier switch ( 4 ). Finally, all the pipelines of Switch
2 receive the packets with the result from the initial switch (Switch 1))
( 5 ). All the associated links are colored.

However, if the processing part requires both the ingress and ingress
part of the pipeline, we may need another tier to multicast the result,
as illustrated in Figure P6.5b. Taking a similar scenario, sending the
result of a packet in pipeline 1 of Switch 1 to all pipelines of Switch
2, instead of distributing the packet in Switch 1, we need to send the
packet encapsulating the result to the second tier switch ( 2 ), Switch
5 here, and distribute it to all pipelines using the traffic manager in
the switch ( 3 ). After that, we follow the similar steps as a 2-tier Clos
architecture until all the packets are in the correct pipelines of the
second-tier switches ( 4 , 5 , 6 , 7 ). One of the second-tier switches
has the packet in the correct pipeline without sending it to a higher-
tier switch (pipeline 2 of Switch 5). To avoid synchronization issues,
we follow the same procedure for all the second-tier switches. Finally,
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we send the packets to all pipelines of Switch 2 ( 8 ). All the used links
are colored in this scenario as well.

p6.4 evaluation

We implemented a preliminary version of NetNN using P4 language
with the behavioral model bmv2, which serves as a P4 target. This
prototype is used for testing within Mininet, a network emulator
tailored for network experimentation. Within Mininet, we established
a network topology illustrated in Figure P6.3 with four switches per
layer (since there are four pipelines per switch in a Tofino switch)
as depicted in Figure P6.4, and switches are connected to each other
similar to the link connections in Figure P6.5b.

p6.4.1 Resource Usage

By executing the P4 implementation on hardware, we can achieve
the switch’s line-rate performance and naturally leverage the match-
action pipeline’s characteristics, including bounded latency guarantees
and high-speed throughput. However, in our prototype, the software
emulation on bmv2 lacks the necessary time accuracy for precise per-
formance measurements at a granular level. Therefore, we report the
memory usage, the number of operations, and the packet generation
rates of the NetNN implementation. As presented in Table P6.1, the
convolutional layers require much more operations per packet than
dense layers, hence more switches are beneficial to distribute the com-
putations. On the other hand, dense layers require more memories
to store the weights, yet much lower than a programmable switch
memory limitation.

p6.4.2 Impact of Parameters

Impact of inference points. The number of inference points used to
determine classification is an important factor affecting performance.
The more packets from the same flow that we observe and analyze,
the more accurate the features at the flow level become, and hence,
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Table P6.1: DNN in-switch performance. Memory is in byte.

Layer # of packets Operations per packet Memory

Conv1 3240 644 1296

Conv2 2592 38895 5680

Dense1 496 3159 13

Dense2 4 4950 25

Dense3 1 378 1

the more accurate the flow classification confidence. As depicted in
Figure P6.6, a clear trend shows that the accuracy improves as we
incorporate more inference points for the flow classification. If the
goal of the classification is 90% accuracy, the system needs at least
four packets of the same flow; if the goal is to reach over 95%, the
system requires at least eight packets to be analyzed.

Impact of input representation. To fine-tune the DNN for intrusion
detection, we used different input formats to improve the model’s
accuracy. We trained the same model with three different input for-
mats: bit, byte, and base 10 to demonstrate the model accuracy with
different data representations. Figure P6.7 illustrates the accuracy of
the model trained with different input formats. Since the number of
flows in the dataset is limited (1000 flows) and each flow provides few
features, the model trained with base 10 format not only provides the
least accuracy in both packet and flow classification but also requires
feature engineering (calculating the features in base 10), while the
model trained with 1-bit format provides the highest accuracy without
the need for feature engineering since that is the natural format of
network packets.
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p6.5 related work

Intrusion detection. Due to switches’ strategic location and perfor-
mance, there is an increased usage of switches for intrusion detec-
tion [7, 15, 23]. FlowLens [3] leverages programmable switches to
support machine learning-based network security applications by col-
lecting features of packet distributions and classifying flows on the
switches. Jaqen [13] addresses the challenge of defending against volu-
metric DDoS attacks by leveraging universal sketch techniques, switch-
native mitigation, and network-wide management. Poseidon [26] pro-
vides a modular policy abstraction for DDoS defense policies. Net-
Beacon [29] proposes a multi-phase sequential model architecture for
dynamic analysis using a switch-based model representation.

ML-based applications. In-network ML has gained significant atten-
tions [18, 24]. IIsy [27] is a framework for in-network classification
using off-the-shelf network devices. It maps trained ML models to
network devices without modifications. FPISA [25] proposes a float-
ing point representation in programmable switches for efficient dis-
tributed training. Mousika [22] proposes a Binary Decision Tree (BDT)
model that enables translation from complex models to BDT using
knowledge distillation. N3IC [20] enables neural network inference
on programmable NICs. Planter [28] maps ensemble models to pro-
grammable switches for efficient data classification. SwitchTree [11],
pForest [4], and FlowRest [1] enhance in-switch inference with Ran-
dom Forest models.

None of these works directly apply DNNs for intrusion detection
completely in the network data plane.

p6.6 conclusion

In this paper, we presented NetNN, a novel approach to enable the
execution of DNNs in programmable switches. NetNN achieves this
by splitting and distributing the neural network layers to multiple
switches, generating packets similar to the flow execution of the neural
network, and simplifying the needed mathematical operations for
getting the inference based on the capabilities of the programmable
switches. We prototype NetNN using P4 and evaluate it by designing a
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no-feature-engineering-needed DNN using a Covert Channel dataset,
showing an intrusion detection accuracy of 99%.
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