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ABSTRACT

Privacy is acknowledged as a fundamental human right and essential
for the functioning of modern democracies, particularly as research and
the economy become increasingly data driven. The Covid-19 pandemic
has given rise to many new applications necessitating the processing of
sensitive information such as health, location, and proximity data. No-
table examples include discovering new infections by retracing the con-
tacts of diagnosed individuals and identifying super-spreader events
through presence tracing. To fight a pandemic, gaining meaningful sta-
tistical insight on the current epidemiological situation based on health
data – or other sensitive information – is important. For all these appli-
cations, the processed data can reveal private information regarding
the data providers. Therefore, data providers require concrete privacy
guarantees at every step.

This thesis focuses on solutions for processing and analyzing sensitive
data in a privacy-preserving way without requiring trust being place in
a central authority. Multiple approaches are proposed to ensure privacy
during distributed data processing for Digital Contact Tracing (DCT).
To establish a general understanding of the topic, an introduction to
the problems and solutions for DCT is presented. The literature is sys-
tematized and common challenges with regard to privacy, security,
and functionality are identified. Based on the shortcomings of existing
contact tracing applications, novel designs for privacy-preserving DCT
are presented, along with their respective advantages and drawbacks.
The focus is on distributing the tracing process and risk-scoring tasks
to users while mitigating the leakage of private data through metadata.
Strong privacy guarantees are also provided by using cryptographic
primitives such as blind signatures, Oblivious Random Access Mem-
ory (ORAM), and Private Set Intersection (PSI). Such techniques allow
the design of protocols that only reveal the minimal required amount
of information to all parties involved. Systems for super-spreader detec-
tion through presence tracing are also presented that can be integrated
with DCT systems in a privacy-preserving manner.

While decentralized processing provides better privacy than the cen-
tralized alternative, it limits the ability to observe the epidemic situation
through statistical analysis. By reviewing common approaches for col-
lecting and analyzing health data for research purposes, we identify
various threats to the privacy of people who are willing to share their
data. Both in the pandemic and post-pandemic settings, privacy guar-
antees are a tool to ensure to data providers that their data can not be
misused. To this end, a platform is presented that leverages Trusted
Execution Environments (TEEs) in combination with oblivious algo-
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rithms that safeguard sensitive data during data collection and analysis.
To combat the drawbacks of TEEs, new methods are introduced to
hide the access patterns and volume patterns of database queries. All
contributions presented in this thesis aim to improve the privacy of
individuals through solutions that follow the concept of privacy by
design.



ZUSAMMENFASSUNG

Der Schutz der Privatsphäre ist ein Menschenrecht und ein unerläss-
licher Bestandteil von moderne Demokratien. Da Forschung und vor
allem die Wirtschaft zunehmend datengesteuert sind, gewinnt dieser
Aspekt weiter an Bedeutung. Die Covid-19 Pandemie hat viele neue
Anwendungen hervorgebracht, welche die Verarbeitung sensibler In-
formationen zu Gesundheit, Standort und sozialen Interaktionen erfor-
dern. Die digitale Kontaktnachverfolgung durch Abstandsbestimmung
und die Erkennung von Super-Spreader Ereignissen an öffentlichen
Orten sind Beispiele für solche Anwendungen. Zum Bekämpfen einer
Pandemie ist es nicht nur relevant neue Infektionen zu verhindern. Um
Entscheidungen treffen zu können, benötigt es einen repräsentativen
Einblick in das momentane Infektionsgeschehen. Für diesen Zweck
muss auf der Grundlage von Gesundheitsdaten und anderen sensi-
blen Informationen aussagekräftige statistische Erkenntnisse gewonnen
werden können. Für all diese Anwendungen benötigen die Personen,
welche ihre Daten freiwillig bereitstellen, konkrete Datenschutzgaran-
tien,um sicher sein zu können, dass ihre Daten nicht zweckentfremdet
werden oder abhanden kommen. Diese Doktorarbeit konzentriert sich
auf Lösungen für die Verarbeitung und Analyse sensibler Daten unter
Wahrung der Privatsphäre. Der Schwerpunkt liegt hier auf der Entwick-
lung von Systemen und Algorithmen, bei denen kein blindes Vertrauen
in einer zentralen Autorität gesetzt werden muss, sonder Datenschutz
auf andere Weise garantiert werden kann.

In dieser Doktorarbeit werden mehrere Ansätze zur Sicherstellung
des Datenschutzes bei der digitale Kontaktverfolgung – im Englischen
Digital Contact Tracing (DCT) – vorgeschlagen. Um ein allgemeines Ver-
ständnis für das Thema zu schaffen, wird eine Einführung in die Proble-
me und Lösungen für digitale Kontaktnachverfolgungmittels Bluetooth
Low Energy (BLE) zur Abstandsbestimmung gegeben. Auf Basis der
Literatur wird eine Systematisierung der verschiedenen Ansätze erar-
beitet, anhand welcher sich gemeinsame Herausforderungen in Bezug
auf Datenschutz, Sicherheit und Funktionalität identifizieren lassen.
Ausgehend von den Unzulänglichkeiten bestehender Anwendungen
zur Kontaktverfolgung werden neuartige Entwürfe für datenschutz-
freundliche digitale Kontaktnachverfolgung mit ihren jeweiligen Vor-
und Nachteilen vorgestellt. Ein Schwerpunkt liegt dabei auf der Ver-
teilung der Risikobewertung an die Benutzer, welche durch anonyme
Direktnachrichten ihre Kontakte bezüglich möglicher Infektionsrisiken
warnen. Zu diesem Zweck werden Fragen der Authentizität von War-
nungen angegangen und der Verlust von Privatsphäre durchMetadaten
eingedämmt. Noch stärkere Datenschutzgarantien werden auch durch
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die Verwendung kryptographischer Protokolle wie Oblivious Random
Access Memory (ORAM) und Private Set Intersection (PSI) für digitale
Kontaktnachverfolgung erreicht. Derartig Techniken ermöglichen Pro-
tokollen, bei denen jede Partei nicht mehr sensible Informationen erhält
als zwingend notwendig. Auch werden Möglichkeiten angesprochen,
wie digitale Kontaktnachverfolgung für Super-Spreader Erkennung in
existierende abstandsbasierte Systeme integriert werden kann auf eine
Privatsphäre-erhaltende Weise.

Eine dezentrale Risikobewertung für Kontaktnachverfolgung, wie
etwa bei der Corona Warn-App, bietet zwar einen besseren Schutz
der Privatsphäre als die zentralisierte Alternative, schränkt aber die
Möglichkeit ein, die epidemische Situation durch statistische Auswer-
tungen zu beobachten. Bei der Überprüfung gängiger Ansätze für die
Erhebung und Analyse von Gesundheitsdaten durch mobile Geräte
zu Forschungszwecken stellen wir verschiedene Gefahren für die Pri-
vatsphäre von Menschen fest, welche bereit sind, ihre Daten zu teilen.
Sowohl in der Pandemie, als auch unabhängig davon, sind Datenschutz-
garantien ein Instrument, mit dem sichergestellt werden kann, dass die
Daten von Freiwilligen nicht missbraucht und zweckentfremdet wer-
den können. Zu diesem Zweck wird eine Plattform vorgestellt, welche
Trusted Execution Environments (TEEs) verwendet, umDatenanalysen
auf sensiblen Daten zu realisieren. Um verschiedene Schwächen von
TEEs auszugleichen, werden spezielle Algorithmen vorgestellt, deren
Ziel es ist zu Verhindern, dass ein Angreifer lernt auf welche Daten
zugegriffen und wie viele Daten für eine Datenbankanfrage verarbei-
tet werden. Alle vorgestellten Beiträge haben das Ziel, die Daten von
Individuen besser zu schützen.



PREV IOUSLY PUBL I SHED MATER IAL AND USED
TOOLS

This thesis includes material published previously in scientific journals
and conferences. This section explains how these publications map to
chapters in this thesis. As scientific work is usually the result of a group
effort, the following paragraphs also clarify the individual contribu-
tions of my co-authors and me. Affiliations at the time of publication
are stated once for each work. Unless noted otherwise, my co-authors
and I were affiliated at the Humboldt Universität zu Berlin. For all
publications, Björn Scheuermann provided general supervision and
feedback on the written parts.

Chapter 3 provides an overview of proximity-based approaches to
Digital Contact Tracing (DCT) and is based on a survey written to-
gether with Samuel Brack and Björn Scheuermann [2]. The survey was
published in the ACM Transactions on Computing for Healthcare in 2021.
Collecting references and systemizing publications on DCT, as well as
writing the survey, was primarily done by myself. Samuel Brack pro-
vided support during the literature review and writing. The contents of
the survey were split into multiple parts and reorganized for this thesis.
Portions, especially the discussion in Section 3.7, had to be rewritten to
reflect the current state of knowledge in 2024. Chapter 3 contains the
overview of proximity-based DCT, while other parts of the work were
used as related work in Chapter 4 and Chapter 5.

Chapter 4 discusses two approaches to client-side DCT with direct
messaging. Section 4.2 presents the design CAUDHT and is based on
a paper written together with Samuel Brack (first author) and Björn
Scheuermann [1]. It was published at the Conference on Local Computer
Networks (LCN) in 2020. The concept of CAUDHTwas developed jointly
with Samuel Brack. Using blind signatures to provide authenticity
of warnings in a distributed setting was a designated contribution of
Samuel Brack. The idea of leveraging a Distributed Hash Table (DHT)
instead of relying on a potentially malicious messaging server origi-
nated from me. For the text of this thesis, additional considerations
were added regarding the use of Elliptic Curve Cryptography (ECC)
and the compression of such keys. All authors contributed to the text
of the paper.

Section 4.3 in the same chapter builds on CAUDHT and is based on
previous work created in collaboration with Samuel Brack and Björn
Scheurmann [4]. The paper was presented at the Workshop on Secure IT
Technologies against Covid-19 (CoronaDef) of the Network and Distributed
Systems Security (NDSS) Symposium in 2021. Conception and evaluation
were done in collaboration with Samuel Brack. The idea of using ring
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signatures, as well as the code for computing blind signatures, were
distinct contributions of Samuel Brack. All authors contributed to the
text of the paper.

Chapter 5 looks at solutions using cryptographic protocols for DCT.
Section 5.3 discusses DCT using an Oblivious Random Access Mem-
ory (ORAM). It is based on a poster presented at the poster session of
the IEEE Symposium on Security and Privacy (S&P) in March 2020 [5].
The poster was the result of joint work with Samuel Brack and Björn
Scheuermann. The idea for this poster, as well as the code and evalua-
tion, originated fromme. Samuel Brack and Björn Scheuermann assisted
during the conception phase and the writing process. The evaluation
was extended for this thesis.

The paper discussed in Section 5.4 uses circuit-based Private Set In-
tersection (PSI) for DCT. It was published in collaboration with Marcel
Pazelt and Björn Scheuermann at the IEEE International Performance,
Computing, and Communications Conference (IPCCC) in 2021 [7]. It is
based on the Master thesis of Marcel Pazelt, which was written under
my supervision and assistance. Marcel Pazelt contributed a review of
the related literature, as well as the implementation and evaluation of
the final design. The idea, as well as the largest parts of the text of the
paper, originated from me.

Chapter 6 presents an approach to presence tracing on top of the
Google Apple Exposure Notification (GAEN) framework. It is based
on joint work with Samuel Brack and Björn Scheuermann, which was
presented at the Workshop on Communication, IoT, and AI Technologies to
Counter Covid-19 (COVI-COM) at the International Conference on Com-
munications (ICC) in 2021. The idea and design originated from me.
Samuel Brack assisted in reviewing the relevant literature and writing.

Chapter 7 is based on a paper written together with Björn Scheuer-
mann (Technical University Darmstadt) and presented at the Interna-
tionalWorkshop on Privacy Engineering at the IEEE European Symposium on
Security and Privacy (Euro S&P) in 2023. The idea, literature review, and
security analysis were all done by me. Björn Scheuermann supervised
during this process.

Chapter 8 is based on a paper accepted at theACMASIA Conference on
Computer and Communications Security (ASIA CCS) 2024. It was written
in collaboration with Gowri R Chandran (Technical University Darm-
stadt), Phillipp Schoppmann (Google), Thomas Schneider (Technical
University Darmstadt), and Björn Scheuermann (Technical University
Darmstadt). The idea, the conception, the implementation, and the
evaluation originated from me. Phillipp Schoppmann and Gowri R
Chandran contributed to the theoretical proofs and threat model. Us-
ing a truncated Laplace function is a distinct contribution of Phillipp
Schoppmann. The text of the paper was mainly written by myself with
assistance from Gowri R Chandran and Phillipp Schoppmann. Thomas
Schneider provided supervision and proofread the text. At the time
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of publication of this paper, I am affiliated at the Technical University
Darmstadt. However, a large part of the work on this paper was done
during my time at the Humboldt Universität zu Berlin.

This thesis is the result of independent work. In parts, it has been
linguistically revised with the help of the tools Grammarly, DeepL and
ChatGPT (version 3.5). DeepL was used to translate content written
by myself from German to English. Grammerly was used to ensure
proper used to correct grammar, spelling, and phrasing. ChatGPT was
used in Chapter 1 und 8 to alter text sections written by myself to
sound more fluent and natural. These generated outputs were only
used as suggestion for improvements. All tools that rely on artificial
intelligence in some form were employed solely for the purpose of
revising grammatical structure and ensuring clarity of expression.
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PROLOGUE



1INTRODUCT ION

1.1 motivation

Privacy is a common good and is widely acknowledged as a basic hu-
man right, as emphasized by theUniversal Declaration ofHumanRights
Article 12 [308]. It is a requirement for the protection of fundamental
values such as personal autonomy, individuality, and dignity. The loss
of privacy, or sensitive data in the wrong hands, can have serious con-
sequences and negatively impact the private lives of those concerned.
Health data is especially vulnerable as it can contain information that
can be cause for stigmatization, discrimination, or even exploitation.

However, large parts of the economy of the 21st century are data
driven and personal information is used for various purposes. Data is
commonly processed and stored in a centralized manner without tech-
nical measures for privacy protection, relying only on legal frameworks.
Such centralized data processing requires data sources to trust the pro-
cessing entity as it makes decisions on its further use from this point
onwards. If a central data processing entity was benign at the beginning,
data might still be misused at a later point in time as such methodolo-
gies are prone to forced access by third parties like law enforcement or
hackers.

To minimize potential harm to individuals, it is necessary to move
away from models where privacy is only provided through mutual
trust assumptions and towards privacy by design. To this end, algo-
rithms that inherently protect privacy through provable guarantees
are crucial to harness the power of sensitive data sources responsibly.
Such approaches foster innovation and facilitate research in fields like
medicine that depend on such data. The Covid-19 pandemic serves as a
great example of the versatility of privacy-preserving technologies as it
catalyzed advancements in various domains. New challenges required
processing large amounts of private data regarding health status, loca-
tion history, and social interactions. Privacy guarantees became a tool
to ensure the cooperation of large parts of the population.

This thesis examines how privacy can be preserved in data processing
and analysis without placing trust in a central entity. We look at ap-
plications related to the Covid-19 pandemic and provide solutions for
utilizing health, location, and proximity data in a manner that adheres
to the principle of privacy by design. Some findings are also applica-
ble in more general, post-pandemic settings. To gain statistical insight
into such data, we also provide privacy-preserving methodologies for
analyzing sensitive data.
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1.1.1 Challenges

During the pandemic, many new ideas to digitalize the fight against
Covid-19 were pitched, tested, and rolled out on a grand scale in a short
time. The applications ranged from symptom checkers, quarantine
enforcement, and health certificates to contact tracing [189]. The latter
is a method for handling infection chains and aims to analyze the social
contacts of diagnosed people to discover new infections as early as
possible. It was, therefore, an essential tool in combating the Covid-19
pandemic. Digitalizing and automating the process, however, requires
large amounts of highly sensitive information regarding who interacted
with whom, not only from infected people but also from those who are
still healthy.

Gaining the trust of large parts of the population is the key to en-
suring their participation in Digital Contact Tracing (DCT) [189]. Large
adoption rates of voluntary contact tracing apps are directly linked
to an improvement in the overall effectiveness of these systems [157].
To this end, users’ fear of data misuse needs to be answered in a reli-
able and credible manner. The establishing of surveillance measures
for the purpose of contact tracing, as done by Singapore, South Korea,
and Israel at the wake of the pandemic [147, 149, 289], is widely re-
garded as a threat to democracy and as a source of a loss of trust in the
government [19, 115, 195]. Methods for addressing these challenges en-
compass an architectural shift in the design of proximity-based contact
tracing. This change ensures that users are not required to trust in the
benevolence of a central authority, such as the government or a health
authority, as long as they can be sure that the system works as intended.
As seen also in the case of the Covid-19 pandemic, once data is stored
in a centralized manner, it will be used by law enforcement for other
purposes independent of prior promises [71, 218, 260].

Although the distribution of risk detection to clients provides privacy
to those wanting to determine their infection risk, it leaves room for
deanonymization attacks against diagnosed people. Client-side risk
assessment leaks information to users who have received a warning
regarding the exact or approximate time when they encountered a
diagnosed person. This information can be used to deanonymize the
source of a warning, especially if more than one encounter occurred.

In an epidemic or pandemic, so-called super-spreaders can signif-
icantly impact the number of new infections. When such a singular
person infects a large number of others, the tracing effort shifts to iden-
tifying who visited the same locations as the super-spreader. Presence
tracing is related to proximity-based DCT but poses distinct challenges.
As shown by the case of the Covid-19 outbreak in an LGBTQ nightclub
in South Korea [261], the information on past visited locations can be
highly sensitive. When faced with the risk of stigma and discrimina-
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1 In collaboration
with Samuel Brack,
Jeanette Hofmann,
and Björn
Scheuermann, an
article in April 2024
in the German online
newspaper
netzpolitik.org

on different
approaches to
DCT [10] was
published.

tion, people are increasingly motivated to circumvent the system. It is,
therefore, important that privacy is preserved during presence tracing.

Up-to-date statistics on the situation are needed to be able to make
sensible decisions on which measures are required to combat an epi-
demic or pandemic at a certain point in time. If data for such statistics is
collected not only from diagnosed people but also from healthy people
and those at risk, privacy becomes relevant. The problem of privacy-
preserving data collection also exists outside of the pandemic context,
for example, when sensitive data is collected for medical studies. Stan-
dard practices in crowdsourcing and data collection for medical data
leave many attack vectors open for exploitation.

Providing efficient methods for privacy-preserving data analysis
while ensuring technical privacy guarantees for data donors is chal-
lenging. Trusted Execution Environments (TEEs) provide a method for
centralized data processing with provable guarantees. However, techni-
cal drawbacks of TEEs need to be addressed to ensure that the privacy
of data providers is protected against both overly-curious data analysts
as well as the infrastructure hosting the TEE, i.e. a cloud provider. Here,
mitigating leaks through volume and access patterns from the TEE are
the main focus.

1.2 outline & contributions

Being at the forefront of proposals for privacy-enhancing technologies
for Covid-19 contact tracing, the author of this thesis contributed to
both the research discourse as well as the public discussion 1. This thesis
bridges the gap between the context of privacy-preserving DCT and
more general approaches to analyzing private data. All the while, we
never lose sight of the question of how private data can be utilized
without requiring trust to be placed in a central entity. In the case of
DCT, this can be the government or a health authority. From a more
general perspective, this entity can be the initiator of a crowdsourcing
campaign or a data collector.

This thesis is organized into three parts. The remainder of Part i
presents preliminaries on privacy by design and adversarial modeling
(see Chapter 2).

Part ii focuses on the subject of proximity-based DCT and presents
multiple contributions in this area. To this end, Chapter 3 presents
an introduction to the topic. By providing a taxonomy of contact trac-
ing approaches based on Bluetooth Low Energy (BLE), we identify
requirements regarding the functionality, security, and privacy of such
applications. This allows the identification of common attack vectors
and mitigation strategies. Solutions to these problems are relevant not
only in contact tracing but also in other scenarios where data is collected
from a crowd. We also reflect on the real-world impact of DCT.
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The taxonomy of DCT application introduced in Chapter 3 is then
used to organize the remainder of Part ii. Chapter 4 presents two ap-
proaches for client-side risk assessment. A main aspect of these two
contributions is dealing with the challenge of establishing trust in the
authenticity of warning messages while ensuring that no sensitive in-
formation is leaked to central entities such as the health authority or a
messaging server.

Client-side risk assessment suffers from leaking timing information,
which allows users at risk to identify the person who was the source of
a warning message. Cryptographic protocols are powerful tools that
can be used to provide privacy during contact tracing. They allow the
computing of risk scoring without revealing the time of encounter with
an infected person to users. These protocols can also utilize GPS location
data instead of proximity data without revealing sensitive information.
Chapter 5 presents and evaluates two such approaches.

As super-spreader events became a driving factor of the pandemic,
more attentionwas placed onmonitoring locationswhere people gather.
Chapter 6 presents an approach to implement such a presence tracing
system without centralized data storage on top of an already existing
and widely established system for proximity-based DCT.

Gaining statistical insights into the pandemic based on DCT data
proved to be challenging.Widely used proximity-basedDCT systems re-
lied on clients for risk detection as ameasure to establish trustwith users
and mitigate surveillance. Centralized data stores without additional
privacy protection go against the core idea of these DCT systems. As a
result, relevant information is distributed between all users. However,
knowledge can be gathered by crowdsourcing data from volunteers.
This topic is discussed in Part iii. Common practices in this area, even
for scientific studies, are far from privacy-preserving and leak sensitive
information at various steps. In Chapter 7, we first identify common
general practices and then analyze the resulting risks to privacy.

In Chapter 8, we present a privacy-preserving alternative for such
data gathering and evaluation campaigns. The presented platform
builds on TEEs for establishing trust and mitigating sources of private
data leakage through oblivious algorithms and differential privacy.



2
ON PR IVACY BY DES IGN AND ADVERSAR IAL
MODEL ING

Protecting privacy is a tedious task, as sensitive data can emerge or
resurface in various forms and places. Even data without identifiers
can be used to draw meaningful information. As famously stated by a
US general, “We kill people based on metadata” [171].

Software that follows the principle of privacy by design as well as
privacy enhancing technologies aims to protect users and mitigate leakage
of sensitive data inherently. Here, security serves as a pre-condition
for privacy. Privacy can only be adequately protected if the proposed
system works as expected and does not leave gaps for adversaries to
exploit.

Figure 2.1: Comic explaining the difference between semi-honest and mali-
cious adversaries.

When designing algorithms or systems that are private by design,
it is essential to evaluate what type of attacker the users must be pro-
tected against. Defense mechanisms might differ when considering the
attacker to be a well-equipped government, a company with commer-
cial interests, or a tech-savvy malignant user. In research, the following
adversarial models are commonly used to evaluate the threat against
a system. A semi-honest or honest-but-curious attacker is interested in
anything they can learn while following the protocol. In contrast, a
malicious adversary will diverge from the protocol to learn secret infor-
mation, as shown by the comic in Figure 2.1. Malicious behavior can
include sending specially crafted messages, participating in a protocol
with multiple entities in the form of a Sybil attack, or posing as a man-in-

6
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the-middle. A covert adversary aims to appear honest but might behave
maliciously if the risk of being detected is minimal.

An adversary might listen to traffic on the network or in the radio
band to learn information. In this case, they are referred to as network
observer or eavesdropper. This adversary can passively listen in or actively
participate in the protocol. Note, that the thesis diverges here from the
common notion in cryptography of what is considered a passive and
active adversary.

In the following chapters, it is always important to keep these different
types of attackers in mind. During Digital Contact Tracing (DCT), but
also when computing statistics on sensitive data, it is crucial to always
keep inmindwhere sensitive data accumulates andwhether adversaries
can gain access at some point in time.



Part II

THE PANDEMIC



3
AN INTRODUCT ION TO PROX IM ITY- BASED D IG ITAL
CONTACT TRAC ING

This section is based
on a survey written
in collaboration with
Samuel Brack and
Björn
Scheuermann [2]. It
was published in
2021 in ACM
Health.

At the beginning of the year 2020, Covid-19 turned into a global pan-
demic challenging both healthcare systems as well as democratic insti-
tutions [60, 96, 147, 149]. To mitigate its spreading, social and economic
life was shut down in affected areas [235]. Tools often used in the past
for containing diseases had proven not to be effective enough to deal
with this quickly spreading, highly infectious, and deadly virus [124,
284]. Therefore, newmethodswere developed tomitigate the pandemic
such as the automation of contact tracing previously done manually by
health authorities to speed up the process of discovering new infections.
Early systems implemented by Singapore, South Korea, and Israel ei-
ther used more data than necessary to fulfill the task, e.g., by collecting
extensive data from healthy citizens or revealed private information to
the public [147, 149, 289]. Concerns were raised about an increase in dis-
crimination of socio-economic or ethnic groups through the adoption
of automated or Digital Contact Tracing (DCT) [186]. In many countries,
it was not feasible or acceptable for the state to enforce nationwide
adoption of the local DCT application [19, 115, 195]. To ensure great
effectiveness, it was therefore essential that citizens have sufficient trust
into a DCT system to participate voluntarily. System designs that send
detailed location or contact histories to a government-run central en-
tity without any privacy protection might look more effective in the
beginning. However, societies require transparent processes and data
protection in exchange for their participation in the system.

Many privacy-preserving DCT systems were proposed and threats
to privacy and security are manifold. In this introduction, we first take
a look at the origins of DCT in Section 3.1. Then some terms and defini-
tions on DCT are clarified in Section 3.2 which will be used throughout
this first part of the thesis. Considerations regarding the sensors are
discussed in Section 3.3. In Section 3.4, approaches for DCT are sys-
tematized which rely on Bluetooth Low Energy (BLE) for proximity
detection. Approaches that protect the privacy of users are particularly
emphasized. Based on this review, common challenges with regard to
security, privacy, and functionality are established and solutions are
discussed in Section 3.5 and Section 3.6. In the last part of this chapter
in Section 3.7, social and societal aspects of DCT such as the adoption
rates due to public perception, the usability of DCT apps, the overall
effectiveness of DCT during the pandemic as well as its potential as
dual-use technology are addressed.

9
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3.1 a short history of digital contact tracing

Contact tracing is the process of finding new cases for a certain disease by
retracing who had been in contact with a diagnosed patient. The stan-
dard practice is interviewing diagnosed individuals to manually derive
potential contacts. This approach has been used in the past for various
diseases like HIV, SARS, and Ebola [109, 315]. Both in theory and in
practice it has proven to be a valuable tool for containing epidemics.
Stochastic modeling was used to evaluate the efficiency of contact trac-
ing, showing that the rate at which new infections are discovered cannot
be considerably lower than the rate at which the infection spreads [109,
160, 315]. A direct requirement for contact tracing following this finding
is that potential contacts are notified as fast as possible so they do not
infect others. For this reason, most countries require persons infected
with a notifiable disease to provide the responsible health authority
with all relevant information for contact tracing [67, 121, 223]. This can
be information about social contacts but also the history of recently
visited locations. Standard or manual contact tracing is especially diffi-
cult for airborne diseases like SARS, MERS, or Covid-19 [109]. This is
because contacts from random encounters cannot easily be notified as
the diagnosed person can oftentimes not provide sufficient information.

Digital contact tracing, short DCT, aims to speed up the manual
process. To ensure that warnings are delivered quickly to people who
are at risk and to enable the notification of random encounters, it has
become desirable to improve existing manual systems with modern
technology [124]. Here, proximity data is used by the DCT app to
inform users of past close encounters with people who were diagnosed.
This enables fast testing and quarantine.

It has been discouraged to consider DCT a replacement for manual
contact tracing [142, 258]. DCT systems might be faster, more scalable,
and once installed less costly. However, the manual approach has been
proven to be effective in epidemics before 2020, is already in place, and
provides rich human-to-human interaction. Human contact tracers are
also capable of detecting non-direct methods of transmission through
questions. For this purpose, they require a diagnosed user’s location
history to trace potential contacts. Some DCT apps are specifically de-
signed to support manual contact tracing processes [68, 101, 142, 266,
271]. DCT systems deployed to combat Covid-19 were generally used
in combination with existing procedures.

Early research towards automated disease transmission tracking was
done between 2007 and 2012 by the FluPhone project [127]. The goal
of this project was to better understand and predict the influenza epi-
demic and how people alter their behavior in response. To this end,
a field trial was conducted in which participants downloaded an app
onto their phone that checked for other devices in proximity using Blue-
tooth [320]. For detecting phones close by, the FluPhone project built
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upon Haggle [277], a design for ad-hoc networks using Bluetooth. In-
formation about encounters of devices was sent to a central server using
mobile data. GPS measurements were used to improve results. Partici-
pants reported symptoms using the app to determine if these indicated
an influenza infection. The system also had the capability of marking
devices as infected which could subsequently contaminate other users’
devices they encountered based on probabilistic calculations.

Since then, research in the field of DCT has been slow but steady [24,
29, 125, 193, 238, 271, 273, 322, 323]. Besides the seasonal influenza [127,
323], diseases such as the equine influenza [29, 125, 193, 323], avian
influenza [323], SARS [29, 193, 323], MERS [193], Ebola [29, 271, 273],
and Zika [193] moved into focus. With the 2020 Covid-19 pandemic,
many new approaches were proposed and implemented. The first coun-
try to roll out a full proximity-based DCT application for Covid-19 was
Singapore with TraceTogether [287].

3.2 terms and definitions

To ensure a common understanding on DCT, a few terms need to be
defined. Additionally, the potential attackers as well as their targets are
listed. These definitions are relevant for this chapter and all following
chapters of Part ii of this thesis.

3.2.1 Relevant Terms

To ensure common understanding, we introduce the following terms
in the context of DCT.

1. DCT system: A DCT system consists of an app that can be installed
on the users’ mobile devices and a backend, typically a server.
To function properly it is generally assumed that the local health
authority operates the system.

2. User: Users of a DCT system are people who downloaded the app
and have it activated.

3. Diagnosed: People are considered diagnosed if their infection has
been medically verified and reported. DCT systems can only con-
sider diagnosed people who have been using the respective sys-
tem before they fell ill.

4. Encounter: When two users Alice and Bob are in proximity of one
another, this is called an encounter.

5. Contact: If Alice is diagnosed as infected after an encounter with
Bob, then Bob is called a contact of Alice.
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6. At Risk: Users are considered at risk if they have had encounters
with diagnosed people. This does not necessarily mean that they
are disease carriers.

7. Risk Scores: Risk scores are calculated depending of the exposure
of a user at risk. If the score exceeds a certain threshold, the user
is notified.

8. Pseudonym: BLE-based approaches to DCT advertise ephemeral
or static IDs. Such IDs are called a pseudonyms in this work.

3.2.2 Definitions for Attacker Types

When evaluating the security of any data processing system, it is es-
sential to define the type of adversaries against which the system is
secured. In DCT systems there are several parties with different prior
knowledge and capabilities:

1. Health authority: This is the public institution tasked with contain-
ing the spread of the disease. It may have an interest in learning as
much about users and diagnosed people as possible, for instance,
their relations to each other or where they have been in the past.
Another possible goal is the deanonymization of users at risk.
Since infections with SARS-CoV-2, the virus causing Covid-19,
have to be reported in many countries [67, 121, 223], it can be as-
sumed that the health authority possesses a considerable amount
of information about diagnosed users. In some legislation, it is
even a crime to not support the health authority during contact
tracing [223]. The health authority does not have an interest in
blocking contact tracing or stopping risk notifications to users.

2. Users: Userswant to determine their health status. Theymight also
have an interest in figuring out who is infected or who infected
them. It is important to distinguish the potential targets for this
type of attacker. Attack vectors might differ between random
users, close social contacts who are regularly in the presence of
the attacker, or public figures who are easy to track down by a
curious stalker. The stalker can for example follow victims and
observe if their habits change.

3. Diagnosed users: Diagnosed people participate in most systems
through having been reported to the health authority by their
doctor. They have an interest in not revealing too much sensitive
information about themselves to the public and the health author-
ity because they fear public humiliation [261] or other forms of
social punishment. But diagnosed users can also be malicious, by
trying to figure out who they have infected or who was responsi-
ble for their infection.
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4. Eavesdroppers: Eavesdroppers are passive attackers who listen to
the communication of the protocol, both on the wireless network
as well as the communication with a centralized backend. Users,
networks, and service operators can all take the role of an eaves-
dropper in a protocol.

5. Service operators: The DCT service and its infrastructure can be
run by the health authority or by a third party such as a contrac-
tor. Servers and cloud storage fall into this category. A service
operator can try to learn general information about users and
diagnosed people as well as their health status by observing and
manipulating data passing their system.

6. Network operators: Network operators can have similar goals as
service operators, but are only capable of observing and manipu-
lating data that is sent through the network.

3.3 sensors for proximity detection

An important part of DCT is determining if users get into close con-
tact for at least the duration that makes disease transmission possible.
Smartphones have been the main focus for DCT systems since they are
widespread and provide a variety of sensors that can be used for prox-
imity detection. In the following, smartphone sensors are presented and
discussed which allow proximity detection or distance measurements
between users.

3.3.1 Bluetooth

During the last few years, Bluetooth has emerged as a useful technology
for measuring the proximity between devices. Bluetooth can be used
for positioning and proximity detection, especially in indoor settings.
By using the Received Signal Strength Indicator (RSSI) to estimate
the distance between a receiver and a transmitter, relative or absolute
location information can be derived. Raghavan et al. [256] were able
to show that Bluetooth version 2.0 can be used for localization with an
error of less than 45 cm. Liu et al. [210] demonstrated that Bluetooth
is efficient for detecting face-to-face interactions by providing a model
for estimating distance using RSSI readings. Bluetooth has the problem
that it is an active protocol where a connection must be established
between the two parties before any payload can be exchanged. This
potentially hinders an effective exchange of messages due to the added
complexity of the connection establishment. Additionally, since devices
advertise themselves, they signal to possible attackers where to find an
activated interface. This can then be exploited to hack the device using
known vulnerabilities of the protocol and its implementations [226].
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Figure 3.1: During contact collection, each user stores the IDs of all devices
that are in proximity. These IDs can be used to notify close contacts
in case of a subsequently detected infection. Figure from [2].

3.3.2 Bluetooth Low Energy

Bluetooth specification 4.0 introduced Bluetooth Low Energy (BLE), an
energy-efficient, short-range variant of classic Bluetooth [105]. Clas-
sic Bluetooth and BLE are not interoperable. In 2020, both Bluetooth
and BLE have a high adoption rate, as 100% of new smartphones sup-
port both standards [53]. Due to its battery-saving properties, BLE was
adapted for positioning and proximity detection [117, 118, 230, 262]
and is especially interesting for mobile use cases. Bertuletti et al. [51]
were able to reduce the error of BLE-based location measurements to
less than 40 cm. Similarly to distance measurements for classic Blue-
tooth, the RSSI is used to determine the distance between sender and
receiver. Different models for signal propagation can be employed for
this purpose, such as exponential or polynomial approximations.

To transmit data over BLE, a device sends broadcast packets during
each of its advertisement intervals to the three available channels. Recipi-
ents use the scanning mode to listen for such advertisement packets [54].
During each scanning window, they record transmissions. Scanning can
be conducted either actively or passively. The active scanning allows to
request additional data from the advertiser. When scanning passively,
devices do not establish a connection between each other. Instead, scan-
ning devices simply extract information from broadcast messages. The
original use case of BLE broadcast messages is periodic sensor readings,
but each BLE-capable device can be configured to advertise short data
packets as well. A device cannot scan and advertise at the same time.
The durations for both advertising and scanning windows are config-
ured locally for the device. Timings of these scans have to be considered
so that each device has reasonable chances to see all others and can also
be seen [207].
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Passive scanning, in combination with its energy-saving properties,
makes BLE better suitable than Bluetooth for proximity detection and
distance measurements. BLE was therefore widely adopted as the tech-
nology for realizing DCT. In BLE-based DCT, users continuously trans-
mit pseudonyms via broadcast messages to everyone nearby (see Fig-
ure 3.1). These messages can be received and recorded by other users.
If a person is diagnosed, the pseudonyms they have seen in the past
(as well as the distance to them) are used to identify their random
encounters.

One shortcoming of BLE for proximity detection and contact tracing is
the large variability of transmission power across different smartphone
types. RSSI readings have to be calibrated to the respective devices [142].
Additionally, distance measurements can be noisy due to multi-path
and shadowing effects. These are caused by objects such as walls or fur-
niture absorbing or reflecting radio waves. The authors of DP-3T [305]
noted that such errors generally increase the measured distance and
rarely decrease it. So instead of solving the problem of correct distance
estimation, they focused on determining if the distance is larger than
a certain threshold. For this purpose, they conducted experiments for
various everyday settings [13]. With a precision of 80% and a recall of
52.5%, they were able to identify if the distance was larger than 2 m for
all scenarios. Sattler et al. [275] were able to correctly identify 100% of
risky contacts with a duration of 15 min at 2 m distance while accepting
a false positive rate of 30%. Experiments conducted with soldiers of the
German army have also shown that a mapping from RSSI to infection
risk can be reasonably accurate [215]. However, BLE-based proximity
detection is not effective and unreliable in public transit such as light rail
trains due to large measurement errors [198]. Additionally, there is a
disparity in detection rates between different phone operating systems
as Android phones seem to have an overall better proximity detection
rate than iOS phones [111].

For usability reasons, it is essential that a DCT application can run in
the background. Apple’s iOS restricts the usage of the corresponding
interfaces for apps running in the background, thereby interfering with
proximity detection [142]. This limitation on iOS concerns all types of
sensors except those related to location tracking.

The simplicity of BLE does not comewithout limitations. The payload
in an advertisement packet is limited to 31 bytes [54]. In the energy-
saving passive scanning mode, active approaches for exchanging data
cannot rely on the advantage of protocol confirmation messages. Ap-
proaches that rely on multiple packets being exchanged between users
depend on the usage of the active scanning mode and both devices
being visible to each other for some time, a requirement that can be
difficult in mobile or crowded scenarios.

Both, sending advertisement packets and scanning, require energy.
Thus, a tradeoff has to be made between saving energy and being ac-
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tive on the BLE band to participate in DCT and interact with all other
devices. Especially for mobile devices this tradeoff is an important part
of the system design. Approaches that work with fewer interactions
(i. e., passive scanning only) can save considerable amounts of energy
compared to systems with active message exchanges.

Similarly to Bluetooth, BLE also has vulnerabilities that make it ex-
ploitable to attackers when turned on. These are for example Sweyn-
Tooth [131], CVE-2019-2102 [227] as well as device fingerprinting based
on imperfections in BLE components [133].

3.3.3 GPS, Cell Tower Triangulation, and other Methods

Bluetooth and BLE are not the only technologies available for determin-
ing proximity or co-location. Methods like GPS [220, 5], cell tower tri-
angulation [147], Wifi [29], or correlating magnetometer readings [169,
238] can also be used for DCT. However, all of these technologies have
shortcomings which we will discuss in the following. GPS data is gen-
erally seen as very privacy sensitive, as it can reveal identifying infor-
mation about a person like their home and work address. At the same
time, its resolution is not fine-grained enough to detect face-to-face
interactions between people, especially in areas with tall buildings or
indoors [179]. Covid-19 is an airborne disease, so while being in the
same room as an infected person without protection is dangerous, sit-
ting on the other side of a wall is not. These kinds of false positive errors
are difficult to mitigate when using GPS or cell tower triangulation.
Both technologies are too imprecise to derive meaningful data about
the interactions of users.

Wifi, just like Bluetooth/BLE, has the advantage of being blocked by
objects such as walls. This ensures that people do not log an encounter if
they are separated by a barrier strong enough to mitigate the spread of
virus-containing aerosols. While Wifi has been widely used for indoor
positioning [244], just like cell tower triangulation it requires infrastruc-
ture that might not be available everywhere, especially outdoors or in
remote locations. It is therefore not suitable for DCT, which is required
to function anywhere.

Correlating magnetometer readings of users is another passive method
suitable for DCT. It requires little energy while working indoors and
outdoors. When two magnetometer readings have a similar variance
during the same time period this indicates that they were recorded
at the same location. No information about the distance between the
people recording these traces can be deduced. However, proximity
information is crucial for evaluating the likelihood of transmissions in a
DCT setting [296]. There has been little research in the area of proximity
or co-location detection using magnetometers so far and it is not as
well investigated as BLE. So while this method works in the laboratory,
reproducing the findings on a large scale might be difficult, making
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this technology inadequate for DCT during the Covid-19 pandemic as
timely deployment was vital.

The Fluphone project also tested Radio-Frequency Identification (RFID)
tags [127] to detect proximity. While this approach is interesting, tags
need to be distributed to all users. This overhead is considerably larger
than providing an app in various app stores and using common smart-
phone capabilities. Since the ID of RFID tags is static, this technology
also allows the re-identification of users, making it easy to track their
location.

Another tag-based approach was tested in a Singaporean hospi-
tal [159]. Tags for a Real-Time Location System (RTLS) were handed
to patients and staff. Additionally, corresponding transmitters were
placed in the building. While the rate of detecting contacts was high,
the setup costs impact the applicability of this technology to larger areas
and privacy is not protected.

Table 3.1 summarizes all mentioned sensor types and their different
properties with regard to proximity and co-locations detection.

As we have seen, BLE is the most suitable base technology for DCT.
For this reason, most systems proposed and deployed are built on
this approach to detect contacts between users. The main differences
between various approaches to DCT lie in the way how risk assessment
is conducted and which parties hold relevant data. In the remainder of
this chapter, we will therefore focus on works using BLE for proximity
detection.

Table 3.1: Properties of different sensors available for DCT. ⋆ Requires active
communication. † More energy efficient than Bluetooth. Table as
in [2].

Sensor Precision
Sufficient

Distance
Measurement
Possible

Privacy(P)/
Security(S)
Issues

Infra-
structure
Required

Runs in
Background
(iOS/Android)

Bluetooth ⋆ ✓ ✓ S x/✓
BLE † ✓ ✓ S x/✓
GPS ✓ P ✓/✓
Cell Tower
Triangulation

✓ ✓ ✓/✓

Wifi ✓ ✓ x/✓
Magnetometer ✓ x/✓
RFID ✓ ✓ P ✓ x/✓
RTLS ✓ ✓ P ✓ -

3.4 systematization

Systems for DCT can be categorized by whether the risk assessment
is done on the server or the client side. However, for both concepts,
subgroups can be distinguished with similar shortcomings and advan-
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Figure 3.2: Systematization of DCT approaches.

tages. See Figure 3.2 for an overview of the systematization and the
categorized DCT approaches.

3.4.1 Server-Side Risk Assessment

The most straightforward approach to server-side risk assessment is
relying on the server to manage risk assessment. However, more private
solutions that leverage cryptographic privities also fall into this category.
Approaches to server-based DCT can be distinguished whether the
results of risk scoring are revealed to the server or not. See Table A.1 in
Appendix A for an overview of all the approaches mentioned in this
section as well as their privacy and security properties.

Results Revealed to Server

A simple approach to risk assessment is computing risk scores based
on proximity data in clear on the server side. This means that results
are revealed to the server and its operator, as shown in Figure 3.3. Users
can either upload the pseudonyms that they used in the past when
conducting risk scoring, have their pseudonyms assigned to them by
the server, or upload their own recorded encounters. Depending on the
variant, the diagnosed users must provide the corresponding data. The
first variant comes the closest to the privacy trade-off of manual contact
tracing. Some examples of approaches that reveal the result of risk
assessment to the server are TraceTogether [287], the corresponding
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Figure 3.3: An exemplary server-based DCT model where the server learns
the risk scores. Alice sends her collected pseudonyms to the server
when diagnosed as infected. The server does a risk assessment for
her contacts and warns Bob. Figure adapted from [2].

open-source project BlueTrace [142], Arogya Setu [232], PePP-PT [247]
and PHyCT [170].

While using a central server provides certain advantages, it also has
implications for the security and privacy of the users. The identities
of people who should quarantine are revealed to the health authority,
and restrictions on these people can, therefore, be enforced. No data is
revealed to users other than the risk notification received by users at
risk. Recipients can only guess that they might have been infected by
someone from their history of encounters. But since proximity measure-
ments are made independently, both sides of an encounter might record
different distances and an encounter might have only been recorded
by one side. A malicious user cannot rely on using their history of
encounters when trying to figure out who caused a risk notification.
This means this type of approach protects the identity of diagnosed
individuals against other users.

Instead, the dangers of systems revealing risk assessment results
to the server lie elsewhere. Information about the contacts of users
is leaked to the entity running the servers, which is either the health
authority or a service operator. In case a user is reported as a contact
by several diagnosed patients, the server can directly derive that these
people might know each other. It also learns about relations between
healthy users as the server can observe that some users always appear
at the same time in collected data sets. Using additional information
such as the time of an encounter or other prior knowledge, specific
details about the nature of users’ relations can be revealed. While these
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2 Section 5.1 will
discuss these
approaches in detail.

individual relationships might seem insignificant, this attack vector
allows the adversary to build a social graph for parts of the user base.

For systems where the health authority always knows who uses
which pseudonyms, amalicious health authority could install Bluetooth
sensors in popular areas like train stations and collect pseudonyms
there. This allows the health authority to learn the location history of
any user who passes the capture device. Depending on how tightly knit
the infrastructure of publicly located Bluetooth sensors is, the health
authority can follow every movement of users.

Another issue arises from the way ephemeral pseudonyms are linked
to static ones at the backend. For example, in PePP-PT [247], ephemeral
pseudonyms are created by encrypting a static identifier. The reference
implementation of Bluetrace [142] works similarly. In this case, if the
encryption key is leaked, all identifiers issued with this key become
linkable and recorded BLE traces can be anonymized by any eavesdrop-
per on the BLE band. Rotating keys have been proposed to reduce this
threat [311]. An attacker observing the network does not learn who
is at risk, but uploads to the server will reveal who is diagnosed if no
additional measures such as cover traffic or hiding the IP address are
taken.

As explained in the motivation of this chapter, it is essential that users
trust the contact tracing system enough to participate voluntarily. Many
people seem to be deterred by systems they find too intrusive or inca-
pacitating, such as one where they are forced into quarantine instead
of taking the decision themselves [37]. As the approaches discussed in
this section do not provide privacy guarantees, misbehavior of the risk
assessment server can not be detected. This allows them to be misused
for crowd control. There is also the fear that the described server-based
approaches facilitate the creation of new surveillance infrastructure that
could, for example, be used to target minorities [37, 60, 64]. These two
aspects have greatly influenced the public discussion in some European
countries causing governments to move away from approaches like the
ones described in this section [85].

Results not Revealed to Server

Using cryptographic protocols such as homomorphic encryption or Multi-
Party Computation (MPC) can mitigate certain attacks on the privacy
of users while providing similar functionalities as non-private server-
based approaches. Especially Private Set Intersection (PSI) is the core
functionality of many such protocols. See Figure 3.4 for an exemplary
approach using cryptographic protocols for risk assessment. Some ex-
amples for such DCT approaches are EPIC [29], the homomorphic
encryption variant of TraceSecure [46], the proposal of Berke et al. [49],
the protocol by Demirag et al.[92] and Epione [304] 2. In Section 5 of
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Figure 3.4: This figure illustrates how a simple PSI protocol for BLE-based
DCT could work. This example does not leak the intersection to
Bob. Figure adapted from [2].

this thesis, two contributions to DCT are presented that rely onOblivious
Random Access Memory (ORAM) and PSI primitives.

DCT systems which use cryptographic protocols are cryptograph-
ically secure, meaning they leak no more information than intended.
Approaches using MPC, for example, allow to hide the data provided
by the user from the central entity. Additionally, all MPC protocols
can be secured against malicious attacks by accepting performance
penalties [134].

Homomorphic encryption andMPC protocols have a significant com-
putation and communication overhead which can cause a long protocol
runtime. Distributed Denial-of-Service (DDos) attacks against the re-
sources of a central computation server are, therefore, very effective.
Due to the complex operations executed by the central server, an at-
tacker could aim to exhaust the server’s resources by sending randomly
generated data.

Another downside of MPC protocols is that they often require many
gigabytes of data to be communicated between different parties. This
is hardly feasible on metered mobile data connections. Mobile energy
consumption is also limited due to battery sizes. More importantly, even
the general public acceptance of DCT relies on its usability on mobile
devices. This problem can be partially eased by securely moving the
computation load from end devices to the cloud [185].

While the protocols themselves may be secure, it is difficult to en-
sure that inputs are not just a subset of the recorded pseudonyms. A
malicious user trying to find out if a target Tiffany has recently been di-
agnosed can alter their input data to only contain Tiffany’s pseudonyms.
If a positive risk score is returned, the attacker learns that Tiffany’s pseu-
donyms are contained in the health authority’s data set. She, therefore,
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must have been recently diagnosed. This type of attack also works for a
malicious health authority. A malicious health authority can alter its
input and only use a subset of its data or add specifically crafted data.
This way, it can make sure that an infection risk is detected by specific
users, causing them to believe that they are at risk even if this is not the
case.

3.4.2 Client-Side Risk Assessment

A different type of DCT is based on the idea that the risk status of a user
should be calculated locally on the client’s device and not be revealed
to the health authority, service providers, or network providers. Data
passes these infrastructures, but no information about social interac-
tions is revealed and either diagnosed users and/or the users at risk
remain private. This technique often requires more resources on end
devices than the straightforward server-based approach. Several mod-
els using client-side risk assessment are discussed in this section. We
distinguish between systems using broadcast, targeted broadcast, and direct
messaging. A broad overview is provided to distill common properties
for each category.

Details for the individual designs mentioned in the following are
presented in the related work section of Chapter 4. In Appendix A,
two tables compare the individual DCT designs and their properties.
Table A.2 focuses on broadcast and targeted broadcast based designs
while Table A.3 provides an overview of direct messaging approaches.

3.4.3 Broadcast Models

Broadcast models rely on distributing information about diagnosed
individuals to all users who use this information to conduct local risk as-
sessment. As long as users are undiagnosed, they generate pseudonyms
on their end devices for advertisement and record the pseudonyms of
others close by. In case a user is diagnosed, they upload all their past
pseudonyms (or the key material required for generating these) to the
server. Daily, all users download the recently published pseudonyms
(or the corresponding keymaterial). They then check locally if a contact
with a diagnosed person has been recorded. This type of DCT is often
also called decentralized.

Apple and Google, two companies that together dominate the market
for smartphone operating systems, formed an alliance in 2020 to present
a joint approach for DCT [141]. This thesis will refer to this proposal as
Google Apple Exposure Notification (GAEN). They proposed and imple-
mented a technical specification for an API that was provided by their
smartphone operating systems. To derive the next pseudonyms, a day-
specific key and the epoch number identifying the current time interval
are used as input for a pseudo-random function. When a user is diag-
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Figure 3.5: Broadcast-based DCT as performed by GAEN. When Alice is di-
agnosed, she will upload the key material for the pseudonyms
that were advertised when she was infectious. Bob will download
a list from the server containing Alice’s data, as well as data of
other diagnosed users such as Dorothy. Checking locally against
his list of recorded pseudonyms, he recognizes a past encounter
with Alice.

nosed, they upload the daily keys for the relevant time period. Other
users then use this to locally derive the corresponding pseudonyms
and check for encounters. Figure 3.5 illustrates the notification process
of GAEN. The implementation of the DCT app and setting up server
infrastructure are tasks left to the health authorities that are interested
in using GAEN. GAEN was available for Android 6.0 and higher until
September 2023 [79, 136]. On Apple devices, it was introduced with
iOS 13.5 [34]. Many DCT applications deployed in real-world settings
during the pandemic relied on the broadcast model as these apps were
built on GAENAPI [141]. This includes the German Corona-Warn App,
the Swiss SwissCovid App, the Italian Immuni App, and at least 62
others [95, 257]. Without using the GAEN interface, reliably sending
and scanning for BLE advertisements in the background was and is still
not feasible [237]. This resulted in multiple governments abandoning
projects that did not use GAEN [303]. The unwillingness of Google
and Apple to provide a more low-level programming interface to the
BLE stack has been heavily criticized, especially by France [303]. It has
been argued that by making other types of DCT apps impossible, the
companies undermine the sovereignty of governments.

Designs similar to GAEN are the DP-3T low-cost design [305], CON-
TAIN [153], East-Coast PACT by Rivest et al. [266], and West-Coast
PACT by Chan et al. [68]. Differences between these schemes and the
GAEN framework are mainly on an implementation level. Broadcast-
based approaches with slightly different properties are the DP-3T un-
linkable design [305] and Hashomer [249].
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Approaches using the broadcast model can hide from the health
authority the fact that someone has been in contact with a person who
has tested positive. This can be an essential feature to gain users’ trust,
as they can review warnings for plausibility and are free to decide for
themselves when it is time to seek medical attention. Since the risk
status is calculated locally and all users receive the same data, service
providers and network providers cannot guess a person’s health status
by eavesdropping. Broadcast models have the common weakness of
revealing the pseudonym and approximate time when the encounter
occurred to the user at risk. Overly curious users could try to abuse
this information to deanoymize diagnosed people. This also simplifies
attacks where a security camera is combined with a Bluetooth sen-
sor device. Here, the captured data allows the attacker to connect the
pseudonyms of diagnosed users to faces.

Another issue is impersonation attacks. A diagnosed user could up-
load different pseudonyms than the ones they used themselves to make
it seem like someone else is infected. This class of attacks requires the
attacker to gain access to recent pseudonyms of a victim, which can
be obtained by sustaining physical proximity to the targeted victim. In
some cases, access to the keys that are used for pseudonym generation
is required. This can only be done by breaking into the victim’s phone. A
successful untargeted impersonation attack would require the attacker
to guess a valid pseudonym. This is very unlikely to happen due to the
high entropy of randomly generated pseudonyms.

Since risk scoring is done locally in broadcast-based DCT, a network
operator will not know who is at risk. Nevertheless, through uploads
to the server it is possible for the network and the service operator to
learn who has been diagnosed.

3.4.4 Targeted Broadcast

In targeted broadcast systems, only the user at risk (and sometimes
the corresponding diagnosed person) is capable of identifying that a
broadcasted message was directed at them. As a result, people who did
not get close to someone later diagnosed as infected or those for whom
the exposure duration was not long enough will not receive a warning.
This means that users cannot learn that someone they have seen in
passing was diagnosed. Compared to the simple broadcast approaches
presented above, a pre-filtering of users that need to be warned can
be applied by the diagnosed individual. Examples of DCT systems
that fall into this category are ConTra Corona [52], Covid-Watch [38],
Pronto-C2 [40], and Whisper [212].

Many risks of targeted broadcast approaches are similar to those
presented in Section 3.4.3. For all the analyzed systems relying on the
idea of targeted broadcasting, it is possible for a user who stores a
list of received advertisements to find out who was responsible for a
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Figure 3.6: An example of a direct messaging approach to DCT following
Cho et al. [75]. Alice collected Bob’s pseudonym 𝐵𝑜𝑏𝑡 earlier. She
uses it to encrypt a message for Bob. This message is placed in
the corresponding postbox where Bob can retrieve it. After its
decryption, he knows that he is at risk. Figure as in [2].

received warning and is therefore infected. This can be improved so
only the epoch of the encounter is leaked by breaking the link between
the identity used for warning and the one used for advertising [52].
However, this still gives the user at risk the possibility to greatly reduce
the pool of people that could have possibly caused the warning.

As the messages broadcasted are only meaningful to the designated
receiver, no one else will learn if they are at risk. This is the case even if
both sides of an encounter have measured different distances to one-
another and the user at risk did not register the encounter.

3.4.5 Direct Messaging

Another way of doing client-side risk assessment in the context of con-
tact tracing is direct messaging. Here, diagnosed users sendwarnings to
those they have been in contact with. For addressing, either the pseudo-
nym or information derived from the pseudonym is used. The warnings
are relayed to the receiver by a server. Examples for this approach in-
clude the proposal of Cho et al. [75] and TraceSecure [46], as well as
CAUDHT and Ovid (see Chapter 4). See Figure 3.6 for a simplified
graphical explanation based on the proposal of Cho et al. [75]. Systems
that might appear to leverage strategies of targeted broadcast but allow
users to download data that is only intended for them or otherwise
leak the graph of social interactions between diagnosed and undiag-
nosed users also fall in the category of direct messaging. This is the
case for a centralized variant of Whisper [212] and a variant of ConTra
Corona [52].

Some direct-messaging designs rely on a partially trusted central
party. This is due to the fact that the central server can learn the un-
derlying social graph or even parts of the identities of diagnosed users.
Decentralizing this central infrastructure by distributing it over well-
known independent entities can mitigate this issue. Cover traffic is
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another option to hide the social graph. This has the advantage of addi-
tionally protecting against network observers trying to deduce users’
health status from traffic patterns. However, allowing arbitrary traffic
makes mitigating spam difficult. Attackers can try to congest a spe-
cific postbox so that the corresponding user will not be able to receive
valid messages for their pseudonyms. Another issue is the aspect of
authenticity. Malicious users might try to cause panic by sending “I am
diagnosed” messages to many people without actually being at risk.

In Chapter 4 of this thesis, two contributions to the field of direct-mes-
saging DCT systems are presented that provide solutions for the prob-
lem of authenticity and cover traffic.

3.5 functionality aspects

Aside from determining the risk of an individual user, there are various
functionalities that a DCT system needs to provide. Some features
enhance the capability of a DCT system by fulfilling additional needs
of the users or the health authority. In the following, we will discuss
functionality issues as well as additional features and how they were
integrated by DCT systems. Table A.4 in the appendix provides an
overview of the topics discussed in this section.

3.5.1 False Positives and False Negatives

An issue often mentioned when discussing the applicability of DCT are
false positives and false negatives. A false positive in the case of DCT
can belong to one of two categories. One option is that the situation
for an encounter did not occur at all but a warning is still received. In
the other case, the DCT system detected an encounter even though
the transmission of the disease is highly unlikely, e. g., when two users
were separated by a wall. Reasons for such errors can be manifold. To
minimize the number of false positives based on distance, one option is
to lower transmission power or improve the model for distance estima-
tion, e. g., by having the sender provide information about its current
transmission power or by calibrating the sender [142]. To ensure that
an encounter is relevant, only those with a significant time span must
be taken into account. For example, field trials were conducted to in-
vestigate the detection of an encounter for different phone positions
and distributions of people [247]. Instead of detecting distance, some
projects instead focused on detecting if the distance is more or less than
2m instead of measuring the real distance [15].

Reducing the number of false positives can lead to an increase in
false negatives. As a result, risky encounters might not be detected
and users who are at risk might not warned by the system. Here, the
solution would be to increase transmission power while ensuring that
other measures are in place to mitigate false positives, such as only
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sending a warning if both sides have registered the encounter. The
balance between both types of errors is important [161].

3.5.2 Pseudonym Rotation

How often pseudonyms are switched is a key factor in all BLE-based
DCT systems. To mitigate tracking, pseudonym advertising epochs
are generally kept short. Nevertheless, switching pseudonyms too fre-
quently can become an issuewhen uploading data in case of an infection.
The duration can vary from five minutes to 15 minutes up to 45 minutes
in extreme cases where a long duration is a technical requirement [52].
A small value for the rotation period doesmake location tracking harder.
At the same time, depending on the system design a small value can
make it more challenging to recognize relevant encounters.

When rotating pseudonyms, it is essential to keep in mind that the
device address of the BLE sender also changes regularly. To ensure
privacy, the rotation period of the ephemeral pseudonym should not
be smaller than the rotation period of the device address because oth-
erwise, the load on the DCT system is increased without improving
privacy [161]. In case longer durations are required, only multiples of
the rotation period of the device address can be used safely.

As of Bluetooth Version v5.1, devices keep their address for 15 min-
utes. The GAEN initiative by Google and Apple had the advantage
that its developers did not have to take existing values for device ad-
dress rotation into consideration due to their access to the code of the
internal Bluetooth stack. For this reason, GAEN [140] uses a period of
10 minutes.

3.5.3 Authenticating Uploads

DCT systems require an interface to both the testing infrastructure and
the users to distributemeaningful risk notifications. Ensuring that a user
is diagnosed while at the same time providing privacy is important. If
there is no control over who is capable of uploading data to the system,
trolling and planting fake data become possible. This makes warnings
issued by the DCT system unreliable. The simplest solution to this
problem relies on healthcare providers to collect data from diagnosed
individuals which they then upload to a server. This way the system
can be sure that as long as the healthcare providers are authenticated
and trustworthy, the uploaded data is authentic. A more widespread
approach is the use of token-based systems that allow diagnosed users
to upload their data to a server after having received confirmation
from a doctor. Tokens can either be handed out when the infection is
verified or at the time of testing if an additional activation mechanism
is used. The most simple approach to this is a verification code as used
by GAEN [137]. It is also possible for users to commit data when being
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tested which will be uploaded later [18]. If they test positive, the health
authority authorizes the upload. This mechanism ensures that the data
is not tampered with after the infection is verified. It also stops users
from giving their upload tokens to others.

It is also possible to use blind signatures to prove to users that a
warning or upload originates from a diagnosed individual (this will
be discussed in Section 4.2) [40, 1]. This means the user can be certain
about the authenticity of awarning. In this situation, a hackedmalicious
server without access to the health authority’s private key can only
delete warnings but not insert new ones. For the health authority to
know who to issue blind signatures for, another token-based access
mechanism needs to be used.

Another option to solve the issue of authenticating uploads is creating
an infection certificate by having diagnosed users generate a new public
key pair that will be signed by the health authority [153]. This certificate
can be provided on upload to verify the infection. To ensure privacy, this
mechanism relies on the non-collusion of health authority and upload
server.

In broadcast-based DCT systems, a diagnosed user will upload their
own pseudonyms to warn others. To ensure that a diagnosed person or
a person in possession of an upload token does not upload the pseu-
donyms of someone else, a key derivation schema can be used [305].
Pseudonyms are not independent but derived from the same key ma-
terial. To notify others that they have been diagnosed, users present
the key material, which allows others to derive all pseudonyms be-
longing to this person. While this is useful for ensuring that no bad
data is sneaked into an upload, attacks using the time slots of received
warnings to deanonymize diagnosed people become more effective if
all pseudonyms of a person can be linked.

3.5.4 Verifying Encounters

Imagine a blackmarket where people offermoney for faking encounters
of a target person Tiffany with infected people. A freshly diagnosed
user can alter the data they upload so an encounter with Tiffany ap-
pears in their encounter history. The attack can be stopped by having
Tiffany check if she has recorded a corresponding event. This is done
by design by broadcast-based DCT systems where only the advertised
pseudonyms of diagnosed individuals are published [68, 141, 153, 249,
266, 305]. Some, but not all, systems relying on client-side assessment
have similar checks [40, 1, 212].

Server-based approaches do not defend against this attack since the
server does risk scoring. Here, a malicious diagnosed user can upload
pseudonyms of the target Tiffany. The server will recognize the pseudo-
nyms and send a notification to Tiffany. She will not be able to tell the
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difference between a misbehaving server, fake data inserted by other
users, and a real warning.

Liu et al. [209] propose a solution to the problem of verifying if a close
contact occurred. When users have an encounter of meaningful dura-
tion, they initiate an active exchange over Bluetooth to swap identifiers
and signatures. Later, zero-knowledge proofs 3 are used to demonstrate
to the health authority that an encounter occurred. Many designs avoid
the use of active protocols as this can make it easier for an attacker to
exploit the device (see Section 3.3) [40].

Another option to verify encounters is using cryptographic hash-
es [304]. Users compute a daily hash for their history of contacts which
they upload to the server. To verify the hash, a zero-knowledge proof
has to be used. This mechanism ensures that an attacker cannot forge
queries or only use a subset of the data.

3.5.5 Incomplete Reports for Privacy

For privacy reasons, users maywant to have control over what data they
report in case of diagnoses. One option is to turn off BLE when they
do not want any data to be collected or advertised, e.g., when visiting
a sensitive location. Whether or not a diagnosed user provides their
data for DCT is mostly voluntary. Some DCT approaches [40, 249, 266]
additionally consider the option for users to only upload some data to
the server. While being a privacy feature, this leaves room for extortion.
In cases where risk scoring is not done locally but on the server side
without cryptographic protection, a diagnosed person could blackmail
others by threatening them to include their data in their upload to
the health authority. Such a threat would only be effective if measures
against users at risk were enforced.

3.5.6 Proving Risk

During the beginning of the pandemic, getting tested for Covid-19 was
difficult as PCR tests were rare and the faster antigen test had not been
developed yet [119]. It was, therefore, suggested that users who have
received a warning by a DCT should have a right to be tested. For
systems that employ server-side risk assessment and reveal the results
to the server, it is easy to determine who is eligible for a test and the
servers provide some degree of validation.

For systems where no central entity is informed about results from
risk assessment, the process is more complicated. Even if a user receives
a notification, they have to prove they are not simply forging encounters
and notifications to get tested. For systems that rely on asymmetric key
cryptography, the possession of a private key corresponding to an at-
risk public key can be used as proof.
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To prove exposure, by using a specifically designed key derivation
scheme a verification key can be derived from parts of the advertised
pseudonyms [249]. When a user becomes diagnosed, they upload this
key to the health authority which is then distributed to all users. Users
who want to prove they are at risk can present the corresponding col-
lected pseudonym. Using the verification key, the health authority can
figure out if the collected pseudonym belongs to a diagnosed person.
This approach opens up new ways for the health authority to derive re-
lations between users and does not prevent the transfer of pseudonyms
belonging to diagnosed people to other users.

Another proposed option is to incorporate a random value 𝑢 into
all pseudonyms that can later be presented in a non-interactive zero-
knowledge proof to the health authority to verify ownership [52]. To
discourage people from giving away their proof, 𝑢 can include a times-
tamp and the user’s real identity.

3.5.7 Statistical Insight into the Pandemic

Statistics are a useful tool for health authorities and governments to
take informed steps to mitigate the spread of a disease. The notifica-
tion chain of newly diagnosed cases allows health authorities to stay
informed. Regardless, delays in the notification processes and an over-
loaded health authority can cause these statistics to be less reliable. The
motivation behind some server-based contact tracing approaches was
to gain insights into the pandemic in real-time [161]. By monitoring
the number of recorded beacons per person as well as the number of
warnings sent during a certain time period it is possible to extrapolate
the day-to-day number of infections. Such statistics also allow for de-
termining the effectiveness of a DCT system by linking the number of
warnings to the number of new cases.

Approaches where only the user learns their risk instead of a central-
ized entity can suffer from a lack of statistics. However, it is possible
to compute statistics on distributed data. Google and Apple provided
an extension of their GAEN protocol which uses the Prio protocol [176,
254] to compute differentially private aggregate statistics which were
made available to participating health authorities [139].

Another option for collecting statistics in a privacy-preserving way by
using trusted execution environments will be discussed in Chapter 8.

3.5.8 Dealing with International Travel

To facilitate cooperation between different states, systems were pro-
posed for the federation between different health authorities [161, 247].
For instance, a country code is added to the pseudonym when it is
transmitted. DP-3T [14] pays particular attention to the aspect of in-
teroperability across borders, allowing users to enter regions they will
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travel to or have returned from. When diagnosed as infected, users
upload their history. If they indicate travel, the backend will commu-
nicate the pseudonyms of the user to the backend responsible for that
specific region. The mechanism requires backends to trust one another
to function properly. GAEN [120] is capable of providing tracing inter-
nationally for all region-specific apps that build on its API.

3.5.9 Performance Considerations

The performance is a relevant aspect for estimating the feasibility of
a DCT system and is closely linked to the adoption rates [189, 299].
Most DCT approaches require large server storage, either to do risk
assessment or to hold data that will be transmitted to the users. As
uploaded data becomes irrelevant after 14 days for the purpose of
contact tracing due to the incubation period of Covid-19, data retention
periods can be short.

Regarding client-side storage, the authors of DP-3T [305] come to
the conclusion that their various approaches require between 4.8MB to
6.9MB of storage for received pseudonyms. This assumes that received
data has to be stored for 14 days, that keys are 48 bytes long, and that an
estimate of 140,000 different observations are made in that time. Users
generally also have to store their pseudonyms of the last 14 days, but
depending on the scheme this data lies in the range of a few kilobytes
to megabytes.

Requirements on bandwidth greatly depend on the design of theDCT
system and are influenced by how often data is downloaded, how large
the downloads are, and the number of diagnosed users. For scalability
purposes, a content delivery network can be used [305].

Cryptographic operations are computationally expensive for mobile
devices. One solution to this issue while ensuring devices remain usable
is outsourcing the generation of pseudonyms to the cloud [142]. Here,
local computation is traded for bandwidth. Another option is to use
symmetric cryptography instead of the asymmetric alternative to reduce
the required CPU cycles for generating a pseudonym [249]. Expensive
functions that require costly HMAC operations should also not run too
often.

Running a smartphone application in the foreground can drain the
battery. As we have seen earlier in Section 3.3, running BLE scans in
the background required special permissions and changes to the oper-
ating system. Otherwise, the battery is drained or scanning does not
work at all in the case of iOS devices. Google and Apple are the two
main providers for smartphone operating systems worldwide [216].
Since they have implemented their own background API following
a broadcast-based design, any other application not using this API
effectively drains the battery [237].
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3.6 privacy and security considerations

Security and privacy considerations play an important role in the design
of DCT systems. In the following, common threats and potential solu-
tions are summarized. First, attacks and defense mechanisms concern-
ing BLE-based proximity detection are discussed. Afterwards, several
types of attacks are presented that focus on deanonymizing the source
of a warning and metadata leakage is analyzed. Finally, countermea-
sures are evaluated both from a design perspective as well as from an
operational security point of view.

3.6.1 Attacks on the BLE Layer

This section discusses problems with and attacks against BLE in more
detail.

Jamming

Companies or individuals wanting to prevent contact tracing on their
premises can block the exchange of pseudonyms by jamming the parts
of the radio spectrum used by BLE. This attack is easily mounted with
additional equipment, as shown by Xu et al. [318], and cannot be miti-
gated [17].

Storage and Power Drainage Attacks

Another simple attack targets the exhaustion of battery power and stor-
age of the end device by sending large amounts of BLE messages [144].
This might make the DCT system unappealing to users, hindering
widespread adoption [173, 306]. This attack is easy to mount as only de-
vices capable of sending BLE messages are needed, as shown by Chen
and Hu [72]. Uher et al. demonstrated that a denial-of-sleep attack
can be used to drain the battery of BLE receivers [306]. An additional
antenna to increase the attacker’s reach can make this attack more ef-
fective. One solution that DCT systems can use is filtering incoming
broadcasts and blocking misbehaving senders [142]. GAEN [141] takes
a sample of beacons at least every 5 minutes. The service responsible for
handling received advertisements is specifically designed to be able to
deal with large volumes of data. This is also relevant for when the user
visits public spaces. GAEN also proposes using software and hardware
filters to remove duplicates and deal with the case of many advertise-
ments. To circumvent the duplicate filter, an attacker would need to
invest resources and change their MAC address for every packet.
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Replay and Relay Attacks

An attacker who wants to make people believe that they are at risk
can record pseudonyms and replay these BLE messages. BLE adver-
tisements can, for example, be collected at high-risk areas like a testing
center and then be broadcast at a different. This attack allows to target
locations frequented by a certain person or demographic. It has been
argued that replaying a single pseudonym might not be sufficient to
surpass the threshold duration and be counted as close contact. Using
a dedicated antenna, the attacker can receive advertisements within
20-100m range [305]. To limit the impact of replay attacks, most ap-
proaches [68, 161, 170, 249, 305] encode the epoch of the encounter
in the transmitted pseudonym. DCT systems where a server assigns
pseudonyms can check when an encounter was recorded and whether
the recorded pseudonymwas actually in use at that time [142, 161, 247].
Broadcast systems allow users to check themselves if they recorded
a corresponding encounter for this time slot. Pseudonyms can also
be cryptographically linked to their epoch [305]. Some approaches
include the sender’s pseudonym at the epoch of the encounter or a dis-
tinct shared key to allow the receiver to do a similar check [40, 1]. This
requires loosely synchronized clocks, but even deviations of several
minutes are acceptable.

The situation is different when the attacker relays the collected pseu-
donyms during the same epoch in which they were collected. It has
been shown in a real-world scenario that relay attacks, sometimes called
wormhole attacks, are feasible in GAEN [44]. A mitigation proposed
by Vaudenay was to switch from passively exchanging pseudonyms
through broadcasts to an active protocol [310]. As discussed in Sec-
tion 3.3, an active exchange of messages is less secure than one-way
communication where users send and listen for advertisements as it
opens the door for new types of attacks against the end device [40].
Energy consumption also increases in a scenario with active BLE com-
munication.

Some works [144, 248] propose using coarse (GPS) location data in
the broadcast of the pseudonyms, allowing the receiver to figure out if
the sender is close. This can be improved by introducing a message au-
thentication code to prove the authenticity of the geo-location encoded
in the BLE message [249]. The BLE message can also indicate that no
location information is available by using a specific pseudonym. If the
majority of users do send location information over BLE, relay attacks
are mostly mitigated.

Linking Advertisements

When an end device advertises itself, a MAC address is also part of
the transmission. This MAC address changes regularly. To ensure that
linking different pseudonyms of the same person is not feasible, it is
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vital that the MAC address changes simultaneously with the pseu-
donym. This feature requires support by the operating system [142,
305]. It has since been implemented by Google and Apple [140]. The
DP-3T consortium did experiments to verify that this attack vector is
mitigated [16].

However, by measuring the time between the announcements of
pseudonyms, an attacker can determine which successive pseudonyms
belong to the same person. A simple solution against this issue is syn-
chronizing the switching of pseudonyms between all users [68]. Since
this requires somewhat synchronized clocks in all end devices, it has
instead been proposed to add jitter to the intervals between announce-
ments [144].

Another point when trying to mitigate linking attacks is to consider
the RSSI data. These proximity measurements allow an attacker to
determine if two successive pseudonyms originated from the same
approximate location. Gvili [144] proposes to have senders vary the
signal strength in a way that makes it difficult to deduce the location of
a user from only a few samples. No DCT system known to the author
of this thesis takes measures against this variant of linking attacks.

Location Tracking

A passive eavesdropper might listen in on BLE advertisements and
collect pseudonyms over BLE. These can then be used to track and
deanonymize users. One way to do this is by continuously linking BLE
advertisements and tracking users over a network of BLE scanners. This
requires an attacker to have financial resources to install the required
infrastructure in highly frequented public places. Infrastructure for BLE
sniffing already exists in some areas due to digital billboards being
equipped with BLE sensors [214]. Baumgärtner et al. [44] conducted
experiments on how to track healthy and diagnosed users of the Ger-
man Corona-Warn App, which builds on the DCT API of Google and
Apple [141]. They were able to derive a coarse location history for diag-
nosed users. This attack works especially well for DCT systems where
past pseudonyms of diagnosed individuals are published to allow local
risk scoring. This means all broadcast DCT systems are exposed to such
an attack. One mitigation against this type of attack is secret sharing 4

beacons [305]. Instead of advertising the pseudonyms, only fragmented
shares of pseudonyms are broadcast. The other side must collect a cer-
tain number of shares to deduce the sender’s actual pseudonym. This
means that the pseudonym cannot be reconstructed if a user is just pass-
ing a BLE scanner. Therefore, it becomes difficult for publicly located
BLE receivers to collect meaningful pseudonyms from people simply
passing by. A disadvantage of secret-sharing pseudonyms is that some
contacts of sufficient duration might not be recognized [52]. This can
be resolved by making time slots of sequential pseudonyms overlap
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such that two pseudonyms are always advertised at the same time. The
device address must be considered when secret-sharing beacons to
ensure tracking is not possible.

Another option for an adversary trying to track users that do not re-
quire continuous tracking is leveraging weaknesses in the BLE protocol
or the transmitting devices. An attacker can, for example, fingerprint
the properties and imperfections of a BLE chip and use this information
for to reidentify users [133].

Active BLE Eavesdroppers

An attacker might not be satisfied with passively collecting pseudo-
nyms and instead equip BLE devices in public spaces with the targeted
contact tracing app. This way, a passing user will collect a pseudonym
originating from the attacker’s BLE device. Since public places are usu-
ally crowded and most DCT systems change pseudonyms regularly,
detection is unlikely. Even worse, if security cameras are equipped with
DCT applications, exchanged pseudonyms can be linked to surveillance
footage. This makes diagnosed individuals easily deanoymizable at a
later point in time using corresponding video recordings. This attack
– with or without surveillance footage – is slightly more complex to
mount than the one presented in Section 3.6.1. DCT approaches where
users do not learn which pseudonyms from their history of encounters
belong to a diagnosed person are safe against this attack. Generally, all
approaches discussed in this chapter labeled as broadcast systems are
vulnerable to this attack, as well as some message-based approaches.
The secret sharing of beacons helps users who are at the location only
for a short period of time. The number of shares is an important param-
eter to consider, as more shares mean higher privacy but might harm
utility.

3.6.2 Deanonymizing Source of Warning

Apart from attacking the physical BLE layer, an attacker can also try to
gain sensitive information by using the time of encounter to determine
who is the source of a warning message and, therefore, diagnosed.

Leakage through Time of Encounter

Most client-side DCT systems allow a user who has received a warning
to learn at what time they have encountered the diagnosed person. A
user can use their memory to reidentify the diagnosed person they
have been in contact with. Some designs give the exact time of the
encounter and its duration, while others only provide the epoch. The
shorter an epoch, the easier this attack becomes. While this endangers
the privacy of diagnosed users, this information is also a useful tool for
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users to do sanity checks onwarnings [249]. In Section 5.4, we present a
privacy-preserving DCT protocol that does not suffer from this leakage.

One Contact Attack

Assume an attacker wants to find out if a target person Tiffany will
be diagnosed at a later point in time. The attacker could create a new
account to register an encounter with her. If a risk notification is sent
later for this account, the attacker knows that Tiffany triggered it. One
way to mitigate this attack would be to make creating a new account
difficult, for example, by installing CAPTCHAs 5 or tying participation
in the system to a phone number.

A solution to combat this issue that is simple to implement for server-
based DCT approaches is probabilistic notifications [161]. Here, for a
small percentage of requests the server receives from clients for risk
scoring, a warning is sent independent of the risk score. This increases
the false positive rate but provides plausible deniability.

Another solution applicable to all types of DCT is to ensure that a
user is always protected by 𝑘-anonymity [144]. If less than 𝑘 distinct
BLE advertisements are detectable, end devices can create cover traffic
to make it look like more users are in the general area. An observer will
not be able to determine which transmissions come from which users,
especially if the signal strength is varied.

To increase operational security, it has been proposed to employ re-
mote attestation [12, 52]. Smartphone operating systems allow backend
servers to verify the integrity of devices and applications that want to
communicatewith thembyusingGoogle SafetyNet or iOSDeviceCheck.
These mechanisms allow the identification of altered apps, which are
needed for the execution of a one-contact attack if there are other users
around.

Rate limiting the number of queries that can be sent by a user in DCT
systems that rely on queries to the server [304].

3.6.3 Metadata

An important aspect of operational security is to check whether meta-
data can leak information that must remain secret.

ip address leakage Many DCT systems rely on the IP address not
to be leaked when communicating with central infrastructure. Users of
a system where risk assessment is done on the server might have an
interest in not revealing their identity directly to the server. In broadcast-
based systems, users might not want to reveal the fact that they partici-
pate. Also, depending on the authentication mechanisms, users might
want to ensure that uploaded data (like past pseudonyms) is not link-
able to their identity. For this purpose, anonymization networks like
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Tor [100] or mix networks [88, 98] can be used. If users use such a
network when communicating with the server, it will not learn their
real IP addresses (and thereby their identity) as they are hidden by
a cascade of proxies. While Tor-like anonymization infrastructure is
vulnerable against timing attacks conducted by adversaries capable of
monitoring large parts of the network [240], mix networks do not have
this drawback but are slower at delivering messages. In some cases, IP
Address leakage can be mitigated by using an independent messaging
service that transmits encrypted messages [46].

Another solution to this issue relies on the assumption that the health-
care provider (for example, the facilitywhere the user got tested) knows
the diagnosed user’s identity and can be trusted [304]. A diagnosed
user can freely communicate with the healthcare provider and upload
their encrypted data there. The healthcare provider can collect data
from multiple diagnosed users and shuffle it before uploading every-
thing to the server responsible for DCT. It works as an anonymization
proxy and is, therefore, not allowed to collude with the DCT server.

traffic analysis Anonymization networks do not only hide IP
addresses but also stop an attacker who observes the network from
finding out who is diagnosed or at risk. On the downside, they are
known to have performance and scaling issues [18]. It has been argued
that the current Tor network is not equipped to support the expected
user basis of a DCT system [247]. Therefore, mechanisms are proposed
that leak the user’s IP address but defend against network observers.
To ensure a network observer does not learn if an upload contains real
data which indicates that the sender is diagnosed, one solution is to
regularly upload dummy data [12]. If a user is diagnosed and uploads
their real data, the app must continue downloading keys and making
fake requests. In case data is uploaded during the daily warning check,
uploads can be hidden in this upload. Not securing this path allows a
network observer to identify diagnosed individuals.

leakage through upload timing Timing is another type of meta-
data that allows to derive information about users. When uploading
data that should not be linked by the server like warning messages
originating from different pseudonyms, it is necessary to also induce
jitter. This is discussed by Robert [161] to break the link between two
uploads from the same diagnosed user. The authors also consider mix
networks and additional servers with secure hardware modules for
this purpose. Additionally to jitter, mix networks, and onion-routing,
cover traffic is helpful for client-oriented DCT systems to defend against
this type of linking attacks [40]. It becomes unclear for the attacker
which data is real. This method can only be applied to systems where
the server cannot tell real data from decoys. Similar to other attacks



an introduction to proximity-based digital contact tracing 38

6 A TPM is a type of
computer hardware
that is physically
isolated from other
parts and can provide
secure storage of keys.

based on metadata, an independent anonymization proxy can solve
this problem as well [304].

3.6.4 Hacking, Backdoors, and Malware

DCT systems generally rely on apps being installed on the user’s smart-
phone. Like in any kind of IT environment, both underlying hardware
and software can be vulnerable. Therefore, regular updates are manda-
tory to ensure security and privacy. To guarantee that no other installed
applications can spy on the DCT app, it has been suggested that em-
ploying Trusted Platform Modules (TPM) 6 would help [310]. Remote
attestation mechanisms available in most smartphones are also useful
to detect hacked devices [12].

However, hackers can also attack servers directly and use log files to
identify diagnosed users by the IP address of their upload. To prevent
this kind of privacy leak, it has been recommended not to maintain
logs that might leak the identity of diagnosed users [266]. Relying on
anonymization networks and dummy traffic also hides information in
log files which might be of interest to hackers [12, 266].

Users’ trust is an essential building block of DCT systems. It has often
been argued that making code open source is a requirement to ensure
that a DCT system is trustworthy [52, 75, 153]. Having code freely acces-
sible allows independent security researchers to check that no backdoor
has been implemented and that the app does not contain malware.
Open source code is available for various DCT apps discussed in this
chapter, for example BlueTrace [142], PePP-PT NTK [247], Robert [161],
DP-3T [305], Hashomer [249] and Covid-Watch [38]. Additionally to
having code freely available, independent audits are necessary to ensure
that the published code is used to run the backend servers or to build
the application. Here, the usage of a trusted execution environment on
the server side can help to prove to users that the source code running
on the server is the same as the one that is openly available [247].

3.7 discussion

In this section, we discuss the societal factors of DCT and take a look at
how effective BLE-based DCT was at combatting the pandemic.

3.7.1 Adoption and Public Perception

For DCT to be successful, widespread adoption is necessary. Simu-
lations evaluating the effectiveness of DCT use adoption rates from
40% [243] and 53% [192] to 56% [155] of the population. Some authors
have suggested that these numbers should not be understood as hard
limits, as apps do not become useless at lower adoption rates but rather
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less effective [157]. In another modeling study, Kretzschmar et. al. [191]
find that DCT is more effective than manual contact tracing, even if
only 20% of the population uses the tracing app. This follows from the
shorter delay of notifying contacts compared to the manual approach
of interviewing a patient and then calling their previous contacts via
telephone.

To improve effectiveness, some states have made using the local DCT
app a requirement for using public transit and participating in public
life [90]. For most European countries, such measures sparked serious
concerns regarding civil liberties and discrimination against people
without a suitable smartphone [19, 115, 195]. If installing DCT apps
is voluntary, public perception is an important factor impacting adop-
tion. The willingness to adopt contact tracing apps was strong at the
beginning of the pandemic, as shown in the cases of the USA and
Germany [302]. Educating users about the benefits of DCT apps for
themselves and society positively impacts acceptance [302]. Intrinsic
motivation for using a DCT app is an important factor for its penetra-
tion. In some regions, the adoption of DCT and using the local app was
linked directly to the hope of users that regional rules like lockdowns
and contact would be lifted faster [50, 124, 189].

Security and privacy concerns regarding the DCT app hinder adop-
tion [28, 189, 283, 299]. For example, apps that allow uniquely identify-
ing people are considered less trustworthy [189]. It has been shown that
systems perceived as surveillance measures are seen as less trustworthy
and people are less inclined to install the corresponding DCT app on
their devices [58]. Toch and Ayalon [299] showed in the case of Israel,
that when mass surveillance measures are in place for contact tracing,
people are less inclined to trust and install any voluntary contact trac-
ing apps. In general, the attitude toward the government significantly
influences the willingness to use contact tracing apps [28, 189]. Another
factor that decreases the willingness is a fear of data misuse by third
parties such as companies or law enforcement [189, 283].

However, the “paradox of privacy” also applies to DCT [299]. While
people do have privacy preferences they might not act in accordance
with these preferences. Toch and Ayalon [299] explain this discrep-
ancy with the difficulty of assessing privacy risks of different DCT
architectures.

3.7.2 Usability

Usability aspects have to be taken into account when talking about the
adoption rates of DCT systems. One usability requirement voiced by
both app developers and users is that the DCT app should not drain
too much power [142, 189, 299]. Users also should not be disturbed
by the application. It should, therefore, be capable of running in the
background without needing to be opened regularly [142]. A similar
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requirement is the automated processing of data without user interac-
tion, as well as refraining from having users perform manual tasks that
are error-prone and time-consuming, such as entering a long number
read out over telephone [18].

A large factor regarding the usability of a DCT application is its
graphical user interface. Many DCT applications only gave feedback to
users when infection warnings were shown. According to Kowalewski
et al. [189], this app behavior might be misinterpreted by users, causing
them to believe that the app is not working correctly. The step of upload-
ing data after a positive test was also a cause for problems. While this
step is essential for delivering warnings to potentially infected users, it
was often abandoned in the process [59, 89, 110]. A usability study of
the Dutch DCT app found that users were confused about the upload
procedures [48].

Analyses of the adoption of contact apps showed that the apps were
more widespread in some parts of the population than others [48,
283, 299]. To reach everyone, app interfaces must be accessible and
inclusive for older generations, people with language barriers, and
those lacking technological literacy [48, 283]. For the same reasons,
compatibility with older smartphone models is essential as it ensures
that disadvantaged groups, such as people with lower economic status,
can participate in smartphone-based contact tracing [283].

Throughout the pandemic, people had to install multiple apps for
different purposes, such as contact tracing, location check-ins, and vac-
cination passports. Kowalski et al. [189] found that people would prefer
to install and use one app instead of multiple. This might again raise
security and privacy concerns [283].

3.7.3 Effectiveness and Efficiency

Besides technical issues, questions of utility played an essential role in
the decision to use (or not use) a DCT app [189]. Especially false alarms
seemed to cause frustration. For example, in the summer of 2021, the
number of notifications sent by DCT apps was very high [182]. This
so-called “pingdemic” [182] can be partially attributed to many cases
and an increased number of social contacts due to a partial reopening
of public places.

People infected with Covid-19 are already infectious before showing
symptoms [228]. As a result, a large fraction of transmissions occur be-
fore the person in question becomes aware of their infection. Modeling
studies concluded that manual contact tracing would have not been
able to contain the virus due to transmissions by infected people with-
out symptoms [124]. DCT promises that by automating this process,
new infections are detected faster [124, 203]. Additionally, it allows
notifying contacts that would be missed in manual tracing, for example,
in public places. In some regions, manual contact tracing broke down
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entirely during the pandemic due to high infection rates and a shortage
of tracers [97, 200]. In these cases, DCT filled the gap left by manual
tracing.

However, the effectiveness and impact of DCT on the course of the
pandemic are disputed. One issue is the efficiency of the testing and
tracing pipeline. Let us assume a person gets tested on the onset of
symptoms. After the test comes back positive, the now-diagnosed per-
son can request tokens to upload data (for example, via a telephone
hotline) and notify potential contacts. If this process is too slow, the noti-
fied contacts might have already infected other people during the latent
period. Alternatively, the notification becomes useless as the contacts
already show symptoms. Kretzschmar et al. [191] found that contact
tracing would not be effective at stopping the spread of Covid-19 if the
delay between testing and notification is three days or longer. Cencetti et
al. [66] determined that a delay of two days in combination with other
measures would be effective. Nevertheless, in their model, a tracing
delay of three days, even in combination with strict measures, was not
enough. The importance of the testing-tracing pipeline can be seen in
the case of Switzerland, where the tracing effectiveness temporarily
stagnated as the local health authority could not hand out upload to-
kens due to a shortage of staff [89]. This issue was solved by involving
third-party services.

Analyses on the British NHS app [182, 317], the SwissCovid app [42],
the Norwegian Smittestopp app [111], the German Corona-Warn
app [110], a controlled experiment study in Spain [269], and a
simulation based on pessimistic parametrization [59] confirm that
DCT based on proximity detection with GAEN was successful in
limiting the number of infections and effects of the pandemic. It has
been suggested that DCT is not a replacement for other measures, such
as manual tracing and mask mandates, but an extension [59, 66, 317].
DCT based on BLE only allows direct contact to be traced. This seems
to be sufficient as a modeling study by Cenetti et al. [66] found that
tracing second-degree contracts (which is impossible for client-side
DCT applications) does not improve efficiency.

The course of the pandemic was influenced by the infectiousness of
the most prevalent virus variant, mask mandates, physical distancing,
lockdowns, how efficiently people were isolated once diagnosed, im-
munity rates, super-spreader events, test availability, and many other
factors. For these reasons, the utility of a DCT application in use needs
to be reevaluated regularly. An app that was useful in a situation with
a high mortality rate and no vaccine available might not be suitable in
an epidemic situation with a partly vaccinated population [59].
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3.7.4 Other Digital Tools for Pandemic Control

DCT for proximity detection is not the only type of tool for finding new
infections or mitigating the spread of a virus.

For example, the Chinese Health Code system used big data to de-
termine the infection and transmission risk of users [201]. The system
utilized personal data such as GPS traces and hospital records [201],
but also data regarding the general population [78]. The resulting risk
scores were not directly linked to the exposure to infected people but
rather served as a tool for preventive population control.

During the pandemic, many Covid-19 infections were linked to so-
called super-spreader events [69, 313]. In these cases, a single individ-
ual, often without symptoms, transmits the virus to a large number of
others present. These occurrences are more likely in indoor settings
or in locations with tightly packed crowds, such as rehearsals [150],
weddings [217], political events [236] or restaurants [126]. As a result,
systems for DCT through presence tracing were proposed. Here, not the
proximity to an infected individual is relevant but whether a person
stayed in the same public or quasi-public space. Some jurisdictions
did require operators of such locations to collect contact information
from visitors [270]. However, manual tracing using this data is time-
consuming and error-prone aswritten informationmight be unreadable,
incorrect, or incomplete. The process was quickly digitized to allow
users to check-in into a location by scanning a QR code [94, 213, 222,
286]. Privacy guarantees of these presence tracing apps and proposals
varied. Chapter 6 presents an approach for privacy-preserving presence
tracing that extends the proximity detection of GEAN.

Other types of tools for pandemic control include apps for symptom
tracker [78, 149], quarantine enforcement [149, 189], and vaccination
passports [95]. In some cases, multiple functions were combined in one
app. The German Corona-Warn-App provided proximity-based DCT
and a vaccination passport [95].

3.7.5 Misuse of DCT Data and Systems

One hope connected to the deployment of DCT systems has often been
that lockdowns will be shortened and life will return to normal [50,
124, 189]. However, what means are acceptable to achieve this goal?

DCT apps were initially met with distrust that app data might be
misused. One concern was that app developers might use data collected
for contact tracing for their economic gain [283]. This fear does not
seem to be entirely unfounded. For example, after its use as check-in
app for locations such as restaurants and cafés, the German LUCA app
tried to find a second life as a payment service for the gastronomic sec-
tor [94]. Another example of the commercialization of Covid-19 data is
the Chinese Health Code system. Here, mini-apps were integrated into
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the platforms of companies such as Tencent and Alibaba to determine
the risk of individuals based on big data. The storage of sensitive data
on commercial platforms and the potential use has raised criticism [78,
201]. This public-private partnership also strengthened the position of
the respective companies. The issue of private companies encroaching
into the area of state responsibilities and introducing quasi-standards
has also been criticized with respect to the GAEN contact tracing design
as it made all other BLE proximity-based designs infeasible [201, 312].
DCT data can also be misused due to illegal access or hacks. Following
a hack of the Chinese Health code system, the private data of celebrities
was sold online [319].

Even more worrying than the economic exploitation is the fact that
the police and intelligence services also accessed the data collected
for contact tracing purposes. In Singapore, data collected by the Trace-
Together app, a centralized DCT system, was used in criminal inves-
tigations despite previous promises during the app rollout that this
would not be the case [71, 218]. While the app has been removed in
the meantime, not all data was deleted [71]. Similarly, data collected
by the German LUCA app was surrendered to the police in a criminal
investigation [218, 260]. Australian police also used data collected for
contact tracing on several occasions. In various countries, the resulting
public outcry caused lawmakers to add additional, specific privacy
protection for this type of data [71, 218]. While in all these cases, the
access to contact tracing data was legal, they hindered the overall goal
of contact tracing by hampering the app adoption [189, 283].

Some states used the pandemic to employ systems that might later
prove to be capable of dual-use [147, 149, 186, 289]. In Israel, during the
first and second waves, existing but up to that point untested surveil-
lance measures were used to discover new infections [147, 218]. In some
countries, such as Singapore and China, using the local contact tracing
app was mandated or quasi-mandatory. The usage of Covid-19 data for
crowd control has been reported in Israel, India, and China [61, 78]. In
China, data in the Health Code system has been altered illegally to stop
protests [259].

It has been argued that surveillance for contact tracing normalized
the use of these technologies also in other areas [61, 201]. Li et al. [201]
note that the Covid-19 pandemic accelerated the digitalization of gov-
ernments. Some existing apps were expanded step by step, changing
the core functionality. This development is often called function creep,
which can be observed in the case of the Chinese Health Codes system.
In some regions, the systemwas extended for purposes such as enabling
access to public services and health care [78].
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3.8 chapter summary

This chapter introduced the concept of digitally tracing contacts of
diagnosed individuals in case of an epidemic or pandemic by using
proximity data. The goal of DCT is to relieve pressure on the manual
tracers, reduce the spread of the virus, and, thus, slow down the pan-
demic by speeding up the detection process and informing people at
risk of infection as early as possible when they need to quarantine.Many
new ideas for DCT approaches were presented in the first years of the
Covid-19 pandemic. This chapter explained why BLE emerged as the
most used sensor type for proximity-based DCT systems and discussed
a systematization of BLE-based systems presented by research, industry,
and governments. Based on this systematization, typical attack vectors
were described. We identified common challenges to DCT and pre-
sented a wide range of solutions with regard to functionality issues as
well as threats to privacy and security. With a retrospective view of the
Covid-19 pandemic, we analyzed the literature on the societal risks of
contact tracing and its effectiveness during the fight against Covid-19.

As shown in this chapter, privacy concerns are an important factor
in the adoption of DCT apps. Approaches that store data in plain text
on a server are prone to misuse by hackers or by law enforcement.
It is, therefore, essential to protect users’ privacy through technical
guarantees. The following chapter, Chapter 4, will take a look at how
such guarantees can be achieved through client-side risk detection
with direct messaging. Chapter 5 examines the use of cryptographic
protocol as a means to this end. As mentioned above, presence tracing
is a challenge adjacent to proximity-based DCT. When data regarding
visited locations is used for tracing, different methods have to be used to
protect the sensitive information of both diagnosed users and everyone
else. The last chapter of this part of the thesis, Chapter 6, discusses how
super-spreader detection through presence tracing on top of GEAN
can be accomplished in a privacy-preserving manner.



4
CL IENT- S IDE R I SK ASSES SMENT THROUGH DIRECT
MESSAG ING

As we have seen in the previous chapter, client-side risk scoring for
Digital Contact Tracing (DCT) ensures that a central authority does
not learn sensitive information, such as who is at risk or who interacts
with one another. Direct messaging is one of the ideas presented in the
systematization in Section 3.4.5 that enables privacy-oriented solutions
by handing over responsibility to the client. The concept was first pre-
sented by Cho et al. [75] in a preprint at the beginning of 2020. For
direct messaging, users regularly create a new asymmetric key pair and
use the public key as an ephemeral Bluetooth Low Energy (BLE) pseu-
donym. When a person is diagnosed, they place messages encrypted to
the pseudonyms of their contacts into the corresponding postbox. Users
need to regularly check postboxes belonging to their past advertised
pseudonyms to see if a new message has arrived. One issue not dis-
cussed by Cho et al. is the aspect of authenticity. Users can try to cause
panic by sending “I am infected messages” to many people without
actually being at risk. Additionally, special attention must be paid to
potential privacy leaks caused by metadata. If messages are only sent in
the case of a diagnosis, an adversary can determine that all users who
receive a message are at risk. For this reason, cover traffic is essential to
ensure privacy.

In the following, two contributions are presented that provide solu-
tions for these problems. The first proposal CAUDHT in Section 4.2
utilizes Distributed Hash Tables (DHTs) for a scalable postbox infrastruc-
ture. Additionally, blind signatures are leveraged to provide authenticity
guarantees for messages. However, DHTs allow any party who is inter-
ested to listen to the traffic and analyze the metadata. For this reason,
the second proposal Ovid in Section 4.3 simplifies and improves the
design of CAUDHT. A main contribution of Ovid are the considera-
tions regarding cover traffic. Related work for CAUDHT and Ovid are
presented in the following in Section 4.1.

4.1 related work

The two designs discussed in this chapter utilize the concept of client-
side risk scoring as introduced in Section 3.4.2 in the previous chapter.
The systematization focused on providing a broad overview. A more
detailed explanation of the relevant systems is required to compare
CAUDHT and Ovid against other works in the field. This section ex-
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plains the designs of all client-side risk-scoring approaches mentioned
in Section 3.4.2 7.

4.1.1 Broadcast-based

During the pandemic, broadcast-based systems had the most practical
relevance due to the Google Apple Exposure Notification (GAEN) API
provided in Android and Apple smartphones (see Section 3.4.3). How-
ever, broadcast-designs with different properties were also presented 8.
Similarly to direct messaging approaches like CAUDHT and Ovid, all
broadcast-based designs require cover traffic to hide the identity of di-
agnosed users from network adversaries. However, only uploads from
newly diagnosed users need to be masked.

DP-3T

A proposal that presents several closely related designs for broadcast
models is DP-3T [305]. The so-called DP-3T low-cost design is similar
to GAEN and allows users to use an individual seed to derive a daily
key from which pseudonyms are derived. A major problem with this
approach is that the pseudonyms of diagnosed users become linkable,
allowing for potential tracking and easier deanonymization of diag-
nosed users. Tomitigate such attacks by curious users or eavesdroppers,
DP-3T developed a second approach called the unlinkable design. Here,
for each epoch, a cryptographically independent pseudonym is gener-
ated. When a person becomes infected, all pseudonyms are uploaded
to a server that stores them in a global hash table [305]. Users will
download the hash table regularly and check if any of their past en-
counters cause a hash collision. To ensure that the failure probability of
the hashing process remains low, the server creates a new, empty table
when necessary [73]. When data is uploaded, the server – and thus the
health authority or the service operator – learns the past pseudonyms
of a diagnosed user but not with whom they interacted. This is not the
case for CAUDHT as the server is distributed over a DHT. In the case
of Ovid, this leak can be mitigated by planning uploads and breaking
the link between uploads.

Hashomer

Pinkas and Ronen proposed a similar broadcast system called Hash-
omer, which relies on an elaborate key derivation mechanism [249].
Similarly to GAEN, the keys advertised at different epochs of the same
day are derived from a daily key and unlinkable. The server can either
broadcast the pseudonyms of diagnosed users or the daily tracing key
and increase performance in favor of privacy. Hashomer’s key deriva-
tion mechanism for pseudonyms allows users to prove their exposure
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in case of an encounter. To ensure that an adversary does use multiple
devices that use the same pseudonyms, Hashomer generates a commit-
ment key at installation time, which influences all other key derivation
mechanisms.

In Hashomer, the pseudonyms for one day are cryptographically
linkable by the server. The proposed systems CAUDHT and Ovid break
this link between pseudonyms.

4.1.2 Targeted Broadcast

Systems that use targeted broadcast work similarly to broadcast-based
ones with the main difference being that the broadcasted data has one
dedicated receiver. Targeted broadcast systems suffer from similar weak-
nesses as simple broadcast-based proposals. Uploads from diagnosed
users need to be hidden from a network observer through cover traffic
or other anonymization methods.

ConTra Corona

An example of the targeted broadcast approach is ConTra Corona [52].
For each epoch, users derive a secret and a public pseudonym from a
newly generated seed. The public pseudonym is advertised over BLE,
while the seed is uploaded to a so-called matching server. If a user
tests positive for Covid-19, they encrypt all relevant recorded pseudo-
nyms with the public key of the matching server and have the health
authority forward the data. The matching server decrypts the data,
looks up the corresponding seed, marks it as infected, and generates
the corresponding secret pseudonym. Users can either query for their
secret pseudonyms or the matching server publishes them regularly. In
ConTra Corona, users at risk will only learn during which time period
an encounter occurred. The security of the system relies on the assump-
tion that the health authority and the matching server do not collude.
In contrast, CAUDHT and Ovid do not require such an assumption.

Pronto-C2

Another example for targeted broadcast is Pronto-C2 [40]. Here,
users derive a shared key from the ephemeral pseudonyms contin-
uously advertised by users. For this purpose, a Diffie-Hellman key
exchange [99] 9is used, so only the two parties can identify the shared
key. Since pseudonyms are rather long, they are uploaded to a bulletin
board and only a link to the pseudonym is transmitted over BLE. If
someone is infected, the shared key is published and distributed to all
users. The authors propose to use a blockchain to ensure that no data
can be deleted.
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From a cryptographic standpoint, the targeted broadcast-based de-
sign Pronto-C2 [40] ensures only the addressee is capable to determine
that a warning messages is targeted at them. However, the authors of
Pronto-C2 did not consider metadata leakage in their design. Due to
their length, pseudonyms are stored on a public bulletin board. If no
additional measures for hiding a user’s IP address are taken, the stor-
age server will learn who interacted with one another by monitoring
who reads which pseudonyms from the bulletin board. This means the
health authority, the service operator, and network operators might
learn the social graph. But, they will not learn who is at risk. Users of
the systemwill knowwhich shared key belongs to which encounter and
thereby be able to deanonymize infected users using their background
knowledge. By utilizing the idea of postbox channels as introduced in
Ovid, reads to the bulletin board could be hidden in cover traffic.

Covid-Watch

Covid-Watch [38] is another form of targeted broadcast. An early pro-
posal of of the Covid-Watch project required users who test positive
to not only upload their own pseudonyms but also those they have
recorded. These data tuples are then broadcast to all other users who
check locally if they have a corresponding encounter stored.

Whisper

Unlike most DCT designs, the Whisper Tracing Protocol [212] does not
only rely on BLE but also utilizes active Bluetooth connections. Mobile
devices scan for other compatible BLE devices and initiate an active
connection to derive a session key. In case of a diagnosis, these keys
are published. The matching system can be run both in a central and
decentralized manner, i. e., the matching can be done on the server
or the end devices. This allows a trade-off between user privacy and
the server being able to learn about the epidemiological parameters of
the disease. Similarly to CAUDHT, the authors propose to distribute
the server architecture over the Interplanetary File System (IPFS), a
peer-to-peer network for file sharing. By requiring an active connection
to exchange pseudonyms, the Whisper Tracing Protocol is susceptible
to attacks against the end device.

4.1.3 Direct Messaging

Both CAUDHT and Ovid build on the idea of direct messaging for DCT.
Similar approaches relying on this concept will be presented in the
following 10.
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TraceSecure

The privacy of TraceSecure [46] relies on multiple non-colluding par-
ties. These are the health authority, the government, and in some cases
a messaging service. When joining the system, users have to (anony-
mously) send their seed used for deriving ephemeral BLE pseudonyms
to the government. In return, the user is given a static ID, which they can
use to check with the messaging service if new messages have arrived.
When a user is diagnosed, they notify all past contacts individually
by having the health authority relay encrypted messages to the gov-
ernment. Each message contains an observed pseudonym. Since the
government knows the seeds from which pseudonyms are generated,
it can derive which static IDs need to be warned. Via the messaging
service, it distributes encrypted warnings to the designated receivers.
This system requires cover traffic on the path from the government to
the user, so the messaging service and a network eavesdropper do not
learn who is diagnosed. Since the health authority holds the seeds for
all users, it can derive a user’s current advertised pseudonym and use
this information for tracking. However, it does not learn who received a
warning and is at risk. The government learns the static ID of who is at
risk but not who they have been in contact with. The privacy of users re-
lies on the server not being able to link these static IDs to real identities.
Users in this system only learn that they are at risk but no additional
information and can, therefore, not conduct meaningful attacks.

Cho et al.

As mentioned above, the postbox system of Cho et al. utilizes pseu-
donyms transmitted via BLE to address and send messages to con-
tacts [75]. These pseudonyms are the public part of an asymmetric key
pair. Warningmessages to a contact are encryptedwith this pseudonym
and will not indicate who has sent it. This means the user at risk cannot
deanonymize infected users. To ensure that the server, and thereby the
health authority or a service operator, cannot link real identities with
postboxes, Cho et al. require requests to the server to be sent through
a network of proxies. Additionally, users not only send messages to
others when they get infected, but they also send messages stating that
they are still healthy. The server only sees one user placing messages in
a postbox but cannot decrypt this message and find out if the message
is a warning or a decoy. As mentioned above, an issue of this proposal
is that users at risk can not verify if the message they have received
originated from someone who is actually infected. Cho et al. also do not
discuss how often decoy messages need to be sent or how to mitigate
spam and Denial-of-Service (DoS) attacks.
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A common approach for ensuring the authenticity of messages are
cryptographic signatures. However, in the case of DCT with direct
messaging, this step can leak the identity of the recipient. By checking
postboxes, the singer can identify messages it has signed early and,
thereby, learn who is at risk. It can also learn who interacted with one
another. Here, blind signatures can be used to ensure a valid signature
is provided while hiding from the message contents [70]. This section
proposes CAUDHT, an approach that leverages this signature schema
to provide privacy and authenticity for DCT with direct messaging.

The second contribution of CAUDHT is the proposal to use DHTs
as postbox infrastructure. In settings where no centralized authority
is desired, peer-to-peer networks are an excellent solution for sharing
the responsibility of maintaining a service over many entities. DHTs
are structured peer-to-peer networks that provide the functionality
of a distributed key-value store. Each peer in the network manages a
designated key space and keys are derived through hashing. DHTs are
a scalable solution to deal with network bottlenecks, ensure availability,
andmitigatemetadata leakage that emerges fromdirect communication
with a central server. Summarized, the main contributions of CAUDHT
are:

• A design for DCT based on direct messaging.

• Introducing blinds signatures for message authentication in direct
messaging DCT.

• Using a DHT as decentralized message exchange.

This section is organized as follows. First, the system design of CAU-
DHT is presented in Section 4.2.1. Then, details regarding pseudonym
derivation (see Section 4.2.2), message construction (see Section 4.2.3),
and the distributed messaging infrastructure (see Section 4.2.4) are
discussed.

4.2.1 System Design

Like other DCT systems, the encounters in CAUDHT are registered by
passively exchanging ephemeral pseudonyms over BLEwith other users
close by (see Section 3.3). In CAUDHT, each pseudonym is the public
key of an asymmetric key pair. Elliptic Curve Cryptography (ECC) is
used to derive these key pairs.

Let us assume Bob has had a high-risk encounter with Alice while she
was not yet diagnosed. Their pseudonyms at the time of this encounter
were 𝑃𝐴𝑙𝑖𝑐𝑒 for Alice and 𝑃𝐵𝑜𝑏 for Bob. When Alice is diagnosed, she
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Figure 4.1: Writing and retrieving warning messages in CAUDHT. Alice sends
a warning to Bob using his ephemeral pseudonym 𝑃𝐵𝑜𝑏 as address.
The message is encrypted to 𝑃𝐵𝑜𝑏 and signed by the health author-
ity (HA). Figure as in [1].

identifies all contacts with a high risk using her list of recorded pseudo-
nyms and constructs an encrypted warning message for each of them.
The warning contains her pseudonym at the time of the encounter. To
prove her infection to these contacts, she retrieves a blind signature 𝜎𝐻𝐴
from the health authority for each message. The format of her message
to Bob is:

𝑚 = 𝐸𝑃𝐵𝑜𝑏
(𝑃𝐴𝑙𝑖𝑐𝑒||𝜎𝐻𝐴(𝑃𝐴𝑙𝑖𝑐𝑒))

Here, 𝐸𝑘(𝑐) represents the encryption of contents 𝑐 with key 𝑘 and || is
the concatenation function. She then places all messages in the DHT
using the corresponding pseudonyms to address the postboxes of her
contacts.

Like all other users, Bob regularly checks the postboxes corresponding
to pseudonyms he used in the past by querying the DHT. After Alice
uploads hermessages, Bobwill find that the postbox for the pseudonym
𝑃𝐵𝑜𝑏 contains a message. To ensure the message is legitimate, Bob first
verifies the signature of the health authority with its public key. If
successful, he decrypts the message using his pseudonym and will
learn that the user with 𝑃𝐴𝑙𝑖𝑐𝑒 is infected and that he is at risk. See
Figure 4.1 for a visual representation.

4.2.2 Pseudonym Derivation

The basic version of BLE allows advertising 31 bytes of information [152,
282]. However, the portion that can be effectively used to share key
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information with others is smaller. The BLE extension for transmitting
sensor data can be used for even longer pseudonyms. The extension
splits transmitted data over multiple BLE packets, which has the disad-
vantage that subsequent packets can be lost as the risk of concurrent
transmissions increases.

It is, therefore, preferable to fit all data to be advertised into on BLE
packet. To this end, several optimizations can be applied. CAUDHT
uses ECC public keys as pseudonyms. A ECC private key 𝑠𝑘 is a random
integer, while the corresponding public key 𝑝𝑘 is a point on the elliptic
curve created by 𝑝𝑘 = 𝑠𝑘 ⋅ 𝐺 where G is a generator point on the elliptic
curve. It is possible to compress an ECC public key to half its size by
dropping the y coordinate and adding a sign bit. Apple’s Offline Finding
system leverages the NIST P-224 curve and advertises a 28 byte ECC
key with a single BLE package [152]. To do the bytes of the random
BLE address are misused to transmit data. Offline Finding does not
transmit the ECC point’s sign bit and uses one byte to transmit the
device status, which would not be required for our purposes. By using
the random BLE address in a similar manner for CAUDHT, a 28 byte
ECC public key and 1 bit sign information can be transmitted in a single
BLE advertisement.

4.2.3 Message Authenticity

As mentioned above, signing messages protects users from malicious
attackers trying to convince them that they are at risk. Using blind
signatures ensures that the signing authority does not learn the mes-
sage’s contents and can not use it to iterate over postboxes and identify
sender-receiver pairs.

Blind signatures for RSA 11 keys work as follows. The message
author Alice has a message 𝑚 and the public RSA key 𝑝𝑘𝐻𝐴 = (𝑒, 𝑁)
of the signer (here, the health authority). Alice blinds the message
by computing 𝑏(𝑚) = 𝑐𝑒 ⋅ 𝑚 (𝑚𝑜𝑑 𝑁) for some random but well-
chosen value 𝑐. The signer uses its secret key 𝑠𝑘𝐻𝐴 = (𝑑, 𝑁) and
returns 𝜎(𝑏(𝑚)) = 𝑏(𝑚)𝑑 (𝑚𝑜𝑑 𝑁). Now, using the knowledge that
𝑒 ⋅ 𝑑 = 1 (𝑚𝑜𝑑 𝑁) Alice can compute:

𝜎(𝑏(𝑚)) ⋅ 1/𝑐 =(𝑐𝑒 ⋅ 𝑚)𝑑/𝑐
=𝑐𝑒⋅𝑑 ⋅ 𝑚𝑑/𝑐
=𝑚𝑑 = 𝜎𝐻𝐴(𝑚)

This provides a signature with key 𝑠𝑘𝐻𝐴 over message 𝑚 without the
singer ever learning 𝑚. Blind signatures can either be linkable, allowing
the signer to identify blinded messages from the same message author,
or unlinkable. In the case of CAUDHT, unlinkable blind signatures
are preferred to stop the health authority from learning how many
signatures each diagnosed user retrieves.
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Only diagnosed users should be able to retrieve blind signatures.
For this reason, the health authority only signs messages if a token is
presented that corresponds to a positive Covid-19 test. Various token
mechanisms are discussed in Section 3.5.3.

A network eavesdropper observing the communication patterns of
the health authority’s signing server can learn who is at risk. This can be
mitigated if diagnosed users hide their IP address using anonymization
services such as Tor [301] or the Nym network [98]. Alternatively, cover
traffic or domain fronting can be used to hide who retrieves a signature.

4.2.4 Distributed Messaging Infrastructure

DHTs are structured peer-to-peer networks that do not rely on a central
entity for coordination. Different DHT protocols like Kademlia [221] or
Chord [293] rely on different approaches to construct the overlay net-
work. This results in different complexities when placing and searching
content in the network. An advantage of DHTs is that there is no single
point of failure. When nodes leave the network, the keys this node
has managed are transferred to other nodes. Even in case of network
churn, the contents of the DHT, such as messages, are still available for
download.

For CAUDHT, it is assumed that all users of the system also partici-
pate as nodes in the DHT. This means that the DCT application needs to
run on smartphones. Data transfers for mobile devices are often subject
to charges and not unlimited. Additionally, reachability issues are a
major concern due to network address translation, which is typical
for mobile connections. The Internet connection of mobile devices is
less stable than is standard for DHT nodes as their mobility is high.
Evaluations on mobile peer-to-peer networks suggest that the proposed
infrastructure of CAUDHT is indeed feasible [268]. Using a hierarchical
DHT 12 can help to mitigate the impact of churn on the network [268].
Another concern when running a DHT application on mobile devices
is that network traffic, such as keep-alive messages, drains the battery.
However, various mechanisms are proposed in research to reduce the
energy consumption of peer-to-peer systems such as DHTs [56].

4.2.5 Privacy and Security Considerations

With regards to privacy and security, a problem with DHTs is that an
attacker can perform a Sybil attack by participating in the network with
multiple nodes. By placing Sybil nodes in specific key spaces of the
DHT, the adversary can take over parts of the network. This way they
can attempt to control all postboxes belonging to a specific user if they
know the address of these postboxes, allowing them to monitor for
new messages or actively remove messages. To mitigate Sybil attacks,
runningmany nodes in parallel needs to bind resources on the attacker’s
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side. Solutions to this end are, for example, CAPTCHAs or requiring a
phone number per user. Remote attestation, as used, for example, by the
MobileCoin network [229], ensures that all nodes in the network run
the same code. This can be used to ensure honest-but-curious behavior
from the participants in the peer-to-peer network.

A threat to privacy resulting from relying on a DHT for distribution
warnings is that no access control can be applied. Users regularly query
the network to receive warnings for one of their past pseudonyms.
However, any other user can also query for these pseudonyms but will
not be able to read the message. This creates a side-channel where, if a
message is returned, it is clear that the designated receiver might be at
risk of being infected. As the entropy of addresses is large, an attacker
cannot simply iterate over all possible postbox addresses. However, by
listening to queries in the DHT or recording BLE advertisements at a
location, the attacker can learn postbox addresses.

4.3 ovid: message-based digital contact tracing

This section is based
on previous work
with Samuel Brack
and Björn
Scheuermann
presented at the
NDSS Workshop on
Secure IT
Technologies against
Covid-19
(CoronaDef) in
2021 [4].

In the previous section, we identified that a major drawback of using
a DHT as a distributed messaging infrastructure for direct messaging
DCT.While providing scalability and availability, the privacy of users in
CAUDHT suffers from the fact that anyone participating in the network
can learn if users they have met have received a warning and are at
risk. Introducing cover traffic is an option to mitigate such leakage. To
assess the overhead of cover traffic in the case of DHTs, the trade-off
between local storage per peer and theworst-case complexity for finding
a key has to be considered. Common DHTs such as Chord [293] or
Kademlia [221] provideO(𝑙𝑜𝑔(𝑛)) complexity for both. This means that
each cover message requires 𝑙𝑜𝑔(𝑛) messages to be sent. The messaging
complexity can be reduced toO(1) by acceptingO(√𝑛) storage per peer.
We consider the overhead for DHT cover traffic too large. Centralizing
the message transfer infrastructure improves performance and reduces
load on end devices while providing the same privacy and security
guarantees.

In this section, we present Ovid. To the knowledge of the authors, it is
the first DCT system that combines blind signatures and postbox channels
with cover traffic to ensure user privacy against the health authority at
all times. The parameters used in the evaluation of the required cover
traffic provide a balance between privacy and performance.

The main contributions of Ovid are:

• Applying blind signatures to verify the authenticity of an infection
message while ensuring that the health authority does not learn
which users interacted.

• A defense mechanism against flooding the system with malicious
warnings.
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• A scalable concept for cover traffic.

• An evaluation of the cover traffic and the signature handout per-
formance.

Section 4.3.1 presents Ovid’s system design as well as additional
explanations for the permission token mechanisms, the format of in-
fection messages, the postbox retrieval mechanism, and operational
aspects. Then, the security and privacy are analyzed in Section 4.3.2.
The proposed system is evaluated in Section 4.3.3.

4.3.1 System Design

Co-location detection in Ovid is the same as in CAUDHT. Similarly,
when a user Alice is diagnosed, she creates encrypted messages to her
contacts that are signed by the health authority using a blind signa-
ture scheme. However, Ovid’s messages additionally contain a time of
encounter and a message time. Messages are then placed in the corre-
sponding postbox channel. Each postbox channel encompassesmultiple
postboxes. A recipient Bob downloads the content of the postbox chan-
nels corresponding to his past pseudonym. If a message is successfully
decrypted and the signature is valid, Bob learns that he has been in
contact with a diagnosed person and is at risk of being infected.

By aggregating multiple postboxes into channels, accessing a specific
postbox does not leak one of Bob’s pseudonyms. Additionally, neither
the server nor an eavesdropper on the network is able to deduce Bob’s
infection status by checking if any messages are addressed to him.
Messages in the same channel double as cover traffic for other postboxes.
Compared to broadcast-based DCT systems, this approach requires less
communication. Postbox channels consist of postboxes sharing the same
prefix 𝑝, e. g., the first 20 bits of the pseudonym. Channels are hosted on
a single server, but they can also be distributed between several hosts.

Infection Messages

A newly diagnosed user needs to spread the news quickly to all users
they have come across while being contagious. Let us assume Alice
encountered Bob in the past and recorded Bob’s ephemeral pseudonym
𝑃𝐵𝑜𝑏. Several days later, she tests positive for Covid-19. To warn Bob,
Alice creates an infection message. The pseudonym is the public part
𝑝𝑘𝐵𝑜𝑏 of an asymmetric key pair, which she uses to encrypt the epoch
of the encounter 𝑡𝑒. The epoch is a global numeric value that increases
whenever a new pseudonym is used. She appends the current time 𝑡𝑚.
Alice then blinds this string to retrieve a blind signature 𝜎𝐻𝐴 from the
health authority. The permission token required to retrieve a signature
was given to Alice by the healthcare provider she visited to get tested.
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Alice appends the signature to the first part, constructing the infection
message 𝑚. The format for 𝑚 is as follows:

𝑚 = 𝐸𝑝𝑘𝐵𝑜𝑏
(𝑡𝑒)||𝑡𝑚||𝜎𝐻𝐴(𝐸𝑝𝑘𝐵𝑜𝑏

(𝑡𝑒)||𝑡𝑚)

Alice stores 𝑚 in the postbox channel corresponding to 𝑝𝑘𝐵𝑜𝑏 (see
Figure 4.1). The channel is given by 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝑝𝑘𝐵𝑜𝑏, 𝑝) 13. Alice will warn
all other users she encountered during the relevant time period using
this pattern. Having 𝑡𝑚 as part of the infectionmessage gives the postbox
server the ability to figure out how old a signature is. The postbox server
does not accept infection messages with a timestamp 𝑡𝑚 in the future
and can remove those older than the maximum incubation time. Since
the signature covers 𝑡𝑚, an attacker cannot overload the postbox system
by replaying old infection messages.

To hinder an eavesdropper located on the network from figuring out
if Bob received an infection message, cover traffic is required. Aggre-
gating postboxes into postbox channels gives Bob plausible deniability.
However, this might not be enough if there are only few messages
in the system. Therefore, when Alice receives her bulk of permission
tokens from her healthcare provider which allows her to retrieve sig-
natures, she might receive more than she asked for. The probability
for additional tokens can be either fixed or dependent on the current
utilization of the system. After obtaining signatures for all entries in her
history of encounters, Alice creates random messages and fetches valid
signatures for these by using her remaining permission tokens. These
cover messages are addressed to random postboxes. When Alice places
all her messages in the postbox system, the server will not be able to
differentiate between real infection messages and signed cover traffic.
As all unsigned messages are discarded by the server, this means only
diagnosed users can create cover traffic.

Retrieving Blind Signatures Using Tokens

Before signing a blinded message 𝑏(𝑚), the health authority needs to
verify the request originates from a user with a confirmed infection. Peo-
ple with symptoms of Covid-19 visit healthcare providers to get tested.
In Ovid, permission tokens are passed from the healthcare provider to
the newly diagnosed person when a test returns positive. These tokens
allow the diagnosed user to retrieve blind signatures from the health
authority for themessages they intend to upload. Each token authorizes
one blind signature.

There are two ways in which these tokens can be designed. In one
variant, the health authority could centrally generate random numbers
to be used as tokens and distribute them to healthcare providers who
conduct testing. Assuming the health authority is not compromised and
the space from which tokes are drawn is big enough, it is not feasible
for an attacker to generate fake tokens. A downside of this approach
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is the possible linkability of a token to a specific location or healthcare
provider when a patient uses it to request a blind signature.

A second option for token creation, which is used by Ovid, is that
healthcare providers generate and sign tokens themselves using a Public
Key Infrastructure (PKI) to distribute their public keys. This way, the
health authority can ensure a token originated from a valid source. To
stop the health authority from finding out which healthcare provider a
user visited, we use a ring signature scheme [265]. With ring signatures,
it can be verified that one of a predefined set of keys was used for
signing, but not which specific one. Thismeans the actual signer (here, a
healthcare provider) is not linkable to the signature. The ring signature’s
size grows linearly with the number of signers in the ring [208]. It
would become impractical to have one ring for all healthcare providers,
both in terms of signature verification complexity and size of the ring’s
public key. We propose to form smaller rings consisting of several
healthcare providers each to ensure a balance between signature size
and anonymity set. This keeps key sizes manageable and allows for
member changes in the system without having to discard the entire
signature ring. To prevent a curious health authority from estimating
the geo-location of a diagnosed patient presenting a token, each ring is
filled randomly so that all ring members are distributed over the health
authority’s geographical region.

Ovid uses this ring signatures-basedmechanism for token generation.
Tokens are composed as follows. Each token consist of a unique 32 byte
random number and a timestamp, as well as a signature. The timestamp
has a granularity of 14 days and is used to prevent an attacker from
replaying recorded tokens to generate additional blind signatures. A
signature over the random number and the timestamp verifies the
token’s authenticity. The token is generated and signed by the healthcare
providerwho hands it out. After a tokenwas used by the diagnosed user,
it is placed on a blocklist maintained by the health authority. Entries on
the blocklist can be discarded after 14 days have passed because of the
timestamp in the tokens.

Postbox Retrieval

Users need to query their postboxes periodically if they want to deter-
mine whether they are at risk.

If Bob performs a search for the truncated pseudonym in the postbox
service all messages from this postbox channel will be returned. He
will attempt to decrypt all returned messages using the private key
corresponding to 𝑃𝐵𝑜𝑏 and succeed with Alice’s message. To give Bob a
fast way to check if the decryption of 𝐸𝑃𝐵𝑜𝑏

(𝑡𝑒) was successful, a fixed
amount of zeros can be added to the beginning of 𝑡𝑒 before it is en-
crypted. This way Bob knows the message was addressed to him. The
signature part of the message confirms to him that Alice’s test result
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was indeed positive. The decryption gives Bob the timestamp 𝑡𝑒 of their
encounter. He performs a sanity check to verify that 𝑃𝐵𝑜𝑏 was adver-
tised during that time. This stops an attacker who tries to create false
warnings by collecting pseudonyms in a low-risk area and replaying
them later in a high-risk area. Since no part of the message contains any
information relating to Alice, Bob will not learn that the message was
created by her.

Users are notified by their end device that they are at risk after a
certain threshold of exposure to diagnosed users is exceeded. This
threshold needs to be defined by epidemiologists. Since risk assessment
is done locally, it is possible to take individual risk factors into account
without endangering users’ privacy. Such factors can be their medical
history, adherence to mask mandates, or the general infection risk in
their area.

Operation

To ensure that the system is operated in a secure and privacy-preserving
manner, it is important to consider some implementation details. A
theoretically secure system can be dangerous for users if the operator
uses outdated cryptographic functions or if the end-user app contains
security vulnerabilities.

Our first consideration is the correct key management and distri-
bution. For the blind signatures to be verifiable and secure against
manipulations from a network operator, a secure channel for the health
authority’s public key to the end user is required. The end user app
needs to verify the health authority’s key, which is why the health au-
thority needs their key either signed by a widespread SSL certificate
provider or directly embedded into the end user app. Theoretically, the
connection to the health authority does not need to be secured itself
because the blind signature scheme itself provides a verification mech-
anism for the receiver of the signature. To prevent a DoS attack by the
network operator who could block packets with messages containing
blind signature requests, it can still be beneficial to use an SSL-secured
connection. To verify tokens, the health authority needs the public key
for all rings of healthcare providers. This can be either done via direct
communication or also using a PKI. On the client side, it is important to
have a proper key store for managing the secret keys in the app. These
keys should be stored in encrypted storage sections if the operating sys-
tem offers such a service. Alternatively, the app could prompt the user
with a password request to encrypt their secret keys. Such a prompt
has to be carefully designed so that usability (and thus usage) is not
harmed by a complex user interface.

In case of a high infection risk, users should be notified as fast as pos-
sible. This requires users to poll the postbox services in short intervals.
To support this traffic overhead, a scalable infrastructure such as con-
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tent delivery networks can be used to handle the load. When sending
a request to retrieve a postbox channel, users can send the timestamp
of their last request. The server can then return only messages that the
user has not previously fetched. This decreases the network load for
users and for the postbox service.

Users have to decrypt all messages they receive to find out if they are
at risk. The decryption of messages in asymmetric encryption schemes
is a CPU-intensive task and therefore requires more energy. For this
reason, this task should be executed when the user’s end device is
charging or the battery is reasonably full. At least once per day, all new
messages need to be decrypted to ensure timely notification.

4.3.2 Security and Privacy Analysis

To evaluate the privacy and security properties of Ovid, we discuss
the most relevant attacks in the following paragraphs. All attacks on
BLE proximity detection as presented in Section 3.6.1 are relevant for
Ovid. The same goes for the attacks on deanonymizing diagnosed users
from infection messages presented in Section 3.6.2. Additionally, the
health authority and network eavesdroppers can analyze metadata
as described in Section 3.6.3. Defense mechanisms for the individual
attacks are presented in the corresponding sections.

A false notification or black market attack has the goal of sending in-
fection messages to users who are not at risk. To do so, an attacker
needs to obtain valid pseudonyms to send messages to. This can be
done by recording advertisements or through a black market exchange.
An attacker simply guessing pseudonyms is not considered a threat
to Ovid because the space from which pseudonyms are drawn is too
large. To execute the attack, the adversary needs a permission token to
retrieve a valid signature from the health authority. They then place an
infectionmessage in the corresponding postbox. As long as the epoch of
the encounter 𝑡𝑒 matches the epoch in which the target used the corre-
sponding pseudonym, the target will falsely assume that the message is
valid. To mitigate false notification attacks, the message format could be
extended to include a signature over the pseudonym of the diagnosed
user used during the encounter.

A curious stalker Stan can capture pseudonyms of his target Tiffany
and snoop on the corresponding postbox channels. Cover traffic stops
him from being sure if there are real infection messages for Tiffany. For
rates of cover traffic of at least 10% andmore than two users per channel,
this attack becomes inefficient (see Figure 4.2).

Defenses against metadata leakage are relevant not only when up-
loading data to the health authority but also when diagnosed users try
to retrieve signatures. When checking postboxes, it is not necessary to
use anonymization networks or similar methods because of the cover
traffic. The health authority can also conduct a timing attack, as the
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Figure 4.2: The probability of a message in a channel being designated for user
Bob, who accesses the channel. It is plotted against the number
of users per channel. Each curve illustrates a different probability
𝑃𝑐𝑡 representing the likelihood with which a user uploads an addi-
tional cover message for each real message. Figure as in [4].

14 The standard
deviation was
selected as it
represents a deviation
from the mean, which
is a useful property
when analyzing
expected runtimes.

sender will upload messages as soon as they are created. As mitigation,
a diagnosed Alice can spread out her uploads over several hours. As
this delays the time at which users at risk receive a risk notification, the
uploads should not be spread out too far.

An eavesdropper only listing to network traffic cannot derive if mes-
sages received by a user are infection messages that contain a warning.
This is because real messages for a specific user are hidden between
real messages for other users and cover traffic.

4.3.3 Performance Analysis

To assess the practicality ofOvid, a performance evaluation is conducted
using a Python REST server. The server provides blind signatures, stores
infection messages uploaded by diagnosed users, and distributes them
to requesting users. The server runs on a machine with three dedicated
Intel® Xeon® E5-2643v2 cores and 8GB of RAM. The client is capable
of creating infection messages and querying the server for messages
using its past pseudonyms.

First, we evaluate the performance needed by the health authority
server. The server is capable of providing 4651.16 ± 259.55 blind sig-
natures per second (10 runs on localhost). Here and in the following,
error intervals represent the standard deviation 14. Generating blind
signatures can be parallelized by sharing the health authority’s secret
key with several physical machines. Even in scenarios where a single
diagnosed user uploads hundreds of messages, the system remains
scalable.

Our second focus lies on the performance of the backend database.
To be able to easily discard entries that are older than 14 days, the
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time-series database InfluxDB was used. Storing 10,000 messages in
InfluxDB took 6.33 ± 0.73 𝑠 (10 runs on localhost).

To assess the performance of Ovid, it is relevant to understand the
level of cover traffic required. This is influenced by the size of the post-
box channels and the probability 𝑃𝑐𝑡 that a diagnosed user receives
an additional permission token per requested token. These additional
tokens are used to create random messages for cover traffic. The proba-
bility of how likely it is for a packet to be addressed to Bob is 1

𝑚 where
𝑚 is the number of users per channel. The probability that a packet is
not cover traffic is 1− 𝑃𝑐𝑡

1+𝑃𝑐𝑡
. Combining both gives the probability that a

message in a postbox channel is actually for Bob as 𝑃𝐵𝑜𝑏 = 1
𝑚 ⋅(1− 𝑃𝑐𝑡

1+𝑃𝑐𝑡
).

See Figure 4.2 for visualization with different values of 𝑃𝑐𝑡. We see that
the influence of users per channel is stronger than the influence of 𝑃𝑐𝑡.

In our third experiment, we assess Ovid’s reporting performance over
a 100 MBit fiber Internet connection in a large setup, with a delay of
50ms.We simulate 3,000 clients on an Intel® Core® i7-8550U and 16 GB
of RAM. Clients use encounter histories generated by a script. Each user
is assigned a number. Encounters are created by drawing two numbers
from a uniform distribution where each number represents a user. The
corresponding epoch is derived similarly by drawing a discrete time
interval from a uniform distribution. For each encounter, the corre-
sponding history files are updated by appending the other side’s public
key from that epoch. Each history contains 100 encounters on average.
During the simulation, clients create and upload infection messages for
all of their generated encounters. 𝑃𝑐𝑡 is set to 0.1 as Figure 4.2 shows
that higher levels of cover traffic do not come with additional privacy.
We do not consider a probability of less than 0.1 for cover traffic, as the
parameter ensures that some artificial messages are stored on the server.
This is especially relevant in situations with low infection rates and thus
few real messages. The average reporting time is 279.33 ± 142.27 𝑠 for a
client over the previously described Internet connection. Users who do
not create infection messages were not simulated as they only query
the server but otherwise do not impact the system.

In our final experiment, we evaluate the retrieval and decryption
performance of a client. Again, we simulate 3,000 clients as described
in the previous experiment. We assume that a channel is identified by
the first 19 bit of the recipient’s public key, resulting in 219 channels.
This provides a relatively large anonymity set even in scenarios where
infection rates are low, leading to a little more than 5 users per chan-
nel on average. As can be seen in Figure 4.2, such an anonymity level
seems reasonable to us, as more users per channel only slightly im-
prove anonymity but increases the load on the network and decryption
times on the client. Users have 1008 pseudonyms, which corresponds
to a new pseudonym every 20 min over the course of two weeks. This
means a user has to query approximately 1008 postbox channels. The
level of cover traffic 𝑃𝑐𝑡 is set to 0.1. A client retrieves all channels that
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correspond to its pseudonyms and attempts to decrypt the messages
contained in them. If a message is decrypted successfully, the risk score
is updated. The average duration to retrieve and decrypt infection mes-
sages from postboxes covering the last 14 days was 79.80 ± 27.83 𝑠 (100
runs over the Internet). Although decrypting messages for a user is a
resource-intensive task, performing it once a day appears to be feasible
on mobile devices.

As we have seen in this evaluation, Ovid is scalable and provides
adjustable privacy levels depending on the current pandemic situation.

4.4 chapter summary

In this chapter, two approaches to DCT were presented that improve
the proposal of Cho et al. [75] for client-side risk assessment through
direct messaging. In the case of Ovid, a central health authority is only
required to provide blind signatures and host the postbox system for de-
livering messages. It can not learn sensitive information from providing
these services. For CAUDHT, the health authority is even less involved
as messages are delivered via a distributed infrastructure hosted collec-
tively by all users. Both, the centralized and the decentralizedmessaging
service, require cover traffic to hide the fact that a user has received a
warning. While using a DHT provides availability and scalability, the
overhead for cover traffic is significantly larger despite providing the
same privacy properties as a centralized service. We recognize that by
merging postboxes into postbox channels, real messages can be used
as a natural source for cover traffic. This ensures probabilistic protec-
tion against an honest-but-curious messaging delivery service, network
eavesdroppers, and curious stalkers.

Another contribution is using blind signatures to provide authenticity.
This ensures that the signing authority – here, the health authority –
can not identify sender-receiver pairs.

Stronger privacy guarantees can be provided by leveraging crypto-
graphic primitives in the system design. The following chapter will
discuss two approaches that aim to leak as little data as possible to both
the health authority and the users.



5
CRYPTOGRAPHIC APPROACHES TO DIG ITAL
CONTACT TRAC ING

The main goal of client-side Digital Contact Tracing (DCT) approaches,
like those presented in the previous section, is to remove trust from
authorities like the health authority or other governmental institutions.
This aims to ensure the voluntary participation of people in contact
tracing efforts.

However, client-side risk assessment uses Bluetooth Low En-
ergy (BLE) for proximity detection and can not easily be adapted
to other types of data. Cryptographic protocols, on the other hand,
are very versatile while providing similar or even stronger privacy
guarantees. This chapter examines how a cryptographic protocol can
be used to allow DCT based on either location data or BLE-based
proximity detection. Here, if GPS data is used to detect encounters
this does not mean that location traces of diagnosed people have to be
made public. Additionally, the location privacy of healthy users and
those at risk is guaranteed.

Another advantage of cryptographic protocols is the fact that they
can minimize the leakage of sensitive data to both client and server.
An attack that is feasible against all DCT approaches with client-side
risk assessment is the deanonymization of diagnosed users due to the
leakage of the encounter time or epoch (see Section 3.6.2 of Chapter 3).
Protocols like Private Set Intersection (PSI) can mitigate this leakage. In
this chapter, we also show how PSI can be used to achieve risk-scoring
functionalities on a par with those proposed for the broadcast-based
systems Google Apple Exposure Notification (GAEN) and DP-3Twhile
defending against this simple but effective attack.

This chapter is structured as follows. Section 5.1 explains several
cryptographic protocols for privacy-preserving computation. Related
work is presented in Section 5.2. Section 5.3 introduces an early idea
from the beginning of the pandemic that relies on Oblivious Random
Access Memory (ORAM) techniques for DCT on location and BLE data.
Last, our proposal CERTAIN is presented in Section 5.4. This DCT
system leverages circuit-based PSI to implement complex risk-scoring
functionalities. Here, users only learn their final risk score and nothing
else, which removes the attack surface for the deanonymization attack
described above.

63
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5.1 on privacy-preserving computation

Cryptographic protocols for privacy-preserving computation allow
multiple parties to jointly compute a result from private inputs without
revealing the data to one another.
Homomorphic encryption [291] encompasses a set of encryption

schemes that allow computation on already encrypted data. A
homomorphic function is defined as follows: Let 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛) be
a function with 𝑛 inputs and let function ℎ be the corresponding
homomorphic encryption function. For an encryption function 𝑒(𝑥)
and the corresponding decryption function 𝑑(𝑥) it holds that:

𝑑(ℎ(𝑒(𝑥1), 𝑒(𝑥2), … , 𝑒(𝑥𝑛))) = 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛)

The decrypted result will contain the same result as if 𝑓 was applied to
unencrypted data. The most advanced types of homomorphic encryp-
tion are fully homomorphic schemes which allow an unlimited number
of multiplication and additions on encrypted data.

The runtime is a greatweakness of homomorphic encryption schemes
and depends on themultiplicative depth of the function to be computed.
As a result, some operations are significantly faster and easier to imple-
ment than others.

Multi-Party Computation (MPC) [291, Chapter 22] facilitates joint com-
putation on private, distributed data. It studies mechanisms to allow
a group of 𝑛 independent participants to collectively evaluate a func-
tion 𝑦1, … , 𝑦𝑛 = 𝑓 (𝑥1, … , 𝑥𝑛). Each participant 𝑖 holds a secret input 𝑥𝑖,
which remains hidden from other parties but is used for computation.
The participants only learn their designated final result 𝑦𝑖. Any function
that can be mapped to a finite-sized circuit can be computed with MPC.
This includes all functions that are computable in polynomial time [291,
Chapter 22.2].

One way to implement MPC protocols is Yao’s garbled circuits [116,
291]. Standard garbled circuits are only applicable to the case with
two parties, a garbler and an evaluator. Here, one participant creates a
digital circuit for the function to be calculated and sends it to the other
participant who evaluates the circuit. Evaluation requires oblivious
communication between the evaluator and the garbler. Garbled circuits
require a fixed number of communication rounds at the start of the pro-
tocol. Garbled circuits use boolean functions. However, it is also possible
to compute arithmetic circuits, which are especially relevant formachine
learning applications. The popular Goldreich-Micali-Wigderson (GMW)
protocol [116] can compute both types of circuits. It can easily be ap-
plied to the case with multiple parties. Here, all parties simultaneously
compute on secret-shared data. For each AND gate, a communication
round is required.

General purpose MPC protocols can be slow, as they do not allow to
make shortcuts or use domain knowledge. However, MPC protocols
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15 See Table A.1 in
Appendix A for a
tabular overview of
all the mentioned
approaches.

can also be crafted to implement a specific functionality. Here, efficiency
in communication and computation can be gained, e.g., by selecting the
fastest protocol for a specific sub-problem and using general-purpose
MPC only when necessary. Private Set Intersection (PSI) is an example
where dedicated protocols are faster than general MPC protocols. Here,
two parties want to find the intersection of their two data sets with-
out revealing elements that are not in the intersection. A popular PSI
protocol is Diffie-Hellman PSI. Here, both client and server first need to
create an asymmetric RSA key pair. Each side encrypts their set with
their private key and sends it to the other party. The recipient then
encrypts the already encrypted set with their key, so now each set is
encrypted with both private keys. The server sends the set it encrypted
last to the client, which then holds both sets. The client calculates the
intersection of these encrypted sets. Due to the multiplicative property
of asymmetric encryption, it is not important which key was used first.

5.2 related work

As mentioned in the systematization in Section 3.4.1 of Chapter 3, there
are various approaches using homomorphic encryption, MPC, and PSI
for contact tracing. To compare these against the two designs proposed
in this chapter, additional detail is provided for all the designs that do
server-based risk scoring without revealing the results to the server 15.
Details for client-side risk-scoring approaches have been discussed in
Section 4.1. Unlike cryptographic protocols, they are less flexible and
only allow BLE pseudonyms to be used for tracing. However, perfor-
mance is better.

EPIC

The Epic Framework [29] from 2018 relies on homomorphic encryp-
tion for DCT. Similarly to the first variant of the approach presented
in Section 5.3, it relies on location-based data. However, location are
fingerprinted with Wifi and Bluetooth. No active Bluetooth signaling
is conducted. Such location fingerprints captured by diagnosed users
are uploaded in plain text to servers belonging to the health author-
ity. Undiagnosed users send requests to the server to determine how
similar their location fingerprints are to those measured by diagnosed
users for certain timestamps. The request contains the public key of
the user, the timestamp 𝑡𝑒, and an (homomorphic) encryption of the
location fingerprint at 𝑡𝑒. The server will use the provided public key to
encrypt location fingerprints with a close timestamp and then calculate
a matching score. The scores cannot be decrypted by the server. It will
send the result back to the requesting user who can decrypt it and
derive their personal risk score. Users do not learn the location traces of
individual diagnosed users but will learn at which locations they have
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been close to a diagnosed person. They can also forge their upload to
verify assumptions about the risk status of a person. Service operators
are not able to learn the locations, risk scores, or health status of healthy
users because data is encrypted with a secure key belonging to the user.

TraceSecure with Homomorphic Encryption

Another approach using homomorphic encryption was proposed by
Bell et al. [46]. The system relies on pseudonyms exchanged over BLE.
It reveals to the server (which is run by the health authority or a service
operator) who has interacted with whom but keeps the health status se-
cret from the server and non-colluding network operators. This leakage
of interactions can be used for building a social graph of pseudonyms.
Bell et al. consider this graph to be a feature as it can be used as part of
a privacy-preserving evaluation of social distancing policies. Users of
homomorphic encryption-based TraceSecure learn which pseudonym
was responsible for a warning.

Demirag et al.

Multiple DCT designs that use cryptographic protocols rely on PSI. The
protocol of Demirag et al. [92] is one such example. Here, standard
proximity detection via BLE advertisements is considered. The health
authority server holds all pseudonyms of peoplewith verified infections.
To figure out how many users they have met in the last weeks that were
diagnosed, a user performs PSI with the server following the protocol
of De Cristofaro et al. [86]. This protocol only returns the size of the
intersection. This means no complex risk scoring like in CETRAIN
is possible. The system requires the central server to know relevant
information about the diagnosed individuals, here the pseudonyms
they have used in the past. The server (i. e., the health authority or a
service operator) does not learn which pseudonyms the client used as
input for the set intersection or if they are at risk. The client does not
learn the pseudonyms of users that are diagnosed, not even the ones
they have been in contact with.

Epione

Epione proposed by Trieu et al. [304] also uses Bluetooth technology
to exchange pseudonyms. For each encounter, both parties create a new
pseudonym. This design use a Diffie-Hellman-based PSI algorithm to
determine the cardinality of the intersection. Their algorithm is opti-
mized for situations with unbalanced sets, so where the client’s set is
considerably smaller than the server’s set. This approach also uses ho-
momorphic encryption for some steps. In Epione, the health authority
and the central server are required to know the pseudonyms diagnosed
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users have used in the past. The server does not learn the past pseudo-
nyms of other users or who is at risk. The client only learns how many
risky encounters they have had but not the corresponding pseudonyms
of diagnosed users. This means that no complex risk scoring is possible
as done by CERTAIN.

Berke et al.

Like Epione, Berke et al. [49] also uses Diffie-Hellman PSI. However, it
computes the overlap of GPS traces from diagnosed people with traces
provided by individual users. Coordinates are truncated and rounded
so that they are represented by single dots on a three-dimensional
grid (longitude, latitude, and time). Since distance is an important
factor when transmitting the virus, for each truncated coordinate it is
important to check whether the neighboring grid points are part of the
intersection. The PSI protocol can be used to allow clients to learn the
size of the intersection, but also which of their elements appear on the
servers by letting the client query for elements individually. The server,
and therefore the health authority or a service operator, does not learn
which data was provided by a user. Users do not learn the location
history of diagnosed people they have not met. The client learns if they
are at risk and since the intersection is leaked they will also knowwhere
the encounter occurred. Since GPS data is used, malicious users can
forge input and for example provide the home address of a target.

The functionality of this protocol is similar to our ORAM approach
presented in Section 5.3. However, as each GPS location is queried indi-
vidually instead of comparing sets, the complexities differ. By using a
circuit-based PSI protocol as proposed by our second approach CER-
TAIN in Section 5.4, the location privacy of diagnosed users could be
improved.

5.3 privacy-preserving contact tracing using oblivious ran-
dom access memory

This section is based
on previous work
with Samuel Brack
and Björn
Scheuermann
presented at the
poster session of the
IEEE Symposium on
Security and Privacy
(S&P) in 2020 [5].

In the wake of the pandemic, Israel conducted contact tracing on loca-
tion data derived from cell tower triangulation to stop the spread of
Covid-19 [31, 147]. While effective at identifying infected people during
the early phase with a low incidence rate, the cuts to citizens’ rights due
to such mass surveillance measures were severe. This section proposes
a solution for preserving the location privacy of undiagnosed people in
such a centralized contact tracing system. Here, either location traces
or BLE pseudonyms of diagnosed users are stored in an ORAM. Users
can query the ORAM to determine their current risk of infection.

ORAM and the PathORAM protocol are introduced in the following.
Section 5.3.2 presents the system design. The performance of this ap-



cryptographic approaches to digital contact tracing 68

ORAM Storage

Bob

Query p ∈ Lu

Warning/Ok

Alice

store Li

Viruses

lBob

lAlice

Li

Lu

Figure 5.1: An infected person Alice shares her location data with the health
authority. Bob queries all his past locations to find out if he recently
crossed paths with an infected person. Locations have multiple
dimensions. A data point 𝑙 is rounded to the closest position on the
grid. Using this as the center, the set 𝐿 of adjacent grid locations is
computed, covering the region close to 𝑙. If a set 𝐿𝑢 belonging to a
Bob intersects with the set 𝐿𝑖 of an infected individual, then Bob is
at risk of having contracted the disease.

proach is analyzed in Section 5.3.3. Section 5.3.4 discussed aspects of
privacy, security, and utility.

5.3.1 Oblivious Random Access Memory

Oblivious Random Access Memory (ORAM) [104] is a MPC protocol for
privately storing and reading encrypted data from a semi-honest server.
It hides what data was requested by a client by obfuscating the accessed
index 𝑖. The ORAM ensures that a sequence of read or write operations
are indistinguishable from one another.

PathORAM [292] is a type of ORAM protocol that gained popularity
due to its excellent performance. In PathORAM, the server organizes
blocks that contain data into buckets. These buckets are arranged in a
binary tree 𝑇𝑂𝑅𝐴𝑀. Each bucket can fit 𝑍 blocks. The client maintains
two additional data structures: the position map and the stash. The
position map associates the IDs of blocks to leaves in 𝑇𝑂𝑅𝐴𝑀. When
retrieving the path to a leaf 𝐿𝑖, block 𝐵𝑖 is located in one of the buckets
on this path. The stash is a temporary data structure that stores blocks
that have been retrieved from the server. The complexity of a read or
write operation for PathORAM is O(𝑙𝑜𝑔(𝑁)) where N is the maximum
capacity.

Standard PathORAM requires the client to maintain certain data
structures. To achieve multi-user access, these can be outsourced, for
example, to a Trusted Execution Environment (TEE). This section as-
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sumes the existence of a multi-user PathORAM. Chapter 8 goes into
detail about how PathOram needs to be adapted for TEEs.

5.3.2 System Design

During manual contact tracing, health authorities collect location his-
tories of infected users (see Section 3.1). Our proposed system (see
Figure 5.1) takes advantage of this fact and aims to preserve the location
privacy of all others. We assume that a vast majority of individuals use
location-based services that record their movement, such as the Google
Location History [138].

Input locations 𝑙 ∶= (𝑥, 𝑦, 𝑡) consist of geographical coordinates and a
temporal component. The altitude is ignored as it is deemed too error-
prone. Each user 𝑢 has 𝑚 locations in their location history for which
they want to check if they have come in contact with an infected person
there. The health authority holds the location history of all recently
diagnosed individuals which consists of 𝑛 data points in total. The
location history of infected users only needs to contain data points from
the duration when they were infectious.

For a location 𝑙 each component is rounded to a fixed granularity
(e.g. 1 meter or 1 minute) so that it can be represented by a position
on a multi-dimensional grid. The selected granularity only depends
on epidemiological factors. For each 𝑙, a set 𝐿 of locations on the grid
is calculated for which the Euclidean distance is smaller than a fixed
threshold. See the left side of Figure 5.1 for a visual representation of
𝐿 for a single location. Due to the reduced granularity, the number of
elements in 𝐿 is small.

Both the health authority and the user compute 𝐿 for all their respec-
tive data points. The health authority stores its results in an ORAM.
It can either host the ORAM itself or ask a third party to provide this
service. An ORAM allows data to be read from a remote server without
revealing to the server what entries were accessed.

For each location and each element in the corresponding set 𝐿𝑢, the
user initiates a search on the ORAM. If an element from 𝐿𝑢 is found
in the ORAM, then the region described by 𝐿𝑢 intersects with the set
𝐿𝑖 representing a location visited by a diagnosed user. This means the
user has been in contact with a diagnosed individual. The number of
contacts and their duration can be used to derive a risk score on the
client’s side. Due to the usage of an ORAM as storage for location data,
the server of the health authority will not learn what locations were
queried by users and only the users themselves will learn the result of
their query.

The algorithm described above is guaranteed not to leak more infor-
mation than the ideal functionality to either party’s side. For threat anal-
ysis purposes, participants of the system are modeled as semi-honest.



cryptographic approaches to digital contact tracing 70

Such amodel can be reinforced to provide security in amalicious setting
by accepting a performance penalty [134].

5.3.3 Performance Considerations

The evaluation from
the original paper [5]
was improved and
extended for this
thesis.

We used the PathORAM implementation of Epsolute [55] to test the
presented approach.

Due to availability, the measurements were done on an AWS server
with 121 GB RAM and 16 AMD EPYC 7013 processors which provides
the TEE platform AMD SEV-SNP. The resources were dimensioned
larger than necessary for the measurements and only a small portion
was used. Figure 5.2 shows the runtime for a single ORAM read for
different ORAM sizes. As we can see, the runtime for one read increases
logarithmically with the size of the ORAM and takes less than 0.8 ms
even for 230 data points.
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Figure 5.2: Runtime measurements for reading a single element from a PathO-
RAM. The error bars (in gray) show the 95% confidence interval.
Linear regression on powers of two was used for fitting.

The size of the ORAM required for DCT depends on various param-
eters. To estimate the runtime, let us assume data is recorded in one
minute intervals for 16 h a day, accounting for 8 h of sleep. Let the
blowup for a single location l be |𝐿| = 9. This means that all adjacent
grid locations, except in the time domain, are queried to check a single
location. It follows that one diagnosed person uploads 960 data points
for each day. Data points older than 14 days do not need to be uploaded
or can be removed as they do not contain relevant epidemiological
information anymore. The number of data points stored in the ORAM
differs depending on the daily number of newly diagnosed people.
While retrieval runtime for one ORAM entry is reasonably short, it is
essential to remember that each user has to check all locations recorded
during the last 14 days to identify encounters with diagnosed people.
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This process requires 960 ⋅ 14 = 13, 440 read operations per user per
day. See Table 5.1 for an overview of the corresponding runtime.

Table 5.1: Runtime comparison for using location data and BLE ephemeral
pseudonyms for contact tracing with a PathORAM.

Location Data BLE Data
Newly Diagnosed

People/Day
Runtime
per User

ORAM Size Runtime
per User

ORAM Size

10 5.47 s 218 0.66 s 221

100 6.57 s 221 0.77 s 224

1,000 7.86 s 224 0.89 s 227

5,000 8.93 s 227 0.96 s 229

Uploaded Location
per Diagnosed Person

13,440 Locations 140,000 Locations

Reads per
User/Day

13,440 Reads 1,344 Reads

Let us look at an alternative setting where BLE beacons are used for
proximity detection instead of location traces. Let a new ephemeral
pseudonym be generated every 10 min. To keep the number of ORAM
reads low and reduce the load on clients, diagnosed users upload the
pseudonyms of those they have been in contact with. This means each
user trying to determine their risk only needs to query 1, 334 entries
in the ORAM daily. Using the assumptions of the DP-3T authors, each
diagnosed user uploads about 140,000 different collected pseudonyms
from the last 14 days when receiving their diagnosis [305]. It follows
that the ORAM has to hold more data for BLE pseudonym contact
tracing as compared to the location-based approach. However, as less
data has to be queried per user, runtime improves by a magnitude.

5.3.4 Discussion

The proposed systemuses a central party (the health authority) for DCT.
Each person wishing to check their history for contacts with diagnosed
individuals has to go through this central instance. Due to the privacy
properties of ORAM, no sensitive data of querying users is leaked to
other users or to the health authority. This stops a semi-honest user from
learning the private data of diagnosed individuals. However, an issue
with using location data for contact tracing is that a malicious user can
iterate over potential locations, thereby extracting the location history
of diagnosed people. As shown by privacy research [91], but also in
the context of deanonymization attacks on Covid-19 infected people
in South Korea [174], the location history contains information that
allows for identifying the corresponding person. Here, circuit-based
PSI protocols, as utilized by our proposal CERTAIN in the following
section, can provide location privacy for diagnosed users.
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Another attack vector to the proposed system is the possibility for a
malicious health authority to create panic by adding additional fake
locations to the ORAM. However, this attack would not help reach the
overall goal of tackling a pandemic situation.

As discussed in Section 3.3 of Chapter 3, an issue of using location
data is the high false positive rate [204]. Location data is inaccurate in
indoor settings and proximity might be detected even if both sides are
in different rooms. This and other factors are why BLE has been more
popular for contact tracing. As shown above, an our proposed ORAM
DCT system can handle both location data as well as BLE ephemeral
pseudonyms to detect proximity. The latter even improves runtime by
an order of magnitude.

Ourmain contribution lies in the application ofMPC to the real-world
problem of centralized contact tracing. On one hand, usingMPC results
in a significantly longer runtime than other centralized approaches. On
the other hand, it provides semi-honest security, while a majority of
centralized schemes rely on a trusted server.

5.4 circuit-based psi for covid-19 risk scoring

This section is based
on previous work
with Marcel Pazelt
and Björn
Scheuermann
presented at the IEEE
International
Performance,
Computing, and
Communications
Conference (IPCCC)
in 2021 [7].

Geneal purpose MPC protocols allow to limit the amount of data
learned by either side of a computation to the designated final re-
sult. This property can be leveraged for to defend against a simple
but effective type of deanonymization attack against diagnosed users.
Client-based contact tracing systems like GAEN, where pseudonyms
of diagnosed users are published and risk scoring is conducted locally,
suffer from the fact that a malicious user who received a warning can
deanonymize the corresponding diagnosed individual by remembering
who they have been in contact with during the time of the encounter
(see Section 3.6.2). This attack is also feasible against CAUDHT in Sec-
tion 4.2, Ovid in Section 4.3, and the system presented in Section 5.3
which relies on ORAM. PSI protocols that only reveal the cardinality of
the intersection between pseudonyms of diagnosed users and the set
of pseudonyms provided by the querying user, such as Epione [304],
partially defend against this attack. However, amalicious user can strate-
gically forge its input data set to derive the intersection. Additionally,
a cardinality is not useful to derive a meaningful risk score based on
exposure duration and distance.

To fill this gap, this section presents our system with complex risk
scoring called CERTAIN. CERTAIN uses a circuit-based PSI protocol of
Pinkas et al. [252] called OPPRF-PSI. Our contributions are:

• Designing an approach to using PSI that does not leak timing
information.

• Devising complex risk scoring for using circuit-PSI with payload.
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16 Operator ⊕
represents a bitwise
XOR.

• Implementing an extension for OPPRF-PSI, which allows the
inclusion of payload from client and server.

• Evaluating OPPRF-PSI for unbalanced sets with parameters
aligned to the context of DCT.

• Examining the performance of the presented approach using an
Android app.

We test a variety of circuits that align with existing risk-scoring func-
tionalities. The system was evaluated with regard to communication,
runtime, and energy efficiency in the context of for different networks.

In the following, the OPPRF-PSI protocol by Pinkas et al. [252] is
explained in detail. Then, the design of CERTAIN is presented in Sec-
tion 5.4.2. Section 5.4.3 focuses on the implementation and evaluations
of CERTAIN and Section 5.4.6 discusses the privacy of the protocol.
Other practical aspects of with CERTAIN are addressed in Section 5.4.7.

5.4.1 OPPRF PSI

Unlike non-circuit PSI protocols, which are often more efficient, OPPRF-
PSI allows the computation of arbitrary functions on the output of
the intersection without revealing intermediate results and additional
information. Compared to other circuit-based PSI protocols like [76, 251,
253], it is the first to provide linear circuit complexity and a runtime
O(𝑛). This section explains a simple variant of OPPRF-PSI protocol
without payload inclusion.

OPPRF

The functionality of an Oblivious Programmable Pseudo-Random Func-
tions (OPPRF) can be described as follows. On a certain “programmed”
set of inputs 𝑃 the OPPRF outputs “programmed” values 𝑇, where
|𝑃| = |𝑇|. When constructing the OPPRF, a hint is generated in the
form of a polynomial. The hint is generated from a random key 𝑘, in-
puts 𝑃, and target values 𝑇. The polynomial maps each programmed
input value 𝑝 ∈ 𝑃 to the XOR combination of 𝐹𝑂𝑃𝑅𝐹(𝑘, 𝑝) and its tar-
get value 𝑡. So, 𝐹𝑂𝑃𝑅𝐹(𝑘, 𝑝) = 𝑡 ⊕ 𝑝 16. To answer a query 𝑞, the hint is
evaluated. If the OPPRF was programmed at position 𝑝 and 𝑝 = 𝑞 then
the query returns the corresponding target value 𝑡. The OPPRF can be
securely implemented as a two-party MPC protocol. Multiple OPPRFs
can be batched to improve performance. This means that for each batch
an independent OPPRF is executed.

Simple PSI

Let the server set be 𝑌 and the client set be 𝑋. OPPRF-PSI computes the
intersection of both sets as follows. First, the server uses simple hashing
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17 Cuckoo hashing
with one table and
multiple hash
functions: When a
collision occurs on
insertion, the original
element is replaced
and reinserted using
another hash
function.

to place its elements in 𝛽 bins. The client uses cuckoo hashing [245]
with the same hash functions on its set to create a distinct match from
elements to bins 17. The number of bins 𝛽 is selected so that no stash is
required during cuckoo hashing.

The protocol uses a batched OPPRF sub-protocol to determine if a
client’s element occurs in the corresponding server-side bin. For this
purpose, it samples a set of target values ⃗𝑡 = {𝑡1, ⋯ , 𝑡𝛽} from a random
distribution. It then filles buckets {𝑇1, ⋯ , 𝑇𝛽} each with the respective
value from ⃗𝑡 so that |𝑇𝑖| = |𝑌𝑖|. Both sides then invoke 𝛽 OPPRFs us-
ing the hashing bins of both sides and the server’s target values. This
protocol phase returns a vector ⃗𝑟 of size 𝛽 to the client, which has the
following property. If the client’s element 𝑥𝑗 (so the element that hashed
to bin 𝑗) is contained in the server’s bin 𝑌𝑗, the value of the output vec-
tor ⃗𝑟 at position 𝑗 is equal to the server’s target value 𝑡𝑗. Otherwise, 𝑟𝑗
is zero. Since communication is masked, the client cannot tell target
values from zeros. In the next step, both sides compute a circuit with
an MPC protocol providing 𝑋, ⃗𝑟, and ⃗𝑡 as input. The circuit compares
for each position 𝑗 if ⃗𝑟𝑗 is equal to ⃗𝑡𝑗 by using an AND gate. For this
purpose, only 𝛾 bits are required to ensure fast runtime and a low false
positive rate. The desired function 𝑓 (e.g., a risk-scoring function) is
then computed obliviously by using all elements from 𝑋 for which this
test was successful. The result is then revealed to the client.

The complexity of interpolating a polynomial grows at least linear in
the number of encoded elements. To reduce computation, the polyno-
mial can be split into a set of polynomials with lower size. To translate
this optimization to protocol described above, bins are arranged in
“mega-bins” of size 𝛽𝑚 with a maximum of 𝑚 elements in total. For
each mega-bin, a batch-OPPRF is invoked.

Payload Inclusion

Payload data is private data associated with an element used by ei-
ther side for calculating the intersection. Payload is used to compute
functions on the intersection. To be able to include payload data, some
additional changes are needed to the basic OPPRF-PSI protocol. For
payload inputs from the client, the adjustment is straightforward. The
circuit has to be extended with input wires where the client inputs
each element’s payload. The result of ( ⃗𝑟 ∧ ⃗𝑡) is combined by an addi-
tional AND gate with the client’s payload. More work is required when
payload data originates from the server. Pinkas et al. [252] explain
the problem and give instructions on how to extend the basic protocol
to allow the server to input payload data. They did not implement or
evaluate this part themselves. See Figure 5.3 for an overview of the
PSI protocol with payload inclusion. For simplicity, mega-bins are not
considered.
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In the basic protocol without any payload, the server maps multiple
elements to each bin and the OPPRF assigns the same target value to all
elements within a bin. If the circuit now detects a match between two
bins of client and server it is impossible to infer which of the elements
in the server’s bin had matched. To make this possible, the protocol
requires two invocations of the batch-OPPRF. The first invocation is the
same as in the original protocol. The second invocation is for identifying
which payload of the elements that the server had mapped to a bin is
related to the match with the client’s element. As before, the client has
an input set 𝑋 and the server has an input set 𝑌. Let 𝑈(𝑥) and 𝑉(𝑦)
denote the payloads associated with 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 respectively. Let
𝑥𝑗 be the client’s element at position 𝑗 in ⃗𝑥 (so after Cuckoo hashing)
and 𝑌𝑗 be the server’s bin 𝑗.

For the second OPPRF, the server sets the values associated with
one bin 𝑗 so that they differ depending on the index. More precisely,
the server samples ⃗̃𝑡 = { ̃𝑡1, ⋯ , ̃𝑡𝛽} uniformly and computes the
sets {�̃�1, ⋯ , �̃�𝛽} where �̃�𝑗(𝑖) = ̃𝑡𝑗 ⊕ 𝑉(𝑌𝑗(𝑖)) for 𝑖 ∈ {1, ⋯ , |𝑌𝑗|} and
𝑗 ∈ {1, ⋯ , 𝛽}. It inputs the sets {�̃�1, ⋯ , �̃�𝛽} into the OPPRF functionality.
The client inputs its vector ⃗𝑥, like in the first OPPRF. The batch-OPPRF
outputs the result vector ⃗̃𝑟 to the client.

Now, the circuit computes for index 𝑗 the following:

1. The client inputs 𝑥𝑗 ∈ ⃗𝑥, 𝑟𝑗 ∈ ⃗𝑟, ̃𝑟𝑗 ∈ ⃗̃𝑟 and 𝑈(𝑥𝑗). The server inputs
𝑡𝑗 ∈ ⃗𝑡 and ̃𝑡𝑗 ∈ ⃗̃𝑡.

2. The circuit compares 𝑟𝑗 to 𝑡𝑗. If they are equal, the server’s pay-
load has to be reconstructed. If the element 𝑥𝑗 is the 𝑖th item
in the server’s bin 𝑌𝑗, then the value received by the client is ̃𝑟𝑗
where ̃𝑟𝑗 = ̃𝑡𝑗 ⊕ 𝑉(𝑌𝑗(𝑖)). Thus, the server’s payload for bin 𝑗 is
𝑉(𝑌𝑗(𝑖)) = ̃𝑟𝑗 ⊕ ̃𝑡𝑗.

3. Next, a sub-circuit computes the desired function 𝑓 on 𝑥𝑗, 𝑈(𝑥𝑗)
and 𝑉(𝑌𝑗(𝑖)).

This adaption of the basic protocol for payload inclusion results in
the same asymptotic complexity. The circuit now handles payloads and
computes the same number of comparisons as the basic circuit [252].
The actual duration of the OPPRF phase doubles in length since it is
invoked twice for the same number of bins.

5.4.2 CERTAIN

The following section explains how CERTAIN uses circuit-based PSI to
implement complex risk scoring for DCT.
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ServerBob

Input: Set X, Payload U
~x← hCuckoo(X)

Input: Set Y, Payload V
{Y1, · · · , Yβ} ← hS(Y )
~t = {t1, · · · , tβ} ← R
for i ∈ {1, · · · , β}:

Ti ← {ti, · · · , ti}

Batched
OPPRF

~x {Y1, · · · , Yβ}, {T1, · · · , Tβ}

~r

Note: ri = ti
if xi ∈ Yi.

~̃t = {t̃1, · · · , t̃β} ← R
for j ∈ {1, · · · , β} and
i ∈ {1, · · · , |Yj |}:

T̃j ← V (Yj(i))⊕ t̃i

Batched
OPPRF

~x {Y1, · · · , Yβ}, {T̃1, · · · , T̃β}

~̃r

for each j ∈ {1, · · · , β}:
if rj = tj :

vj ← r̃j ⊕ t̃
rsj = f(vj , U(xj))

return f({rs1, · · · , rsβ})

Circuit Function f~r, ~̃r,X, U ~t, ~̃t

Risk Score

Figure 5.3: A simplified overview of the PSI protocol with risk scoring as used
by CERTAIN. Both sides provide payload, which is used by the
risk-scoring function f. Let V(e), respectively U(e), represent the
payload associated with an element e.
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System Overview

To participate in with CERTAIN, users download an app to their smart-
phone that regularly emits BLE advertisements. These advertisements
contain ephemeral pseudonyms that change regularly. The app also
collects pseudonyms of other users in the vicinity. To determine the
distance to a sender, the signal strength is recorded. If a user is diag-
nosed, they pass the pseudonyms they used during the last 14 days to
the health authority.

Users who want to determine their infection risk initiate a compu-
tation with the health authority’s server to calculate a risk score using
OPPRF-PSI. Each of the last 14 days is computed with a separated PSI
run. The user inputs all pseudonyms recorded on the specific day, while
the server inputs all pseudonyms of diagnosed users that were in use.
As a result of the computation, the user will receive a set of risk scores.
If the calculated risk for a day does not exceed a certain threshold, no
risk is indicated. Otherwise, the risk score is revealed. Users can use
these scores to decide whether to follow the health authority’s direc-
tions and get tested. Since we assume this system is voluntary, reporting
users who are at risk of being diagnosed is deemed counterproductive.
Therefore, while it is possible, risk scores are not revealed to the health
authority.

Risk Scoring Circuits

Risk scoring is the calculation of an exposure score, which reflects the
risk of infection based on encounters with diagnosed individuals. The
first version of the GAEN API risk-scoring approach [35] multiplies
risk values for infectiousness 𝑟𝑖, duration 𝑟𝑑, days since exposure 𝑟𝐷
and attenuation 𝑟𝑎 per pseudonym 𝑒 from the set of pseudonyms of
diagnosed users 𝐷.

𝑅𝑆𝐺𝐴𝐸𝑁
𝑣1 = ∑

𝑒∈𝐷
𝑟𝑒,𝑖 ⋅ 𝑟𝑒,𝑑 ⋅ 𝑟𝑒,𝐷 ⋅ 𝑟𝑒,𝑎

In the second version, changes in distance between users were also
considered [35]. Here, duration at an attenuation range 𝑗 ∈ 𝐴𝑅 is
multiplied with a corresponding weight 𝑤𝑗. The sum over all ranges is
multipliedwith aweight representing the infectiousness of the contact 𝑟𝑖
and a value representing the reliability of the testingmethod 𝑟𝑡𝑒𝑠𝑡. GAEN
defines four different attenuation ranges for immediate, near, medium,
and other encounters. GAEN leaves the task of defining exact decibel
values to the developers who build upon its API.

𝑅𝑆𝐺𝐴𝐸𝑁
𝑣2 = ∑

𝑒∈𝐷

⎛⎜⎜
⎝

∑
𝑗∈𝐴𝑅

𝑤𝑗 ⋅ 𝑟𝑒,𝑗,𝑑
⎞⎟⎟
⎠

⋅ 𝑟𝑒,𝑖 ⋅ 𝑟𝑒,𝑡𝑒𝑠𝑡

Similarly, the mechanism of DP-3T [305] multiplies exposure at three
different attenuation ranges with static weights and then calculates a
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sum to determine the user’s risk. The attenuation ranges are given by
the thresholds 50 dB and 55 dB.

𝑅𝑆𝐷𝑃3𝑇 = ∑
𝑒∈𝐷

⎛⎜⎜
⎝

∑
𝑗∈𝐴𝑅

𝑤𝑗 ⋅ 𝑟𝑒,𝑗,𝑑
⎞⎟⎟
⎠

These examples show that both summation and multiplication are
relevant for complex risk scoring.

We evaluate several functionalities for risk scoring using OPPRF-PSI.
The most straightforward mechanism calculates the sum of payload
values (S) provided by the client (A), which belong to an element that
appeared in the intersection. We call this functionality AS. The payload
can be, for example, the number of minutes 𝑟𝑒,𝑑 the user was exposed to
another person with pseudonym 𝑒. The circuit would then calculate the
number ofminutes for a day that the user was in contact with diagnosed
individuals.

The next step is to allow both sides, client (A) and server (B), to
provide a payload used for summation (S). This functionality is called
ABS in the following.

Our complex risk-scoring functionality allows multiplying payload
values (M) from both sides belonging to the same intersection element
and then calculates the sum over all partial results. We refer to this func-
tionality as ABM. It allows the health authority to provide information
about the infectiousness for a specific pseudonym. If the client uses
𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝐴(𝑒) = 𝑟𝑒,𝑑 ⋅ 𝑟𝑒,𝑎 and the server inputs 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝐵(𝑒) = 𝑟𝑒,𝑖 ⋅ 𝑟𝑒,𝐷
as payload for each element e of their sets, a scoring model similar to
the GAEN API v1 can be achieved. To produce full GAEN or DP-3T
risk scoring, which takes into account different attenuation levels, extra
work by the client is required. For each recorded pseudonym e, it has to
compute the following sum:

𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝐴(𝑒) = ∑
𝑗∈𝐴𝑅

𝑤𝑗 ⋅ 𝑟𝑒,𝑗,𝑑 (5.1)

The overhead for this computation is minimal, as it can be calculated
15 min after the pseudonym was first received. For DP-3T risk scoring,
the server does not need to include any data. For GAEN v2 the server
has to include 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝐵(𝑒) = 𝑟𝑒,𝑖 ⋅ 𝑟𝑒,𝑡𝑒𝑠𝑡.

We additionally evaluate a set of circuits where a risk score is only
revealed to the user if it exceeds a certain threshold (T). We apply this
functionality to the three circuits described above, giving us the circuits
AST, ABST, and ABMT.

Complexity for Unbalance Sets

The OPPRF-PSI protocol has a linear asymptotic communication over-
head in the number of elements. However, the protocol is designed for
intersecting sets of the same size. The effect unbalanced sets have on
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the protocol complexity has not been discussed by Pinkas et al. [252],
but is especially relevant in the case of DCT. This section takes a look at
how the complexity of the overall protocol changes for the unbalanced
case.

Each protocol phase is affected by this imbalance. Let 𝑛1 be the client’s
set size and 𝑛2 be the server’s set size. Hashing takesO(𝑛1) for the client,
respectively O(𝑛2) for the server. The complexity of set intersection is
O(𝑙 ⋅ 𝑛1) gates where 𝑙 is the bit-length of input elements. For circuits
where both sides provide payload, the complexity is atO(𝑙⋅𝛽⋅𝑛1 +𝑛2 ⋅𝛿)
gates as payload inputs from the server with bit-length 𝛿 are included.

However, intersecting unbalanced stets influences the number of bins
and mega-bins, which have an impact on the runtime complexity. Here,
certain restrictions on bit length and failure probability become relevant.
Pinkas et al. use Lagrange interpolation in a prime field based on the
Mersenne prime 261 − 1. This allows for operations like multiplication
of field elements to be an order of magnitude faster, but it limits the
bit length 𝛾 of points to ≤ 61 bit. However, 𝛾 also depends on the
failure probability of the PSI protocol (usually, 2−40) and, therefore, the
number of bins andmega-bins. The protocol fails if cuckoo hashing fails,
if a collision in OPPRF outputs occurs due to an insufficient bit length 𝛾,
or if elements within a bin or mega-bin collide due to insufficient bit
length 𝑙 of the input elements. The 61 bit Mersenne prime field results
in a maximum number of 1024 elements per OPPRF, i.e., per mega-bin.
This means the number of mega-bins grows with the server’s set size
𝑛2.

When a total of 𝛽 mega-bins is reached, the total number of bins 𝛽
needs to be increased to ensure that no more than 1024 elements exist
in a mega-bin. Per default, 𝛽 only depends on 𝑛1. To account for larger
server set sizes, it is scaled by a factor 𝜌. Increasing 𝛽 influences other
parts of the protocol, such as the circuit size for computing the function 𝑓.
As a result, the complexity of set intersection without payload is 𝑂(𝑙 ⋅
𝜌 ⋅ 𝛽 ⋅ 𝑛1), respectively 𝑂(𝑙 ⋅ 𝜌 ⋅ 𝛽 ⋅ 𝑛1 + 𝑛2 ⋅ 𝛿) gates with server payload.

For the unbalanced case, the data required for hint communication is
in 𝑂(𝑛2) and the basic circuit is in 𝑂(𝑛1). Therefore, performance has to
be re-evaluated. Another factor influencing the protocol complexity is
the fact that adding server payload for risk score computation doubles
the OPPRF phase.

5.4.3 Evaluation

The key goal of this evaluation is to collect data from experiments to
find out how well CERTAIN performs. This is primarily a question of
efficiency.
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5.4.4 Implementation

To build CERTAIN, we used a re-implementation of the OPPRF-PSI
protocol [112]. It relies on the ABY framework [93] for circuit implemen-
tation. Using the Android Native Development Kit [32] the OPPRF-PSI
code was ported to Android by cross-compiling all dependencies. We
improved the protocol to allow payload inclusion and implemented an
Android app to conduct experiments.

The OPPRF-PSI library code, as well as some of its dependencies,
make use of x86 instruction set extensions like Streaming SIMD Exten-
sions, short SSE, and its successors, as well as common crypto exten-
sions. Modern ARM CPUs widely used in mobile devices have their
own 64-128 bit SIMD instruction set called NEON. It is available since
ARMArchitecture Version 7 (ARMv7) [163]. The x86 andNEON intrin-
sic functions are different and there is no one-to-one correspondence
between them [163]. Nevertheless, projects like sse2neon [102] offer
translations from SSE to ARM NEON intrinsics. As we were not able
to port parts of the library and protocol source files to use NEON, the
intrinsics are disabled for the Android library port.

5.4.5 Evaluation Setup

The metrics used to evaluate the app are runtime, communication, CPU
usage, and energy consumption on a smartphone. The evaluation has
to cover different scenarios for parameters like network environment
and circuit functionality. The impact of different protocol phases is also
of interest. The server’s set was set to 219 and the client’s set to 210.

For the experiments, a Lenovo Thinkpad T480s laptop with an Intel
Core i5-8250U (4 Cores at 1.60-3.40 GHz) and 16 GB of RAM is used
as server. The client is a OnePlus 5 phone with Android 9, a Qualcomm
Snapdragon 835 Octa-core processor, 6 GB of RAM, and a 3,300 mAh
battery. The app is compiled with target SDK version 28 as arm64-v8a
application binary interface to match the requirements of the evaluation
hardware.

Three different network environments are evaluated using the net-
work emulator NetEm [154] to add additional delay, packet loss, and
rate limiting on the server’s network interface. In the baseline LAN
environment, server and mobile phone are connected to the same lo-
cal network via Ethernet and 5 GHz WiFi. It has no packet loss, an
RTT of 2.49 ± 0.19 ms, 460.1 ± 46.8 MBit/s downstream, and 488.87 ±
70.3 MBit/s upstream. The WAN environment setup represents the
case that the mobile phone communicates with a remote server via a
stable high-bandwidth connection. Here, packet loss is set to 0.01%,
RTT is 40.14 ± 0.7 ms, downsteam is 17.5 ± 3.8 MBit/s and upstream is
17.9 ± 4.1 MBit/s. The RTT and throughput values are aligned to the
test setup of Kolesnikov et al. [188]. The LTE environment simulates
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Figure 5.4: Time and data consumption for different risk-scoring functions for
calculating the risk score for one day. Runtime and communication
data for all different circuits with 𝑛1 = 210 and 𝑛2 = 219 and
2 bit payloads. Runtime means measured with 20 runs each in the
LAN setting. The error bars for runtime measurements show the
standard deviation. The y-axis for runtime is shown in purple on
the right. Figure as in [7].

the setting of a mobile phone connected to a mobile network, which
communicates to a distant server over a heavily asymmetric connection.
Packet loss is also set to 0.01%, RTT is 50.61 ± 1.65 ms, the connection
from server to client has 13.6 ± 2.8 MBit/s while the opposite direction
has 3.8 ± 2.0 MBit/s. RTT and throughput values and their standard de-
viation are measured with the ABY benchmarking tool and iperf3 [167]
over at least 20 test runs per data point.

Results on Communication Requirements

As Figure 5.4 shows, complex risk-scoring functionality heavily impacts
both runtime and communicated data. The summation of the payload
provided by the client does not differ from a circuit that does not per-
form any functionality on top of PSI (see Figure 5.4, PSI only). When
the server also provides payload, runtime sharply increases and the
amount of data sent doubles. For the most complex variant of risk scor-
ing following DP-3T or GAEN, multiplications must be added. We can
see that while runtime only rises slightly from ABM/ABMT to ABS/ABST,
the amount of data to be sent increases drastically. For the functionali-
ties ABM/ABMT, the client must also send and receive more data. As we
see in Figure 5.5, the runtime for this circuit is heavily impacted by the
asymmetric LTE connection. Revealing results only when a particular
threshold value is surpassed has negligible influence on communication
and runtime for any circuits.
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Figure 5.5: Duration of different functionalities for risk scoring in different
networks. Error bars show the standard deviation. Figure as in [7].

Standard deviations for the runtime are small within the LAN net-
work. This stability in measurements is caused by a small RTT, high
throughput, and almost non-existent packet loss rate in the LAN net-
work. This changes for the WAN and LTE networks, as visualized by
the larger error bars. Additional experiments have shown that not emu-
lating additional packet loss does result in a small standard deviation,
even for the LTE environment. In general, the runtime increases from
LAN to WAN to LTE. The small differences of less than 8 s between the
networks do not change for the first two circuits. This shows that includ-
ing payload from only the client has no impact on runtime across all
networks. Once the payload from the server is included, the differences
between the networks get slightly bigger (10–20 s). We also conducted
experiments with different server set sizes 𝑛2 = 2𝑥 for 𝑥 ∈ {10, … , 21}
and 𝑛1 = 210 in the LAN. Both, duration as well as the amount of
transmitted data, grow exponentially.

As mentioned, polynomials heavily influence performance. In evalu-
ations of Pinkas et al. for the case of balanced sets, the transport of poly-
nomials required less than 3% of the total communication data [252].
This changes drastically in the unbalanced set case. In our measure-
ments, polynomials are responsible for more than 60% of protocol
communication for simple circuits.

Results on Energy Consumption and CPU Usage

Energy consumption is measured using the Battery Historian tool from
Google [135], which has been available since Android 5 (Lollipop).
With this tool CPU time and estimated battery consumption can be
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tracked for an app. The means and standard deviations are displayed
in Table 5.2.

Table 5.2: Means and standard deviation for estimated power usage and CPU
time measured over 20 runs with 𝑛1 = 210 and 𝑛2 = 219. Table as
in [7].

Circuit PSI only AST ABT ABMT
Est. Power Usage (%) 0.031 ± 0.002 0.034 ± 0.005 0.071 ± 0.003 0.215 ± 0.005

CPU Time (ms) 3507 ± 54 3442 ± 93 4753 ± 74 7960 ± 93

The estimates for power usage are given as a percentage of the bat-
tery charge capacity (3,300 mAh) that the app consumed during the
execution. The ABMT circuit reaches 0.21% of power usage, while the
others are between 0.03% and 0.07%. The increased circuit complexity
causes a three-fold increase in energy consumption.

The Battery Historian tool also provides an estimate for the power
use due to CPU usage. This is reported as 0.00% for all runs, even
though Table 5.2 shows that an app execution takes between 3 s to 8 s
of CPU time. This value is the sum of the CPU user time and system
time. The CPU system time always amounts to less than 30% of the
user time. It is unclear whether WiFi energy consumption is accurately
accounted for in the estimated power usage for the app. System-level
WiFi is responsible for less than 0.03% of energy consumption during
app executions.

Results for Different Payload Lengths

To evaluate the impact of different payload lengths, experiments were
conducted with 𝛿 ∈ {2, 3, 4} bit payload for an ABMT circuit. Changing
from 2 bit to 3 bit, requires the client to send an additional 31.5 KB of
data and receive an additional 31.2 KB. Comparing the payload of size
4 bit with the baseline gives an additional 65.0 KB sent and 64.5 KB
received. The increase in runtime is minor with around 60 ms from
2 bit to 4 bit payload.

5.4.6 Privacy and Security Considerations

This section discusses the privacy of OPPRF-PSI and CERTAIN against
semi-honest and malicious adversaries.

OPPRF-PSI

The OPPRF-PSI protocol protects against a semi-honest attacker. This
means that no private information is leaked if the attacker follows
the protocol. A malicious attacker, on the other hand, might try to
deviate from the protocol to either learn private information or break



cryptographic approaches to digital contact tracing 84

the functionality of the protocol. To defend against a malicious attacker,
all parts of the risk-scoring functionality have to be secured. Pinkas
et al. [252] do not propose a maliciously-secure design for OPPRF-
PSI. However, they note that modern circuit-PSI protocols based on
cuckoo hashing have to rely on the correct hashing of the parties. It is
inherently hard to extend protocols based on cuckoo hashing to obtain
security against malicious adversaries. This is because the placement of
items depends on the exact composition of the input set. Therefore, a
malicious partymight learn the placement used by the other party[263].
Since OPPRF-PSI applies cuckoo hashing on the client side, this risk
exists in case of a malicious server. In [250], PaXoS is used, a data
structure for malicious-secure Cuckoo hashing to avoid information
leakage. This data structure is not applicable to OPPRF-PSI. The simple
hashing into bins could be made more secure with an Encode-Commit
scheme as proposed in [263].

Several techniques exist to secure MPC protocols for the circuit phase
against a malicious adversary. Among those techniques are cut-and-
choose, committed OT, authenticated secret sharing, zero-knowledge
proofs, and authenticated garbling [116]. All of these measures heavily
impact performance.

The only circuit-based PSI protocol that can be easily secured against
malicious adversaries is the SCS protocol[158] by using an additional
circuit of size 𝑂(𝑛) [252].

As we see, a fully malicious-secure OPPRF-PSI is hard to construct
due to the use of cuckoo hashing and the absence of malicious-secure
sub-protocols. Switching out some sub-protocols with their malicious-
secure variants induces heavy performance penalties. Neither a semi-
honest nor a malicious-secure OPPRF-PSI protocol is secure against
crafted input sets of either party. Such simple attacks can be made
infeasible using mitigation tactics such as rate limiting, threshold circuit
functionalities, or device attestation.

CERTAIN

Let us now take a look at CERTAIN as a whole. As described in Sec-
tion 3.5.3,measuresmust be taken to ensure that only userswith verified
diagnoses can upload data. Also, meta-data leakage from communi-
cation with the server and attacks on the BLE layer, both discussed
in Section 3.6, are relevant for CERTAIN. Additionally, the following
threats need to be considered.

An adversarial user might be interested to determine which of the
collected pseudonyms belong to diagnosed people. In the semi-honest
setting, no pseudonyms of the diagnosed people and no information
about the time of encounter are leaked by CERTAIN. This is because
only aggregated risk scores are returned to the client. Additionally,
inputs of the client and server are protected from the other side by
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MPC. Combined, this mitigates deanonymization attacks based on
the time of encounter. To gain access to the server’s pseudonyms, the
adversarial user has to act as a malicious adversary during PSI (see
above). To ensure that users do not behave like a malicious adversary,
an app attestation mechanism can be used to prove the integrity of the
application. To stop adversarial users from repeatedly querying the
server with different subsets of their data, a threshold function, which
only releases the actual risk value if it exceeds a certain level, is also
applied. This measure can be combined with limiting a user’s number
of queries per day.

An adversarial health authority that is semi-honest does not learn
if a querying user is at risk or whom they interacted with because an
MPC protocol is used. TEEs and remote attestation mechanisms can be
used to ensure that the health authority does not behave maliciously.
This allows audits to ensure that the server runs the correct software.

5.4.7 Practical Discussion

While CERTAIN provides strong protection for the privacy of diag-
nosed individuals in a semi-honest setting, the evaluation shows that
additional thought has to be placed into the feasibility of the approach.

Risk Scoring Payloads

To produce risk scoring following GAEN v2, the client can pre-compute
a risk value according to the duration-at-attenuation for each pseu-
donym following Equation 5.1 and input this value using only a few
payload bits. As we have seen in the experiments, increasing payload
size has only little impact on the runtime. For each additional bit of pay-
load length, more data has to be communicated, resulting in a constant
overhead of about 62.7-64.75 KB per bit up for relevant sizes, assum-
ing linear growth. In the case of 16-bit payloads, another 906.5 KB of
data would have to be communicated between client and server. For
an even more fine-grained risk-scoring approach, pseudonym-specific
attenuation values could be used as payload.

Real-World Set Sizes

In the evaluation, a server set of size 219 and a client set of 210 were
used. Whether or not this is sufficient depends on assumptions on the
number of diagnosed people per day and the number of encounters.
This value heavily depends on the pandemic situation. DP-3T [305]
assumes the number of diagnosed users who upload their data per
day to be 2,000. The authors of Epione [304] use 5,000 daily cases for
their evaluations. During the height of the pandemic in December 2020,
34,000 new daily cases were registered in Germany [267]. It can also
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be assumed that only a fraction of diagnosed people will have the app
installed and will, in case of an infection, provide their pseudonyms to
the health authority. The German Corona-Warn-App, which builds on
GAEN, has been downloaded 28.3 million times as of June 2021 [80].
This is a dissemination of about 34.1% based on the country’s total
population. Applying this fraction to the number of diagnosed users
at the height of the pandemic, about 11,594 users would upload data
daily.

Another factor impacting set sizes is the duration of pseudonyms
and for how many days in the past encounters with infected people
have to be checked. Various approaches use different durations (see
Section 3.5.2). We assume that the infectious period is 14 days and
pseudonyms change every 15 mins. To provide the user with per-day
risk scores, the server set is split into 14 separate sets so risk scores can
be computed for each of the corresponding days separately. The day
furthest to the past holds the most data (assuming that every day, the
same number of infected users are diagnosed and upload their data).
For a server set size of 219, the number of newly infected people that
CERTAIN can process is limited to 390 daily new cases. As we can see,
there is a mismatch between the real-world numbers and those that can
be handled by CERTAIN.

In our evaluation, we used 𝑛1 = 210 for the client. When using
the assumptions of the authors of DP-3T that each person collects ap-
proximately 140.000 pseudonyms in 14 days, the client’s set would be
𝑛1 = 214 [305]. According to Keeling et al. [180], the number of social
contacts over a period of 14 days is relatively small. Surveying people in
the UK, they deduce that the average number of contacts (independent
of duration) is 217 while few individuals will have more than 1000 con-
tacts. Of these 217 contacts, on average, 27% are longer than 15 minutes.
This would give us a client-side set of between 210 and 212. However,
the influence of 𝑛1 on the runtime is limited. The number of bins for
the client and server is influenced by the bin size on the server side.

Efficiency

To get the total communication data and execution times required for
14-day risk scoring, the OPPRF-PSI evaluation results from Figure 5.4
must be multiplied by 14. Parallelization can be leveraged to decrease
runtime. Communication for executing OPPRF-PSI 14 times a day can
be up to multiple gigabytes and is, therefore, too high for a system that
has to be efficiently scalable. One method to improve efficiency could be
reducing the infectious period to 10 days, as proposed by DP-3T [305].
Communication would be decreased by almost 30%, as only 10 OPPRF-
PSI instances would be executed each day. A scalability discussion for
DP3-T references a 5-day infectious period [305]. This would reduce
communication data by around 65% for the OPPRF-PSI app.
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By handling input-independent communication, e.g., from the circuit
setup phase, differently and reducing the infectious period, the commu-
nication values are less impractical but still more than 1 GB of data. As
the more complex circuits are a primary contributor to communication,
OPPRF-PSI can be used efficiently for DCT, at least in a scenario with
5,000 uploads per day, if advanced risk-scoring functionality is not ap-
plied. Another optimization option would be to outsource the client’s
circuit computation to a set of untrusted independent servers as de-
scribed by Duong et al. [107]. Performance would significantly improve
as these outsourcing servers and the health authority’s server would
be in a LAN or WAN setting. Also, the amount of data communicated
by the client would decrease to O(𝑛1) independent of the computed
risk-scoring function.

Efficiency is still an issue for CERTAIN that stands in the way of
practical feasibility. However, we have shown that providing strong
privacy in DCT is possible without leaking sensitive information to the
server or the client while maintaining risk-scoring functionalities.

5.5 chapter summary

In this chapter, two contributions for DCT were presented which lever-
aged the strong guarantees of cryptographic protocols. In both settings,
the health authority or a third party operates the server, which holds
data from diagnosed individuals for risk scoring. However, no sensitive
location or contact information regarding users trying to determine
their risk is revealed to this central entity. Cryptographic constructions
additionally ensure that users will not learn more than what is neces-
sary.

The first proposal was to store location traces or BLE pseudonyms
from diagnosed users in an ORAM. Users can access the ORAM to
query for certain pseudonyms or locations. The evaluation showed that
using an ORAM in combination with BLE pseudonyms is feasible. The
resulting runtime amounted to less than 1 s for 5,000 new cases per day.

This ORAM-based design and many other DCT approaches, such as
the approach of Google and Apple, endanger the privacy of diagnosed
persons through leaking timing information. To solve this issue, we
presented our second protocol called CERTAIN. It defends against
this attack by using circuit-based PSI. Here, the privacy of diagnosed
individuals is protected while at the same time providing daily risk
scores to users. This proof-of-concept shows that, although the protocol
runtime is too long for real-world applications, DCT with risk scoring
is possible with minimal leakage to the server and to querying clients.
New and faster circuit-based PSI protocols can be plugged into this
design to improve performance. An example is the PSI protocol by
Rindal et al. [264], which builds on the vector-based construction for
oblivious linear-function evaluation by Schoppmann et al. [9] 18.
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This chapter and the previous chapter focused on detecting infection
risk using proximity information, either through a BLE pseudonym
exchange or via GPS locations. Presence tracing is another tool for pan-
demic control. It does not focus on the proximity to infected individuals,
as in cases of inadequate ventilation in indoor settings, the virus can be
transported further thanwhat is considered by proximity detection [81].
Instead, visits to public or quasi-public spaces such as restaurants and
concerts are used to determine an infection risk. The following chapter
will present several approaches for presence tracing with adaptable
privacy guarantees.
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Most proximity-based Digital Contact Tracing (DCT) applications used
during the Covid-19 pandemic were built on the Exposure Notification
API of Google and Apple, short GAEN (see Section 3.4.3). For privacy
reasons, GAEN places the task of individual risk detection to clients.
However, due to a lack of centralized data for additional tracing, the
distributed approach has sometimes been criticized as not providing
valuable data to health authorities [25].

To illustrate this issue, picture a super-spreader event at a restaurant.
The super-spreader, an infected person whom we call Alice, uses a
GAEN-based contact tracing app. Users of the app who have been near
Alice will receive a high-risk warning from the app when the system
is informed about Alice’s diagnosis. Users seated further away than a
specific threshold value (usually 2m) might receive a weak warning.
Due to the indoor situation and, e. g., insufficient air circulation, their
risk might be higher than suggested. Users who were out of reach of
Alice’s Bluetooth Low Energy (BLE) signal will not receive a warning
through the app, even if they might be at risk under the given circum-
stances. Next, assume Alice did not use the GAEN app. In this case, no
warnings can be distributed through the app.

As GAEN is insufficient for super-spreader detection, various
DCT systems for presence tracing were proposed. This idea is related
to proximity-based DCT but aims to detect new infections from
super-spreader events based on the fact that people have visited
the same location as a diagnosed person at the same time. For this
section, unless noted otherwise, the term “location” refers to a public
or quasi-public space like a restaurant, an event space, or a market.
Locations are run by an operator who answers to the health authority.
Common approaches to presence tracing require users to scan a QR
code when entering the location. However, each step that requires user
interaction dampens usability. By extending a proximity-based system
such as GAEN, this extra step can be removed. Providing privacy to
undiagnosed users remains the main goal.

In this chapter, we propose two increasingly sophisticated designs
for a super-spreader warning system based on presence tracing. The
approaches extend the existing GAEN frameworkwith presence tracing.
Multiple BLE-capable smartphones, which we call lighthouses, send out
synced pseudonyms that are recorded by GAEN users. The lighthouses
cooperate to cover large (indoor or closely packed) areas. As the dis-
tance to lighthouses is irrelevant, only a few devices are necessary to
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provide coverage. Setting up this infrastructure is easily feasible due
to the large number of old, cheap devices available. The first design
relies on a simple broadcasting mechanism to warn users at risk. For
the second proposal, lighthouses also collect user pseudonyms and
actively check whether standard GAEN has issued warnings for any
past visitors. If so, the lighthouses will contact the health authority
to upload all relevant recorded user pseudonyms. The design aims to
provide usability and privacy, specifically for healthy users. A fallback
method is proposed to ensure that app users can be notified even when
a potential super-spreader does not use the app.

Our main contributions are:

• Two designs to improve GAEN by handling data regarding visited
locations. Users are warned if they have visited a location while
a now-diagnosed person was there. No interaction from users,
such as a check-in, is required upon entry.

• Only pseudonymous, ephemeral data that does not reveal their
history of GPS locations is passed to the health authority by diag-
nosed users.

• The distribution of warnings does not require human interaction
from the health authority. The health authority can manually
trigger warnings for diagnosed individuals without the app.

• The functionality of the designs can be tuned according to the
privacy need of diagnosed users.

The contents of this chapter are organized as follows. First, related
work is presented in Section 6.1. Then, a design based on passive light-
houses is proposed in Section 6.2. The design is extended by actively
involving the lighthouses in Section 6.3. In Section 6.4, attacks and
corresponding defense mechanisms are discussed for both designs.
Section 6.5 presents simulation results. A discussion presented in Sec-
tion 6.6 considers possible improvements to the system, especially re-
garding usability.

6.1 related work

A common type of presence tracing revolves around check-in systems.
Here, users scan a QR code with their presence tracing app when en-
tering (and exiting) a location such as a restaurant or event space.
A straightforward implementation of such a system is a centralized
database. Real-world apps that followed this schema were Singapore’s
SafeEntry [286] and the German LUCA app [94]. However, this does
not preserve privacy or mitigate data misuse.

Similarly to the broadcast-based apps for proximity-based DCT, New
Zealand’s NZ Tracer app [222] conducts presence tracing at the users’
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end devices. Here, a location operator generates QR codes, which are
presented at the entrance. Users can scan the code and store the cor-
responding information locally. If, during manual contact tracing, the
health authority finds that a diagnosed person visited a location, it
will publish the corresponding information to all users. The DCT app
checks locally if an overlapping stay has been recorded by the user and
notifies them if necessary. In case of a warning, the app does not tell
users the name of the location. However, a curious, tech-savvy user
would be able to identify it.

Another approach for distributed presence tracing is CrowdNoti-
fier [213]. Here, operators of businesses or organizers of events generate
three QR codes: one each for entry, exit, and tracing. These codes are
created from an asymmetric key pair (𝑝𝑘𝑙, 𝑠𝑘𝑙) that is derived from a
hash of the location’s name. Upon arrival, people visiting the location
or event scan the entry code with their app. This will locally store a
tuple consisting of 𝑝𝑘𝑙, a symmetric notification key, and the current
time. Arrival time, notification key 𝑛𝑘, and some other parameters are
then encrypted by the user with 𝑝𝑘𝑙. The 𝑝𝑘𝑙 itself is encrypted with
a new asymmetric key pair (𝑝𝑘𝑢, 𝑠𝑘𝑢) selected by the user. To hide all
information, even in the case of forced access to the user’s device, the
user only stores the following 19:

𝑒𝑛𝑡𝑟𝑦𝑙 = (𝑝𝑘𝑢, 𝐸𝑠𝑘𝑢
(𝑝𝑘𝑙), 𝐸𝑠𝑘𝑙

(𝑛𝑘|| ⋯))

Users can also scan the exit code when leaving, although this step is
not necessary. Suppose the health authority discovers during manual
tracing that a diagnosed person visited a location or event. In that case,
they contact the operator for both the paper lists and the tracing QR
code. The tracing QR code contains, among other things, the location
name and the notification key, which are encrypted with the public
key of the health authority. From this information, it computes 𝑠𝑘𝑙 and
composes a message 𝑚, which is encrypted with the notification key 𝑛𝑘.
The health authority distributes this (𝑠𝑘𝑙, 𝑚) and the relevant time pe-
riod to all users. These can then use 𝑠𝑘𝑙 to quickly find the relevant
entry 𝑒𝑛𝑡𝑟𝑦𝑙, deduce the notification key 𝑛𝑘, and decrypt the message 𝑚.
CrowdNotifier leverages cryptographic primitives so only users who
have visited the location during the same time as the diagnosed person
are notified about the potential outbreak.

Similar results for tracing can be obtained by doing DCT with po-
sitioning data. Apps that use GPS data to compare a user’s location
traces with those of diagnosed individuals to determine who is at risk
have been discussed in the previous chapter on cryptographic protocols.
Systems that rely on GPS data but have privacy protection through cryp-
tographic techniques are not yet fast or scalable enough for real-world
usage. DCT systems that use this data source without cryptographic
guarantees generally lack privacy, as they reveal private data of undi-
agnosed users and their habits to the health authority [78, 232].
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A presence tracing app can also utilize Bluetooth or BLE to detect
a visit at a location if the location is equipped with suitable senders.
In May 2020, Culler et al. [87] presented a presence tracing approach
called CoVista that uses BLE beacons to extend the GAEN framework.
Their idea is to treat places as people. Our passive approach is very
similar to the ideas of Culler et al. They also discuss possible interactions
with manual contact tracing. However, our work provides a formal
design, parameter analysis, and an extensive security evaluation for
the passive lighthouse approach. Unlike Culler et al., we also extend
the passive approach by proposing the active lighthouse system, which
involves lighthouses in the process of presence tracing.

6.2 passive lighthouses

A successful super-spreader warning system should be helpful to the
health authority in containing the outbreaks. It should speed up the
health authority’s contact tracing and help streamline processes by
automating exposure notifications for large amounts of people. User
privacy should be one of the leading design goals to ensure that users
trust the system and do not avoid or circumvent it. Tools that are per-
ceived as part of a surveillance infrastructurewill potentially suffer from
low adoption rates and, therefore, limited effectiveness[58]. Following
the principle of data minimization, only epidemiologically necessary
data should be collected.

The main functionality of the approaches presented in the following
is that visitors of locations are notified if their stay has overlapped with
the stay of a diagnosed person, even when the proximity-based DCT
app did not collect the corresponding ephemeral pseudonyms of the
infected person. To receive warnings, users must have the app installed
and active during their stay. For usability purposes, no manual user
interaction should be required.

The passive lighthouse approach discussed in this section relies on
the operator to set up BLE beacons called lighthouses around their
location. These send out pseudonyms that are collected by users and
uploaded to the existing DCT infrastructure on infection. The essence
of this passive approach was first proposed in CoVista [87], but we
formalize and extend it in this section.

6.2.1 Operation

Operators set up lighthouses, i. e., smartphones with the lighthouse app
installed, in their locations. Lighthouses continuously emit ephemeral
pseudonyms over BLE, which we call lighthouse pseudonyms or 𝐿𝑃s.
Lighthouses are organized in groups to cover areas larger than the
reach of a single device. 𝐿𝑃s are generated randomly and are distin-
guishable from BLE pseudonyms broadcast for the proximity-based
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DCT by an additional transmitted prefix. The prefix is different for each
location and fixed. After a specific time 𝑇𝑑𝑢𝑡𝑦 a new 𝐿𝑃 is generated and
broadcast.

When a visitor stays at a location, their proximity-based DCT app
will broadcast ephemeral pseudonyms, 𝑃s for short, and collect those
of other users. Visitors will additionally collect 𝐿𝑃s transmitted by the
lighthouse. In broadcast-based DCT approaches like GAEN, a user
uploads their past 𝑃s (or the corresponding key material) after being
diagnosed. For our super-spreader warning system, the diagnosed user
will additionally upload all 𝐿𝑃s they have recorded during the relevant
time period. Prefixes of the 𝐿𝑃s are removed before upload. Users can
opt out of uploading certain 𝐿𝑃s. The health authority broadcasts both
𝑃s and 𝐿𝑃s to all users. These check locally if any of the 𝐿𝑃s (and 𝑃s)
they have recorded in the past matches. If a match is found, the user is
automatically notified that their visit to a location had overlapped with
that of a diagnosed individual. More specifically, the user will learn
only when they could have gotten infected. Users who did not visit the
location or visited at a different time will not receive a warning. Since
risk assessment is done locally, the health authority does not learn the
location history of users and cannot identify users at risk.

Pseudonym rotation in BLE originates from the need to protect the
privacy of device owners. This is not necessary for lighthouses. There-
fore, 𝑇𝐷𝑢𝑡𝑦 can be significantly longer than the standard rotation periods
used in proximity-based DCT. The decreased number of 𝐿𝑃s reduces
the system’s load as users upload fewer 𝐿𝑃s for the same visit to a
location. To mitigate false-positive visits, visitors only store 𝐿𝑃s if they
have received them for a duration 𝑇𝑡ℎ𝑟𝑒𝑠, e. g., 10 min. This way, people
passing by a location are not warned by accident. Unlike proximity-
based DCT, distance information can be ignored for 𝐿𝑃s during risk
assessment. To improve performance, an idea mentioned by the authors
of DP-3T [305] can be used. The health authority stores all uploaded
pseudonyms in a hash table. After downloading the table, users can
check if their recorded 𝑃s and 𝐿𝑃s cause a hash collision. To keep the
failure probability low, the health authority has to create a new table
after some time.

In case the health authority discovers during manual contact tracing
that a diagnosed person visited a location, this information can also be
fed into the warning system. Using a low-latency, commonly available
channel like the telephone, the health authority contacts the location
operator and asks them to upload the 𝐿𝑃s for the corresponding time
period to their servers. The location operator needs a single-use token
for uploading, which the health authority can provide over the same
communication channel. This process prevents misuse through oper-
ators and ensures only locations with confirmed diagnosed cases can
upload 𝐿𝑃s.
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Main

Figure 6.1: Example setup in a restaurant setting with one main lighthouse
and two helpers. Note that two visitors in the top right corner are
not covered. This can be solved by improving the layout or adding
a lighthouse. Figure as in [3].

6.2.2 Combining Multiple Lighthouses

If an infrastructure only consists of a single lighthouse, not much is
gained compared to proximity-based DCT. Users that see the lighthouse
are also likely to see each other. However, especially for indoor locations,
the affected area can be larger than the reach of the BLE signal of a
single device. For this purpose, multiple lighthouses can form a group
to synchronize their 𝐿𝑃s. One main lighthouse creates 𝐿𝑃s and commu-
nicates them to multiple helpers. If the operator wants to cover multiple
floors of their location, they can set up one group of lighthouses per
floor. Communication between lighthouses can build on common chat
programs like Signal [307] in case an Internet connection is available.
An offline solution using Bluetooth pairings can also be implemented
as a backup. In such a case, the main lighthouse displays a QR code that
the operator scans with the helper devices to establish a connection over
Bluetooth or other local channels, like Wifi Direct. An example scenario
for a lighthouse infrastructure with helpers is shown in Figure 6.1.

6.2.3 Subsequent Arrivals and False Positives

It might be helpful to be able to warn people who arrived shortly after
the diagnosed person left. Depending on the virus’s durability and
the location’s ventilation, new arrivals might still be at risk of getting
infected [81]. For this reason, a long duration 𝑇𝑑𝑢𝑡𝑦 is convenient. If a
diagnosed person left during the beginning of the duty cycle of an 𝐿𝑃𝑡,
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but stayed long enough for 𝑇𝑡ℎ𝑟𝑒𝑠 to be surpassed, users that arrived
towards the end of 𝑇𝑑𝑢𝑡𝑦 of 𝐿𝑃𝑡 will receive a warning. In case the
diagnosed person leaves towards the end of 𝑇𝑑𝑢𝑡𝑦 of 𝐿𝑃𝑡, users who
arrive during the cycle of the following pseudonym 𝐿𝑃𝑡+1 will not
receive a warning. To fix this problem, duty cycles should overlap so
that for a certain period, two 𝐿𝑃s are advertised. The overlap 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝
has to be at least as long as 𝑇𝑡ℎ𝑟𝑒𝑠.

Another problemwith the passive design is that people who have left
before the diagnosed person arrived but recorded the same 𝐿𝑃 will also
receive a warning even though their risk is minimal. The longer 𝑇𝑑𝑢𝑡𝑦,
the more people will receive a false warning if a diagnosed person
arrives towards the end of the duty cycle. Therefore, duration 𝑇𝑑𝑢𝑡𝑦
should be short. As we see, this optimization criterion contradicts the
one discussed above. For this reason, the Simulation in Section 6.5 aims
to find a compromise for the optimal length of 𝑇𝑑𝑢𝑡𝑦.

6.3 active lighthouses

Keeping the false-positive rate as low as possible is essential so users
are not flooded with false warnings. To only warn people who were
present during the stay of the diagnosed person and thereby minimize
the false-positive rate, lighthouses need to become actively involved.

6.3.1 Operation

As before, visitors’ proximity-based DCT app sends out pseudonyms 𝑃
so other users and lighthouses can record these. Setup and operation
are similar to the passive lighthouse system (see Section 6.2.1), with
only minor differences. When a lighthouse and a visitor receive the
other’s pseudonym, they both generate a shared secret 𝑆 by using 𝑃 and
𝐿𝑃 as input for a Diffie-Hellman key exchange [99] 20. To ensure that the
𝐿𝑃 can not be derived from only 𝑆 and 𝑃, some additional information
known to user and location needs to be incorporated in the secret. Some
examples for such a seed are the users BLE MAC address, the location’s
corse GPS location or the location’s static prefix. The lighthouse will
store 𝑆, 𝑃, and timestamp 𝑇. The visitor only needs to store 𝑆.

When a user is diagnosed, they upload all their past pseudonyms 𝑃
to the health authority’s servers. They additionally upload all secrets 𝑆
they generated during their contagious period. These will not be made
public by the health authority. Master lighthouses regularly check the
information broadcasted by the health authority regarding which pseu-
donyms 𝑃 belong to recently diagnosed people. If the main lighthouse
recognizes a 𝑃𝑖 from its history in the broadcast, a diagnosed person
has visited the location recently. If this happens, the main lighthouse di-
rectly contacts the health authority. To prove to the health authority that
it can provide meaningful data, the lighthouse will authenticate itself
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by presenting the corresponding secret 𝑆𝑖. The health authority checks
if a diagnosed user uploaded 𝑆𝑖 and verifies that no other lighthouse
has presented this 𝑆𝑖 before. If the provided information is sufficient,
the main lighthouse is allowed to upload all pseudonyms 𝑃 of visitors
that had an overlap with the diagnosed person’s stay. More specifically,
it determines the first and last time when 𝑃𝑖 was recorded and uploads
all 𝑃 that fall into this period. A pseudocode representation is shown
in Algorithm 1. It can also be helpful to upload some 𝑃 that have been
recorded shortly after. If no information should be leaked about the
location of the lighthouse and thereby about the location history of the
diagnosed person, all communication with the health authority needs
to be conducted through an anonymization service such as Tor [301].

Algorithm 1 Active Lighthouse Algorithm
1: while true do
2: 𝑒 ← current epoch
3: Advertise Lighthouse Pseudonym 𝐿𝑃𝑒 over BLE
4: 𝐿𝑃𝑠 ← 𝐿𝑃𝑠 ⋃{𝐿𝑃𝑒}
5: 𝑃 ← Pseudonym received from users
6: 𝑆 ← {Diffie-Hellman(𝐿𝑃𝑒,𝑃)}
7: 𝑇 ← Timestamp
8: 𝐻 ← 𝐻 ⋃ {P,S,T}
9: 𝐼 ← Data from health authority’s broadcast

10: if ∃𝑖 ∶= (𝑃𝑖, 𝑆𝑖, 𝑇𝑖) ∈ 𝐻 ∶ 𝑃𝑖 ∈ 𝐼 then
11: 𝑅 ← 𝑅 ⋃{∀𝑢 ∈ 𝐻 ∶ overlap(𝑖, 𝑢) > threshold}
12: Send 𝑅 to health authority, use one 𝑆𝑖 for authentication

The active approach ensures that only users who have visited a loca-
tion simultaneously or – if desired – shortly after a diagnosed user will
be informed about their increased infection risk. They will not learn the
pseudonym of the diagnosed individual that caused the alarm unless
they have come in close contact and have recorded the corresponding
pseudonyms 𝑃 from the diagnosed person. Users who have not visited
the location or left before the diagnosed person arrived will not learn
that there has been a (potential) outbreak.

It can happen that a later-diagnosed person who does not use any
DCT app visits a location, making them undetectable for lighthouses. If
the health authority discovers such a case duringmanual contact tracing,
it asks the location operators to upload data for all present users. For
this purpose, the corresponding time range and a single-use token are
passed on to the location operator. The operator manually inserts both
in the main lighthouse, which will use the token to authenticate itself
with the health authority and upload all recorded user pseudonyms 𝑃
from the requested time range.

Similarly to the passive design, a private communication channel
has to be established between lighthouses as described in Section 6.2.2.
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This channel is used by helper lighthouses to report recorded tuples
of (𝑃𝑖, 𝑆𝑖, 𝑇𝑖) back to the main lighthouse. The main lighthouse stores
all recorded data and takes responsibility for communicating with the
health authority.

6.4 privacy and security considerations

In this section, several attack vectors against the proposed super-
spreader warning systems are discussed to understand and manage
potential threats to security and privacy. Attacks on general broadcast-
based DCT apps are not considered here. Only new attack vectors
introduced by the lighthouse warning systems are analyzed. For
mitigation strategies of common threat vectors, such as relay and replay
attacks or network observers, the reader is directed to Section 3.6.

6.4.1 Location Privacy of Undiagnosed Users

It would be harmful if an adversary could use the lighthouse warning
system to learn the location history of arbitrary users. Undiagnosed
users never upload any data, so their location history is only leaked
if an adversary were to access their device. This is one of the reasons,
among others, why 𝐿𝑃s need to be rotated regularly.

Let us take a look at the active lighthouse system. As long as the
adversary, i.e., the health authority, cannot link pseudonyms to people,
the location privacy of healthy users is ensured. However, if this as-
sumption does not hold up, various sources of privacy leakage become
relevant.

A malicious entity who wants to verify whether an undiagnosed
target Tiffany has visited a location can check all 𝑃s recorded by light-
houses in one location. For this attack, they need to identify which 𝑃s
belong to Tiffany. In GAEN, obtaining key material from undiagnosed
users used for deriving 𝑃s requires either the device to be hacked or
physical access by an adversary.

If an active lighthouse detects a past visit of a diagnosed person
and uploads all pseudonyms 𝑃 of people at risk in one single message,
sensitive information can be leaked. By using additional background
knowledge, the health authority can derive that some users visited this
location together. To break this link between pseudonyms of undiag-
nosed visitors, a blind signature scheme similar to the one used in our
work CAUDHT [1] can be leveraged, see Section 4.2.

6.4.2 Location History of Diagnosed Users

As long as the health authority only learns which locations were visited
by diagnosed users, there is no privacy loss compared to manual contact
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tracing. However, the presented system can be tuned to hide even this
data. Let us look at how the location history of diagnosed users can be
protected.

First is the passive lighthouse design. Here, only pseudonymous 𝐿𝑃s,
stripped from all static prefixes, are sent to the health authority by the
diagnosed user. This stops the health authority from linking locations to
𝐿𝑃. Additionally, it is crucial that 𝐿𝑃s are derived locally by lighthouses,
are changed frequently, and do not contain hidden information about
their creator.

A malicious health authority can misuse the extension that allows
sending warnings caused by diagnosed people without a DCT app. By
continuously issuing requests to locations to upload their 𝐿𝑃s, the health
authority can learn 𝐿𝑃s and identify locations visited by diagnosed
users, i.e. to verify a guess. Uploading 𝐿𝑃s requires manual interaction
from the location operator. Such an attack could, therefore, be easily
detected and would result in a lack of trust and abandonment of the
system by location operators.

In the active design, diagnosed users upload their secrets 𝑆. As long
as the lighthouse, which also knows 𝑆, communicates anonymously
with the health authority, no information about the location’s nature
and the diagnosed user’s location history is leaked. The health authority
does not know the 𝐿𝑃 from which an 𝑆 was derived. If the health au-
thority wants to map 𝑆 uploaded by a diagnosed user to locations, it has
to use additional data recorded at the location at the time of the visit by
eavesdropping on the BLE band. Placing the necessary infrastructure
in all possible locations would be rather expensive. But a health au-
thority can single out certain locations of interest and record 𝐿𝑃s there.
This allows the attacker to identify, based on the uploads, whether a
diagnosed individual visited a certain place during a specific time.

6.4.3 Social Graph Leakage for Diagnosed Users

In the passive design, the health authority can identify that visits of two
users to the same location overlap if they are diagnosed and upload the
same 𝐿𝑃. Such an overlap might indicate that they know each other or
are in the same social circles. The health authority also records this in-
formation about diagnosed individuals during manual contact tracing.
However, since it can leak private information, users can decide not
to upload 𝐿𝑃s from specific locations or times. To hide their identity, a
diagnosed user can also use Tor for their upload. This works as long
as upload tokens, which are usually required to prove to the health
authority that the uploader is diagnosed, are not directly linkable to
the user. Some token schemes are discussed in Section 3.5 in Chapter 3.
In the active design, knowing two secret keys 𝑆𝐴 and 𝑆𝐵, the health
authority cannot derive if they were recorded at the same time and
location. It can only verify a guess for an 𝐿𝑃 it possesses.
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21 The Bachelor thesis
of Alexander
Brunkow was
supervised by the
author. He
implemented and
evaluated the passive
lighthouse system.

6.4.4 Fake Outbreaks

There are multiple reasons an attacker can be interested in faking an
outbreak. For example, the health authority or a state organization could
employ it for crowd control or a competitor of the location operator
mightwant to gain an advantage. In the passive design, the attacker only
needs to record 𝐿𝑃s of locations and have them published by the health
authority. An attacker who does not have the capabilities of the health
authority can sneak the 𝐿𝑃s into the uploads of a diagnosed individual.
The active design is not vulnerable to this attack as lighthouses provide
a sanity check.

Another goal of fake outbreaks or hotspots can be extortion. Diag-
nosed users might demand money for not visiting a location or upload-
ing the corresponding 𝐿𝑃s (in the passive design) or 𝑆s (in the active
design). All systems that utilize location data can make operators the
target of such an attack.

6.5 simulations

This section was
added for this thesis
and was not part of
the original paper as
it contains some
results that were
produced after
publishing.

Due to multiple lighthouses working together, both lighthouse sys-
tems can span a larger area than simply having people only use their
proximity-based DCT app to detect co-location with a diagnosed indi-
vidual. While the lighthouses themselves also only have limited reach
through BLE, these beacons are not used for estimating the distance and
are recorded even if the signal is weak but continuous. Unlike GEAN,
the lighthouse systems can incorporate information about diagnosed
visitors without an app. This section looks at simulation results to deter-
mine its effectiveness compared to only using a proximity-based DCT
app like GAEN.

Section 6.2.3 mentions that the false-positive rate is influenced by the
duration 𝑇𝑑𝑢𝑡𝑦 that determines how long an 𝐿𝑃 is advertised. To analyze
this issue, a Python script is used to simulate an 8-hour day at a small
location such as a restaurant. The maximum capacity of the location is
set to 30 people. The behavior of visitors is modeled by utilizing ideas
from queuing theory. Inter-arrival times of visitors and stay duration are
drawn from exponential distributions with means of 10 min and 60 min,
respectively. Measurements were repeated 200 times to derive the 95%
confidence intervals. The warning precision is given by the fraction
of stays that overlapped with the visit of a diagnosed user Alice for
at least 𝑇𝑡ℎ𝑟𝑒𝑠 divided by all users who were warned because of Alice.
Figure 6.2 shows the warning precision for an 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 of 10 min and
15 min. The graph illustrates that a short 𝑇𝑑𝑢𝑡𝑦 with a short 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (but
at least ≥𝑇𝑑𝑢𝑡𝑦) is preferred.

This analysis was extended by Alexander Brunkow in his bachelor
thesis [57] 21. To determine the effectiveness of the passive lighthouse
system, Brunkowmodeled three types of locations (a restaurant, a night
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Figure 6.2: Warning precision in the passive lighthouse system for different
lengths of 𝑇𝑑𝑢𝑡𝑦 and two values for 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝. Figure as in [3].

22 The master thesis
of Alexander Senger
was supervised by the
author of this thesis
together with Samuel
Brack. His thesis
focused on the active
lighthouse system.

club, and a grocery store). For each location type, different parameters
were used to draw inter-arrival times and stay duration. As expected,
locations with longer stay times and lower fluctuation have a lower rate
of false negatives. The evaluation for a restaurant setting using different
parameters mirrors the above finding that a short 𝑇𝑑𝑢𝑡𝑦 is preferable.
Brunkow finds that the lighthouse design can be improved if the first
𝐿𝑃 collected at a location is only uploaded by the diagnosed user if they
spent a significant amount of time (at least𝑇𝑡ℎ𝑟𝑒𝑠) there. By applying this
optimization, the false-positive rate in the restaurant setting decreases
from 18 % to ≈0 % in the case of 𝑇𝑑𝑢𝑡𝑦=15 min and 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝=7.5 min and
from 22 % to ≈3 % for 𝑇𝑑𝑢𝑡𝑦=30 min and 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝=15 min. The duration
of 𝑇𝑡ℎ𝑟𝑒𝑠, as well as the question of how long people are exposed to an
increased risk even after the infected person has left, depends on the
infection risk at a location. This risk is influenced, among other things,
by air circulation, mask adherence, and the type of activities common at
the location [45]. So this information can be utilized during risk scoring,
Brunkow suggests encoding location-specific properties into the 𝐿𝑃.

Similar to the paper lists required by German restaurants during the
pandemic [270], the above simulations only considered simultaneous
visits for determining risk. The BLE transmission range of GAEN and
the behavior of visitors at the location are ignored. To fill this gap,
the master thesis of Alexander Senger [280] evaluates the lighthouse
protocol by using agent-based simulation 22. Senger uses the data set of
Gabellini et al. [130] to verify the effectiveness of the approach. The
data set consists of customers’ location traces at four supermarkets of
different sizes, covering 26 days each. The data was collected before the
pandemic in 2019. It, therefore, does not account for behavioral changes
due to lockdowns or contact restrictions. Using these traces, Senger
simulates which contacts are detected based on the attenuation of the
BLE signal if all customers have the GAEN app installed. Parts of the
attenuation are randomized over different simulation runs to account
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for a decreasing signal strength due to different holding positions of the
device. The detected number of contacts is then compared to the number
of people who would not have been warned. As expected, Senger finds
that for the supermarket setting, the size of the location and the density
of customers play a large role in whether or not an encounter is detected
by GAEN. Larger stores with more customers are more likely to result
in contacts missed by GAEN. The simulation additionally shows that
since the GAEN sample rate is low to safe battery, a certain number
of close contacts with a distance of less than 2 m over a period 15 min
are missed. The active lighthouse system is able to fix this issue. To
ensure that the number of false positives does not skyrocket for large
stores, air circulation should be considered when notifying users about
potential super-spreader events [45]. Findings from the supermarket
setting might not transfer to other cases where customers move around
less.

6.6 discussion

In the following, we discuss the operational aspects of our proposed
systems such as recording only relevant lighthouse pseudonyms, inte-
gration with other tracing processes at the health authority and deploy-
ment costs.

6.6.1 Collecting Location History of Diagnosed Users

The lighthouse system can be tuned to match the privacy requirements
of diagnosed users. It can either provide full anonymity to diagnosed
users or allow the health authority to collect a coarse location history
based on uploaded 𝐿𝑃s. Revealing the diagnosed users’ history of vis-
ited places to the health authority does not leak more data than what
would be collected during manual tracing.

Some locations are more likely to become hotspots for super-spreader
events due to the activities practiced there [45]. For example, singing or
physical activity are linked to a higher risk than eating in a restaurant.
Incorporating such data into tracing can, therefore, increase tracing
efficiency.

To facilitate a centralized collection of locations visited by diagnosed
users, 𝐿𝑃s need to contain information regarding the corresponding
location that is cryptographically linked to the operator. This can be
done through signatures with a key published through a public key
infrastructure. To mitigate misuse, only the health authority should
be able to read this information. This can be achieved by using an 𝐿𝑃
which is the operator’s identity encrypted with the health authority’s
public key (together with a timestamp).
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6.6.2 Integration With Paper Lists

Since pseudonyms of diagnosed users are published by the health
authority (as by design of broadcast-basted DCT apps), lighthouses
can automatically check if a diagnosed person has visited their location.
If a visit of a diagnosed person is detected, the main lighthouse can
prompt the operator and inform them that they have to provide their
paper trail to the health authority. This requires lighthouses to scan the
health authority’s broadcast for their own 𝐿𝑃s, as done by the active
approach. Having the operator approach the health authority instead
of the other way around speeds up detection times. This increases
the efficiency of the DCT system as the outbreak might otherwise be
detected days later.

6.6.3 Recording the Correct Lighthouse Pseudonyms

Assume a location has set up a separate group of lighthouses for each of
their floors. A visitor might detect multiple 𝐿𝑃s at the same time, even
those from a group on a different floor. In case a past visitor turns is
diagnosed, this could lead to a false warning issued to people who were
on a different floor. Therefore, users only record the 𝐿𝑃 that was the
closest for at least the duration 𝑇𝑡ℎ𝑟𝑒𝑠. If several lighthouses are equally
close or the error of the proximity measurement is too large to make
a meaningful decision, pseudonyms of multiple lighthouses can be
stored. This ensures that movement between locations is also recorded.

6.6.4 Neighbors of Locations with Lighthouses

Proximity is only one factor in the detection of a lighthouse, as users
will always choose the one that is closest to them. Locations often have
neighbors who live next door but might not come in. These neighbors
will detect the installed lighthouses and will be warned in case of an
outbreak at the location, even though they are not at risk. This can
be partially mitigated by setting a threshold for the distance to the
lighthouse so that visitors will only consider lighthouses that are less
than e. g., 5 m away. To ensure that all visitors can still interact with
lighthouses even when seated in a corner, the operator has to ensure
good coverage. Another option for mitigating false alarms would be
to have lighthouses transmit a static identifier (e. g., a prefix used for
forming groups as discussed earlier), which will not be uploaded to
the health authority. This allows neighbors to block certain lighthouses
for which 𝐿𝑃s will not be recorded. To make it more easily usable, this
could be done with one simple button press, which places all currently
received prefixes of 𝐿𝑃s on an ignore list.
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6.6.5 Usability and Accessability

The usability is an essential feature of the proposed lighthouse system
compared to the check-in approaches. Users do not have to do any scan-
ning when entering a location, record or reveal their GPS traces, but will
still receive location-specific warnings. This makes the system accessi-
ble, for example, for people who have difficulties using their phones or
are visually impaired. For usability reasons, it is also important that the
visitor’s application can run in the background without draining the
device’s battery. The passive design without prefixes would not require
changes to the GAEN framework. All other proposals discussed in this
chapter do require changes.

6.6.6 Deployment Costs

Setting up the lighthouse system incurs some costs for the location op-
erator. Apart from the software, each lighthouse requires a smartphone
that is recent enough to be equipped with BLE. There is no requirement
for specialized hardware, so even second-hand off-the-shelf phones can
be compatible with the lighthouse system. To sync LP generation and
rollovers, as well as to facilitate the interaction with the health authority,
multiple phones in one location need to be interconnected. At least one
of the smartphones must be connected to the Internet. Most locations
probably have some kind of Internet access, but in some scenarios, this
might incur additional costs, e. g., in a long-distance bus where a mobile
Internet contract is needed.

Battery consumption is not only relevant for the users but also for
the lighthouses. Brunkow [57] implemented the passive lighthouse
system with multiple helper lighthouses and one main lighthouse co-
ordinating the 𝐿𝑃 rotation. His evaluations of the battery life of the
main lighthouse showed that after 24 h, only 10 % of the battery was
consumed. This illustrates that lighthouse deployment is feasible even
without continuous charging.

6.7 chapter summary

In this chapter, we presented a system for sending location-specific
super-spreader warnings to users by building on GAEN and similar
broadcast-based DCT systems. The proposal extends proximity-based
DCT with presence tracing and serves as a tool to deliver notifications
of potential super-spreader events quicker than through manual noti-
fications. No GPS data has to be collected as BLE is used to exchange
pseudonyms between users and the lighthouses. Multiple lighthouses
can cooperate to cover larger areas. The infrastructure of lighthouses
is set up by location operators. For this, any off-the-shelf smartphones
with BLE capabilities can be used. The lighthouse system warns users
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about diagnosed individuals even if they have not recorded this person’s
pseudonyms.

We presented two designs with different false-positive rates and pri-
vacy guarantees. The first one relies on users to record the lighthouses’
pseudonyms. In case of an infection, these are distributed using the ex-
isting broadcast DCT infrastructure. In the second design, lighthouses
actively communicate with the health authority when they recognize
that a past visitor was diagnosed. The system then uploads the recorded
pseudonyms of everyone whose visit overlapped. Both designs are com-
patible with GEAN and only require minor changes in the existing
code.

By extending DCT with location information and providing an ap-
proach that can be adapted based on different privacy requirements,
we provide a versatile system for detecting and notifying users of their
potential infection risk. The system can be adapted to place different
levels of trust in the health authority. On the one hand, it is possible
to only inform users of their risk due to their presence at a potential
super-spreader event. On the other hand, it is possible to speed up
super-spreader detection for newly diagnosed people by actively in-
volving location operators in presence tracing. Here, the privacy of
diagnosed users is partially traded for increased tracing performance.
This trade-off aligns with requirements for manual tracing, which forces
diagnosed users to reveal their recent social contacts and visited loca-
tions to the health authority.



INTERLUDE

This part of the thesis examined privacy-preserving methods for com-
bating epidemics and pandemics through contact tracing. To this end,
an introduction and overview of proximity-based Digital Contact Trac-
ing (DCT) was given. It was shown that removing trust assumptions
regarding central entities, such as health authorities and the govern-
ment, is crucial for ensuring the voluntary participation of large parts
of the population, which is linked to the overall effectiveness of the
tracing efforts.

Oneway to provide provable privacy guarantees in DCT is to conduct
risk detection and assessment on users’ end devices. This eliminates the
need for users to trust a central authority to act honestly. The CAUDHT
approach was presented, which leverage this idea by allowing diag-
nosed users to send anonymous but authenticated messages to their
contacts. The second proposal Ovid improves this idea and defends
against both misbehaving clients as well as an overly curious messaging
server.

It was then studied how cryptographic protocols can be utilized
for DCT. Such protocols can ensure that a semi-honest central entity
does not learn more information than intended. This allows inherently
sensitive data such as GPS locations to be used for proximity-based
DCT without leaking users’ traces. Additionally, a proof of concept
called CERTAINwas presented thatmitigates a deanonymization attack
that is feasible against all DCT designs that reveal timing information
regarding the encounter, which are all approaches using Bluetooth Low
Energie (BLE) proximity detection with client-side risk scoring. By
eliminating the leakage of the time of the encounter through the use of
circuit-based Private Set Intersection (PSI), users who have received a
warning can no longer mount the attack.

Next, we examined presence tracing for super-spreader detection and
demonstrated how it can enhance proximity-based DCT. By equipping
public or quasi-public spaces with BLE lighthouses, the Google Apple
Exposure Notifications (GAEN) system can be extended to transmit
warnings about potential super-spreader events at such locations. Addi-
tionally, tracing efforts can be accelerated by having lighthouses check
for warnings regarding past visitors. The proposed systems preserve
the privacy of users at risk and can be adapted for different privacy
requirements of diagnosed users.

Fighting an epidemic or pandemic involves more than just tracing
contacts. In order to make policy decisions, such as determining when
a lockdown is necessary, versatile statistics are a crucial factor. There-
fore, the second part of this thesis explores how to collect data for
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statistical analysis in a privacy-preserving manner from volunteers in
distributed settings. To this end, the requirements of existing studies
that use mobile devices for data collection are analyzed. By modeling
this process, various sources of privacy leaks can be identified. Subse-
quently, a data analysis platform is presented thatminimizes the privacy
threat of such data collection campaigns. Its construction mitigates data
leaks to malicious data analyzers and to the infrastructure hosting the
platform. The platform enables crowdsourcing and data analysis in a
privacy-preserving manner. It can be utilized for both pandemic and
post-pandemic data collection use cases.
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The widespread use of smartphones and wearables has made it easy
for users to continuously collect data about themselves regarding their
movement and health [279]. For research purposes, people are willing
to share data even if it is sensitive [74]. As a result, an increasing number
of studies rely on voluntary data donations [276]. Existing platforms like
Apple’s ResearchKit [36] distribute apps designed by researchers to the
public. Here, the responsibility to protect the collected data and the pri-
vacy of data donors is placed on the shoulders of researchers. However,
healthcare facilities and associated researchers can be hacked or compro-
mised and data breaches have become a frequent occurrence [309]. Le-
gal frameworks such as the General Data Protection Regulation (GDPR)
allow the imposing of fines on offenders in case data is lost or miscon-
duct can be proven [132]. Even so, it would be preferable if disclosure
of private information could be prevented before it occurs. A large body
of research aims to provide technical and statistical privacy guarantees
in diverse settings and under various threat models. Tools to this end in-
clude Multi-Party Computation (MPC) and homomorphic encryption
but also Trusted Execution Environments (TEEs) and local differential
privacy. However, these can limit the utility and the expressiveness of
the collected data, analysis methods, and final results.

In this chapter, we examine the requirements that a privacy-
preserving platform for collecting and analyzing data from mobile
devices must fulfill. The contributions of this chapter are:

• A review of 74 existing data donation apps, identifying common
functionalities required by medical researchers.

• A model of the parties involved in mobile data donations, taking
into account their motivations and goals, as well as their privacy,
security, and functional needs.

• Comprehensive data flow diagrams representing an exemplary
data donation campaign based on the analyzed apps.

• We analyze threats to privacy, security, and functionality of the
existing data donation workflow using the LINDDUN framework.
We thereby follow data minimization principles to identify data
leaks and privacy threats.

This chapter is organized as follows. Related work is presented in
Section 7.1. Section 7.2 analyzes the functionalities of existing data do-
nation apps. In Section 7.3, the relevant parties and their requirements
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are modeled. Section 7.4 discusses the LINDDUN Framework as well
as the system model we used to represent a common data donation
campaign using mobile devices. Privacy and security threats that were
identified using this model are discussed in Section 7.5.

7.1 related work

Various publications and surveys exist analyzing the usefulness of apps
in health care and research. Schmitz et al. [276] analyzed 36 study apps
for health research to evaluate the possibilities and challenges provided
by mobile health research applications. However, privacy was not their
main target. Aljedaani et al. [26] systematically reviewed the security
of research-related mobile health apps. Security is a precondition for
privacy, which is the main focus of this work. Nurgalieva et al. [242]
analyze health apps focusing on security and privacy. While they do
propose best practices, they do not take a systematic approach to model
the system or discover threats. Iwaya et al. [168] use the LINDDUN
framework to analyze mental health apps from the Google Play Store.
Unlike this work, they also do not model the underlying system but
instead use static anddynamic analysis to detect potential threats, which
they then examine with the LINDDUN threat catalog.

A limitation inherent to this and similar works on threat analysis is
that it relies on the intuition of the threat analyst, even if a systematic
approach is used. This can cause threats to be overlooked.

7.2 research using mobile data donations

Using mobile devices in data collection campaigns for research pur-
poses has many advantages over conventional study designs [276].
Potential participants are easier to reach if the geographic location is
not a barrier. It is also a simple way to conduct studies that monitor
behavior or habits over time. Additionally, shorter data collection in-
tervals are feasible and built-in smartphone sensors allow for objective
measurements. Problems with mobile studies arise because non-sensor
data is collected by the study subjects themselves, making it subjective
and in some cases unreliable.

7.2.1 Functionalities used in Practice

To understandwhich functionalities a privacy-preserving data donation
system has to provide, the existing scientific literature on studies using
mobile devices for collecting sensitive and medical data is analyzed. To
this end, we queried the medical publication platform PubMed [233]
for clinical trials focusing on mobile health using smartphones and
apps. This yielded 74 apps. We first identified categories of app func-
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Table 7.1: Themost relevant functionalities used by data donation apps. A total
of 74 apps from the digital library PubMed [233] were analyzed.
Table as in [8].

Category Count

Informing and educating 45

Self-tracking 44

Reminders and notifications 37

Feedback to participant 29
App interaction 24
Questionnaires 23

Communication with professionals 19

External sensors 10
Wearables 9
Camera 7

Communication between participants 6

Habits in the digital realm 4

Gyroscope 2
GPS 2
Pedometer 2
Sound 1

tionalities. In the next step, for each app, the provided functionalities
were analyzed. Multiple categories per app were possible.

The literature review revealed that the following functionalities are
relevant to researchers (see Table 7.1 for a quantitative overview). The
most required feature is to inform and educate participants about the
study and the studied health issue, as well as provide self-help infor-
mation.

Also noteworthy is the self-tracking of study participants to collect a
history of data on symptoms, triggers, medication, quality of life, and
other subjective measurement. Here, the focus lies on collecting a small
number of measurement continuously in regular intervals. Self-tracking
is directly linked to providing feedback to the study participant, for
example, about the progress made. If an app requires study partici-
pants to manually enter values measured by external (unconnected)
instruments on a regular basis, the app also falls into this category.

Closely related to self-tracking are questionnaires. However, com-
pared to self-tracking, questionnaires allow for more complex questions
and a larger number of questions. Here, the focus does not lie on pro-
viding feedback to study participants. Rather, questionnaires are an
evaluation method for the researchers. Study participants can be asked
to complete questionnaires once or multiple times during the study
period.
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Half of the analyzed apps provide feedback to study participants
using the supplied data. The nature of this feedback is diverse. Some
apps visualize the collected data, while others use notifications, for
example, to inform participants how many calories they have left for
the day. Sending push notifications, for example, for reminders, is a
feature many apps use.

Aside from manual data collection through questionnaires and self-
tracking, one third of the apps require study participants to interact
with the app, e.g., for experiments, tasks, training, or games. Some apps
in this category provide direct feedback to study participants to help
them understand their mistakes and progress.

Another category is apps that use external sensors to collect mea-
surements from study participants. These sensors are paired with the
mobile device to directly transfer measurements to the study app. Note
that apps that use off-the-shelf wearables were considered separately.
Both approaches for collecting objective measurements turned out to be
almost equally important. Surprisingly, only a few apps require access
to the mobile device’s internal sensors, such as the gyroscope, the GPS,
or the pedometer. Apps that use one internal sensor often also use other
internal sensors. The number of apps that tracked the usage of apps or
online behavior of study participants, in short, monitoring their habits
in the digital realm, is low in this literature review.

Communication turns out to be an important aspect of data dona-
tion apps in the medical field. A quarter of the apps contain features
supporting or facilitating communication with professionals such as
doctors, nurses, or medical technicians. Apps enabling communica-
tion between study participants/people with the same health issues
occurred less often. Communication with professionals and between
study participants is especially interesting in the context of privacy.

Some studies employ functions described above in combination with
conventional or sit-in data collection such as scans, DNA analysis, or
ECG. Unlike classical crowdsourcing, study apps in the medical field
often intend to provide a simple form of health care for the participants.
Some apps also fall under the category of public health intervention
that aims to improve the physical or mental health of the general public.

7.2.2 Methodology

The literature review described above was performed following
the PRISMA guidelines for reporting systematic reviews and
meta-analyses [202].

The PubMed search was conducted on February 24th, 2023, and has
been limited to publications since 2018. In total, the search returned
339 publications. We analyzed the top 100 publications presented by
the platform when sorted by relevance. Of these, two publications
were duplicates. Another 20 papers were excluded because no full-text
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version was publicly available. An additional four publications were
ignored because they either did not present an app or presented apps
not targeting patients or their caretakers. The remaining 74 publications
included in our review were all peer-reviewed and published. Four
publications of these presented two or three apps in the same paper. In
these cases, the authors of the respective paper tested the same appwith
an increasing set of functionalities or in combination with an app for
professionals. In our evaluation, we only considered the app for patients
or their caretakers in the configuration with the most functionalities.

A reason why only a few of the analyzed apps used internal sensors
or tracked online behavior and digital health might be related to the
methodology. Only medical apps associated with clinical trials were
selected. Clinical trials might not be required for research on mobility
and digital health. Research apps that use more internal sensors might
also be associated with the fields of psychology and computer science.
Such publications may be unlikely to be indexed by PubMed.

7.3 relevant parties and their requirements

As seen in the prior section, mobile apps can offer a wide range of
functionalities for crowd-sourced medical research. The motivations of
researchers and donors are a vital part of understanding their security
and privacy needs. To this end, a literature review is conducted and
contextualized to model the needs of the relevant parties toward a
data donation system. Privacy requirements are derived from literature
on data-sharing behavior and the assumptions that parties behave in
their self-interest. In the following, the security, privacy, and functional
requirements of researchers, donors, app store, and professionals as
well as their motivations are discussed.

7.3.1 Researchers

Researchers want to collect private data from participants for their study
through an app on the participant’s mobile devices. This study app is
developed by the researchers or a third party hired by the researchers.
It is provided for download on a website or in an app store.

In the first step towards such a study app, the study needs to be
designed. While doing so, researchers need the flexibility to select the
best study design for their research question. Studies can have various
formats, such as questionnaires, continuous measurements of specific
data types, or assignments to participants where they have to react
to or interact with input. Data collection of studies can occur once or
continuously by querying participants repeatedly.

When conducting the study, there are several aspects that researchers
must consider to obtain meaningful results [276]. A minimum number
of participants is required so that statistics become meaningful. To im-
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prove the study’s statistical validity, the pool of potential participants
should be as large as possible. A wide variety of participants is also
necessary. Especially in studies with human subjects, it is often essential
to have participants from diverse demographics so that results do not
suffer from selection bias. Conclusions drawn from a study involving
only participants from, e.g., a specific university might not general-
ize well. Here, studies using mobile devices provide an advantage to
researchers over conventional study designs as potential participants
are easier to reach through advertisements on the Internet [294]. Also,
app-based data collection can be performed across large geographic
areas if no data is collected in a lab or by a doctor.

Rich data is particularly interesting to researchers when trying to un-
derstand complex relations. Often, researchers require a large number
of data points for specific analyses. Modern methods of data collection,
such as self-tracking apps or wearables, also open up new possibilities.
However, for data to be useful to researchers, it has to fulfill qualitative
requirements. Incomplete, inconclusive, or illogical responses and out-
liers have to be identified to guarantee meaningful and stable results.
Metrics that cannot be objectively measured require special attention
during analysis to identify biases. It is also essential that the impact of
manipulated or bad data is limited. This means that researchers need
to be able to filter data and identify misbehaving or malicious donors
to remove their data.

As researchers are required to follow legal guidelines for data protec-
tion such as the GDPR [132], it can be assumed that they aim to protect
the collected data from unauthorized third-party access. Researchers
also have a self-interest in protecting intermediate results and findings
until publication. Proper data privacy can also ensure that researchers
retain the trust of participants. This is especially relevant if further stud-
ies are to be conducted. On the other hand, the researchers’ main goal
is to conduct a study and focus on the evaluation. They may not be IT
experts, so it can be assumed that they do not spend large amounts of
resources on privacy or security considerations.

7.3.2 Data Donors

Study participants, also called data donors, take part in a study conducted
by researchers. Through the study app, they provide data they collected
themselves. The reasons for data donors to participate in studies are
manifold. Apart from financial incentives and simple altruism, data
donors might want to improve research on a problem they experience
themselves or try to understand the research topic at hand [184, 290].
Data donations can also come from a sense of social duty. Benefiting the
public good and a legitimate scientific cause also impacts the decision
to donate data [184, 290]. In the case of study apps which also function
as public health interventions, taking part in a mobile study can be an
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easy and private way to get help [276]. Especially if the target of the
study is mental health, downloading an app might be less stigmatizing
than going to a doctor. Also, help is immediately available as compared
to the long waiting times common in the health sector.

Privacy is an important aspect for data donors. They will not par-
take in a study if they expect disadvantages or drawbacks due to their
participation [184, 288]. Data donors also want to protect their data
from misuse, such as unauthorized publishing, selling, or usage for
purposes unrelated to the initial study [172, 184]. This can conflict
with researchers’ interests as they might want to use collected data
for further studies, redo evaluations, or share it with colleagues inter-
nationally [231]. Data donors expect their data to be protected from
unauthorized access after donation.More generally, data donorswant to
retain autonomy over their data [22, 184, 278]. They might also want to
withdraw their consent to data sharing after data has been donated. In
countries where the GDPR applies, researchers are required to provide
this functionality [132].

The user experience is also an important aspect when donating
data [84, 145]. Data donors require simple ways to donate their data
and will not spend a long time trying to find relevant studies or figuring
out upload processes. The app needs to be easy to use as donors shy
away from burdensome processes [281]. Another usability requirement
is that the process of donating data with a mobile device should only
take few resources and be finished quickly so that the device can be
used again for other purposes. While this seems self-evident, it is a
crucial part when looking at computation or communication-heavy
mechanisms for privacy protection.

7.3.3 App Store

It is important not to forget that researchers and data donors need some
way to connect. Typically, this is done over a university mailing list
or via advertisements. In the context of data donations using mobile
devices, the respective app store can fulfill this function. It distributes
information about studies and researchers’ study apps to potential
participants.

The app store is a platform that offers third-party apps to its user base.
It is, therefore, not directly responsible for the apps which are available
for download. However, to retain the trust of its user base the app store
has a self-interest in ensuring the quality and reputability of published
apps. For this reason, the app store enforces requirements on new apps
that are uploaded. Among other things, this includes privacy policies
as well as malware screening. If it distributes (too many) malicious
apps, users might switch to other platforms.

We derive some functional requirements the app store itself needs
to satisfy in a data donation system. First, it should make it simple for
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researchers to announce their study to a broad audience and to address
their target demography. It also should inform potential participants
about the purpose of the study and the institution collecting the data.
Additionally, it needs to provide a form of authenticity to data donors.
This means the app store should make it easy for the data donor to
identify legitimate studies and institutions. To this end, the app store
needs to have the trust of both potential participants and researchers.
Researchers might fear their reputation is in danger if they release
research apps in an app store with too many bad apps.

7.3.4 Professionals

As seen in Section 7.2, some studies rely on professionals as a point of
contact for donors. These professionals can be hired through the study
or they may be the donors’ existing primary care providers. They aim
to help donors with their medical, psychological, or technical problems.
Since it is their profession, the fact that professionals work for a par-
ticular study is not private information. Professionals are unlikely to
share personal details with their clients. However, the way they interact
with donors as well as how, when, and where they use the study app is
sensitive information.

7.4 methodology and model for threat analysis

In this section, privacy threats to standard data donation campaigns
are described. For this purpose, first the data flows of such an exem-
plary campaign are modeled. Then, this model is analyzed using the
LINDDUN framework to identify privacy threats.

7.4.1 Threat Model

For our privacy analysis, we assume that all parties can behave in a
malicious fashion. This includes data donors, researchers, professionals,
the app store, as well as external third parties such as hackers and
network observers. Hackers gaining access to the infrastructure of a
party are mostly equivalent to the party behaving maliciously. Using
systematic analysis, threats that result from such behavior are identified.
We assume that the operating systems of mobile devices and servers
are trusted not to upload data to external parties by default. However,
all devices and servers are in danger of being hacked. This can happen,
for example, through a vendor or a supply chain attack.

Data minimization principles were applied during the analysis to
identify data leaks and privacy threats.
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7.4.2 The LINDDUN Framework

The LINDDUN privacy engineering framework [103] enables an analy-
sis of systems to identify new and unknown privacy threats. The frame-
work separates threats into the following categories: linkability (L),
identifiability (I), non-repudiation (N), detectability (D), disclosure
of information (D), unawareness (U), and non-compliance (N). To
analyze a system with LINDDUN, it must first be modeled as a data
flow diagram. Here, entities, data stores, processes, and data flows of
the system are identified. Not all aspects of the system have to be mod-
eled. However, all processes where potentially private data is processed,
stored, or transferred should be represented.

In the next step, threats are identified. For this purpose, each entity,
data store, process, and data flow is checked to see whether one of
the LINDDUN threat categories (see above) applies. The categories
of unawareness and non-compliance are only relevant for entities. If a
threat category can be applied to an element (for example, a data store),
the LINDDUN threat tree catalog is used to determine whether it poses
an actual threat to the system. Each threat tree represents common
attack paths for a specific threat category and element type (either
entities, data stores, processes, or data flows). Relevant threats that are
identified this way are documented. Assumptions made regarding the
system are also recorded. The framework provides a methodology to
manage the identified threats. We only analyze an exemplary system, so
we do not apply this last step. However, we discuss potential solutions
for the identified threats.

7.4.3 A Model for Common Data Donation Campaigns

Figures 7.1, 7.2, and 7.3 taken together represent the data flow model
of a standard data donation campaign. For simplicity and better com-
prehensibility, we split the model into three parts. Detailed data flows
inside the same zone of trust are only modeled when necessary. The
analysis only considers data flows that transfer information between
entities during the analysis.

Figure 7.1 shows how the researchers’ app is installed via the app
store on the mobile device of data donors. Researchers publish their
study app via the app store. The app store analyzes new apps to ensure
compliance with its policies and to detect if malware was incorporated.
While not specifically relevant for privacy, this step ensures security.
Data donors search for new apps and download the study app from
the app store.

Figure 7.2 shows the basic flow of data between the researchers and
the donors after the app is installed. Using the app, donors collect data
on their mobile devices. To donate, they upload the collected data to
the researchers’ servers after authenticating themselves. Feedback for
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Figure 7.1: Model of the data donation process from app creation to app
download by the data donor. Processes under the control of the
researcher are highlighted in red. For the donor, green is used, and
the app store is blue. Trust boundaries are shown as dashed lines.
Figure as in [8].

the donors can be generated based on the uploaded data. Data are
processed, stored, and analyzed by the researchers. The results are
published or shared with third parties.

As seen in Section 7.2, a significant number of study apps aim to
facilitate communication between donors or between donors and (med-
ical) professionals. Both flows are modeled in Figure 7.3. Donors can
communicate via the researchers’ server with other study participants
and professionals. We assumed here that researchers host the commu-
nication infrastructure themselves. However, if a third party manages
this infrastructure, the same privacy threats arise. The communication
is stored on the servers, the donors’ devices, and, if applicable, the pro-
fessionals’ devices. To initiate conversations, donors and professionals
have to authenticate themselves. Data regarding the communication,
such as metadata or contents, can also be donated by the donors. The
donated communication data and data collected from the message
exchange server can be used during the researchers’ analysis.

Assumptions regarding the represented system are made during the
creation of the model. First, it is assumed that there is an app signing
process. The app store correctly detects malicious apps that contain
malware or try to trick donors. Communication between entities is
properly encrypted even if messages are exchanged via a platform such
as the researchers’ server. All private keys are only available to the party
that uses them and cannot be derived by another party.
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Figure 7.2: The data flow of a minimal study app. Trust boundaries are shown
as dashed lines. Figure as in [8].

All data stores are accessible to all internal users. For the researchers’
side, this can be a larger number of people. Collaborations between
different entities, such as the app store and researchers, are not in the
app store’s self-interest. However, the app store can assume the role of
a researcher.

We do not consider that researchers plan to conduct a particular
study as private information. Due to the declaration of Helsinki, it is
best practice for medical studies to inform the public about planned
studies and their study design before starting [39]. For this reason, it
was also assumed that researchers do not make changes to the app
while the study is in progress.

7.5 threats

In this section, the attack surface exposed by the data flow of standard
mobile data donation campaigns is analyzed. This encompasses privacy
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Figure 7.3: Data flow model for a study app that, in addition to the basic
functionalities, allows donors to communicate with one another
and with professionals. Trust boundaries are shown as dashed
lines. Figure as in [8].

threats as well as additional weaknesses that endanger the functionality
of mobile data donation campaigns.

7.5.1 Privacy Threats

We identified the following 13 threats to privacy using the LINDDUN
threat taxonomy. See Table 7.2 for a summary.

Unawareness of Data Sharing

The data collected by the study app from donors, their devices, or their
communication might diverge from what the donor expects. This can
happen because donors are unaware certain categories of data are col-
lected, stored, and processed at all. Theymight also not understand how
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data is handled. The reasons for this can be diverse. Donors might not
read the privacy policies because they are too long[22]. Alternatively,
the language used by the privacy policies or the study descriptions
might be difficult to understand.

Donors might also provide too much information due to insufficient
feedback about which data is collected or due to a lack of user-friendly
privacy support. Professionals may also be unaware of the data being
collected about them and their communications with donors. Although
they themselves are not study subjects, their professional advice, in-
teraction with donors, and messaging behavior are private and can
become part of evaluations.

Removal of Data

We assume that researchers follow the GDPR [132] and provide donors
and professionals with means to delete their data. However, it becomes
more difficult if a person wants to have the data of others deleted
because it contains information about them.Once amessage has reached
the device of another study participant or professional, it cannot be
ensured that the relevant data is deleted if this is requested. The data
might have already been saved as a screenshot or copied to a location
where the study app cannot delete it.

Non-Compliance

Extensive data sharing might also be caused by an insufficient privacy
policy that leaves out details. Furthermore, researchers might choose
not to comply with the privacy policy and use donated data for other
purposes. For example, they might conduct a study different from the
one advertised. They could also use the collected data to start their
company, similar to the Cambridge Analytica case [77]. Here, data col-
lected via Facebook for psychological research was misused for political
campaigns.

Researchers and professionals might try to identify data donors in
studies where donors are only identified through pseudonyms. Rei-
dentified private data can be used to harm or violate donors’ privacy
by being disclosed to third parties. Researchers can also harm the pri-
vacy of donors and professionals through inadequate anonymization
of published results [44, 106, 183].

Data Extraction

An external adversary can try to extract data from study participants
who communicated with others or donated their data. The latter is
feasible if the researchers’ feedback (see Figure 7.2) is calculated based
on data collected from other donors. If no data anonymization method
is used, such as Differential Privacy (DP) [108], the adversary may be
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23 Section 8.1.3 in the
following chapter
explains DP and how
it can be used for
removing the
contribution of
individuals from data
sets.

able to deduce the responses of other donors by uploading specifically
crafted data 23.

If the study app allows interactions between participants, the attack
surface increases. An attacker might pose as a study participant to
communicate with honest participants and extract information. Both
content and metadata can be used to link or identify these participants,
which can result in the leakage of medical data. Honest study partici-
pants might not be aware that the receiver of their messages cannot be
trusted.

We assume that professionals do not reveal private information about
themselves in communications with donors. However, the way they
interact with donors, as well as how, when, and where they use the
study app, is sensitive. This information can be learned by a fake study
participant and used against the professionals.

We have not made any assumptions about how professionals are
selected for the study. They might be the participant’s primary care
provider, an outside professional willing to participate in the study, or
someone associated with the researchers. An adversary might choose
to impersonate a professional to provide bad advice to study partici-
pants and exfiltrate data. To combat the threat of fake professionals, the
enrollment process for professionals must be well-secured.

Leaks from the Data Stores

All data stores in the model are in danger of revealing private infor-
mation in case of a leak. A leak can occur through a malicious app on
the same device, a hack, or a stolen PIN. Access can also be forced, for
example, by domestic partners or law enforcement. Gaining access to a
donor’s data stores can reveal their medical information if they already
started collecting data, as well as their communication history with
professionals and other donors. Leaks from the data stores of profes-
sionals potentially reveal the health problems of all study participants
they have been in contact with. We assume that data stores that are
controlled by the researchers contain mostly the same data as what
is stored in the data stores of donors and professionals, but in larger
amounts. Therefore, they need to be properly protected from internal
and external unauthorized access.

Verification of Participation

Sadly, password reuse is still a widespread occurrence. An external
party can exploit this and try to authenticate at the server for data
collection with a username and password from other platforms. The
attacker can target a specific person or look for potential targets through
a dictionary attack, e.g., by using a database of stolen credentials.

Measures against such attacks include rate-limiting the number of
authentication attempts per account and IP. Authentication can also be
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Table 7.2: Summary of threats to privacy and functionality. Listed are the
parties which are threatened as well as the source. DD - Data Donor,
R - Researchers, AS - App Store, P - Professional, H - Hacker, NO -
Network Observer. Table as in [8].

Threat Target Source
Unawareness of Data Sharing DD R,H
Removal of Data DD DD,P
Non-Compliance DD,P R,P
Data Extraction DD,P DD
Leaks from Data Stores DD,P R,H
Verification of Participation DD H
Leaks through the App Store DD AS,H
Leaks through Network Traffic DD NO
Donor-to-Professional DD,P R,H
Donor-to-Donor DD R,H
Message Boards DD R,H
Message Types DD R,H
Deanonymisation from Logs DD R,H
Bad Data R DD
DDoS R DD,H
Fake Researchers R, DD R
Off-Brand Studies R, DD AS

realized without password, e.g. through cryptographic security tokens
or one-time passwords sent via SMS.

Leaks through the App Store

App stores collect detailed profiles of users of their platform [211]. This
includes information on users’ search, purchase, and download history.
This data is used to, e.g., recommend new apps. The collected data can
reveal private information such as medical predispositions and other
private information such as location. Depending on the app store’s
privacy policy, this data can be sold to third parties. This is especially
problematic if users are unaware of this data disclosure or if methods
and tools for improving privacy are not user-friendly.

Leaks through Network Traffic

It is well known that network providers collect personal data regarding
their customers based on their traffic [122]. This is possible because
network providers can monitor the traffic in their network. Even if parts
of the packets are encrypted, the routing information is transmitted in
the clear. By analyzing the traffic flow, a network observer can learn
who communicatedwith the researchers’ servers. This metadata reveals
who participated in a particular study. This can again be solved by using
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cover traffic. However, this might be difficult to achieve in the setting
of a study app that is only downloaded by interested parties. Another
option to mitigate this data leak is to use anonymization networks such
as Tor [301] or more powerful but high-latency mix-networks [98].
Covert channels can also be used to hide metadata from a network
observer. Here, the real data is hidden beside or inside other data.
For example, using domain fronting [300], the IP of the researchers’
server can be the same as the one of another highly popular service
unconnected to the study. The traffic of study participants is therefore
hidden.

7.5.2 Privacy Threats due to Insecure Messaging

In Section 7.2, we have seen that a surprisingly large number of studies
employ some form of communication between donors or with pro-
fessionals. Due to the large number of possible attack vectors when
messages are exchanged, this topic is now discussed in more detail.

As show for example by Frost et al. [128], patients can benefit from
actively sharing experiences and interacting with people in similar sit-
uations through online communities. However, anonymity plays an
important role in the decision to share clinical information online.When
researchers or a hired third party host a message exchange service for a
study, a large amount of communication metadata becomes accessible.
Since the 2013 Snowden Leaks, it is well known that communication
metadata is private information and can reveal much about the en-
crypted contents [196]. This means that metadata leakage must also
be considered when building an environment where data donors can
communicate privately or anonymously. Data donors might be willing
to donate parts of their communication data, but not all of it. Especially
if a third party handles the message exchange service, e.g., an existing
social platform such as Facebook or a popular messaging service like
WhatsApp, metadata collected from the study is in danger of being
misused.

In case of metadata misuse, the adversary is the researcher, a third
party that hosts the message exchange service, or a hacker who gained
access to the infrastructure. In the following, we assume that the mes-
sage exchange service is set up according to the best practices of using
end-to-end encryption and authentication between communicating par-
ties. This assumption is made as most papers in Section 7.2 presenting
mobile data donation apps did not go into detail regarding their app im-
plementation. A wide array of approaches for private messaging exist.
For example, the Signal protocol [307] supports encrypted communi-
cation point-to-point or in groups. It provides confidentiality, integrity,
authentication, forward secrecy, and future secrecy in case one of the
end devices is compromised for some time. Signal provides some de-
gree of message unlinkability as messages are not authenticated with
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non-repudiable cryptographic signatures but instead with ephemeral
keys and message authentication codes. This allows only the receiving
party to verify authorship. However, the facilitating server can still learn
who communicated with whom and when.

Donor-to-Professional Messaging

Let us take a look at the case where donors communicate with pro-
fessionals. Most studies analyzed in Section 7.2 which provide this
feature expect donors to only communicate with professionals when
there is an acute problem. The only exception was an app that uses the
messaging service for professionals to prepare their clients for the next
in-person meeting or assign tasks afterward. Both messaging patterns
reveal personal information about the donor and, in the latter case,
about the professional. An adversary with access to the servers running
the message exchange service can easily discover that a study partici-
pant communicated with a professional. The fact that a message exists,
even if its contents are encrypted, can reveal that a health emergency
occurred.

To prevent an attacker from observing these communication pat-
terns,the users’ messages can be hidden in cover traffic. Cover messages
are indistinguishable from real traffic to the observer but are sent ran-
domly. The pattern and frequency of fake messages need to imitate real
traffic realistically. A straightforward approach to cover traffic would
be broadcasting encrypted messages to all users [307]. Depending on
the number of participants, this is a simple but cost-intensive solution.
Some protocols, such as Express [113] and Pung [33], providemetadata-
resistant communication with formal guarantees. Similar to protocols
for private information retrieval [307], they can be computation or
communication intensive. This can impact usability as mobile devices
are often on metered connections.

Donor-to-Donor Messaging

Communication between donors can be either one-to-one or via a mes-
sage board. When communicating one-to-one, an adversary monitoring
the communication on the message exchange server (such as a hacker,
the host, or a malicious researcher) can build a social graph of the
donors. This can reveal which people struggle with similar issues and
problems. The privacy risks arising from the disclosure of the social
graph between the study participants are limited, as it is unlikely that
randomly selected study participants already know each other. How-
ever, extending a person’s social graph with information on the studies
they participate in poses a greater risk. This would be the case if existing
platforms where study participants already have an account are used
to facilitate communications, such as Facebook or commonly-used mes-
saging services. Solutions for making donor-to-donor communication
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private and metadata-resistant are the same as those mentioned in the
prior section.

Message Boards

Study participants might also communicate with each other via a mes-
sage board hosted by the researchers or a hired third party. To find new
groups and conversations to participate in, the general topics need to be
visible to all donors and, thereby, also to the researchers. An adversary
with access to the message board’s metadata, such as a researcher or
a hacker, can observe group membership. This information allows for
inferring which topics are relevant to a data donor. If a donor receives
an (encrypted) message from a specific group or thread, the topic dis-
cussed is likely relevant to them. Broadcast protocols are a solution to
hide which topics a donor is interested in. However, this only hides the
designated receivers. Also, broadcasts can quickly induce performance
issues as donors have to download large amounts of data. A less ex-
pensive solution building on the idea of cover traffic would be to have
donors join random groups and send cover messages to these groups.
Similar to one-to-one communication, private information retrieval
methods can be used to hide group membership.

Message Types

Some studies analyzed in Section 7.2 allowed data donors to send im-
ages, voice samples, or the configuration of their hearing aids to pro-
fessionals for examination. These data types differ from standard text
messages. The fact that a message with a certain data type was commu-
nicated must be concealed as it can leak private information regarding
the nature of the conversation. In particular, an adversary on the server
should not be able to tell an image from a text message. This can be
solved by padding messages if common messages are reasonably small.
Another option is splitting data into multiple messages with the same
length as performed by Tor protocol [301].

Deanonymisation from Logs

Communications via amessage exchange service can be linked by a user
ID but also via IP address, session ID, client settings, or behavioral pat-
terns. As network connections and login attempts are commonly logged,
messages can be linked even if user IDs are pseudonymous. The history
of logins can be hidden through anonymous credentials [98]. These cre-
dentials allow a verifier to determine that a person is authorized to use
a particular service without revealing their identity. They are also not
cryptographically linkable to previous server interactions. IP addresses
can be hidden from the researchers by oblivious HTTP where network
traffic is routed through an independent third party [298] (similar to
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a VPN), with anonymization networks such as Tor [301], or by using
more powerful but high-latency mix-networks [98].

7.5.3 Threats to the System Functionality

In this section, we discuss additional threats to the data donation model
introduced in Section 7.4.3. These threats were discovered during the
privacy analysis but do not threaten privacy but primarily security and
functionality.

Data donors can manipulate studies by sending flawed or skewed
data. Donors or an external party can also conduct Denial-of-
Service (DoS) attacks against researchers’ servers, for instance, to stop
an unpopular study. Vaccination studies have been in the center of
misinformation campaigns even before the pandemic [156].

Another potential threat is an adversary who poses as a researcher
from a trusted institution when uploading a study app to the app store.
This could be done to trick people into participating or to discredit the
respective institution or researchers.

The app store can copy study apps submitted by researchers to create
off-brand versions. It can also stop researchers and data donors from
collaborating by limiting the distribution of a study app or hiding it.
This is a DoS attack that is against the app store’s self-interest. Therefore,
we consider it unlikely.

7.6 chapter summary

In this chapter, we analyzed the motivations for both researchers and
data donors to conduct and participate in mobile data donation cam-
paigns. The literature review showed that privacy considerations play
an important role, especially for donors. Building on a meta-analysis
of the most common functionalities of data donation apps, we ana-
lyzed the privacy of such systems using the LINDDUN framework.
Our privacy analysis shows that researchers collect diverse data via
an infrastructure that does not thoroughly protect donors’ privacy. In
particular studies that allow socializing between donors or facilitate
communicationwith professionals need to pay special attention tometa-
data leakage.When creating a privacy-preserving design, it is important
to address these issues and also consider the functional requirements.
In the following chapter we will present a technical solution to collect
data in a privacy-preserving way.
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Data donation campaigns, such as those discussed in the previous chap-
ter, are not limited to health data. In 2020, Google published statistics
on the impact of the Covid-19 pandemic on user mobility to assist the
public in mitigating the virus spread [23]. For meaningful results, the
study relied on data collected from Google users. The privacy of these
individuals is protected through state-of-the-artDifferential Privacy (DP)
mechanisms.Despite the resulting limitations ofDP on accuracy, themo-
bility study has foundwidespread use in epidemiological modeling [63,
295], environmental research [197], policy [27], public health [148],
and urban planning [151]. While DP protects users’ privacy in public
statistics, the underlying data is often stored centrally, giving analysts
full access to all data. This is convenient but facilitates data breaches as
seen in the previous chapter. Analyzers who behave maliciously or who
have been hacked can extract and misuse data. Data can also be leaked
to third parties such as cloud or network providers. Data breaches and
misuse can, in turn, reduce users’ willingness to share data [143, 146] 24.

To ensure the trustworthiness of such data donation campaigns, hard-
ware and software solutions can complement legal measures. Trusted
Execution Environments (TEEs) such as Intel TDX [164], Intel SGX [83],
or AMD SEV-SNP [30], are technical approaches that protect processes
or virtual machines from malicious hosts in the cloud and allow clients
verify the code and contents of a TEE to establish trust. TEEs rely on the
host for paging 25, which exposes access patterns and control flow [239].
Oblivious Random Access Memory (ORAM) can hide access patterns and,
with some minor changes, can be run in TEEs in a server-only mode,
meaning no client-side storage is required. Oblivious data structures
like oblivious AVL trees 26 build on ORAM properties and index data
so queries can be answered systematically [224, 314]. In the case of
database queries, such as point and range queries, the leakage of query-
specific volume patterns are an additional threat to privacy as they
allow an adversary to reconstruct the database over time [178, 181, 194].
Hiding volume patterns is an open challenge in the setting of oblivious
data structures and databases for TEEs.

In this chapter,wepresentMenhir, a privacy-preserving TEEdatabase.
It protects against access pattern leakage and volume pattern leakage
in a server-only data collection setting. By leveraging TEE remote attes-
tation for Menhir, data subjects can rely on privacy guarantees against
compromised data analysts. They can also be sure that no private data
is leaked to the server provider.

127
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Mapping these guarantees to the data donation campaigns of the
previous chapter, Menhir ensures data donors can donate their data
without researchers or the cloud infrastructure learning private infor-
mation. While researchers can not learn sensitive data of individuals,
they can learn differentially private results. As mentioned above regard-
ing the aforementioned mobility study [23], such results can be very
versatile. Data donors can verify the integrity of the Menhir database
with TEE remote attestation to convince themselves that their data is
protected against extraction attacks and, thereby, against misuse. The
information required for remote attestation must be passed to data
donors by a trusted third party or must be publicly verifiable to ensure
the integrity of the database can be attested.

Menhir requires a server with a TEE such as Intel TDX or AMD SEV-
SNPwith remote attestation and, depending on the number of database
columns, in the order of 2.0 GB of RAM or more for 220 data points.
Menhir can also be applied to other TEEs like Intel SGX. Our evaluation
shows that insertion operations to the oblivious database are fast and
take around 10 ms even on a database with 224 data points.

Menhir allows storing data points with multiple columns in combina-
tion with an additional unindexed file with very little impact on query
performance. This makes Menhir well suited for crowdsourcing appli-
cations. It is also helpful for applications where the stored files must be
queried based on certain keys. These files can contain sequential data
or additional data fields. For example, in a research study on collecting
location traces, the indexed columns can contain personal details, while
the file itself is a long list of past locations. By adopting Menhir, privacy
can be safeguarded while generating insightful location histograms that
consider sensitive information such as infection status or occupation.
Furthermore, such files can potentially accommodate more intricate
forms of data, including images or voice samples.

The contributions are summarized as follows:

• We present an oblivious database that supports point and range
queries, SQL-like WHERE-clauses, and differentially private aggre-
gation. Our construction protects against both access pattern and
volume pattern leakage.

• We show how data volume pattern leakage can be used to extract
data from the state-of-the-art oblivious AVL tree construction
Oblix [224] and how protecting volume patterns with differen-
tially private sanitizers thwarts that attack. Our volume sanitizer
improves upon prior work [55] by guaranteeing correctness and
requiring fewer dummies for the same DP parameters.

• As part of our construction, we provide a multi-index data struc-
ture based on AVL trees that is optimized for ORAMswhile avoid-
ing expensive constructions such as oblivious priority queues.
This is of independent interest.



privacy-preserving data analysis 129

27 The source code is
available at
https://github.com/

ReichertL/Menhir.

• We prove the correctness and obliviousness of our construction.

• We published our implementation 27 and provide various bench-
marks showing its practicality.

This chapter is organized as follows. TEEs, the concept of oblivi-
ousness, and DP are introduced in Section 8.1. Then, related work is
discussed in Section 8.2. The threat model and an overview of the ob-
livious database construction are presented in Section 8.3. Section 8.4
discusses the details of the construction of the oblivious database and
improvements on oblivious AVL trees. This is followed by a perfor-
mance analysis in Section 8.5. Appendix B contains pseudocode and
proofs of the correctness and obliviousness of the Menhir database.

8.1 on trusted execution environments, oblivious algo-
rithms, and differential privacy

First, TEEs and their problems, such as access pattern leakage, are ex-
plained. We describe how ORAM can be generalized to data structures.
Oblivious data structures are used by Menhir to defend against access
pattern leakage. Menhir also prevents data leakage from volume pat-
terns and through malicious analyzers. To achieve these guarantees, DP
plays an essential role in its design. This concept is explained in detail
in the last part of this section. For volume pattern sanitation, truncated
distributions for noise generation are especially relevant.

8.1.1 Trusted Execution Environments

Trusted Execution Environments (TEEs) are a feature of CPUs that provide
secure runtime environments. It aims to protect code and data from an
adversary on the same system. Some TEEs only shield simple programs,
while others isolate complete virtual machines.

Intel SGX is a TEE available in Intel CPUs that aims to protect so-
called enclaves which run a single program. It suffered from various
design flaws and is especially vulnerable to cache-side-channel attacks
[239].

Intel Trust Domain Extensions (TDX) is a set of tools supporting virtual
machine isolation [272]. It aims to protect the virtual machines called
Trust Domains (TDs) even if their host is not trusted, i.e., the cloud
provider. TDX is designed to guarantee confidentiality and integrity
for the memory and CPU state of protected TDs. The TD host cannot
access the TD’s private memory unless the TD explicitly shares it. A
TDX module, supplied and signed by Intel, acts as a trusted middle-
ware between the host and TDs [165]. It provides various middleware
functionalities such as interrupt handling. Additionally, it protects TDs
from adversaries by recognizing active attacks based on single step-
ping, page faults, or zero stepping and by keeping branch predictions
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from leaking or being tampered with [162]. The TD owner is the entity
responsible for the software in the TD and updates to it. It, therefore,
needs to be trusted. Similar to its predecessor Intel SGX, a TDX TD relies
on the untrusted host for scheduling and paging. To run a TD, the host
switches to secure-arbitration mode and calls the TDX module, which can
then create, initialize, and schedule TDs. For paging, the host uses an
interface of the TDX module for adding and removing TD pages [162].
Unlike SGX, TDX aims to ensure confidentiality and integrity even
against side-channel attacks [165]. To mitigate some types of cache
side-channel attacks, a single bit is used for each cache line to signify
whether it belongs to a TD. In January 2023, TDX was released on the
4th Gen Xeon Scalable CPU platform. As of July 2024, these CPUs are
only available through cloud providers to selected customers [164].
Remote attestation plays a key role for TEEs. This feature allows a

challenger to verify that specific trusted software is running inside
the TEE. The remote attestation process of TDX first “measures” [165,
272] various integral parts of the system. The resulting measurements
allow to verify the integrity of TDX, its components, the corresponding
software versions, and loading processes as well as the code and data of
the TD. A quote is generated from thesemeasurements that is signed and
presented to the challenger. The challenger can verify the authenticity of
this quote by passing it to an attestation verification service. This service
can be run either by Intel or, in the case of remote attestation with Data
Center Attestation Primitives (DCAP), by a third party. A relevant part
of the quote is a cryptographic hash representing the identity of the
TD owner. The TD owner is responsible for the software in the TD and
updates to it and, therefore, needs to be trusted.

AMDSEV-SNP [30] is the third generation of AMD’s Secure Encrypted
Virtualization (SEV) TEE that provides trusted virtual machines on
AMD server CPUs. It was released in 2020 and leverages existing AMD
features for trusted computing like hardware memory encryption, the
Secure Processor subsystem (AMD SP) for key storage, and encryption
of the VM state on context switches. Additionally, SEV-SNP ensures
VM memory integrity against a host-level adversary. It also deals with
side-channel attacks by restricting interrupts to the trusted VM and
protecting branch predictions. Similar to TDX, the host is responsible for
scheduling and paging of the TEE VM, which provides a side channel
for an adversary with the capabilities of the TEE host.

Neither Intel TDX nor AMD SEV prevent leaks via cache-based side
channel attacks from code that performs secret-based memory access,
e.g., Prime+Probe [30, 166]. This can be solved by careful programming.
Additionally, neither system addresses hardware adversaries or Denial-
of-Service (DoS) attacks by the TEE host against the VM.
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8.1.2 Obliviousness

When processing that that is encrypted or otherwise obfuscated, access
patterns to the data can reveal their contents [181, 194]. This is espe-
cially relevant, for example, in the case of encrypted cloud databases.
To mitigate this leakage, algorithms and data structures can be made
(data-) oblivious so that program control flow and access patterns do
not depend on private data [225, 314]. In Section 5.3.1 we introduced
the concept of ORAM. In the following, this intuition is generalized.

Adapting the definition ofWang et al. [314], oblivious data structures
are defined as follows.

Definition 1. (Oblivious Data Structure).
A data structure D is oblivious if there exists a polynomial time simulator

S , such that for any polynomial-length sequence of data structure operations
#  »𝑜𝑝𝑠 = ((𝑜𝑝1, 𝑎𝑟𝑔𝑠1), ..., (𝑜𝑝𝑀, 𝑎𝑟𝑔𝑠𝑀)) it holds that

𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠D( #  »𝑜𝑝𝑠) 𝑐≡ S(L( #  »𝑜𝑝𝑠)).

where 𝑐≡ denotes the computational indistinguishability of two distributions.
The physical addresses 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠D( #  »𝑜𝑝𝑠) are generated by the oblivious data
structure during the sequence of operations #  »𝑜𝑝𝑠. L( #  »𝑜𝑝𝑠) = (𝑜𝑝1, ⋯ , 𝑜𝑝𝑀) is
the leakage function. It leaks only the operation types and the number of
operations, but nothing else.

This definition diverges from Wang et al. [314] to limit the amount
of padding required by allowing to leak the type of the operations that
are executed.

8.1.3 Differential Privacy

Differential Privacy (DP) is an approach for data anonymization that
aims to hide the contribution of a single individual by adding well-
defined noise to the output of a computation. Let 𝑥, 𝑦 be two data
sets where each data point contains sensitive information of a single
person. Data sets are called neighboring if they differ in at most one item,
i.e., the distance between the data sets is ∥𝑥 − 𝑦∥1 ≤ 1 for the 𝑙1-norm
∥ 𝑥 ∥1= ∑𝑛

𝑖=1 |𝑥𝑖|.
Dwork et al. [108] define (𝜖, 𝛿)-DP as follows.

Definition 2. (Differential Privacy).
A randomized algorithm 𝑀 with domain 𝑋 is (𝜖, 𝛿)-differentially private if
for all 𝑆 ⊆ range(𝑀) and for all neighboring data sets 𝑥, 𝑦 ∈ 𝑋:

Pr[𝑀(𝑥) ∈ 𝑆] ≤ exp(𝜖)Pr[𝑀(𝑦) ∈ 𝑆] + 𝛿.

where the probability space is over the coin flips of the mechanism M.
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In the case of 𝜖-DP (so if 𝛿 is zero), it follows from the definition
that for every execution of a mechanism 𝑀, all neighboring data sets
are equally likely to have produced the same outcome. For 𝛿 > 0,
this property is weakened. Here, (𝜖, 𝛿)-DP allows for the output of a
mechanism 𝑀 to be more likely to be produced by a specific data set 𝑥
than by a neighboring data set 𝑦.

In summary, a mechanism 𝑀 is differentially private if an adversary
cannot tell whether an arbitrary individual was part of the data set.
This property can be achieved by adding random noise to the outputs
of 𝑀. Noise needs to be calculated based on the maximal influence any
individual input can have on the output, also called the sensitivity Δ
of 𝑀. The most common approach to generating differentially private
noise is to draw noise from a Laplace distribution Lap(𝜇,𝜆) [108]. The
scale for the noise is proportional to 𝜆 = Δ/𝜀. The value 𝜖 (as used in
Definition 2) is called the privacy parameter or privacy budget.

Other variants of DP also exist that leverage different noise distri-
butions. As an example, take a set of values representing the age of a
group of students. Here, any negative value, as well as any value larger
than 125 years, would be invalid. A truncated Laplace distribution allows
accounting for this inherent logic of the underlying data [47]. After
shifting and discretizing, a truncated Laplace distribution TSDLap(𝑡, 𝜆)
has the following properties. Let TSDLap have a support of {0, ⋯ , 2𝑡}
and a probability mass function directly proportional exp(−|𝑥 − 𝑡|/𝜆).
Bell et al. [47] show that (𝜀, 𝛿)-DP can be achieved by drawing noise
from a truncated Laplace function with 𝑡 = ⌈Δ + Δ ln(2/𝛿)/𝜖⌉.

An essential property of DP is the immunity to postprocessing [108].
This means that once a differentially private mechanism 𝑀 is applied,
an adversary without additional knowledge of the private data set can-
not make the output less differentially private and increase the privacy
loss that results from observing a specific output. This property is also
relevant when combining multiple (sub-)algorithms that support DP.
Two differentially private algorithms can be composed with sequential
composition if they operate on the same data [108]. The new algorithm
then provides (𝜖1 + 𝜖2, 𝛿1 + 𝛿2)-DP. In case two differentially private
algorithms operate on disjoint private data sets so that no user is con-
tained in both sets, parallel composition can be applied [108]. This results
in (max(𝜖1, 𝜖2),max(𝛿1, 𝛿2))-DP.

Depending on the type of data in the data set that is to be anonymized,
certain data points might be correlated. This is the case, for example,
when two people are walking together or when people from the same
family provide data to a genomic data set. To account for such cases,
𝜖-DP can be extended to protect the privacy of groups of arbitrary size
𝑘 by increasing the privacy budget 𝑘 times [108].

DP has to be applied carefully and is best suited for large data sets.
Suppose there are only a few records in a database. In that case, the
signal-to-noise ratio can result in a bad utility of outputs as the influence
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of a single individual increases, which leads to excess amounts of noise.
The contribution of a single individual is usually considered to be a
single data point consisting of multiple values. However, defining the
sensitivity for anonymization is not as clear-cut in specific data sets,
such as location traces or social graphs.

8.2 related work

There are many approaches to realizing privacy-preserving data anal-
ysis. In this section, we present different approaches to this problem
with and without TEEs.

TEEs aim to protect data stored and processed inside as well as the
code executed against a malicious host or other types of adversaries on
the same system. However, depending on the underlying technology,
using a TEE can come with side-channel leakage [239]. At the same
time, TEEs provide a great advantage as the performance is better than
what is possible with most cryptographic approaches [187]. Also, the
guarantee provided by remote attestation can be valuable for systems
where trust needs to be well-founded.

A wide range of TEE database systems has been proposed in the past,
most ofwhich rely on Intel SGX for data protection.All these approaches
provide different database functionalities and security guarantees, es-
pecially when it comes to access and volume patterns. ObliDB [114]
provides the full range of SQL database functionalities. Encrypted ta-
bles are stored outside the SGX enclave in an ORAM and trusted code
runs inside the TEE. However, the trusted code does not hide its own
access patterns. Also, volume patterns are not considered by this ap-
proach. ZeroTrace [274] consists of a secure memory service on top
of an ORAM which runs inside an SGX enclave and operates oblivi-
ously. However, the memory controller of ZeroTrace does not provide
database functionalities. As a result, it does not take volume pattern
leakage into account. Oblix [224] uses the methods of Wang et al. [314]
to construct an oblivious AVL tree on top of ORAM. The authors pay
special attention to the leakage of access patterns from data structures
stored inside the TEE. In particular, they discuss how an ORAM client
can be changed to not leak access patterns itself. However, they do not
consider volume pattern leakage and reveal private information with
their query function (see Section 8.4.1). Patel et al. [246] present an
approach for volume hiding for encrypted databases without TEE. This
approach is similar to the one used byMenhir [55] and protects volume
patterns with (𝜖, 𝛿)-DP. They do not consider access pattern leakage.

TEEs are not the only approach to preserve privacy during computa-
tion and data analysis. Cryptographic protocols are another solution.
Multi-Party Computation (MPC) allows two or more parties to eval-
uate a joint function over the private inputs of the participants [291]
(see Section 5.1). MPC protocols often have quadratic complexity in
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the number of parties, so they are not suitable for applications with
many clients. In these cases, the computation can be outsourced as
proposed by Kamara and Raykova [177] and Prio [82]. MPC protocols
do not leak access patterns. They generally compute on all available
data, as no branching is allowed. They, therefore, do not reveal volume
patterns [123].

Encrypted Search Algorithms (ESAs) are another approach to protect-
ing private data in online databases frommalicious cloud services [129].
Here, the data is encrypted, so it is unreadable for anyone who does
not have the corresponding decryption key while still retaining the ca-
pability to search over it without decryption. This can be achieved, for
example, with ORAMs [292], homomorphic encryption [20], property-
preserving encryption, or searchable encryption. However, ESAs are
prone to data leakages such as access pattern and volume pattern leak-
age [178, 181, 194].

One main contribution of Menhir is our oblivious multi-index AVL
tree with a volume pattern obfuscation. Other approaches exist for ob-
taining oblivious algorithms or executables. ObliVM [205] is a domain-
specific programming language for writing oblivious algorithms. This
approach does not provide protection against volume pattern leakage.
GhostRider [206] is a compiler that creates an oblivious executable. For
this purpose, it employs ORAM techniques. However, GhostRider re-
quires a CPU with a custom co-processor making this approach unsuit-
able for off-the-shelf TEEs. OBFUSCURO [21] is an obfuscation engine
that aims to protect intellectual property by using ORAM techniques
to protect program code. While access and timing pattern leakage are
considered, volume patterns are not covered by this tool.

8.3 system design of menhir

This section gives a brief overview of Menhir and discusses the security
properties of our construction.

8.3.1 System Overview

An overview of Menhir’s architecture and possible attack vectors is
given in Figure 8.1.

Menhir consists of an oblivious database running inside a TEE. As
shown in the figure, data providers can insert or delete data in the
database.Data analyzers can analyze the collected data by issuing queries.
To protect the privacy of data providers, the response to each query 𝑞 is
anonymized with (𝜖, 𝛿)-DP using sequential composition. The database
relies on an oblivious AVL tree construction for the underlying data
structure (see Section 8.4). This construction supports indexing the
collected data over multiple columns, which allows queries to filter by
these columns. Additionally, an arbitrary file can be stored for each



privacy-preserving data analysis 135

TEE Host Angry

TEE VM

Oblivious
Database Database

Oblivious
AVL Tree

DORAM

insert

delete

query
1. Retrieve data D
2. Apply query
function fQ to D
3. Anonymize result

Data Provider

RA
insert / delete Angry

Data Analyst

RA
query Angry

DP Aggregates

Figure 8.1: Overview of Menhir. Attack vectors are highlighted. RA: Remote
Attestation. DP: Differential Privacy. Figure adapted from [6].

28 A DORAM is type
of ORAM where
accesses to the
position map do not
leak access patterns.

data point, facilitating a key-value storage with multiple keys. To pro-
tect against a malicious TEE host, all database operations hide access
patterns and obfuscate the volume pattern, that is the volume of data
required to answer a query.

Each data point consists of multiple keys and a value and is stored in
one block of a doubly-oblivious ORAM (DORAM) 28. Each block is part
of multiple oblivious trees, one tree per database column. This allows
the analyzer to write queries that filter the data by different columns.
Accesses to the trees are padded to the worst-case tree height to conceal
their structure. When processing queries, all relevant data points are
retrieved from the ORAM by accessing the root of the oblivious AVL
tree corresponding to the database column being queried. Addition-
ally, dummies are retrieved and processed to hide the amount of data
required to answer a query. The number of these dummies is deter-
mined through (𝜖, 𝛿)-DP. Before returning the (aggregated) result of a
query to the data analyzer, it is anonymized with (𝜖, 𝛿)-DP to protect
the privacy of data providers.

Menhir extends the previousworkOblix [224] from an obliviousAVL
Tree that only protects against access pattern leakage to an oblivious
database that supports range and point queries. Menhir additionally
protects against volume pattern leakage. For these improvements, sev-
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Table 8.1: Comparison of functionality and privacy guarantees between
Oblix [224] andMenhir. † Only oblivious retrieval of a fixed number
of data points). Table as in [6].

Oblix [224] Menhir
Oblivious
Data Structure

AVL Tree Database

Query Functionality Limited † More Comprehensive
(Point and Range)

Number of Columns
That can be Indexed

One Multiple

Access Pattern
Leakage Mitigated

Yes Yes

Volume Pattern
Leakage Mitigated

No Yes

Volume Sanitation
Mechanism

No Truncated Laplace
for (𝜖, 𝛿)-DP

Output Sanitation No (𝜖, 𝛿)-DP

eral essential changes had to be made to the underlying oblivious AVL
tree construction. One change is to provide amechanism for retrieving a
fixed number of data points from the oblivious AVL tree so that volume
sanitation can be achieved. Another change is providing database func-
tionality by constructing multiple AVL trees on the same ORAM nodes.
This allows filtering by different columns while minimizing the storage
overhead compared to Oblix. Also see Table 8.1 for a comparison of
Menhir’s functionalities to Oblix.

For sanitizing the volume patterns, Menhir relies on the findings of
Epsolute [55]. However, Menhir improves on the theoretical part of
Epsolute by introducing the truncated Laplace function for volume
sanitation (see Section 8.1.3). This allows dropping the failure proba-
bility for volume sanitation which was necessary in Epsolute. Unlike
Epsolute, Menhir can ensure that, in all cases, all data points relevant
to a query are retrieved and processed.

8.3.2 Threat Model

This section describes Menhir’s threat model. It considers two different
types of attackers with different capabilities: the client and the TEE
host.

Client

The client inMenhir can either be a data provider or a data analyzer. We
allow the client to be malicious. If the data provider is malicious, they
can perform insert or delete operations to manipulate the database
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and the data analysis. By uploading multiple data points, they can skew
the evaluation results or mount a DoS attack.

Amalicious data analyzer can try to use the query interface ofMenhir
to pose specifically crafted queries in order to reconstruct the database
contents. Menhir only allows DP aggregates to be returned by the query
function to defend against the above attacks. A malicious client, i.e. a
data provider or an analyzer, can collude with a malicious TEE Host
to infer more information about the data. However, Menhir prevents
any leaks resulting from such collusion by hiding access and volume
patterns.

TEE Host

In the threat model of Menhir, themain adversary has the capabilities of
a TEEHost. The host cannot see the data or code running inside the TEE.
However, it can observe the addresses of the accessed data and code
at cache line granularity [166]. These access patterns can be used to
launch cache-based side channel attacks such as Prime+Probe [30, 166].
In Menhir, we provide protection against these attacks using oblivious
data structures, such as the oblivious AVL tree, to hide access patterns.

Our source code carefully implements the presented algorithms by
removing data-dependent branching. To ensure no new branching is
reintroduced into the final binary through various compiler optimiza-
tions [285], a verified compiler such as CompCert [199] can be used,
which supports most languages that follow the ISO C 99 standard.
Other steps to solving this issue are turning off most compiler opti-
mizations and programming branch-aware code (e.g., by implementing
algorithms that are already data oblivious).

Even if the accesses to private data inside the TEE are carefully obfus-
cated, the number of accesses to a TEEdatabase can reveal the amount of
private data that is processed. This information can be used in database
reconstruction attacks mounted by the TEE host [181]. For this attack,
the TEE host needs to know the column and data interval requested by
database queries. In Section 8.4.1, an attack is demonstrated that uses
this information on volume patterns. However, for this reconstruction
attack, it is also sufficient if the TEE host only has knowledge about
how the private data is distributed [194]. We, therefore, assume that
the adversary can use the query interface of the database and pose ma-
liciously crafted queries. To mitigate the leakage of private information
through query results, all database responses are anonymized with
DP (“output sanitation”). To defend against database reconstruction
attacks using volume patterns, Menhir hides the number of data points
processed by a query with DP guarantees (“volume sanitation”).

The data points that are inserted into the database are uploaded by
potentially untrusted data providers. Therefore, it is possible for the
adversary to access the insert and delete interfaces of the database.



privacy-preserving data analysis 138

Although we do not consider timing attacks, the mechanism for
volume pattern sanitation makes such attacks more difficult. DoS and
power analysis attacks as well as attacks requiring physical access to
the TEE host are out-of-scope for Menhir.

8.4 oblivious database

In this section, we present the design of our oblivious database system
Menhir. The functionality Menhir provides is a database consisting of
a single table with multiple rows and columns that allows for insert,
delete, query, and pre-filtering similar to SQL WHERE-clauses. While
support formultiple tables is feasible, realizing privacy-preserving joins
poses its own separate challenges [190, 321].We leave extendingMenhir
to multiple tables for future work. The supported query types are point
queries (where all records with a specific key are retrieved) and range
queries (where all records falling into a specific interval are returned).
Only differentially private aggregates are returned to the analyzer.

8.4.1 Querying an Oblivious Tree

Our oblivious database extends the Doubly-Oblivious Sorted Multi-
map (DOSM) construction of Oblix [224]. The DOSM provides the
functionality of a key-value store and builds on a DORAM. First this
data structure is explained and its data leakage is analyzed. Then, the
improved construction called Menhir is presented that fixes this issue.

Doubly-Oblivious Sorted Multimap (DOSM)

Oblivious data structures can be built upon ORAM primitives. Wang
et al. [314] show that by replacing pointers in tree-like data structures
with pointers to the ORAM, it is possible to make data structures such
as AVL trees oblivious. Pointers to child nodes become pointers to
the corresponding ORAM block, so ptr𝑖 = (𝐼𝐷𝑖, 𝐿𝑖), where 𝐼𝐷𝑖 is the
ORAM block number and 𝐿𝑖 is the corresponding leaf in the ORAM
(see Section 8.1.2 in Chapter 2). Oblix [224] transfers this AVL tree
construction to a doubly-obliviousORAM to create aDOSM. TheDOSM
stores key-value pairs by organizing them as nodes in an AVL tree.
When computing operations on this tree, the root node, which is stored
separately, is used as the entry point. Depending on the operation, the
tree is traversed from top to bottom to either find a node with a certain
key or determine the correct location to insert a new node. All such
operations must be padded to the worst-case tree height ℎ𝑚𝑎𝑥 so that
no information is leaked about the structure of the tree. For an AVL tree
with 𝑛 nodes, ℎ𝑚𝑎𝑥 = 1.44 ⋅ log2(𝑛). Balanced trees require rebalancing
after insertion and deletion operations. These operations also need
to be padded to ℎ𝑚𝑎𝑥 and are not allowed to reveal on which level
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the insertion or deletion happened. The AVL tree construction allows
storing multiple instances of the same key by storing an additional hash
to distinguish between data points.

Oblix [224] proposes an algorithm for retrieving several records with
the same key. In short, the algorithm DOSM.FindOblix(𝑘, 𝑖, 𝑗) retrieves
all key-value pairs for key 𝑘 starting from index 𝑖 to index 𝑗. Although
not mentioned in the original paper [224], we can see that it is simple
to construct full point queries and range queries from this function: for
point queries, instead of using the 𝑖-th index, always use index zero,
and instead of the 𝑗-th index use the highest index possible for key 𝑘.
Similarly, range queries can be constructed by providing different keys
for the start and end of the interval.

Leakage through Volume Patterns

In the following, we show how the construction of the Oblix find func-
tion DOSM.FindOblix leaks volume pattern, which in turn leaks infor-
mation about the data points in the database. Following Definition 1
in Chapter 2 on oblivious data structures, the execution of functions
on an oblivious data structure is not allowed to leak any private infor-
mation to an attacker. Let us assume an attacker A who can monitor
the access patterns to code and data. Query responses to this DOSM
are computed using the DOSM.FindOblix function. A does not pose the
queries or learn the result. It is sufficient for them to know what ranges
are queried so they can observe the resulting patterns. In particular,
A can see the length of the return array of DOSM.FindOblix and use
this information to partially or fully reconstruct the DOSM keys. See
Figure 8.2 for an example. It shows clearly how insertion operations
into the return array provide a side channel to the adversary.

DOSM without Volume Pattern Leakage

As we have seen in Section 8.4.1, the DOSM.FindOblix algorithm of
Oblix [224] leaks information via its volume pattern. To mitigate this
leakage, the Find algorithm must not reveal the volume of data used to
answer specific queries. This has to include temporary data structures
like queues and arrays for which the adversary can observe access
patterns and volume patterns.

A naïve and information-theoretically secure solution for hiding the
volume of the data such that all queries are completely indistinguish-
able is to process the entire database every time [234]. However, this
is extremely inefficient. Consequently, as a trade-off, some informa-
tion needs to be revealed to the adversary for better efficiency. In the
context of distributed ORAMs, Bogatov et al. [55] proposed sanitizing
the volume patterns through DP algorithms. Here, using all keys, a
hierarchical histogram is created which is then perturbed with DP. We
employ this idea and determine the number of dummies 𝑑 used to
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Figure 8.2: Volume pattern leakage of DOSM.FindOblix. Observing the volume
of array 𝑅 allows the attacker to determine the approximate and
exact values of nodes. Figure as in [6].

hide the volume of a query with an (𝜖𝑠, 𝛿𝑠)-DP sanitation algorithm 𝑆.
Menhir improves the theoretical results of Bogatov et al. by using a
truncated Laplace distribution for sampling noise. This ensures that
the number of retrieved data points 𝑚 is never smaller than the number
of nodes 𝑛′ that need to be returned (we see that: 𝑚 = 𝑛′ + 𝑑𝑢𝑚𝑚𝑖𝑒𝑠).
The information learned by an attacker who monitors volume patterns
is limited through DP. The value of 𝑚 does not reveal the existence or
absence of a node associated with an individual. Optimal parameters
for 𝑆 can be found in [255]. After the data collection has ended and
before querying can start, 𝑆 uses the contents of the DOSM to compute
the DP-sanitized volumes for each key. When a query 𝑞 is posed, the
value of 𝑚 is determined by checking this data structure. For simplicity,
we write 𝑚 = 𝑆(𝑞).

To hide the volume pattern, the query function needs to process 𝑚
values when answering a query. Additionally, the DOSM must be ac-
cessed obliviously to not reveal the tree structure. Traversing an AVL
tree to sequentially retrieve a fixed number of data points is not straight-
forward as successors might be located in the right subtree of a node
(if it exists) or in a parent node (see Figure 8.3). Unpadded access to
the successor can reveal the tree structure and the level at which the
node is located. If all accesses are padded, the overhead of additional
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accesses to the ORAM becomes large. As a result, only queries with a
small selectivity would be possible.

A better approach is to change the structure of the AVL tree so each
tree node holds a pointer to its successor. When a new node is inserted,
the pointer of its predecessor is replaced with a pointer to the new node.
The new node reuses the predecessor’s old successor pointer. We now
define the functions for retrieving an interval of key-value pairs and
for inserting a new key-value pair into the DOSM. The corresponding
pseudocode is given in Algorithm 2 and Algorithm 4 in Appendix B.

• DOSM.Find([𝑘𝑆, 𝑘𝐸],𝑚) → [(𝑘𝑖, 𝑣𝑖)]𝑚
1 :

The algorithm is given an interval from start key 𝑘𝑆 to end key 𝑘𝐸
as well as a fixed number 𝑚 of entries to return. This algorithm
first traverses the tree to find the smallest node for which 𝑘𝑆 ≤ 𝑘𝑖.
The number of accesses is padded to ℎ𝑚𝑎𝑥. Having found this
first node, additional 𝑚 − 1 nodes are retrieved and added to
the output by sequentially accessing each node’s successor. The
algorithm returns a set of key-value pairs of cardinality 𝑚.

• DOSM.Insert(𝑘,𝑣) → ⊥:
The function is given a key 𝑘 and a value 𝑣. First, using 𝑘, the tree
is traversed starting from the root to find the insertion location
of the new node with (𝑘, 𝑣). This temporary parent must be a
leaf node conforming to the standard AVL insertion strategy. The
number of accesses to the ORAM for this step is padded to ℎ𝑚𝑎𝑥.
During traversal, the pointer ptr𝑝𝑟𝑒 to the predecessor and the
pointer ptr𝑝𝑎𝑟𝑒𝑛𝑡 to the parent are stored. The predecessor is the
last node on the way from the root to the leaf, where the path
turns to the right child. If the new node is the first node in the tree,
no predecessor exists and ptr𝑝𝑟𝑒 will point to a dummy node (see
Figure 8.3). In the next step, the tree is obliviously rebalanced
following AVL tree conventions. At last, the successor pointers
are updated. If the new node is the first node in the tree, then
its ptr𝑝𝑎𝑟𝑒𝑛𝑡 is used as successor. Otherwise, the new node copies
the successor pointer of the predecessor and then sets itself as
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successor. If a node does not have a successor because it is the
last node of the tree, the pointer will point to a dummy node. The
dummy node points to itself.

Using the adapted AVL tree, retrieval using DOSM.Find is possible
with O(ℎ𝑚𝑎𝑥 + 𝑚) ORAM operations and insertion using DOSM.Insert
can be done in O(ℎ𝑚𝑎𝑥) ORAM operations.

The correctness of the sub-procedure of DOSM.Insert for finding the
predecessor of a newly inserted node is given as follows. We call a node
smaller than another one if its key is smaller than the key of the other
node. In case both keys are equal, a hash associated with each node
is used to determine the order. The predecessor of a newly inserted
node 𝑁𝑛𝑒𝑤 is the largest node which is still smaller than 𝑁𝑛𝑒𝑤. The path
from the root to the leaf where 𝑁𝑛𝑒𝑤 is inserted consists of a sequence
of nodes that are either left or right children. Due to the properties of
the binary tree, for all nodes 𝑁𝑟 where the path diverges to the right, it
holds that 𝑁𝑟 < 𝑁𝑛𝑒𝑤. This is because all nodes in the right subtree of
𝑁𝑟 (where 𝑁𝑛𝑒𝑤 is added) are larger than 𝑁𝑟. Any 𝑁𝑟 that is found in
the right subtree of another 𝑁𝑟 is automatically larger and, therefore,
better suited as the predecessor for 𝑁𝑛𝑒𝑤. Therefore, the largest node
that is still smaller than the new node is the 𝑁𝑟 closest to the leaf level.
In case the path never diverges to the right and no 𝑁𝑟 exists in the path,
the new node is the smallest node in the tree and no predecessor exists.
Its successor is, therefore, the previously smallest node in the tree. This
node is the leaf node that was identified as the insertion location.

As we can see, the number of nodes that need to be altered after a
DOSM.Insert is limited and a single rebalancing is sufficient to ensure
that the AVL tree invariant is fulfilled. This is due to the fact that all
nodes in the tree have balance values of 𝑏 ∈ {−1, 0, 1} prior to the inser-
tion. The insertion will change this by one. The rebalancing will cause
the balance value of the node for which the AVL tree invariant was
broken (so |𝑏| > 1) to be set to zero. The remaining tree will not become
imbalanced if it was balanced before the insertion.

An optimization can be applied during rebalancing. The nodes re-
trieved during insertion are all nodes from the root to the leaf where
the new node is inserted. The rebalancing procedure to be executed
depends on the tree’s structure. For a left or right rotation, the nodes
that need to be updated are the one for which the invariant is broken
and one of its children. The imbalance is caused by the newly inserted
node. This means both nodes are on the path to the newly inserted node
andwere retrieved previously. In case amore complex left-right or right-
left rotation is required, balancing becomes more difficult. Again the
imbalance is caused by the change of subtree heights resulting from
the insertion of a new node. Let us take a look at right-left rotations
(left-right rotations work analogously). Let 𝑁 be the node in question,
𝑁𝑟 be the right child of, and 𝑁𝑟𝑙 be the left child of 𝑁𝑟. Rebalancing
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procedures that will cause a right-left rotation only occur after insertion
to either subtree of 𝑁𝑟𝑙. Both 𝑁𝑟 and 𝑁𝑟𝑙 have been retrieved when the
new node was inserted. However, as the values of the nodes might have
changed during the insertion procedure, they need to be retrieved again.
This means for all rebalancing operations at most three nodes need to
be retrieved from the ORAM, independent of the type of rebalancing.

8.4.2 Oblivious Database (ODB)

Menhir can store multiple columns of different types following a col-
umn layout schema 𝐹. Entries inserted into the database need to follow
this schema. It allows for point or range queries along all its indexed
columns. Additionally, analyzers can filter along one column. Menhir
allows for SQL Queries of the following format

SELECT 𝑓𝑗(𝑐𝑓, 𝜖𝑞) FROM database WHERE 𝑘𝑆 ≤ 𝑐𝑤 ≤ 𝑘𝐸

with query 𝑞 ∈ 𝑄 is defined as a tuple 𝑞 = (𝑘𝑆, 𝑘𝐸, 𝑐𝑤, 𝑐𝑓, 𝑗, 𝜖𝑞). The start
key 𝑘𝑆 and end key 𝑘𝐸 define a range that is used for filtering a col-
umn 𝑐𝑤. For the rows that remain after filtering, the values in column 𝑐𝑓
are passed to the DP aggregation function 𝑓𝑗. This function is passed
in the query via its index 𝑗. The function uses privacy budget 𝜖𝑞 for
anonymization, under the assumption that enough budget is available.

Construction

To create an Oblivious Database (ODB), we alter the nodes of the DOSM
(see Section 8.4.1) so that each row of the ODB is represented by one
node that is stored in theDORAM. For each of the𝐶 columns, aDOSM is
built using the same nodes. This requires each node to have 𝐶 pointers
to right children and 𝐶 pointers to left children. The resulting data
structure is a multi-index AVL tree. See Table 8.2 for an overview of
all information stored in an ODB node. Additionally, a total of 𝐶 root
nodes need to be stored as entry points to each DOSM. We define the
ODB as follows:

• ODB.Init(𝑁, 𝐹) → ⊥:
This function takes as input a maximum number of entries 𝑛𝑚𝑎𝑥
and a column schema 𝐹 with 𝐶 = 𝐹.𝑠𝑖𝑧𝑒, i.e., the number of
columns in the database. The function then calculates the required
block size for the DORAM using the schema 𝐹. Next, it initializes
a DORAM using 𝑛𝑚𝑎𝑥 and the block size. Last, space is allocated
for an empty array of length 𝐶 to store root pointers.

• ODB.Insert([𝑘1, ⋯ , 𝑘𝐶], 𝑣) → (ptr, ℎ):
This function takes as input a set of 𝐶 keys [𝑘1, ⋯ , 𝑘𝐶] and one
value 𝑣. The function computes a hash ℎ. It creates a new node
using the provided data and the hash. Then, the tree structure of
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Table 8.2: Information stored in the node of an multi-index AVL tree used as
basis for an ODB with 𝐶 columns. Table as in [6].

key1,⋯, key𝐶

value

hash

Column 1 ⋯ Column C
right_child_ptr1 ⋯ right_child_ptr𝐶

left_child_ptr1 ⋯ left_child_ptr𝐶

left_height1 ⋯ left_height𝐶

right_height1 ⋯ right_height𝐶

successor1 ⋯ successor𝐶

29 So 𝑘𝑐𝑓
or

alternatively 𝑣𝑖, if it
contains numeric
data.

each of the 𝐶 DOSMs is updated iteratively. The function returns
a pointer to the newly created node as well as a hash.

• ODB.Find(𝑘𝑆,𝑘𝐸,𝑚,𝑐𝑤) → [[𝑘𝑖,1, ⋯ , 𝑘𝑖,𝐶], 𝑣𝑖]𝑚
1 :

On input of an interval [𝑘𝑆, 𝑘𝐸], the required number of nodes 𝑚,
and the index 𝑐𝑤 of the column to be queried, this function
calls DOSM.Find starting with the root node for column 𝑐𝑤.
The function returns the keys and values for 𝑚 nodes starting
from the smallest node 𝑛𝑖 for which 𝑘𝑆 ≤ 𝑘𝑖,𝑐𝑤

. This function is
a sub-procedure of ODB.Query and is not exposed to database
analyzers.

• ODB.Query(𝑘𝑆, 𝑘𝐸, 𝑐𝑤, 𝑐𝑓, 𝑗, 𝜖𝑞) → 𝑓𝑗([𝑘𝑖,𝑐𝑓
]𝑚
1 )

On input of a query 𝑞 = (𝑘𝑆, 𝑘𝐸, 𝑐𝑤, 𝑐𝑓, 𝑗, 𝜖𝑞), determine the value of
𝑚 for the interval [𝑘𝑆, 𝑘𝐸] and column 𝑐𝑤 using the corresponding
volume pattern sanitizer, so 𝑚 = 𝑆𝑐𝑤

(𝑞). Next, ODB.Find is called
with the parameters 𝑘𝑆, 𝑘𝐸, 𝑚, and 𝑐𝑤. The call returns a set 𝑅 of
rows. Using the data for column 𝑐𝑓 of all rows in R 29, function 𝑓𝑗
is computed with privacy budget 𝜖𝑞. Then, the aggregated and
anonymized query result is returned.

• ODB.Delete(ℎ) → ⊥:
Upon receiving a hash ℎ, the corresponding node 𝑛𝑑 is searched.
This takes ℎ𝑚𝑎𝑥 accesses. The node 𝑁𝑑 is removed from the DO-
RAM. Then, all 𝐶 DOSMs are updated. For each DOSM 𝑐, a re-
placement is found for key 𝑘𝑐 of 𝑁𝑑. No replacement is necessary
if 𝑁𝑑 does not have any children in the DOSM for column 𝐶. If
𝑁𝑑 has only one child, this child is the replacement. If 𝑁𝑑 has
two children, the smallest node of the right subtree is used as a
replacement. The search for the replacement is padded to ℎ𝑚𝑎𝑥,
independent of the number of children of the deleted node. Once
a replacement is found, all nodes in the DOSM on the path to
the deleted node are updated. Again, this operation is padded to
ℎ𝑚𝑎𝑥.
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Figure 8.4: The size of the data domain 𝐷 to the expected number of dummies
needed for volume sanitation by Epsolute [55] and Menhir (lower
is better). 𝜀 = ln 2, 𝛿 = 2−20.

We prove the correctness and obliviousness of the ODB construction
in Section B.2 in appendix B.

The General Data Protection Regulation (GDPR) [132] allows people
whose data was processed to ask for it to be removed later. A delete

functionality is therefore required. The hash ℎ is computed from the
data uploaded by the data subject or from identifiable information of
the data subject. The latter allows the hash to be recreated if the person
is no longer in its possession.

Volume Sanitation

To hide volume patterns, 𝑚 values are retrieved from the database
when processing a query. However, not all of these 𝑚 data points are
relevant to the final result for the query (as some are dummies). It is not
possible to simply remove all dummies and then pass the array with all
relevant values to a DP library, as this would again leak the volume of
real data points. Instead, each DP function needs to process all 𝑚 entries.
When a dummy is processed, a dummy operation is made with the
neutral element to this operation, e.g., adding a zero for summation. As
the data distribution of each column 𝑐𝑖 is different, the corresponding
volume sanitizer 𝑆𝑖 for this column needs to be initiated with suitable
parameters. An overview of suitable sanitizers is provided by [255]. In
our implementation, we rely on the Epsolute sanitizer [55]. However,
by drawing noise from a truncated Laplace distribution, we achieve
correctness with a smaller noise overhead compared to Epsolute.

The Epsolute volume sanitizer functions as follows. When initializing
the database, the valid data range for each column is passed. For each
column, a binary tree with 𝐷 leaves is created, where 𝐷 is the size of
the (public, discretized) domain of the values in the respective column.
Each node at level 𝑙 in the sanitizer tree, starting with the leaves at 𝑙 = 0,
represents a range of 2𝑙 possible values. Each node of this tree is associ-
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ated with the number of database elements falling into the respective
range. The volume for any queried range can then be computed by
decomposing the query into power-of-2-sized ranges and summing the
values associated with the corresponding tree nodes.

To provide DP, Epsolute perturbs the value of each node in the san-
itizer tree with noise drawn from the Laplace distribution Lap(𝛼, 𝜆).
Here, 𝜆 = 1/𝜀 for point queries and 𝜆 = ⌈log2(𝐷)⌉/𝜀 for range queries.
Here, 𝛼 is chosen such that drawing 𝐷 samples guarantees that all sam-
ples are positive with probability 1 − 𝛽, for negligible 𝛽 [55, Section
4.6].

We observe that we can guarantee correctness with probability 1
by using a truncated, shifted Laplace distribution TSDLap(𝑡, 𝜆) instead
(see Section 8.1.3 in Chapter 2). This guarantees (𝜀, 𝛿)-DPwith non-zero
probability 𝛿. However, unlike 𝛽 in Epsolute, the probability 𝛿 does not
depend on the size of the domain 𝐷. Instead, it is only influenced by
the log2(𝐷) ones drawn for any particular user. Figure 8.4 compares
the expected number of dummies needed per node for Epsolute and
Menhir for a fixed choice of 𝜀 = ln(2), 𝛿 = 2−20. The number of nodes
in a binary tree required by Epsolute to compute 𝑎ℎ is set to 2 ⋅ 𝐷 − 1.
The figure shows that for Epsolute, the number of dummies grows with
O(𝑙𝑜𝑔(𝐷)2) depending on the domain size D. For Menhir, the growth is
slower with O(𝑙𝑜𝑔(𝐷)). This effect becomes evident for larger domain
sizes.

Output Sanitation

Before the analyzer can pose queries, data points that do not fulfill their
quality requirements need to be filtered out. Since data can only be
deleted and queries can only be posed afterward, there is no privacy
risk for data subjects.

The data analyzer might be interested in a broad spectrum of infor-
mation regarding the collected data. The problem is that even if the
data analyzer is honest, they might be compromised or hacked without
knowing. Therefore, to protect the privacy of data subjects, only differ-
entially private aggregates are returned. Menhir provides the private
aggregation functions COUNT, SUM, MEAN, VARIANCE, as well as the MOST
FREQUENT and LEAST FREQUENT item by using the Report-Noisy-Max al-
gorithm [108]. For a query 𝑞, a budget 𝜖𝑞 is used for the anonymization.
The privacy loss can be quantified using the sequential composition
theorem (see Section 8.1.3). For a total number 𝑛𝑄 of queries, this means
the loss is bounded by ∑𝑛𝑄

1 𝜖𝑖
𝑞.

The sensitivity for each column is derived from the minimum and
maximum values predefined by the attribute schema 𝐹. The database
system maintains the privacy budget. Data analyzers posing queries
can, however, specify how much of their budget they want to use for
each query. If the budget is used up, no more queries can be processed.
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While some works reset the privacy budget after a certain time [297],
we refrain from this approach as the data in the database does not
change after the querying phase starts.

Although the added noise changes the actual result, Bassily et al. [43]
have shown that DP can improve the result of statistical analysis. This
is because statistics aim to model a real distribution from observed
samples and draw knowledge from this real distribution. DP algorithms
can improve the generalization error which is introduced by the fact
that only a limited number of samples are available.

Non-private databases cover a wide array of functions, such as pro-
viding SQL-like GROUP-BY functionality, multiple tables, and allowing
different JOIN functions. Multiple tables can be easily implemented
with our approach by using a new ODB for each table. However, JOIN
functions have to ensure that volume patterns remain hidden. As this
is a complex task in itself, we point to related work on this topic such
as [190, 321]. Similarly, when realizing GROUP-BY functions, the number
of groups must be either padded to the maximum or sanitized using DP.
Wilson et al. [316] discuss how user contribution needs to be limited to
provide DP guarantees for SQL-like GROUP-BY operations.

8.5 evaluation

In this section, the performance and utility of the oblivious database is
evaluated.

8.5.1 Implementation and Measurements

The Menhir oblivious database is implemented in C++. The implemen-
tation uses parts of the Epsolute [55] source code for hiding volume
patterns. However, in Epsolute, the queried interval sometimes had
to be increased to fit the buckets of the volume sanitizer tree. As a re-
sult, additional data points were retrieved due to this padding, which
caused significant runtime overheads. Therefore, we adapted the code
so that all leaves of the volume sanitizer tree are associated with exactly
one element from the data domain instead of an interval. The Menhir
source code calculates the volume sanitizers 𝑆𝑖 once for each column 𝑐𝑖
individually. The implementation of the oblivious database can handle
integer and float values. When implementing the DP query function,
leakage from floating point operations was considered [65].

As the authors of Oblix [224] did not make their DORAM implemen-
tation public, we opted for using the readily available Path-ORAMback-
end of Epsolute. As discussed in the threat model (see Section 8.3.2),
data confidentiality is provided by the TEE. We, therefore, removed the
AES encryption for ORAM blocks to improve runtime.

All evaluations were conducted on an AWS server with 121 GB RAM
and 16 cores. The selected instance type r6a.4xlarge provides 3rd
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Figure 8.5: Performance of the ODB database for insertion, deletion, and query
operations. (a) Insertion time of the 𝑖th data point for ODBs with
different numbers of columns. (b) Runtime for retrieving one data
point from the ODB. (c) Runtime for retrieving a fixed number of
data points from the ODB. Figure as in [6].

generation AMD EPYC processors (7003-series) for which the AMD
SEV-SNP feature was enabled. Each data point in the following figures
consists of at least ten measurements. Error bars represent the 95 %
confidence intervals unless box plots are used. DP noise for volume
and output sanitation was drawn from Laplace distributions.

8.5.2 Performance

Figure 8.5a shows how fast new elements can be inserted into Menhir’s
ODB. Using more columns corresponds to an increase in runtime for
insertions, with a factor of 2.1 for two columns and a factor of 5.7 for
five columns. This is due to the fact that for each additional column, a
separate DOSM needs to be updated. Also, with an increasing amount
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of data stored in the DOSM and the increasing size of the underlying
ORAM, accesses take longer. We can see from the figure that insertion
performs well even for a large number of data points and takes less
than 10 ms for one column even when 224 data points are already in
the ODB.

The deletion operation also performs well despite the large amount
of padding required to obfuscate the tree structure when deleting a
node. For an ODB with 224 data points, deletion of one element takes
45.63 ms for one column, respectively 264.73 ms for five columns.

For analyzers, it is important to know how fast their queries can be
answered. Figure 8.5b shows how the query processing time is impacted
by the number of data points in the ODB. The influence of the number
of data points stored in the ODB on the runtime is logarithmic, while
the impact of the number of columns is constant. The number of points
retrieved from the ODB also affects query runtime. Figure 8.5c shows
that the overhead of retrieving increasingly more data points from
the ODB is a constant, independent of ORAM size and the number of
columns.

Table 8.3: Comparison of the data protection guarantees and retrieval per-
formance for multiple databases. The values for Oblix were taken
from [224]. ORAM speed is the latency for ORAM operations for
block size=64 Byte and ORAM size=105. Retrieval duration is given
for ORAM size=224, with m being the number of data points re-
trieved. Table as in [6].

Standard Naive Oblix Menhir Speed-up
(Oblix/Mehir)

Access Pattern
Protection

x ✓ ✓ ✓

Volume Patterns
Protection

x ✓ x ✓

ORAM Speed - 90.1 µs 125 µs 94.1 µs 1.3×
1 Column 0.107 ms 17.4 s ≈ 12.5 ms 11.6 ms ≈ 1×m=10
5 Columns 0.165 ms 24 s - 13.4 ms
1 Column 0.087 ms 732.4 s ≈ 25 ms 19.6 ms 1.3×m=60
5 Columns 0.082 ms 1065.4 s - 23.6 ms

8.5.3 Comparison to Other Databases

To compare against a naive baseline, we implemented a naive database
that consists of a list of data points. To query this naive database, first,
the number 𝑚′ of data points to be returned is determined through a
sanitized DP histogram. Then, an output array with dummy values
is initiated with 𝑚′ slots. Next, for every data point in the database,
the naive algorithm iterates over each slot of the output array. If the
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30 When talking
about OSMs in the
context of
parallelization, it
refers to the improved
OSM construction
consisting of a
multi-index AVL tree
that is stored in an
ORAM.

data point falls into the interval, the first dummy value encountered
in the output array is overwritten. The complexity of this algorithm is
O(𝑛 ⋅ 𝑚′).

In Table 8.3, we compare Menhir against a standard database
without any privacy protection, the naive approach described above,
and Oblix [224]. For the standard database without privacy, a
MariaDB [219] SQL database was deployed on the AMD SEV-SNP
server. Accesses were performed through a Python connector. As we
can see from the table, Menhir’s performance is in the same range
as Oblix’s, while it also provides volume sanitation guarantees. The
speedup in runtime shown in the table is likely due to differences in
implementation and used hardware. Menhir is faster than the naive
approach by a factor of 1500 with the same protections and only
between 108 times to 288 times slower than the approach without any
protection. As we can see, unlike the naive approach, Menhir’s runtime
allows for a real-world deployment.

8.5.4 Parallelization

The linear increase in Figure 8.5c can be used to extrapolate the expected
time it takes to retrieve a fixed number of data points. For an ODB with
one column, 224 data points and relying on an ORAM of the same size,
it would take around 10.3 s to retrieve 216 data points, respectively 15.1 s
for five columns. For an ODB using an ORAM of size 216, retrieving the
same amount of data requires only 6.4 s for one column, respectively
7.3 s for five columns. This insight can be used to improve the overall
performance of Menhir for larger data sets. By storing data in multiple
OSMs 30, which are accessed in parallel (each with a separate ORAM),
data points can be retrieved faster and the worst-case runtime for large
queries can be capped.

Parallelization in Menhir is achieved as follows. Multiple OSMs are
associated with the database, each with its own ORAM of fixed size.
New data points are always inserted into the newest OSM. A new
OSM is created when the maximum capacity of the last one is reached.
To delete a data point, all OSMs have to be checked. To calculate the
response for a query, the data returned by all OSMs has to be combined.

Let us assume a data set of size 224. In the worst case, a query re-
trieves all data points in the database. Using the extrapolated runtime
from earlier, it can be determined that each OSM should contain a max-
imum of 216 data points. To hold the complete data set, 256 OSMs are
required. AnOSMof size 216 requires 18.36 MBof RAM for one column,
respectively 58.43 MB for five columns.

Parallelization itself also introduces an overhead to runtime due to
caching effects. A query is also only as fast as the slowest thread. Ta-
ble 8.4 shows the runtime for various data set sizes and OSM sizes
to help determine the performance overhead introduced by accessing
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Table 8.4: Overhead in ms of using multiple OSMs for two different OSM sizes.
For eachODB, exactly 60 data points were retrieved in parallel. Table
as in [6].

DOSM Size
Data Set

Size
216 215 Factor

216 9.62 ± 0.12 9.20 ± 0.07 1.05
217 10.19 ± 0.17 10.79 ± 0.13 1.06
218 11.93 ± 0.16 21.07 ± 0.41 1.77
219 23.73 ± 0.42 42.03 ± 0.31 1.77
220 44.73 ± 0.36 74.48 ± 0.93 1.66

31 The data sets can
be found at the
author’s Github
repository [11].

multiple OSMs in parallel. For each OSM, exactly 60 data points were
retrieved in parallel. Note that the number of OSMs for different data
set sizes depends onORAM capacity.We can see that with an increasing
total number of data points, the runtime increases despite paralleliza-
tion. The drastic increase for 218 data points suggests that this is a side
effect caused by caching. Therefore, we repeated themeasurements on a
server with the same number of CPUs but a cache size 32 times as large.
The results mirror the measurements from the AMD SEV-SNP server.
However, the drastic increase for a DOSM size of 215 is shifted to a data
set size of 220. It is clear that the improvement of using multiple smaller
OSMs is limited by the overhead of parallelization. Thus, despite better
worst-case guarantees, the OSM size should be set with considerations
for the average case.

To guarantee this performance, each OSM should be associated with
one CPU core. It is not uncommon to have up to 64 cores even for con-
sumer CPUs. In the case of a data set with 224 data points, 4 machines
with 16 cores each are sufficient to privately query the data set while
guaranteeing one core per OSM. Offloading DOSMs to other machines
does induce an overhead as intermediate results have to be commu-
nicated over the network. However, if the round delay between the
central OSM and the satellite machines is low, parallelization improves
the overall runtime.

8.5.5 Real-World Data Sets and Use Cases

In this section, we evaluate the utility of Menhir on real-world data sets
and for different use cases. Many data sets used in related work were
not relevant for evaluating a database that focuses on volume pattern
sanitation, such as the key-value data sets used by Oblix [224]. Others
were unavailable, such as the Big Data Benchmark data set used by
Opaque [324]. For this reason, we evaluated Menhir on two other data
sets 31. As the TEE server used for measurements only has 16 CPUs, we



privacy-preserving data analysis 152

[1-
2)

[2-
3)

[4-
5)

[6-
7)

[8-
9)

0

1

2

3

Query Selectivity in %

Q
ue

ry
Ru

nt
im

e
in

s

Covid Data
IPFS Data

(a) Real-World Data Sets

10 20 30 40 50 60

6

8

10

12

14

Number of Retrieved Datapoints

Ti
m
e
pe

rQ
ue

ry
in

m
s

100 bytes
200 bytes
400 bytes
800 bytes

(b) Use Case Large File

[1-
2)

[2-
3)

[3-
4)

[4-
5)

[5-
6)

[6-
7)

[7-
8)

[8-
9)

0

0.5

1

1.5

Query Selectivity in %

Q
ue

ry
Ru

nt
im

e
in

s

10 Columns
20 Columns
30 Columns
40 Columns
50 Columns

(c) Use Case Many Columns

Figure 8.6: Performance of Menhir for different use cases. (a) Query dura-
tion for different query selectivities on two different real-world
datasets (dataset sizes= 220). (b) Time for retrieving a fixed num-
ber of data points, each associated with an unindexed file (dataset
size=216). (c) Query selectivity to query duration for larger num-
bers of columns (dataset size=216). Figure as in [6].
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limited the number of DOSMs to 16, allowing for a maximal data set
size of 220.

Real-World Data Sets

To evaluate Menhir’s performance on realistic data, we used a data set
collected from user requests on the Interplanetary File System (IPFS), a
Peer-to-Peer file storage system. The data was collected for research
purposes and was provided by the authors of [41]. For this evaluation,
all sensitive information, such as IP addresses and request IDs,
was removed from the data and replaced with pseudonyms. The
data set consists of one hour of captured IPFS traffic and contains
15,960,697 data points with eight attributes each. Figure 8.6a shows
the runtime for queries with a selectivity of up to 9% (corresponding
to 94,372 data points). Data is stored in ODBs of size 216 and queried
in parallel. In addition to the IPFS data set, another real-world data
set with more columns was also tested. The Covid-19 data set [241]
contains anonymized information on Mexican Covid-19 patients. It
consists of 220 data points and 21 columns.

Figure 8.6a shows how the query runtime changes for both data
sets and different query selectivities. Despite capping the worst-case
runtime, parallelization itself does introduce an overhead in the average
case.

Many Columns

As shown in Section 8.5.2, the number of columns impacts the query
runtime. Looking at the 20 most voted data sets from kaggle.com [175]
in the categories “health” and “survey”, themedian number of columns
is 32.5 with a maximum of 644 columns. To analyze the performance
of Menhir on a large number of columns, Figure 8.6c shows the per-
formance of Menhir for data sets with different numbers of columns
and 216 data points. The more columns of data are stored, the larger
the performance penalty during querying becomes. With less than 1.5 s
for a query on a table with 50 columns, the Menhir ODB is practical
even in this case.

Searchable File Storage

The ODB allows associating each set of keys [𝑘1, ⋯ , 𝑘𝐶] with a value 𝑣.
The size of this value is set when initializing the ODB. It can be used
to associate a file with each tuple of keys or store additional data that
does not need to be indexed itself. For all prior evaluations, the size of
the value was set to zero. Figure 8.6b shows how different sizes impact
query runtime for a data set with 216 data points and one column.
The figure makes clear that the overhead for having values of different
sizes associated with each data point is constant. We can see that using
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Menhir as a searchable file store with volume pattern sanitation is
practical.

8.5.6 Volume Sanitizer Overhead

To hide the response volume of queries, Menhir uses volume pattern
sanitizers. To estimate the number of data points that must be retrieved
for queries, a sanitizer 𝑆𝑖 is computed for each column 𝑐𝑖. The sani-
tizer 𝑆𝑖 is a differentially private histogram for the data domain (see
Section 8.4.2). The domain is computed based on the expected maxi-
mum and minimum values and the resolution of the data in column 𝑐𝑖.

For point queries, the histogram’s data structure is a flat array with
as many buckets as there are elements in the domain. To deduce the
noise required for a specific query, the corresponding bucket is checked
to get the sanitized volume 𝑚.

For range queries, the data structure of the histogram is a tree. There
are two approaches introduced by Epsolute [55] for volume sanitation
in this case. The no-𝛾-method requires that for each OSM, an indepen-
dent set of sanitizers is created. The 𝛾-method, on the other hand, is
optimized for a distributed setting and aims to keep the total noise
added as low as possible. Here, even if multiple OSMs are used, only
one sanitizer is required for each column.

Figure 8.7a and Figure 8.7b highlight the relationship between do-
main size and added noise for point queries and range queries. Here,
the no-𝛾-method and normal Laplace noise were used to compute the
amount of noise required for volume sanitation. All the queries used
for these graphs have a selectivity of 1% and the span for range queries
was fixed to 10. While the noise calculation for both point and range
queries depends on the domain size, the influence is clearly visible for
range queries but minimal for point queries. The progression mirrors
the expected noise as shown in Figure 8.4. Differences in expected noise
to measured noise can be explained by different parameterizations.

Figure 8.7c shows how much noise is added for range queries that
cover different ranges but have the same selectivity when using the
no-𝑔𝑎𝑚𝑚𝑎-method and normal Laplace noise. With the increased range,
more buckets in the sanitizer tree are required to cover the queried
range. As each bucket adds DP noise to the query, the total noise per
query increases. The plots show that the impact of the range of range
queries on the amount of noise per query is larger than the impact of
the domain size.

All three plots clearly emphasize the importance of settingwell-suited
parameters for the volume pattern sanitizers to best capture the (ex-
pected) data distribution of each column. This can be influenced by
defining a data resolution. For example, if the expected minimal data
resolution is 10, then buckets in the volume pattern sanitizer for any
values in between are not necessary. This is especially relevant for float-
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Figure 8.7: The amount of differentially private noise required for volume san-
itation. The number of data points is fixed to 220 and the selectivity
of queries is 1 %. (a) Noise applied to point queries depending
on the domain size. Here, the span of range queries is fixed to 10.
(b) Noise applied to range queries depending on the domain size.
(c) Noise applied for range queries depending on the span of the
query.Here, the domain size is fixed to 215. Figure as in [6].
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ing point data as the volume pattern sanitizer only allows for a limited
resolution of fixed size.

8.5.7 Discussion

As seen in Section 8.5.2, the runtime of each ODB is linear in the number
of elements that fall into the queried interval. Parallelization allows
limiting the worst-case runtime. This means Menhir is well suited if the
expected selectivity of queries is low, for example, in heavily distributed
or uniformly distributed data. If the database is first filtered by a column
containing binary data, the worst-case performance is to be expected.
Data resolution and how data is expected to be evaluated are relevant
for the decision on how well-suited Menhir is for a specific use case.

Another potentially interesting use case for Menhir would be an
interactive data collection setting where data can be queried while data
collection continues. This is possible, yet not optimal, in a setting with
a global privacy budget as the privacy budget might already be used
up when new, relevant data points are inserted. Queries on these data
points will not be answered in a setting with a global budget. Another
issue for the interactive setting is the approach Menhir takes on volume
pattern sanitation. Every time a query is posed after new data has been
added, the volume pattern sanitizers would need to be recalculated.
Hence, the privacy budget for sanitation in an interactive setting scales
with the number of queries 𝑛𝑄. We leave the optimization of this bound
for an interactive query setting for future work.

8.6 chapter summary

In this chapter, we presented Menhir, an oblivious database for TEEs
such as Intel TDX and AMD SEV-SNP that protects against access pat-
tern leakage and, unlike the previous works, also protects against vol-
ume pattern leakage. The database construction ensures that no trust
needs to be placed on the infrastructure hosting the TEE, as it’s options
for learning sensitive information is limited. Additionally, it defends
against malicious data analyzers trying to extract private data through
crafted queries. Data providers can verify the integrity of Menhir before
donating data by using remote attestation.

To arrive at the construction of Menhir, we first presented an attack
against the state-of-the-art oblivious data structure Oblix [224] by using
volume pattern leakage. To mitigate the volume pattern leakage, the
underlying AVL tree construction was changed to allow the retrieval
of fixed-size intervals from the tree. Building on the improved data
structure an oblivious database was designed for which correctness
and obliviousness were proven. By using a truncated Laplace function
for generating DP noise for hiding volume patterns, the amount of noise
is reduced and, therefore, also the performance overhead required. Our
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evaluation showed thatMenhir performswell even formany data points
and multiple columns. Larger files can also be associated with each
database row, while still retaining good query performance. This allows
for a wide range of potential use cases of Menhir.
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CONCLUS ION

This thesis focused on designs for preserving privacy during data collec-
tion and analysis that do not require data providers to trust in a central
entity. The need for such research emerged during the Covid-19 pan-
demic as it highlighted the dilemmas faced by decision makers when
balancing privacy and utility. The increase in new applications process-
ing sensitive data for the common good sparked public discourse on the
extent to which individuals are willing to sacrifice privacy to combat
the pandemic. The legitimacy of utilizing such data, even beyond the
pandemic, had to be re-negotiated time and time again. While some
downplayed the risks of Covid-19 or even denied the existence of a
pandemic altogether, others feared a rise in surveillance across all areas
of life. Achieving the overall goal of stopping the spread of Covid-19
required persuading as many voluntary participants as possible. To
reach those who were healthy but concerned about their data’s current
or future use, technical privacy guarantees served as tool for ensur-
ing cooperation. In this context, privacy is not in conflict with utility.
Instead, it amplifies it.

We contributed to the discourse in both the research community and
the public by presenting an extensive overview of approaches to Digi-
tal Contact Tracing (DCT). The analysis of sub-problems and privacy
issues provides a comprehensive collection of solutions for guiding the
design of contact tracing applications.With proposals on contact tracing
and super-spreader detection via presence tracing, we contributed to of-
fering solutions that can provide various tracing functionalities without
requiringmutual trust among the parties involved. This area of research
prepares societies for potential future epidemics and pandemics while
hoping for the best.

A positive effect of the pandemic and the widespread adoption of de-
centralized contact tracing is the increased public awareness of privacy-
enhancing technologies. The pandemic’s effect could serve as catalyst
for the field, opening the door for utilization in new areas. As seen
throughout this thesis, sensitive data accumulates during various steps
of data processing and analysis. Only focusing on obvious identifiers
when aiming to preserve privacy does not go far enough, as sources
of privacy leakage and the potential for data misuse are manifold. For
this reason, the focus of this thesis also encompassed the question of
how new knowledge or statistical insight can be obtained from sensitive
data. Here, we leveraged Trusted Execution Environments (TEEs) for
provable privacy guarantees. This approach is in contrast to the a major
dispute on the privacy of DCT as it opposes the division into central-
ized as non-private and distributed as inherently private by leveraging
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remote attestation features of TEEs. Achieving the collection and evalu-
ation of sensitive (medical) data without requiring mutual trust is a
first step towards a more privacy-oriented world.

To facilitate research in the field, the code base of our privacy-
preserving data analysis platform, Menhir, is open source. In addition
to improving the functionality of Menhir, other questions and problems
also need to be investigated further. While the data utilized in this
thesis was mainly contact information or health data, anonymizing
sequential data such as location traces or sequential measurements
poses a distinct challenge. Such data could be utilized, for example,
in future epidemics and pandemics by machine learning models in a
privacy-preserving way to discover new infections.

Protocols that protect privacy need to be tailored to a specific use
case to account for different sources of data breaches while remaining
efficient. The challenges of the future, therefore, require customized
solutions. However, thewheel does not need to be constantly reinvented,
and such solutions can benefit from leveraging or extending existing
ideas such as the one proposed in this thesis.
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APPENDIX



A
APPENDIX : OVERV IEW OF D IG ITAL CONTACT
TRAC ING APPROACHES

This appendix contains multiple tables that provide an overview of
Digital Contact Tracing (DCT) technologies and approaches.

Table A.1 compares multiple approaches that rely on the server for
computing the risk of individual users. Here, approaches that do not
protect the user’s privacy by revealing the risk to the server are listed.
Additionally, approaches are enumerated that do not reveal the user’s
risk to the server by relying on cryptographic protocols. Privacy and
security issues are the focus of this table.

Table A.2 and Table A.3 give an overview of the privacy and security
concerns of client-oriented approaches for risk calculation. Due to for-
matting, the three different categories, which are explained in detail
in 3.4, are split over two tables.

Table A.4 summarizes the functionalities of different DCT designs,
as discussed in Section 3.5. The focus lies on comparing how different
DCT approaches authenticate uploads, verify encounters, and prove an
infection risk to others. Additional functionalities, such as supporting
international travel and uploading incomplete reports, are discussed
by the approach.
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Table A.1: Overview of contact tracing approaches with server-side risk cal-
culation. (1): Gives pseudonym of diagnosed person and thereby
time of encounter. (n.s.): Not specified how data from diagnosed
users is collected. (n/a): Not applicable. (HA): Health Authority.
Table as in [2].
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Table A.2: Overview of contact tracing approaches with client-side risk cal-
culation. (1): Gives pseudonym of diagnosed person and thereby
time of encounter. (2): Gives time of encounter. (3): Cryptographic
overhead on end devices. (4): Cryptographic and polling overhead
on end devices. (HA): Health Authority. Table as in [2].
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Table A.3: Overview of contact tracing approaches with client-side risk cal-
culation using messaging primitives. (1): Gives pseudonym of di-
agnosed person and thereby time of encounter. (2): Gives time
of encounter. (3): Cryptographic overhead on end devices. (4):
Cryptographic and polling overhead on end devices. (HA): Health
Authority. Table as in [2].
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Table A.4: A summary of additional functionalities of DCT systems. HA:
Health Authority. Table as in [2].

N
am

e
A
ut

he
nt

ic
at
in
g

U
pl

oa
ds

Ve
rif

yi
ng

En
co

un
te
rs

In
co

m
pl

et
e

Re
po

rt
s

Pr
ov

in
g

Ri
sk

In
te
rn

at
io
na

l
Tr

av
el

Bl
ue

Tr
ac

e/
Tr

ac
eT

og
et
he

r[
14

2]
To

ke
ns

H
A

kn
ow

s
Su

pp
or

te
d

Pe
PP

-P
T
[1
61

,2
47

]
To

ke
ns

H
A

kn
ow

s
Su

pp
or

te
d

PH
yC

T
[1
70

]
H
A

kn
ow

s

Ep
io
ne

[3
04

]
D
oc

to
rc

ol
le
ct
sd

at
a,

to
ke

ns
C
ry

pt
og

ra
ph

ic
ha

sh
es

D
P-
3T

[3
05

]
To

ke
ns

Lo
ca

lly
Ve

rif
yi
ng

in
te
gr

ity
of

ap
p

Su
pp

or
te
d

G
A
EN

[1
41

]
To

ke
ns

Lo
ca

lly
Su

pp
or

te
d

CO
N
TA

IN
[1
53

]
In

fe
ct
io
n
ce

rt
ifi

ca
te

Lo
ca

lly
Ea

st
-C

oa
st

PA
C
T
[6

8]
A
llo

w
ed

W
es

t-C
oa

st
PA

C
T
[2

66
]

To
ke

ns
Lo

ca
lly

C
ov

id
-W

at
ch

[3
8]

H
as

ho
m
er

[2
49

]
Lo

ca
lly

A
llo

w
ed

Ve
rifi

ca
tio

n
ke

y
C
ho

et
al
.[

75
]

C
or

re
ct

pr
iv
at
e
ke

y
C
A
U
D
H
T
[1
]

To
ke

ns
,b

lin
d
si
gn

at
ur

e
Lo

ca
lly

C
or

re
ct

pr
iv
at
e
ke

y
O
vi
d
[4

]
To

ke
ns

,b
lin

d
si
gn

at
ur

e
C
or

re
ct

pr
iv
at
e
ke

y
Pr

on
to
-C

2
[4

0]
To

ke
ns

,b
lin

d
si
gn

at
ur

e
Lo

ca
lly

A
llo

w
ed

C
or

re
ct

pr
iv
at
e
ke

y
Tr

ac
eS

ec
ur

e
[4

6]
(m

es
sa

ge
-b
as

ed
)

C
or

re
ct

pr
iv
at
e
ke

y

C
on

Tr
a
C
or

on
a
[5

2]
D
oc

to
rc

ol
le
ct
sd

at
a

Ze
ro

-k
no

w
le
dg

e
pr

oo
f

W
hi
sp

er
[2

12
]

Lo
ca

lly



B
APPENDIX : MENHIR

b.1 algorithms

In this appendix, we provide and explain the pseudocode referenced
in Section 8.4.1 and Section 8.4. We use 𝑙𝐶 and 𝑟𝐶 as shorthand for “left
child” and “right child”, the successor of node 𝑖 is written as 𝑛𝑜𝑑𝑒𝑖.𝑠𝑢𝑐𝑐,
and 𝑏𝑇 stands for “balance type”.

Algorithm 2 DOSM.Insert(𝑘, 𝑣)
ℎ ← hash(𝑘, 𝑣)
𝑛𝑜𝑑𝑒𝑛𝑒𝑤, 𝑝𝑡𝑟𝑛𝑒𝑤 ← AVLTreeNode(𝑘, 𝑣, ℎ)
𝑛𝑜𝑑𝑒𝑠 ← [ ]
𝑝𝑡𝑟𝑝𝑟𝑒, 𝑝𝑡𝑟𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑝𝑡𝑟𝑑𝑢𝑚𝑚𝑦
𝑝𝑡𝑟𝑖 ← 𝑝𝑡𝑟𝑟𝑜𝑜𝑡
//Find insert location and predecessor
for 𝑖 ← 1 to ℎ𝑚𝑎𝑥 do

𝑛𝑜𝑑𝑒𝑖 ← ORAM.Get(𝑝𝑡𝑟𝑖)
𝑛𝑜𝑑𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑛𝑜𝑑𝑒𝑖)
𝑙𝑒𝑓 𝑡 ← (𝑘 < 𝑘𝑖) ∨ (𝑘 == 𝑘𝑖 ∧ ℎ < ℎ𝑖)
𝑝𝑡𝑟𝑝𝑟𝑒 ← if not 𝑙𝑒𝑓 𝑡 then 𝑝𝑡𝑟𝑖
𝑝𝑡𝑟𝑖+1 ← if 𝑙𝑒𝑓 𝑡 then 𝑛𝑜𝑑𝑒𝑖.𝑙𝐶 else 𝑛𝑜𝑑𝑒𝑖.𝑟𝐶
𝑖𝑠𝐷𝑢𝑚𝑚𝑦 ← (𝑝𝑡𝑟𝑖+1 == 𝑝𝑡𝑟𝑑𝑢𝑚𝑚𝑦)
𝑝𝑡𝑟𝑝𝑎𝑟𝑒𝑛𝑡 ← if not 𝑖𝑠𝐷𝑢𝑚𝑚𝑦 then 𝑝𝑡𝑟𝑖
𝑝𝑡𝑟𝑖 ← 𝑝𝑡𝑟𝑖+1

//update parents (ℎ𝑚𝑎𝑥 write operations to ORAM)
𝑏𝑇, 𝑝𝑡𝑟𝑐ℎ𝑖𝑙𝑑, 𝑝𝑡𝑟𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑 ← UpdateParents(𝑛𝑜𝑑𝑒𝑠)
//Update successor pointers
𝑛𝑜𝑑𝑒𝑛𝑒𝑤 ← ORAM.Get(𝑝𝑡𝑟𝑛𝑒𝑤)
𝑛𝑜𝑑𝑒𝑝𝑟𝑒 ← ORAM.Get(𝑝𝑡𝑟𝑝𝑟𝑒)
𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 ← (𝑝𝑡𝑟𝑝𝑟𝑒 == 𝑝𝑡𝑟𝑑𝑢𝑚𝑚𝑦)
𝑛𝑜𝑑𝑒𝑝𝑟𝑒.𝑠𝑢𝑐𝑐 ← if not 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 then 𝑝𝑡𝑟𝑛𝑒𝑤
𝑛𝑜𝑑𝑒𝑛𝑒𝑤.𝑠𝑢𝑐𝑐 ← if 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 then 𝑝𝑡𝑟𝑝𝑎𝑟𝑒𝑛𝑡 else 𝑝𝑡𝑟𝑝𝑟𝑒
ORAM.Put({𝑛𝑜𝑑𝑒𝑝𝑟𝑒, 𝑛𝑜𝑑𝑒𝑛𝑒𝑤})
//Insert node and rebalance tree
Rebalance(𝑏𝑇, 𝑝𝑡𝑟𝑛𝑒𝑤, 𝑝𝑡𝑟𝑐ℎ𝑖𝑙𝑑, 𝑝𝑡𝑟𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑)
return {ℎ𝑖, 𝑝𝑡𝑟𝑛𝑒𝑤}

Algorithm 2 describes how a key-value pair [𝑘, 𝑣] can be inserted
into a Doubly-Oblivious Sorted Multimap (DOSM) without leaking
the structure of the tree. Conditions like “if c then r=a else r=b” can be
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achieved without jumps through a single mathematical statement of
the form:

𝑟 = 𝑐 ⋅ 𝑎 + (not 𝑐) ⋅ 𝑏

The simpler version of this condition is “if c then r=a”. This can be
implemented as follows:

𝑟 = 𝑐 ⋅ 𝑎 + (not 𝑐) ⋅ 𝑟

The sub-procedure Rebalance() relies on the insight in Section 8.4.1
that only a single or double rotation is sufficient to ensure that the AVL
tree invariant is fulfilled after a new node is inserted. It performs 3 read
and 3 write operations to Oblivious Random Access Memory (ORAM)
independent of the fact whether any rebalancing is needed. Algorithm 3
shows the algorithm for the sub-procedure.

Algorithm 3 Rebalance(𝑏𝑇, 𝑝𝑡𝑟𝑛𝑒𝑤, 𝑝𝑡𝑟𝑐ℎ𝑖𝑙𝑑, 𝑝𝑡𝑟𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑)

𝑛𝑜𝑑𝑒𝑛𝑒𝑤 ← ORAM.Get(𝑝𝑡𝑟𝑛𝑒𝑤)
𝑛𝑜𝑑𝑒𝑐 ← ORAM.Get(𝑝𝑡𝑟𝑐ℎ𝑖𝑙𝑑)
𝑛𝑜𝑑𝑒𝑔 ← ORAM.Get(𝑝𝑡𝑟𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑)
//depending on balanceType 𝑏𝑇 these rotations are only dummy
operations
Rotate(𝑛𝑜𝑑𝑒𝑛𝑒𝑤,𝑛𝑜𝑑𝑒𝑐, 𝑏𝑇)
Rotate(𝑛𝑜𝑑𝑒𝑛𝑒𝑤,𝑛𝑜𝑑𝑒𝑔, 𝑏𝑇)
ORAM.Put({𝑛𝑜𝑑𝑒𝑛𝑒𝑤, 𝑛𝑜𝑑𝑒𝑐, 𝑛𝑜𝑑𝑒𝑔})
return {ℎ𝑖, 𝑝𝑡𝑟𝑛𝑒𝑤}

Algorithm 4 explains in detail how data is retrieved from the DOSM
for an interval [𝑘𝑆, 𝑘𝐸] and a fixed number 𝑚. This 𝑚 is selected to hide
the volume of data in the queried interval. This algorithm returns a
set of 𝑚 nodes, each with all its associated data (keys and values).
The function FindSmallesNodeInInterval() retrieves the smallest node for
which the key 𝑘 is larger or equal to 𝑘𝑆. If multiple nodes with the same
key exist, they are ordered based on their hash. The function always
makes ℎ𝑚𝑎𝑥 accesses to the ORAM.

Algorithm 4 DOSM.Find(𝑘𝑆, 𝑘𝐸, 𝑚)
𝑝𝑡𝑟𝑟𝑜𝑜𝑡 ← DOSM.root
𝑛𝑜𝑑𝑒𝑖 ← FindSmallestNodeInInterval(𝑝𝑡𝑟𝑟𝑜𝑜𝑡, 𝑘𝑆, 𝑘𝐸)
for 𝑖 ← 1 to 𝑚 − 1 do

𝑅 ← 𝑅 ⋃{𝑛𝑜𝑑𝑒𝑖}
𝑛𝑜𝑑𝑒𝑖+1 ← 𝑛𝑜𝑑𝑒𝑖.𝑠𝑢𝑐𝑐

return 𝑅

In Section 8.4, an Oblivious Database (ODB) is built from the DOSM.
Algorithm 5 explains how a data collector can query the ODB. During
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data retrieval and computation, no volume patterns are leaked. The
function takes as input a query consisting of an interval [𝑘𝑆, 𝑘𝐸], the
column index 𝑐𝑤 for which entries are retrieved (the column for the
WHERE-clause), and the column index 𝑐𝑓 for which the function 𝑓𝑗 is
applied on the retrieved entries. Function 𝑓𝑗 is differentially private and
is passed by the query through its index 𝑗. It uses the privacy budget 𝜖𝑞
for computing the differentially private aggregate. If the remaining
global privacy budget is less than 𝜖𝑞, the query cannot be answered.

Algorithm 5 ODB.Query(𝑘𝑆, 𝑘𝐸, 𝑐𝑤, 𝑐𝑓, 𝑗, 𝜖𝑞)

𝑚 ← 𝑆𝑐𝑤
(𝑘𝑆, 𝑘𝐸)

𝑅 ← ODB.Find(𝑘𝑆, 𝑘𝐸, 𝑚, 𝑐𝑤)
𝑣𝑎𝑙𝑢𝑒 ← 𝑓𝑗(𝑐𝑓, 𝜖𝑞, 𝑅)
return 𝑣𝑎𝑙𝑢𝑒

ODB.Query uses the find function from Algorithm 6 for retrieving
𝑚 data points for the respective interval [𝑘𝑆, 𝑘𝐸] from the column 𝑐𝑤.
For this purpose, it first finds the smallest node larger than or equal
to 𝑘𝑆 from the DOSM for column 𝑐𝑤. For each column, the ODB holds
a pointer to the root node of the corresponding DOSM. Due to the
use of the truncated Laplace function, all data points that fall into the
interval [𝑘𝑆, 𝑘𝐸] are contained in the output of ODB.Find.

Algorithm 6 ODB.Find(𝑘𝑆, 𝑘𝐸, 𝑚, 𝑐𝑤)
𝑝𝑡𝑟𝑟𝑜𝑜𝑡 ← ODB.DOSMRoots[𝑐𝑤]
𝑛𝑜𝑑𝑒𝑖 ← FindSmallestNodeInInterval(𝑝𝑡𝑟𝑟𝑜𝑜𝑡, 𝑘𝑆, 𝑘𝐸)
for 𝑖 ← 1 to 𝑚 − 1 do

𝑅 ← 𝑅 ⋃{𝑛𝑜𝑑𝑒𝑖}
𝑛𝑜𝑑𝑒𝑖+1 ← 𝑛𝑜𝑑𝑒𝑖.𝑠𝑢𝑐𝑐

return 𝑅

b.2 correctness and obliviousness

In the following, we prove the correctness and obliviousness of our
ODB construction.

b.2.1 Correctness

Definition 3. (Correctness).
Let 𝑥 ∈ {0, 1}∗ represent the contents of a database table withmultiple rows and
columns. Function 𝑓 is an operation on this table. A protocol 𝜋 implementing 𝑓
is correct if the output of 𝜋 is computationally indistinguishable from 𝑓 (𝑥). In
short, 𝑜𝑢𝑡𝑝𝑢𝑡𝜋(𝑥) 𝑐≡ 𝑓 (𝑥). This means for a negligible function 𝜇 it holds that

𝑃𝑟[𝑜𝑢𝑡𝑝𝑢𝑡𝜋(𝑥) = 𝑓 (𝑥)] ≥ 1 − 𝜇.
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Wefirst introduce some notation. Asmentioned before, a query 𝑞 ∈ 𝑄
is a tuple 𝑞 = (𝑘𝑆, 𝑘𝐸, 𝑐𝑤, 𝑐𝑓, 𝑗, 𝜖𝑞). Let 𝑉𝑞 be the set containing all entries
from column 𝑐𝑓 for which the corresponding entry in column 𝑐𝑤 fulfills
the query condition 𝑘𝑆 ≤ 𝑐𝑤 ≤ 𝑘𝐸. For proper privacy protection, we
require that the sensitivity of 𝑓𝑗 is set correctly for the data type in
column 𝑐𝑓.

Theorem 1. Following Definition 3, the ODB scheme in Section 8.4 is correct
for the functions ODB.Init, ODB.Insert and ODB.Delete.

Proof. This follows from the correctness of the oblivious data structure
framework of Wang et al. [314] and the plaintext AVL tree construction
which the DOSM builds on.

The correctness of the ODB.Query function boils down to the correct-
ness of the ODB.Find function and the correctness of the function 𝑓𝑗
evaluation. First, we discuss the correctness of the ODB.Find function.

Theorem 2. ODB.Find correctly returns all elements in an interval given by
a query 𝑞 ∈ 𝑄 if 𝑚 ≥ |𝑉𝑞|.

Proof. The ODB.Find function makes a call to the DOSM.Find function
for finding the elements in a given interval. Therefore, the correctness of
the ODB.Find function follows from the correctness of the DOSM.Find
function for a particular column 𝑐𝑓.

Theorem 3. The ODB.Query function correctly computes the function 𝑓 on
the required entries.

Proof. As mentioned earlier, the correctness of the ODB.Query function
depends on the correctness of the ODB.Find function and the compu-
tation of function 𝑓. Theorem 2 proves the correctness of ODB.Find.
To show that the query function 𝑓 is computed correctly, it suffices to
show that (a) all required elements are included in the aggregation and
(b) the dummies added through the volume sanitizer do not change
the output. Claim (a) follows directly from the fact that our volume
sanitizer always adds positive noise through the truncated Laplace
mechanism (see Section 8.4.2). For this reason, the constraint 𝑚 ≥ |𝑉𝑞|
always holds. This is in contrast to Epsolute [55], which fails with a
(negligible) probability 𝛽. Claim (b) can be ensured to hold by using
the neutral element of the respective aggregation function as the value
for dummies. As a result, computation on dummies don’t change the
output.

Remark: A malicious adversary can insert data points in the ODB
and delete these. This allows them to alter the result of all queries and
skew the data analysis. However, this is a general risk of crowdsourcing
campaigns, and in particular, it does not depend on or reveal any user’s
input. Sybil attacks can be made more resource intensive for attackers
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by requiring data providers to identify themselves. To preserve privacy,
the identification process can be implemented through anonymous
authentication schemes. However, such schemes are not the focus of
this work, so we point the reader to the relevant work on this topic,
such as [62].

b.2.2 Obliviousness

Theorem 4. The ODB.Init, ODB.Insert, and ODB.Delete operations of the
ODB scheme are oblivious with a leakage function
L = ((𝑜𝑝1, 𝑐1) ⋯ , (𝑜𝑝𝑀, 𝑐𝑀)) according to Definition 1 on page 131. The
leakage function leaks only the operation type 𝑜𝑝𝑖, the accessed column 𝑐𝑖, and
the total number of operations 𝑀, but nothing else.

Proof. First, observe that ODB.Init, ODB.Insert, and ODB.Delete make
the same number and types of ORAM accesses for two function calls
even if different data is provided. It then follows immediately from
the security of the underlying ORAM scheme [292] that the memory
addresses produced are indistinguishable for any two function calls.
We can, therefore, define the simulator S that takes the sequence of
operations and then runs the corresponding algorithms on a dummy
index-value pair (say, (0, 0)).

Without additional perturbation, the volume of data used for answer-
ing a query can be used to reconstruct a database [181, 194]. Algorithms
for oblivious databases that do not pay attention to this side channel,
such as Oblix [224], end up leaking this information (see Section 8.4.1).
To obliviously answer queries, one could process the whole database
for each query. However, this is not very efficient. Therefore, we weaken
the definition by allowing additional leakage per operation but requir-
ing that this leakage be differentially private, in accordance to with
Definition 2 for Differential Privacy (DP).

Definition 4. (Obliviousness with DP volume leakage).
Let 𝑚𝑖 be the volume of data processed for an operation 𝑜𝑝𝑖 on column 𝑐𝑖 with
arguments 𝑎𝑟𝑔𝑖. A data structure D is oblivious with DP volume leakage, if
there exists a polynomial time simulator S , such that for any polynomial-length
sequence of data structure operations
#  »𝑜𝑝𝑠 = ((𝑜𝑝1, 𝑐1, 𝑎𝑟𝑔𝑠1, 𝑚1), ..., (𝑜𝑝𝑀, 𝑐𝑀, 𝑎𝑟𝑔𝑠𝑀, 𝑚𝑀)) and leakage
L( #  »𝑜𝑝𝑠) = ((𝑜𝑝1, 𝑐1, 𝑚1), ⋯ , (𝑜𝑝𝑀, 𝑐𝑀, 𝑚𝑀)) it holds that

𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠D( #  »𝑜𝑝𝑠) 𝑐≡ S(L( #  »𝑜𝑝𝑠))

and each 𝑚𝑖 provides (𝜀, 𝛿)-differential privacy with respect to individual
database items.

Theorem 5. For an ODB with (𝜀, 𝛿)-DP volume sanitation, a sequence of
𝑀 ODB.Query operations is oblivious with (𝑀 ⋅ 𝜖, 𝑀 ⋅ 𝛿)-DP volume leakage.
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Proof. We start by defining the simulator S that takes as input the leak-
age L containing the operations 𝑜𝑝𝑖, sanitized volumes 𝑚𝑖, and column
indices 𝑐𝑖, then calls ODB.Query on 𝑐𝑖 and a dummy key, replacing 𝑚 in
the first line by 𝑚𝑖.

Since FindSmallestNodeInInterval() makes the same number of ORAM
queries independent of the arguments, the resulting addresses will be
indistinguishable from the real implementation of ODB.Query.

It remains to be shown that each 𝑚𝑖 is differentially private. As de-
scribed in Section 8.4.2, the volume sanitizer uses a binary tree, where
each database item is counted exactly once per level. If we consider two
neighboring databases that differ in exactly one item 𝑥, there will there-
fore be exactly ℎ = ⌈log2(𝐷)⌉ nodes that 𝑥 contributes to. Since each
node has noise drawn from TSDLap(𝑡, ℎ/𝜀), revealing a single node’s
value is (𝜀/ℎ, 𝛿/ℎ)-DP for appropriately chosen 𝑡 (see Section 8.1.3). By
basic composition, the revealing all ℎ nodes is, therefore, (𝜀, 𝛿)-DP. The
claim follows through basic composition across 𝑀 queries.
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