
Fachbereich Maschinenbau
Fachgebiet für
Strömungsdynamik

Implicit Discontinuous Galerkin
Shock Tracking Methods for
Compressible Flows with
Shocks
Novel Cut-Cell Approach and Linear Solvers
Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
Genehmigte Dissertation von Jakob Vandergrift aus Frankfurt am Main
Tag der Einreichung: 30.05.24, Tag der Prüfung: 05.08.24

1. Gutachten: Prof. Dr.-Ing. habil. Martin Oberlack
2. Gutachten: Prof. Dr. Jan Giesselmann
Darmstadt, Technische Universität Darmstadt

Implicit Discontinuous Galerkin Shock Tracking Methods for Compressible Flows with Shocks
Novel Cut-Cell Approach and Linear Solvers

Genehmigte Dissertation von Jakob Vandergrift

Tag der Einreichung: 30.05.24
Tag der Prüfung: 05.08.24

Darmstadt, Technische Universität Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-urn:nbn:de:tuda-tuprints-285915
URL: https://tuprints.ulb.tu-darmstadt.de/285915
Jahr der Veröffentlichung auf TUprints: 2024

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International
https://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons License:
Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/

https://tuprints.ulb.tu-darmstadt.de/285915
https://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Für Maraike

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen
Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema
und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation – abgesehen von den in ihr ausdrücklich
genannten Hilfen – selbstständig verfasst wurde und dass die „Grundsätze zur Sicherung guter
wissenschaftlicher Praxis an der Technischen Universität Darmstadt“ und die „Leitlinien zum
Umgangmit digitalen Forschungsdaten an der TU Darmstadt“ in den jeweils aktuellen Versionen
bei der Verfassung der Dissertation beachtet wurden.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 30.05.24
J. Vandergrift

v

Zusammenfassung

Numerische Strömungssimulationen (engl. computational fluid dynamics (CFD)) spielen in
Industrie und Forschung eine wesentliche und ergänzende Rolle bei der Analyse kompressibler
und von Verdichtungsstößen dominierter Strömungen. Genaue und robuste Simulationen
solcher Strömungen, wie sie zum Beispiel in der Umgebung von Flugzeugen vorkommen,
stellen eine große Herausforderung für die heutigen CFD-Verfahren dar. Numerische Metho-
den höherer Ordnung, wie diskontinuierliche Galerkin-Methoden (DG), liegen im Fokus der
Forschung, da sie unter anderem eine hohe Genauigkeit pro Freiheitsgrad und exzellente
parallele Skalierbarkeit aufweisen. Typischerweise sind diese Methoden jedoch nicht robust
genug für Stöße und Kontaktdiskontinuitäten, da deren geringe numerische Dissipation zu
unerwünschten Oszillationen und letzlich zum Abbruch der Simulation führen kann.
In den letzten Jahren wurde eine vielversprechende neue Kategorie robuster DG-Methoden
entwickelt, sogenannte implizite Stoßanpassungsmethoden (engl. implicit shock tracking (IST)
methods). Diese berechnen mittels numerischer Optimierung DG-Approximationen hoher
Ordnung an stoßdominierte Strömungen, indem sie das Rechengitter an die Stöße anpassen.
Die Stöße können durch Diskontinuitäten zwischen den angepassten Gitterelementen exakt
dargestellt werden und ermöglichen es Basisfunktionen hoher Ordnung glatte Bereiche der
Strömung hochgenau zu approximieren. Infolgedessen können auch auf groben Gittern genaue
Approximationen berechnet werden. In dieser Arbeit werden zwei bedeutende Fortschritte in
der Entwicklung von IST-Methoden vorgestellt.
Erstens, wird ein neues numerisches Verfahren durch die Integration von IST und erweiterter
DG-Methoden (XDG) entwickelt. Anders als bei herkömmlichen IST-Methoden, entfallen hierbei
aufwendige und teure Gitteroperationen. Diese neuartige implizite XDG-Stoßanpassungsmethode
(XDG-IST) verwendet eine Level-Set-Funktion um Diskontinuitätsschnittstellen zu definieren,
entlang derer Sprünge in den XDG-Basisfunktionen zugelassen sind. Die Schnittstellen wer-
den mittels IST an die Stöße angepasst, sodass letztere exakt dargestellt werden können.
Die Robustheit und Genauigkeit der XDG-IST-Methode für stationäre 2D und instationäre
1D Strömungen wird gezeigt und sie wird mit einer DG-Methode verglichen, die künstliche
Viskosität zur Stabilisierung verwendet. Der Vergleich zeigt, dass die XDG-IST-Methode eine
höhere Genauigkeit aufweist und für akustische 1D Wellen, die mit Stößen interagieren, als
einzige Methode Konvergenz hoher Ordnung aufzeigt.
Zweitens, um IST auf großskalige Probleme anwenden zu können, wird eine Familie von
Vorkonditionierern entwickelt. Diese sind speziell für das effiziente Lösen der linearen Systeme
ausgelegt, welche in IST-Methoden vorkommen. Die entwickelten Vorkonditionierer kombinie-
ren etablierte Techniken aus der restringierten Optimierung zum Lösen linearer Systeme mit
bewährten Methoden innerhalb von DG-Verfahren. Die wirksamsten Vorkonditionierer werden
anhand numerischer Studien ausgewählt, welche die Reaktion auf kritische IST-Parameter
messen.

vii

Abstract

Computational fluid dynamics (CFD) play an essential role in both industry and research for
analyzing compressible flows dominated by shocks, enhancing experimental and theoretical
studies. Achieving accurate and robust simulations of these shock-dominated flows, such
as those encountered around airplanes, poses a significant challenge for contemporary CFD
techniques. High-order numerical methods, such as discontinuous Galerkin (DG) methods,
have received considerable attention because: they introduce minimal numerical dissipation,
are highly accurate per degree of freedom, provide geometric flexibility, and exhibit excel-
lent parallel scalability. However, these methods often struggle with robustness in scenarios
involving shocks and contact discontinuities, as the high-order approximation of shocks and
discontinuities can induce spurious oscillations, leading to the failure of numerical solvers.

In recent years, a novel category of numerical methods, termed implicit shock tracking (IST)
methods, has been developed, utilizing numerical optimization to achieve high-order DG
approximations of shock-dominated flow solutions while aligning the computational mesh
with non-smooth features. These methods represent these features accurately through inter-
element jumps and allow high-order basis functions to approximate smooth areas of the flow
without requiring nonlinear stabilization. As a consequence, IST methods achieve accurate
approximations of shock-dominated flows even on traditionally coarse meshes. This dissertation
introduces two significant advancements for IST.

First, we integrate ideas from IST with extended DG (XDG) methods, introducing the implicit
XDG shock tracking (XDG-IST) method. This innovative method utilizes a level set function
to define discontinuity interfaces, which segment but do not deform the computational grid,
thereby circumventing cumbersome mesh operations used in conventional IST methods. The
approximation space is enriched by XDG basis functions, discontinuous at the interfaces, and
the latter are aligned accurately with shocks using IST methodologies. We successfully apply
the method to various test scenarios, including steady two-dimensional (2D) and unsteady
one-dimensional (1D) inviscid flow problems. We show that the XDG-IST method is more
accurate and the only method maintaining high-order convergence properties for 1D shock-
acoustic-wave interaction problems, when compared to a traditional DG method employing
artificial viscosity.

Second, aiming at extending the use of IST to large-scale problems, we present a family of
preconditioners tailored for the saddle point linear systems that define the progression towards
optimality in each iteration of the optimization solver. These preconditioners merge traditional
constrained optimization techniques with widely-usedmethods for DG discretizations, including
block Jacobi, block incomplete LU factorizations and P -multigrid. Comprehensive evaluations
are conducted using two 2D inviscid compressible flow scenarios to assess the effectiveness of
each preconditioner within this family, and their responsiveness to key IST parameters, singling
out the best preconditioner in terms of performance.

ix

Acknowledgments

This dissertation is the result of my work at the Chair of Fluid Dynamics over the last three
years. I would like to express my gratitude to everyone who has contributed to and made the
completion of this work possible.

First and foremost, I would like to thank Prof. Dr.-Ing. habil. Martin Oberlack for enabling me
to start my PhD journey at the Chair of Fluid Dynamics, providing me with all the necessary
infrastructure, and allowing me to attend four conferences and two research visits abroad. I am
also grateful for his initial idea for my research, his never-ending optimism, and his continuous
guidance.

I would also like to thank Prof. Jan Giesselmann for agreeing to co-referee this dissertation.

Furthermore, I am grateful to Dr.-Ing. Florian Kummer, my direct supervisor at the Chair of
Fluid Dynamics. I would like to thank him for his continuous efforts, including weekly individual
and group meetings, his helpful guidance, his research ideas, his assistance in navigating the
BoSSS code, and the valuable comments he provided for our publication. I also would like to
thank him for diligently maintaining the IT and server infrastructure at the institute, enabling
the work of the whole group. Additionally, I am pleased to have had the opportunity to
supervise the exercise corresponding to his DG course and to assist him in maintaining and
improving the institute’s infrastructure. I have greatly enjoyed our collaboration and have
learned much from it.

Additionally, I would like to express my gratitude to Prof. Matthew Zahr for hosting me during
two research visits at the University of Notre Dame and organizing three group social events.
My research, strongly based on his and his group’s prior work, would not have been possible
without their contributions. Moreover, I am grateful for the opportunity to have worked
together with Prof. Zahr on a joint project. I gained significant scientific knowledge and
thoroughly enjoyed the entire process.

Also, I would like to thank Prof. Dr.-Ing. habil. Yongqi Wang, for his professional support and
for organizing the teaching at the Chair of Fluid Dynamics. I will also fondly remember the
support in all administrative aspects provided by Ruth Völker, her great effort in organizing
Christmas parties, and all the pleasant conversations that momentarily took my mind off work.

A special thanks also goes out to all colleagues at the Chair of Fluid Dynamics, with whom I
have tremendously enjoyed working and who have collectively created a pleasant atmosphere.
I would like to thank Muhammed Toprak, Cat-Tuong Nguyen, Simon Görtz, Toni Dokoza, Lara
De Broeck, and Schahin Akbari. I enjoyed the wonderful time we spent together at work and
privately. Finally, I am grateful to all of my other colleagues who have contributed to the
pleasant environment at the institute, even if they are not explicitly mentioned. Your presence
has greatly enriched my time at the Chair of Fluid Dynamics.

xi

This dissertation has been greatly improved by the excellent feedback from Schahin Akbari,
Lara De Broeck, Andrej Brojatsch, Toni Dokoza, Houssem Ben Gozlen, Simon Görtz, Dr.-Ing.
Florian Kummer, Chen Miao, Cat-Tuong Nguyen, Miltiadis Poursanidis, Felician Putz, Matthias
Rieckmann, Martin Smuda, Muhammed Toprak, Maraike Vandergrift, and Prof. Matthew Zahr,
for which I am very grateful.

During my time at the Chair of Fluid Dynamics I was also gifted with the possibility to supervise
the master thesis of Taha Furkan Benli and to supervise Dipen Amipara as a student-worker.
They both assisted me in code-development and I would like to thank them.

Finally, this journey would not have been possible without the support of my friends and family,
to whom I want to dedicate this dissertation. In particular, I am deeply grateful to my wife
for her unconditional support, her advice, and her open ears during all the ups and downs of
my PhD journey. I would also like to thank my parents for their financial support during my
student years, enabling me to focus on my studies. Lastly, I wish to express gratitude towards
my mother and my brother for their never-ending belief in me.

xii

Contents

List of Tables

List of Figures

List of Abbreviations

List of Symbols

1 Introduction 1
1.1 Background and motivation . 1
1.2 Research gap and objectives . 6
1.3 Structure of the dissertation . 9

2 Inviscid compressible flows with shocks 11
2.1 The Euler equations . 12

2.1.1 Conservative form . 12
2.1.2 Non-dimensionalization . 13

2.2 Shock waves . 13
2.2.1 Normal shock waves . 14
2.2.2 Oblique shock waves . 15

2.3 One-dimensional shock-acoustic-wave interaction 17
2.3.1 Linearized one-dimensional Euler equations 17
2.3.2 Acoustic waves . 18
2.3.3 Linear shock-acoustic-wave interaction 19

3 High-order discretization 23
3.1 Transformed system of conservation laws . 23
3.2 Discretization of transformed system of conservation laws 25

3.2.1 Basic Galerkin approximation spaces 26
3.2.2 Extended discontinuous Galerkin approximation spaces 28
3.2.3 Residual forms . 31

3.3 Numerical flux function . 33
3.3.1 General requirements . 34
3.3.2 Simple numerical flux functions . 35
3.3.3 Numerical flux functions for the Euler equations 36

3.4 Considered conservation laws and boundary conditions 42
3.4.1 One-dimensional space-time advection equation 42
3.4.2 One-dimensional space-time Burgers equation 43
3.4.3 Two-dimensional steady Euler equations 44

3.4.4 One-dimensional space-time Euler equations 46

4 Implicit XDG shock tracking 47
4.1 Shock tracking formulation . 47

4.1.1 The objective function . 48
4.1.2 First-order optimality system . 50

4.2 Sequential quadratic programming solver . 51
4.2.1 Linearized optimality system . 51
4.2.2 Approximation of the Hessian . 52
4.2.3 Inexact line search globalization . 53
4.2.4 Adaptive regularization . 55
4.2.5 Handling of newborn cut-cells . 55

4.3 Robustness measures . 58
4.3.1 Cell agglomeration . 58
4.3.2 Solution reinitialization . 60
4.3.3 P -Continuation strategy . 63

4.4 Solver initialization and termination . 64
4.4.1 Initialization of the shock level set . 64
4.4.2 Initialization of flow solution . 65
4.4.3 Termination . 67

4.5 Full algorithm . 67
4.6 Discretization of the shock level set function 68

4.6.1 Discontinuous Galerkin level set . 69
4.6.2 Continuous Galerkin level set . 70
4.6.3 Global level set . 71
4.6.4 Spline-based level set . 71

5 Numerical experiments for implicit XDG shock tracking 73
5.1 Test cases . 73

5.1.1 One-dimensional space-time advection equation 74
5.1.2 One-dimensional space-time Burgers equation 77
5.1.3 Two-dimensional steady Euler equations 81
5.1.4 One-dimensional space-time Euler equations 87

5.2 Numerical studies . 94
5.2.1 Comparison of level set discretizations 95
5.2.2 Comparison of objective functions . 97
5.2.3 Comparison of numerical fluxes . 99
5.2.4 Convergence study . 100
5.2.5 Comparison with a shock capturing method 103
5.2.6 Performance study . 110

5.3 Conclusion . 110
5.3.1 Test cases . 111
5.3.2 Numerical studies . 111

6 Linear solvers for implicit shock tracking 113
6.1 The high-order implicit shock tracking method 114

6.1.1 High-order implicit shock tracking formulation and solver 114
6.1.2 Sparsity of linear optimality system . 117

xiv

6.2 Iterative linear solvers and preconditioners . 122
6.2.1 Krylov solvers and preconditioning . 122
6.2.2 Preconditioners for discontinuous Galerkin methods 123
6.2.3 Preconditioners for implicit shock tracking 124

6.3 Numerical experiments . 127
6.3.1 Testing metrics . 128
6.3.2 Description of examined cases . 129
6.3.3 Influence of mesh quality parameter κ 133
6.3.4 Influence of state zk . 134
6.3.5 Influence of regularization parameter γ 135
6.3.6 Influence of number of polynomial degrees (P , Pc) 136
6.3.7 Influence of number of mesh elements |Kh| 137
6.3.8 Comparison of preconditioners keeping original κk, γk 138
6.3.9 Conclusion . 139

7 Conclusion 141
7.1 Implicit XDG shock tracking . 141

7.1.1 Summary of contributions . 141
7.1.2 Outlook . 143

7.2 Preconditioners for implicit shock tracking . 144
7.2.1 Summary of contributions . 144
7.2.2 Outlook . 145

7.3 Final remarks . 146

Bibliography 147

List of Tables

2.1 Classification of flight regimes . 12

5.1 Experimental order of convergence (EOC) for different polynomial degrees P
for the Mach 4 bow shock. The fixed domain is resolved with different mesh
resolutions, and the enthalpy errors (see Figure 5.29) are computed using the
XDG-IST method. 101

5.2 EOC for different polynomial degrees P for the 1D shock-acoustic-wave interac-
tion problem where a fast acoustic wave hits the shock from the supersonic side.
The fixed domain is resolved with different mesh resolutions, and the errors
(see Figure 5.30) are computed using the XDG-IST method. 103

5.3 EOC for different polynomial degrees P for the 1D shock-acoustic-wave interac-
tion where a fast acoustic wave hits the shock from the supersonic side. The
fixed domain is resolved with different mesh resolutions, and the errors (see
Figure 5.33) using the DG-AV shock capturing method. 107

6.1 Growth of block sparsity structure of Buu (m2) relative to Ju (m1). 121
6.2 Summary of all HOIST preconditioners studied. 128
6.3 Legend for plots comparing (# GMRES Iterations) for each preconditioner . . 129

List of Figures

1.1 Illustrations of the implicit XDG shock tracking modules contributed to the soft-
ware package BoSSS. Arrows indicate that the equation-specific modules (XESF,
BUIDT, SAIDT, XESTSF) derive from the base library (ApplicationWithIDT).
In this illustration the colored bold names are clickable, sending the reader to
corresponding locations in the code repository. 7

2.1 Schematic stationary shock wave (dashed red line) with pre- (¨)L and post-shock
(¨)R variables. 14

2.2 Schematic supersonic flow over an inclined plane (grey) with inclination angle
θwdg producing an attached oblique shock (dashed red line) with angle θshk. . . 16

2.3 Two distinguished cases of supersonic flow over an inclined plane (grey) with
inclination angle θwdg producing a shock (dashed red line). For inclination angle
θwdg ą θwdg,max (left) a detached curved shock (dashed red line) is obtained,
while in the other case (right) an attached oblique shock (dashed red line) is
obtained. 16

2.4 Schematic x-t-diagram for an 1D flow with the shock wave positioned at x = xs
(dashed red line) and acoustic waves, represented by vectors originating from
the x-axis. The acoustic waves have different speeds depending on the flow
regime (indicated by Mach number Ma) and whether a slow acoustic wave (solid
line) or a fast acoustic wave (dash-dotted line) is described. 19

2.5 Schematic x-t-diagram for 1D shock-acoustic-wave interaction with the shock
wave positioned at x = xs (dashed red line). Three cases are distinguished based
on the incoming wave type and position: (a) fast acoustic wave (left) with speed
u˝
L + a˝

L hitting the shock from the supersonic side (MaL ą 1) and resulting
in a transmitted fast acoustic wave (solid red) with speed u˝

R + a˝
R as well as

an entropy wave with speed u˝
R on the subsonic side (MaR ă 1). (b) slow

acoustic wave (left) with speed u˝
R ´ a˝

R hitting the shock from the subsonic
side (MaL ą 1) and resulting in a reflected fast acoustic wave (solid red) with
speed u˝

R + a˝
R as well as an entropy wave with speed u˝

R on the subsonic side
(MaR ă 1). 3) slow acoustic wave (left) with speed u˝

L ´ a˝
L hitting the shock

from the supersonic side (MaL ą 1) and resulting in a transmitted fast acoustic
wave (solid red) with speed u˝

R + a˝
R as well as an entropy wave with speed u˝

R

on the subsonic side (MaR ă 1). 20

3.1 Mapping G between reference Ω0 and physical domain Ω. Two coordinate
systems ~X = (X1, X2), ~x = (x1, x2) and normal vectors ~N,~n are shown for each
domain, respectively. (Figure adapted from Zahr et al. (2020)) 25

3.2 Exemplary cut-cell mesh given two interfaces Is, Ib (defined by ϕs and ϕb). The
resulting sub-domains A,B,C,D are depicted as defined in (3.20). Exemplary
flow regimes which are used for supersonic flow configurations examined in
this work (supersonic, subsonic, void) are assigned to each sub-domain. The set
of non-empty cut-cells (3.22) (indicated by dark gray) and the near band (dark
and light gray) are illustrated for the shock interface Is. 29

3.3 Illustration depicting a two-dimensional, single-valued DG function (P = 2,
d = 2) within a single cut-cell and the corresponding XDG functions for sub-
domains A and B, assuming the presence of one level set. The original DG
function in (a) is cut along the interface (red line) to yield XDG functions for
each respective sub-domain. The resulting functions for sub-domains A (b) and
B (c) are depicted accordingly. 30

3.4 Illustration of an interface configuration with inner and outer trace for a function
Uh(~x) and ~x P Ω. ~nh,K denotes the unit outward normal. 34

3.5 Illustration of the smoothed Heaviside function Hsmth(x) (Equation 3.45) for
different smoothing values csmth P t5, 10, 30,8u. (Figure adapted from Zahr
et al. (2020)) . 36

3.6 Illustration of the two nonlinear waves representing the maximum and minimum
eigenvalues of the system (solid thick lines, wave speeds Sin and Sout, corre-
sponding to shock or rarefaction waves), along with a contact wave (dashed line,
wave speed S‹) associated with the third eigenvalue of the problem and four
constant states U in, U in

‹ , U
out, Uout

‹ being separated, all of which characterize the
one-dimensional Riemann problem (3.46). (Figure adapted from Krämer-Eis
(2017)) . 38

3.7 Illustration of the smoothed absolute value function | ¨ |smth (Equation 3.58) for
different smoothing values csmth P t5, 10, 30,8u. (Figure adapted from Zahr
et al. (2020)) . 40

3.8 Illustration of two characteristic curves x̃1(t), x̃2(t) (red dashed lines) for the
linear space-time advection equation (3.66) where ua(t) = 3t2 ´ 3t + 0.5,
resulting in the curve

şt
tstart

ua(t̂)dt̂ = t3 ´ 3
2 t

2 + 1
2 t. 43

4.1 Illustration of a constraint optimization problem with iso-contours of an exem-
plary objective function f(x, y) = x+ y (thick colored lines) and the feasible set
given by r(x, y) = (x ´ 0.5)2 + y2 ´ 0.52 = 0 (thick black line). The gradients
of r at any point on the circle are normal to the circle, indicating the direction
of fastest increase of r. To stay on the constraint surface, one must move in a
direction tangent to the circle. Two first-order solutions can be found visually,
corresponding to the maximal and the minimal value (red points) of the corre-
sponding constraint optimization problem. At these points, the gradients are
parallel, satisfying ∇f = λ∇r for some λ P R. 50

4.2 Illustrating the condition of sufficient decrease (4.25). The merit functionMk is
plotted against αk, together with its first-order approximation (blue dashed line)
atMk(0) and its relaxed first-order approximation at the same point (red dashed
line). All points on the curve below the latter satisfy the condition of sufficient
decrease (i.e.,Mk(1/2) in the plot) while those above (i.e.,Mk(1)) do not. . . 54

4.3 This example demonstrates how newly formed cut-cells are managed using a
mesh of size 3 ˆ 1 with a single level set ϕs

(k) (its zero set Is(k) is shown with a
thick black line), which initially resides in cellK3. Two separate updates, marked
as 1. and 2., illustrate the movement of the interface to new positions Is(k+1)

and Ĩ
(k+1)
s , respectively. The first update (red) breaks Rule 1 (the interface

must move only to adjacent cells) since K1 is not an immediate neighbor of K3,
leading to its rejection by the solver. On the other hand, the second update
(blue) adheres to the guidelines and is thus approved. (Figure adapted from
Vandergrift and Kummer (2024)) . 56

4.4 This figure demonstrates the process of applying an update, ∆z0, to an one-
dimensional extended discontinuous Galerkin (XDG) field z‹

0 across a grid
consisting of three cells K1,K2,K3. It highlights the method for managing
newly created cut-cells. Left: The application of z‹

0 +∆z0 shifts the interface
from x = 0.5 to x = 2.5. This movement breaches Rule 1 by making the
step length α = 1 unacceptable. Right: Adjusting the update to z‹

0 + 0.5∆z0
relocates the interface from x = 0.5 to x = 1.5, adhering to Rule 1 without
violation. The solution within the newly formed cut-cell K2,B = (1, 1.5) is then
extrapolated from its neighbor, utilizing z1 = z1

0+0.5∆z0 (red curve) instead of
z1 = z0

0 + 0.5∆z0 (blue curve). (Figure adapted from Vandergrift and Kummer
(2024)) . 57

4.5 The figure illustrates the process of cell agglomeration applied to a 2 ˆ 2 mesh
intersected by a level set ϕ, with the zero set highlighted by a red line. It
showcases the agglomeration of a relatively small cut-cell, denoted as K1,A, into
its largest neighboring cellK2,A in terms of volume, that resides within the same
subdomain A. This merging process is visually represented by a blue arrow
pointing from the smaller cell towards its larger neighbor. (Figure adapted from
Vandergrift and Kummer (2024)) . 59

4.6 Illustration of the cell-local solution reinitialization procedure for a 3ˆ3mesh and
a straight-sided interface. Panel (a) shows the solution U1 featuring oscillatory
cells in the center of the mesh. Panel (b) highlights the reinitialized solution
UReInit, i.e., where the oscillatory cells are reset to constant values, determined
by a patch of shock-aware neighbors. 61

4.7 Illustration of two level set discretizations of the same level set function, a circle
with different radius for each quadrant. Left (a), a DG level set is depicted,
featuring discontinuities. Right (b), a CG level set is depicted with a continuous
interface. 69

4.8 Left: (a) Illustration of a cubic C1´spline S : [y0, yNS
] Ñ R (red line) defined

by interpolation points ty0, y1, . . . , yNS
u and corresponding values tS(yi) = xiu

(blue dashed line) on a 4 ˆ 4 mesh. Here, the derivatives S1(yi) = x1
i are not

depicted. The corresponding level set is defined by ϕ(x, y) = x´ S(y). Right:
(b) The (roughly) corresponding XDG solution field. (Left figure adapted from
Vandergrift and Kummer, 2024) . 72

5.1 Plots of velocity u for selected XDG shock tracking iterations zk (k = 0, 1, 2, 4, 6, 30,
polynomial degree P = 0) for the space-time advection test case with a straight-
sided shock. The straight-sided discontinuity is tracked by the SQP solver starting
from an initial guess for the shock interface Is (thick black line), which is close
to the correct position and implicitly defined by a cubic spline level set (Ps = 3).
The XDG-IST solver converges to the solution of the scalar conservation law and
successfully aligns the cubic spline level set with the discontinuity. 74

5.2 Optimization history of the XDG-IST method for the space-time advection test
case (polynomial degree P = 0) with a straight-sided shock. Both residual norms
}R}2, }r}2 converge rapidly after 30 iterations as the SQP solver successfully
tracks the straight-sided discontinuity. 75

5.3 Plots of velocity u for selected XDG shock tracking iterations zk (k = 0, 2, 4, 6, 12, 35,
polynomial degree P = 0) for the space-time advection test case with a curved
shock. The curved polynomial discontinuity is tracked by the SQP solver starting
from an initial guess for the shock interface Is (thick black line), implicitly
defined by a cubic spline level set (Ps = 3) which is not sub-cell accurate.
Simultaneously, the solution of the scalar conservation law is obtained and the
cubic spline level set is successfully aligned with the discontinuity. 76

5.4 Optimization history of the XDG-IST method for the space-time advection test
case with a curved shock (polynomial degrees P = 0, Ps = 3). Both resid-
ual norms }R}2, }r}2 converge rapidly after 35 iterations as the SQP solver
successfully tracks the polynomial discontinuity. 77

5.5 Plots of velocity u for selected XDG shock tracking iterations zk (k = 0, 2, 4, 6, 8, 10,
polynomial degree P = 0) for the space-time Burgers test case with a straight-
sided shock. The straight-sided discontinuity is tracked by the SQP solver
starting from an curved initial guess for the shock interface Is (thick black line),
implicitly defined by a linear spline level set (Ps = 1). The XDG-IST solver
converges the solution of the scalar conservation law and successfully aligns the
linear spline level set with the discontinuity. 78

5.6 Optimization history of the XDG-IST method for the straight shock Burgers
test case (P = 0). Both residual norms }R}2, }r}2 converge rapidly after 12
iterations while the SQP solver successfully tracks the straight discontinuity
using a linear spline level set. 79

5.7 Plots of velocity u for selected XDG shock tracking iterations zk (polynomial
degrees P = 0, 1, 2, 3) for the accelerating shock burgers test case for k =
0, 2, 4, 28, 50, 78. Here, as an initial guess for the shock interface Is (thick black
line), implicitly defined by a cubic spline level set (Ps = 3), a linear interface is
employed and aligned to the discontinuity by the XDG-IST solver, simultaneously
computing the solution of the conservation law. Here, a P -continuation strategy
is employed gradually increasing the polynomial degrees. 80

5.8 Optimization history of the XDG-IST method for the space-time Burgers test
case with a curved shock, where a P -continuation strategy is employed (poly-
nomial degree P = 0, 1, 2, 3) showing the residual norms }R}2, }r}2 for all SQP
iterations. After converging the residual of an intermediate polynomial degree,
the latter is increased, such that a jump in both residuals R, r can be observed
(dashed lines). We have r(z0) « 10´16 due to the initial value coming from
pseudo-transient-continuation. 81

5.9 Selected XDG shock tracking iterations zk (k = 0, 2, 4, 6, 8, 20, polynomial degree
P = 0) for the density ρ (of a Mach 2 flow over an inclined plane (indicated
by white filling) with angle θwdg = 10˝ for a 15 ˆ 10 mesh, represented by an
immersed boundary Ib (lower thick black line, Pb = 1). The shock interface Is
(upper thick black line) is represented by a linear spline level set ϕs (Ps = 1)
and is converged by the SQP solver to the correct shock position in about 20
iterations. 83

5.10 Optimization history of the XDG-IST method for the supersonic Mach 2 flow
over an inclined plane (P = 0) showing the residual norms }R}2, }r}2 and the
normalized enthalpy error Herr across all SQP iterations. An convergence of
both residuals and the enthalpy error can be measured after 25 iterations as the
SQP solver tracks the straight discontinuity and computes the constant solution. 84

5.11 Selected XDG shock tracking iterations zk (k = 0, 10, 20, 40, polynomial degree
P = 0) for the density ρ of the Mach 4 bow shock for a 5 ˆ 16 mesh. The blunt
body (white filling) is represented by an immersed boundary Ib (right thick
black line) using a quadratic level set. Starting from an initial guess obtained
by a reconstruction procedure, the shock interface Is (left thick black line),
represented by a cubic spline level set (Ps = 3), and the XDG approximation
are converged by the SQP solver (see Figure 5.12 for P ą 0 iterations). 85

5.12 Selected XDG shock tracking iterations zk (k = 45, 50, 60, 175, polynomial
degree P ą 0) for the density ρ of the Mach 4 bow shock for a 5 ˆ 16 mesh.
The blunt body (white filling) is represented by an immersed boundary Ib (right
thick black line) using a quadratic level set. Continuing the optimization history
from Figure 5.11, the shock interface Is (left thick black line), represented by a
cubic spline level set (Ps = 3), and the the XDG approximation are converged
by the SQP solver. 86

5.13 Selected XDG shock tracking iterations zk (k = 0, 5, 10, 30, polynomial degree
P = 0) for the density ρ of the Mach 4 bow shock for a 10ˆ 32 mesh. The blunt
body (white filling) is represented by an immersed boundary Ib (right thick
black line) using a quadratic level set. Starting from an initial guess obtained
by a reconstruction procedure, the shock interface Is (left thick black line),
represented by a cubic spline level set (Ps = 3), and the XDG approximation
are converged by the SQP solver (see Figure 5.14 for P ą 0 iterations). 87

5.14 Selected XDG shock tracking iterations zk (k = 35, 40, 45, 185, polynomial
degree P ą 0) for the density ρ of the Mach 4 bow shock for a 10 ˆ 32 mesh.
The blunt body (white filling) is represented by an immersed boundary Ib (right
thick black line) using a quadratic level set. Continuing the optimization history
from Figure 5.13, the shock interface Is (left thick black line), represented by a
cubic spline level set (Ps = 3), and the the XDG approximation are converged
by the SQP solver. 88

5.15 Optimization history of the XDG-IST method for the Mach 4 bow shock for
the 5 ˆ 16 mesh, employing a P -continuation strategy (P = 0, 1, 2, 3). The
residual norms }R}2, }r}2 and the normalized enthalpy error Herr across all
SQP iterations are shown. After stagnation of the residual of an intermediate
polynomial degree, the latter is increased, such that a jump in both residuals
R, r can be observed (dashed lines). An overall decline of both residuals and the
enthalpy error can be measured as the SQP solver tracks the non-polynomial
discontinuity and solution. 89

5.16 Optimization history of the XDG-IST method for the Mach 4 bow shock for
the 10 ˆ 32 mesh, employing a P -continuation strategy (P = 0, 1, 2, 3). The
residual norms }R}2, }r}2 and the normalized enthalpy error Herr across all
SQP iterations are shown. After stagnation of the residual of an intermediate
polynomial degree, the latter is increased, such that a jump in both residuals
R, r can be observed (dashed lines). An overall decline of both residuals and the
enthalpy error can be measured as the SQP solver tracks the non-polynomial
discontinuity and solution. 89

5.17 Waterfall plot of XDG shock tracking solution for an 1D space-time shock-
acoustic-wave problem with a fast acoustic wave hitting the shock from the
supersonic side and a shock initially located at xs = 1.5. Left: Pressure pertur-
bations p1. Right: Density perturbations ρ1. 91

5.18 Comparison of pressure amplification/reduction coefficient resulting from the
acoustic-shock-wave interaction. The analytical and XDG shock tracking solution
are compared for two cases. Left: In the case of the fast acoustic wave hitting
the shock from the supersonic side, the solution is evaluated at 100ˆ100 sample
points and the maximum maxtPT (p1(xi, t)) is taken for xi P [1.8, 2.7]. Right: In
the case of the slow acoustic wave hitting the shock from the subsonic side,
the solution is again evaluated at 100 ˆ 100 sample points and the minimum
mintPT (p1(xi, t)) is taken for spatial points xi P [1.8, 3.0]. 92

5.19 Waterfall plot of XDG shock tracking solution for an 1D space-time shock-
acoustic-wave problem with a slow acoustic wave hitting the shock from the
subsonic side and a shock initially located at xs = 0.5. Left: Pressure perturba-
tions p1. Right: Density perturbations ρ1. 93

5.20 Waterfall plot of XDG shock tracking solution for an 1D space-time shock-
acoustic-wave problem with a slow acoustic wave hitting the shock from the
supersonic side and a shock initially located at xs = 1.5. Left: Pressure pertur-
bations p1. Right: Density perturbations ρ1. 94

5.21 Comparative optimization history of classical residuals (left) and enriched resid-
uals (right) across different level set discretizations applied in the simulation of
the space-time advection equation. 95

5.22 Plots of velocity u for selected XDG shock tracking iterations for the space-time
advection test case (P = 0) with a straight shock, employing three distinct level
set discretizations (Ps = 3): the first coloumn (left) shows iterations with a DG
level set, the second (middle) features a CG level set and the last (right) a spline
level set. 96

5.23 Left: Plot of DOFs for different level set discretizations as a function of the
number of cells. Right: Plot of time to compute BR/Bϕ for different level set
discretizations as a function of the number of cells. 97

5.24 Comparative optimization history of enthalpy errors (left) and residuals (right)
across different objective functions (fER, fNB, fRH) employed in the simulation
of supersonic Mach 2 airflow over an inclined plane. 98

5.25 Comparative optimization history of enthalpy errors (left) and residuals (right)
across different objective functions (fER, fNB, fRH) employed in the simulation
of a supersonic Mach 4 bow shock. The residual for the constrained objective
function fRH, quickly becomes NaN and leads to a stagnation of the solver
resulting in a constant enthalpy error, hence only the starting value is plotted. 98

5.26 Comparative optimization history of enthalpy errors (left) and residuals (right)
across different numerical flux functions (Godunov, Roe, HLLC, and Central)
applied to the interface edges in the simulation of supersonic Mach 2 airflow
over an inclined plane. 99

5.27 Comparative optimization history of enthalpy errors (left) and residuals (right)
across different numerical flux functions (Godunov, Roe, HLLC, and Central)
applied to the interface edges in the simulation of a supersonic Mach 4 bow shock.100

5.28 Density of converged XDG shock tracking iterations (P = 3) of the Mach 4 bow
shock for four different meshes. The blunt body (white filling) is represented by
an immersed boundary Ib (right thick black line) using a quadratic level set and
the shock front (left thick black line) by a cubic spline level set (Ps = 3). 101

5.29 Convergence plot for normalized enthalpy error Herr for different polynomial
degrees (P = 0, 1, 2, 3) for the Mach 4 bow shock on a fixed domain resolved
with different mesh resolutions

a

|K|, whereK denotes a cell. Here, the dashed
lines (∆) show the expected convergence slopes of a high-order method. (Figure
adapted from Vandergrift and Kummer, 2024) 102

5.30 Convergence plot for the error in the pressure amplification factor err+(t = 0.8)
(5.31) for different polynomial degrees (P = 0, 1, 2, 3) for the 1D shock-acoustic-
wave interaction problem with a fast acoustic wave hitting the shock from the
supersonic side. We use a fixed domain resolved with different mesh resolutions
a

|K|, where K denotes a cell. Here, the dashed lines (∆) show the expected
convergence slopes of a high-order method. 103

5.31 Waterfall plot of shock capturing solution (DG-AV) for an 1D shock-acoustic-
wave problem. Pressure perturbations p1 = p´ p˝ for two cases are depicted: a
fast acoustic wave hitting the shock from the supersonic side of the domain with
the shock initially located at xs = 1.5 (left) and a slow acoustic wave hitting the
shock from the subsonic side of the domain with the shock initially located at
xs = 0.5 (right). 105

5.32 Comparison of the pressure amplification of an acoustic wave for the shock-
acoustic-wave interaction problem. We compare an XDG shock tracking solu-
tion (blue), the analytical value (red) and a shock capturing (DG-AV) solution
(brown). Two problem variants are shown. Left: A fast acoustic wave hitting
the shock from the supersonic side. Here, the solution is evaluated at 100 ˆ 100
equally-spaced sample points and the maximum maxtPT p1(xi, t) is taken for
xi P [1.8, 2.7]. Right: A slow acoustic wave hitting the shock from the subsonic
side. Here, the solution is again evaluated at 100 ˆ 100 equally-spaced sample
points and the minimum mintPT p1(xi, t) is taken for xi P [1.8, 3.0]. 106

5.33 Convergence plot for the error in the pressure amplification factor err+(11.0)
(5.31) for the DG-AV method. Using three different polynomial degrees (P =
1, 2, 3) solutions to the 1D shock-acoustic-wave interaction problem with fast
wave originating on the supersonic side are computed. We use a fixed domain
resolved with different mesh resolutions |K|¨10´2, whereK denotes a cell. Here,
the dashed lines (∆) show the expected convergence slopes of a high-order
method. 106

5.34 Illustrative comparison between a shock capturing (DG-AV) solution (P = 1) of
a Mach 2 wedge flow on a 60 ˆ 40 mesh and an XDG shock tracking solution
(P = 0) on a coarse 15 ˆ 10 mesh (grid lines are not depicted). The density ρ
(top) and the enthalpy (bottom, theoretical value H8 = 6.3) are shown. 108

5.35 Illustrative comparison between a (P = 2) shock capturing solution (DG-AV)
of a Mach 4 bow shock on a 40 ˆ 160 mesh and a (P = 2) XDG shock tracking
solution on a coarse 5 ˆ 16 mesh (grid lines are not depicted). The density ρ
(left) and the enthalpy H (right, theoretical value H8 = 14.7) are shown. . . . 109

5.36 Runtime distribution of relevant sub-routines for the implicit XDG shock tracking
solver for the Mach 4 bow shock test case on a 10 ˆ 32 mesh. (Figure adapted
from Vandergrift and Kummer, 2024) . 110

6.1 Example two-dimensional mesh (left) (10 nodes and 9 elements) and corre-
sponding sparsity structure of Ju (right) for a polynomial degree of P = 1 and
a single conservation law (m = 1). This choice leads to 9 blocks of size 3 ˆ 3 for
Ju. 119

6.2 Sparsity structure of (BR/Bu)T for the mesh in Figure 6.1, polynomial degrees
of P = 1, P 1 = 2 and a single conservation law (m = 1). This choice results in
9 blocks of size 6 ˆ 3 for BR/Bu. 119

6.3 Sparsity structure of Buu (left) and Byy (right) (assuming no boundary con-
straints, i.e. φ(y) = y) for mesh depicted in Figure 6.1 with polynomial degrees
of P = 1, P 1 = 2 and a single conservation law (m = 1). 120

6.4 Sparsity structure of (BR/Bx)T for mesh depicted in Figure 6.1 with polynomial
degrees P = 1, P 1 = 2 and a single conservation law (m = 1). 121

6.5 Example of mesh restriction/prolongation for a second order mesh (Pc = 2)
with one element (left). The original element is restricted to Pc = 1 (middle)
removing the high order nodes 4, 5, 6. Prolongation (right) is performed by
inserting high order nodes interpolating the low order element. 127

6.6 Geometry and boundary conditions for the cylinder (left) and diamond (right)
test cases. Boundary conditions: slip walls (), Mach 2 supersonic inflow
(), and supersonic outflow (). 129

6.7 Selected P = Pc = 2 HOIST iterations k P t1, 50, 100u (left-to-right) for the
cylinder test case (density) shown with and without mesh edges. 130

6.8 Selected P = Pc = 2 HOIST iterations k = 100 and different refinement levels
nref = 1, 2, 3 (left-to-right) for the cylinder test case (density) shown with
and without mesh edges. 130

6.9 HOIST iterations (P = Pc = 4) projected to P = 0, Pc = 1 for k = 1 (left) and
k = 100 (middle), P = Pc = 1 for k = 100 (right) for the cylinder test case
(density) shown with and without mesh edges. 131

6.10 Selected P = Pc = 2 HOIST iterations k P t1, 150, 300u (top-to-bottom) for the
diamond test case (density) with and without mesh edges. 132

6.11 (# GMRES iterations) vs. mesh quality parameter κ for both test cases (top:
cylinder, bottom: diamond) (legend in Table 6.3) for polynomial degree
P = Pc = 2, regularization parameters γ = 0.1, and states zk (cylinder:
k = 1, 50, 100, diamond: k = 1, 150, 300) (left-to-right). 133

6.12 (# GMRES iterations) vs. state zk for both test cases (top: cylinder, bottom:
diamond) (legend in Table 6.3) for polynomial degree P = Pc = 2, mesh
quality parameter κ = 10´7, and different regularization parameters γ =
10´3, 10´2, 10´1 (left-to-right). 134

6.13 (# GMRES iterations) vs. regularization parameter γ for both test cases (top:
cylinder, bottom: diamond) (legend in Table 6.3) for polynomial degree P =
Pc = 2, mesh quality parameter κ = 10´7, and different states zk (cylinder:
k = 1, 50, 100, diamond: k = 1, 150, 300) (left-to-right). 135

6.14 (# GMRES iterations) vs. polynomial degrees (P , Pc) for different regularization
parameters γ = 10´3 (top) and γ = 10´1 (bottom) (legend in Table 6.3), mesh
quality parameter κ = 10´7, and different states zk, (k = 1, 50, 100) for the
cylinder problem. For P = 0, the coarse-scale updates from the P -multigrid
preconditioners solve the problem directly, which only requires one GMRES
iteration. These results are omitted for clarity. 137

6.15 (# GMRES iterations) vs. (# Elements |Kh|) for different regularization param-
eters γ = 10´3 (top) and γ = 10´1 (bottom) (legend in Table 6.3), polynomial
degree P = Pc = 2, mesh quality parameter κ = 10´7, and different states zk
(cylinder: k = 1, 50, 100, diamond: k = 1, 150, 300) (left-to-right). 138

6.16 Top: (# GMRES iterations) vs. states zk using adaptive mesh/regularization
parameters κk, γk (legend in Table 6.3) for both test cases with P = Pc = 2 (left:
cylinder, right: diamond). Bottom: History of the adaptive mesh quality
parameter κk () and regularization parameter γk (). 139

List of Abbreviations

1D one-dimensional

2D two-dimensional

3D three-dimensional

AV artificial viscosity

BILU block incomplete LU factorization

BoSSS bounded support spectral solver

CAA computational aeroacoustics

CFD computational fluid dynamics

CG continuous Galerkin

CNS compressible Navier-Stokes

DG discontinuous Galerkin

DNS direct numerical simulation

DOF degree of freedom

DOFs degrees of freedom

EOC experimental order of convergence

FDM finite difference method

FEM finite element method

FVM finite volume method

HiOCFD5 5th International Workshop on High Order CFD Methods

HLL Harten-Lax-van Leer

HLLC Harten-Lax-van Leer-Compact

HOIST high-order implicit shock tracking

HPC high performance computing

IBM immersed boundary method

ILU incomplete LU factorization

IST implicit shock tracking

KKT Karush-Kuhn-Tucker

LIA linearized interaction analysis

MDF minimum discarded fill

MDG-ICE moving discontinuous Galerkin method with interface condition enforcement

PDE partial differential equation

SD sub-domain

SPD symmetric positive definite

SQP sequential quadratic programming

TVD total variation diminishing

WENO weighted essentially non-oscillatory

XDG extended discontinuous Galerkin

XDG-IST implicit XDG shock tracking

xFEM extended finite element method

List of Symbols

α Step length
αmin Minimal step length
a Speed of sound
aJ Average jump function
A Generic system matrix of linear system
Ã Generic preconditioner for system matrix
ÃC Constrained preconditioner
ÃAT Block anti-triangular constrained preconditioner
A(0) Coarse level matrix (P -multigrid)
Ã0 Preconditioner with B̃yy = Byy and J̃u = Ju

ÃBJ Preconditioner with B̃yy = diag(Byy) and J̃u = J̃BJ
ÃBILU Preconditioner with B̃yy = diag(Byy) and J̃u =

J̃BILU
ÃBJ + ilu(Byy) Preconditioner with B̃yy = ilu(Byy) and J̃u = J̃BJ
ÃBILU + ilu(Byy) Preconditioner with B̃yy = ilu(Byy) and J̃u = J̃BILU
Ã0p0 Preconditioner with B̃yy = Byy, J̃u = Ju and P -

multigrid
ÃBJp0 Preconditioner with B̃yy = diag(Byy), J̃u = J̃BJ and

P -multigrid
ÃBILUp0 Preconditioner with B̃yy = diag(Byy), J̃u = J̃BILU

and P -multigrid
A Sub-domain with ϕs ă 0 and ϕb ă 0
A Aggregation map
amp+ex Pressure ampflification coefficient (fast acoustic wave)
amp´

ex Pressure reducation coefficient (reflected slow acoustic
wave)

aggthrsh Aggregation threshold
arfck Averaged reduction factor

B Jacobian of the projected physical flux
Bx Jacobian of the projected physical flux for space-only

Euler equations
B̃ Linearization of B
B̃ Approximation to B
b Generic right-hand side of linear system
b(0) Coarse level right-hand side (P -multigrid)
Buu Sub-block of Hessian approximation

Byy Sub-block of Hessian approximation
B̃yy Approximation to Byy

B Hessian approximation
Buϕ Sub-block of Hessian approximation
Bϕϕ Sub-block of Hessian approximation
Buy Sub-block of Hessian approximation
B Sub-domain with ϕs ą 0 and ϕb ă 0
β Line search dampening factor

csmth Smoothing factor
ccmp Isothermal compressibility
cwtr
cmp Isothermal compressibility for water
caircmp Isothermal compressibility for air
~c1 Center of circle (bow shock geometry)
~c2 Center of circle (bow shock geometry)
C l(Ω0) Space of l-times continuously differentiable functions

on Ω0

C̃ Matrix product ´J̃u
´1

Jy

C Sub-domain with ϕs ă 0 and ϕb ą 0

Ω Physical domain of interest, computational domain
d Dimension of domain of interest
Ωx Space-only domain
Ω0 Refenence domain
BΩ Domain boundary
BΩL Left domain boundary
BΩR Right domain boundary
BΩB Bottom domain boundary
BΩT Top domain boundary
D Sub-domain with ϕs ą 0 and ϕb ą 0
diag(¨) Diagonal matrix of an input matrix

evol Specific volume
ein Specific inner energy
ekin Specific kinetic energy
E Specific total energy
ε1 Reinitialization parameter
ε2 Reinitialization parameter
ε3 Reinitialization parameter
ε4 Reinitialization parameter
err+ Average deviation of pressure ampflification coefficient

(fast acoustic wave)

f Objective function
fER Full enriched residual objective function
fNB Near-band-only enriched residual objective function
fRH Rankine-Hugoniot objective function

ferr Error component of objective function
fmsh Mesh-quality component of objective function
F Flux vector
Fx Spcace-only component of flux vector
F̄ Transformed flux
F Residual function defining objective function f

g Deformation gradient
g Jacobian of objective function (HOIST)
G Domain mapping
G Mapping Jacobian
G Diffeomorphisms between physical and reference do-

main
γ̂ Heat capacity ratio
γ Regularization parameter
γmin Minimal value for regularization parameter
γmax Maximal value for regularization parameter
γ‹ Updated regularization parameter
γred Adaptation factor for regularization parameter
Γ Edges
Γint Internal edges
Γext Outer edges

Herr Enthalpy error
Hsmth Smooth Heaviside function
H Enthalpy
HL Hessian of Lagrange functional
Huϕ

L (u ´ ϕ)-Part of Hessian of Lagrange functional
Hf Hessian of objective function
H̄ Transformed numerical flux
H Numerical flux
Hcntrl Central numerical flux
Hup Upwind numerical flux
Hup

smth Smooth upwind numerical flux
Hriem Godunov’s numerical flux
HHLLC Harten-Lax-van Leer-Compact (HLLC) numerical flux
Hroe Roe numerical flux

ilu(¨) Point-ILU of a matrix
I Identity matrix
Id1 Identity matrix of dimension d1

Is Interface of shock level set ϕs

Ib Interface of boundary level set ϕb

I Interface

jsmth Smooth jump function
Ju Jacobian of residual function with respect to u

J̃u Approximation to Ju

J̃BJ Block-Jacobi preconditioner for Ju

J̃BILU Block-ILU preconditioner for Ju

J Jacobian of residual function
Jy Jacobian of residual function with respect to y

J̃ Approximation to J

κ Mesh penalty parameter
k̂ Wavenumber
kterm Parameter for termination
kPmin Minimum iteration threshhold for polynomial degree

P

KX,agg
h Aggregation mesh

KReInit Mesh cells to be reinitialized
Ks

h Sub-grid for shock level set
Kh Numerical mesh
K̃h Deformed numerical mesh
KX

h Numerical cut-cell mesh
Kcc,0

h Set of cut-cells for a level set
Kcc,1

h Near band set for a level set

lW Wave length in the context of single-period waves
L2(Ω0) Space of L2-integrable functions on Ω0

L Length scale for regularization parameter adaptation
L̃ Lower part of block-ILU decomposition (J̃BILU)
λ Lagrange multiplier
λ˚ First-order optimality solution (Lagrange multiplier)
∆λ Optimization step (Lagrange multiplier)
Λx Eigenvalue matrix of Bx

L Lagrange functional

m Number of conservation laws
M Merit function
M l1 l1-Merit function
M l2 l2-Merit function
M Mass matrix
µ Weighting factor for line search
Ma Mach number

nx x-Component of normal vector in physical domain
ny y-Component of normal vector in physical domain
~n Normal vector
~nx Space-only component of space-time normal vector
nt Time component of space-time normal vector
~nΓ Edge normal field
~N Normal vector in reference domain
NK Number of cells

Nv Number of mesh nodes
Nx Number of concatenated mesh nodes
Ny Number of concatenated mesh nodes (parameterized

mesh)
NF Dimension of F
Nz Dimension of z
Nu Dimension of u
Nϕ Dimension of ϕ
NS Number of spline interpolation points
NP Dimension of (PP (Ke))

m

N̂ e
P Dimension of (PP (Ne))

m

Ne Set of neighoring elements of mesh-element Ke

Ñ Shock-aware neighbor set

σ2 Lower threshold for regularization parameter adapta-
tion

σ1 Upper threshold for regularization parameter adapta-
tion

σν,+ Amplification parameter for time-step adaptation
σν,´ Reduction parameter for time-step adaptation

φ Parametrization for the physical nodes
p Pressure
P Total polynomial degree of the DG/XDG flow solution
Pc Total polynomial degree of the continous Galerkin

space
Ps Polynomial degree of shock level set ϕs

Pb Polynomial degree of boundary level set ϕb

P 1 Total polynomial degree of the test space
Pend Final polynomial degree of the DG/XDG flow solution
P Full prolongation operator (P -multigrid)
Pe Selection matrix for u-degrees of freedom (DOFs) (el-

ement Ke)
P̂e Selection matrix for u-DOFs (nieghbors element Ke)
P̃ MDF reordering for J̃BILU
Pu u-Component of prolongation operator P
Py y-Component of prolongation operator P
PP (K) Space of polynomial functions (on element K, degree

P)
ϕs Level set representing discontinuity
ϕb Level set representing immersed boundary
ϕDG
s DG shock level set

ϕCG
s Continuous Galerkin (CG) shock level set

ϕGl
s Global shock level set

ϕ
Sp
s Spline shock level set

ϕ Coefficients of shock level set ϕs

ϕ˚ First-order optimality solution (level set)

ϕDG Coefficient vector of DG shock level set
ϕCG Coefficient vector of CG shock level set
ϕSp Coefficient vector of spline shock level set
∆ϕ Optimization step (level set)
Φ Basis of VP,m,X

h

ΦCG Basis vector for CG shock level set
ΦGl Basis for global shock level set
projP´1 L2-projection on XDG space of order P ´ 1

(¨)L Value left to the shock
(¨)R Value right to the shock
| ¨ |smth Smooth absolute value
(¨)8 Inflow/Free stream value
(¨)ref Reference value
(¨)‹ Non-dimensional quantity
[[¨]] Jump operator
(¨)˝ Constant base flow
(¨)1 Perturbation of flow
(¨)in Inner trace of DG field
(¨)out Outer trace of DG field
[¨] Index set for natural numbers
(¨) Roe average
(¨)agg Agglomerated object
qin Correction factor for minimum eigenvalue wave
qout Correction factor for maximum eigenvalue wave
Qe Selection matrix for x-DOFs (element Ke)
Q Full restriction operator (P -multigrid)
Qy y-Component of restriction operator P
D
Dt Material derivative in time
∇ Gradient
∇x Space-only component of gradient
Bt Time component of gradient, parital derivative in time
∇̄ Transformed gradient on reference domain
∇(∆zk) Directional derivative in direction ∆zk

rP
1,P

h DG/XDG residual form (P 1 test degree,P trial degree)
rP

1,P
K DG/XDG residual form on mesh element K
r0 XDG residual (P = 0)
r Algebraic DG/XDG residual
re Elemental, algebraic residual (element Ke)
R Enriched algebraic DG/XDG residual
RNB Near-band-only enriched residual
RRH Near-band-only enriched residual
Re Elemental, algebraic enriched residual (element Ke)
Rmsh Elemental mesh-distortion
R+ Positive real numbers
R Real numbers

ρ Density
ρ1 ent. Entropy wave perturbation of density
ρ1 ac. Acoustic wave perturbation of density

ŝ Entropy
s Generic solution of linear system
sex Exact solution of linear system
s̃(0) Coarse level solution (P -multigrid)
s̃ Fine level solution (P -multigrid)
Sin Speed of minimum eigenvalue wave
Sout Speed of maximum eigenvalue wave
S‹ Speed of contact wave
S Spline of spline shock level set
s Sub-domain
SD Set of all sub-domains
sen Shock sensor
srck Residual-norm skyline

tstart Start time of T
t Time
tend End time of T
t̃ Pseudo time
∆t̃ Pseudo time-step size
T Temperature
τ Adaptation factor for step length
θwdg Angle of inclined plane
θshk Angle of straight-sided shock wave (inclined plane)
θwdg,max Critical angle of inclined plane
θwdg,weak Angle of weak shock (inclined plane)
T Time interval of interest
tol Tolerance

ua Advection field
u Velocity in x-direction
~u Velocity vector
uw Wave speed
uK Flow direction
udr Dirichlet boundary condition for veloctiy
un Velocity in normal direction
~umir Mirrored velocity
uex Exact solution to Burgers/advection equation
Ū Transformed conserved variables
U Conserved variables
Ū Flow solution on the reference domain
Ūh Transformed XDG approximation of conserved vari-

ables
UK Flow direction, evaluated at average of U in and Uout

UReInit Reinitialized XDG solution
u Coefficient vector of XDG/DG flow solution Ū
u˚ First-order optimality solution (flow)
ũ XDG flow solution of polynomial degree P = 0
∆ũ Time-step of flow solution (degree 0)
ue u-DOFs corresponding to mesh-element Ke

ûe u-DOFs corresponding to neighboring elements of
mesh-element Ke

Ũ Upper part of block-ILU decomposition (J̃BILU)

v Velocity in y-direction
v Generic vector
V Eigenvalue matrix of B
Vx Right eigenvector matrix of Bx

VP,m,X
h XDG function space (degree P , m components)

VP,m
h DG function space (degree P , m components)
νmin Parameter for time-step adaptation
νmax Parameter for time-step adaptation

WPc
h CG space with degree Pc

ω Oscillation frequency

x Coordinate in space
xstart Minial x value (Cartesian grid)
xend Maximal x value (Cartesian grid)
xs Shock position
x̃ Characteristic curve
x̂ Mesh node in physical domain
~xmin Candidate points for reconstructing the shock front
~xCG Nodes of CG shock level set
xW Wave position
X̂ Transformed mesh node in reference domain
~X Point in reference domain
x Concatenated mesh nodes
xe Concatenated mesh nodes (element Ke)
x̂e Concatenated mesh nodes (neighbors of element Ke)
χs Points reconstructing the shock front
χseed Seeding points for reconstructing the shock front
χcand Candidate points for reconstructing the shock front

y Coordinate in space
y˚ First-order optimality solution (parameterized mesh)
y Concatenated mesh nodes (parameterized mesh)

z Concatenation of u and ϕ/y
z˚ First-order optimality solution (flow and level

set/mesh)

∆z Optimization step (flow and level set/mesh)

1 Introduction

1.1 Background and motivation

Commercial and affordable air travel is one of the major technological success stories of our
modern world. The ability to explore different cultures around the globe connects humanity
and enhances the exchange of ideas. Whether it is a flight to an academic conference to learn
about research first-hand or a personal trip that brings new perspectives on life, aviation fosters
the necessary cultural and technological development of humanity.

One long-time dream in commercial flight is increasing speed and reducing travel time between
distant locations. Currently, commercial aircraft travel at subsonic speeds, that is, speeds below
the speed of sound, due to regulatory barriers and high operating costs. One major challenge
for supersonic (faster-than-sound) air travel is dealing with so-called shock waves.

The Concorde, a commercial plane that flew at 1,350 miles per hour (roughly twice the speed
of sound), was retired in 2003. The main reason besides increased fuel consumption was the
thunderous sonic boom it produced. This boom was so loud that many countries restricted
aircraft to subsonic speeds over land (Benson, 2013), limiting the routes these planes could
take. The sonic boom results from an abrupt pressure change caused by shock waves spreading
away from the plane, reaching the ground, and passing through every listening ear.

To make supersonic air travel feasible again, new technological improvements are needed to
reduce fuel consumption and take the ’bang out of the boom’ (Council et al., 2002). This
involves designing aircraft that produce a different shape of sonic boom with reduced intensity.
A major building block needed for these improvements is the numerical analysis of compressible
flows with shocks, which enables engineers to understand the noise associated with supersonic
travel and to test new aircraft designs.

Compressible flows with shocks In the research area of fluid dynamics, flows are categorized
into two main types based on their velocity relative to the speed of sound: incompressible and
compressible. The Mach number, a critical dimensionless parameter, represents the ratio of the
flow’s speed to the speed of sound in that fluid. For flows where the Mach number is below
0.3, the assumption is that they are incompressible, i.e., they have a constant density. This
assumption is justified because their density variation remains under 5%, and the effects of
compressibility on the flow are minimal, thus making them negligible for practical purposes
(Anderson, 2003). In contrast, when the Mach number exceeds 0.3, the flow enters the
compressible regime. Compressible flows are present in a vast array of applications, such as
in aircraft design (Raymer, 2012), the aerodynamics of airfoils (Kral, 1998), the dynamics
within turbine stages of jet engines (Klapdor, 2011), natural gas pipelines (Menon and Menon,

1

2013), and the air movement in solar power plant chimneys (Schlaich et al., 2005). These
applications span several industries, showing the importance of understanding and predicting
the behavior of compressible flows.

Generally, compressible flows are classified by aerodynamicists into specific ranges of inflow
Mach numberMa8, including subsonic (Ma8 ă 0.8), transsonic (0.8 ă Ma8 ă 1.2), supersonic
(1.2 ă Ma8 ă 5.0), and hypersonic (5.0 ă Ma8) flows (Anderson, 2003). Each of these
flows may exhibit different physical phenomena. One of the most challenging phenomena
in compressible flows is the formation of shock waves, which are sudden, drastic alterations
in fluid properties such as density, pressure, and temperature, occurring within a very thin
layer approximately 100 nanometers thick for air under standard conditions. Shock waves
are present in all named flow categories except for subsonic flows, and predicting their exact
shape and position is complex, making their study a significant area of research. For studying
compressible flows with shocks, computational fluid dynamics (CFD) plays a crucial role by
simulating and analyzing the complex behaviors and interactions of shock waves with various
aircraft designs.

Computational fluid dynamics Over the past decades, CFD has emerged as an indispensable
tool in both research and engineering, amplified by advancements and broader access to
computational resources. CFD allows for the acquisition of data in areas where wind tunnel
experiments are challenging or where theoretical methods are limited, offering faster results
and lower costs. Among mathematical models employed in these simulations, the Euler
equations are mainly used to describe compressible flows in which the viscous effects are
negligible leading to a set of first-order nonlinear partial differential equations (PDEs). The task
of discretizing these nonlinear PDEs has long been a focus of research with so-called low-order
methods being the predominant techniques for many years. Recently, high-order methods
have gained increased attention within the CFD community due to their promise of being both
more accurate and computationally efficient than low-order methods (Wang et al., 2013).

High-order methods Numerical methods can be categorized by their discretization error,
which is proportional to hP+1, with h representing the grid’s characteristic length scale and
P + 1 the order of the method. For some numerical methods P corresponds to the degree
of polynomial basis functions used to approximate the flow solution and methods of order
P ą 1 are widely considered high-order within the CFD community (Wang et al., 2013). The
advantage of high-order methods is that they typically introduce less numerical dissipation and,
thus, have the potential to obtain more accurate solutions at lower total degrees of freedom
(DOFs) (and computational time) than low-order methods. Additionally, high-order solutions
can be achieved on coarse grids.

In many applications, the superior accuracy of high-order methods is highly sought after: In
the field of computational aeroacoustics (CAA), it is crucial that broadband acoustic waves
can travel long distances, without additional artificial dissipation or dispersion introduced by
the numerical scheme. The CAA community largely favors high-order numerical methods for
their exceptional precision and effectiveness (Wagner et al., 2007). Additionally, high-order
techniques are vital for the precise resolution of unsteady vortices within vortex-dominated
flows, significantly influencing the aerodynamic efficiency of aircraft (Wang et al., 2013).

2

Despite these advantages, low-order methods continue to dominate industrial CFD applications.
This prevalence is due to their superior robustness and faster convergence to steady-state
conditions, attributed to higher stabilizing numerical dissipation, and the lack of readily
available robust high-order mesh generators (Wang et al., 2013). Particularly, scenarios
featuring discontinuous flow features, such as shock waves in high-speed flows, pose significant
challenges for high-order methods. These challenges manifest as oscillating approximations
within cells containing discontinuities, known as the Gibbs phenomenon, and lead to a loss
of global high-order convergence. In many cases, due to its minimal numerical diffusion
which would dampen the oscillations, the high-order method fails to converge at all, leading
to simulation failures. However, initiatives and developments like the European ADIMGA
project (Kroll, 2010), the IDIHOM project (Kroll et al., 2015), and the FLEXI solver framework
(Krais et al., 2021) have demonstrated the potential of high-order methods for compressible
flow simulations, offering evidence that they can surpass the computational performance
of traditional low-order approaches. These findings suggest a promising path for further
exploration and adoption of high-order methods in complex fluid dynamics applications.

Discontinuous Galerkin methods In recent decades, a class of high-order methods named
discontinuous Galerkin (DG) methods have surged in popularity for discretizing PDEs in
the field of CFD. Known for their localized nature, applicability to arbitrary geometries on
unstructured grids, and efficient parallelization capabilities, DG methods are very well suited
for high performance computing (HPC) applications. They can be regarded as a generalization
of the popular finite volume method (FVM), employing cell-local polynomial basis functions of
arbitrary order P . By introducing numerical fluxes at the interfaces between elements, DG
methods not only ensure the conservation of key physical quantities but also preserve the
directionality of information propagation across the computational domain. This methodology
not only facilitates compact discretization stencils, beneficial for parallelization, but also offers
remarkable flexibility, particularly suitable for multi-domain and multi-physics simulations.
DG methods can operate on arbitrary unstructured grids, avoiding the limitations imposed by
structured Cartesian grids. Furthermore, hp-adaptivity enables local grid refinement and the
variation of polynomial basis functions, providing enhanced accuracy without global continuity
constraints. Notably, the highly local character of DG methods yields easily invertible block-
diagonal mass matrices, contrasting with the computationally expensive global matrices often
associated with finite element methods (FEMs). The method’s compatibility with explicit
time-integration schemes further enhances its parallelizability.

DG methods trace back over 50 years, with an extensive overview provided by Di Pietro and Ern
(2012). The first attempt to approximate first-order PDEs with DG methods was conducted by
Reed and Hill (1973) with their method for steady neutron transport, which was followed by an
analysis by Lasaint and Raviart (1974). Subsequent advancements improved error estimates,
especially for smooth solutions (Johnson and Pitkäranta, 1986). The method’s applicability
broadened as it was extended to approximate three-dimensional boundary-layer equations for
incompressible fluid flows (Caussignac and Touzan, 1990). Concurrently, DG methods were
expanded to time-dependent hyperbolic PDEs (Chavent and Cockburn, 1989), further refined
using explicit Runge–Kutta schemes (Cockburn and Shu, 1991).

Over time, numerous contributions have been made applying DG methods to compressible
flow scenarios, naming only a fraction (Cockburn, 1998; Fidkowski et al., 2005; Persson and

3

Peraire, 2006; Hartmann and Houston, 2008; Kroll, 2010; Kroll et al., 2015; Krais et al., 2021;
Geisenhofer et al., 2019). In the context of compressible flows with shocks, many strategies
have been devised to stabilize the DG scheme in the vicinity of shock waves, mainly categorized
as shock capturing and shock fitting/tracking techniques, whereby a distinction is made between
explicit and implicit shock fitting/tracking methods.

Shock capturing Shock capturing strategies, designed to manage discontinuities and mitigate
oscillations in numerical solutions, employ a variety of techniques. These include limiters
for achieving total variation diminishing (TVD) schemes (Cockburn et al., 1989), high-order
reconstruction methods such as weighted essentially non-oscillatory (WENO) schemes (Shu
and Osher, 1988; Harten et al., 1997), the incorporation of artificial viscosity (Persson and
Peraire, 2006; Barter and Darmofal, 2010; Ching et al., 2019), and the local usage of low-order
techniques (Beck et al., 2020; Mossier et al., 2022). In these approaches, the numerical
discretization is tailored locally to handle discontinuities, especially in cells where solution
oscillations are detected. For example, with artificial viscosity approaches, a second-order
term is added locally to the equations at hand, leading to a smooth shock profile (Persson and
Peraire, 2006).

Despite their practical effectiveness and relative ease of implementation, these approaches are
not without limitations. A key issue with existing shock capturing methods is their dependence
on the alignment of the mesh with shock waves. In simple scenarios, structured meshes can be
intentionally crafted to align with shocks, significantly reducing numerical errors associated
with shock capturing (Barter and Darmofal, 2010). However, when dealing with unstructured
meshes that are not aligned with shocks, numerical inaccuracies in intense shock regions can
be substantial. These errors can induce nonphysical fluctuations that propagate downstream
towards the boundary layer, adversely affecting accuracy in other parts of the domain. Thus,
shock capturing schemes can compromise the high-order convergence characteristics of the
original method, highlighting a trade-off between implementation ease and maintaining
high-resolution fidelity in complex flow situations.

Explicit shock tracking While shock capturing schemes incorporate sufficient numerical
diffusion to stabilize solutions near shocks, explicit shock tracking/fitting schemes strive to
overcome this by explicitly adjusting the computational mesh. This adjustment aims to satisfy
the Rankine-Hugoniot jump conditions (Rankine, 1870; Hugoniot, 1887) across sharp shock
fronts, by aligning the computational mesh’s cell edges with the shock front. The cell’s edges
are treated as internal boundaries and jumps in numerical solutions between elements are
leveraged by shock tracking methods. As a result, discontinuities can be accurately represented
without further stabilization, making shock-fitting particularly attractive for direct numerical
simulation (DNS) focused on capturing all relevant flow details, excluding the shock layer itself
(Salas, 2010).

Historically, explicit shock tracking dates back to the 1940s. Early methodologies involved
formulating a finite difference method (FDM) for the Euler equations on a static, rectangular
reference domain, which is then mapped onto a time-varying physical domain. Starting with
an initial shock location estimate, a time-marching procedure adjusts the reference domain to
align with the shock position (Salas, 2010). Recently, such a method was applied to detonation
problems, showcasing high-order convergence rates (Romick and Aslam, 2017). To mitigate

4

the need for in-depth prior knowledge of the flow, ’floating’ shock tracking methods have been
developed, which simplify the management of internal shock boundaries. These methods track
the movement of shock intersections with the background mesh (Moretti and Valorani, 1988;
Nasuti and Onofri, 1996). Another strategy still under current research (Assonitis et al., 2022;
Assonitis et al., 2023) and sometimes also termed floating shock-fitting adapts the mesh directly
to the shock geometry using the Rankine-Hugoniot conditions. Techniques like those involve
shock point tracking and local computational grid re-meshing and are used to align mesh
edges with the shock surface, while shock capturing addresses yet-to-be-fitted discontinuities
(Paciorri and Bonfiglioli, 2009; Bonfiglioli et al., 2016).

However, the shock wave’s position is generally unknown and can change or develop over time,
makingmeshing a challenging task. Furthermore, complex patterns can form due to interactions
of different shock waves or reflections. Even though explicit shock tracking approaches showed
promising results, they seem to be not easily generalizable for problems where the shock
position and its topology are unknown. Also, early approaches focused on low-order schemes
where shock capturing has a bigger relative advantage, making shock tracking play a minor
role in the simulation of compressible flows to date (Trépanier et al., 1996; Baines et al., 2002).

Implicit shock tracking Recently, in the context of DG methods, so-called implicit shock
tracking (IST) approaches have been developed and successfully applied to two-dimensional
(2D) flows. These methods promise to remedy the problems associated with explicit shock
tracking by not requiring any information about the shock or its topology. IST methods treat
mesh coordinates as additional variables in the discretized conservation law equations and
compute numerical solutions by implicitly aligning mesh edges with discontinuities. In the
work by Corrigan et al. (2019c), the moving discontinuous Galerkin method with interface
condition enforcement (MDG-ICE) is proposed. This approach augments the weak form of
stationary conservation laws with a term enforcing the Rankine-Hugoniot jump conditions.
In subsequent studies, the method was applied to three-dimensional (3D) (Corrigan et al.,
2019b) and to viscous flows (Kercher et al., 2021; Ching et al., 2024), and a least squares
formulation of the same method was presented by Kercher and Corrigan (2021). Furthermore,
the high-order implicit shock tracking (HOIST) method was developed by Zahr and Persson
(2018), where shock tracking of the mesh is achieved by solving a constrained optimization
problem based on a general error indicator defined by an enriched DG discretization. This
method was subsequently applied to reactive flows (Zahr and Powers, 2021), time-dependent
problems were tackled (Shi et al., 2022; Naudet and Zahr, 2024), and additional robustness
was investigated along with steady 3D cases (Huang and Zahr, 2022).

Even though IST methods are robust and accurate for various flow types, they have certain
weaknesses. For time-dependent problems, IST methods, such as the one discussed by Shi et al.
(2022), require cumbersome re-meshing when utilizing the method of lines strategy. During
time evolution only certain parts of the mesh move with the shock, resulting in inadequately
resolved regions upstream and excessively resolved regions downstream of the shock, especially
without artificial mesh adaptation. Consequently, new developments focus on space-time
strategies (Corrigan et al., 2019b; Naudet and Zahr, 2024), which present other challenges.
For unsteady 3D problems, they require solving four-dimensional space-time problems. In such
scenarios, mesh operations like element-splitting, fundamental to mesh-based IST methods,
need to be carried out in four dimensions, which can become very inefficient (Naudet and

5

Zahr, 2024). To circumvent difficulties associated with mesh adaptation, so-called extended
methods are used in other CFD domains (e.g., multi-phase flows) to track evolving interfaces
on a fixed computational background mesh (Kummer et al., 2018; Smuda and Kummer, 2020;
Rieckmann et al., 2024).

Extended discontinuous Galerkin methods The concept underlying extended methods, such
as extended discontinuous Galerkin (XDG) methods, involves addressing scenarios where the
solution exhibits discontinuities by enrichment of the approximation space with discontinuous
basis functions and without adapting the computational grid. These additional basis functions
are discontinuous at interfaces, which are usually defined explicitly or implicitly and allowed
to move freely throughout the computational domain. This is especially useful for problems
where solution discontinuities move in time, as extended methods circumvent the need for
cumbersome re-meshing.

The first such method in the context of finite elements is presented by Mös et al. (1999).
This extended finite element method (xFEM) was introduced for the simulation of crack
growth in solid mechanics. In the context of DG, the first extended method traces back to
the work by Bastian and Engwer (2009), which focuses on discretizing elliptic scalar model
problems on complex-shaped domains. This approach involves utilizing cell-local, piece-
wise planar, triangular sub-cells for integrating weak forms in cut-cells. Later, this approach
was applied to incompressible Navier-Stokes two-phase flows (Heimann et al., 2013). The
first XDG method for incompressible steady two-phase flows, which employs a high-order
approximation of the interface using a level set function alongside a quadrature technique
tailored for implicitly defined domains, was introduced by Kummer (2017). The discretization
strategy relies on the symmetric interior penalty method for the viscous flux, complemented by
stabilization techniques to mitigate issues arising from small cut-cells, accomplished through
cell agglomeration. For compressible two-phase flows the XDG method was then applied by
Henneaux et al. (2020) to solve gas-liquid flows with phase transition.

Additionally, first steps towards an explicit XDG shock tracking method for supersonic com-
pressible flows with shocks, separating the pre-shock state and the post-shock state by an
implicitly defined interface, have been made by Geisenhofer et al. (2020). There, an explicit
reconstruction procedure is employed to obtain a shock-aligned level set function from a shock
capturing simulation. As the resulting interface is not accurate enough to stabilize the XDG
method, an additional sub-cell correction algorithm is proposed for one-dimensional (1D)
scenarios. However, the method has yet to be shown to generalize to 2D and 3D cases.

1.2 Research gap and objectives

Research gap As of today, no approaches that combine IST concepts with extended methods,
in particular XDGmethods, have been explored. Such an implicit XDG shock tracking (XDG-IST)
method holds the potential to bypass the complex and often necessary re-meshing procedures
needed for mesh-based IST when solving time-dependent problems (Shi et al., 2022) and
could provide a generalizable solution to the inaccurate interface positions observed in the
explicit XDG shock fitting approach (Geisenhofer, 2021).

6

Additionally, until now, research on IST has primarily been centered on its variational formula-
tion (Corrigan et al., 2019b; Kercher and Corrigan, 2021; Kercher et al., 2021), the selection
of appropriate objective and constraint functions (Zahr and Persson, 2018; Zahr and Persson,
2020), the development of robust solvers for optimization problems (Huang and Zahr, 2022),
and the application of these methods across various scenarios (Zahr and Powers, 2021; Shi
et al., 2022; Huang et al., 2023; Naudet and Zahr, 2024). However, minimal attention has
been given to developing linear solvers for the linearized optimality system governing the
search direction at each optimization step. So far, IST methods solely rely on direct sparse
solvers, which are known to scale terribly for 3D problems. Efficient linear solvers are crucial
for enabling IST methods to tackle large-scale problems, relevant for real-world applications.

Research objectives In view of these research gap mentioned above, the two objectives of
this work are the following:

1. Development of an implicit XDG shock tracking method: The first objective is to
establish an IST approach based on an XDG method. Unlike techniques that involve
implicitly moving and deforming element edges, this method keeps the grid fixed. Level
set functions will be used to track shock surfaces and implicitly adapt the approximation
space, allowing for the accurate representation of arbitrarily positioned, discontinuous
flow features. By doing so, we circumvent the need for re-meshing and addressing mesh
operations related to ill-shaped cells (i.e., cell splitting).

2. Development of linear solvers for implicit shock tracking: The second objective is to
create efficient linear solvers for the linearized optimality system, which determines the
search direction at each optimization step of IST methods. This involves the development
and testing of specialized preconditioners tailored to the complexities of the system
matrix.

ApplicationWithIDT:
base library for

implicit XDG shock tracking

BUIDT:
one-dimensional space-time

Burgers equations

SAIDT:
one-dimensional space-time
scalar advection equation

XESF:
two-dimensional steady

Euler equations

XESTSF:
one-dimensional space-time

Euler equations

Figure 1.1: Illustrations of the implicit XDG shock tracking modules contributed to the software package BoSSS.
Arrows indicate that the equation-specific modules (XESF, BUIDT, SAIDT, XESTSF) derive from the
base library (ApplicationWithIDT). In this illustration the colored bold names are clickable, sending the
reader to corresponding locations in the code repository.

7

https://github.com/FDYdarmstadt/BoSSS/tree/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT
https://github.com/FDYdarmstadt/BoSSS/tree/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/BUIDT
https://github.com/FDYdarmstadt/BoSSS/tree/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/SAIDT
https://github.com/FDYdarmstadt/BoSSS/tree/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF
https://github.com/FDYdarmstadt/BoSSS/tree/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESTSF

Author’s contributions In the light of the research objectives presented above the main
contributions of this dissertation are:

1. Novel implicit XDG shock tracking method:

(a) Method development and validation: In this work, we adapt the IST framework
introduced by Zahr et al. (2020) for use with XDG methods, introducing the XDG-
IST method. The approach revises the formulation as a constrained optimization
problem, shifting from variable mesh nodes to a fixed Cartesian background grid
and incorporates DOFs of a level set function as additional problem variables. Fur-
thermore, we introduce robustness measures to our method which are tailored
to the XDG context, incorporating XDG-specific stability measures and drawing
insights from the work by Huang and Zahr (2022). The novel XDG-IST method
is applied to several 2D problems with discontinuous solutions, including the 1D
space-time Burgers, advection, and Euler equations, and the steady 2D Euler equa-
tions. The XDG-IST method is then tested using various objective functions, level set
representations, and numerical fluxes. Further, we compare the XDG-IST method
to a DG shock capturing method based on artificial viscosity (Müller et al., 2017;
Krämer-Eis, 2017; Geisenhofer et al., 2019).

(b) Transparent open-source implementation: During this research, the novel XDG-
IST method has been integrated into an open-source CFD software, named bounded
support spectral solver (BoSSS) (Kummer et al., 2024), contributing additional
modules into the code base (see Figure 1.1). The software BoSSS serves as a platform
for the development, evaluation, and application of numerical discretization schemes
for PDEs in fluid dynamics, particularly focusing on XDG methods.

Additionally, to ensure transparency and encourage reusability, this dissertation
links concepts directly to their implementations in the BoSSS GitHub repository,
enabling readers to easily navigate from theoretical discussions to the corresponding
code segments. These links are embedded within the electronic version of the
dissertation, providing direct access to the specific files and lines of code relevant
to the discussed equations or test cases. Equations numbers, corresponding to
equations or expressions featuring a link, are colored in blue, demonstrated by the
following example

x ÞÑ
1

1 + e´2sαx
. (1.1)

Here, when clicking the expression (1.1) (see Remark 1), the reader is sent to a
method encoding the smoothed Heaviside function. The method is defined inside a
class encoding a numerical flux for the space-time advection equation.

Furthermore, the studies presented in this work are accompanied by Jupyter note-
books, facilitating the reproduction of results. These notebooks provide the possi-
bility to execute a series of snippets of BoSSS code inside a user-friendly graphical
user interface. These code-snippets, when executed, can either run (multiple) sim-
ulations, extract simulation data from BoSSS databases, perform post-processing
on the data, or create visual plots. Also, besides these code-blocks, we included
markdown-blocks with descriptive text and equations. At the beginning of the
presentation of a test case or a study, we provide a hyperlink to corresponding
notebooks in the form of blue colored text (see links in Figure 1.1).

8

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/SAIDT/Fluxes/XDGFLuxes/bulkFlux/ScalarAdvectionUpwindFlux.cs#L52-L55

2. Linear solvers for implicit shock tracking: This dissertation introduces a set of pre-
conditioners designed for linearized optimality systems used in sequential quadratic
programming (SQP) solvers for constrained IST methods, with a particular focus on the
HOIST method (Zahr et al., 2020; Huang and Zahr, 2022). These preconditioners, which
are also adaptable to various objective functions and in particular to the XDG-IST method,
are constructed by simplifying the constraint Jacobian using standard DG preconditioning
techniques and omitting certain blocks of the Lagrangian Hessian. Additionally, a two-
level P -multigrid technique is proposed which can be combined with each preconditioner.
Extensive testing with two inviscid compressible flow problems assesses the effectiveness
and sensitivity of each preconditioner to various parameters, including mesh and Hessian
regularization, linearization state, and solution space resolution.

The content in this dissertation is heavily based on two articles (Vandergrift and Kummer, 2024;
Vandergrift and Zahr, 2024). In each article, the author of this dissertation is the first author
and has contributed significantly to the presented work. This includes sole responsibility for
the actual implementation and evaluation of the methods and writing the initial drafts of
the articles. The co-authors, Dr.-Ing. Florian Kummer and Professor Matthew J. Zahr served
in advisory roles, respectively. They were instrumental in developing the original ideas, in
assisting with their continuous refinement, and provided the necessary CFD codes that form
the foundation of the implementation. Their contributions to the articles were mainly in the
realms of initial conceptualization, proofreading, and making minor corrections.

Remark 1. In our current configuration, we have not been able to devise a method that allows the
displayed equation numbers within the text to be black. Hence, equations with a link feature blue
reference numbers and those without feature black ones.

1.3 Structure of the dissertation

The dissertation is structured into seven chapters, with the current chapter serving as an
introduction. Chapter 2 briefly summarizes basic concepts and equations related to the theory
of inviscid compressible flows with shocks. First, inviscid compressible flows are addressed by
presenting a conservative formulation of the Euler equations (Section 2.1.1) followed by their
non-dimensionalization (Section 2.1.2). Subsequently, an overview of shock wave phenomena
is provided, including discussions of normal (Section 2.2.1) and oblique shock waves (Section
2.2.2). Further, an analysis of shock-acoustic-wave interactions for 1D flows is presented
(Section 2.3).

Chapter 3 explores high-order XDG discretization techniques for a general transformed system
of conservation laws, which incorporate domain deformations (Section 3.1). The exploration
is followed by the system’s discretization employing an XDG method (Section 3.2). Numerical
flux functions employed in this study are discussed along with desired properties (Section 3.3).
The chapter concludes with a discussion of specific conservation laws and associated boundary
conditions considered in this research (Section 3.4).

In Chapter 4, the novel implicit XDG shock tracking method developed by Vandergrift and
Kummer (2024) is presented. First, the formulation of the optimization problem at the heart of
the method is examined (Section 4.1) and the SQP solver employed for its solution is described

9

(Section 4.2). The outline continues to explore the robustness measures implemented to ensure
the stability and reliability of the XDG-IST method (Section 4.3), followed by details on the
initialization and termination of the solver (Section 4.4). Subsequently, the full algorithm is
presented (Section 4.5) and different level set discretization approaches employed within this
research are discussed (Section 4.6).

In Chapter 5, numerical experiments are conducted to evaluate the performance and effective-
ness of different variants of the XDG-IST method through various test cases. First, a series of
test cases from four systems of conservation laws is presented to which the XDG-IST method is
applied (Section 5.1). Second, results of numerical studies (Section 5.2) examining different
variants of the XDG-IST method are shown, followed by a conclusion (Section 5.3).

Chapter 6 delves into the developed preconditioners for efficiently solving linear systems
that arise in IST methods, focusing on those methods employing mesh deformations and in
particular on the HOIST method developed by Zahr et al. (2020). This exploration begins
with an overview of the HOIST method (Section 6.1) and progresses to examine the developed
preconditioners (Section 6.2). Finally, results from detailed numerical experiments with these
preconditioners are reported (Section 6.3), analyzing their performance against several key
optimization solver parameters.

Chapter 7 concludes the dissertation and provides an outlook. For the research goals mentioned
before, the key contributions of this work are listed and potential avenues for future research
are explored, in particular for the XDG-IST method (Section 7.1) and the development of
preconditioners for IST (Section 7.2). Lastly, the contributions are synthesized for both topics
(Section 7.3).

10

2 Inviscid compressible flows with shocks

In this chapter, we provide a brief description of inviscid compressible flows with shocks and
present analytical expressions for basic examples, which are used to validate and test the novel
numerical methods introduced in the subsequent chapters. Compressible flows are prevalent in
various industrial applications, such as jet engines and commercial aircraft. The conventional
incompressibility constraint, assuming a constant density, becomes invalid in these flows due
to significant density variations. In high-speed compressible flows, inertia forces dominate,
allowing for the neglect of viscosity and the Euler equations are commonly employed as the
foundational model for inviscid compressible flow.

The structure of this chapter is outlined as follows: The discussion begins with an introduction
to inviscid compressible flows. Then, in Section 2.1, two conservative forms of the two-
dimensional (2D) Euler equations are introduced as a mathematical model for compressible
flows. Further, shock wave phenomena are discussed in Section 2.2 and, finally, Section 2.3
dives into the study of interactions between shock waves and acoustic waves in one-dimensional
(1D) flows, utilizing the linearized Euler equations.

We start by briefly describing compressibilty and the flow regimes arising in compressible
flows drawing from the textbook by Anderson (2003). We describe the flow of a fluid inside a
space-time domain Ω = Ωx ˆ T in terms of its density ρ : Ω Ñ R+, its velocities u, v : Ω Ñ R
and its pressure p : Ω Ñ R+, where the two-dimensional spatial domain is denoted by Ωx Ă R2

and the time interval by T := [tstart, tend].

Compressible Flows Contrary to incompressible flows, where the fluids density ρ is consid-
ered constant (Bρ/Bt = 0), compressible (real) flows inherently exhibit variable density. In
order to define compressibility we examine a fluid element with unit mass, specific volume evol
per unit mass, and corresponding density ρ = 1/evol. In the flow, this fluid element encoun-
ters pressure p, arising from neighboring fluid elements. An infinitesimal pressure increase,
∆p, results in the compression of the fluid element by ∆evol. Further assuming a constant
temperature, the isothermal compressibility can be defined as

ccmp = ´
1

evol

(
∆evol
∆p

)
T

. (2.1)

Generally, gases possess a significantly higher compressibility than liquids. For instance, the
isothermal compressibility is cwtr

cmp = 5×10´10 m2/N at 1 atm for water and caircmp = 5×10´5 m/N
at 1 atm for air under sea-level conditions, differing in five orders of magnitude. In most
technical applications, compressible effects are assumed negligible for gas flows with speeds
less than 30% of the local speed of sound a (defined in (2.2) for a perfect gas), given the low
density variation.

11

Flow Regimes Compressible flows exhibit different flow regimes, categorized by respective
ratios of the flow velocity (u, v)T in stream-wise direction and the local speed of sound

a =

d

γ̂p

ρ
(2.2)

for an ideal gas. The local Mach number, defined as

Ma =

?
u2 + v2

a
, (2.3)

distinguishes three flow regimes based on Mach number values: subsonic flow (Ma ă 1), sonic
flow (Ma = 1) and supersonic flow (Ma ą 1). Although the terms subsonic and supersonic
technically denote speeds below and above the local speed of sound, respectively, plane
aerodynamicists frequently employ these terms to describe specific ranges of inflow Mach
values, denoted by (¨)8 (see Table 2.1 and the work by Anderson (2003)). This is due to the

Table 2.1: Classification of flight regimes
Regime Subsonic Transonic Supersonic Hypersonic
Ma8 ă0.8 0.8 ´ 1.2 1.2 ´ 5.0 ą5.0

fact, that each range may exhibit distinct physical phenomena. In this work, we mainly focus
on supersonic flows (Ma8 P (1.2 ´ 5.0)) and all of these flow types, except subsonic flows,
typically feature shock waves which are further discussed in Section 2.2.

2.1 The Euler equations

This discussion proceeds with the presentation of the Euler equations in two conservative
forms: a form with dimensions (Section 2.1.1) and a dimensionless form (Section 2.1.2).

2.1.1 Conservative form

The two-dimensional Euler equations are comprised of conservation laws for mass, momentum,
and energy, presented here in differential conservative form

BU

Bt
+

BF eul
x (U)

Bx
+

BF eul
y (U)

By
= 0, (2.4)

where the conserved quantities U : Ω Ñ R4, the convective fluxes F eul
x : R4 Ñ R4 and

F eul
y : R4 Ñ R4 are given by the following expressions:

U =


ρ
ρu
ρv
ρE

 , F eul
x (U) =


ρu

ρu2 + p
ρuv

u(ρE + p)

 , F eul
y (U) =


ρv
ρvu

ρv2 + p
v(ρE + p)

 . (2.5)

12

Furthermore, ρu, ρv : Ω Ñ R are the momentums and ρE : Ω Ñ R+ is the total energy per
volume. The total energy ρE itself is the sum of the inner energy ρein : Ω Ñ R+ and the kinetic
energy ekin := 1

2ρ(u
2 + v2).

In order to close the equations (2.4), an equation of state must be chosen for the pressure. We
confine our analysis to flow configurations where the perfect gas assumption holds true, which
means that we neglect intermolecular forces, including Van der Waals forces. This assumption
is applicable to a broad spectrum of research and engineering applications, as detailed by
Anderson (2003), Section 1.4.1. Written in terms of the quantities introduced so far, the ideal
gas law is expressed by

p = (γ̂ ´ 1)ρein = (γ̂ ´ 1)(ρE ´ ekin), (2.6)

where the heat capacity is assumed to be γ̂ = 1.4 for air at standard conditions.

2.1.2 Non-dimensionalization

It is customary to derive and employ a non-dimensional form of an equation to facilitate the
transfer of results between small and large scales in experiments and numerical simulations. To
obtain dimensionless parameters for inviscid compressible flows and a non-dimensional form
of the Euler equations (2.4), we follow Müller (2014), and choose a reference length lref P R, a
reference velocity uref P R, (here (¨)ref denote reference values) and introduce non-dimensional
independent variables by

x‹ =
x

lref
, y‹ =

y

lref
, t‹ =

ureft

lref
. (2.7)

Additionally, choosing a reference density ρref P R, we define non-dimensional dependent
variables

ρ‹ =
ρ

ρref
, p‹ =

p

ρrefuref
, u‹ =

u

uref
, v‹ =

v

uref
, E‹ =

E

u2ref
, (2.8)

where (¨)‹ denotes the non-dimensional quantities. Further, we deduce the reference speed of
sound and Mach number

aref =

d

γ̂pref
ρref

, Maref =
uref
aref

. (2.9)

This change of variables leaves the Euler equations completely unchanged (Müller, 2014), thus,
without loss of generality, we set lref = 1m, ρref = 1 kg

m2 and uref = 1m
s . From this point on, only

the non-dimensional quantities will be referred to, while omitting the (¨)‹ in the definition for
simplicity.

2.2 Shock waves

This section serves as an introductory exploration into the theory of shock waves. A shock wave
is a thin layer within the flow field that exhibits an abrupt and nearly discontinuous alteration
in pressure, temperature, velocity and density. An illustrative example of its manifestation is
found when a blunt body travels at supersonic speeds, giving rise to a shock wave ahead of it.

13

In this scenario, the emergence of a shock wave is a consequence of the sudden compression of
air molecules encountered in the body’s trajectory.

A notable attribute of shock waves is their inherent thinness, typically measured on the order of
micrometers under standard air conditions. When employing the inviscid Euler equations for
modeling, as done in this work, viscous forces are neglected and shock waves are conceptualized
as true discontinuities, i.e., having zero thickness.

For simplified examples the jumps in the flow variables can be computed analytically and
we will use the resulting expressions to construct test-cases for our numerical methods. We
introduce relations for calculating the changes in flow quantities across a stationary normal
shock wave in Section 2.2.1. These relations are extended for two-dimensional stationary
oblique shock waves in Section 2.2.2. The content of the subsequent sections draws from the
works by Anderson (2003) and Geisenhofer (2021).

2.2.1 Normal shock waves

We examine a normal shock wave, which can be characterized by a horizontal flow (i.e., v = 0)
separated by a shock wave positioned orthogonal to the flow direction (see Figure 2.1). Across

MaL ą 1
uL, ρL, pL

MaR ă 1
uR, ρR, pR

~n

Figure 2.1: Schematic stationary shock wave (dashed red line) with pre- (¨)L and post-shock (¨)R variables.

the shock most flow quantities feature a discontinuity, so we denote by (¨)L (i.e., ρL, uL ...)
the quantities on the supersonic side (MaL ą 1) of the shock, whereas the quantities on the
subsonic side (MaR ă 1) are denoted as (¨)R. Next, the aim is to calculate the post-shock
values, given the pre-shock flow. To do so, the Rankine-Hugoniot jump conditions for stationary
shocks Rankine, 1870; Hugoniot, 1887

[[ρ~u ¨ ~n]] = 0, (continuity equation), (2.10a)
[[ρu~u ¨ ~n+ pnx]] = 0, (x-momentum equation), (2.10b)
[[ρv~u ¨ ~n+ pny]] = 0 (y-momentum equation), (2.10c)
[[(ρE + p)~u ¨ ~n]] = 0, (energy equation) (2.10d)

can be used, where ~n := (nx, ny)
T P R2 is a normal unit vector orthogonal to the shock and

~u := (u, v)T the velocity vector. These conditions ensure the conservation of mass, momentum
and total energy across the shock. Further, [[¨]] = (¨)L ´ (¨)R denotes the jump operator (which
is also defined for discontinuous Galerkin (DG) functions in (3.15)). In the examined case of

14

the normal shock wave, we have horizontal flow (vL, vR = 0) and the normal vector can be
chosen as ~n = (1, 0)T so that the jump conditions simplify to

[[ρu]] = 0, (2.11a)[[
ρu2 + p

]]
= 0, (2.11b)

[[(ρE + p)u]] = 0. (2.11c)

Together with the ideal gas law (2.6), we obtain a system consisting of four equations with
four unknowns, i.e., the post-shock values ρR, pR, ER and uR, which can be solved by simple
algebraic manipulations. The solution (except for the Energy) can be nicely expressed in terms
of the supersonic Mach number MaL, as done by Geisenhofer (2021), and writes:

ρR =
(γ̂ + 1)Ma2L

2 + (γ̂ ´ 1)Ma2L
ρL,

uR =
2 + (γ̂ ´ 1)MaL
(γ̂ + 1)Ma2L

uL,

pR =

[
1 +

2γ̂

γ̂ + 1

(
Ma2L ´ 1

)]
pL,

ER =
pR

ρR(γ̂ ´ 1)
+

1

2
u2R.

(2.12)

Additionally, one can derive a solution for the subsonic Mach number MaR, temperature TR

and the entropy ŝR by

MaR =

g

f

f

e

1 + (γ̂´1)
2 Ma2L

γ̂Ma2L ´
(γ̂´1)

2

,

TR
TL

=
ĥR

ĥL
=

[
1 +

2γ̂

γ̂ + 1

(
Ma2L ´ 1

)] [2 + (γ̂ ´ 1)Ma2L
(γ̂ + 1)Ma2L

]
.

(2.13)

We may conclude that pressure p, density ρ, internal energy E, Mach number Ma, temperature
T and entropy ŝ rise across a shock, while the velocity u decreases. The x-momentum is not
affected as stated by the jump condition (2.11a).

2.2.2 Oblique shock waves

Oblique shock waves are a generalization of normal shock waves, appearing when supersonic
flow is deflected by a straight-sided surface towards the main bulk of the flow. Figure 2.2
presents such a flow configuration. There, an inclined plane (wedge) with inclination angle
θwdg is shown. The supersonic flow deflected by it, produces a straight-sided shock with
angle θshk. In the following, we examine the relations between pre- and post-shock quantities,
denoted by (¨)L and (¨)R, and the angles of shock and wedge.

In the textbook by Anderson (2003), relations between the two angles θwdg, θshk and the inflow
Mach number MaL are given. The wedge angle θwdg can be expressed in terms of θshk and
MaL by

θwdg = 2 cot(θshk)
[

Ma2L sin2(θshk) ´ 1

Ma2L(γ̂ + cos(2 θshk)) + 2

]
. (2.14)

On the basis of (2.14), two fundamental aspects of oblique shocks can be observed:

15

MaL ą 1
MaR ă MaL

θwdg
θshk

Figure 2.2: Schematic supersonic flow over an inclined plane (grey) with inclination angle θwdg producing an
attached oblique shock (dashed red line) with angle θshk.

MaL ą 1

θwdg

(a) θwdg ą θwdg,max - Detached shock

MaL ą 1

θwdg

(b) θwdg ă θwdg,max - Attached shock

Figure 2.3: Two distinguished cases of supersonic flow over an inclined plane (grey) with inclination angle θwdg
producing a shock (dashed red line). For inclination angle θwdg ą θwdg,max (left) a detached curved shock
(dashed red line) is obtained, while in the other case (right) an attached oblique shock (dashed red line)
is obtained.

1. Given an incoming Mach number MaL there exists a maximum deflection angle θwdg,max.
If the plane is such that θwdg ą θwdg,max, there is no straight-sided shock solution (as in
Figure 2.3) and instead a detached, curved shock in front of the wedge is obtained.

2. For angles θwdg ă θwdg,max with a straight-sided shock, two possible shock angles
θshk,strong ą θwdg,weak, both satisfying (2.3), exist. The weak shock solution, obtained
by θwdg,weak, exhibits less severe changes across the shock, features a mostly supersonic
post-shock Mach number (MaR ą 1). According to Anderson (2003), this solution is
favored in nature. The second one is called the strong shock solution accompanied by
more severe changes across the shock and a subsonic post shock Mach number MaL ă 1.
According to Anderson, it can be forced to occur by an increased downstream pressure.

Next, the computation of post-shock quantities for the oblique shock wave case (θwdg ă θwdg,max)
is examined. To obtain the expressions, the relations (2.12) and (2.13) for the normal shock
wave can be applied when substituting the velocities uL, uR with the shock-normal velocities
uL,n, uR,n and the Mach numbers MaL,MaR with their shock-normal equivalents MaL,n,MaR,n.
The transformation between regular and shock-normal quantities can be done by

MaL,n = MaL sin(θshk), uL,n = uL sin(θshk), (2.15)

for the pre-shock values, and for the post-shock values by

MaR,n = MaR sin(θshk ´ θwdg), uR,n = uR sin(θshk ´ θwdg), (2.16)

16

as mentioned by Anderson (2003). As the derivation is straight-forward we do not include the
resulting expressions here.

In conclusion, we have obtained analytical expressions for the post-shock flow variables for
stationary normal and oblique shock waves. They will be useful in constructing test cases for
the Euler equations (Sections 5.1.4 and 5.1.3). Further, we also aim to construct test cases for
1D shock-acoustic-wave interaction problems, which will be examined in the next section.

2.3 One-dimensional shock-acoustic-wave interaction

In the fields of fluid dynamics and aerospace engineering, the study of shock-acoustic interaction
has remained a cornerstone of research over the years. Its practical implications extend across
diverse technical domains, notably in unraveling phenomena such as transonic buffet effects.
There, in the context of an airfoil encountering transonic flow, the shock wave positioned on
the suction side of the wing undergoes self-sustained oscillations, leading to an unsteady flow
characterized by fluctuations in lift and drag (Feldhusen-Hoffmann et al., 2018). Theoretical
frameworks suggest that this instability originates from an acoustic feedback loop, wherein
disturbances in the flow field downstream of the shock wave interact with upstream-propagating
acoustic waves, forming a cohesive mechanism.

In this section, we discuss a simplified case of the interaction between 1D shock waves and
acoustic waves by themeans of a linearized interaction analysis (LIA). The presented expressions
are later referenced when constructing test cases to validate the implicit XDG shock tracking
(XDG-IST) method for the 1D space-time Euler equations. In Section 2.3.1, we present the
linearization of the 1D Euler equations. Then, different possible acoustic wave types occurring
in a fluid are examined as in Section 2.3.2. Lastly, we describe the phenomena resulting from
the shock-acoustic-wave interaction in Section 2.3.3.

2.3.1 Linearized one-dimensional Euler equations

Flow decomposition In the simplified case of 1D shock waves, solutions of the interaction
can be computed by the means of a LIA. There, the flow is assumed to consist of a steady-
and an unsteady fluctuation component, the latter being usually magnitudes smaller than the
steady component (a similar approach is used in the context of linear stability theory). In this
sense, we assume a 1D flow (v = 0,Ωx Ă R) and introduce its decomposition into a piece-wise
constant base-flow (denoted as (¨)˝) and corresponding fluctuations (denoted by (¨)1), i.e.,

p(x, t) = p˝(x) + p1(x, t), ρ(x, t) = ρ˝(x) + ρ1(x, t), u(x, t) = u˝(x) + u1(x, t), (2.17)

where p1, ρ1, u1 : Ω Ñ R and p˝, ρ˝, u˝ : Ωx Ñ R. The base flow is steady and constant on
either side of the shock positioned at xs P Ωx, i.e.,

ψ˝(x) =

#

ψ˝
L if x ď xs

ψ˝
R else

, ψ P tp, ρ, u, a,Mau, (2.18)

where p˝
L, ρ

˝
L,Ma˝

L, a
˝
L, p

˝
R, ρ

˝
R,Ma˝

R, a
˝
R P R+ and u˝

L, u
˝
R P R are the constant pre- and post

shock values (which can be derived from the expressions presented in Section 2.2.1).

17

Linearized Euler equations Under the assumption of a steady base flow with significantly
small perturbations the Euler equations can be linearized. This is achieved by inserting the
decomposition (2.17) into the 1D Euler equations and neglecting all terms of second order,
i.e., products between two fluctuations or their derivatives. The resulting linearized Euler
equations write as

Bρ1

Bt
+ ρ˝ Bu1

Bx
+ u˝ Bρ1

Bx
= 0, (2.19a)

ρ˝ Bu1

Bt
+ ρ˝u˝ Bu1

Bx
+

Bp1

Bx
= 0, (2.19b)

B(ρE)1

Bt
+ u˝ B

Bx

(
(ρE)1 + p1

)
+ ((ρE)˝ + p˝)

Bu1

Bx
= 0. (2.19c)

Additionally, a linearized equation of state and linearized jump conditions

Jρ˝u1 + u˝ρ1K = 0, (2.20a)
J2ρ˝u˝u1 + u˝2ρ1 + p1K = 0, (2.20b)

J((ρE)1 + p1)u˝ + ((ρE)˝ + p˝)u1K = 0, (2.20c)

are obtained by the same procedure. The set of Equations (2.19a)-(2.20c) describes a system
of linear partial differential equations (PDEs) for fluctuations.

2.3.2 Acoustic waves

Generally, in 1D flow, two decoupled families of waves exist (Grube, 2020). Entropy waves,
solely governed by density fluctuations, and acoustic waves, determined by pressure fluctuations
and exhibiting perturbations in pressure, density and velocity. Using the linearized Euler
equations (2.19) as a basis, one can derive equations for the linear motion of acoustic waves in
the fluid. One such derivation, which assumes the fluctuations to be isentropic and isothermal,
is demonstrated in the work by Grube (2020) and results in a wave equation

D2p1

Dt2
´ a˝2 B2p1

Bx2
= 0, (2.21)

governing the pressure perturbations for acoustic waves, where D
Dt =

B
Bt + u˝ B

Bx denotes the
material derivative. Equation (2.21) is solved by a superposition of two harmonic waves

p1(x, t) = ψ+(x´ (u˝ + a˝)t) + ψ´(x´ (u˝ ´ a˝)t), (2.22)

one fast acoustic wave ψ+ : R ÞÑ R moving with speed u˝ + a˝, and a slow acoustic wave
ψ´ : R ÞÑ R moving with speed u˝ ´ a˝, both determined by initial conditions. Note, that
in the supersonic regime u˝ ą a˝ holds and hence both waves move downstream, while in
the subsonic regime the slow wave moves upstream. Additionally, the density fluctuations ρ1

are decomposed into entropy fluctuations ρ1 ent. and acoustic density fluctuations ρ1 ac. (i.e.,
ρ1 = ρ1 ent. + ρ1 ac.), where the latter can be computed from the pressure perturbations (due to
the assumption of isothermal perturbations)

ρ1 ac. =
p1

a˝2
. (2.23)

18

t

x

xs

MaL ą 1 MaR ă 1

u
˝
L
+ a

˝
L

u
˝ L

´
a

˝ L
u
˝
R
+ a

˝
R

u
˝R

´
a
˝R

Figure 2.4: Schematic x-t-diagram for an 1D flow with the shock wave positioned at x = xs (dashed red line) and
acoustic waves, represented by vectors originating from the x-axis. The acoustic waves have different
speeds depending on the flow regime (indicated by Mach number Ma) and whether a slow acoustic
wave (solid line) or a fast acoustic wave (dash-dotted line) is described.

Lastly, one can find the velocity fluctuations utilizing the linearized momentum equation
(2.19b) by

Du1

Dt
=

1

ρ˝

Bp1

Bx
. (2.24)

Incorporating both waves into the velocity results in

u1(x, t) = ´
1

ρ˝a˝
ψ+(x´ (u˝ + a˝)t) +

1

ρ˝a˝
ψ´(x´ (u˝ ´ a˝)t). (2.25)

In Figure 2.4, the four possible acoustic wave types (fast/slow, subsonic/supersonic) are
depicted in an x-t-diagram, illustrating the speed and direction of propagation. The expressions
(2.22), (2.23) and (2.25) generally describe 1D acoustic waves without taking into account
effects resulting from the interaction with shock waves.

2.3.3 Linear shock-acoustic-wave interaction

In this section, we describe the interaction of acoustic waves with shocks in 1D scenarios.
The interaction produces an additional acoustic wave and an entropy wave on the subsonic
side, both moving downstream and we provide theoretical values for the amplitudes of the
additional acoustic waves in the form of amplification/reduction factors (Landau and Lifshitz,
2013). Ultimately, we aim to construct test cases that can be used to validate the novel XDG-IST
method. In numerical studies (see Section 5.1.4), we will test if the computed XDG shock
tracking solutions align well with the physical phenomena described in the following.

An acoustic wave may propagate towards a shock either from the supersonic or the subsonic
side and a linear solution of the interaction for the 1D case was initially obtained by Blokhintsev
(1945) and Burgers (1946). Additionally, a more recent discussion can be found in the
textbook by Landau and Lifshitz (2013). For all three possible configurations (see Figure 2.5)
the interaction results in small variations in the shock’s position, usually described in the form
of a shock velocity d

dtxs : T Ñ R. Moreover, the interaction produces an acoustic wave and an
entropy wave on the subsonic side, both moving downstream. Next, we will examine two cases
separately: a fast acoustic wave hitting the shock from the supersonic side (see Figure 2.5 (a))
and a slow acoustic wave hitting the shock from the subsonic side (see Figure 2.5 (b)).

19

t

x

xsMaL ą 1 MaR ă 1

u
˝
L
+ a

˝
L

u
˝
R
+
a
˝
R

u
˝ R

(a) Supersonic fast acoustic wave

t

x

xsMaL ą 1 MaR ă 1

u ˝R
´
a ˝R

u
˝
R
+
a
˝
Ru

˝ R

(b) Subsonic slow acoustic wave

t

x

xsMaL ą 1 MaR ă 1
u

˝ L
´
a

˝ L

u
˝
R
+
a
˝
Ru

˝ R

(c) Supersonic slow acoustic wave

Figure 2.5: Schematic x-t-diagram for 1D shock-acoustic-wave interaction with the shock wave positioned at x = xs

(dashed red line). Three cases are distinguished based on the incoming wave type and position: (a)
fast acoustic wave (left) with speed u˝

L + a˝
L hitting the shock from the supersonic side (MaL ą 1)

and resulting in a transmitted fast acoustic wave (solid red) with speed u˝
R + a˝

R as well as an entropy
wave with speed u˝

R on the subsonic side (MaR ă 1). (b) slow acoustic wave (left) with speed u˝
R ´ a˝

R

hitting the shock from the subsonic side (MaL ą 1) and resulting in a reflected fast acoustic wave (solid
red) with speed u˝

R + a˝
R as well as an entropy wave with speed u˝

R on the subsonic side (MaR ă 1). 3)
slow acoustic wave (left) with speed u˝

L ´ a˝
L hitting the shock from the supersonic side (MaL ą 1) and

resulting in a transmitted fast acoustic wave (solid red) with speed u˝
R + a˝

R as well as an entropy wave
with speed u˝

R on the subsonic side (MaR ă 1).

In the case of downstream moving waves hitting the shock from the supersonic side, the
interaction produces a transmitted acoustic wave and an additional entropy wave on the
subsonic side. Specifically, for an 1D fast acoustic wave (see Figure 2.5 (a)), Burgers provides a
solution in terms of a linear system, from which the pressure and density perturbations, p1

R, ρ
1
R,

unknown for the subsonic side, and the shock velocity d
dtxs can be computed. Essentially,

Burgers provides a functional relationship f+ac (see Equations (22),(23),(24) in Burgers (1946))
"

p1
R, ρ

1
R,

d

dt
xs

*

= f+ac(p
1
L, p

˝, ρ˝, u˝), (2.26)

such that the unknown quantities can be determined from the incoming perturbation p1
L and

the base flow quantities. In the textbook by Landau and Lifshitz (2013), §90, Problem 2, the
amplification/reduction coefficient for the transmitted wave is derived directly in terms of
Mach numbers and writes

δp1
R

δp1
L

=
(1 +Ma˝

L)
2

1 + 2Ma˝
R + 1/Ma˝2

L

[
1 ´

γ̂ ´ 1

γ̂ + 1

(
1 ´

1

Ma˝
L

)2
]
, (2.27)

20

where δp1
R, δp

1
L P R are the amplitudes of the waves p1

R, p
1
L.

In the case of a slow wave (see Figure 2.5 (b)) moving upstream and hitting the shock from
the subsonic side, the interaction produces a reflected fast acoustic wave and an additional
entropy wave, again both moving downstream on the subsonic side. Here, again a solution in
terms of a functional relationship f´

ac is provided by Burgers
"

p1´
R , ρ

1´
R ,

d

dt
xs

*

= f´
ac(p

1
R, p

˝, ρ˝, u˝) (2.28)

(see Equations (22a),(23a),(24a) in Burgers (1946)). The unknown reflected pressure and
density perturbations p1´

R , ρ
1´
R , and the shock velocity d

dtxs are computed from the prescribed
acoustic wave p1

R and the base flow quantities. Also, for this case, the textbook by Landau
and Lifshitz (2013), §90, Problem 1, provides the amplification/reduction coefficient for the
reflected wave more conveniently in terms of Mach numbers

δp1´
R

δp1
R

= ´
1 ´ 2Ma˝

R + 1/Ma˝2
L

1 + 2Ma˝
R + 1/Ma˝2

L

, (2.29)

where δp1
R, δp

1´
R P R are the amplitudes of the waves p1

R, p
1´
R respectively.

Lastly, note that for the slow wave hitting the shock from the supersonic side (see Figure 2.5
(c)) no solutions were found in the literature and are not included here.

To construct test cases from the presented expressions, we will consider acoustic waves pre-
scribed by sinusoidal waves, which are further described in the following.

Sinusoidal waves Assuming that the incoming perturbations are described by sinusoidal
waves, i.e., waves of form

p1(x, t) = δp1 sin(k̂x´ ωt), (2.30)

the solution provided by Burgers immediately dictates that all resulting perturbations are
superpositions of sinusoidal waves, differing potentially only in frequency ω, wave number
k̂ P R or amplitude δp1 P R. Inserting this form into the wave equation (2.21) gives the
dispersion relation ω = k̂uw. Here, the wave speed uw P tu˝ ˘ a˝, u˝u depends on the type
of disturbance (fast acoustic vs. slow acoustic vs. entropy wave) and the flow regime where
the waves originates (super- vs subsonic side). The wave number k̂ is prescribed for the
incoming wave and changes for the waves resulting from the shock-interaction in such a way,
that incoming and resulting wave are matched in time. Lastly, the amplitudes for the resulting
waves and the shock velocity can be determined using (2.26) for a fast wave hitting the shock
from the supersonic side and (2.28) for a slow wave hitting the shock from the subsonic side.

Concluding, we have introduced a framework to construct numerical test cases for 1D shock-
acoustic-wave interaction problems. In particular, Equations (2.27) and (2.29) will be utilized
to asses the accuracy in this context. Bases on this framework, we will construct concrete test
cases and use these to validate the XDG shock tracking method as well as compare it to a shock
capturing method in terms of accuracy (Chapter 5).

21

3 High-order discretization

In this chapter, we describe the high-order extended discontinuous Galerkin (XDG) discretiza-
tion of a general transformed system of conservation laws, where domain deformations are
represented explicitly. This unified discretization framework forms a basis for both implicit
shock tracking (IST) methods considered in this work: the implicit XDG shock tracking (XDG-
IST) method (Chapter 4) and the high-order implicit shock tracking (HOIST) method (Chapter
6).

The HOIST method employs a discontinuous Galerkin (DG) method to discretize the system of
transformed conservation laws and uses domain deformations to adapt edges of computational
cells to discontinuous flow features. The DG method is as a high-order extension of the finite
volume method (FVM) and approximates solutions using piece-wise polynomial basis functions
defined on the cells of a computational grid, hence allowing for discontinuities at cell edges.

The discretization technique we employ in the XDG-IST context is an XDG method. The XDG
method is an extension to the DG method and utilizes interfaces to segment the computational
domain into sub-regions. For computational cells intersected by the interfaces, the DG basis
functions are replaced by XDG basis functions. The latter treat the interfaces as additional
cell boundaries such that geometries (i.e., solid regions) or discontinuous features of the flow
solution can be accurately represented. In the context of this research, the interfaces are
described implicitly by the zero iso-contours of level set functions. Analogously to the HOIST
method, the XDG-IST method adapts these interfaces to unknown discontinuous flow features
by an optimization approach.

The chapter presents a discretization framework that accommodates both IST methods (HOIST,
XDG-IST) and it is structured as follows: in Section 3.1, we introduce a general system of
conservation laws which is transformed to a fixed reference domain. Then, the system’s XDG
discretization is detailed in Section 3.2 and we discuss different numerical flux functions in
Section 3.3. Lastly, details on the specific conservation laws and associated boundary conditions
considered in this work are given in Section 3.4.

3.1 Transformed system of conservation laws

System of conservation laws We consider a general system of m inviscid conservation laws

∇ ¨ F (U) = 0 in Ω. (3.1)

They are defined on a physical domain Ω Ă Rd and subject to appropriate boundary conditions,
where U : Ω Ñ Rm is the solution of the system of conservation laws, F : Rm Ñ Rmˆd

23

is the flux function, ∇ := (Bx1 , . . . , Bxd
) is the gradient operator in the physical domain, and

~x := (x1, . . . , xd) P Ω are the coordinates. The boundary of the domain BΩ has outward unit
normal ~n : BΩ Ñ Rd. In general, the solution U may contain discontinuities. In this case,
the conservation laws (3.1) hold away from the discontinuities and the Rankine-Hugoniot
conditions (Majda, 1984) hold at the discontinuities. Further, we note that the formulation of
the conservation law in (3.1) is sufficiently general to encapsulate steady conservation laws
in a d-dimensional spatial domain and unsteady space-time conservation laws in a (d ´ 1)-
dimensional spatial domain, i.e., a d-dimensional space-time domain (see Remark 2).

Remark 2. In the case of an unsteady conservation law the general system is usually written as

BU

Bt
+∇x ¨ Fx(U) = 0 in Ωx ˆ T , (3.2)

where T : (tstart, tend) Ă R is a time interval, Ωx Ă Rd´1 the space-only domain, ~x :=
(x1, . . . , xd´1, t) P Ω = Ωx ˆ T are the space-time coordinates, ∇x := (Bx1 , . . . , Bxd´1

) the
spatial gradient operator and Fx : Rm Ñ Rmˆ(d´1) the spatial physical flux. The unsteady system
is related to the general formulation (3.1) by

F (U) =
(
Fx(U) U

)
, ∇ =

(
∇x Bt

)
. (3.3)

In Section 3.4, we introduce all specific conservation laws considered in this work, giving
details on the corresponding physical flux F and the boundary conditions.

Domain transformation One of the two implicit shock tracking methods considered in this
work (the HOIST method detailed in Section 6.1) relies on mesh deformation to track the
solution’s inherent discontinuities. It is beneficial to address these deformations in the domain
Ω before proceeding with discretization. To manage the anticipated mesh deformations caused
by the shifting of nodal coordinates, the problem is transformed to a fixed reference domain
Ω0 Ă Rd. This approach is visualized in Figure 3.1. The transformation between Ω0 and Ω is
done by diffeomorphisms G P G, where

G := tG : Ω0 Ñ Ω | G : X ÞÑ G(X) is a diffeomorphismu , (3.4)

mapping the reference domain Ω0 to the physical domain Ω. Diffeomophisms G are defined as
bijective and continuously differentiable functions having a continuously differentiable inverse
G´1. We follow Zahr and Persson (2018) transforming the system of conservation laws on the
physical domain Ω to a system on the reference domain Ω0 for any G P G

∇̄ ¨ F̄ (Ū ;G) = 0 in Ω0. (3.5)

Here, the solution of the transformed conservation law system is denoted by Ū : Ω0 Ñ Rm, the
transformed flux function by F̄ : Rm ˆ Rdˆd Ñ Rmˆd, the gradient operator on the reference
domain by ∇̄ := (BX1 , . . . , BXd

), where ~X := (X1, . . . , Xd) P Ω0 are the reference coordinates,
and the mapping Jacobian is denoted by G : Ω0 Ñ R. The latter is defined by

G = ∇̄G. (3.6)

24

Ω0

~N

X2

X1

Ω

~n

x2

x1

~x =
G(
~X)

Figure 3.1: Mapping G between reference Ω0 and physical domain Ω. Two coordinate systems ~X = (X1, X2),
~x = (x1, x2) and normal vectors ~N,~n are shown for each domain, respectively. (Figure adapted from
Zahr et al. (2020))

The unit outward normal to the reference domain is denoted ~N : BΩ0 Ñ Rd and the following
relation to the unit normal ~n P Rd in the physical domain holds:

~n ˝ G =
gG´T ~N∥∥∥gG´T ~N

∥∥∥ , (3.7)

where g : Ω0 Ñ Rdˆd is the deformation gradient defined by

g = detG. (3.8)

For any ~X P Ω0, the transformed and physical solution are related by

Ū(~X) = U(G(~X)), (3.9)

whereas the transformed flux is defined by

F̄ : (W̄ ;G) ÞÑ (detG)F (W̄)G´T . (3.10)

Remark 3. The transformation of the system of conservation laws, as introduced in this section,
is only relevant to the mesh-based HOIST method (Chapter 6). In contrast, for the XDG shock
tracking approach (Chapter 4), domain deformations are not utilized. There, we will assume
G = Id (i.e., G is the identity mapping) and hence reference and physical domain are identical
(Ω0 = Ω). This equality then extends to all other quantities defined in this section.

3.2 Discretization of transformed system of conservation laws

We elaborate on the discretization of the system of transformed conservation laws (3.5),
extending the methodology outlined by Zahr et al. (2020) to XDG spaces. This marks a

25

significant departure, as it effectively integrates a hybrid approach, bridging the nodal DG
discretization employed in the work of Zahr et al. (2020) with the modal XDG discretization
featured in the bounded support spectral solver (BoSSS) framework (Vandergrift and Kummer,
2024; Kummer, 2017).

While we present this discretization in a generalized manner, it’s crucial to note that we do
not employ this hybrid approach directly. Instead, we opt to work independently with their
respective implementations. This choice stems from the fact that the actual implementation of
the HOIST method, utilized in the development of IST preconditioners presented in Chapter 6,
does not integrate cut cells. Conversely, the XDG shock tracking method implemented in the
BoSSS framework does not support curved elements, further necessitating separate treatment.

In order to solve (3.5) numerically within the framework of Galerkin methods, the system of
partial differential equations (PDEs) is multiplied by selected test functions and then integrated
over the computational domain. Then, the expression is integrated by parts, a fundamental
step in many Galerkin methods which helps in managing boundary terms and ensuring the
correct application of boundary conditions. Further, the solution of (3.5) is approximated
within a specifically chosen discrete trial function space (in this work the XDG space described
in Sections 3.2.1 and 3.2.2). By selecting appropriate test functions, which are functions from
the same or similar function spaces as the trial functions, the method ensures that the solution
satisfies the differential equations in a weak sense. This means the solution may not necessarily
satisfy the differential equations point-wise everywhere but does so in an integral sense over
the domain.

This discretization process culminates in the derivation of algebraic residual forms (Section
3.2.3) that represent the discretized equations. These forms are critical for the subsequent
solution of the system through numerical methods. Typically, the nonlinear residuals are
tackled using iterative solvers, with the residuals serving as a measure of how close the current
approximation is to satisfying the conservation laws. The goal is to iteratively adjust the solution
within the discrete spaces until the residuals are minimized, indicating that an approximate
solution to the transformed system of conservation laws has been found.

3.2.1 Basic Galerkin approximation spaces

Domain discretization The reference domainΩ0 Ă Rd is discretized intoNK distinct, possibly
curved, non-overlapping computational elements K represented by the (background) mesh
Kh defined by

Kh := tK1,K2, . . . ,KNK
u s.t.

ď

eP[NK]
Ke = Ω0. (3.11)

In the chapter concerning XDG shock tracking it’s assumed that the mesh elements are Cartesian.
Conversely, for the HOIST method high-order, potentially curved elements are used.

Remark 4. Note that we use [¨] with [N] := t1, 2, . . . , Nu to denote index sets for natural numbers
N P N.

Further, the set of mesh edges is defined by

Γ := Γint Y Γext :=
ď

eP[NK]

BKe, (3.12)

26

where we differentiate between interior edges Γint and exterior edges Γext.

Discontinuous Galerkin space On the basis of the discretized domain we define the DG
approximation space

VP,m
h = VP,m

h (Kh) :=

V̄h P
(
L2(Ω0)

)m ˇ

ˇ V̄h
ˇ

ˇ

K
P (PP (K))m , @K P Kh

(

, (3.13)

where PP (K) is the space of (multi-variate-)polynomial functions of total degree at most P ě 0
on the element K and L2(Ω0) the space of L2-integrable functions on Ω0. Functions V̄h P VP,m

h

residing in this space are effectively characterized as coinciding with a vector of m mutually
independent polynomials within each mesh cell K P Kh, while allowing for discontinuities on
the inner cell boundaries Γint. This characteristic means that at points on these internal edges
~x P Γint DG functions exhibit not a single value but rather an inner (¨)in and an outer trace
(¨)out

V̄ in
h := lim

εÑ0+
V̄h(~x´ ε~n), V̄ out

h := lim
εÑ0´

V̄h(~x´ ε~n), @~x P Γ, (3.14)

which is also illustrated in Figure 3.4. Additionally, the jump operator [[¨]] is introduced for ease
of notation. It defines the difference between the inner and outer traces on internal edges Γint
and is equal to the inner trace alone on the domain boundary BΩ, that is,

[[
V̄h
]]
:=

#

V̄ in
h ´ V̄ out

h on Γint

V̄ in
h on BΩ

. (3.15)

Continuous Galerkin space To discretize the domain mappings expressed in (3.4), we adhere
to the methodology outlined by Zahr et al. (2020). We introduce a globally continuous Galerkin
(CG) space WPc

h of degree Pc ě 0 by

WPc
h = WPc

h (Kh) :=
!

Gh P
(
C0(Ω0)

)d ˇ
ˇ

ˇ
Gh|K P (PPc(K))d , @K P Kh

)

, (3.16)

whereas generally C l(Ω0) denotes the space of l-times continuously differentiable functions on
Ω0. Similar to the DG space, functions Gh P WPc

h Ă VPc,d
h are characterized by a vector of d

polynomials on cells K P Kh. However, a key distinction lies in the assumption of continuity
along cell edges Γ. Consequently, for these globally continuous functions, we observe equal
traces Gin

h = Gout
h , ensuring [[Gh]] = 0.

While WPc
h serves as a suitable space for discretizing domain mappings, it’s essential to assure

the admissibility of individual elements Gh P WPc
h . In the work by Zahr et al. (2020), criteria

are established to determine the admissibility of domain mappings. These aim at mitigating
undesirable outcomes such as element inversion.

Admissible domainmappings Inmesh-based implicit shock tracking (e.g., the HOISTmethod),
the domain mapping transforming the computational background mesh Kh is discretized such
that the mapped mesh approximates the boundaries of the physical domain to high-order. We
summarize the approach presented by Huang and Zahr (2022) to describe how the domain

27

mappings are determined by high-order mesh nodes, which eventually are moved to track flow
features.

In the context of mesh-based implicit shock tracking, a nodal DG basis is utilized (Hesthaven
and Warburton, 2008), that is, the mesh and the basis functions are described by a set of Nv

nodes. Let tX̂iu Ă Rd represent the (ordered) nodes associated with the background mesh Kh

and the CG-space WPc
h , which may include high-order nodes. Consequently, as a polynomial,

each element Gh P WPc
h can be uniquely determined by its effect on the nodes X̂i. This means

that if tΦiu
Nv
i=1 forms a nodal basis of WPc

h which is linked to the nodes tX̂iu
Nv
i=1 and satisfies

Φi(X̂j) = δij (here δij denotes the Kronecker-delta), then a map Gh can be defined by

Gh(¨ ;x) : Ω0 Ñ Rd, Gh(¨ ;x) : X ÞÑ

Nv
ÿ

i=1

x̂iΦi(X), (3.17)

where x P RNx (Nx = dNv) represents the concatenation of tx̂iu. Here, the coefficients x̂i P Rd

correspond to the physical coordinates of the reference nodes X̂i since they align with the
mapping’s effect at X̂i based on the selected nodal basis.

We note that Gh(¨ ;x) is an element of G, if Gh(¨ ;x) is a diffeomorphism, i.e., a continuously
differentiable bijection with continuously differentiable inverse. Ensuring that Gh(¨ ;x) is a
bijection from Ω0 to Ω means that x P RNx must be defined such that K̃h := Gh(Kh;x) is a
valid mesh of Ω, i.e., a partition of Ω into non-overlapping and non-inverted elements. As a
polynomial, Gh(¨ ;x) is continuously differentiable for any x P RNx , so the deformed mesh K̃h

will inherit the property of having no gaps between elements from the reference background
mesh Kh. Therefore, x only needs to be restricted to ensure the elements of K̃h:

1. are not inverted (injectivity) and

2. conform to the boundary BΩ (surjectivity with respect to Ω).

Explicitly enforcing the first condition presents challenges, so it is integrated into the implicit
shock tracking optimization problem (see Huang and Zahr (2022) for details). Furthermore,
the second condition is directly incorporated into the definition of admissible mappings. To
achieve this, a parametrization for the physical nodes is introduced by

φ : RNy Ñ RNx , φ : y ÞÑ φ(y) (3.18)

such that Gh(Kh;φ(y)) conforms to BΩ for any y P RNy that does not cause element inversion.
For further details on the constructions of this parametrization the reader is referred to the
work by Huang and Zahr (2022).

After having discussed the admissibility of domain mappings (only relevant to the HOIST
method), we continue the path towards discretization by introducing XDG approximation
spaces.

3.2.2 Extended discontinuous Galerkin approximation spaces

Domain decomposition As a basis of the XDG discretization we introduce two discretized
level set functions

ϕb P VPb,1
h , ϕs P VPs,1

h (3.19)

28

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L71C1-L71C47
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L73

A
(supersonic)

D

(void)

B

(subsonic)

C

(void)

Is

Ib

Figure 3.2: Exemplary cut-cell mesh given two interfaces Is, Ib (defined by ϕs and ϕb). The resulting sub-domains
A,B,C,D are depicted as defined in (3.20). Exemplary flow regimes which are used for supersonic flow
configurations examined in this work (supersonic, subsonic, void) are assigned to each sub-domain. The
set of non-empty cut-cells (3.22) (indicated by dark gray) and the near band (dark and light gray) are
illustrated for the shock interface Is.

associated with polynomial degrees Pb, Ps ě 1, respectively. These level sets functions partition
the domain Ω0 into (level set dependent) sub-domains (SDs) A,B,C,D (see Figure 3.2 for
illustration) which are defined by

A = A(ϕs, ϕb) :=
!

~x P Ω0

ˇ

ˇ

ˇ
ϕs(~X) ă 0 X ϕb(~X) ă 0

)

, (3.20a)

B = B(ϕs, ϕb) :=
!

~X P Ω0

ˇ

ˇ

ˇ
ϕs(~X) ą 0 X ϕb(~X) ă 0

)

, (3.20b)

C = C(ϕs, ϕb) :=
!

~X P Ω0

ˇ

ˇ

ˇ
ϕs(~X) ă 0 X ϕb(~X) ą 0

)

, (3.20c)

D = D(ϕs, ϕb) :=
!

~X P Ω0

ˇ

ˇ

ˇ
ϕs(~X) ą 0 X ϕb(~X) ą 0

)

, (3.20d)

SD = SD(ϕs, ϕb) := tA,B,C,Du , (3.20e)

Ib := I(ϕb) :=
!

~X P Ω0

ˇ

ˇ

ˇ
ϕb(~X) = 0

)

, (3.20f)

Is := I(ϕs) :=
!

~X P Ω0

ˇ

ˇ

ˇ
ϕs(~X) = 0

)

. (3.20g)

The sub-domains are separated by implicitly defined interfaces Is, Ib represented by the zero
iso-contours of their respective level sets ϕs, ϕb. They may be thought of corresponding to
different flow regimes or regions. For instance, in the case of supersonic flow, Amay correspond
to the supersonic pre-shock region, while B may correspond to the subsonic post-shock region
and the shock may coincides with Is. Subsequently, the sub-domains C,D would correspond
to a solid or (void) region behind a wall (represented by ϕb) where no flow occurs. In Figure
3.2, this specific decomposition is illustrated given a Cartesian two-dimensional (2D) mesh.

Remark 5. Throughout this work, we refer to a level set function as level sets and vice versa.

Cut-cells In the context outlined in (3.20), each cell Ke of the background grid is segmented
into phase-cells Ke,s by intersecting it with sub-domains, where Ke,s := Kj X s and s belongs
to the set of sub-domains SD. This procedure forms the cut-cell grid KX

h (illustrated in Figure

29

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/IDTControl.cs#L34C1-L34C43
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/IDTControl.cs#L35
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/IDTControl.cs#L37
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/IDTControl.cs#L36

x1

x2

Φ

(a) DG (b) sub-domain A (c) sub-domain B

Figure 3.3: Illustration depicting a two-dimensional, single-valued DG function (P = 2, d = 2) within a single
cut-cell and the corresponding XDG functions for sub-domains A and B, assuming the presence of one
level set. The original DG function in (a) is cut along the interface (red line) to yield XDG functions for
each respective sub-domain. The resulting functions for sub-domains A (b) and B (c) are depicted
accordingly.

3.2), which is represented by

KX
h = KX

h (ϕs, ϕb) := tKe,s := Ke X s | Ke P Kh, s P SDu . (3.21)

Notably, a significant number of these phase-cells Ke,s may be empty, specifically when the
background cell Ke does not intersect with the sub-domain s. To identify the set of non-empty
cut-cells Kcc,0

h related to a level set ϕ‹ P tϕs, ϕbu, the following definition is employed

Kcc,0
h (ϕ‹) :=

Ke,s P KX
h

ˇ

ˇ Ke X I(ϕ‹) ‰ H
(

. (3.22)

Additionally, the concept of a near band is introduced for each level set ϕ‹, extending the
non-empty cut-cells by those in close proximity. This near band, denoted Kcc,1

h , is defined by

Kcc,1
h (ϕ‹) :=

!

Ke,s P KX
h

ˇ

ˇ

ˇ
DKi,s P Kcc,0

h (ϕ‹) s.t. BKi,s X BKe ‰ H

)

. (3.23)

and illustrated in Figure 3.2.

Extended discontinuous Galerkin space Building on the cut-cell grid framework (3.21), we
define the vector-valued XDG space as

VP,m,X
h := VP,m

h (KX
h) =

V̄h P
(
L2(Ω0)

)m ˇ

ˇ V̄h|K P (PP (K))m ,@K P KX
h

(

. (3.24)

Note that this space is an extension to the DG-space defined in (3.13), i.e., VP,m
h Ă VP,m,X

h . By
transitioning from the background grid to the cut-cell grid, functions V̄h P VP,m,X

h are granted
additional degrees of freedom (DOFs) in the cut-cells, allowing for further discontinuities
across the interfaces Is, Ib. Enriching basis functions with additional XDG basis functions
for enhanced discontinuity handling across cut-cells is illustrated in Figure 3.3 for a single
interface.

Remark 6. An important remark to note is that if the level sets do not intersect the domain,
implying Ω0 X s = Ω0 for one sub-domain s P SD, then the cut-cell grid KX

h reverts to the original
background grid Kh. Consequently, in such scenarios, the XDG space becomes equivalent to the
DG space. This assumption will be used in the context of the HOIST method (Chapter 6).

30

3.2.3 Residual forms

In this section, the nonlinear residual forms are derived which represent the discretized system
of conservation laws.

Elemental weak form To obtain the XDG weak form, the system ofm conservation laws (3.5)
is multiplied by a test function and integrated over the reference domain. After integration py
parts, the solution Ū is approximated in a trial space and the test functions are taken from a
suitable test space. As the trial space, we opt for the XDG space VP ,m,X

h with polynomial degree
P , while the test space considered is an XDG space VP 1,m,X

h with P 1 ě P . On an elemental
level, the weak XDG form can be expressed as follows: given a mesh deformation Gh P WPc

h ,
the objective is to find Ūh P VP,m,X

h such that for all test functions V̄h P VP 1,m,X
h , the following

condition holds
ż

BK
V̄ in
h ¨ H̄(Ū in

h , Ū
out
h , ~Nh,K ; ∇̄Gh) dS ´

ż

K
F̄ (Ūh; ∇̄Gh) : ∇̄V̄h dV = 0, (3.25)

where ~Nh,K : BK Ñ Rd represents the unit outward normal to element K P KX
h , and

H̄ : Rm ˆ Rm ˆ Rd ˆ Rdˆd Ñ Rm denotes the numerical flux function associated with the
reference flux F̄ . The numerical flux H̄ is essential as the surface integral in (3.25) necessitates
the evaluation of the inviscid flux of the discrete solution Ūh, which is not single-valued on cell
boundaries BK. Thus, the numerical flux is introduced as an approximation

H̄(Ū in
h , Ū

out
h , ~Nh,K ; ∇̄Gh) « F̄ (Ū ; ∇̄Gh) ¨ ~Nh,K . (3.26)

In Section 3.3, further details on the design of the numerical fluxes employed in this work are
discussed, along with essential requirements ensuring that the DG discretization maintains
properties of consistency, conservativeness, and stability (Hesthaven and Warburton, 2008).
Additionally, for exterior edges Γext, Ūout

h corresponds to a boundary state constructed to
enforce the appropriate boundary condition. The construction of equation-specific boundary
states is discussed in Section 3.4.

Residual form Using the weak form introduced in (3.25) we define the residual form
rP

1,P
h : VP 1,m,X

h ˆ VP,m,X
h ˆ WPc

h ˆ VPs,1
h Ñ R by

rP
1,P

h : (V̄h, Ūh,Gh, ϕs) ÞÑ
ÿ

KPKX
h

rP
1,P

K (V̄h, Ūh,Gh, ϕs). (3.27)

It is composed of a sum of elemental residual forms rP
1,P

K : VP 1,m,X
h ˆVP,m,X

h ˆWPc
h ˆVPs,1

h Ñ R
given by

rP
1,P

K : (V̄h, Ūh,Gh, ϕs) ÞÑ

¿

BK

V̄ in
h ¨ H̄(Ū in

h , Ū
out
h , ~Nh,K ; ∇̄Gh) dS

´

ż

K
F̄ (Ūh; ∇̄Gh) : ∇̄V̄h dV

(3.28)

where K P KX
h is a phase-cell belonging to the cut-cell mesh. Even though not indicated

explicitly in the right-hand-side of Equation 3.28, the residual forms depend implicitly on both

31

interfaces ϕs, ϕb (see Remark 7). The immersed boundary, represented by the corresponding
ϕb, is assumed to be fixed in this work, hence we omit the dependence in the definition of
rP

1,P
h and rP

1,P
K .

Subsequently, we insert a basis for the test space (VP,m,X
h), trial space (VP,m,X

h) (with equal
polynomial degrees P 1 = P), and domain mapping space (WPc

h) into (3.27) reducing it to a
system of nonlinear algebraic equations in residual form. We further choose an approximation
space CPs

h Ă VPs,1
h for the shock level set ϕs relating it to discrete DOFs ϕ P RN

ϕ (more details
on the specific choice of CPs

h are discussed in 4.6). As a results, the algebraic form of the
residual is given by

r : RNu ˆ RNx ˆ RNϕ Ñ RNu , r : (u,x,ϕ) ÞÑ r(u,x,ϕ), (3.29)

where Nu = dim(VP,m
h), Nx = dim(WPc

h) and Nϕ = dim(CPs
h). Note that in this presentation

Ūh depends on the XDG coefficients u in the sense of

Ū « Ūh = u ¨ Φ, (3.30)

where Φ denotes a basis of VP,m,X
h . Further, Gh is determined from the nodes x as detailed in

(3.17), and the domains of integration K, BK are implicitly dependent on the level sets ϕb, ϕs

(see Remark 7), the latter being defined from ϕ.

Additionally, the XDG basis is composed of basis functions Φ̄je P VP,1,X
h corresponding to a

specific phase-cell Ke P KX
h , and a polynomial mode n P [dim(VP,1(Ke)]. A single component

ri,ne : RNu ˆ RNx ˆ RNϕ Ñ R of the algebraic residual is obtained by inserting a specific basis
function into (3.27) and considering one component Fi of the physical flux:

ri,ne : (u,x,ϕ) ÞÑ

¿

BKe

H̄i(Ū
in
h , Ū

out
h , ~Nh,K ; ∇̄Gh)

[[
Φ̄je

]]
dS

´

ż

Ke

F̄ i(Ūh; ∇̄Gh) ¨ ∇̄Φ̄je dV.

(3.31)

Enriched residual Building on the residual form introduced as (3.27), the algebraic enriched
residual form is defined as follows:

R : RNu ˆ RNx ˆ RNϕ Ñ RN 1
u , R : (u,x,ϕ) ÞÑ R(u,x,ϕ), (3.32)

where R represents the enriched residual. This definition extends the standard residual
form by utilizing a test function space of one degree higher, specifically P 1 = P + 1, with
N 1

u = dim(VP+1,m,X
h) denoting the dimension of this enriched space. The rationale behind

using a higher-degree test function space is to enhance the sensitivity of the residual to features
in the solution that are not well captured, such as non-aligned interfaces and oscillatory
behaviors, a fact discussed in detail in (Zahr et al., 2020). By being more sensitive to these
features, the enriched residual acts as a more effective error indicator, particularly useful in
the context of implicit shock tracking methods and will be employed in the methods presented
in Chapters 4 and 6 to construct an objective function for the optimization problem.

32

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1135-L1143
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L60C9-L60C59
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ObjectiveFunctions.cs#L203C1-L204C48

Remark 7. The dependency of the residual forms on the level sets ϕs, ϕb is predominantly implicit
and not immediately apparent. However, it affects the domains of integration BK and K, as well
as Ūh and the integrated test functions, all of which are contingent upon the level sets in the cut
cells, i.e., K = K(ϕs, ϕb) and Ūh = Ūh(ϕs, ϕb).

Remark 8. Although the discretization is presented to simultaneously incorporate both, mesh
deformations obtained by moving nodes and level set movement, in this work, we will only consider
each of these separately. For mesh-based implicit shock tracking (Chapter 6), the level set will be
assumed to not intersect the background grid (see also Remark 6), resulting in KX

h = Kh and
VP,m,X
h = VP,m

h . Conversely, for implicit XDG shock tracking (Chapter 4), we will assume a fixed
background grid (i.e., Gh = Id) (see also Remark 3), ensuring that all transformed quantities are
equivalent to the non-transformed ones.

3.3 Numerical flux function

Following the overview regarding the spatial XDG discretization of a transformed system of
conservation laws, we outline the fundamental characteristics of numerical fluxes, which serve
as integral components ensuring stability and convergence in any DG method drawing from
Di Pietro and Ern (2012), Section 3.2. Further insights into suitable numerical fluxes for
hyperbolic conservation laws are available in the works by LeVeque (1992) and Toro (2009).
We provide a comprehensive overview of the numerical fluxes employed in this study, starting
by discussing desired properties for numerical fluxes in Section 3.3.1. Then, simple numerical
fluxes, applicable to a broad range of conservation laws are presented in Section 3.3.2, followed
by an introduction of numerical fluxes employed for the Euler equations in Section 3.3.3.

The XDG methods presented in this work require the computation of the residual form (3.27),
which feature a boundary integral. Its computation (in a numerical sense) requires evaluation
of the projected transformed flux F̄ (Ū) ¨ ~Nh,K along quadrature nodes situated on cell edges
BK, where the discrete state Ūh is multi-valued and ~Nh,K : BK Ñ Rd represents the unit
outward normal to the element K P KX

h in the reference domain. The transformed numerical
flux function H̄ approximates

H̄(Ū in
h , Ū

out
h , ~Nh,K ,Gh) « F̄ (Ū) ¨ ~Nh,K . (3.33)

The numerical flux H̄ may be chosen differently for interior non-cut edges BK P Γintz(Is Y Ib),
cut-cell edges BK P IszΓint, BK P IbzΓint, and exterior edges BK P Γext. For DG-methods,
usually boundary conditions are prescribed by choosing an appropriate external state Ūout

h .
For the specific conservation laws considered, these are introduced in Section 3.4.

Further, we shift our attention to the numerical flux function in the physical domain

H : Rm ˆ Rm ˆ Rd Ñ Rm, H : (U in
h , U

out
h , ~nh,K) ÞÑ H(U in

h , U
out
H , ~nh,K), (3.34)

which approximates the projected physical flux

H(U in
h , U

out
h , ~nh,K) « F (Uh) ¨ ~nh,K . (3.35)

33

The numerical flux H̄ in the reference domain is uniquely determined by the numerical flux in
the physical domain by

H̄(Ū in
h , Ū

out
h , ~Nh,K ,Gh) =

∥∥∥gG´T ~Nh,K

∥∥∥H(U in
h , U

out
h , ~nh,K), (3.36)

so in the remainder of this section, we will discuss the physical numerical flux H and it will be
transformed to the reference domain according to (3.36).

3.3.1 General requirements

We discuss three desired properties (stability, consistency and conservativity) for the numerical
flux H in the context of DG methods, following the textbook by Di Pietro and Ern (2012).
Additionally, two properties desired in the case of implicit shock tracking are presented as
described by Zahr et al. (2020): consistency with Rankine-Hugoniot conditions and smoothness
with respect to the normal.

For the following discussion concerning the physical numerical flux, we use a simplified notation:
given a specific quadrature node on a cell’s edge, i.e., ~x P BGh(K), for this section denote
~n = ~nh,K(~x) P Rd, U = Uh(~x) P Rm, U in = U in

h (~x) P Rm and Uout = Uout
h (~x) P Rm (depicted

in Figure 3.4).

BK

U in
h (~x) Uout

h (~x)

~x ~nh,K(~x)

Figure 3.4: Illustration of an interface configuration with inner and outer trace for a function Uh(~x) and ~x P Ω.
~nh,K denotes the unit outward normal.

Stability It is desired for time dependent problems and states that the L2-norm }U}L2(Ω)

remains constant over time when assuming homogeneous Neumann boundary conditions. This
is in particular true if the E-flux property is satisfied, which reads(

F (U in + ε(Uout ´ U in)) ¨ ~n´ H(U in, Uout, ~n)
)
(Uout ´ U in) ě 0, @ε P [0, 1]. (3.37)

Consistency The numerical flux satisfies the consistency property if

H(U,U,~n) = F (U) ¨ ~n. (3.38)

This property ensures agreement with the physical flux for continuous solutions and it also
follows from the E-flux property for Lipschitz continuous numerical fluxes.

34

Conservativity When it is ensured that the total amount of the conserved quantities U on the
domain Ω only changes due to fluxes across the domain boundary BΩ, conservativity is upheld.
This necessitates that the numerical flux satisfies

H(U in, Uout, ~n) = ´H(Uout, U in,´~n). (3.39)

preserving physical conservation properties globally.

Apart from these three classical requirements, in the realm of implicit shock tracking two other
conditions are favorable for numerical fluxes, as discussed in the work by Zahr et al. (2020).

Consistency with Rankine-Hugoniot conditions In the context of implicit shock tracking, one
seeks to align mesh-edges with solution discontinuities and represent the jumps accurately. On
an edge corresponding with the shock front, the numerical flux should be consistent with the
Rankine-Hugoniot jump conditions for stationary shocks (see (2.10) for the Euler equations),
i.e.,

F (U in) ¨ ~n = F (Uout) ¨ ~n ùñ H(U in, Uout, ~n) = F (U in) ¨ ~n = F (Uout) ¨ ~n. (3.40)

This can be seen as an amendment to the classical consistency property which does not apply
when the right and the left state are different due to a jump in the solution.

Smoothness with respect to the normal This property establishes that the numerical flux

H(U in, Uout, ~n) is smooth with respect to variations in ~n. (3.41)

It is beneficial for implicit shock tracking, as the solution is sought as a minimizer of an non-
linear optimization problem, based on the residual forms. Numerical fluxes incorporating
absolute values or Heaviside functions (i.e., in the form of if-else-statements) feature single
isolated points of non-smoothness which often coincide with the precise points where a solution
is discontinuous and satisfies the Rankine-Hugoniot property (3.40). To this end, an illustrative
example for a linear advection problem and more details concerning the smoothness property
can be found in (Zahr et al., 2020).

3.3.2 Simple numerical flux functions

Simple numerical flux functions that can be employed for a broad range of conservation laws
are introduced in the following.

Central Flux The central flux naively averages the projected flux of both states, i.e.,

Hcntrl : (U in, Uout, ~n) ÞÑ
F (U in) ¨ ~n+ F (Uout) ¨ ~n

2
. (3.42)

It satisfies both consistency properties (3.38), (3.40), the conservativity property (3.39) and
the smoothness property (3.41). For linear advection (3.66) and the semi-discrete setting, one
can show that the energy norm is conserved exactly (see Di Pietro and Ern (2012), Proposition
3.38), i.e., that the L2-norm stays the same for all times, which renders the flux optimal in
some sense. But typically this lack of numerical dissipation implies that in general for first-order
conservation laws the stability property (3.37) is not satisfied.

35

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/CentralFlux/CentralFlux.cs#L142

Smoothed upwind flux In this work ,the classical upwind flux is defined for single-component
problems (where m = 1) which can be written in terms of a problem-dependent flow direction
uK : R Ñ Rd, i.e., for which F (U) = uK(U)U (valid for space-time linear advection and Burgers
equation). Then, denoting UK := uK(

U in+Uout

2), the classical upwind flux can be written as

Hup : (U in, Uout, ~n) ÞÑ

#

F (U in) ¨ ~n if UK ¨ ~n ě 0

F (Uout) ¨ ~n if UK ¨ ~n ă 0
(3.43)

and it satisfies both consistency properties (3.38), (3.40), the conservativity property (3.39),
the E-flux property (3.37), but fails to satisfy the smoothness property (3.41). Thus, following

´1 ´0.5 0 0.5 1

0

0.5

1

x

H
sm

th
(x
)

csmth = 5
csmth = 10
csmth = 30
csmth = 8

Figure 3.5: Illustration of the smoothed Heaviside function Hsmth(x) (Equation 3.45) for different smoothing values
csmth P t5, 10, 30,8u. (Figure adapted from Zahr et al. (2020))

Zahr et al. (2020), we introduce a smoothed upwind flux by writing (3.43) in terms of a
Heaviside function and replacing the latter by a smoothed variant

Hup
smth : (U in, Uout, ~n) ÞÑ (UK ¨ ~n)

(
U inHsmth(UK ¨ ~n) + Uout(1 ´Hsmth(UK ¨ ~n)

)
, (3.44)

where the smoothed Heaviside function (illustrated in Figure 3.5) is defined by

Hsmth(x) =
1

1 + e´2csmthx
, (3.45)

and where csmth P R is a smoothing factor (csmth = 10 chosen in this work). This modification
ensures that the smoothness property (3.41) is recovered but leads to a violation of the Rankine-
Hugoniot property (3.40). In their work, Zahr et al. (2020) show that, in the case of implicit
shock tracking, this is a reasonable trade-off, facilitating the convergence of the optimizer.

3.3.3 Numerical flux functions for the Euler equations

The relatively simple numerical fluxes presented in Section 3.3.2 are not feasible in the context
of discretizing the Euler equations. While the central flux (3.42) is not stable, the upwind flux
(3.44) is introduced only for a specific problem set. Hence, in this section more sophisticated
numerical fluxes are introduced. Their evaluation and construction is closely related to the
approximate solution of local Riemann problems (Riemann, 1860) presented in the following.

36

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/BUIDT/Fluxes/XDGFLuxes/bulkFlux/STBurgersUpwindFlux.cs#L82C1-L86C18
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/BUIDT/Fluxes/XDGFLuxes/bulkFlux/STBurgersUpwindFlux.cs#L80
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/BUIDT/Fluxes/XDGFLuxes/bulkFlux/STBurgersUpwindFlux.cs#L56C9-L59C1

Riemann problem The general Riemann problem concerns a setting where a piece-wise
constant discontinuous initial value is imposed and it can be written as:
find a solution V : R ˆ T Ñ Rm that satisfies

BV (x, t)

Bt
+

B

Bx
(F (V (x, t)) ¨ ~n) = 0, V (x, tstart) =

#

U in if x ď 0

Uout if x ą 0.,
(3.46)

It offers, as outlined by Toro (2009), valuable insights into hyperbolic conservation laws and
serves as the solution for these laws under basic initial conditions, encapsulating all relevant
physical and mathematical properties. Particularly in the context of the Euler equations, it
is akin to the shock tube problem in an infinitely long tube. The first Riemann solver for the
Euler equations was proposed by Godunov and Bohachevsky (1959).

Godunov’s method The method proposed by Godunov and Bohachevsky (1959) aims to find
self-similar solutions Ṽ : R Ñ Rm to the Riemann problem (3.46), i.e., Ṽ (x/t) = V (x, t).
Subsequently, the numerical flux function is defined by

Hriem : (U in, Uout, ~n) ÞÑ F (Ṽ (0)) ¨ ~n, (3.47)

i.e., the physical flux evaluated at the solution of the Riemann problem along the ray x/t = 0.
Finding the solution Ṽ is equation-dependent; for nonlinear systems, it often entails solving one
or more nonlinear algebraic equations iteratively until a desired accuracy is obtained, rendering
the evaluation of the numerical flux function computationally expensive. The Godunov flux
(3.47) satisfies all properties except the smoothness property and because of its superior
accuracy, it is often used as a reference for other numerical methods. On its basis, less accurate
but more feasible approximate Riemann fluxes are constructed, which are explored in the
following.

Harten-Lax-van Leer-Compact flux In this work, one of the two Godunov-type flux approxi-
mations utilized is the Harten-Lax-van Leer-Compact (HLLC) flux, representing an advanced
upwind flux (3.43) tailored for the Euler equations. A detailed exposition of the HLLC approx-
imate Riemann solver, specifically customized for the compressible Navier-Stokes (CNS) solver
within the BoSSS framework, was presented by Krämer-Eis (2017). For brevity, this discussion
provides a concise overview based on the work by Toro (2009) and the work by Krämer-Eis
(2017) for one-dimensional (1D) flows.

The HLLC Riemann solver, pioneered by Toro et al. (1994), extends the foundational principles
of the original Harten-Lax-van Leer (HLL) solver introduced by Harten et al. (1983). Both
methodologies operate on the premise of approximating the requisite wave speeds, corre-
sponding to waves that originate from the intial discontinuity of the 1D Riemann problem
(3.46). While the HLL approach adopts a two-wave model, the HLLC method employs a
three-wave model, enhancing the resolution of the intermediate wave. The two nonlinear
waves (wave speeds Sin and Sout) representing the minimum and maximum eigenvalues of
the quasi-linear Euler system and correspond to shock or rarefaction waves, respectively. The
third wave corresponds to a contact discontinuity (wave speed S‹) associated with the third

37

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L3-solution/BoSSS.Solution.CompressibleFlowCommon/Convection/GodunovFlux.cs#L76C1-L82C10

t

x

Sout

Uout

Uout
‹

Sin

U in

U in
‹

S‹

Figure 3.6: Illustration of the two nonlinear waves representing the maximum and minimum eigenvalues of the
system (solid thick lines, wave speeds S in and Sout, corresponding to shock or rarefaction waves), along
with a contact wave (dashed line, wave speed S‹) associated with the third eigenvalue of the problem and
four constant states U in, U in

‹ , U out, U out
‹ being separated, all of which characterize the one-dimensional

Riemann problem (3.46). (Figure adapted from Krämer-Eis (2017))

eigenvalue of the problem. The mathematical formulation of the HLLC numerical flux, adapted
from (Krämer-Eis, 2017), is given by

HHLLC : (U in, Uout, ~n) ÞÑ

$

’

’

’

’

&

’

’

’

’

%

F (U in) ¨ ~n if 0 ă Sin,(
F (U in) + Sin(U in

‹ ´ U in)
)

¨ ~n, if Sin ď 0 ď S‹,

(F (Uout) + Sout(Uout
‹ ´ Uout)) ¨ ~n if S‹ ď 0 ď Sout,

F (Uout) ¨ ~n if Sout ă 0,

(3.48)

where U in, U in
‹ , U

out, Uout
‹ are the four constant states being separated by the three waves (see

Figure 3.6). Under the assumption of the ideal gas law prevalent in this work, Toro (2009)
suggests to estimate the wave speeds depending on a pressure estimate in the star region (i.e.,
region in between the two non-linear waves Sin, Sout)

p‹ = max
(
0,

pin + pout

2
´

1

2
[[u]]

ρin + ρout

2

ain + aout

2

)
. (3.49)

Then, the wave speeds Sin, Sout are estimated as

Sin = uin ´ ainqin and Sout = uout ´ aoutqout, (3.50)

with the wave-type dependent correction factor

qˆ =

#

1 if p‹ ď pˆ(
1 + γ̂+1

2γ̂

(
p‹

pˆ ´ 1
))1/2

if p‹ ą pˆ,

+

(3.51)

where qˆ P tqin, qoutu. Additionally, the contact wave speed S‹ is obtained from the assumed
wave speeds Sin, Sout and the known states U in, Uout by

S‹ =
[[ρu(S ´ u)]] ´ [[p]]

[[ρ(S ´ u)]]
. (3.52)

Lastly, the missing constant intermediate states U in
‹ , U

out
‹ can be found by

Uˆ
‹ = ρˆ

(
Sˆ ´ uˆ

Sˆ ´ S‹

) 1
S‹

ρˆEˆ

ρˆ + (S‹ ´ u)
(
S‹ +

pˆ

ρˆ (Sˆ ´ uˆ)
)
 , (3.53)

38

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/HLLCFlux/DGFluxes/HLLCDensityFlux.cs#L128C1-L142C14
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/HLLCFlux/DGFluxes/HLLCDensityFlux.cs#L87C1-L88C42
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/HLLCFlux/DGFluxes/HLLCDensityFlux.cs#L101-L102
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/HLLCFlux/DGFluxes/HLLCDensityFlux.cs#L90C13-L98C14
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/HLLCFlux/DGFluxes/HLLCDensityFlux.cs#L118C1-L120C30

where Uˆ
‹ P tU in

‹ , U
out
‹ u denotes the left and right states.

More details on the estimates are given in the corresponding paper by Toro et al. (1994).

The HLLC flux exhibits classical consistency as defined by property (3.38), yet it lacks consis-
tency regarding the Rankine-Hugoniot conditions, as specified in (3.40). Consequently, this
flux is unsuitable for mesh-based implicit shock tracking (Chapter 6), as it generates non-zero
residuals even when the mesh is shock-aligned and the solutions adhere to the conservation
laws. Hence, it is not advisable for fluxes across the shock interface Is in the context of XDG
shock tracking, although it remains viable for regular cell boundaries in the XDG setting. De-
spite satisfying stability and conservativity properties (3.37) and (3.39) respectively, the HLLC
flux fails to meet the smoothness requirement outlined in (3.41), owing to its if-else definition.
One approach to restore smoothness involves employing smoothed Heaviside functions, similar
to those utilized in the smooth upwind flux (3.44), although this strategy is not explored within
the scope of this work.

Roe flux Another numerical flux function employed in this work is the approximate Riemann
solver developed by Roe (1981). The following brief summary draws from the adaptation to
higher dimensions described by Naudet and Zahr (2024). In Roe’s approach the nonlinear
Riemann problem in (3.46) is approximated with the following linearized Riemann problem:
find V̂ : R ˆ T Ñ Rm that satisfies

B

Bt
V̂ (x, t) + B̃(U in, Uout, ~n)

B

Bx
V̂ (x, t) = 0 for x P R, V̂ (x, tstart) =

#

U in x ď 0

Uout x ą 0.
.

(3.54)
Here, the linearization matrix B̃ : Rm ˆ Rm ˆ Rd Ñ Rmˆm is chosen such that for any ~n P Rd

(unit length), the linearized problem is

• hyperbolic, i.e., B̃(U in, Uout, ~n) is diagonalizable with real eigenvalues,

• consistent with the original Riemann problem: B̃(U in, Uout, ~n) Ñ B(U,~n) as U in, Uout Ñ

U P Rm, where

B(U,~n) :=
B[F (U) ¨ ~n]

BU
(3.55)

is the Jacobian of the projected physical flux,

• conservative at discontinuities: [[F (U) ¨ ~n]] = B̃(U in, Uout, ~n) [[U]].

Then, Roe’s numerical flux, Hroe : Rm ˆ Rm ˆ Rd Ñ Rm, takes the form

Hroe : (U in, Uout, ~n) ÞÑ
F (U in) ¨ ~n+ F (Uout) ¨ ~n

2
+

1

2
|B̃(U in, Uout, ~n)| [[U]] , (3.56)

where the absolute value of a matrix B̃ P Rmˆm is defined as |B̃| := V |Λ|V ´1, where B̃ =
V ΛV ´1 is the eigenvalue decomposition and the absolute value is applied component-wise to
a diagonal matrix. The expression for the linearization matrix is

B̃ : (U in, Uout, ~n) ÞÑ B(U(U in, Uout, ~n), ~n), (3.57)

where U : Rm ˆ Rm ˆ Rd Ñ Rm is a problem-specific Roe average. The Roe flux satisfies both
consistency properties (3.38), (3.40), stability (3.37) and conservativity (3.39), but fails to

39

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/RoeFlux/DGFluxes/RoeDensityFlux.cs#L75C13-L75C62

satisfy the smoothness property (3.41). However, if the absolute value function is replaced by
a smooth variant (illustrated in Figure 3.7)

| ¨ |smth : x ÞÑ x tanh(csmthx) (3.58)

then smoothness (3.41) is satisfied, while the property (3.37) no longer holds. Again, this
is a desirable trade-off for implicit shock tracking, due to requirements already discussed for
the upwind flux in Section 3.3.2. Furthermore, it is well-known that the Roe flux can lead to
entropy-violating rarefaction shocks, which are circumvented via entropy fixes that directly
modify the eigenvalues of the matrix B̃(U in, Uout, ~n) near zero (sonic point), but theses fixes
are not considered in this work.

´1 ´0.5 0 0.5 1

0

0.5

1

x

|
¨
| s
m
th

csmth = 5
csmth = 10
csmth = 30
csmth = 8

Figure 3.7: Illustration of the smoothed absolute value function | ¨ |smth (Equation 3.58) for different smoothing
values csmth P t5, 10, 30,8u. (Figure adapted from Zahr et al. (2020))

In the course of this work Roe’s numerical flux was implemented into the BoSSS framework
for two problems: The two-dimensional steady Euler equations and the one-dimensional
space-time Euler equations. In the following, concrete descriptions of the matrices V ,V ´1

and B̃(U in, Uout, ~n) for both problems are given, drawing from the work by Naudet and Zahr
(2024). To this end, we will express B̃(U in, Uout, ~n) = B(U,~n) in terms of the Roe-averaged
velocity ~u, enthalpy H and speed of sound a, ((¨) denotes the Roe-average for a variable), i.e.,

B(U,~n) ÞÑ B0(~u,H, a, ~n), (3.59)

and where the Roe-averaged quantities are defined by

~u(U in, Uout) =

a

ρin~uin +
?
ρout~uout

a

ρin +
?
ρout

, (3.60a)

H(U in, Uout) =

a

ρinH in +
?
ρoutHout

a

ρin +
?
ρout

, (3.60b)

a(U in, Uout) =

(
(γ̂ ´ 1)

(
H ´

1

2
~u ¨ ~u

))1/2

, (3.60c)

and where the enthalpy is obtained by H = (ρE + p)/ρ.

40

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/RoeFlux/DGFluxes/RoeBaseFlux.cs#L185C13-L187C14
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/RoeFlux/DGFluxes/RoeBaseFlux.cs#L175
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/RoeFlux/DGFluxes/RoeBaseFlux.cs#L177
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/RoeFlux/DGFluxes/RoeBaseFlux.cs#L180

Roe flux for steady Euler equations For the steady (space-only) Euler equations the projected
flux Jacobian Bx(U,~nx) := B(U,~n), denoting ~nx = ~n, can be written by

Bx(U,~nx) =


0 (~nx)

T 0(
γ̂´1
2

)
‖~u‖2 ~nx ´ (~u ¨ ~nx)~u (~u ¨ ~nx)Id1 + ~u(~nx)

T ´ (γ̂ ´ 1)~nx~u
T (γ̂ ´ 1)~nx((

γ̂´1
2

)
‖~u‖2 ´H

)
(~u ¨ ~nx) H(~nx)

T ´ (γ̂ ´ 1)(~u ¨ ~nx)~u
T γ̂(~u ¨ ~nx)

 ,
(3.61)

where Id1 P Rd1ˆd1 is the identity matrix (for the space-only Euler equations d1 = d). Further,
the eigenvalues Λx : Rm ˆ Rd Ñ R(d1+2)ˆ(d1+2) are given by

Λx : (U,~nx) ÞÑ

(~u ¨ ~nx) ´ a
(~u ¨ ~nx)Id1

(~u ¨ ~nx) + a

 , (3.62)

the right eigenvectors Vx : Rm ˆ Rd1

Ñ R(d1+2)ˆ(d1+2) by

Vx : (U,~nx) ÞÑ

 1 (~nx)
T 1

~u´ a~nx (~u´ ~nx)(~nx)
T + Id1 ~u+ a~nx

H ´ (~u ¨ ~nx)a ~uT +
(
‖~u‖2 /2 ´ (~u ¨ ~nx)

)
(~nx)

T H + (~u ¨ ~nx)a

 . (3.63)

and the left eigenvectors by

(Vx(U,~nx))
´1 =

γ̂ ´ 1

2a2

 ‖~u‖2 /2 + (~u¨~nx)a
γ̂´1 ´~uT ´

a
γ̂´1(~nx)

T 1
2a2

γ̂´1(~nx + ~nx ´ ~u) ´ ‖~u‖2 ~nx 2~nx~u
T + 2a2

γ̂´1(Id1 ´ ~nx~nx
T) ´2~nx

‖~u‖2 /2 ´
(~u¨~nx)a
γ̂´1 ´~uT + a

γ̂´1(~nx)
T 1

 ,
(3.64)

such thatBx = VxΛxVx
´1 is the eigenvalue decomposition. The space-only Roe flux is obtained

by plugging the decomposition into (3.56).

Roe flux for space-time Euler equations For the space-time Euler equations the Roe flux is
obtained using the expression from the space-only case. In accordance with Naudet and Zahr
(2024) we have

B̃(U in, Uout, ~n) = Vx(U,~nx)|Λx(U,~nx)}~nx} + ntIm|Vx(U,~nx)
´1, (3.65)

where the space-time normal ~n =
(
~nx nt

)T is decomposed into its spatial and temporal parts.
The space-only Roe flux is obtained by plugging the decomposition (3.65) into (3.56).

Remark 9. The Roe flux is often augmented with an entropy fix (Harten and Hyman, 1983) to
improve its stability and ensure physical correctness of the solution. However, even though its
consideration is perfectly valid in this context, an entropy fix was not considered in this work as
the resulting flux would not satisfy the Rankine-Hugoniot property 3.40 (Corrigan et al., 2019a).

41

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/RoeFlux/DGFluxes/RoeBaseFlux.cs#L190C13-L196C70
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/RoeFlux/DGFluxes/RoeDensityFlux.cs#L63C12-L69C27
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/RoeFlux/DGFluxes/RoeMomentumFlux.cs#L52-L62
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/RoeFlux/DGFluxes/RoeEnergyFlux.cs#L49-L55
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Fluxes/RoeFlux/DGFluxes/RoeBaseFlux.cs#L198C13-L234C89

3.4 Considered conservation laws and boundary conditions

In this last section, we introduce four specific systems of conservation laws that have been
considered in this work, namely: the 1D space-time advection equation in Section 3.4.1, the 1D
space-time Burgers equation in Section 3.4.2, the 2D steady Euler equations in Section 3.4.3,
and the 1D space-time Euler equations in Section 3.4.4. The systems are used to construct
specific test cases that will be used to evaluate our numerical methods. We present the equations
in the general form (3.1) for conservation law systems, which was the starting point of this
chapter, and we discuss the boundary conditions employed.

3.4.1 One-dimensional space-time advection equation

We consider the space-time formulation of the linear advection equation

Bu

Bt
+ ua(t)

Bu

Bx
= 0 in Ω = Ωx ˆ T , (3.66)

where Ωx Ă R is the spatial domain, T = [tstart, tend] Ă R the temporal domain, ua : T Ñ R
represents a time-dependent advection, and u : Ω Ñ R a velocity. This formulation is linked to
the general form (3.1) by setting the conserved variables U and the corresponding physical
flux F to

U = (u), F (U) = (ua(t)u u), (3.67)

(hence d = 2 and m = 1) and considering a space-time setting (see Remark 2). In this work,
Dirichlet boundary conditions udr : BΩ Ñ R are solely weakly imposed using appropriate exact
solutions for the whole boundary, i.e., setting

Uout = udr(x, t), @(x, t) P Γext (3.68)

for all exterior edges Γext in the discretized form (3.27). As the numerical flux, the smoothed
upwind flux detailed in Equation 3.44 is employed. Additionally, exact solutions for this
problem set can be derived by the method of characteristics.

Exact solution Let u be a solution of (3.66) and consider a curve x̃ : T Ñ R along which u is
constant, i.e.,

d(u(x̃(t), t))

dt
= 0 =

Bu

Bt
+ ua(t)

Bu

Bx
. (3.69)

From the chain rule of differentiation, we have

d(u(x̃(t), t))

dt
=

Bu

Bt
+
dx̃

dt

Bu

Bx
, (3.70)

and comparing (3.70) with the right-hand side of (3.69) yields that

dx̃

dt
= ua(t). (3.71)

Equation 3.71 can be integrated to obtain the characteristic curves

x̃(t) =

ż t

tstart

ua(t̂)dt̂+ x0 (3.72)

42

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/SAIDT/Fluxes/XDGFLuxes/bulkFlux/ScalarAdvectionUpwindFlux.cs#L109C9-L112C10
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/SAIDT/Fluxes/XDGFLuxes/bulkFlux/ScalarAdvectionUpwindFlux.cs#L73C17-L73C51

along which the solution is constant. Here, x0 = x̃(0) is a constant resembling the starting
point of the curve. Thus, we can determine the exact solution given an initial value u0 : R Ñ R
by

u(x, t) = u0(x´

ż t

tstart

ua(t̂)dt̂). (3.73)

In Figure 3.8, we have illustrated characteristic curves for a specific choice of ua.

t

x

x̃1(t) x̃2(t)

Figure 3.8: Illustration of two characteristic curves x̃1(t), x̃2(t) (red dashed lines) for the linear space-time advection
equation (3.66) where ua(t) = 3t2 ´ 3t+ 0.5, resulting in the curve

şt

tstart
ua(t̂)dt̂ = t3 ´ 3

2
t2 + 1

2
t.

The linear space-time advection equation serves as an ’easy’ model problem for evaluating
implicit shock tracking methods. By introducing discontinuities into the initial value, these
discontinuities propagate in time along characteristic curves. This leads to the formation of
curves where the solution becomes discontinuous, which are sought to be fitted by the implicit
shock tracking method being investigated. In Section 5.1.1, we will present two specific test
cases used to validate our XDG-IST method. For other examples in both two-dimensional and
three-dimensional contexts, we refer the reader to the works by Corrigan et al. (2019a), Zahr
et al. (2020), and Huang and Zahr (2022).

3.4.2 One-dimensional space-time Burgers equation

Consider the space-time formulation of the 1D Burgers equation, which can be expressed as

Bu

Bt
+ u

Bu

Bx
= 0 in Ω = Ωx ˆ T , (3.74)

where Ωx Ă R and u : Ω Ñ R is a velocity. By setting the conserved variables U and the
corresponding physical flux F to

U = (u), F : U ÞÑ (
1

2
u2 u), (3.75)

the equation can be linked to the general form (3.1) (here d = 2 and m = 1), considering a
space-time setting (see Remark 2). Like for the advection equation (3.4.1), boundary conditions

43

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/BUIDT/Fluxes/XDGFLuxes/bulkFlux/STBurgersUpwindFlux.cs#L91C9-L94C10

are applied using solely an appropriate exact solution and the smooth upwind numerical flux
(3.44) is employed.

While the linear advection equation discussed in Section 3.4.1 is relatively straightforward, the
Burgers equation mentioned in Section 3.4.2 introduces non-linearity. Despite the possibility of
constructing exact solutions for most configurations, this non-linearity poses a greater challenge
for implicit shock tracking methods. Additionally, it allows for scenarios where a discontinuity
emerges after a certain period, even if the initial value is continuous. Examples of such scenarios
can be found in the works by Corrigan et al. (2019a), Zahr et al. (2020), and Huang and Zahr
(2022).

3.4.3 Two-dimensional steady Euler equations

The steady two-dimensional Euler equations are obtained from their unsteady counterpart,
already introduced in (2.4), by discarding the time derivative BU/Bt and write

BF eul
x (U)

Bx
+

BF eul
y (U)

By
= 0, (3.76)

where the conserved quantities U : Ω Ñ R4 and the convective fluxes F eul
x : R4 Ñ R4 and

F eul
y : R4 Ñ R4 are given by the following expressions

U =


ρ
ρu
ρv
ρE

 , F eul
x (U) =


ρu

ρu2 + p
ρuv

u(ρE + p)

 , F eul
y (U) =


ρv
ρvu

ρv2 + p
v(ρE + p)

 . (2.5 repeated)

In order to link the equation system to the general form (3.1), we introduce the physical flux as

F : U ÞÑ
(
F eul

x (U) F eul
y (U)

)
, (3.77)

noting that d = 2 and m = 4. In the corresponding BoSSS module XESF many variants
of numerical fluxes described above are implemented: the central flux (3.42), the Godunov
flux (3.47), the HLLC flux (3.48), and the Roe flux (3.56). Furthermore, it is possible to
choose different numerical fluxes for inner non-interface edges ΓzIszIb, edges lying on the
shock interface Is and edges lying on the immersed boundary interface Ib. For most test case
considered in this work, the following combination is employed:

• The HLLC flux is used for non-interface edges while directly imposing boundary conditions
for edges corresponding to the domain boundary (see next paragraph for details).

• The Godunov flux is utilized for edges corresponding to the shock interface Is.

• An adiabatic slip wall condition is applied for the edges corresponding to the immersed
boundary interface Ib utilizing the HLLC flux.

Using this combination, the physical correctness of the Godunov flux ensures consistency with
the Rankine-Hugoniot conditions on the shock interface (see Equation 3.40), while the rest of
the edges are handled by the HLLC flux for computational efficiency.

44

Boundary conditions Boundary conditions are introduced in a weak sense by prescribing the
external state Uout on external edges Γext, needed for the evaluation of the numerical fluxes
in Equation 3.27. The prescription is done in accordance with the treatment of boundary
conditions for compressible flows for DG methods (Bassi and Rebay, 1997; Hartmann and
Houston, 2008; Mengaldo et al., 2014) and follows the presentation by Geisenhofer (2021).

The boundary conditions are mainly characterized by the orientation of characteristics of the
1D Euler equations which are obtained by restriction to the points normal to the edge. The
three characteristics are un ´ a, un, and un + a, where ~n denotes the unit inward normal, and
un = ~u ¨ ~n denotes the velocity in edge-normal direction. Depending on the numeric value of
un and its sign, some characteristics may move into our out of the domain, having implications
on the type of boundary condition that must be imposed.

The external statesUout(U8, U
in) are defined in terms of (prescribed) free-stream conditionsU8

and the inner values U in on the edges of boundary cells. The boundary conditions considered
in this work are:

• Supersonic inlet (un ą a): all three characteristics (un ´ a ą 0, un ą 0, un + a ą 0) point
into the domain. Thus, the free stream conditions are imposed as a Dirichlet boundary
condition, i.e.,

Uout = U8. (3.78)

• Supersonic outlet (´un ą a): all three characteristics (un ´ a ă 0, un ă 0, un + a ă 0)
point out of the domain. Thus, no information travels into the domain and free boundary
conditions are applied by choosing the inner values

Uout = U in. (3.79)

• Subsonic inlet (0 ă un ă a): two characteristics (un ą 0, un + a ą 0) point into the
domain, one characteristic (un ´ a ă 0) leaves the domain. Here, free-stream conditions
are imposed except for the pressure where the inner value is used

Uout =

 ρ8

ρ8~u8

pin

γ̂´1 + 1
2ρ8(~u8 ¨ ~u8)

 . (3.80)

• Subsonic outlet (0 ă ´un ă a): two characteristics (un ă 0, un ´ a ă 0) point out of
the domain, one characteristic (un ´ a ă 0) points into the domain. Here, free-stream
conditions are applied for the pressure and inner values are used for the other quantities.

• Adiabatic slip-wall (un = 0): defining a wall boundary condition in the context of the
Euler equations (2.4), necessitates allowing a tangential velocity. This slip wall boundary
condition is defined by introducing a mirrored velocity by ~umir = ~uin ´ 2(~uin ¨ ~n)~n, which
imposes the same tangential component ut in the external state as in the interior, i.e.,
uint = uoutt , while for the normal component we have unin = ´un

in (Mengaldo et al.,
2014). The adiabatic slip-wall boundary condition is thus expressed as:

Uout :=

 ρin

ρin
(
~uin ´ 2(~uin ¨ ~n)~n

)
ρinEin

 . (3.81)

45

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L3-solution/BoSSS.Solution.CompressibleFlowCommon/Boundary/SupersonicInlet.cs#L82-L100
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L3-solution/BoSSS.Solution.CompressibleFlowCommon/Boundary/SupersonicOutlet.cs#L54-L69
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L3-solution/BoSSS.Solution.CompressibleFlowCommon/Boundary/SubsonicInlet.cs#L81-L93
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L3-solution/BoSSS.Solution.CompressibleFlowCommon/Boundary/AdiabaticSlipWall.cs#L70-L71

3.4.4 One-dimensional space-time Euler equations

The 1D space-time Euler equations can be obtained from the 2D Euler equations introduced in
(2.4), by discarding the derivative in y-direction and considering a one-dimensional spatial
domain Ωx Ă R. They write

BU

Bt
+

BF eul
x (U)

Bx
= 0 in Ω = Ωx ˆ T , (3.82)

where the conserved quantities U : Ω Ñ R3 and the convective flux F eul
x : R3 Ñ R3 are

redefined as the following expressions:

U =

 ρ
ρu
ρE

 , F eul
x (U) =

 ρu
ρu2 + p
u(ρE + p)

 . (3.83)

In order to link the equation system to the general form (3.1), we introduce the space-time
physical flux (in accordance with Remark 2) as

F : U ÞÑ
(
F eul

x (U) U
)
, (3.84)

noting that in this case d = 2 and m = 3.

Boundary conditions For the 1D space-time Euler equations, we employ rectangular domains
Ω = [xstart, xend] ˆ [tstart, tend] and describe the boundary conditions for their left, right, top
and bottom boundaries. Here, for the left and right boundaries

BΩL := t(xstart, t) | t P T u , BΩR := t(xend, t) | t P T u (3.85)

the same boundary conditions can be applied as for the two-dimensional steady Euler equa-
tions (see Section 3.4.3), discarding the y-momentum and allowing for a time-dependency.
Conversely, the top and bottom boundaries

BΩB := t(x, tstart) | x P [xstart, xend]u , BΩT := t(x, tend) | x P [xstart, xend]u (3.86)

are more restricted. On the bottom boundary BΩB, an initial condition, usually in primitive
variables p8, u8, ρ8 : [xstart, xend] Ñ R, must be prescribed in the form of a Dirichlet boundary.
It can thus be regarded as a supersonic inflow boundary condition. The top boundary BΩT

corresponds to the solution U at the end time tend, which is usually unknown. Thus, here a free
boundary condition is applied, which is essentially the supersonic outflow boundary condition
discussed for the steady case.

46

4 Implicit XDG shock tracking

In this chapter, a novel implicit XDG shock tracking (XDG-IST) method is presented, drawing
from and expanding the publication by Vandergrift and Kummer (2024). The approach
integrates techniques from classical mesh-based implicit shock tracking, as introduced by Zahr
and Persson (2018) and Corrigan et al. (2019a), and extended discontinuous Galerkin (XDG)
methods (see Section 3.2.2), which are both particularly suited for handling partial differential
equations (PDEs) with discontinuities. To avoid nonlinear stabilization through shock capturing
(Müller et al., 2017; Geisenhofer et al., 2019), a constrained optimization problem is solved
that aligns the zero iso-contour of a level set function with the discontinuities, hence allowing
for their accurate representation in the XDG approximation spaces. The optimization problem
is solved by employing an inexact, regularized, sequential quadratic programming (SQP) solver
together with a line search algorithm. Moreover, a range of additional robustness strategies
is devised (Huang and Zahr, 2022) to improve solver convergence. The solver framework
presented in this chapter is linked to its actual implementation in the open-source software
bounded support spectral solver (BoSSS) by utilizing hyperlinks in the electronic version of
this thesis.

The structure of this chapter is as follows: The formulation of the optimization problem is
examined in Section 4.1 and the SQP solver is described in Section 4.2. In Section 4.3, we
present measures to enhance the robustness of the method. Further, details on the initialization
and termination strategies of the solver are found in Section 4.4 and the full algorithm is
summarized in Section 4.5. Lastly, different level set discretization approaches employed
within the method are discussed in Section 4.6.

4.1 Shock tracking formulation

In this section, we present the formulation of the XDG-IST method. In Section 4.1.1, we start
by introducing the nonlinear constrained optimization problem at its heart and examine three
different possibilities of defining an objective function. Then, we describe the corresponding
first-order optimality conditions employing Lagrange multipliers, defining first-order solutions
to the optimization problem in Section 4.1.2.

The XDG-IST method, as described by Vandergrift and Kummer (2024), is a high-order tech-
nique that simultaneously computes both the coefficientsϕ of the discrete level set ϕs represent-
ing the shock and the coefficients u defining the discrete solution Uh of the conservation laws.
By doing so, the XDG-IST method aligns the shock-interface represented by Is = tϕs = 0u (see
Section 3.2.2) with discontinuities. This process is accomplished using a full-space optimization

47

formulation, where the optimization variables consist of the respective coefficients ϕ (level
set) and u (flow solution). The method is formulated as a constrained optimization problem

minimize f(u,ϕ) (4.1)
subject to r(u,ϕ) = 0,

where r is the algebraic residual defined in (3.29) and f : RNu ˆ RNϕ Ñ R an objective
function (defined in the next section). It is assumed by construction that solutions (u,ϕ) of
(4.1) feature a discontinuity-aligned interface Is and simultaneously satisfy the discretized
system of conservation laws r(u,ϕ) = 0.

In contrast to the high-order implicit shock tracking (HOIST) method (Zahr et al., 2020), which
serves as an inspiration for the XDG shock tracking method, we employ a fixed background
mesh. Hence, the dependency in the mesh nodes x for the algebraic residuals r and R is
dropped throughout this chapter. Also, we assume no domain deformations, i.e., G = I. Thus,
the reference domain and the physical domain are the same, and all transformed quantities
equal the non-transformed quantities (see Remark 3).

4.1.1 The objective function

Addressing the central optimization problem of this study, the choice of the objective function
is paramount, particularly for aligning the interface described by ϕs. This research explores
three distinct strategies for choosing the function f . Each of these can be written within a least
squares framework, that is, f is of the form

f(u,ϕ) :=
1

2
F (u,ϕ)TF (u,ϕ), (4.2)

where F : RNu ˆ RNϕ ÞÑ RNF for some NF P N. We now proceed to describe each strategy
separately, starting with the enriched residual.

Enriched residual The first strategy adopts the methodology by Zahr et al. (2020) utilizing
the enriched residual (F = R) as detailed in Equation (3.32). This residual is characterized
by trial functions that possess a polynomial degree of P + 1, leading to the following objective
function

fER(u,ϕ) :=
1

2
R(u,ϕ)TR(u,ϕ). (4.3)

Within this context, the enriched residualR serves as a nuanced error indicator, exhibiting high
sensitivity to solutions with unfitted discontinuities. This attribute is particularly underlined
by Zahr and Persson (2018) and the effectiveness of this approach has been demonstrated in
the mesh-based HOIST framework.

Near-band enriched residual The second approach utilizes an enriched residual confined to
elements Ke in the near band (3.23), that is, F = RNB, where

RNB : RNu ˆ RNϕ Ñ RN‹
u , RNB : (u,ϕ) ÞÑ RNB(u,ϕ). (4.4)

48

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ObjectiveFunctions.cs#L198C8-L205C10
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ObjectiveFunctions.cs#L198C9-L205C10
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ObjectiveFunctions.cs#L278C9-L293C10

The residual RNB can be seen as a sub-vector of R which is confined to components corre-
sponding to test functions supported within the near band of ϕs, denoted as Kcc,1

h (ϕs) and
detailed in Equation (3.23). Here, N‹

u represents the dimension of the discontinuous Galerkin
(DG) space VP+1,m

h (Kcc,1
h (ϕs)). The corresponding objective function is expressed as

fNB(u,ϕ) :=
1

2
RNB(u,ϕ)

TRNB(u,ϕ). (4.5)

The justification for limiting the objective function to only include elements Ke within the
near band is based on the observation that elements Ke1 outside the near band Kcc,1

h (ϕs)
region exhibit negligible sensitivity to minor modifications in the level set. This phenomenon
arises because slight adjustments to the level set’s degrees of freedom (DOFs), which alter
the interface position, predominantly impact the integration domains of cut-cells and their
immediate neighbors, rather than affecting distant elements Ke1 .

Weak form from Rankine-Hugoniot conditions The third method for defining the objective
function leverages the Rankine-Hugoniot jump conditions for stationary shocks, expressed as

[[F (U) ¨ ~nΓ]] = 0, (4.6)

where F represents the physical flux defined in Equation (3.1), U denotes the vector of
conserved quantities, and ~nΓ is the unit normal on cell edges. To construct a residual based
on these conditions, we first establish a weak form similar to the discretization approach for
the transformed system of conservation laws. This involves multiplying the Rankine-Hugoniot
conditions by test functions V and integrating across all cell edges

¿

Γ

[[F (U) ¨ ~nΓ]]V dS = 0. (4.7)

By substituting a basis from both the trial space (VP,m,X
h) and an enriched test space (VP+1,m,X

h)
into this weak form, we discretize it into a system of nonlinear algebraic equations in residual
form, represented as

RRH(u,ϕ) = 0. (4.8)

It’s important to note that the dependency on ϕ is implicit, as mentioned in Remark 7, and
dependencies on mesh nodes x and ϕb are not considered. The objective function derived from
this residual is defined by

fRH(u,ϕ) :=
1

2
RRH(u,ϕ)

TRRH(u,ϕ), (4.9)

and it favors solutions satisfying the Rankine-Hugoniot conditions for stationary shocks across
all cell edges (for cut-cells and non-cut-cells). This approach mirrors strategies used in mesh-
based implicit shock tracking, such as the moving discontinuous Galerkin method with interface
condition enforcement (MDG-ICE). It has been successfully applied to various scenarios (Corri-
gan et al., 2019a; Corrigan et al., 2019b; Corrigan et al., 2019c; Kercher and Corrigan, 2021;
Kercher et al., 2021).

Choosing the objective function fRH for the optimization problem (4.1) is rooted more firmly in
physics compared to fER and fNB by weakly enforcing the Rankine-Hugoniot jump conditions

49

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ObjectiveFunctions.cs#L351C9-L390C10

(4.6). However, the extension to viscous problems is more straight-forward for the enriched
residual based approaches, only requiring the treatment of second-order terms, which has been
well-established in the DG setting (Zahr et al., 2020).

Remark 10. Within mesh-based implicit shock fitting, in particular the HOIST method, the
objective function is typically augmented by a term that penalizes undesirable mesh configurations,
as detailed in Section 6.1.1. This penalization is based on comparing each mesh element against
an idealized element standard, with penalties applied for deviations from this ideal. In contrast to
the HOIST method, no reasonable equivalent penalizing undesired interface positions was found
for the XDG framework, while we experimented with utilizing the curvature of the level set as a
measure.

4.1.2 First-order optimality system

´0.5 0 0.5 1 1.5
´1

´0.5

0

0.5

1

∇r

∇r

∇f

x

y

Figure 4.1: Illustration of a constraint optimization problem with iso-contours of an exemplary objective function
f(x, y) = x+ y (thick colored lines) and the feasible set given by r(x, y) = (x ´ 0.5)2 + y2

´ 0.52 = 0
(thick black line). The gradients of r at any point on the circle are normal to the circle, indicating the
direction of fastest increase of r. To stay on the constraint surface, one must move in a direction tangent
to the circle. Two first-order solutions can be found visually, corresponding to the maximal and the
minimal value (red points) of the corresponding constraint optimization problem. At these points, the
gradients are parallel, satisfying ∇f = λ∇r for some λ P R.

Non-linear constrained optimization problems, such as (4.1), are typically addressed by intro-
ducing the Lagrange functional L : RNu ˆ RNϕ ˆ RNu Ñ R, expressed as

L(u,ϕ,λ) = f(u,ϕ) + λJr(u,ϕ). (4.10)

The first-order optimality conditions are as follows: A pair (u˚,ϕ˚) P RNu ˆRNϕ is considered
a first-order solution if there exists a λ˚ P RNu such that

∇L (u˚,ϕ˚,λ˚) = 0. (4.11)

Together with the constraint r(u˚,ϕ˚) = 0, these are known as the Karush-Kuhn-Tucker (KKT)
conditions (Kuhn and Tucker, 1951). They effectively imply that the objective gradient ∇f

50

must be a linear combination of the gradients of the residual when evaluated at a first-order
solution. We illustrate this in Figure 4.1 for a simple and imaginary example (i.e., where f
and r only depend on two variables x, y).

4.2 Sequential quadratic programming solver

In this section, we examine the iterative SQP solver for solving the optimization problem
(4.1), following it’s presentation by Vandergrift and Kummer (2024). Solutions to (4.1) are
sought as solutions to the first-order optimality system obtained by the KKT conditions. The
nonlinear optimality system is then linearized in each iteration to obtain the next solution
update, employing a quasi-Newton approach (Section 4.2.1) and featuring a (regularized)
Levenberg-Marquardt approximation of the Hessian involved (Section 4.2.2). Moreover, the
SQP solver is modified to utilize an inexact line search method (Section 4.2.3) for globalization
and to employ an adaptive regularization strategy (Section 4.2.4). Further, we discuss how
newborn cut-cells are handled that arise when changing the interface position (Section 4.2.5).

4.2.1 Linearized optimality system

There are two ways of deriving the SQP method for finding solutions to the first-order optimality
system (4.11). The first approach comes from applying Newton’s method to solve Equation
4.11 and is described in the following. First, let us introduce a single variable for the coefficients
by

z :=

(
u
ϕ

)
P RNz , Nz = Nu +Nϕ. (4.12)

Newton’s method Applying Newton’s method to (4.11), iteratively computes a sequence
(z0,λ0), (z1,λ1), ..., (zk,λk) which eventually converges to a solution (z˚,λ˚) = (u˚,ϕ˚,λ˚).
The solution is updated via (zk+1,λk+1) := (zk,λk)+ (∆zk,∆λk). To obtain the next solution
update (∆zk,∆λk), one typically solves the linear system

HL(zk,λk)

(
∆zk

∆λk

)
= ´∇L(zk,λk) (4.13)

in every Newton iteration. The system (4.13) features the HessianHL(zk,λk) of the Lagrangian
L evaluated at the iterate (zk,λk) and it can be expressed as

HL(zk,λk) =

(
Huϕ

L (zk,λk) J(zk)
T

J(zk) 0

)
, (4.14a)

where Huϕ
L (zk,λk) := Hf (zk) ´

Nz
ÿ

j=1

(λk)jHrj (zk), (4.14b)

and where Hf denotes the Hessian of the objective function f , Hrj denote Hessians for each
residual component rj , and J denotes the full Jacobian matrix of the residual r

J : z ÞÑ

[
Br

Bu
(u,ϕ)

Br

Bϕ
(u,ϕ)

]
, (4.15)

51

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1857C1-L1859C65
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1820
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1831

all evaluated at the iterate zk.

Sequential quadratic programming The linear system (4.13) is then reformulated to imme-
diately solve for the Lagrange multiplier λk+1. Examining the upper block of the system

Huϕ
L (zk,λk)∆zk + J(zk)

T (∆λk + λk)
loooooomoooooon

λk+1

= ´∇f(zk), (4.16)

allows for the following reformulation(
Huϕ

L (zk,λk) J(zk)
T

J(zk) 0

)(
∆zk

λk+1

)
= ´

(
∇f(zk)T
r(zk)

)
. (4.17)

Alternatively, the same linear system is obtained when computing the solution of the following
quadratic program

minimize
∆zPRNz

∇f(zk)T∆zk +
1

2
∆zT

kB
(k)∆zk

subject to r(zk) + J(zk)∆zk = 0,

(4.18)

if B(k) = Huϕ
L (zk,λk) is chosen. Constructing the corresponding KKT conditions of (4.18)

leads to the same system as in (4.17), which means that the above approach can be described as
a process where quadratic problems are solved sequentially. This motivates the name sequential
quadratic programming (SQP).

4.2.2 Approximation of the Hessian

Computing the HessiansHf ,Hrj that are part ofHuϕ
L in Equation (4.14b) is a very challenging

task because it involves second-order derivatives. These derivatives are usually very expensive
to compute and commonly not available in most computational fluid dynamics (CFD) solvers.
To circumvent this issue, we follow Zahr et al. (2020) and introduce a Levenberg-Marquardt
approximation (see the work by Dennis and Schnabel (1996) for reference) toHuϕ

L . Specifically,
it is replaced with a partially regularized approximation

Huϕ
L (zk) « B(k) = B(zk, γ) :=

BF

Bz
(zk)

T BF

Bz
(zk) + γ

(
0 0
0 Iϕ

)
, (4.19)

where Iϕ is the (NϕˆNϕ)-identity matrix, γ P R+ a regularization parameter chosen adaptively
(see Section 4.2.4), and F P tR,RRH,RNBu a residual function defining the objective function
(Section 4.1.1). We regularize the components corresponding to DOFs of the level set since
the resulting sub-matrix (see Equation 4.21c) is often singular. For instance, this may be the
case for entries of BF

Bz corresponding to cells far away from the interface, which are insensitive
to small level set perturbations. However, it can be assumed that the part belonging to the
flow solution is invertible, hence no regularization is applied to its components (Zahr et al.,
2020). Additionally, the remaining Hessians Hrj (only containing second-order derivatives)
are entirely discarded. It can be assumed that, far away from the shock, they are dominated
by the first-order terms. This observation is discussed by Zahr et al. (2020) in more detail.

52

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1864C1-L1872C94

The approximation can be written in more detail by

Huϕ
L (z,λ) « B(z, γ) :=

(
Buu(z) Buϕ(z)
Buϕ(z)

T Bϕϕ(z, γ)

)
, (4.20)

where the sub-blocks are defined by

Buu(z) = BF
Bu (z)

T BF
Bu (z) (4.21a)

Buϕ(z) = BF
Bu (z)

T BF
Bϕ (z) (4.21b)

Bϕϕ(z, γ) = BF
Bϕ (z)T BF

Bϕ (z) + γIϕ. (4.21c)

The final linear system to be solved is(
B(zk, γ) JT (zk)
J(zk) 0

)(
∆zk

λk+1

)
= ´

(
∇f(zk)T
r(zk)

)
, (4.22)

and it governs the next optimization step ∆zk.

4.2.3 Inexact line search globalization

After computing the solution update ∆zk and the Lagrange multiplier λk+1 from (4.22), the
next SQP iterate is usually computed via

zk+1 = zk + αk∆zk, (4.23)

where αk P (0, 1] is a step length. It’s important to note that setting αk to 1, a strategy
often employed in non-globalized SQP methods, usually does not yield the best outcomes. It
potentially leads to sub-optimal convergence rates or even hinders convergence in the first
place. The underlying reason is that the direction of the solution update ∆zk is derived from a
local quadratic model, which, in turn, is an approximation of the original problem’s second-
order Taylor expansion around the current iterate. While theoretically, this update direction
suggests a descent path, meaning that moving slightly in this direction is expected to reduce
the objective function’s value, the local nature of the Taylor approximation implies that its
effectiveness diminishes with larger step sizes. In other words, choosing a larger αk entails
an inaccurate Taylor expansion and does not guarantee a decrease in the objective function,
which may lead to sub-optimal outcomes.

A simple approach to find suitable step lengths αk is named inexact line search or backtracking
and is employed in this work (Nocedal and Wright, 2006). This strategy iteratively searches
for the largest step length from a discrete set

αk P t1 = τ0, τ´1, . . . , αminu, (4.24)

which satisfies the condition of sufficient decrease, given by

Mk(αk) ď Mk(0) + αkβM
1
k(0), (4.25)

whereMk : R Ñ R is a merit function assessing the solution’s quality, τ P (0, 1) is the factor by
which the step length is successively reduced, and β ą 0 is a relaxation parameter to ensure
flexibility in the search process.

53

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1848C17-L1876C18
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1879C17-L1910C18
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1203C62-L1203C68
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L2742-L2793
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L3012-L3053
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L3026C33-L3026C54

Mk(0) Mk(1)

Mk(1/2)

M
k (0) + α

kM 1
k (0)

M
k(0) + βαkM 1

k (0)

αk

Mk(αk)

Figure 4.2: Illustrating the condition of sufficient decrease (4.25). The merit function Mk is plotted against αk,
together with its first-order approximation (blue dashed line) at Mk(0) and its relaxed first-order
approximation at the same point (red dashed line). All points on the curve below the latter satisfy the
condition of sufficient decrease (i.e., Mk(1/2) in the plot) while those above (i.e., Mk(1)) do not.

Note that the presented SQP method is an unfeasible method, which means that it allows
iterates zk to violate the constraint in (4.1), i.e., often r(zk) ‰ 0. Thus, the algorithm requires
some additional means to asses the quality of the steps and iterates. These means are provided
by the merit function Mk, combining the objective with a measure of constraint violation
weighted by a parameter µk.

The condition of sufficient decrease (4.25) mandates that the actual reduction in the merit
function value, which is the difference

Mk(0) ´Mk(αk), (4.26)

should be greater than a predicted reduction derived from a first-order Taylor expansion (relaxed
by a parameter β), which is the difference

Mk(0) ´ (Mk(0) + αkβM
1
k(0)). (4.27)

Further, the merit function should ideally be exact, which means that any local solution of the
optimization problem (4.1), should also be a local minimizer ofMk. For illustrative purposes,
an example for a merit function and the condition of sufficient decrease is illustrated in Figure
4.2.

In this work, following Nocedal and Wright (2006), Chapter 15, two merit functions are
employed. First, the canonical exact l1-merit function

M l1
k (α) := f(zk + α∆zk) + µk}r(zk + α∆zk)}1 (4.28)

is utilized, essentially summing the objective function value and the l1-norm of the residual,
where µk := 2}λk+1}8 is a penalty parameter controlling the relative weighting of both terms.
Secondly, we employ the non-smooth exact l2-merit function

M l2
k (α) := f(zk + α∆zk) + µk}r(zk + α∆zk))}2. (4.29)

54

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L915C17-L937C19
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L955C17-L971C19
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L915-L973
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L974-L1002

While the considered parameters are adjustable, we explicitly set them to β = 10´4, τ = 0.5
and αmin = 10´8. In numerical experiments, we observed no significant difference between
M l1 andM l2 . Hence, we useM l1 in the remainder to be consistent with the HOIST method.

Remark 11. Note that both, the l1 and the l2-merit function, are not differentiable at states z
with r(z) = 0, because of the the absolute value from the l1-norm and the root function in the
l2-norm, respectively. However, for the computation of (4.27), only a directional derivative in
direction (∆zk), denoted as ∇(∆zk), of the corresponding norm is needed. For the absolute value
it is derived in the work by Nocedal and Wright (2006) in Appendix A. Applying the presented
formulas, we obtain for the l1-case

(M l1
k)

1(0) = ∇f(zk) ¨ ∆zk + µk}J∆zk}1. (4.30)

The l2 case follows analogously and reads

(M l2
k)

1(0) = ∇f(zk) ¨ ∆zk + µk}J∆zk}2. (4.31)

Remark 12. In certain scenarios, the objective function or residual generates an exception when
evaluated at the new state zk+1 resulting from a step of length 1 ě αk ą α‹. This exception may
stem from nonphysical states (e.g. negative pressure/density) or a breach of the guidelines for
managing newly formed cut-cells, the latter outlined in Section 4.2.5. In our actual implementation
of the XDG-IST method, the step length is decreased for such scenarios and the line search algorithm
is employed only within the admissible interval (0, α‹).

4.2.4 Adaptive regularization

Recall that the regularization parameter γk P [γmin, γmax] was key in regularizing the level set
component of the system Matrix in (4.22). The selection of γk is intended to match the changes
in the interface position, allowing for more regularization when the level set’s update ∆ϕk is
significantly large (}∆ϕk} ą σ2L) and less when the update is notably small (}∆ϕk} ă σ1L).
Following (Zahr et al., 2020), this flexibility is managed by the formula

γk+1 = mintmaxtγ‹
k+1, γminu, γmaxu, γk+1 =

$

’

&

’

%

γred
´1γk if }∆ϕk}2 ă σ1L

γredγk if }∆ϕk}2 ą σ2L

γk else.
(4.32)

In this expression, σ1, σ2, and L are chosen based on the domain’s specific length scales, with
γred ą 1 controlling how aggressively the adaptation is made. For our studies, we have selected
L = 1, σ1 = 0.1, σ2 = 0.01, γmax = 1, γmin = 10´8, and γred = 1.5.

4.2.5 Handling of newborn cut-cells

In the XDG shock tracking method, we compute XDG solutions iteratively, updating the flow
and the level set coefficients uk,ϕk in each iteration. Usually, when updating the level set
coefficients, the position of the shock interface Is

(k) changes, which may result in a status
change of certain mesh cells K P Kh (see Figure 4.3). In this section, we explain how our

55

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L2541C12-L2577C14
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L2499C9-L2533C14
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1275C1-L1282C56

K3,A

Is
(k)Ĩ

(k+1)
sIs

(k+1)

K3,BK2,B K2,AK1,AK1,B

2.
1.

Figure 4.3: This example demonstrates how newly formed cut-cells are managed using a mesh of size 3 ˆ 1 with
a single level set ϕs

(k) (its zero set Is
(k) is shown with a thick black line), which initially resides in

cell K3. Two separate updates, marked as 1. and 2., illustrate the movement of the interface to new
positions Is

(k+1) and Ĩ
(k+1)
s , respectively. The first update (red) breaks Rule 1 (the interface must

move only to adjacent cells) since K1 is not an immediate neighbor of K3, leading to its rejection by
the solver. On the other hand, the second update (blue) adheres to the guidelines and is thus approved.
(Figure adapted from Vandergrift and Kummer (2024))

approach deals with instances where the shock interface intersects a newborn cell (i.e., one that
has not been intersected before the update). We want to ensure that the interface’s movement
remains consistent and continuous within our solution framework. Hence, we uphold two
principal guidelines:

Rule 1. Make sure the interface moves only to neighbors: Only cells adjacent to an already
intersected cell are allowed to be intersected in the current iteration, as depicted in Figure 4.3.
Updates that breach this rule are discarded and the step size αk for the update is recalibrated (see
Remark 12). This ensures that the interface progresses exclusively to adjacent cells.

Rule 2. Extrapolate solution values for newborn cut-cells from the largest neighboring cell
within the same sub-domain, as determined by volume: A cell initially not intersected by any
interface must be contained entirely in one sub-domain s. Once intersected, the cell is divided
into cut-cells, one of them contained in another sub-domain s1. For this (newborn) cut-cell, we
employ a strategy of solution extrapolation. This means that the solution values for these newborn
cut-cells are derived from the largest neighboring cell within its sub-domain s1, based on volume.

Example To demonstrate the implementation of the two specific rules for managing newly
formed cells, consider an one-dimensional (1D) example for clarity. We have the domain
Ω = [0, 3], which is segmented into three cells Ki = (i ´ 1, i) for i P t1, 2, 3u, and is further
divided into two sub-domains, A and B. Here,

A = A(ϕ) := tx P Ω | ϕ(x) ă 0u (4.33)

and
B = B(ϕ) := tx P Ω | ϕ(x) ą 0u . (4.34)

56

1 2 3

1

K1 K2 K3

x

Uh(x)
z0
0 , z

1
0

z1
0 +∆z0

z0
0 +∆z0

1 2 3

1

K1 K2 K3

x

Uh(x)
z0
0 , z

1
0

z1
0 + 0.5∆z0

z0
0 + 0.5∆z0

Figure 4.4: This figure demonstrates the process of applying an update, ∆z0, to an one-dimensional XDG field
z‹
0 across a grid consisting of three cells K1,K2,K3. It highlights the method for managing newly

created cut-cells. Left: The application of z‹
0 +∆z0 shifts the interface from x = 0.5 to x = 2.5. This

movement breaches Rule 1 by making the step length α = 1 unacceptable. Right: Adjusting the update
to z‹

0 + 0.5∆z0 relocates the interface from x = 0.5 to x = 1.5, adhering to Rule 1 without violation.
The solution within the newly formed cut-cell K2,B = (1, 1.5) is then extrapolated from its neighbor,
utilizing z1 = z1

0 + 0.5∆z0 (red curve) instead of z1 = z0
0 + 0.5∆z0 (blue curve). (Figure adapted

from Vandergrift and Kummer (2024))

We choose an initial level set ϕ0(x) = x+ a, defined globally with a single degree of freedom
(DOF) a P R, initially set at a = ´0.5. For the discretized solution, we construct an element
Uh within the (P = 0) XDG space through the definition of two coordinate vectors, u0 and u1

u‹ = (u‹
i)iP[6] = (1

loomoon

K1,A

, 0
loomoon

K1,B
looooooomooooooon

cut-cell

, ‹
loomoon

K2,A

, 0
loomoon

K2,B
looooooomooooooon

uncut-cell

, 0
loomoon

K3,A

, 0
loomoon

K3,B
looooooomooooooon

uncut-cell

)T , z‹
0 =

(
u‹

a

)
, (4.35)

where ‹ P t0, 1u and alongside a current iteration vector z‹
0 . The relationship between the

coefficients u‹
i and the cut-cells Kl,s is elaborated in Equation 4.35 (assuming P = 0, which

implies a single basis function per cut-cell, essentially the indicator function specific to each
cell). It’s noteworthy that K2,A and K3,A are null sets, resulting in u‹

3 and u‹
5 having no impact

on the actual value of Uh(x) for x P Ω. Therefore, the value of Uh(x) can be described as
B̃ ¨ Φ(x) = u1 ¨ Φ(x), where Φ(x) is the XDG basis vector. By considering an imaginary
search direction ∆z0 = (0, . . . , 0,´2)T , exclusively updating the level set DOF, we proceed
with a line search (as discussed in Section 4.2.3) that respects the previously mentioned rules.
Implementing the search direction ∆z0 (illustrated in the Figure 4.4) with α0 = 1 leads to

z‹
1 = z‹

0 +∆z0 =

(
u‹

´2.5

)
. (4.36)

The update results in the level set being revised to ϕ1(x) = x´ 2.5, which designates cell K3

as a cut-cell, alters the status of K1 from a cut-cell to a non-cut-cell, and causes K2 to switch
sub-domains. However, this adjustment contravenes Rule 1 because the neighboring cell to K3,
cell K2, was not a cut-cell prior to the update. As a result, the algorithm dismisses the step
size α0 = 1 and evaluates a reduced step size τα0 = 0.5.

With the step size set to α = 0.5, the updated level set becomes ϕ1(x) = x´ 1.5, making cell
K2 a cut-cell without breaching Rule 1, given that K2 was adjacent to the previous cut-cell K1.

Moreover, implementing Rule 2 is showcased as follows: without solution extrapolation, the
discrete state u‹ ¨ Φ varies with respect to the value ‹, since K2,A transitions from being an

57

empty cell. Thus, the discrete state is represented as:

u‹(x) ¨ Φ(x) =

$

’

&

’

%

1 for x ď 1

‹ for 1 ă x ď 1.5

0 else.
(4.37)

To ensure continuity within the solution space, solution values for newly formed cut-cells are
determined by extending the polynomial solution from the largest neighboring cell (by volume)
within the same sub-domain. In this scenario, regardless of its initial value, u‹

3 = 1 is selected
for the update with α0 = 0.5.

4.3 Robustness measures

Numerical experiments conducted have shown that, under specific conditions, implicit shock
tracking methods may face challenges with convergence or become trapped in sub-optimal
local minima (Huang and Zahr, 2022). In the case of the XDG shock tracking method presented
above, such difficulties tend to intensify when working with small cut-cells or when the
polynomial degree of the flow approximation is set above zero (P ą 0), particularly if the
current iterate is far from the true solution. To counter these challenges and improve the
stability of the method, we have implemented supplementary stabilization techniques, each
tailored to mitigate different issues that could emerge during the computation.

In this section, drawing from the presentation by Vandergrift and Kummer (2024), we outline
a series of robustness measures designed to enhance the reliability and stability of the XDG-IST
method in focus. In Section 4.3.1, we discuss the strategy of cell agglomeration, a technique
aimed at improving computational stability and efficiency by merging small computational
cut-cells into their bigger neighbors. Additionally, we explore the process of local solution
reinitialization in Section 4.3.2, which involves resetting the solution’s state to ensure better
convergence properties. Lastly, in Section 4.3.3, we introduce the P -continuation strategy, a
methodology that gradually increases the complexity of the discretization by adjusting the
polynomial degree of the XDG method.

4.3.1 Cell agglomeration

In numerical experiments, stagnation of the optimizer has been partially traced back to the
presence of small cut-cells. As the background mesh is fixed, the ideal positioning of the
interface can result in the formation of small cut-cells (small when compared to the volume
of the uncut cell). Moreover, during optimization, the arbitrary locations of interfaces across
intermediate iterations can further lead to the emergence of these small cells. The challenge
with small cut-cells is that the entries of the solution vector u and related residual Jacobians
BF
Bu ,

Br
Bu inversely correlate with cell size. Consequently, having a high discrepancy between cell

volumes, amplifies the condition number of the linear system (4.22) and ultimately destabilizes
the XDG shock tracking method. Further details on the effect of small cut-cells on stability
and conditioning of immersed boundary methods can be found in the work by Prenter et al.
(2022).

58

K1,A

K1,B

K2,A

K2,B

Figure 4.5: The figure illustrates the process of cell agglomeration applied to a 2 ˆ 2 mesh intersected by a level
set ϕ, with the zero set highlighted by a red line. It showcases the agglomeration of a relatively small
cut-cell, denoted as K1,A, into its largest neighboring cell K2,A in terms of volume, that resides within
the same subdomain A. This merging process is visually represented by a blue arrow pointing from the
smaller cell towards its larger neighbor. (Figure adapted from Vandergrift and Kummer (2024))

The technique of cell agglomeration is deployed to mitigate issues arising from small cut-cells.
This method involves combining cut-cells Kj,s when the ratio of their volume to the volume of
the parent cell falls below a predefined threshold aggthrsh P (0.1) (in this work chosen to be
aggthrsh = 0.4), i.e.,

|Kj,s|

|Kj |
ď aggthrsh. (4.38)

The selected cut-cells are then merged with their largest neighboring cell within the same
sub-domain (illustrated in Figure 4.5 with a 2ˆ 2 mesh and an example of cell agglomeration),
ensuring that cells across a discontinuity are not merged. This leads to the transformation of
the initial cut-cell grid KX

h into an agglomerated grid KX,agg
h (KX

h ,A), where A serves as the
agglomeration map. This map is a subset of all pairs of neighboring cut-cells within the same
domain that share an edge, that is

A Ă

(Ki,s,Kj,s)
ˇ

ˇ Ki,s XKj,s ‰ H, (i, j) P [J]2, s P SD
(

. (4.39)

Here, the relation (Ki,s,Kj,s) P A indicates thatKi,s is agglomerated intoKj,s. In the context of
the BoSSS framework, cell agglomeration has already proven successful in various applications
and the approach has been fundamental in the development of a specializedmultigrid algorithm,
further elaborated in the work by Kummer et al. (2021).

Within the framework of the XDG-IST method and considering an SQP iteration step with zk
as the starting point, the application of cell agglomeration unfolds through the following steps:

1. Compute the residuals and sensitivities on the original, non-agglomerated mesh KX
h by

zk ÞÑ r(zk),F (zk),
Br

Bz
(zk),

BF

Bz
(zk), (4.40)

2. Generate the agglomeration map

(ϕk, ϕb) ÞÑ Ak := Ak(ϕk, ϕb) (4.41)

59

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L2276C17-L2276C63
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L732C9-L741C10
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L732C9-L741C10

utilizing (4.38), which takes into account both the static boundary level set ϕb and the
shock level set ϕs associated with the coefficients ϕk.

3. Calculate the agglomerated state
zk ÞÑ z

agg
k , (4.42)

requiring a basis-change from the original basis of VP,m,X
h (KX

h) to the agglomerated basis
of VP,m,X

h (KX,agg
h).

4. Derive the agglomerated residuals and sensitivities(
r(zk),F (zk),

Br

Bz
(zk),

BF

Bz
(zk)

)
ÞÑ

(
ragg(z

agg
k),F agg(z

agg
k),

Bragg

Bzagg (z
agg
k),

BF agg

Bzagg (z
agg
k)

)
(4.43)

from their original versions through the aforementioned basis transformation. Here, the
superscript (¨)agg denotes that the agglomerated basis is used for the residuals.

5. Assemble and solve the agglomerated version of the linear system (4.22) to identify the
agglomerated inexact Newton step ∆zagg

k .

6. For each line search iteration, calculate z
agg
k + α∆z

agg
k and the corresponding agglomer-

ated residuals(
z
agg
k , α,∆z

agg
k

)
ÞÑ
(
ragg(zagg

k + α∆z
agg
k),F agg(z

agg
k + α∆z

agg
k)
)

(4.44)

when evaluating the merit function Mk (see Equation 4.26) and its derivative (see
Equation 4.27) for different values α.

7. Upon determining an appropriate step length αk, update the agglomerated iterate to
z
agg
k+1 = z

agg
k + αk∆z

agg
k and subsequently map it back to the original, non-agglomerated

mesh to achieve the updated iterate zk+1, i.e.,

z
agg
k+1 ÞÑ zk+1. (4.45)

This last step is achieved by an extrapolation from the agglomerated mesh KX,agg
h to the

non-agglomerated source mesh KX
h .

4.3.2 Solution reinitialization

In accordance with Huang and Zahr (2022) and following the presentation by Vandergrift
and Kummer (2024), we adopt a local solution reinitialization procedure to further enhance
robustness. Similar to Huang and Zahr (2022) in the context of mesh-based shock tracking, we
also observed (in prior numerical experiments) the development of non-physical oscillations
in the XDG solution during intermediate steps when employing polynomial degrees greater
than zero. Such oscillations often lead to subpar search directions in the iterations that follow,
causing the step sizes αk to become excessively small.

To mitigate this, our reinitialization strategy is implemented as follows: it utilizes a version of
the established Persson-Peraire shock sensor (see Persson and Peraire (2006)) to detect cells
experiencing oscillatory behavior. In the identified cells, the XDG solution is reset locally to a
constant value, computed as the average across a patch of neighboring elements around the
oscillatory cell (illustrated in Figure 4.6).

60

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L2828C1-L2839C10
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1713C9-L1772C10
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1056C9-L1062C10
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L2797C1-L2808C10

0

5
U1

x

y

(a)

x

(b)

Figure 4.6: Illustration of the cell-local solution reinitialization procedure for a 3 ˆ 3 mesh and a straight-sided
interface. Panel (a) shows the solution U1 featuring oscillatory cells in the center of the mesh. Panel (b)
highlights the reinitialized solution UReInit, i.e., where the oscillatory cells are reset to constant values,
determined by a patch of shock-aware neighbors.

Determining oscillatory cells In a first step, oscillatory cells are identified using a version
of the Persson-Peraire shock sensor: For notational ease, let U = Uh P VP,m,X

h of polynomial
degree P ą 0 be the XDG solution and K = Kj,s P KX

h a cut-cell. We define the shock sensor
sen : KX

h ˆ VP,m,X
h Ñ R for the first component U1 P VP,1,X

h of U as:

sen : (K,U) ÞÑ log

(
}U1 ´ projP´1(U1)}L2(K)

}U1}L2(K)

)
. (4.46)

Here, projP´1 : V
P,1,X
h Ñ VP´1,1,X

h denotes the orthogonal L2-projection

projP´1 : U1 ÞÑ projP´1(U1) (4.47)

onto the XDG space VP´1,1,X
h with polynomial degree P ´ 1. The shock-sensor is commonly

used in shock capturing strategies to identify cells with oscillating solutions in order to apply
the local stabilization therein.

Using the sensor, we define the set of oscillatory cells by

KReInit(U) :=

K P KX
h

ˇ

ˇ sen(K,U) ą ε1
(

, (4.48)

where ε1 ă 0 (typically we choose ε1 = ´0.2) is a threshold chosen depending on the problem
and the polynomial degree.

Small step sizes result from excessive line search iterations and indicate stagnation of the
optimization method. We follow Huang and Zahr (2022) who propose to extend the set
KReInit(U) in such cases (5 or more line search iterations). In these scenarios, the set is
redefined as

KReInit(U) :=

#

K P KX
h

ˇ

ˇ

ˇ

ˇ

ˇ

sen(K,U) ą ε2 max
KPKX

h

sen(K,U)

+

, (4.49)

where Huang and Zahr (2022) propose to set ε2 = 10´2.

61

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L3401-L3457
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L3617-L3660
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L3365-L3377
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L3352-L3364

Shock-aware solution reinitialization Upon identifying the oscillatory cells KReInit(U) the
XDG solution is reset on these to a constant value. This value is derived as an average of the
current solution U across a selected group of neighboring cells Ñ (K,U), which we define
below. In line with Huang and Zahr (2022), not all neighboring cells are selected for averaging.
The selection is restricted to cells residing on the same side of the interface. This distinction is
critical for maintaining physical relevance, particularly near discontinuities or shocks.

To select neighboring cells that qualify for averaging, we utilize the average jump function
aJ : KX

h ˆ KX
h ˆ VP,m,X

h Ñ R defined as

aJ : (K,K 1, U) ÞÑ
1

|BK X BK 1|

ż

BKXBK1

[[U1]] dS, (4.50)

where [[U1]] represents the jump in U1 across the common face of cells K and K 1. The function
aJ measures the magnitude of the discontinuity across cell boundaries and, thereby, assists in
distinguishing between cells based on their relative positioning to the discontinuity or shock.
Additionally, aJ is also helpful in selecting cells if the shock position does not coincide with the
interface Is (usually the case during intermediate iterations).

Using the jump function aJ , the shock-aware neighbor set Ñ (K,U) is defined as

Ñ (K,U) :=

K 1 P N (K)
ˇ

ˇ |a(K,K 1, U)| ď ε3
(

, (4.51)

where again ε3 = 10´2 is a threshold parameter. For cells within this set, each component Ui

of the XDG solution is reinitialized by

UReInit
i|K :=

#

1
|KYÑ (K,U)|

ş

|KYÑ (K,U)| Ui dV if K P KReInit(U),

Ui else,
(4.52)

for each component i = [m]. Reinitialization is not used when the current iteration is sufficiently
close to meeting the constraints, specifically when:

}r(zk)} ď ε4, (4.53)

where ε4 = 10´2. Additionally, reinitialization is not used after a designated number of
iterations to guarantee the asymptotic convergence of the method. When the polynomial
degree P is increased as part of the P -continuation strategy (will be introduced in Section
4.3.2), the iteration limit for reinitialization is proportionally raised to accommodate the
adjustments for the higher degrees.

Algorithm The detailed algorithm for re-initializing the solution in cells that exhibit oscillatory
behavior is encapsulated in Algorithm 1. The solution might be reinitialized across a different
set of cells KReInit(U). Depending whether it is triggered by excessive line search iterations
(isEL = true) or not (isEL = false), the set of cells to be re-initialzied is defined in Equation
(4.48) and (4.49) respectively.

62

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L3202
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L3205-L3208
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L3215-L3240

Algorithm 1 Solution reinitialization on oscillatory cells (adapted from Vandergrift and Kummer
(2024))
Input: XDG solution U , grid KX

h , parameters ε1, ε2, ε3 and logical isEL (indicating whether
solution reinitialization is applied due to excessive line search)

Output: XDG solution UReInit reinitialized on oscillatory cells
Compute max shock sensor: Smax := maxKPKX

h
sen(K,U)

Compute set of cells to be reinitialized KReInit(U):
KReInit(U) := H (initialize)
for K P KX

h do
Compute shock sensor sen(K,U)
if isEL and sen(K,U) ą ε2Smax then
KReInit(U) := KReInit(U) YK (add cell)

else if sen(K,U) ą ε1 then
KReInit(U) := KReInit(U) YK (add cell)

end if
end for
Reinitialize solution:
UReInit := U (initialize)
for K P KReInit(U) do

Compute shock-aware neighbors:
Ñ (K,U) := H (initialize)
for K 1 P N (K) do
if aJ(K,K 1, U) ď ε3 then
N (K,U) := N (K,U) YK 1

end if
end for
Reinitialize solution cell-wise:
Set UReInit|K := 1

|KYÑ (K,U)|

ş

|KYÑ (K,U)| U dV

end for
Set U = UReInit

4.3.3 P -Continuation strategy

During our numerical tests, we found that, in situations needing significant adjustments to the
level set, it is advantageous to start with a polynomial degree of P = 0 (for the flow solution)
and then increment it progressively until the desired final polynomial degree Pend is reached.
In this setting, the solution is sought in the XDG spaces

V0,m
h Ñ V1,m

h Ñ . . . Ñ VPend,m
h , (4.54)

starting on the left. This is especially useful when the initial shock interface (i.e., the initial
guess) is not close to the true shock position. Our step-up approach may only increase the
polynomial degree P if the solver surpasses the pre-set minimum SQP iteration thresholds kPmin
for the current polynomial degree P . In our work, we selected

tk0min = 30, k1min = 30, k2min = 10, k3min = 10, k4min = 10, . . .u (4.55)

63

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L677C9-L715C10
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/IDTControl.cs#L277C1-L280C106

for these minimum iterations. The polynomial degree is increased according to the termination
conditions presented in Section 4.4.3. For the implementation of this strategy, one needs to
transfer all dependent data structures to the incremented polynomial degree in the moment of
incremental.

4.4 Solver initialization and termination

In this section, we discuss the initialization and the termination of the XDG-IST solver, i.e.,
how to choose an initial guess for the optimizer and how to decide whether the optimization
process should be terminated. In Section 4.4.1, methods for constructing a first guess for the
shock level set are discussed and, in Section 4.4.2, different approaches to select an initial
guess for the flow solution U are introduced. Lastly,in Section 4.4.3, we present details on the
termination criteria employed in the shock tracking framework.

4.4.1 Initialization of the shock level set

In this work, the initialization of the shock level set follows one of two approaches: Choosing
an user-defined initial level set derived from a priori knowledge or employing a reconstruction
procedure based on a shock capturing approach.

User-defined initial guess In the first approach, the user simply chooses a function ϕ0 which
is then projected onto the discretized level set. In this work, we use this approach for testing
purposes, but one should note that it is unfeasible for many real-world problems, especially
those lacking a priori knowledge of the solution. However, in the case of time-dependent
problems deriving the initial guess from the initial conditions can be a valid choice. Specifically,
the initial position of the shock and the corresponding shock speed at t = 0 can be used for
this purpose.

Initial guess from shock capturing A more advanced approach to generate an initial guess
for the level set leverages a shock capturing methodology. It is computationally more intensive,
as it requires to run a full simulation. In our setup, we utilize the compressible Navier-Stokes
(CNS) solver (Müller et al., 2017; Krämer-Eis, 2017; Geisenhofer et al., 2019), a DG-immersed
boundary method (IBM) using artificial viscosity for stabilization, to obtain a high-order shock
capturing flow solution (see Remark 13). This solution features a smoothed shock (due to
the artificial viscosity) and we apply a reconstruction procedure developed by Geisenhofer
(2021), which allows for the derivation of a sub-cell accurate estimate for the shock level set.
The reconstruction procedure aims to reconstruct the shock front by identifying a set of points,
χs := t~xiu Ă Ω, through a three-step process:

1. Initialization with seed points χseed placed in all cells with artificial viscosity.

2. Generation of candidate points χcand from χseed by identifying sign changes in the Hessian
of the density along the density gradient ∇ρ and by using a bisection method.

64

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/XESFMain.cs#L690C13-L694C27
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/XESFMain.cs#L716C21-L740C22

3. Clustering of χcand based on density and the degree of artificial viscosity, while filtering
out points not associated with the shock.

The outcome is a collection of points suitable for creating a level set representation of the shock
front. Further insights to the procedure and its application to a Mach 4 bow shock (Section
5.1.3) are detailed in the work by Geisenhofer (2021).

Having obtained a description of the shock in the form of points χs, an initial level set is
constructed depending on the employed level set type. Using the spline-based level set approach
(4.6.4), the defining spline can be constructed by interpolating the points χs. In the case of
implicit level set representations, one can construct a signed distance function ϕ0 from χs,
being the distance to the closest point from χs by

ϕ0(~x) = sgn(ρ(~x) ´ ρ(~xmin(~x)))}~x´ ~xmin(~x)}2, (4.56)

where the closest point is defined as

~xmin(~x) = argmin~xiPχs
}~x´ ~xi}2. (4.57)

In this work, this reconstruction procedure was used to obtain an initial guess for the level
set for a Mach 4 bow shock (Section 5.1.3). However, this method’s applicability beyond the
demonstrated case, particularly the clustering aspect in complex flow scenarios, remains to be
validated.

Remark 13. The CNS solver implemented in the BoSSS framework (Müller et al., 2017; Krämer-
Eis, 2017; Geisenhofer et al., 2019) is a DG-IBM solver tailored for solving the compressible
Navier-Stokes and Euler equations. This solver incorporates a shock capturing technique for the
Euler equations, utilizing artificial viscosity to manage shock waves effectively. Additionally, it
is capable of handling immersed geometries through the use of a level set ϕb. To localize shocks,
a shock sensor akin to the one detailed in (4.46) is employed. Upon detection of a shock within
certain cells, a second-order diffusion operator is applied to these cells, smoothing the shock profile
and enhancing the solver’s stability.

4.4.2 Initialization of flow solution

The initialization of the flow solution, i.e., determining the coordinate vector u0, can also be
accomplished by different approaches. In this work, the following three have been implemented
in the BoSSS framework:

1. User-defined initial guess

2. Pseudo-time evolution with a fixed level set to compute a (P = 0) initial guess

3. Shock capturing solution

Next, all three approaches are described individually.

65

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/XESFMain.cs#L736C29-L736C111

User-defined initial guess In the first approach, the user simply chooses a function for each
flow variable (each component Ui of U), which is then projected onto the employed XDG
space (after choosing an initial position for the level set and a polynomial degree). In this
work, we use this approach for testing purposes, but one should note that it is impractical for
many real-world problems without a priori knowledge of the solution. However, in the case of
time-dependent problems, it is valid to choose the initial guess to be an extrusion of the initial
condition in time.

Pseudo-time evolution The second approach refers to a method where the problem repre-
sented by the system of conservation laws (3.5) (including space-time conservation laws) is
addressed by solving for a low-order solution through pseudo-time evolution. Given a fixed
initial level set characterized by its coefficients ϕ0, the objective is to find a solution ũ in the
0th order XDG space (P = 0) for the discretized problem

r0(ũ) = r0(ũ,ϕ0) = 0, (4.58)

where r0 represents the residual from (3.29) employing 0th order XDG test- and trial spaces
(P, P 1 = 0). This setting corresponds to a classical finite volume method (FVM) on the cut-cell
grid KX

h .

Directly solving the nonlinear Equation (4.58) (using for example Newton’s method) often
remains computationally challenging, due to the lack of a good initial guess. The utilized
nonlinear solver may stagnate in local minima and, thus, fail to find the solution.

As a robust remedy, the solution ũ is sought by employing pseudo-time evolution, carried out
until the residual is minimized to a certain threshold (e.g. r0(ũ) « 10´12) and, hence, the flow
becomes (pseudo-) steady. In this setup, we also need to solve a system of nonlinear equations,
but here, the controllable time-step governs the proximity of the current state and the state
at the next pseudo-time. Hence, it is reasonable to assume that we will always find a small
pseudo-time, such that the pseudo-time evolution problem is solvable by Newton’s method.
Concretely, we solve the system of ordinary differential equations

M
Bũ

Bt̃
+ r0(ũ) = 0, (4.59)

where M is the mass matrix resulting from the discretization of the pseudo-temporal operator,
t̃ is a pseudo-time variable, and ũ = ũ(t̃) is assumed to be pseudo-time-dependent. Beginning
with an user-defined initial guess ũ0, pseudo-time updates are computed, using an implicit
time stepping scheme (in this work: implicit Euler) with adaptive time steps∆t̃k. The resulting
nonlinear equations are then solved using Newton’s method (restricted to a maximum of 10
nonlinear iterations). Additionally, we employ a dog-leg approach (Pawlowski et al., 2008)
for globalization. The solution is iteratively updated to ũk+1 = ũk +∆ũk, where ∆ũk is the
step resulting from the dog-leg method. Furthermore, the following time-step adaptation is
employed

∆t̃k+1 =

$

’

&

’

%

∆t̃kσν,+ if ν ď νmin,

∆t̃k if νmin ă ν ď νmax,

∆t̃kσν,´ else,
(4.60)

where ν = maxiPNu |(∆ũk)i|, νmin = 0.05, νmax = 0.1, σν,+ = 2, and σν,´ = 0.2 are parameters
controlling the amplification or reduction of the time-step.

66

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/XESFMain.cs#L790C17-L835C27
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L3871C9-L3911C10
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L3785C13-L3795C13

Similar methods are utilized by other shock-tracking groups (Zahr et al., 2020; Huang et al.,
2023) and prove to be a robust approach for obtaining the initial guess. Compared to the shock
capturing approach, they are also more computationally efficient, due to the lower polynomial
degree.

Initial guess from shock capturing A more advanced yet computationally intensive approach
to generate an initial guess leverages a shock capturing methodology and allows for the
construction of a high-order initial estimate. Specifically, we utilize the CNS solver (Müller
et al., 2017; Krämer-Eis, 2017; Geisenhofer et al., 2019), a DG-IBM using artificial viscosity for
stabilization, to obtain a high-order shock capturing flow solution (see Remark 13). In order
to obtain a solution of high-quality, it is advisable to employ a fine mesh, especially around the
shock. Such a mesh would minimize the area where artificial viscosity is applied.

4.4.3 Termination

One approach to terminate the algorithm (or increases the polynomial degree of the solution), is
to wait until the norms of the residuals have diminished below a specified threshold. However,
the selection of an one-size-fits-all threshold is fraught with difficulty; a threshold that’s
excessively low can cause the algorithm to run indefinitely, whereas one that’s overly high
may lead to a premature stop, hence not fully leveraging the capabilities of the high-order
method. To navigate this issue, the algorithm proceeds until the solution stabilizes (in terms
of residual norms }r}, }F }) across a number of predetermined steps, denoted as kterm (here
set to kterm = 8). To monitor stability, we utilize a residual-norm skyline, represented by
srck := mink̃ďk |c(zk̃)| (with c being either r or F), along with an averaged reduction factor
defined as:

arfck :=
1

kterm

 k´1
ÿ

k̃=k´kterm

src
k̃
,

max(src
k̃+1

, 10´100)

 , (4.61)

applicable for k ě kterm and applied to both residuals. The criteria for terminating the method
hinge on these conditions being met for both r and F :(

k ě kterm
)

^
(
srck ď 10´5 + 10´5}uk}2

)
^
(
arfck ă 1.001

)
. (4.62)

Implementing these criteria aims to ensure that the nonlinear system is solved with a high
degree of accuracy, taking into account the limitations imposed by floating-point computation.
Moreover, the application of the skyline metric protects the algorithm from potential fluctuations
near the minimum threshold.

4.5 Full algorithm

The complete XDG-IST method as described in the above sections is summarized in Algorithm 2.
We have added hyperlinks to the algorithm (indicated by blue letters) so that the reader can
navigate the implementation from here. Some parts of the algorithm, like the initialization,
are implemented in the equation-specific solvers individually (see Figure 1.1 for an overview).
Hence, as there are multiple implementations, no hyperlink is provided for the corresponding
parts of the algorithm.

67

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L2378C21-L2406C22
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L2325C9-L2469C10

Algorithm 2 Implicit XDG shock tracking method
Input: control object defining the solver configuration and all SQP parameters
Output: shock-aligned XDG solution u‹ and level set ϕ‹

1: Initialize: grid, level sets, XDG fields, operators
2: Initial guess: compute ϕ0 and u0 (P = 0 solution) as detailed in Section 4.4
3: for k = 0, 1, 2, . . . do
4: System assembly: assemble the linear system (4.22)
5: Agglomerate system: agglomerate linear system (Section 4.3.1)
6: Solve system: solve (4.22) for ∆zk to obtain SQP search direction
7: SQP update: determine αk that satisfies (4.25) using line search and compute zk+1 =

zk + αk∆zk

8: Update regularization/agglomeration: update A and compute γk+1 by (4.32)
9: if convergence (4.62) then

10: if P ă Pend then
11: increase polynomial degree (P = P + 1)
12: else
13: terminate
14: end if
15: end if
16: Reinitialize solution: in oscillatory cells the solution is reset to a constant value (Section

4.3.2)
17: end for

4.6 Discretization of the shock level set function

This section elaborates on how the shock level set function ϕs (aka. the shock level set) is
discretized using different methods within this study. Previously, ϕs was loosely associated
with a coefficient vector ϕ P RNϕ without detailed explanation. We clarify this by detailing
four specific discretization approaches:

1. The DG level set, discussed in Section 4.6.1.

2. The continuous Galerkin (CG) level set, covered in Section 4.6.2.

3. The global level set, presented in Section 4.6.3

4. The spline-based level set, described in Section 4.6.4.

Before we specify the discretization approaches, we discuss a few general requirements.

General requirements In the BoSSS framework, level sets are primarily discretized in the
DG space VPs,1

h (Kh) defined over the same mesh as the XDG solution. However, the shock level
set implemented in this thesis exists and is optimized within its own space CPs

h , yet is closely
integrated with a distinct base DG level set used by BoSSS routines. Modifications to the shock
level set are instantly projected to the base DG level set to ensure the BoSSS framework’s data
structures remain consistent. The methodologies outlined in this thesis are selected based on
their ability to project onto the DG space without losing accuracy, i.e., CPs

h Ď VPs,1
h .

68

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L614
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1843
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L622
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L640
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L660
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L598C1-L599C36

Moreover, the discretization strategy should focus on minimizing the DOFs for representing
interfaces, which is crucial for efficiently assembling the linear system (4.22). This efficiency is
important because the assembly process involves calculating the derivatives of the residuals r
and F with respect to the level set coefficients ϕ. These derivatives are computed through
differentiation of integrals over surfaces/volumes/lines defined implicitly by the level set,
observable in Equation (3.28). Lacking an analytical expression to calculate these derivatives,
we employ central finite differences, that is,

Br

Bϕl
«

r(u, . . . , ϕl´1, ϕl + ε, ϕl+1, . . .) ´ r(u, . . . , ϕl´1, ϕl ´ ε, ϕl+1, . . .)

2ε
, (4.63)

where ϕl represents a component of ϕ and ε is a small positive value (commonly 10´8). For
each perturbation of one of these components, it is necessary to recalculate quadrature rules
for cut-cells, due to a change in the interface position. In the BoSSS framework, the quadrature
rules are computed using a costly algorithm based on nonlinear root-finding and developed
by Saye (2015). Hence, the full process of computing the derivatives, despite its accuracy, is
computationally demanding, especially with a high DOF count of the level set representation.
This fact is evident in the performance measurements presented in Section 5.2.6 and when
comparing different level set representations 5.2.1.

Additionally, allowing discontinuities or kinks in the interface across cell boundaries adversely
affects the optimization process, often leading to stagnation. Hence, achieving a globally
continuous or even differentiable interface is desired.

x

y

(a) DG level set

x

(b) CG level set

Figure 4.7: Illustration of two level set discretizations of the same level set function, a circle with different radius
for each quadrant. Left (a), a DG level set is depicted, featuring discontinuities. Right (b), a CG level
set is depicted with a continuous interface.

4.6.1 Discontinuous Galerkin level set

In the context of XDG methods, interfaces are typically described implicitly using level sets
ϕDG
s within the DG space VPs,1

h (Kh), which shares the computational mesh with the solution.

69

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/ApplicationWithIDT.cs#L1396C1-L1464C10

The first level set employed in our shock tracking framework is a DG level set, which is defined
on a sub-mesh Ks

h of the original mesh Kh (decreasing the degrees of freedom of the level set).
Each cell of the sub-mesh Ks

h can be expressed as a set union of cells in Kh, i.e.,

Ks P Ks
h ñ DK1, . . . ,Kn P Kh s.t. Ks =

n
ď

i=1

Ki. (4.64)

The resulting level set is represented by its DG coefficients ϕDG corresponding to the DG space
VPs,1
h (Ks

h).

The DOFs of the DG level set are cell-local, i.e., each component of its coefficient vector ϕDG is
associated with a cell, and its alteration only influences the cut-cell structure in that specific cell,
leading to a block-structure in the Jacobians Br/Bϕ, BF /Bϕ. However, this positive feature is
outweighed by the fact that DG level sets exhibit discontinuous interfaces. Hence, DG level sets
have a relative high DOF count compared to other spaces defined on the same mesh, which is
due to the high dimensionality of VPs,1

h (Ks
h). Additionally, there is the presence of redundancy,

where scalar multiples of the same level set represent the same interface.

4.6.2 Continuous Galerkin level set

Another approach examined in this research are CG level sets. These are defined on the subset
of globally continuous functions residing in the DG space, i.e., the CG space defined in (3.16).
More specifically, they are constructed from a modal spectral element basis, described in detail
in (Karniadakis and Sherwin, 2005). That is, for each cell, nodes

~xCG :=

~xCGi
ˇ

ˇ i P [Nϕ]
(

Ă Rd (4.65)

are placed on the corners, potentially the edges and inside the cell, merging nodes on common
edges for neighboring cells. Then, the basis functions ΦCG := (ΦCG

j)jP[Nϕ] are determined by
their function values at these nodes, which can be expressed by the Kronecker delta

ΦCG
j (~xCGi) = δij . (4.66)

Subsequently, the coordinate vector ϕCG of a CG level set simply corresponds to the functional
values at the nodes i.e.,

ϕCG
s (~xu) = ϕCG

i and ϕCG
s =

Nϕ
ÿ

i=1

ϕCG
i ΦCG

i . (4.67)

An illustration for a small 4 ˆ 4 mesh can be found in Figure 4.7, where a CG level set is
depicted alongside a DG level set. It depicts the same function, ϕ(x, y) = x2 + y2 ´ rq(x, y)

2,
featuring four different radii rq(x, y) for each quadrant of the circle, which is projected onto
each representation. The DG level set captures the discontinuous interface accurately, while
the CG representation inherently enforces continuity of the interface resulting in a different
shape.

While for triangular meshes the procedure of constructing CG fields is comparably easy, for
Cartesian meshes it involves major difficulties, especially for three-dimensional (3D) meshes or

70

those employing hanging nodes. Also, CG level sets feature comparably many DOFs as DG level
sets. As a difference, altering a DOF may change the interface not only in the corresponding
cell but also in all neighboring cells, due to the continuity constraints. Lastly, CG level sets also
introduce redundant DOFs, having no impact on the interface.

4.6.3 Global level set

A highly effective strategy for reducing the DOFs can be accomplished through the global
level set approach. In this method, a set of globally analytical basis functions ΦGl

i P C8(Ω) is
carefully selected

ΦGl :=
(
ΦGl
i

)
iP[Nϕ]

, (4.68)

and the resulting global level set is defined as a linear combination

ϕGl
s =

Nϕ
ÿ

i=1

ϕGl
i ΦGl

i . (4.69)

This discretization approach accommodates various basis functions, making it particularly
advantageous when there is prior knowledge of the discontinuity (e.g., straight-sided shocks).
The DOFs of the level set are chosen independently of the mesh. Moreover, the resulting
function space from this method maintains C8 continuity, thereby ensuring smooth shock
interfaces and aligning well with optimization algorithms. Nonetheless, while this approach
is beneficial for straightforward shock profiles, its applicability to complex scenarios may be
limited and it is not used in the numerical experiments in this work.

4.6.4 Spline-based level set

Next, the locality of the CG and DG level sets are combined with a low DOF and C1-continuous
representation of the interface. For this specialized spline-based level set, we parameterize the
interface explicitly using C1-continuous splines. The application of the spline-based level set
is limited to two-dimensional (2D) conservation laws and Cartesian background grids. In
the following description, we assume a space-only problem domain Ω with coordinates (x, y).
However, this approach is analogously applicable to 1D space-time problems by replacing the
y-coordinates with t-coordinates.

Given a sequence of interpolation points y0 ă y1 ă . . . ă yNS
, corresponding to the y-

coordinates of the vertices of Cartesian cells within a grid, along with associated values
tx0, x1, ..., xNS

u and derivatives tx1
0, x

1
1, ..., x

1
NS

u at these points, a cubic spline S : [y0, yNS
] Ñ R

can be defined as follows:

S(yi) = xi, S
1(yi) = x1

i, S|[yi,yi+1] P P3([yi, yi+1]). (4.70)

This cubic spline function is C1-smooth over the interval [y0, yS] and the corresponding co-
efficient vector ϕSp is the concatenation of th function values (xi)i and the derivatives (x1

i)i,
i.e.,

ϕSp :=

(
(xi)i
(x1

i)i

)
,with Nϕ = 2NS . (4.71)

71

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/OptiLevelSets/GlobalOptiLevelSet.cs#L56C1-L62C10
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/OptiLevelSets/GlobalOptiLevelSet.cs#L260C1-L267C10
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/OptiLevelSets/SplineOptiLevelSet.cs#L160C16-L160C73
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/OptiLevelSets/SplineOptiLevelSet.cs#L696C1-L698C10

y0

y1

y2

y3

yNS

x0x1x2 x3 xNS

x

y

(a) Spline height function

x

(b) XDG solution field

Figure 4.8: Left: (a) Illustration of a cubic C1
´spline S : [y0, yNS] Ñ R (red line) defined by interpolation points

ty0, y1, . . . , yNS u and corresponding values tS(yi) = xiu (blue dashed line) on a 4 ˆ 4 mesh. Here, the
derivatives S1(yi) = x1

i are not depicted. The corresponding level set is defined by ϕ(x, y) = x ´ S(y).
Right: (b) The (roughly) corresponding XDG solution field. (Left figure adapted from Vandergrift and
Kummer, 2024)

Figure 4.8 illustrates such a spline for a 4 ˆ 4 mesh. Further, it can be linked with the DG
representation of the shock level set by projecting the function

ϕSp
s (x, y) = x´ S(y) (4.72)

onto the DG space VPs,1
h (Kh).

The spline-based level set representation requires a fixed number of two DOF per grid point in
y-direction, significantly fewer than a DG or CG field of polynomial order three would entail
(a concrete illustration is provided in a later section in Figure 5.23). Moreover, it explicitly
represents the shock front, such that quadrature rules could be computed by an analytical
formula and the Jacobians Br/Bϕ, BR/Bϕ could be obtained with greater ease. Additionally, a
huge benefit in terms of solver robustness was observed from the enforced C1-continuity at
the interface. Although this spline representation can be extended to any polynomial order
(e.g., a continuous linear spline by omitting the derivative information), this work primarily
employs cubic and linear splines.

Note that the approach above is limited to shocks that are graphs of 1D height functions.
However, this approach is worth considering, since there are numerous flow instances that
induce such shocks.

72

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/ApplicationWithIDT/OptiLevelSets/SplineOptiLevelSet.cs#L656C1-L665C10

5 Numerical experiments for implicit XDG
shock tracking

This chapter presents a comprehensive suite of numerical experiments designed to validate
and scrutinize the implicit XDG shock tracking (XDG-IST) method introduced in this work.
Through a series of test cases and in-depth studies, we explore the method’s applicability,
accuracy, robustness, and computational efficiency across a range of challenging flow scenarios.

Some of the results in this chapter have been published in a similar fashion by Vandergrift and
Kummer (2024). But, our actual implementation of the XDG-IST method and the underlying
code base have been modified slightly, due to continuing research. All the results in this chapter
are created using a more recent version of the BoSSS code Kummer et al. (2024) and might
slightly differ from the results presented in the publication by Vandergrift and Kummer (2024).

The chapter is outlined as follows: first, we define test cases (Section 5.1) for each system
of conservation laws considered, featuring both one-dimensional (1D) space-time and space-
only two-dimensional (2D) scenarios, and we provide corresponding illustrative results from
applying the XDG-IST method. Following the presentation of test cases, we show results from
comprehensive studies aimed at further evaluating and optimizing the method (Section 5.2).
At the end, we conclude the chapter (Section 5.3).

5.1 Test cases

In this section, we present a series of test cases and apply the XDG-IST method to these. The
presented results can be reproduced by the publicly available Jupyter notebooks (see Remark
14).

Specifically, Section 5.1.1 focuses on problems based on the 1D space-time advection equation,
presenting results for simulations with straight-sided and curved shocks. In Section 5.1.2,
problems arising for the 1D space-time Burgers equation are examined, also showcasing results
for both straight-sided and curved shock configurations. Cases based on the 2D steady Euler
equations are discussed in Section 5.1.3, where flow phenomena such as supersonic flow over
an inclined plane and a bow shock are introduced. Lastly, Section 5.1.4 features examples for
the 1D space-time Euler equations, highlighting the method’s capability to accurately model
shock-acoustic wave interactions.

Remark 14. All of the computations underlying the presented results in this chapter can be
reproduced by executing the corresponding Jupyter notebooks from the public BoSSS repository
Kummer et al., 2024. The notebooks are stored under the path ./examples/ShockFitting with

73

https://github.com/FDYdarmstadt/BoSSS/tree/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting

sub-folders corresponding to the specific equations, problems and studies. At the beginning of each
test case, we also provide a hyperlink in the form of blue colored text, sending the reader to the
corresponding notebook.

5.1.1 One-dimensional space-time advection equation

0

0.5

1.0

t

Iteration 0 Iteration 1 Iteration 2

0.0 0.5 1
0

0.5

1.0

x

t

Iteration 4

0 0.5 1.0
x

Iteration 6

0 0.5 1
x

Iteration 30

0 0.5 1

u

Figure 5.1: Plots of velocity u for selected XDG shock tracking iterations zk (k = 0, 1, 2, 4, 6, 30, polynomial
degree P = 0) for the space-time advection test case with a straight-sided shock. The straight-sided
discontinuity is tracked by the SQP solver starting from an initial guess for the shock interface Is

(thick black line), which is close to the correct position and implicitly defined by a cubic spline level set
(Ps = 3). The XDG-IST solver converges to the solution of the scalar conservation law and successfully
aligns the cubic spline level set with the discontinuity.

First, two problems for the space-time formulation of the linear advection equation, which has
been introduced in Section 3.4.1, are presented. We consider a rectangular space-time domain
Ω = [0, 1] ˆ [0, 1] and we introduce a discontinuity in the initial value

u(x, 0) =

#

1 if x ă 1
4

0 else ,
(5.1)

74

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/SAIDT/SAIDTHardCodedControl.cs#L213C1-L214C95

0 10 20 30 40

100

10´2

10´4

10´6

10´8

10´10

10´12

Iteration k

Re
si
du

al
no

rm
s

}R(zk)}2
}r(zk)}2

Figure 5.2: Optimization history of the XDG-IST method for the space-time advection test case (polynomial degree
P = 0) with a straight-sided shock. Both residual norms }R}2, }r}2 converge rapidly after 30 iterations
as the SQP solver successfully tracks the straight-sided discontinuity.

which will be advected in time in dependency of the advection field ua(t). We prescribe Dirichlet
boundary conditions using the exact solution and examine two choices of the advection field,
one resulting in a straight-sided shock and another one resulting in a curved shock.

Advection - straight-sided shock To simulate a straight-sided shock, the advection field is
defined as a constant function over time, given by

ua(t) =
1

2
. (5.2)

(This configuration ensures the shock advances at a constant velocity of 1/2.) Utilizing an
XDG space of polynomial order P = 0 with a linear shock level set, the piece-wise constant
space-time solution is exactly representable. The shock’s location can then be represented by
the exact level set function

ϕs(x, t) = x´
1

4
´

1

2
t. (5.3)

This example serves as a test of the method’s capability in solving a linear 2D problem with a
simple solution, representable within the XDG space.

Applying the XDG-IST method with the full enriched residual objective function fER, we employ
a 5 ˆ 5 Cartesian mesh, polynomial degree P = 0, a cubic spline-based level set (Ps = 3) for
the shock, and the upwind numerical flux, as defined in (3.43). The initial configuration of the
level set is determined by projecting the arbitrarily chosen function

ϕ0(x, t) = x´
2

5
´

3

5
t (5.4)

onto the spline-based level set, with the initial solution (first guess) being a projection of the
exact solution. Figure 5.1 illustrates selected states zk at various stages during the optimization.
Notably, the solver closely approximates the true solution after just three iterations, achieving
full convergence after 30 iterations as indicated by the residual norms }r(zk)}2, }R(zk)}2
plateauing around 10´9 in Figure 5.2.

75

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/1DSpcTmAdvection/SAIDTStraightShock.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/SAIDT/SAIDTHardCodedControl.cs#L67C13-L67C37
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/SAIDT/SAIDTHardCodedControl.cs#L234C17-L238C18

0

0.5

1.0

t
Iteration 0 Iteration 2 Iteration 4

0.0 0.5 1
0

0.5

1.0

x

t

Iteration 6

0 0.5 1.0
x

Iteration 12

0 0.5 1
x

Iteration 35

0 0.5 1

u

Figure 5.3: Plots of velocity u for selected XDG shock tracking iterations zk (k = 0, 2, 4, 6, 12, 35, polynomial degree
P = 0) for the space-time advection test case with a curved shock. The curved polynomial discontinuity
is tracked by the SQP solver starting from an initial guess for the shock interface Is (thick black line),
implicitly defined by a cubic spline level set (Ps = 3) which is not sub-cell accurate. Simultaneously, the
solution of the scalar conservation law is obtained and the cubic spline level set is successfully aligned
with the discontinuity.

Advection - curved shock For the curved shock scenario, the advection field is specified as a
polynomial function in time

ua(t) := 3t2 ´ 3t+
1

2
. (5.5)

This setup allows the representation of the piece-wise constant space-time solution exactly
within an XDG space of order P = 0, employing a shock level set of degree Ps = 3. The shock’s
trajectory is described exactly by

ϕs(x, t) = x´ t3 +
3

2
t2 ´

1

2
t´

1

4
. (5.6)

This example serves as a test of the method’s capability in solving a linear 2D problem with a
curved polynomial discontinuity, representable within the XDG space. Here, the initial guess
for the shock level set is chosen more than one cell-distance away from the exact position, to
make the case more challenging.

76

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/1DSpcTmAdvection/SAIDTCurvedShock.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/SAIDT/SAIDTHardCodedControl.cs#L128C1-L128C57

0 10 20 30 40

100

10´2

10´4

10´6

10´8

10´10

10´12

Iteration k

Re
si
du

al
no

rm
s

}R(zk)}2
}r(zk)}2

Figure 5.4: Optimization history of the XDG-IST method for the space-time advection test case with a curved
shock (polynomial degrees P = 0, Ps = 3). Both residual norms }R}2, }r}2 converge rapidly after 35
iterations as the SQP solver successfully tracks the polynomial discontinuity.

We apply the XDG-IST method with the objective function fER on a 10 ˆ 10 Cartesian mesh, a
cubic spline-based level set, a (P = 0) XDG space, and by incorporating the upwind flux from
(3.43). The initial state of the level set is determined by projecting

ϕ0(x, t) = x´
7

10
t3 + t2 ´

7

10
t´

1

10
. (5.7)

and the initial solution state is a projection of the exact solution. In Figure 5.3, we present
selected optimization states zk, showing the solver’s rapid approach to the actual solution
and confirming its convergence after 35 iterations. The optimization process’s residual norms
}r(zk)}2, }R(zk)}2 stabilize at approximately 10´9, as depicted in Figure 5.4.

5.1.2 One-dimensional space-time Burgers equation

Next, two problems for the space-time formulation of the Burgers equation, which has been
introduced in Section 3.4.2, are presented. We construct two cases with exact solutions: one
with a piece-wise constant solution and a straight-sided discontinuity, and a second with
a curved discontinuity and a non-polynomial solution. In both cases, Dirichlet boundary
conditions are imposed weakly using the exact solution.

Burgers - straight-sided shock For the straight-sided case a rectangular space-time domain
Ω = [0, 1] ˆ [0, 1] and a piece-wise constant initial value with a discontinuity

u(x, 0) =

#

3
4 if x ă 1

4
1
4 else

(5.8)

are chosen. Using the Rankine-Hugoniot jump conditions the shock speed can be determined
to be 1/2 and a straight-sided shock is obtained, representable by the level set

ϕs(x, t) = x´
1

4
´

1

2
t. (5.9)

77

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/SAIDT/SAIDTHardCodedControl.cs#L158C12-L162C14
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/1DSpcTmBrgs/StraightShock/StraightShock.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/BUIDT/BUIDTHardCodedControl.cs#L104C1-L104C71

0

0.5

1.0

t
Iteration 0 Iteration 2 Iteration 4

0.0 0.5 1
0

0.5

1.0

x

t

Iteration 6

0 0.5 1.0
x

Iteration 8

0 0.5 1
x

Iteration 10

0.25 0.5 0.75

u

Figure 5.5: Plots of velocity u for selected XDG shock tracking iterations zk (k = 0, 2, 4, 6, 8, 10, polynomial degree
P = 0) for the space-time Burgers test case with a straight-sided shock. The straight-sided discontinuity
is tracked by the SQP solver starting from an curved initial guess for the shock interface Is (thick black
line), implicitly defined by a linear spline level set (Ps = 1). The XDG-IST solver converges the solution
of the scalar conservation law and successfully aligns the linear spline level set with the discontinuity.

This example serves as a test of the methods capability in solving a nonlinear 2D problem with
a simple solution, representable within the XDG space.

Analogously to the advection test case, we employ the XDG-IST method with the full enriched
residual objective function fER, a 10 ˆ 10 background mesh, a P = 0 extended discontinuous
Galerkin (XDG) space, a linear spline-based level set (Ps = 1), and the upwind numerical flux
defined in (3.43). The initial configuration of the level set is determined by projecting

ϕ0(x, t) = x+
1

5
t2 ´

3

5
t´

2

5
, (5.10)

onto the spline-based level set, with the initial solution being a projection of the exact solution.
In Figure 5.5, we present selected optimization states zk, showing the solver’s rapid approxima-
tion of the actual solution and underlining its convergence after remarkable 12 iterations. The
residual norms }r(zk)}2, }R(zk)}2 stabilize during the optimization history at approximately
10´15, as depicted in Figure 5.6.

78

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/BUIDT/BUIDTHardCodedControl.cs#L139

0 10 20 30

100

10´2

10´4

10´6

10´8

10´10

10´12

10´14

10´16

Iteration k

Re
si
du

al
no

rm
s

}R(zk)}2
}r(zk)}2

Figure 5.6: Optimization history of the XDG-IST method for the straight shock Burgers test case (P = 0). Both
residual norms }R}2, }r}2 converge rapidly after 12 iterations while the SQP solver successfully tracks
the straight discontinuity using a linear spline level set.

Interestingly, the residual of the XDG solution for the nonlinear Burgers test case is significantly
lower compared to the residuals from the two linear advection test cases. This difference may
stem from the type of spline-based level sets used; cubic spline-based level sets are employed
in the advection cases, while a linear spline-based level set is used in the Burgers case. When
the first advection test case was run with a linear spline-based level set, we observed residuals
converging to approximately 10−15. It is important to note, as mentioned in Section 4.6, that
the level set Jacobians are computed using finite differences with an accuracy limit of 10−8.
This limitation likely affects the convergence accuracy of the derivatives xi′ at the interpolation
points yi (defined in (4.70)), potentially explaining the observed discrepancies in residuals
across different test cases.

Burgers - curved shock Next, we introduce a case for the Burgers equation with a curved
shock and a non-polynomial solution. Following Huang and Zahr (2022), we consider the
domain Ω = [´0.2, 1] ˆ [0, 1.2] and the following discontinuous initial condition

u(x, 0) =

#

4 if x ă 0

3(x´ 1) else.
(5.11)

For this case, the exact solution is known to be

uex(x, t) =

#

4 if x ă xs(t)
3(x´1)
1+3t else,

(5.12)

where the accelerating shock speed xs is given by

xs(t) =
7

4

(
1 ´

?
1 + 3t

)
+ 4t. (5.13)

This example serves as a test of the method’s capability in solving a challenging nonlinear 2D
problem where the solution cannot be precisely represented within the XDG space. Unlike the

79

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/1DSpcTmBrgs/AccShock/BurgersAcceleratingShock.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/1DSpcTmBrgs/AccShock/BurgersAcceleratingShock.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/BUIDT/BUIDTHardCodedControl.cs#L314C10-L321C16
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/BUIDT/BUIDTHardCodedControl.cs#L303C1-L305C14

0

0.6

1.2

t
Iteration 0 Iteration 2 Iteration 4

-0.2 0.4 1
0

0.6

1.2

x

t

Iteration 28

-0.2 0.4 1.0
x

Iteration 50

-0.2 0.4 1
x

Iteration 78

-3 0.5 4

u

Figure 5.7: Plots of velocity u for selected XDG shock tracking iterations zk (polynomial degrees P = 0, 1, 2, 3) for
the accelerating shock burgers test case for k = 0, 2, 4, 28, 50, 78. Here, as an initial guess for the shock
interface Is (thick black line), implicitly defined by a cubic spline level set (Ps = 3), a linear interface
is employed and aligned to the discontinuity by the XDG-IST solver, simultaneously computing the
solution of the conservation law. Here, a P -continuation strategy is employed gradually increasing the
polynomial degrees.

previous cases, both the interface and the solution are non-polynomial, adding an extra layer
of complexity.

The XDG-IST method is applied using a 10 ˆ 10 background grid, the full enriched residual
objective function fER, a cubic spline-based level set (Ps = 3), and the upwind numerical flux
defined in (3.43). The polynomial degree is chosen as P = 3 and a P -continuation strategy
(see Section 4.3.3) is employed. The initial guess for the level set is chosen to be

ϕ0(x, t) = x´
6

5
t, (5.14)

and the initial flow solution is computed using pseudo-transient continuation (see Section
4.4.2).

Selected XDG-IST iterations are depicted in Figure 5.7 and the corresponding optimization
history of the residual norms }R(zk)}2, }r(zk)}2 is shown in Figure 5.8 showcasing success-

80

0 20 40 60

102

101

100

10´1

10´2

10´3

P = 0 P = 1 P = 2 P = 3

Iteration k

Re
si
du

al
no

rm
s

}R(zk)}2
}r(zk)}2

Figure 5.8: Optimization history of the XDG-IST method for the space-time Burgers test case with a curved shock,
where a P -continuation strategy is employed (polynomial degree P = 0, 1, 2, 3) showing the residual
norms }R}2, }r}2 for all SQP iterations. After converging the residual of an intermediate polynomial
degree, the latter is increased, such that a jump in both residuals R, r can be observed (dashed lines).
We have r(z0) « 10´16 due to the initial value coming from pseudo-transient-continuation.

ful alignment of the XDG solution with the shock and convergence after 78 iterations to
}r(zk)}2 « 2 ˆ 10´3. Note, that the residuals are computed employing XDG spaces relative
to the polynomial degree of the iterate zk which increases during the optimization process
due to the P -continuation. Hence, at iterations where the polynomial degree is increased the
residuals exhibit an uptick, observable in Figure 5.8.

Note that the residual plateau reached in this case is significantly higher compared to the cases
presented previously. This discrepancy arises because, unlike in the other cases, the solution for
this case cannot be exactly represented within the XDG space used, due to the non-polynomial
nature of both the shock and flow solutions. Even when projecting the analytical solution
onto the XDG space, we obtained residuals in the same range, approximately 10´3, as those
computed by the shock tracking method. It is only through refining the mesh and significantly
increasing the polynomial degree that the residuals gradually approach zero. This observation
suggests that there may either be an inconsistency in the discretization (e.g., no solution
exists that satisfies r « 10´16 for polynomial degrees P ą 0), or that the solver, tasked with
minimizing both the residual and the objective function, can not find a solution with r « 10´16

because doing so would simultaneously increase the objective function.

5.1.3 Two-dimensional steady Euler equations

Going further, we introduce two cases for two-dimensional stationary supersonic flows, i.e.,
problems based on the steady 2D Euler equations discussed in Section 3.4.3. In opposition
to the other cases presented in this section, a secondary boundary level set ϕb is employed to
represent geometries immersed into the flow field, eventually being responsible for the creation
of shock waves.

81

We start the discussion by giving details on the setup considered for both simulations. Firstly,
the full enriched residual objective function fER is utilized. Secondly, for the numerical flux
function H, employed for cell boundaries Γ, we use the following:

• For boundaries not coinciding with any interface, specifically (ΓzIs)zIb, the Harten-Lax-
van Leer-Compact (HLLC) flux is employed. This approach is directly integrated with
the imposition of specific boundary conditions at the domain’s edges. These conditions
entail the application of supersonic inlet conditions (ρ8, p8, u8, v8) at the domain’s
left boundary, supersonic outlet conditions at the right boundary, and adiabatic slip
wall conditions at both the top and bottom boundaries (see Section 3.4.3 for details on
boundary conditions in the 2D Euler context).

• The Godunov flux method is specifically utilized for the edges that are part of the shock
interface, denoted as Is. (Varying this choice will be studied in Section 5.2.3)

• For the edges associated with the immersed boundary interface Ib adiabatic slip wall
conditions are uniformly applied.

The supersonic inlet conditions on the left domain boundary are chosen to be solely dependent
on the free-stream Mach number Ma8, as we assume no inflow in y-direction and normalize
pressure and density, i.e.,

ρ8 = 1, p8 = 1, u8 = Ma8

a

γ̂, v8 = 0. (5.15)

To determine the precision of the numerical solutions, the computed enthalpy values are
compared with the free-stream enthalpy H8, known for being constant in stationary inviscid
compressible flows. The free-stream enthalpy is derived from the inflow conditions, namely
the inflow density ρ8, pressure p8, and Mach number Ma8, using the formula:

H8 =
γ̂

γ̂ ´ 1

p8

ρ8

+
1

2
Ma28γ̂

p8

ρ8

. (5.16)

Variations from this established enthalpy benchmark are indicative of the numerical method’s
fidelity.

In pursuit of a quantifiable measure of accuracy, the normalized L2-error for enthalpy across
the fluid domain is determined by

Herr =
1

}H8}L2

d

ż

Ω
(H ´H8)2dV , (5.17)

whereH represents the enthalpy values derived from the numerical simulation. In the following,
we also denote by Herr(zk) the enthalpy error derived for the SQP iterate zk.

Euler - Mach 2 flow over inclined plane The first test case examined details a stationary
supersonic Mach 2 flow over an inclined plane, a configuration previously investigated in Zahr
et al. (2020). This scenario is set within a rectangular space-only domain Ω = [0, 32] ˆ [0, 1],
featuring supersonic flow impinging on an inclined plane at an angle θwdg ą 0. The uniform
inflow, when interacting with the wedge’s geometry, creates a solution characterized by piece-
wise constant flow parameters, with the resulting shock wave maintaining a linear trajectory.

82

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/Variables/XESFVariables.cs#L255C9-L278C15
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/2DSteadyEuler/WedgeFlow/WedgeFlowSolverRun.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/2DSteadyEuler/WedgeFlow/WedgeFlowSolverRun.ipynb

In this particular setup, leveraging relations outlined in Section 2.2.2 enables the explicit
calculation of both the shock wave’s angle and the flow solution. Specifically, for an inflow
Mach numberM8 = 2 and a wedge angle θwdg = 10˝, the shock wave angle is determined to
be approximately θshk « 39.31˝. In this setup, two level sets are utilized: a fixed one, denoted

0

0.5

1.0

y

Iteration 0 Iteration 2 Iteration 4

0 0.5 1.0 1.5
0

0.5

1.0

x

y

Iteration 6

0 0.5 1.0 1.5
x

Iteration 8

0 0.5 1.0 1.5
x

Iteration 20

1 1.25 1.5

ρ

Figure 5.9: Selected XDG shock tracking iterations zk (k = 0, 2, 4, 6, 8, 20, polynomial degree P = 0) for the
density ρ (of a Mach 2 flow over an inclined plane (indicated by white filling) with angle θwdg = 10˝

for a 15 ˆ 10 mesh, represented by an immersed boundary Ib (lower thick black line, Pb = 1). The
shock interface Is (upper thick black line) is represented by a linear spline level set ϕs (Ps = 1) and is
converged by the SQP solver to the correct shock position in about 20 iterations.

as ϕb, representing the immersed boundary and a variable one, denoted as ϕs, representing
the shock. The wedge’s geometry can be accurately represented by the zero iso-contour of the
following linear level set

ϕb(x, y) =
1

2
+

y

tan(10˝π
180˝)

´ x. (5.18)

Similarly, the exact shock would be approximately represented by the linear level set

ϕs(x, y) =
1

2
+

y

tan(39.31˝π
180˝)

´ x. (5.19)

The XDG-ISTmethod is applied, utilizing a 15ˆ10 background grid for the domain discretization
and employing an initial projection of the exact solution (see Section 2.2.2 for details) for the
initial guess. Due to the piece-wise constant nature of the flow, a polynomial degree of P = 0
is sufficient for representing the solution, along with linear level sets (Ps = Pb = 1). Thus,
a linear spline-based level set with an initial angle of 32˝ is chosen, intentionally creating a
configuration where the level set is not sub-cell accurate.

83

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/XESFHardCodedControl.cs#L200

0 10 20 30 40 50

102

100

10´2

10´4

10´6

10´8

10´10

10´12

Iteration k

Re
si
du

al
no

rm
s
/
en

th
al
py

er
ro
r

}R(zk)}2
}r(zk)}2
Herr

Figure 5.10: Optimization history of the XDG-IST method for the supersonic Mach 2 flow over an inclined plane
(P = 0) showing the residual norms }R}2, }r}2 and the normalized enthalpy error Herr across all
SQP iterations. An convergence of both residuals and the enthalpy error can be measured after 25
iterations as the SQP solver tracks the straight discontinuity and computes the constant solution.

Remarkably, applying the XDG-IST method demonstrates impressive convergence, with the
residual norms reaching approximately 1 ˆ 10´12 after about 25 iterations. Furthermore, the
enthalpy error decreases to around 10´11, with the exact enthalpy H8 = 6.3 serving as the
reference. Consequently, it can be assumed that the shock is accurately tracked, and the correct
solution is computed with errors primarily attributed to rounding. For illustrative purposes,
selected plots of solution states at different solver iterations are depicted in Figure 5.9 and the
history of the residual norms and the enthalpy error is shown in Figure 5.10.

It is worth noting that this particular test case involves doubly cut-cells where the wedge
and the shock intersect, as these cells pose challenges for the generation of quadrature rules.
Recently developed algorithms by Saye (2022) and Beck and Kummer (2023), the latter of
which is implemented in the BoSSS framework, have been instrumental in handling such cases.
These algorithms build upon the same quadrature rules that are utilized for single cut-cells
and have been introduced by Saye (2015).

Euler - Mach 4 bow shock The second test case is a supersonic flow impinging on a blunt
body, marked by a curved geometry and a corresponding curved shock front, as outlined in
the framework of the 5th International Workshop on High Order CFD Methods (HiOCFD5)
(Murman, 2017). This scenario’s geometry is a rounded rectangle, crafted from the segments
of two circles centered at ~c1 = (x1, y1) = (0, 0.5) and ~c2 = (x2, y2) = (0,´0.5), each having
a radius of 0.5. To complete the blunt body’s form, a vertical line segment is introduced
at tx = ´0.5, y P [´0.5, 0.5]u. A continuous level set function ϕb P C1(Ω) in its quadratic
expression is employed to represent this geometry accurately

ϕb(~x) =

$

’

&

’

%

}~x´ ~c1}22 ´ 0.25 if 0.5 ď y

x2 ´ 0.25 if 0.5 ă y ď ´0.5

}~x´ ~c2}22 ´ 0.25 else,
(5.20)

84

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ConvergenceStudy/ConvergenceStudy_BowShock_PostProcessing.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ConvergenceStudy/ConvergenceStudy_BowShock_PostProcessing.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/XESFHardCodedControl.cs#L1536-L1564
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/XESFHardCodedControl.cs#L1536-L1564
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESF/XESFHardCodedControl.cs#L1536-L1564

1

3

5
ρ

-2 -1 -ε-4

-2

0

2

4

x

y

Iteration 0

-2 -1 -ε
x

Iteration 10

-2 -1 -ε
x

Iteration 20

-2 -1 -ε
x

Iteration 40

Figure 5.11: Selected XDG shock tracking iterations zk (k = 0, 10, 20, 40, polynomial degree P = 0) for the density
ρ of the Mach 4 bow shock for a 5 ˆ 16 mesh. The blunt body (white filling) is represented by an
immersed boundary Ib (right thick black line) using a quadratic level set. Starting from an initial guess
obtained by a reconstruction procedure, the shock interface Is (left thick black line), represented by
a cubic spline level set (Ps = 3), and the XDG approximation are converged by the SQP solver (see
Figure 5.12 for P ą 0 iterations).

which achieves precise representation within a second-order discontinuous Galerkin (DG) space
(Pb = 2), particularly when the mesh aligns with the horizontal lines at y = 0.5 and y = ´0.5.
The conditions at the inflow are defined as supersonic, with a Mach numberM8 = 4.0. The
blunt body’s boundary is treated with adiabatic slip-wall conditions.

The computational domain is chosen as Ω = [´2 ´ ε,´ε] ˆ [´4, 4], introducing a minor
translation (ε = 0.0025) in the x-direction. This modification aims to avoid an exact alignment
of the shock interface with the vertical portion of the blunt body at x = ´0.5, promoting an
optimal cut-cell configuration. For the shock interface Is representation, a cubic spline-based
level set (Ps = 3) is utilized, ensuring an accurate representation of the curved shock.

The initial guess for the solution and the level set function is obtained from a reconstruction
procedure based on a P = 2 shock capturing simulation, as proposed by Geisenhofer (2021)
and outlined in Section 4.4.2. Additionally, we employ the P -continuation strategy, starting
with P = 0 and progressively increasing the degree of the solution until Pend = 3.

We apply the XDG-IST method using a very coarse 5 ˆ 16 mesh and a refined 10 ˆ 32 mesh,
with a cubic spline-based level set (Ps = 3) and employing the full enriched residual objective
function fER. Selected iterations (P = 0) are illustrated in Figures 5.11 and 5.13. Notably,

85

1

3

5
ρ

-2 -1 -ε-4

-2

0

2

4

x

y
Iteration 45

-2 -1 -ε
x

Iteration 50

-2 -1 -ε
x

Iteration 60

-2 -1 -ε
x

Iteration 175

Figure 5.12: Selected XDG shock tracking iterations zk (k = 45, 50, 60, 175, polynomial degree P ą 0) for the
density ρ of the Mach 4 bow shock for a 5ˆ16mesh. The blunt body (white filling) is represented by an
immersed boundary Ib (right thick black line) using a quadratic level set. Continuing the optimization
history from Figure 5.11, the shock interface Is (left thick black line), represented by a cubic spline
level set (Ps = 3), and the the XDG approximation are converged by the SQP solver.

during iterations where the solver increases the polynomial degree due to stagnation (e.g.,
k = 40 for 5ˆ16), a visible discontinuity and a strongly overestimated shock front are observed.
As the polynomial degree of the flow solution is increased (to P ą 0), iterations shown in
Figures 5.12 and 5.14, the shock front moves closer to the blunt body after several iterations and
eventually reaches a visually well-resolved and converged solution. The optimization history
for the 5ˆ 16 mesh is depicted in Figure 5.15, where a steady reduction in the enthalpy error is
noted. In the converged state, a remarkably low enthalpy error ofHerr « 8.5ˆ10´4 is achieved.
Figure 5.16 presents the optimization history for the refined 10ˆ32mesh, which, while similar
to the coarse mesh case, displays lower residuals and enthalpy errors by approximately one
order of magnitude during solver stagnation phases.

Similar to the curved Burgers case discussed earlier, the solver is unable to converge the
residual norm to zero. However, we observe that refining the mesh lowers the value ultimately
reachable for the residual norm. Remarkably, as will be presented in Section 5.2.3, switching
the numerical flux at the interface from Godunov’s flux to Roe’s flux enables the optimizer
to reach significantly lower residual levels, while maintaining comparable enthalpy errors for
both approaches. Also in Section 5.2.5, we will see that the enthalpy errors obtained by our
XDG method are superior to those obtained by a shock capturing simulation on a significantly
finer mesh (factor 80).

86

1

3

5
ρ

-2 -1
-4

-2

0

2

4

x

y

Iteration 0

-2 -1
x

Iteration 5

-2 -1
x

Iteration 10

-2 -1
x

Iteration 30

Figure 5.13: Selected XDG shock tracking iterations zk (k = 0, 5, 10, 30, polynomial degree P = 0) for the density
ρ of the Mach 4 bow shock for a 10 ˆ 32 mesh. The blunt body (white filling) is represented by an
immersed boundary Ib (right thick black line) using a quadratic level set. Starting from an initial guess
obtained by a reconstruction procedure, the shock interface Is (left thick black line), represented by
a cubic spline level set (Ps = 3), and the XDG approximation are converged by the SQP solver (see
Figure 5.14 for P ą 0 iterations).

5.1.4 One-dimensional space-time Euler equations

Considering the space-time formulation of the 1D Euler equations (3.82), we aim to apply the
XDG-IST method to 1D shock-acoustic-wave interaction problems. To this end, we consider
three cases, each featuring an initially stationary normal shock wave, which is then impinged by
an acoustic wave. Specifically, the three cases are: 1) a fast acoustic wave hitting the shock from
the supersonic side of the domain, 2) a slow acoustic wave hitting the shock from the subsonic
side of the domain, and 3) a slow acoustic wave hitting the shock from the supersonic side
of the domain, with the corresponding theory already outlined in Section 2.3. By comparing
the results of 1) and 2) with the analytical expressions for the amplification factors (2.27) and
(2.29), we aim to demonstrate the method’s capabilities to capture these physical phenomena
correctly.

For all three cases, the initial setup is described by a case-dependent time interval T , a space-
time domain Ω = [0, 3] ˆ T , a normal shock located at xs P [0, 3], and a constant base flow

87

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/1DSpcTmEuler/ShockAcousticInteraction/AcousticWave1DHPC.ipynb

1

3

5
ρ

-2 -1
-4

-2

0

2

4

x

y
Iteration 35

-2 -1
x

Iteration 40

-2 -1
x

Iteration 45

-2 -1
x

Iteration 185

Figure 5.14: Selected XDG shock tracking iterations zk (k = 35, 40, 45, 185, polynomial degree P ą 0) for the
density ρ of the Mach 4 bow shock for a 10 ˆ 32 mesh. The blunt body (white filling) is represented
by an immersed boundary Ib (right thick black line) using a quadratic level set. Continuing the
optimization history from Figure 5.13, the shock interface Is (left thick black line), represented by a
cubic spline level set (Ps = 3), and the the XDG approximation are converged by the SQP solver.

(indicated by (¨)˝)

(ρ˝(x), u˝(x), p˝(x))J =

#

(ρ˝
L, u

˝
L, p

˝
L)

J if x ă xs,

(ρ˝
R, u

˝
R, p

˝
R)

J else,
(5.21)

with pre-shock conditions (¨)L given by

(ρ˝
L, u

˝
L, p

˝
L)

J =
(
1,
a

γ̂ Ma˝
L, 1
)J

, (5.22)

and post-shock conditions (¨)R given by

ρ˝
R =

(γ̂ + 1) Ma˝2
L

2 + (γ̂ ´ 1) Ma˝2
L

ρ˝
L, (5.23a)

u˝
R =

2 + (γ̂ ´ 1) Ma˝2
L

(γ̂ + 1) Ma˝2
L

u˝
L, (5.23b)

p˝
R =

[
1 +

2γ̂

γ̂ + 1

(
Ma˝2

L ´ 1
)]
p˝
L. (5.23c)

88

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESTSF/XESTSFHardCodedControl.cs#L134C1-L140C43
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESTSF/XESTSFHardCodedControl.cs#L143C1-L145C1
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESTSF/XESTSFHardCodedControl.cs#L143C1-L145C1
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESTSF/XESTSFHardCodedControl.cs#L143C1-L145C1

0 40 80 120 160

104

102

100

10´2

10´4

10´6 P = 0 P = 1 P = 2 P = 3

Iteration k

Re
si
du

al
no

rm
s
/
en

th
al
py

er
ro
r

}R(zk)}2
}r(zk)}2
Herr(zk)

Figure 5.15: Optimization history of the XDG-IST method for the Mach 4 bow shock for the 5ˆ 16 mesh, employing
a P -continuation strategy (P = 0, 1, 2, 3). The residual norms }R}2, }r}2 and the normalized enthalpy
error Herr across all SQP iterations are shown. After stagnation of the residual of an intermediate
polynomial degree, the latter is increased, such that a jump in both residuals R, r can be observed
(dashed lines). An overall decline of both residuals and the enthalpy error can be measured as the SQP
solver tracks the non-polynomial discontinuity and solution.

0 40 80 120 160

104

102

100

10´2

10´4

10´6 P = 0 P = 1 P = 2 P = 3

Iteration k

Re
si
du

al
no

rm
s
/
en

th
al
py

er
ro
r

}R(zk)}2
}r(zk)}2
Herr(zk)

Figure 5.16: Optimization history of the XDG-IST method for the Mach 4 bow shock for the 10ˆ32mesh, employing
a P -continuation strategy (P = 0, 1, 2, 3). The residual norms }R}2, }r}2 and the normalized enthalpy
error Herr across all SQP iterations are shown. After stagnation of the residual of an intermediate
polynomial degree, the latter is increased, such that a jump in both residuals R, r can be observed
(dashed lines). An overall decline of both residuals and the enthalpy error can be measured as the SQP
solver tracks the non-polynomial discontinuity and solution.

89

The latter are computed by employing the normal shock relations outlined in Section 2.2.1.
On top of this base flow initial perturbations (denoted by (¨)1) are added for each primitive
variable ψ P tp, ρ, uu

ψ1(x) =

#

δψ1 sin(2π(x´xW)
lW

) if x P [xW, xW + lW],

0 else,
(5.24)

where xW P R denotes the initial wave position and lW P R a wave length (set to 0.8 for all
cases). The pressure amplitude δp1 is chosen to be δp1 = 10´5, from which the amplitude δρ1

for the density perturbations is computed by

δρ1 =
δp1

a˝2
, (5.25)

using the relation (2.23). Analogously, the velocity amplitude

δu1 = ˘
δp1

ρ˝a˝
(5.26)

is given by (2.25). For the latter, the choice of the sign determines whether a fast (sgn(δu1) = ´1
Ñ wave speed = u˝ + a˝) or slow (sgn(δu1) = +1 Ñ wave speed = u˝ ´ a˝) acoustic wave is
considered. A brief overview of acoustic waves can be found in Section 2.3.2 and a schematic
overview for all three cases considered is given in Figure 2.5.

We use a Dirichlet boundary condition on the lower part of the domain boundary
t(x, t) P Ω | t = 0u imposing the initial condition

p(x, 0) = p˝(x) + p1(x), ρ(x, 0) = ρ˝(x) + ρ1(x), u(x, 0) = u˝(x) + u1(x). (5.27)

In each case, a 61 ˆ 61 mesh is employed to discretize the domain Ω and a single cubic spline-
based level set (Ps = 3) is employed to represent the slightly oscillating shock front. Employing
a P -continuation strategy, a (P = 3) XDG solution is computed using the implicit shock tracking
method, together with the space-time Roe flux without entropy fix (3.56) and the objective
function fER based on the full enriched residual and defined in (4.3). The spline-based level
set is initialized as a stationary shock wave, i.e.

ϕ0(x, t) = x´ xs. (5.28)

In order to gauge the accuracy of the amplification factor obtained for the XDG approximation,
we sample the pressure of the resulting XDG solution and compute the maximal/minimal value
along specified rays in t-direction (e.g. t(xi, t) | t P T u with xi P [0, 3] for a ray in t direction).
The resulting amplification factors are then compared against their analytical counterparts.
While this may not be the most optimal comparison (see Remark 15), it still gives a rough
estimate of the quality of the numerical solution.

Remark 15. Note, that by the nature of the DG method, which computes solutions based on cell
and surface integrals, the precision of point-wise measures varies depending where the points
evaluated are positioned relative to a cell and domain boundaries.

Remark 16. In the illustrations (Figures 5.17- 5.20), we do not show the shock interface Is since
the shock movement is so marginal that it would not be visible in the depicted plots. However, note
that a high-order DG scheme without any shock stabilization, e.g. employing artificial viscosity
(AV) or implicit shock tracking (IST), fails to converge for these problems, even when mesh edges
are initially aligned with the stationary shock at xs.

90

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESTSF/XESTSFHardCodedControl.cs#L149C13-L157C15
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESTSF/XESTSFHardCodedControl.cs#L209C7-L219C11
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESTSF/XESTSFHardCodedControl.cs#L220C13-L230C15
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESTSF/XESTSFHardCodedControl.cs#L241C4-L264C14
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/src/L4-application/XESTSF/XESTSFHardCodedControl.cs#L234C1-L234C64

xs xs

Figure 5.17: Waterfall plot of XDG shock tracking solution for an 1D space-time shock-acoustic-wave problem with
a fast acoustic wave hitting the shock from the supersonic side and a shock initially located at xs = 1.5.
Left: Pressure perturbations p1. Right: Density perturbations ρ1.

Fast acoustic wave hitting the shock from the supersonic side For the first case we choose
sgn(δu1) = ´1 and position the initial perturbations at xW = 0.0 and the shock at xs = 1.5.
The wave length is chosen to be lW = 0.8. The amplification coefficient amp+ex of the pressure
perturbations across the shock can be computed using (2.27) and (2.13), i.e.,

amp+ex :=
δp1

R

δp1
L

=
(1 +Ma˝

L)
2

1 + 2 Ma˝
R + 1/Ma˝2

L

[
1 ´

γ̂ ´ 1

γ̂ + 1

(
1 ´

1

Ma˝
L

)2
]

« 2.154926. (5.29)

In Figure 5.17, we plot the converged XDG-IST solution without the shock interface (see
Remark 16), showing pressure and density perturbations. There, it is observable that the
pressure and density waves are both amplified by the interaction. However, the entropy wave,
present in the density perturbations, is hidden by the plotting angle (see Remark 17). To asses
the accuracy of the XDG approximation, we compare the maximal values maxtPT (p1(xi, t)) for
xi P [1.8, 2.7] to the analytical value in Figure 5.18 (Left). We observe a good agreement with
the analytical value with a minimum precision of 2.5´2 and a maximum deviation of 1.18%.

The oscillations observable in Figure 5.18 (Left) can be attributed to the positioning of the
maximum points found for each xi P [1.8, 2.7]. Depending on the relative positioning of a point

91

1.8 2 2.2 2.4 2.6
2.1

2.12

2.14

2.16

2.18

2.2

x

m
ax

tP
T
(p

1 (
x
,t
))

Supersonic fast

XDG
exact

2 2.5 3
´1.6

´1.5

´1.4

¨10´2

x

m
in

tP
T
(p

1 (
x
,t
))

Subsonic slow

XDG
exact

Figure 5.18: Comparison of pressure amplification/reduction coefficient resulting from the acoustic-shock-wave
interaction. The analytical and XDG shock tracking solution are compared for two cases. Left: In the
case of the fast acoustic wave hitting the shock from the supersonic side, the solution is evaluated
at 100 ˆ 100 sample points and the maximum maxtPT (p1(xi, t)) is taken for xi P [1.8, 2.7]. Right:
In the case of the slow acoustic wave hitting the shock from the subsonic side, the solution is again
evaluated at 100 ˆ 100 sample points and the minimum mintPT (p1(xi, t)) is taken for spatial points
xi P [1.8, 3.0].

inside a computational cell, DG methods may differ in accuracy at these points, being more
accurate towards the center of a cell and less accurate towards the boundaries. The maximum
points, for which the values p1(x : i, t) are plotted in the figure, differ in terms of the relative
positioning which therefor explains the oscillations.

Remark 17. The entropy wave associated with the fast acoustic wave is approximately three
orders of magnitude smaller than the amplified pressure perturbations, making it challenging to
visualize both in the same plot. Given that the primary focus of this work is on acoustic waves,
we have chosen not to include secondary plots for the entropy wave in this particular case. This
decision is also supported by the fact that the entropy wave is observable in the other two cases
presented in this study.

Slow acoustic wave hitting the shock from the subsonic side For the second case we choose
sgn(δu1) = 1, lW = 0.8 and position the initial perturbations at xW = 0.9 and the shock at
xs = 0.5. As the wave is located on the subsonic side of the shock we have u˝

R ´ a˝
R ă 0 and,

hence, the slow wave moves upstream and will be eventually reflected from the shock. The
reduction coefficient amp´

ex for the reflected pressure perturbations can be computed using
(2.29) and (2.13), which gives

amp´
ex :=

δp1´
R

δp1
R

= ´
1 ´ 2 Ma˝

R + 1/Ma˝2
L

1 + 2Ma˝
R + 1/Ma˝2

L

« ´0.014848. (5.30)

This coefficient indicates, that the reflected wave is two magnitudes smaller than the original
wave and is accompanied by a sign change. In Figure 5.19, the converged XDG-IST solution
is depicted without the shock interface (see Remark 16), showing the pressure and density
perturbations. There, the reflected wave in the pressure perturbations and a stronger entropy

92

xs xs

Figure 5.19: Waterfall plot of XDG shock tracking solution for an 1D space-time shock-acoustic-wave problem with
a slow acoustic wave hitting the shock from the subsonic side and a shock initially located at xs = 0.5.
Left: Pressure perturbations p1. Right: Density perturbations ρ1.

wave in the density perturbations are visible. Furthermore, we compare the minimums (we
choose the minimum due to the negative amplification/reduction factor) mintPT (p1(xi, t)) for
xi P [1.8, 3.0] to the analytical value in Figure 5.18, which showcases a precision of roughly
5 ˆ 10´4 and a maximum deviation of 2.2%. This deviation is almost two times higher than
for the supersonic fast wave and can be attributed to a slight but steady loss of precision
which is observed towards the upper right corner of the domain for the subsonic slow wave. A
possible explanation, needing further investigation, could be an inconsistency in the boundary
conditions at the upper right corner.

Slow acoustic wave hitting the shock from the supersonic side For the third case we choose
sgn(δu1) = ´1, lW = 0.8 and position the initial perturbations at xW = 0.5 and the shock at
xs = 1.5. As the wave is located in the supersonic region we have u˝

L ´ a˝
L ą 0 and, hence,

the slow wave moves downstream. When hitting the shock it is transmitted to the subsonic
side, resulting in a fast acoustic wave (speed u˝

R + a˝
R) and an entropy wave (speed u˝

R) both
moving downstream.

In Figure 5.20, the converged XDG-IST solution is depicted without the shock interface (see
Remark 16), showing pressure and density perturbations. A reduction of the pressure amplitude
across the shock is visible (Left) and we observe a relative strong entropy wave in the density

93

xsxs

Figure 5.20: Waterfall plot of XDG shock tracking solution for an 1D space-time shock-acoustic-wave problem
with a slow acoustic wave hitting the shock from the supersonic side and a shock initially located at
xs = 1.5. Left: Pressure perturbations p1. Right: Density perturbations ρ1.

perturbations (Right), both contrasting the results observed for the fast acoustic wave. As
we haven not found any reference in the literature for this particular case, no comparison to
an analytical solution is made. However, as we observed good agreement for the other two
cases, it is most likely that the observed phenomena are close to the ones expected from theory.
Further investigation would necessitate a derivation for the amplification/reduction factor and
are left for future endeavors.

5.2 Numerical studies

This section presents results from a series of numerical studies testing various variants and
aspects of the implicit XDG shock tracking method.

It is structured as follows: Section 5.2.1 offers a comparison of different level set discretizations,
exploring their impact on the overall performance and accuracy of themethod. The effectiveness
of various objective functions is assessed in Section 5.2.2, with a focus on how they influence
the optimization process and solution quality. In Section 5.2.3, a comparative analysis of
numerical fluxes in the context of the 2D Euler equations is conducted to determine their effect
on the method’s ability to capture shock dynamics accurately. A convergence study in Section

94

5.2.4 quantifies the method’s numerical convergence properties for the Mach 4 bow shock
problem and a 1D shock-acoustic-wave interaction problem. Additionally, the XDG-IST method
is compared to a shock capturing method in Section 5.2.5. Finally, Section 5.2.6 presents a
performance study that evaluates the computational efficiency of the XDG-IST for a single
Mach 4 bow shock test case.

5.2.1 Comparison of level set discretizations

We perform an in-depth assessment of the XDG-IST method by comparing three level set
discretizations: a DG-, a continuous Galerkin (CG)-, and a spline-based discretization. These
discretizations, which were previously detailed in Section 4.6, represent the solution disconti-
nuity and have different features regarding flexibility, computational efficiency and continuity
of the interface. Our study centers on the straight-sided shock test case for the space-time
advection equation introduced in Section 5.1.1, where we employ the aforementioned dis-
cretizations within the XDG-IST framework using a polynomial degree of Ps = 3 for all three
approaches.

In Figure 5.21, we illustrate the optimization history of the XDG-IST method, highlighting the
evolution of both the classical and enriched residuals over successive iterations. It becomes
evident that the spline-based level set delivers a superior convergence profile, achieving sig-
nificantly lower residual magnitudes. In contrast, the DG and CG level sets exhibit signs of
stagnation.

0 10 20 30 40 50
10´16

10´9

10´2

105

Iteration k

Re
si
du

al
no

rm
s

DG
CG

Spline

0 10 20 30 40 50
10´14

10´7

100

107

Iteration k

En
ric

he
d
re
si
du

al
no

rm
s DG

CG
Spline

Figure 5.21: Comparative optimization history of classical residuals (left) and enriched residuals (right) across
different level set discretizations applied in the simulation of the space-time advection equation.

The graphical progression of selected iterations, depicted in Figure 5.22, reveals that while
the spline and the CG level set visually approximate the solution, it is only by examining the
optimization history in Figure 5.21 that we observe the superior accuracy of the spline-based
level set, with residuals minimized to the order of 10´10. Despite the CG level set’s close
proximity to the exact solution, it encounters difficulties in fine-tuning the XDG approximation,
as indicated by its higher residual values. The DG level set shows a tendency towards a chaotic
interface evolution as early as the first iteration, likely due to the discontinuities permitted at
the element boundaries including the interface.

95

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ComparisonLevelSets/0_SAIDT%20level%20set%20comparison.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ComparisonLevelSets/0_SAIDT%20level%20set%20comparison.ipynb

0

0.5

1.0

t

DG - Iteration 0 CG - Iteration 0 Spline - Iteration 0

0

0.5

1.0

t

DG - Iteration 1 CG - Iteration 1 Spline - Iteration 1

0.0 0.5 1
0

0.5

1.0

x

t

DG - Iteration 35

0 0.5 1.0
x

CG - Iteration 30

0 0.5 1
x

Spline - Iteration 8

0 0.5 1

u

Figure 5.22: Plots of velocity u for selected XDG shock tracking iterations for the space-time advection test case
(P = 0) with a straight shock, employing three distinct level set discretizations (Ps = 3): the first
coloumn (left) shows iterations with a DG level set, the second (middle) features a CG level set and
the last (right) a spline level set.

96

To visualize the computational costs associated by each level set discretization, we measure
the number of degrees of freedom (DOFs) and the time to compute the Jacobian BR/Bϕ of
the enriched residual with respect to the level set for a series of meshes with 2i ˆ 2i cells
(i P t1, 2, 3, 4u). The results are shown in Figure 5.23. There, the relative advantage of the
spline-based level set is vivid in terms of low total DOFs and resulting computational times
associated with the computation of BR/Bϕ. The scaling is also less, which is partially since the
DOFs are only increased when refining the mesh in t-direction. Conversely, for the other two
approaches, the DOFs increase each time a cell is added.

22 23 24 25 26 27 28

101

102

103

Number of cells

D
O
Fs

22 23 24 25 26 27 28

103

104

105

Number of cells

Ti
m
e
to

co
m
pu

te
B
R
/B

ϕ DG
CG

Spline

Figure 5.23: Left: Plot of DOFs for different level set discretizations as a function of the number of cells. Right: Plot
of time to compute BR/Bϕ for different level set discretizations as a function of the number of cells.

In conclusion, this study demonstrates that, within the confines of the current implementation,
the XDG-IST method achieves its most reliable and accurate performance when paired with
the spline-based level set discretization.

5.2.2 Comparison of objective functions

Post evaluation of the level set discretizations, our analysis shifts towards assessing the impact
of different objective functions on the performance of the XDG-IST method. Specifically, we
focus on objective functions fER, fNB, and fRH, which are elaborated in Section 4.1.1. To this
end, we apply the XDG-IST method to the Mach 2 wedge flow (P = 0) (Figure 5.9) and the
Mach 4 bow shock (P=2) (Figure 5.14) test case as detailed above. In particular this means,
that spline-based level sets are employed.

In the case of the wedge flow we show the optimization history in Figure 5.24, we observe
a comparable convergence trend for the enthalpy error across all three objective functions.
However, it is noted that the enriched residual-based objective function fER achieves amarginally
lower residual magnitude, converging to approximately 10´14, while the other functions plateau
near 10´8.

Examining the P = 2 bow shock case, Figure 5.25 presents a contrasting narrative. Here, only
the enriched residual-based objective function fER demonstrates the abilities to converge the
solution and significantly reduce the enthalpy error. The Rankine-Hugoniot-based objective

97

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ComparisonOptimizationProblem/WedgeFlow_PostProcessing.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ComparisonOptimizationProblem/BowShock%20PostProcessing.ipynb

0 10 20 30 40 50
10´13

10´6

101

108

Iteration k

H
er
r

fER
fNB
fRH

0 10 20 30 40 50
10´14

10´7

100

107

Iteration k

Re
si
du

al
no

rm
s

fER
fNB
fRH

Figure 5.24: Comparative optimization history of enthalpy errors (left) and residuals (right) across different
objective functions (fER, fNB, fRH) employed in the simulation of supersonic Mach 2 airflow over an
inclined plane.

0 50 100 150

10´4

10´3

10´2

10´1

100

101

Iteration k

H
er
r

fER
fNB
fRH

0 50 100 150

10´2

100

102

Iteration k

Re
si
du

al
no

rm
s

fER
fNB
fRH

Figure 5.25: Comparative optimization history of enthalpy errors (left) and residuals (right) across different
objective functions (fER, fNB, fRH) employed in the simulation of a supersonic Mach 4 bow shock. The
residual for the constrained objective function fRH, quickly becomes NaN and leads to a stagnation of
the solver resulting in a constant enthalpy error, hence only the starting value is plotted.

function fRH does not manage to lower the initial enthalpy error or the residual norms, particu-
larly following the polynomial degree increase associated with P -continuation. Alarmingly, the
objective function fNB based on the enriched residual confined to the near band fails entirely,
evidenced by a NaN appearing in the residual computation after just one iteration.

To conclude, the findings suggest that fER stands out as the most robust objective function,
particularly for complex flow problems, indicating its superiority in terms of achieving accurate
and stable solutions within the XDG-IST framework.

98

5.2.3 Comparison of numerical fluxes

Our focus now shifts to the analysis of different numerical fluxes utilized at the shock interface
within the XDG discretization of the steady 2D Euler equations (see Section 3.4.3). In the
discussion of test cases (Section 5.1.3), we employed the Godunov flux at the interface (3.47),
renowned for its accuracy at the expense of increased computational demands. While in the
2D scenarios considered, this computational overhead is mitigated by the relatively sparse
distribution of interface edges, the scalability of this approach to three-dimensional (3D)
contexts is questionable due to the potentially prohibitive costs.

To evaluate the efficacy of alternative fluxes that promise computational efficiency, despite a
trade-off with accuracy, we apply the XDG-IST method to the Mach 2 wedge flow and the 10ˆ32
mesh resolution for the Mach 4 bow shock (Section 5.1.3). This investigation encompasses
four numerical flux variants: the Godunov flux (3.47), the smoothed Roe flux without entropy
fix (3.56), the HLLC flux (3.48), and the central flux (3.42).

0 10 20 30 40 50
10´16

10´9

10´2

105

Iteration k

H
er
r

Godunov
Roe
HLLC
Central

0 10 20 30 40 50
10´14

10´7

100

107

Iteration k

Re
si
du

al
no

rm
s

Godunov
Roe
HLLC
Central

Figure 5.26: Comparative optimization history of enthalpy errors (left) and residuals (right) across different
numerical flux functions (Godunov, Roe, HLLC, and Central) applied to the interface edges in the
simulation of supersonic Mach 2 airflow over an inclined plane.

In Figure 5.26, the optimization histories for residuals and enthalpy errors are presented for the
Mach 2 wedge flow and for each flux variant. The Roe flux without entropy fix demonstrates
impressive convergence to machine precision for the enthalpy error, closely followed by the
central flux which achieves an error magnitude of 10´14. The Godunov variant presents an
enthalpy error on the order of 10´11, whereas the HLLC flux culminates at a less favorable
error estimation of roughly 10´5.

Conversely, the bow shock scenario, with the objective of converging the solution to a polynomial
degree of P = 2, reveals distinct performance characteristics among the flux variants. As
depicted in Figure 5.27, the central flux variant struggles, ultimately causing the termination
of the solver after roughly 70 iterations due to a failure to converge. The HLLC flux variant,
although successful during the initial polynomial degree increase, capitulates after subsequent
increments, ceasing after 90 iterations. Notably, the Godunov flux secures an enthalpy error of
10´4 and reduces the residual to approximately 10´2. The Roe flux, requiring more iterations,
not only matches the enthalpy error of the Godunov flux but also succeeds in driving down

99

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ComparisonFluxes/WedgeFlow_PostProcessing.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ComparisonFluxes/BowShock%20PostProcessing.ipynb

0 50 100 150 200

10´4

10´3

10´2

10´1

100

101

Iteration

H
er
r

Godunov
Roe
HLLC
Central

0 50 100 150 200
10´14

10´7

100

107

Iteration

Re
si
du

al
no

rm
s

Godunov
Roe
HLLC
Central

Figure 5.27: Comparative optimization history of enthalpy errors (left) and residuals (right) across different
numerical flux functions (Godunov, Roe, HLLC, and Central) applied to the interface edges in the
simulation of a supersonic Mach 4 bow shock.

the residual to a significantly lower level of 10´11. The shortcomings of the central and
HLLC fluxes, particularly in complex scenarios, align with theoretical expectations, where
the central flux is notoriously unstable and the HLLC flux exhibits inconsistency with the
Rankine-Hugoniot conditions. However, the Roe flux without entropy fix emerges as a viable
contender to the Godunov flux. Our results suggest potential applicability across a broader
spectrum of problems, though further studies are required to confirm its general performance.

Additionally, The persisting divergence in residual norms between the variants employing
Godunov and Roe fluxes asks for further investigation, a query which remains unresolved
within the limitations of this study. A possible explanation for this phenomenon relates to
the Roe flux’s smoothing, implemented to fulfill a specific criterion desired for optimization
methods (see Section 3.3.1). This smoothing enhances the solver’s capability to identify
the residual-minimizing solution. Another plausible explanation pertains to the limitations
inherent in the weak form constituted by the Godunov flux when applied within the existing
XDG space. The under-resolved nature of the solution and interface, when employed alongside
the Godunov flux, may preclude the attainment of a nonlinear residual close-to-zero, unless
realized on an exceedingly refined mesh or at elevated polynomial degrees.

5.2.4 Convergence study

We test the convergence properties of the XDG-IST method, by conducting two spatial conver-
gence studies: one for the Mach 4 bow shock test case and a second for the shock-acoustic-wave
interaction problem with a fast acoustic wave hitting the shock from the supersonic side (see
Remark 18).

Remark 18. The most recent bounded support spectral solver (BoSSS) release Kummer et al., 2024
does not contain the notebooks corresponding to convergence studies for the shock-interaction-
problem, as it was released before the completion of the studies. They were finished in close
proximity to the submission date of this dissertation and, hence, we could not provide links to the
notebooks.

100

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ConvergenceStudy/ConvergenceStudy_BowShock_PostProcessing.ipynb

1

3

5
ρ

-2 -1 -ε-4

-2

0

2

4

x

y

5 ˆ 16

-2 -1 -ε
x

10 ˆ 32

-2 -1 -ε
x

20 ˆ 64

-2 -1 -ε
x

40 ˆ 128

Figure 5.28: Density of converged XDG shock tracking iterations (P = 3) of the Mach 4 bow shock for four different
meshes. The blunt body (white filling) is represented by an immersed boundary Ib (right thick black
line) using a quadratic level set and the shock front (left thick black line) by a cubic spline level set
(Ps = 3).

Mach 4 bow shock For the bow shock study we use various polynomial degrees P = 0, 1, 2, 3
and discretize the computational domain Ω using equidistant Cartesian grids comprising 5ˆ16,
10 ˆ 32, 20 ˆ 64, and 40 ˆ 128 cells. As in the test cases presented in 5.1.3, we employ the
objective function fER based on the enriched residual, a cubic spline-based level set (Ps = 3)
and use the Godunov flux as the numerical flux at the shock interface. For illustrative purposes,
we provide plots for the converged solutions for each mesh in Figure 5.28. To assess the
accuracy of the numerical solutions, we use the enthalpy error as before.

The results of the spatial convergence study are presented in Figure 5.29, highlighting the
method’s convergence for different polynomial degrees. The estimated rates of convergence

Table 5.1: Experimental order of convergence (EOC) for different polynomial degrees P for the Mach 4 bow shock.
The fixed domain is resolved with different mesh resolutions, and the enthalpy errors (see Figure 5.29)
are computed using the XDG-IST method.

P EOC
0 0.90
1 1.93
2 2.37
3 2.72

101

10´1 100

100

10´2

10´4

10´6

10´8

a

|K|

H
er
r

P = 0
∆ = 1
P = 1
∆ = 2
P = 2
∆ = 3
P = 3
∆ = 4

Figure 5.29: Convergence plot for normalized enthalpy error Herr for different polynomial degrees (P = 0, 1, 2, 3)
for the Mach 4 bow shock on a fixed domain resolved with different mesh resolutions

a

|K|, where
K denotes a cell. Here, the dashed lines (∆) show the expected convergence slopes of a high-order
method. (Figure adapted from Vandergrift and Kummer, 2024)

increase with polynomial degree, as depicted in Table 5.1. Although these rates are not optimal
for a high-order method, they demonstrate a benefit from using higher-order approximations.
A reason for the non-optimality could not be established in the course of this research and is
left for future endeavors. A speculative explanation could be that the employed spline-based
level set does not converge at the same speed as the flow solution and therefor starts to limit
the convergence rate. As the grid is refined uniformly in x an y direction, the spline only gets
more accurate from y-refinement.

Fast acoustic wave interacting with a shock For the second convergence study, we revisit
the test case involving the 1D space-time Euler equations and where a fast acoustic wave hits a
shock from the supersonic side, as described in 5.1.4. We employ a series of Cartesian grids
comprising 16 ˆ 16, 31 ˆ 31, 61 ˆ 61 and 121 ˆ 121 cells and compute XDG solutions
for polynomial degrees P P t0, 1, 2, 3u. We assess the convergence quality by comparing the
computed amplification factors maxtPT (p1(xi, t)) with the exact amplification factor amp+ex
defined in (5.29). Specifically, we use the average deviation

err+(t) := | max
xP[1.6,3.0]

p1(x, t) ´ amp+ex|, (5.31)

as our error metric for time t = 0.8 at which the acoustic wave has already crossed the shock.
Here, maxxP[1.6,3.0] p

1(x, t) is approximated by computing the maximum from the pressure
perturbations evaluated at equally spaced 800 sample points (xi, t), where xi P [1.6, 3.0].

In the convergence plot (Figure 5.30), we display the errors for each combination and the
corresponding EOCs are tabulated in Table 5.2. Notably, the EOC for the low-order (P = 0)
approximation is highly non-optimal (0.06), contrary to the expectation of 1. This discrepancy
is attributed to the heavy damping of the acoustic wave, characteristic of low-order schemes.

102

10´2 10´1

10´5

10´4

10´3

10´2

10´1

100

a

|K|

er
r+

(0
.8
)

P = 0
∆ = 1
P = 1
∆ = 2
P = 2
∆ = 3
P = 3
∆ = 4

Figure 5.30: Convergence plot for the error in the pressure amplification factor err+(t = 0.8) (5.31) for different
polynomial degrees (P = 0, 1, 2, 3) for the 1D shock-acoustic-wave interaction problem with a fast
acoustic wave hitting the shock from the supersonic side. We use a fixed domain resolved with
different mesh resolutions

a

|K|, where K denotes a cell. Here, the dashed lines (∆) show the
expected convergence slopes of a high-order method.

Table 5.2: EOC for different polynomial degrees P for the 1D shock-acoustic-wave interaction problem where a
fast acoustic wave hits the shock from the supersonic side. The fixed domain is resolved with different
mesh resolutions, and the errors (see Figure 5.30) are computed using the XDG-IST method.

P EOC
0 0.06
1 1.37
2 3.23
3 4.97

A similar, though less pronounced, effect is observed for the P = 1 approximation with an
EOC of 1.37. However, the EOC values for the high-order approximations (P = 2, 3) even
surpass the optimal convergence orders, showcasing the superiority of high-order methods in
computational aeroacoustics (CAA) applications (Wagner et al., 2007). Notably, the EOC for
the P = 3 approximation is even super-optimal (4.97).

5.2.5 Comparison with a shock capturing method

In this section, we compare the XDG-IST method to corresponding shock capturing solutions
computed using the compressible Navier-Stokes (CNS) solver (see Remark 13). The CNS solver
implements a DG immersed boundary method (IBM) for the unsteady 2D Euler equations,
i.e., it uses a boundary level set ϕb to immerse boundaries into the flow field if needed. The
CNS solver uses artificial viscosity (AV) for shock stabilization (hence, we abbreviate it as
a DG-AV method). This means that the considered DG-AV method localizes cells in which
the DG solution oscillates, augmenting the Euler equations with an artificial second-order
diffusive term. By doing so, the shock is smoothed and the method is stabilized. For the CNS

103

simulations we show in this section, we set the shock capturing parameters (not introduced in
this manuscript) as in the work by Geisenhofer (2021), specifically S0 = 1.0 ˆ 10´3, ε0 = 1.0,
κ = 1.0, and λc,max = 15.

One dimensional shock-acoustic-wave interaction

We start by comparing simulation results for the shock-acoustic-wave interaction problems
discussed in Section 5.1.4. These are run using the DG-AV method with a polynomial degree
of P = 3.

We want to ensure that the overall approximation error is not dominated by the temporal error,
thus we employ a 4th order accurate explicit Runge-Kutta scheme for time integration. As the
CNS solver is mainly confined to unsteady 2D computations, we setup a pseudo-2D simulation,
where all flow variables will be constant along the y-direction (i.e., B¨

By = 0). For this purpose,
we employ the domain Ω = [0, 3] ˆ [0, 0.03] which is discretized using a 61 ˆ 3 mesh. At the
top and the bottom of the domain Ω slip wall boundary conditions are prescribed, whereas
prescribing inflow boundary conditions (defined below) at the other two boundaries. As initial
values for all primitive flow variables ψ P tp, u, v, ρu, we set up a smoothed stationary shock
wave, that is

ψ(x, 0) = ψ˝
L(x) ´ jsmth(x´ xs)(ψ

˝
L(x) ´ ψ˝

R(x)), (5.32)

where the smooth jump function is defined by a tangent hyperbolicus

jsmth(x) =
1

2

(
tanh

(
xP

2h

)
+ 1

)
, (5.33)

and where h = 3
61 is the cell-size. The quantities (¨)L and (¨)R denote left/right values for a

stationary Mach 1.5 shock wave and are chosen in accordance to (5.22) and (5.23a)-(5.23c),
respectively. Further, we assume no velocity in y-direction, i.e., vL, vR = 0.

The initial value chosen, although being a close proximity, does not correspond to a stationary
solution to the 2D Euler equations with artificial viscosity applied around the shock. The
resulting mismatch will therefore produce perturbations moving downstream. To ensure that
these artificial perturbations do not interfere with the acoustic waves studied, the simulation
is run until t = 10 to reach a stationary state. Only then the acoustic wave is introduced in
the form of supersonic inflow boundary conditions at the left or right boundary of the domain.
For the fast acoustic wave hitting the shock from the supersonic side the inflow boundary
conditions

ψ(0, t) =

#

ψL if t ă 10

ψL + ψ1(t) else ,
ψ(3, t) = ψR, ψ P tp, u, v, ρu (5.34)

are prescribed at the left boundary of the domain (pre-shock). For the slow acoustic wave
hitting the shock from the subsonic side we prescribe

ψ(0, t) = ψL, ψ(3, t) =

#

ψR if t ă 10

ψR + ψ1(t) else ,
(5.35)

104

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ComparisonShockCapturing/CNSAcousticWave1DHPC.ipynb

xs
xs

Figure 5.31: Waterfall plot of shock capturing solution (DG-AV) for an 1D shock-acoustic-wave problem. Pressure
perturbations p1 = p ´ p˝ for two cases are depicted: a fast acoustic wave hitting the shock from the
supersonic side of the domain with the shock initially located at xs = 1.5 (left) and a slow acoustic
wave hitting the shock from the subsonic side of the domain with the shock initially located at xs = 0.5
(right).

at the right domain boundary for ψ P tp, u, v, ρu. The perturbations are chosen as in Section
5.1.4 (with v1 = 0). They only differ in the wave position xW, which is chosen to be xW = ´0.8
for the supersonic fast acoustic wave and xW = 3.2 for the subsonic slow acoustic wave.

In Figure 5.31, we present waterfall plots illustrating the pressure perturbations in the DG-AV
solutions for both scenarios, demonstrating that both types of interaction phenomena are
captured accurately on a qualitative level (also when compared to Figures 5.17 and 5.19). We
then employ the sampling methodology outlined in Section 5.1.4 to quantify the amplification
factors of the pressure, as specified in equations (2.27) and (2.29). The quantified results are
displayed in Figure 5.32, which also compares them to the XDG-IST solution results (previously
shown in Figure 5.18) and the theoretical analytical values.

The analysis shows that the DG-AV shock capturing method exhibits a maximum deviation
of approximately 2.3% for the supersonic fast acoustic wave and 22.5% for the slow acoustic
wave. In comparison, the XDG-IST method records deviations of 1.18% and 2.2% for the
respective waves. As we have chosen the same spatial resolution and the same polynomial
degree for both methods and have applied a 4th order accurate time integration scheme for
the DG-AV method, our results indicate that our XDG-IST method outperforms the DG-AV
method in terms of accuracy for 1D shock-acoustic-wave interactions. The difference for this

105

1.8 2 2.2 2.4 2.6
2.1

2.12

2.14

2.16

2.18

2.2

x

m
ax

tP
T
(p

1 (
x
,t
))

Supersonic fast

XDG
exact
DG-AV

2 2.5 3
´1.6

´1.4

´1.2

´1

´0.8
¨10´2

x

m
in

tP
T
(p

1 (
x
,t
))

Subsonic slow

XDG
exact
DG-AV

Figure 5.32: Comparison of the pressure amplification of an acoustic wave for the shock-acoustic-wave interaction
problem. We compare an XDG shock tracking solution (blue), the analytical value (red) and a shock
capturing (DG-AV) solution (brown). Two problem variants are shown. Left: A fast acoustic wave
hitting the shock from the supersonic side. Here, the solution is evaluated at 100ˆ 100 equally-spaced
sample points and the maximum maxtPT p1(xi, t) is taken for xi P [1.8, 2.7]. Right: A slow acoustic
wave hitting the shock from the subsonic side. Here, the solution is again evaluated at 100 ˆ 100
equally-spaced sample points and the minimum mintPT p1(xi, t) is taken for xi P [1.8, 3.0].

problem set can be most likely attributed to the conceptual advantage of the IST approach over
the application of artificial viscosity. Note however, that with the XDG-IST method solving an
implicit problem and the DG-AV method only using explicit time-stepping, we can expect that
the computational time needed to compute a solution grows immensely faster for the XDG-IST
method when adding more resolution.

10´2 10´1 100

10´4

10´3

10´2

10´1

100

|K| ¨ 10´2

er
r+

(1
1.
0
)

P = 1
∆ = 2
P = 2
∆ = 3
P = 3
∆ = 4

Figure 5.33: Convergence plot for the error in the pressure amplification factor err+(11.0) (5.31) for the DG-AV
method. Using three different polynomial degrees (P = 1, 2, 3) solutions to the 1D shock-acoustic-
wave interaction problem with fast wave originating on the supersonic side are computed. We use a
fixed domain resolved with different mesh resolutions |K| ¨ 10´2, where K denotes a cell. Here, the
dashed lines (∆) show the expected convergence slopes of a high-order method.

106

Secondly, we conduct a spatial convergence study similar to the one presented in Figure
5.30 using the CNS solver. For this purpose we compute P = 1, 2, 3 DG-AV solutions to
the fast acoustic wave hitting the shock from the supersonic side for a series of four meshes
refined in x-direction (16 ˆ 3, 31 ˆ 3, 61 ˆ 3, 121 ˆ 3). To measure the error in the pressure
amplification factor, we use the metric defined in (5.31). The error is computed for time
t = 11.0, because then the acoustic wave has crossed the shock (see Figure 5.31) and the
amplification is measurable.

Table 5.3: EOC for different polynomial degrees P for the 1D shock-acoustic-wave interaction where a fast acoustic
wave hits the shock from the supersonic side. The fixed domain is resolved with different mesh resolutions,
and the errors (see Figure 5.33) using the DG-AV shock capturing method.

P EOC
1 1.31
2 1.32
3 1.28

In Figure 5.33, we have depicted the resulting convergence plot together with high-order
convergence slopes and we summarizes the resulting EOCs in Table 5.3. We observe that the
DG-AV method shows approximately the same EOC for all three polynomial degrees. This
means, that even high polynomial degrees exhibit low-order convergence rates for the DG-AV
method. This observation is in contrast to the results we obtained for the XDG-IST method (see
Table 5.2). There, we have obtained optimal convergence rates for the high polynomial degrees
P = 2, 3. As we have employed a 4th-order Runge-Kutta scheme for the DG-AV method, its
low-order convergence must be dominated by the spatial error and must therefore result from
the artificial viscosity added to smooth the shock. Concluding, we have shown that our method
outperforms the DG-AV method for the 1D shock-acoustic-wave interaction problem. Even more
notably, among those two it is the only method capable of achieving high-order convergence,
showcasing the merit of sharply representing the shock using implicit shock tracking.

2D Steady Euler equations

Next, we compare simulation results for the two 2D steady Euler test cases: the wedge flow
and the bow shock (Section 5.1.3). For the DG-AV method we utilize a level set to represent
the immersed boundary and set the cell-agglomeration threshold to aggthrsh = 0.3. Further,
we employ the explicit Euler scheme for time integration, computing time steps until a steady
state is reached. We then compare the steady solutions (XDG and DG-AV) visually by using
the enthalpy error Herr defined in (5.17) as an accuracy measure.

Mach 2 wedge flow For the Mach 2 airflow past a wedge with a 10˝ angle (Section 5.1.3) we
use a 60 ˆ 40 mesh and a polynomial degree P = 1 for the DG-AV shock capturing method.
We integrate over time until tend = 2.0 reaching a point where the solution is steady. Figure
5.34 shows the density and enthalpy profiles of the DG-AV solution at tend = 2.0 as well as
the XDG solution for a coarser 15 ˆ 10 mesh. The shock capturing method diffuses the shock,
reducing the accuracy near the shock and around the blunt body. In contrast, the XDG-IST
precisely captures the discontinuity, allowing for a sharp representation of the shock front. The

107

https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ComparisonShockCapturing/WedgeFlow_HPC.ipynb
https://github.com/FDYdarmstadt/BoSSS/blob/4486230f6a7a511bd60229dcbe17637aec540449/examples/ShockFitting/Studies/ComparisonShockCapturing/BowShock_ComputeEnthalpySC.ipynb

0

0.5

1.0
y

DG-AV XDG-IST

1

1.25

1.5
Density

0 0.5 1.0 1.5
0

0.5

1.0

x

y

0 0.5 1.0 1.5
x

6.2

6.3

6.4
Enthalpy

Figure 5.34: Illustrative comparison between a shock capturing (DG-AV) solution (P = 1) of a Mach 2 wedge flow
on a 60 ˆ 40 mesh and an XDG shock tracking solution (P = 0) on a coarse 15 ˆ 10 mesh (grid lines
are not depicted). The density ρ (top) and the enthalpy (bottom, theoretical value H8 = 6.3) are
shown.

enthalpy error for the XDG method is approximately Herr « 10´11, significantly lower than the
shock capturing error of Herr = 2 ˆ 10´1.

For this pathological case, a better shock capturing approximation could theoretically be
achieved with a mesh adapted to the shock. Specifically, employing a refined region close to
the shock would undoubtedly enhance the accuracy. Particularly for the straight-sided shock,
where the position is known analytically, the mesh could even be designed such that no artificial
viscosity is needed, i.e., with mesh edges fitted directly to the shock. Next, we move on to a
more interesting case: the Mach 4 bow shock.

Mach 4 bow shock Revisiting the Mach 4 flow scenario over a rounded rectangle, as described
in Section 5.1.3, we reuse the simulation settings from (Geisenhofer, 2021) with a fine 40ˆ160
mesh and a polynomial degree of P = 2 for the shock capturing solution. There, a quadratic
level set is used for the immersed boundary and the simulation runs up to tend = 16.0 until
it reaches a stationary solution. In Figure 5.35, we present the density ρ and the enthalpy
H (theoretical value H8 = 14.7), for both the shock capturing (DG-AV) solution on the fine
mesh and the P = 2 XDG-IST solution on the coarse 5 ˆ 16 mesh (discussed in Section 5.1.3).
Like in the previous case, the shock capturing method results in a smeared shock, reducing
accuracy near the shock and the blunt body. Remarkably, the XDG solution, even though the
mesh is coarsened by a factor of 80, improves the accuracy and achieves an enthalpy error of
Herr = 8.5 ˆ 10´4. The latter is markedly better than the shock capturing enthalpy error of
Herr = 1.8 ˆ 10´2.

Again, one can argue that the employed DG-IBM method is not well-suited for this problem. As

108

-2 -1 -ε
-4

-2

0

2

4

x

y
DG-AV

-2 -1 -ε
x

XDG-IST

-2 -1 -ε
x

DG-AV

-2 -1 -ε
x

XDG-IST

1 3 5

Density ρ

13.2 14.2 14.7 15.1

Enthalpy H

Figure 5.35: Illustrative comparison between a (P = 2) shock capturing solution (DG-AV) of a Mach 4 bow shock
on a 40 ˆ 160 mesh and a (P = 2) XDG shock tracking solution on a coarse 5 ˆ 16 mesh (grid lines
are not depicted). The density ρ (left) and the enthalpy H (right, theoretical value H8 = 14.7) are
shown.

previously mentioned, the accuracy of the shock capturing (DG-AV) method could be enhanced
by a mesh adapted to the shock. Specifically, employing anisotropically refined regions close
to the shock and the blunt body, while coarsening the mesh in the constant pre-shock region,
would optimize the mesh distribution. By doing so, one could minimize the size of the region
where artificial viscosity is applied, resulting in more accurate approximations.

In conclusion, the XDG-IST method demonstrates a clear superiority over the considered DG-AV
shock capturing method in terms of accurately approximating the steady flows examined. It is
important to note, however, that altering shock capturing parameters or adopting a different
shock capturing strategy may influence these results.

109

5.2.6 Performance study

In the last study, we evaluate the computational expenses associated with the XDG-IST method
used together with the enriched residual-based objective function fER. For smaller scale
problems, the primary computational load stems from assembling the linearized optimality
system (4.22). This process predominantly involves the computation of Jacobians for the
enriched residual R with respect to the solution vector u and the level set coefficients ϕ.
Additional procedures, such as line search, agglomeration, and reinitialization, though essential,
contribute minimally to the total computational cost and their impact does not scale significantly
with problem size.

Computation BR
Bϕ and Br

Bϕ

Computation BR
Bu and Br

Bu

Solve system
Line search
Agglomeration
Reinitialization
Remaining runtime

Figure 5.36: Runtime distribution of relevant sub-routines for the implicit XDG shock tracking solver for the Mach
4 bow shock test case on a 10 ˆ 32 mesh. (Figure adapted from Vandergrift and Kummer, 2024)

This characteristic is illustrated in Figure 5.36 where we present the runtime distribution
for critical subroutines involved in the XDG-IST for the Mach 4 bow shock scenario using a
10ˆ 32 mesh (as described in Section 5.1.3. It is apparent from the data that the computations
of BR

Bϕ are particularly resource-intensive, consuming approximately two-thirds of the total
computational effort for the given example. This significant demand originates primarily from
the intricate computations involved in applying Saye quadrature rules (Saye, 2015) to each
modified level set, a complexity previously discussed in Section 4.6. As a result, we constitute
a clear need for a level set representation that allows for analytical derivative calculations.

Finally, it should be noted that while not the primary focus of this study, the performance of
the algorithm could potentially be improved through more efficient implementation strategies.

5.3 Conclusion

In this section, we conclude the numerical results for the XDG-ISTmethod which were presented
in this chapter. First, results for the test cases are concluded in Section 5.3.1. Secondly, we
draw conclusions from the numerical studies presented in Section 5.3.2.

110

5.3.1 Test cases

A series of test cases for the XDG-IST method was introduced and we presented numerical
results from applying the method across four different systems of conservation laws: the
1D space-time Burgers equation, the 1D space-time advection equation, the 1D space-time
Euler equations, and the steady 2D Euler equations. The XDG-IST method was applied using
spline-based level sets and the full enriched residual-based objective function fER.

In the context of the linear 1D space-time advection equation, two test cases where presented
featuring piece-wise constant flow solutions separated by a straight-sided and a curved disconti-
nuity, respectively. We could show, that for both cases the discontinuities were perfectly tracked
by the XDG-IST method, even when initializing the level set with a non-sub-cell accurate first
guess. Also, the residual norms were minimized to at least 10´9, showcasing the capabilities of
our method to robustly solve a linear problem.

Similarly, for the nonlinear 1D space-time Burgers equation we developed two test cases with
a straight-sided and a curved shock, with the curved test case featuring a non-polynomial flow
solution. As before, the XDG-IST method was able to track the discontinuities and approximate
the solution for both cases. While the residuals were minimized to 10´8 for the straight-
sided case, the XDG-IST method converged to residuals around 10´2 for the curved test case.
Hence, we demonstrated the ability of the XDG-IST method to solve these nonlinear problems
accurately.

For the steady 2D Euler equations, we applied the XDG-IST method together with Godunov’s
numerical flux at the interface to two test cases: supersonic Mach 2 flow over an inclined plane
and supersonic Mach 4 flow over a blunt body. The first case featured a straight-sided shock
and a piece-wise constant solution, both perfectly tracked by our method. Also for the second
case, when applying the XDG-IST method to a Mach 4 bow shock, we obtained remarkably
well resolved solutions and low enthalpy errors on coarse meshes. These results showcased
the methods capabilities of solving steady 2D supersonic flow problems.

Lastly, we applied the XDG-IST method to three 1D shock-acoustic-wave interaction problems
in the context of the 1D space-time Euler equations. We presented waterfall plots of the
XDG solutions showing the expected phenomena which result from the shock-acoustic-wave
interaction. For two of the problems we then compared our results with the expected pressure
amplification/reduction factor, showing good agreement with theory and deviations under
3%. Our results indicate the ability of the XDG-IST method to accurately capture the relevant
physical phenomena for unsteady 1D shock-acoustic-wave interaction problems.

5.3.2 Numerical studies

Throughout our research, we evaluated various configurations of the XDG-IST method to
enhance its effectiveness and efficiency. Specifically, we tested three distinct level set dis-
cretizations: the DG level set, the CG level set and the spline-based level set. Employing
a straightforward space-time scalar advection problem featuring a straight-sided shock, we
determined that the spline-based level set was uniquely capable of precisely tracking the shock
while minimizing the residual. Additionally, analyzing the computational time needed by

111

each approach revealed that the spline-based level set not only performed but also scaled best,
indicating its suitability for middle-scale 2D applications.

We also investigated the impact of different objective functions (full enriched residual, enriched
residual confined to the near-band, Rankine-Hugoniot conditions) on the XDG-IST method
using test cases from the steady 2D Euler equations as benchmarks. Our findings suggest
a clear preference for the full enriched residual-based objective function, especially evident
in the bow shock scenario where it was the only approach that achieved convergence, thus
demonstrating its superiority.

Further analysis involved comparing various numerical fluxes at the shock interface edges for
the steady 2D Euler equations. We observed that the central flux was too unstable, and the
HLLC flux is inconsistent with the shock solution, as anticipated. In contrast, the Roe flux
without entropy fix, newly integrated into the BoSSS framework, proved to be a robust and
efficient alternative to the traditionally used Godunov flux, supporting its use in this context.

A convergence study was conducted using the Mach 4 bow shock test case across four nested
meshes and using the deviation from the known enthalpy as the error metric. Although the
XDG-IST method did not achieve optimal convergence rates at polynomial degrees P = 2
and P = 3, high-order convergence was still observed, affirming the method’s potential for
accurate high-resolution simulations. Furthermore, we have conducted a second convergence
study for a 1D shock-acoustic-wave problem, using the amplification factor of the acoustic
wave to measure the error. Here, our results showcased super-optimal high-order convergence
rates for the degrees P = 2, 3, while the convergence was degraded for P = 0, 1. Hence, we
demonstrated the potential that high-order IST methods hold for the accurate simulation of
shock-acoustic-wave interaction phenomena.

Additionally, we assessed the performance of the XDG-IST method against a traditional DG-IBM,
implemented as the CNS solver within the BoSSS framework and which incorporates a shock
capturing strategy. In evaluations involving 2D steady flows, the XDG method exhibited
superior accuracy, notably achieving improved enthalpy error metrics on significantly coarsened
meshes. This superiority was also evident in unsteady 1D shock-acoustic-wave interactions,
where the XDG-IST method outperformed in terms of pressure wave amplification/reduction
factors, particularly for the slow acoustic wave emerging on the subsonic side. Subsequently,
we replicated the convergence study initially conducted for the XDG-IST method using the
CNS solver. Remarkably, the CNS solver demonstrated low-order convergence rates across
polynomial degrees P = 1, 2, 3. This underscores the conceptual advantage in terms of accuracy
per DOF that IST methods have over traditional shock-capturing techniques, as IST methods
maintain high-order convergence for shock-acoustic-wave phenomena. Note however, that
IST methods are solving an implicit problem while shock capturing methods rely on explicit
time-stepping. Thus, we can expect that the computational time needed to compute a solution
grows immensely faster for the IST methods when adding more resolution.

Lastly, our comprehensive evaluation of computational performance highlighted that the
majority of the computational time (>60%) of the XDG-IST method was devoted to calculating
Jacobians of XDG residuals with respect to DOFs associated with the spline-based level set. This
finding underscores the computational intensity associated with the level set DOFs, despite
the presence of a greater number of DOFs in the flow solution, pointing to potential areas for
optimization in future work.

112

6 Linear solvers for implicit shock tracking

In the realm of computational fluid dynamics (CFD), solving large systems of linear equations
efficiently is crucial for modeling fluid behaviors accurately. These systems, especially in three-
dimensional (3D) scenarios, are often very large due to the detailed discretization required,
making traditional direct solving methods, like matrix factorization, impractical due to their
high demands on memory and computational power. Instead, iterative linear solvers are
preferred, using fewer resources and effectively speeding up computations. These solvers
are particularly good at scaling up for larger problems, adapting well to parallel computing
environments, which is essential for modern CFD simulations. However, iterative methods have
to often be enhanced using preconditioning techniques, improving their efficiency by optimizing
the condition number of the matrix. These preconditioners often have to be specifically designed
for the method and problem considered.

In this chapter, a close adaption of the research presented in Vandergrift and Zahr (2024)
(see also Remark 19), we propose a set of preconditioners designed specifically for linearized
optimality systems used in sequential quadratic programming (SQP) solvers in implicit shock
tracking methods. We particularly examine the mesh-based high-order implicit shock tracking
(HOIST) method (Zahr et al., 2020; Huang and Zahr, 2022), which incorporates an enriched
residual as the objective function. However, our preconditioners can be adapted to other
objectives, such as the Rankine-Hugoniot conditions (Corrigan et al., 2019a), and to XDG-
based shock tracking (Chapter 4). In SQP, advancing towards an optimal solution involves
solving the linearized Karush-Kuhn-Tucker (KKT) conditions. Our proposed preconditioners are
based on constrained preconditioners (Keller et al., 2000) that emulate the structure of original
saddle point problems. These preconditioners have been effectively combined with methods
like conjugate gradients and other Krylov subspace techniques to tackle nonlinear programming
issues (Coleman and Verma, n.d.; Gould et al., 2001; Lukšan and Vlček, 2001; Dollar, 2007).
Our approach simplifies the constraint Jacobian using standard discontinuous Galerkin (DG)
methods such as block Jacobi and block incomplete LU factorization, selectively ignoring
parts of the Lagrangian Hessian while approximating the remaining parts with standard
techniques (Persson and Peraire, 2008; Biros and Ghattas, 2000). We also incorporate a
two-level P -multigrid strategy that enhances any preconditioner in our family. Extensive tests
on two non-viscous compressible flow problems assess each preconditioner’s effectiveness and
sensitivity to crucial factors like mesh quality, Hessian regularization, state of linearization,
and resolution.

This chapter is organized as follows: Section 6.1 introduces the HOIST method and details the
sparsity pattern of the linearized optimality system. Then, widely-used preconditioners for
DG methods and how these are adapted into specialized matrix-based preconditioners for the
implicit shock tracking linearized systems are discussed in Section 6.2. Finally, Section 6.3

113

reports detailed experiments with these preconditioners, analyzing their performance against
several key optimization solver parameters.

Remark 19. This chapter copies most of the content from the manuscript by Vandergrift and
Zahr (2024) with minor modifications to integrate it into this thesis. The manuscript was
primarily authored by the author of the present work, bearing the sole responsibility for the actual
implementation and evaluation of the methods, creating visual representations, and writing the
initial draft of the manuscripts. The co-author, Assistant Professor Matthew J. Zahr, served in an
advisory role. He was instrumental in developing the original ideas, assisting with their continuous
refinement, and providing the necessary CFD codes that form the foundation of the investigated
shock tracking test cases. His contributions to the article were mainly in the realms of initial
conceptualization, proofreading, and making minor corrections.

6.1 The high-order implicit shock tracking method

In this section, we briefly describe the HOIST method, a mesh-based implicit DG shock tracking
method originally developed by Zahr and Persson (2018), as we aim to developed specialized
linear solvers for the corresponding linearized optimality systems dictating the next opti-
mization update in each step. The HOIST method, which has been adapted to the implicit
extended discontinuous Galerkin (XDG) shock tracking context in Chapter 4, uses numerical
optimization to simultaneously compute a high-order approximation and align elements of
the computational mesh with non-smooth features. Further, it employs an objective function
based on an enriched residual and a mesh-quality term.

In this section we summarize relevant aspects of the HOIST method in Section 6.1.1 and
sparsity structure of the linear optimality system, which needs to be solved efficiently in each
iteration step, in Section 6.1.2.

6.1.1 High-order implicit shock tracking formulation and solver

In this section, we review the optimization formulation and the SQP solver (Huang and Zahr,
2022) on which the HOIST method is based, including the linear system that defines the
SQP step. Here, we rely on concepts related to the discretization of the transformed system
of conservation laws introduced in Chapter 3. Note, that in the case of the HOIST method,
and thus in the remainder of this chapter, we assume that no interface (defined by a level
set) is present inside the computational domain Ω (see Remark 8) and hence we drop the
corresponding dependency of the residuals, that is

r(u,x,ϕ) = r(u,x),R(u,x,ϕ) = R(u,x). (6.1)

Also, in this chapter, the discretization is conducted employing a DG space on the background
grid, which is equivalent to an XDG space on a cut-cell grid when no interfaces are cutting the
domain.

114

Remark 20. As both methods are closely related, we reuse notation introduced for the implicit
XDG shock tracking method. Note however, that some concepts might have a slightly different
meaning in the mesh-based shock tracking context. For instance, instead of depending on the
coefficients of the shock level set ϕ, relevant functions (e.g. r,R,L) depend on the unconstrained
mesh coordinates y.

HOIST formulation

The HOIST method (Zahr et al., 2020; Huang and Zahr, 2022) is a high-order technique
that simultaneously computes both the discrete solution of the conservation law and the
nodal coordinates of the mesh, aligning element faces with discontinuities. This process is
accomplished using a fully discrete, full-space optimization formulation, where the optimization
variables consist of the discrete flow solution and the nodal coordinates of the mesh.

With a boundary-preserving parameterization φ of the mesh motion (introduced in 3.18) the
HOIST method is formulated as: find the solution (u‹,y‹) to the constrained minimization
problem

minimize f(u,y) (6.2)
subject to r(u,φ(y)) = 0,

where f : RNu ˆ RNy Ñ R is the objective function, r : RNu ˆ RNy Ñ RNu is the algebraic
residual (defined in Section 3.2.3) and the nodal coordinates of the aligned mesh are x‹ =
φ(y‹). Contrary to the XDG shock tracking context, the objective function is dependent on
mesh variables (see Remark 20) rather than on level set coefficients and is composed of two
terms as

f : (u,y) ÞÑ ferr(u,y) + κ2fmsh(y), (6.3)
balancing alignment of the mesh with non-smooth features and the quality of the elements.
Here, κ P Rě0 is an adaptively chosen mesh penalty parameter to weight the two terms
such that the first term is prioritized (Huang and Zahr, 2022). The mesh alignment term,
ferr : RNu ˆ RNy Ñ R, is taken to be the norm of the enriched DG residual

ferr : (u,y) ÞÑ
1

2
‖R(u,φ(y))‖22 . (6.4)

We also want to ensure that the elements of the discontinuity-aligned mesh are of high quality,
which leads to the definition of the mesh distortion term, fmsh : RNy Ñ R, as

fmsh : y ÞÑ
1

2
‖Rmsh(φ(y))‖22 , (6.5)

where Rmsh : RNy Ñ R|Kh| is the elemental mesh distortion with respect to an ideal element
(Zahr et al., 2020; Knupp, 2001; Roca et al., 2012).

To obtain the first-order optimality system of the implicit shock tracking formulation (6.2), we
introduce the corresponding Lagrangian, L : RNu ˆ RNy ˆ RNu Ñ R, defined as

L : (u,y,λ) ÞÑ f(u,y) ´ λTr(u,φ(y)). (6.6)

Then, the first-order optimality, or KKT, conditions state that (u‹,y‹) P RNu ˆ RNy is a first-
order solution of the optimization problem in (6.2) if there exists λ‹ P RNu such that the
Lagrangian is stationary, i.e.

∇L(u‹,y‹,λ‹) = 0. (6.7)

115

Sequential quadratic programming solver

Next, we briefly describe the SQP solver (Huang and Zahr, 2022) for the optimization problem
in (6.2). It is a full-space approach that aims to converge the DG solution u and the mesh
y to their optimal values simultaneously. To this end, we define a new variable z P RNz

(Nz = Nu +Ny) that combines the DG solution u and the unconstrained mesh coordinates y
as

z = (u,y), (6.8)
and use z interchangeably with (u,y). For brevity, we introduce the following notation for
the derivatives of the objective function, g : RNz Ñ RNz , and the DG residual, J : RNz Ñ

RNu ˆ RNz , as

g : z ÞÑ


Bf

Bu
(u,y)T

Bf

By
(u,y)T

 , J : z ÞÑ
[
Ju(u,y) Jy(u,y)

]
. (6.9)

Here,
Ju(u,y) :=

Br

Bu
(u,φ(y)), Jy(u,y) :=

Br

Bx
(u,φ(y))

Bφ

By
(y) (6.10)

denote the Jacobians with respect to u and y, respectively. The SQP method in Huang and
Zahr (2022) produces a sequence of iterates tzku8

k=0 such that zk = (uk,yk) Ñ z‹ = (u‹,y‹),
where (u˚,y˚) satisfies the first-order optimality conditions in (6.7). The sequence of iterates
is generated as

zk+1 = zk + αk∆zk, (6.11)
where the search direction ∆zk P RNz is computed as the solution of the following quadratic
program

minimize
∆zPRNz

gT
k∆z +

1

2
∆zTBk∆z

subject to rk + Jk∆z = 0
, (6.12)

gk P RNz , rk P RNu , and Jk P RNuˆNz are the objective gradient, residual, and residual
Jacobian, respectively, evaluated at zk

rk := r(uk,φ(yk)), gk := g(zk), Jk := J(zk), (6.13)

Bk P RNzˆNz is a symmetric positive definite (SPD) approximation to the Hessian of the
Lagrangian at zk, and αk P Rą0 is the step length. The latter is computed by an inexact line
search employing a standard l1-merit function (Nocedal and Wright, 2006) and the first-order
optimality conditions of the quadratic program lead to the following linear system of equations[

Bk JT
k

Jk 0

] [
∆zk
ηk

]
= ´

[
gk

rk

]
, (6.14)

where ηk P RNu are the Lagrange multipliers associated with the linearized constraint in
(6.12). This linear system of size 2Nu +Nx must to be solved at each iteration k to compute
the step ∆zk to update the DG solution and mesh (6.11). For large-scale applications with
many DOFs, direct solvers are not a viable option as these systems are larger than standard DG
system (size: Nu). In the next section, we explore the structure of the linear system in (6.14)
that will facilitate the development of efficient preconditioners and iterative linear solvers in
Section 6.2.

116

Remark 21. This SQP method (Zahr et al., 2020) proved not to be robust enough to handle
complex problems, such as high Mach number flows with complex discontinuities, so several
robustness measures were introduced (Huang and Zahr, 2022). These measures manipulate the
state zk+1 after the SQP update only for a fixed number of iterations M ą 0 (to ensure SQP
convergence in the limit) and include 1) boundary-preserving, shock-aware element removal, 2)
geometric curvature removal from inverted or ill-conditioned elements, and 3) elemental solution
reinitialization; see Huang and Zahr (2022) for details. These operations have a small positive
impact on linear solvers as they locally reduce sources of ill-conditioning, which can lead to abrupt
(positive) changes in the performance of iterative solvers when comparing between different states
(Section 6.3).

Hessian approximation

Implicit shock tracking methods employ a Levenberg-Marquardt Hessian approximation (Cor-
rigan et al., 2019b; Zahr et al., 2020) to define Bk (see Section 4.2.2 for a more detailed
discussion in the context of implicit XDG shock tracking). To this end, Bk is expanded as

Bk =

[
Buu,k Buy,k

BT
uy,k Byy,k

]
, (6.15)

where the individual components Buu,k P RNuˆNu , Buy,k P RNuˆNy , and Byy,k P RNyˆNy

are defined as
Buu,k :=

BF

Bu
(zk)

T BF

Bu
(zk)

Buy,k :=
BF

Bu
(zk)

T BF

By
(zk)

Byy,k :=
BF

By
(zk)

T BF

By
(zk) + γk

Bφ

By
(yk)

TDk
Bφ

By
(yk),

(6.16)

where F : RNu ˆ RNy Ñ RN 1
u+|Kh| is the residual function

F : (u,y) ÞÑ

[
R(u,φ(y))
κRmsh(φ(y))

]
, (6.17)

and Dk P RNxˆNx is a SPD matrix constructed to regularize the mesh motion. The regu-
larization parameter γk P Rě0 is chosen adaptively (and analogously to (4.32)) during the
optimization process and has a strong impact on the number of iterations needed for an iterative
solver, which will be observed in the numerical experiments in Section 6.3.5.

6.1.2 Sparsity of linear optimality system

In this section, we analyze the sparsity of the linear optimality system in order to develop
requirements for efficient linear solvers. We start by examining the sparsity of the discrete
operators Br/Bu, BR/Bu, which form the basis of the full system.

117

Sparsity of discrete operators

The sparsity structure of the Jacobians of the DG residuals r and R is examined with respect
to the variables u and x, as they will be central to the shock tracking optimization method.
For any element Ke P Kh, let ue P RNP and xe P RNe

x denote the degrees of freedom
(DOFs) of u and x, respectively, associated with element Ke, where NP = mdim[PP (Ke)] and
N e

x = ddim[PPc(Ke)]. The elemental DOFs are related to the global DOFs via the selection
matrices, Pe P t0, 1uNuˆNP and Qe P t0, 1uNxˆNe

x , which are subsets of the identity matrix
that extract selected rows from Nu- and Nx-vectors, respectively,

ue = P T
e u, xe = QT

e x. (6.18)

Furthermore, denote the DOFs corresponding to the neighbors of element Ke as ûe P RN̂e
P ,

where N̂ e
P = mdim[PP (Ne)], and P̂e P t0, 1uNuˆN̂e

P as the corresponding selection matrix such
that

ûe = P̂ T
e u. (6.19)

Here, Ne Ă Kh is the collection of elements neighboring (i.e., sharing a face with) element Ke.

With this notation, the elemental DG residuals, rP,PKe
and rP

1,P
Ke

, can be written algebraically as

re : RNP ˆ RN̂e
P ˆ RNe

x Ñ RNP , re : (ue, ûe,xe) ÞÑ re(ue, ûe,xe) (6.20)

Re : RNP ˆ RN̂e
P ˆ RNe

x Ñ RNP 1 , Re : (ue, ûe,xe) ÞÑ Re(ue, ûe,xe). (6.21)

The global residuals are formed by summing over all elements and assembling into the appro-
priate degree of freedom (DOF) as

r(u,x) =

|Kh|
ÿ

e=1

Pere(ue, ûe,xe) =

|Kh|
ÿ

e=1

Pere(P
T
e u, P̂ T

e u,QT
e x). (6.22)

Direct differentiation leads to an expression for the Jacobian Ju(u,x) P RNuˆNu that exposes
its block structure

Ju(u,x) :=
Br

Bu
(u,x) =

|Kh|
ÿ

e=1

Pe

(
Bre
Bue

(ue, ûe,xe)P
T
e +

Bre
Bûe

(ue, ûe,xe)P̂
T
e

)
, (6.23)

where Bre
Bue

(ue, ûe,xe) P RNP ˆNP , Bre
Bûe

(ue, ûe,xe) P RNP ˆN̂e
u are its matrix blocks. The matrix

Ju is a |Kh| ˆ |Kh| block matrix with blocks of size NP ˆNP . For an example two-dimensional
mesh consisting of 9 elements (Figure 6.1), a polynomial degree of P = 1, and a single
conservation law (m = 1), the sparsity of Ju is shown in Figure 6.1. Using the same arguments,
one can derive the sparsity pattern for the Jacobian BR/Bu, the only difference being that
the blocks BRe

Bue
P RNP 1 ˆNP have a different size to account for the additional constraints. The

sparsity pattern of (BR/Bu)T for the exemplary mesh in Figure 6.1 is shown in Figure 6.2 with
9 blocks of size 3 ˆ 6 coming from the enriched polynomial degree P 1 = 2.

Remark 22. The elemental residuals do not depend on the neighboring nodes x̂e as the coupling
to the neighboring elements is only due to trace values on the boundaries. For a more detailed
discussion the reader is referred to the work by Wen and Zahr (2023).

118

Figure 6.1: Example two-dimensional mesh (left) (10 nodes and 9 elements) and corresponding sparsity structure
of Ju (right) for a polynomial degree of P = 1 and a single conservation law (m = 1). This choice
leads to 9 blocks of size 3 ˆ 3 for Ju.

Figure 6.2: Sparsity structure of (BR/Bu)T for the mesh in Figure 6.1, polynomial degrees of P = 1, P 1 = 2 and
a single conservation law (m = 1). This choice results in 9 blocks of size 6 ˆ 3 for BR/Bu.

Sparsity of full system

We detail the sparsity of the linear system (6.14) as it has significant implications for the design
requirements of efficient preconditioners. From this point forward, we fix the state zk and drop
the k subscript on all terms. As we already examined the sparsity of Ju we begin with Buu.
First, recall that BRmsh/Bu = 0 by construction. Therefore, we can derive the block sparsity
structure using the elemental decomposition of the DG Jacobian as follows

Buu =
BF

Bu

T BF

Bu
=

BR

Bu

T BR

Bu

=

|Kh|
ÿ

e=1

P 1
e

(
BRe

Bue
P T
e +

BRe

Bûe
P̂ T
e

)T  |Kh|
ÿ

E=1

P 1
E

(
BRE

BuE
P T
E +

BRE

Bûe
P̂ T
E

)
=

|Kh|
ÿ

e,E=1

((
Pe

BRe

Bue

T

+ P̂e
BRe

Bûe

T)
(P 1

e)
TP 1

E

(
BRE

BuE
P T
E +

BRE

Bûe
P̂ T
E

))
.

(6.24)

119

Figure 6.3: Sparsity structure of Buu (left) and Byy (right) (assuming no boundary constraints, i.e. φ(y) = y)
for mesh depicted in Figure 6.1 with polynomial degrees of P = 1, P 1 = 2 and a single conservation
law (m = 1).

Due to the fact that (P 1
e)

TP 1
E = IδeE (because R is a DG residual), we finally obtain

Buu =

|Kh|
ÿ

e=1

(
Pe

BRe

Bue

T BRe

Bue
P T
e + Pe

BRe

Bue

T BRe

Bûe
P̂ T
e + P̂e

BRe

Bûe

T BRe

Bue
P T
e + P̂e

BRe

Bûe

T BRe

Bûe
P̂ T
e

)
.

(6.25)
From this identity it can be deduced that Buu has an element based block structure like Ju,
but with an extended (denser) sparsity pattern. The difference lies in the additional non-zero
blocks due to the neighbor-neighbor interaction P̂e

BRe
Bûe

T BRe
Bûe

P̂ T
e , which does not exist for Ju.

This amounts to an increase of non-zero blocks by a factor of 1+d(d+1)/(d+2) for a simplicial
mesh (see Remark 23), which is expensive and memory-intensive (Table 6.1) and requires
parallel communication of the blocks to form the product. Therefore, in the next section, we will
avoid preconditioners that require explicitly forming Buu. On the other hand, matrix-vector
products of the form Buuv can be performed efficiently as BR

Bu

T
(BR

Bu v), making it well-suited
for use with an iterative (Krylov) solver. For illustrative purposes, the sparsity of Buu is shown
in Figure 6.3 (left) for the same exemplary mesh as in Figure 6.1, and the substantial decrease
in sparsity can be observed.

Remark 23. Let us quantify the sparsity of Ju relative to Buu for simplicial grids. Let m1 and
m2 denote the number of non-zero blocks per row of Ju and Buu, respectively. For simplicity, we
consider a row corresponding to an element sufficiently far from a boundary to avoid enumerating
special cases. Because the eth block row of Ju has a non-zero for each element neighboring Ke, we
have m1 = d+ 2 (the block diagonal plus d+ 1 neighbors). On the other hand, the eth block row
of Buu has a non-zero for all neighbors of Ke and all neighbors of neighbors of Ke, which gives
m2 = m1 + d(d+ 1) (each of the d+ 1 neighbors of Ke adds at most d new neighbors). Thus, the
ratio of non-zero blocks in Buu to those in Ju is

m2

m1
= 1 +

d(d+ 1)

d+ 2
, (6.26)

which is a significant factor (Table 6.1), especially considering the DG Jacobians themselves are
already memory-intensive to form and store. This motivates our decision to avoid explicitly forming
Buu in the proposed preconditioners in Section 6.2.3.

120

Table 6.1: Growth of block sparsity structure of Buu (m2) relative to Ju (m1).
d 1 2 3 4

m2/m1 1.67 2.5 3.4 4.33

Figure 6.4: Sparsity structure of (BR/Bx)T for mesh depicted in Figure 6.1 with polynomial degrees P = 1, P 1 = 2
and a single conservation law (m = 1).

Next, we examine the sparsity of Buy and Byy. First, we build the DG Jacobian with respect
to y using the Jacobian of the φ mapping

B

By
R(u,φ(y)) =

BR

Bx
(u,φ(y))

Bφ

By
(y) =

BR

Bx
(u,x)

Bφ

By
(y). (6.27)

Direct differentiation of (6.22) with respect tox (and replacing r withR) exposes the assembled
block structure of the enriched DG residual

BR

Bx
(u,x) =

|Kh|
ÿ

e=1

P 1
e

BRe

Bxe
(P T

e u, P̂ T
e u,QT

e x)Q
T
e =

|Kh|
ÿ

e=1

P 1
e

BRe

Bxe
(ue, ûe,xe)Q

T
e , (6.28)

where BRe
Bxe

P RNP 1 ˆNe
x . Note that because most nodes xe are shared between two elements, it

is not possible to obtain an elemental block structure for the columns (elemental block structure
does exist for the rows). For illustrative purposes only, we assume no boundary constraints
(φ(y) = y) and refer to Figure 6.1 for our exemplary mesh. The sparsity pattern of (BR/Bx)T

is illustrated in Figure 6.4, revealing 9 block rows.

Going further, we obtain the following sparsity-block structure for Buy from the following
identity

Buy =
BF

Bu

T BF

By
=

BR

Bu

T BR

Bx

Bφ

By

=

|Kh|
ÿ

e=1

P 1
e

(
BRe

Bue
P T
e +

BRe

Bûe
P̂ T
e

)T  |Kh|
ÿ

E=1

P 1
E

BRE

BxE
QT

E

 Bφ

By

=

|Kh|
ÿ

e=1

(
Pe

BRe

Bue

T

+ P̂e
BRe

Bûe

T)(BRe

Bxe
QT

e

)
Bφ

By
.

The structure of Br/By is identical to that of BR/By by repeating the above derivation. Because
this is a (rectangular) off-diagonal term, the proposed preconditioners and linear solvers only

121

require products with Buy, which can be computed as BR
Bu

T
(BR

Bx (
Bφ
Byv)) for any vector v, so

Buy never needs to be explicitly computed.

Lastly, we consider the structure of Byy. From a simple application of the chain rule, we have

Byy =
Bφ

By

T

Bxx
Bφ

By
, (6.29)

where
Bxx =

BR

Bx

T BR

Bx
+ κ2

BRmsh
Bx

T BRmsh
Bx

+ γD. (6.30)

Furthermore, from (6.28), we have

BR

Bx

T BR

Bx
=

|Kh|
ÿ

e=1

P 1
e

BRe

Bxe
QT

e

T  |Kh|
ÿ

E=1

P 1
E

BRE

BxE
QT

E

 =

|Kh|
ÿ

e=1

(
Qe

BRe

Bxe

T BRe

Bxe
QT

e

)
, (6.31)

which loses block structure once assembled because of the overlapping entries inQe for different
elements. The sparsity of BRmsh

Bx

T BRmsh
Bx is a subset of BR

Bx

T BR
Bx because each entry of the mesh

distortion Rmsh is defined individually for each element Ke and solely depends on the element
nodes xe. The sparsity of the regularization matrix,D, depends solely on its specific choice. We
choose D as the linear elasticity (isotropic) stiffness matrix, with the elasticity modulus being
inversely proportional to the volume of elements in the reference mesh. Thus, the sparsity of
D is a subset of BR

Bx

T BR
Bx , as it originates from the continuous finite element discretization of

the elasticity equations. Finally, the mapping φ determines the final structure of Byy and an
illustrative example for the sparsity structure of Bxx is provided in Figure 6.3 (right).

6.2 Iterative linear solvers and preconditioners

In this section, we introduce preconditioners for implicit shock tracking linearized systems,
which are derived from successful preconditioners utilized for DG methods. We begin with a
brief overview of Krylov iterative solvers (Section 6.2.1) and review commonly used precondi-
tioners for DG discretizations (Section 6.2.2). Finally, we present the novel preconditioners for
implicit shock tracking (Section 6.2.3).

6.2.1 Krylov solvers and preconditioning

In this work, we consider Krylov subspace methods for solving the linear systemAs = b. Krylov
methods only require the action of the matrix A on vectors, not the entire matrix itself, which
minimizes storage cost. This is particularly advantageous for implicit shock tracking because
it allows us to avoid explicitly forming all blocks of B (the regularized Lagrangian Hessian
approximation).

On the other hand, Krylov methods rely on preconditioning, i.e., transformation of the system
As = b to enhance its spectral properties. Left preconditioning is achieved by multiplying the
linear system on the left by some non-singular matrix Ã´1 to yield

Ã´1As = Ã´1b, (6.32)

122

which has the same solution as the original system. Here, Ã « A is the preconditioner and
must be inexpensive to apply its inverse to a vector Ã´1v to be practical. Generally, as the
preconditioner approaches the original matrix A, the number of Krylov iterations decreases
while the associated costs increase (only one iteration is necessary if Ã = A). Finding a
suitable preconditioner that balances the need for fewer Krylov iterations with increased costs
per iteration requires a specialized solution tailored to the matrix structure, discretization
method, and equations at hand. The most effective preconditioners require all or part of
the matrix A, which partially neutralizes the matrix-free benefits of Krylov methods. In
Section 6.2.3, we will develop matrix-based preconditioners for implicit shock tracking that (1)
build on established preconditioners for the DG system (Section 6.2.2) and (2) avoid forming
the entire B matrix.

6.2.2 Preconditioners for discontinuous Galerkin methods

Two established matrix-based preconditioners for the DG system (A = Ju, b = ´r(u))
introduced in the work by Persson and Peraire (2008), are the block Jacobi preconditioner
(Section 6.2.2) and the block incomplete LU factorization (BILU) preconditioner with minimum
discarded fill (MDF) (Section 6.2.2). Both preconditioners utilize the block structure of the
Jacobian matrix Ju and are efficient in terms of computational cost and memory to form and
apply. They will be building blocks for HOIST preconditioners.

Block Jacobi

The block Jacobi preconditioner is obtained by setting all blocks of the original matrix A off
the diagonal to zero, which can be written compactly as

J̃BJ :=

|Kh|
ÿ

e=1

Pe
Bre
Bue

P T
e . (6.33)

This block diagonal preconditioner can be easily formed from Ju and its inverse can be explicitly
formed by inverting each NP ˆNP block as

J̃´1
BJ =

|Kh|
ÿ

e=1

Pe

(
Bre
Bue

)´1

P T
e . (6.34)

Because the size of each block is relatively small, a direct solver can be used. According to
Persson and Peraire (2008) this preconditioner shows good performance in specific cases,
but loses effectivity as the Reynolds number (when used for the compressible Navier-Stokes
equations) or timestep (when used for transient problems) increases, and in the low Mach
limit.

Block incomplete LU preconditioning with minimum discarded fill reordering

A more advanced preconditioner is the BILU factorization with MDF, which is achieved by
performing an ILU0 factorization of the matrix A on the block level. This procedure involves

123

limiting a standard LU factorization to maintain the sparsity structure of A, i.e., any operation
that would introduce new non-zero blocks (known as “fill in”) are skipped. To optimize the
performance of an incomplete LU factorization (ILU), it is augmented with an initial re-ordering
of the matrix block rows to minimize fill-in. Readers are referred to Persson and Peraire (2008)
for the complete algorithm and implementation details.

The preconditioner J̃BILU is formed as P̃ J̃BILU = L̃Ũ , where P̃ is the MDF reordering permu-
tation, L̃ is a lower block-triangular matrix with the identity matrix along the diagonal, and Ũ
is an upper block-triangular matrix; both L̃ and Ũ that share the same sparsity pattern as Ju.
Because of the complementary structure of L̃ and Ũ , the matrix A can be mutated in-place
into L̃ (strict lower block triangle) and Ũ (upper block triangle). To apply the inverse of J̃BILU
to a vector w (J̃´1

BILUw), we must solve the system J̃BILUv = w. First, we multiply this equation
by the permutation and substitute the ILU factorization

P̃ J̃BILUv = L̃Ũv = P̃w. (6.35)

Then, we apply the usual forward-backward substitution process to solve for v: first solve
L̃ṽ = P̃w for ṽ using block forward substitution, then solve Ũv = ṽ for v using block backward
substitution. Because the block diagonal of L̃ are identity matrices, forward substitution only
requires matrix-vector products at the element level. On the other hand, backward substitution
requires solving linear systems of sizeNP ˆNP , which is usually performed with a direct solver
because of the relatively small size. According to Persson and Peraire (2008) this preconditioner
works effectively for a wide range of problems, particularly when combined with P -multigrid.

6.2.3 Preconditioners for implicit shock tracking

In this section, we introduce matrix-based preconditioners tailored for the HOIST linearized
system in (6.14). These preconditioners are derived from constrained preconditioners, commonly
employed for linear systems encountered in constrained optimization. We close the section
with a summary of all preconditioners proposed and studied in this work. We are interested
in efficient preconditioners that do not require formation of Buu or involve the inverse of
Ju or Byy; however, we consider a suite of preconditioners to study what is lost by these
requirements.

Constrained preconditioners

The system matrix, which must be solved at every iteration of the HOIST method, repeated
here for reference

A =

(
B JT

J 0

)
, (6.36)

is a symmetric saddle-point matrix. Typically, matrices of this type are known to suffer from
bad condition numbers and there exists a wide variety of preconditioners tailored to the specific
scenarios where they arise (Benzi et al., 2005). In the realm of constrained optimization, where
these saddle-point systems naturally emerge from first-order optimality conditions, a class of
popular preconditioners known as constrained preconditioners, denoted ÃC , is commonly used

ÃC =

(
B̃ J̃T

J̃ 0

)
. (6.37)

124

Here, B̃ « B and J̃ « J are approximations to the Hessian and constraint matrices. If J̃ = J ,
the preconditioner is the coefficient matrix for a modified saddle-point problem with the same
linearized constraint. Furthermore, B̃ and J̃ are generally chosen as such that ÃC and B̃
are invertible and B̃´1, J̃B̃´1J̃T are easy to compute. In this case, the inverse of ÃC can be
explicitly computed as(

B̃ J̃T

J̃ 0

)´1

=

(
I ´B̃´1J̃T

0 I

)(
B̃´1 0

0 ´(J̃B̃´1J̃T)´1

)(
I 0

´J̃B̃´1 I

)
. (6.38)

However, we consider more restrictive approximations because of our desire to avoid formation
of Buu and inverses of J and Byy.

Block anti-triangular constrained preconditioner

We propose a class of preconditioners for the HOIST linearized system with

B̃ =

(
0 0

0 B̃yy

)
, J̃ =

(
J̃u Jy

)
, (6.39)

where B̃yy is an approximation to Byy and J̃u is an approximation to Ju. Substitution of
these choices into the constrained preconditioner leads to a lower block anti-triangular matrix,
denoted ÃAT,

ÃAT =

 0 0 J̃T
u

0 B̃yy JT
y

J̃u Jy 0

 (6.40)

that will be referred to as the approximate block anti-triangular constrained preconditioner in
the remainder. The inverse of ÃAT is

Ã´1
AT =

C̃B̃´1
yy C̃

T C̃B̃´1
yy J̃´1

u

B̃´1
yy C̃

T B̃´1
yy 0

J̃´T
u 0 0

 , (6.41)

where C̃ := ´J̃´1
u Jy. Furthermore, the action of Ã´1

AT on a vector v =
(
v1 v2 v3

)T , is
Ã´1

AT

v1
v2
v3

 =

J̃´1
u (´JyB̃

´1
yy (´JT

y J̃
´T
u v1 + v2) + v3)

B̃´1
yy (´JT

y J̃
´T
u v1 + v2)

J̃´T
u v1

 . (6.42)

The current arrangement of the Ã´1
ATv shows the following sequence of operation is required

to compute the product: 1) a linear solve of the form J̃T
uw1 = v1, 2) matrix product of the

form w̃2 = JT
y w1, 3) a linear solve of the form B̃yyw2 = ´w̃2 + v2, 4) matrix product of the

form w̃3 = Jyw2, and 5) a linear solve of the form J̃uw3 = ´w̃3 + v3. Hence, the product
Ã´1

ATv requires three linear system solves with the matrices J̃u, B̃yy, and J̃T
u , and two matrix

products with Jy and JT
y . Thus, preconditioners of this form entirely circumvent the need to

form Buu or invert JT
uJu, JT

y Jy, Buu.

125

Considered preconditioners

The effectivity and cost of the anti-triangular constrained preconditioner are determined by
the approximations J̃u and B̃yy. In this work, we consider three choices of J̃u, including
the standard DG preconditioners: (1) J̃u = Ju, (2) J̃u = J̃BJ, and (3) J̃u = J̃BILU. We also
study three choices for B̃yy, including standard preconditioners for general sparse matrices:
(1) B̃yy = Byy, (2) B̃yy = diag(Byy) (point Jacobi), and (3) B̃yy = ilu(Byy) (point ILU0),
where diag(¨) extracts the diagonal and ilu(¨) is the ILU0 factorization. The combinations of
these choices studied in this work are summarized in Table 6.2, including preconditioners
combined with P -multigrid (described in the following sub-section). The preconditioner A0

that uses J̃u = Ju and B̃yy = Byy is not practical as the action of the preconditioner inverse
to a vector will involve linear solves with Ju, JT

u , and Byy; however, it is included in our study
as a benchmark for comparison, representing a best-case scenario in terms of iterative solver
iterations.

P -Multigrid coarse scale corrections

In the context of the DG method, several studies have utilized P -multigrid techniques. These
techniques are employed either as stand-alone methods to iteratively solve the linear system
As = b (Fidkowski et al., 2005) or as preconditioners for iterative solvers like GMRES (Persson
and Peraire, 2008). The term P -multigrid refers to a multi-level approach combined with a
smoother Ã where the high-order linear system (for instance, when P ą 2) and the current
iterate s are projected onto spaces of lower polynomial order. On the fine levels, the solution is
smoothed using an operation of the form s Ð s+Ã´1(b´As). On the coarsest level (typically
with P = 0 or P = 1), the linear system is solved exactly.

Following Persson and Peraire (2008), we employ a two-level P -multigrid strategy for the
linearized HOIST system As = b. In this approach, we first restrict the state variables (u,y)
to the coarse scale. Specifically, u will be restricted to a piecewise constant solution (P = 0),
and y is constrained to a mesh with straight-sided elements (Pc = 1). Upon returning to
the finer level through prolongation, a smoothing operation Ã is applied; for this, one of the
preconditioners outlined in Section 6.2.3 is utilized. This entire process is interpreted as an
operator Ã´1

p0 approximating A´1 and is employed as a preconditioner for a Krylov solver.

The prolongation process involves utilizing a linear operator P represented as

P =

Pu 0 0
0 Py 0
0 0 Pu

 (6.43)

which transfers a solution from the coarse level s̃(0) to the fine level s̃ via s̃ = P s̃(0). Here Pu

represents the prolongation operator for both the DG coefficients u and the Lagrange multiplier
λ. Detailed information about its construction can be found in the work of Fidkowski et al.
(2005). Additionally, the prolongation Py for the mesh y involves inserting high-order nodes
into the linear elements, as illustrated in Figure 6.5. Similarly, a linear restriction operator Q
is applied, defined as

Q =

P T
u 0 0
0 Qy 0
0 0 P T

u

 . (6.44)

126

Figure 6.5: Example of mesh restriction/prolongation for a second order mesh (Pc = 2) with one element (left).
The original element is restricted to Pc = 1 (middle) removing the high order nodes 4, 5, 6. Prolongation
(right) is performed by inserting high order nodes interpolating the low order element.

This operator projects a fine level solution s̃ to the coarse level s̃(0) via s̃(0) = Qs̃. Here
P T
u is used for the restriction of both the DG coefficients u and the Lagrange multiplier λ.

Furthermore, for the mesh variables y, a distinct restriction operator Qy is employed, which
effectively functions as a selection operator, eliminating all high-order nodes (Pc ą 1). For a
single element, this process is depicted in Figure 6.5.

Algorithm 3 Two level P -multigrid
Input: KKT matrix A, right-hand-side b, precomputed prolongation operator P , restriction
operator Q, smoother Ã, and coarse matrix A(0) = QAP

Output: approximate solution s̃ to As = b
Restrict right-hand side: b(0) = Qb
Solve coarse problem: A(0)s̃(0) = b(0)

Prolongate solution to fine level: s̃ = P s̃(0)

Apply smoother: s̃ = s̃+ Ã´1(b ´ As̃)

The entire algorithm (Algorithm 3) is described as follows: given the coarse matrix A(0) :=
QAP , written as

A(0) := QAP =

P T
u BuuPu P T

u BuyPy P T
u JT

uPu

QyB
T
uyPu QyByyPy QyJ

T
y Pu

P T
u JuPu P T

u JyPy 0

 , (6.45)

the right-hand-side is restricted to the coarse level: b(0) = Qb. Then, the coarse problem is
solved: A(0)s̃(0) = b(0) using a direct sparse solve. Subsequently, the solution is prolonged
back to the fine level as s̃ = P s̃(0) and an iterative smoothing process is applied as s̃ =
s̃+ Ã´1(b ´ As̃).

We close this section by summarizing all eight preconditioners that will be studied in Section 6.3
in Table 6.2. As we did not observe a significant benefit in preliminary studies, we do not
combine P -multigrid with the preconditioners where B̃yy = ilu(Byy).

6.3 Numerical experiments

In this section, we present a series of numerical experiments designed to evaluate the perfor-
mance of the introduced preconditioners. First, we define the metrics employed to measure
their effectiveness (Section 6.3.1) and describe two shock-dominated flow benchmarks (Euler
equations) that will be used to study the preconditioners (Section 6.3.2). Second, we present

127

Table 6.2: Summary of all HOIST preconditioners studied.

Preconditioner B̃yy « Byy J̃u « Ju P -multigrid

Ã0 Byy Ju no

ÃBJ diag(Byy) J̃BJ no

ÃBILU diag(Byy) J̃BILU no

ÃBJ + ilu(Byy) ilu(Byy) J̃BJ no

ÃBILU + ilu(Byy) ilu(Byy) J̃BILU no

Ã0p0 Byy Ju yes

ÃBJp0 diag(Byy) J̃BJ yes

ÃBILUp0 diag(Byy) J̃BILU yes

and analyze the results from numerical experiments, focusing on various key HOIST parameters
(Sections 6.3.5-6.3.8). We solely consider the generalized minimum residual (GMRES) Krylov
solver in all studies because the preconditioned system does not have special structure that
would allow us to use a more specialized solver. Finally, we summarize and conclude the results
(Section 6.3.9).

6.3.1 Testing metrics

We assess the performance of the preconditioners based on the number of GMRES iterations
required to achieve a convergence criterion. In practical applications, this involves monitoring
the relative residual norm of the preconditioned system and stopping at the first iteration where

}Ã´1As ´ Ã´1b}

}Ã´1b}
ă tol, (6.46)

where tol ą 0 is a specified tolerance. It is important to note that this convergence criterion is
preconditioner-dependent. To ensure a fair comparison, we opt for a convergence criterion
based on the exact solution sex satisfying Asex = b:

}sex ´ s}

}sex}
ă tol, (6.47)

with tol = 10´3. We also set the maximal GMRES iterations to be 1000.

The parameter space influencing the effectiveness of preconditioners for the HOIST method
is vast and multifaceted. It encompasses choices related to the equations, specific problem
formulations, the number of elements |Kh| utilized, the polynomial degrees P and Pc, the state
zk around which the system is linearized, and finally, the selection of γ and κ, which significantly
affect the condition number of the system. Studying all these dimensions collectively is
infeasible. Consequently, we will conduct separate investigations to gauge the relative impact
of each of these parameters.

128

Table 6.3: Legend for plots comparing (# GMRES Iterations) for each preconditioner
Ã0 Ã0p0 ÃBILU ÃBILUp0 ÃBJ ÃBJp0 ÃBILU + ilu(Byy) ÃBJ + ilu(Byy)

() () () () () () () ()

6.3.2 Description of examined cases

In this work, we focus exclusively on experiments related to the steady, inviscid two-dimensional
Euler equations (Section 3.4.3). Specifically, we consider two problems with unique solution
features: supersonic flow around a cylinder and supersonic flow over a diamond-shaped
obstacle in a tunnel.

Supersonic flow over a cylinder

In our first problem, we explore a supersonic flow (Mach 2) over a cylinder to demonstrate the
preconditioners performance for problems with curved shocks.

´4 0

´8

0
1

8

0 0.5 1.5 2.5 5

0
0.25

1.5

Figure 6.6: Geometry and boundary conditions for the cylinder (left) and diamond (right) test cases. Boundary
conditions: slip walls (), Mach 2 supersonic inflow (), and supersonic outflow ().

The domain (Figure 6.6, problem: cylinder) is discretized using a coarse unstructured
triangular mesh with 90 elements and throughout most of our investigations, we utilize a
third-order approximation for the flow variables and the geometry (P = Pc = 2), allowing the
HOIST method to iterate to k = 100. A first-order finite volume solution is used for initialization
of the method and it converges to a mesh that tracks the shock. Figure 6.7 displays the density
for selected iterations k = 1, 50, 100 obtained for this configuration. For the upcoming studies,
the corresponding linear systems derived from the states z1, z50, z100 are utilized to evaluate
the performance of the preconditioners.

129

11 2 3 4.4

Figure 6.7: Selected P = Pc = 2 HOIST iterations k P t1, 50, 100u (left-to-right) for the cylinder test case
(density) shown with and without mesh edges.

11 2 3 4.4

Figure 6.8: Selected P = Pc = 2 HOIST iterations k = 100 and different refinement levels nref = 1, 2, 3 (left-to-
right) for the cylinder test case (density) shown with and without mesh edges.

130

Additionally, we investigate the impact of mesh refinement (|Kh|) and the approximation orders
(P and Pc) on the performance of the preconditioners. We apply the HOIST method to the
bow shock problem, incorporating three additional refinement levels. Figure 6.8 illustrates
the density of converged solutions (k = 100) and corresponding meshes resulting from this
refinement process. To study the impact of polynomial degree, we first compute the HOIST
solution on a grid with solution degree P = 4 and mesh degree Pc = 4. To obtain comparable
lower order solutions, we restrict the (P , Pc) = (4, 4) solution to degrees (P , Pc) = (3, 3),
(P , Pc) = (2, 2), (P , Pc) = (1, 1), and (P , Pc) = (0, 1) (Figure 6.9). We opt for this approach
over computing a HOIST solution at a given polynomial degree to avoid situations where the
HOIST iterations do not converge to a tracked configuration due to insufficient resolution.

For all scenarios considered, the HOIST solver parameters (Huang and Zahr, 2022) are set as
follows

• Adaptive regularization (γ0, γmin, τ, σ1, σ2) = (10´2, 10´2, 10´1, 10´2, 10´1)

• Adaptation of κ (κ0, κmin, υ, ξ) = (1, 0, 1, 0.8)

• Mesh operations (c1, c2, c3, c4, c1
4) = (0.025, 10´10, 5, 0.025, 10´2)

• Reinitialization procedure (c5, c6, c7, c8) = (0.5, 10´2, 0.5, 10´2).

Note, that for brevity, these parameters have not been explicitly introduced in this manuscript
and their notation may overlap with notations used in other chapters. A complete description of
all parameters and the overall algorithm can be found in the work of Huang and Zahr (2022).

11 2 3 4.4

Figure 6.9: HOIST iterations (P = Pc = 4) projected to P = 0, Pc = 1 for k = 1 (left) and k = 100 (middle),
P = Pc = 1 for k = 100 (right) for the cylinder test case (density) shown with and without mesh
edges.

131

Supersonic flow over a two-dimensional diamond in a tunnel

Next, we study supersonic flow (Mach 2) passing over a two-dimensional diamond-shaped
object within a tunnel (Figure 6.6). This test case, denoted as diamond, presents complex
features such as reflecting, intersecting, and curved shocks. To discretize the domain, we
generate an unstructured triangular mesh of 220 elements using DistMesh (Persson and Strang,
2004). Similar to previous cases, a third-order approximation is employed for both the geometry
and flow variables (P = Pc = 2). Initializing the HOIST method with this unstructured mesh
and the corresponding first-order finite volume solution, the method converges to a shock-
aligned mesh that accurately represents all shocks and their intersections. Density plots of
iterations at specific points in the optimization process (k = 1, 150, 300) are highlighted in
Figure 6.10. The corresponding states z1, z150, z300 will be utilized for the subsequent analysis.

0.7 1 2 3 4.1

Figure 6.10: Selected P = Pc = 2 HOIST iterations k P t1, 150, 300u (top-to-bottom) for the diamond test case
(density) with and without mesh edges.

For all scenarios considered, the HOIST solver parameters (Huang and Zahr, 2022) are set as
follows

• Adaptive regularization parameters (γ0, γmin, τ, σ1, σ2) = (10´2, 10´2, 10´1, 10´2, 10´1)

• Mesh quality adaptation parameters (κ0, κmin, υ, ξ) = (1, 0, 1, 0.8)

• Mesh operation parameters (c1, c2, c3, c4, c1
4) = (0.25, 10´10, 4, 0.3, 10´2)

• Reinitialization parameters (c5, c6, c7, c8) = (0.5, 10´2, 0.5, 10´2).

132

10´7 10´4 10´1 102

102

103

10´7 10´4 10´1 102

102

103

10´7 10´4 10´1 102

102

103

10´7 10´4 10´1 102

102

103

κ
10´7 10´4 10´1 102

102

103

κ
10´7 10´4 10´1 102

102

103

κ

Figure 6.11: (# GMRES iterations) vs. mesh quality parameter κ for both test cases (top: cylinder, bottom:
diamond) (legend in Table 6.3) for polynomial degree P = Pc = 2, regularization parameters γ = 0.1,
and states zk (cylinder: k = 1, 50, 100, diamond: k = 1, 150, 300) (left-to-right).

6.3.3 Influence of mesh quality parameter κ

In our first experiment, we aim to measure the impact of the choice of κ by considering both
test cases (cylinder and diamond with P = Pc = 2) with the linear system formed from
specific states zk corresponding to different HOIST iterations (k = 1, 50, 100 for cylinder and
k = 1, 150, 300 for diamond) with a single regularization parameter of γ = 0.1. For these six
configuration, we compute the HOIST matrix for κ = t10´10, 10´9, . . . , 102u and measure the
needed GMRES iterations for each preconditioner tested (Table 6.2) (results in Figure 6.11).

Analyzing the results shown in Figure 6.11, we make the following observations. Most precon-
ditioners demonstrate significant deterioration after a critical κ, usually in the range κ P [0.1, 1].
As κ increases beyond this range, the GMRES iterations of all preconditioners except Ã0 and
Ã0p0 quickly increase, which suggests the approximations to Byy (the only block depending
on κ) deteriorates as κ rises beyond the critical value. Fortunately, such large κ values rarely
occur in the method, mitigating this sensitivity issue. Intriguingly, when κ ă 0.1, no sensitivity
was observed for any preconditioner so we fix κ = 10´7 for the remaining studies in this work.
Furthermore, we observe that as κ rises beyond 0.1, the benefit of P -multigrid diminishes.

For all values of κ, the expensive, best-case scenario Ã0 preconditioner outperforms all others
across all states considered for both problems. It is also interesting to note that P -multigrid
actually degrades the performance of the Ã0, in some cases making it worse than precondition-
ers that use approximate inverses. For the ÃBILU preconditioners, the addition of P -multigrid
and especially the inclusion of ilu(Byy) as an approximation to Byy significantly enhances its
performance (in some cases, reducing the GMRES iterations by a factor of two or more). The
ÃBJ preconditioners also benefit from both P -multigrid and the inclusion of ilu(Byy) as an

133

approximation to Byy; however, in this case, P -multigrid provides the greater reduction in
GMRES iterations. Finally, as expected, the ÃBILU outperform the ÃBJ preconditioners across
test cases and states.

6.3.4 Influence of state zk

In our second experiment, we investigate the dependence of the preconditioner performance
on the linearization state zk. We fix the mesh quality parameter κ = 10´7 and build six test
cases from the two problems (cylinder and diamond with P = Pc = 2) and three choices
for the regularization parameter γ P t10´3, 10´2, 10´1u. For each test case and preconditioner
(Table 6.2), we record the number of GMRES iteration required to reach the convergence
criteria (6.47) at every 5th HOIST iteration, i.e., k P t1, 5, 10, 15, ..., 150u for cylinder and
k P t1, 5, 10, 15, ..., 300u for diamond(Figure 6.12).

0 50 100

102

103

0 50 100

102

103

0 50 100

102

103

0 150 300

102

103

SQP Iteration (k)
0 150 300

102

103

SQP Iteration (k)
0 150 300

102

103

SQP Iteration (k)

Figure 6.12: (# GMRES iterations) vs. state zk for both test cases (top: cylinder, bottom: diamond) (legend
in Table 6.3) for polynomial degree P = Pc = 2, mesh quality parameter κ = 10´7, and different
regularization parameters γ = 10´3, 10´2, 10´1 (left-to-right).

Analyzing the results shown in Figure 6.12, we make the following observations. First, the
linearization state has a modest impact on the GMRES iterations. In the diamond case,
the iterations remain nearly constant, with minor fluctuations occurring due to abrupt state
changes (e.g., solution reinitialization and element collapses). The cylinder case exhibits
a more pronounced state dependency, particularly for larger γ, where the iteration count
tends to decrease as the final state is approached. Once again, the Ã0 demonstrates superior
performance across all scenarios and ÃBILU + ilu(Byy) is the best practical preconditioner (i.e., not
involving the expensive Ju, JT

u , and Byy inverses). Again, the P -multigrid counterpart of Ã0,

134

Ã0p0, performs noticeably worse, in many cases requiring more iterations that ÃBILU + ilu(Byy)
and often demonstrating similar performance to ÃBILU and ÃBILUp0, despite the use of exact
inverses. Unlike the previous study, there is no clear conclusion regarding ÃBILU and ÃBILUp0.
Finally, the addition of P -multigrid and the inclusion of ilu(Byy) as an approximation to
Byy enhance the performance of the ÃBJ preconditioner with ÃBJ + ilu(Byy) holding a clear
advantage for smaller values of γ.

6.3.5 Influence of regularization parameter γ

In this experiment, we study the influence of the Hessian regularization parameter γ on the
performance of the preconditioners considered (Table 6.2). We build six test cases from the
two problems (cylinder and diamond with P = Pc = 2) and three states (k P t1, 50, 100u

for cylinder and k P t1, 150, 300u for diamond). Furthermore, we fix the mesh quality
parameter at κ = 10´7 and vary the regularization parameter γ P t10´10, 10´9, . . . , 101u. The
resulting GMRES iterations needed to reach the convergence criteria (6.47) for each of these
cases are shown in Figure 6.13.

10´10 10´4 101
101

102

103

10´10 10´4 101

102

103

10´1010´710´410´1101
101

102

103

10´1010´710´410´1101

101

102

103

γ
10´1010´710´410´1101

101

102

103

γ
10´1010´710´410´1101

101

102

103

γ

Figure 6.13: (# GMRES iterations) vs. regularization parameter γ for both test cases (top: cylinder, bottom:
diamond) (legend in Table 6.3) for polynomial degree P = Pc = 2, mesh quality parameter κ = 10´7,
and different states zk (cylinder: k = 1, 50, 100, diamond: k = 1, 150, 300) (left-to-right).

Analyzing the results shown in Figure 6.13, we make the following observations. Decreasing the
parameter γ reduces the regularization applied to the matrix Byy, leaving the ill-conditioned
(or singular) Gauss-Newton Hessian in the limit where γ = 0. As expected, this leads to a
noticeable rise in the number of GMRES iterations, particularly evident in the case of Ã0 and
Ã0p0. However, for the other preconditioners, we observe a relative indifference to variations for
γ P [10´1, 101], particularly in later SQP iterations (k ą 100). This suggests that in this range,

135

the loss in accuracy incurred by the approximations of Ju and Byy dominates ill-conditioning
effects.

The results suggest the presence of a problem-dependent threshold value for γ (cylinder:
10´5, diamond: 10´9). Below this threshold, the number of iterations ceases to increase
significantly. This phenomenon is especially prominent in the case of cylinder, whereas for
diamond, most preconditioners did not converge reaching the maximum number of iterations
below γ = 10´6. Additionally, these findings imply the possibility of establishing a lower
limit for the minimum regularization parameter γmin that should be set in the HOIST method.
The results obtained for diamond suggest that γmin should not be less than 10´4, as the
iteration counts become impractical beyond this threshold. Considering the observed increase
in iteration numbers with higher polynomial degrees and finer meshes (discussed in upcoming
subsections), setting a more conservative lower bound, for instance, γmin = 10´2, is advisable.

For the BJ-based preconditioners (ÃBJ, ÃBJp0, ÃBJ + ilu(Byy)), the trends observed earlier
remain evident: for large regularization parameters γ P [10´1, 101], ÃBJp0 outperforms
ÃBJ + ilu(Byy) while the opposite is true for γ ď 10´2. Both of these preconditioners perform
favorly compared to ÃBJ. The scenario is slightly different for the BILU-based preconditioners
(ÃBILU, ÃBILUp0, ÃBILU + ilu(Byy)). In this case, ÃBILU + ilu(Byy) outperforms both ÃBILU and
ÃBILUp0 across all cases, with the performance gap between ÃBILUp0 and ÃBILU + ilu(Byy) widen-
ing for γ ď 10´2. The utilization of P -multigrid seems to add value only for γ ą 10´2, as
ÃBILU often exhibits similar or even better iteration counts than ÃBILUp0.

6.3.6 Influence of number of polynomial degrees (P , Pc)

In this experiment, we study the effect of the polynomial degree (P , Pc) on the GMRES
iterations. We test each of our proposed preconditioners (Table 6.2) against six cases built
from three states zk for k P t1, 50, 100u, two regularization parameters γ P t10´3, 10´1u, and
a fixed mesh quality parameter κ = 10´7 for the cylinder problem. A P = Pc = 4 HOIST
simulation is used to compute the initial states (zk for k = 1, 50, 100), which are subsequently
restricted to polynomial degrees (P , Pc) P t(0, 1), (1, 1), (2, 2), (3, 3), (4, 4)u. As discussed in
Section 6.3.2, this approach is taken to yield a well-defined, systematic study and avoid HOIST
convergence issues that can arise when the grid is sufficiently underresolved. The measured
GMRES iterations required to achieve the convergence criteria (6.47) are depicted in Figure
6.14.

Analyzing the results shown in Figure 6.14, we make the following observations. First, increas-
ing the polynomial degree on a fixed mesh results in a direct escalation of GMRES iterations for
all preconditioners with more pronounced growth rate for the smaller regularization parameters
γ = 10´3. The P -multigrid versions of the BJ (ÃBJp0) and BILU (ÃBILUp0) preconditioners are
sensitive to the polynomial degree as their iteration count approaches that of the original BJ
(ÃBJ) and BILU (ÃBILU) preconditioner as the polynomial degree increases. Both the original
and P -multigrid version of the BJ and BILU are outperformed by inclusion of ilu(Byy) as
an approximation to Byy, where ÃBJ + ilu(Byy) is the most effective BJ preconditioner and
ÃBILU + ilu(Byy) is the most effective BILU preconditioner. Furthermore, the ÃBILU + ilu(Byy)
preconditioner is the most effective practical preconditioner, only being outperformed by the

136

0 1 2 3 4

102

103

0 1 2 3 4

102

103

0 1 2 3 4

102

103

0 1 2 3 4

102

103

pol. degree (P)
0 1 2 3 4

102

103

pol. degree (P)
0 1 2 3 4

102

103

pol. degree (P)

Figure 6.14: (# GMRES iterations) vs. polynomial degrees (P , Pc) for different regularization parameters γ = 10´3

(top) and γ = 10´1 (bottom) (legend in Table 6.3), mesh quality parameter κ = 10´7, and different
states zk, (k = 1, 50, 100) for the cylinder problem. For P = 0, the coarse-scale updates from the
P -multigrid preconditioners solve the problem directly, which only requires one GMRES iteration.
These results are omitted for clarity.

best-case scenario Ã0 (and, in some cases, its P -multigrid variant). The ÃBILU + ilu(Byy) pre-
conditioner also exhibits the slowest iteration growth with polynomial degree, particularly for
the larger regularization parameter γ = 10´1.

6.3.7 Influence of number of mesh elements |Kh|

In this experiment, we study the dependency of the GMRES iterations on the number of mesh
elements. We test each of our proposed preconditioners (Table 6.2) against six cases built
from three states zk for k P t1, 50, 100u, two regularization parameters γ P t10´3, 10´1u, and
a fixed mesh quality parameter κ = 10´7 for the cylinder problem. For each of these cases,
we consider four refinement levels (Figure 6.8) at fixed polynomial degree P = Pc = 2 with
element count |Kh| P t70, 130, 260, 1000u. The measured GMRES iterations required to achieve
the convergence criteria (6.47) are depicted in Figure 6.15.

Analyzing the results shown in Figure 6.15, we make the following observations. The exact
preconditioner Ã0 demonstrates remarkable insensitivity to the number of elements. Its
multigrid counterpart, Ã0p0, while less effective, exhibits a similar stable trend for the γ = 10´1

case. In some cases, the GMRES iteration count slightly decreases as the number of elements
rises. For the BJ preconditioners, ÃBJ + ilu(Byy) is most effective for the smaller γ = 10´3 (the
other BJ variants often reach the maximum iterations without convergence), whereas ÃBJp0 is
the most effective BJ preconditioner for γ = 10´1 (although usually only slightly outperforms
ÃBJ + ilu(Byy)). Similarly, for the smaller γ = 10´3, the ÃBILU + ilu(Byy) preconditioner is clearly

137

102 103

103

102 103

102

103

102 103

102

103

102 103

102

103

#Elements (|Kh|)
102 103

102

103

#Elements (|Kh|)
102 103

102

103

#Elements (|Kh|)

Figure 6.15: (# GMRES iterations) vs. (# Elements |Kh|) for different regularization parameters γ = 10´3 (top)
and γ = 10´1 (bottom) (legend in Table 6.3), polynomial degree P = Pc = 2, mesh quality parameter
κ = 10´7, and different states zk (cylinder: k = 1, 50, 100, diamond: k = 1, 150, 300) (left-to-
right).

superior to the other BILU variants and exhibits the slowest growth as the element count rises.
The ÃBILU + ilu(Byy) is usually the best BILU preconditioner for the larger γ = 10´1, although
the difference between the three BILU preconditioners is less dramatic for this scenario.

6.3.8 Comparison of preconditioners keeping original κk, γk

In our final experiment, we investigate GMRES iterations across the entire optimization history
for both problems (cylinder and diamond with P = Pc = 2). For this experiment, we use
the adaptive mesh quality κk and regularization parameters γk presented in the work by Huang
and Zahr (2022), with adaptation parameters in Section 6.3.2. The measured GMRES iterations
required to achieve the convergence criteria (6.47) for each state zk (k P t1, 2, . . . , 100u for
cylinder and k P t1, 2, . . . , 300u for diamond) encountered during the HOIST iterations are
depicted in Figure 6.16. The evolution of γk and κk are also shown in this figure.

Analyzing the results shown in Figure 6.16, we observe the iteration count closely correlates to
the γ value, as expected from Section 6.3.5, in that the GMRES iterations rise as γ decreases.
However, extreme values of γ are not encountered during the adaptation, which avoids excessive
GMRES iteration counts. Abrupt changes in GMRES iterations are associated with abrupt
alterations in γ (e.g., in the cylinder case around k = 50, where γ is nearly equal to its initial
value), which occur after elements are collapsed. Generally, larger γ values tend to benefit the P -
multigrid preconditioners the most, granting them an advantage over their counterparts (though
Ã0 is an exception due to the overall poor performance of Ã0p0). For the BJ preconditioners,
ÃBJp0 consistently outperforms ÃBJ and is on par with ÃBJ + ilu(Byy) for the diamond cases.

138

0 50 100

102

103

0 150 300

101

102

103

0 50 100

10´2

10´1

100

SQP Iteration (k)
0 150 300

10´2

10´1

100

SQP Iteration (k)

Figure 6.16: Top: (# GMRES iterations) vs. states zk using adaptive mesh/regularization parameters κk, γk (legend
in Table 6.3) for both test cases with P = Pc = 2 (left: cylinder, right: diamond). Bottom: History
of the adaptive mesh quality parameter κk () and regularization parameter γk ().

For the cylinder problem, ÃBILU + ilu(Byy) performs better in the low γ regime. Among the
BILU preconditioners, ÃBILU + ilu(Byy) consistently performs the best across all k, only matching
ÃBILUp0 for high γ values. As expected from the previous sections, ÃBILU + ilu(Byy) is the most
effective practical preconditioner as it is only consistently outperformed by the best-case (but
impractical) Ã0, making it our preferred preconditioner.

6.3.9 Conclusion

We rigorously evaluated all preconditioners on two compressible inviscid flow problems by mea-
suring the number of GMRES iterations needed to reach a set relative error norm. Specifically,
we investigated two steady two-dimensional (2D) problems: a flow over a cylinder featuring a
single bow shock and a flow over a diamond shaped obstacle in a tunnel featuring multiple
straight-sided shocks, shock reflections and shock-shock interactions. The preconditioners were
then tested at different stages of the optimization method, varying each of its key parameters.

139

Our findings showed that the regularization parameter γ significantly influences the GMRES it-
eration count, with the P -multigrid scheme being beneficial primarily under high regularization
conditions. The iteration count was notably affected by the polynomial degree of the solution
and the mesh in scenarios of low regularization. In contrast, the number of mesh elements
and the mesh quality parameter κ had less impact on the GMRES iterations, with the latter
being negligible for commonly used parameter-ranges. Our results particularly highlighted
the effective performance of BILU-based preconditioners in various scenarios. The best and
most reliable BILU variant used an ILU0 approximation to Byy. We also determined that the
two-level P -multigrid scheme did not offer enough benefits to warrant its computational cost.

140

7 Conclusion

This dissertation has introduced significant advancements in the field of implicit shock track-
ing (IST) methods for compressible flows with shocks, through the development of a novel
implicit extended discontinuous Galerkin (XDG) shock tracking method and the development
of specialized preconditioners for IST linearized optimality systems. This concluding chapter
summarizes these contributions and outlines promising future research directions that build
on the findings presented.

This chapter is structured as follows: in Section 7.1, we provide a comprehensive summary of
the key contributions and the impact of this work for implicit XDG shock tracking (XDG-IST),
followed by a discussion of potential extensions and an exploration of future avenues of research
that address current limitations and open questions. Section 7.2, serves the same purpose for
the work on preconditioners for IST. Lastly, we synthesize the contributions for both topics in
Section 7.3.

7.1 Implicit XDG shock tracking

We start summarizing the contributions for XDG-IST methods (Section 7.1.1) and outline
promising future research directions that build on the findings presented (Section 7.1.2).

7.1.1 Summary of contributions

In Chapter 4, we introduced the novel XDG-IST method. It supports a level set ϕb for geom-
etry immersion (Geisenhofer et al., 2019), and an additional shock level set ϕs, the latter
being fitted to discontinuous solution features by an optimization algorithm. Within cut-cells,
the DG approximation space is enriched with XDG basis functions, allowing for an accurate
representation of solution discontinuities along the interfaces which are implicitly defined
by the level sets. To obtain high-order shock-aligned XDG solutions, the presented shock
tracking method solves a constrained optimization problem using a quasi-Newton sequential
quadratic programming (SQP) solver. Solution extrapolation in newborn cut-cells, adaptive
regularization and globalization through line search subroutines are used to improve the
stability of the method. Additionally, the method supports different discretization approaches
for the shock level set function, including discontinuous Galerkin (DG), continuous Galerkin
(CG), global, and spline-based representations. We also presented robustness measures to
enhance the convergence of the solver: cell agglomeration, solution re-initialization, and the
P -continuation strategy.

141

The novel method was implemented into the bounded support spectral solver (BoSSS) frame-
work (Kummer et al., 2024), an XDG-based open-source software for the simulation of fluid
dynamics, and we have equipped the electronic version of this dissertation with hyperlinks,
connecting the formal presentation with corresponding lines of code, fostering transparency,
accessibility and re-usability. All studies presented can be reproduced by running corresponding
Jupyter notebooks, with a single mouse-click.

Contrary to mesh-based IST, the novel XDG method circumvents complex mesh-operations,
which is particularly promising for transient simulations with moving shocks and three-
dimensional (3D) simulations. Additionally, thanks to the immersed boundaries employed,
the XDG shock tracking method comes with the benefit of circumventing the generation of
boundary fitted meshes.

In Chapter 5, a series of test cases were developed and we showed numerical results for the
XDG-IST method across four different systems of conservation laws: the one-dimensional (1D)
space-time Burgers equation, the 1D space-time advection equation, the 1D space-time Euler
equations, and the steady two-dimensional (2D) Euler equations. Our results showcased the
method’s ability to accurately track both straight-sided and curved discontinuities, even when
initiated with non-sub-cell accurate initial guesses. In the context of compressible flows with
shocks, we successfully applied the XDG-IST method to supersonic flow over an inclined plane,
over a blunt body and to 1D shock-acoustic-wave interaction problems.

Throughout our research, we evaluated various configurations of the XDG-IST method to
enhance its effectiveness and efficiency. Specifically, we tested three distinct level set discretiza-
tions and we investigated the impact of different objective functions on the method. The results
of our studies indicate that the XDG-IST method performs best when utilizing spline-based
level sets as well as the objective function based on the full enriched residual. Further analysis
involved comparing various numerical fluxes employed at the shock interface edges for the
steady 2D Euler equations, showing that only Godunov’s flux and Roe’s flux are stable and
consistent enough to be used there as numerical fluxes, and that Roe’s flux is a viable alternative
to the more expensive Godunov’s flux.

Also, two convergence studies were conducted using the Mach 4 bow shock test case and a
1D shock-acoustic-wave interaction problem. The results showcased high-order convergence
properties of the XDG-IST method, sub-optimal for the Mach 4 bow shock and super-optimal
for the 1D shock-acoustic-wave interaction problem.

Additionally, for the same test cases, we compared the accuracy of the XDG shock tracking
method against a traditional DG-immersed boundary method (IBM) implemented within the
BoSSS framework, which incorporates a shock capturing strategy based on artificial viscosity.
The presented results indicated the superiority of the XDG-IST method over the DG-IBM
method, both in terms of accuracy and convergence properties for the considered examples.
Remarkably, for the 1D shock-acoustic-wave interaction problem, only the XDG-IST method
showed high-order convergence. For the DG-IBM method the same low-order convergence
rates were observed for all polynomial degrees (P = 1, 2, 3).

Lastly, a study measuring the computational performance of the XDG-IST method was con-
ducted, showing that the biggest driver in terms of computational costs is the assembly of the
residual Jacobian with respect to the level set degrees of freedom (DOFs).

142

7.1.2 Outlook

While our examples were relatively straightforward, featuring single shocks without complex
patterns, our framework holds promise for handling more difficult discontinuity scenarios in
PDEs. However, to enhance the method’s versatility and facilitate its adaptation to a broad
spectrum of high-order XDG shock tracking applications, including its extension to three
dimensions, substantial further inquiry is essential.

Shock level set All components of the XDG-IST method can be directly extended to 3D
contexts except for the current preferred level set representation. The spline-based level
set, optimized for computational efficiency and C1-continuity, is presently limited to shocks
that can be described solely as 1D height functions and to applications in two dimensions.
Consequently, investigating alternative level set representations with greater flexibility while
carefully managing associated computational costs for Jacobians emerges as a research priority.

Potential avenues of exploration include strategies such as representing shocks using polygo-
nal meshes in conjunction with explicit quadrature rules tailored for cut-cells. Additionally,
investigating cell-local continuous level sets featuring displacement fields holds significant
promise. Such approaches offer the potential to replace iterative re-computation procedures
with analytical transformations, thereby enhancing the method’s effectiveness for XDG shock
tracking in 3D scenarios.

Robustness Another critical aspect for improvement is enhancing the robustness of the
XDG-IST method. In our observations for the Mach 4 bow shock scenario (discussed in Section
5.1.3), we noted instances where the method failed due to slight variations in the initial guess
or method parameters. This highlights the necessity for further robustness measures. One
potential enhancement could involve refining objective functions by incorporating a component
that assesses the quality of the shock interface, similar to mesh-based IST methods.

Additionally, adopting a Mach-continuation strategy as proposed by Huang et al. (2023) could
be beneficial for handling compressible flows with challenging high Mach numbers. This
strategy involves starting with a solution computed at a low Mach number, e.g., Ma = 1.5, and
progressively increasing it until the desired Mach number is attained. Furthermore, utilizing
level sets with even smoother interfaces, such as those based on Bernstein polynomials, may
improve robustness. Finally, addressing the sensitivity of the method to parameters like the
agglomeration parameter, background mesh selection, and initial guess quality is crucial for
future investigations.

Space-time simulations In this dissertation, we computed solutions to three 1D unsteady
conservation laws using a space-time formulation, solving for the entire time interval. While
effective for simpler problems, we encountered difficulties in computing solutions for the 1D
Euler equations at Ma ą 3, particularly in the context of the well-known 1D Shu-Osher problem
(Shu and Osher, 1988). In this problem, a shock propagates through a pressure wave, leading
to amplification and steepening of the pressure wave due to shock-pressure-wave interactions.

143

Other IST methods utilize a slab-based strategy, dividing the time interval of interest and
sequentially computing the solution, with the previously converged time-step serving as the
initial boundary for the next one (Corrigan et al., 2019b; Naudet and Zahr, 2024). We believe
that adopting such a slab-based strategy, potentially combined with a Mach-continuation
strategy as mentioned earlier, could enhance the stability of the shock tracking method for
space-time problems.

Method of lines for transient simulations In future research, it would be valuable to explore
an XDG shock tracking method employing a method of lines strategy for time integration. This
approach avoids the computational burden of four-dimensional computations necessary for
3D space-time problems. Additionally, mesh-based IST methods, such as the one discussed by
Shi et al. (2022), necessitate cumbersome re-meshing for the method of lines strategy, as only
certain parts of the mesh move with the shock. This can result in inadequately resolved regions
upstream and excessively resolved regions downstream of the shock, particularly without
artificial mesh adaptation.

In contrast, level-set-based XDG shock tracking, utilizing a fixed grid and featuring a flexible
shock interface capable of moving freely throughout the domain, may offer advantages by
eliminating the need for re-meshing entirely. A hypothetical unsteady XDG shock tracking
method could be devised as a predictor-corrector scheme, where an explicitly computed level
set time-step initially serves as a predictive first guess, later refined by an optimizer. Exploring
such an approach could enhance the efficiency and accuracy of XDG shock tracking methods
for unsteady problems.

7.2 Preconditioners for implicit shock tracking

In this section, the contributions to the development of novel preconditioners for IST are
summarized in Section 7.2.1, followed by an outlook for future avenues of research in Section
7.2.2.

7.2.1 Summary of contributions

In Chapter 6, we introduced matrix-based constrained preconditioners for high-order IST meth-
ods and conducted extensive performance tests across different optimization solver parameters.
We primarily examined the mesh-based high-order implicit shock tracking (HOIST) method
(Zahr et al., 2020), utilizing the enriched DG residual as the objective function. However, these
preconditioners are also suitable for other IST approaches.

We developed a series of approximate block anti-triangular preconditioners by analyzing the
block structure and sparsity of the IST linear system. These preconditioners, which include com-
mon DG techniques like block Jacobi and block incomplete LU factorization (BILU), incorporate
minimal discarded fill reordering and circumvent the explicit formation of memory-intensive
sub-matrices Buu and Byu, ultimately enhancing efficiency. Additionally, we introduced a
two-level P -multigrid scheme compatible with any of these preconditioners.

144

We conducted a rigorous evaluation of our preconditioners on two compressible inviscid 2D flow
problems, assessing the number of GMRES iterations required to achieve a specified relative
error norm. The preconditioners were tested at different stages of the HOIST method, with
variations in key parameters. Our results indicated that only the regularization parameter γ
and the polynomial degree of both the solution and the mesh significantly affected the GMRES
iteration count. Notably, BILU-based preconditioners demonstrated effective performance
across different scenarios. The most effective and reliable BILU variant employed an ILU0
approximation to Byy. Additionally, we found that the two-level P -multigrid scheme did not
provide sufficient benefits to justify its computational cost.

7.2.2 Outlook

Several interesting research opportunities exist for developing efficient preconditioners for IST.

Performance in massively parallel 3D settings It is imperative to investigate how the pro-
posed preconditioners perform in massively parallel computing environments and when applied
to 3D settings. Future studies should evaluate both the number of iterations required to achieve
convergence and the actual computational time, i.e. both CPU and wall time. Our most reliable
preconditioner was a BILU variant which employed a global ILU0 approximation to Byy. In
massively parallel settings, the ILU0 approximation will need to be replaced by a parallel
variant. For this variant additional fill-in is discarded if it would result from communication
between distinct processes. This adjustment, converging to a point Jacobi approximation in
the limit where each process deals with one element, will certainly impact the preconditioner’s
performance.

Multigrid approach In our investigations, we found that the multigrid approach did not
provide sufficient advantages to justify its computational expense. Interestingly, when using
the best-case preconditioner, which does not involve approximations for Ju and Byy, adding
multigrid increased iteration numbers, contrary to its expected behavior. However, it improved
iteration numbers for other tested preconditioners. It’s worth delving deeper into this dis-
crepancy to potentially refine the multigrid approach. One avenue for exploration leads to
the low-order spaces utilized at the coarse scale and the associated projections within the
restriction operators. By experimenting with different spaces or introducing L2-projections,
we may enhance outcomes.

Effectiveness ofmultigrid in viscous problems Secondly, the benefits of using theP -multigrid
approach might become more pronounced for other problems, in particular as viscosity is
introduced, which was observed by Persson and Peraire (2008) for DG methods. In their
study, Persson and Peraire (2008) examined BILU-based preconditioners with and without
P -multigrid for the advection diffusion equation using different amounts of diffusion. When
no diffusion was prescribed, P -multigrid added no value, but for higher diffusion amounts
it significantly enhanced performance. Hence, evaluating the proposed preconditioners for
viscous problems in the context of IST marks an interesting avenue for further research.

145

Application to other implicit shock tracking methods Testing the preconditioners for other
IST methods, such as the XDG method introduced in this work, could also yield valuable
insights. A key aspect to consider for the XDG-IST method, is the variation in size and structure
of the sub-matrix Bϕϕ resulting from the discretization of the level set. If, for instance, a DG
level set is employed, the matrix will exhibit a block structure typical of DG methods, suggesting
that DG-specific preconditioners might be effective. Conversely, a global representation of the
level set results in a smaller, denser matrix, where simpler preconditioning approaches like
ILU0 could be effective, even in large-scale applications.

7.3 Final remarks

In conclusion, we have introduced significant advancements in the field of implicit shock
tracking, a high-order technique currently under investigation for the accurate and robust
simulation of compressible flows featuring shocks. First, we have enhanced IST methods with
the innovative XDG-IST method, which integrates the IST framework with a cut-cell technique,
thus avoiding complex mesh manipulations. Although this method is in its early stages and
still faces some technical challenges, it shows promise as a potential IST method of choice for a
subset of compressible flow problems with dynamic shocks and fewer discontinuities.

Second, we have developed the first family of preconditioners for IST, a necessary building-block
for enabling the application of IST methods to large-scale, real-world problems. Therefore,
we have provided essential components that will allow IST methods to become preferred
methodologies for simulating high-speed flows. In the future, IST methods could significantly
support aerospace engineers in the development and testing of new technologies, offering
improved accuracy and efficiency compared to current standards. This aligns with broader
goals of achieving more sustainable and convenient aviation technologies, reducing noise and
pollutant emissions, and facilitating progress towards supersonic civil aircrafts.

146

Bibliography

Anderson, J. D. (2003). Modern compressible flow: With historical perspective. 3rd ed. McGraw-
Hill series in aeronautical and aerospace engineering. tex.lccn: QA911 .A6 2003. Boston:
McGraw-Hill. isbn: 978-0-07-242443-0.

Assonitis, A., M. Ciallella, R. Paciorri, M. Ricchiuto, and A. Bonfiglioli (2022). “A new shock-
fitting technique for 2-D structured grids”. en. In: AIAA SCITECH 2022 Forum. San Diego,
CA & Virtual: American Institute of Aeronautics and Astronautics. isbn: 978-1-62410-631-6.
doi: 10.2514/6.2022-2008.

Assonitis, A., M. Ciallella, M. Ricchiuto, and L. Cirrottola (2023). “Numerical simulations
of shock interactions on 3D structured grids using a shock-fitting approach”. en. In: AIAA
SCITECH 2023 Forum. National Harbor, MD & Online: American Institute of Aeronautics
and Astronautics. isbn: 978-1-62410-699-6. doi: 10.2514/6.2023-2135.

Baines, M. J., S. J. Leary, and M. E. Hubbard (2002). “Multidimensional Least Squares Fluctua-
tion Distribution Schemes with Adaptive Mesh Movement for Steady Hyperbolic Equations”.
en. In: SIAM Journal on Scientific Computing 23.5, pp. 1485–1502. issn: 1064-8275, 1095-
7197. doi: 10.1137/S1064827500370202.

Barter, G. E. and D. L. Darmofal (2010). “Shock capturing with PDE-based artificial viscosity for
DGFEM: Part I. Formulation”. en. In: Journal of Computational Physics 229.5, pp. 1810–1827.
issn: 00219991. doi: 10.1016/j.jcp.2009.11.010.

Bassi, F. and S. Rebay (1997). “A High-Order Accurate Discontinuous Finite Element Method
for the Numerical Solution of the Compressible Navier–Stokes Equations”. In: Journal of
Computational Physics 131.2, pp. 267–279. issn: 0021-9991. doi: https://doi.org/10.
1006/jcph.1996.5572.

Bastian, P. and C. Engwer (2009). “An unfitted finite element method using discontinuous
Galerkin”. en. In: International Journal for Numerical Methods in Engineering 79.12, pp. 1557–
1576. issn: 0029-5981, 1097-0207. doi: 10.1002/nme.2631.

Beck, A. D., J. Zeifang, A. Schwarz, and D. G. Flad (2020). “A neural network based shock
detection and localization approach for discontinuous Galerkin methods”. In: Journal of
Computational Physics 423, p. 109824. issn: 0021-9991. doi: https://doi.org/10.
1016/j.jcp.2020.109824.

Beck, L. and F. Kummer (2023). High-Order Numerical Integration on Domains Bounded by
Intersecting Level Sets. en. arXiv:2308.10698 [cs, math].

Benson, L. (2013). Quieting the boom: The shaped sonic boom demonstrator and the quest
for quiet supersonic flight. Nasa sp. tex.lccn: 2013004829. National Aeronautics and Space
Administration, Aeronautics Research Mission Directorate. isbn: 978-1-62683-004-2.

Benzi, M., G. H. Golub, and J. Liesen (2005). “Numerical solution of saddle point prob-
lems”. en. In: Acta Numerica 14, pp. 1–137. issn: 0962-4929, 1474-0508. doi: 10.1017/
S0962492904000212.

147

https://doi.org/10.2514/6.2022-2008
https://doi.org/10.2514/6.2023-2135
https://doi.org/10.1137/S1064827500370202
https://doi.org/10.1016/j.jcp.2009.11.010
https://doi.org/https://doi.org/10.1006/jcph.1996.5572
https://doi.org/https://doi.org/10.1006/jcph.1996.5572
https://doi.org/10.1002/nme.2631
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109824
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109824
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1017/S0962492904000212

Biros, G. and O. Ghattas (2000). “Parallel Preconditioners for KKT Systems Arising in Optimal
Control of Viscous Incompressible Flows”. en. In: Parallel Computational Fluid Dynamics
1999. Elsevier, pp. 131–138. isbn: 978-0-444-82851-4. doi: 10.1016/B978-044482851-
4.50017-7.

Blokhintsev, D. (1945). “Sound receiver in motion”. In: Dokl. Akad. Nauk SSSR. Vol. 47. 1,
pp. 22–25.

Bonfiglioli, A., R. Paciorri, and L. Campoli (2016). “Unsteady shock-fitting for unstructured grids:
Unsteady shock-fitting for unstructured grids”. en. In: International Journal for Numerical
Methods in Fluids 81.4, pp. 245–261. issn: 02712091. doi: 10.1002/fld.4183.

Burgers, J. M. (1946). On the transmission of sound waves through a shock wave. North-Holland
Publishing Company.

Caussignac, P. and R. Touzan (1990). “Solution of three-dimensional boundary layer equations
by a discontinuous finite element method, part I: Numerical analysis of a linear model
problem”. en. In: Computer Methods in Applied Mechanics and Engineering 78.3, pp. 249–271.
issn: 00457825. doi: 10.1016/0045-7825(90)90001-3.

Chavent, G. and B. Cockburn (1989). “The local projection P 0-P 1-discontinuous-Galerkin
finite element method for scalar conservation laws”. In: ESAIM: Mathematical Modelling and
Numerical Analysis 23.4, pp. 565–592. issn: 0764-583X, 1290-3841. doi: 10.1051/m2an/
1989230405651.

Ching, E. J., A. D. Kercher, and A. Corrigan (2024). “The moving discontinuous Galerkin method
with interface condition enforcement for the simulation of hypersonic, viscous flows”. In:
Computer Methods in Applied Mechanics and Engineering 427, p. 117045. issn: 0045-7825.
doi: https://doi.org/10.1016/j.cma.2024.117045.

Ching, E. J., Y. Lv, P. Gnoffo, M. Barnhardt, and M. Ihme (2019). “Shock capturing for dis-
continuous Galerkin methods with application to predicting heat transfer in hypersonic
flows”. en. In: Journal of Computational Physics 376, pp. 54–75. issn: 00219991. doi:
10.1016/j.jcp.2018.09.016.

Cockburn, B. (1998). “An introduction to the Discontinuous Galerkin method for convection-
dominated problems”. en. In: Advanced Numerical Approximation of Nonlinear Hyperbolic
Equations. Ed. by A. Quarteroni. Vol. 1697. Series Title: Lecture Notes in Mathematics.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 150–268. isbn: 978-3-540-64977-9
978-3-540-49804-9. doi: 10.1007/BFb0096353.

Cockburn, B., S.-Y. Lin, and C.-W. Shu (1989). “TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws III: One-dimensional systems”. en. In:
Journal of Computational Physics 84.1, pp. 90–113. issn: 00219991. doi: 10.1016/0021-
9991(89)90183-6.

Cockburn, B. and C.-W. Shu (1991). “The Runge-Kutta local projection P^1-discontinuous-
Galerkin finite element method for scalar conservation laws”. In: ESAIM: Mathematical
Modelling and Numerical Analysis 25.3, pp. 337–361. issn: 0764-583X, 1290-3841. doi:
10.1051/m2an/1991250303371.

Coleman, T. F. and A. Verma (n.d.). “A Preconditioned Conjugate Gradient Approach to Linear
Equality Constrained Minimization”. en. In: ().

Corrigan, A., A. D. Kercher, and D. A. Kessler (2019a). “A moving discontinuous Galerkin finite
element method for flows with interfaces”. en. In: International Journal for Numerical Methods
in Fluids 89.9, pp. 362–406. issn: 0271-2091, 1097-0363. doi: 10.1002/fld.4697.

Corrigan, A. T., A. Kercher, and D. A. Kessler (2019b). “The Moving Discontinuous Galerkin
Method with Interface Condition Enforcement for Unsteady Three-Dimensional Flows”. In:

148

https://doi.org/10.1016/B978-044482851-4.50017-7
https://doi.org/10.1016/B978-044482851-4.50017-7
https://doi.org/10.1002/fld.4183
https://doi.org/10.1016/0045-7825(90)90001-3
https://doi.org/10.1051/m2an/1989230405651
https://doi.org/10.1051/m2an/1989230405651
https://doi.org/https://doi.org/10.1016/j.cma.2024.117045
https://doi.org/10.1016/j.jcp.2018.09.016
https://doi.org/10.1007/BFb0096353
https://doi.org/10.1016/0021-9991(89)90183-6
https://doi.org/10.1016/0021-9991(89)90183-6
https://doi.org/10.1051/m2an/1991250303371
https://doi.org/10.1002/fld.4697

AIAA Scitech 2019 Forum. San Diego, California: American Institute of Aeronautics and
Astronautics. isbn: 978-1-62410-578-4. doi: 10.2514/6.2019-0642.

Corrigan, A. T., A. D. Kercher, D. A. Kessler, and D. A. Wood-Thomas (2019c). “Convergence
of the Moving Discontinuous Galerkin Method with Interface Condition Enforcement in
the Presence of an Attached Curved Shock”. en. In: AIAA Aviation 2019 Forum. Dallas,
Texas: American Institute of Aeronautics and Astronautics. isbn: 978-1-62410-589-0. doi:
10.2514/6.2019-3207.

Council, N. R., D. on Engineering, P. Sciences, Aeronautics, S. E. Board, and C. on Breakthrough
Technology for Commercial Supersonic Aircraft (2002). Commercial supersonic technology:
The way ahead. Compass series. tex.lccn: 2002284699. National Academies Press. isbn:
978-0-309-08277-8.

Dennis, J. E. and R. B. Schnabel (1996). Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. en. Society for Industrial and Applied Mathematics. isbn: 978-0-
89871-364-0 978-1-61197-120-0. doi: 10.1137/1.9781611971200.

Di Pietro, D. A. and A. Ern (2012). Mathematical Aspects of Discontinuous Galerkin Methods.
en. Vol. 69. Mathématiques et Applications. Berlin, Heidelberg: Springer Berlin Heidelberg.
isbn: 978-3-642-22979-4 978-3-642-22980-0. doi: 10.1007/978-3-642-22980-0.

Dollar, H. S. (2007). “Constraint-Style Preconditioners for Regularized Saddle Point Problems”.
en. In: SIAM Journal on Matrix Analysis and Applications 29.2, pp. 672–684. issn: 0895-4798,
1095-7162. doi: 10.1137/050626168.

Feldhusen-Hoffmann, A., V. Statnikov, M. Klaas, and W. Schröder (2018). “Investigation of
shock–acoustic-wave interaction in transonic flow”. en. In: Experiments in Fluids 59.1, p. 15.
issn: 0723-4864, 1432-1114. doi: 10.1007/s00348-017-2466-z.

Fidkowski, K. J., T. A. Oliver, J. Lu, and D. L. Darmofal (2005). “p-Multigrid solution of high-
order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations”.
en. In: Journal of Computational Physics 207.1, pp. 92–113. issn: 00219991. doi: 10.1016/
j.jcp.2005.01.005.

Geisenhofer, M. (2021). “From Shock-Capturing to High-Order Shock-Fitting Using an Unfitted
Discontinuous Galerkin Method”. en. PhD thesis. Darmstadt: Technische Universität Darm-
stadt, xxix, 166 Seiten. doi: https://doi.org/10.26083/tuprints-00017526.

Geisenhofer, M., F. Kummer, and B. Müller (2019). “A discontinuous Galerkin immersed bound-
ary solver for compressible flows: Adaptive local time stepping for artificial viscosity–based
shock‐capturing on cut cells”. en. In: International Journal for Numerical Methods in Fluids
91.9, pp. 448–472. issn: 0271-2091, 1097-0363. doi: 10.1002/fld.4761.

Geisenhofer, M., F. Kummer, and M. Oberlack (2020). “An Extended Discontinuous Galerkin
Method for High-Order Shock-Fitting”. In: Publisher: arXiv Version Number: 2. doi: 10.
48550/ARXIV.2012.08860.

Godunov, S. K. and I. Bohachevsky (1959). “Finite difference method for numerical computation
of discontinuous solutions of the equations of fluid dynamics”. In: Matematičeskij sbornik
47(89).3, pp. 271–306.

Gould, N. I. M., M. E. Hribar, and J. Nocedal (2001). “On the Solution of Equality Constrained
Quadratic Programming Problems Arising in Optimization”. en. In: SIAM Journal on Sci-
entific Computing 23.4, pp. 1376–1395. issn: 1064-8275, 1095-7197. doi: 10.1137/
S1064827598345667.

Grube, N. E. (2020). “Shock Wave–Turbulence Interactions”. en. PhD thesis. Princeton Univer-
sity.

149

https://doi.org/10.2514/6.2019-0642
https://doi.org/10.2514/6.2019-3207
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1137/050626168
https://doi.org/10.1007/s00348-017-2466-z
https://doi.org/10.1016/j.jcp.2005.01.005
https://doi.org/10.1016/j.jcp.2005.01.005
https://doi.org/https://doi.org/10.26083/tuprints-00017526
https://doi.org/10.1002/fld.4761
https://doi.org/10.48550/ARXIV.2012.08860
https://doi.org/10.48550/ARXIV.2012.08860
https://doi.org/10.1137/S1064827598345667
https://doi.org/10.1137/S1064827598345667

Harten, A., B. Engquist, S. Osher, and S. R. Chakravarthy (1997). “Uniformly High Order
Accurate Essentially Non-oscillatory Schemes, III”. en. In: Journal of Computational Physics
131.1, pp. 3–47. issn: 00219991. doi: 10.1006/jcph.1996.5632.

Harten, A. and J. M. Hyman (1983). “Self adjusting grid methods for one-dimensional hyper-
bolic conservation laws”. en. In: Journal of Computational Physics 50.2, pp. 235–269. issn:
00219991. doi: 10.1016/0021-9991(83)90066-9.

Harten, A., P. D. Lax, and B. v. Leer (1983). “On upstream differencing and godunov-type
schemes for hyperbolic conservation laws”. In: SIAM Review 25.1, pp. 35–61. doi: 10.1137/
1025002.

Hartmann, R. and P. Houston (2008). “An optimal order interior penalty discontinuous Galerkin
discretization of the compressible Navier–Stokes equations”. In: Journal of Computational
Physics 227.22, pp. 9670–9685. issn: 0021-9991. doi: https://doi.org/10.1016/j.
jcp.2008.07.015.

Heimann, F., C. Engwer, O. Ippisch, and P. Bastian (2013). “An unfitted interior penalty
discontinuous Galerkin method for incompressible Navier–Stokes two‐phase flow”. en. In:
International Journal for Numerical Methods in Fluids 71.3, pp. 269–293. issn: 0271-2091,
1097-0363. doi: 10.1002/fld.3653.

Henneaux, D., P. Schrooyen, B. Ricardo Barros Dias, A. Turchi, P. Chatelain, and T.Magin (2020).
“Extended Discontinuous Galerkin Method for Solving Gas-Liquid Compressible Flows with
Phase Transition”. en. In: AIAA AVIATION 2020 FORUM. VIRTUAL EVENT: American Institute
of Aeronautics and Astronautics. isbn: 978-1-62410-598-2. doi: 10.2514/6.2020-2971.

Hesthaven, J. S. and T. Warburton (2008). Nodal Discontinuous Galerkin Methods. en. Ed. by
J. E. Marsden, L. Sirovich, and S. S. Antman. Vol. 54. Texts in Applied Mathematics. New York,
NY: Springer New York. isbn: 978-0-387-72065-4 978-0-387-72067-8. doi: 10.1007/978-
0-387-72067-8.

Huang, T., C. J. Naudet, and M. J. Zahr (2023). High-order implicit shock tracking boundary
conditions for flows with parametrized shocks. doi: https://doi.org/10.1016/j.jcp.
2023.112517.

Huang, T. and M. J. Zahr (2022). “A robust, high-order implicit shock tracking method for
simulation of complex, high-speed flows”. en. In: Journal of Computational Physics 454,
p. 110981. issn: 00219991. doi: 10.1016/j.jcp.2022.110981.

Hugoniot, H. (1887). “On the Propagation of Motion in Bodies and in Perfect Bodies in
Particular”. In: IJ l’Ecole Polytech 57, pp. 3–97.

Johnson, C. and J. Pitkäranta (1986). “An analysis of the discontinuous Galerkin method for
a scalar hyperbolic equation”. en. In: Mathematics of Computation 46.173, pp. 1–26. issn:
0025-5718, 1088-6842. doi: 10.1090/S0025-5718-1986-0815828-4.

Karniadakis, G. and S. Sherwin (2005). Spectral/hp element methods for computational fluid
dynamics. Oxford University Press. isbn: 978-0-19-852869-2. doi: 10.1093/acprof:
oso/9780198528692.001.0001.

Keller, C., N. I. M. Gould, and A. J. Wathen (2000). “Constraint Preconditioning for Indefinite
Linear Systems”. en. In: SIAM Journal on Matrix Analysis and Applications 21.4, pp. 1300–
1317. issn: 0895-4798, 1095-7162. doi: 10.1137/S0895479899351805.

Kercher, A. D. and A. Corrigan (2021). “A least-squares formulation of the Moving Discontinuous
Galerkin Finite Element Method with Interface Condition Enforcement”. en. In: Computers &
Mathematics with Applications 95, pp. 143–171. issn: 08981221. doi: 10.1016/j.camwa.
2020.09.012.

150

https://doi.org/10.1006/jcph.1996.5632
https://doi.org/10.1016/0021-9991(83)90066-9
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/https://doi.org/10.1016/j.jcp.2008.07.015
https://doi.org/https://doi.org/10.1016/j.jcp.2008.07.015
https://doi.org/10.1002/fld.3653
https://doi.org/10.2514/6.2020-2971
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/https://doi.org/10.1016/j.jcp.2023.112517
https://doi.org/https://doi.org/10.1016/j.jcp.2023.112517
https://doi.org/10.1016/j.jcp.2022.110981
https://doi.org/10.1090/S0025-5718-1986-0815828-4
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001
https://doi.org/10.1137/S0895479899351805
https://doi.org/10.1016/j.camwa.2020.09.012
https://doi.org/10.1016/j.camwa.2020.09.012

Kercher, A. D., A. Corrigan, and D. A. Kessler (2021). “The moving discontinuous Galerkin
finite element method with interface condition enforcement for compressible viscous flows”.
en. In: International Journal for Numerical Methods in Fluids 93.5, pp. 1490–1519. issn:
0271-2091, 1097-0363. doi: 10.1002/fld.4939.

Klapdor, E. V. (2011). “Simulation of Combustor-Turbine Interaction in a Jet Engine”. en.
PhD thesis. Darmstadt: Technische Universität Darmstadt.

Knupp, P. M. (2001). “Algebraic Mesh Quality Metrics”. In: SIAM Journal on Scientific Computing
23.1, pp. 193–218. issn: 1064-8275. doi: 10.1137/S1064827500371499.

Krais, N., A. Beck, T. Bolemann, H. Frank, D. Flad, G. Gassner, F. Hindenlang, M. Hoffmann,
T. Kuhn, M. Sonntag, and C.-D. Munz (2021). “FLEXI: A high order discontinuous Galerkin
framework for hyperbolic–parabolic conservation laws”. en. In: Computers &Mathematics with
Applications 81, pp. 186–219. issn: 08981221. doi: 10.1016/j.camwa.2020.05.004.

Kral, L. (1998). “Recent experience with different turbulence models applied to the calculation
of flow over aircraft components”. en. In: Progress in Aerospace Sciences 34.7-8, pp. 481–541.
issn: 03760421. doi: 10.1016/S0376-0421(98)00009-8.

Krämer-Eis, S. (2017). A high-order discontinuous Galerkin method for unsteady compressible
flows with immersed boundaries. eng. Göttingen: Cuvillier Verlag. isbn: 978-3-7369-9635-9.

Kroll, N. (2010). “The ADIGMA Project”. In: ADIGMA - A European Initiative on the Development
of Adaptive Higher-Order Variational Methods for Aerospace Applications. Ed. by E. H. Hirschel,
W. Schröder, K. Fujii, W. Haase, B. Leer, M. A. Leschziner, M. Pandolfi, J. Periaux, A. Rizzi,
B. Roux, Y. I. Shokin, N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. Ven, and K. Sørensen.
Vol. 113. Series Title: Notes on Numerical Fluid Mechanics and Multidisciplinary Design.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–9. isbn: 978-3-642-03706-1 978-3-
642-03707-8. doi: 10.1007/978-3-642-03707-8_1.

Kroll, N., C. Hirsch, F. Bassi, C. Johnston, K. Hillewaert, and Editors (2015). IDIHOM: Indus-
trialization of high-order methods - a top down approach. Results of a collaborative research
project funded by the european union, 2010-2014. Vol. 128. isbn: 978-3-319-12885-6. doi:
10.1007/978-3-319-12886-3.

Kuhn, H. W. and A. W. Tucker (1951). “Nonlinear programming”. In: Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability, 1950. Berkeley and Los
Angeles: University of California Press, pp. 481–492.

Kummer, F. (2017). “Extended discontinuous Galerkin methods for two-phase flows: the spatial
discretization”. en. In: International Journal for Numerical Methods in Engineering 109.2,
pp. 259–289. issn: 00295981. doi: 10.1002/nme.5288.

Kummer, F., B. Müller, B. Klein, N. Emamy, R. Mousavi, D. Klingenberg, D. Benjamin, M.
Geisenhofer, M. Smuda, D. Dierkes, A. Kikker, D. Krause, T. Utz, C. Kallendorf, S. Krämer-Eis,
J. Vandergrift, J. Gutiérrez-Jorquera, and M. Toprak (2024). BoSSS. Version v250506. doi:
10.5281/zenodo.11118910.

Kummer, F., B. Müller, and T. Utz (2018). “Time integration for extended discontinuous Galerkin
methods with moving domains: Time integration for XDG methods with moving domains”.
In: International Journal for Numerical Methods in Engineering 113.5, pp. 767–788. issn:
00295981. doi: 10.1002/nme.5634.

Kummer, F., J. Weber, and M. Smuda (2021). “BoSSS: A package for multigrid extended
discontinuous Galerkin methods”. en. In: Computers & Mathematics with Applications 81,
pp. 237–257. issn: 08981221. doi: 10.1016/j.camwa.2020.05.001.

Landau, L. D. and E. M. Lifshitz (2013). Fluid mechanics: Landau and lifshitz: course of theoretical
physics, volume 6. Vol. 6. Elsevier.

151

https://doi.org/10.1002/fld.4939
https://doi.org/10.1137/S1064827500371499
https://doi.org/10.1016/j.camwa.2020.05.004
https://doi.org/10.1016/S0376-0421(98)00009-8
https://doi.org/10.1007/978-3-642-03707-8_1
https://doi.org/10.1007/978-3-319-12886-3
https://doi.org/10.1002/nme.5288
https://doi.org/10.5281/zenodo.11118910
https://doi.org/10.1002/nme.5634
https://doi.org/10.1016/j.camwa.2020.05.001

Lasaint, P. and P. Raviart (1974). “On a Finite Element Method for Solving the Neutron
Transport Equation”. en. In: Mathematical Aspects of Finite Elements in Partial Differential
Equations. Elsevier, pp. 89–123. isbn: 978-0-12-208350-1. doi: 10.1016/B978-0-12-
208350-1.50008-X.

LeVeque, R. J. (1992). Numerical methods for conservation laws. en. 2nd ed. Lectures in mathe-
matics ETH Zürich. Basel ; Boston: Birkhäuser Verlag. isbn: 978-3-7643-2723-1 978-0-8176-
2723-2.

Lukšan, L. and J. Vlček (2001). “Numerical experience with iterative methods for equality
constrained nonlinear programming problems”. en. In: Optimization Methods and Software
16.1-4, pp. 257–287. issn: 1055-6788, 1029-4937. doi: 10.1080/10556780108805838.

Majda, A. (1984). Compressible fluid flow and systems of conservation laws in several space
variables. eng. Applied mathematical sciences 53. New York Berlin Heidelberg: Springer.
isbn: 978-1-4612-1116-7 978-0-387-96037-1 978-3-540-96037-9.

Mengaldo, G., D. De Grazia, J. Peiro, A. Farrington, F. Witherden, P. Vincent, and S. Sherwin
(2014). “A guide to the implementation of boundary conditions in compact high-order
methods for compressible aerodynamics”. In: AIAA AVIATION 2014 -7th AIAA Theoretical
Fluid Mechanics Conference. doi: 10.2514/6.2014-2923.

Menon, E. S. and P. S. Menon (2013). Gas pipeline hydraulics. eng. Bloomington, IN: Trafford
Publ. isbn: 978-1-4669-7670-2 978-1-4669-7671-9.

Moretti, G. and M. Valorani (1988). “Detection and fitting of two-dimensional shocks”. In:
Louvain-la-Neuve, Belgium: Friedr. Vieweg und Sohn, pp. 239–246.

Mös, N., J. Dolbow, and T. Belytschko (1999). “A finite element method for crack growth without
remeshing”. en. In: International Journal for Numerical Methods in Engineering 46.1, pp. 131–
150. issn: 0029-5981, 1097-0207. doi: 10.1002/(SICI)1097-0207(19990910)46:
1<131::AID-NME726>3.0.CO;2-J.

Mossier, P., A. Beck, and C.-D. Munz (2022). “A p-Adaptive Discontinuous Galerkin Method
with hp-Shock Capturing”. en. In: Journal of Scientific Computing 91.1, p. 4. issn: 0885-7474,
1573-7691. doi: 10.1007/s10915-022-01770-6.

Müller, B., S. Krämer-Eis, F. Kummer, and M. Oberlack (2017). “A high-order discontinuous
Galerkin method for compressible flows with immersed boundaries”. en. In: International
Journal for Numerical Methods in Engineering 110.1, pp. 3–30. issn: 00295981. doi: 10.
1002/nme.5343.

Müller, B. (2014). “Methods for higher order numerical simulations of complex inviscid fluids
with immersed boundaries”. Dissertation. Darmstadt: TU Darmstadt.

Murman, S. M. (2017). “CI1 - Inviscid bow shock upstream of a blunt body in supersonic flow”.
en. In: Available at https://how5.cenaero.be/content/ci1-inviscid-bow-shock.

Nasuti, F. and M. Onofri (1996). “Analysis of unsteady supersonic viscous flows by a shock-
fitting technique”. In: AIAA Journal 34.7, pp. 1428–1434. issn: 0001-1452, 1533-385X. doi:
10.2514/3.13249.

Naudet, C. J. and M. J. Zahr (2024). A space-time high-order implicit shock tracking method
for shock-dominated unsteady flows. doi: https://doi.org/10.1016/j.jcp.2024.
112792.

Nocedal, J. and S. J. Wright (2006). Numerical optimization. en. 2nd ed. Springer series in
operations research. OCLC: ocm68629100. New York: Springer. isbn: 978-0-387-30303-1.

Paciorri, R. and A. Bonfiglioli (2009). “A shock-fitting technique for 2D unstructured grids”. In:
Computers & Fluids 38.3, pp. 715–726. issn: 00457930. doi: 10.1016/j.compfluid.
2008.07.007.

152

https://doi.org/10.1016/B978-0-12-208350-1.50008-X
https://doi.org/10.1016/B978-0-12-208350-1.50008-X
https://doi.org/10.1080/10556780108805838
https://doi.org/10.2514/6.2014-2923
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
https://doi.org/10.1007/s10915-022-01770-6
https://doi.org/10.1002/nme.5343
https://doi.org/10.1002/nme.5343
https://doi.org/10.2514/3.13249
https://doi.org/https://doi.org/10.1016/j.jcp.2024.112792
https://doi.org/https://doi.org/10.1016/j.jcp.2024.112792
https://doi.org/10.1016/j.compfluid.2008.07.007
https://doi.org/10.1016/j.compfluid.2008.07.007

Pawlowski, R. P., J. P. Simonis, H. F. Walker, and J. N. Shadid (2008). “Inexact Newton Dogleg
Methods”. en. In: SIAM Journal on Numerical Analysis 46.4, pp. 2112–2132. issn: 0036-1429,
1095-7170. doi: 10.1137/050632166.

Persson, P.-O. and J. Peraire (2008). “Newton-GMRES Preconditioning for Discontinuous
Galerkin Discretizations of the Navier–Stokes Equations”. en. In: SIAM Journal on Scientific
Computing 30.6, pp. 2709–2733. issn: 1064-8275, 1095-7197. doi: 10.1137/070692108.

Persson, P.-O. and J. Peraire (2006). “Sub-Cell Shock Capturing for Discontinuous Galerkin
Methods”. en. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: American
Institute of Aeronautics and Astronautics. isbn: 978-1-62410-039-0. doi: 10.2514/6.
2006-112.

Persson, P.-O. and G. Strang (2004). “A Simple Mesh Generator in MATLAB”. In: SIAM Review
46.2, pp. 329–345. issn: 0036-1445. doi: 10.1137/S0036144503429121.

Prenter, F. de, C. Verhoosel, H. van Brummelen, M. Larson, and S. Badia (2022). Stability and
conditioning of immersed finite element methods: Analysis and remedies. arXiv: 2208.08538
[cs, math] Number: arXiv:2208.08538.

Rankine, W. J. M. (1870). “On the Thermodynamic Theory of Waves of Finite Longitudinal
Disturbance”. In: Philosophical Transactions of the Royal Society of London 160, pp. 277–288.
issn: 02610523.

Raymer, D. (2012). Aircraft Design: A Conceptual Approach, Fifth Edition. en. Washington, DC:
American Institute of Aeronautics and Astronautics, Inc. isbn: 978-1-60086-911-2. doi:
10.2514/4.869112.

Reed, W. H. and T. R. Hill (1973). Triangular mesh methods for the neutron transport equation.
LA-UR-73-749.

Rieckmann, M., M. Smuda, P. Stephan, and F. Kummer (2024). “The extended Discontinuous
Galerkin method for two-phase flows with evaporation”. In: Journal of Computational Physics
499, p. 112716. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2023.
112716.

Riemann, B. (1860). “Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite”.
In: Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 8, pp. 43–66.

Roca, X., A. Gargallo-Peiró, and J. Sarrate (2012). “Defining Quality Measures for High-Order
Planar Triangles and Curved Mesh Generation”. en. In: Proceedings of the 20th International
Meshing Roundtable. Ed. by W. R. Quadros. Berlin, Heidelberg: Springer, pp. 365–383. isbn:
9783642247347. doi: 10.1007/978-3-642-24734-7_20.

Roe, P. (1981). “Approximate Riemann solvers, parameter vectors, and difference schemes”.
In: Journal of Computational Physics 43.2, pp. 357–372. issn: 0021-9991. doi: https:
//doi.org/10.1016/0021-9991(81)90128-5.

Romick, C. M. and T. D. Aslam (2017). “High-order shock-fitted detonation propagation in
high explosives”. In: Journal of Computational Physics 332, pp. 210–235. issn: 00219991.
doi: 10.1016/j.jcp.2016.11.049.

Salas, M. D. (2010). A shock-fitting primer. Chapman & Hall/CRC applied mathematics and
nonlinear science series. tex.lccn: QA911 .S25 2010. Boca Raton: CRC Press. isbn: 978-1-
4398-0758-3.

Saye, R. I. (2015). “High-Order Quadrature Methods for Implicitly Defined Surfaces and
Volumes in Hyperrectangles”. en. In: SIAM Journal on Scientific Computing 37.2, A993–
A1019. issn: 1064-8275, 1095-7197. doi: 10.1137/140966290.

153

https://doi.org/10.1137/050632166
https://doi.org/10.1137/070692108
https://doi.org/10.2514/6.2006-112
https://doi.org/10.2514/6.2006-112
https://doi.org/10.1137/S0036144503429121
https://doi.org/10.2514/4.869112
https://doi.org/https://doi.org/10.1016/j.jcp.2023.112716
https://doi.org/https://doi.org/10.1016/j.jcp.2023.112716
https://doi.org/10.1007/978-3-642-24734-7_20
https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1016/j.jcp.2016.11.049
https://doi.org/10.1137/140966290

Saye, R. I. (2022). “High-order quadrature on multi-component domains implicitly defined by
multivariate polynomials”. en. In: Journal of Computational Physics 448, p. 110720. issn:
00219991. doi: 10.1016/j.jcp.2021.110720.

Schlaich, J., R. Bergermann, W. Schiel, and G. Weinrebe (2005). “Design of Commercial Solar
Updraft Tower Systems—Utilization of Solar Induced Convective Flows for Power Generation”.
en. In: Journal of Solar Energy Engineering 127.1, pp. 117–124. issn: 0199-6231, 1528-8986.
doi: 10.1115/1.1823493.

Shi, A., P.-O. Persson, and M. Zahr (2022). “Implicit shock tracking for unsteady flows by the
method of lines”. en. In: Journal of Computational Physics 454, p. 110906. issn: 00219991.
doi: 10.1016/j.jcp.2021.110906.

Shu, C.-W. and S. Osher (1988). “Efficient implementation of essentially non-oscillatory shock-
capturing schemes”. en. In: Journal of Computational Physics 77.2, pp. 439–471. issn:
00219991. doi: 10.1016/0021-9991(88)90177-5.

Smuda, M. and F. Kummer (2020). “On a marching level-set method for extended discontinuous
Galerkin methods for incompressible two-phase flows”. en. In: arXiv:2010.08417 [cs, math].
arXiv: 2010.08417.

Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics: a practical
introduction. en. 3rd ed. OCLC: ocn401321914. Dordrecht ; New York: Springer. isbn:
978-3-540-25202-3 978-3-540-49834-6.

Toro, E. F., M. Spruce, and W. Speares (1994). “Restoration of the contact surface in the
HLL-Riemann solver”. en. In: Shock Waves 4.1, pp. 25–34. issn: 0938-1287, 1432-2153. doi:
10.1007/BF01414629.

Trépanier, J.-Y., M. Paraschivoiu, M. Reggio, and R. Camarero (1996). “A Conservative Shock
Fitting Method on Unstructured Grids”. en. In: Journal of Computational Physics 126.2,
pp. 421–433. issn: 00219991. doi: 10.1006/jcph.1996.0147.

Vandergrift, J. and F. Kummer (2024). “An extended discontinuous Galerkin shock tracking
method”. In: International Journal for Numerical Methods in Fluids 96.8, pp. 1384–1414. doi:
https://doi.org/10.1002/fld.5293. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/fld.5293.

Vandergrift, J. and M. J. Zahr (2024). Preconditioned iterative solvers for constrained high-order
implicit shock tracking methods. doi: https://doi.org/10.1016/j.jcp.2024.
113234.

Wagner, C., T. Hüttl, and P. Sagaut (2007). Large-Eddy Simulation for Acoustics. Cambridge
Aerospace Series. Cambridge University Press.

Wang, Z., K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann,
K. Hillewaert, H. Huynh, N. Kroll, G. May, P.-O. Persson, B. van Leer, and M. Visbal (2013).
“High-order CFD methods: current status and perspective”. en. In: International Journal for
Numerical Methods in Fluids 72.8, pp. 811–845. issn: 02712091. doi: 10.1002/fld.3767.

Wen, T. and M. J. Zahr (2023). “A globally convergent method to accelerate large-scale
optimization using on-the-fly model hyperreduction: Application to shape optimization”. en.
In: Journal of Computational Physics 484, p. 112082. issn: 00219991. doi: 10.1016/j.
jcp.2023.112082.

Zahr, M., A. Shi, and P.-O. Persson (2020). “Implicit shock tracking using an optimization-based
high-order discontinuous Galerkin method”. en. In: Journal of Computational Physics 410,
p. 109385. issn: 00219991. doi: 10.1016/j.jcp.2020.109385.

Zahr, M. J. and P.-O. Persson (2018). “An optimization-based approach for high-order ac-
curate discretization of conservation laws with discontinuous solutions”. en. In: Journal

154

https://doi.org/10.1016/j.jcp.2021.110720
https://doi.org/10.1115/1.1823493
https://doi.org/10.1016/j.jcp.2021.110906
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1007/BF01414629
https://doi.org/10.1006/jcph.1996.0147
https://doi.org/https://doi.org/10.1002/fld.5293
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.5293
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.5293
https://doi.org/https://doi.org/10.1016/j.jcp.2024.113234
https://doi.org/https://doi.org/10.1016/j.jcp.2024.113234
https://doi.org/10.1002/fld.3767
https://doi.org/10.1016/j.jcp.2023.112082
https://doi.org/10.1016/j.jcp.2023.112082
https://doi.org/10.1016/j.jcp.2020.109385

of Computational Physics 365. arXiv: 1712.03445, pp. 105–134. issn: 00219991. doi:
10.1016/j.jcp.2018.03.029.

Zahr, M. J. and P.-O. Persson (2020). “An r-Adaptive, High-Order Discontinuous Galerkin
Method for Flows with Attached Shocks”. en. In: AIAA Scitech 2020 Forum. Orlando, FL:
American Institute of Aeronautics and Astronautics. isbn: 978-1-62410-595-1. doi: 10.
2514/6.2020-0537.

Zahr, M. J. and J. M. Powers (2021). “High-Order Resolution of Multidimensional Compressible
Reactive Flow Using Implicit Shock Tracking”. en. In: AIAA Journal 59.1, pp. 150–164. issn:
0001-1452, 1533-385X. doi: 10.2514/1.J059655.

155

https://doi.org/10.1016/j.jcp.2018.03.029
https://doi.org/10.2514/6.2020-0537
https://doi.org/10.2514/6.2020-0537
https://doi.org/10.2514/1.J059655

	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	Background and motivation
	Research gap and objectives
	Structure of the dissertation

	Inviscid compressible flows with shocks
	The Euler equations
	Shock waves
	One-dimensional shock-acoustic-wave interaction

	High-order discretization
	Transformed system of conservation laws
	Discretization of transformed system of conservation laws
	Numerical flux function
	Considered conservation laws and boundary conditions

	Implicit XDG shock tracking
	Shock tracking formulation
	Sequential quadratic programming solver
	Robustness measures
	Solver initialization and termination
	Full algorithm
	Discretization of the shock level set function

	Numerical experiments for implicit XDG shock tracking
	Test cases
	Numerical studies
	Conclusion

	Linear solvers for implicit shock tracking
	The high-order implicit shock tracking method
	Iterative linear solvers and preconditioners
	Numerical experiments

	Conclusion
	Implicit XDG shock tracking
	Preconditioners for implicit shock tracking
	Final remarks

	Bibliography

