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Abstract
The Finite Cell Method (FCM) allows for an efficient and accurate simulation of complex geometries by utilizing an unfitted
discretization based on rectangular elements equipped with higher-order shape functions. Since the mesh is not aligned to
the geometric features, cut elements arise that are intersected by domain boundaries or internal material interfaces. Hence,
for an accurate simulation of multi-material problems, several challenges have to be solved to handle cut elements. On the
one hand, special integration schemes have to be used for computing the discontinuous integrands and on the other hand, the
weak discontinuity of the displacement field along the material interfaces has to be captured accurately. While for the first
issue, a space-tree decomposition is often employed, the latter issue can be solved by utilizing a local enrichment approach,
adopted from the extended finite element method. In our contribution, a novel integration scheme for multi-material problems
is introduced that, based on the B-FCM formulation for porous media, originally proposed by Abedian and Düster (Comput
Mech 59(5):877–886, 2017), extends the standard space-tree decomposition by Boolean operations yielding a significantly
reduced computational effort. The proposedmulti-material B-FCM approach is combined with the local enrichment technique
and tested for several problems involving material interfaces in 2D and 3D. The results show that the number of integration
points and the computational time can be reduced by a significant amount, whilemaintaining the same accuracy as the standard
FCM.

Keywords Finite cell method · Local enrichment · Material interfaces · Discontinuous integrals · Extended finite element
method

1 Introduction

1.1 Finite cell method

The finite cell method (FCM) is an embedded domain
approach based on an unfitted discretization and high-order
shape functions [1–3], enabling an efficient and accurate sim-
ulation of geometrically complex structures including hole
regions [4,5] and inclusions of additional material [6,7].
As point of departure, a general multi-material problem is
depicted in Fig. 1a. Here, � = �1 ∪ �2 is the physical
domain of interest, ∂� its boundary, and�D together with�N
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the Dirichlet and Neumann boundaries, respectively. Finally,
�12 is the material interface between�1 and�2. In the FCM
framework,� is embedded into a larger domain�e (Fig. 1b),
giving rise to the fictitious domain�fict = �e\� of theoreti-
cally zero stiffness. Due to its simple shape, a straightforward
discretization of�e is possible byCartesianmeshes (Fig. 1c).
Thus, the often cumbersome and error-prone generation of
a geometry-conforming discretization by means of distorted
finite elements can be avoided.

Note that due to the unfitted discretization, cut cells arise,
that require extra attention regarding the implementation of
boundary conditions [8,9], the condition number of the global
system of equations [10–12], and the numerical integration
of cell matrices (Sect. 1.2). For the fictitious domains, the
volume integrals are penalized by the indicator function

α =
{
1 in �

10−q in �fict
(1)
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Fig. 1 FCM concept
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in order to avoid a large energy contribution of �fict to the
total system (for a more detailed mathematical formulation
of the FCM involving void regions, see Sect. 4.1). In contrast
to void regions, the displacement field along �12 is generally
C0-continuous. Such displacement fields are poorly approx-
imated by a linear combination of smooth shape functions
over the cut cells. Regardless of the polynomial degree, the
insufficiently captured kink in the displacement field causes
severe oscillations in the strain and stress fields, which lead
to a severely deteriorated accuracy of the simulation and sub-
optimal convergences rates [6].

In the extended finite elementmethod (XFEM) [13–15], an
accurate approximation of the displacement field for multi-
material elements is achieved by a local enrichment of the
Ansatz space. Here, the key idea is based on introducing
additional shape functions that are constructed to be C0-
continuous along �12. In the context of the FCM, Joulaian
and Düster proposed the hp-d-FCM and hp-d/PUM-FCM
approaches for dealing with material interfaces [6,7]. In both
cases, the discontinuity is dealt with on a superimposed over-
lay mesh. In the former approach, the local behavior around
the interface is captured by a geometry-conforming mesh,
while in the latter one, the local enrichment of the XFEM
is adopted. Note however, that in the hp-d/PUM-FCM, the
unfitted overlay mesh is not necessarily aligned to the base
mesh. Thus, it is possible to define larger overlay patches that
span multiple cells in the enrichment zone. The weak form
corresponding to themulti-material FCM in conjunctionwith
the local enrichment approach is given in Sect. 4.2.

1.2 Integration of discontinuous functions

For an accurate FCM simulation, a proper integration of
the cut cell matrices is of crucial importance. Since for
discontinuous integrals, the integration accuracy of Gaus-
sian quadrature rules is severely deteriorated, more suitable
numerical integration schemes are required. Approaches
being available for this purpose can be classified as follows:

1. A main branch is based on partitioning the integra-
tion domain into several integration sub-cells using
quadtree/octree-decomposition techniques (QTD/OTD).
Here, rectangular [5,16] or tetrahedral sub-cells [17,18]
are often used, however, geometry-conforming sub-cells
with linear [19,20], high-order [21,22] or blending map-
ping functions [23–25] are also possible.

2. Another branch is represented by the Moment Fitting
(MF) approach, where in each cut cell, a unique quadra-
ture rule is derived [26,27]. By pre-defining the position
of the integration points, the computational complexity
of this method can be significantly reduced [28–31]. Fur-
thermore, by appropriate combination with an adaptive
space-decomposition technique [32], or by using a non-
negative least square solver [33,34], application of MF
to non-linear problems is also possible. Finally Düster
and Allix proposed and investigated the combination of
moment fitting with the local enrichment approach [35].

3. A different idea is seen in the equivalent polynomials
[36–38] method, which is based on the replacement of
the discontinuous integrand by a continuous one yield-
ing the same integral value. Thus, similar to the MF, the
computationally often expensive space-partitioning can
be avoided.

4. Furthermethods use theDivergenceTheorem for reducing
higher dimensional integrals to surface and line integrals
[39]. Here, radial basis functions [40,41] or pre-derivation
can be used [42] for evaluating the antiderivatives required
by this method.

Provided that the embedded geometry is accurately cap-
tured during the integration phase, exponential convergence
rates are possible [10]. For further reading on the key con-
cepts of the FCM, we refer the readers to Refs. [3,43].

1.3 Boolean finite cell method

Due to its robustness and straightforward implementation,
theQTD/OTD-based integration schemewas already utilized
in the early days of FCM [5,16,44,45] and is still widely used
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by the community nowadays [46–50]. However, if a high
integration accuracy is desired, it requires a large number of
integration points, having a significant impact on the com-
putational time. In our previous articles, we introduced an
effective approach based onmerging the integration sub-cells
both in 2D [51,52] and 3D [53] for reduced computational
time.

In this contribution, the Boolean FCM (B-FCM) [1],
whose aim is also the reduction of integration points,
is investigated and extended for multi-material problems.
The B-FCM for single material problems was also inves-
tigated in Ref. [51], where promising results were obtained.
The B-FCM extends the integration procedure by Boolean
operations and can be easily combined with standard space-
decomposition techniques. Originally, it was developed for
single-material domains with hole regions. The advantage of
the method is best demonstrated by Fig. 2, where Fig. 2a,
depicts a cut cell, over which the function α f should be
integrated. The standard FCM approach follows the QTD-
based integration scheme as depicted in Fig. 2b, requiring 10
sub-cells. In the context of the B-FCM, the same integration
accuracy can be obtained for the given example by employing
2 sub-cells only. This is achieved by first, integrating over the
entire domain, where α is set to a value of 1 and second, by
subtracting the contribution of the fictitious domain, which
means that α is set to 0 in the physical part of the sub-cell
and takes the value of 1 in the fictitious part. It was shown
in Refs. [1] and [51] that by using this approach a significant
amount of integration points can be saved.

1.4 Motivation

As mentioned in Sect. 1.3, the B-FCM was originally devel-
oped for problems that (i) solely consist of� and�fict, where
(ii) the discontinuity in the integrals is caused by the piece-
wise constant indicator functionα. On the contrary, in case of
multi-material problems, the physical domain is composed
by nd material sub-domains

� =
nd⋃
i=1

�i , (2)

and the discontinuity in the integrand is caused by an arbitrary
function D resulting from the enriched Ansatz space. Thus,
for extending the single-material B-FCM to a multi-material
version, two main steps are needed: (i) a generalization of
the Boolean space-partitioning technique for decomposing
the multi-material integration domain and (ii) an adjustment
of the integrands over the Boolean sub-cells, which depend
on the chosen enrichment type.

2 Simplifying integrals with Boolean
operations

In this section, the key idea of theBoolean integration scheme
is presented for embedded problems that contain several sub-
domains with arbitrary functions defined over them.

2.1 Two domains

Let � ∈ R
1 be a union of the disjoint domains �1 and �2.

Over�, we consider the continuous and discontinuous func-
tions f (ξ) and D(ξ), respectively, where the latter one is
defined as

D(ξ) =
{
D1(ξ) ∀ξ ∈ �1

D2(ξ) ∀ξ ∈ �2
. (3)

Then, the integral of the product Df over � is composed by
integrating over the sub-domains �1 and �2 as∫
�

Df dξ =
∫
�1

D1 f dξ +
∫
�2

D2 f dξ. (4)

Assuming that D1 is a well defined and known function not
only over �1, but also over �, Eq. (4) can be reformulated,
such that∫
�

Df dξ =
∫
�

D1 f dξ +
∫
�2

(
D2 − D1

)
f dξ, (5)

where the integral of the term Df is computed by the fol-
lowing two steps: First, the continuous function D1 f is
integrated over the entire domain � and second, the inte-
gral value of the first term is augmented by (D2−D1) f over
�2.
Example: An example visualizing Eq. (5) is given in Fig. 3,
where

�1 = {ξ | ξ ∈ [−1, 0.25]} (6)

�2 = {ξ | ξ ∈ ]0.25, 1]}. (7)

For simplicity, f (ξ) = 1 is chosen,1 and D(ξ) defined as
D1 = sin(8ξ) in �1 and D2 = ξ2 in �2. The total integral
value of the function Df is depicted by the gray area in
Fig. 3a. In Fig. 3b, the first integral on the right hand side of
Eq. (5) is visualized. Finally, Fig. 3c depicts the contribution
of the second term, where the red (green) color indicates
regions that need be subtracted from (added to) the gray area
in Fig. 3b in order to obtain the correct integral value.

1 Note that, as long as it is a smooth function, the complexity of f
does not exert any influence on the proposed idea and on the algorithm
discussed in the next sections.
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Fig. 2 Two-dimensional
example for visualizing the
basic concept of the Boolean
FCM approach (reproduced
from Ref.[1])
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Fig. 3 One-dimensional example for visualizing Eq. (5)

Of course, there is nothing special about choosing�1 and
D1 as the base term in Eq. (5). The formulationworks equally
well for �2 and D2. In this case, however, it must hold that
D2 is defined not only over �2 but also over �

∫
�

Df dξ =
∫
�

D2 f dξ +
∫
�1

(
D1 − D2

)
f dξ. (8)

2.2 Multiple domains

The formulation given in Sect. 2.1 can be also extended to
higher dimensional domains composed by nd > 2 disjoint
sub-domains according to Eq. (2) as well, where the dis-
continuous function D(ξ) is defined individually over each
sub-domain, such that

D(ξ) = Di (ξ), ∀ξ ∈ �i . (9)

Then, for a chosen sub-domain i , Eq. (5) generalizes to

∫
�

Df dξ =
∫
�

Di f dξ +
nd∑
j=1
j �=i

∫
� j

(
Dj − Di

)
f dξ , (10)

where in the second term, j = i is excluded due to the inte-
gral value being zero. Note that each sub-domain i can be
chosen as the basis of the formulation, assuming that Di can
be extended from �i to �. This is fairly simple for functions
that are explicitly given, such as, piece-wise continuousmate-
rial properties. However, for locally enriched multi-material

problems, more steps are required for identifying Di over �

(see Sect. 5).
Example: In Fig. 4, a two-dimensional example is given for
Eq. (10), where a rectangular domain � ∈ R

2 consists of
three sub-domains (nd = 3). In the current example, the
discontinuous function D over � is a piece-wise constant
function with the values D1 = 2, D2 = 4 and D3 = 1 over
the sub-domains �1, �2, and �3, respectively (Fig. 4a)

� := {ξ = [ξ1, ξ2]T | (−1 ≤ ξ1 ≤ 1 and − 1 ≤ ξ2 ≤ 1}
(11)

�1 := {ξ = [ξ1, ξ2]T | (ξ1 + 1)2 + (ξ2 + 1)2 ≤ 1} (12)

�3 := {ξ = [ξ1, ξ2]T | (ξ1 − 1)2 + (ξ2 − 1)2 ≤ 1} (13)

�2 := �\(�1 ∪ �3). (14)

Also in this example, f = 1 is selected for simplicity. Choos-
ing the sub-domain i = 1 as the basis for the formulation, the
first and second terms in Eq. (10) are depicted in Figs. 4b and
4c, respectively. It is easy to see that the integral values based
on the direct integration over the individual sub-domains
(I ) and on the Boolean formulation (IB) are indeed equal
I = IB = 4 + π

I = D1 · (π/4) + D2 · (4 − π/2) + D3 · (π/4) (15)

IB = D1 · (4) + (D2 − D1) · (4 − π/2) + (D3 − D1) · (π/4).

(16)
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Fig. 4 Two-dimensional
example for visualizing Eq. (10)
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3 Combination of Boolean operations and
space-tree decomposition techniques

Generally, using Eq. (10) over Eq. (4) does not have major
advantages, when �i has a simple shape (e.g., quadrilateral,
triangular, hexahedral, tetrahedral, or even circular domains
[1]), such that the integrals can be computed either analyt-
ically, or via readily available numerical quadrature rules.
However, when �i has a complex shape, Eq. (4) is often
computed using theQTDandOTD space-tree decomposition
techniques. As it will be shown later, if Eq. (10) is combined
with a suitable space-decomposition strategy, the Boolean
approach is more beneficial than the pure QTD/OTD, as it
leads to a smaller number of integration points, while main-
taining the integration accuracy.

3.1 Standard space-tree decomposition

The computation of Eq. (4) using the QTD/OTD approach
is based on a recursive decomposition of the integration
domain into a disjoint set of nsc quadratic/cubic sub-cells
� = ⋃nsc

k=1 ωk , where ωk is the domain of the kth sub-cell.
The partition procedure is applied only to the cut sub-cells,
leading to a set of integration domains with decreased size
and increased density in the vicinity of the discontinuity, as
depicted in Fig. 5 for the domains defined by Eqs. (11)–
(14). The tree-depth is controlled by the refinement levelR.
Finally, the total integral value is computed by integrating
the product Df via Gaussian quadrature over the individual
sub-cells

∫
�

Df dξ =
nsc∑
k=1

∫
ωk

D f dξ . (17)

Each sub-cell has its own local coordinate system η ∈ R
d ,

where d is the dimensionality of the problem. Furthermore,
the geometry mapping to the parent cell is established by the
transformation η = Qη→ξ (ξ) involving a uniform scaling

Qη→ξ

ξ1

ξ2

η1

η2

parent cell Ω sub-cell ω̃k

ωk

Fig. 5 Partitioning of the the parent cell via QTD with R = 3 and
geometry mapping of the sub-cell ωk

and translation. Since integrals in Eq. (17) are computed in
the local space of the individual sub-cells, the appropriate
change of integration limits has to be taken into account by

∫
ωk

D(ξ) f (ξ) dξ =
∫
ω̃k

D(Qη→ξ

(
ξ)
)
f (Qη→ξ

(
ξ)
)
det(Jη→ξ ) dη, (18)

where ω̃k = [−1, 1] × [−1, 1] denotes the sub-cell in its
local coordinate system η. Furthermore, both the Jacobian
matrix Jη→ξ = gradη(Qη→ξ ) and its determinant are con-
stants due to the nature of the geometry mapping. For sake of
compactness, wherever it is possible in this article, the inte-
grals over the sub-cells will be formulated w.r.t. dξ rather
than to dη.

3.2 Boolean space-tree decomposition

The proposed Boolean integration scheme extends the con-
ventional QTD/OTD algorithm three-fold, such that the
resulting sub-cells are still square/cube-shaped, but (i) they
are typically overlapping, (ii) have special labels that contain
instructions for computing the integrals over the individual
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L[3, 2] : D3 − D2

L[2, 1] : D2 − D1

L[2, 3] : D2 − D3

L[2] : D − D2

L[1] : D − D1

L[3] : D − D3

Fig. 6 Overlapping sub-cells resulting from the B-QTD algorithm
when applied for integrating the function depicted in Fig. 4a

sub-cells (Sect. 3.2.1), and (iii) steer the space-partitioning
process (Sect. 3.2.2). In the remainder of this paper, to
emphasize the different nature of Boolean sub-cells, they
are denoted by ωB, while the QTD/OTD algorithm enhanced
by the Boolean approach is referred to as B-QTD/B-OTD.
The typical hierarchic structure of the Boolean sub-cells and
the distribution of integration points are depicted in Figs. 6
and 7, respectively. The actual meaning of the labels denoted
by L and the color-coding associated with them will be dis-
cussed in the following sub-sections. FromFig. 5 vs. Figure 6
and Fig. 7a vs. Figure 7b, the key idea and the potential
of the Boolean approach for reducing the number of sub-
cells nSC and integration points nIP is already visible. In
fact, in Sect. 3.3 and 6, it will be shown that the much more
efficient distribution of integration points via the B-QTD/B-
OTD algorithm leads to reduction in computational time by
approximately 70–80%, while maintaining the same accu-
racy.

3.2.1 Sub-cell labels

The Boolean approach sketched in Eq. (10) is based on
integrating a discontinuous function in two steps: (i) a contin-
uous function is integrated over a simple square/cube-shaped
domain and (ii) a discontinuous function is integrated over a
specific sub-domain, where the integrand results from the
subtraction of two known functions. Although in the B-
QTD/B-OTD, the integral value is not computed in two steps
like in case of Eq. (10), but in nsc steps

∫
�

Df dξ =
nsc∑
k=1

∫
ωB
k

D f dξ , (19)

each sub-cell is directly connected to one of the two terms in
Eq. (10). Thus, althoughmultiple calculations are required, in
essence, the same procedure as described before applies. The
actual purpose of a given sub-cell and the form of the discon-

tinuous functionD in the integrand for that specific sub-cell,
is explicitly encoded in the developed labeling system. In par-
ticular, two different label types have been developed, which
are comprehensively discussed in the following paragraphs.

Label type 1:The label of type 1 is composed by two domain
IDs i and j in a specific order, and refers to the following
integral over the given sub-cell

L[i, j] : +
∫

ωB
k

(Di − Dj ) f dξ . (20)

The above integral essentially corresponds to the first term
on the right hand side in Eq. (10), where the whole domain of
interest is integrated and the discontinuity is ignored, regard-
less of whether the sub-cell is cut or not. However, instead
of just using a single value of Di like in Eq. (10), the term
Di − Dj is inserted, such that an overlapping sub-cell struc-
ture canbe exploited.Note that label type 1 is always assigned
to sub-cells created at the levels R < Rmax.

Additionally, we would like to express integrals, where
only Di or −Dj is used. Therefore, an additional zero value
D0 := 0 is declared, while keeping in mind that the actual
domain IDs start from 1, not from 0, cf. Eq. (2). Thus, using
i = 0 or j = 0, special cases of Eq. (20) are also possible,
which are needed for the algorithm to work

L[i, 0] : +
∫

ωB
k

Di f dξ , (21)

L[0, j] : −
∫

ωB
k

D j f dξ . (22)

Label type 2: The second label type contains only a single
domain ID j , and refers to the integral

L[ j] :
∫

ωB
k

(D − Dj ) f dξ , (23)

where, unlike for type 1 labels, the discontinuity is taken
into account due to the presence of D. The above integral
corresponds to the second term on the right hand side in
Eq. (10). Here, the discontinuity is taken into account and
hence, the integration error resulting from the label type 1
sub-cells is corrected. Note that for points lying in � j , the
integrand is vanishing due to Eq. (9)

D − Dj = 0 in � j . (24)

This fact constitutes a key feature of the B-QTD/B-OTD
algorithm, since every sub-cell and integration point located
in � j can be directly discarded.

Similar to Eqs. (21) and (22), if j = 0 is used, Eq. (23)
turns into simply integrating the discontinuous function Df
over ωB

k
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Fig. 7 Distribution of
integration points using the
QTD and B-QTD methods with
R = 3where each sub-cell
contains 3× 3 integration points

(a) QTD (nSC = 28, nIP = 252) (b) B-QTD (nSC = 19, nIP = 81)

L[0] :
∫

ωB
k

(D − D0) f dξ =
∫

ωB
k

D f dξ . (25)

due to the applied definition D0 = 0.

3.2.2 Labelling of new sub-cells

The labeling procedure is illustrated in Fig. 8 for the parti-
tioning step of a quadratic sub-cell ωk ∈ R

2 with the type 2
labelL[ j]. In principle, there are three cases how the B-QTD
canproceed from this stage,which are elaboratedbelow.Note
that at the very beginning of theBoolean decomposition algo-
rithm, j = 0 is set for the label.

Case 1: If the given sub-cell is not cut, it must completely
belong to a single domain ωk ⊂ �i . The sub-cell is excluded
from further partitioning and its label modifies to L[i, j]
(orange box in Fig. 8).
If the sub-cell is cut, four children are created and the fol-
lowing two additional steps are executed for the Boolean
labeling process: (i) Find the material ID i for the sub-cell
ωB
k , for which �k

i = ωB
k ∩ �i is the largest. In the current

implementation, this is achieved by testing a set of sample
points. (ii) Test whether �k

i occupies at least 1/4th of ωB
k in

2D and 1/8th in 3D. This condition is denoted by C in Fig. 8.
Case 2: If C = false, the parent sub-cell is deleted and all
of its children inherit its label (green box in Fig. 8). Essen-
tially, this scenario corresponds to the general procedure of
the standard QTD, with the difference, that the sub-cells are
also labeled. Since C is violated, even the largest sub-domain
has an area less then 25% of that of the parent sub-cell. Thus,
none of the children can belong to a single sub-domain only.
Note that C = false only applies in cases where the sub-
cells have at least 5 sub-domains.
Case 3: If C = true for a cut sub-cell, the following proce-
dure applies (blue box in Fig. 8): (i) Keep the parent sub-cell
and assign label L[i, j] and (ii) assign the label L[i] to the
children.

The benefit of the labeling procedure in this case is demon-
strated in Fig. 9, where the example domain is discretized by
a single cell withR = 1. Since C = true for�2, the parent
cell is kept and the labels are assigned according to Fig. 9b,
where the white text boxes are used for numbering the sub-
cells. In Fig. 9c, the vanishing integrand property given in
Eq. (24) is utilized: Firstly, since sub-cells No. 3 and 4 lie
completely in �2, these can be directly discarded. Secondly,
while sub-cells No. 2 and 5 are kept, a further reduction of
integration points is still possible due to the integrand bee-
ing D2 − D2 in ωB

2 ∩ �2 and ωB
5 ∩ �2 (green domain in

Fig. 9c). Both, discarding the entire sub-cells and the integra-
tion points are possible due to the profound interplay between
the assigned labels.

Remark 1 Note that performing a standard QTD and then
assigning labels to the sub-cells is not possible. The labeling
process has to be carried out parallel to the QTD.

The procedure depicted in Fig. 8 is repeated for each
cut sub-cell until the final refinement level Rmax is reached.
Every time C = true, both a parent sub-cell and some of its
children are kept. Using Rmax = 3 for Fig. 9a results in the
set of overlapping sub-cells depicted in Fig. 6, where theR-
axis indicates the refinement levels the individual sub-cells
were generated on. A special color-coding is used to indicate
the different sub-cell labels, whose corresponding integrands
are depicted in the right side of Fig. 6.

Examining an arbitrary point P = [−0.1, −0.35] ∈ �2

in Fig. 6, the integrand at P should evaluate to I = D2

(cf. Fig. 4a). By adding up the integrands represented by the
Boolean sub-cells containing the given point,

I = D2︸︷︷︸
R=0

+ (D1 − D2)︸ ︷︷ ︸
R=1

+ (D2 − D1)︸ ︷︷ ︸
R=2

+ (D2 − D2)︸ ︷︷ ︸
R=3

= D2,

(26)
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Fig. 8 Illustration of the
partitioning step and labeling of
the parent sub-cell and its
children L[j]

start

is cut?

true

false

Ctrue false

L[i, j]

L[i, j]

L[i]

L[i]

L[i]

L[i]

delete sub-cells if possible

delete

L[j]

L[j]

L[j]

L[j]

Fig. 9 Two-dimensional
example for visualizing Eq. (10)

Ω1

Ω2

Ω3

(a) Exemplary domain.

2 3

54

1

+L[2, 0]

L[2]

L[2]

L[2]

L[2]

(b) B-QTD.

2 3

54

D1−D2

D2−D2

D3−D2

D2−D2

(c) Integrands in the
kept sub-cells.

it is evident, that the equality indeed holds. Note that on
R = 3, the type 2 label is used as defined in Eq. (23).

Finally, the effect of the labeling concept on the integra-
tion points is depicted in Fig. 10, where 3 × 3 integration
points are distributed in each sub-cell of Fig. 6 and the same
coloring scheme is used. Additionally, for each integration
point, the corresponding integrand is given. The difference
between thedifferent label types is clear: Since sub-cell labels
at R < Rmax are not taking the discontinuity into account
(red and blue dashed lines), all integration points are used in
the sub-cells. For the sub-cells at R = Rmax, label type 2
is used, where the discontinuity (red and blue solid lines) is
taken into account during the integration. These cells gener-
ally contain integration points with vanishing integrand, such
that they can be excluded from the integration procedure due
to Eq. (24).

3.3 Performance

In this sub-section, the performance of the B-QTD and B-
OTD algorithms is investigated in terms of the reduction of
integration points and achieved integration accuracy. Due to

theBoolean sub-cell labels, theB-QTDhas amuchmore effi-
cient distribution of the integration points than the standard
QTD. This can be clearly recognized in Fig. 7 presented ear-
lier, where the integration points for the B-QTD are based on
Fig. 10. Expressed quantitatively, the number of integration
points using the QTD integration scheme nQTDIP = 252 drops

to nB−QTD
IP = 81 for the current example, when the QTD is

extended by the Boolean approach. Using these quantities,
the reduction of integration points is introduced as

rIP =
(
1 − nB−QTD

IP

nQTDIP

)
× 100%, (27)

where rIP > 0% indicates a meaningful reduction and rIP =
0% means no reduction. For the example given in Fig. 7, a
significant saving by rIP = 67.86% can be obtained. Similar
to rIP, a reduction rate of sub-cells rSC can also be defined.
Both of these quantities are depicted in Fig. 11a for various
refinement levels, where a reduction rate up to rIP ≈ 80%
is observed. Note that due to the additional savings of inte-
gration points in the leaf sub-cells (cf. Fig. 10d), rIP ≥ rSC.
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Furthermore, let eI express the relative integration error

eI =
(
1 − I

Iref

)
× 100%, (28)

where I is the integral value obtained by different numerical
methods and Iref the reference value. For the current example
Iref is given in Eq. (15). Figure. 11b reveals that despite the
significant reduction of integration points, the B-QTD yields
the same integration accuracy as the QTD.

The same significant reduction rate and no loss of accuracy
can be observed for 3D problems as well, as depicted in
Fig. 12 for a cubic domain composed by the sub-domains
�1, �2, �3, defined below.

� := {ξ = [ξ1, ξ2, ξ3]T | (−1 ≤ ξi ≤ 1 for i = 1, 2, 3}
(29)

�1 := {ξ = [ξ1, ξ2, ξ3]T | (ξ1 + 1)2

+ (ξ2 + 1)2 + (ξ3 + 1)2 ≤ 1} (30)

�2 := {ξ = [ξ1, ξ2, ξ3]T | (ξ1 − 1)2

+ (ξ2 − 1)2 + (ξ3 − 1)2 ≤ 1} (31)

�3 := �\(�1 ∪ �2) (32)

D2

(a) R = 0

D2 − D1

D1 − D3

(b) R = 1

D1 − D2

D1 − D3

(c) R = 2

D1 − D2D2 − D1

D1 − D3 D3 − D1

(d) R = Rmax = 3

Fig. 10 Integration points in the overlapping sub-cells of Fig. 6 and
their corresponding integrands

4 Multi-material finite cell method

In this section, the discussion in Sect. 1.1 is extended by the
required mathematical formulation for multi-material prob-
lems. Let us consider a material domain � that is composed
by nd disjoint sub-domains � = ∪nd

i=1�i , which are either
void regions or other material domains.

4.1 Finite cell method

The original FCM formulation is concerned with porous
media, i.e., the given problem consists of a single material
and multiple void regions [3–5,43]. It has been shown, that
exponential convergence rates can be obtained [10]. Without
derivation, the weak formulation of linear elasticity in the
context of the FCM reads

Find u ∈ Sh such that, Be(u, v) = Fe(v), ∀v ∈ Vh. (33)

Here, u is the displacement field, v denotes the test func-
tion, and Sh together with Vh represent the appropriate finite
dimensional function spaces, which in this article, are based
on the spectral element concept [54–56]. Furthermore,Be and
Fe are bilinear and linear functionals, respectively, defined
over the extended domain �e

Be(u, v) =
∫
�e

αρ üv dx +
∫
�e

(Lu)TαCLv dx (34)

Fe(v) =
∫
�e

vTαb dx +
∫
�N

vT t̂ dx. (35)

In the above equations, α is the indicator function defined
in Eq. (1) for distinguishing between the physical and fic-
titious domains, while ρ and C are the material density
and stiffness, respectively. Furthermore, ü is the acceleration
field, b stands for the body load vector, and t̂ represents the
prescribed tractions along the Neumann boundary �N. Con-
sidering a two-dimensional setting for the sake of simplicity,
in each finite cell, the displacement field u(c) = [u(c)

1 , u(c)
2 ]T

is approximated using smooth shape functions

u(c) = NuU (c), (36)

where Nu ∈ R
2×2nN is a matrix containing the shape func-

tions associated with the nN nodes of the given cell

Nu =
[
N1 0 N2 0 · · · NnN 0
0 N1 0 N2 0 · · · NnN

]
, (37)

and U (c) contains the unknown nodal displacements. The
cell matrices as well as the global system matrices of the
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Fig. 11 Comparison of the
QTD ond B-QTD algorithms
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Fig. 12 Comparison of the
QTD ond B-QTD algorithms
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discretized problem will be given in Sect. 4.3 after a brief
introduction to the local enrichment approach in Sect. 4.2.

4.2 Local enrichment

In the following, the focus is kept on multi-material prob-
lems without any void regions. Thus, α = 1 applies to all
cases. Nonetheless, the material properties are still discon-
tinuous due to C(x) = C i (x) and ρ(x) = ρi (x) ∀x ∈ �i .
Furthermore, at the material interfaces, the displacements
are generally C0-continuous while stress and strains obey
certain jump conditions. For locally enriched problems, the
weak formulation reads

Find u ∈ Sh, such that{
Be(uu + ua, vu) = Fe(vu), ∀vu ∈ Vh

u

Be(uu + ua, va) = Fe(va), ∀va ∈ Vh
a

, (38)

where u is composed of the smooth uu and enriched displace-
ments ua, such that u = uu +ua. Furthermore, vu and va are
the test functions associated with the base Vh

u and enriched
function spaces Vh

a , respectively. Following from Eq. (38),

for the approximation of u(c), Eq. (36) turns into

u(c) = NuU (c) + NaA(c), (39)

where the first term is identical to the standard approxima-
tion in Eq. (36) and the second term includes the matrix of
enrichment shape functions

Na = ψNu (40)

and enrichement DOFs A. There are multiple ways how the
enrichment functionψ in Eq. (40) can be defined. In this con-
tribution, we follow the modified-abs enrichment proposed
by Moës et al. [14]

ψ = N|ϕ| − |Nϕ|, (41)

which is based on a level-set function ϕi of the embedded
geometries, where the domain and boundary of the i th geo-
metric entity is defined by

�i = {x | ϕi (x) < 0}, (42)

�i = {x | ϕi (x) = 0}. (43)
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In Eq. (41), N and ϕ are vectors containing the shape
functions and level-set values associated with the individual
nodes, respectively

N = [
N1 N2 · · · NnN

]T
, (44)

ϕ = [
ϕ1 ϕ2 · · · ϕnN

]T
. (45)

Furthermore, the last term in Eq. (41) ensures the C0-
continuity of ψ along the interface, and subtracted from the
first term, it yields aψ that vanishes on the element edges that
are not intersected by the boundary. Thus, parasitic terms and
partially enriched transition elements can be avoided [57].

Note that in the general case, Nu, Na and N canbebasedon
different Ansatz spaces and meshes [6]. In this contribution,
for all of these quantities, Lagrangian shape functions are
used based on the Gauss–Legendre–Lobatto (GLL) nodal
distribution. While for Nu, a user defined polynomial order
p is used, the polynomial degree pψ of N depends on the
complexity of intersecting interface [6]. Finally, following
from Eq. (40), the polynomial degree of Na is pa = p+ pψ .

4.3 Discretization

Discretization of the coupledweak form leads to cell-specific
stiffness matrices including terms that are only related to (i)
the smooth displacements K c

uu, (ii) the enriched displace-
ments K c

aa, and (iii) appropriate coupling terms K c
ua =

(K c
au)

T. Following the QTD/OTD-based integration scheme
often used in the FCM (see Sect. 3.1), K c is computed by
integrating over the nsc sub-cells

K c =
[
K c

uu K c
ua

K c
au K c

aa

]
=

nsc∑
k=1

∫
ωk

[
BT
u CBu BT

u CBa

BT
a CBu BT

a CBa

]
dx. (46)

In the above equation, Bu and Ba are the strain-gradient
operators associatedwith the standard and enriched displace-
ments, respectively. Similar to Bu, Ba is constructed as

Ba = [B(1)
a , B(2)

a , . . . , B(nN)
a ], (47)

where B(l)
a is associated with the lth enrichment shape func-

tion, and for two-dimensional linear elastic problems it is of
the form

B(l)
a =

⎡
⎢⎢⎢⎢⎢⎣

∂(ψNl)

∂x1
0

0
∂(ψNl)

∂x2
∂(ψNl)

∂x2

∂(ψNl)

∂x1

⎤
⎥⎥⎥⎥⎥⎦ . (48)

The differentiation of the individual entries w.r.t. xm is real-
ized using the product rule

∂(ψNl)

∂xm
= ∂ψ

∂xm
Nl + ∂Nl

∂xm
ψ, (49)

withm = 1, 2.Based onEq. (41), the derivative of the enrich-
ment term ψ is

∂ψ

∂xm
= ∂N

∂xm
|ϕ| − sgn(Nϕ)

∂N
∂xm

ϕ. (50)

Note that here the chain rule is utilized again and that the
sgn-function results from differentiating the abs-function.
Similar to Eq. (46), the cell-specific mass matrix has the
structure

Mc =
[
Mc

uu Mc
ua

Mc
au Mc

aa

]
=

nsc∑
k=1

∫
ωk

ρ

[
NT
u Nu NT

u Na
NT
a Nu NT

a Na

]
dx. (51)

Due to the enrichment, the highest polynomial degree in the
integrands of K c and Mc is 2pa = 2(p + pψ). Thus, for
an accurate numerical integration2, instead of the standard
p + 1 integration points per direction, p + pψ + 1 integra-
tion points are required. Finally, after assembly, the coupled
global equation system without damping reads

[
Muu Mua

Mau Maa

] [
Üu

Üa

]
+
[
Kuu Kua

Kau Kaa

] [
Uu

Ua

]
=
[
Fu
Fa

]
. (52)

5 B-FCM for multi-material problems

In this section, the Boolean integration approach given in
Sect. 2 is combined with the local enrichment of the dis-
placement field over cut cell. For simplicity, the focus is kept
on cases where cut cells are intersected by nothing else but a
single material interface. Thus, the cells contain twomaterial
domains�1 and�2,without the presenceof anyvoid regions.
However,more complex scenarios are possible and constitute
a straightforward extension of the proposed approach.

5.1 Intuitive implementation of the cell matrices

In order to apply the features presented in Sect. 3.2, a clear
separation of the discontinuous (D) and continuous terms ( f )
is required. In the case of local enrichment, the discontinuity
in Eq. (46) is not only caused by the strongly discontinu-
ous material properties related to C, but also by Ba, that is

2 Using Gaussian quadrature, with nd integration points, polynomial
degrees up to (2n−1)d can be exactly integrated, where d is the dimen-
sionality of the problem.
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derived from the weakly discontinuous enrichment function
ψ . Thus, when integrating the enriched stiffness matrix over
a given Boolean sub-cell ωB

k , the integration labels defined
in Eqs. (20) and (23) lead to

L[i, j] :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K c
uu =

∫
ωB
k

BT
u

(
C i − C j

)
Bu dx

K c
ua =

∫
ωB
k

BT
u

(
C i Bai − C j Ba j

)
dx

K c
au =

∫
ωB
k

(
BT
aiC i − BT

a jC j

)
Bu dx

K c
aa =

∫
ωB
k

(
BT
aiC i Bai − BT

a jC j Ba j

)
dx

,(53)

and

L[ j] :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K c
uu =

∫
ωB
k

BT
u

(
C − C j

)
Bu dx

K c
ua =

∫
ωB
k

BT
u

(
CBa − C j Ba j

)
dx

K c
au =

∫
ωB
k

(
BT
a C − BT

a jC j

)
Bu dx

K c
aa =

∫
ωB
k

(
BT
a CBa − BT

a jC j Ba j

)
dx

. (54)

Note that in the above equations, the terms are separated
such that all weakly/strongly discontinuous terms are within
the brackets. As a next step, the extension of these terms to
the entire integration domain is required. On the one hand,
this is not an issue for C1 and C2, which are often piece-
wise constant functions. On the other hand, Ba1 and Ba2 are
polynomial functions and form a piece-wise polynomial Ba,
such that

Ba =
{
Ba1 in �k

1 ⊂ ωB
k

Ba2 in �k
2 ⊂ ωB

k

. (55)

Since the discontinuity in Ba is caused by the enrichment
function ψ , the computation of ψi and its spatial derivatives
are required for calculating Bai . Based on Eqs. (48) and (49),
for the sub-matrix of Bai associated with the lth enriched
shape function,

B(l)
ai =

⎡
⎢⎢⎢⎢⎢⎣

∂ψi

∂x1
Nl + ∂Nl

∂x1
ψi 0

0
∂ψi

∂x2
Nl + ∂Nl

∂x2
ψi

∂ψi

∂x2
Nl + ∂Nl

∂x2
ψi

∂ψi

∂x1
Nl + ∂Nl

∂x1
ψi

⎤
⎥⎥⎥⎥⎥⎦ . (56)

When using the modified abs-enrichment approach to con-
struct ψ , (cf. Eq. (41)), the weak discontinuity is introduced
by the term |Nϕ|. Thus, the enrichment function is divided
along the isoline Nϕ = 0 into ψ1 and ψ2, such that

ψ(ξ) =
{

ψ1(ξ) ∀ξ , Nϕ ≤ 0

ψ2(ξ) ∀ξ , Nϕ > 0
. (57)

Since |Nϕ| = Nϕ for Nϕ > 0 and |Nϕ| = −Nϕ for
Nϕ < 0, ψ1 and ψ2 read

ψ1 = N|ϕ| − N ϕ = N · (|ϕ| − ϕ), (58)

ψ2 = N|ϕ| + N ϕ = N · (|ϕ| + ϕ). (59)

An example for this is given in Fig. 13,where Fig. 13a depicts
a specific ψ whose parts over �k

1 and �k
2 are color-coded

by green and orange. The extensions of ψ1 and ψ2 to the
entire domain ωB

k = �k
1 ∪ �k

2 are depicted in Figs. 13b and
13c, respectively. For the current example, ωB

k = [−1, 1] ×
[−1, 1]. Furthermore, �k

1 and �k
2 are the domains exterior

and interior to a circle of radius R = 1, whose origin is
located at xo = {0.5, 0.5}.

Finally, since in Eqs. (58) and (59), the vectors N and
ϕ contain polynomial and constant entries, respectively, the
required partial derivatives ofψ1 andψ2 in Eq. (56) are com-
puted as

∂ψ1

∂xm
= ∂N

∂xm
(|ϕ| − ϕ), (60)

∂ψ2

∂xm
= ∂N

∂xm
(|ϕ| + ϕ). (61)

The formulationpresented in this section sketches an intuitive
concept of formulating the integrands over the Boolean sub-
cells. Although it utilizes a reduced set of integration points,
Eqs. (53) and (54) contain additional matrix operations. An
example for this can be seen in the computation of K c

aa by
means of Eq. (53), where instead of BT

a CBa, B
T
aiC i Bai −

BT
a jC j Ba j is computed, i.e., the number ofmatrix operations

is increased by a factor of two. For avoiding this feature,
the next sub-section presents a more compact formulation,
reducing the number of unnecessary matrix operations.
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Fig. 13 Example for ψ1 and ψ2 over the entire element domain. Note that for visualization purposes, that vertical axes are scaled differently

5.2 Compact implementation of the cell matrices

In the current sub-section, the notion of Sect. 5.1 is extended
by an improved separation of the continuous and discon-
tinuous terms, such that unnecessary or redundant matrix
operations can be avoided and the computational time of the
Boolean approach is further reduced. More details concern-
ing the reduction in computational effort are given at the end
of this section.

5.2.1 More efficient separation of terms

As a first step, Eq. (48) is rewritten, such that

B(l)
a =

⎡
⎢⎢⎢⎢⎢⎣

∂ψ

∂x1
0

0
∂ψ

∂x2
∂ψ

∂x2

∂ψ

∂x1

⎤
⎥⎥⎥⎥⎥⎦ Nl + ψ

⎡
⎢⎢⎢⎢⎢⎣

∂Nl

∂x1
0

0
∂Nl

∂x2
∂Nl

∂x2

∂Nl

∂x1

⎤
⎥⎥⎥⎥⎥⎦ = Nl� + ψB(l)

u , (62)

where � is a 3× 2 matrix containing the spacial derivatives
of ψ . The same approach also applies when computing the
entire matrix

Ba = �Nu + ψBu. (63)

Note that in this case Ba is reproduced by using the terms Nu

and Bu, which are generated only once for a given sub-cell.
Using Eq. (63), let us rewrite the purely enriched term K c

aa
in Eq. (46):

BT
a CBa =

(
�Nu + ψBu

)T
C
(
�Nu + ψBu

)
(64)

=
(
NT
u �TC�Nu + NT

u �TψCBu

+BT
u ψC�Nu + ψ2BT

u CBu
)
. (65)

The above equation can be also expressed in a matrix form
as

BT
a CBa = [

NT
u BT

u

] ·
[
�TC� ψ�TC
ψC� ψ2C

]
︸ ︷︷ ︸

Daa

·
[
Nu

Bu

]
, (66)

where Daa ∈ R
5×5 contains all discontinuous properties

associatedwith K c
aa in a compact form. SinceC is symmetric,

(ψC�)T = ψ�TC , and the matrix Daa is also symmetric

Daa =
[
�TC� ψ(C�)T

ψC� ψ2C

]
. (67)

Using the same idea, the following two equations redefine
the mixed terms associated with K c

ua and K c
au:

BT
u CBa = BT

u C
(
�Nu + ψBu

)
= BT

u C�Nu + ψBT
u CBu = BT

u

[
C� ψC

]
︸ ︷︷ ︸

Dua

[
Nu

Bu

]
, (68)

BT
a CBu =

(
NT
u �T + ψBT

u

)
C Bu

= NT
u �TC Bu + ψBT

u C Bu = [
NT
u BT

u

] [�TC
ψC

]
︸ ︷︷ ︸
Dau

Bu.(69)

Finally, the definition is also applied to K c
uu, where due to C

being the only discontinuous term, Duu = C applies

BT
u CBu = BT

u DuuBu. (70)

Collecting all matrices containing the discontinuous terms in
Eqs. (67)–(70), the setD is defined,which is, in the remainder
of this section, associated with the enriched K c of Eq. (46):

D = {Duu, Dua, Dau, Daa}. (71)
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5.2.2 Boolean operations

Let us now combine the formulation from the previous sub-
section with the Boolean approach. All discontinuous terms
in D are composed by individually continuous parts, such
that

D =
{
D1 for x ∈ �1

D2 for x ∈ �2
, (72)

where

Di = {Duu
i , Dua

i , Dau
i , Daa

i }. (73)

The above expression only requires evaluating the matri-
ces C i and the scalars ψi and ∂ψi/∂xm , for i = 1, 2 and
m = 1, 2, where the latter ones constitute � i . Using this
formulation, Eqs. (53) and (54) can be reformulated as

L[i, j] :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K c
uu =

∫
ωB
k

BT
u

(
Duu
i − Duu

j

)
Bu dx

K c
ua =

∫
ωB
k

BT
u

(
Dua
i − Dua

j

)[
Nu

Bu

]
dx

K c
au =

∫
ωB
k

[
NT
u BT

u

](
Dau
i − Dau

j

)
Bu dx

K c
aa =

∫
ωB
k

[
NT
u BT

u

](
Daa
i − Daa

j

)[
Nu

Bu

]
dx

,(74)

and

L[ j] :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K c
uu =

∫
ωB
k

BT
u

(
Duu − Duu

j

)
Bu dx

K c
ua =

∫
ωB
k

BT
u

(
Dua − Dua

j

)[
Nu

Bu

]
dx

K c
au =

∫
ωB
k

[
NT
u BT

u

](
Dau − Dau

j

)
Bu dx

K c
aa =

∫
ωB
k

[
NT
u BT

u

](
Daa − Daa

j

)[
Nu

Bu

]
dx

.(75)

The application of the same approach to the enriched mass
matrix Mc and body load vector Fc is presented in Appen-
dices A.2 and A.3, respectively.

Recall that computing K c
aa in Eq. (53) involves evaluating

the matrices Ba1 and Ba2, which are in turn used to deter-
mine the terms BT

a1C1Ba1 and BT
a2C2Ba2 as well as their

difference (cf. end of Sect. 5.1). In the more compact ver-
sion presented by Eq. (74), the matrices Ba1 and Ba2 are
not computed explicitly and the Boolean operation is per-
formed on significantly smaller matrices using Daa

1 and Daa
2 .

Thus, while the intuitive approach is more straightforward in
its implementation, the more compact approach presented in
this section generally leads to a decreased numerical effort.

6 Numerical examples

6.1 Circular plate with inclusion

In this section, a benchmark problemwith a circular inclusion
�1 embedded into a circular plate �2 is considered [58,59].
Along the outer boundary of the plate, radial displacement
boundary conditions are applied

ur(r) =

⎧⎪⎪⎨
⎪⎪⎩

[(
1 − b2

a2

)
β + b2

a2

]
r 0 ≤ r ≤ a(

r − b2

r

)
β + b2

r
a ≤ r ≤ b

, (76)

uϕ = 0, (77)

where a and b are the radii of the inclusion and embedding
plate, respectively. The parameter β is determined by a and
b, together with the Lamé constants of the inclusion {r1, μ1}
and the matrix {r2, μ2}

β = (r1 + μ1 + μ2)b2

(r2 + μ2)a2 + (r1 + μ1)(b2 − a2) + μ2b2
. (78)

Instead of simulating the entire domain, a quadratic domain
with a side length of c is considered with appropriate
non-homogeneous Dirichlet boundary conditions (Fig. 14a).
Regarding the geometry and material properties, the follow-
ing parameters are used: a = 3mm, c = 8mm, b = 15mm,
E1 = 10,000MPa, ν1 = 0.3, E2 = 0.1E1 and ν2 = 0.27.
Furthermore, a plane strain state is assumed. The analyt-
ical reference strain energy for the simulated domain is
1/2B(uref , uref) = 1.109766574913341 × 106. For sim-
plicity, the quadratic domain is discretized by a single finite
cell and spectral shape functions with polynomial degrees
from p = 1 to p = 8 are tested. For ψ in Eq. (41), quadratic
shape functions are used, which are sufficient for approxi-
mating the level-set function of the circle. For each step of
the p-refinement, the QTD is performed with R = p + 2
and (p + 10)2 integration points per sub-cell are used3.

3 While less integration points also suffice when reasonable refinement
levels are used (cf. Sect. 4.3), according to our studies, utilizing different
quadrature orders leads to basically the same reductions in integration
points and computation time. Therefore, the savings presented later on
are representative for other quadrature orders as well.
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Fig. 14 Circular plate with
circular inclusion
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(b) Displacement field.

When using the B-FCM approach, the simulation accu-
racy is maintained when compared to the standard FCM,
resulting in basically identical convergence of the relative
error in the energy norm

e =
√

|B(uref , uref) − B(u, u)|
B(uref , uref)

· 100% (79)

as depicted in Fig. 15a. Here, the B-FCM versions 1 and 2
refer to the different versions of the method introduced in
Sects. 5.1 and 5.2, respectively. Additionally, Fig. 15a also
depicts the severely deteriorated convergence curve of the
case when no enrichment is used. Furthermore, the accuracy
of the simulation is also demonstrated in Fig. 15b, where
local values are evaluated for p = 8 along the cut line A–A’,
indicated inFig 14b.The red curve depicts the radial displace-
ments, inwhich the sharp kink at thematerial interface iswell
captured, while the blue curve depicts the non-oscillatory
strain energy density ψ = 1/2 σ : ε.

Thus, it can be stated that the B-FCM achieves very
accurate results, while requiring significantly less integra-
tion points and computational time compared to the standard
FCM. Figure16a compares the wall-clock times spent on the
cut cells in an absolute, while Fig. 16b in a relative manner

rt =
(
1 − tB-FCM

tFCM

)
· 100%. (80)

Additionally, the reduction of integration points is also
depicted, which is fairly constant for the given example
within a typical refinement range of R = 3...10: rIP =
70−76%. The reduction of computational time rt starts at
about 30%, however with increasing p andR, it reaches val-
ues of rt ≈ 60% for the B-FCM1st version and rt ≈ 76% for
the B-FCM 2nd version. The reason for the larger difference
between rIP and rt is due to the fact, that for low values of p
and R, the integration time of K c accounts for a relatively

smaller chunk of the overall computational time spent on the
cut cell. For higher values of p andR, the numerical integra-
tion is more costly, and the effect of reducing the integration
points is more prominent. The additional time reduction by
the blue curve is due to the more efficient formulation of the
matrix operations in case of the 2nd version when compared
to the 1st one. Note however, that despite these differences,
both versions of the B-FCM (i) operate on the same number
of integration points, (ii) reduce the computational time by a
significant amount, while (iii) yielding the same accuracy as
the standard FCM.

6.2 Cube with spherical inclusion

Next, a 3D test is conducted involving a cube (�2) of side
length a = 4mand a spherical inclusion (�1)with a radius of
R = 2m, as depicted in Fig. 17a. The problem is formulated
using themethodofmanufactured solutions (MoMS) [60,61],
i.e., a displacement field u∗ is given, for which the strong
form of linear elastostatics4 yields the corresponding body
loads b = −div(σ ). These body loads, together with the
appropriate boundary conditions are then given as input for
the FCM simulation and the resulting u is compared to u∗.
Using this approach, the code functionality can be tested
based on an analytical reference solution, and no overkill
FEM solution is required. For the given example, a radial
displacement field u∗ = [u∗

r , u
∗
ϕ, u∗

θ ] is chosen in spherical
coordinates

u∗
r (r) = c∗(r) 1

1600

(
r5 − 4r3

)
, (81)

u∗
ϕ = 0, (82)

u∗
θ = 0, (83)

4 It is remarked that MoMS can be also applied to more complex prob-
lems PDEs and is generally available for all sorts of different physics.
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Fig. 15 Global and local results
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(b) Results of ψ and u along the cut line A–
A’ indicated in Fig. 14b. (B-FCM, p = 8).

Fig. 16 Reduction of
integration points and
computational time when using
the B-FCM
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ing different polynomial degrees.
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(b) Reduction of integration points and com-
putational time.

Fig. 17 Simulation of a 3D
inclusion problem with a single
finite cell
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where

c∗(r) =
{
1 ∀r < R

c ∀r > R
. (84)

Note that for u∗
r (r = R) = 0 and for any c �= 1, the man-

ufactured displacement field exhibits a kink at the interface

(Fig. 18b). In the current example, c = 0.01 is chosen and
the deformed shape of the simulation domain is depicted
in Fig. 17b. For the material properties, E1 = 0.1Pa,
E2 = 10Pa and ν1 = ν2 = 0.3 are chosen. The body loads,
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Fig. 18 Global results and local
field values along the cut line
indicated in Fig. 17a
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(c) Strongly discontinuous strains.
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expressed in a spherical coordinate system, read

br1 = − E1r(ν1 − 1)(7r2 − 10)

400(2ν21 + ν1 − 1)
, (85)

br2 = −cE2r(ν2 − 1)(7r2 − 10)

400(2ν22 + ν2 − 1)
, (86)

for the inclusion and matrix, respectively. Due to our specific
choice of c, E1 = cE2, and thus, br1 = br2. Consequently,
tractions are continuous along the interface and jump condi-
tions are naturally fulfilled (see Fig. 18d). In this special case,
when following the MoMS approach, no weak boundary
conditions along the interface are required and the problem
complexity is kept at the necessary level.5 The body load
vectors for the B-FCM are given in Eqs. (100) and (101).

5 It is noted that in a forthcoming publication, the application ofMoMS
to embedded domain methods is studied in detail. To this end, special
considerations needed in a embedded domain framework are com-
prehensively discussed and algorithms to make MoMS available for
verification purposes are presented.

Finally, the analytically evaluated reference strain energy for
the manufactured solution reads

1

2
B(u∗, u∗) = 9.664790469963024 · 10−2 J. (87)

For the current example, the simulation domain is discretized
by a single finite cell only and the polynomial degrees p =
1...6 are tested. Furthermore, a constantR = 8 is chosen for
all polynomial degrees and (p + 10)3 integration points are
used per sub-cell. The global simulation accuracy measured
by the relative error in the energy norm, is depicted Fig. 18a,
where similar to the 2D case, the B-FCM approach yields the
same convergence curve for the current 3D problem as the
FCM. Furthermore, for the B-FCM simulation with p = 6,
Fig. 18b–d depict local quantities of the solution, such as
the radial displacement, strain and stress fields along the cut
line B–B’ indicated in Fig. 17a. For all cases, the analytical
reference solutions are also shown, demonstrating the high
accuracy of B-FCM, while using a single finite cell only.

Analogous to Fig. 16 of the previous example, Fig. 19
depicts the absolute computational times aswell as the reduc-
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Fig. 19 Numerical efforts
required for problem given in
Fig. 17a using the FCM and
B-FCM approaches
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Fig. 20 Problem setup for an
acoustic meta-material
discretized by finite cells. All
dimensions are given in [m]
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tion of those (rt) and of the integration points (rIP). Due
to the constant refinement level, the reduction of integra-
tion points is basically constant, rIP ≈ 80%. However, since
(i) generating K c in 3D is computationally more intensive,
and additionally, (ii) Fc

body also has to be computed, the
difference between the presented B-FCM versions is more
pronounced. For the 2nd version (blue curve), rt is about
70% for all values of p, while for the 1st version (red curve),
the unnecessary matrix operations in K c lead to additional
computational overhead for higher values of p, rendering the
method less effective.Nonetheless, even in this case, 50–70%
of the computational time is saved.

6.3 Acoustic meta-material

Finally, the proposed multi-material B-FCM approach is
applied to the analysis of an acoustic meta-material placed
on a metal plate, where the meta-material consists of a foam
matrix and several inclusions (Fig. 20). The simulation of the
surrounding acoustic field is omitted at this point for simplic-
ity, and the focus is kept on the vibrating structure. For testing
the proposed integration scheme, a harmonic analysis is con-
ducted on the structure using the material properties given in
Table 1.

The simulation domain is discretized by 5×30 finite cells,
among which 28 are cut by the embedded material interfaces
(yellow cells). The plate is subjected to a harmonic excitation

Table 1 Material properties for the plate with meta-material depicted
in Fig. 20

Domain E [MPa] ν [−] ρ [kg/m3] η [−]
Plate 70,000 0.3 2700 0.05

Foam 5 0.3 5 0.01

Inclusions 500 0.3 500 0.00

along its bottom edge

p(t) = p̂ ei�t , (88)

where p̂ is the pressure amplitude, i the imaginary unit and
� = 2π f the angular excitation frequency. The system
answer Û is computed in the frequency domain by

(−�2M + i�D + K )Û = F̂, (89)

where a stiffness proportional damping is used

D = ηK
�

. (90)

Note that since the damping factor η is also yet another dis-
continuous material property (Table 1), Eq. (90), cannot be
applied directly to generate the global stiffness matrix K .
Instead, it is realized on the sub-cell level
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Table 2 Material properties for
the plate with meta-material
depicted in Fig. 20

Method Number of... [−] Time required for... [s]
SC IP Create LIM Cut Cell Assembly

FCM 3871 1,548,400 0.54 418.40 433.72

B-FCM 2639 401,072 0.68 146.48 147.15

Reduction [%] 31.82 74.10 −25.93 65.00 66.07

Fig. 21 Dynamic response of
the system to a mono-frequent
harmonic excitation with an
excitation frequency of
f = 2710Hz. The domain is
discretized by 150 unfitted cells
with Boolean integration
approach. The dashed lines
indicate the positions of the
embedded inclusions

−4.8 2.9
uy[m]

×10−8

Dc = 1

�

nsc∑
k=1

nkd∑
i=1

ηi K c
k,i , (91)

where K c
k,i is the contribution to the stiffness matrix K c

over �k
i ⊂ ωB

k , i.e., the i th material domain in the kth sub-
cell, and ηi is the damping factor in that material region.
Furthermore, nkd is the number of sub-domains in ωB

k . Note
that Eq. (91) holds both for the FCMandB-FCMapproaches,
i.e., regardless of how K c is computed.

Table 2 compares the FCM and B-FCM approaches in
terms of the number of sub-cells (SC) and integration points
(IP) generated in the cut cells, as well as the computation
times required for creating the local integration mesh (LIM),
the cut cell procedure, assembly, and solver. In both cases,
p = 5 andR = 5 is used with (p+10)2 integration points in
each sub-cell. In the last row, the reductions of the different
values are computed. Similar to the previous examples, a high
reduction of integration points is obtained, rIP = 74.10%.
While creating the LIM requires additional time in the B-
FCM, its cost is negligible to the time spent on numerical
integration. Thus, the overall time spent on the cut cells, that
includes other miscellaneous tasks besides creating the LIM
and integration, is reduced by 65%. Since the cut cells repre-
sent the computationally most intensive part of the assembly
procedure, the assembly time is reduced by a similar amount.
The deformed shape of the vibratingmeta-material computed
with the B-FCM is depicted in Fig. 21.

7 Conclusion

In this contribution, the B-FCM formulation for porous
media (Sect. 1.3) is extended to multi-material problems for

efficient simulation of complex structureswithmaterial inter-
faces in theFCMframework.Thenumerical integration in the
proposed B-FCM approach is based on a quadtree-/octree-
decomposition (QTD/OTD) of the cut cells (Sect. 3.1), as it is
often done in the FCM. However, in the B-FCM implemen-
tation, sub-cells are equipped with special labels (Sect. 3.2),
whose purpose is twofold:

1. They steer the decomposition, such that it generally results
in an overlapping structure of integration domains (Figs. 6
and 10), leading to significantly less sub-cells and inte-
gration points.

2. The labels hold specific information regarding the form
of the integrand over the individual sub-cells, such that
Boolean operations can be used to successively compute
the integral value over the overlapping sub-cells.

In our implementation, theC0-continuous displacement field
along the material interfaces is captured by a local enrich-
ment approach. The multi-material B-FCM requires certain
changes to the integrand such that the Boolean nature of the
sub-cells can be exploited. While these changes are straight-
forward for discontinuities in the material properties, further
steps are needed for discontinuities caused by the chosen
enrichment function, as derived in Eqs. (58)–(61).

Numerical examples are conducted both in 2Dand3D, and
themulti-material B-FCMconcept is applied to the computa-
tion of stiffness and mass matrices as well as to the body load
vector. The results show that compared to the conventional
QTD/OTD-based FCM, its Boolean version requires up to
80% less integration points for reasonable refinement levels.
Furthermore, despite a significant reduction in the computa-
tional effort, the global and local accuracy of the simulation
is not altered. These statements apply to both presented B-
FCMformulations in this paper.While the 1st version enables
a more intuitive understanding of the integration over the
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Boolean sub-cells (Sect. 5.1), the 2nd version (Sect. 5.2) is
based on a more efficient separation of continuous and dis-
continuous terms and thus, reduces the number of redundant
matrix multiplications. For simpler problems, the difference
in the two approaches is less prominent, as they reduce the
time spent on the cut cells by ∼55–65% and ∼55–75%,
respectively (Fig. 16). However, for problems with larger
cell matrices, e.g., in case of 3D examples or when using
high polynomial orders, the 2nd version is superior, lead-
ing to ∼70% time reduction, while the 1st version achieves
roughly 50%.

In conclusion, while the implementation of the B-FCM
requires slight modification of the decomposition scheme
and integrands over the sub-cells, it reduces the computa-
tional effort of the QTD/OTD-based integration schemes
by a significant amount, while enjoying the same level of
robustness in combination with no loss in accuracy. If the
simplest implementation of the B-FCM is required (e.g., for
testing purposes), we recommend its 1st version, and if the
maximum efficiency is desired, its 2nd version should be
exploited.
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A Appendix

A.1 BFCM for porous media

The proposed multi-material B-FCM approach can repro-
duce the special case of the B-FCM for porous media [1],
where only two domain types are present, �phys and �fict,
and the discontinuity is caused by the pieace-wise constant
indicator function α given in Eq. (1). In their paper, Abedian
and Düster discuss four different cases for the Boolean sub-
cells when integrating the discontinuous function α f over
the cut cell:

1. Integrate f over the given sub-cell while neglecting the
discontinuity (left part of Fig. 2c)

2. Integrate − f over the given sub-cell while neglecting the
discontinuity

3. Integrate f over the physical part of the given sub-cell
4. Integrate − f over the fictitious part of the given sub-cell

(right part of Fig. 2c)

Following the notion used in this paper, in the porous case,
�1 = �phys, �2 = �fict, D1 = 1 and D2 = 0. Furthermore,
the Boolean sub-cells contain parts of �1 and �2, such that
ωB
k = �k

1 ∪ �k
2. Based on these, the above four integrals are

reproduced by using the labels

L[1, 2] :
∫

ωB
k

(D1 − D2) f dx =
∫

ωB
k

f dx , (92)

L[2, 1] :
∫

ωB
k

(D2 − D1) f dx = −
∫

ωB
k

f dx , (93)

L[2] :
∫

ωB
k

(D − D2) f dx =
∫

�k
1

f dx , (94)

L[1] :
∫

ωB
k

(D − D1) f dx = −
∫

�k
2

f dx , (95)

where in Eqs. (94) and (95), the vanishing integrand property
related to the definition of Eq. (24) is utilized.

A.2 Mass matrix

With the relation for Na given in Eq. (40), the enriched mass
matrix over the sub-cell ωB

k in the cell c is given by

Mc =
∫
ωB
k

[
ρNT

u Nu ρNT
u Na

ρNT
a Nu ρNT

a Na

]
dx

=
∫
ωB
k

[
ρNT

u Nu ρψNT
u Nu

ρψNT
u Nu ρψ2NT

u Nu

]
dx. (96)

Using the proposed integration approach, Mc over the
Boolean sub-cells is computed by

L[i, j] : Mc =
∫
ωB
k

[
(ρi − ρ j )NT

u Nu (ρiψi − ρ jψ j )NT
u Nu

(ρiψi − ρ jψ j )NT
u Nu (ρiψ

2
i − ρ jψ

2
j )N

T
u Nu

]
dx,

(97)

L[ j] : Mc =
∫
ωB
k

[
(ρ − ρ j )NT

u Nu (ρψ − ρ jψ j )NT
u Nu

(ρψ − ρ jψ j )NT
u Nu (ρψ2 − ρ jψ

2
j )N

T
u Nu

]
dx,

(98)

for the different label types. In the brackets, the discontinuity
is taken into account, which in case of bi-material problems,
requires the evaluation of the scalar terms ρ1, ρ2,ψ1,ψ2,ψ2

1
andψ2

2 . Note that the product N
T
u Nu must be computed only

once for the given sub-cell.
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A.3 Body load vector

The enriched body load vector over the sub-cell ωB
k is com-

puted by

Fc
body =

[
Fc
u

Fc
a

]
=
∫
ωB
k

[
NT
u b

NT
a b

]
dx. (99)

Using Boolean sub-cells for the numerical integration and
the relation for Na given in Eq. (40), Fc

body over ωB
k reads for

the two different label types

L[i, j] : Fc
body =

∫
ωB
k

[
NT
u

(
bi − b j

)
NT
u

(
ψi bi − ψ j b j

)] dx, (100)

L[ j] : Fc
body =

∫
ωB
k

[
NT
u

(
b − b j

)
NT
u

(
ψb − ψ j b j

)] dx. (101)
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