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K U R Z FA S S U NG

In dieser Dissertation diskutieren wir mathematisch-rigorose Multiagenten-Lernmodelle basierend
auf Mean Field Games (MFG) und Mean Field Control (MFC). Dynamische Multiagenten-
Kontrollprobleme und ihre spieltheoretischen Analoga finden in der Praxis viele Anwendungen,
können aber schwer auf viele Agenten hochskaliert werden. MFGs und MFC ermöglichen die skalier-
bare Modellierung großer dynamischer Multiagentenkontroll- und Spielprobleme. Im Wesentlichen
werden hier die Interaktionen zwischen unendlich vielen homogenen Agenten auf ihre anonyme
Verteilung – das so genannte Mean Field – reduziert. Dies vereinfacht viele praktische Probleme
auf die Betrachtung eines einzigen repräsentativen Agenten und – durch das Gesetz der großen
Zahlen – dessen Wahrscheinlichkeitsverteilung. In dieser Arbeit stellen wir verschiedene neue
Lernalgorithmen und theoretische Modelle in MFGs und MFC vor. Wir addressieren existierende
algorithmische Limitationen, und erweitern außerdem MFGs und MFC über ihre Beschränkung auf
(i) schwach interagierende Agenten, (ii) allwissende und rationale Agenten oder (iii) Homogenität
der Agenten hinaus. Abschließend werden einige praktische Anwendungen kurz betrachtet, um die
Nützlichkeit der entwickelten Algorithmen zu demonstrieren.

Zunächst betrachten wir den selbstinteressierten Fall der MFGs. Dort zeigen wir, dass im einfachsten
Fall endlicher MFGs die bestehenden Algorithmen starke Einschränkungen haben können. Insbe-
sondere zeigen wir, dass die übliche Annahme kontraktiver Fixpunktoperatoren schwer zu erfüllen
ist. Anschließend werden approximative Lernalgorithmen für MFGs vorgestellt und analysiert,
die auf Regularisierung basieren und einen Kompromiss zwischen Optimalität und Konvergenz
ermöglichen. Weiter erweitern wir die Ergebnisse zu MFGs auf Graphen und Hypergraphen, um die
Beschreibungsfähigkeit der MFGs zu erhöhen und die Einschränkung der Homogenität zu umgehen.
Schließlich übertragen wir die Ergebnisse auch auf die Präsenz sowohl stark interagierender als
auch vieler schwach interagierender Agenten, um Skalierbarkeit für Fälle zu erreichen, in denen
einige Agenten nicht unter die Mean-Field-Approximation fallen.

Zweitens untersuchen wir den kooperativen Fall des MFC. Zunächst betrachten wir eine Erweiterung
auf Umweltzustände unter der vereinfachenden Annahme statischer Mean Fields. Die annähernde
Optimalität einer MFC-Lösung über Lösungen des endlichen Problems wird gezeigt. Anschlie-
ßend und allgemeiner wird MFC auf stark interagierende Agenten ausgedehnt, ähnlich wie im
MFG-Szenario. Unsere letzte Erweiterung berücksichtigt partielle Informationsstruktur, bei der de-
zentralisierte Agenten auf der Grundlage begrenzter, verfügbarer Informationen handeln. Hier wird
eine Optimierung über Lipschitz-Klassen von Strategien eingeführt. Für die beiden letztgenannten
Szenarien erhalten wir außerdem Garantien für die Approximation der Strategiegradienten. Die
Modelle werden theoretisch verifiziert, indem eine approximative Optimalität der MFC-Strategien
gezeigt wird, sowie experimentell verifiziert, indem eine Performanz demonstriert wird, die im
Vergleich zu modernsten Multiagenten-Verstärkungslernalgorithmen gleichwertig oder besser ist.

Abschließend werden einige mögliche Anwendungen von MFGs und MFC in Szenarien mit großen
Agentenpopulationen untersucht und erläutert. Dazu gehören Anwendungen in den Bereichen
verteiltes Rechnen, cyber-physische Systeme, autonome Mobilität und Routing, sowie Natur- und
Sozialwissenschaften. Wir werfen auch einen genaueren Blick auf zwei spezielle Anwendungen der
UAV-Schwarmkontrolle und des Edge Computing. Im ersten Fall betrachten wir die Auswirkungen
der Kollisionsvermeidung für MFC mit physischen Roboterschwärmen. Im zweiten Fall vergleichen
wir die MFG- und MFC-Ergebnisse für die Auslagerung von Berechnungen.
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iv kurzfassung

Insgesamt untersuchen wir in dieser Arbeit die Eignung von MFG und MFC Methoden für groß-
skaliges Multiagenten-Verstärkungslernen. Wir formulieren neue Lernmethoden und theoretische
Approximationsmodelle, und untersuchen einige Anwendungen. Im Großen und Ganzen stellen
wir fest, dass MFGs und MFC erfolgreich für die Analyse großer kontroll- und spieltheoretischer
Probleme eingesetzt werden können, und zwar mit hoher Allgemeinheit und besserer Leistung als
einige existierende Lösungen.



A B ST R AC T

In this dissertation, we discuss the mathematically rigorous multi-agent reinforcement learning
frameworks of mean field games (MFG) and mean field control (MFC). Dynamical multi-agent
control problems and their game-theoretic counterparts find many applications in practice, but can
be difficult to scale to many agents. MFGs and MFC allow the tractable modeling of large-scale
dynamical multi-agent control and game problems. In essence, the idea is to reduce interaction
between infinitely many homogeneous agents to their anonymous distribution – the so-called
mean field. This reduces many practical problems to considering a single representative agent
and – by the law of large numbers – its probability law. In this thesis, we present various novel
learning algorithms and theoretical frameworks of MFGs and MFC. We address existing algorithmic
limitations, and also extend MFGs and MFC beyond their restriction to (i) weakly-interacting
agents, (ii) all-knowing and rational agents, or (iii) homogeneity of agents. Lastly, some practical
applications are briefly considered to demonstrate the usefulness of our developed algorithms.

Firstly, we consider the competitive case of MFGs. There, we show that in the simplest case of
finite MFGs, existing algorithms are strongly limited in their generality. In particular, the common
assumption of contractive fixed-point operators is shown to be difficult to fulfill. We then contribute
and analyze approximate learning algorithms for MFGs based on regularization, which allows for
a trade-off between approximation and tractability. We then proceed to extend results to MFGs
on graphs and hypergraphs, in order to increase the descriptiveness of MFGs and ameliorate the
restriction of homogeneity. Lastly, we also extend towards the presence of both strongly interacting
and many weakly-interacting agents, in order to obtain tractability for cases where some agents do
not fall under the mean field approximation.

Secondly, we investigate cooperative MFC. Initially, we consider an extension to environmental
states under a simplifying assumption of static mean fields. Approximate optimality of an MFC
solution is shown over any finite agent solution. More generally, we proceed to extend MFC to
strongly interacting agents, similar to the MFG scenario. Our final extension considers partial
observability, where decentralized agents act only upon available information. Here, a framework
optimizing over Lipschitz classes of policies is introduced. We obtain policy gradient approximation
guarantees for the latter two settings. The frameworks are verified theoretically by showing
approximate optimality of MFC, and experimentally by demonstrating performance comparable or
superior to state-of-the-art multi-agent reinforcement learning algorithms.

Finally, we briefly explore some potential applications of MFGs and MFC in scenarios with large
populations of agents. We survey applications in distributed computing, cyber-physical systems,
autonomous mobility and routing, as well as natural and social sciences. We also take a closer
look at two particular applications in UAV swarm control and edge computing. In the former, we
consider the effect of collision avoidance as an additional constraint for MFC in embodied robot
swarms. In the latter, we compare MFG and MFC results for a computational offloading scenario.

Overall, in this thesis we investigate the suitability of methods based on MFC and MFC for
large-scale tractable multi-agent reinforcement learning. We contribute novel learning methods and
theoretical approximation frameworks, as well as study some applications. On the whole, we find
that MFGs and MFC can successfully be applied to analyze large-scale control and games, with
high generality and outperforming some state-of-the-art solutions.

v





P U B L I CAT I O N S

The following publications were produced during the course of the doctoral candidacy:

peer-reviewed conference proceedings

[1] K. Cui, C. Fabian, and H. Koeppl, “Major-minor mean field multi-agent reinforcement
learning”, Proc. ICML, 2024.

[2] K. Cui, S. Hauck, C. Fabian, and H. Koeppl, “Learning decentralized partially observable
mean field control for artificial collective behavior”, in Proc. ICLR, 2024, pp. 1–40.

[3] K. Cui, G. Dayanıklı, M. Laurière, M. Geist, O. Pietquin, and H. Koeppl, “Learning
discrete-time major-minor mean field games”, in Proc. AAAI, vol. 38, 2024, pp. 9616–9625.

[4] K. Cui, L. Baumgärtner, M. B. Yilmaz, M. Li, C. Fabian, B. Becker, L. Xiang, M. Bauer,
and H. Koeppl, “UAV swarms for joint data ferrying and dynamic cell coverage via optimal
transport descent and quadratic assignment”, in Proc. LCN, 2023, pp. 1–8.

[5] K. Cui, M. Li, C. Fabian, and H. Koeppl, “Scalable task-driven robotic swarm control via
collision avoidance and learning mean-field control”, in Proc. ICRA, 2023, pp. 1192–1199.

[6] K. Cui, M. B. Yilmaz, A. Tahir, A. Klein, and H. Koeppl, “Optimal offloading strategies
for edge-computing via mean-field games and control”, in Proc. GLOBECOM, 2022,
pp. 976–981.

[7] K. Cui and H. Koeppl, “Learning graphon mean field games and approximate Nash
equilibria”, in Proc. ICLR, 2022, pp. 1–31.

[8] K. Cui, A. Tahir, M. Sinzger, and H. Koeppl, “Discrete-time mean field control with
environment states”, in Proc. CDC, 2021, pp. 5239–5246.

[9] K. Cui and H. Koeppl, “Approximately solving mean field games via entropy-regularized
deep reinforcement learning”, in Proc. AISTATS, 2021, pp. 1909–1917.

[10] A. Tahir, K. Cui, A. Rizk, and H. Koeppl, “Collaborative optimization of the age of infor-
mation under partial observability”, to appear in IFIP Networking 2024, arXiv:2312.12977,
2023.

[11] A. K. Sreedhara, D. Padala, S. Mahesh, K. Cui, M. Li, and H. Koeppl, “Optimal collaborative
transportation for under-capacitated vehicle routing problems using aerial drone swarms”,
in Proc. ICRA, IEEE, 2024, pp. 8401–8407.

[12] M. Li, K. Cui, and H. Koeppl, “A modular aerial system based on homogeneous quadrotors
with fault-tolerant control”, pp. 8408–8414, 2024.

[13] C. Fabian, K. Cui, and H. Koeppl, “Learning mean field games on sparse graphs: A hybrid
graphex approach”, in Proc. ICLR, 2024, pp. 1–39.

[14] C. Fabian, K. Cui, and H. Koeppl, “Learning sparse graphon mean field games”, in Proc.
AISTATS, 2023, pp. 4486–4514.

[15] A. Tahir, K. Cui, and H. Koeppl, “Learning mean-field control for delayed information load
balancing in large queuing systems”, in Proc. ICPP, 2022, pp. 1–11.

vii



viii publications

[16] R. Ourari, K. Cui, A. Elshamanhory, and H. Koeppl, “Nearest-neighbor-based collision
avoidance for quadrotors via reinforcement learning”, in Proc. ICRA, 2022, pp. 293–300.

peer-reviewed journal articles

[17] K. Cui, W. R. KhudaBukhsh, and H. Koeppl, “Hypergraphon mean field games”, Chaos,
vol. 32, no. 11, 2022.

[18] K. Cui, W. R. KhudaBukhsh, and H. Koeppl, “Motif-based mean-field approximation of
interacting particles on clustered networks”, Phys. Rev. E, vol. 105, no. 4, p. L042301, 2022.

[19] C. Fabian, K. Cui, and H. Koeppl, “Mean field games on weighted and directed graphs via
colored digraphons”, IEEE Control Syst. Lett., vol. 7, pp. 877–882, 2022.

submitted / preprints

[20] K. Cui, A. Tahir, G. Ekinci, A. Elshamanhory, Y. Eich, M. Li, and H. Koeppl, “A survey on
large-population systems and scalable multi-agent reinforcement learning”, in preparation
for AI Review, arXiv:2209.03859, 2022.

[21] A. Tahir, K. Cui, and H. Koeppl, “Sparse mean field load balancing in large localized
queueing systems”, submitted to MobiHoc 2024, arXiv:2312.12973, 2023.



AC K NOW L E D G M E N T S

This thesis is the result of multiple years of work, during which I had the pleasure to work with
many exceptional colleagues. Despite the COVID-19 pandemic during the first years of this thesis,
I am happy to have visited various conferences and to have met many great people, in both virtual
and in-person conferences in the latter half of my doctoral candidacy.

First and foremost, I would like to thank my supervisor Prof. Heinz Koeppl for providing great
guidance and important topics of research during my work on this thesis. He positively influenced
my research interests and made them productive. I am especially thankful for having the opportunity
to freely pursue my work on mean field games and to be able to collaborate with many clever people
of diverse backgrounds from all over the world.

In particular, I would also like to thank all of my great collaborators, without which many works
would not have happened: Akash Kopparam Sreedhara, Ahmed Elshamanhory, Amr Rizk, Anam
Tahir, Anja Klein, Bastian Alt, Benjamin Becker, Christian Fabian, Deepesh Padala, Gizem Ekinci,
Gökçe Dayanıklı, Lars Baumgaertner, Lin Xiang, Mark Sinzger, Mathieu Laurière, Matthieu
Geist, Maximilian Bauer, Mengguang Li, Mustafa Burak Yilmaz, Olivier Pietquin, Sascha Hauck,
Shashank Mahesh, Wasiur R. KhudaBuhksh and Yannick Eich.

Further, I want to thank everyone else I met in the Self-Organizing Systems lab (formerly Bioinspired
Communication Systems) for maintaining a positive working atmosphere and providing a variety of
inputs: Alina Kuzembayeva, Anja Engel, Bin Ji, Christian Wildner, Christiane Hübner, Christine
Cramer, Christoph Reich, Dominik Linzner, Eike Mentzendorff, Ekaterina Solyus, Erik Kubaczka,
Felix Reinhardt, Fengyu Cai, François Lehr, Gamze Dogali, Hongfei Liu, Irem Ergenlioglu,
Jacob Christian Mejlsted, Jérémie Marlhens, Julia Detzer, Klaus-Dieter Voss, Maik Molderings,
Maleen Hanst, Markus Baier, Matthias Schultheis, Maximilian Gehri, Megan Bailey, Melanie
Mikosch-Wersching, Nicolai Engelmann, Nikita Kruk, Özdemir Cetin, Philipp Fröhlich, Sandip
Saha, Sebastian Wirth, Sikun Yang, Sofia Startceva, Stanislav Stepaniuk, Tim Prangemeier and
Yujie Zhong.

Moreover, I would like to thank everyone in the overarching emergenCITY project – too many
to list at this point – for providing another great working environment with focus on important
practical applications. The collaborative work on demonstrators and presentations, the many joint
events and the technical presentations of everyone have broadened my horizon beyond what one
typically experiences inside a single group.

Finally, I want to thank my friends and family for their unlimited support!

Darmstadt, June 24, 2024

ix





Contents

1 Introduction 1
1.1 Motivation and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 9
2.1 Single-Agent Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Exact Dynamic Programming for Known Models . . . . . . . . . . . . . 10
2.1.2 Reinforcement Learning for Unknown Models . . . . . . . . . . . . . . . 11

2.2 Multi-Agent Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Competitive Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Cooperative Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Common Recent Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Infinite-Agent Mean Field Reinforcement Learning . . . . . . . . . . . . . . . . 15
2.4 Conclusion of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Competitive Mean Field Games 21
3.1 Regularization for Approximate Learning of Mean Field Games . . . . . . . . . 22

3.1.1 Simple Finite Mean Field Games . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Fixed Point Iteration Fails . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Approximating Mean Field Equilibria Can Help . . . . . . . . . . . . . . 26
3.1.4 Relation to Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Learning Mean Field Games on Graphs . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Mean Field Games on Dense Graphs . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 Learning Graphon Mean Field Equilibria . . . . . . . . . . . . . . . . . 39
3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Mean Field Games on Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Mean Field Games on Dense Hypergraphs . . . . . . . . . . . . . . . . 45
3.3.2 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Beyond Weak Interaction of Agents . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Major-Minor Mean Field Games . . . . . . . . . . . . . . . . . . . . . . 60
3.4.2 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.3 Fictitious Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Conclusion of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4 Cooperative Mean Field Control 75

4.1 Static Mean Field Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xi



xii contents

4.1.1 A Motivating Load Balancing Scenario . . . . . . . . . . . . . . . . . . 76
4.1.2 Static Mean Field Control with Major States . . . . . . . . . . . . . . . . 78
4.1.3 Approximate Optimality under Heterogeneous Policy Tuples . . . . . . . . 81
4.1.4 A Standard Dynamic Programming Principle and Reinforcement Learning 86
4.1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Towards Strong Interaction in Mean Field Control . . . . . . . . . . . . . . . . . . 91
4.2.1 Major-Minor Mean Field Control . . . . . . . . . . . . . . . . . . . . . 93
4.2.2 Major-Minor Mean Field Multi-Agent Reinforcement Learning . . . . . . . 97
4.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Mean Field Control under Partial Information . . . . . . . . . . . . . . . . . . . 103
4.3.1 Decentralized Partially Observable Mean Field Control . . . . . . . . . . 104
4.3.2 Partially Observable Mean Field Multi-Agent Reinforcement Learning . . 108
4.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Conclusion of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5 Practical Applications in Many-Agent Systems 115

5.1 Potential Applications of Large-Population MARL . . . . . . . . . . . . . . . . 116
5.1.1 Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.1.2 Cyber-Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1.3 Autonomous Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1.4 Natural and Social Sciences . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Collision-Free Mean Field Control for Embodied Drone Swarms . . . . . . . . . 119
5.2.1 A Model of Embodied Swarms . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.2 MFC with Collision Avoidance . . . . . . . . . . . . . . . . . . . . . . 123
5.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Edge Computing and Server Load Balancing . . . . . . . . . . . . . . . . . . . . . 131
5.3.1 A MFG and MFC Model . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.2 Time-Stationary Equilibrium Behavior . . . . . . . . . . . . . . . . . . . 136
5.3.3 Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Conclusion of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6 Conclusion and Discussion 143

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Appendices 147

Appendix a Supplementary Details on Section 3.1 149
a.1 Completeness of Mean Field and Policy Spaces . . . . . . . . . . . . . . . . . . 149
a.2 Lipschitz Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
a.3 Proof of Proposition 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
a.4 Proof of Proposition 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
a.5 Proof of Theorem 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
a.6 Proof of Theorem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
a.7 Proof of Theorem 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



contents xiii

a.8 Proof of Theorem 3.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
a.9 Relative Entropy Mean Field Games . . . . . . . . . . . . . . . . . . . . . . . . 178
a.10 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
a.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
a.12 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Appendix b Supplementary Details on Section 3.2 189
b.1 Theoretical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
b.2 Proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
b.3 Proof of Theorem 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
b.4 Proof of Lemma B.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
b.5 Proof of Corollary B.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
b.6 Proof of Theorem 3.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
b.7 Proof of Corollary B.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
b.8 Proof of Proposition 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
b.9 Proof of Theorem 3.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
b.10 Proof of Theorem 3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
b.11 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
b.12 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
b.13 Exploitability and Temperature Choice . . . . . . . . . . . . . . . . . . . . . . . 206
b.14 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Appendix c Supplementary Details on Section 3.3 211
c.1 Proof of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
c.2 Proof of Theorem 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
c.3 Proof of Theorem 3.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
c.4 Proof of Corollary 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
c.5 Proof of Corollary 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
c.6 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Appendix d Supplementary Details on Section 3.4 223
d.1 Continuous Time Fictitious Play with Major and Minor Agents . . . . . . . . . . 223
d.2 Continuity of MF Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
d.3 Approximation of Action-Value functions . . . . . . . . . . . . . . . . . . . . . . 231
d.4 Proof of Lemma D.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
d.5 Proof of Lemma D.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
d.6 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
d.7 Proof of Corollary 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
d.8 Proof of Theorem 3.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
d.9 Additional Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Appendix e Supplementary Details on Section 4.2 247
e.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
e.2 Deterministic Mean Field Control . . . . . . . . . . . . . . . . . . . . . . . . . 248
e.3 Continuity of Mean Field Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 249
e.4 Proof of Theorem E.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
e.5 Proof of Theorem E.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
e.6 Proof of Corollary E.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
e.7 Stochastic Mean Field Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
e.8 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
e.9 Proof of Lemma E.8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
e.10 Proof of Theorem 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
e.11 Proof of Lemma E.10.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258



xiv contents

e.12 Proof of Lemma E.10.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
e.13 Proof of Corollary 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
e.14 Proof of Theorem 4.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
e.15 Proof of Proposition E.14.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
e.16 Proof of Proposition E.14.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
e.17 Extended MFC Optimalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
e.18 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

e.18.1 Problem Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
e.18.2 Comparison to M3FA2C . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
e.18.3 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
e.18.4 Training M3FPPO, IPPO and MAPPO on smaller systems . . . . . . . . 268

Appendix f Supplementary Details on Section 4.3 271
f.1 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
f.2 Agents with Memory and History-Dependence . . . . . . . . . . . . . . . . . . . 275
f.3 Proof of Corollary 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
f.4 Proof of Proposition 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
f.5 Proof of Corollary 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
f.6 Proof of Theorem 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
f.7 Convergence Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
f.8 Closedness of Joint Measures under Equi-Lipschitz Kernels . . . . . . . . . . . . 278
f.9 Proof of Proposition 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
f.10 Proof of Corollary 4.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
f.11 Proof of Proposition 4.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
f.12 Proof of Theorem 4.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
f.13 Proof of Lemma F.12.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
f.14 Proof of Lemma F.12.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
f.15 Proof of Lemma F.12.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
f.16 Proof of Lemma F.12.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
f.17 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
f.18 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
f.19 Problem Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Notation 301

Acronyms 303

Bibliography 305

Erklärung laut Promotionsordnung 327



L I ST O F F I G U R E S

Figure 1.1 MFG and MFC interaction model. . . . . . . . . . . . . . . . . . . . . 1
Figure 1.2 Pictorial scheme of approximation for MFGs and MFC. . . . . . . . . . 2
Figure 1.3 Many-agent applications. . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3.1 Convergence in exploitability of regularized MFG algorithms. . . . . . 29
Figure 3.2 Change in exploitability and mean field over iterations. . . . . . . . . . 30
Figure 3.3 Convergence in exploitability of deep RL-based MFG algorithms. . . . 31
Figure 3.4 Convergence in exploitability of prior iteration algorithm. . . . . . . . . 32
Figure 3.5 Visualization of graphical interactions. . . . . . . . . . . . . . . . . . . 34
Figure 3.6 Three example graphons used in our experiments. . . . . . . . . . . . . 35
Figure 3.7 Equilibrium behavior at convergence in GMFGs. . . . . . . . . . . . . 41
Figure 3.8 Convergence of finite graph objectives to the mean field limit. . . . . . . 42
Figure 3.9 Visualization of hypergraphons as hypergraph limits. . . . . . . . . . . 46
Figure 3.10 Visualization of graphon convergence. . . . . . . . . . . . . . . . . . . 46
Figure 3.11 Visualization of example graphons in the 2-dimensional case. . . . . . . 54
Figure 3.12 Equilibrium behavior for the Rumor problem. . . . . . . . . . . . . . . 56
Figure 3.13 Convergence of the empirical mean field in the limit. . . . . . . . . . . 57
Figure 3.14 Convergence of the empirical mean field under non-sparse initialization. 57
Figure 3.15 Equilibrium behavior for the multi-layer Rumor problem. . . . . . . . . 58
Figure 3.16 Non-convergence of exploitability in FPI. . . . . . . . . . . . . . . . . 70
Figure 3.17 Convergence of exploitability in FP. . . . . . . . . . . . . . . . . . . . 71
Figure 3.18 Stability of FP results under discretization. . . . . . . . . . . . . . . . . 71
Figure 3.19 Convergence of finite objectives in the limit. . . . . . . . . . . . . . . . 72
Figure 3.20 Example visualization of FP results in SIS. . . . . . . . . . . . . . . . . 73
Figure 4.1 Overview of the queuing system. . . . . . . . . . . . . . . . . . . . . . 77
Figure 4.2 Overview of the multi-agent system as a probabilistic graphical model. . 79
Figure 4.3 Overview of mean field control application in N -agent systems. . . . . . 89
Figure 4.4 Qualitative evaluation of learned balancing policy. . . . . . . . . . . . . 90
Figure 4.5 Logistics example for major-minor MFC. . . . . . . . . . . . . . . . . . 91
Figure 4.6 Comparison of solution spaces. . . . . . . . . . . . . . . . . . . . . . . 92
Figure 4.7 The dynamics as a probabilistic graphical model. . . . . . . . . . . . . 95
Figure 4.8 Approximation of intractable finite-agent control by M3FC. . . . . . . . 97
Figure 4.9 Training curves of M3FPPO. . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 4.10 Training curves of M3FPPO in small problems. . . . . . . . . . . . . . 100
Figure 4.11 Comparing IPPO / MAPPO vs. results of M3FPPO. . . . . . . . . . . . 100
Figure 4.12 Qualitative visualization of M3FC policies. . . . . . . . . . . . . . . . 101
Figure 4.13 Mean episode return of M3FC policies in finite systems. . . . . . . . . . 101
Figure 4.14 The partially-observable mean field control model. . . . . . . . . . . . 104
Figure 4.15 Reformulation of MFC-type Dec-POMDPs as an MDP. . . . . . . . . . 104
Figure 4.16 Dec-POMFPPO training curves. . . . . . . . . . . . . . . . . . . . . . 111
Figure 4.17 Training curves of MARL algorithms. . . . . . . . . . . . . . . . . . . 111
Figure 4.18 The performance of Dec-POMFC policies in finite-agent systems. . . . 112
Figure 4.19 Qualitative behavior of Dec-POMFC in the Vicsek problem on the torus. 112
Figure 4.20 Qualitative behavior of Dec-POMFC in the Vicsek problem. . . . . . . 112

xv



xvi contents

Figure 4.21 Qualitative behavior of Dec-POMFC in Vicsek and Aggregation. . . . . 113
Figure 5.1 A hierarchical overview of the collision-free MFC approach. . . . . . . 123
Figure 5.2 Training curves of MFC. . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 5.3 Training curves of IPPO. . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 5.4 One sample run of the MFC solution. . . . . . . . . . . . . . . . . . . . 128
Figure 5.5 Comparison of achieved objectives in the finite swarm. . . . . . . . . . 128
Figure 5.6 Comparison of closed-loop and open-loop performance in finite swarms. 129
Figure 5.7 Comparison of collision avoidance performance in finite swarms. . . . . 129
Figure 5.8 Real world coverage experiment with a swarm of Crazyflies. . . . . . . 130
Figure 5.9 MEC scenario with N UEs offloading tasks to servers. . . . . . . . . . 132
Figure 5.10 Learning curve for the exploitability. . . . . . . . . . . . . . . . . . . . 138
Figure 5.11 Exemplary 2D visualization for the MFC problems. . . . . . . . . . . . 139
Figure 5.12 The evolution of the expected total number of jobs. . . . . . . . . . . . 139
Figure 5.13 Comparison of exploitability in the finite system. . . . . . . . . . . . . 140
Figure A.1 Convergence in exploitability of prior iteration algorithm. . . . . . . . . 186
Figure A.2 Convergence in exploitability of fictitious play algorithm. . . . . . . . . 187
Figure A.3 Change in exploitability and mean field over iterations. . . . . . . . . . 187
Figure A.4 Change in exploitability over Boltzmann DQN iterations. . . . . . . . . 188
Figure A.5 Qualitative behavior in SIS. . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure B.1 Convergence in exploitability of GMFG algorithms. . . . . . . . . . . . 207
Figure B.2 Approximate equivalence classes solution of Investment-Graphon. . . . 208
Figure B.3 Qualitative behavior of learned PPO equilibrium. . . . . . . . . . . . . 209
Figure B.4 Achieved equilibrium for M = 100 in Investment-Graphon. . . . . . . . 209
Figure B.5 Achieved equilibrium in SIS-Graphon for uniform attachment graphon. . 209
Figure B.6 Achieved equilibrium in SIS-Graphon for ranked attachment graphon. . 210
Figure B.7 Learning curve and results for direct application of multi-agent PPO. . . 210
Figure C.1 Equilibrium behavior for the Rumor problem. . . . . . . . . . . . . . . 221
Figure C.2 Equilibrium policy and mean field for graphons (Wunif , Ŵ unif). . . . . 222
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1
I N T RO D U C T I O N

1.1 Motivation and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

The study of Mean Field Games (MFGs) considers games with an infinitude of agents, each of which
acts independently and in accordance with its own interests. Closely related, the recent area of Mean
Field Control (MFC) instead investigates the case of full agent cooperation, in order to maximize a
single global objective. Historically, MFGs were pioneered by [22, 23] in the context of controlled
stochastic differential equations, and were since extended to discrete-time and learning literature
[24, 25]. In essence, the interactions between agents are decomposed to the interaction between
any single agent and the mass of all other infinitely many agents – the Mean Field (MF). See also
Figure 1.1 for a visualization. Despite considering infinitely many agents, MFGs and MFC can be
more conducive to analysis or learning than dynamic games or control with a large finite number of
agents, since the complexity no longer scales with the number of agents. As the infinitude of agents
approximates systems with sufficiently many agents, the tractability motivates MFGs and MFC, since
large-scale games and control are useful in many applications mentioned hereafter.

In this thesis, we consider novel learning algorithms and theoretical frameworks for solving dynamic
games and control problems using both MFGs and MFC. To be precise, learning here refers to both
the iterative finding of game-theoretic Nash equilibria in MFGs, as well as sample-based finding of
optimal collaborative behavior via MFC. Our results allow scaling up Multi-Agent Reinforcement
Learning (MARL) to arbitrarily high numbers of agents in highly general scenarios, which is verified
and discussed for various realistic applications. First however, we expand upon the motivation for
learning MFGs and MFC, and present the structure of the thesis with its research questions.

mean field 
empirical agent distribution (blue)
vs. infinite agent mean field (red)

representative agent

influences!
<latexit sha1_base64="HXhSX3Qfn4TPKGavEc4zPtIwx/w="></latexit>

 
<latexit sha1_base64="fR8ggPc38W5v4aG04NZFCQOlzu8="></latexit>

generates
probability law (red)

figure 1.1: MFG and MFC interaction model. The interaction between agents is given by an anonymous
interaction between any single agent and the MF distribution of all agents. In the infinite agent limit, the MF is
replaced by the probability law of any representative agent by law of large numbers.
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2 1 introduction

1.1 motivation and research questions

The motivation of this thesis is the learning of control or decision-making in large-population
systems, which has a wide range of applications. In recent years, sequential decision-making via
Reinforcement Learning (RL) [26] has prominently found application in a variety of areas, including
but not limited to robotics [27] with many examples such as autonomous cars [28], stratospheric
balloons [29] or teams of Unmanned Aerial Vehicles (UAVs) [30–32], and also highly complex
strategic games [33–36], economics and finance scenarios [37, 38], as well as more recently Large
Language Models (LLMs) [39].

While standard single-agent RL continues to be an important and active area of research, many
practical applications include more than one agent or decision-maker. As a result, one must also
distinguish between different problem scenarios to consider. These multi-agent control problems
are typically considered by the extended subject area of so-called MARL [40]. In general, one can
consider a multitude of settings, ranging from fully competitive two-player zero-sum games to
fully cooperative decentralized control problems. And although MARL approaches are sometimes
applicable due to their generality – especially for systems with a few to a dozen agents [36, 41, 42] –
their application often remains difficult due to various challenges. For example, the precise definition
of learning scenario, simultaneous learning of multiple non-stationary agents, and common partial
information structure in many-agent systems all provide difficulty in finding a general solution to
MARL. See also many extensive surveys [40, 43, 44].

The main reason of existence for MFGs and MFC in learning literature is given by the notorious
intractability challenge of general multi-agent control, both in the competitive scenario of self-
interested agents [45], and in the cooperative scenario where agents must oftentimes coordinate, e.g.,
under partial information [46]. As a result, in general it becomes difficult to solve all problems with
more than a few agents. MFG and MFC methods avoid the otherwise intractable direct optimization
of the finite games and control problems while still remaining a general class of problems. This
is done by seeing that the empirical distribution of an arbitrarily large number of homogeneous
agents converges to a limiting, deterministic marginal state distribution – the MF – by the Law of
Large Numbers (LLN). The solution of limiting MFGs and MFC becomes easier, and rigorously
approximates an optimal solution in the difficult but finite large-scale problem. See also Figure 1.2.

Cooperative Pareto / social optimum MFC

N -agent system MF system

Competitive Nash equilibrium MFG

approx.

optimize (cooperative, intractable)

optimize (competitive, intractable)

N→∞

optimize (cooperative)

optimize (competitive)

approx.

figure 1.2: Pictorial scheme of approximation for MFGs and MFC. The finite N -agent system is first
approximated by a MF system, which is then solved through learning algorithms, giving an approximately
optimal solution in sufficiently large finite systems. The difficult finite problem is thereby circumvented.

In fact, despite considering only a subset of all possible problems, the MF model assumptions are
general to a certain degree, as applications of MFGs or MFC are manifold. Even prior to considering
controlled systems with defined agent objectives, MF theory has long found application in as diverse
branches of science as statistical physics [47], chemistry [48], epidemiology [49], computer science
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[50] and social science [51] through the tractable analysis of interacting particle systems on complex
networks [52]. With the advent of MFGs, the idea of controlled MF systems has led to the application
of both cooperative MFC and competitive MFGs, e.g. in smart heating [53], traffic engineering [54,
55], large-scale batch processing [56, 57], peer-to-peer networks [58], epidemics [59], or crowds of
people [60] to mention a few examples.

For instance, we could consider scenarios from automated driving, epidemics control or finance as
depicted in Figure 1.3. Automated driving or driving assistance such as Google Maps could offer
the possibility to engineer traffic in a socially optimal manner, or to analyze the behavior of many
uncontrolled, self-interested vehicles via MFGs [54, 61]. Meanwhile, in epidemics control such as
for COVID-19, one could use MFGs to guide the design of optimal incentives for many rational,
self-interested people [62]. Lastly, in finance, the usage of MFG models can guide financial choices
such as optimal portfolio liquidation in a large market with many other rational agents [63].

figure 1.3: Many-agent applications, ranging from autonomous driving to epidemics control to finance.

Many more applications can be found in surveys of MFG applications for economics or finance
[64] and engineering [65], see also our survey [20]. We will further consider some applications
to UAV swarms and networking later in this thesis. Still, MFG learning algorithms remain limited
and require certain assumptions such as contractivity or monotonicity, while in MFC the algorithms
are not analyzed as MARL algorithms on finite multi-agent systems. In addition to algorithmic
limitations, standard MFG and MFC models restrict the general space of scenarios that can be
modelled, since agents must be

• weakly-interacting, i.e. each agent alone has only negligible effect on any other agent;

• all-knowing and rational, such that the agents know e.g. their true own state and the initial
MF in the system (and by deterministic propagation, possibly also the MF at all other times);

• homogeneous, in the sense that all agents interact with all other agents in the same way,
without additional structured interactions or regularity to consider.

However, in practice, learning algorithms should also handle applications where standard assump-
tions are not fulfilled. Further, (i) agents are not always weakly-interacting, such as under the
presence of a few agents that affect all other agents directly; (ii) agents cannot always know their
own true state or the initial MF in the system, especially in large-scale decentralized systems where
such coordination becomes difficult; and (iii) agents may not be completely exchangeable, but
instead could be of certain types or interconnected according to some graph structure. For this
reason, the preceding motivation leads us to the following Research Questions (RQs):

I First, how can we perform tractable MFG and MFC learning to begin with?

II Second, is it possible to overcome the aforementioned limitations of MF models?

III Third, where and how can MFGs and MFC potentially be applied in practice?
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1.2 overview and contribution

In this thesis, we develop theory and algorithms in the intersection of MFGs and MARLs. We split
the discussion of RQs I and II into the competitive MFG case and the cooperative MFC case. RQ III is
addressed by experiments on realistic problems throughout the thesis, and explicitly at the end. Our
contributions can be briefly summarized as:

1. In competitive MFGs, we provide approximate learning algorithms for cases where existing
algorithms have no guarantee of convergence. Existing algorithms are shown to fail in most
finite MFGs, and our regularized approaches succeed against previous approaches.

2. We extend MFGs and associated learning frameworks to graphs and more general agents, in
order to improve the generality of the framework. Our results ameliorate the strong usual
assumption of many globally weakly-interacting agents, to incorporate interaction through
neighborhoods and few more generally-interacting agents. The equations are also extended to
hypergraph structures for non-pairwise interactions.

3. In cooperative MFC, we similarly extend towards general agents, and also formulate first
results towards (i) policy gradient approximations in finite MFC systems, and (ii) the optimality
of MFC solutions over heterogeneous policies in the static case. In a predecessor setting with
environment states and static MF, the sufficiency of identical policy sharing between agents is
verified.

4. As our last theoretical and learning contribution, we consider the first discrete-time MFC
learning framework under partial information, in order to learn collective behavior as
potentially simple local interaction rules fulfilling a global objective by emergence. The
results are verified by learning common swarming behavior in Kuramoto or Vicsek models.

5. Finally, we briefly survey general application areas that may profit from MF-based solutions,
as well as challenges in the fields of robotic swarms and communication networks. We
combine MFC with collision avoidance for realistic large-scale control of UAV swarms, and
consider MFG and MFC-based resource allocation problems in edge computing.

A list of all publications performed during the course of the thesis can also be found on Pages vii
to viii. Note that we do not discuss all the listed publications in full detail in this thesis, but may
give some brief references in the following, whenever appropriate.

Overall, the aforementioned contributions can be organized as shown in Table 1.1, and are presented
in this thesis according to the following detailed structure:

table 1.1: An overview of how we address learning and MF limitations.

Sec. / Ch. Refs. Learning Framework (RQ I) Model Generality (RQ II) Case

Sec. 3.1 [9] FPI hardness, optimality trade-off – MFG
Sec. 3.2 [7] reduction to MFG & guarantees graph interaction MFG
Sec. 3.3 [17] as above higher-order interaction MFG
Sec. 3.4 [3] extension of fictitious play strong interaction MFG

Sec. 4.1 [8] MFC MDP policy gradients environmental states MFC
Sec. 4.2 [1] as above + MARL approximation strong interaction MFC
Sec. 4.3 [2] as above + MARL approximation partial information MFC

Ch. 5 [5, 6, 20] – (addresses RQ III) – (addresses RQ III) both
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Chapter 2. In this initial chapter, we give a background on optimal control and RL, game theory
and multi-agent RL, as well as scalable models of standard MFGs and MFC. We recap the primary
mathematical models for the above, together with some of their basic properties and well-known
algorithms. For the interested and unfamiliar reader, we also give introductory references.

Chapter 3. In this chapter, we first study the competitive case of MFGs as a framework for
tractable equilibrium learning in large-scale games. Here, we mainly focus on the general setting of
evolutive MFGs, where agents are endowed with dynamic states and the MF evolves over time.

To begin, we consider the simplest setting of MFGs, i.e., finite MFGs with finite state and action
spaces, that are played over a finite discrete time horizon. While the majority of literature either
considers monotonicity conditions or assumes contraction in the fixed point iteration, we show that
even in our simplest setting, the contraction condition cannot be fulfilled in non-trivial problems.
As an alternative, we propose methods for finding approximate equilibria by employing entropy
regularization and related Boltzmann policy schemes. Iterating relative entropy regularization can
further improve solutions, and deep techniques with particle filters allow solutions in otherwise
intractable settings. Section 3.1 is based on the conference publication

[9] K. Cui and H. Koeppl, “Approximately solving mean field games via entropy-regularized
deep reinforcement learning”, in Proc. AISTATS, 2021, pp. 1909–1917.

In the following Section 3.2, we extend MFGs to non-homogeneously connected and interacting
agents. In particular, we assume that agents are connected and interact according to a dense graph.
In order to analyze MFGs on graphs, graphons from graph limit theory are used to obtain Graphon
Mean Field Games (GMFGs). We give one of the first discrete-time GMFG models together with
theoretical foundations and learning algorithms. A reduction to standard MFGs is proposed and its
error is analyzed. The work in Section 3.2 is based on the conference publication

[7] K. Cui and H. Koeppl, “Learning graphon mean field games and approximate Nash
equilibria”, in Proc. ICLR, 2022, pp. 1–31.

We go one step further and consider higher-order interaction through hypergraphs in Section 3.3.
The theoretical and algorithmic framework is extended from GMFGs, and allows for consideration
of effects such as cliques in social networks. We have since also extended the work on GMFGs in
collaborations [13, 14, 19] towards increasingly sparse and weighted or directed graphs. In the
separate work [18], we also consider some heuristic motif-based approximations in the continuous-
time and more difficult bounded-degree graph setting. The above references are only discussed
briefly at the end of this chapter. The extended hypergraph MFG is based on the journal publication

[17] K. Cui, W. R. KhudaBukhsh, and H. Koeppl, “Hypergraphon mean field games”, Chaos,
vol. 32, no. 11, 2022.

Lastly, addressing both weak interaction and homogeneity of agents, in Section 3.4 we extend
MFGs also towards “major” agents, through the first framework of discrete-time major-minor MFGs:
So-called major agents can affect the usual “minor” agents from standard MFGs in an arbitrary direct
manner, providing more flexibility for MFG models. We provide some basic theoretical properties
and a learning algorithm. The work in Section 3.4 is based on the conference publication

[3] K. Cui, G. Dayanıklı, M. Laurière, M. Geist, O. Pietquin, and H. Koeppl, “Learning
discrete-time major-minor mean field games”, in Proc. AAAI, vol. 38, 2024, pp. 9616–9625.
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Chapter 4. In contrast to the competitive setting in Chapter 3, in Chapter 4 we consider the
cooperative setting of MFC, where agents are not assumed to be self-interested, rational agents.

As an initial contribution, we show in Section 4.1 that in a simplified static MF scenario, MFC with
stochastic environment states allows us to improve beyond basic MARL by MFC-based RL. The
optimality of identical over heterogeneous policies is shown, and results are verified on a realistic
load balancing scenario. The work is based on the conference publication

[8] K. Cui, A. Tahir, M. Sinzger, and H. Koeppl, “Discrete-time mean field control with
environment states”, in Proc. CDC, 2021, pp. 5239–5246.

In Section 4.2 we proceed to extend general discrete-time MFC to major agents as major-minor MFC,
similar to Section 3.4 but in the cooperative case. In particular, we point out a number of potential
applications and also provide a theoretical basis of the framework. This includes approximation
guarantees of the model, as well as policy gradient approximation properties. Furthermore, we
perform an extensive comparison between our major-minor MFC learning framework and MARL
methods. Our method appears to be able to outperform standard policy gradient MARL methods.
The work is based on the conference publication

[2] K. Cui, S. Hauck, C. Fabian, and H. Koeppl, “Learning decentralized partially observable
mean field control for artificial collective behavior”, in Proc. ICLR, 2024, pp. 1–40.

Finally, in Section 4.3 we address the issue of all-knowing agents, which are not realistic especially
in large decentralized systems. We formulate the first general MFC-based MARL system where each
agent only observes limited information, correlated to the current MF and agent state. We provide a
dynamic programming principle, a MARL algorithm, as well as approximation guarantees for both
model and algorithm. The framework is verified on swarming models for engineering artificial
collective behavior. The work is based on the conference publication

[1] K. Cui, C. Fabian, and H. Koeppl, “Major-minor mean field multi-agent reinforcement
learning”, Proc. ICML, 2024.

Chapter 5. After introducing general and tractable models for MARL based on MFG and MFC,
we complete the thesis by discussing potential applications of such large-scale MARL. We also
explicitly consider two possible applications of UAV swarms and edge computing. In Section 5.2
we apply MFC to formation control of UAV swarms. To accommodate real, embodied agents, we
integrate collision avoidance into the framework and analyze the error resulting from it. On the
other hand, in Section 5.3 we look at an edge computing and decentralized load balancing scenario
where agents may choose to offload computation. We compare MFG and MFC points of view for this
scenario, and demonstrate solution concepts to the problem. Further applications in the field of load
balancing are found in the first part of Chapter 4 and external collaborations [10, 15, 21], which are
only presented briefly in this thesis, see end of this chapter. Chapter 5 is based on the works

[5] K. Cui, M. Li, C. Fabian, and H. Koeppl, “Scalable task-driven robotic swarm control via
collision avoidance and learning mean-field control”, in Proc. ICRA, 2023, pp. 1192–1199.

[6] K. Cui, M. B. Yilmaz, A. Tahir, A. Klein, and H. Koeppl, “Optimal offloading strategies
for edge-computing via mean-field games and control”, in Proc. GLOBECOM, 2022,
pp. 976–981.

[20] K. Cui, A. Tahir, G. Ekinci, A. Elshamanhory, Y. Eich, M. Li, and H. Koeppl, “A survey on
large-population systems and scalable multi-agent reinforcement learning”, in preparation
for AI Review, arXiv:2209.03859, 2022.
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Chapter 6. The last chapter gives a brief summary and discussion of the presented results,
including their advantages and current limitations. As an outlook, future research directions and
current limitations are established for theory, algorithms and applications.

Appendices A to F. In the appendices, we give supplementary details on aforementioned
contributions, including but not limited to full proofs of theoretical claims, briefly recapitulated
material, and any additional supplementary experiments.

publications not discussed in this thesis A number of publications and collaboration
preprints generated during the work on this thesis are not discussed in detail. To understand their
relation to the topic of this thesis, here we briefly give an overview of obtained results and their
connection to material presented in this thesis. The following hence provides additional venues of
application or generalization for MF models, which may be explored more in future works.

In [19], the GMFG framework for MFGs on graphs in Sections 3.2 and 3.3 is extended to directed
and weighted graphs. In the following works [13, 14], we also move towards increasingly sparse
graphs through the concept of Lp graphons and graphexes, which can handle sparsities up to degree
distribution power law coefficients of 2. Algorithms and theoretical approximation guarantees are
provided for the according systems, and the sparsity enables application on real graph datasets.
In [18], we also developed continuous-time MF equations for higher-order dynamics using motifs
(simple graph constellations) instead of hypergraphs as in Section 3.3. The above is based on the
works

[13] C. Fabian, K. Cui, and H. Koeppl, “Learning mean field games on sparse graphs: A hybrid
graphex approach”, in Proc. ICLR, 2024, pp. 1–39.

[14] C. Fabian, K. Cui, and H. Koeppl, “Learning sparse graphon mean field games”, in Proc.
AISTATS, 2023, pp. 4486–4514.

[18] K. Cui, W. R. KhudaBukhsh, and H. Koeppl, “Motif-based mean-field approximation of
interacting particles on clustered networks”, Phys. Rev. E, vol. 105, no. 4, p. L042301, 2022.

[19] C. Fabian, K. Cui, and H. Koeppl, “Mean field games on weighted and directed graphs via
colored digraphons”, IEEE Control Syst. Lett., vol. 7, pp. 877–882, 2022.

In relation to the UAV application in Section 5.2, we have also investigated various UAV swarm
scenarios including coordination for collision avoidance in [16], networking in [4], low-level control
of multi-drone structures in [12] and collaborative transportation of objects in [11]. While the
above scenarios (except the first partially, see Section 5.2) are not considered through the lens of MF
models here, they may be further investigated in future research. The above is based on the works

[4] K. Cui, L. Baumgärtner, M. B. Yilmaz, M. Li, C. Fabian, B. Becker, L. Xiang, M. Bauer,
and H. Koeppl, “UAV swarms for joint data ferrying and dynamic cell coverage via optimal
transport descent and quadratic assignment”, in Proc. LCN, 2023, pp. 1–8.

[11] A. K. Sreedhara, D. Padala, S. Mahesh, K. Cui, M. Li, and H. Koeppl, “Optimal collaborative
transportation for under-capacitated vehicle routing problems using aerial drone swarms”,
in Proc. ICRA, IEEE, 2024, pp. 8401–8407.

[12] M. Li, K. Cui, and H. Koeppl, “A modular aerial system based on homogeneous quadrotors
with fault-tolerant control”, pp. 8408–8414, 2024.

[16] R. Ourari, K. Cui, A. Elshamanhory, and H. Koeppl, “Nearest-neighbor-based collision
avoidance for quadrotors via reinforcement learning”, in Proc. ICRA, 2022, pp. 293–300.
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Finally, related to the load balancing system in Section 4.1 and more distantly to the edge computing
scenario in Section 5.3, in [15] we apply MFC-based MARL to scalable load balancing in the presence
of many servers and schedulers. The approach is then extended to bounded-degree graph topologies
in [21], and a related setting for optimization of age-of-information is considered in [10] using the
partially-observable MFC framework presented in Section 4.3. The above is based on the works

[10] A. Tahir, K. Cui, A. Rizk, and H. Koeppl, “Collaborative optimization of the age of infor-
mation under partial observability”, to appear in IFIP Networking 2024, arXiv:2312.12977,
2023.

[15] A. Tahir, K. Cui, and H. Koeppl, “Learning mean-field control for delayed information load
balancing in large queuing systems”, in Proc. ICPP, 2022, pp. 1–11.

[21] A. Tahir, K. Cui, and H. Koeppl, “Sparse mean field load balancing in large localized
queueing systems”, submitted to MobiHoc 2024, arXiv:2312.12973, 2023.
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In this chapter, we briefly introduce a background on concepts used in MARL and basic discrete-time
MFGs / MFC, which are referred to throughout this work. While there are few works on continuous-
time RL and many works on continuous-time MFGs / MFC, in discrete time on the other hand there
are many works on RL but only few on MFGs / MFC. Since we focus on learning, we primarily
consider discrete-time models in this thesis, and refer the reader to, e.g., [66, 67] for continuous-time
literature. We reintroduce some concepts in this chapter in the respective sections to remind the
reader, so one may skip to their sections of interest. Although we will overload some mathematical
symbols in the following chapters according to the considered model setting, the semantics of
introduced symbols will remain consistent and the same as in this exposition.

2.1 single-agent reinforcement learning

The study of single-agent RL considers sequential decision-making in possibly stochastically
evolving systems. The topic is closely related to the study of optimal control, which considers such
sequential decision-making under known system models. In RL on the other hand, knowledge of the
system model is waived. Instead, optimal sequential decision-making is “learned” through random
interaction with the system, in a sample-based manner. In the following, we present the settings
used in this thesis. We note that one can find a wealth of results in existing literature, and we present
only a subset of classical results relevant to our work. We refer the reader interested in more details
to [26, 68–70].

9
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markov decision process. The standard framework for RL is known as the Markov Decision
Process (MDP), a tuple (X ,U , p, r, γ): It consists firstly of a system or agent state xt at all times
t ∈ T , which is a random variable valued in some compact state space X . The time index set
is discrete and can be either finite, T = {0, 1, . . . , T} up to terminal time T ∈ N, or infinite,
T = N≥0. The former is referred to as the finite-horizon case, whereas the latter is referred to as
the infinite-horizon case. Furhter, the agent can influence the evolution of this state through the
choice of actions ut at all times t ∈ T , which are similarly valued in some compact action space U .
As a result of actions, the state evolves over time according to some transition kernel p such that
xt+1 ∼ p(xt+1 | xt, ut) at all times t ∈ T . Commonly, the agent chooses actions according to a
closed-loop feedback policy π ∈ Π, where Π is the set of all stochastic Markov policies such that
the action depends only on the current time t ∈ T and state xt, i.e. ut ∼ πt(ut | xt). In particular,
due to the Markov property of MDPs, it is not necessary to consider policies that also depend on
entire histories of past states or actions.

To obtain a controlled dynamical system, all that remains is to specify the initial state. We write
P(X ) for the space of all probability measures on X , equipped with the 1-Wasserstein metric.
Given an initial state distribution µ0 ∈ P(X ), any choice of policy π ∈ Π thus yields the controlled
state process

x0 ∼ µ0, ut ∼ πt(ut | xt), xt+1 ∼ p(xt+1 | xt, ut) ∀t ∈ T ,

for which the goal of the agent is to maximize the sum of rewards over all times,

J(π) = E

[︄∑︂

t∈T
γtr(xt, ut)

]︄
.

Here, the rewards are given by the reward function r : X × U → R and discounted according to
a discount factor γ ∈ (0, 1) in the infinite-horizon case, or γ = 1 in the finite-horizon case. In
general, the rewards may also be stochastic, which is included in the above model by taking the
conditional expectation of rewards w.r.t. (xt, ut).

2.1.1 Exact Dynamic Programming for Known Models

In the infinite-horizon case, as long as the model is known, the exact solution to the above problem,
i.e. an optimal policy π∗ ∈ argmaxπ∈Π J(π), may be computed through classical dynamic
programming by decomposing sequential optimal decision-making in the following way.

bellman equation. The well-known optimal state-action value function Q∗ : X × U → R
specifies the best achievable expected sum of future rewards, whenever one is in a particular state
and taking a particular action. It is defined as the solution to the Bellman equation

Q∗(x, u) = r(x, u) + γ

∫︂

X
max
u′∈U

Q∗(x′, u′)p(dx′ | x, u).

It essentially formalizes the idea that for optimality, it suffices to take an action u in state x such
that the expected future rewards are maximal, given that we continue to act optimal in the future.

Under mild conditions [69, Theorem 4.2.3], it quantifies policies π∗ putting full mass on actions u
that maximize Q∗

t (x, u) in any state x at time t as optimal solutions π∗ ∈ argmaxπ∈Π J(π). Such
a deterministic policy is guaranteed to exist. Note also the stationarity (time-independence) of value
functions in the infinite-horizon case, such that it suffices to consider stationary policies.
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value iteration. To compute the solution to the Bellman equation by dynamic programming,
its right-hand side may be repeatedly evaluated and assigned as a solution estimate, starting with any
initial estimate Q(0) : X × U → R. In other words, we apply fixed-point iteration to the Bellman
equation as a fixed-point equation. The result is value iteration, where one repeatedly computes

Q(k+1)(x, u) = r(x, u) + γ

∫︂

X
max
u′∈U

Q(k)(x′, u′)p(dx′ | x, u)

in each iteration k ∈ N, until the errors between left-hand and right-hand side (Bellman error)
becomes sufficiently small. Indeed, value iteration is guaranteed to converge, since the map
Q(k) ↦→ Q(k+1) is a contraction (Lipschitz with constant L < 1), so Q(k) → Q∗ as k →∞.

policy iteration. The other classical dynamic programming approach to MDPs is to directly
and iteratively calculate policies in policy iteration, which can be faster than value iteration.
First, observe that one can evaluate any policy π ∈ Π via the policy state-action value function
Qπ : X × U → R, which specifies the expected future rewards in a particular state, taking a
particular action, and following policy π thenceforth. Qπ solves the policy evaluation equation

Qπ(x, u) = r(x, u) + γ

∫︂

X

∫︂

U
Q∗(x′, u′)π(du′ | x)p(dx′ | x, u).

Similar to value iteration, one starts with some arbitrary initial policy π(0) ∈ Π and solves for Qπ(k)

in each iteration k ∈ N. The policies are then updated such that π(k+1) ∈ Π puts all mass on actions
u in state x that maximize Qπ(k)

(x, u) until convergence, giving the policy iteration algorithm.

alternative settings and references. In the above discounted infinite-horizon problem,
it is sufficient for optimality to use time-independent values and policies. In the finite-horizon case,
we can analogously compute the above, except by using time-dependent action-value functions
Q∗ : T × X × U → R and policies. We note that there are also other settings and algorithms, such
as optimizing average reward and using linear programming. For more details, see e.g. [26, 69].

2.1.2 Reinforcement Learning for Unknown Models

To learn an optimal solution from samples whenever the exact model is not known or explicitly
used, a straightforward and basic RL approach is similar to value iteration but uses sample-based
estimation. On the other hand, one may directly optimize policies by estimating gradients.

value-based reinforcement learning. The former falls into the area of so-called
value-based techniques. They can be understood through stochastic approximation techniques and in
its simplest form are given by Q-Learning [71]. Its idea is to not re-compute the entire action-value
function in every iteration as in value iteration. Since the model is not known, one instead updates
the current action-value estimate Q̂ around new samples (xt, ut, xt+1) ∈ X × U × R×X as

Q̂(xt, ut)← Q̂(xt, ut) + α

(︃
r(xt, ut) + γmax

u∈U
Q̂(xt+1, u)− Q̂(xt, ut)

)︃

with step size α > 0. However, Q-Learning can be unstable when paired with (deep) function
approximators for scaling to large state spaces. Recent modern RL has introduced stabilization
techniques such as sampling from a replay buffer and using target networks, which leads to the
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so-called Deep Q-Network (DQN) method [33] and its derivatives. Such modern RL and function
approximation addresses the so-called “curse of dimensionality”, where exact dynamic programming
becomes difficult due to exponential scaling with the dimensionality of states and actions.

policy-based reinforcement learning. The other common approach to RL is given by
gradient-based methods, where one starts with an initial policy πθ parametrized by some parameters
θ. In contrast to value-based methods, policy-based gradient methods are not necessarily guaranteed
to converge to globally optimal policies. However, they have the advantage of being immediately
applicable to continuous action spaces, in contrast to using a value function which should output
values for all possible action. Given a current policy πθ, the idea is to estimate the gradient∇θJ(π

θ)
from samples, since the model is assumed unknown. In particular, the celebrated policy gradient
theorem implies that one can obtain the policy gradient as an expectation over seen states

∇θJ(π
θ) = (1− γ)−1Ex∼d

πθ ,u∼πθ(µ)

[︂
Qθ(µ, ξ)∇θ log π

θ(ξ | µ)
]︂

where Qθ(µ̂, ξ) = E[
∑︁∞

t=0 γ
tr(µ̂t) | µ̂0 = µ, ξ0 = ξ] and dπθ = (1− γ)

∑︁
t∈T γtLπθ(µ̂t). Here,

Lπθ denotes the probability law of πθ. Using standard sample-based estimates of the above yields
the most basic algorithm commonly known as REINFORCE [72].

recent techniques. More recent techniques include many more algorithms such as Proximal
Policy Optimization (PPO) [73], which is based on computationally simplified trust region opti-
mization [74] and uses an actor-critic framework, where the actor is the policy and the critic is a
value function estimate for variance reduction. It performs well empirically and finds application in
modern LLMs [39] and complex games [75]. However, the basic principles are not different from
the ones presented above. We refer readers interested in applying RL to comprehensive software
frameworks such as [76] and references therein.

2.2 multi-agent reinforcement learning

In the field of MARL, the preceding single-agent MDP is extended according to the considered
scenario. In general, multiple agents are instantiated, whose states and actions may now interact
with each other and must therefore be considered jointly.

MARL can be considered to subsume parts of algorithmic game theory, control theory and single-
agent RL. As a result, there is also a great number of differing notations, models and scenarios in
MARL. In this work, we focus on particular general instances of problems. We note however, that
the multi-agent setting permits a great range of scenarios, and that we only present scenarios that
are considered in this thesis. For more information and references on multi-agent settings, we refer
the reader to various surveys [40, 43, 44].

2.2.1 Competitive Setting

In the typical competitive scenario, agents are assumed to care only about their own rewards. This
gives rise to the setting of a Stochastic Game (SG), a tuple (N,X , (U i)i∈[N ], p, (r

i)i∈[N ], γ) (also
known as Markov game): Consider some number N ∈ N of agents i ∈ [N ] := {1, 2, . . . , N}. As
in the MDP, the system is endowed with a controlled state process xt from some state space X , but
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in contrast to the MDP, each agent i ∈ [N ] may influence it through their associated control actions
uit from action spaces U i. As before, one can consider closed-loop feedback policies πi ∈ Πi for
each agent i, where Πi is the set of all stochastic Markov policies such that the action depends only
on the current time t ∈ T and state xt, i.e. ut ∼ πt(ut | xt). Then, the state evolves over time
according to some transition kernel p such that xt+1 ∼ p(xt+1 | xt, u1t , . . . , uNt ) at all times t ∈ T .
This gives us the model

x0 ∼ µ0(x0), uit ∼ πi
t(u

i
t | xt), xt+1 ∼ p(xt+1 | xt, u1t , . . . , uNt ) ∀t ∈ T , ∀i ∈ [N ].

(2.2.1)

Finally, the goal of each agent i ∈ [N ] is separate in general and given by some function

J i(π1, . . . , πN ) = E

[︄∑︂

t∈T
γtri(xt, u

1
t , . . . , u

N
t )

]︄
. (2.2.2)

solution concepts. A common goal or solution concept is then the so-called Nash equilibrium,
which is the goal to be computed in equilibrium learning. It is defined as a tuple of policies
(π1, . . . , πN ) such that no agent can single-handedly change its policy to improve its objective.
By its definition, it is therefore a “stable” solution where no self-interested agent has incentive to
deviate. While there are many other solution concepts, see e.g. [77] for some examples, in this
work we primarily focus on the Nash equilibrium.

algorithms and complexity. In general, the complexity of computing Nash equilibria
is difficult (PPAD-complete, [45]). For certain special cases, an algorithm can be found with
guarantees of convergence. As one of many examples, classical Fictitious Play (FP) [78] is a
method that repeatedly computes the best deviating policies against the tuple of average past policies
in potential games or two-player zero-sum games. Indeed, one can consider the special case of
two-player or two-team zero-sum games, which also enjoys improved tractability. As a result, a great
amount of both classical and recent literature considers two-player zero-sum games [40]. In this
work however, we focus on general-sum scenarios with many more agents than two. More generally,
one can also consider partially-observable SGs or alternate frameworks such as extensive-form
games, see e.g. [40, Section 2], but in this work we consider partial observations only in the
cooperative setting. For partial observations in the MFG setting, see e.g. [79].

2.2.2 Cooperative Setting

In contrast to the competitive scenario, in the cooperative scenario all agents are assumed to share
rewards. To be precise, one considers Multi-agent Markov Decision Processes (MMDPs) [43, 80] as
a tuple (N,X , (U i)i∈[N ], p, r, γ). Its definition then mirrors the definition of the competitive SG,
with one important difference: The rewards ri for each agent i are replaced by a shared reward
function r. We obtain the overall model

x0 ∼ µ0(x0), uit ∼ πi
t(u

i
t | xt), xt+1 ∼ p(xt+1 | xt, u1t , . . . , uNt ) ∀t ∈ T , ∀i ∈ [N ].

(2.2.3)

as in Eq. (2.2.1), but with a centralized maximization objective for all agents,

J(π1, . . . , πN ) = E

[︄∑︂

t∈T
γtr(xt, u

1
t , . . . , u

N
t )

]︄
. (2.2.4)
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algorithms and complexity. It is then clear that, at least in the all-knowing fully-observable
case, one can replace the multitude of agents by a single “super-agent”, consisting of a joint state
and a joint action space. As a result, the problem in theory reduces to an MDP, which can be
solved by single-agent dynamic programming (PSPACE, [81]) and RL techniques discussed earlier.
However, in general the joint action space scales exponentially with the number of agents, which
can make the problem intractable. Furthermore, in many problems, each agent is also endowed with
an associated state, the product of which should constitute part of the system state. The resulting
exponentially large state and action spaces in the number of agents overall lead to tractability issues
in the presence of many agents, which is referred to as the combinatorial nature of MARL [40].

partial information. More importantly, if each agent is incapable of unrestricted com-
munication with other agents while each agent only observes part of the system, the super-agent
construction fails. This case is arguably more realistic in large-scale real systems. This leads us to
the so-called Decentralized Partially-Observable Markov Decision Process (Dec-POMDP) model, a
tuple (N,X , (U i)i∈[N ], (Y i)i∈[N ], p, (p

i
Y)i∈[N ], r, γ): As before in the MMDP, we have a controlled

state process xt from some state space X , and each agent i ∈ [N ] chooses control actions uit from
action spaces U i. In contrast to the prequel however, agents cannot see the true state xt of the system.
Instead, agents i ∈ [N ] are assumed to observe information yit ∼ piY(y

i
t | xit) from observation

space Y i according to some observation probability kernel piY . Agents have no access to the true
state, and the information from the history of observation-actions cannot be reduced to a belief
over the true state as in single-agent Partially-Observable Markov Decision Processs (POMDPs)
[43, 82]. Hence, in general one usually considers closed-loop feedback policies πi ∈ Πi for
each agent i, where Πi is the set of all stochastic history-dependent policies, such that the action
depends on the current time t ∈ T and all past observations and actions (yiτ )τ≤t, (uiτ )τ<t, i.e.
uit ∼ πi

t(u
i
t | yi0, ui0, . . . , yit−1, u

i
t−1, y

i
t). This gives us the model

x0 ∼ µ0(x0), yit ∼ piY(y
i
t | xit), uit ∼ πi

t(u
i
t | yi0, ui0, . . . , yit−1, u

i
t−1, y

i
t),

xt+1 ∼ p(xt+1 | xt, u1t , . . . , uNt ) ∀t ∈ T , ∀i ∈ [N ].
(2.2.5)

with centralized objective as before,

J(π1, . . . , πN ) = E

[︄∑︂

t∈T
γtr(xt, u

1
t , . . . , u

N
t )

]︄
. (2.2.6)

And again, it is known that the above decentralized control problem is highly intractable (NEXP-
complete, [46]). Overall, the difficulties in scaling up to multi-agent problems are commonly
known as the “curse of multiagents” or “combinatorial nature of MARL” [40]. Therefore, similar to
how RL addresses the single-agent “curse of dimensions”, one is motivated to (i) use approximate
methods for MARL discussed in the following, or (ii) consider special case scenarios. We propose a
combination of both of the above in Section 4.3.

2.2.3 Common Recent Algorithms

Various algorithms exist for solving MARL in special or in general. We only give a few of the most
important examples in recent literature, and point to more comprehensive surveys such as [40].
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value decomposition. A well-known value-based MARL algorithm is the Value Decomposi-
tion Network (VDN) [83], which focuses on the cooperative setting with a joint reward function to
be maximized. The approach addresses the so-called lazy agent phenomenon, where one agent
is active while the other policies remain inefficient, which is also related to the credit assignment
problem of MARL [40]. Essentially, the credit assignment problem in MARL formalizes the fact that
in the presence of many agents, rewards can be caused by any of the agent actions. The result is a
higher variance of reward estimates, as other agent actions must be averaged out first. The above
is solved by learning agent-wise value functions as an additive decomposition of the joint value
function. Thereby, the learning of a joint value function over the exponential state and action space
is avoided for scalability. Its many extensions such as QMIX [84, 85] further increase the range
of representable decomposed value functions, by not assuming additive but instead monotonic
decompositions.

independent learning. Instead of performing the super-agent construction in the cooperative
case, and in order to also handle the competitive case, a common idea is to perform independent
learning [86]. In the simplest case, we can use Q-Learning on each agent separately, assuming a
single-agent RL problem on each agent. The policy is then given as a maximizer of the learned
action-value function. More popularly however, policy gradient methods such as PPO are used. This
so-called Independent PPO (IPPO) method has repeatedly been demonstrated to give state-of-the-art
performance on a diverse set of cooperative multi-agent benchmark tasks [42, 87–89]. Similarly, its
extension using centralized critics (Multi-Agent PPO (MAPPO)) often performs well [88]. There,
the idea is that it suffices for decentralized execution to have decentralized policies, while allowing
for centralized information in the critics. This idea of learning with extra / full information is widely
known as the Centralized Training Decentralized Execution (CTDE) paradigm.

parameter sharing Independent learning such as in the prequel is commonly coupled with
the idea of parameter sharing [90], where all agents are assumed to have the same observation and
action space, and learn a single set of policy parameters. The parameter sharing approach is one
way of handling large numbers of agents tractably and even scale to unforeseen or dynamic numbers
of agents in a system. However, general convergence guarantees of algorithms usually remain
difficult, and common benchmarks often consider only limited numbers of agents [42, 89].

further techniques. Again, as in the single-agent RL setting, many more algorithms have
been proposed in literature that address particular issues with the above algorithms. Readers
interested in more details on general MARL methods are referred to MARL frameworks such as [91]
and references therein. Due to the difficulty of general MARL, often one considers particular settings
that are more tractable, such as graph-based decompositions [92, 93] or also the MFG and MFC
scenarios we are considering in the following.

2.3 infinite-agent mean field reinforcement learning

As discussed in the prequel, MARL can be hard to scale to many agents. In this work, recalling
Figure 1.2, standard MFGs and MFC are obtained by a dynamical system where homogeneous agents
are anonymously and weakly interacting with each other.

An increasingly popular and recent approach to the tractability issue has been to use the framework
of learning in MFGs [9, 94–101] and their cooperative counterpart of MFC [8, 102–107]. It is
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important to note that here, learning often also refers to classical equilibrium learning – i.e. iterative
convergence to equilibria – in game theory, as opposed to e.g. RL, see also the discussion in [25].
Popularized by [23] and [22] in the context of differential games, MFGs and related approximations
have since found application in a plethora of fields such as transportation and traffic control [54, 55,
108], large-scale batch processing and scheduling systems [56, 57, 109], peer-to-peer streaming
systems [58], malware epidemics [59], crowd dynamics and evacuation of buildings [60, 110, 111],
as well as many other applications in economics [64] and engineering [65].

Since the inception of MFGs, extensions have been manifold and include e.g. discrete-time models
[24], partial observability [112], major-minor formulations [113] and many more. In the learning
community, there has been immense recent interest in finding and analyzing solution methods
for Mean Field Equilibrium (MFE) [9, 94–96, 114–118], solving the inverse RL problem [119] or
applying related approximations directly to MARL [120]. Even more recently, focus increased also
on the cooperative case of MFC [105, 107], for which dynamic programming holds on an enlarged
state space, resulting in a high-dimensional MDP [8, 103, 104, 121]. Due to the extensive scale of
prior conducted investigations, for a comprehensive overview of existing work in MFGs and learning
thereof, we refer the interested reader to many extensive reviews on MFGs [25, 67, 122–125]. We
also discuss works related to specific contributions of ours in the corresponding Chapters 3 to 5.

finite-agent mean field models. In essence, the typical finite-agent problem of interest
is given by taking a multi-agent system as defined in the prequel with N agents i ∈ [N ] :=
{1, 2, . . . , N} and taking N →∞. To obtain a first mean field approximation result, it is assumed
that the system state is simply a product of agent states, and that all agents are homogeneous (same
state and action spaces X ,U , same initial distribution µ0, same dynamics p and reward functions r).
Furthermore, one assumes that all agent interdependence happens through the MF µN

t =
∑︁

i∈[N ] δxi
t

(“histogram of agent states”, here δ is the Dirac measure)

xi0 ∼ µ0(x
i
0), uit ∼ πi

t(u
i
t | xit), xt+1 ∼ p(xt+1 | xt, ut, µN

t ) ∀t ∈ T ,∀i ∈ [N ]. (2.3.7)

For MFGs, each agent shares policies π1 = . . . = πN = π ∈ Π. In this section, Π is the set of all
policies such that the action depends only on the current time t ∈ T and local agent state xt, which
suffices over local history-dependent policies [24, Proposition 3.2]. Finally, in MFGs each agent is
equipped with its own objective

JN
i (π) = E

[︄∑︂

t∈T
γtr(xit, u

i
t, µ

N
t )

]︄
. (2.3.8)

We can hence view the finite-agent MFG as a special case of SGs in Eqs. (2.2.1) and (2.2.2).

In contrast, the cooperative finite-agent MFC problem is equipped with a single global objective

JN (π) = E

[︄∑︂

t∈T
γtr(µN

t )

]︄
. (2.3.9)

We can understand the above model as a special case of MMDPs, or Dec-POMDPs in Eqs. (2.2.5)
and (2.2.6) for the more general partially-observable case introduced in Section 4.3.
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limiting infinite-agent problems. Taking the limit of N → ∞ gives us the classical
MFG and MFC problems, where the empirical MF µN

t is instead replaced by a deterministic MF µt

via LLN. Any single agent can be replaced by a single representative that acts according to arbitrary
π̂ ∈ Π, under the presence of all other agents acting according to π ∈ Π, i.e.

x0 ∼ µ0(x0), ut ∼ π̂t(ut | xt), xt+1 ∼ p(xt+1 | xt, ut, µt) ∀t ∈ T , (2.3.10)

µt+1 =

∫︂

X

∫︂

U
p(· | x, u)πt(du | x)µt(dx) ∀t ∈ T . (2.3.11)

The objective in the MFG case then becomes

Jµ(π̂) = E

[︄∑︂

t∈T
γtr(xt, ut, µt)

]︄
, (2.3.12)

and for the MFC case, irrespective of any single agent deviating from all other agents’ policy π,

J(π) = E

[︄∑︂

t∈T
γtr(µt)

]︄
. (2.3.13)

The above MF µ ∈M is generated by the policy π ∈ Π, whereM := P(X )T is the space of MFs.
As a result, the concept of a Nash equilibrium becomes that of a policy π that generates a MF µ,
under which the representative agent’s optimal policy is π again. We usually write Φ(µ) for the map
from MF µ to all optimal (best response) policies maximizing Eq. (2.3.12), and we write µ = Ψ(π)
for the MF generated by π. Therefore, a Nash MFE π fulfills π ∈ Φ(Ψ(π)).

On the other hand, in MFC one can see that any single representative agent alone does not matter.
Performing a “super-agent” construction, at each time step t one essentially controls the MF µt (all
agents) via choosing πt, or equivalently the joint ht := µt ⊗ πt(µt), which gives rise to the MFC
MDP (e.g., [107]). The MFC MDP is then simply given by an MDP with dynamics

ht ∼ π̂t(ht | µt), µt+1 = T (µt, ht) :=

∫︂∫︂
p(· | x, u, µt)ht(dx,du) (2.3.14)

and objective J(π̂) = E
[︁∑︁∞

t=0 γ
tr(µt)

]︁
, where the system states are µt and actions are ht,

controlled by a “higher-level” super-agent policy π̂. Here, µt ⊗ πt(µt) is the desired joint
state-action distribution under some “lower-level” policy πt(µt) ∈ Π. See also Chapter 4.

theoretical guarantees. The infinite-agent limit is a proxy for the finite-agent problem
of interest, which is a good approximation for large finite problems with many agents under
certain conditions: Propagation of chaos [126] – the convergence of the empirical MF µN

t to its
deterministic limit µt as N → ∞ by a LLN – is typically obtained to guarantee the approximate
optimality of MF solutions in the finite problems of interest. For example, under Lipschitz continuity
assumptions on transitions and rewards, a classical rate of approximation isO(1/

√
N) [23], e.g., as

supf∈Cb(P(X )) E
[︁
f(µN

t )− f(µt)
]︁
= O(1/

√
N) over bounded and continuous functions f .

In MFGs, this ideally means obtaining approximate Nash equilibria where each finite agent can only
gain at mostO(1/

√
N) by deviating from its MFE policy. On the other hand, in MFC an approximate

O(1/
√
N)-optimality of MFC solutions can be shown. Even with only simple model continuity,

asymptotic results can sometimes be obtained (see, e.g., Theorem 3.2.3), but a quantified rate
becomes more difficult. Furthermore, it is possible to obtain the existence of Nash equilibria in the
MFG case, making the model useful. If needed, under additional assumptions such as monotonicity
(i.e. agents disliking crowded states) [127], one can often obtain uniqueness of equilibria and
algorithmic guarantees of convergence to the desired equilibrium.
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assumptions of mean field models We note that the assumptions are worth discussing:
Firstly, we would like to briefly discuss the assumption of identical behavior between agents. In
particular, for the derivation of the above limits, it is assumed that all agents use the same policy.
One can however argue that symmetry suffices: In the competitive case, we are interested in finding
Nash equilibria, which are guaranteed to exist in the MF limit, as approximate symmetric Nash
equilibria. Meanwhile, in MFC (or two-team MF problems), recent literature [128] has shown that
using identical policies between all agents is associated with only negligible suboptimality.

Secondly, note that the assumed continuity is strictly required in MF models, in order to obtain the
propagation of chaos as a theoretical grounding of MF models to the real finite-agent system. In
contrast, consider an example of voting, where the majority between two choices wins. If agents
use a uniformly random policy, it is not possible to find a deterministic MF model that adequately
describes the random winning behavior in the finite agent systems.

Finally, the closely related weak interaction between agents is therefore a founding principle of the
MF models introduced above. Otherwise, if an agent has no negligible effect on the whole, it is
not possible to reduce all other agents to a MF that remains unaffected by it. Weak interaction and
the other issues of all-knowing agents and homogeneity in RQ II are addressed in this thesis, by
extending the basic models in Chapter 3 and Chapter 4.

algorithmic solutions and marl. As for single-agent and multi-agent RL in infinite-agent
systems, various algorithms have been proposed in the last few years to solve MFGs and MFC. There
has also been work on special cases such as stationary problems (where the MF does not change) or
one-shot problems without time. A recent survey of learning algorithms can be found in [25].

In MFGs, learning typically refers to equilibrium learning as the computation of equilibria, instead
of using RL. A classical approach is through classical Fixed Point Iteration (FPI) [23], where one
simply iterates optimal policies π(k+1) ∈ Φ(Ψ(π(k))) over iterations k ∈ N. Another approach
[94, 99, 114] focuses on potential MFGs by adapting the classical game-theoretical FP algorithm
[77]. Together with deep techniques including normalizing flows and deep RL ([129], deep RL as in
Chapter 3), as well as online mirror descent [117, 130], recent algorithms are also scaled to larger
state spaces. Finally, optimization and linear program formulations of MDPs may be used [131]. For
a quick start, see also software frameworks such as MFGLib [132] or OpenSpiel [133].

However, unfortunately FPI tends to fail in discrete-time and it is usually difficult to verify theoretical
convergence guarantees, as we show in our first contribution in Chapter 3. There, we analyze
regularized games as a trade-off between convergence and optimality, and later extend algorithms
to more general settings on graphs and with strong interactions. In particular, existing algorithms
mostly fall into two categories of assumptions: Methods such as FPI assume the contractivity of
the best response map, i.e. the map from policy to its optimal policy under the generated mean
field. On the other hand, methods such as FP and online mirror descent assume monotonicity
conditions. These assumptions limit the applicability of MFGs to practical problems that do not
fulfill the assumptions. In general, these methods can then be applied as oracles in a model-based
RL manner for unknown system models [134].

Meanwhile, in MFC learning, existing works focus on solving the MFC MDP through policy-based
RL methods [105] and discretization [107]. This means directly using the methods that we have
presented in Section 2.1.2, but on a high-dimensional or possibly infinite-dimensional MDP with
infinitely many agents, as its state is a distribution over agent states, and similarly its action.
Furthermore, MFC algorithms were so far analyzed mostly as algorithms on the infinite-agent system.
Instead, as part of our contributions in Chapter 4, we look at kernel-based parametrizations instead
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of discretization for scalability, learn on the finite system instead of the infinite MFC MDP in a true
MARL manner, and analyze the resulting error of policy gradients. Apart from purely algorithmic
contributions, we also extend methods and theories to more general settings with either partial
information or strong interactions.

2.4 conclusion of chapter 2

We have introduced basic models and problem scenarios studied in this thesis. The frameworks were
discussed in discrete time, which is less standard for MFGs and MFC literature, but more standard for
MARL and MF-learning literature.

First, we briefly introduced basic concepts of single-agent RL. In the initial exposition, we discussed
the single-agent MDP as a model of sequential decision-making or control, that can be solved exactly
through dynamic programming methods such as value iteration or policy iteration. Similarly, RL
was introduced with value-based and policy-based approaches, as a sample-based and tractable way
of dealing with high-dimensional MDPs and their “curse of dimensionality”.

We then explained SGs and Dec-POMDPs as two intractable but general models for MARL as the
generalization of RL to multiple agents problems, in the competitive and cooperative case respectively.
The models generalize the single-agent MDP and add significant additional complexity, known as the
“curse of multiagents” or “combinatorial nature of MARL”. Some of the most common techniques
for MARL were presented, together with some of their ideas on how to address scaling to multiple
agents via additional assumptions such as parameter sharing or decomposable value functions.

Finally, we moved on to introduce basic discrete-time MFGs and MFC as another set of tractable but
specialized models for MARL problems. Some basic algorithmic approaches to MARL using MFGs
and MFC were described. However, firstly MFGs and MFC restrict the space of problems that may
be solved, and secondly the solution thereof still remains to be explored more. For example, MFG
learning algorithms are yet limited to assumptions such as contractivity or monotonicity, while
MFC-based MARL should be analyzed on finite-agent systems.

In the following chapters and sections, we introduce generalizations of the above models, as well as
novel algorithms that either address issues in existing algorithms or generalize to more advanced
MF models. As discussed in Chapter 1, we hope our work improves applicability of MFGs and MFC,
making them more applicable and solvable, by providing both novel theoretical frameworks with
guarantees and novel algorithms.
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22 3 competitive mean field games

In this chapter, we study the competitive case of MFGs for tractable equilibrium learning in large-scale
games. In general, one may focus on various simplifying settings of MFGs such as the static case
where agents have no dynamics and there is no time evolution, or the stationary case where the
MF is stationary over time. Here, we focus on the general setting of evolutive MFGs, where the MF
evolves over time. We first analyze general MFGs with respect to their solvability through FPI, and
give some algorithms. We then move on to extensions of MFGs to graph-based interaction and major
agents in order to increase the generality and flexibility of MFGs.

3.1 regularization for approximate learning of mean field games

The recent MFG formalism promises otherwise intractable computation of approximate Nash
equilibria in many-agent settings. In this section, we consider discrete-time finite MFGs subject to
finite-horizon objectives. We show that all discrete-time finite MFGs with non-constant fixed point
operators fail to be contractive as typically assumed in existing MFG literature, barring convergence
via FPI. Instead, we incorporate entropy-regularization and Boltzmann policies into the FPI. As a
result, we obtain provable convergence to approximate fixed points where existing methods fail,
and reach the original goal of approximate Nash equilibria. All proposed methods are evaluated
with respect to their exploitability, on both instructive examples with tractable exact solutions and
high-dimensional problems where exact methods become intractable. In high-dimensional scenarios,
we apply established deep RL methods and empirically combine FP with our approximations. The
material presented in this section is based upon our work [9].

Computing an MFE remains difficult in the general case. Standard assumptions in existing literature
are MFE uniqueness and operator contractivity [23, 95, 135] to obtain convergence via simple FPI.
While these assumptions hold true for some games, we address the case where such restrictive
assumptions fail. Applications for such MF models are manifold and include e.g. finance [123],
power control [136], wireless communication [137] or public health models [138].

a motivating example. Consider the following trivial situation informally: Let a large
number of agents choose simultaneously between going left (L) or right (R). Afterwards, each
agent shall be punished proportional to the number of agents that chose the same action. If we had
infinitely many independent, identically acting agents, the only stable solution would be to have all
agents pick uniformly at random.

The MFG formalism models this problem by picking one representative agent and abstracting all
other agents into their state distribution. Unfortunately, analytically obtaining fixed points in general
proves difficult and existing computational methods can fail.

our contribution. We begin by formulating the MF analogue to finite games in game theory.
In this setting we give simplified proofs for both existence and the approximate Nash equilibrium
property of MFE. Moreover, we show that in finite MFGs, all non-constant fixed point operators are
non-contractive, necessitating a different approach than naive FPI.

Consequently, we approximate the fixed point operator by introducing relative entropy regularization
and Boltzmann policies. We prove guaranteed convergence for sufficiently high temperatures, while
remaining arbitrarily exact for sufficiently low temperatures. Furthermore, repeatedly iterating on
the prior policy allows us to perform an iterative descent on exploitability, successively improving
the equilibrium approximation.
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Finally, our methods are extensively evaluated and compared to other methods such as FP [127],
which in general fail to converge to a fixed point. We outperform existing methods in terms of
exploitability in our problems, allowing us to find approximate MFE in the general case and paving
the way to practical application of MFGs. In otherwise intractable problems, we apply deep RL
techniques together with particle-based simulations.

3.1.1 Simple Finite Mean Field Games

Consider a discrete-time N -agent stochastic game with finite agent state space X and finite agent
action space U , equipped with the discrete metric. Let T = {0, 1, . . . , T − 1} denote the time
index set. Denote by P(X ) the set of all Borel probability measures on a metric space X . Since
we work with finite spaces, we abuse notation and denote both a measure ν and its probability
mass function by ν(·). For each agent, the dynamical behavior is described by the state transition
function p : X × X × U × P(X ) → [0, 1] and the initial state distribution µ0 : X → [0, 1]. For
agents i = 1, . . . , N at times t ∈ T , their states xit and actions uit are random variables with
values in X and U respectively. Let µN

t ≡ 1
N

∑︁N
i=1 δxi

t
denote the empirical MF, where δ is the

Dirac measure. Further, let µ[x] ≡ 1
N

∑︁N
i=1 δxi denote the empirical measure of agent states

x = (x1, . . . , xN ) ∈ XN . We also define xt = (x1t , . . . , x
N
t ). Consider for each agent i a Markov

policy πi = (πi
t)t∈T ∈ Π, where πi

t : U × X → [0, 1] and Π is the space of all Markov policies.
The state evolution of agent i begins with xi0 ∼ µ0, and subsequently for all applicable times t
follows

uit ∼ πi
t(u

i
t | xit), xit+1 ∼ p(xit+1 | xit, uit, µ[xt]) ∀i ∈ [N ].

Finally, define agent i’s finite horizon objective function

JN
i (π1, . . . , πN ) ≡ E

[︄
T−1∑︂

t=0

r(xit, u
i
t, µ

N
t )

]︄

to be maximized, where r : X ×U ×P(X )→ R is the agent reward function, and note µN
t = µ[xt].

With this, we can give the notion of optimality used by [24].

Definition 3.1.1. A Markov-Nash equilibrium is a 0-Markov-Nash equilibrium. For ε ≥ 0, an
ε-Markov-Nash equilibrium (approximate Markov-Nash equilibrium) is defined as a tuple of policies
(π1, . . . , πN ) ∈ ΠN such that for any i = 1, . . . , N , we have

JN
i (π1, . . . , πN ) ≥ max

π∈Π
JN
i (π1, . . . , πi−1, π, πi+1, . . . , πN )− ε .

Since analyzing policies acting on joint state information or the state history is difficult, optimality
has been restricted to the set of Markov policies Π acting on the agent’s own state. Although this
may seem like a significant restriction, in the N →∞ limit, the evolution of all other agents – the
MF – becomes deterministic and therefore non-informative.

infinite agent limit. The N →∞ limit of the N -agent game constitutes its corresponding
finite MFG (i.e. with a finite state and action space). It consists of the same elements T ,X ,U , p, r, µ0.
However, instead of modeling N separate agents, it models a single representative agent and
collapses all other agents into their common state distribution, i.e. the MF µ = (µt)t∈T ∈M with
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µt : X → [0, 1], whereM is the space of all MFs and µ0 is given. The deterministic mean field µ
replaces the empirical measure of the finite game. Consider a Markov policy π ∈ Π as before. For
some fixed mean field µ, the evolution of random states xt and actions ut begins with x0 ∼ µ0 and
subsequently for all applicable times t follows

ut ∼ πt(ut | xt), xt+1 ∼ p(xt+1 | xt, ut, µt) ,

and the objective analogously becomes

Jµ(π) ≡ E

[︄
T−1∑︂

t=0

r(xt, ut, µt)

]︄
.

The mean field µ induced by some fixed policy π begins with the given µ0 and is defined recursively
by

µt+1(x
′) ≡

∑︂

x∈X
µt(x)

∑︂

u∈U
πt(u | x)p(x′ | x, u, µt) .

By fixing a mean field µ ∈M, we obtain an induced MDP with time-dependent transition function
p(x′ | x, u, µt) and reward function r(x, u, µt). Denote the set-valued map from mean field to
optimal policies π of the induced MDP as Φ̂ :M→ 2Π (i.e. such that π is optimal at any time and
state). Analogously, define the map from a policy to its induced mean field as Ψ : Π→M. Finally,
we can define the N →∞ analogue to Markov-Nash equilibria.

Definition 3.1.2. A MFE is a pair (π, µ) ∈ Π×M such that π ∈ Φ̂(µ) and µ = Ψ(π) holds.

By defining any single-valued map Φ :M→ Π to an optimal policy, we obtain a composition
Γ = Ψ ◦ Φ :M→M, henceforth MFE operator. Shown by [24] for general Polish X and U , the
MFE exists and constitutes an approximate Markov-Nash equilibrium for sufficiently many agents
under technical conditions. In Appendix A, we give simplified proofs for finite MFGs under the
following standard assumption.

Assumption 3.1.1. The functions r and p are continuous, hence bounded.

Note that we metrize probability measure spaces P(X ) with the total variation distance dTV . For
probability measures ν, ν ′ on finite spaces X , dTV simplifies to

dTV (ν, ν
′) =

1

2

∑︂

x∈X
|ν(x)− ν ′(x)| .

Accordingly, we equip Π,M with sup metrics, i.e. for policies π, π′ ∈ Π and MFs µ, µ′ ∈M we
define the metric spaces (Π, dΠ) and (M, dM) with

dΠ(π, π
′) ≡ max

t∈T
max
x∈X

dTV (πt(· | x), π′
t(· | x)) ,

dM(µ, µ′) ≡ max
t∈T

dTV (µt, µ
′
t) .

Proposition 3.1.1. Under Assumption 3.1.1, there exists at least one MFE (π∗, µ∗) ∈ Π×M.

Theorem 3.1.1. Under Assumption 3.1.1, if (π∗, µ∗) is an MFE, then for any ε > 0 there exists
N ′ ∈ N such that for all N > N ′, the policy (π∗, . . . , π∗) is an ε-Markov-Nash equilibrium in the
N -agent game.

For proofs, see Appendix A. Importantly, finding Nash equilibria in large-N games is hard [45],
whereas an MFE can be significantly more tractable to compute. Accordingly, solving the limiting
MFG approximately solves the finite-N game for large N in a tractable manner.
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3.1.2 Fixed Point Iteration Fails

Repeated application of the MFE operator constitutes the exact FPI approach to finding MFE. The
standard assumption for convergence in the literature is contractivity and thereby MFE uniqueness
(e.g. [95, 139]).

Proposition 3.1.2. Let Φ,Ψ be Lipschitz with constants c1, c2, fulfilling c1c2 < 1. Then, the FPI
µn+1 = Ψ(Φ(µn)) converges to the MF of the unique MFE for any initial µ0 ∈M.

Proof. Let µ, µ′ ∈M arbitrary, then

dM(Γ(µ),Γ(µ′)) = dM(Ψ(Φ(µ)),Ψ(Φ(µ′)))

≤ c2 · dΠ(Φ(µ),Φ(µ′))

≤ c2 · c1 · dM(µ, µ′) .

Since µ, µ′ are arbitrary, Γ is Lipschitz with constant c1 ·c2 < 1. (Π, dΠ) and (M, dM) are complete
metric spaces (see Appendix A). Therefore, Banach’s fixed point theorem implies convergence to
the unique fixed point for any starting µ0 ∈M.

Unfortunately, it remains unclear how to proceed if multiple optimal policies of an induced MDP
exist, or if contractivity fails, e.g. when multiple MFE exist. In the following, consider again the
illuminating example from the introduction.

3.1.2.1 Toy Example

Consider X = {C,L,R}, U = X \ {C}, µ0(C) = 1, r(x, u, µt) = −1{L}(x) ·µt(L)− 1{R}(x) ·
µt(R) and T = {0, 1}. The transition function allows picking the next state directly, i.e. for all
x, x′ ∈ X , u ∈ U ,

P(xt+1 = x′ | xt = x, ut = u) = p(x′ | x, u) = 1{x′}(u) .

Clearly, any MFE (π∗, µ∗) must fulfill π∗
0(L | C) = π∗

0(R | C) = 1/2, while π∗
1 can be arbitrary.

Even if the operator Φ chooses suitable optimal policies, the fixed point operator Γ remains
non-contractive, as the MF will necessarily alternate between left and right for any non-uniform
starting µ0 ∈M.

We observe that the example has infinitely many MFE, but no deterministic MFE, i.e. an MFE such
that for all t ∈ T , x ∈ X , u ∈ U either πt(u | x) = 0 or πt(u | x) = 1 holds, similar to the classical
game-theoretical insight of mixed Nash equilibrium existence (cf. [77]). Therefore, choosing
optimal, deterministic policies will typically fail.

3.1.2.2 General Non-Contractivity

Most existing work assumes contractivity, which is too restrictive. In many scenarios, agents need
to "coordinate" with each other. For example, a herd of hunting animals may collectively choose
one of multiple hunting grounds, allowing for multiple MFEs. Hence, it can be difficult to apply
existing MFG methodologies in practice, as many problems automatically fail contractivity.
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From the previous example, we may be led to believe that non-contractivity is a general property
of finite MFGs. And indeed, regardless of number of MFEs, it turns out that in any finite MFG
with non-constant MFE operator, a policy selection operator Φ with finite image ΠΦ will lead to
non-contractivity. Note that this includes both the conventional argmax and the argmax-e (cf.
[95]) choice of actions.

Theorem 3.1.2. Let the image of Φ be a finite set ΠΦ ⊆ Π. Then, either it holds that Γ = Ψ ◦ Φ is
a constant, or Γ is not Lipschitz continuous and thus not a contraction.

Therefore, typical discrete-time finite MFGs have non-contractive fixed point operators and we must
change our approach. Note that although non-contractivity does not imply non-convergence, the
trivial example from before strongly suggests that non-convergence is the case for many finite
MFGs.

3.1.3 Approximating Mean Field Equilibria Can Help

Exact FPI fails to solve most finite MFGs. Therefore, a different solution approach is necessary.
In the following, we present two related approaches that guarantee convergence while plausibly
remaining approximate Nash equilibria in the finite-N case. For our results, we require a stronger
Lipschitz assumption that implies Assumption 3.1.1.

Assumption 3.1.2. The functions r and p are Lipschitz continuous, hence bounded.

3.1.3.1 Relative Entropy Mean Field Games

A straightforward idea is regularization by replacing the objective by the well-known (see e.g. [140])
relative entropy objective

J̃
µ
(π) ≡ E

[︄
T−1∑︂

t=0

r(xt, ut, µt)− η log
πt(ut | xt)
qt(ut | xt)

]︄

with temperature η > 0 and positive prior policy q ∈ Π, i.e. qt(u | x) > 0 for all t ∈ T , x ∈
X , u ∈ U . Shown in Appendix A, the unique optimal policy π̃µ,η

t fulfills

π̃µ,η
t (u | x) =

qt(u | x) exp
(︃

Q̃η(µ,t,x,u)

η

)︃

∑︁
u′∈U qt(u′ | x) exp

(︃
Q̃η(µ,t,x,u

′)

η

)︃

for the MDP induced by fixed µ ∈ M, with the soft action-value function Q̃η(µ, t, x, u) given by
the smooth-maximum Bellman recursion

Q̃η(µ, t, x, u) = r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt)

· η log
(︄∑︂

u′∈U
qt+1(u

′ | x′) exp Q̃η(µ, t+ 1, x′, u′)

η

)︄
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of the MDP induced by fixed µ ∈M, with terminal condition Q̃η(µ, T − 1, x, u) ≡ r(x, u, µT−1).
Note that we recover optimality as η → 0, see Theorem 3.1.4. Define the relative entropy MFE
operator Γ̃η ≡ Ψ ◦ Φ̃η with policy selection Φ̃η(µ) ≡ π̃µ,η for all µ ∈M.

Definition 3.1.3. An η-relative entropy MFE (η-RelEnt MFE) for some positive prior policy q ∈ Π
is a pair (πE , µE) ∈ Π ×M such that πE = Φ̃η(µ

E) and µE = Ψ(πE) hold. An η-maximum
entropy MFE (η-MaxEnt MFE) is an η-RelEnt MFE with uniform prior policy q.

3.1.3.2 Boltzmann Iteration

Since only deterministic policies fail, a derivative approach is to use softmax policies directly
with the unregularized action-value function, also called Boltzmann policies. Assume that the
action-value function Q∗ fulfilling the Bellman equation

Q∗(µ, t, x, u) = r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt) ·max

u′∈U
Q∗(µ, t+ 1, x′, u′) .

of the MDP induced by fixed µ ∈M with terminal condition Q∗(µ, T − 1, x, u) ≡ r(x, u, µT−1)
is known. Define the map Φη(µ) ≡ πµ,η for any µ ∈M, where

πµ,η
t (u | x) ≡

qt(u | x) exp
(︂
Q∗(µ,t,x,u)

η

)︂

∑︁
u′∈U qt(u′ | x) exp

(︂
Q∗(µ,t,x,u′)

η

)︂

for all t ∈ T , x ∈ X , u ∈ U and temperature η > 0.

Definition 3.1.4. An η-Boltzmann MFE (η-Boltzmann MFE) for some positive prior policy q ∈ Π is
a pair (πB, µB) ∈ Π×M such that πB = Φη(µ

B) and µB = Ψ(πB) hold.

3.1.3.3 Theoretical Properties

Both η-RelEnt MFE and η-Boltzmann MFE are guaranteed to exist for any temperature η > 0.

Proposition 3.1.3. Under Assumption 3.1.1, η-Boltzmann and η-RelEnt MFE exist for any tempera-
ture η > 0.

Contractivity of both η-Boltzmann MFE operator Γη ≡ Ψ ◦ Φη and η-RelEnt MFE operator
Γ̃η ≡ Ψ ◦ Φ̃η is guaranteed for sufficiently high temperatures, even if all possible original Φ are not
Lipschitz continuous.

Theorem 3.1.3. Under Assumption 3.1.2, µ ↦→ Q∗(µ, t, x, u), µ ↦→ Q̃η(µ, t, x, u) and Ψ(π) are
Lipschitz continuous with constants KQ∗ , KQ̃ and KΨ for arbitrary t ∈ T , x ∈ X , u ∈ U , η >

η′, η′ > 0. Furthermore, Γη and Γ̃η are a contraction for

η > max

(︃
η′,
|U| (|U| − 1)KQKΨq

2
max

2q2min

)︃

where KQ = KQ∗ for Γη, KQ = KQ̃ for Γ̃η, qmax ≡ maxt∈T ,x∈X ,u∈U qt(u | x) > 0 and
qmin ≡ mint∈T ,x∈X ,u∈U qt(u | x) > 0.
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Sufficiently large η hence implies convergence via FPI. On the other hand, for sufficiently low
temperatures η, both η-Boltzmann and η-RelEnt MFE will also constitute an approximate Markov-
Nash equilibrium of the finite-N game.

Theorem 3.1.4. Under Assumption 3.1.2, if (π∗
n, µ

∗
n)n∈N is a sequence of ηn-Boltzmann or ηn-

RelEnt MFE with ηn → 0, then for any ε > 0 there exist n′, N ′ ∈ N such that for all n > n′, N > N ′,
the policy (π∗

n, . . . , π
∗
n) ∈ ΠN is an ε-Markov-Nash equilibrium of the N -agent game, i.e.

JN
i (π∗

n, . . . , π
∗
n) ≥ max

πi∈Π
JN
i (π∗

n, . . . , π
∗
n, πi, π

∗
n, . . . , π

∗
n)− ε .

If we can obtain contractivity for sufficiently low η, we can find good approximate Markov-Nash
equilibria. As it is impossible to have both η → 0 and η → ∞, it depends on the problem and
prior whether we can converge to a good solution. Nonetheless, we find that it is often possible to
empirically find low η that provide convergence as well as a good approximate MFE.

3.1.3.4 Prior Descent

In principle, we can insert arbitrary prior policies q ∈ Π. Under Assumption 3.1.1, by boundedness
of both Q̃η and Q∗ (see Appendix A), both η-RelEnt and η-Boltzmann MFE policies converge to the
prior policy as η →∞. Therefore, in principle we can show that for any ε > 0, for sufficiently large
η and N , the η-RelEnt and η-Boltzmann MFE under q will be at most an ε-worse approximate Nash
equilibrium than the prior policy. Furthermore, we obtain guaranteed contractivity by Theorem 3.1.3.
Thus, any prior policy gives a worst-case bound on the performance achievable over all η > 0. On
the other hand, if we obtain better results for sufficiently low η, we may iteratively improve our
policy and thus our equilibrium quality.

3.1.4 Relation to Prior Work

The original work of [23] introduces contractivity and uniqueness assumptions into the continuous
MFG setting. Analogously, [95] and [139] assume contractivity for discrete-time MFGs and dense
graph limit MFGs respectively. Further existing work on discrete-time MFGs similarly assumes
uniqueness of the MFE, which includes [24] and [141] for approximate optimality and existence
results, and [135] for an analysis on contractivity requirements. [114] solve discrete-time continuous
state MFG problems under the classical uniqueness conditions of [22]. Further extensions of the
MFG formula include partial observability [112] or major agents [113].

The work of [142] is related and studies theoretical properties of finite-N regularized games and
their limiting MFG. In their work, the existence and approximate Nash property of MFE in stationary
regularized games is shown, and Q-Learning error propagation is investigated. In comparison, we
consider the original, unregularized finite-N game in a transient setting and perform extensive
empirical evaluations. [95] and [120] previously proposed to apply Boltzmann policies. The former
applies the approximation without analyzing the resulting contractivity, while the latter focuses on
directly solving finite-N games.

An orthogonal approach to computing MFE is FP. Rooted in game-theory and classical economic
works [78], it has since been adapted to MFGs. In FP, all past MFs [94] and policies [127] are
averaged to produce a new MF or policy. Importantly, convergence is guaranteed in certain special
cases only (cf. [96]). Although introduced in a continuous-time setting, we evaluate FP empirically
in our setting and find that both our regularization and FP may be combined successfully.
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3.1.5 Experiments

In practice, we find that our approaches are capable of generating solutions of lower exploitability
than otherwise obtained. Unless stated otherwise, we compute everything exactly, use the maximum
entropy objective (MaxEnt) with the uniform prior policy q where qt(u | x) = 1/|U| for all
t ∈ T , x ∈ X , u ∈ U , and initialize with µ0 = Ψ(q) generated by q. As the main evaluation metric,
we define the exploitability of a policy π ∈ Π with induced MF µ ≡ Ψ(π) as

∆J(π) ≡ max
π∗

Jµ(π∗)− Jµ(π) .

Clearly, the exploitability of π is zero if and only if (π, µ) is an MFE. Indeed, for any ε > 0,
any policy π ∈ Π is a (∆J(π) + ε)-Markov Nash equilibrium if N sufficiently large, i.e. the
exploitability translates directly to the limiting equilibrium quality in the finite-N game, see also
Theorem 3.1.4 and its proof.

We evaluate the algorithms on the LR, RPS, SIS and Taxi problems, ordered in increasing complexity.
Details of the algorithms, hyperparameters, problems and experiment configurations as well as
further experimental results can be found in Appendix A.

3.1.5.1 Exploitability

In Figure 3.1, we plot the minimum, maximum and mean exploitability for varying temperatures
η during the last 10 fixed point iterations, i.e. a single value when the exploitability (and usually
MF) converges. Observe that the lowest convergent temperature outperforms not only the exact FPI
(drawn at temperature zero), but also the uniform prior policy.
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figure 3.1: Convergence in exploitability of regularized MFG algorithms. Mean exploitability over the
final 10 iterations. Dashed lines represent maximum and minimum over the final 10 iterations. (a) LR, 10000
iterations; (b) RPS, 10000 iterations; (c) SIS, 10000 iterations. Maximum entropy (MaxEnt) results begin at
higher temperatures due to limited floating point accuracy. Temperature zero depicts the exact FPI for both
η-MaxEnt and η-Boltzmann MFE. In LR and RPS, η-MaxEnt and η-Boltzmann MFE coincide both with and
without FP, here averaging both policy and MF over all past iterations. The exploitability of the prior policy is
indicated by the dashed horizontal line.

Although developed for a different setting, we also show results of FP similar to the version from
[127], i.e. both policies and MFs are averaged over all past iterations. It can be seen that FP only
converges to the optimal solution in the LR problem. In the other examples, supplementing FP with
entropy regularization is effective at producing better results. A non-existent FP variant averaging
only the policies finds the exact MFE in RPS, but nevertheless fails in SIS. See Appendix A for
further results.
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Evaluating and solving finite-N games is highly intractable by the curse of dimensionality, as the
local state is no longer sufficient to perform dynamic programming in the presence of the random
empirical state measure. Since it has already been proven that the exploitability for N →∞ will
converge to the exploitability of the corresponding MFG, we refrain from evaluating on finite-N
games.

Note that the plots are entirely deterministic and not stochastic as it would seem at first glance, since
the depicted shaded area visualizes the non-convergence of exploitability and is a result of the fixed
point updates running into a limit cycle (cf. Figure 3.2).

3.1.5.2 Convergence

In Figure 3.2, the difference between the exploitability of the current policy and the minimal
exploitability reached during the final 10 iterations is shown for η-Boltzmann MFE. As the
temperature η decreases, time to convergence increases until non-convergence is reached in form of
a limit cycle. Analogous results for η-RelEnt MFE can be found in Appendix A.
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figure 3.2: Change in exploitability and MF over iterations. (a) Difference between current and final
minimum exploitability over the last 10 iterations; (b) Distance between current and final MF. Plotted for the
η-Boltzmann MFE iterations in SIS for different indicated temperature settings. Note the periodicity of the
lowest temperature setting, indicating a limit cycle.

Note also that in LR, we can analytically find KQ = 1 and KΨ = 1. Thus, we obtain guaranteed
convergence via η-Boltzmann MFE iteration if η > 1. In Figure 3.1, we see convergence already for
η ≥ 0.7. Note further that the non-converged regime can allow for lower exploitability. However, it
is unclear a priori when to stop, and for approximate solutions where DQN is used for evaluation,
the evaluation of exploitability may become inaccurate.

3.1.5.3 Deep Reinforcement Learning

For problems with intractably large state spaces, we adopt the DQN algorithm [33], using the
implementation of [143] as a base. Particle-based simulations are used for the MF, and stochastic
performance evaluation on the induced MDP is performed (see Appendix A). Note that the
approximation introduces three sources of stochasticity into the otherwise deterministic algorithms,
i.e. stochastic evaluation, MF simulation and DQN. To counteract the randomness, we average our
results over multiple runs. The hyperparameters and architectures used are standard and can be
found in Appendix A.

Fitting the soft action-value function directly using a network is numerically problematic, as the
log-exponential transformation of approximated action-values quickly fails due to limited floating
point accuracy. Thus, we limit ourselves to the classical Bellman equation with Boltzmann policies
only.
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In Figure 3.3, we evaluate the exploitability of Boltzmann DQN iteration, evaluated exactly in
SIS and RPS, and stochastically in Taxi over 2000 realizations. Minimum, maximum and mean
exploitability are taken over the final 5 iterations and averaged over 5 seeds. Note that it is very
time-consuming to solve a full RL problem using DQN repeatedly in every iteration. Nonetheless,
we observe that a temperature larger than zero appears to improve exploitability and convergence in
the SIS example. Both due to the noisy nature of approximate solutions and the lower number of
iterations, it can be seen that a higher temperature is required to converge than in the exact case.
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figure 3.3: Convergence in exploitability of deep RL-based MFG algorithms. Mean exploitability over
the final 5 iterations using DQN, averaged over 5 seeds. Dashed lines represent the averaged maximum and
minimum exploitability over the last 5 iterations. (a) RPS, 1000 iterations; (b) SIS, 50 iterations; (c) Taxi,
15 iterations. Evaluation of exploitability is exact except in Taxi, which uses DQN and averages over 1000
episodes. The point of zero temperature depicts FPI using exact DQN policies.

In the intractable Taxi environment, the policy oscillates between two modes as in exact LR, and
regularization fails to obtain better results, see also Appendix A. An important reason is that
the prior policy performs extremely bad (exploitability of ∼ 35) as most states require specific
actions for optimality. Hence we cannot find an η > 0 for which the algorithm both converges
and performs well. Using prior descent and iteratively refining a better prior policy would likely
increase performance, but is deferred to future investigations as the required computations grow
very large.

Fictitious play is expensive in combination with approximate Q-Learning and particle simulations,
as policies and particles of past iterations must be kept to perform exact FP. For this reason, we do
not attempt approximate FP with approximate solution methods. In theory, supervised learning for
fitting summarizing policies and randomly sampling particles may help, but is out of scope of this
work.

3.1.5.4 Prior Descent

In Figure 3.4, we repeatedly perform outer iterations consisting of 100 η-RelEnt MFE iterations each
with the indicated fixed temperature parameters in SIS. After each outer iteration, the prior policy is
updated to the newest resulting policy. Note again that the results are entirely deterministic.

Searching for a suitable η dynamically every iteration would keep the exploitability from increasing,
as for η →∞ we obtain the original prior policy. Since it is expensive to scan over all temperatures
in each outer iteration, we use a heuristic. Intuitively, since the prior will become increasingly good,
it will be increasingly difficult to obtain a better policy. Thus, increasing the temperature will help
sticking close to the prior and converge. Consequently, we use the simple heuristic

ηi+1 = ηi · c
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figure 3.4: Convergence in exploitability of prior iteration algorithm. Exploitability over outer iterations
in SIS, using 100 η-RelEnt MFE iterations per outer iteration. Note that the results are deterministic. Not
shown: Running the fixed temperature settings c = 1 for longer does not converge for at least 1000 iterations.

for each outer iteration i, where c ≥ 1 adjusts the temperature after each outer iteration.

Importantly, even for our simple heuristic, prior descent already achieves an exploitability of
∼ 0.068, whereas the best results for the fixed uniform policy from Figure 3.1 show an optimal
mean exploitability of ∼ 0.281. Furthermore, repeated prior policy updates succeed in computing
the exact MFE in RPS and LR under a fixed temperature (see Appendix A).

Note that prior descent creates a double loop around solving the optimal control problem, becoming
highly expensive under deep RL. Hence, we refrain from prior descent with DQN. Automatically
adjusting temperatures to monotonically improve exploitability is left for potential future work.

3.1.6 Summary

In this work, we have investigated the necessity and feasibility of approximate MFG solution
approaches – entropy regularization, Boltzmann policies and prior descent – in the context of finite
MFGs. We have shown that the finite MFG case typically cannot be solved by exact FPI or FP alone.
Entropy regularization and Boltzmann policies in combination with deep RL may enable feasible
computation of approximate MFE. We believe that lifting the restriction of inherent contractivity is
an important step in ensuring applicability of MFG models in practical problems.

For future work, an efficient, automatic temperature adjustment for prior descent could be fruitful.
Furthermore, it would be interesting to generalize relative entropy MFGs to infinite horizon discounted
problems, continuous time, and continuous state and action spaces. Moreover, it could be of interest
to investigate theoretical properties of FP in finite MFGs in combination with entropy regularization.
For non-Lipschitz mappings from policy to induced MF, the proposed approach does not provide a
solution. It could nonetheless be important to consider problems with threshold-type dynamics and
rewards, e.g. majority vote problems. Most notably, the current formalism precludes common noise
entirely, i.e. any games with common states. In practice, many problems will allow for some type
of common states between agents, leading to non-independent agent distributions and stochastic as
opposed to deterministic MFs, see Section 3.4.
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3.2 learning mean field games on graphs

Recent advances at the intersection of dense large graph limits and MFGs have begun to enable
the scalable analysis of a broad class of dynamical sequential games with large numbers of agents.
Results had been largely limited to graphon MF systems with continuous-time diffusive or jump
dynamics, typically without control and with little focus on computational methods. We propose a
novel discrete-time formulation for GMFGs as the limit of non-linear dense graph Markov games
with weak interaction. On the theoretical side, we give extensive and rigorous existence and
approximation properties of the graphon MF solution in sufficiently large systems. On the practical
side, we provide general learning schemes for graphon MFE by either introducing agent equivalence
classes or reformulating the graphon MF system as a classical MF system. By repeatedly finding
a regularized optimal control solution and its generated MF, we successfully obtain plausible
approximate Nash equilibria in otherwise infeasible large dense graph games with many agents.
Empirically, we are able to demonstrate on a number of examples that the finite-agent behavior
comes increasingly close to the MF behavior for our computed equilibria as the graph or system
size grows, verifying our theory. More generally, we successfully apply policy gradient RL in
conjunction with sequential Monte Carlo methods. The material presented in this section is based
upon our work [7]. Further extensions to more sparse and weighted or directed graphs in our
collaborations [13, 14, 19] are not presented in this thesis.

mean field systems on graphs. For MF systems on dense graphs, prior work mostly
considers MF systems without control [144] or time-dynamics, i.e. the static case [145, 146]. In
contrast to our work, [119] consider states instead of agents on a graph, while [120] requires
restrictive assumptions and considers average actions instead of distributions of the neighbors.
To the best of our knowledge, [147] and [139] are the first to consider general continuous-time
diffusion-type graphon MF systems with control, the latter proposing many clusters of agents as
well as proving an approximate Nash property as the number of clusters and agents grows. There
have since been efforts to control cooperative graphon MF systems with diffusive linear dynamics
using spectral methods [148, 149]. On the other hand, [150, 151] consider large non-clustered
systems in a continuous-time diffusion-type setting without control, while [152] and [153] consider
continuous-time linear-quadratic systems and continuous-time jump processes respectively. To the
best of our knowledge, only [154] have considered solving and formulating a GMFGs in discrete time,
though requiring analytic computation of an infinite-dimensional value function defined over all
MFs and thus being inapplicable to arbitrary problems in a black-box, learning manner. In contrast,
we give a general learning scheme and also provide extensive theoretical analysis of our algorithms
and (slightly different) model. Finally, for sparse graphs there exist preliminary results [155, 156]
including also our collaborations [13, 14, 19], though the setting remains to be developed.

our contribution. In this work, we propose a dense graph limit extension of MFGs in
discrete time, combining graphon MF systems with MFGs. More specifically, we consider limits
of many-agent systems with discrete-time graph-based dynamics and weak neighbor interactions.
In contrast to prior works, we consider one of the first general discrete-time formulations as well
as its controlled case, which is a natural setting for many problems that are inherently discrete in
time or to be controlled digitally at discrete decision times. Our contribution can be summarized
as: (i) formulating one of the first general discrete-time GMFGs frameworks for approximating
otherwise intractable large dense graph games; (ii) providing an extensive theoretical analysis of
existence and approximation properties in such systems; (iii) providing general learning schemes
for finding graphon MFE, and (iv) empirically evaluating our proposed approach with verification of
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theoretical results in the finite N -agent graph system, finding plausible approximate Nash equilibria
for otherwise infeasible large dense graph games with many agents.

3.2.1 Mean Field Games on Dense Graphs

In the following, we will give a dense graph N -agent model as well as its corresponding MF system,
where agents are affected only by the overall state distribution of all neighbors, as visualized in
Figure 3.5. As a result of the LLN, this distribution will become deterministic – the MF – as N →∞.
We begin with graph-theoretical preliminaries, see also [157] for a review. The study of dense large
graph limits deals with the limiting representation of adjacency matrices called graphons. Define
I := [0, 1] andW0 as the space of all bounded, symmetric and measurable functions (graphons)
W ∈ W0, W : I × I → R bounded by 0 ≤W ≤ 1. For any simple graph G = ({1, . . . , N}, E),
we define its step-graphon a.e. uniquely by

WG(x, y) =
∑︂

i,j∈{1,...,N}

1(i,j)∈E · 1x∈( i−1
N

, i
N
] · 1y∈( j−1

N
, j
N
], (3.2.1)

see e.g. Figure 3.5. We equipW0 with the cut (semi-)norm ∥·∥□ and cut (pseudo-)metric δ□

∥W∥□ := sup
S,T

⃓⃓
⃓⃓
∫︂

S×T
W (x, y) dx dy

⃓⃓
⃓⃓ , δ□(W,W ′) := inf

φ
∥W −W ′

φ∥□, (3.2.2)

for graphons W,W ′ ∈ W0 and W ′
φ(x, y) := W ′(φ(x), φ(y)), where the supremum is over all

measurable subsets S, T ⊆ I and the infimum is over measure-preserving bĳections φ : I → I.

figure 3.5: Visualization of graphical interactions. (a): A graph with 5 nodes; (b): The associated step
graphon of the graph in (a) as a continuous domain version of its adjacency matrix; (c): A visualization of
the dynamics, i.e. the center agent is affected only by its neighbors (grey).

To provide motivation, note that convergence in δ□ is equivalent to e.g. convergence of probabilities
of locally encountering any fixed subgraph by randomly sampling a subset of nodes. Many such
properties of graph sequences (GN )N∈N converging to some graphon W ∈ W0 can then be
described by W , and we point to [157] for details. In this work, we will primarily use the analytical
fact that for converging graphon sequences ∥WGN

−W∥□ → 0, we equivalently have

∥WGN
−W∥L∞→L1

= sup
∥g∥∞≤1

∫︂

I

⃓⃓
⃓⃓
∫︂

I
(WGN

(α, β)−W (α, β))g(β) dβ

⃓⃓
⃓⃓ dα→ 0 (3.2.3)

under the operator norm of operators L∞ → L1, see e.g. [157], Lemma 8.11.

By [157], Theorem 11.59, the above is equivalent to convergence in the cut metric δ□(WGN
,W )→ 0

up to relabeling. In the following, we will therefore assume sequences of simple graphs GN =
(VN , EN ) with vertices VN = {1, . . . , N}, edge sets EN , edge indicator variables ξNi,j := 1(i,j)∈EN
for all nodes i, j ∈ VN , and associated step graphons WN converging in cut norm.
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Assumption 3.2.1. The sequence of step-graphons (WN )N∈N converges in cut norm ∥·∥□ or
equivalently in operator norm ∥·∥L∞→L1

as N →∞ to some graphon W ∈ W0, i.e.

∥WN −W∥□ → 0, ∥WN −W∥L∞→L1
→ 0 . (3.2.4)

Next, we define W -random graphs to consist of vertices VN := {1, . . . , N} with adjacency
matrices ξN generated by sampling graphon indices αi uniformly from I and edges ξNi,j ∼
Bernoulli(W (αi, αj)) for all vertices i, j ∈ VN . For experiments, by [157], Lemma 10.16, we can
thereby generate a.s. converging graph sequences by sampling W -random graphs for any fixed
graphon W ∈ W0. In principle, one could also consider arbitrary graph generating processes
whenever a valid relabeling function φ is known.

In our work, the usage of graphons enables us to find MF systems on dense graphs and to extend
the expressiveness of classical MFGs. As examples, we will use the limiting graphons of uniform
attachment, ranked attachment and Erdős–Rényi (ER) random graphs given by Wunif(x, y) =
1−max(x, y), Wrank(x, y) = 1− xy and Wer(x, y) = p respectively [157, 158], each of which
exhibits different node connectivities as shown in Figure 3.6.

figure 3.6: Three example graphons used in our experiments. (a): Uniform attachment graphon; (b):
Ranked attachment graphon; (c): ER graphon with edge probability 0.5.

finite graph game. For simplicity of analysis, we consider finite state and action spaces
X ,U as well as times T := {0, 1, . . . , T − 1}. On a metric space A, define the spaces of all Borel
probability measures P(A) and all Borel measures B1(A) bounded by 1, equipped with the L1

norm. For simplified notation, we denote both a measure ν and its probability mass function by
ν. Define the space of policies Π := P(U)T ×X , i.e. agents apply Markovian feedback policies
πi = (πi

t)t∈T ∈ Π that act on local state information. This allows for the definition of weakly
interacting agent state and action random variables

xi0 ∼ µ0, uit ∼ πi
t(u

i
t | xit), xit+1 ∼ p(xit+1 | xit, uit,Gi

t), ∀t ∈ T ,∀i ∈ VN (3.2.5)

under some transition kernel p : X × U × B1(X )→ P(X ), where the empirical neighborhood MF
Gi

t of agent i is defined as the B1(X )-valued (unnormalized) neighborhood state distribution

Gi
t :=

1

N

∑︂

j∈VN

ξNi,jδxj
t
, (3.2.6)

where δ is the Dirac measure, i.e. each agent affects each other at most negligibly with factor 1/N .
Finally, for each agent i we define separate, competitive objectives

JN
i (π1, . . . , πN ) := E

[︄
T−1∑︂

t=0

r(xit, u
i
t,Gi

t)

]︄
(3.2.7)

to be maximized over πi, where r : X × U × B1(X )→ R is an arbitrary reward function.
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Remark 3.2.1. We can also consider infinite horizons, under the alternative objective
J̃
N
i (π1, . . . , πN ) ≡ E

[︁∑︁∞
t=0 γ

tr(xit, u
i
t,Gi

t)
]︁

with all results but Theorem 3.2.4 holding. One may
also extend to state-action distributions, heterogeneous starting conditions and time-dependent r,
P , though we avoid this for expositional simplicity.

Remark 3.2.2. Note that it is straightforward to extend to heterogeneous agents by modelling agent
types as part of the agent state, see also e.g. [105]. It is only required to model agent states in a
unified manner, which does not imply that there can be no heterogeneity.

With this, we can give a typical notion of Nash equilibria as found e.g. in [24]. However, under
graph convergence in Assumption 3.2.1, it is always possible for a finite number of nodes to have
an arbitrary neighborhood differing from the graphon as N →∞. Thus, it is impossible to show
approximate optimality for all nodes and only possible to show for an increasingly large fraction
1− δ ≈ 1 of nodes. For this reason, we slightly weaken the notion of Nash equilibria by restricting
to a fraction 1− δ of agents, as e.g. considered in [96, 159].

Definition 3.2.1. An (ε, δ)-Markov-Nash equilibrium (almost Markov-Nash equilibrium) for ε, δ > 0
is defined as a tuple of policies (π1, . . . , πN ) ∈ ΠN such that for any i ∈ JN , we have

JN
i (π1, . . . , πN ) ≥ sup

π∈Π
JN
i (π1, . . . , πi−1, π, πi+1, . . . , πN )− ε, (3.2.8)

for some set JN ⊆ VN containing at least ⌊(1− δ)N⌋ agents, i.e. |JN | ≥ ⌊(1− δ)N⌋.

The minimal such ε > 0 for any fixed policy tuple (and typically δ = 0) is also called its exploitability.
Whilst we ordain ε-optimality only for a fraction 1− δ of agents, if the fraction δ is negligible, it
will have negligible impact on other agents as a result of the weak interaction property. Thus, the
solution will remain approximately optimal for almost all agents for sufficiently small δ regardless
of the behavior of that fraction δ of agents. In the following, we will give a limiting system that
shall provide (ε, δ)-Markov-Nash equilibria with ε, δ → 0 as N →∞.

graphon mean field game. The formal N → ∞ limit of the N -agent game constitutes
its GMFG, which shall be rigorously justified in Section 3.2.2. We define the space of measurable
state marginal ensemblesMt := P(X )I and measurable MF ensembles M := P(X )T ×I , in the
sense that α ↦→ µα

t (x) is measurable for any µ ∈M, t ∈ T , x ∈ X . Similarly, we define the
space of measurable policy ensembles Π ⊆ ΠI , i.e. with measurable α ↦→ πα

t (u | x) for any
π ∈ Π, t ∈ T , x ∈ X , u ∈ U .

In the GMFG, we will consider infinitely many agents α ∈ I instead of the finitely many i ∈ VN .
As a result, we will have infinitely many policies πα ∈ Π – one for each agent α – through some
measurable policy ensemble π ∈ Π. We again define state and action random variables

xα0 ∼ µ0, uαt ∼ πα
t (u

α
t | xαt ), xαt+1 ∼ p(xαt+1 | xαt , uαt ,Gα

t ), ∀(α, t) ∈ I × T (3.2.9)

where we introduce the (now deterministic) B1(X )-valued neighborhood MF of agents α as

Gα
t :=

∫︂

I
W (α, β)µβ

t dβ (3.2.10)
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for some deterministic µ ∈M. Under fixed π ∈ Π, µα
t should be understood as the law of xαt ,

µα
t ≡ L(xαt ). Finally, define the maximization objective of agent α over πα for fixed µ ∈M as

Jµ
α (π

α) ≡ E

[︄
T−1∑︂

t=0

r(xαt , u
α
t ,Gα

t )

]︄
. (3.2.11)

To formulate the limiting version of Nash equilibria, we define a map Ψ: Π→M mapping from a
policy ensemble π ∈ Π to the corresponding generated MF ensemble µ = Ψ(π) ∈M by

µα
0 ≡ µ0, µα

t+1(x
′) ≡

∑︂

x∈X
µα
t (x)

∑︂

u∈U
πα
t (u | x)p(x′ | x, u,Gα

t ), ∀α ∈ I (3.2.12)

where integrability in Eq. (3.2.10) holds by induction, and note how then µα
t = L(xαt ).

Similarly, let Φ: M → 2Π map from a MF ensemble µ to the set of optimal policy ensembles
π characterized by πα ∈ argmaxπ∈Π Jµ

α (π) for all α ∈ I, which is particularly fulfilled if
πα
t (u | x) > 0 =⇒ u ∈ argmaxu′∈U Qµ

α(t, x, u′) for all α ∈ I, t ∈ T , x ∈ X , u ∈ U , where
Qµ

α is the optimal action value function under fixed µ ∈M following the Bellman equation

Qµ
α(t, x, u) = r(x, u,Gα

t ) +
∑︂

x′∈X
p(x′ | x, u,Gα

t ) argmax
u′∈U

Qµ
α(t+ 1, x′, u′) (3.2.13)

with Qµ
α(T, x, u) ≡ 0 and generally time-dependent, see [68] for a review.

We can now define the GMFG version of Nash equilibria as policy ensembles π generating MF
ensembles µ under which they are optimal, as µα

t = L(xαt ) if all agents α ∈ I follow πα.

Definition 3.2.2. A Graphon Mean Field Equilibrium (GMFE) is a pair (π,µ) ∈ Π ×M such
that π ∈ Φ(µ) and µ = Ψ(π).

3.2.2 Theoretical Foundations

To obtain meaningful optimality results beyond empirical MF convergence, we will need a Lipschitz
assumption as in the uncontrolled, continuous-time case (cf. [150], Condition 2.3) and typical in
MF theory [23].

Assumption 3.2.2. Let r, p, W be Lipschitz continuous with Lipschitz constants Lr, Lp, LW > 0.

Note that all proofs but Theorem 3.2.1 also hold for only block-wise Lipschitz continuous W , see
Appendix B.1. Since X × U ×B1(X ) is compact, r is bounded by the extreme value theorem.

Proposition 3.2.1. Under Assumption 3.2.2, r will be bounded by |r| ≤ Mr for some constant
Mr > 0.

We then obtain existence of a GMFE by reformulating the GMFG as a classical MFG and applying
existing results from [24]. More precisely, we consider the equivalent MFG with extended state
space X × I, action space U , policy π̃ ∈ P(U)T ×X×I , MF µ̃ ∈ P(X × I)T , reward function
r̃((x, α), u, µ̃) := r(x, u,

∫︁
I W (αt, β)µ̃t(·, β) dβ) and transition dynamics such that the states

(x̃t, αt) follow (x̃0, α0) ∼ µ̃0 := µ0 ⊗Unif([0, 1]) and

ũt ∼ π̃t(ũt | x̃t, αt), x̃t+1 ∼ p(x̃t+1 | x̃t, ũt,
∫︂

I
W (αt, β)µ̃t(·, β) dβ), αt+1 = αt .

(3.2.14)
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Theorem 3.2.1. Under Assumption 3.2.2, there exists a GMFE (π,µ) ∈ Π×M.

Meanwhile, in finite games, even showing the existence of Nash equilibria in local feedback policies
is problematic [24]. Note however, that while this reformulation will be useful for learning and
existence, it does not allow us to conclude that the finite graph game is well approximated, as
classical MFG approximation theorems e.g. in [24] do not consider the graph structure and directly
use the limiting graphon W in the dynamics Eq. (3.2.14).

As our next main result, we shall therefore show rigorously that the GMFE can provide increasingly
good approximations of the N -agent finite graph game as N →∞. As mentioned, the following
also holds for only block-wise Lipschitz continuous W instead of fully Lipschitz continuous W .
Complete mathematical proofs together with additional theoretical supplements can be found in
Appendix B. To obtain joint N -agent policies as approximate Nash equilibria from a GMFE (π,µ),
we define the map ΓN (π) := (π1, π2, . . . , πN ) ∈ ΠN , where

πi
t(u | x) := παi

t (u | x), ∀(α, t, x, u) ∈ I × T × X × U (3.2.15)

with αi =
i
N , as by Assumption 3.2.1 the agents are correctly labeled such that they match up with

their limiting graphon indices αi ∈ I. In our experiments, we use the αi generated during the
generation process of the W -random graphs, though for arbitrary finite systems one would have to
first identify the graphon as well as an appropriate assignment of agents to graphon indices αi ∈ I ,
which is a separate, non-trivial problem requiring at least graphon estimation, e.g. [160].

For theoretical analysis, we propose to lift the empirical distributions and policy tuples to the
continuous domain I, i.e. under an N -agent policy tuple (π1, . . . , πN ) ∈ ΠN , we define the step
policy ensemble πN ∈ Π and the random empirical step measure ensemble µN ∈M by

πN,α
t :=

∑︂

i∈VN

1α∈( i−1
N

, i
N
] · πi

t, µN,α
t :=

∑︂

i∈VN

1α∈( i−1
N

, i
N
] · δxj

t
, ∀(α, t) ∈ I × T . (3.2.16)

In the following, we consider deviations of the i-th agent from (π1, π2, . . . , πN ) = ΓN (π) ∈ ΠN

to (π1, . . . , πi−1, π̂, πi+1, . . . , πN ) ∈ ΠN , i.e. the i-th agent deviates by instead applying π̂ ∈ Π.
Note that this includes the special case of no agent deviations. For any f : X × I → R and state
marginal ensemble µt ∈ Mt, define µt(f) :=

∫︁
I
∑︁

x∈X f(x, α)µα
t (x) dα. We are now ready to

state our first result of convergence of empirical state distributions to the MF, potentially at the
classical rate O(1/

√
N) and consistent with results in uncontrolled, continuous-time diffusive

graphon MF systems (cf. [150], Theorem 3.2).

Theorem 3.2.2. Consider Lipschitz continuous π ∈ Π up to a finite number of discontinuities
Dπ, with associated MF ensemble µ = Ψ(π). Under Assumption 3.2.1 and the N -agent policy
(π1, . . . , πi−1, π̂, πi+1, . . . , πN ) ∈ ΠN with (π1, π2, . . . , πN ) = ΓN (π) ∈ ΠN , π̂ ∈ Π, t ∈ T , we
have for all measurable functions f : X × I → R uniformly bounded by some Mf > 0, that

E
[︁⃓⃓
µN
t (f)− µt(f)

⃓⃓]︁
→ 0 (3.2.17)

uniformly over all possible deviations π̂ ∈ Π, i ∈ VN . Furthermore, if the graphon convergence in
Assumption 3.2.1 is at rate O(1/

√
N), then this rate of convergence is also O(1/

√
N).

In particular, the technical Lipschitz requirement of π typically holds for neural-network-based
policies [105, 116] and includes also the case of finitely many optimality regimes over all graphon
indices α ∈ I, which is sufficient to achieve arbitrarily good approximate Nash equilibria through
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our algorithms as shown in Section 3.2.3. We would like to remark that the above result generalizes
convergence of state histograms to the MF solution, since the state marginals of agents are additionally
close to each of their graphon MF equivalents. The above will be necessary to show convergence of
the dynamics of a deviating agent to

x̂
i
N
0 ∼ µ0, û

i
N
t ∼ π̂t(û

i
N
t | x̂

i
N
t ), x̂

i
N
t+1 ∼ p(x̂

i
N
t+1 | x̂

i
N
t , û

i
N
t ,G

i
N
t ), ∀t ∈ T (3.2.18)

for almost all agents i, i.e. the dynamics are approximated by using the limiting deterministic
neighborhood MF G

i
N , see Appendix B.1. This will imply the approximate Nash property:

Theorem 3.2.3. Consider a GMFE (π,µ) with Lipschitz continuous π up to a finite number of
discontinuities Dπ. Under Assumptions 3.2.1 and 3.2.2, for any ε, δ > 0 there exists N ′ such that
for all N > N ′, the policy (π1, . . . , πN ) = ΓN (π) ∈ ΠN is an (ε, δ)-Markov Nash equilibrium,
i.e.

JN
i (π1, . . . , πN ) ≥ max

π∈Π
JN
i (π1, . . . , πi−1, π, πi+1, . . . , πN )− ε (3.2.19)

for all i ∈ JN and some JN ⊆ VN : |JN | ≥ ⌊(1− δ)N⌋.

In general, Nash equilibria are highly intractable [45]. Therefore, solving the GMFG allows obtaining
approximate Nash equilibria in the N -agent system for sufficiently large N , since ε, p → 0 as
N → ∞. As a side result, we also obtain first results for the uncontrolled discrete-time case by
considering trivial action spaces with |U| = 1, see Corollary B.1.2 in the Appendix.

3.2.3 Learning Graphon Mean Field Equilibria

By learning GMFE, one may potentially solve otherwise intractable large N -agent games. For
learning, we can apply any existing techniques for classical MFGs (e.g. [95, 114, 115]), since
by Eq. (3.2.14) we have reformulated the GMFG as a classical MFG with extended state space.
Nonetheless, it may make sense to treat the graphon index α ∈ I separately, e.g. when treating
special cases such as block graphons, or by grouping graphically similar agents. We repeatedly apply
two functions Φ̂, Ψ̂ by beginning with the MF µ0 = Ψ̂(π0) generated by the uniformly random
policy π0, and computing πn+1 = Φ̂(µn), µn+1 = Ψ̂(πn+1) for n = 0, 1, . . . until convergence
using one of the following two approaches:

• Equivalence classes method. We introduce agent equivalence classes, or discretization,
of I for the otherwise uncountably many agents α ∈ I by partitioning I into M subsets.
For example, in the special case of block graphons (block-wise constant W ), one can solve
separately for each block equivalence class (type) of agents, since all agents in the class share
the same dynamics. Note that in contrast to multi-class MFGs [23], GMFGs are rigorously
connected to finite graph games and can handle an uncountable number of classes α. To deal
with general graphons, we choose equidistant representatives αi ∈ I , i = 1, . . . ,M covering
the whole interval I, and approximate each agent α ∈ Ĩi by the nearest αi for the intervals
Ĩi ⊆ I of points closest to that αi to obtain M approximate equivalence classes. Formally,
we approximate MFs Ψ̂(π) =

∑︁M
i=1 1α∈Ĩi

µ̂αi recursively computed over all times for any
fixed policy ensemble π, and similarly policies Φ̂(µ) =

∑︁M
i=1 1α∈Ĩi

παi where παi is the
optimal policy of αi for fixed µ. We solve the optimal control problem for each equivalence
class using backwards induction (alternatively, one may use RL), and solve the evolution
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equation for the representatives αi of the equivalence classes recursively. The details are
found in Appendix B.11. Note that this does not mean that we consider the N -agent problem
with N = M , but instead we approximate the limiting problem with the limiting graphon W ,
and the solution will be near-optimal for all sufficiently large finite systems at once.

• Direct RL. We directly apply RL as Φ̂. The central idea is to consider the GMFG as a classical
MFG with extended state space X × I, i.e. for fixed MFs, we solve the MDP defined by
Eq. (3.2.14). Agents condition their policy not only on their own state, but also their node
index α ∈ I and the current time t ∈ T , since the MFs are non-stationary in general and
require time-dependent policies for optimality. Here, we assume that we can sample from a
simulator of Eq. (3.2.9) for a given fixed MF as commonly assumed in MFG learning literature
[95, 115]. For application to arbitrary finite systems, one could apply a model-based RL
approach coupled with graphon estimation, though this remains outside the scope of this
work. For solving the MF evolution equation Eq. (3.2.12), we can again use any applicable
numerical method and choose a conventional sequential Monte Carlo method for Ψ̂. While it
is possible to exactly solve optimal control problems for each agent equivalence class with
finite state-action spaces, this is generally not the case for e.g. continuous state-action spaces.
Here, a general RL solution can solve otherwise intractable problems in an elegant manner,
since the graphon index α simply becomes part of a continuous state space.

For convergence, we begin by stating the classical feedback regularity condition [23, 95] after
equipping Π, M e.g. with the supremum metric.

Proposition 3.2.2. Assume that the maps Ψ̂, Φ̂ are Lipschitz with constants c1, c2 and c1 · c2 < 1.
Then the FPI µn+1 = Ψ̂(Φ̂(µn)) converges.

Feedback regularity is not assured, and thus there is no general convergence guarantee. Whilst
one could attempt to apply FP [114], additional assumptions will be needed for convergence.
Instead, whenever necessary for convergence, we regularize by introducing Boltzmann policies
πα
t (u | x) ∝ exp( 1ηQ

µ
α(t, x, u)) with temperature η, provably converging to an approximation for

sufficiently high temperatures [9].

Theorem 3.2.4. Under Assumptions 3.2.1 and 3.2.2, the equivalence classes algorithm with
Boltzmann policies Φ̂(µ)αt (u | x) ∝ exp( 1ηQ

µ
α(t, x, u)) converges for sufficiently high temperatures

η > 0.

Importantly, even an exact solution of the GMFG only constitutes an approximate Nash equilibrium
in the finite-graph system. Furthermore, even the existence of exact finite-system Nash equilibria
in local feedback policies is not guaranteed, see the discussion in [24] and references therein.
Therefore, little is lost by introducing slight additional approximations for the sake of a tractable
solution, if at all needed (e.g. the Investment-Graphon problem in the following converges without
introducing Boltzmann policies), since near optimality holds for small temperatures [9]. Indeed, we
find that we can show optimality of the equivalence classes approach for sufficiently fine partitions
of I, giving us a theoretical foundation for our proposed algorithms.

Theorem 3.2.5. Under Assumptions 3.2.1 and 3.2.2, for a solution (π,µ) ∈ Π×M, π ∈ Φ̂(µ),
µ = Ψ̂(π) of the M equivalence classes method and for any ε, δ > 0 there exists N ′,M ∈ N
such that for all N > N ′, the policy (π1, . . . , πN ) = ΓN (π) ∈ ΠN is an (ε, δ)-Markov Nash
equilibrium.
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A theoretically rigorous analysis of the elegant direct RL approach is beyond our scope and deferred
to future works, though we empirically find that both methods agree.

3.2.4 Experiments

In this section, we will give an empirical verification of our theoretical results. As we are unaware of
any prior discrete-time GMFGs (except for the example in [154], which is similar to the first problem
in the following), we propose two problems adapted from existing non-graph-based works on the
three graphons in Figure 3.6. We defer detailed descriptions of problems and algorithms, plots as
well as further analysis, including exploitability and a verification of stability of our solution with
respect to the number of equivalence classes – to Appendix B.11.

The SIS-Graphon problem was considered in [9] as a classical discrete-time MFG. We impose an
epidemics scenario where people (agents) are infected with probability proportional to the number
of infected neighbors and recover with fixed probability. People may choose to take precautions
(e.g. social distancing), avoiding potential costly infection periods at a fixed cost.

In the Investment-Graphon problem – an adaptation of a problem studied by [98], where it was in
turn adapted from [161] – we consider many firms maximizing profits, where profits are proportional
to product quality and decrease with total neighborhood product quality, i.e. the graph models
overlap in e.g. product audience or functionality. Firms can invest to improve quality, though it
becomes more unlikely to improve quality as their quality rises.

learned equilibrium behavior. For the SIS-Graphon problem, we apply softmax policies
for each approximate equivalence class to achieve convergence, see Appendix B.11 for details on
temperature choice and influence. In Figure 3.7, the learned behavior can be observed for various α.
As expected, in the ER graphon case, behavior is identical over all α. Otherwise, we find that agents
take more precautions with many connections (low α) than with few connections (high α). For the
uniform attachment graphon, we observe no precautions in case of negligible connectivity (α→ 1),
while for the ranked attachment graphon there is no such α ∈ I (cf. Figure 3.6). Further, the fraction
of infected agents at stationarity rises as α falls. A similar analysis holds for Investment-Graphon
without need for regularization, see Appendix B.11.
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figure 3.7: Achieved equilibrium via M = 100 approximate equivalence classes in SIS-Graphon, plotted
for each agent α ∈ I. Top: Probability of taking precautions when healthy. Bottom: Probability of being
infected. It can be observed that agents with less connections (higher α) will take less precautions. (a):
Uniform attachment graphon; (b): Ranked attachment graphon; (c): ER graphon.
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Note that the specific method of solution is not of central importance here, as in general any RL and
filtering method can be substituted to handle 1. otherwise intractable or 2. inherently sample-based
settings. Indeed, we achieve similar results using PPO [73] in Investment-Graphon, enabling a
general RL-based methodology for GMFGs. In Appendix B.11, we find that PPO achieves qualitatively
and quantitatively similar behavior to the equivalence classes method, with slight deviations due to
the approximations from PPO and Monte Carlo. In particular, the PPO exploitability ε ≈ 2 remains
low compared to ε > 30 for the uniform random policy, see Appendix B.11. In Appendix B.11,
we also show how, due to the non-stationarity of the environment, a naive application of MARL
[88] fails to converge, while existing MF MARL techniques [120] remain incomparable as agents
must observe the average actions of all neighbors. On SIS-Graphon, we require softmax policies to
achieve convergence, which is not possible with PPO as no Q-function is learned. In general, one
could use entropy regularized policies, e.g. SAC [162], or alternatively use any value-based RL
method, though an investigation of the best approach is outside of our scope.

quantitative verification of the MF approximation. To verify the rigorously
established accuracy of our MF system empirically, we will generate W -random graphs. Note that
there are considerable difficulties associated with an empirical verification of Eq. (3.2.19), since
1. for any N one must check the Nash property for (almost) all N agents, 2. finding optimal π̂ is
intractable, as no Dynamic Programming Principle (DPP) holds on the non-Markovian local agent
state, while acting on the full state fails by the curse of dimensionality, and 3. the inaccuracy from
estimating all JN

i , i = 1, . . . , N at once increases with N due to variance, i.e. cost scales fast with
N for fixed variance. Instead, we verify Eq. (B.1.7) in Appendix B.1 using the GMFE policy on
systems of up to N = 100 agents, i.e. π̂ = παi for the closest αi and comparing for all agents at
once (p = 0). Shown in Figure 3.8, for W -random graph sequences, at each N we performed 10000
runs to estimate maxi |JN

i − Jαi |. We find that the maximum deviation between achieved returns
and MF return decreases as N →∞, verifying that we obtain an increasingly good approximation
of the finite N -agent graph system. The oscillations in Figure 3.8 stem from the randomly sampled
graphs.
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figure 3.8: Decreasing maximum deviation between average N -agent objective and MF objective over
all agents for the GMFE policy and 5 W -random graph sequences. (a): Uniform attachment graphon; (b):
Ranked attachment graphon; (c): ER graphon.

3.2.5 Summary

In this work, we have formulated a new framework for dense graph-based dynamical games with
the weak interaction property. On the theoretical side, we have given one of the first general
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discrete-time GMFG formulations with existence conditions and approximate Nash property of
the finite graph system, thus extending classical MFGs and allowing for a tractable, theoretically
well-founded solution of competitive large-scale graph-based games on large dense graphs. On
the practical side, we have proposed a number of computational methods to tractably compute
GMFE and experimentally verified the plausibility of our methodology on a number of examples.
Venues for further extensions are manifold and include extensions of theory to e.g. continuous
spaces, partial observability or common noise. So far, graphons assume dense graphs and cannot
properly describe sparse graphs (W = 0), which remain an active frontier of research. Finally,
real-world application scenarios may be of interest, where estimation of agent graphon indices
becomes important for model-based MARL. We hope that our work inspires further applications and
research into scalable MARL using graphical dynamical systems based on graph limit theory and MF
theory, such as our extensions to more sparse and weighted or directed graphs [13, 14, 19].
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3.3 mean field games on hypergraphs

We propose an approach to modelling large-scale multi-agent dynamical systems allowing interac-
tions among more than just pairs of agents using the theory of MFGs and the notion of hypergraphons,
which are obtained as limits of large hypergraphs. To the best of our knowledge, ours is the first
work on MFGs on hypergraphs. Together with an extension to a multi-layer setup, we obtain limiting
descriptions for large systems of non-linear, weakly-interacting dynamical agents. On the theoretical
side, we prove the well-foundedness of the resulting hypergraphon MFG, showing both existence and
approximate Nash properties. On the applied side, we extend numerical and learning algorithms to
compute the hypergraphon MFE. To verify our approach empirically, we consider a social rumor
spreading model, where we give agents intrinsic motivation to spread rumors to unaware agents,
and an epidemics control problem. The material presented in this section is based on [17].

Tractably finding competitive equilibria and decentralized, cooperative optimal control solutions has
been the focus of many recent works [7, 115, 117, 118, 130, 147, 154]. MF systems have also been
extended to dynamical systems on graphs, typically using the theory of large graph limits called
graphons [157, 163], as seen in Section 3.2. The graphon MF systems can be considered either as
the limit of systems with weakly-interacting node state processes [7, 150], or alternatively as the
result of a double limit procedure where each node constitutes a large population, or ‘cluster’ of
agents, each of which interacts with each other via inter- and intra-cluster coupling. First, infinitely
many nodes are considered according to the graphon, and then infinitely many agents are considered
per node, see e.g. [139, 164].

In this section, we will consider the former. The goal of our work is the synthesis of dynamical
systems on hypergraphs with competitive or selfish agents. Existing analysis of hypergraph
MF systems typically remains restricted to special dynamics such as epidemiological equations
[165–167] or opinion dynamics [168] on sparse graphs. In contrast, our work deals with general,
agent-controlled non-linear dynamics and equilibrium solutions. We build upon prior results for
discrete-time, graph-based MF systems [7, 24, 150] and extend them to incorporate higher-order
hypergraphs as well as multiple layers.

our contribution. Our contribution can be summarized as follows: (i) To the best of our
knowledge, ours is the first general MFG-theoretical framework for non-linear dynamics on multi-
layer hypergraphs. Multi-layer networks [169] have proven extremely useful in many application
areas including infectious disease epidemiology, where different layers could be used to describe
community, household and hospital settings [170]. (ii) We prove the existence and the approximation
properties of the proposed MFE. (iii) We propose and empirically verify algorithms for solving
such hypergraphon MF systems, and thereby obtain a tractable approach to solving and analyzing
otherwise intractable Nash equilibria on multi-layer hypergraph games. The proposed framework
is of great generality, extending the recently established graphon MFGs and thereby also standard
MFGs (via fully-connected graphs).

After introducing some graph-theoretical preliminaries, in Section 3.3.1 we will begin by formulating
the motivating mathematical dynamical model and game on hypergraphs, as well as its more tractable
MF analogue. Then, in Section 3.3.2 we will show the existence of solutions for the MF problem as
well as quantify its approximation qualities of the finite hypergraph game, building a mathematical
foundation for hypergraphon MFGs. Lastly, in Section 3.3.3 we will evaluate our model numerically
for an illustrative rumor spreading game, verifying our theoretical approximation results and the
obtained equilibrium behavior. All of the proofs can be found in the Appendix.
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Notation. On a discrete space A, define the spaces of all (Borel) probability measures P(A)
and all sub-probability measures B1(A), equipped with the L1 norm. Define the unit interval
I := [0, 1] and its N equal-length subintervals IN1 , . . . , INN such that

⨆︁N
i=1 I

N
i = I for any

integer N , where
⨆︁

denotes disjoint union and each INi includes its rightmost point i/N . Denote
the expectation and variance of random variables X by E[X], V[X]. Define the indicator
function 1A(x) mapping to 1 whenever x ∈ A and 0 otherwise. For any integer k, define
[k] := {1, . . . , k}. Let r(A,m) denote the set of all distinct non-empty subsets of any set
A with at most m elements, and denote the set of all distinct non-empty, proper subsets by
r<(A) := r(A, |A| − 1) as well as the set of all distinct non-empty subsets by r(A) := r(A, |A|).
To keep notation simple, in the following we write r<[k] := r<([k]), r[k] := r([k]) and identify e.g.
r<[k] with [|r<[k]|] := {1, . . . , |r<[k]|} whenever helpful. Denote the set of permutations of a set
A as Sym(A). Define the space of bounded, r<[k]-dimensional, symmetric functions Symind

< [k]
induced by permutations of the underlying set [k], i.e. any bounded function f : Ir<[k] → R is in
Symind

< [k]whenever f is invariant to all permutationsσ ∈ Sym([k]), f(x1, . . . , xk, x11, x12, . . .) =
f(xσ(1), . . . , xσ(k), xσ(1)σ(1), xσ(1)σ(2), . . .). Analogously, we define spaces of such functions
Symind

≤ [k] and Symind[k] over r[k] and [k], respectively.

3.3.1 Mean Field Games on Dense Hypergraphs

Before we formulate the stochastic dynamic hypergraph game and its limiting analogue in the
following subsections, we discuss some graph-theoretical preliminaries. A (undirected) hypergraph
is defined as a pair H = (V,E) of a set of vertices V and a set of hyperedges E ⊆ 2V \ {∅}. In
contrast to edges in graphs, here hyperedges may connect an arbitrary number of vertices instead
of only two. If there is no scope of confusion, we will call hyperedges of a hypergraph just
edges. Denote by V [H] and E[H] the vertex set and edge set of a hypergraph H . The maximum
cardinality of all edges of a hypergraph H is called its rank. A k-uniform hypergraph is defined as a
hypergraph where all edges have cardinality k. A multi-layer hypergraph H = (V,E1, . . . , ED)
with D layers is obtained by allowing for multiple edge sets E1, . . . , ED ⊆ 2V \ {∅}, and we
analogously write Ed[H] for the d-th set of edges of a multi-layer hypergraph H . We define the
d-th sub-hypergraph Hd of a multi-layer hypergraph H as the hypergraph with vertex set V [H] and
edge set E[Hd] = Ed[H].

Consider any (non-uniform) hypergraph H with bounded rank kmax. Observe the isomorphism
between multi-layer uniform hypergraphs and such H by splitting hyperedges of each cardinality
k ≤ kmax into their own layer. Since this procedure can be repeated for each layer of a multi-
layer hypergraph, any multi-layer hypergraph is therefore equivalent to a correspondingly defined
multi-layer uniform hypergraph. Hence, from here on it suffices to define and consider [k1, . . . , kD]-
uniform hypergraphs H as D-layer hypergraphs, where each layer d = 1, . . . , D is given by a
kd-uniform hypergraph with kd ≤ kmax, see also Figure 3.9 for a visualization. For instance,
in social networks each layer could model e.g. the k-cliques of acquaintances formed at work,
friendship at school or family relations.

To formulate the infinitely-large MF system, we define the limiting description of sufficiently dense
multilayer hypergraphs as the graphs intuitively become infinite in size, called hypergraphons [171].
Here, dense means a number of edges on the order of O(N2), where N is the number of vertices,
to which existing hypergraphon theory remains limited to. However, we note that an extension to
more sparse models by fusing the theory of hypergraphons with Lp graphons [14, 172, 173] could
be part of future work. The space of k-uniform hypergraphonsWk is now defined as the space of
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figure 3.9: An example hypergraph H is transformed into a multi-layer uniform hypergraph. On the left, a
hypergraph H with nodes V [H] = {1, . . . , 5} and hyperedges E[H] = {{1, 4}, {1, 5}, {1, 3, 4}, {1, 2, 5}}
is depicted. An equivalent representation of H as a [2, 3]-uniform hypergraph Hunif as well as its associated
hypergraphons are given, where the first and second layers each consist of edges {{1, 4}, {1, 5}} and 3-
hyperedges {{1, 3, 4}, {1, 2, 5}} respectively. The associated (step-)hypergraphons W [H1

unif ] and W [H2
unif ]

are given as continuous versions of the (multi-dimensional) {0, 1}-valued adjacency matrices. Here, we
depict only the first three coordinates for the second layer step-hypergraphon W [H2

unif ], given by the constant
1 (black) or 0 (white). Note that while each edge corresponds to two entries in the adjacency matrix of
the 2-uniform case, for the 3-uniform case each hyperedge corresponds to six entries, resulting in the step
graphon shown (bottom right).

all bounded and symmetric functions W ∈ Symind
< [k],W : Ir<[k] → I that are measurable. We

equip Symind
< [k] with the cut (semi-)norm ∥·∥□k−1 proposed by [174], defined by

∥W∥□k−1 := sup
ui : Ir[k−1]→I,
ui∈Symind

≤ [k−1]

⃓⃓
⃓⃓
⃓

∫︂

Ir<[k]
W (α)

k∏︂

i=1

ui(αr([k]\{i})) dα

⃓⃓
⃓⃓
⃓ , (3.3.20)

which (see e.g. [157, Lemma 8.10]) coincides with the standard graphon case for k = 2,

∥W∥□ = sup
f,g : I→I

⃓⃓
⃓⃓
∫︂

I2

W (α, β)f(α)g(β) d(α, β)

⃓⃓
⃓⃓ . (3.3.21)
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figure 3.10: Visualization of the convergence of 2-dimensional step-graphons to the uniform attachment
graphon Wunif(α1, α2) = 1−max(α1, α2).

To analytically connect k-uniform hypergraphs to hypergraphons, we define the step-hypergraphons
of any k-uniform hypergraph H as

W [H](α) =
∑︂

m∈[N ]k

1E[H](m) ·
∏︂

i∈[k]

1INmi
(αi). (3.3.22)



3.3 mean field games on hypergraphs 47

For motivation, note that for any sequence of graphs with converging homomorphism densities,
equivalently the step graphons converge in the cut norm to the limiting graphon, and their limiting
homomorphism densities can be described by the limiting graphon [157]. Similarly, cut-norm
convergence for the more general uniform hypergraphs at least implies the convergence of hypergraph
homomorphism densities [174]. Accordingly, we assume hypergraph convergence in each layer
of a given sequence of [k1, . . . , kD]-uniform hypergraphs (HN )N∈N via convergence of their
step-hypergraphons WN

d := W [Hd
N ] to a limiting hypergraphon Wd ∈ Wkd in the cut norm as

visualized in Figure 3.10, similar as in standard graphon MF systems [7, 150].

Assumption 3.3.1. The sequence of step-hypergraphons WN := (WN
d )d∈[D] converges on each

layer in cut norm ∥·∥□ to some hypergraphons W := (Wd)d∈[D] ∈×d∈[D]Wkd , i.e.

⃦⃦
WN

d −Wd

⃦⃦
□ → 0, ∀d ∈ [D]. (3.3.23)

3.3.1.1 Finite Hypergraph Game

In this subsection, we will formulate a dynamical model on hypergraphs where each node is
understood as an agent that is influenced by the state distribution of all of its neighbors, according
to some time-varying dynamics. Furthermore, each agent is expected to selfishly optimize its own
objective, which gives rise to Nash equilibria as the solution of interest.

Consider a [k1, . . . , kD]-uniform hypergraph and let T be the time index set, either T =
{0, 1, . . . , T − 1} or T = N0 := {0, 1, 2, . . .}. We define N agents i ∈ [N ] each endowed
with local states xit and actions uit from a finite state space X and finite action space U , respectively.
Here, X and U are assumed finite for technical reasons, though we believe that results could be
extended to more general spaces in the future. States have an initial distribution xi0 ∼ µ0 ∈ P(X ).
For all times t ∈ T and agents i ∈ [N ], their actions are random variables following the law

uit ∼ πi
t(u

i
t | xit), (3.3.24)

with policy (i.e. probability distribution over actions) πi ∈ Π := P(U)T ×X , that, for each node i,
depends on the i-th state at time t. Then, the states are random variables following the law

xit+1 ∼ p(xit+1 | xit, uit, νN,i
t ), (3.3.25)

with transition kernels p : X × U × B1(X ) → P(X ) that, for each node i, depends on the i-th
state and action at time t, and νN,i

t . Here, the×D
d=1 P(X kd−1)-valued multi-layer empirical

neighborhood MF νN,i
t is defined as

νN,i
t,d :=

1

Nkd−1

∑︂

m∈[N ]kd−1

1Ed[HN ](m ∪ i)δ×j ̸=i x
mj
t

, (3.3.26)

in its d-th layer, consisting of the unnormalized state distributions of an agent i’s neighbors on each
layer. In other words, the state dynamics of an agent depend only on the states of nodes in their
immediate neighborhood and can be influenced by the agent via its actions uit.

For example, in an epidemics spread scenario, the states of each agent could model their infection
status, while the actions of an agent could be to take protective measures. As a result, each agent
will randomly become infected with probability depending on how many neighboring agents are
infected and whether the agent is taking protective measures.



48 3 competitive mean field games

The cost functions r : X × U × B1(X )→ R with discount factor γ ∈ (0, 1) or in the finite horizon
case γ ∈ (0, 1] define the objective function for the i-th agent

JN
i (π1, . . . , πN ) := E

[︄∑︂

t∈T
γtr(xit, u

i
t, ν

N,i
t )

]︄
, (3.3.27)

which can describe also e.g. random rewards Ri
t that are conditionally independent given

xit, u
i
t, ν

N,i
t by the law of total expectation and taking the conditional expectation, r(xit, uit, ν

N,i
t ) ≡

E
[︂
rit

⃓⃓
⃓ xit, uit, νN,i

t

]︂
.

Our goal is now to find Nash equilibria, i.e. stable policies where no agent can singlehandedly
deviate and improve their own objective. Note that finding Nash equilibria in games such as
the above is difficult, since a) even existence of Nash equilibria under the above, decentralized
information structure of policies is hard to show, and b) computation of the Nash equilibria fails
due to both curse of dimensionality under full observability and general complexity of computing
Nash equilibria [45], see also [24] and the discussion therein.

Thus, in the finite game, we are interested in finding the following weaker notion of approximate
equilibria [7, 96], where a negligible fraction of agents that remains insignificant to all other agents
may remain suboptimal.

Definition 3.3.1. An (ε, δ)-Nash equilibrium for ε, δ > 0 is defined as a tuple of policies
(π1, . . . , πN ) ∈ ΠN such that for any i ∈ JN , we have

JN
i (π1, . . . , πN ) ≥ sup

π∈Π
JN
i (π1, . . . , πi−1, π, πi+1, . . . , πN )− ε (3.3.28)

for some set JN ⊆ [N ] of at least ⌊(1− δ)N⌋ agents.

While it may seem excessive to reduce to approximate optimality limited to a fraction of the agents,
it is always possible under Assumption 3.3.1 for a finite number of agents to deviate arbitrarily
from the limiting system description. Therefore, under our assumptions it is only possible to obtain
an approximate equilibrium solution for almost all agents via the MF formulation. Although we
could make stronger assumptions on the mode of convergence for hypergraphons, such a concept
of convergence would be difficult to motivate from a graph theoretical perspective. Therefore, we
restrict ourselves to the cut-norm convergence [174] and the above solution concept.

3.3.1.2 Hypergraphon Mean Field Game

Next, we will formally let N →∞ and obtain a more tractable, reduced model consisting of any
single representative agent and the distribution of agent states, the so-called MF.

To analyze the case N →∞ however, we first introduce some preliminary definitions. We define
the space of MFsM ⊆ P(X )T ×I such that µ ∈ M whenever α ↦→ µα

t (x) is measurable for all
t ∈ T , x ∈ X . Intuitively, a MF is the distribution of states each of the infinitely many agents in I is
in. Analogously, the space of policies Π ⊆ ΠI is given by policies π ∈ ΠI where α ↦→ πα

t (u | x)
is measurable for any t ∈ T , x ∈ X , u ∈ U . Intuitively, π ∈ ΠI defines the behavior for each agent
α ∈ I. For any f : X × I → R and state marginal ensemble µ ∈ P(X )I , define

µ(f) :=

∫︂

I

∑︂

x∈X
f(x, α)µα(x) dα. (3.3.29)
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In the limit of N →∞, assuming that all agents follow a policy Π ⊆ ΠI , we obtain infinitely many
agents α ∈ I, for each of whom we define the limiting hypergraphon MF dynamics analogously to
the finite hypergraph game.

The agent states have the initial distribution xα0 ∼ µ0 ∈ P(X ). For all times t ∈ T and agents
α ∈ I, their actions will be random variables following the law

uαt ∼ πα
t (u

α
t | xαt ), (3.3.30)

under the policy πα ∈ Π, while their states follow the law

xαt+1 ∼ p(xαt+1 | xαt , uαt , ναt ), (3.3.31)

with the limiting, now deterministic neighborhood MF ναt ∈×D
d=1 P(X kd−1). Informally, by a LLN,

we have replaced the distribution of finitely many neighbor states by the limiting MF distribution ναt .
The d-th component of this MF is given by

ναt,d(x) :=

∫︂

Ir<[kd]\{1}
Wd(α,β)

kd−1∏︂

j=1

µ
βj

t (xj) dβ, (3.3.32)

where xj denotes separate coordinates of the input x (the order does not matter due to symmetry).
In other words, the d-layer neighborhood MF distributions give the probability of random neighbors
of a shared hyperedge on layer d to be in states (x1, . . . , xkd−1) ∈ X kd−1

Note that the same, shared α ∈ I is used for all D layers, i.e. all layer neighborhood distributions of
agents jointly converge to the limiting descriptions ναt . This makes sense, since by Assumption 3.3.1,
we assume that the agents are already ordered such that the corresponding step-hypergraphons
converge to the limiting hypergraphon in cut norm on all layers jointly.

Finally, the objective will be given by

Jµ
α (π

α) := E

[︄∑︂

t∈T
γtr(xαt , u

α
t , ν

α
t )

]︄
, (3.3.33)

which leads to the MF counterpart of Nash equilibria. Informally, a MFE is given by a ‘consistent’
tuple of policy and MF, such that the policy is optimal under the MF and the MF is generated by
the policy. As a result, if all agents follow the policy, they will be optimal under the generated MF,
leading to a Nash equilibrium.

More formally, we define the maps Φ:M→ 2Π mapping from fixed MF µ ∈ M to all optimal
policies π ∈ Π : ∀α ∈ I : πα ∈ argmaxπ̃ J

µ
α (π̃) and similarly Ψ: Π→M mapping from policy

π ∈ Π to its induced MF µ ∈ M such that for all α ∈ I, t ∈ T we have the initial distribution
µα
0 = µ0 and MF evolution

µα
t+1 =

∫︂

X

∫︂

U
p(x, u, ναt )π

α
t (du | x)µα

t (dx). (3.3.34)

Definition 3.3.2. A Hypergraphon Mean Field Equilibrium (HMFE) is a pair (π,µ) ∈ Π ×M
such that π ∈ Φ(µ) and µ = Ψ(π).
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Importantly, the MFG will be motivated rigorously in the following, and its computational complexity
is independent of the number of agents. Instead, the complexity of the problem will scale with the
size of agent state and action spaces X , U and the considered time horizon in case of a finite horizon
cost function, since we will solve for equilibria by repeatedly (i) computing optimal policies for
discrete MDPs [68] πα ∈ argmaxπ̃ J

µ
α (π̃), and (ii) solving the MF evolution equations Eq. (3.3.34).

In particular, MFE are guaranteed to exist, and the corresponding equilibrium policy will provide an
equilibrium for large finite systems.

To obtain meaningful results, we need a standard continuity assumption (e.g. [150]), since otherwise
weak interaction is not guaranteed: Without continuity, a change of behavior in only one of many
agents could otherwise cause arbitrarily large changes in the dynamics or rewards.

Assumption 3.3.2. Let r, p, W be Lipschitz continuous with Lipschitz constants Lr, Lp, LW > 0.

Remark 3.3.1. For all but Theorem 3.3.1, we may alternatively let W be Lipschitz on finitely
many disjoint hyperrectangles, i.e. let there be disjoint intervals {I1, . . . , IQ}, ∪iIi = I such that
∀i ∈ {1, . . . , Q}, ∀α, α̃ ∈ Ii, ∀d ∈ [D], ∀β ∈ Ir<[kd]\{1} we have

|Wd(α, β)−Wd(α̃, β)| ≤ LW |α− α̃| . (3.3.35)

Remark 3.3.2. Note that our model is quite general: In particular, it is also possible to model
dynamics and rewards dependent on the state-action distributions instead of only state distributions,
replacing δ×j ̸=i x

mj
t

by δ×j ̸=i(x
mj
t ,u

mj
t )

in Eq. (3.3.26). This can be done by reformulating any
problem as follows. Assume a problem with state and action spaces X , U and dependence of
rewards and transitions on joint state-action distributions. We can rewrite the problem as a new
problem with new state space X ∪ (X × U), where in the new problem, each two decision epochs
t, t + 1 correspond to a single original decision epoch, where in the first step t we transition
deterministically from x

mj

t to (x
mj

t , u
mj

t ) for the taken action u
mj

t , while in the second step t+ 1
we transition and compute rewards according to the original system, ignoring any second actions
taken. Choosing the square root of the discount factor and normalizing rewards will give a problem
in our form that is equivalent to the original problem.

3.3.2 Theoretical Foundations

In this section, we rigorously motivate the MF formulation by providing existence and approximation
results of an HMFE. Essentially, HMFE are guaranteed to exist and will give approximate Nash
equilibria in finite hypergraph games with many agents. The reader interested primarily in
applications may skip this section.

We lift the empirical distributions and policies to the continuous domain I, i.e. for any
(π1, . . . , πN ) ∈ ΠN we define the step policy πN ∈ Π and step empirical measures µN ∈ M
by

πN,α
t :=

∑︂

i∈[N ]

1INi
(α) · πi

t, ∀(α, t) ∈ I × T , (3.3.36)

µN,α
t :=

∑︂

i∈[N ]

1INi
(α) · δ

xj
t
, ∀(α, t) ∈ I × T . (3.3.37)

Proofs for the results to follow can be found in the Appendix and are at least structurally similar
to proofs in [7], though they contain a number of additional considerations we highlight in
Appendix C.
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3.3.2.1 Existence of Equilibria

First, we show that there exists an HMFE. We do this by rewriting the problem in a more convenient
form as done in [7]. Consider an equivalent, more standard MFG with states (αt, x̃t), i.e. we
integrate the graphon indices α into the state. The newfound states follow the initial distribution
x̃0 ∼ µ0, α0 ∼ Unif(I). Then, the actions and original state transitions follow as before, while the
αt part of the state remains fixed at all times, i.e.

ũt ∼ π̃t(ũt | x̃t, αt),

x̃t+1 ∼ p(x̃t+1 | x̃t, ũt, ν̃t), αt+1 = αt (3.3.38)

where we used the standard (non-graphical) MF µ̃t ∈ P(X × I) (cf. [24]) and let

ν̃t,d(x) =

∫︂

Ir<[kd]\{1}
Wd(αt,β)

kd−1∏︂

j=1

µ̃t(xj , βj) dβ, (3.3.39)

Using existing results for MFGs [24], we obtain existence of a potentially non-unique HMFE.

Theorem 3.3.1. Under Assumption 3.3.2, there exists a HMFE (π,µ) ∈ Π×M.

For uniqueness results, we refer to existing results such as the classical monotonicity condition
[22, 117]. However, using existing theory will not analyze the finite hypergraph structure and
instead directly uses the limiting hypergraphons. In the following, we thus show also that the finite
hypergraph games are indeed approximated well.

3.3.2.2 Approximation Properties

Next, we will show that the finite hypergraph game and its dynamics are well-approximated by the
hypergraphon MFG, which implies that the HMFE solution of the hypergraphon MFG will give us the
desired (ε, δ)-Nash equilibrium in large finite hypergraph games.

To begin, we define and obtain finite N -agent system equilibria from an HMFE via the policy sharing
map IdN (π) := (π1, . . . , πN ) ∈ ΠN , i.e. IdN is defined such that each agent will act according to
its position α on the hypergraphon,

πi
t(u | x) := π

i
N
t (u | x), ∀(i, t, x, u) ∈ [N ]× T × X × U . (3.3.40)

Now consider (i, π̂)-deviated policy tuples where the i-th agent deviates from an equilibrium policy
tuple to its own policy π̂, i.e. policy tuples (π1, . . . , πi−1, π̂, πi+1, . . . , πN ). Note that this includes
the deviation-free case as a special case. In order to obtain a (ε, δ)-Nash equilibrium, we must show
that for almost all i and policies π̂, the (i, π̂)-deviated policy tuple will be approximately described
by the interaction with the limiting hypergraphon MF. For this purpose, the first step is to show the
convergence of agent state distributions to the MF.

Define for any n ∈ N the evaluation of measurable functions f : X n × In → R under any
n-dimensional product measures

⨂︁nµ ∈ P(X n)I
n as

µ(f) :=

∫︂

In

∑︂

x∈Xn

f(x,β)
∏︂

i∈[n]

µβi(xi) dβ, (3.3.41)
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where
⨂︁nµ denotes the n-fold product of the measure µ, i.e. the n-dimensional distribution over

agent states.

Then, our first main result is the convergence of the finite-dimensional agent state marginals to
the limiting deterministic MF, given sufficient regularity of the applied policy. For this purpose,
we introduce and optimize over a class ΠLip of Lipschitz-continuous policies up to at most Dπ

discontinuities, i.e. π ∈ ΠLip whenever α ↦→ πα
t at any time t has at most Dπ discontinuities. Note

however, that we could in principle approximate non-Lipschitz policies by classes of Lipschitz-
continuous policies.

Theorem 3.3.2. Consider a policy π ∈ ΠLip with associated MF µ = Ψ(π). Let (π1, . . . , πN ) =
IdN (π), π̂ ∈ Π, t ∈ T . Under the policy tuple (π1, . . . , πi−1, π̂, πi+1, . . . , πN ) ∈ ΠN and
Assumption 3.3.1, we have for all finite dimensionalities n ∈ N and all measurable functions
f : X n × In → R uniformly bounded by fixed Mf > 0, that

E

[︄⃓⃓
⃓⃓
⃓

n⨂︂
µN
t (f)−

n⨂︂
µt(f)

⃓⃓
⃓⃓
⃓

]︄
→ 0, (3.3.42)

uniformly over all possible deviations. Furthermore, the rate of convergence follows the hyper-
graphon convergence rate in Assumption 3.3.1 up to O(1/

√
N).

As a special case, by considering n = 1 and f = 1{x} for any x ∈ X , we find convergence in L1 of
the empirical distribution of agent states 1

N

∑︁
i∈[N ] δxi

t
to the limiting MF

∫︁
I µ

α
t dα.

Our second main result is the (uniform) convergence of the system for almost any agent i ∈ [N ]
with deviating policy π̂ ∈ Π to the system where the interaction with other agents is replaced by the
interaction with the limiting deterministic MF. Hence, we introduce new random variables for the
single deviating agent, beginning with initial distribution x̂

i
N
0 ∼ µ0. The action variables follow the

deviating policy

û
i
N
t ∼ π̂t(û

i
N
t | x̂

i
N
t ), (3.3.43)

with the state transition laws

x̂
i
N
t+1 ∼ p(x̂

i
N
t+1 | x̂

i
N
t , û

i
N
t , ν

i
N
t ), (3.3.44)

i.e. we assume that all other agents act according to their corresponding equilibrium policy IdN (π),
such that the neighborhood state distributions of most agents can be replaced by the limiting term
ν

i
N
t with little error in large hypergraphs.

Theorem 3.3.3. Consider a policy π ∈ ΠLip with associated MF µ = Ψ(π). Let (π1, . . . , πN ) =
IdN (π), π̂ ∈ Π, t ∈ T . Under the policy tuple (π1, . . . , πi−1, π̂, πi+1, . . . , πN ) ∈ ΠN and
Assumptions 3.3.1 and 3.3.2, for any uniformly bounded family of functions G from X to R and any
ε, p > 0, t ∈ T , there exists N ′ ∈ N such that for all N > N ′

sup
g∈G

⃓⃓
⃓⃓E
[︁
g(xit)

]︁
− E

[︃
g(x̂

i
N
t )

]︃⃓⃓
⃓⃓ < ε (3.3.45)

uniformly over π̂ ∈ Π, i ∈ JN for some JN ⊆ [N ], |JN | ≥ ⌊(1− p)N⌋.
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Further, for any uniformly Lipschitz, uniformly bounded family of measurable functions H from
X × B1(X ) to R and any ε, p > 0, t ∈ T , there exists N ′ ∈ N such that for all N > N ′

sup
h∈H

⃓⃓
⃓⃓E
[︂
h(xit, ν

N,i
t )

]︂
− E

[︃
h(x̂

i
N
t , ν

i
N
t )

]︃⃓⃓
⃓⃓ < ε (3.3.46)

uniformly over π̂ ∈ Π, i ∈ JN for some JN ⊆ [N ] with |JN | ≥ ⌊(1− p)N⌋.

As a corollary, we will have good approximation of the finite hypergraph game objective through the
hypergraphon MF objective, and correspondingly the approximate Nash property of hypergraphon
MFE, motivating the hypergraphon MFG framework.

Corollary 3.3.1. Consider a policy π ∈ ΠLip with associated MF µ = Ψ(π). Let (π1, . . . , πN ) =
IdN (π), π̂ ∈ Π, t ∈ T . Under the policy tuple (π1, . . . , πi−1, π̂, πi+1, . . . , πN ) ∈ ΠN and
Assumptions 3.3.1 and 3.3.2, there exists N ′ ∈ N such that for all N > N ′ we have

⃓⃓
⃓⃓JN

i (π1, . . . , πi−1, π̂, πi+1, . . . , πN )− Jµ
i
N

(π̂)

⃓⃓
⃓⃓ < ε (3.3.47)

uniformly over π̂ ∈ Π, i ∈ JN for some JN ⊆ [N ] with |JN | ≥ ⌊(1− p)N⌋.

Corollary 3.3.2. Consider an HMFE (π,µ) ∈ ΠLip ×M. Under Assumptions 3.3.1 and 3.3.2, for
any ε, δ > 0 there exists N ′ such that for all N > N ′, the policy (π1, . . . , πN ) = IdN (π) is an
(ε, δ)-Nash equilibrium.

Therefore, we find that a solution of the MF system is a good equilibrium solution of sufficiently
large finite hypergraph games.

The assumption of a class ΠLip of Lipschitz continuous policies up to finitely many discontinuities
may seem restrictive. However – similar to [7, Theorem 5] – we may discretize and partition
I in order to solve hypergraphon MFGs to an arbitrary degree of exactness, preserving the good
approximation properties on large hypergraph games.

3.3.3 Experiments

In this section, we shall introduce an exemplary numerical problem of rumor spreading, and show
associated numerical solutions to demonstrate the hypergraphon MF framework, verifying the
theoretical results.

In order to learn an HMFE in our model, we shall adopt the well-founded discretization method
proposed in [7] analogous to the technique used in the proof of Theorem 3.3.1 to convert the GMFG
into a classical MFG, and thereby allow application of any existing MFG algorithms such as FPI to
solve for an equilibrium. In other words, we will split I into subintervals IN1 , . . . , INN , for each of
which we will pick a representing α ∈ INi . This α together with an agent’s original state in X will
constitute the new state. In Appendix C.6, we perform additional experiments for another numerical
problem of epidemics control, where existing algorithms fail, pointing out potential future work.
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3.3.3.1 Hypergraphons

In our experiments, we shall sample finite hypergraphs directly from given limiting hypergraphons,
which should ensure that we obtain hypergraph sequences that fulfill Assumption 3.3.1 analogous
to the standard graphon case at rate O( 1√

logN
), see [157, Lemma 10.16]. To sample a k-uniform

hypergraph with N nodes from a k-uniform hypergraphon W , we sample |r<[k]| uniformly
distributed values from the unit interval {αj : αj ∼ Unif([0, 1])}j∈r<[k]. Then, we add any
hyperedge B ⊆ [N ] with probability W (αr<(B)).

For the sake of illustration, unless otherwise noted, we will in the following consider two-layer
hypergraphons, where the first layer is a 2-uniform hypergraph (standard graph), while the second
layer shall be a 3-uniform hypergraph. For the first layer, we consider the uniform attachment
graphon

Wunif(α1, α2) = 1−max(α1, α2),

the ranked attachment graphon

Wrank(α1, α2) = 1− α1α2

and the flat (or p-ER) random graphon

Wflat := p = 0.5.

In particular, the uniform attachment graphon is the limit of a random graph sequence where we
iteratively add a new node N and then connect all unconnected nodes with probability 1

N . Similarly,
for the ranked attachment graphon, at each iteration n we first add a new (n-th) node. Before
adding the node, the nodes 1, . . . , n− 1 exist from prior iterations. The new node n is connected
to all previous nodes i = 1, . . . , n− 1 with probability 1− i

n . Then, all other nodes that are not
yet connected with each other will connect with probability 2

n . See also [157, Chapter 11] and
Figure 3.11.
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figure 3.11: Visualization of example graphons in the 2-dimensional case. Left: Uniform attachment
graphon; Middle: Ranked attachment graphon; Right: 0.5-ER graphon.

For the second, 3-uniform layer, we similarly consider the hypergraphon resulting from converting
all triangles in a standard p-ER graph into hyperedges [174]

Ŵ ind(α) := 1I3×[0,p]3(α),

as well as the uniform attachment hypergraphon

Ŵ unif(α) = 1−max(α1, α2, α3)
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and its inverted version

Ŵ inv−unif(α) = 1−max(1− α1, 1− α2, 1− α3)

resulting from a similar construction as in the standard case.

3.3.3.2 Rumor Spreading Dynamics

In this section, we will describe some simple social dynamics and epidemics problems to illustrate
potential applications of hypergraphon MFGs. Here, each layer could model different types of
interpersonal relationships. In our particular example of 2-uniform and 3-uniform layers, the latter
can model small cliques of friends, while the former could model general acquaintanceship. We
do note that social networks are typically more sparse, possessing significantly less edges than
on the order of O(N2). However, our model is a first step towards rigorous limiting hypergraph
models and in the future could be extended by using other graph limit theories such as Lp graphons
[14, 172, 173] by extending their theory towards hypergraphons. We further imagine that similar
approaches could be used e.g. in economics [64] or engineering applications [65].

In the classical Maki-Thompson model [175, 176], spread of rumors is modelled via three node
states: ignorant, spreader and stifler. Ignorants are unaware of the rumor, while spreaders attempt
to spread the rumor. When spreaders attempt to spread to nodes that are already aware of the rumor
too often, they stop spreading and become a stifler. In this work, instead of a priori assuming the
above behavior, we will give agents an intrinsic motivation to spread or stifle rumors, giving rise to
the Rumor problem. We shall consider ignorant (I) and aware (A) nodes. The behavior of aware
nodes is then motivated by the gain and loss of social standing resulting from spreading rumors to
ignorant and aware nodes respectively. The possible actions U := {S̄, S} of nodes are to actively
spread the rumor (S) or to refrain from doing so (S̄). The probability of an ignorant node becoming
aware of the rumor at any decision epoch is then simply given by a linear combination of all layer
neighborhood densities of aware, spreading nodes.

Since transition dynamics will depend on the spreading actions of neighbors, following Remark 3.3.2
we define instead the extended state space X = {I, A} ∪ ({I, A} × U). We then assume the
dynamics are given at all times t by

p((x, u) | x, u,ν) = 1, p(A | (A, u′), u,ν) = 1,

p(A | (I, u′), u,ν) = 1− p(I | (I, u′), u,ν)

= min

⎛
⎝1,

∑︂

d∈[D]

τdνd

⎛
⎝∑︂

i∈[kd]

1{(A,S)}(x ↦→ xi)

⎞
⎠
⎞
⎠

for all x ∈ {I, A}, u, u′ ∈ U , and similarly the rewards are given

R((A,S), u,ν) =
∑︂

d∈[D]

νd

⎛
⎝∑︂

i∈[kd]

rd1{I}×U (x ↦→ xi)− cd1{A}×U (x ↦→ xi)

⎞
⎠

with R ≡ 0 otherwise. In other words, any aware and spreading agent obtains a reward in each layer
that is proportional to the probability of a neighbor of any hyperedge sampled uniformly-at-random
out of all connected hyperedges to be ignorant. In our experiments, we use τ1 = 0.3, τ2 = 0.5,
rd = 0.5, cd = 0.8, µ0(A) = 0.01 and T = {0, 1, . . . , 49}.
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3.3.3.3 Numerical Results

In our experiments, we restrict ourselves to finite time horizons with γ = 1, 50 discretization
points, and use backwards induction with exact forward propagation to compute exact solutions.
Note that simple FPI by repeatedly computing an arbitrary optimal deterministic policy and its
corresponding MF converges to an equilibrium in the Rumor problem. In general however, FPI (as
well as more advanced state-of-the-art techniques) may fail to converge, see e.g. the SIS problem in
Appendix C.6.

In Figure 3.12, we can observe that the behavior for the Rumor problem is as expected. At the
equilibrium, agents will continue to spread rumors until the number of aware agents reaches a critical
point at which the penalty for spreading to aware agents is larger than the reward for spreading
to ignorant agents. The agents with higher connectivity are more likely to be aware of the rumor.
Particularly in the uniform attachment hypergraphon case, the threshold is reached at different
times, since the neighborhoods of different α reach awareness at different rates depending on their
connectivity. Here, a number of nodes with very low degrees will continue spreading the rumors.
In Appendix C.6, we show additional results for inverted 3-uniform hypergraphons, which give
similar results to the ones seen here.
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figure 3.12: Equilibrium behavior for the Rumor problem. Top: The threshold policy allows spreading of
rumors. It can be seen that agents spread the rumor up until a point in time where too many other agents
know of the rumor. As expected, agents are more likely to hear of the rumor if they have more neighbors. (a):
(Wrank, Ŵ unif); (b): (Wunif , Ŵ unif); (c): (Wer, Ŵ ind).

Furthermore, as can be seen in Figure 3.13, the L1 error between the empirical distribution and the
limiting MF system (as vectors over time)

∆µ = E

⎡
⎣∑︂

x∈X

∑︂

t∈T

⃓⃓
⃓⃓
⃓⃓
1

N

∑︂

i∈[N ]

δxi
t
(x)−

∫︂

I
µα
t (x) dα

⃓⃓
⃓⃓
⃓⃓

⎤
⎦ (3.3.48)

goes to zero as the number of agents increases, showing that the finite hypergraph game is well
approximated by the hypergraphon MFG for sufficiently large systems, though the error remains
somewhat large due to the high variance from our sparse initialization µ0(I) = 0.01. Here, we
estimated the error ∆µ for each N over 50 realizations. Due to the O(N2) complexity of simulation
and computational constraints, our experiments remain limited to the demonstrated number of
agents.

We repeat the experiment in Figure 3.14 with a more dense initialization µ0(A) = 0.1 to reduce the
aforementioned high contribution of variance from random initializations. Here, we observe that
the resulting convergence is significantly faster.
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figure 3.13: Convergence of the empirical MF in the limit. We compare between the fraction of aware
nodes in the finite and MF system under the equilibrium policy for (Wrank, Ŵ inv−unif) from Figure C.1(a)
in Appendix C.6, averaged over 50 stochastic simulations. The shaded region depicts the 95% confidence
interval at each N . It can be seen that the state distributions are increasingly well approximated by the MF.
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figure 3.14: Convergence of the empirical MF under non-sparse initialization. We compare between the
fraction of aware nodes in the finite and MF system under the equilibrium policy for (Wrank, Ŵ inv−unif) as
in Figure 3.13, but with higher initial awareness. It can be seen that convergence is much faster, since the
effect of random sparse initialization is avoided.

Lastly, in Figure 3.15 we demonstrate some interesting non-linear behavior for a two-layer setting
where both layers consist of 3-uniform hypergraphs. Here, for the first layer we use the block
hypergraphon

Ŵ block(α) := 1[0,0.5]3×[0,p]3(α) + 1(0.5,1]3×[0,p]3(α),

for p = 0.5, while for the second layer we again use the inverted uniform attachment hypergraphon.
In other words, we have a structure of two blocks on the first layer, while the second layer is more
globally connected. Furthermore, we will initialize the rumor in the second block where α > 0.5,
i.e. µα

0 (A) = 1(0.5,1](α). As we can see in Figure 3.15, in the beginning the rumor spreads in the
second block α > 0.5 where it originated from. After a while however, the rumor begins to spread
faster in the first block α ≤ 0.5, since nodes with low α are significantly more interconnected on
the second layer.

Overall, we can see that multi-layer hypergraphon MFGs allow for more complex behavior and
modelling of connections than a single-layer graphon approach.
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figure 3.15: Equilibrium behavior for the Rumor problem with two-layer 3-uniform hypergraphs
(Ŵ block, Ŵ unif). We observe that the rumor originates in nodes with α > 0.5, but nodes with α ≤ 0.5
eventually catch up due to their increased connectivity. (a): The equilibrium threshold policy. (b): MF for
each α.

3.3.4 Summary

In this section, we introduced a model for dynamical systems on hypergraphs that can describe
agents with weak interaction via the graph structure. The model allows for a rigorous and simple MF
description that has a complexity independent of the number of agents. We verify our approach both
theoretically and empirically on a rumor spreading example. By introducing game-theoretical ideas,
we thus obtain a framework for solving otherwise intractable large-scale games on hypergraphs in a
tractable manner, going beyond simple pair-wise interactions.

We hope our work forms the basis for several future works, e.g., extensions to directed or weighted
hypergraphs in order to generalize to arbitrary network motifs [18], adaptive networks [177],
cooperative control or consideration of edge states in addition to the vertex states we have considered
in this work. Furthermore, it may be of interest to consider graph models with more adjustable
clustering parameters. An extension of our rumor model and theory to continuous-time models
could be fruitful. Finally, so far our work remains restricted to dense graphs and deterministic
limiting graphons, while in practice this is not always the case (e.g. preferential attachment graphs
[158]). Here, Lp graphons [14, 172, 173] could provide a description for less dense cases, which
are of great practical interest and may also be generalized to hypergraphs. We also hope that our
work inspires future applications in inherently (hyper-)graphical scenarios.
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3.4 beyond weak interaction of agents

Standard MFGs remain limited to homogeneous agents that weakly influence each other, and
cannot model major agents that strongly influence other agents, severely limiting the class of
problems that can be handled. We propose a novel discrete time version of Major-Minor Mean
Field Games (M3FGs), along with a learning algorithm based on FP and partitioning the probability
simplex. Importantly, M3FGs generalize MFGs with common noise and can handle not only random
exogeneous environment states but also major agents. A key challenge is that the MF is stochastic
and not deterministic as in standard MFGs. Our theoretical investigation verifies both the M3FG
model and its algorithmic solution, showing firstly the well-posedness of the M3FG model starting
from a finite game of interest, and secondly convergence and approximation guarantees of the
FP algorithm. Then, we empirically verify the obtained theoretical results, ablating some of the
theoretical assumptions made, and show successful equilibrium learning in three example problems.
Overall, we establish a learning framework for a novel and broad class of tractable games. The
material presented in this section is based upon our work [3].

So far, most MFG learning frameworks remain unable to handle common noise [178], or more
generally major agents. Contrary to minor agents, a major agent directly affects all minor agents
and is affected by the MF of minor agents, whereas common noise also affects all minor agents, but
is exogeneous and can be understood as a static major agent without actions [179]. Notably, [127]
formulate an algorithm handling common noise using a continuous learning Lyapunov argument
[180, 181], assuming however that the common noise is known, while [1] consider a cooperative
setting. Common noise and major agents remain important in practice, as a system seldom consists
only of many similar minor agents. For example, strategic agents on the market do not exist in a
vacuum but must contend for instance with idiosyncratic shocks [64] or government regulators
[62], while many cars on a road network [54] may be subject to traffic accidents or traffic lights.
In continuous-time, such systems are known as MFGs with major and minor agents [67], and have
been considered, e.g., by [182–184] for LQG systems, by [113, 185] in non-linear and partially
observed settings, and more recently by [186–189]. Major agents also generalize common noise, an
important problem in MFG literature [121, 127, 178]. For an additional overview, we also point to
[67]. In contrast to prior work, we focus on a computational learning framework that is in discrete
time. Additionally, even existing discrete-time MFG frameworks with only common noise such as
by [127] have to the best of our knowledge not yet rigorously connected MFGs with the finite games
of practical interest. We note that another setting with major agents has already been explored:
Stackelberg MFGs. [190–192] consider a Stackelberg equilibrium instead of a Nash equilibrium,
wherein a ‘major’ principal agent chooses their policy first and has priority (like a government
or regulator); see [193, 194] for discrete time versions of the problem. Though the Stackelberg
setting is of importance, it is distinct from computing Nash equilibria where major and minor
agents are “on the same level”: in the Stackelberg setting, minor agents only respond with a Nash
equilibrium between themselves after the principal’s policy choice. Furthermore, we are not aware
of any propagation of chaos results even in discrete-time Stackelberg MFGs, for which our result
also applies. The field of Stackelberg MFGs remains part of continued active research, to which our
M3FG setting may also contribute, and vice versa.

our contribution. By the preceding motivation, we propose the first general discrete-time
M3FG learning framework. We begin with providing a theoretical foundation of the proposed M3FG
model, showing that equilibria in finite games with many agents can be approximately learned in
the M3FG instead. The proof is based upon showing propagation of chaos i.e., convergence of the
empirical MF, which – in contrast to its counterpart in MFGs without common noise – converges only
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in distribution. We then move on to provide a learning algorithm based on FP to solve M3FGs, with
convergence results and approximation guarantees for its tractable and practical, tabular variant.
Empirically, our learned policies do not assume that common noise is known a priori. Due to
the resulting stochastic MF, for tractable dynamic programming we allow conditioning of agent
actions and policies also on the MF instead of just the agent’s own state. Finally, we verify the M3FG
framework on three problems, empirically supporting theoretical claims, even when the assumptions
are not entirely fulfilled.

3.4.1 Major-Minor Mean Field Games

In this section, we begin by giving a description of considered problems and their corresponding
MF system.

3.4.1.1 Finite Agent Game

We consider a game with N minor agents and one major agent. Let X and U be finite state and
action spaces for minor agents, respectively. Let X 0 and U0 be finite state and action spaces for the
major agent, respectively. Let T ∈ N be a finite time horizon and let T := {0, 1, . . . , T − 1}. We
denote the state and the action of minor agent i ∈ [N ] at time t ∈ T by xi,Nt and ui,Nt , respectively.
Similarly, we denote by x0,Nt and u0,Nt the state and the action of the major agent at time t. Let
µ0 and µ0

0 be initial probability distributions on X and X 0, respectively. Define the empirical
MF µN

t := 1
N

∑︁N
i=1 1xi,N

t
, where 1x is the indicator function equal to 1 for the argument x and 0

otherwise. The MF can be viewed as a histogram with |X | many bins.

We can consider several classes of policies. In this presentation, we focus on Markovian feedback
policies in the following sense: the policy πi,N for minor agent i is a function of her own state, the
major agent’s state and the MF; the policy π0,N for the major agent is a function of her own state
and the MF. We denote respectively by Π and Π0 the sets of such minor and major agent policies.

For a given tuple of policies (πN , π0,N ) = ((π1,N , . . . , πN,N ), π0,N ) ∈ ΠN ×Π0, the game begins
with states x0,N0 ∼ µ0

0, x
i,N
0 ∼ µ0 and subsequently, for t = 0, 1, . . . , T − 2, let

ui,Nt ∼ πi,N
t (ui,Nt | xi,Nt , x0,Nt , µN

t ), i ∈ [N ] (3.4.49a)

u0,Nt ∼ π0,N
t (u0,Nt | x0,Nt , µN

t ), (3.4.49b)

xi,Nt+1 ∼ p(xi,Nt+1 | xi,Nt , ui,Nt , x0,Nt , u0,Nt , µN
t ), i ∈ [N ] (3.4.49c)

x0,Nt+1 ∼ p0(x0,Nt+1 | x0,Nt , u0,Nt , µN
t ). (3.4.49d)

where p : X ×U ×X 0×U0×P(X )→ P(X ) and p0 : X 0 × U0 × P(X )→ P(X ) are transition
kernels.

In contrast to classic MFGs such as studied e.g, in [24], the minor agents’ dynamics depend also on
the major agent’s state. An important consequence is that the minor agents’ dynamics are influenced
by a form of common noise. This explains why we decide to consider policies that depend on the
MF µN

t . Furthermore, this form of common noise is not simply an exogenous source of randomness
because it is influenced by the major agent’s choice of policy. This makes the problem more
challenging than MFGs with common noise.
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Next, we define the minor and major total rewards

J i
N (πN , π0,N ) = E

[︄∑︂

t∈T
r(xi,Nt , ui,Nt , x0,Nt , u0,Nt , µN

t )

]︄
,

J0
N (πN , π0,N ) = E

[︄∑︂

t∈T
r0(x0,Nt , u0,Nt , µN

t )

]︄
,

for some reward functions r : X ×U ×X 0×U0×P(X )→ R and r0 : X 0×U0×P(X )→ R.

In this work, we focus on the non-cooperative scenario where agents try to maximize their own
objectives while anticipating the behavior of other agents. This is formalized by the solution concept
of (approximate) Nash equilibria.

Definition 3.4.1. Let ε ≥ 0. An approximate ε-Nash equilibrium is defined as a tuple of
policies (πN , π0,N ) = ((π1,N , . . . , πN,N ), π0,N ) ∈ ΠN ×Π0, such that we have J0

N (πN , π0,N ) ≥
supπ̃0 J0

N ((π1,N , . . . , πN,N ), π̃0) − ε for the major agent, and furthermore J i
N (πN , π0,N ) ≥

supπ̃i∈Π J i
N ((π1, . . . , πi−1, π̃i, πi+1, . . . , πN ), π0,N ) − ε for all minor agents i ∈ [N ]. A Nash

equilibrium is an approximate 0-Nash equilibrium.

Remark 3.4.1. We can also consider time-dependent dynamics or rewards, multiple major agents,
and infinite-horizon discounted objectives. Some results we prove below can be extended to such
settings (e.g., propagation of chaos, equilibrium approximation, and FP; see also generalized
infinite-horizon experiments in Appendix D.9). Similarly, we can extend the model to multiple minor
agent populations with small changes, see e.g. [117]. Another possibility is to simply include types
of agents into their state [105].

3.4.1.2 Mean Field Game

When the number of minor agents N is large, we can approximate the game by an MFG, which
corresponds formally to the limit N →∞. In an MFG, the empirical MF is replaced by a random
limiting MF. Unlike standard MFGs, the limiting MF does not evolve in a deterministic way due to
the influence of the major agent. Fixing major and minor agent policies π0, π for all agents, except
for a single minor agent deviating to π̂, when N →∞, we obtain (intuitively by a LLN argument)
the major and deviating minor agent M3FG dynamics x00 ∼ µ0

0, x0 ∼ µ0,

ut ∼ π̂t(ut | xt, x0t , µt), (3.4.50a)
u0t ∼ π0

t (u
0
t | x0t , µt), (3.4.50b)

xt+1 ∼ p(xt+1 | xt, ut, x0t , u0t , µt), (3.4.50c)
x0t+1 ∼ p0(x0t+1 | x0t , u0t , µt), (3.4.50d)
µt+1 = T π

t (x
0
t , u

0
t , µt) (3.4.50e)

with deterministic transitions T π
t (x

0, u0, µ) :=
∫︁∫︁

p(x, u, x0, u0, µ)πt(du | x, x0, µ)µ(dx) as the
conditional “expectation” of the next MF given the current major state x0, action u0, and random
MF µ. The policy π is shared by all minor agents except one who is deviating and using π̂. This
means that we look for symmetric Nash equilibria where all exchangeable minor agents use the
same policy, as usual in MFG literature. Still, a MFE suffices as an approximate Nash equilibrium in
the finite game, which is not to say that there cannot be other heterogeneous policy tuples in the
finite game that are Nash.
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M3FGs now consist of two MDP optimality conditions, one for all minor agents and one for the
major agent. An equilibrium is then optimal in each MDP simultaneously. More precisely, from the
point of view of a minor agent, the goal is to optimize over π̂ while (π, π0) are fixed. This yields
the minor agent MDP with state (xt, x

0
t , µt) ∈ X × X 0 × P(X ), and action ut ∈ U , and with the

objective

J(π̂, π, π0) = E

[︄∑︂

t∈T
r(xt, ut, x

0
t , u

0
t , µt)

]︄
. (3.4.51)

Note that, although µt+1 is given by a deterministic function of (x0t , u0t , µt), from the point of view
of a minor agent, the evolution of (µt)t is stochastic since it depends on the sequence (x0t , u

0
t )t,

which is random. By definition of a Nash equilibrium, only a single minor agent can deviate
arbitrarily to π̂, and by symmetry it does not matter which “representative” minor agent deviates.
Therefore there is only one MDP optimality condition for all minor agents. We also stress that since
N →∞, the representative agent is insignificant and her deviation does not affect the MF.

On a similar note, from the major agent’s point of view, we obtain the major agent MDP with
(X 0 × P(X ))-valued states (x0t , µt) and U0-valued actions u0t of the major agent, using the same
dynamics, forgetting about the (insignificant for the major agent) deviating minor agent, and
optimizing instead for π0, the corresponding major objective

J0(π, π0) = E

[︄∑︂

t∈T
r0(x0t , u

0
t , µt)

]︄
. (3.4.52)

mean field equilibrium. The Nash equilibrium in the finite game hence corresponds to a
major-minor MFE, as a fixed point of both MDPs at once. In other words, major and minor policies
π0, π that are optimal against themselves in the major and minor agent MDPs.

Definition 3.4.2. A Major-Minor Mean Field Nash Equilibrium (M3FNE) is a tuple (π, π0) ∈ Π×Π0

of policies, such that π ∈ argmaxπ′ J(π′, π, π0) and π0 ∈ argmaxπ′ J0(π, π′).

We slightly weaken the concept of optimality to approximate optimality, since the solution of a
limiting MFG provides approximate Nash equilibria for the finite game, which are still achieved by
solving for approximate M3FNE.

Definition 3.4.3. An approximate ε-M3FNE is a tuple (π, π0) ∈ Π × Π0 of policies, such that
J(π, π, π0) ≥ supπ′ J(π′, π, π0)− ε and J0(π, π0) ≥ supπ′ J0(π, π′)− ε.

The minimal such ε for minor and major agents are also referred to as the minor and major
exploitabilities E(π, π0) and E0(π, π0) of (π, π0). Accordingly, an exploitability of 0 means that
(π, π0) is an exact M3FNE.

3.4.2 Theoretical Foundations

The M3FG is a theoretically rigorous formulation for large corresponding finite games. Note in
particular that the MF will be stochastic due to the randomness of major agents and their states, and
therefore standard results based on determinism of MFs will no longer hold. We provide such a
theoretical foundation of M3FG by propagation of chaos.
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continuity assumptions. We provide theoretical guarantees to prove that the M3FNE is
an approximate Nash equilibrium in the finite game, despite having a non-deterministic MF in the
limiting case, contrary to most of the existing literature [95, 195]. For this, we need some common
Lipschitz continuity assumptions [104, 116].

Assumption 3.4.1. The kernels p, p0 are Lp, Lp0-Lipschitz.

Assumption 3.4.2. The rewards r, r0 are Lr, Lr0-Lipschitz.

Assumption 3.4.3. The classes of major and minor policies Π0, Π are equi-Lipschitz, i.e. there
are LΠ0 , LΠ > 0 s.t. for all t, π0 ∈ Π0, π ∈ Π, we have that π0

t : X 0 × P(X ) → P(U) and
πt : X × X 0 × P(X )→ P(U) are LΠ0 , LΠ-Lipschitz.

Here, we always consider Lipschitz continuity for all arguments using the sup metric for products,
and the L1 distance for probability measures, see e.g., Appendix D.2. We note that the Lipschitz
assumption for policies – while standard – is technical. Empirically, the only piecewise Lipschitz
policies obtained in Section 3.4.3 for tractability nonetheless remain close to the following
approximations in the finite system. A theoretical investigation of guarantees for piecewise Lipschitz
policies is left for future work.

propagation of chaos. We achieve propagation of chaos “in distribution” for major and
minor agents to the M3FG at rate O(1/

√
N), which is shown inductively in Appendix D.6. Here,

propagation of chaos refers to the conditional independence of minor agents, and thus convergence
in the limit to the deterministic MF [126]. In contrast to MFGs with deterministic MFs, a stronger
mode of convergence such as the one considered by [24] fails by stochasticity of the MF.

Theorem 3.4.1. Consider Assumptions 3.4.1 and 3.4.3, and any equi-Lipschitz family of func-
tions F ⊆ RX×U×X 0×U0×P(X ) with shared Lipschitz constant LF . Then, the random variable
(x1,Nt , u1,Nt , x0,Nt , u0,Nt , µN

t ) in system Eq. (3.4.49) under ((π̂, π, π, . . .), π0) converges weakly,
uniformly over f ∈ F and (π̂, π, π0) ∈ Π×Π×Π0, to (xt, ut, x

0
t , u

0
t , µt) in system Eq. (3.4.50)

under (π̂, π, π0), for all t ∈ T ,

sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓E
[︂
f(x1,Nt , u1,Nt , x0,Nt , u0,Nt , µN

t )
]︂
− E

[︁
f(xt, ut, x

0
t , u

0
t , µt)

]︁⃓⃓
⃓ = O(1/

√
N).

(3.4.53)

Corollary 3.4.1. Similarly, consider Assumptions 3.4.1 and 3.4.3, and any family of equi-Lipschitz
functions F0 ⊆ RX 0×U0×P(X ) with shared Lipschitz constant LF0 . Then the random variable
(x0,Nt , u0,Nt , µN

t ) in system Eq. (3.4.49) under ((π̂, π, π, . . .), π0) converges weakly, uniformly over
f ∈ F0, to (x0t , u

0
t , µt) in system Eq. (3.4.50) under (π̂, π, π0), for all t ∈ T ,

sup
π̂,π,π0

sup
f∈F0

⃓⃓
⃓E
[︂
f(x0,Nt , u0,Nt , µN

t )
]︂
− E

[︁
f(x0t , u

0
t , µt)

]︁⃓⃓
⃓ = O(1/

√
N). (3.4.54)



64 3 competitive mean field games

approximate nash equilibrium. From propagation of chaos, the approximate Nash
property of M3FNE follows, suggesting that a solution of M3FGs provides a good game-theoretic
solution of interest to practical N -agent games, see Appendix D.7 for the proof based on propagation
of chaos.

Corollary 3.4.2. Consider Assumptions 3.4.1, 3.4.2 and 3.4.3, and a M3FNE (π, π0) ∈ Π × Π0.
Then, the policies ((π, . . . , π), π0) constitute an O(1/

√
N)-Nash equilibrium in the finite game.

Finally, existence of a M3FNE is a difficult question under policies that depend on the stochastic
MF. While assuming reactive policies unconditioned on the MF could help, choosing such policies
makes the design of our algorithm based on dynamic programming difficult, as policies computed
via dynamic programming need to depend on the entire M3FG system state. In contrast, in usual
deterministic MFGs it is sufficient to remove policy dependence on the MF, which is deterministic.
For practical purposes, learning equilibria and then checking the exploitability by Theorem 3.4.3
may suffice.

3.4.3 Fictitious Play

To find M3FNE and solve the fixed-point problem, we formulate a FP algorithm and provide a
theoretical analysis. Following the exact algorithm, as empirical contribution we provide and analyze
an approximate, numerically tractable algorithm that does not assume knowledge of common noise,
contrary to [127], and extend it to the setup with major and minor agents. Since the space of MFs is
continuous and does not allow general exact computation of value functions, we project MFs onto a
finite partition with guarantees for policy evaluation.

3.4.3.1 Fictitious Play Algorithm

In order to learn an M3FNE, we first propose an exact analytic algorithm based on FP [127] and
provide a theoretical analysis of convergence. For this part, we will assume that the major agent’s
action does not affect the minor agents’ transition kernel. To simplify the presentation and the
analysis, we will use conditioning with respect to the sources of randomness that affect the MF, i.e.,
the minors’ distribution. For every t ≥ 0, let the major and minor agents’ actions be determined not
by the MF µt, but instead by the history of major states and actions, u0t ∼ π0

t (u
0
t | x0t , x00:t−1, u

0
0:t−1),

x00:t−1 := (x00, x
0
1, . . . , x

0
t−1), u00:t−1 := (u00, u

0
1, . . . , u

0
t−1). By induction, we can in fact view µt

as a deterministic function of (x00:t−1, u
0
0:t−1) given the minor agents’ policy π, since we simply

have µt+1 = T π
t (x

0
t , u

0
t , µt) recursively and deterministically. This means that for fixed policies

such as a given Nash equilibrium, any policies dependent on µt can instead be rewritten as functions
of (x00:t−1, u

0
0:t−1). Therefore, instead of seeing policies as functions of µt, we will see them

as functions of the major agent randomness (x00:t−1, u
0
0:t−1) and we will write (slightly abusing

notation) πt(xt, x00:t, u00:t−1) and π0
t (x

0
t , x

0
0:t−1, u

0
0:t−1) respectively for the minor agents’ and the

major agent’s policies. The results we prove below go beyond existing results by (i) analyzing also
the major exploitability similarly to the minor exploitability, and (ii) expanding analysis of minor
exploitability under presence of major agents. To this end, we formulate Assumption 3.4.4.3. and
Assumption 3.4.4.4., which provide the conditions for convergence in the presence of major agents.
See Appendix D.1 for more detail.
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We first start by introducing the discrete time FP before analyzing it in continuous time. Here, time
refers to the algorithm’s current iteration and not to the time of the M3FG system, which remains
discrete throughout the whole work. At any given step j of FP, we have:

µπ̄j

t|x0
0:t−1,u

0
0:t−1

=
j − 1

j
µπ̄j−1

t|x0
0:t−1,u

0
0:t−1

+
1

j
µπBR,j

t|x0
0:t−1,u

0
0:t−1

(3.4.55)

where we use the notation µπ
t|x0

0:t−1,u
0
0:t−1

for the minor state distribution at time t induced by the

minor agent policy π and conditioned on the past sequence (x00:t−1, u
0
0:t−1). Here, µπBR,j

t|x0
0:t−1,u

0
0:t−1

is
the conditional distribution induced by the best response (BR) policy πBR,j against π̄j−1 and π̄0,j−1,
i.e., πBR,j := argmaxπ J(π, π̄

j−1, π̄0,j−1). The policy generating this average distribution is

π̄j
t (u|x, x00:t−1, u

0
0:t−1) =

∑︁j
i=0 µ

πBR,i

t|x0
0:t−1,u

0
0:t−1

(x)πBR,i
t (u|x, x00:t−1, u

0
0:t−1)

∑︁j
i=0 µ

πBR,i

t|x0
0:t−1,u

0
0:t−1

(x)
. (3.4.56)

Meanwhile, the major agent state distribution is

µπ̄0,j

t =
j − 1

j
µπ̄0,j−1

t +
1

j
µπ0,BR,j

t

where π̄0,j
t analogous to Eq. (3.4.56), but in contrast to minor agents using joint distributions

µπ0,BR,i

t (x0t , x
0
0:t−1, u

0
0:t−1) and π0,BR,i

t (u0t | x0t , x00:t−1, u
0
0:t−1).

For the convergence analysis, we study the continuous time version of above discrete time FP,
as [127]. In the continuous time FP algorithm, we denote the time of the algorithm (its “iterations”)
with τ and we first initialize the algorithm for τ < 1 with arbitrary policies for the minor agents,
π̄τ<1 = {π̄τ<1

t }t∈T , and major agent, π̄0,τ<1 = {π̄0,τ<1
t }t∈T . For all τ ≥ 1, t ∈ T and

x00:t−1, u
0
0:t−1, define the FP process

µ̄τ
t|x0

0:t−1,u
0
0:t−1

=
1

τ

∫︂ τ

0
µ
πBR,s
0:t−1

t|x0
0:t−1,u

0
0:t−1

ds

µ̄0,τ
t =

1

τ

∫︂ τ

0
µ
π0,BR,s
0:t−1

t ds

(3.4.57)

where µ
πBR,τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

and µ
π0,BR,τ
0:t−1

t are conditional and joint distributions respectively, in-

duced by the BR policies πBR,τ and π0,BR,τ up to time t − 1 against µπ̄τ

t|x0
0:t−1,u

0
0:t−1

(x) and

µπ̄0,τ

t (x0t , x
0
0:t−1, u

0
0:t−1). In other words, πBR,τ := argminπ J(π, π̄

τ , π̄0,τ ) and π0,BR,τ :=
argminπ0 J0(π̄τ , π0).

Note that the distributions induced by the averaged policies {π̄τ
t }t∈T and {π̄0,τ

t }t∈T for τ ≥ 1 are
given as

π̄τ
t (u|x, x00:t−1, u

0
0:t−1)

∫︂ τ

s=0
µπBR,s

t|x0
0:t−1,u

0
0:t−1

(x)ds

=

∫︂ τ

s=0
µπBR,s

t,|x0
0:t−1,u

0
0:t−1

(x)πBR,s
t (u|x, x00:t−1, u

0
0:t−1)ds,

π̄0,τ
t (u0|x0, x00:t−1, u

0
0:t−1)

∫︂ τ

s=0
µπ0,BR,s

t (x0, x00:t−1, u
0
0:t−1)ds

=

∫︂ τ

s=0
µπ0,BR,s

t (x0, x00:t−1, u
0
0:t−1)π

0,BR,s
t (u0|x0, x00:t−1, u

0
0:t−1)ds,

(3.4.58)
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for all t ∈ T and x00:t−1, u
0
0:t−1. For s < 1, πBR,s and π0,BR,s are chosen arbitrarily. The proof

and the differential form of Eq. (3.4.57) and Eq. (3.4.58) can be found in Appendix D.1.

As a result, below we give a convergence analysis together with assumptions for continuous time
FP, converging in both minor and major exploitability E(π̄τ , π̄0,τ ) = maxπ′ J(π′, π̄τ , π̄0,τ ) −
J(π̄τ , π̄τ , π̄0,τ ), E0(π̄τ , π̄0,τ ) = maxπ0′ J0(π̄τ , π0′) − J0(π̄τ , π̄0,τ ), summarized as the total
exploitability Etot(π̄τ , π̄0,τ ) = E(π̄τ , π̄0,τ ) + E0(π̄τ , π̄0,τ ).

Assumption 3.4.4. 1. The transition kernels are in the form of p(xt+1 | xt, ut, x0t , u0t ) and
p0(x0t+1 | x0t , u0t ) for minor agents and major agent, respectively.

2. The reward of minor and major agents are separable, i.e. for some reward functions
r̃, r, r̃0, r̂0, ř0, we have

r(x, u, x0, u0, µ) = r̃(x, x0, u) + r(x, x0, µ),

r0(x0, u0, µ) = r̃0(x0, u0) + r0(x0, µ).

3. The game is monotone; i.e., satisfies Lasry-Lions monotonicity condition: For minor agents,
we have ∀x0 ∈ X 0, ∀µ, µ′:

∑︂

x∈X
(µ(x)− µ′(x))(r(x, x0, µ)− r(x, x0, µ′)) ≤ 0.

Meanwhile, for major agents, we have

d

dτ
µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t) ·

⟨︂
∇µr̄

0(x0t+1, µ
π̄τ
0:t

t+1|x0
0:t,u

0
0:t
),

d

dτ
µ
π̄τ
0:t

t+1|x0
0:t,u

0
0:t

⟩︂
≤ 0.

4. We have Ẽ(π̄τ , π0,BR,τ , π̄0,τ ) ≤ E(π̄τ , π̄0,τ ), where we define Ẽ(π̄τ , π0,BR,τ , π̄0,τ ) =
J(πBR,τ , π̄τ , π0,BR,τ ) − J(π̄τ , π̄τ , π0,BR,τ ) with any BR policy given as πBR,τ =
argmaxπ J(π, π̄

τ , π̄0,τ ).

Remark 3.4.2. Assumption 3.4.4.3. is fulfilled for major agents if r0(x0, µ) = r0(x0). Assump-
tion 3.4.4.4. is satisfied for instance if r(x, u, x0, µ) = r(x, u, µ) and p(xt+1 | xt, ut, x0t , u0t ) =
p(xt+1 | xt, ut). Then, we trivially have Ẽ(π̄τ , π0,BR,τ , π̄0,τ ) = E(π̄τ , π̄0,τ ) by obtaining a minor
agent MFG independent of the major agent.

Theorem 3.4.2. Under Assumption 3.4.4, the total exploitability is a strong Lyapunov function such
that d

dτ Etot(π̄τ , π̄0,τ ) ≤ − 1
τ Etot(π̄τ , π̄0,τ ); i.e., we have Etot(π̄τ , π̄0,τ ) = O(1/τ) in the continuous

time FP algorithm.

The proof of Theorem 3.4.2 can be found in Appendix D.1 and is based on a monotonic decrease of
exploitability, at the same rate as standard FP in MFGs [127].

In numerical experiments, for applicability and computational tractability (due to the exponential
complexity of the histories in the horizon), we condition policies on the random MF and major
state instead of the histories, averaging policies uniformly instead of for each possible major
state-action sequence. Further, numerically we partition and represent the (naturally continuous)
MFs as described in the following, to obtain tabular Algorithm 1. Experimentally, in Section 3.4.4
we nonetheless find that the algorithm optimizes exploitability, even if Assumption 3.4.4 is not fully
satisfied. The dependence of policy actions on the MF and major state has the additional advantage
of allowing standard dynamic programming for major and minor MDPs, as their full MDP states
include both the MF and major state.
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Algorithm 1 Discrete-time, projected FP

1: Input: δ-partition {Pi}i=1...,M .
2: Initialize initial policies π̄(0), π̄0

(0).
3: for iteration n = 0, 1, 2, . . . do
4: Compute discretized BR (as in Definition 3.4.5)

π(n+1) ∈ argmax Q̂π̄(n),π̄
0
(n)

,

π0
(n+1) ∈ argmax Q̂

0
π̄(n),π̄

0
(n)

.

5: Compute next average policies

π̄(n+1) :=
n

n+ 1
π̄(n) +

1

n+ 1
π(n+1),

π̄0
(n+1) :=

n

n+ 1
π̄0
(n) +

1

n+ 1
π0
(n+1).

3.4.3.2 Projected Mean Field

Observe that for given current MF and major state-actions, we obtain deterministic transitions from
one MF to the next. Therefore, by partitioning we can obtain deterministic transitions in-between
parts of a partition of P(X ), and a Bellman equation over finite spaces.

Definition 3.4.4. A δ-partitionM = {Pi}i∈[|M|] is a partition of P(X ), with ∥µ− ν∥ < δ for any
i ∈ [|M|], µ, ν ∈ Pi.

Since P(X ) is compact, a finite δ-partition of P(X ) exists for any δ > 0. We will henceforth
assume for any δ > 0 some δ-partitionM of P(X ) with M = M(δ) parts.

discretized finite MDPs. To each part Pi, we associate an arbitrary element µ̂(i) ∈ Pi and
write projδµ for the δ-partition projection of MFs µ ∈ P(X ), i.e. whenever µ ∈ Pi we project to
the representative projδµ = µ̂(i) ∈ Pi.
As a result, we obtain discretized, finite MDP versions of the major and minor agent MDPs, where the
continuous MF state is replaced by finitely many states in P̂(X ) := {µ̂(1), . . . , µ̂(M)}, evolving by
discretized MF evolutions in Eq. (3.4.50), i.e. µ̂t+1 = projδT

π
t (x

0, u0, µ̂t) for any x0, u0, µ̂t.

We can solve the discretized MDPs in a tabular manner: To compute best responses under policies
(π, π0), observe that the true action-value function Q0

π,π0 of the (not discretized) major agent MDP
follows the Bellman equation

Q0
π,π0(t, x

0, u0, µ) = r0(x0, u0, µ) +
∑︂

x0′

p0(x0′ | x0, u0, µ)

·max
u0′

Q0
π,π0(t+ 1, x0′, u0′, T π

t (x
0, u0, µ)).

The tabular approximate action-value function Q̂
0
π,π0 for the major agent follows instead the Bellman

equation of the discretized major agent MDP (letting the domain of Q̂π,π0 be the entirety of P(X )
as constants over each part Pi),
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Q̂
0
π,π0(t, x0, u0, µ) = Q̂

0
π,π0(t, x0, u0,projδµ)

= r0(x0, u0,projδµ) +
∑︂

x0′

p0(x0′ | x0, u0,projδµ)

·max
u0′

Q̂
0
π,π0(t+ 1, x0′, u0′, T π

t (x
0, u0, projδµ))

with terminal condition zero, and the minor action-values analogously. The above can nonetheless
provide a good approximation that can be computed in tabular form, see Appendix D.3 and
empirical support in Section 3.4.4.

discretized equilibria. Building upon the preceding approximations, we define an approxi-
mate equilibrium as a fixed point of the discretized system.

Definition 3.4.5. A δ-partition M3FNE is a tuple (π, π0) ∈ Π̂× Π̂
0

with π ∈ argmax Q̂π,π0 and
π0 ∈ argmax Q̂

0
π,π0 where policies in Π̂, Π̂

0
are instead defined as blockwise constant over each

part Pi of the δ-partition.

Here, we understand π̂ ∈ argmax Q̂π,π0 by the defining equation given as full support on optimal
actions

∑︁
u∈argmaxu′ Q̂π,π0 (t,x,u′,x0,µ̂) π̂t(x, x

0, µ̂, u) = 1 for all (t, x, x0, µ̂) ∈ T ×X×X 0×P̂(X ),
and similarly for major agents, noting that π̂ optimizes the preceding discretized finite MDP [69].

We note that while the discretized solutions only piecewise fulfill Assumption 3.4.3 by not
being Lipschitz, in Section 3.4.4 we empirically find that the approximation of finite games and
exploitability can nonetheless be accurate.

approximation guarantees. We evaluate solutions by tabular evaluation in the discretized
MDP, for which we are able to obtain theoretical guarantees for evaluating the true exploitability via
the approximate tabular exploitability. Under a δ-partition, define the major approximate objective

Ĵ
0
(π, π0) :=

∑︂

x0

µ0
0(x

0)V̂
0,π0

π,π0(0, x0, µ0)

and approximate exploitability

Ê0(π, π0) :=
∑︂

x0

µ0
0(x

0) ·
(︂
max
π̂0′∈Π̂

V̂
0,π̂0′

π,π0 (0, x0, µ0))− V̂
0,π0

π,π0(0, x0, µ0)
)︂
,

with approximate values V̂ 0,π̂0

π,π0 of major deviation under (π, π0) to π̂0, following the “discretized”
Bellman equation

V̂
0,π̂0

π,π0(t, x0, µ) =
∑︂

u0′

π̂0
t (u

0′ | x0′,projδµ)
[︂
r0(x0, u0, projδµ) +

∑︂

x0′

p0(x0′ | x0, u0,projδµ)

V̂
0,π̂0

π,π0(t+ 1, x0′, u0′, T π
t (x

0, u0,projδµ))
]︂
,
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and similarly for the minor agent. Note that only for the major agent, π0 is irrelevant (replaced by
π̂0). In other words, we approximate values and exploitability via the discretized finite MDPs, which
has the advantage of enabling dynamic programming (backwards induction, value iteration).

By analyzing the value functions under continuity, we show in Appendix D.8 that these approxima-
tions are generally close to the true objectives and exploitabilities respectively, as the discretization
becomes sufficiently fine.

Theorem 3.4.3. Under Assumptions 3.4.1, 3.4.2 and 3.4.3, as δ → 0, approximate minor and major
values tend to the exact values, and approximate exploitabilities tend to the exact exploitabilities, at
rate O(δ) uniformly over (π, π0) ∈ Π×Π0.

3.4.4 Experiments

We evaluate FP by comparing against FPI, which iterates discretized best response policies. For
reproducibility, note that the algorithms used are deterministic, and details can be found in the
appendix. For code, see https://github.com/tudkcui/M3FG-learning.

3.4.4.1 Problems

For the evaluation, we use the following problem instances for exemplary, practically applicable
M3FG scenarios.

sis epidemics control. The SIS problem is an epidemics control scenario, where each
individualistic minor agent may decide whether to take costly preventative actions against becoming
infected at a rate proportional to the proportion of infected. The major agent (e.g. government) is
responsible for the well-being of minor agents, and can encourage preventative actions, while its
state models random low- and high-infectivity seasons. The finite time horizon can be considered
the time until a cure is found. The original problem without major agents has been used as a
benchmark for MFG learning [9, 130].

buffet problem. In the Buffet problem, we consider the following scenario: At a conference
with multiple buffet locations, agents desire to be at locations that are filled with food and uncrowded.
However, each location depletes faster with increasing number of agents. The major agent (caterer)
must keep buffets full and equally filled. The Buffet problem fulfills most assumptions (except
Assumption 3.4.4.4.) and shows accordingly stable FP learning.

advertisement duopoly model. Lastly, in the advertisement model, a regulator sets
the price of advertisement. Depending on the regulator’s state and price of advertisement, two
companies exogeneously decide on advertisement efficiencies of their subscription service. Minor
agents are consumers and choose whether to change to subscriptions for the better-funded product,
while the regulator avoids formation of a monopoly. Duopoly advertisement competition in a static
MFG was modeled in [196].

https://github.com/tudkcui/M3FG-learning
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3.4.4.2 Numerical Results

In the following, we provide a numerical evaluation via exploitability as the primary metric of
interest, since it describes the quality of achieved equilibria. Additional experiments and parameter
details are shown in Appendix D.9, including more qualitative results, the effect of alternative
initializations, and analogous results for infinite-horizon discounted objectives. Beyond supporting
the theoretical results, we also ablate both convergence assumptions for the algorithm and the
Lipschitz policy assumption for propagation of chaos in the finite agent system.

exploitability convergence. As observed in Figure 3.16, naive FPI usually fails to
converge and runs into limit cycles, motivating FP. In Figure 3.17, we see that the proposed FP

algorithm optimizes both approximate major and minor exploitabilities Ê , Ê0 over its iterations.
Especially for Buffet, which fulfills most of Assumption 3.4.4, learning is smooth and exploitability
descends monotonically as in Theorem 3.4.2, while exploitability is nevertheless optimized in the
other problems. Overall, the proposed FP algorithm improves achieved exploitabilities significantly
over FPI.
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figure 3.16: Non-convergence of exploitability in FPI. The approximate exploitability oscillates over
iterations of FPI. (a, d): SIS, (b, e): Buffet, (c, f): Advertisement. (a-c): Minor exploitability, (d-f): major
exploitability.

stability over discretization. Comparing approximation results empirically over dis-
cretization bins M per dimension, i.e. using δ-partitions with δ ≈ 2

M , in Figure 3.18 we observe that
the FP-learned policies quickly stabilize as the discretization becomes sufficiently fine. The result
supports not only the discretization approximation in Theorem 3.4.3, but also shows insensitivity
of our FP algorithm to the fineness of the grid, as long as it is sufficiently fine to approximate the
problem well. Hence, in the following we will use M = 120.

finite-agent convergence. In Figure 3.19, the convergence of episodic returns by propaga-
tion of chaos is depicted as the number of agents N →∞. The limiting performance as the number
of agents grows, quickly approaches the performance of the projected MF prediction, up to a small,
negligible error from discretization and finite agents. The result supports propagation of chaos
in Theorem 3.4.1 by convergence of the empirical objective to the limiting objective, despite the
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figure 3.17: Convergence of exploitability in FP. The approximate exploitability is optimized via FP. (a,
d): SIS, (b, e): Buffet, (c, f): Advertisement. (a-c): Minor exploitability, (d-f): major exploitability.

100 200

−45

−40

−35

Ĵ
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figure 3.18: Stability of FP results under discretization. The final objectives of FP under discretization
(dashed: right-most entry) are stable with high discretization. (a, d): SIS, (b, e): Buffet, (c, f): Advertisement.
(a-c): Minor exploitability, (d-f): major exploitability.

non-Lipschitz projected MF policies. In Appendix D.9, similar results hold for (Lipschitz) uniform
policies.

qualitative analysis. Lastly, we visualize the qualitative behavior obtained and find
plausible equilibrium behavior, e.g., for the SIS problem. As seen in Figure 3.20, the equilibrium
behavior plausibly reaches an equilibrium of infected agents, where the cost of actions equilibrates.
The number of infected increases over time due to the finite horizon, discounting costs of infection
beyond the horizon. Furthermore, minor agents take precautions only down to some infection
threshold, at which point the expected cost of not taking precautions is higher. The major agent
prevents infections in the low-infectivity regime (x0 = L), while in the high-infectivity regime
(x0 = H) the high infection probability for minor agents already encourages preventative actions.
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figure 3.19: Convergence of finite objectives in the limit. The mean N -agent objective (red) over 1000 (or
5000 for Buffet) episodes, with 95% confidence interval, against MF predictions Ĵ , Ĵ

0
for FP and M = 120

(blue, dashed). (a, d): SIS, (b, e): Buffet, (c, f): Advertisement.

3.4.5 Summary

We have developed a new model and algorithm for a novel, broad class of tractable games. The
framework allows scalable analysis of a large number of agents with theoretical guarantees. The
proposed methods have been empirically supported through a variety of experiments. Still, for
problems with multiple Nash equilibria, the FP algorithm finds only some equilibrium. Future work
could address finding all or specific, e.g., socially-optimal equilibria. One could also try to relax
theoretical assumptions. Lastly, since scalability of the discretization method remains an issue for
larger minor state spaces, one may consider deep RL methods.
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figure 3.20: Example visualization of FP results in SIS. The FP-learned M3FNE in SIS, for M = 120.
Top: example trajectory (for visualization, L = P̄ = F̄ = 0, H = P = F = 1, see Appendix D.9); bottom:
policy.
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3.5 conclusion of chapter 3

In this chapter, we have first introduced methods for solving general evolutive MFGs. We have shown
that basic FPI is not sufficient even in the simplest case of finite MFGs. We have thus proposed and
analyzed entropy regularization as a solution to convergence, trading off with the sub-optimality of
agent policies. Methodologically, we iterated relative entropy regularization via the prior descent
method to further improve results, and enabled analysis of more large-scale MFGs through the use of
deep RL and particle filters.

We then moved on to extend MFGs towards more general settings. First, the all-to-all interaction of
agents was ameliorated by integration of graph structures, through the limit theory of large graphs
and graphons. The resulting GMFG model was analyzed and algorithmically reduced to standard
MFGs with approximation guarantees. We also extended the graphical setting beyond pairwise
interaction, by considering multilayer hypergraphs as a generalization, where agents may have
“hyperedges” between multiple other agents. The previously developed regularization approach was
extended to these generalized settings under discretization, with approximate optimality guarantees
under standard Lipschitz assumptions.

Finally, we addressed strong interaction in the presence of many minor agents and a single major
player, through the framework of M3FGs. The added difficulty through the stochasticity of the MF
was addressed by considering general policies conditioned on the current MF. Some approximation
properties of the discretization for evaluation of exploitability were shown. We also analyzed and
proposed a practical FP algorithm by discretizing the space of MFs and simplified weighting of best
responses. The applicability of the developed framework was verified on various examples with
finite and infinite time horizons.

Overall, we have addressed our RQs I and II of learning and model generality, in order to increase the
applicability of MFGs in the competitive case. In this chapter, we have shown how to generalize MFG
models and algorithms to more practical and general models, and we hope that it shows the reader
how to perform their own generalizations for particular scenarios. Alternatively, while general
algorithms still remain to be considered for solving MFGs under no additional assumptions such as
monotonicity or regularization, we hope that our contributions have extended the usefulness of MFGs
in practice by further extending the range of problems that can be modelled by MFGs and allowing
direct off-the-shelf usage of our developed frameworks. In the next chapter, we will consider the
cooperative case of MFC instead, which is also of great practical relevance.
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In this chapter, we study the cooperative case of MFC for tractable large-scale MARL in the presence
of many agents. We begin our exposition with a special case of near-static MFC with evolving
environment states and static MF. There, a first result is shown on the near-optimality of MFC
solutions over heterogeneous policies in the finite control problem. The framework is demonstrated
using PPO. We then move on to more general MFC, which is extended to major agents similarly
as in the competitive MFG case, in order to increase the generality and flexibility of MFC. Basic
theoretical properties are shown. There, we also propose and analyze MFC-based MARL on the finite
MARL problem instead of the limiting MFC problem. Finally, we tackle the challenge of partial
observability, which is especially important in practical large-scale systems. Theory and algorithms
are extended to this case, which allows for solving hard Dec-POMDPs through the MFC approach. The
analysis is performed over equi-Lipschitz classes of policies, which are shown to allow stationary
near-optimal solutions.

75
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4.1 static mean field control

MARL methods have shown remarkable potential in solving complex multi-agent problems but
mostly lack theoretical guarantees. In particular, their scalability to many agents can be limited
due to the combinatorial nature of MARL [40]. Recently, MFC and MFGs have been established as
a tractable solution for large-scale multi-agent problems with many agents. In this work, driven
by a motivating load balancing problem, we consider a discrete-time MFC model with common
environment states. We rigorously establish approximate optimality as the number of agents grows
in the finite agent case and find that a DPP holds, resulting in the existence of an optimal stationary
policy. As exact solutions are difficult in general due to the resulting continuous action space of
the limiting MFC MDP, we apply established deep RL methods to solve the associated MFC problem.
The performance of the learned MFC policy is compared to typical MARL approaches and is found
to converge to the MF performance for sufficiently many agents, verifying the obtained theoretical
results and reaching competitive solutions. The material presented in this section is based on [8].

MF theory applied to the cooperative setting is known as MFC, where one assumes that many agents
cooperate to achieve Pareto optima [124, 197]. MFC has various applications e.g. in smart heating
[53] or portfolio management [198]. The dimensions of the MFC problem are independent of the
specific number of agents, making it more tractable. However, solving the MFC problem has the
challenge of time-inconsistency due to the non-Markovian nature of the problem [197, 199, 200]. A
recent way of handling this inherent time-inconsistency problem is to use an enlarged state-action
space [103, 104, 121, 201]. We similarly apply this technique by lifting up the state-action space
into its probability measure space, since it will enable usage of established RL methods. In this
section we extend the theory of discrete-time MFC by considering additional environment states.
An advantage of discrete-time models is applicability of a plethora of RL solutions. Our model
can be considered a special case of the MFC equivalent of M3FG [113, 202] in Section 3.4 with
trivial major agent policy, which had not been formulated yet. While the model in this section
uses a simplifying assumption of trivial agent dynamics, it allows us to directly show approximate
optimality of MFC over any heterogeneous tuple of policies in the finite system. We have since
extended the consideration of environment states via the Major-Minor Mean Field Control (M3FC)
framework in Section 4.2.

our contribution. The main contributions of this work are: (i) We propose a new discrete-
time MFC formulation that transforms large-scale multi-agent control problems with common
environment states into a simple MDP with lifted state-action space; (ii) we rigorously show
approximate optimality for sufficiently large systems as well as existence of an optimal stationary
policy through a DPP, and (iii) associated with this standard discrete-time MDP with continuous
action space, we verify our theoretical findings empirically using modern RL techniques. As a
result, we outperform existing baselines for the many-agent case and obtain a methodology to solve
large multi-agent control problems such as the following.

4.1.1 A Motivating Load Balancing Scenario

While the concept of MF limits has been used in queuing systems before, it has mostly been used for
the state of the buffer fillings of queues or the number of servers/queues [57, 203]. In this work we
use MFs to represent the state of a large amount of schedulers while modeling the queues exactly.
See also Figure 4.1 for a visualization of the problem. Note that in principle, our model could be
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used for any similar resource allocation problem such as allocation of many firefighters to houses
on fire.

figure 4.1: Overview of the queuing system. Many schedulers (middle) obtain packets at a fixed rate (left)
that must be assigned to one of the accessible queues (right) such that total packet drops are minimized.

Consider a queuing system with N agents called schedulers, [s1, . . . , sN ], and M parallel servers,
each with its own finite FIFO queue. Denote the queue filling by bi ∈ {0, . . . , Bi}, i = 1, . . . ,M
where Bi is the maximum buffer space for the i-th queue. At any time step t, the state xi,Nt ∈ X
of a scheduler is the set of queues it has access to. The agent state space X therefore consists of
all combinations of queue access where every agent has access to at least one of the queues. The
environment state is the current buffer filling x0 = [b1, . . . , bM ], where bj is the buffer filling of
queue j.

In discrete-time, the number of job arrivals to be assigned at each time step t is Poisson distributed
with rate λ∆T and the number of serviced jobs for each server is Poisson distributed with rate
β∆T , where ∆T > 0 can be considered the time span between each synchronization of schedulers.
As an approximation, we assume that all queue departures in a time slot happen before the new
arrivals, and newly arrived jobs thus cannot be serviced in the same time slot.

We split the total number of job packets which arrive in some time step ∆T uniformly at random
amongst the schedulers. The jobs assigned to each scheduler need to be sent out immediately. Each
scheduler decides which of the accessible queues it sends its arrived jobs to during each time step.
If a job is mapped to a full buffer, it is lost and a penalty cd is incurred. The goal of the system is
therefore to minimize the number of job drops. At each step of the decision making, we assume that
the state of the environment x0 and their own accessible queues are known to the schedulers.

We can model the dynamics of the environment state dependent on the empirical state-action
distribution of all schedulers: Consider agents choosing some choice of queues as their action, where
inaccessible queues are treated as randomly picking a destination. In that case, to assign a packet to
its destination queue, it is clearly sufficient to consider the empirical distribution: Sampling from
the empirical distribution, using the sampled action and, if inaccessible, resampling an accessible
queue provides the desired behavior.
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4.1.2 Static Mean Field Control with Major States

In this section, we formulate a N -agent model that in the limit of N → ∞ results in a more
tractable MFC problem. Importantly, we will then show approximate optimality and a DPP for the
MFC problem, allowing for application of RL.

Notation. Let A be a finite set. We equip A with the discrete metric and denote the set of
real-valued functions on A by RA, For f ∈ RA let ∥f∥∞ = maxa∈A f(a). Denote by |A|
the cardinality of A. Denote by P(A) = {p ∈ RA : p(a) ≥ 0,

∑︁
a∈A p(a) = 1} the space of

probability simplices, equivalent to the probability measures on A. Equip P(A) with the l1-norm
∥µ−ν∥1 =

∑︁
a∈A |µ(a)− ν(a)|. For readability, we uncurry occurrences of multiple parentheses,

e.g. πt(x0t )(x) ≡ πt(x
0
t , x). Define µ(f) :=

∑︁
a∈A f(a)µ(a) for any µ ∈ P(A), f : A → R.

4.1.2.1 Finite Agent Model

Let X , U be a finite state and action space respectively. Let X 0 be a finite environment state
space. For any N ∈ N, at each time t = 0, 1, . . ., the states and actions of agent i = 1, . . . , N
are random variables denoted by xi,Nt ∈ X and ui,Nt ∈ U . Analogously, the environment state
is a random variable denoted by x0,Nt ∈ X 0. Define the empirical state-action distribution
GN

t = 1
N

∑︁N
i=1 δ(xi,N

t ,ui,N
t )
∈ P(X ×U). For each agent i, we consider locally Markovian policies

πi = {πi
t}t≥0 ∈ ΠN from the space of admissible Markov policiesΠN where πi

t : X 0×X → P(U).
Further, we define the policy profile π = (π1, . . . , πN ) ∈ ΠN

N .

Acting only on local and environment information may seem like a strong restriction. However, other
agent states are uninformative under continuity assumptions as N →∞ as the interaction between
agents will be restricted to the increasingly deterministic empirical state-action distribution.

Let µ0 ∈ P(X ) be the initial agent state distribution, µ0
0 ∈ P(X 0) the initial environment state

distribution and p0 : X 0 × P(X × U)→ P(X 0) a transition kernel. The random variables shall
follow x0,N0 ∼ µ0

0 and subsequently

xi,Nt ∼ µ0(x
i,N
t ), (4.1.1)

ui,Nt ∼ πi
t(x

0,N
t , xi,Nt ), (4.1.2)

x0,Nt+1 ∼ p0(x0,Nt ,GN
t ), (4.1.3)

where for simplicity of further analysis, the agent states are always sampled according to µ0.

Remark 4.1.1. While the above is a strong dynamics assumption, our formulation is nonetheless
sufficient for the load balancing problem. In principle, any results should similarly hold under
appropriate assumptions for nontrivial agent state dynamics by considering MF and environment
state together. As this will significantly complicate analysis, an according extension of theoretical
results is left to future works.

Let us introduce another notation. First, define the space of decision rulesH := {h : X → P(U)}.
Then a one-step policy profile h = (h1, . . . , hN ) ∈ HN is an N -fold decision rule. Our major
example of a one-step policy profile is (π1

t (x
0), . . . , πN

t (x0)) for fixed t ≥ 0, fixed x0 ∈ X 0 and
potentially different policies for the N agents. For given agent state distribution µ0 and a one-step
policy profile h ∈ HN let xi,N ∼ µ0, u

i,N ∼ hi(xi,N ), s.t. (xi,N , ui,N )i=1,...,N are independent.
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Then, consider a random measure GN
h ∈ P(X × U) or equivalently its random probability mass

function GN
h : X × U → [0, 1],

GN
h (x, u) :=

1

N

N∑︂

i=1

1x,u(x
i,N , ui,N ) . (4.1.4)

Define GN (µ0,h) as the distribution of GN
h , so GN (µ0,h) is a distribution over the set P(X × U)

and GN
h ∼ GN (µ0,h). Consider the primary example h = (π1

t (x
0), . . . , πN

t (x0)). In contrast
to the empirical distribution GN

t that depends on a random x0,Nt , the random probability mass
function GN

h has x0,Nt = x0 fixed. By E[GN
h ] we denote in the following the entry-wise expectation

{E[GN
h (x, u)]}(x,u)∈X×U .

Let γ ∈ (0, 1) be the discount factor and r : X 0 × P(X × U)→ R a reward function. The goal is
to maximise the discounted accumulated reward

JN (π) = E

[︄ ∞∑︂

t=0

γtr(x0,Nt ,GN
t )

]︄
(4.1.5)

which generalizes optimizing an average per-agent reward

JN (π) =

N∑︂

i=1

E

[︄ ∞∑︂

t=0

γtr̃(xi,Nt , x0,Nt ,GN
t )

]︄
(4.1.6)

for some shared r̃ : X × X 0 × P(X × U) → R through choosing the reward function as
r(x0,Nt ,GN

t ) ≡∑︁x∈X r̃(x, x0,Nt ,GN
t )
∑︁

u∈U GN
t (x, u).

As the optimality concept in this work, we therefore define approximate Pareto optimality.

Definition 4.1.1 (Pareto optimality). For ε > 0, πε ∈ ΠN
N is ε-Pareto optimal if and only if

JN (πε) ≥ sup
π

JN (π)− ε . (4.1.7)

A visualization of this model can be found in Figure 4.2.

figure 4.2: Overview of the multi-agent system as a probabilistic graphical model using plate notation
[204], where circles and diamonds indicate stochastic and deterministic nodes respectively. Each agent i
chooses an action ui,N

t conditional on the environment state x0,N
t and local agent state xi,N

t , influencing the
next environment state x0,N

t+1 only via their empirical distribution GN
t . Agent states are assumed i.i.d. for

simplicity of analysis.
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4.1.2.2 Mean Field Model

As N →∞, we formally obtain the following MFC MDP, which will be rigorously justified in the
sequel. At each time t = 0, 1, . . ., the environment state is a random variable denoted by x0t ∈ X 0.
We consider Markovian upper-level policies π = {πt}t≥0 ∈ Π from the space of such policies
Π where πt : X 0 → H. We equip both H and Π with the supremum metric. As mentioned, the
population state distribution is fixed to µ0 ∈ P(X ) at all times. The random state-action distribution
is therefore given by

Gt := G(µ0, πt(x
0
t )) (4.1.8)

where G : P(X )×H → P(X × U) is defined by

G(µ, h)(x, u) := h(x, u)µ(x) (4.1.9)

for any x ∈ X , u ∈ U . The random environment state variables therefore follow x00 ∼ µ0
0 and

subsequently

x0t+1 ∼ p0(x0t ,Gt) . (4.1.10)

Analogously, the objective becomes

J(π) = E

[︄ ∞∑︂

t=0

γtr(x0t ,Gt)

]︄
. (4.1.11)

We require the following simple continuity assumption to obtain meaningful results in the limit as
N →∞.

Assumption 4.1.1 (Continuity of r and p0). The functions r and p0 are continuous, i.e. for all
x0 ∈ X 0 and Gn → G ∈ P(X × U) we have

r(x0,Gn)→ r(x0,G), p0(x0,Gn)→ p0(x0,G) . (4.1.12)

By compactness of P(X × U), we have boundedness.

Proposition 4.1.1. Under Assumption 4.1.1, r is bounded by some R, i.e. for any x0 ∈ X 0,
G ∈ P(X × U) we have

|r(x0,G)| ≤ R . (4.1.13)

Our first goal will be to show that as N →∞, the optimal solution to the MFC is approximately
Pareto optimal in the finite N case. This will motivate solving the MFC problem.
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4.1.3 Approximate Optimality under Heterogeneous Policy Tuples

We first show the following lemma on uniform convergence in probability of empirical state-action
distributions to their state-action-wise average for fixed one-step policy profiles.

Lemma 4.1.1. Let x0 ∈ X 0 and h ∈ HN be an arbitrary one-step policy profile. Let GN ∼
G(µ0,h). Then

(i) E
[︁
∥GN − E[GN ]∥21

]︁
≤ |X |2|U|2

4N

(ii) P
(︁
∥GN − E[GN ]∥1 ≥ ε

)︁
≤ |X |2|U|2

4ε2N

Proof. By Chebyshev’s inequality, (i) implies (ii). It remains to prove (i). Let xi,N ∼ µ0 be i.i.d.
and ui,N ∼ πi(x0, xi,N ), s.t. (xi,N , ui,N )i=1,...,N are independent. Then by the sub-additivity of
E[(·)2] 12 , we have

E
[︁
∥GN − E[GN ]∥21

]︁ 1
2

= E

⎡
⎣
⎛
⎝ ∑︂

x∈X ,u∈U

⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=1

1x,u(x
i,N , ui,N )− E

[︄
1

N

N∑︂

i=1

1x,u(x
i,N , ui,N )

]︄⃓⃓
⃓⃓
⃓

⎞
⎠

2⎤
⎦

1
2

≤
∑︂

x∈X ,u∈U

(︄
V

[︄
1

N

N∑︂

i=1

1x,u(x
i,N , ui,N )

]︄)︄ 1
2

=
∑︂

x∈X ,u∈U

(︄
1

N2

N∑︂

i=1

V
[︁
1x,u(x

i,N , ui,N )
]︁
)︄ 1

2

≤
∑︂

x∈X ,u∈U

(︄
1

N2

N∑︂

i=1

1

4

)︄ 1
2

=
|X ||U|
2
√
N

using the trivial variance bound 1
4 for indicator functions.

To achieve approximate optimality of MF solutions in the N -agent case, we first define how to obtain
an N -agent policy πN ∈ ΠN

N from a MF policy π̂ ∈ Π by

πN (π̂) = (π1, . . . , πN ) with πi
t(x

0, x) = π̂t(x
0)(x)

for all i = 1, . . . , N , i.e. all agents with state x ∈ X will follow the action distribution π̂t(x
0
t )(x)

at times t ≥ 0.

Theorem 4.1.1. Under Assumption 4.1.1, we have uniform convergence of the N -agent objective to
the MF objective as N →∞, i.e.

lim
N→∞

sup
π∈Π

⃓⃓
JN (πN (π))− J(π)

⃓⃓
= 0 . (4.1.14)
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Proof. We have by definition

sup
π∈Π

⃓⃓
JN (πN (π))− J(π)

⃓⃓
(4.1.15)

= sup
π∈Π

⃓⃓
⃓⃓
⃓
∞∑︂

t=0

γtE
[︂
r(x0,Nt ,GN

t )− r(x0t ,Gt)
]︂⃓⃓⃓⃓
⃓ (4.1.16)

≤
∞∑︂

t=0

γt sup
π∈Π

⃓⃓
⃓E
[︂
r(x0,Nt ,GN

t )− r(x0t ,Gt)
]︂⃓⃓
⃓ . (4.1.17)

To obtain the desired result, we first show for any t ≥ 0 that supπ∈Π∥L(x0,Nt ) − L(x0t )∥1 → 0

impliesL(x0,Nt ,GN
t )→ L(x0t ,Gt)weakly uniformly over all π ∈ Π. Note that supπ∈Π∥L(x0,Nt )−

L(x0t )∥1 → 0 by definition implies

sup
π∈Π

⃓⃓
⃓L(x0,Nt )(x0)− L(x0t )(x0)

⃓⃓
⃓→ 0

for any x0 ∈ X 0. For the joint law, consider any f : X 0×P(X ×U)→ R, continuous and bounded
by |f | ≤ F . Then

sup
π∈Π

⃓⃓
⃓L(x0,Nt ,GN

t )(f)− L(x0t ,Gt)(f)
⃓⃓
⃓

= sup
π∈Π

⃓⃓
⃓E
[︂
f(x0,Nt ,GN

t )
]︂
− E

[︁
f(x0t ,Gt)

]︁⃓⃓
⃓

≤ sup
π∈Π

∑︂

x0∈X 0

⃓⃓
⃓E
[︂
f(x0,Nt ,GN

t )
⃓⃓
⃓ x0,Nt = x0

]︂
L(x0,Nt )(x)− f(x0,G(µ0, πt(x

0))L(x0t )(x0)
⃓⃓
⃓

≤
∑︂

x0∈X 0

sup
π∈Π

⃓⃓
⃓E
[︂
f(x0,Nt ,GN

t )
⃓⃓
⃓ x0,Nt = x0

]︂⃓⃓
⃓ sup
π∈Π

⃓⃓
⃓L(x0,Nt )(x0)− L(x0t )(x0)

⃓⃓
⃓

+
∑︂

x0∈X 0

sup
π∈Π

⃓⃓
⃓⃓f(x0,G(µ0, πt(x

0))− E
[︂
f(x0,Nt ,GN

t )
⃓⃓
⃓ x0,Nt = x0

]︂ ⃓⃓
⃓⃓ sup
π∈Π
L(x0t )(x0),

where the first sum goes to zero by assumption and boundedness of f . For the second term,
consider arbitrary fixed x0 ∈ X 0. Write Gπ short for G(µ0, πt(x

0)) and introduce GN
π ∼

G(µ0, (πt(x
0), . . . , πt(x

0))) for all N, π ∈ Π. So in contrast to GN
t that depends on a random x0,Nt ,

the random probability mass function GN
π has x0,Nt = x0 fixed. Then

f(x0,G(µ0, πt(x
0)))− E

[︂
f(x0,Nt ,GN

t )
⃓⃓
⃓ x0,Nt = x0

]︂

= f(x0,Gπ)− E
[︁
f(x0,GN

π )
]︁

We observe that for any (x, u) ∈ X × U

E[GN
π (x, u)] = Gπ(x, u). (4.1.18)

For this purpose, let xi,N ∼ µ0 be i.i.d. and ui,N ∼ πt(x
0, xi,N ), s.t. (xi,N , ui,N )i=1,...,N are

independent. Then for any (x, u) ∈ X × U we have

E[GN
π (x, u)] =

1

N

N∑︂

i=1

E
[︁
1x,u(x

i,N , ui,N )
]︁

=
1

N

N∑︂

i=1

µ0(x)πt(x
0, x, u)
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= Gπ(x, u) .

Let ε > 0 arbitrary. By compactness of P(X × U), the function f(x0, ·) : P(X × U) → R is
uniformly continuous. Consequently, there exists δ > 0 such that for all π ∈ Π

∥Gπ −GN
π ∥1 < δ

=⇒
⃓⃓
f(x0,Gπ)− f(x0,GN

π )
⃓⃓
<

ε

2
.

By Lemma 4.1.1 (ii) and Eq. (4.1.18) there exists N ′ ∈ N such that for N > N ′ and for all π ∈ Π
we have

P
(︁
∥Gπ −GN

π ∥1 ≥ δ
)︁
≤ ε

4F
.

As a result, we have

E
[︁⃓⃓
f(x0,Gπ)− f(x0,GN

π )
⃓⃓]︁

≤ P
(︁⃓⃓
f(x0,Gπ)− f(x0,GN

π

)︁⃓⃓
≥ ε

2
) · 2F + 1 · ε

2

≤ P
(︁
∥Gπ −GN

π ∥1 ≥ δ
)︁
· 2F +

ε

2

≤ ε

4F
· 2F +

ε

2
= ε .

Since ε was arbitrary, and no choices depended on π ∈ Π, we have the desired convergence of the
second term

lim
N→∞

sup
π∈Π

⃓⃓
⃓⃓f(x,G(µ0, πt(x))− E

[︂
f(x0,Nt ,GN

t )
⃓⃓
⃓ x0,Nt = x

]︂ ⃓⃓
⃓⃓ = 0 .

We can now show L(x0,Nt ,GN
t )→ L(x0t ,Gt) weakly uniformly over all π ∈ Π by induction over

all t, which by Assumption 4.1.1 will imply

sup
π∈Π

⃓⃓
⃓E
[︂
r(x0,Nt ,GN

t )− r(x0t ,Gt)
]︂⃓⃓
⃓→ 0 (4.1.19)

for all t ≥ 0 and hence the desired statement by the dominated convergence theorem applied to
Eq. (4.1.17).

At t = 0, we trivially have L(x0,Nt ) = µ0
0 = L(x0t ) and therefore L(x0,N0 ,GN

0 ) → L(x00,G0)
uniformly by the prequel. Assume that the induction assumption holds at time t, then at time t+ 1
we have

∥L(x0,Nt+1)− L(x0t+1)∥1
=
∑︂

x0∈X 0

⃓⃓
⃓L(x0,Nt+1)(x

0)− L(x0t+1)(x
0)
⃓⃓
⃓

=
∑︂

x0∈X 0

⃓⃓
⃓E
[︂
p0(x0 | x0,Nt ,GN

t )
]︂
− E

[︁
p0(x0 | x0t ,Gt)

]︁⃓⃓
⃓→ 0

uniformly by Assumption 4.1.1 and induction assumption.

To extend to optimality over arbitrary asymmetric policy tuples, we show that the performance of
policy tuples is close to the averaged policy as N →∞.



84 4 cooperative mean field control

Theorem 4.1.2. Under Assumption 4.1.1, as N →∞ we have similar performance of any policy
tuple π = (π1, . . . , πN ) ∈ ΠN

N and its average policy π̂(π) ∈ Π defined by π̂t(x
0)(u | x) =

1
N

∑︁N
i=1 π

i
t(u | x0, x) in the N -agent case, i.e. with shorthand π̂ = π̂(π) we have

lim
N→∞

sup
π∈ΠN

N

⃓⃓
JN (π1, . . . , πN )− JN (πN (π̂))

⃓⃓
= 0 . (4.1.20)

Proof. Let π ∈ ΠN
N arbitrary. Again, we have by definition

sup
π∈ΠN

N

⃓⃓
JN (π1, . . . , πN )− JN (πN (π̂))

⃓⃓
(4.1.21)

≤
∞∑︂

t=0

γt sup
π∈ΠN

N

⃓⃓
⃓E
[︂
r(x0,Nt ,GN

t )− r(x̂0,Nt , ĜN
t )
]︂⃓⃓
⃓ (4.1.22)

by introducing random variables x̂0,Nt , ĜN
t , x̂i,Nt , ûi,Nt , i = 1, . . . , N induced by instead applying

the averaged policy tuple πN (π̂) in Eq. (4.1.2). By dominated convergence, it is sufficient to show
term-wise convergence to zero in Eq. (4.1.22).

Fix t ≥ 0. As in the proof of Theorem 4.1.1, we show that supπ∈Π∥L(x0,Nt ) − L(x̂0,Nt )∥1 → 0

implies supπ∈ΠN
N

⃓⃓
⃓L(x0,Nt ,GN

t )(f)− L(x̂0,Nt , ĜN
t )(f)

⃓⃓
⃓ → 0 for any f : X 0 × P(X × U) → R

continuous and bounded, since

sup
π∈ΠN

N

⃓⃓
⃓L(x0,Nt ,GN

t )(f)− L(x̂0,Nt , ĜN
t )(f)

⃓⃓
⃓

= sup
π∈ΠN

N

⃓⃓
⃓E
[︂
f(x0,Nt ,GN

t )
]︂
− E

[︂
f(x̂0,Nt , ĜN

t )
]︂⃓⃓
⃓

≤ sup
π∈ΠN

N

∑︂

x0∈X 0

⃓⃓
⃓E
[︂
f(x0,Nt ,GN

t )
⃓⃓
⃓ x0,Nt = x0

]︂⃓⃓
⃓
⃓⃓
⃓L(x0,Nt )(x0)− L(x̂0,Nt )(x0)

⃓⃓
⃓

+ sup
π∈ΠN

N

∑︂

x0∈X 0

⃓⃓
⃓⃓E
[︂
f(x0, ĜN

t )
⃓⃓
⃓ x̂0,Nt = x0

]︂
− E

[︂
f(x0,GN

t )
⃓⃓
⃓ x0,Nt = x0

]︂ ⃓⃓
⃓⃓L(x̂0,Nt )(x0)

where the first sum goes to zero by assumption and boundedness of f . For the second
term, consider arbitrary fixed x0 ∈ X 0, π ∈ ΠN

N . Then introduce random variables
GN

π ∼ GN (µ0, (π
1
t (x

0), . . . , πN
t (x0))) and GN

π̂ ∼ GN (µ0, (π̂t(x
0), . . . , π̂t(x

0))) for every N ∈ N
and π ∈ ΠN

N . Then we have

E
[︂
f(x0, ĜN

t )
⃓⃓
⃓ x̂0,Nt = x0

]︂
− E

[︂
f(x0,GN

t )
⃓⃓
⃓ x0,Nt = x0

]︂

= E
[︁
f(x0,GN

π̂

]︁
− E

[︁
f(x0,GN

π )
]︁
.

We observe that for any (x, u) ∈ X × U :

E[GN
π̂ (x, u)] = E[GN

π (x, u)] . (4.1.23)

For this purpose, let xi,N ∼ µ0 and ui,N ∼ πi
t(x

0, xi,N ) as well as x̂i,N ∼ µ0 and ûi,N ∼
π̂t(x

0, xi,N ), s.t. (xi,N , ui,N )i=1,...,N and (x̂i,N , ûi,N )i=1,...,N are independent, respectively. Then
for any (x, u) ∈ X × U :

E[GN
π̂ (x, u)] =

1

N

N∑︂

i=1

P(x̂i,N = x, ûi,N = u)
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=
1

N

N∑︂

i=1

µ0(x)π̂(x, u) =
1

N

N∑︂

i=1

µ0(x)
1

N

N∑︂

j=1

πj(x, u)

=
1

N

N∑︂

j=1

µ0(x)π
j(x, u) =

1

N

N∑︂

j=1

P(xi,N = x, ui,N = u)

= E[GN
π (x, u)] .

Then by Eq. (4.1.23), sub-additivity of E[(·)2] 12 and Lemma 4.1.1 (i),

E[∥GN
π̂ −GN

π ∥21]
1
2

≤ E
[︂(︁
∥GN

π̂ − E[GN
π̂ ]∥1 + ∥GN

π − E[GN
π ]∥1

)︁2]︂ 1
2

≤ E[∥GN
π̂ − E[GN

π̂ ]∥21]
1
2 + E[∥GN

π − E[GN
π ]∥21]

1
2

≤ 2
|X | · |U|√

4N
=
|X | · |U|√

N
.

Chebyshev’s inequality implies

P
(︁
∥GN

π̂ −GN
π ∥1 ≥ ε

)︁
≤ |X |

2|U|2
ε2N

(4.1.24)

independent of π ∈ ΠN
N .

Then analogously to the proof of Theorem 4.1.1,

sup
π∈ΠN

N

⃓⃓
⃓⃓E
[︂
f(x0, ĜN

t )
⃓⃓
⃓ x̂0,Nt = x0

]︂
− E

[︂
f(x0,GN

t )
⃓⃓
⃓ x0,Nt = x0

]︂ ⃓⃓
⃓⃓→ 0

can be concluded, showing the desired implication.

We now show by induction over all t that for any t ≥ 0, and any f : X 0×P(X ×U)→ R continuous
and bounded, supπ∈ΠN

N

⃓⃓
⃓L(x0,Nt ,GN

t )(f)− L(x̂0,Nt , ĜN
t )(f)

⃓⃓
⃓ → 0 which by Assumption 4.1.1

will again imply that Eq. (4.1.22) goes to zero.

At t = 0, we have by definition L(x0,N0 ) = µ0
0 = L(x̂0,N0 ). This implies that

supπ∈ΠN
N

⃓⃓
⃓L(x0,N0 ,GN

0 )(f)− L(x̂0,N0 , ĜN
0 )(f)

⃓⃓
⃓ → 0 for any f : X 0 × P(X × U) → R by the

prequel. Assuming the induction assumption holds at time t, then at time t+ 1

∥L(x0,Nt+1)− L(x̂0,Nt+1)∥1
=
∑︂

x0∈X 0

⃓⃓
⃓E
[︂
p0(x0 | x0,Nt ,GN

t )− p0(x0 | x̂0,Nt , ĜN
t )
]︂⃓⃓
⃓→ 0

uniformly by induction assumption and continuity and boundedness of p0, which implies the desired
statement.

Corollary 4.1.1. Under Assumption 4.1.1, for any ε > 0 there exists N(ε) such that for all
N > N(ε) a policy π∗ optimal in the MFC MDP – that is, J(π∗) = supπ∈Π J(π) – is ε-Pareto
optimal in the N -agent case, i.e.

JN (πN (π∗)) ≥ sup
π

JN (π)− ε . (4.1.25)
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Proof. By Theorem 4.1.1 and Theorem 4.1.2, there exists N ′ ∈ N such that for average policy π̂ of
π and all N > N ′ we have

sup
π

(︁
JN (π)− JN (πN (π∗))

)︁

≤ sup
π

(︁
JN (π)− JN (πN (π̂))

)︁

+ sup
π

(︁
JN (πN (π̂))− J(π̂)

)︁

+ sup
π

(J(π̂)− J(π∗))

+ sup
π

(︁
J(π∗)− JN (πN (π∗))

)︁

<
ε

3
+

ε

3
+ 0 +

ε

3
= ε .

Reordering terms gives the desired inequality.

4.1.4 A Standard Dynamic Programming Principle and Reinforcement Learning

The following DPP for the MFC MDP is a standard result, for which the MDP state will be only the
environment state, see e.g. [104, 121].

Define action-value function Q : X 0 ×H → R,

Q(x0, h) := sup
π∈Π

E

[︄ ∞∑︂

t=0

γtr(x0t ,G(µ0, πt(x
0
t )))

⃓⃓
⃓⃓
⃓ x

0
0 = x0, π0(x

0) = h

]︄
. (4.1.26)

Note that by boundedness of r, we trivially have

|Q| ≤ R

1− γ
.

As we have an MDP with finite state space X 0, the following Bellman equation will hold, see [68].

Theorem 4.1.3. The Bellman equation

Q(x0, h) = r(x0,G(µ0, h)) + γEx̃0∼p0(x0,G(µ0,h))

[︄
sup
h̃∈H

Q(x̃0, h̃)

]︄
(4.1.27)

holds for all x0 ∈ X 0, h ∈ H.

In the following, we obtain existence of an optimal stationary policy by compactness of H and
continuity of Q, which shall be inherited from the continuity of r and p0.

Lemma 4.1.2. The unique function that satisfies the Bellman equation is given by Q. Further, if
there exists hx0 ∈ argmaxh∈HQ(x0, h) for any x0 ∈ X 0, then the policy π∗ with π∗

t (x
0) = hx0

is an optimal stationary policy.
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Proof. For uniqueness, define the space of R
1−γ -bounded functions Q := {f : X 0 × H →

[− R
1−γ ,

R
1−γ ]} and the Bellman operator B : Q → Q defined by

(BQ)(x0, h) = r(x0,G(µ0, h)) + γEx̃0∼p0(x0,G(µ0,h))

[︄
sup
h̃∈H

Q(x̃0, h̃)

]︄
. (4.1.28)

We show that Q is a complete metric space under the supremum norm. Let (Qn)n∈N be a Cauchy
sequence of functions Qn ∈ Q. Then by definition, for any ε > 0 there exists n′ ∈ N such that for
all n,m > n′ we have

∥Qn −Qm∥∞ < ε

=⇒ ∀x0 ∈ X 0, h ∈ H :
⃓⃓
Qn(x

0, h)−Qm(x0, h)
⃓⃓
< ε

such that for all x0 ∈ X 0, h ∈ H there exists a value cx0,h ∈ [− R
1−γ ,

R
1−γ ] for which Qn(x

0, h)→
cx0,h. Define the function Q′ ∈ Q by Q′(x0, h) = cx0,h, then we have

⃓⃓
Qn(x

0, h)−Q′(x0, h)
⃓⃓

= lim
m→∞

⃓⃓
Qn(x

0, h)−Qm(x0, h)
⃓⃓
< ε

for all x0 ∈ X 0, h ∈ H, n > n′, and hence Qn → Q′ ∈ Q as n→∞. This implies completeness
of (Q, ∥·∥∞).

We now show that B is a contraction under the supremum norm, i.e.

∥BQ1 −BQ2∥∞ ≤ C∥Q1 −Q2∥∞

for some C < 1. Define the shorthand x̃0 ∼ p0(x0,G(µ0, h)). We have

∥BQ1 −BQ2∥∞
= sup

x0∈X 0,h∈H

⃓⃓
BQ1(x

0, h)−BQ2(x
0, h)

⃓⃓

≤ sup
x0∈X 0,h∈H

γEx̃0

[︄⃓⃓
⃓⃓
⃓sup
h̃∈H

Q1(x̃
0, h̃)− sup

h̃∈H
Q2(x̃

0, h̃)

⃓⃓
⃓⃓
⃓

]︄

≤ sup
x0∈X 0,h∈H

γ∥Q1 −Q2∥∞

with γ < 1. Therefore, by Banach fixed point theorem, B has the unique fixed point Q.

For optimality, define the policy action-value function Qπ for π ∈ Π as the fixed point of
Bπ : Q → Q defined by

(BπQ)(x0, h) = r(x0,G(µ0, h)) + γEx̃0

[︁
Q(x̃0, π(x̃0))

]︁
.

From this, we immediately have

Qπ∗
(x0, h) = r(x0,G(µ0, h)) + γEx̃0

[︁
Q(x̃0, π∗(x̃0))

]︁

= r(x0,G(µ0, h)) + γEx̃0

[︄
sup
h̃∈H

Q(x̃0, h̃)

]︄

= Q(x0, h)

which implies that π∗ is optimal, see also [68].
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Lemma 4.1.3. The action-value function Q is continuous.

Proof. We will show as x0n → x0 ∈ X 0 and hn → h ∈ H,

Q(x0n, hn)→ Q(x0, h) .

By the Bellman equation, we immediately have

|Q(x0n, hn)−Q(x0, h)|
≤
⃓⃓
r(x0n,G(µ0, hn))− r(x0,G(µ0, h))

⃓⃓

+

⃓⃓
⃓⃓
⃓⃓γ
∑︂

x̃0∈X 0

(︁
p0(x̃0 | x0n,G(µ0, hn))− p0(x̃0 | x0,G(µ0, h))

)︁
sup
h̃∈H

Q(x̃0, h̃)

⃓⃓
⃓⃓
⃓⃓

≤
⃓⃓
r(x0n,G(µ0, hn))− r(x0,G(µ0, h))

⃓⃓

+
γR

1− γ

∑︂

x̃0∈X 0

⃓⃓
p0(x̃0 | x0n,G(µ0, hn))− p0(x̃0 | x0,G(µ0, h))

⃓⃓
→ 0

since r, p0,G are continuous and Q is bounded.

Corollary 4.1.2. There exists an optimal stationary policy π∗ : X 0 → H such that Qπ∗
= Q.

Proof. By Lemma 4.1.3, Q is continuous. Furthermore, H is compact. By the extreme value
theorem, there exists hx0 ∈ argmaxh∈HQ(x0, h) for any x0 ∈ X 0. By Lemma 4.1.2, there exists
an optimal stationary policy π∗.

SinceH is continuous, general exact solutions are difficult. Instead, we apply RL with stochastic
policies on the MFC MDP to find an optimal stationary policy.

4.1.5 Experiments

We compare the empirical performance of the MF solution in the aforementioned load balancing
problem. Since there exist few theoretical guarantees for tractable MARL methods [40], we compare
our approach (MF) to empirically effective independent learning (IL) [86], i.e. applying single-agent
RL to each separate agent (NA), as well as the well-known Join-Shortest-Queue (JSQ) algorithm
[203], where agents choose the shortest queue accessible and otherwise randomly. To make
independent learning more tractable, we also share policy parameters between all agents using
parameter sharing (PS) [90] and train each policy via the PPO algorithm [73] using the RLlib
1.2.0 Pytorch implementation [76] for 400, 000 time steps in the N -agent cases and 2 million time
steps in the MF case, which is sufficient for convergence of MF and N -agent policies up to N = 4,
after which N -agent training becomes unstable under the shared hyperparameters in Table 4.1 and
continues to fail even with more time steps.

For policies and critics, we use separate feedforward networks with two hidden layers of 256 nodes
and tanh activations. In the MF case the policy outputs parameters µ,σ of a diagonal Gaussian
distribution over actions, which are sampled and clipped between 0 and 1. We normalize each of
these output values such that they give the probability of assigning to an accessible queue given
some agent state, i.e. a shared lower-level decision rule h ∈ H for all agents. A visualization of this
process can be found in Figure 4.3.
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table 4.1: Parameters and hyperparameters used in the experiments.

Symbol Function Value

cd Packet drop penalty 1
M Number of queues 2
Bi Queue buffer sizes 5
∆T Time step size 0.5 s
λ Packet arrival rate (3M − 1) s−1

β Queue servicing rate 3 s−1

γ Discount factor 0.99

PPO

lr Learning rate 5× 10−5

λPPO GAE coefficient 0.2
βPPO Initial KL coefficient 0.2
dtarg KL target 0.01
ε Clip parameter 0.3
B Training batch size 4000
Bm SGD mini-batch size 128
k SGD iterations per batch 30

Note that we use stochastic policies as required by stochastic policy gradient methods, though we
can easily obtain a deterministic policy if necessary by simply using the mean parameter of the
Gaussian distribution. In the N -agent case, we output queue assignment probabilities for each of
the agents via a standard softmax final layer. Invalid assignments to queues that are not accessible
by an agent are treated as randomly sampling one from all accessible queues.

As can be seen in Figure 4.4 for µ0 given such that the probability of access to both queues is 0.6
and otherwise uniformly random, the MF solution reaches its MF performance in the N -agent case
as N grows large. This validates our theoretical findings empirically. Our solution further appears
to outperform NA and PS for sufficiently many agents, as IL approaches increasingly fail to learn
due to the credit assignment problem.

figure 4.3: Overview of MFC application in N -agent systems: Conditional on the environment state x0,N
t ,

the upper-level MF policy π̂ outputs a sampled, shared lower-level policy for all agents i, from which random
actions ui,N

t are sampled conditional on local agent states xi,N
t .
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Moreover, our best learned policy is close to JSQ and competitive with slight irregularities at
b0 = 0. Observe in Figure 4.4 that the MF policy gives an interpretable solution. NA and PS are
trained separately for each N , while the MF policy is trained only once and used for all N . As N
grows, the MF policy performance becomes increasingly close to the MFC MDP and competitive
with JSQ, while NA and PS begin to fail learning due to the credit assignment problem. (b): MF
policy probabilities of assigning to queue 1 against buffer fillings b0, b1 for agents with access to
both queues, averaged over 500 samples. As a queue becomes more filled, the optimal solution will
be more likely to avoid assignment of packets to that queue.

(a) (b)

figure 4.4: Qualitative evaluation of learned balancing policy. (a): Cumulative reward average over 500
runs with 95% confidence interval achieved against number of agents N . The dotted line indicates cumulative
reward of MF in the MFC MDP.

4.1.6 Summary

In this work, we have formulated a discrete-time MFC model with common environment states
motivated by a load balancing problem. We have rigorously shown approximate optimality as
N → ∞ and applied RL to solve the MFC MDP. Empirically, we obtain competitive results for
sufficiently many agents and validate our theoretical results. For future work, it could be interesting
to consider partial observability of the system for schedulers, or methods to scale to large numbers
of queues. Potential extensions are manifold and include, e.g., major-minor systems, partial
observability. We note that since the appearing of this work, separate work [128] has relatedly
shown the sufficiency of heterogeneous policies in standard MFC without external states, as well as
two-team generalizations.
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4.2 towards strong interaction in mean field control

Recent MARL using MFC provides a tractable and rigorous approach to otherwise difficult cooperative
MARL. However, the strict MFC assumption of many independent, weakly-interacting agents is too
inflexible in practice. We generalize MFC to instead simultaneously model many similar and few
complex agents – as M3FC. Theoretically, we give approximation results for finite agent control, and
verify the sufficiency of stationary policies for optimality together with a DPP. Algorithmically, we
propose Major-Minor Mean Field Multi-Agent Reinforcement Learning (M3FMARL) for finite agent
systems instead of the limiting system. The algorithm is shown to approximate the policy gradient
of the underlying M3FC MDP. Finally, we demonstrate its capabilities experimentally in various
scenarios. We observe a strong performance in comparison to state-of-the-art policy gradient MARL
methods. The material presented in this section is based upon our work [1].

mean field control for marl. Aggregated interaction models such as MFGs [22, 23]
and MFC [107, 124, 205] simplify MARL in the limit of infinite agents, with problem complexity
independent of the exact number of agents. The result is tractability by avoiding exponentially
large joint state-action spaces [40]. This has led to scalable MARL via MFC [107, 201]. And indeed,
in applications such aggregation is commonly found on some level, e.g., in chemical reaction
networks for aggregate molecule mass [206], related mass-action epidemics models [49], or traffic
where congestion depends on the number of travelling cars [54], to name just a few. See also
epidemics control [207], drone swarms [208], self organization [209], and many more financial [64]
or engineering scenarios [65].

limitations of standard mfc. However, the strict assumption of only minor agents –
i.e. independent, homogeneous agents that can be summarized by their distribution (MF) – limits
applicability. In practice, systems often consist of more than homogeneous agents, and hence one
must extend standard MFC towards major agents or environment states that are not aggregated. For
instance, in modelling car traffic on road networks [54, 61], when considering only the distribution
of cars (minor agents) on the network, one cannot model major agents or environment states, such as
traffic lights or road conditions respectively. Another example is the logistics scenario in Figure 4.5
and in the experiments, where many drones on a moving truck collect many packages.

figure 4.5: Logistics example for major-minor MFC: Many drones are modelled as minor agent MF, while
truck and package destinations are modelled by a major agent. (See Foraging problem in Section 4.2.3.1)
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For this purpose, a first step in the continuous-time MFG literature is to consider common noise [127,
178], in order to relax the unconditional independence of minor agents. Some more recent works
consider such common noise also in discrete-time MFC [107, 121, 210, 211], or equivalently, global
environment states [212]. Essentially, this extension allows MFC to also model random environment
effects such as the arrival of new packages in the logistics example (Figure 4.5). [107] provide a
reformulation of MARL into single-agent RL and consider algorithms for the resulting MDP. [210]
give approximation theorems and approximate optimality in the finite system by the limiting MFC
solution with common noise, and [121, 211] quantify the rates of convergence explicitly. See also
Table 4.2 for a brief comparison between existing works. In comparison, for the common noise
setting, we contribute a new approximation analysis of MFC-based MARL algorithms, where in
contrast to prior work, we learn directly with finite agents.

table 4.2: A comparison of recent related works and a subset of their results on discrete-time MFC.
prop. chaos: propagation of chaos; opt. policy: existence of optimal (stationary) policies; common noise:
presence thereof; non-finite: non-finite state-actions, e.g. compact; major agent: presence thereof; RL: RL
algorithm (+: learns / is analyzed on finite MARL problems).

Ref. prop. chaos opt. policy common noise non-finite major agent RL

[107] ✗ ✓ ✓ ✓ ✗ ✓

[104, 201] ✓ ✓ ✗ ✗ ✗ ✓

[210] ✓ ✓ ✓ ✓ ✗ ✗

[105, 212] ✓ ✗ ✓ ✗ ✗ ✓

[121, 211] ✓ ✓ ✓ ✓ ✗ ✗

our work ✓ ✓ ✓ ✓ ✓ ✓+

More importantly however, a second contribution is to consider major agents. Major agents
generalize common noise or environmental states, and take actions that have a non-negligible effect
on the system. So far, major agents have only been considered in continuous-time, non-cooperative
MFGs [113, 185, 202, 213]. To the best of our knowledge, no such discrete-time, cooperative
framework has been formulated yet. In this work, we investigate such a MARL framework.

contribution. Existing MFC cannot model general agents and many aggregated agents
simultaneously. In essence, we generalize the solution spaces of single-agent RL and MFC-based
MARL – frameworks for cooperative MARL as depicted in Figure 4.6. This provides both tractability

figure 4.6: Comparison of solution spaces. Our M3FC-based MARL generalizes MFC-based MARL and
standard single-agent RL in the solution space of general MARL solutions, reducing the otherwise combinatorial
nature of MARL [40] to a tractable but still general setting.
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for many aggregated agents and generality for arbitrary general agents. Our contribution is briefly
summarized into (i) formulating the first discrete-time MFC model with major agents, together
with establishing its theoretical properties; (ii) providing a MFC-based MARL algorithm, which in
contrast to prior work learns on the finite problem of interest; and (iii) we perform a significant
empirical evaluation, also obtaining positive comparisons of MFC-based MARL against state of the
art, whereas prior works on MFC were limited to verifying algorithms on one or two examples.

4.2.1 Major-Minor Mean Field Control

To begin, in this section we extend standard MFC by modelling the presence of a major agent. The
generalization to more than one major agent is straightforward. This leads to our discrete-time
M3FC model. Overall, we obtain a formulation that allows standard MARL handling of major agents,
while tractably handling many minor agents via MFC-based techniques.

Notation: By EX we denote conditional expectations given X . The space of probability
measures P(X ) on compact metric spaces X is equipped with the 1-Wasserstein distance,
unless noted otherwise [214]. Note compactness of P(X ) on compact X by Prokhorov’s
theorem [215]. Hence, we sometimes use the uniformly (not Lipschitz) equivalent metric
dΣ(µ, µ

′) :=
∑︁∞

m=1 2
−m|

∫︁
fm d(µ − µ′)|, for some sequence of continuous fm : X → [−1, 1]

[216, Theorem 6.6].

4.2.1.1 Finite-Agent System

Consider N (minor) agents i ∈ [N ] := {1, . . . , N} with compact metric state and action spaces
X , U , equipped with random states and actions xi,Nt and ui,Nt at times t ∈ N, where initial states
xi,N0 ∼ µ0 are independently sampled from some initial distribution µ0 ∈ P(X ). In addition to
standard MFC, we also consider a single major agent, though the framework can be extended to
multiple. Consider major agent state and action spaces, X 0, U0 and state-actions x0,Nt , u0,Nt , with
the major agent formally indexed by i = 0. Given all actions, the agent states evolve according to
kernels p, p0 depending on (i) the agent’s own state-actions, (ii) the major state-actions, and (iii)
the empirical MF, i.e. the P(X )-valued empirical state distribution µN

t := 1
N

∑︁N
i=1 δxi,N

t
. This

means that minor agents affect other agents only at rate 1
N . In practice, we identify minor agents

as all agents that matter through their MF µN
t . Any remaining agents are major, such that the

problem-specific stratification into major and minor agents is always possible.

By symmetry, the system state at any time t is therefore entirely given by (x0,Nt , µN
t ). Accordingly,

in MFC we share policies between all minor agents. We consider time-variant policies π ∈ Π,
π0 ∈ Π0 from some classes of major and minor policies Π, Π0 that depend on an agent’s own state
and (x0,Nt , µN

t ) at all times t. Overall, for all i ∈ [N ] and t ∈ N, the finite MFC system follows

ui,Nt ∼ πt(u
i,N
t | xi,Nt , x0,Nt , µN

t ), (4.2.29a)

u0,Nt ∼ π0
t (u

0,N
t | x0,Nt , µN

t ), (4.2.29b)

xi,Nt+1 ∼ p(xi,Nt+1 | xi,Nt , ui,Nt , x0,Nt , u0,Nt , µN
t ), (4.2.29c)

x0,Nt+1 ∼ p0(x0,Nt+1 | x0,Nt , u0,Nt , µN
t ) . (4.2.29d)

The goal is then to maximize the infinite-horizon discounted objective JN (π, π0) :=

E
[︂∑︁∞

t=0 γ
tr(x0,Nt , u0,Nt , µN

t )
]︂

over minor and major policies (π, π0), with discount γ ∈ (0, 1)
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and reward function r : P(X )→ R. While an optimal behavior could be learned using standard
MARL policy gradient methods, for improved tractability we introduce the following M3FC model in
the case of many minor agents.

Remark 4.2.1. The model is as expressive as in existing MFC [105, 201], as it also includes (i) joint
state-action MFs νt ∈ P(X×U), by splitting time steps in two and defining new states inX∪X×U , (ii)
average rewards over all agents, and (iii) random rewards rit by r(µN

t ) ≡ 1
N

∑︁N
i=1 E[rit | x

i,N
t , µN

t ].
A finite horizon is handled analogously (without optimal stationary policies).

4.2.1.2 Mean Field Control Limit

By the introduction of the MF limit, we obtain a large, more tractable subclass of cooperative multi-
agent control problems, which may otherwise suffer from the curse of many agents (combinatorial
joint state-action space, [40]). We introduce the MF limit by formally taking N → ∞: The
finite-agent control problem is replaced by a higher-dimensional single-agent MDP – the M3FC MDP.
By symmetry, we summarize minor agents into their probability law, the MF µt ≡ L(xi,Nt ) ∈ P(X ).
It replaces its empirical analogue µN

t by a LLN. Thus, by definition, the MF µt evolves forward as

µt+1 = T (x0t , u
0
t , µt, µt ⊗ πt(µt)) =

∫︂∫︂
p(x, u, x0t , u

0
t , µt)πt(du | x, µt)µt(dx), (4.2.30)

with πt(µt) := πt(· | ·, µt), product measures µt⊗πt(µt) of measure µt and kernel πt(µt) onX ×U ,
and deterministic dynamics for the MF, T (x0, u0, µ, h) :=

∫︁∫︁
p(· | x, u, x0, u0, µ)h(dx,du).

Therefore, the state of the limiting system consists only of the MF µt and major state x0t . As a result,
we obtain the limiting M3FC MDP

ht ∼ π̂t(ht | x0t , µt), (4.2.31a)
u0t ∼ π0

t (u
0
t | x0t , µt), (4.2.31b)

µt+1 = T (x0t , u
0
t , µt, ht), (4.2.31c)

x0t+1 ∼ p0(x0t+1 | x0t , u0t , µt) (4.2.31d)

with objective J(π̂, π0) = E
[︁∑︁∞

t=0 γ
tr(x0t , u

0
t , µt)

]︁
and transition dynamics for the MF

T (x0, u0, µ, h) :=
∫︁∫︁

p(· | x, u, x0, u0, µ)h(dx,du). Here, we identify µt⊗πt(µt) ≡ ht ∈ H(µt)
in the compact setH(µ) ⊆ P(X × U) of desired joint state-action distributions with first marginal
µ as part of the action of the M3FC MDP.

In other words, the action of the M3FC MDP is (ht, u
0
t ) where ht replaces all the minor agent

actions by a LLN. Accordingly, minor agent policies are replaced by MFC policies π̂ mapping from
current µt to desired state-action distribution ht. The limiting M3FC model abstracts away all the
minor agents in the finite system, and considers only the MF and the major agents, as visualized
in Figure 4.7. The reason for writing joint ht is mostly technical, as for deterministic π̂, we write
πt = Φ(π̂t) to reobtain agent policies µt-a.e. uniquely by disintegration [217] of ht = π̂t(µt) into
µt⊗ π′

t with decision rule π′
t ∈ P(U)X and using πt(µt) ≡ π′

t. Inversely, any π ∈ Π is represented
in the MFC MDP by deterministic π̂t = Φ−1(π)t = µt ⊗ πt.

Remark 4.2.2. Strictly speaking, in finite-agent control one could jointly select actions
(u0,Nt , u1,Nt , . . . , uN,N

t ) given joint states (x0,Nt , x1,Nt , . . . , xN,N
t ). But intuitively, (i) joint states

reduce to (x0,Nt , µN
t ), while (ii) joint actions are replaced by the LLN and sampling actions.

Optimality of MFC solutions over larger classes of heterogeneous or joint policies is plausible, but
to the best of our knowledge, general result are still limited. See also Appendix E.17.
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figure 4.7: The dynamics Eq. (4.2.29) as a probabilistic graphical model, with actions in grey (inputs
omitted for readability). Diamonds denote deterministic functions. M3FC abstracts minor agents i ∈ [N ] by a
LLN, considering only their MF as variables in the dotted box.

For the unfamiliar reader, in Appendix E.2 we recap basic deterministic MFC without major agents
or common noise. There, we recap Lipschitz approximation theorems and the DPP in compact
spaces.

common noise and global states. In the classical sense [121, 127], common noise is
given by random noise ϵ0t ∼ pϵ(ϵ

0
t ) sampled from a fixed distribution pϵ, and affects all minor

agents at once, xi,Nt+1 ∼ p(xi,Nt+1 | xi,Nt , ui,Nt , ϵ0t , µ
N
t ). This allows to model systems with stochastic

MFs and inter-agent correlation, and has added difficulty to the theoretical analysis [178]. Of similar
interest are also “major” global states x0,Nt , which need not be sampled from fixed distributions but
evolve dynamically (for MFC with finite global states, see e.g. [212]).

Both common noise and global states are contained in the M3FC model by using a trivial major
agent without actions. We also note that, in general, common noise is equivalent to global states, as
global states can be integrated into the minor state conditioned on the common noise. However, for
computational purposes the separation of global states and minor agent states can be helpful, as
the simplex P(X ) over minor states can be kept smaller for methods based on discretization of the
simplex.

4.2.1.3 Dynamic Programming

As a first step, it is well known that stationary (time-independent) policies suffice for optimality in
infinite-horizon discounted MDPs. In the following, this property is also verified for the M3FC MDP.
For the following technical results, we assume standard Lipschitz conditions [104, 105, 116].

Assumption 4.2.1. The transition kernels p, p0 and rewards r are Lipschitz with constants Lp, Lp0 ,
Lr.

Assumption 4.2.1 is true, e.g., in finite spaces if transition matrix entries of P are Lipschitz in the
|X |-dimensional MF vector. The sufficiency of stationary policies is obtained by the DPP, which
can also be used to compute exact optimal policies in the M3FC MDP. We use the value function
V ∗ as the fixed point of the Bellman equation, V ∗(x0, µ) = max(h,u0)∈H(µ)×U0 r(x0, u0, µ) +
γEy0∼p0(y0|x0,u0,µ)V

∗(y0, T (x0, u0, µ, h)).
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Theorem 4.2.1. Under Assumption 4.2.1, there exist optimal stationary, deterministic policies
π̂, π0 for the M3FC MDP Eq. (4.2.31) by choosing (π̂(x0, µ), π0(x0, µ)) from the maximizers of
argmax(h,u0)∈H(µ)×U0 r(x0, u0, µ) + γEy0∼p0(y0|x0,u0,µ)V

∗(y0, T (x0, u0, µ, h)).

Remark 4.2.3. We obtain existence of optimal deterministic stationary minor and major policies π̂,
π0 via optimal joint policies π̃ ≡ π̂ ⊗ π0, (ht, u0t ) ∼ π̃((ht, u

0
t ) | x0t , µt).

The results follow from classical MDP theory [69]. Thus, we may solve M3FC problems through the
DPP, or approximately by using policy gradients with stationary policies for the M3FC MDP, which
has naturally continuous actions.

4.2.1.4 Finite Agent Convergence

Next, in order to show the approximate optimality of M3FC solutions, we first obtain propagation of
chaos [218] – convergence of empirical MFs to the limiting MF. The result theoretically backs the
reduction of multi-agent control to single-agent MDPs, as there is no loss of optimality in the finite
problem by considering the M3FC problem. We assume standard Lipschitz conditions on policies
[104, 105, 116].

Assumption 4.2.2. The classes of policies Π, Π0 are equi-Lipschitz sets of policies, i.e. there exists
LΠ > 0 such that for all t and π ∈ Π, πt ∈ P(U)X×P(X ) is LΠ-Lipschitz, and similarly for major
policies π0 ∈ Π0.

We note that Lipschitz policies are natural, as we usually parametrize policies in a Lipschitz manner;
in particular, neural networks allow Lipschitz analysis [116, 219, 220]. The result is that the limiting
system approximates large finite systems.

Theorem 4.2.2. Fix any family of equi-Lipschitz functionsF ⊆ RX 0×U0×P(X ) with shared Lipschitz
constantLF . Under Assumptions 4.2.1 and 4.2.2, (x0,Nt , u0,Nt , µN

t ) converges weakly to (x0t , u0t , µt),
uniformly over f ∈ F , (π, π0) ∈ Π×Π0, π̂ = Φ−1(π) at all times t ∈ N,

sup
f,π,π0

⃓⃓
⃓E
[︂
f(x0,Nt , u0,Nt , µN

t )− f(x0t , u
0
t , µt)

]︂⃓⃓
⃓→ 0. (4.2.32)

Further, the convergence rate is O(1/
√
N) if |X | <∞.

The above motivates M3FC by the following near optimality result of M3FC MDP solutions in the
finite system, as it suffices to optimize over stationary M3FC policies.

Corollary 4.2.1. Under Assumptions 4.2.1 and 4.2.2, optimal deterministic M3FC MDP policies
(π̂∗, π0∗) ∈ argmax(π̂,π0) J(π̂, π

0) with Φ(π̂∗) ∈ Π yield ε-optimal (Φ(π̂∗), π0∗) with ε → 0 as
N →∞ in the finite system, JN (Φ(π̂∗), π0∗) ≥ sup(π,π0)∈Π×Π0 JN (π, π0)− ε.

Therefore, one may solve difficult finite-agent MARL by detouring over the corresponding M3FC
MDP as depicted in Figure 4.8, reducing to an MDP of a complexity independent of the number of
agents N , which we solve in Section 4.2.2.
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N -minor agent control M3FC

Optimal N -minor agent control M3FC policy

optimize (intractable)

N→∞

optimize

approx.

figure 4.8: Approximation of intractable N -agent control by M3FC (blue path), the solution of which is
near-optimal for large N .

4.2.2 Major-Minor Mean Field Multi-Agent Reinforcement Learning

As indicated in the prequel and in Figure 4.6, MARL via M3FC generalizes both single-agent RL
and MARL via MFC in the searched policy solution space. Therefore, in M3FC one only optimizes
over a tractable, smaller solution space of a single minor and major policy Π,Π0. At the same
time, the framework is highly general and handles arbitrary major agents with many minor agents
simultaneously. The reduction of MARL problems to a fixed-complexity single-agent M3FC MDP is
the key. In this section, we develop MARL algorithms based on the M3FC framework.

Recalling the motivation of MFC, it is crucial to find tractable sample-based MARL techniques for
both complex problems where other methods fail, and for problems where we have no access to the
dynamics or reward model. Relating to the former, RL has been applied before to solve MFC given
that we know the MFC model equations [105, 107, 116]. However, regarding the latter, we should
instead use the MFC formalism to give rise to novel MARL algorithms.

While literature usually focused analysis on the former, in our work we analyze the proposed
algorithm not on limiting M3FC MDPs, but on the more interesting finite M3FC system. In particular,
if the M3FC MDP is known, one can instantiate finite systems of any size for training. We consider
the following perspective: By Theorem 4.2.2, the M3FC MDP is approximated well by the finite
system. Therefore, we can solve the limiting M3FC MDP by applying our proposed algorithm directly
to finite M3FC systems.

Since we know by Theorem 4.2.1 that stationary policy suffice, we solve the M3FC MDP Eq. (4.2.31)
using stationary policies and single-agent RL techniques but on its finite multi-agent instance
Eq. (4.2.29), the combination of which we aptly refer to as M3FMARL. The result is Algorithm 2,
where we directly apply RL to multi-agent systems Eq. (4.2.29) by observing next states (x0,Nt+1, µ

N
t+1)

and rewards rNt := r(x0,Nt , u0,Nt , µN
t ). The algorithm can be understood as a kind of hierarchical

algorithm, as M3FC MDP actions specify behavior for all minor agents at once.

Algorithm 2 M3FMARL

1: for n = 0, 1, . . . do
2: for t = 0, . . . , Blen − 1 do
3: Sample M3FC action from RL policy, i.e.

ut ≡ (u0,Nt , π′
t) ∼ π̃θ(ut | x0,Nt , µN

t ).
4: for i = 1, . . . , N do
5: Sample i-th minor action ui,Nt ∼ π′

t(u
i,N
t | xi,Nt ).

6: Execute u0,Nt , u1,Nt , . . . for reward rNt , next state (x0,Nt+1, µ
N
t+1), termination dt+1 ∈ {0, 1}.

7: Perform an update on π̃θ using B = ((x0,Nt , µN
t ), ut, r

N
t , dt+1, (x

0,N
t+1, µ

N
t+1))t≥0.
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4.2.2.1 M3FC-based Policy Gradients

The proposed algorithm can be theoretically motivated. As shown in the following, finite-agent Policy
Gradients (PGs) estimate the true limiting M3FC MDP PG. First, note that finite state-actions X ,U
lead to continuous M3FC MDP actionsH(µ), while continuous X ,U even yield infinite-dimensional
H(µ). Therefore, we have at least continuous MDPs, complicating value-based learning.

For this reason, we mainly consider PG methods to solve M3FC-type MARL problems. We parametrize
M3FC MDP solutions via RL policies π̃θ with parameters θ, outputting ξ ∈ Ξ from some compact
parameter space Ξ with a Lipschitz map Γ(ξ) = π′

t to LΠ-Lipschitz minor agent decision rules π′
t

(formally, ht = µt ⊗ π′
t). Assuming the Lipschitzness of the policy network and its gradient in all

arguments, on which there has been a great number of recent literature (see e.g. [219, 220] and
references therein), we formulate Assumption 4.2.3.

Assumption 4.2.3. The parameter map Γ, joint policy π̃θ and log-gradient ∇θ log π̃
θ (or gradient

∇θπ̃
θ) are LΓ, Lπ̃, L∇π̃-Lipschitz and uniformly bounded.

Then, we can apply the PG theorem [221] for the M3FC MDP. The M3FC MDP Eq. (4.2.31) essentially
substitutes many-agent systems Eq. (4.2.29), which are natural approximations of the M3FC MDP
by Theorem 4.2.2. Therefore, we show that M3FMARL (Algorithm 2) – single-agent PG on the
multi-agent M3FC system – approximates the true PG of the limiting M3FC MDP, in the case of many
minor agents. In other words, M3FMARL solves MARL by approximately solving the single-agent
M3FC MDP using policy gradients.

Theorem 4.2.3. Under Assumptions 4.2.1, 4.2.2 and 4.2.3, the approximate PG of joint policy π̃θ

computed on the finite M3FC system Eq. (4.2.29) in Algorithm 2 uniformly tends to the true PG of the
M3FC MDP Eq. (4.2.31), as N →∞.

Importantly, the underlying MDP complexity is independent of the number of minor agents.
Therefore, we would expect Algorithm 2 to be able to perform well in M3FC-type problems, possibly
compared to straightforward MARL where each agent is handled separately. Intuitively, for many
agents, the reward signal for any single agent can become uninformative: A cooperative, “averaged”
reward remains almost unaffected by a single agent’s actions. This well-known credit assignment
issue is therefore solved by the hierarchical structure of M3FC, as credit is assigned to M3FC actions,
which affect all minor agents at once and hence receive aggregated credit. Another advantage is
that MFC profits from any advances in single-agent RL.

4.2.2.2 Implementation Details

We use the PPO algorithm [73] to obtain a M3FC policyπRL, instantiating the Major-Minor Mean Field
PPO (M3FPPO) algorithm as an instance of M3FMARL, Algorithm 2. Other PG algorithms (Advantage
Actor Critic (A2C), leading to Major-Minor Mean Field Advantage Actor Critic (M3FA2C)) are also
compared in our experiments. We parametrize MFs in P(X ) and joint distributions in H(µN

t ).
In practice, for finite X , U , the parametrization of P(X ) is immediate by finite-dimensional
vectors µN

t ∈ P(X ). For M3FC actions, consider – in addition to the major agent action – the
matrix ξ ∈ [−1, 1]X×U , which is mapped to probabilities of minor actions in any minor state
π′
t(u | x) := Z−1(ξxu + 1 + ϵ), for small ϵ = 10−10 and normalizer Z. For continuous X , U , we

instead partition X into M bins and represent µN
t as a histogram, mapping ξ ∈ [−1, 1]M×2 instead
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to diagonal Gaussian means and standard deviations, µXi ∈ U , σXi ∈ [ϵ, 0.25 + ϵ], for each of M
bins Xi ⊆ X . Major actions u0,Nt follow categorical or diagonal Gaussian distributions for discrete
or continuous U0.

We use two hidden layers of 256 nodes and tanh activations for the neural networks of the policies.
The neural network policy outputs parameters of a diagonal Gaussian over the major action u0

and matrices U as discussed above. In the discrete Beach scenario below, the neural network
instead outputs a categorical distribution using a final softmax layer. We used no GPUs and around
300,000 CPU core hours on Intel Xeon Platinum 9242 CPUs. Optimal transport costs are computed
using POT [222]. Our M3FC MDP implementation follows the gym interface [223], while the
implementation of MARL as in the following fulfills RLlib interfaces [76]. The RL implementations
in our work are based on MARLlib 1.0 [91] (MIT license), which uses RLlib 1.8 [76] (Apache-2.0
license) with hyperparameters in Table E.1, and otherwise default settings.

4.2.2.3 Comparison to MARL

The M3FMARL algorithm falls into the paradigm of CTDE [40], as we sample a single central M3FC
MDP action during training, but enable decentralized execution by sampling π′

t separately on each
agent instead. For instance, when converged to a deterministic M3FC policy (of which an optimal
one is guaranteed to exist by Theorem 4.2.1), the M3FC action is always trivially equal for all
agents.

Since we also consider continuous minor agent action spaces in our experiments, we compare
against PG methods for MARL. In particular, we firstly consider IPPO, as PPO with independent
learning [86] and parameter sharing [90], and secondly also MAPPO with centralized critics. The
latter has repeatedly shown strong state-of-the-art performance in cooperative MARL [42, 87, 88].
We also separate major and minor agent policies for improved performance of IPPO / MAPPO. For
comparison, we use the same observations for the policy input as in M3FMARL. The policy network
architectures match, and the same PPO implementation and hyperparameters are shared with M3FPPO
in Table E.1. Minor agents are additionally allowed to observe their own states. More details can be
found in Appendix E.18.

4.2.3 Experiments

In this section, we demonstrate the performance of M3FPPO on illustrative, practical problems.
Unless noted otherwise, we use M = 49 bins (M = 7 in Potential), train for around 24 hours,
and train M3FPPO on the finite-agent system Eq. (4.2.29) with N = 300 minor agents unless noted
otherwise (similar results for less agents in Appendix E.18). Full descriptions and additional
experiments and discussions are in Appendix E.18.

4.2.3.1 Problems

To verify the usefulness of M3FMARL whenever the M3FC model Eq. (4.2.29) is accurate, we consider
5 benchmark tasks that fulfill the M3FC modelling assumptions. To begin, the simple two Gaussian
(2G) problem has no major agent and is equipped with a time-dependent major state: A periodic,
time-variant mixture of two Gaussians µ∗

t – the major state – is noisily observed analogously to
µN
t via M = 49 bins. Minor agents should then track the mixture distribution over time, which

can find application for example in UAV-based cellular coverage of dynamic users [224]. In the
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Formation problem, we extend such formation control with major agents. In addition to 2G, one
added major agent tracks a moving target. Meanwhile, minor agents instead track a formation
around the dynamic major agent, see e.g. [225] for applications. The Beach bar process is a studied
classic [127, 226], where minor agents minimize their distances to a bar and additionally avoid
crowded areas. Here, the bar moves on a discrete torus. The Foraging problem is archetypal of
swarm intelligence [227], and has agents forage randomly generated foraging areas. In particular,
we can consider the logistics scenario depicted in Figure 4.5, where a major package truck moves
in a restricted space (roads) while minor drones collect packages for urban parcel delivery [228].
Drones fill up at package “foraging” areas, and unload near the major agent. Lastly, in the Potential
problem, minor agents can generate a potential landscape, the gradient of which pushes the major
agent – e.g., a large object affected by magnetic active matter [229] – to be delivered to a variable
target.

4.2.3.2 Evaluation

In Figure 4.9, we see that M3FPPO learning is stable, as M3FPPO reduces hard-to-analyze MARL to
single-agent RL, avoiding pathologies of MARL such as non-stationarity of multi-agent learning, or
the combinatorial complexity over numbers of agents.
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figure 4.9: Training curves (mean episode return) of M3FPPO (red), with shaded standard deviation, and
maximum (blue) over all three trials (two for Foraging). (a) 2G; (b) Formation; (c) Beach; (d) Foraging; (e)
Potential.

In Figure 4.10, we find similar success in directly training M3FPPO for small N instead of transferring
from high N . We conclude that M3FPPO remains applicable even with as few as 5 agents.
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figure 4.10: Training curves (mean episode return vs. time steps) of M3FPPO, trained on the finite systems
with N ∈ {5, 10, 20}. (a) 2G; (b) Formation; (c) Beach; (d) Foraging; (e) Potential.

M3FPPO usually compares well against its A2C variant (M3FA2C) and IPPO / MAPPO, see Table 4.3
and Section E.18.2. Meanwhile, IPPO / MAPPO under the same hyperparameters as M3FPPO (large
batch sizes, see Table E.1) can be more unstable and lead to worse results, see Figure 4.11.
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figure 4.11: Comparing IPPO / MAPPO vs. results of M3FPPO (MF, ours), as in Figure 4.9 (no maxima,
N = 20).
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table 4.3: Comparison of mean episode returns between best trained policies of standard MARL and
M3FMARL methods on a system with N = 20 agents (± 95% confidence interval, for a number of episodes as
in Figure 4.13).

Problem IPPO MAPPO M3FA2C M3FPPO
2G -43.9 ± 1.1 -26.0 ± 0.5 -30.6 ± 0.6 -22.2 ± 0.56

Formation -51.1 ± 2.4 -101.1 ± 7.1 -79.2 ± 3.1 -63.9 ± 4.2
Beach -350.3 ± 3.4 -342.9 ± 4.7 -424.8 ± 5.5 -303.5 ± 3.4

Foraging 735.3 ± 46.4 803.9 ± 54.6 1398.0 ± 57.1 1479.4 ± 36.3
Potential -27.1 ± 1.4 -26.7 ± 1.7 -50.4 ± 5.5 -31.3 ± 1.3

qualitative behavior. In Figure 4.12, we observe successfully trained behavior in Beach
and Foraging: In Beach, M3FPPO learns to accumulate up to 70% of agents on the bar, as more
agents on the space lead to a suboptimal reduction in rewards. In Foraging, we find that agents
successfully deplete foraging areas shown in the bottom left, moving on afterwards. Further,
M3FPPO successfully learns to form mixtures of Gaussians in 2G, a Gaussian around a moving
major agent successfully tracking its target in Formation, and similar success in pushing the major
agent towards its target in Potential, see Section E.18.3.
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figure 4.12: Qualitative visualization of M3FC in Beach (a-d), Foraging (e-h). (a-d): empirical MF,
major agent & target in green; (e-h): blue / green triangle: major agent / target; green / red dots: less- /
more-than-half encumbered minor agents; purple: current foraging areas.

quantitative support of theory. In Figure 4.13, we transfer the trained M3FPPO policy
to N = 2, . . . , 50, comparing against the performance in the limit (N = 500). As N grows, the
performance converges to the limit, supporting Theorem 4.2.2 and Corollary 4.2.1. Any sufficiently
large system has the same limiting performance as predicted by the theory. We thus have empirical
support for scalability, and also transferability between varying numbers of minor agents.
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figure 4.13: Mean episode return of M3FC policies in finite systems as in Figure 4.9, (a-c) 100, (d) 300 or
(e) 500 trials, 95% confidence interval. MF: CE for N = 500; CE / DE: centralized / decentralized execution.
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comparison to marl. Comparing Figures 4.9 and 4.11 and Table 4.3, we see that (i) by
experience sharing, standard MARL can be more sample-efficient, as each step gives N samples
instead of just one; and (ii) M3FPPO matches or outperforms IPPO and MAPPO, despite having
significantly less control over minor agent actions: All minor agents in a bin (with similar minor
agent states) use the same action distributions, which suffices for strong results.

decentralized execution. Lastly, decentralized execution by agent-wise randomization
– i.e. sampling M3FC actions per agent instead of a single shared, correlated M3FC action – has
little to no effect, and can even marginally improve performance, see e.g., Beach in Figure 4.13(c).
Figure 4.13 verifies the performance of M3FMARL as a CTDE method.

4.2.4 Summary

We have proposed a generalization of MDPs and MFC, enabling tractable state-of-the-art MARL on
general many-agent systems, with both theoretical and empirical support. Beyond the current model
and its optimality guarantees, one could work on refined approximations [230], and local interactions
[92]. Algorithmically, M3FC MDP actionsH(µ) could move beyond binning X to gain performance,
e.g. via kernels as in the following Section 4.3. Lastly, one may try to quantify convergence to
the rate O(1/

√
N) for non-finite X , as the current proof strategy would need hard-to-verify or

unrealistic dΣ-Lipschitzness.
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4.3 mean field control under partial information

MARL remains a challenge in terms of decentralization, partial observability and scalability to
many agents. Meanwhile, collective behavior requires resolution of the aforementioned challenges,
and remains of importance to many state-of-the-art applications such as active matter physics,
self-organizing systems, opinion dynamics, and biological or robotic swarms. Here, MARL via MFC
offers a potential solution to scalability, but fails to consider decentralized and partially observable
systems. In this work, we enable decentralized behavior of agents under partial information by
proposing novel models for Decentralized Partially-Observable Mean Field Control (Dec-POMFC),
a broad class of problems with permutation-invariant agents allowing for reduction to tractable
single-agent MDP with single-agent RL solution. We provide rigorous theoretical results, including
a dynamic programming principle, together with optimality guarantees for Dec-POMFC solutions
applied to finite swarms of interest. Algorithmically, we propose Dec-POMFC-based policy gradient
methods for MARL via centralized training and decentralized execution, together with policy gradient
approximation guarantees. In addition, we improve upon state-of-the-art histogram-based MFC by
kernel methods, which is of separate interest also for fully observable MFC. We evaluate numerically
on representative collective behavior tasks such as adapted Kuramoto and Vicsek swarming models,
being on par with state-of-the-art MARL. Overall, our framework takes a step towards RL-based
engineering of artificial collective behavior via MFC. The material presented in this section is based
upon our work [2].

collective behavior and partial observability. Of practical interest is the design
of simple local interaction rules in order to fulfill global, cooperative objectives by emergence
of global behavior [231]. For example, intelligent and self-organizing robotic swarms provide
engineering applications such as Internet of Things or precision farming, for which a general
design framework remains elusive [232, 233]. Other domains include group decision-making and
opinion dynamics [234], biomolecular self-assembly [235] and active matter [236, 237] such as
self-propelled nano-particles [238], microswimmers [239], etc. [231]. Overall, there is a need for
scalable MARL under strong decentralization and partial information.

scalable and partially observable marl. Despite its many applications, decentral-
ized cooperative control remains a difficult problem in MARL [40], especially if coupled with
the simultaneous requirement of scalability. Recent scalable MARL methods include graphical
decompositions [92, 240] amongst others [40]. However, most remain limited to full observability
[240]. One line of algorithms applies pairwise MF approximations over neighbors [120], which
has yielded decentralized, partially observable extensions [241, 242]. Relatedly, MARL based
on MFGs (non-cooperative) and MFC (cooperative) focus on a broad class of systems with many
exchangeable agents. While the theory for MFG is developed [79, 195, 243], to the best of our
knowledge, neither MFC-based MARL algorithms nor discrete-time MFC have been proposed under
partial information and decentralization, except in special linear-quadratic cases [244, 245]. Further,
MFGs have been useful for analyzing emergence of collective behavior [129, 209], but less for
"engineering" collective behavior to achieve global objectives as in MFC, which is our focus. This is
in contrast to rational, selfish agents, as a decomposition of global objectives into per-agent rewards
is non-trivial [246, 247]. Beyond scalability to many agents, general MFC for MARL is also not yet
scalable to high-dimensional state-actions due to discretization of the simplex [104, 107], except in
linear-quadratic models [248, 249]. Instead, we consider general discrete-time MFC and scale to
higher dimensions via kernels. We note that our model has a similar flavor to TD-POMDPs [250],
as the MF also abstracts influence from all other agents. However, both Dec-POMFC and TD-POMDP
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address different types of problems, as the latter considers local per-agent states, while the MF in the
former is both a globally, jointly defined state between all agents and influenced by all agents.

our contribution. A tractable framework for cooperative control, that can handle decentral-
ized, partially observable systems, is missing. By the preceding motivation, we propose such a
framework as illustrated in Figure 4.14. Our contributions may be summarized as (i) proposing
the first discrete-time MFC model with decentralized and partially observing agents; (ii) providing
accompanying approximation theorems, reformulations to a tractable single-agent MDP, and novel
optimality results over equi-Lipschitz policies; (iii) establishing a MARL algorithm with policy
gradient guarantees; and (iv) presenting kernel-based MFC parametrizations of separate interest
for general, higher-dimensional MFC. The algorithm is verified on classical collective swarming
behavior models, and compared against standard MARL. Overall, our framework steps toward
tractable RL-based engineering of artificial collective behavior for large-scale multi-agent systems.
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figure 4.14: The partially-observable MFC model. A: Partially-observable Vicsek problem: agents must
align headings (arrows), but observe only partial information (e.g. heading distribution in grey circle for
orange agent). B: The decentralized model as a graphical model (grey: observed variables). C: In centralized
training, we also observe the MF, guiding the learning of upper-level actions π̌. D: The solved limiting MDP.

4.3.1 Decentralized Partially Observable Mean Field Control

In this section, we introduce the motivating finite MFC-type decentralized partially observable
control problem, as a special case of cooperative, general Dec-POMDPs [43, 46]. We then proceed to
simplify in three steps of (i) taking the infinite-agent limit, (ii) relaxing partial observability during
training, and (iii) correlating agent actions during training, in order to arrive at a tractable MDP with
optimality guarantees, see also Figures 4.14 and 4.15. For proofs see Appendices F.1 to F.16.

solves via deterministic upper-level MFC policy

solves via open-loop sequence of decision rules

solves via propagation of chaos (mean field limit)

                                    Dec-MFC MDP (Centralized, fully observable)

Dec-MFC (Decentralized, mean field observable)

Dec-POMFC (Decentralized, partially observable)

                                    Finite MFC-type Dec-POMDP (Decentralized, partially observable)

reformulate as MDP

System of interest

Algorithmic solution

figure 4.15: Reformulation of MFC-type Dec-POMDPs as an MDP. Three steps of approximation (MF limit,
open-loop control, and MDP reformulation) allow us to reformulate the broad class of MFC-type Dec-POMDP to
a tractable Decentralized Mean-Field-Observable Mean Field Control (Dec-MFC) MDP.
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In a nutshell, Dec-POMDPs are hard, and hence we reformulate into the Dec-POMFC, for which
we develop a new theory for optimality of Dec-POMFC solutions in the finite Dec-POMDP. The
solution of Dec-POMFC itself also remains hard, because its MDP is not just continuous, but infinite-
dimensional for continuous state-actions. The MDP is later addressed in Section 4.3.2 by (i) kernel
parametrizations and (ii) approximate policy gradients on the finite Dec-POMDP (Theorem 4.3.3).

4.3.1.1 MFC-Type Cooperative Multi-Agent Control

To begin, we define the finite Dec-POMDP of interest, which is assumed to be MFC-type. In other
words, (i) agents are permutation invariant, i.e. only the overall distribution of agent states
matters, and (ii) agents observe only part of the system. We assume agents i ∈ [N ] := {1, . . . , N}
endowed with random states xit, observations yit and actions uit at times t ∈ T := N from compact
metric state, observation and action spaces X , Y , U (finite or continuous). Agent dynamics depend
on other agents only via the empirical MF µN

t := 1
N

∑︁
i∈[N ] δxi

t
. Policies are memory-less and

shared by all agents, archetypal of collective behavior under simple rules [251], and of interest to
compute-constrained agents, including e.g. nano-particles or small robots. Optionally, memory
and history-dependence can be integrated into the state, see Appendix F.2. Agents act according to
policy π ∈ Π from a class Π ⊆ P(U)Y×T of policies, with spaces of probability measures P(·),
equipped with the 1-Wasserstein metric W1 [214]. Starting with initial distribution µ0, xi0 ∼ µ0,
the MFC-type Dec-POMDP dynamics are

yit ∼ pY(y
i
t | xit, µN

t ), uit ∼ πt(u
i
t | yit), xit+1 ∼ p(xit+1 | xit, uit, µN

t ) (4.3.33)

for all (i, t) ∈ [N ]× T , with transition kernels p : X × U × P(X )→ P(X ), pY : X × P(X )→
P(Y), objective JN (π) = E[

∑︁
t∈T γtr(µN

t )] to maximize over π ∈ Π under reward function
r : P(X ) → R, and discount factor γ ∈ (0, 1). Results generalize to finite horizons, average
per-agent rewards rper : X → R, r(µN

t ) =
∫︁
rperdµ

N
t , and joint state-observation-action MFs via

enlarged states.

Since general Dec-POMDPs are hard [46], our model establishes a tractable special case of high
generality. Standard MFC already covers a broad range of applications, e.g. see surveys for finance
[64] and engineering [65] applications, which can now be handled under partial information. In
addition, many classical, inherently partially observable models are covered by MFC-type Dec-
POMDPs, such as the Kuramoto or Vicsek models in Section 4.3.3, where many-agent convergence
is known as propagation of chaos [126].

4.3.1.2 Limiting Mean Field Control System

In order to achieve tractability for large multi-agent systems, the first step is to take the infinite-
agent limit. By a LLN, this allows us to describe large systems only by the MF µt. Consider a
representative agent as in Eq. (4.3.33) with states x0 ∼ µ0, xt+1 ∼ p(xt+1 | xt, ut, µt), observations
yt ∼ pY(yt | xt, µt) and actions ut ∼ πt(ut | yt). Then, its state probability law replaces the
empirical state distribution, informally µt = L(xt) ≡ limN→∞ µN

t . Looking only at the MF, we
hence obtain the Dec-POMFC system

µt+1 = L(xt+1) = T (µt, πt) :=

∫︂∫︂∫︂
p(x, u, µt)πt(du | y)pY(dy | x, µt)µt(dx) (4.3.34)

by deterministic transitions T : P(X )× P(U)Y → P(X ) and objective J(π) =
∑︁∞

t=0 γ
tr(µt).
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Approximation guarantees. Under mild continuity assumptions, the Dec-POMFC model in
Eq. (4.3.34) constitutes a good approximation of large-scale MFC-type Dec-POMDP in Eq. (4.3.33)
with many agents.

Assumption 4.3.1a. The transitions p, pY and rewards r are Lipschitz with constants Lp, LpY , Lr.

Assumption 4.3.1b. The class of policies Π is the set of all LΠ-Lipschitz policies for some LΠ > 0,
i.e. for all t ∈ T and π ∈ Π, we have that πt : Y → P(U) is LΠ-Lipschitz. Alternatively, we may
assume unrestricted policies and that (i) observations only depend on the agent state, and (ii) X is
finite.

Lipschitz continuity of the model is commonly assumed [104, 105, 195], and in general at least
(uniform) continuity is required: Consider a counterexample with uniform initial µ0 over states
A,B. If dynamics, observations, or rewards jump between regimes at µ(A) = µ(B) = 0.5, the
finite system will randomly experience all regimes, while limiting MFC experiences only the regime
at µ(A) = µ(B) = 0.5. Meanwhile, Lipschitz policies are not only standard in MFC literature
[105, 116] by neural networks (NNs) [220], but also fulfilled for finite Y trivially without loss of
generality (LΠ := diam(U)), and for continuous Y by kernel parametrizations in Section 4.3.2. We
extend MFC approximation theorems [1, 104, 105] to partial observations and compact spaces.

Theorem 4.3.1. Fix an equicontinuous family of functions F ⊆ RP(X ). Under Assumptions 4.3.1a
to 4.3.1b, the MF converges in the sense of supπ∈Π supf∈F E

[︁⃓⃓
f(µN

t )− f(µt)
⃓⃓]︁
→ 0 at all times

t ∈ T .

The approximation rate isO(1/
√
N) for finite state-actions, using equi-Lipschitz F (Appendix F.1).

Hence, the easier Dec-POMFC simplifies otherwise hard Dec-POMDPs. Indeed, we later show that
such optimal Lipschitz Dec-POMFC policies are guaranteed to exist via closedness of joint-measures
under equi-Lipschitz kernels (Appendix F.8), see Propositions 4.3.1 and 4.3.2 and Theorem 4.3.2
later.

Corollary 4.3.1. Under Assumptions 4.3.1a to 4.3.1b, any optimal Dec-POMFC policy π ∈
argmaxπ′∈Π J(π′) is ε-optimal in the MFC-type Dec-POMDP, JN (π) ≥ supπ′∈Π JN (π′) − ε,
with ε→ 0 as N →∞.

4.3.1.3 Rewriting Policies with Mean Field Observations

Now introducing the next system for reduction to an MDP, writing µ̄, π̄ etc., let policies depend
also on µ̄t, i.e. policies "observe" the MF. While we could reason that agents might observe the MF
or use filtering to estimate it [252], more importantly, the limiting MF is deterministic. Therefore,
w.l.o.g. we obtain the Dec-MFC dynamics

µ̄t+1 = T (µ̄t, π̄t(µ̄t)) :=

∫︂∫︂∫︂
p(x, u, µ̄t)π̄t(du | y, µ̄t)pY(dy | x, µ̄t)µ̄t(dx), (4.3.35)

with shorthand π̄t(µ̄t) = π̄t(· | ·, µ̄t), initial µ̄0 = µ0 and according objective J̄(π̄) =
∑︁∞

t=0 γ
tr(µ̄t)

to optimize over (now MF-dependent) policies π̄ ∈ Π̄ ⊆ P(U)Y×P(X )×T .

Deterministic open-loop control transforms optimal Dec-MFC policies π̄ ∈ argmaxπ̄′∈Π̄ J̄(π̄′)
into optimal Dec-POMFC policies π ∈ argmaxπ∈Π J(π) with decentralized execution, and vice



4.3 mean field control under partial information 107

versa: For given π̄, compute deterministic MFs (µ̄0, µ̄1, . . .) via Eq. (4.3.35) and let π = Φ(π̄) by
πt(du | y) = π̄(du | y, µ̄t). Analogously, represent π ∈ Π by π̄ ∈ Π̄ with constant π̄t(ν) = πt for
all ν.

Proposition 4.3.1. For any π̄ ∈ Π̄, define (µ̄0, µ̄1, . . .) as in Eq. (4.3.35). Then, for π = Φ(π̄) ∈ Π,
we have J̄(π̄) = J(π). Inversely, for any π ∈ Π, let π̄t(ν̄) = πt for all ν̄, then again J̄(π̄) = J(π).

Corollary 4.3.2. Optimal Dec-MFC policies π̄ ∈ argmaxπ̄′∈Π̄ J̄(π̄′) yield optimal Dec-POMFC
policies Φ(π̄), i.e. J(Φ(π̄)) = supπ′∈Π J(π′).

Knowing initial µ0 is often realistic, as deployment is commonly for well-defined problems of
interest. Even then, knowing µ0 is not strictly necessary (Section 4.3.3). In contrast to standard
deterministic open-loop control, (i) agents have stochastic dynamics and observations, and (ii)
agents randomize actions instead of playing a trajectory, still leading to quasi-deterministic MFs by
the LLN.

4.3.1.4 Reduction to Dec-MFC MDPs

Lastly, we reformulate as an MDP with more tractable theory and algorithms, writing µ̂, π̂ etc.
The recent MFC MDP [103, 107, 201] reformulates fully observable MFC as MDPs with higher-
dimensional state-actions. Similarly, we reduce Dec-MFC to an MDP with joint state-observation-
action distributions as its MDP actions. The Dec-MFC MDP has states µ̂t ∈ P(X ) and actions
ht ∈ H(µ̂t) ⊆ P(X × Y × U) in the set of joint ht = µ̂t ⊗ pY(µ̂t)⊗ π̌t under any LΠ-Lipschitz
policy π̌t ∈ P(U)Y . Here, ν ⊗K is the product measure of measure ν and kernel K, and νK is
the measure νK =

∫︁
K(· | x)ν(dx). For π̌t ∈ P(U)Y , µxy ∈ P(X × Y), we write µxy ⊗ π̌t by

letting π̌t constant on X . In other words, the desired joint ht results from all agents replacing the
previous system’s policy π̄t by lower-level policy π̌t, which may be reobtained from ht a.e.-uniquely
by disintegration [253]. Equivalently, identify H(µ) with µ and classes of π̌t yielding the same
joint, and in practice we parametrize π̌t. Thus, we obtain the MDP dynamics

ht ∼ π̂(µ̂t), µ̂t+1 = T̂ (µ̂t, ht) :=

∫︂∫︂∫︂
p(x, u, µ̂t)ht(dx,dy,du) (4.3.36)

for Dec-MFC MDP policy π̂ ∈ Π̂ and objective Ĵ(π̂) = E
[︁∑︁∞

t=0 γ
tr(µ̂t)

]︁
. The Dec-MFC MDP policy

π̂ is "upper-level", as we sample ht from π̂, to apply the lower-level policy π̌t[ht] to all agents.

guidance by MF dependence. Intuitively, the MF guides policy search in potentially hard,
decentralized problems, and reduces to a single-agent MDP where we make some existing theory
compatible. First, we formulate a DPP, i.e. exact solutions by Bellman’s equation for the value
function V (µ) = suph∈H(µ) r(µ) + γV (T̂ (µ, h)) [69]. Here, a central theoretical novelty is
closedness of joint measures under equi-Lipschitz policies (Appendix F.8). Concomitantly, we
obtain optimality of stationary deterministic π̂. For technical reasons, only here we assume
Hilbertian Y (e.g. finite or Euclidean) and finite U .

Assumption 4.3.2. The observations Y are a metric subspace of a Hilbert space. Actions U are
finite.

Theorem 4.3.2. Under Assumptions 4.3.1a to 4.3.1b and Assumption 4.3.2, there exists an optimal
stationary, deterministic policy π̂ for the Dec-MFC MDP, with π̂(µ) ∈ argmaxh∈H(µ) r(µ) +

γV (T̂ (µ, h)).
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decentralized execution. Importantly, guidance by MF is only for training and not
execution. An optimal upper-level policy π̂ ∈ argmaxπ̂′∈Π̂ Ĵ(π̂) is optimal also for the initial
system, if it is deterministic, and an optimal one exists by Theorem 4.3.2. The lower-level policies
π̄t ≡ π̌t are obtained by inserting the sequence of MFs µ̂0, µ̂1, . . . into π̂, and remain non-stationary
stochastic policies.

Proposition 4.3.2. For deterministic π̂ ∈ Π̂, let µ̂t as in Eq. (4.3.36) and π̄ = Ψ(π̂) by π̄t(ν) = π̌t

for all ν, then Ĵ(π̂) = J̄(π̄). Inversely, for π̄ ∈ Π̄, let π̂t(ν) = ν ⊗ pY(ν)⊗ π̄t(ν) for all ν, then
Ĵ(π̂) = J̄(π̄).

Note that the determinism of the upper-level policy is strictly necessary: A simple counterexample is
a problem where agents should choose to aggregate to one state. If the upper-level policy randomly
chooses between moving all agents to either A or B, then a corresponding random agent policy
splits agents and fails to aggregate. At the same time, randomization of agent actions remains
necessary for optimality, as the problem of equally spreading would require uniformly random agent
actions.

complexity. Tractability of multi-agent control heavily depends on information structure [254].
General Dec-POMDPs have doubly-exponential complexity (NEXP) [46] and are harder than fully
observable control (PSPACE, [81]). In contrast, Dec-POMFC surprisingly imposes little additional
complexity over standard MFC, as the MFC MDP remains deterministic in the absence of common
noise correlating agents [178]. An analysis with common noise is possible, e.g., if observing the
MF, but out of scope.

4.3.2 Partially Observable Mean Field Multi-Agent Reinforcement Learning

All that remains is to solve Dec-MFC MDPs. As we obtain continuous Dec-MFC MDP states and
actions even for finite X , Y , U , and infinite-dimensional ones for continuous X , Y , U , a value-based
approach can be hard. Our PG approach allows finding simple policies for collective behavior, with
emergence of global intelligent behavior described by rewards r, under arbitrary (Lipschitz) policies.
For generality, we use NN upper-level and kernel lower-level policies. While lower-level (Lipschitz,
[220]) NNs policies could be considered akin to hypernetworks [255], the resulting distributions
over NN parameters as MDP actions are too high-dimensional and failed in our experiments. We
directly solve finite-agent MFC-type Dec-POMDPs by solving the Dec-MFC MDP in the background.
Indeed, the theoretical optimality of Dec-MFC MDP solutions is guaranteed over Lipschitz policies
in Π.

Corollary 4.3.3. Under Assumptions 4.3.1a to 4.3.1b, a deterministic Dec-MFC solution π̂ ∈
argmaxπ̂′ Ĵ(π̂′) is ϵ-optimal in the Dec-POMDP with ϵ → 0 as N → ∞, JN (Φ(Ψ(π̂))) ≥
supπ′∈Π JN (π′)− ϵ.

histogram vs. kernel parametrizations. Except for linear-quadratic algorithms [245,
248, 249], the only approach to learning MFC in continuous spaces X ⊆ Rn, n ∈ N (and here Y) is
by partitioning and "discretizing" [104, 107]. Existing Q-Learning with kernel regression [104] is
for finite states X with kernels on P(X ), and learns on the MFC MDP. We allow continuous Y by
kernels on Y itself, and learn on the finite-agent system. Unfortunately, partitions fail Lipschitzness
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and hence approximation guarantees, even in standard MFC. Instead, we use kernel representations
for MFs µN

t and lower-level policies π̌t.

We represent P(X )-valued MDP states µN
t not by counting agents in each bin, but instead mollify

around each center xb ∈ X of MX bins b ∈ [MX ] using kernels. The result is Lipschitz
and approximates histograms arbirtarily well [256, Theorem 1]. Hence, we obtain input logits
Ib =

∫︁
κ(xb, x)µ

N
t (dx) = 1

N

∑︁
i∈[N ] κ(xb, x

i
t) for some kernel κ : X × X → R and b ∈ [MX ].

Output logits constitute mean and log-standard deviation of a diagonal Gaussian over parameter
representations ξ ∈ Ξ of π̌t. We obtain Lipschitz π̌t by representing π̌t via MY points yb ∈ Y such
that π̌t(u | y) =

∑︁
b∈[MY ] κ(yb, y)pb(u)/

∑︁
b∈[MY ] κ(yb, y). Here, we consider Lλ-Lipschitz maps

λ from parameters ξ ∈ Ξ to distributions pb = λb(ξ) ∈ P(U) with compact parameter space Ξ, and
for kernels choose Radial Basis Function (RBF) kernels κ(x, y) = exp(−∥x − y∥2/(2σ2)) with
some bandwidth σ2 > 0.

Proposition 4.3.3. Under RBF kernels κ, for any ξ and continuous Y , the lower-level policies
Λ(ξ)(u | y) :=∑︁b∈[MY ] κ(yb, y)λb(u | ξ)/

∑︁
b∈[MY ] κ(yb, y) are LΠ-Lipschitz in y, as in Assump-

tion 4.3.1b, if σ2 exp2
(︁
− 1

2σ2 diam(Y)2
)︁
≥ 1

LΠ
diam(Y) diam(U)maxy∈Y∥y∥, and such σ2 > 0

exists.

Proposition 4.3.3 ensures Assumption 4.3.1b. To achieve optimality by Corollary 4.3.3, deterministic
policies commonly result from convergence of stochastic PGs by taking action means, or can also be
guaranteed using deterministic PGs [257, 258]. Beyond allowing for (i) theoretical guarantees, and
(ii) finer control over agent actions, another advantage of kernels is (iii) the improved complexity
over histograms. Even a histogram with only 2 bins per dimension requires 2d bins in d-dimensional
spaces, while kernel representations may place e.g. 2 points per dimension, improving upon the
otherwise exponential complexity, see also Appendix F.17 for empirical support.

direct multi-agent reinforcement learning algorithm. Applying RL to the
Dec-MFC MDP is satisfactory for solutions only under known MFC models. Importantly, we do not
always have access to the model, and even if we do, parametrizing MFs in arbitrary compact X
is hard. Instead, it is more practical and tractable to train on a finite system. Our direct MARL
approach hence trains on a finite N -agent MFC-type Dec-POMDP of interest, in a model-free manner.
In order to exploit the underlying MDP, our algorithm assumes during training that (i) the MF is
observed, and (ii) agents can correlate actions (e.g. centrally, or sharing seeds). Therefore, the finite
system Eq. (4.3.33) is adjusted for training by correlating agent actions on a single centrally sampled
lower-level policy π̌t. Now write π̂θ(ξt | µ̃N

t ) as density over parameters ξt ∈ Ξ under a base
measure (discrete, Lebesgue). Substituting ξt as actions parametrizing ht in the MDP Eq. (4.3.36),
e.g. by using RBF kernels, yields the centralized training system as seen in Figure 4.14 for
stationary policy π̂θ parametrized by θ,

π̌t = Λ(ξ̃t), ξ̃t ∼ π̂θ(µ̃N
t ),

ỹit ∼ pY(ỹ
i
t | x̃it, µ̃N

t ), ũit ∼ π̌t(ũ
i
t | ỹit), x̃it+1 ∼ p(x̃it+1 | x̃it, ũit, µ̃N

t ), ∀i ∈ [N ].
(4.3.37)

policy gradient approximation. Since we train on a finite system, it is not immedi-
ately clear whether centralized training really yields the PG for the underlying Dec-MFC MDP,
also in existing literature for learning MFC. We will show this practically relevant fact up
to an approximation. The general PG for stationary π̂θ [221, 259] is ∇θJ(π̂

θ) = (1 −
γ)−1Eµ∼d

π̂θ ,ξ∼π̂θ(µ)

[︁
Qθ(µ, ξ)∇θ log π̂

θ(ξ | µ)
]︁

withQθ(µ̂, ξ) = E[
∑︁∞

t=0 γ
tr(µ̂t) | µ̂0 = µ, ξ0 =
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ξ] under parametrized actions ξt in Eq. (4.3.36), and using sums dπ̂θ = (1− γ)
∑︁

t∈T γtLπ̂θ(µ̂t)

of laws of µ̂t under π̂θ. Our approximation motivates MFC for MARL by showing that the un-
derlying background Dec-MFC MDP is approximately solved under Lipschitz parametrizations,
e.g. we normalize parameters ξ to finite action probabilities, or use bounded diagonal Gaussian
parameters.

Assumption 4.3.3. The policy π̂θ(ξ | µ) and its log-gradient ∇θ log π̂
θ(ξ | µ) are LΠ̂, L∇Π̂-

Lipschitz in µ and ξ (or alternatively in µ for any ξ, and uniformly bounded). The parameter-
to-distribution map is Λ(ξ)(u | y) :=

∑︁
b κ(yb, y)λb(u | ξ)/

∑︁
b κ(yb, y), with kernels κ and

Lλ-Lipschitz λb : Ξ→ P(U).

Theorem 4.3.3. Centralized training on system Eq. (4.3.37) approximates the true gradient of the
underlying Dec-MFC MDP, i.e. under RBF kernels κ as in Proposition 4.3.3, Assumptions 4.3.1a
to 4.3.1b and Assumption 4.3.3, as N →∞,

⃦⃦
⃦(1− γ)−1Eµ∼dN

π̂θ ,ξ∼π̂θ(µ)

[︂
Q̃

θ
(µ, ξ)∇θ log π̂

θ(ξ | µ)
]︂
−∇θJ(π̂

θ)
⃦⃦
⃦→ 0

with dN
π̂θ = (1− γ)

∑︁
t∈T γtLπ̂θ(µ̃N

t ) and Q̃
θ
(µ, ξ) = E

[︁∑︁∞
t=0 γ

tr(µ̃N
t )
⃓⃓
µ0 = µ, ξ0 = ξ

]︁
.

The value function Q̃
θ in the finite system is then substituted in actor-critic manner by on-policy

and critic estimates. The Lipschitz conditions of π̂θ in Assumption 4.3.3 are fulfilled by Lipschitz
NNs [105, 116, 220] and our parametrizations. The approximation is novel, building a foundation
for MARL via MFC directly on a finite MARL problem. Our results also apply to fully observable
MFC by yt = xt. Though gradient estimates allow convergence guarantees in finite MDPs (e.g. [92,
Theorem 5]), Dec-MFC MDP state-actions are always non-finite. In practice, we use empirically more
efficient PPO [73, 88] to obtain Decentralized Partially-Observable Mean Field PPO (Dec-POMFPPO)
in Algorithm 3.

Algorithm 3 Dec-POMFPPO (during centralized training)
1: for iteration n = 1, 2, . . . do
2: for time t = 0, . . . , Blen − 1 do
3: Sample central Dec-MFC MDP action π̌t = Λ(ξt), ξt ∼ π̂θ(µ̃N

t ).
4: for agent i = 1, . . . , N do
5: Sample per-agent action ũit ∼ π̌t(ũ

i
t | ỹit) for observation ỹit.

6: Perform actions, observe reward r(µ̃N
t ), next MF µ̃N

t+1, termination flag dt+1 ∈ {0, 1}.
7: for updates i = 1, . . . , NPPO do
8: Sample mini-batch b, |b| = blen from data B := ((µ̃N

t , ξt, r
N
t , dt+1, µ̃

N
t+1))t≥0.

9: Update policy π̂θ via PPO loss∇θLθ on b, using GAE [260].
10: Update critic V θ′ via critic L2-loss∇θ′Lθ′ on b.

During training, the algorithm (i) assumes to observe the MF, and (ii) samples only one centralized
ht. Knowledge of the MF during training aligns our framework with the popular CTDE paradigm.
By Theorem 4.3.3, we may learn directly on the MFC-type Dec-POMDP system Eq. (4.3.33). During
execution, decentralized policies suffice for near-optimality by Corollary 4.3.3 without agents
knowing the MF or coordinating centrally. Decentralized training can also be achieved, if the MF is
observable and all agents use the same seed to correlate their actions.
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4.3.3 Experiments

In this section, we empirically evaluate our algorithm, comparing against IPPO and MAPPO with
state-of-the-art performance [42, 88]. For comparison, we share hyperparameters and architectures
between algorithms, see Appendices F.17 to F.19.

problems. In the Aggregation problem we consider a typical continuous single integrator
model, commonly used in the study of swarm robotics [261, 262]. Agents observe their own position
noisily and should aggregate. The classical Kuramoto model is used to study synchronization
of coupled oscillators, finding application not only in physics, including quantum computation
and laser arrays [263], but also in diverse biological systems, such as neuroscience and pattern
formation in self-organizing systems [237, 264]. Here, via partial observability, we consider a
version where each oscillator can see the distribution of relative phases of its neighbors. Finally, we
implement the Kuramoto model on a random geometric graph (e.g. [265]) via omitting movement
in its independent generalization, the Vicsek model [231, 266]. Agents j have two-dimensional
position pjt and current headings ϕj

t , to be controlled by their actions. The key metric of interest for
both Kuramoto and Vicsek is polarization via the polar order parameter R = | 1N

∑︁
j exp(iϕ

j
t )|.

Here, R ranges from 0 – fully unsynchronized – to 1 – perfect alignment of agents. Experimentally,
we consider various environments, such as the torus, Möbius strip, projective plane and Klein bottle.
Importantly, agents only observe relative headings of others.

training results. In Figure 4.16 it is evident that the training process of MFC for many
agents is relatively stable by guidance via MF and reduction to single-agent RL. In Appendix F.17,
we also see similar results with significantly fewer agents and comparable to the results obtained
with a larger number of agents. This observation highlights that the training procedure yields
satisfactory outcomes, even in scenarios where the MF approximation may not yet be perfectly exact.
These findings underscore the generality of the proposed framework and its ability to adapt across
regimes.

figure 4.16: Dec-POMFPPO training curves (episode return) with shaded standard deviation over 3 seeds for
N = 200 in (a) Aggregation; Vicsek on a (b): torus; (c): Möbius strip; (d): projective plane; (e): Klein
bottle; and (f) Kuramoto on a torus.

On the same note, we see by comparison with Figure 4.17, that our method is usually on par with
state-of-the-art IPPO and MAPPO for many agents, e.g. here N = 200, though with worse sample
complexity.

figure 4.17: Training curves (episode return) with shaded standard deviation over 3 seeds and N = 200,
in (a) Aggregation (box), (b) Vicsek (torus), (c) Kuramoto (torus). For comparison, we also plot the best
return averaged over 3 seeds for Dec-POMFPPO in Figure 4.16 (MF).
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verification of theory. In Figure 4.18, as the number of agents rises, the performance
quickly tends to its limit, i.e. the objective converges, supporting Theorem 4.3.1 and Corollary 4.3.1,
as well as applicability to arbitrarily many agents.

figure 4.18: The performance of the best of 3 final MFC policies transferred to N -agent systems (in
blue), with error bars for 95% confidence interval, averaged over 50 episodes, and compared against the
performance in the training system (in red). Problems (a)-(f) and training are as in Figure 4.16.

Analogously, conducting open-loop experiments on our closed-loop trained system in Figure 4.19
demonstrates the robust generality of learned collective behavior with respect to the randomly
sampled initial agent states, supporting Corollary 4.3.3 and Corollary 4.3.2.

BA C

figure 4.19: Qualitative behavior of Dec-POMFC in the Vicsek problem on the torus. A, B: For the
Vicsek (torus) problem with forward velocity control, the open-loop behavior (B) shows little difference in
performance of agents (rods, color indicating heading) over the closed-loop behavior (A). C: Visualization of
agents (triangles) under the Vicsek model on the torus.

qualitative analysis. In the Vicsek model, as seen exemplarily in Figure 4.19 and
Appendix F.17, the algorithm learns to align in various topological spaces. In all considered
topologies, the polar order parameter surpasses 0.9, with the torus system even reaching a value close
to 0.99. As for the angles at different iterations of the training process, as depicted in Figure 4.20,
the algorithm gradually learns to form a concentrated cluster of angles. Note that the cluster center
angle is not fixed, but rather changes over time. This behavior can not be observed in the classical
Vicsek model, though extensions using more sophisticated equations of motion for angles have
reported similar results [237]. For more details, see Appendices F.17 to F.19.

BA

figure 4.20: Qualitative behavior of Dec-POMFC in the Vicsek problem. A: Agent angle alignment in the
Vicsek model on the torus, plotted as density over time; B: Alignment of agents in the Vicsek model on the
projective plane, as in Figure 4.19.

Figure 4.20 and additional figures, with similar results for other topologies in Appendix F.17
illustrate the qualitative behavior observed across the different manifolds. Agents on the continuous
torus demonstrate no preference for a specific direction across consecutive training runs. Conversely,
agents trained on other manifolds exhibit a tendency to avoid the direction that leads to an angle flip
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when crossing the corresponding boundary. Especially for the projective plane topology, the agents
tend to aggregate more while aligning, even without adding another reward for aggregation.

For Aggregation in Figure 4.21, we also find successful aggregation of agents in the middle. In
practice, one may define any objective of interest. For example, we can achieve misalignment in
Figure 4.21, resulting in polar order parameters on the order of magnitude of 10−2, and showing
the generality of the framework.

BA

figure 4.21: Qualitative behavior of Dec-POMFC in the Vicsek and Aggregation problem. A: Qualitative
behavior for misalignment of agents in the Vicsek (torus) problem. B: The two-dimensional Aggregation
problem, with agent distances to mean as colors.

additional experiments Some other experiments are discussed in Appendix F.17, including
the generalization of our learned policies to different starting conditions, a comparison of the Vicsek
model trained or transferred to different numbers of agents, additional interpretative visualizations,
similar success for the Kuramoto model, and a favorable comparison between RBF and histograms
for higher dimensions, showing the generality of the framework and supporting our claims.

4.3.4 Summary

Our framework provides a novel methodology for engineering artificial collective behavior in
a rigorous and tractable manner, whereas existing scalable learning frameworks often focus on
competitive or fully observable models [132, 267]. We hope our work opens up new applications
of partially-observable swarm systems. Our method could be of interest due to (i) its theoretical
optimality guarantees while covering a large class of problems, and (ii) its surprising simplicity
in rigorously reducing complex Dec-POMDPs to MDPs, with same complexity as MDPs from fully
observable MFC, thus allowing analysis of Dec-POMDPs via a tractable MDP.

The current theory remains limited to non-stochastic MFs, which in the future could be analyzed for
stochastic MFs via common noise [1, 127, 268]. Further, sample efficiency could be analyzed [269],
and parametrizations for history-dependent policies using more general NNs could be considered,
e.g. via hypernetworks [255, 270]. Lastly, extending the framework to consider additional practical
constraints and sparser interactions, such as physical collisions or via graphical decompositions,
may be fruitful.
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4.4 conclusion of chapter 4

In this chapter, we began our exposition of MFC by considering a simplified, quasi-static MFC
problem with external dynamic environment states. There, we have shown that MFC solutions with
identical policies suffice for approximate optimality in MF systems, and we have performed the
reduction to the MFC MDP together with RL for MFC-based MARL, together with a basic DPP. The
primary motivating example was a power-of-d load balancing system, which we have also studied
in external collaborations not presented in this thesis [15, 21].

We then moved on to extend MFC towards more general settings. First, the weak interaction of
agents was ameliorated by addressing strong interaction in the presence of many minor agents and a
major player, through the framework of M3FC. There, we also analyzed RL for MFC-based MARL on
the finite MARL system, showing the near-exactness of PGs in large systems with many agents under
Lipschitz conditions on the policy. Propagation of chaos are also shown to hold under Lipschitz
conditions on the model. Overall, the algorithms were verified and compared against the common
PG MARL methods of IPPO and MAPPO, and showed that MFC-based MARL can outperform standard
MARL techniques.

Finally, we have extended the applicability of MFC by considering partial observability and
decentralization through the Dec-POMFC framework, which is particularly important in real large-
scale systems, where centralization cannot typically be assumed under the presence of many agents.
In the case of limiting deterministic MF, the otherwise difficult partially-observable MFC is reduced
to a standard MFC during training using the CTDE paradigm. During execution, given an initial MF,
the policies can then be executed decentrally. Theoretical results were extended by giving a novel
DPP under restriction to equi-Lipschitz policies. The framework was compared against IPPO and
MAPPO and achieved comparable results. Quantitative support was shown for theoretical results.
In Kuramoto and Vicsek models, we also showed the generalization to unknown initial states and
model variations.

In a nutshell, we have addressed our RQs I and II of learning and model generality, in order to
synthesize scalable MARL algorithms through MFC in the cooperative case. While the subject of
MFC in discrete time for MARL remains an active area of research, we hope that our contributions
have shown how to obtain scalable MARL algorithms under the usage of MF approximations in
more realistic, non-standard MFC scenarios. In the next and penultimate chapter, we will discuss
applications of MFGs and MFC or large-scale MARL in general, including both a list of potential
applications and particular ones in more detail. Answering RQ III, we hope to affirm the usefulness
of our developed frameworks in applications beyond the ones already considered in preceding
experiments.
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In this chapter, we study the applicability of MFGs and MFC in practical large-scale controlled
systems. We begin by listing a number of potential applications for large-population, many-agent
MARL beyond the ones already presented in preceding chapters. In particular, we list some possible
applications in distributed computing, cyber-physical systems, autonomous mobility and natural or
social sciences. We also refer the reader to further existing surveys on applications of MFGs and MFC
with less focus on the learning aspect. We then move on to consider two exemplary applications of
embodied drone swarms, where collisions between physical agents must be avoided, as well as edge
computing scenarios for the balancing of computational offloading resources. We have also studied
load balancing and network applications in external collaborations [10, 15, 21], which are however
not presented in this thesis.
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5.1 potential applications of large-population marl

Today, RL already finds application in various application areas such as LLMs [39], robotics [27],
autonomous driving [28] or navigation of stratospheric balloons [29] as a method to realize effective
sequential decision-making in complex problems. Similarly for MARL as a generalization of RL,
potential applications for MARL are manifold and include e.g. teams of unmanned aerial vehicles
[30, 271] or video games [35, 75]. While the domain of MARL is somewhat empirically successful,
large-scale MARL still remains subject of active research. Here, the classes of competitive MFGs
and cooperative MFC problems naturally contain a large number of real world scenarios with many
agents, and can find varied applications, e.g., in analysis of power network resilience [272], smart
heating [53], edge computing [273] or flocking [129].

Many more applications still remain to be considered. For example, intelligent and self-organizing
robotic swarms provide engineering applications such as Internet of Things or precision farming,
for which a general design framework remains elusive [232, 233] and requires scalable handling of
partial information. Other domains include group decision-making and opinion dynamics [234],
biomolecular self-assembly [235] and active matter [236, 237] such as self-propelled nano-particles
[238], microswimmers [239], etc. [231]. Furthermore, in the recent years, there has been a surge of
interest in large-scale multi-agent dynamical systems on higher-order networks due to their great
generality and practical importance e.g. in epidemiology [274], opinion dynamics [275, 276],
network synchronization [277, 278], neuroscience [279], and more. We refer the interested readers
to the excellent review articles [280–282]. For all of the above, the application of MFG and MFC
frameworks developed in this thesis may be fruitful.

In this section, we give an overview over selected areas of applications that could highly profit from
further research in scalable MARL methods – and vice versa as inspirations for future algorithms.
Systems with large numbers of agents are somewhat ubiquitous, and in the following we will give
some general areas of application for which this is true. We note that applications are not only the
motivation of developing general, scalable algorithms. Instead, in addition to motivating algorithms
by applications, one can also find inspiration from specialized approaches developed for specific
applications, in existing areas of research. Therefore, applications of MARL may also allow for
further insight into how to develop general MARL algorithms and MFGs or MFC models. Apart from
the applications listed here, there are many more applications of large-scale MARL also in other
topics such as economics and finance, etc., for which we also refer to a variety of surveys [37, 38,
64, 283]. In particular, we point out the surveys on applications of MFGs and MFC specifically, in
engineering [65] and finance [64]. The material presented in this section is based on [20].

5.1.1 Distributed Computing

An important area of application with high accessibility in terms of simulated training data, is
given by networked computers and computing applications, including for example also video
games, where the advantages of MARL have been prominently and repeatedly demonstrated in
scenarios with up to, e.g., 10 agents [35, 36, 75, 284]. On the other hand, MARL in scenarios with
significantly larger population sizes such as in Neural MMO [285] has not yet seen similar levels of
success, and the above benchmark was only recently proposed. Here, future work towards a better
understanding and successful design of large-scale multi-agent interaction is ongoing and could
find application in making real games more interactive. Similarly, one could consider also other
computing applications such as peer-to-peer systems [286] and decentralized finance [287], where
automated game-theoretic analysis of user behavior by MFGs could help, e.g., in system design.
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Apart from very specific computing applications, another important use case of large-scale MARL
may be the optimization of distributed computing itself. For example, RL has long been used to find
adaptive load balancing algorithms [288]. Even to this day, the study of load balancing remains an
open problem, for example in the presence of partial observability and delayed information [289],
where studies on systems with large populations of servers and clients remain of importance and
– in consideration of today’s increasingly large-scale computing infrastructure – continue to be
investigated using e.g. MF analysis [230] and learning MFC, see also our external collaborations not
discussed in this thesis [10, 15, 21]. Some related areas of research include throughput optimization
[56], cloud resource sharing [109, 290] and edge computing [273] in systems with many devices,
where MF approximations are often already used [57, 109]. However, such formulations are typically
used to analytically derive results, which has the disadvantages of requiring extensive manual efforts
and considering only special cases. Here, scalable and automated MARL algorithms could enable
solutions for more complex or real systems.

5.1.2 Cyber-Physical Systems

Cyber-physical systems constitute another highly important and emerging subject area. Apart from
the many applications of single-agent learning in robotics [27, 291], more scalable MARL methods
could find further applications for swarms of embodied agents. The market for UAVs is developing
rapidly, and swarms of drones could reach large-scale deployment in the near future [292], owing
to their great number of potential applications. In general, swarms of terrestrial, marine and
especially aerial drones could thus be a key technology for tasks such as establishing communication
networks for disaster management [293], performing efficient search-and-rescue missions [294] or
delivering packages [295]. However, deploying drone swarms in the real world is associated with a
variety of coordination challenges [296], not seldom stemming from the complexity of real-world
environments. Here, automated and effective decision-making for large swarms of drones remains
yet an active area of research with few general design methods [233].

Similar applications are not restricted to embodied, interactive agents and can long be found in
other sectors of industry such as energy [297], heating [298], and water distribution [299]. These
wide-scale critical infrastructure sectors may similarly profit from developments in large-scale
system control via deep RL, see e.g. recent works on power networks [272, 300, 301] or smart
heating [53], many of which have also found solutions in formulations based on MF limits [65].
In the future, critical infrastructure could profit also from achieving the effective design of more
decentralized control solutions also in terms of resilience, since secure, reliable electric power
and water supply remain of paramount importance to society. Here, scalable learning methods on
networks could enable key technologies such as smart grids, which may well be key to preparing
and hardening the power grid against future natural and man-made disasters [302].

5.1.3 Autonomous Mobility

Somewhat related to cyber-physical systems, autonomous mobility and traffic control is among
the most challenging application areas of MARL and has received well-deserved attention from
both academia and the industry in the last decades. In both of these applications, large numbers
of agents participate in real-life scenarios in which the coordination is both highly safety-critical
and usually non-cooperative. The algorithms for such applications are required to deal with many
challenges MARL problems pose simultaneously, in addition to fulfilling safety and other regulatory



118 5 practical applications in many-agent systems

concerns. Different heterogeneous vehicles of different capabilities, as well as other entities of
traffic, such as traffic lights and vehicles, must be considered as part of the population. Since
none of the agents would have a global view, the algorithms should not only tackle safety, but also
partial-observability.

Many real-world scenarios associated with autonomous mobility involve a large-population of agents
and therefore require scalable learning methods. Especially following the increasing connectivity
of the vehicles and considering the highly dynamic and unpredictable nature of mobile systems.
Important challenges of the area includes safety constraints, standardized or compatible algorithms
for different vehicles and integration with existing systems, e.g. manually controlled vehicles
and human interaction. Here, recent work for the lower-level control vehicles of employs e.g.
graph-based models [303, 304] and distributed RL-based methods [305] for scalability. For a more
detailed view of the latest works and open challenges in autonomous mobility, we refer the reader to
the recent surveys [28, 306, 307].

On the higher level, traffic control with congestion as well as route planning problems such as
vehicle routing problems [308] are further related application area that attract attention, as traffic
congestion becomes more and more problematic with the increasing population and proliferation of
private cars. In particular, this higher level comes with the requirement of dealing a large number
of entities such as traffic lights, vehicles and pedestrians, and therefore is an excellent potential
application for MF models. One way to benefit from MARL in traffic control is adaptive traffic signal
control, which have been considered via our developed major-minor framework [61]. We also refer
the reader to further recent works that propose MF-based approaches to this end [54, 55, 108].

5.1.4 Natural and Social Sciences

Lastly, foregoing control for a moment, the study of behavior of large-scale dynamical systems
is quite classical: The MF theory originates in statistical physics for the description of magnetic
materials [47], which has since also been used as a benchmark in large-population MARL [120].
Analogous approaches are also often found in social sciences through opinion dynamics on networks
of people [51, 309], or in particular through analyzing general interacting particle systems on
complex networks [310]. Oftentimes, each agent in such models can be endowed with decision-
making capabilities, leading for example to applications such as the analysis of crowd dynamics in
the case of building evacuations [60, 110, 111]. As a result, a potential natural application of MFG
and MFC-based MARL can be found in natural and social sciences.

One example of particular relevance is the study of spread and control of epidemics [49], which is
not restricted to biological epidemics but includes also e.g. malware spread on computer networks
[50, 311, 312], and is of recent interest due to the COVID-19 pandemic. Such systems can be seen
as multi-agent systems connected via complex and adaptive networks, see for example [313–315]
for work in this direction. Recently, many works using RL for finding optimal decisions in epidemic
situations have emerged. The works in this direction include but are not limited to [316–319]. Here,
we and other existing works have also used graph-based approaches to represent heterogeneous
interactions between players together with learning [7, 153].
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5.2 collision-free mean field control for embodied drone swarms

MARL remains challenging both in its theoretical analysis and empirical design of algorithms,
especially for large swarms of embodied robotic agents where a definitive toolchain remains
part of active research. We use emerging state-of-the-art MFC techniques in order to convert
many-agent swarm control into more classical single-agent control of distributions. This allows
profiting from advances in single-agent RL at the cost of assuming weak interaction between agents.
However, the MF model is violated by the nature of real systems with embodied, physically colliding
agents. Thus, we combine collision avoidance and learning of MFC into a unified framework for
tractably designing intelligent robotic swarm behavior. On the theoretical side, we provide novel
approximation guarantees for general MFC both in continuous spaces and with collision avoidance.
On the practical side, we show that our approach outperforms MARL and allows for decentralized
open-loop application while avoiding collisions, both in simulation and real UAV swarms. Overall,
we propose a framework for the design of swarm behavior that is both mathematically well-founded
and practically useful, enabling the solution of otherwise intractable swarm problems. The material
presented in this section is based upon our work [5].

Over the past decades, the field of swarm robotics [227, 320, 321] has received considerable attention
[322]. Various areas of potential applications include for example industrial inspection tasks [323],
such as for turbines, cooperative object transport [324–326], agriculture [327], aerial combat [328],
and cooperative search [329]. A recent promising approach for engineering many-agent systems
such as intelligent robot swarms is MARL [40], which has found success in diverse complex problems
such as strategic video games [75], communication networks [330] or traffic control [331]. However,
MARL algorithms suffer from issues such as credit assignment, non-stationarity and scalability
to many agents [40]. Meanwhile, robotic swarms such as fleets of UAVs usually consist of many
interacting UAVs and remain of considerable interest due to their inherent robustness, scalability
to large-scale deployment and decentralization, which can be considered the ultimate goal of the
study of swarm intelligence and robotics [227, 251]. Here, scalable control approaches and highly
general toolchains for swarm robotics remain to be established [320].

A classical approach to formulate systems with large numbers of agents with low complexity
is via MF models, describing swarms of drones by their distribution, see also [332] and [124]
for reviews on MF swarm robotics and MFC. However, most prior literature is based on analytic
derivations and continuous-time models, which are less conducive to advances in RL. For example,
stabilizing control of swarms to distributions are designed in [333–335]. Other works such as
[336, 337] consider population density estimates via collisions for task allocation problems, while
[338] study robots for stick-pulling. Lastly, a variety of approaches use PDE-based formulations,
e.g. [339, 340] for density control, or [341, 342] for general analytic frameworks, though they are
significantly more difficult to treat both rigorously and from a learning perspective. Especially
MF-based learning algorithms often remain restricted to competitive settings such as MFGs [22, 23]
by learning e.g. Nash [95, 115, 117, 120, 131], regularized [9, 142] or correlated equilibria [343,
344]. For instance, works such as [345] or [208] investigate trajectory control of selfish UAV agents,
while [346] considers formation flight in dense environments. Although selfish control problems are
interesting for many applications, aligning selfish or local cost functions with a certain cooperative,
global behavior can be difficult [347]. Solutions for cooperative joint objectives without necessity
of manual cost function tuning are therefore of practical interest for artificially engineering swarm
behaviors.

In this work, we propose a discrete-time MFC-based swarm robotics framework that is conducive to
powerful deep RL techniques. Only very recently were MFC [104, 105, 107] and related histogram
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observations for MARL [348] proposed as a potential solution to cooperative scalable MARL, which
could enable both the solution of otherwise intractable tasks as well as model-free application
to swarms, adapting to environments and tasks. However, an eminent issue of MFC for robotic
systems is violation of the MFC model due to physical collisions between robots. To solve this
issue, we combine MFC with deep RL and collision avoidance algorithms. Here, collision avoidance
algorithms could range from classical rule-based [349] over planning-based [350] to learning-based
approaches [16, 32], and similarly for RL, see e.g. [351]. Importantly, our approach (i) is able
to utilize advances in RL, circumventing MARL and solving otherwise difficult swarm problems
without extensive manual and analytical design of algorithms, and (ii) closes the gap between MF
models and reality, as collisions between agents violate the weak interaction principle of MF models
and are usually to be avoided, e.g. in UAVs. As a result, our approach is highly practical, with the
advantage of automatic design of swarm algorithms for swarm problems.

Our contribution can be summarized as follows: (i) We combine RL with MFC and collision
avoidance algorithms for general task-driven control of robotic swarms; (ii) We give novel
theoretical approximation guarantees of MFC in finite swarms as well as in the presence of additional
collision avoidance maneuvers; (iii) We demonstrate in a variety of tasks that MFC outperforms
state-of-the-art MARL, can be applied in a decentralized open-loop manner and avoids collisions,
both in simulation and real UAV swarms. Overall, we provide a general framework for tractable
swarm control that could be applied directly to swarms of UAVs.

5.2.1 A Model of Embodied Swarms

In order to tractably describe a plethora of swarm tasks, we formulate a MF model where all agents
are anonymous and it is sufficient to consider their distribution.

5.2.1.1 Finite Swarm Model

Formally, we consider compact state and action spaces X ,U ⊆ R2 (though our results are easily
extended to R3) representing possible locations and movement choices of an agent. For any N ∈ N,
at each time t = 0, 1, . . ., the states and actions of agent i = 1, . . . , N are denoted by xi,Nt and
ui,Nt . We denote by P(X ) the space of probability measures on X , equipped with the topology of
weak convergence. Define the empirical state distribution µN

t = 1
N

∑︁N
i=1 δxi,N

t
∈ P(X ), which

represents all agents anonymously by their states. We consider policies π = {πt}t≥0 ∈ Π from
a space of policies Π with shared Lipschitz constant, such that agents act on their location and
the distribution of all agents, πt : X × P(X ) → P(U). The assumption of Lipschitz continuity
is standard in the literature, includes e.g. neural networks [105, 116, 352], and may allow
approximation of less regular policies.

Under a policy π ∈ Π, the finite swarm system shall evolve by sampling an initial state xi,N0 ∼ µ0

from an initial distribution µ0 of agents, and subsequently taking movement actions ui,Nt ∼
πt(x

i,N
t , µN

t ), resulting in new states xi,Nt+1 = xi,Nt + ui,Nt + ϵit for all agents i with optional i.i.d.
Gaussian noise ϵit ∼ N (0,Σ) and diagonal covariance matrix Σ = diag(σ2

1, σ
2
2). In other words,

each drone can move a distance limited to U , up to some smoothing or inaccuracy ϵit. In simulation,
we further clip agent positions to stay inside X . The objective is then given by an arbitrary function
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r : P(X )→ R of the spatial distribution of agents, giving rise to the infinite-horizon discounted
objective

JN (π) = E

[︄ ∞∑︂

t=0

γtr(µN
t )

]︄
. (5.2.1)

Since MARL can be difficult in the presence of many agents (see e.g. combinatorial nature in [40]),
we will formulate and verify the limiting infinite-agent system.

5.2.1.2 Mean Field Swarm Model

In the limit asN →∞, single agents become indiscernible and we need only model their distribution
(MF) µt ∈ P(X ). Starting at µ0, under policy π ∈ Π, deterministically

µt+1 = T πt(µt)(µt) :=

∫︂∫︂
N (x+ u, σ2)πt(du | x, µt)µt(dx) (5.2.2)

with the deterministic MF transition operator T πt(µt)(µt) as a function of πt(µt) ∈ P(U)X and the
current MF µt, giving way to the MFC problem with objective function

J(π) = E

[︄ ∞∑︂

t=0

γtr(µt)

]︄
. (5.2.3)

Remark 5.2.1. A dependence of r on joint state-action distributions in P(X ×U) can be modelled
by splitting time steps into two and using the new state space X ∪ (X × U).

For simplicity of analysis, we assume absence of common noise, leading to a deterministic MF limit,
though in our experiments we also allow reactions to a random external environment. Under a mild
continuity assumption, weaker than the common Lipschitz assumption in existing literature [105,
352], we obtain rigorous approximation guarantees.

Assumption 5.2.1. The reward function r is continuous.

By compactness of P(X ), r is bounded. As long as r is continuous, i.e. small changes in the
agent distribution lead to small changes in reward, the MFC model is a good approximation for
large swarms and its solution solves the finite agent system approximately optimally. As existing
approximation properties still remain limited to finite X , U [104, 105], we give a brief, novel proof
for compact spaces.

Theorem 5.2.1. Under Assumption 5.2.1, at all times t ∈ T , the empirical reward r(µN
t ) converges

weakly and uniformly to the limiting reward r(µt) as N →∞, i.e.

sup
π∈Π

E
[︁⃓⃓
r(µN

t )− r(µt)
⃓⃓]︁
→ 0. (5.2.4)
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Proof. We can metrizeP(X ) via the metric d(µ, ν) :=
∑︁∞

m=1 2
−m|µ(fm)−ν(fm)| for a sequence

of continuous and bounded fm : X → R, |fm| ≤ 1 (cf. [216, Theorem 6.6]).

Consider any (uniformly) equicontinuous setF ⊆ RP(X ) of functions, i.e. there exists an increasing
(concave, cf. [353, p. 41]) ωF : [0,∞) → [0,∞) (modulus of continuity) such that ωF (x) → 0
when x→ 0 and |f(µ)− f(ν)| ≤ ωF (d(µ, ν)) for all f ∈ F . We show inductively for t ≥ 0 that

sup
π∈Π

sup
f∈F

E
[︁⃓⃓
f(µN

t )− f(µt)
⃓⃓]︁
→ 0, (5.2.5)

which implies the desired property, since r is uniformly continuous by compactness of P(X ) and
Assumption 5.2.1.

At time t = 0, the proof follows from the weak LLN argument (see Eq. (5.2.7) and below). For the
induction step,

sup
π∈Π

sup
f∈F

E
[︁⃓⃓
f(µN

t+1)− f(µt+1)
⃓⃓]︁

(5.2.6)

≤ sup
π∈Π

E
[︁
ωF (d(µ

N
t+1, T

πt(µN
t ))
]︁

(5.2.7)

+ sup
π∈Π

sup
f∈F

E
[︁⃓⃓
f(T πt(µN

t ))− f(µt+1)
⃓⃓]︁

(5.2.8)

where for the first term Eq. (5.2.7), by Jensen’s inequality we obtain

E
[︁
ωF (d(µ

N
t+1, T

πt(µN
t ))
]︁
≤ ωF

(︁
E
[︁
d(µN

t+1, T
πt(µN

t )
]︁)︁

for concave ωF . Abbreviating xNt ≡ {xi,Nt }i∈[N ], we have

E
[︁
d(µN

t+1, T
πt(µN

t )
]︁

=
∞∑︂

m=1

2−mE
[︁⃓⃓
µN
t+1(fm)− T πt(µN

t )(fm)
⃓⃓]︁

≤ sup
m≥1

E
[︁
E
[︁⃓⃓
µN
t+1(fm)− T πt(µN

t )(fm)
⃓⃓ ⃓⃓

xNt
]︁]︁
,

where by the weak LLN argument, the squared term

E
[︁⃓⃓
µN
t+1(fm)− T πt(µN

t )(fm)
⃓⃓ ⃓⃓

xNt
]︁2

≤ E

⎡
⎣
⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=1

(︂
fm(xi,Nt+1)− E

[︂
fm(xi,Nt+1)

⃓⃓
⃓ xNt

]︂)︂⃓⃓⃓⃓
⃓

2
⃓⃓
⃓⃓
⃓⃓ xNt

⎤
⎦

=
1

N2

N∑︂

i=1

E
[︃(︂

fm(xi,Nt+1)− E
[︂
fm(xi,Nt+1)

⃓⃓
⃓ xNt

]︂)︂2 ⃓⃓⃓⃓ xNt
]︃

≤ 4

N
→ 0

since for any fm, the cross-terms are zero and |fm| ≤ 1.

For the second term Eq. (5.2.8), by induction assumption we have

sup
π∈Π

sup
f∈F

E
[︁⃓⃓
f(T πt(µN

t ))− f(µt+1)
⃓⃓]︁

≤ sup
π∈Π

sup
g∈G

E
[︁⃓⃓
g(µN

t )− g(µt)
⃓⃓]︁
→ 0
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using g = f ◦ T πt and the corresponding class G of functions with modulus of continuity
ωG := ωF ◦ ωT , where ωT denotes the uniform modulus of continuity of T πt by uniform Lipschitz
continuity of π ∈ Π.

As a result, the MFC approach is a theoretically rigorous approach to approximately optimally
solving large-scale swarm problems with complexity independent of N .

Corollary 5.2.1. Under Assumption 5.2.1, an optimal solution π∗ ∈ Π to the MFC problem
constitutes an ε-optimal solution to the finite swarm problem, where ε→ 0 as N →∞.

Proof. For any π ∈ Π and ε > 0, we can choose T such that
∑︁∞

t=T+1 γ
tE
[︁⃓⃓
r(µN

t )− r(µt)
⃓⃓]︁
≤

2−T maxµ 2|r(µ)| < ε
4 , and for sufficiently large N

∑︁T
t=0 γ

tE
[︁⃓⃓
r(µN

t )− r(µt)
⃓⃓]︁

< ε
4 by The-

orem 5.2.1. Therefore, we have JN (π∗) − maxπ∈Π JN (π) = minπ∈Π(J
N (π∗) − JN (π)) ≥

minπ∈Π(J
N (π∗)−J(π∗))+minπ∈Π(J(π

∗)−J(π))+minπ∈Π(J(π)−JN (π)) ≥ − ε
2+0− ε

2 =
−ε by the prequel and optimality of π∗ in the MFC problem.

5.2.2 MFC with Collision Avoidance

In order to remove the two remaining obstacles of (i) solving the MFC problem, and (ii) resolving
the real-world gap of MFC for embodied agents, we combine MFC with arbitrary powerful RL and
collision avoidance techniques. The overall hierarchical structure is found in Figure 5.1. The MFC
solution is learned via RL and gives high-level directions, which are realized by each agent while
avoiding collisions.

APFDrone 

Drone 2

…

Drone 1 APF

APF

…

256 nodes, tanh

256 nodes, tanh

100Hz
Realtime

Discretisation

figure 5.1: A hierarchical overview of our approach. The learned high-level MFC policy sends movement
instructions to the UAV swarm, while each agent uses a real-time collision avoidance algorithm – here
Artificial Potential Field (APF) – to avoid collisions with others.
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5.2.2.1 Reinforcement Learning

For the MFC problem, it is known that there exists an optimal stationary solution [107, Theorem 19],
which may be found by solving the MFC MDP, a single-agent but infinite-dimensional RL problem with
P(X )-valued states µt andP(U)X -valued actions ht evolving according to µt+1 = T h(µt). To deal
with the infinite dimensionality ofP(X ) andP(U)X , we discretizeX and use a binned histogram of
P(X ) as in [107] with M = 62 = 36 bins by trading off between tractability (good training, low M )
and performance (highM ), whileP(U) is parametrized by Gaussians with means θ ∈ U and diagonal
covariances σ1, σ2 ∈ (0, 0.25], of which the samples uit ∼ h(uit | xit) = N (θ,diag(σ1, σ2)) are
clipped to U . As exact computation of µt is difficult, we use the finite system with N = 300 agents
(though less works fine) and their empirical distribution analogous to particle filtering, which can
be understood as directly learning on a large finite swarm.

We use the RLlib 1.13.0 implementation [76] of PPO RL [73] and a diagonal Gaussian neural
network policy with two hidden tanh-layers of 256 nodes, sampling clipped values in [−1, 1]
affinely transformed to θ, σ1, σ2. Hyperparameters are printed in Table 5.1, of which sufficiently
high minibatch sizes appeared most important.

table 5.1: Hyperparameter configurations for PPO.

Symbol Name Value

γ Discount factor 0.99
λ GAE lambda 1
β KL coefficient 0.03
ϵ Clip parameter 0.2
lr Learning rate 0.00005
Bb Training batch size 4000
Bm Minibatch size 1000
Tb Updates per training batch 5

5.2.2.2 Collision Avoidance Subroutine

A solution of the MF system does not directly translate into applicable real-world behavior, since
the MF solution ignores physical constraints. While e.g. UAVs could fly at different heights, a
general swarm algorithm should explicitly avoid collisions in order to guarantee suitability of the
weakly-interacting MFC model. This is done by separating concerns, decomposing the issue into
MFC plus sequences of collision-avoiding navigation subproblems between decision epochs. For
example, we could choose U slightly smaller than the maximum speed range to allow for additional
avoidance maneuvers. Then, assuming the time ∆t between two MFC decisions t and t + 1 is
sufficiently long, and that agents have finer, direct control over their positions, a collision-avoiding
navigation subroutine could approximately achieve the desired positions up to an error that becomes
arbitrarily small with agent radius r.

For N drones and agent radius r we hence assume existence of such a subroutine F which mildly
perturbs all positions and their distribution µN

t at each time step and thereby achieves a collision-free
MF, which we write as F (µN

t ), such that ∥xit − xjt∥2 > 2r for all i, j. We further assume that F is
near-optimal, i.e. each drone’s position is perturbed at most by a distance of 4Nr. Indeed, this is
possible for sufficiently small r, e.g. if X = [−m,m]2 for m > 0: At any x ∈ X , on an arbitrary
line of length greater 2m passing through x, we can always choose a position that is at most 4Nr
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away from x, as in the worst case all other N − 1 drones are located on the line along which F
moves the drone and have a distance of slightly less than 4r between each other. Under F , we can
show that a collision-avoiding finite swarm of sufficiently many small agents is solved well by our
approach.

Theorem 5.2.2. Let π ∈ Π be an optimal solution to the MFC problem, and let F be the near-optimal
collision avoidance subroutine as defined above. Then for each ε > 0 there exists an N ′ such that
for all N ≥ N ′ and agent radii rN,ε, the solution π gives an ε-optimal solution to the finite swarm
problem with collision avoidance.

Proof. The definition of F allows us to define new model dynamics with new random MF variables
denoted by µ′N

t , where we leave out the definition of each agent variable for brevity. For the new
dynamics, at each time step t we apply function F to the current MF µ′N

t and underlying positions.
Subsequently, the MF µ′N

t+1 is obtained by applying the usual transition dynamics.

Now, we show via induction over t that for all t,

sup
π∈Π

sup
f∈F

E
[︁⃓⃓
f(µN

t )− f(F (µ′N
t ))

⃓⃓]︁
→ 0. (5.2.9)

Analogous to the proof of Theorem 5.2.1, the induction start follows from a weak LLN argument.
For the induction step,

sup
π∈Π

sup
f∈F

E
[︁⃓⃓
f(µN

t+1)− f(F (µ′N
t+1))

⃓⃓]︁

≤ sup
π∈Π

E
[︁
ωF (d(µ

N
t+1, T

πt(µN
t ))
]︁

+ sup
π∈Π

sup
f∈F

E
[︁⃓⃓
f(T πt(µN

t ))− f(T πt(F (µ′N
t )))

⃓⃓]︁

+ sup
π∈Π

sup
f∈F

E
[︁⃓⃓
f(T πt(F (µ′N

t )))− f(µ′N
t+1)

⃓⃓]︁

+ sup
π∈Π

sup
f∈F

E
[︁⃓⃓
f(µ′N

t+1)− f(F (µ′N
t+1))

⃓⃓]︁
(5.2.10)

where the first two summands converge to zero by arguments as in the proof of Theorem 5.2.1.
The third term converges to zero by a weak LLN argument while the forth summand is bounded
by ωF (4NrN,ε), see the explanation above. By choosing rN,ε = o(1/N), the last summand in
Eq. (5.2.10) converges to 0. This concludes the induction.

For ε-optimality, we proceed as in Corollary 5.2.1 and obtain

E

[︄
T−1∑︂

t=0

γt
⃓⃓
r(µt)− r(F (µ′N

t ))
⃓⃓
]︄
<

ε

2

for N large enough by applying statement Eq. (5.2.9). The terms beyond T − 1 can be bounded by
ε/2 as in Corollary 5.2.1.

Hence, for a given allowed sub-optimality specification ε, we can find a number N and size r of
drones such that solving the MFC problem is ε-optimal in the finite swarm system. In practice, this
means that if we can use sufficiently many sufficiently small drones, MFC provides good solutions.

In this work, for simplicity we use APF as in [354] with attractive velocity Fd = 1.5(x̂it − xit) in
simulation, where x̂it denotes the MFC-based target position, and similarly repulsive velocity from
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agent j on agent i, Fji = 1.5crep · ( 1

∥xi
t−xj

t∥2
− 1) · xi

t−xj
t

∥xi
t−xj

t∥32
whenever ∥xit − xjt∥2 ≤ 1 and zero

otherwise, where crep > 0 is a variable repulsion coefficient. However, we stress that other more
advanced collision avoidance algorithms could be used.

5.2.3 Experiments

In this section, we verify the usefulness of MFC-based robotic swarm control experimentally.

5.2.3.1 Problems

We consider three problems of increasing complexity to demonstrate our approach. In the following,
we consider uniform initial state distributions µ0 = Unif(X ) and let X = [−2, 2]2, allowing
circular-constrained, noise-free movement, i.e. circular U such that ∥uit∥2 ≤ 0.2 with ϵit ≡ 0.

aggregation In the simple Aggregation or Rendezvous [348] problem, the goal of agents
is to aggregate into a point while minimizing movement. Hence, we choose rewards r(νt) =∫︁∫︁
−∥x−

∫︁
x νt(dx,du)∥2− 0.3∥u∥2 νt(dx, du) for joint state-actions νt = µt⊗ht ∈ P(X ×U)

(see Remark 5.2.1).

formation In the Formation problem, the goal is to achieve an anonymous formation flight of
large swarms, i.e. matching the distribution of agent positions with a given distribution – e.g. for
providing coverage for surveillance or communication. The rewards are given by the Wasserstein
distance r(µt) = infX,Y : L(X)=µt,L(Y )=µ∗ E [∥X − Y ∥2] [214] between agent distribution µt and
e.g. a Gaussian mixture µ∗ = 1

2N (e1, diag(0.05, 0.05)) +
1
2N (−e1, diag(0.05, 0.05)) with unit

vector e1, computed via the empirical Wasserstein distance between agents and 300 samples of µ∗.
In principle, it is also possible to add movement costs as in Aggregation.

task allocation Lastly, we formulate a problem with stochasticity even in the limit. Consider
randomly generated, spatially localized tasks such as providing a UAV-based communication
uplink, or emergency operations for clearing rubble and firefighting. We add spatially localized
tasks to the model which are observed via an additional histogram of task locations. Here,
in each time step, Nt = Pois(0.4) tasks l arrive at uniformly random points xl ∈ X , up
to a maximum of 5 total tasks. Each task l begins with length Lt = 10 and at each time
step is processed abstractly by proximity of nearby agents according to Ll

t+1 = Ll
t − ∆Ll(µt),

∆Ll(µt) := min(1,
∫︁
(1−2∥x−xl∥2)1∥x−xl∥2≤0.5 µt(dx), until it is fully processed and disappears.

The reward is defined by the processed task lengths r(µt) =
∑︁

l ∆Ll(µt).

5.2.3.2 Experimental Results

In the following, we show results demonstrating the power of our MFC framework for task-driven
swarm control, namely their theoretical and numerical advantage over standard MARL, the potential
for decentralized open-loop control, and the influence of collision avoidance on optimality, both in
simulation and in the real world.
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training results In our implementation, each training episode consists of 50, 100 and 200
time steps for the Aggregation, Formation and Task Allocation problems respectively, of which
the average sum of rewards will constitute the return values shown in the following figures. As
can be seen in Figure 5.2, the learning curve of PPO in the MFC problem is smoothly increasing as
expected, since the MFC MDP leads to a single-agent problem solvable via standard RL with better
understood theory than MARL, e.g. [74].
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figure 5.2: Training curves of the MFC algorithm trained on N = 300, plotting the average achieved
objective over time steps taken, with its standard deviation over 3 seeds. The MFC approach leads to stable
learning results for all of our considered problems. (a): Aggregation; (b): Formation; (c): Task Allocation.

In contrast, state-of-the-art MARL techniques miss theoretical guarantees. We compare to PPO with
parameter-sharing [90] and independent learning [86], which has repeatedly achieved state-of-
the-art performance in benchmarks [42, 87–89] and remains applicable to arbitrary numbers of
homogeneous agents. For comparability, we use the same architecture and implementation as in our
MFC experiments, outputting parameters of a Gaussian over actions. Each agent simply observes
the same information plus the agent’s own position.
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figure 5.3: Training curves of N -agent IPPO, plotting the average achieved objective over time steps taken,
together with its standard deviation over 3 seeds and compared to final MFC performance (red, N = 300).
(a): In the simple Aggregation task, MARL and MFC are comparable for few agents, but MARL fails for many
agents. (b-c): In more complex scenarios, MFC converges to a better solution than common MARL.
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As seen in Figure 5.3, MARL works well in the very simple Aggregation task, but becomes
increasingly unstable for many agents, especially in the more complex Formation scenario, finally
failing entirely in Task Allocation due to non-stationarity of learning [40]. Although MARL could
work for other hyperparameter configurations, it shows that standard MARL can suffer from worse
stability than single-agent RL in even high-dimensional single-agent MFC MDPs, congruent with the
outstanding issue of theoretical MARL convergence guarantees [40].

As seen exemplarily for the Formation problem in Figure 5.4 and a variation of the problem with
real drones (later) in Figure 5.8, the MFC solution successfully achieves the desired mixture of
Gaussian formation of agents.
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figure 5.4: One sample run of the MFC solution to the Formation problem, applied to a system with
N = 100 agents and plotted at times t ∈ {0, 5, 10, 50}. Agents successfully form a mixture of two Gaussians.

In Figure 5.5, it can be seen that (i) the MFC solution outperforms MARL, and (ii) the MFC solution
quickly converges to the limiting deterministic objective in Figure 5.2 as N grows large, verifying
the MFC approximation properties in Theorem 5.2.1.
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figure 5.5: Comparison of achieved objectives in the finite swarm of MFC and MARL solutions over
100 sample episodes, with 95% confidence interval (shaded). The MFC algorithm quickly converges to the
deterministic, limiting MF objective as N becomes large. In simple scenarios such as Aggregation (a), MARL
outperforms MFC in the finite system, while in more complex scenarios (b-c), MFC outperforms MARL (at end
of training).

decentralized open-loop control In the absence of global information, it makes sense
for large swarms to let agents act stochastically and independently, especially since agents are
interchangeable and anonymous. For this purpose, as long as the limiting MFC is deterministic (e.g.
Aggregation and Formation), we can compute an optimal open-loop control sequence h0, h1, . . .
of MFC actions ht ∈ P(U)X for a given starting µ0, and apply ht to each agent. This results in
both open-loop and decentralized control, as each agent moves depending on its own local position
only. As expected by determinism of MFC, in Figure 5.6 we observe that the open-loop performance
becomes practically indistinguishable from the closed-loop performance in Aggregation, as well as
approaches it in Formation for sufficiently large swarms. We note that at least for finite spaces, very
recently a similar decentralization result was also rigorously shown [352].
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figure 5.6: Comparison of mean objectives in the finite swarm system of closed-loop and open-loop MFC
over 100 sample episodes, with 95% confidence interval (shaded). In Aggregation (a), little difference can be
seen between the closed-loop and open-loop performance. In Formation (b), the open-loop policy is unable
to react to stochastic initialization effects of finite swarm size, only approaching optimality in the large swarm
limit.

influence of collision avoidance For MFC with collision avoidance, we simulate ∆t = 2
and 100 explicit Euler steps of length 0.02 between each decision epoch t. Furthermore, to avoid
bad initializations, we resample initial states until the minimal inter-agent distance is above 0.1.
As seen in Figure 5.7, the minimal inter-agent distance is easily tuned via crep, rising up to the
initialization distance 0.1. We find that for strong collision avoidance, the performance deteriorates
in the presence of many agents, whereas for smaller collision avoidance coefficients the performance
approaches the MF limit, verifying Theorem 5.2.2.
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figure 5.7: Comparison of results in finite swarms of MFC solution with collision avoidance for various
collision avoidance coefficients crep in the Formation problem. (a): Mean objectives averaged over 100
sample episodes, with 95% confidence interval (shaded). (b): Minimum occurring inter-agent distance over
100 sample episodes.

illustrative real-life experiment Lastly, we show the results of applying a variant of
the Formation task – tracking a single time-variant Gaussian moving on a circle – to a real fleet of
Crazyflie quadcopters [355], each peer-to-peer-broadcasting only their local Lighthouse-based state
estimates [356]. Here, we use the aforementioned decentralized open-loop control and APF-based
collision avoidance. Although our experiments remain small-scale due to space constraints and
downwash effects, we nonetheless show that our approach works in practice and can be applied
to even small swarm sizes. In the future, we imagine similar approaches to be scaled up to larger
fleets. As can be seen in Figure 5.8, the agents successfully track the formation without colliding.
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figure 5.8: Real world coverage experiment with a swarm of 10 Crazyflie nano-quadcopters and a variant
of the Formation problem where agents track a single time-varying Gaussian distribution (current center of
Gaussian shown as red cross), moving counter-clockwise on a circle (red dotted line). The drones successfully
track the time-varying Gaussian distribution using the open-loop control policy without collision. Time
progresses from left to right.

5.2.4 Summary

In this work, we have proposed a scalable task-driven approach to robotic swarm control that allows
for model-free solution of swarm tasks while remaining applicable in practice by using deep RL,
MFC and collision avoidance. Our approach is hierarchical, in principle allowing to profit from any
state-of-the-art RL and collision avoidance techniques. Our work is a step towards general toolchains
for robotic swarm control, which yet remain part of active research [320]. We have solved part of the
limitations of MF theory for embodied agents by integrating collision avoidance into the toolchain,
but more work on more sparsely interacting MF models may be necessary, e.g. for UAV-based
communication with strongly neighbor-dependent interaction, by incorporating graph structure [7,
139, 357]. Extensions to non-linear dynamics and dynamical constraints may be fruitful. Lastly,
while our Gaussian parametrization of P(U) is efficient, the state discretization still suffers from a
curse of dimensionality, as the number of bins rises quickly with fineness of discretization, which
was state of the art [104, 107] and could be supplemented e.g. by convolutional techniques [118] or
kernel methods as discussed in Section 4.3.
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5.3 edge computing and server load balancing

The optimal offloading of tasks in heterogeneous edge-computing scenarios is of great practical
interest, both in the selfish and fully cooperative setting. In practice, such systems are typically very
large, rendering exact solutions in terms of cooperative optima or Nash equilibria intractable. For
this purpose, we adopt a general MF formulation in order to solve the competitive and cooperative
offloading problems in the limit of infinitely large systems. We give theoretical guarantees for the
approximation properties of the limiting solution and solve the resulting MF problems numerically.
Furthermore, we verify our solutions numerically and find that our approximations are accurate for
systems with dozens of edge devices. As a result, we obtain a tractable approach to the design of
offloading strategies in large edge-computing scenarios with many users. The material presented in
this section is based upon our work [6].

In recent years, a rapid growth of data generated from the network edge is witnessed, especially,
the Cisco Annual Internet Report 2020 forecasts a rapid deployment of billions of Machine-To-
Machine (M2M) devices until 2023 [358]. Multi-access Edge Computing (MEC) is a key technology
to compensate strictly limited M2M devices in their processing by enabling computation offloading
to cloudlet servers with computation resources in their vicinity. Additionally, the number of User
Edge devices (UEs) like smartphones, tablets and laptops also have increased tremendously due to
the ease of their availability and low costs. These devices can also gain from offloading their tasks
that demand intensive computations and low latencies, e.g., virtual reality, real-time face recognition,
LLM. A MEC system is a multi-agent system where each UE is an agent who decides, for each
arriving task, whether to offload it to the MEC server or not. There has been great interest in finding
the optimal policy for these UEs, to either offload or process locally, depending on factors such as
their own available resources, network conditions and offloading computation costs. Even though
several computation offloading strategies between UEs and MEC servers have been proposed in the
literature, finding scalable solutions for MEC multiagent systems remains an important problem
considering the continuously increasing number of agents.

There are two main categories in which agents can work in a multi-agent system, either cooperatively
to maximize a global goal or competitively to maximize their own reward, or a combination of both.
MFGs provide a way to analyze and solve large-scale competitive problems in a tractable manner.
On the other hand, MFC may be used to tractably model cooperative settings in many-agent systems.
We will formulate offloading in edge-computation as both a one-shot problem with theoretical
guarantees and alternatively a time-stationary problem, allowing for competitive and cooperative
solutions in a unified, tractable manner.

Various prior works have used MF approximations for similar offloading problems. In [290], the
authors model a shared MEC competitive offloading problem as an MFG in continuous time and
solve the resulting partial differential equations using FPI. However, their model considers only the
non-cooperative case and results in a continuous time model, while in our work we also consider a
cooperative setting and obtain a model for the time-stationary case. Similarly, in [273, 359], the
authors consider both cooperative and non-cooperative computational offloading problems, though
through the special case of a linear-quadratic model, while we solve a non-linear problem. MF
approximations have also been used to model large-scale MEC systems with D2D collaborations
[360] particularly on graphs as a deterministic ODE system, though the model does not consider
entirely selfish nodes. Finally, authors in [109] model and solve a large-scale resource-sharing
problem using MF theory and both cooperative and non-cooperative strategies, i.e. a more centralized
setting without local computational capabilities. In contrast to our work, their models focus on
graph-based job forwarding and continuous-action resource-sharing problems, whereas our model
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focuses on offloading decisions. For a variety of other works on applications of the MF approach in
communication systems, see also e.g. [361–364]. Apart from the discussed differences, all of the
models in prior works and our work are diverse and apply to a variety of differing scenarios. Here,
in contrast to previous work, our model will consider cooperative and competitive optimization
of binary offloading decisions in edge-computing, where users may choose to offload or compute
locally. In this work, we will formulate a unified MF framework for both the competitive and
cooperative setting of offloading decisions in edge-computing. In particular, our tractable solution
considers both a one-shot and time-stationary scenario that approximates the finite user system.

We begin our analysis with a computationally expensive-to-solve one-shot game, a knapsack
problem, where many edge devices must independently decide whether to offload or not for a given
distribution of task configurations. Our contribution can be summarized as follows: (i) We pass
to the infinite-user limit in order to obtain a tractable problem with a complexity independent
of the number of users; (ii) The model is theoretically motivated by showing novel existence
and approximate optimality properties of solutions in large finite systems, both in terms of Nash
equilibria and Pareto optima; (iii) Since, in practice, a one-shot game may not be sufficiently realistic,
we extend our model to a new time-stationary model with a Poisson task arrival process and find
analogous competitive and cooperative solutions in the limit of large systems; and finally (iv), the
proposed models are verified in simulation and solved or learned with complexity independent of
the number of users, while concurrently giving a good solution to large finite systems. As a result,
we tractably solve an otherwise intractable many-agent offloading problem.

5.3.1 A MFG and MFC Model

In the considered scenario, a multi-cell ultra-dense network includes M MEC servers and N UEs
associated with MEC servers. It is assumed that M MEC servers are connected through a fiber loop
to share their computational resources, pooled into a single centralized but distributed MEC pool,
where we also assume the bandwidth across the MEC servers is large enough for connecting all
UEs and the delay in resource sharing through fiber loop is neglected, similar to the framework
presented in [290]. The scenario is depicted in Figure 5.9 with M MEC servers and N UEs.

Fiber Loop

MEC Pool

MEC Server 1

MEC Server 2

MEC Server 3

MEC Server M

. . .

UE 1

UE 2

UE 4 UE 5

UE 6 UE 7

UE N-1UE N

figure 5.9: MEC scenario with N UEs offloading their tasks to M MEC servers, where computation resources
of MEC servers are shared through a fiber loop connecting them, acting as a single processing pool.
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Each UE, modeled by i = 1, . . . , N , is given a task configuration

Ci := (W i, Li, f i, Ri) ∈ K ⊆ R4
≥0 (5.3.11)

with transmission length W i in bits, processing complexity Li in CPU cycles to be computed (either
by offloading to a MEC server or by computing locally), transmission rate Ri between user and MEC
server measured in bits per second, and a local processing rate f i in CPU cycles per second. Each
user i may make a decision ui ∈ {0, 1} of whether to offload their task.

For a given overall MEC server processing rate fpool ∈ R, we assume each offloading UE is allocated
a proportional amount of processing power from the MEC processing pool to their offloaded task’s
complexity. The time T tx

i to transmit the i-th users’ task to a MEC server and the time T off
i to

compute at the MEC server are given by

T tx
i =

W i

Ri
, T off

i =
Li

fpool · 1∑︁
j u

j

(5.3.12)

assuming that each offloading task is assigned equal processing power. Alternatively, one could
also easily consider completion of all offloaded tasks at once, i.e. T off

i =
uj

∑︁
j L

j

fpool
. The time to

compute a task locally is given by

T loc
i =

Li

f i
. (5.3.13)

The result of the computed tasks are assumed to be negligible in size compared to original task size
W i, therefore, the time needed for the reception of results is not considered.

5.3.1.1 Competitive Game Setting

In the competitive, selfish setting, each user i independently decides on whether to offload or not
via the random variable ui ∈ {0, 1} so as to minimize only their own expected computation time,
i.e. either time to compute locally or offload

P(ui = 1) · (T tx
i + T off

i ) + P(ui = 0) · T loc
i = E

[︂
ui(T tx

i + T off
i ) + (1− ui)T loc

i

]︂
(5.3.14)

Under full information, we obtain a standard static game with the classical solution concept of
mixed Nash equilibria: Each of the users chooses whether to offload according to a policy πi which
gives the conditional probability of offloading

P(ui = 1 | C1, . . . , CN ) ≡ πi(C
1, . . . , CN ) (5.3.15)

which results in the minimization objective of each user i,

JN
i (π1, . . . , πN ) = E

[︂
ui(T tx

i + T off
i ) + (1− ui)T loc

i

]︂
. (5.3.16)

An approximate ε-Nash equilibrium is now defined as a tuple of policies (π1, . . . , πN ) such that no
user can gain by unilaterally changing their policy, i.e. for any i = 1, . . . , N ,

JN
i (πi, π−i) ≤ max

π∈Π
JN
i (π, π−i) + ε (5.3.17)
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where π−i denotes all policies other than the i-th policy. Here, the minimal such ε is also referred
to as the exploitability of policies. An exact Nash equilibrium for ε = 0 is indeed guaranteed to
exist as long as K is compact (e.g. [77]).

Unfortunately, it is known that the computation of Nash equilibria is hard, see [45]. Instead, we
shall consider the many-agent case through MF analysis to obtain a tractable solution for large
systems. At the same time, the solution will consist of decentralized policies. To this end, we
shall now assume that there exists an underlying distribution µ0 ∈ P(K) of user specifications, i.e.
for i = 1, . . . , N we have random variables Ci = (W i, Li, f i, Ri) ∼ µ0. To obtain a reasonable
solution, we must also assume that the MEC pool computing power scales suitably with the number
of users, i.e. fpool = N · fper for some fper ∈ R, since otherwise in the limit of many agents,
offloading will become pointless. In practice, for fixed fpool and N in given finite N -agent systems,
this may be realized by defining fper :=

fpool
N .

We now consider a decentralized control setting by allowing each agent to decide whether to offload
depending only on their own configuration Ci. For motivation, note that since all other agents are
exchangeable from the perspective of a single agent, only the own state and overall distribution of
behaviors of other agents matters. Furthermore, in the limit of N →∞, the other users’ distribution
is uninformative, since under a common offloading strategy, the distribution converges to some
fixed MF by the LLN. Additionally, decentralized control policies may be motivated in practice by
limited agent information. Since the computation of Nash equilibria in this setting nonetheless
remains hard, this motivates the MF formulation.

For tractability, we formulate a MFG as N → ∞, as popularized by [23] and [22] for stochastic
differential games. Here, we propose a MF model with near-Nash properties as N grows large, as
we will also verify theoretically. Consider a policy π shared by all users. The policy induces a joint
distribution µ = µ0 ⊗ π over user states and offloading decisions. Under this fixed distribution µ,
the objective of a single, representative user becomes

Jµ(π) = E
[︂
u(T̃

tx
+ T̃

off
) + (1− u)T̃

loc
]︂

(5.3.18)

where we have expectations of random variables of the representative agent (W,L, f,R, u) ∼ µ⊗π,
and random transfer or processing times of the MF system W,L, f,R

T̃
tx

=
W

R
, T̃

off
=

L
∫︁
udµ

fper
, T̃

loc
=

L

f
. (5.3.19)

The N → ∞ analogue of Nash equilibria is the MF equilibrium, defined as a tuple (π∗, µ∗) of
policy and MF, such that the policy is optimal under the MF generated by itself, i.e. defined through
the fixed point equation

π∗ = argmin
π

Jµ∗
(π), (5.3.20a)

µ∗ = µ0 ⊗ π∗. (5.3.20b)

Analytically, for any fixed MF µ, we could find such a best response policy BR(µ) by defining

π∗(W,L, f,R) = 1
T̃

tx
(W,L,f,R)+T̃

off
(W,L,f,R)<T̃

loc
(W,L,f,R)

. (5.3.21)

However, simply iterating the two fixed point equations is generally not guaranteed to converge to
an equilibrium. Thus, we will learn equilibria through FP [96].
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5.3.1.2 Cooperative Control Setting

In contrast to the selfish, competitive setting, in a cooperative setting it may be of interest to
minimize the average processing time of all users. One may formulate a centralized optimization
problem as

min
u1,...,uN

1

N

N∑︂

i=1

ui(T tx
i + T off

i ) + (1− ui)T loc
i (5.3.22a)

s.t. ui ∈ {0, 1} ∀i ∈ {1, . . . , N} (5.3.22b)

under full information. However, again this problem is known to be difficult to solve exactly
for large N , as it is a knapsack problem [365]. Furthermore, we may again be interested in a
decentralized solution, where each agent uses an independent policy, eliminating the need for
centralized knowledge and only requiring knowledge of the local configuration Ci. Reformulating
as optimization over decentralized policies πi and optimizing over the expected cost, we have

min
π1,...,πN

E

[︄
1

N

N∑︂

i=1

ui(T tx
i + T off

i ) + (1− ui)T loc
i

]︄
(5.3.23a)

s.t. πi : K→ [0, 1] ∀i ∈ {1, . . . , N} (5.3.23b)

where each offloading decision ui ∼ Bernoulli(πi(Ci)) follows from the policy πi.

As N →∞, under the policy π for all agents, we can obtain the corresponding MFC problem, which
is more tractable than directly solving the N -user system, given as

min
π

∫︂
u(T̃

tx
+ T̃

off
) + (1− u)T̃

loc
d(µ0 ⊗ π) (5.3.24)

again with the previous definitions. Note that although we impose a shared, common policy π,
sharing a policy across all agents will indeed be sufficient for optimality [8].

Since the problem is now reduced to the choice of π : K→ [0, 1], the combinatorial optimization
problem has been reduced to optimization over a bounded function π with complexity independent
of N . If we further assume that µ0 has finite support, i.e. K := |K| <∞ and

µ0 =
K∑︂

j=1

pjδ(Wj ,Lj ,fj ,Rj),
K∑︂

j=1

pj = 1, (5.3.25)

for some pj ≥ 0, (Wj , Lj , fj , Rj) ∈ K, then we obtain
∫︂

u(T̃
tx
+ T̃

off
) + (1− u)T̃

loc
d(µ0 ⊗ π)

=
K∑︂

j=1

pjπj

(︄
Wj

Rj
+

Lj
∑︁K

k=1 pkπk
fper

)︄
+ pj(1− πj)

Lj

fj

=

K∑︂

j=1

K∑︂

k=1

pjpkLj

fper
πjπk +

K∑︂

j=1

(︃
pjWj

Rj
− pjLj

fj

)︃
πj +

K∑︂

j=1

pjLj

fj

= πTQπ + cTπ + const.
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for π ≡ (π1, . . . , πK)T , πj = π(Wj , Lj , fj , Rj) and appropriate Q, c. Therefore, we obtain a
non-convex quadratic program

min
π1,...,πK

πTQπ + cTπ (5.3.26a)

s.t. πj ∈ [0, 1] ∀j ∈ {1, . . . ,K} (5.3.26b)

with box constraints, which though NP-hard [366] in the cardinality of the support of µ0, can
be solved numerically. Most importantly, the complexity remains independent of N , giving us a
tractable solution for sufficiently small K. To handle more general densities µ0 with non-finite but
compact support K, we may discretize distributions and solve the resulting finite-support problem.
As a result, we have obtained a tractable solution to the otherwise intractable offloading problem for
many devices, as we will verify in the sequel.

5.3.2 Time-Stationary Equilibrium Behavior

While the previous model assumes an instantaneous problem where we let all users play a one-shot
game, another important and interesting setting is to assume a continuous flow of tasks arriving
over time. While a theoretically rigorous analysis of this setting is beyond the scope of our work,
we nonetheless consider this setting at its time-stationary equilibrium and solve it numerically.

At all times, let the arrival process of tasks be given by a Poisson process with constant rate λN ,
which is equivalent to Poisson arrival rates λ for each of N users. At equilibrium, in the limit there
must be a time-stationary bandwidth per user falloc allocated to a user choosing to offload their task.
This bandwidth is given by dividing the total processing power fpool = Nfper by the number of
jobs in the system. Since the processing time for any offloaded job arriving at equilibrium is given
by T tx = W

R and T off = L
falloc

, the expected number of jobs in the system as N →∞ is given by

E [Ntot] = λNE
[︂
u(T tx + T off)

]︂
(5.3.27)

and is given by a sum of N Poisson variables N i
tot, the numbers of jobs in the system from each

user i. Therefore, by the central limit theorem, the fluctuations of Ntot are on the order of O(
√
N),

resulting in the allocated processing rate per user

falloc =
fpool

E [Ntot] +O(
√
N)

=
fper

λE [u(T tx + T off)] +O( 1√
N
)
→ fper

λE
[︁
uW
R

]︁
+ λE[uL]

falloc

(5.3.28)

as N →∞, which for falloc ̸= 0 gives

falloc =
fper − λE [uL]

λE
[︁
uW
R

]︁ (5.3.29)

and the natural constraint

fper − λ

∫︂
uLd(µ0 ⊗ π) > 0. (5.3.30)

Intuitively, this constraint formalizes the notion of sufficient MEC resources, i.e. the rate of assigned
jobs times their complexity must not exceed the possible compute assigned per node, as otherwise
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the MEC servers will be unable to catch up with assigned tasks, resulting in no time-stationary
solution. Note that this constraint is trivially fulfilled if

fper > λE [L] . (5.3.31)

Optimizing the average waiting times of all agents in the cooperative case gives the MFC problem

min
π∈[0,1]K

E
[︂
u(T tx + T off) + (1− u)T̃

loc
]︂

(5.3.32)

where for finite K we have

E
[︂
u(T tx + T off) + (1− u)T̃

loc
]︂

= E

[︄
uW

R
+
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For the competitive MFG, we can analogously define an equilibrium as any fixed point policy π∗

such that

π∗ ∈ argmax
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5.3.3 Theoretical Guarantees

In this section, we state a number of theoretical guarantees for the one-shot MF problems. Extensions
to the time-stationary case are deferred to future work. The results follow from formulating the
problem as certain standard MFG and MFC problems and applying existing results. In particular,
note that our systems can be reformulated as standard MFGs with action space {0, 1} and state space
K ∪ (K× U), see also [8, 24]. For the competitive setting, as N →∞, the MFG equilibrium exists
and will constitute an approximate Nash equilibrium.

Theorem 5.3.1. A solution (π∗, µ∗) of the MFG problem Eq. (5.3.20) exists, and π∗ constitutes an
ϵN -Nash equilibrium of the finite N -user system with ϵN → 0 as N →∞.

Proof. See [24, Theorem 4.1].

Furthermore, it is known that the FP algorithm will converge in terms of exploitability, giving us the
desired approximate Nash equilibrium.

Theorem 5.3.2. The exploitability of the solution of the FP algorithm converges to zero.

Proof. The system fulfills [96, Assumption 1] and in particular the monotonicity property, since
the offloading cost only increases when more agents offload. Therefore, by [96, Corollary 8.2], we
have convergence of the FP algorithm to the unique MF equilibrium.
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Similarly, the cooperative MFC solution has an optimal solution, which will constitute an approximate
Pareto optimum in the finite user system.

Theorem 5.3.3. For distributions µ0 with finite support, an optimizer π∗ of Eq. (5.3.26) exists, and
π∗ constitutes an ϵN -Pareto optimum of the finite N -user system with ϵN → 0 as N →∞.

Proof. Existence is trivially guaranteed by the extreme value theorem, since the objective is a
continuous function of π ∈ [0, 1]K , and [0, 1]K is compact. For approximate Pareto-optimality, see
[8, Corollary 1].

5.3.4 Experiments

In this section, we present numerical simulations for the systems established in the prequel. For the
quadratic program MFC, we could apply convex quadratic program solvers if the problem is indeed
convex. However, in general the MFC problem may be non-convex and thus results in a NP-hard
problem [366]. Still, we again stress that the complexity scales only with the size of K and remains
independent of the number of users N . Therefore, our formulation will be of lower complexity than
solving the finite user model for large systems. We do not compare run times, since finite model
solvers will trivially exceed the run time of our solution for sufficiently large systems. We may
follow any global optimization algorithm, and for simplicity we apply a simple grid search, though
more sophisticated algorithms such as Bayesian optimization can easily be substituted.

As can be observed in Figure 5.10, for the competitive MFG problem Eq. (5.3.20), the FP algorithm

πn+1 ≡
1

n+ 1

(︃
nπ1:n + argmin

π
Jµ0⊗π1:n(π)

)︃
(5.3.34)

with the past average policy π1:n := 1
n

∑︁n
m=1 πm quickly converges in terms of the exploitability

∆J(π) := max
π∗

Jµ0⊗π(π∗)− Jµ0⊗π(π) (5.3.35)

which must be equal to zero for an exact equilibrium.
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figure 5.10: Learning curve for the exploitability ∆J in the competitive MFG problem Eq. (5.3.20) (left)
over 5000 iterationsn using FP. The FP algorithm quickly converges to the equilibriumπ∗ ≈ (1, 0.65, 0). Here,
we used (p1, p2, p3) = (0.2, 0.4, 0.4), fper = 0.5 and (Ci)i=1,2,3 = ((1, 1, 1, 20), (3, 2, 1, 20), (5, 3, 1, 20)).
Similar results are achieved in the time-stationary MFG problem Eq. (5.3.33), converging to the equi-
librium π∗ ≈ (1, 0.5, 0) for (p1, p2, p3) = (0.2, 0.4, 0.4), fper = 0.5, λ ≈ 0.225 and (Ci)i=1,2,3 =
((1, 1, 5, 10), (3, 2, 5, 10), (5, 3, 5, 10)).
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For the parameters given in Figure 5.10, the resulting equilibrium π∗ ≈ (0, 0.81, 1) is intuitive: Only
the second configuration splits between offloading and local computation at a ratio that equilibrates
offloading and local computation time, since the second configuration has longer offloading times
than the first, and longer local computation time than the third. The result are offloading decisions
where each UE gains little by deviating.

In Figure 5.11, we can observe the cost function for an illustrative case where K = 2. As can be seen
in the example, the optimum computational offloading policy is reached at around π∗ ≈ (0.52, 0).
Similarly, a solution can be reached for the time-stationary problem at around π∗ ≈ (0.24, 1). Here,
we solve the problem for an illustrative 3D example in a few seconds, though similar results can
easily be obtained for larger problems. Thus, we obtained nearly optimal offloading decisions,
minimizing the average computation times.
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figure 5.11: Exemplary 2D-case for the quadratic MFC problem Eq. (5.3.26) (left) and K = 2, reaching the
optimal objective of around 1.26 at around π∗ ≈ (0.52, 0). Here, we used (p1, p2) = (0.8, 0.2), fper = 3 and
(Ci)i=1,2 = ((3, 5, 3, 10), (1.5, 1.5, 5, 25)). Similar results are achieved for the time-stationary MFC problem
Eq. (5.3.32) (right), where we achieve the optimal value 0.25 at π∗ ≈ (0.24, 1) for (p1, p2) = (0.8, 0.2),
fper = 3, λ = 0.6 and (Ci)i=1,2 = ((3, 1.5, 5, 12), (1.5, 1, 2, 20)).

In Figure 5.12, we can observe that the time-homogeneous problem empirically shows a number
of jobs in the system that converges to the MF description when rescaled by N , leading us to the
conclusion that the MF model we proposed is a good approximation to the finite user system as long
as the system is sufficiently large.
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figure 5.12: The evolution of the expected total number of jobs in the queue divided by N with
68% confidence interval, plotted for the configuration from Figure 5.10 and various N from 5 to 100,
compared against the stationary MF solution (MF). We average over 5000 sample trajectories. As we consider
increasingly large systems, the expected rescaled number of jobs in the system converges to the limiting MF
description, letting us conclude that the limiting MF system is a good approximation for the finite user system.

Finally, in Figure 5.13, we can observe (i) the exploitability in the competitive finite user system, i.e.
the expected maximum gain by deviating to any other policy in Eq. (5.3.14), and (ii) the deviation



140 5 practical applications in many-agent systems

of the objective Eq. (5.3.23) from the computed MF objective Eq. (5.3.26) in the cooperative
setting. Here we estimated the exploitability for each value of N by taking the maximum over all
pure policies π ∈ {0, 1}K over 100 000 samples. Similarly, we estimated the deviation between
Eq. (5.3.23) and Eq. (5.3.26) over 20 000 samples of the finite user system. We observe that the
exploitability and deviation of objectives tends to zero as the number of agents increases, showing
that the MF solution solves the finite system well.
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figure 5.13: Comparison of N -agent exploitability in the MFG Eq. (5.3.20) (left), and N -agent objective
deviation from the limiting objective in the MFC Eq. (5.3.26) (right) for the configurations used in Figures 5.10
and 5.11. The exploitability quickly decreases to zero, and similarly the cooperative problem is quickly
well-approximated by the MFC.

5.3.5 Summary

In this work, we have shown the general applicability of rigorous MF frameworks for both competitive
and cooperative scenarios in offloading for edge-computing. In particular, we have shown that
the MF approximation quickly becomes a good approximation and can reliably be solved with a
complexity independent of the number of agents. As a result, we have obtained good and tractable
solutions for large-scale, decentralized edge-computing systems. In future work, one could extend
rigorous theoretical analysis to the time-stationary case. Other interesting directions could be an
extension to Markov-modulated task arrival rates and thereby a non-time-stationary case, or an even
more distributed setting with multiple separate limited-access MEC pools. Finally, an application to
real systems may be of interest.
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5.4 conclusion of chapter 5

In this chapter, we started by giving an overview on potential applications of large-scale MARL
and MF models such as MFGs and MFC. There, we have first given some literature that shows the
applicability of MFGs and MFC, e.g., in practical engineering and financial applications. We have
also discussed possible future applications in the fields of distributed computing, cyber-physical
systems, autonomous mobility and natural or social sciences. With this, we hope that the reader is
convinced of the usefulness of MFGs and MFC models.

With the general applicability of MFGs and MFC out of the way, we then focussed on two particular
applications of MFGs and MFC. The first exemplary application considered embodied aerial drone
swarms, which due to safety constraints must avoid collisions between each other at all cost. There,
the difficulty of applying MF models becomes apparent due to the strong interaction of agents in
collisions, which violates the typical MF assumptions of weak interaction. The problem is solved by
considering the MFC system without collisions and analyzing its error with respect to a practical
subroutine that avoids collisions in real swarms, allowing for the application of MFC-based MARL
onto real UAV swarms. The applicability was then verified on a real swarm of nano-quadcopters.

As the second exemplary application, we have considered an edge computing scenario where many
edge devices must balance the usage of computational offloading resources. There, we have used a
unified MF model and compared the cooperative MFC solution and the competitive MFG solution.
The system was analzed in its time-stationary equilibrium state, and verified experimentally through
numerical simulations. In addition, we have also studied load balancing and network applications
in external collaborations [10, 15, 21], which extend the load balancing system in Section 4.1 and
the Dec-POMFC model in Section 4.3, but were not presented in this thesis.

We have thus addressed RQ III for applicability of MFGs and MFC and large-scale MARL generally,
by surveying a list of potential applications, and specifically, by looking into UAV swarms as well
as edge-computing offloading scenarios. In addition to Chapter 5, in Chapters 3 and 4 we have
given various applications of our extended models in engineering collective behavior, controlling
formations and analyzing epidemics control problems. Concluding this chapter, we have addressed
all three of our primary RQs in our thesis. In the following final chapter, we will conclude by giving
a summary and discussion of the achieved results, as well as providing an outlook.
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In this thesis, we have addressed the topic of whether general MARL can be scaled through MFG
and MFC in a realistic and applicable manner. To begin, in the introduction and Chapter 2 we have
briefly given an overview of general MARL models as well as the basic setting of MFGs and MFC.
The first two RQs I and II we have asked ourselves were how to learn in MFGs and MFC, and whether
the strict limitations of MF models may be relaxed. The last RQ III we asked ourselves was how
MFGs and MFC can be applied in practice. Overall, in the previous chapters we have answered our
RQs by presenting various methods for learning, extending and applying MF models as follows.

6.1 summary of contributions

In Chapter 3, we have answered the first two RQs I and II for the competitive MFG case. For RQ I, a
regularization-based MFG learning approach for general evolutive MFGs was presented, together
with results on the difficulty of commonly assumed FPI contractivity. While regularization trades off
optimality of agent policies for convergence, this may be desirable still, as there is still no general
but tractable method for solving MFGs without assumed conditions. We then moved on to address
RQ II through extension towards GMFGs and M3FGs, which allowed graph-based agent interaction
and major agents respectively. The resulting models were then analyzed and solved by extending
results for standard MFGs, including propagation of chaos for approximate optimality, and learning
algorithms such as the aforementioned regularization or FP. The applicability of MFGs in RQ III
was also verified in experiments motivated by practical scenarios such as epidemics control or
regulating duopolies.

Moving on to the cooperative MFC case, in Chapter 4 we provided new “hierarchical” MARL
algorithms based on MFC, together with approximation guarantees for its PGs, addressing RQ I.
The motivation for the MFC approach was given by showing sufficiency for optimality of identical
policies in a simplified quasi-static MFC problem with external environment states. We have also
analyzed RL for MFC-based MARL on the finite MARL problem, where we showed the approximation
of PGs in many-agent systems. For RQ II, similar to the MFG case, we allowed an additional, complex
major agent that does not fit into the MF approximation. Going one step further, we also considered
the realistic case of partial information, where each agent may only observe limited information in
the system. The approximation properties were generalized from basic MFC towards the extended
settings, and algorithms were successfully compared against state-of-the-art MARL techniques.

Lastly, in Chapter 5 we briefly explored potential application areas for large-scale MARL as well as
MFGs and MFC. We also explicitly considered the scenarios of UAV swarm control and load balancing
in edge computing to give an example usage of MFGs and MFC. In the former, we demonstrated how
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to apply MFC despite model violations, and in the latter we demonstrated how to apply both MFGs
and MFC in practice. The results close the gap between theory of MFGs and MFC and application
thereof.

Overall, we have addressed RQs I and II by providing scalable MARL algorithms through MFC in
the cooperative case, and equilibrium learning algorithms for MFGs in the competitive case. While
general algorithms without additional assumptions for MFGs and more scalable MARL algorithms
through MFC still continue to be developed, we hope that our contributions have extended the
theory and algorithms of MFGs and MFC to make them more useful. Our last RQ III is not only
directly addressed by surveying and exemplarily demonstrating applications in Chapter 5, but also
indirectly addressed by Chapter 3 and Chapter 4, by extending the classes of problems that may be
solved through MF approximations and algorithms. We hope that this thesis shows how to learn and
generalize MFGs and MFC-based techniques for particular settings, enabling their future application
in practice and further generalizations.

6.2 outlook

So far, we find MFGs and MFC already provide the potential to solve a variety of problems, under
quite general assumptions of large systems with many agents that interact through their distribution,
the MF. As seen throughout the thesis, the MF approximation is quite flexible and can be generalized
to particular settings of interest. MF models address most classical challenges of MARL [40], e.g.,
most notably the combinatorial nature of MARL, by avoiding the exponential blow-up in joint
state-actions via reducing large systems to a complexity independent of the number of agents by
the MF. Another challenge that is addressed by MFC-based MARL is credit assignment, as credit is
assigned to MFC actions, which control all agents at once and receive aggregated credit. This avoids
the problem where actions of too many other agents become noise for estimating the goodness of
any single agent’s taken action. And the classical MARL challenge of non-stationarity is solved in
both cooperative MFC and competitive MFG by reducing hard MARL problems into single-agent RL
and fixed-point problems respectively, taking into account all the other agents directly. Nonetheless,
we believe that many challenges remain, not only for the learning frameworks of MFGs and MFC, but
also for the theoretical generality of MF-based large-scale MARL and its applications.

addressing algorithmic limitations So far, in MFC-based RL the formulation of the
MFC MDP is the standard way of obtaining an algorithm for multi-agent control [107, 201]. However,
so far most works (except e.g. [367] for MFGs) appear to solve the limiting problem instead
of formulating an algorithm for a finite MARL problem without accessing the underlying model.
Further, this is usually done by discretization. In Section 4.3, we proposed some first analysis
for algorithms learning on the finite MARL problem together with kernel-based parametrizations.
However, the analysis remains limited to PG approximations and should be extended towards
convergence properties, while the choice of kernel-based parametrizations is still susceptible to
manual parameter tuning and was not scaled beyond 5 or 6 dimensions.

On the other hand, in MFGs for competitive games, the MARL problem is classically reduced to a
fixed point problem of computing a MF generated by a policy, which needs to be optimal under the
MF [23]. As discussed in the prequel, the resulting problem has its own difficulties in solving the
general case, and so far can mostly be solved tractably under certain conditions such as monotonicity
or contractivity, with uniqueness of the equilibrium. Here, a next step could be considering new
methods for the solution of arbitrary discrete-time MFGs in a tractable manner. In the presence of
multiple equilibria, the computation of a particular or all equilibria may be of interest. Furthermore,
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existing algorithms should also be generalized towards more general MF models discussed in the
following, which can be difficult. For instance, the simultaneous presence of stochastic MFs and
partial information structure significantly complicates finding optimal MFC policies or equilibria
in MFGs, which is not yet addressed by our the approaches in Sections 3.4, 4.2 and 4.3. Lastly,
an important recent venue of research considers how to directly design algorithms or learning
behaviors in model-free MARL manner, that are able to converge to MFE on unknown systems [367].
Such research could be implemented and scaled up, or bridged with other MFG algorithms.

addressing generality and theory of MF approximations While we have addressed
the generality of MF approximations through RQ II to a certain degree, we could not consider
all possible generalizations of MF models in this thesis. In particular we have addressed some
challenges of dealing with strongly-interacting agents that cannot be summarized by a MF, with
agents that are connected on networks or graphs, and with agents that have only partial information
of the system. Some important generalizations remain an open question: For example, our partially
observable systems remain limited to MFC and with deterministic MFs and could be extended, while
the graph-based studies similarly remain limited to MFGs. Further, one could consider various
combinations of cooperation and competition between teams of agents such as in [128], applying
some of our GMFGs extensions [13, 14, 19] also to MFC, or working on even sparser but more
realistic networks [368]. Moreover, so far we have a priori assumed the correct form of MF models
for our experiments. In reality, a data-driven approach to choosing or identifying an appropriate MF
model may be of relevance.

The theory of MFGs and MFC also remains to be studied more. For example, quantifying the
convergence rate of MF models under weaker assumptions could be of interest to improve guarantees
of approximate optimality when using MFGs and MFC. Some optimality properties remain to be
analyzed more closely, such as the sufficiency of MF-independent policies in standard MFGs, or the
open questions for MFC discussed in Appendix E.17. Bridging the gap between the large amount of
existing continuous-time probabilistic literature [67] and recent machine learning frameworks in
discrete time [25] may be an additional source of algorithmic advances. First results on sample
efficiency and complexity classes of MFGs have appeared as another future avenue of research
[269]. For MFGs, other equilibria types than Nash also remain to be considered, see e.g. some
first works on correlated equilibria [343, 344, 369] where agents obtain advice from a mediator
to align their actions, or Stackelberg equilibria with a leader-follower structure [190–192, 194].
As for heterogeneity of agents, it may be interesting to consider limiting MF models under more
heterogeneous policies and policy classes for different agents. For example, in MFC and its two-team
generalization the heterogeneity of agent policies has been shown to have negligible impact in
standard MFC models [128], which could be pursued further.

Moreover, the aforementioned generalizations of MF models may sometimes be applied orthogonally.
This means that one could attempt to formulate a maximally general framework such as the
partially-observable SG in game theory for MFGs and MFC, similar to the Rainbow DQN algorithm.
The usefulness of such a model for MF-based MARL must however be investigated, as one may run
into a tradeoff between model generality and tractability. In practice, it could hence be of interest
to automatically choose and tune MF-based MARL algorithms, similar to AutoML techniques for
supervised / unsupervised machine learning [370].

addressing important applications via MF approximations Finally, in future work,
one could perform extended analyses for any of the scenarios listed in Chapter 5. For example, the
exemplary application to edge computing could be supplemented by rigorous theoretical results for
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the time-stationary setting, more realistic scenarios without time-stationarity, or an application to
real systems. In UAV swarms, related methods could also be applied to realize various intelligent
collective behaviors as listed in [332]. Moreover, since their publication, our developed frameworks
have already seen application in scenarios such as traffic control [54, 61] or networking [15, 21],
which may be further pursued. Many other applications in engineering and finance have also been
considered through MFGs and MFC before, but the usage of recently developed learning algorithms
may further boost their future applicability in real systems. Lastly, we note that MF theory has also
been used in learning theory for analyzing neural networks themselves [371, 372], such that it seems
natural to look for applications in the overlap of MF-based analysis and MF-based MARL.

As one particularly relevant and fruitful direction, we also point out MF-based MARL for optimization
problems, which is related to the aforementioned MF-based analysis of neural networks and learning.
Many problems are well-known to be difficult to solve in full generality. For example, graph coloring
problems [373], vehicle routing problems [308] or facility location problems and clustering [374]
are known to be NP-hard. Oftentimes, scalability of existing algorithmic solutions is therefore
limited. Certain special cases amenable to MF approximation may hence be of interest, whenever
applicable. And more generally, it may also be of interest to apply MFC to general optimization,
which has great potential for applications. For example, particle swarm optimization algorithms
themselves could be optimized through similar partially-observable approaches as the Dec-POMFC
model in Section 4.3, for which first results using MF models have been obtained [375].
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a.1 completeness of mean field and policy spaces

Lemma A.1.1. The metric spaces (Π, dΠ) and (M, dM) are complete metric spaces.

Proof. The metric space (M, dM) is a complete metric space. Let (µn)n∈N ∈MN be a Cauchy
sequence of MFs. Then by definition, for any ε > 0 there exists integer N > 0 such that for any
m,n > N we have

dM(µn, µm) < 0.5ε

=⇒ ∀t ∈ T : dTV (µ
n
t , µ

m
t ) =

1

2

∑︂

x∈X
|µn

t (x)− µm
t (x)| < 0.5ε

=⇒ ∀t ∈ T , x ∈ X : |µn
t (x)− µm

t (x)| < ε .

By completeness of R there exists the limit of (µn
t (x))n∈N for all t ∈ T , x ∈ X , suggestively

denoted by µt(x). The MF µ = {µt}t∈T with the probabilities defined by the aforementioned limits
fulfills µn → µ and is inM, showing completeness ofM.

We do this analogously for (Π, dΠ). Thus, (Π, dΠ) and (M, dM) are complete metric spaces.
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a.2 lipschitz continuity

Lemma A.2.1. Assume bounded and Lipschitz functions f : X → R and g : X → R mapping
from a metric space (X, dX) into R with Lipschitz constants Cf , Cg and bounds |f(x)| ≤ Mf ,
|g(x)| ≤Mg. The sum of both functions f + g, the product of both functions f · g and the maximum
of both functions max(f, g) are all Lipschitz and bounded with Lipschitz constants Cf + Cg,
(MfCg +MgCf ), max(Cf , Cg) and bounds Mf +Mg, MfMg, max(Mf ,Mg).

Proof. Let x, y ∈ X be arbitrary. By the triangle inequality, we obtain

|f(x) + g(x)− (f(y) + g(y))| ≤ |f(x)− f(y)|+ |g(x)− g(y)| ≤ (Cf + Cg)dX(x, y) .

Analogously, we obtain

|f(x)g(x)− f(y)g(y)| ≤ |f(x)g(x)− f(x)g(y)|+ |f(x)g(y)− f(y)g(y)|
≤ (MfCg +MgCf )dX(x, y) .

For the maximum of both functions, consider case by case. If f(x) ≥ g(x) and f(y) ≥ g(y) we
obtain

|max(f(x), g(x))−max(f(y), g(y))| = |f(x)− f(y)| ≤ CfdX(x, y)

and analogously for g(x) ≥ f(x) and g(y) ≥ f(y)

|max(f(x), g(x))−max(f(y), g(y))| = |g(x)− g(y)| ≤ CgdX(x, y) .

On the other hand, if g(x) < f(x) and g(y) ≥ f(y) , we have either g(y) ≥ f(x) and thus

|max(f(x), g(x))−max(f(y), g(y))| = |f(x)− g(y)| = g(y)− f(x) < g(y)− g(x)

≤ CgdX(x, y)

or g(y) < f(x) and thus

|max(f(x), g(x))−max(f(y), g(y))| = |f(x)− g(y)| = f(x)− g(y) ≤ f(x)− f(y)

≤ CfdX(x, y) .

The case for f(x) < g(x) and f(y) ≥ g(y) as well as boundedness is analogous.

a.3 proof of proposition 3.1.1

Proof. Since we work with finite T ,X ,U , we identify the space of MFsM with the |T |(|X | − 1)-
dimensional simplex S|T |(|X |−1) ⊆ R|T |(|X |−1) via the values of the probability mass functions
at all times and states. Analogously the space of policies Π is identified with S|T ||X |(|U|−1) ⊆
R|T ||X |(|U|−1).

Define the set-valued map Γ̂ : S|T ||X |(|U|−1) → 2S|T ||X|(|U|−1) mapping from a policy π represented
by the input vector, to the set of vector representations of optimal policies in the MDP induced by
Ψ(π).
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A policy π is optimal in the MDP induced by µ ∈M if and only if its value function defined by

V π(µ, t, s) =
∑︂

u∈U
πt(u | x)

(︄
r(x, u, µt) +

∑︂

x′∈X
p(x′ | x, u, µt)V

π(µ, t+ 1, x′)

)︄
,

is equal to the optimal action-value function defined by

V ∗(µ, t, s) = max
u∈U

(︄
r(x, u, µt) +

∑︂

x′∈X
p(x′ | x, u, µt)V

∗(µ, t+ 1, x′)

)︄

for every t ∈ T , x ∈ X , with terminal conditions V ∗(µ, T, s) ≡ V π(µ, T, s) ≡ 0. Moreover, an
optimal policy always exists. For more details, see e.g. [68]. Define the optimal action-value
function for every t ∈ T , x ∈ X , u ∈ U via

Q∗(µ, t, x, u) = r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt)V

∗(µ, t+ 1, x′)

with terminal condition Q∗(µ, T, x, u) ≡ 0. Then, the following lemma characterizes optimality of
policies.

Lemma A.3.1. A policy π fulfills π ∈ Γ̂(π̂) if and only if

πt(u | x) > 0 =⇒ a ∈ argmax
u′∈U

Q∗(Ψ(π̂), t, x, u′)

for all t ∈ T , x ∈ X , u ∈ U .

Proof. To see the implication, considerπ ∈ Γ̂(π̂). Then, if the right-hand side was false, there exists a
maximal t ∈ T and x ∈ X , u ∈ U such that πt(u | x) > 0 but a ̸∈ argmaxu′∈U Q∗(Ψ(π̂), t, x, u′).
Since for any t′ > t we have optimality, V π(µ, t+1, x′) = V ∗(µ, t+1, x′) by induction. However,
V π(µ, t, s) < V ∗(µ, t, s) since the suboptimal action is assigned positive probability, contradicting
optimality of π. On the other hand, if the right-hand side is true, then V π(µ, t, s) = V ∗(µ, t, s) by
induction, which implies that π is optimal. ■

We will now check that the requirements of Kakutani’s fixed point theorem hold for Γ̂. The finite-
dimensional simplices are convex, closed and bounded, hence compact. Γ̂ maps to a non-empty set,
as the induced MF is uniquely defined and any finite MDP (induced by this MF) has an optimal policy.

For any π, Γ̂(π) is convex, since the set of optimal policies is convex as shown in the following.
Consider a convex combination π̃ = λπ + (1− λ)π′ of optimal policies π, π′ for λ ∈ [0, 1]. Then,
the resulting policy will be optimal, since we have

π̃t(u | x) > 0 =⇒ πt(u | x) > 0 ∨ π′
t(u | x) > 0 =⇒ a ∈ argmax

u∈U
Q∗(Ψ(π̂), t, x, u)

for any t ∈ T , x ∈ X , u ∈ U and thus optimality by Lemma A.3.1.

Finally, we show that Γ̂ has a closed graph. Consider arbitrary sequences (πn, π
′
n) → (π, π′)

with π′
n ∈ Γ̂(πn). It is then sufficient to show that π′ ∈ Γ̂(π). By the standing assumption,

we have continuity of Ψ and µ → Q∗(µ, t, x, u) for any t ∈ T , x ∈ X , u ∈ U , as sums,
products and compositions of continuous functions remain continuous. Therefore, the composition
π → Q∗(Ψ(π), t, x, u) is continuous. To show that π′ ∈ Γ̂(π), assume that π′ ̸∈ Γ̂(π). By
Lemma A.3.1 there exists t ∈ T , x ∈ X , u ∈ U such that π′

t(u | x) > 0 and further there
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exists u′ ∈ U such that Q∗(Ψ(π), t, x, u′) > Q∗(Ψ(π), t, x, u). Fix such an u′ ∈ U . Let
δ ≡ Q∗(Ψ(π), t, x, u′)−Q∗(Ψ(π), t, x, u), then by continuity there exists ε > 0 such that for all
π̂ ∈ Π we have

dΠ(π̂, π) < ε =⇒ |Q∗(Ψ(π̂), t, x, u)−Q∗(Ψ(π), t, x, u)| < δ

2
.

By convergence, there is an integer N ∈ N such that for all n > N we have dΠ(πn, π) < ε and
therefore

Q∗(Ψ(πn), t, x, u
′) > Q∗(Ψ(π), t, x, u′)− δ

2
= Q∗(Ψ(π), t, x, u) +

δ

2
> Q∗(Ψ(πn), t, x, u) .

Since (π′
n)t(u | x)→ π′

t(u | x) > 0, there also exists M ∈ N such that for all m > M ,
⃓⃓
(π′

m)t(u | x)− π′
t(u | x)

⃓⃓
< π′

t(u | x) .

Let n > max(N,M), then it follows that (π′
n)t(u | x) > 0 but a ̸∈ argmaxu′∈U Q∗(Ψ(π), t, x, u′)

since we have Q∗(Ψ(πn), t, x, u
′) > Q∗(Ψ(πn), t, x, u), contradicting π′

n ∈ Γ̂(πn) by
Lemma A.3.1. Hence, Γ̂ must have a closed graph.

By Kakutani’s fixed point theorem, there exists a fixed point π∗ that generates some MF Ψ(π∗). The
associated pair (π∗,Ψ(π∗)) is an MFE by definition.

a.4 proof of proposition 3.1.3

Proof. The space of MFs (M, dM) is equivalent to convex and compact finite-dimensional simplices.
In this representation, each coordinate of the operators Γ̃η(µ) and Γη(µ) consists of compositions,
sums and products of continuous functions, since the functions r(x, u, µt) and p(x′ | x, u, µt) are
assumed to be continuous. Existence of a fixed point follows immediately by Brouwer’s fixed point
theorem.

a.5 proof of theorem 3.1.1

Proof. The proof is a slightly simplified version of the one found in [24]. Note that we require the
results later, so for convenience we give the full details.

The empirical measure µ[xt] is a random variable on P(X ), i.e. its law L(µ[xt]) ∈ P(P(X )) is
a distribution over probability measures. Since we want to show convergence of the empirical
measure to the MF, let us pick a metric on P(P(X )). Remember that we metrized P(X ) with
the total variation distance. We metrize P(P(X )) with the 1-Wasserstein metric defined for any
Φ,Ψ ∈ P(P(X )) by the infimum over couplings

W1(Φ,Ψ) ≡ inf
L(X1)=Φ,L(X2)=Ψ

E [dTV (X1, X2)] .

Lemma A.5.1. Let {Φn}n∈N be a sequence of measures with Φn ∈ P(P(X )) for all n ∈ N.
Further, let µ ∈ P(X ) arbitrary. Then, the following are equivalent.

(a) W1(Φn, δµ)→ 0 as n→∞
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(b) E [|F (Xn)− F (X)|] → 0 as n → ∞ for any continuous, bounded F : P(X ) → R, any
sequence {Xn}n∈N ofP(X )-valued random variables and anyP(X )-valued random variable
X with L(Xn) = Φn and L(X) = δµ.

(c) E [|Xn(f)−X(f)|] → 0 as n → ∞ for any f : X → R, any sequence {Xn}n∈N of
P(X )-valued random variables and anyP(X )-valued random variable X withL(Xn) = Φn

and L(X) = δµ.

Proof. Define the only possible coupling ∆n ≡ Φn × δµ.

(b), (c) =⇒ (a):

Define Fs(x) ≡ x(x) and fs(x
′) ≡ 1{s}(x

′) for all x ∈ X , where Fs is continuous. By assumption,

W1(Φn, δµ) = inf
L(Xn)=Φn,L(X)=δµ

E [dTV (Xn, X)]

=
1

2

∫︂

P(X )×P(X )

∑︂

x∈X
|Xn(x)−X(x)| d∆n

=
1

2

∑︂

x∈X
E [|Xn(x)−X(x)|]→ 0

since for any x ∈ X , we have

E [|Xn(x)−X(x)|] = E [|Fs(Xn)− Fs(X)|] = E [|Xn(fs)−X(fs)|] .

(a) =⇒ (b), (c):

We have

E [|F (Xn)− F (X)|] =
∫︂

P(X )×P(X )
|F (ν)− F (ν ′)|∆n(dν, dν

′)

=

∫︂

P(X )
|F (ν)− F (µ)|Φn(dν)

→
∫︂

P(X )
|F (ν)− F (µ)| δµ(dν) = 0

by continuity and boundedness of |F (ν)−F (µ)|, and convergence inW1 implying weak convergence.
Analogously,

E [|Xn(f)−X(f)|] =
∫︂

P(X )
|ν(f)− µ(f)|Φn(dν)→

∫︂

P(X )
|ν(f)− µ(f)| δµ(dν) = 0

since f and thus |ν(f) − µ(f)| is automatically bounded from finiteness of X , and ν(f) =∑︁
x∈X ν(x)f(x) → ∑︁

x∈X µ(x)f(x) as ν → µ in total variation distance implies continuity of
|ν(f)− µ(f)|. ■

First, it is shown that when all other agents follow the same policy π, then the empirical distribution
is essentially the deterministic MF as N →∞, i.e. L(µ[xt])→ L(µt) ≡ δµt with µ = Ψ(π)

Lemma A.5.2. Consider a set of policies (π̃, π, . . . , π) ∈ ΠN for all agents. Under this set of
policies, the law of the empirical distribution L(µ[xt]) ∈ P(M) converges to δµt where µ = Ψ(π)
as N →∞ in 1-Wasserstein distance.
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Proof. Define the Markov kernel P π
t,ν such that its probability mass function fulfills

P π
t,ν(x

′ | x) ≡
∑︂

u∈U
πt(u | x)p(x′ | x, u, ν)

for any t ∈ T , x ∈ X , ν ∈ P(X ), π ∈ Π and analogously

ν̃P π
t,ν(x

′) ≡
∑︂

x∈X
ν̃(x)

∑︂

u∈U
πt(u | x)p(x′ | x, u, ν)

for any ν̃ ∈ P(X ). Note that µt+1 = µtP
π
t,µt

(g) for MF µ = Ψ(π) induced by π.

We show that E [|µ[xt](f)− µt(f)|] → 0 as N → ∞ for any function f : X → R and any time
t ∈ T . From this, the desired result follows by Lemma A.5.1. Since µ[xt] ≡ 1

N

∑︁N
i=1 δxi

t
and

xi0 ∼ µ0 we have at time t = 0 that

lim
N→∞

E [|µ[x0](f)− µ0(f)|] = lim
N→∞

E

[︄⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=1

f(xi0)− E
[︁
f(xi0)

]︁
⃓⃓
⃓⃓
⃓

]︄
= 0

by the strong LLN and the dominated convergence theorem.

Assuming this holds for t, then for t+ 1 we have

E [|µ[xt+1](f)− µt+1(f)|] ≤ E [|µ[xt+1](f)− µ̌[xt+1](f)|]
+ E

[︂⃓⃓
⃓µ̌[xt+1](f)− µ̌[xt]P

π
t,µ[xt]

(f)
⃓⃓
⃓
]︂

+ E
[︂⃓⃓
⃓µ̌[xt]P

π
t,µ[xt]

(f)− µ[xt]P
π
t,µ[xt]

(f)
⃓⃓
⃓
]︂

+ E
[︂⃓⃓
⃓µ[xt]P

π
t,µ[xt]

(f)− µtP
π
t,µt

(f)
⃓⃓
⃓
]︂

where we defined µ̌[xt] ≡ 1
N−1

∑︁N
i=2 δxi

t
.

For the first term, we have as N →∞

E [|µ[xt+1](f)− µ̌[xt+1](f)|] = E

[︄⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=1

f(xit+1)−
1

N − 1

N∑︂

i=2

f(xit+1)

⃓⃓
⃓⃓
⃓

]︄

≤ 1

N
E
[︁⃓⃓
f(x1t+1)

⃓⃓]︁
+

⃓⃓
⃓⃓ 1
N
− 1

N − 1

⃓⃓
⃓⃓

N∑︂

i=2

E
[︁⃓⃓
f(xit+1)

⃓⃓]︁

≤
(︃

1

N
+

N − 1

N(N − 1)

)︃
max
x∈X
|f(x)| → 0 .

For the second term, as N →∞ we have by Jensen’s inequality and bounds |f | ≤Mf (by finiteness
of X )

E
[︂⃓⃓
⃓µ̌[xt+1](f)− µ̌[xt]P

π
t,µ̌[xt]

(f)
⃓⃓
⃓
]︂2

= E
[︂
E
[︂⃓⃓
⃓µ̌[xt+1](f)− µ̌[xt]P

π
t,µ̌[xt]

(f)
⃓⃓
⃓ | xt

]︂]︂2

= E

[︄
E

[︄⃓⃓
⃓⃓
⃓

1

N − 1

N∑︂

i=2

(︁
f(xit+1)− E

[︁
f(xit+1) | xt

]︁)︁
⃓⃓
⃓⃓
⃓ | xt

]︄]︄2
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≤ 1

(N − 1)2

N∑︂

i=2

E
[︂
E
[︂(︁
f(xit+1)− E

[︁
f(xit+1) | xt

]︁)︁2 | xt
]︂]︂

≤ 1

N − 1
· 4M2

f → 0 .

For the third term, we again have as N →∞

E
[︂⃓⃓
⃓µ̌[xt]P

π
t,µ[xt]

(f)− µ[xt]P
π
t,µ[xt]

(f)
⃓⃓
⃓
]︂

= E

[︄⃓⃓
⃓⃓
⃓
∑︂

x∈X
(µ̌[xt](x)− µ[xt](x))

∑︂

u∈U
πt(u | x)

∑︂

x′∈X
p(x′ | x, u, µ[xt])f(x

′)

⃓⃓
⃓⃓
⃓

]︄

≤ E

[︄⃓⃓
⃓⃓
⃓

(︃
1

N − 1
− 1

N

)︃ N∑︂

i=2

∑︂

u∈U
πt(u | xit)

∑︂

x′∈X
p(x′ | xit, u, µ[xt])f(x

′)

⃓⃓
⃓⃓
⃓

]︄

+ E

[︄⃓⃓
⃓⃓
⃓
1

N

∑︂

u∈U
πt(u | x1t )

∑︂

x′∈X
p(x′ | x1t , u, µ[xt])f(x

′)

⃓⃓
⃓⃓
⃓

]︄

≤
(︃

N − 1

N(N − 1)
+

1

N

)︃
max
x∈X
|f(x)| → 0 .

For the fourth term, define F : P(X ) → R, F (ν) = νP π
t,ν(f) and observe that F is continuous,

since ν → ν ′ if and only if ν(x)→ ν ′(x) for all x ∈ X , and therefore (as p is assumed continuous
by Assumption 1)

F (ν) = νP π
t,ν(f) =

∑︂

x∈X
ν(x)

∑︂

u∈U
πt(u | x)

∑︂

x′∈X
p(x′ | x, u, ν)f(x′)

is continuous. By Lemma A.5.1, we have from the induction hypothesis µN
t = µ[xt]→ µt that

E
[︂⃓⃓
⃓µ[xt]P

π
t,µ[xt]

(f)− µtP
π
t,µt

(f)
⃓⃓
⃓
]︂
→ 0 .

Therefore, E [|µ[xt+1](f)− µt+1(f)|]→ 0 which implies the desired result by induction. ■

Consider the case where all agents follow a set of policies (πN , π, . . . , π) ∈ ΠN for each N ∈ N.
Define new single-agent random variables xµt and uµt with xµ0 ∼ µ0 and

P(uµt = u | xµt = x) = πN
t (u | x),

P(xµt+1 = x′ | xµt = x, uµt = u) = p(x′ | x, u, µt) ,

where the deterministic MF µ is used instead of the empirical distribution.

Lemma A.5.3. Consider an equicontinuous, uniformly bounded family of functions F on P(X )
and define

Ft(ν) ≡ sup
f∈F
|f(ν)− f(µt)|

for any t ∈ T . Then, Ft is continuous and bounded and by Lemma A.5.1 we have

lim
N→∞

E

[︄
sup
f∈F
|f(µ[xt])− f(µ)|

]︄
= 0



156 a supplementary details on section 3.1

Proof. Ft is continuous, since for νn → ν

|Ft(νn)− Ft(ν)| =
⃓⃓
⃓⃓
⃓supf∈F

|f(νn)− f(µt)| − sup
f∈F
|f(ν)− f(µt)|

⃓⃓
⃓⃓
⃓ ≤ sup

f∈F
|f(νn)− f(ν)| → 0

by equicontinuity. Further, Ft is bounded since |Ft(ν)| ≤ supf∈F |f(ν)| + |f(µt)| is uniformly
bounded. By Lemma A.5.2, we have W1(µ[xt], δµt) → 0 as N → ∞, therefore Lemma A.5.1
applies. ■

Lemma A.5.4. Suppose that at some time t ∈ T , it holds that

lim
N→∞

⃓⃓
L(x1t )(gN )− L(xµt )(gN )

⃓⃓
= 0

for any sequence of functions {gN}N∈N from X to R that is uniformly bounded. Then, we have

lim
N→∞

⃓⃓
L(x1t , µ[xt])(TN )− L(xµt , µt)(TN )

⃓⃓
= 0

for any sequence of functions {TN}N∈N from X ×P(X ) to R that is equicontinuous and uniformly
bounded.

Proof. We have
⃓⃓
L(x1t , µ[xt])(TN )− L(xµt , µt)(TN )

⃓⃓

≤
⃓⃓
L(x1t , µ[xt])(TN )− L(x1t , µt)(TN )

⃓⃓
+
⃓⃓
L(x1t , µt)(TN )− L(xµt , µt)(TN )

⃓⃓

The first term becomes
⃓⃓
L(x1t , µ[xt])(TN )− L(x1t , µt)(TN )

⃓⃓

=

⃓⃓
⃓⃓
∫︂

TN (x, ν)L(x1t , µ[xt])(dx, dν)−
∫︂

TN (x, ν)L(x1t , µt)(dx,dν)

⃓⃓
⃓⃓

≤ E
[︁
E
[︁⃓⃓
TN (x1t , G

N
xt
)− TN (x1t , µt)

⃓⃓
x1t
]︁]︁

≤ E

[︄
sup

f∈{TN (x,·)}x∈X ,N∈N

⃓⃓
f(GN

xt
)− f(µt)

⃓⃓
]︄
→ 0

by Lemma A.5.3, since {TN}N∈N is equicontinuous and uniformly bounded. Similarly for the
second term,

⃓⃓
L(x1t , µt)(TN )− L(xµt , µt)(TN )

⃓⃓
=
⃓⃓
E
[︁
TN (x1t , µt)− TN (xµt , µt)

]︁⃓⃓
→ 0

by the assumption, since TN fulfills the condition of being uniformly bounded. ■

Lemma A.5.5. For any sequence {gN}N∈N of functions from X to R that is uniformly bounded,
we have

lim
N→∞

⃓⃓
L(x1t )(gN )− L(xµt )(gN )

⃓⃓
= 0

for all times t ∈ T .
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Proof. Define lN,t as

lN,t(x, ν) ≡
∑︂

u∈U
πN
t (u | x)

∑︂

x′∈X
p(x′ | x, u, ν)gN (x′) .

{lN,t(x, ·)}x∈X ,N∈N is equicontinuous, since for any ν, ν ′ ∈M with dTV (ν, ν
′)→ 0,

sup
x∈X ,N∈N

⃓⃓
lN,t(x, ν)− lN,t(x, ν

′)
⃓⃓

≤Mg sup
x∈X ,N∈N

⃓⃓
⃓⃓
⃓
∑︂

u∈U
πN
t (u | x)

∑︂

x′∈X

(︁
p(x′ | x, u, ν)− p(x′ | x, u, ν ′)

)︁
⃓⃓
⃓⃓
⃓

≤Mg|X |max
x∈X

max
u∈U

max
x′∈X

|p(x′ | x, u, ν)− p(x′ | x, u, ν ′)| → 0

since |gN | < Mg is uniformly bounded and p is continuous by assumption. Furthermore, lN,t(x, ν)
is always uniformly bounded by Mg. Now the result can be shown by induction.

For t = 0, L(xµ0 ) = L(x10) fulfills the hypothesis. Assume this holds for t, then
⃓⃓
L(x1t+1)(gN )− L(xµt+1)(gN )

⃓⃓
=
⃓⃓
L(x1t , µ[xt])(lN,t)− L(xµt , µt)(lN,t)

⃓⃓
→ 0

as N →∞ by Lemma A.5.4. ■

Thus, for any sequence of policies {πN}N∈N with πN ∈ Π for all N ∈ N, the achieved return of
the N -agent game converges to the return of the MFG under the MF generated by the other agent’s
policy π as N →∞.

Lemma A.5.6. Let {πN}N∈N with πN ∈ Π for all N ∈ N be an arbitrary sequence of policies
and π ∈ Π an arbitrary policy. Further, let the MF µ = Ψ(π) be generated by π. Then, under the
joint policy (πN , π, . . . , π), we have as N →∞ that

⃓⃓
JN
1 (πN , π, . . . , π)− Jµ(πN )

⃓⃓
→ 0 .

Proof. Define for any t ∈ T , N ∈ N

rπN
t
(x, ν) ≡

∑︂

u∈U
r(x, u, ν)πN

t (u | x)

such that the family {rπN
t
(x, ·)}x∈X ,N∈N is equicontinuous, since for any νn, ν

′ ∈ M as
dM(νn, ν

′)→ 0,

max
x∈X ,N∈N

⃓⃓
⃓rπN

t
(x, νn)− rπN

t
(x, ν ′)

⃓⃓
⃓ ≤ max

x∈X ,u∈U

⃓⃓
r(x, u, νn)− r(x, u, ν ′)

⃓⃓
→ 0

by continuity of r. The function rπN
t

is uniformly bounded for all N ∈ N by assumption of
uniformly bounded r. By Lemmas A.5.4 and A.5.5,

lim
N→∞

⃓⃓
E
[︁
r(x1t , u

1
t , µ[xt])

]︁
− E [r(xµt , u

µ
t , µt)]

⃓⃓

= lim
N→∞

⃓⃓
⃓E
[︂
rπN

t
(x1t , µ[xt])

]︂
− E

[︂
rπN

t
(xµt , µt)

]︂⃓⃓
⃓ = 0 .

such that we have

lim
N→∞

⃓⃓
JN
1 (πN , π, . . . , π)− Jµ(πN )

⃓⃓

≤
∑︂

t∈T
lim

N→∞

⃓⃓
E
[︁
r(x1t , u

1
t , µ[xt])

]︁
− E [r(xµt , u

µ
t , µt)]

⃓⃓
= 0 .

which is the desired result. ■
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From Lemma A.5.6, it follows that for any sequence of optimal exploiting policies {πN}N∈N with
πN ∈ Π for all N ∈ N and

πN ∈ argmax
π∈Π

JN
1 (π, π∗, . . . , π∗)

for all N ∈ N, it holds that for any MFE (π∗, µ∗) ∈ Π×M,

lim
N→∞

JN
1 (πN , π∗, . . . , π∗) ≤ max

π∈Π
Jµ∗

(π)

= Jµ∗
(π∗)

= lim
N→∞

JN
1 (π∗, . . . , π∗)

and by instantiating for arbitrary ϵ > 0, for sufficiently large N we obtain

JN
1 (πN , π∗, . . . , π∗)− ϵ = max

π∈Π
JN
1 (π, π∗, . . . , π∗)− ϵ

≤ max
π∈Π

Jµ∗
(π)− ϵ

2

= Jµ∗
(π∗)− ϵ

2

= JN
1 (π∗, π∗, . . . , π∗)

which is the desired approximate Nash property that applies to all agents by symmetry.

a.6 proof of theorem 3.1.2

Proof. If Φ or Ψ is constant, or if the restriction ΨΠΦ
of Ψ to ΠΦ is constant, then Γ = Ψ ◦ Φ is

constant. Assume that this is not the case.

Then there exist distinct π, π′ ∈ ΠΦ such that Ψ(π) ̸= Ψ(π′). By definition of ΠΦ there also
exist distinct µ, µ′ ∈ M such that Φ(µ) = π and Φ(µ′) = π′. Note that for any ν, ν ′ ∈ M with
Γ(ν) ̸= Γ(ν ′),

dM(Γ(ν),Γ(ν ′)) ≥ min
π,π′∈ΠΦ,Ψ(π)̸=Ψ(π′)

dM(Ψ(π),Ψ(π′))

where the right-hand side is greater zero by finiteness of ΠΦ. This holds for µ, µ′.

To show that Γ cannot be Lipschitz continuous, assume that Γ has a Lipschitz constant C > 0. We
can find an integer N such that

dM(µi, µi+1) =
dM(µ, µ′)

N − 1
<

minπ,π′∈ΠΦ,Ψ(π)̸=Ψ(π′) dM(Ψ(π),Ψ(π′))

C

for all i ∈ {0, . . . , N − 1} by defining

µi =
i

N
µ+

N − i

N
µ′

for all i ∈ {0, . . . , N}, and µi ∈M holds. By the triangle inequality

dM(Γ(µ),Γ(µ′)) ≤ dM(Γ(µ0),Γ(µ1)) + . . .+ dM(Γ(µN−1),Γ(µN ))
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there exists a pair (µi, µi+1) with Γ(µi) ̸= Γ(µi+1). Therefore, for this pair, by the prequel

dM(Γ(µi),Γ(µi+1)) ≥ min
π,π′∈ΠΦ,Ψ(π)̸=Ψ(π′)

dM(Ψ(π),Ψ(π′)) .

On the other hand, since Γ is Lipschitz with constant C, we have

dM(Γ(µi),Γ(µi+1)) ≤ C · dM(µi, µi+1) < min
π,π′∈ΠΦ,Ψ(π)̸=Ψ(π′)

dM(Ψ(π),Ψ(π′))

which is a contradiction. Thus, Γ cannot be Lipschitz continuous and by extension cannot be
contractive.

a.7 proof of theorem 3.1.3

Proof. For all η > 0, µ ∈ M, t ∈ T , x ∈ X , u ∈ U , the soft action-value function of the MDP
induced by µ ∈M is given by

Q̃η(µ, t, x, u) = r(x, u, µt)

+
∑︂

x′∈X
p(x′ | x, u, µt)η log

∑︂

u′∈U
qt+1(u

′ | x′) exp
(︄
Q̃η(µ, t+ 1, x′, u′)

η

)︄

and terminal condition Q̃η(µ, T −1, x, u) ≡ r(x, u, µT−1). Analogously, the action-value function
of the MDP induced by µ ∈M is given by

Q∗(µ, t, x, u) = r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt)max

u′∈U
Q∗(µ, t+ 1, x′, u′)

and the similarly defined policy action-value function for π ∈ Π is given by

Qπ(µ, t, x, u) = r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt)

∑︂

u′∈U
πt+1(u

′ | x′)Qπ(µ, t+ 1, x′, u′) ,

with terminal conditions Q∗(µ, T − 1, x, u) ≡ Qπ(µ, T − 1, x, u) ≡ r(x, u, µT−1).

We will show that we can find a Lipschitz constant KQ̃η
of Q̃η that is independent of η if η is not

arbitrarily small. To show this, we will explicitly compute such a Lipschitz constant. Note first
that Q̃η, Q∗ and Qπ are all uniformly bounded by MQ ≡ |T |Mr by assumption, where Mr is the
uniform bound of r.

Lemma A.7.1. The functions Q̃η(µ, t, x, u), Q∗(µ, t, x, u) and Qπ(µ, t, x, u) are uniformly
bounded for all η > 0, µ ∈M, t ∈ T , x ∈ X , u ∈ U by

⃓⃓
⃓Q̃η(µ, t, x, u)

⃓⃓
⃓ ≤ (T − t)Mr ≤ TMr =: MQ

where Mr is the uniform bound of |r(x, u, µt)| ≤Mr, and T = |T |.

Proof. Make the induction hypothesis for all t ∈ T that
⃓⃓
⃓Q̃η(µ, t, x, u)

⃓⃓
⃓ ≤ (T − t)Mr
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for all η > 0, µ ∈M, x ∈ X , u ∈ U and note that this holds for t = T − 1, as by assumption
⃓⃓
⃓Q̃η(µ, T − 1, x, u)

⃓⃓
⃓ = |r(x, u, µt)| ≤Mr .

The induction step from t+ 1 to t holds by
⃓⃓
⃓Q̃η(µ, t, x, u)

⃓⃓
⃓

=

⃓⃓
⃓⃓
⃓r(x, u, µt) +

∑︂

x′∈X
p(x′ | x, u, µt)η log

∑︂

u′∈U
qt+1(u

′ | x′) exp
(︄
Q̃η(µ, t+ 1, x′, u′)

η

)︄⃓⃓
⃓⃓
⃓

≤ |r(x, u, µt)|+ ηmax
x′∈X

⃓⃓
⃓⃓
⃓log

∑︂

u′∈U
qt+1(u

′ | x′) exp
(︄
Q̃η(µ, t+ 1, x′, u′)

η

)︄⃓⃓
⃓⃓
⃓

≤Mr + η

⃓⃓
⃓⃓log

(︃
exp

(︃
(T − t− 1)Mr

η

)︃)︃⃓⃓
⃓⃓

= Mr + (T − t− 1)Mr = (T − t)Mr .

By maximizing over all t ∈ T , we obtain the uniform bound. The other cases are analogous. ■

Now we can find a Lipschitz constant of Q̃η(µ, t, x, u) that is independent of η.

Lemma A.7.2. Let Cr be a Lipschitz constant of µ → r(x, u, µt) and Cp a Lipschitz constant
of µ → p(x′ | x, u, µt). Further, let ηmin > 0. Then, for all η > ηmin, t ∈ T , the map
µ ↦→ Q̃η(µ, t, x, u) is Lipschitz for all x ∈ X , u ∈ U with a Lipschitz constant Kt

Q̃η
independent

of η. Therefore, by picking KQ̃η
≡ maxt∈T Kt

Q̃η
, we have one single Lipschitz constant for all

η > ηmin, t ∈ T , x ∈ X , u ∈ U .

Proof. We show by induction that for all t ∈ T , x ∈ X , u ∈ U , we can find Lipschitz constants
such that Q̃η(µ, t, x, u) is Lipschitz in µ with a Lipschitz constant that does not depend on η.

To see this, note that this is true for t = T − 1 and any x ∈ X , u ∈ U , as for any µ, µ′ we have
⃓⃓
⃓Q̃η(µ, T − 1, x, u)− Q̃η(µ

′, T − 1, x, u)
⃓⃓
⃓ =

⃓⃓
r(x, u, µT−1)− r(x, u, µ′

T−1)
⃓⃓
≤ CrdM(µ, µ′) .

The induction step from t+ 1 to t is
⃓⃓
⃓Q̃η(µ, t, x, u)− Q̃η(µ, t, x, u)

⃓⃓
⃓

≤
⃓⃓
r(x, u, µt)− r(x, u, µ′

t)
⃓⃓

+
∑︂

x′∈X

⃓⃓
⃓⃓
⃓p(x

′ | x, u, µt)η log
∑︂

u′∈U
qt+1(u

′ | x′) exp
(︄
Q̃η(µ, t+ 1, x′, u′)

η

)︄

−p(x′ | x, u, µ′
t)η log

∑︂

u′∈U
qt+1(u

′ | x′) exp
(︄
Q̃η(µ

′, t+ 1, x′, u′)

η

)︄⃓⃓
⃓⃓
⃓

≤ CrdM(µ, µ′) + η|X |max
x′∈X

1 ·
⃓⃓
⃓⃓
⃓log

∑︂

u′∈U
qt+1(u

′ | x′) exp
(︄
Q̃η(µ, t+ 1, x′, u′)

η

)︄

− log
∑︂

u′∈U
qt+1(u

′ | x′) exp
(︄
Q̃η(µ

′, t+ 1, x′, u′)

η

)︄⃓⃓
⃓⃓
⃓
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+ η|X |max
x′∈X

MQ

η
·
⃓⃓
p(x′ | x, u, µt)− p(x′ | x, u, µ′

t)
⃓⃓

≤ CrdM(µ, µ′) + η|X |max
x′∈X

∑︂

u′∈U

⃓⃓
⃓⃓
⃓⃓

1
η qt+1(u

′ | x′) exp
(︂
ξu′
η

)︂

∑︁
u′′∈U qt+1(u′′ | x′) exp

(︂
ξu′′
η

)︂

⃓⃓
⃓⃓
⃓⃓

·
⃓⃓
⃓Q̃η(µ, t+ 1, x′, u′)− Q̃η(µ

′, t+ 1, x′, u′)
⃓⃓
⃓+ |X |MQ · CpdM(µ, µ′)

≤ CrdM(µ, µ′) +
|U|qmax

|U|qmin
exp

(︃
2 · MQ

η

)︃
Kt+1

Q̃η
dM(µ, µ′) + |X |MQCpdM(µ, µ′)

<

(︃
Cr +

qmax

qmin
exp

(︃
2MQ

ηmin

)︃
Kt+1

Q̃η
+ |X |MQCp

)︃
dM(µ, µ′)

where we use the mean value theorem to obtain some ξu ∈ [−MQ,MQ] for all u ∈ U bounded by
Lemma A.7.1, Lemma A.2.1 for the second inequality, and defined qmax = maxt∈T ,x∈X ,u∈U qt(u |
x), qmin = mint∈T ,x∈X ,u∈U qt(u | x). Since x ∈ X , u ∈ U were arbitrary, this holds for all
x ∈ X , u ∈ U .

Thus, we have the Lipschitz constant Kt
Q̃η
≡
(︃
Cr +

qmax

qmin
exp

(︂
2MQ

ηmin

)︂
Kt+1

Q̃η
+ |X |MQCp

)︃
, as

long as η > ηmin, since by induction assumption Kt+1
Q̃η

is independent of η. ■

The optimal action-value function and the policy action-value function for any fixed policy are
Lipschitz in µ.

Lemma A.7.3. The functions µ ↦→ Q∗(µ, t, x, u) and µ ↦→ Qπ(µ, t, x, u) for any fixed π ∈ Π, t ∈
T , x ∈ X , u ∈ U are Lipschitz continuous. Therefore, for any fixed π ∈ Π we can choose a
Lipschitz constant KQ for all t ∈ T , x ∈ X , u ∈ U by taking the maximum over all Lipschitz
constants.

Proof. The action-value function is given by the recursion

Q∗(µ, t, x, u) = r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt)max

u′∈U
Q∗(µ, t+ 1, x′, u′)

with terminal condition Q∗(µ, T − 1, x, u) ≡ r(x, u, µT−1). The functions r(x, u, µt) and
p(x′ | x, u, µt) are Lipschitz continuous by Assumption 2. Note that for any µ, µ′ ∈ M and any
t ∈ T , dTV (µt, µ

′
t) ≤ dM (µ, µ′). Therefore, the terminal condition and all terms in the above

recursion are Lipschitz. Further, Q∗(µ, t, x, u) is uniformly bounded, since r is assumed uniformly
bounded.

Since a finite maximum, product and sum of Lipschitz and bounded functions is again Lipschitz and
bounded by Lemma A.2.1, we obtain Lipschitz constants KQ,t,x,u of the maps µ→ Q∗(µ, t, x, u)
for any t ∈ T , x ∈ X , u ∈ U and define KQ ≡ maxt∈T ,x∈X ,u∈U KQ,t,x,u. The case for Qπ with
fixed π ∈ Π is analogous. ■

The same holds for Ψ(π) mapping from policy π to its induced MF.

Lemma A.7.4. The function Ψ(π) is Lipschitz with some Lipschitz constant KΨ.
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Proof. Recall that Ψ(π) maps to the MF µ starting with µ0 and obtained by the recursion

µt+1(x
′) =

∑︂

x∈X

∑︂

u∈U
p(x′ | x, u, µt)πt(u | x)µt(x) .

We proceed analogously to Lemma A.7.3. µ is uniformly bounded by normalization. The constant
function π ↦→ µ0(x) is Lipschitz and bounded for any x ∈ X . The functions r(x, u, µt) and
p(x′ | x, u, µt) are Lipschitz continuous by Assumption 2. Since a finite sum, product and
composition of Lipschitz and bounded functions is again Lipschitz and bounded by Lemma A.2.1,
we obtain Lipschitz constants KΨ,t,s of the maps π → µt(x) for any t ∈ T , x ∈ X and define
KΨ ≡ maxt∈T ,x∈X KΨ,t,s, which is the desired Lipschitz constant of Ψ. ■

Finally, the map from an energy function to its associated Boltzmann distribution is Lipschitz for
any η > 0 with a Lipschitz constant explicitly depending on η.

Lemma A.7.5. Let η > 0 arbitrary and fu :M → R be a Lipschitz continuous function with
Lipschitz constant Kf for any u ∈ U . Further, let g : U → R be bounded by gmax > g(u) >
gmin > 0 for any u ∈ U . The function

µ ↦→
g(u) exp

(︂
fu(µ)

η

)︂

∑︁
u′∈U g(u′) exp

(︂
fu′ (µ)

η

)︂

is Lipschitz with Lipschitz constant K =
(|U|−1)Kfg

2
max

2ηg2min
for any u ∈ U .

Proof. Let µ, µ′ ∈M be arbitrary and define

∆ufu′(µ) ≡ fu′(µ)− fu(µ)

for any u′ ∈ U , which is Lipschitz with constant 2Kf . Then, we have
⃓⃓
⃓⃓
⃓⃓

g(u) exp
(︂
fu(µ)

η

)︂

∑︁
u′∈U g(u′) exp

(︂
fu′ (µ)

η

)︂ −
g(u) exp

(︂
fu(µ′)

η

)︂

∑︁
u′∈U g(u′) exp

(︂
fu′ (µ

′)
η

)︂

⃓⃓
⃓⃓
⃓⃓

=

⃓⃓
⃓⃓
⃓⃓

1

1 +
∑︁

u′ ̸=u
g(u′)
g(u) exp

(︂
∆ufu′ (µ)

η

)︂ − 1

1 +
∑︁

u′ ̸=u
g(u′)
g(u) exp

(︂
∆ufu′ (µ

′)
η

)︂

⃓⃓
⃓⃓
⃓⃓

≤

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′ ̸=u

g(u′)
g(u) · 1η exp

(︂
ξu′
η

)︂

(︂
1 +

∑︁
u′′ ̸=a

g(u′′)
g(u) exp

(︂
ξu′′
η

)︂)︂2 ·
(︁
∆ufu′(µ)−∆ufu′(µ′)

)︁
⃓⃓
⃓⃓
⃓⃓
⃓

≤
∑︂

u′ ̸=u

⃓⃓
⃓⃓
⃓⃓
⃓

gmax

gmin
· 1η exp

(︂
ξu′
η

)︂

(︂
1 + gmin

gmax
exp

(︂
ξu′
η

)︂)︂2

⃓⃓
⃓⃓
⃓⃓
⃓
·
⃓⃓
∆ufu′(µ)−∆ufu′(µ′)

⃓⃓

≤ g2max

4ηg2min

·
∑︂

u′ ̸=u

2KfdM(µ, µ′) =
(|U| − 1)Kfg

2
max

2ηg2min

· dM(µ, µ′)

where we applied the mean value theorem to obtain some ξu′ ∈ R for all u′ ∈ U and used the
maximum 1

4c of the function f̃(x) = exp(x/η)
(1+c·exp(x/η))2 at x = 0. ■



A.7 proof of theorem 3.1.3 163

For RelEnt MFE, by Lemma A.7.2 we obtain a Lipschitz constant KQ̃η
of µ → Q̃η(µ, t, x, u) as

long as η > ηmin for some ηmin > 0. Furthermore, note that for π̃µ,η ≡ Φ̃η(µ), we have
⃓⃓
⃓π̃µ,η

t (u | x)− π̃µ′,η
t (u | x))

⃓⃓
⃓

=

⃓⃓
⃓⃓
⃓⃓
⃓⃓

qt(u | x) exp
(︃

Q̃η(µ,t,x,u)

η

)︃

∑︁
u′∈U qt(u′ | x) exp

(︃
Q̃η(µ,t,x,u

′)

η

)︃ −
qt(u | x) exp

(︃
Q̃η(µ

′,t,x,u)

η

)︃

∑︁
u′∈U qt(u′ | x) exp

(︃
Q̃η(µ

′,t,x,u′)

η

)︃

⃓⃓
⃓⃓
⃓⃓
⃓⃓
.

We obtain the Lipschitz constant of Φ̃η by applying Lemma A.7.5 to each of the maps given by

µ ↦→
qt(u | x) exp

(︃
Q̃η(µ,t,x,u)

η

)︃

∑︁
u′∈U qt(u′ | x) exp

(︃
Q̃η(µ,t,x,u

′)

η

)︃

for all t ∈ T , x ∈ X , u ∈ U , resulting in the Lipschitz property

dΠ(Φ̃η(µ), Φ̃η(µ
′))

= max
x∈X

max
t∈T

∑︂

u∈U

⃓⃓
⃓π̃µ,η

t (u | x)− π̃µ′,η
t (u | x))

⃓⃓
⃓

≤
∑︂

u∈U

(|U| − 1)KQ̃η
q2max

2ηq2min

· dM(µ, µ′) =
|U| (|U| − 1)KQ̃η

q2max

2ηq2min

· dM(µ, µ′) ,

where we let qmax = maxt∈T ,x∈X ,u∈U qt(u | x) and qmin = mint∈T ,x∈X ,u∈U qt(u | x).
By Lemma A.7.4, Ψ(π) is Lipschitz with some Lipschitz constant KΨ. Therefore, the resulting

Lipschitz constant of the composition Γ̃η = Ψ◦Φ̃η is
|U|(|U|−1)KQ̃η

KΨq2max

2ηq2min
and leads to a contraction

for any

η > max

(︄
ηmin,

|U| (|U| − 1)KQ̃η
KΨq

2
max

2q2min

)︄
.

Analogously for Boltzmann MFE, by Lemma A.7.3 the mapping µ → Q∗(µ, t, x, u) is Lipschitz
with some Lipschitz constant KQ∗ for all t ∈ T , x ∈ X , u ∈ U . For πµ,η ≡ Φη(µ), we have

⃓⃓
⃓πµ,η

t (u | x)− πµ′,η
t (u | x))

⃓⃓
⃓

=

⃓⃓
⃓⃓
⃓⃓

qt(u | x) exp
(︂
Q∗(µ,t,x,u)

η

)︂

∑︁
u′∈U qt(u′ | x) exp

(︂
Q∗(µ,t,x,u′)

η

)︂ −
qt(u | x) exp

(︂
Q∗(µ′,t,x,u)

η

)︂

∑︁
u′∈U qt(u′ | x) exp

(︂
Q∗(µ′,t,x,u′)

η

)︂

⃓⃓
⃓⃓
⃓⃓ .

We obtain the Lipschitz constant of Φη by applying Lemma A.7.5 to each of the maps given by

µ ↦→
qt(u | x) exp

(︂
Q∗(µ,t,x,u)

η

)︂

∑︁
u′∈U qt(u′ | x) exp

(︂
Q∗(µ,t,x,u′)

η

)︂
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for all t ∈ T , x ∈ X , u ∈ U , resulting in the Lipschitz property

dΠ(Φη(µ),Φη(µ
′))

= max
x∈X

max
t∈T

∑︂

u∈U

⃓⃓
⃓πµ,η

t (u | x)− πµ′,η
t (u | x))

⃓⃓
⃓

≤
∑︂

u∈U

(|U| − 1)KQ∗q2max

2ηq2min

· dM(µ, µ′) =
|U| (|U| − 1)KQ∗q2max

2ηq2min

· dM(µ, µ′) .

By Lemma A.7.4, Ψ(π) is Lipschitz with some Lipschitz constant KΨ. The resulting Lipschitz
constant of the composition Γη = Ψ ◦Φη is |U|(|U|−1)KQ∗KΨq2max

2ηq2min
and leads to a contraction for any

η >
|U| (|U| − 1)KQ∗KΨq

2
max

2q2min

where for the uniform prior policy, qmax = qmin. If required, the Lipschitz constants can be
computed recursively according to Lemma A.2.1.

a.8 proof of theorem 3.1.4

Proof. Consider any sequence (π∗
n, µ

∗
n)n∈N of ηn-Boltzmann or ηn-RelEnt MFE with ηn → 0+

as n → ∞. Note that a pair (π∗
n, µ

∗
n) is completely specified by µ∗

n, since π∗
n = Φηn(µ

∗
n)

or π∗
n = Φ̃ηn(µ

∗
n) uniquely. Therefore, it suffices to show that the associated functions

(µ ↦→ QΦηn (µ)(µ, t, x, u))n∈N and (µ ↦→ QΦ̃ηn (µ)(µ, t, x, u))n∈N converge uniformly to µ ↦→
Q∗(µ, t, x, u), from which the desired result will follow. For definitions of the different action-value
functions, see Appendix A.7.

Note that pointwise convergence is insufficient, since there is no guarantee that µ∗
n itself will

converge as n → ∞. However, we can obtain uniform convergence by pointwise convergence
and equicontinuity. For RelEnt MFE, we will additionally require uniform convergence of the
sequence (µ ↦→ Q̃ηn(µ, t, x, u))n∈N with ηn → 0+. We begin with pointwise convergence of
(µ ↦→ QΦηn (µ)(µ, t, x, u))n∈N to the optimal action-value function µ ↦→ Q∗(µ, t, x, u).

Lemma A.8.1. Any sequence of functions (µ ↦→ QΦηn (µ)(µ, t, x, u))n∈N with ηn → 0+ converges
pointwise to µ ↦→ Q∗(µ, t, x, u) for all t ∈ T , x ∈ X , u ∈ U .

Proof. Fix µ ∈M. We make the induction hypothesis for arbitrary t ∈ T that for all x ∈ X , u ∈
U , ε > 0, there exists n′ ∈ N such that for any n > n′ we have

⃓⃓
⃓QΦηn (µ)(µ, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
⃓ < ε .

The induction hypothesis is fulfilled for t = T − 1, as by definition
⃓⃓
⃓QΦηn (µ)(µ, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
⃓ = |r(x, u, µt)− r(x, u, µt)| = 0 .

Assume that the induction hypothesis is fulfilled for t+ 1, then at time t let x ∈ X , u ∈ U , ε > 0
arbitrary. Furthermore, let x′ ∈ X arbitrary. Collect all optimal actions into a set Ux′

opt ⊆ U , i.e. for
u′ ∈ Ux′

opt we have

Q∗(µ, t, x′, uopt) = max
u∈U

Q∗(µ, t, x′, u) .
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We define the minimal action gap

∆Qx′,µ
min ≡ min

uopt∈Ux′
opt,usub∈U\Ux′

opt

(︁
Q∗(µ, t, x′, uopt)−Q∗(µ, t, x′, usub)

)︁
> 0

such that for arbitrary suboptimal actions usub ∈ U \ Ux′
opt and optimal actions uopt ∈ Ux′

opt,

Q∗(µ, t, x′, uopt)−Q∗(µ, t, x′, usub) ≥ ∆Qx′,µ
min .

This is well defined if there are suboptimal actions, since there is always at least one optimal action.
If all actions are optimal, we can skip bounding the probability of taking suboptimal actions and the
result will hold trivially. Thus, we assume henceforth that there exists a suboptimal action.

It follows that the probability of taking suboptimal actions usub ∈ U \ Ux′
opt disappears, since

(Φηn(µ))t(usub | x′) =
qt(usub | x)

∑︁
u′∈U qt(u′ | x) exp

(︂
Q∗(µ,t,x,u′)−Q∗(µ,t,x,usub)

η

)︂

≤ 1

1 +
∑︁

u′∈U
qt(u′|x)

qt(usub|x) exp
(︂
Q∗(µ,t,x,u′)−Q∗(µ,t,x,usub)

η

)︂

≤ 1 | x)
1 +

qt(uopt|x)
qt(usub|x) exp

(︂
Q∗(µ,t,x,uopt)−Q∗(µ,t,x,usub)

η

)︂

≤ 1 | x)

1 +
qt(uopt|x)
qt(usub|x) exp

(︃
∆Qx′,µ

min
η

)︃ → 0

as η → 0+ for some arbitrary optimal action uopt ∈ Ux′
opt. Since x′ ∈ X was arbitrary, this holds

for all x′ ∈ X . Therefore, by finiteness of X and U we can choose n1 ∈ N such that for all n > n1

and for all usub ∈ U \ Ux′
opt we have ηn sufficiently small such that

(Φηn(µ))t(usub | x′) <
ε

2|U|MQ

where MQ is the uniform bound of QΦηn (µ).

Further, by induction assumption, we can choose nx′,u′ for any x′ ∈ X , u′ ∈ U such that for all
n > nx′,u′ we have

⃓⃓
⃓QΦηn (µ)(µ, t+ 1, x′, u′)−Q∗(µ, t+ 1, x′, u′)

⃓⃓
⃓ < ε

3

Therefore, as long as n > n′ ≡ max(n1,maxx′∈X ,u′∈U nx′,u′), we have
⃓⃓
⃓QΦηn (µ)(µ, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
⃓

=

⃓⃓
⃓⃓
⃓
∑︂

x′∈X
p(x′ | x, u, µt)

(︄∑︂

u′∈U
(Φηn

(µ))t(u
′ | x′)QΦηn (µ)(µ, t+ 1, x′, u′)− max

u′′∈U
Q∗(µ, t+ 1, x′, u′′)

)︄⃓⃓
⃓⃓
⃓

≤ max
x′∈X

⃓⃓
⃓⃓
⃓
∑︂

u′∈U
(Φηn

(µ))t(u
′ | x′)QΦηn (µ)(µ, t+ 1, x′, u′)− max

u′′∈U
Q∗(µ, t+ 1, x′, u′′)

⃓⃓
⃓⃓
⃓
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≤ max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈Ux′
opt

(Φηn(µ))t(u
′ | x′)QΦηn (µ)(µ, t+ 1, x′, u′)− max

u′′∈U
Q∗(µ, t+ 1, x′, u′′)

⃓⃓
⃓⃓
⃓⃓
⃓

+ max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈U\Ux′
opt

(Φηn
(µ))t(u

′ | x′)QΦηn (µ)(µ, t+ 1, x′, u′)

⃓⃓
⃓⃓
⃓⃓
⃓

≤ max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈Ux′
opt

(Φηn
(µ))t(u

′ | x′)QΦηn (µ)(µ, t+ 1, x′, u′)

−
∑︂

u′∈Ux′
opt

(Φηn(µ))t(u
′ | x′) max

u′′∈U
Q∗(µ, t+ 1, x′, u′′)

⃓⃓
⃓⃓
⃓⃓
⃓

+ max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈Ux′
opt

(Φηn
(µ))t(u

′ | x′) max
u′′∈U

Q∗(µ, t+ 1, x′, u′′)− max
u′′∈U

Q∗(µ, t+ 1, x′, u′′)

⃓⃓
⃓⃓
⃓⃓
⃓

+ max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈U\Ux′
opt

(Φηn(µ))t(u
′ | x′)QΦηn (µ)(µ, t+ 1, x′, u′)

⃓⃓
⃓⃓
⃓⃓
⃓

≤ max
x′∈X

max
u′∈Ux′

opt

⃓⃓
⃓⃓QΦηn (µ)(µ, t+ 1, x′, u′)− max

u′′∈U
Q∗(µ, t+ 1, x′, u′′)

⃓⃓
⃓⃓

+ max
x′∈X

MQ

⃓⃓
⃓⃓
⃓⃓
⃓
−

∑︂

u′∈U\Ux′
opt

(Φηn(µ))t(u
′ | x′)

⃓⃓
⃓⃓
⃓⃓
⃓
+ max

x′∈X
MQ

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈U\Ux′
opt

(Φηn(µ))t(u
′ | x′)

⃓⃓
⃓⃓
⃓⃓
⃓

<
ε

3
+

ε

3|U|MQ
· |U|MQ +

ε

3|U|MQ
· |U|MQ = ε .

Since x ∈ X , u ∈ U , ε > 0 were arbitrary, the desired result follows immediately by induction. ■

As we have no control over µ∗
n and the sequence (π∗

n, µ
∗
n)n∈N may not even converge, pointwise

convergence is insufficient. To obtain uniform convergence, we shall use compactness ofM and
equicontinuity.

Lemma A.8.2. The family of functions F ≡ {µ ↦→ QΦη(µ)(µ, t, x, u)}η>0,t∈T ,x∈X ,u∈U is equicon-
tinuous, i.e. for any ε > 0 and any µ ∈M, we can choose a δ > 0 such that for all µ′ ∈M with
dM(µ, µ′) < δ and any f ∈ F we have

⃓⃓
f(µ)− f(µ′)

⃓⃓
< ε .

Proof. Fix an arbitrary µ ∈ M. We make the (backwards in time) induction hypothesis for all
t ∈ T that for any x ∈ X , u ∈ U , εt,x,u > 0, there exists δt,x,u > 0 such that for any µ′ ∈M with
dM(µ, µ′) < δt,x,u and any f ∈ F we have

⃓⃓
⃓QΦη(µ)(µ, t, x, u)−QΦη(µ′)(µ′, t, x, u)

⃓⃓
⃓ < εt,x,u .
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The induction hypothesis is fulfilled for t = T − 1, as by assumption, ν → r(x, u, νt) is Lipschitz
with constant Cr > 0. Therefore, for all x ∈ X , u ∈ U we can choose δT−1,x,u =

εt,x,u
Cr

such that
for any µ, µ′ with dM(µ, µ′) < δ′ we have
⃓⃓
⃓QΦη(µ)(µ, t, x, u)−QΦη(µ′)(µ′, t, x, u)

⃓⃓
⃓ =

⃓⃓
r(x, u, µt)− r(x, u, µ′

t)
⃓⃓
≤ CrdM(µ, µ′) < εt,x,u .

Assume that the induction hypothesis holds for t+ 1, then at time t let εt,x,u > 0, x ∈ X , u ∈ U
arbitrary. By definition, we have
⃓⃓
⃓QΦη(µ)(µ, t, x, u)−QΦη(µ′)(µ′, t, x, u)

⃓⃓
⃓

=

⃓⃓
⃓⃓
⃓r(x, u, µt) +

∑︂

x′∈X
p(x′ | x, u, µt)

∑︂

u′∈U
(Φη(µ))t+1(u

′ | x′)QΦη(µ)(µ, t+ 1, x′, u′)

−r(x, u, µ′
t)−

∑︂

x′∈X
p(x′ | x, u, µ′

t)
∑︂

u′∈U
(Φη(µ

′))t+1(u
′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′)

⃓⃓
⃓⃓
⃓

≤
⃓⃓
r(x, u, µt)− r(x, u, µ′

t)
⃓⃓

+
∑︂

x′∈X

⃓⃓
⃓⃓
⃓
(︁
p(x′ | x, u, µt)− p(x′ | x, u, µ′

t)
)︁ ∑︂

u′∈U
(Φη(µ))t+1(u

′ | x′)QΦη(µ)(µ, t+ 1, x′, u′)

⃓⃓
⃓⃓
⃓

+
∑︂

x′∈X

⃓⃓
⃓⃓
⃓p(x

′ | x, u, µ′
t)
∑︂

u′∈U

(︂
(Φη(µ))t+1(u

′ | x′)QΦη(µ)(µ, t+ 1, x′, u′)

−(Φη(µ
′))t+1(u

′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′)
)︂⃓⃓
⃓

≤
⃓⃓
r(x, u, µt)− r(x, u, µ′

t)
⃓⃓

+
∑︂

x′∈X

⃓⃓
⃓⃓
⃓
(︁
p(x′ | x, u, µt)− p(x′ | x, u, µ′

t)
)︁ ∑︂

u′∈U
(Φη(µ))t+1(u

′ | x′)QΦη(µ)(µ, t+ 1, x′, u′)

⃓⃓
⃓⃓
⃓

+max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈Ux′
opt

(︂
(Φη(µ))t+1(u

′ | x′)QΦη(µ)(µ, t+ 1, x′, u′)

−(Φη(µ
′))t+1(u

′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′)
)︂⃓⃓
⃓

+max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈U\Ux′
opt

(︂
(Φη(µ))t+1(u

′ | x′)QΦη(µ)(µ, t+ 1, x′, u′)

−(Φη(µ
′))t+1(u

′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′)
)︂⃓⃓
⃓

where we define Ux′
opt ⊆ U for any x′ ∈ X to include all optimal actions uopt ∈ Ux′

opt such that

Q∗(µ, t, x′, uopt) = max
u∈U

Q∗(µ, t, x′, u) .

We bound each of the four terms separately.

For the first term, we choose δ1t,x,u =
εt,x,u
4Cr

by Lipschitz continuity such that

⃓⃓
r(x, u, µt)− r(x, u, µ′

t)
⃓⃓
<

εt,x,u
4
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for all µ′ with dM(µ, µ′) < δ1t,x,u.

For the second term, we choose δ2t,x,u = 1
4|X |MQCp

such that for anyµ′ ∈Mwith dM(µ, µ′) < δ2t,x,u
we have

∑︂

x′∈X

⃓⃓
⃓⃓
⃓
(︁
p(x′ | x, u, µt)− p(x′ | x, u, µ′

t)
)︁ ∑︂

u′∈U
(Φη(µ))t+1(u

′ | x′)QΦη(µ)(µ, t+ 1, x′, u′)

⃓⃓
⃓⃓
⃓

≤ |X |CpdM(µ, µ′)MQ <
εt,x,u
4

where MQ denotes the uniform bound of Q and Cp is the Lipschitz constant of ν ↦→ p(x′ | x, u, νt).
For the third and fourth term, we first fix x′ ∈ X and define the minimal action gap as

∆Qx′,µ
min ≡ min

uopt∈Ux′
opt,usub∈U\Ux′

opt

(︁
Q∗(µ, t, x′, uopt)−Q∗(µ, t, x′, usub)

)︁
.

This is well defined if there are suboptimal actions, since there is always at least one optimal action.
If all actions are optimal, we can skip bounding the probability of taking suboptimal actions and the
result will still hold. Henceforth, we assume that there exists a suboptimal action.

By Lipschitz continuity of µ ↦→ Q∗(µ, t, x, u) from Lemma A.7.3 implying uniform continuity,
there exists some δ3,x

′

t,x,u > 0 such that

⃓⃓
Q∗(µ′, t, x′, u)−Q∗(µ, t, x′, u)

⃓⃓
<

∆Qx′,µ
min

4

for all µ′ ∈M, u ∈ U where dM(µ, µ′) < δ3,x
′

t,x,u, and thus

∆Qx′,µ′

min = min
uopt∈Ux′

opt,usub∈U\Ux′
opt

(︁
Q∗(µ′, t, x′, uopt)−Q∗(µ′, t, x′, usub)

)︁
>

∆Qx′,µ
min

2
.

Under this condition, we can now show that the probability of any suboptimal action can be controlled.
Define Rmin

q ≡ mint∈T ,x∈X ,u∈U ,u′∈U
qt(u′|x)
qt(u|x) > 0 and Rmax

q ≡ maxt∈T ,x∈X ,u∈U ,u′∈U
qt(u′|x)
qt(u|x) > 0.

Let usub ∈ U \ Ux′
opt, then we either have
⃓⃓
(Φη(µ))t+1(usub | x′)− (Φη(µ

′))t+1(usub | x′)
⃓⃓

=

⃓⃓
⃓⃓
⃓⃓

1

1 +
∑︁

u′ ̸=usub

qt(u′|x′)
qt(usub|x′) exp

(︂
Q∗(µ,t,x′,u′)−Q∗(µ,t,x′,usub)

η

)︂

− 1

1 +
∑︁

u′ ̸=usub

qt(u′|x′)
qt(usub|x′) exp

(︂
Q∗(µ′,t,x′,u′)−Q∗(µ′,t,x′,usub)

η

)︂

⃓⃓
⃓⃓
⃓⃓

≤ 1

1 + maxu′ ̸=usub
Rmin

q exp
(︂
Q∗(µ,t,x′,u′)−Q∗(µ,t,x′,usub)

η

)︂

+
1

1 +maxu′ ̸=usub
Rmin

q exp
(︂
Q∗(µ′,t,x′,u′)−Q∗(µ′,t,x′,usub)

η

)︂

<
1

1 +Rmin
q exp

(︃
∆Qx′,µ

min
η

)︃ +
1

1 +Rmin
q exp

(︃
∆Qx′,µ

min
2η

)︃
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≤ 2

1 +Rmin
q exp

(︃
∆Qx′,µ

min
2η

)︃ <
εt,x,u

8MQ|U|

if εt,x,u > 16MQ|U| trivially, or otherwise if η < ηx
′

min with

ηx
′

min ≡
∆Qx′,µ

min

2 log
(︂

16MQ|U|
εt,x,uRmin

q
− 1

Rmin
q

)︂ ,

in which case we arbitrarily define δ4,x
′

t,x,u = 1, or if neither apply, then η ≥ ηx
′

min and thus

|(Φη(µ))t+1(usub | x′)− (Φη(µ
′))t+1(usub | x′)|

=

⃓⃓
⃓⃓
⃓⃓

1

1 +
∑︁

u′ ̸=usub

qt(u′|x′)
qt(usub|x′) exp

(︂
Q∗(µ,t,x′,u′)−Q∗(µ,t,x′,usub)

η

)︂

− 1

1 +
∑︁

u′ ̸=usub

qt(u′|x′)
qt(usub|x′) exp

(︂
Q∗(µ′,t,x′,u′)−Q∗(µ′,t,x′,usub)

η

)︂

⃓⃓
⃓⃓
⃓⃓

=

⃓⃓
⃓⃓
⃓⃓

∑︁
u′ ̸=usub

qt(u
′|x)

qt(usub|x′)

(︂
exp

(︂
Q∗(µ′,t,x′,u′)−Q∗(µ′,t,x′,usub)

η

)︂
− exp

(︂
Q∗(µ,t,x′,u′)−Q∗(µ,t,x′,usub)

η

)︂)︂

(1 + · · · ) · (1 + · · · )

⃓⃓
⃓⃓
⃓⃓

≤ Rmax
q

∑︂

u′ ̸=usub

⃓⃓
⃓⃓exp

(︃
Q∗(µ′, t, x′, u′)−Q∗(µ′, t, x′, usub)

η

)︃

− exp

(︃
Q∗(µ, t, x′, u′)−Q∗(µ, t, x′, usub)

η

)︃⃓⃓
⃓⃓

≤ Rmax
q

∑︂

u′ ̸=usub

⃓⃓
⃓⃓1
η
exp

(︃
ξu′

η

)︃⃓⃓
⃓⃓

· |(Q∗(µ′, t, x′, u′)−Q∗(µ′, t, x′, usub))− (Q∗(µ, t, x′, u′)−Q∗(µ, t, x′, usub))|

≤ Rmax
q |U| · 1

ηx
′

min

exp

(︃
2MQ

ηx
′

min

)︃
· 2KQdM(µ, µ′) <

εt,x,u
8MQ|U|

by the mean value theorem with some ξu′ ∈ [−2MQ, 2MQ] for all u′ ∈ U , where we abbreviated
the denominator (1 + · · · ) · (1 + · · · ) ≥ 1, as long as we choose

δ4,x
′

t,x,u =
εt,x,uη

x′
min

8MQ|U|2Rmax
q · exp

(︃
2MQ

ηx
′

min

)︃
· 2KQ

and dM(µ, µ′) < δ4,x
′

t,x,u, where KQ is the Lipschitz constant of µ ↦→ Q∗(µ, t, x, u) given by
Lemma A.7.3.

Since x′ ∈ X was arbitrary, we now define δ3t,x,u ≡ minx′∈X δ3,x
′

t,x,u, δ4t,x,u ≡ minx′∈X δ4,x
′

t,x,u and let
dM(µ, µ′) < min(δ3t,x,u, δ

4
t,x,u). Under these assumptions, for the third term we have approximate

optimality for all optimal actions in Ux′
opt, since by induction assumption we can choose δt+1,x′,u′

for all x′ ∈ X , u′ ∈ U such that for all µ′ ∈M with dM(µ, µ′) < δt+1,x′,u′ it holds that
⃓⃓
⃓QΦη(µ)(µ, t+ 1, x′, u′)−QΦη(µ′)(µ′, t+ 1, x′, u′)

⃓⃓
⃓ < εt,x,u

16|U|+ 8
.



170 a supplementary details on section 3.1

and therefore for all µ′ ∈M, as long as dM(µ, µ′) < minx′∈X ,u′∈U δt+1,x′,u′ , we have

max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈Ux′
opt

(Φη(µ))t+1(u
′ | x′)QΦη(µ)(µ, t+ 1, x′, u′)

−
∑︂

u′∈Ux′
opt

(Φη(µ
′))t+1(u

′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′)

⃓⃓
⃓⃓
⃓⃓
⃓

≤ max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈Ux′
opt

(Φη(µ))t+1(u
′ | x′)QΦη(µ)(µ, t+ 1, x′, u′)

−
∑︂

u′∈Ux′
opt

(Φη(µ))t+1(u
′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′)

⃓⃓
⃓⃓
⃓⃓
⃓

+max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈Ux′
opt

(Φη(µ))t+1(u
′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′)

−
∑︂

u′∈Ux′
opt

(Φη(µ
′))t+1(u

′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′)

⃓⃓
⃓⃓
⃓⃓
⃓

≤ max
x′∈X

max
u′∈U

⃓⃓
⃓QΦη(µ)(µ, t+ 1, x′, u′)−QΦη(µ′)(µ′, t+ 1, x′, u′)

⃓⃓
⃓

+max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈Ux′
opt

(︁
(Φη(µ))t+1(u

′ | x′)− (Φη(µ
′))t+1(u

′ | x′)
)︁

·
(︂
QΦη(µ′)(µ′, t+ 1, x′, u′)−QΦη(µ)(µ, t+ 1, x′, u′)

)︂⃓⃓
⃓

+max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈Ux′
opt

(︁
(Φη(µ))t+1(u

′ | x′)− (Φη(µ
′))t+1(u

′ | x′)
)︁
QΦη(µ)(µ, t+ 1, x′, u′)

⃓⃓
⃓⃓
⃓⃓
⃓

≤ max
x′∈X

max
u′∈U

⃓⃓
⃓QΦη(µ)(µ, t+ 1, x′, u′)−QΦη(µ′)(µ′, t+ 1, x′, u′)

⃓⃓
⃓

+max
x′∈X

max
u′∈U

2|U|
⃓⃓
⃓QΦη(µ′)(µ′, t+ 1, x′, u′)−QΦη(µ)(µ, t+ 1, x′, u′)

⃓⃓
⃓

+max
x′∈X

max
u′′∈U

⃓⃓
⃓QΦη(µ)(µ, t+ 1, x′, u′′)

⃓⃓
⃓

·

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈U\Ux′
opt

(︁
(Φη(µ

′))t+1(u
′ | x′)− (Φη(µ))t+1(u

′ | x′)
)︁
⃓⃓
⃓⃓
⃓⃓
⃓

< (1 + 2|U|) · εt,x,u
16|U|+ 8

+MQ|U| ·
εt,x,u

8MQ|U|
<

εt,x,u
4

where we use that for any u′ ∈ Ux′
opt we have

QΦη(µ)(µ, t+ 1, x′, u′) = max
u′′∈U

QΦη(µ)(µ, t+ 1, x′, u′′) .
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Analogously, for the fourth term we have

max
x′∈X

⃓⃓
⃓⃓
⃓⃓
⃓

∑︂

u′∈U\Ux′
opt

((Φη(µ))t+1(u
′ | x′)QΦη(µ)(µ, t+ 1, x′, u′)

−(Φη(µ
′))t+1(u

′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′))
⃓⃓
⃓

≤ max
x′∈X

∑︂

u′∈U\Ux′
opt

⃓⃓
⃓(Φη(µ))t+1(u

′ | x′)QΦη(µ)(µ, t+ 1, x′, u′)

−(Φη(µ))t+1(u
′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′)

⃓⃓
⃓

+max
x′∈X

∑︂

u′∈U\Ux′
opt

⃓⃓
⃓(Φη(µ))t+1(u

′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′)

−(Φη(µ
′))t+1(u

′ | x′)QΦη(µ′)(µ′, t+ 1, x′, u′)
⃓⃓
⃓

≤ max
x′∈X

max
u′∈U

⃓⃓
⃓QΦη(µ)(µ, t+ 1, x′, u′)−QΦη(µ′)(µ′, t+ 1, x′, u′)

⃓⃓
⃓

+max
x′∈X

MQ

∑︂

u′∈U\Ux′
opt

⃓⃓
(Φη(µ))t+1(u

′ | x′)− (Φη(µ
′))t+1(u

′ | x′)
⃓⃓

<
εt,x,u
8

+MQ|U| ·
εt,x,u

8MQ|U|
=

εt,x,u
4

under the previous conditions, since as long as we have dM(µ, µ′) < δt+1,x′,u′ for all x′ ∈ X , u′ ∈ U
from before, we have

⃓⃓
⃓QΦη(µ)(µ, t+ 1, x′, u′)−QΦη(µ′)(µ′, t+ 1, x′, u′)

⃓⃓
⃓ < εt,x,u

16|U|+ 8
<

εt,x,u
8

.

Finally, by choosing δt,x,u such that all conditions are fulfilled, i.e.

δt,x,u ≡ min

(︃
δ1t,x,u, δ

2
t,x,u, δ

3
t,x,u, δ

4
t,x,u, min

x′∈X ,u′∈U
δt+1,x′,u′

)︃
> 0 ,

the induction hypothesis is fulfilled, since then for any µ′ with dM(µ, µ′) < δt,x,u we have
⃓⃓
⃓QΦη(µ)(µ, t, x, u)−QΦη(µ′)(µ′, t, x, u)

⃓⃓
⃓ < εt,x,u .

Since η > 0 is arbitrary, the desired result follows immediately, as we can set εt,x,u = ε for each
t ∈ T , x ∈ X , u ∈ U and obtain δ ≡ maxt∈T ,x∈X ,u∈U δt,x,u, fulfilling the required equicontinuity
property at µ. ■

From equicontinuity, we get the desired uniform convergence via compactness.

Lemma A.8.3. If (fn)n∈N with fn :M→ R is an equicontinuous sequence of functions and for
all µ ∈M we have fn(µ)→ f(µ) pointwise, then fn(µ)→ f(µ) uniformly.

Proof. Let ε > 0 arbitrary, then there exists by equicontinuity for any point µ ∈ M a δ(µ) such
that for all µ′ ∈M with dM(µ, µ′) < δ(µ) we have for all n ∈ N

⃓⃓
fn(µ)− fn(µ

′)
⃓⃓
<

ε

3
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which via pointwise convergence implies
⃓⃓
f(µ)− f(µ′)

⃓⃓
≤ ε

3
.

SinceM is compact, it is separable, i.e. there exists a countable dense subset (µj)j∈N ofM. Let
δ(µ) be as defined above and coverM by the open balls (Bδ(µj)(µj))j∈N. By the compactness ofM,
finitely many of these balls Bδ(µn1 )

(µn1), . . . , Bδ(µnk
)(µnk

) coverM. By pointwise convergence,
for any i = 1, . . . , k we can find an integer ni such that for all n > ni we have

|fn(µni)− f(µni)| <
ε

3
.

Taken together, we find that for n > maxi=1,...,k ni and arbitrary µ ∈M, we have

|fn(µ)− f(µ)| ≤ |fn(µ)− fn(µni)|+ |fn(µni)− f(µni)|+ |f(µni)− f(µ)|
<

ε

3
+

ε

3
+

ε

3
= ε

for some center point µni of a ball containing µ from the finite cover. ■

Therefore, a sequence of Boltzmann MFE with vanishing η is approximately optimal in the MFG.

Lemma A.8.4. For any sequence (π∗
n, µ

∗
n)n∈N of ηn-Boltzmann MFE with ηn → 0+ and for any

ε > 0 there exists integer N ∈ N such that for all integers n > N we have

Jµ∗
n(π∗

n) ≥ max
π

Jµ∗
n(π)− ε .

Proof. By Lemma A.8.2, F ≡ (µ ↦→ QΦη(µ)(µ, t, x, u))η>0,t∈T ,x∈X ,u∈U is equicontinuous.
Therefore, any sequence (µ ↦→ QΦηn (µ)(µ, t, x, u))n∈N with ηn → 0+ is also equicontinuous for
any t ∈ T , x ∈ X , u ∈ U .

Furthermore, by Lemma A.8.1, the sequence (µ ↦→ QΦηn (µ)(µ, t, x, u))n∈N converges pointwise to
µ→ Q∗(µ, t, x, u) for any t ∈ T , x ∈ X , u ∈ U .

By Lemma A.8.3, we thus have
⃓⃓
QΦηn (µ)(µ, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
→ 0 uniformly. Therefore,

for any ε > 0, there exists an integer N by uniform convergence such that for all integers n > N
we have

Qπ∗
n(µ∗

n, t, x, u) ≥ Q∗(µ∗
n, t, x, u)− ε ,

and by the same argument as in Lemma A.8.1, using an action gap and separating out the suboptimal
actions to obtain vanishing mass on suboptimal actions via uniform convergence of Qπ∗

n → Q∗,
⃓⃓
⃓⃓
⃓
∑︂

u∈U
π∗
n,t(u | x)Qπ∗

n(µ∗
n, t, x, u)−max

u∈U
Q∗(µ∗

n, t, x, u)

⃓⃓
⃓⃓
⃓→ 0

such that the desired result follows immediately by Jµ∗
n(π∗

n) =
∑︁

x∈X µ0(x)
∑︁

u∈U π∗
n,t(u |

x)Qπ∗
n(µ∗

n, t, x, u) and maxπ J
µ∗
n(π) =

∑︁
x∈X µ0(x)maxu∈U Q∗(µ∗

n, t, x, u). ■
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Finally, we show approximate optimality in the actual N -agent game as long as a pair (π∗, µ∗) ∈
Π ×M with µ∗ = Ψ(π∗) has vanishing exploitability in the MFG. By Lemma A.8.4, for any
sequence (π∗

n, µ
∗
n)n∈N of ηn-Boltzmann MFE with ηn → 0+ and for any ε > 0 there exists an

integer n′ ∈ N such that for all integers n > n′ we have

Jµ∗
n(π∗

n) ≥ max
π

Jµ∗
n(π)− ε .

Let ε′ > 0 be arbitrary and choose a sequence of optimal policies {πN}N∈N such that for all N ∈ N
we have

πN ∈ argmax
π∈Π

JN
1 (π, π∗

n, . . . , π
∗
n) .

By Lemma A.5.6 there exists N ′ ∈ N such that for all N > N ′ and all n > n′, we have

max
π∈Π

JN
1 (π, π∗

n, . . . , π
∗
n)− ε− ε′ ≤ max

π∈Π
Jµ∗

n(π)− ε− ε′

2

≤ Jµ∗
n(π∗

n)−
ε′

2

≤ JN
1 (π∗

n, π
∗
n, . . . , π

∗
n)

which is the desired approximate Nash equilibrium property since ε, ε′ are arbitrary. This applies
by symmetry to all agents.

For RelEnt MFE, the same can be done by first showing the uniform convergence of the soft
action-value function to the usual action-value function. For this, note that the smooth maximum
Bellman recursion converges to the hard maximum Bellman recursion for any fixed µ.

Lemma A.8.5. For any f : U → R and any g : U → R with g(u) > 0 for all u ∈ U , we have

lim
η→0+

η log
∑︂

u∈U
g(u) exp

f(u)

η
= max

u∈U
f(u) .

Proof. Let δ = 1
η → +∞. Then, by L’Hospital’s rule we have

lim
δ→+∞

log
∑︁

u∈U g(u) exp (δf(u))

δ
= lim

δ→+∞

∑︁
u∈U g(u) exp (δf(u)) f(u)∑︁

u∈U g(u) exp (δf(u))

= lim
δ→+∞

∑︁
u∈U g(u) exp (δ(f(u)−maxu∈U f(u))) f(u)∑︁

u∈U g(u) exp (δ(f(u)−maxu∈U f(u)))

=
|Umax|maxu∈U f(u)

|Umax|
= max

u∈U
f(u)

where |Umax| is the number of elements in U that maximize f . ■

Using this result, we can show pointwise convergence of the soft action-value function to the
action-value function.

Lemma A.8.6. Any sequence of functions (µ ↦→ Q̃ηn(µ, t, x, u))n∈N with ηn → 0+ converges
pointwise to µ ↦→ Q∗(µ, t, x, u) for all t ∈ T , x ∈ X , u ∈ U .
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Proof. Fix µ ∈M. We show by induction that for any ε > 0, there exists ηt > 0 such that for all
η < ηt we have

⃓⃓
⃓Q̃η(µ, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
⃓ < ε for all t ∈ T , x ∈ X , u ∈ U . This holds for

t = T − 1 and arbitrary x ∈ X , u ∈ U by Lemma A.8.5, since r(x, u, µT−1) is independent of
η. Assume this holds for t+ 1 and consider t. Then, by the induction assumption we can choose
ηt+1 > 0 such that for η < ηt+1, as η → 0+ we have

Q̃η(µ, t, x, u)

= r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt)η log

∑︂

u′∈U
qt+1(u

′ | x′) exp
(︄
Q̃η(µ, t+ 1, x′, u′)

η

)︄

≤ r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt)η log

∑︂

u′∈U
qt+1(u

′ | x′) exp
(︃
Q∗(µ, t+ 1, x′, u′) + ε

2

η

)︃

→ r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt)max

u′∈U
Q∗(µ, t+ 1, x′, u′) +

ε

2

by Lemma A.8.5 and monotonicity of log and exp. Analogously,

Q̃η(µ, t, x, u)

≥ r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt)η log

∑︂

u′∈U
qt+1(u

′ | x′) exp
(︃
Q∗(µ, t+ 1, x′, u′)− ε

2

η

)︃

→ r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt)max

u′∈U
Q∗(µ, t+ 1, x′, u′)− ε

2
.

Therefore, we can choose ηt < ηt+1 such that for all η < ηt we have
⃓⃓
⃓Q̃η(µ, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
⃓

=

⃓⃓
⃓⃓
⃓Q̃η(µ, t, x, u)−

(︄
r(x, u, µt) +

∑︂

x′∈X
p(x′ | x, u, µt)max

u′∈U
Q∗(µ, t+ 1, x′, u′)

)︄⃓⃓
⃓⃓
⃓ < ε

which is the desired result. ■

We can now show that the soft action-value function converges uniformly to the action-value
function as η → 0+.

Lemma A.8.7. Any sequence of functions (µ ↦→ Q̃ηn(µ, t, x, u))n∈N with ηn → 0+ converges
uniformly to µ ↦→ Q∗(µ, t, x, u) for all t ∈ T , x ∈ X , u ∈ U .

Proof. First, we show that Q̃η(µ, t, x, u) is monotonically decreasing in η for η > 0, i.e.
∂
∂η Q̃η(µ, t, x, u) ≤ 0 for all t ∈ T , x ∈ X , u ∈ U . This is the case for t = T − 1 and arbi-
trary x ∈ X , u ∈ U , since Q̃η(µ, T − 1, x, u) is constant. Assume this holds for t+ 1, then for t
and arbitrary x ∈ X , u ∈ U we have

∂

∂η
Q̃η(µ, t, x, u) =

∑︂

x′∈X
p(x′ | x, u, µt) log

∑︂

u′∈U
qt+1(u

′ | x′) exp
(︄
Q̃η(µ, t+ 1, x′, u′)

η

)︄

+
∑︂

x′∈X
p(x′ | x, u, µt)η

∑︁
u′∈U qt+1(u

′ | x′) exp
(︃

Q̃η(µ,t+1,x′,u′)

η

)︃

∑︁
u′∈U qt+1(u′ | x′) exp

(︃
Q̃η(µ,t+1,x′,u′)

η

)︃



A.8 proof of theorem 3.1.4 175

·
(︄
−Q̃η(µ, t+ 1, x′, u′)

η2
+

1

η

∂

∂η
Q̃η(µ, t+ 1, x′, u′)

)︄

≤ max
x′∈X

(︄
log

∑︂

u′∈U
qt+1(u

′ | x′) exp
(︄
Q̃η(µ, t+ 1, x′, u′)

η

)︄

−

∑︁
u′∈U qt+1(u

′ | x′) exp
(︃

Q̃η(µ,t+1,x′,u′)

η

)︃
Q̃η(µ,t+1,x′,u′)

η

∑︁
u′∈U qt+1(u′ | x′) exp

(︃
Q̃η(µ,t+1,x′,u′)

η

)︃

⎞
⎟⎟⎠

by induction hypothesis. Let ξu′ ≡ Q̃η(µ,t+1,x′,u′)

η ∈ R and x′ ∈ X arbitrary, then by Jensen’s
inequality applied to the convex function ϕ(x) = x log x we have

∑︂

u′∈U
qt+1(u

′ | x′)ϕ(exp ξu′) ≥ ϕ

(︄∑︂

u′∈U
qt+1(u

′ | x′) exp ξu′

)︄

⇐⇒ log

(︄∑︂

u′∈U
qt+1(u

′ | x′) exp ξu′

)︄
−
∑︁

u′∈U qt+1(u
′ | x′)ξu′ exp ξu′(︁∑︁

u′∈U qt+1(u′ | x′) exp ξu′
)︁ ≤ 0 ,

such that Q̃η(µ, t, x, u) is monotonically decreasing for all t ∈ T , x ∈ X , u ∈ U by induction.

Furthermore, M is compact and both Q̃η and Q are compositions, sums, products and finite
maxima of continuous functions in µ and therefore continuous in µ by the standing assumptions.
Since (µ ↦→ Q̃ηn(µ, t, x, u))n∈N with ηn → 0+ converges pointwise to µ ↦→ Q∗(µ, t, x, u) for all
t ∈ T , x ∈ X , u ∈ U by Lemma A.8.6, by Dini’s theorem the convergence is uniform. ■

Now that Q̃η converges uniformly against Q, we can show that RelEnt MFE have vanishing
exploitability by replicating the proof for Boltzmann MFE.

Lemma A.8.8. Any sequence of functions (µ ↦→ QΦ̃ηn (µ)(µ, t, x, u))n∈N with ηn → 0+ converges
pointwise to µ ↦→ Q∗(µ, t, x, u) for all t ∈ T , x ∈ X , u ∈ U .

Proof. The proof is the same as in Lemma A.8.1. The only difference is that we additionally choose
n2 ∈ N in each induction step such that for all n > n2 we have

⃓⃓
⃓Q̃η(µ, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
⃓ ≤ ∆Qx′,µ

min

4

for all t ∈ T , x ∈ X , u ∈ U , which is possible, since by Lemma A.8.7, Q̃η converges uniformly
against Q. As long as we choose n′ ≡ max(n1, n2,maxx′∈X ,u′∈U nx′,u′), the rest of the proof will
apply. ■

Lemma A.8.9. Any sequence of functions (µ ↦→ QΦ̃ηn (µ)(µ, t, x, u))n∈N with ηn → 0+ fulfills
equicontinuity for large enough n: For any ε > 0 and any µ ∈M, we can choose a δ > 0 and an
integer n′ ∈ N such that for all µ′ ∈M with dM(µ, µ′) < δ and for all n > n′ we have

⃓⃓
⃓QΦ̃ηn (µ)(µ, t, x, u)−QΦ̃ηn (µ

′)(µ′, t, x, u)
⃓⃓
⃓ < ε .
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Proof. To obtain the desired property, we replicate the proof of Lemma A.8.2 by setting F = (µ ↦→
QΦ̃ηn (µ)(µ, t, x, u))n∈N. Any bounds for Q̃η can be instantiated by the corresponding bound for Q
and then bounding the distance between both by uniform convergence. The only differences lie in
bounding the terms

⃓⃓
⃓(Φ̃ηn(µ)(usub | x′)− (Φ̃ηn(µ

′)(usub | x′)
⃓⃓
⃓

where the action-value function has been replaced with the soft action-value function. Since
Q̃ηn uniformly converges to Q, we instantiate additional requirements Nx′

t,x,u, Ñ
x′

t,x,u to let n >

Nx′
t,x,u, n > Ñ

x′

t,x,u large enough such that η is sufficiently small enough.

The first difference is to obtain

⃓⃓
⃓Q̃ηn(µ

′, t, x, u)− Q̃ηn(µ, t, x, u)
⃓⃓
⃓ < ∆Qx′,µ

min

4

for all µ′ ∈M, t ∈ T , x ∈ X , u ∈ U with dM(µ, µ′) sufficiently small. We choose δ̂
3

t,x,u slightly
stronger than in the original proof, such that if dM(µ, µ′) < δ̂

3

t,x,u, we have

⃓⃓
Q∗(µ′, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
<

∆Qx′,µ
min

12
.

We must then additionally choose Nx′
t,x,u ∈ N for each induction step via uniform convergence from

Lemma A.8.7 such that as long as n > Nx′
t,x,u, we have

⃓⃓
⃓Q̃ηn(µ, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
⃓ < ∆Qx′,µ

min

12
.

This implies the required inequality
⃓⃓
⃓Q̃ηn(µ

′, t, x, u)− Q̃ηn(µ, t, x, u)
⃓⃓
⃓

≤
⃓⃓
⃓Q̃ηn(µ

′, t, x, u)−Q∗(µ′, t, x, u)
⃓⃓
⃓+
⃓⃓
Q∗(µ′, t, x, u)−Q∗(µ, t, x, u)

⃓⃓

+
⃓⃓
⃓Q∗(µ, t, x, u)− Q̃ηn(µ, t, x, u)

⃓⃓
⃓ < ∆Qx′,µ

min

4

and we can proceed as in the original proof.

The second difference lies in choosing δ4,x
′

t,x,u. Note that Q̃ηn is still bounded byMQ, see Lemma A.7.1.
However, since Q̃ηn might no longer be Lipschitz with the same constant as Q∗, we choose an
additional integer Ñ

x′

t,x,u ∈ N for each induction step by Lemma A.8.7, such that as long as

n > Ñ
x′

t,x,u, we have

⃓⃓
⃓Q̃ηn(µ, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
⃓ ≤ ∆x′

Q ≡
εt,x,u

16MQ|U|

4Rmax
q |U| · 1

ηx
′

min

exp

(︃
2MQ

ηx
′

min

)︃

for any µ′ ∈M, t ∈ T , x ∈ X , u ∈ U . The required bound then follows immediately from
⃓⃓
(Φηn(µ)(usub | x′)− (Φηn(µ

′)(usub | x′)
⃓⃓
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≤ Rmax
q

∑︂

u′ ̸=usub

⃓⃓
⃓⃓
⃓exp

(︄
Q̃ηn(µ

′, t, x′, u′)− Q̃ηn(µ
′, t, x′, usub)

η

)︄

− exp

(︄
Q̃ηn(µ, t, x

′, u′)− Q̃ηn(µ, t, x
′, usub)

η

)︄⃓⃓
⃓⃓
⃓

≤ Rmax
q

∑︂

u′ ̸=usub

⃓⃓
⃓⃓1
η
exp

(︃
ξu′

η

)︃⃓⃓
⃓⃓
⃓⃓
⃓(Q̃ηn(µ

′, t, x′, u′)− Q̃ηn(µ
′, t, x′, usub))

−(Q̃ηn(µ, t, x
′, u′)− Q̃ηn(µ, t, x

′, usub))
⃓⃓
⃓

≤ Rmax
q |U| · 1

ηx
′

min

exp

(︃
2MQ

ηx
′

min

)︃(︂⃓⃓
⃓Q̃ηn(µ

′, t, x′, u′)− Q̃ηn(µ, t, x
′, u′)

⃓⃓
⃓

+
⃓⃓
⃓Q̃ηn(µ, t, x

′, usub)− Q̃ηn(µ
′, t, x′, usub)

⃓⃓
⃓
)︂

≤ Rmax
q |U| · 1

ηx
′

min

exp

(︃
2MQ

ηx
′

min

)︃
·
(︂
2KQdM(µ, µ′) + 4∆x′

Q

)︂

≤ Rmax
q |U| · 1

ηx
′

min

exp

(︃
2MQ

ηx
′

min

)︃
·
(︁
2KQdM(µ, µ′)

)︁
+

εt,x,u
16MQ|U|

<
εt,x,u

8MQ|U|

as in the original proof by letting dM(µ, µ′) < δ4,x
′

t,x,u and choosing

δ4,x
′

t,x,u =
εt,x,uη

x′
min

16MQ|U|2Rmax
q · exp

(︃
2MQ

ηx
′

min

)︃
· 2KQ

.

The rest of the proof is analogous. We obtain the additional requirement n > Nx′
t,x,u, n > Ñ

x′

t,x,u

for some integers Nx′
t,x,u, Ñ

x′

t,x,u and each t ∈ T , x ∈ X , x′ ∈ X , u ∈ U . By choosing n′ ≡
maxt∈T ,x∈X ,x′∈X ,u∈U max(Nx′

t,x,u, Ñ
x′

t,x,u), the desired result holds as long as n > n′. ■

From this property, we again obtain the desired uniform convergence via compactness ofM.

Lemma A.8.10. Any sequence of functions (µ ↦→ QΦ̃ηn (µ)(µ, t, x, u))n∈N with ηn → 0+ converges
uniformly to µ ↦→ Q∗(µ, t, x, u) for all t ∈ T , x ∈ X , u ∈ U .

Proof. Fix ε > 0, t ∈ T , x ∈ X , u ∈ U . Then, there exists by Lemma A.8.9 for any point µ ∈M
both δ(µ) and n′ such that for all µ′ ∈M with dM(µ, µ′) < δ(µ) for all n > n′ we have

⃓⃓
⃓QΦ̃ηn (µ)(µ, t, x, u)−QΦ̃ηn (µ

′)(µ′, t, x, u)
⃓⃓
⃓ < ε

3

which via pointwise convergence from Lemma A.8.8 implies
⃓⃓
Q∗(µ, t, x, u)−Q∗(µ′, t, x, u)

⃓⃓
≤ ε

3
.

SinceM is compact, it is separable, i.e. there exists a countable dense subset (µj)j∈N ofM. Let
δ(µ) be as defined above and coverM by the open balls (Bδ(µj)(µj))j∈N. By the compactness ofM,
finitely many of these balls Bδ(µn1 )

(µn1), . . . , Bδ(µnk
)(µnk

) coverM. By pointwise convergence
from Lemma A.8.8, for any i = 1, . . . , k we can find integers mi such that for all n > mi we have

⃓⃓
⃓QΦ̃ηn (µni )(µni , t, x, u)−Q∗(µni , t, x, u)

⃓⃓
⃓ < ε

3
.
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Taken together, we find that for n > max(n′,maxi=1,...,k mi) and arbitrary µ ∈M, we have
⃓⃓
⃓QΦ̃ηn (µ)(µ, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
⃓ <

⃓⃓
⃓QΦ̃ηn (µ)(µ, t, x, u)−QΦ̃ηn (µni )(µni , t, x, u)

⃓⃓
⃓

+
⃓⃓
⃓QΦ̃ηn (µni )(µni , t, x, u)−Q∗(µni , t, x, u)

⃓⃓
⃓

+ |Q∗(µni , t, x, u)−Q∗(µ, t, x, u)|
<

ε

3
+

ε

3
+

ε

3
= ε

for some center point µni of a ball containing µ from the finite cover. ■

As a result, a sequence of RelEnt MFE with η → 0+ is approximately optimal in the MFG.

Lemma A.8.11. For any sequence (π∗
n, µ

∗
n)n∈N of ηn-RelEnt MFE with ηn → 0+ and for any ε > 0

there exists integer n′ ∈ N such that for all integers n > n′ we have

Jµ∗
n(π∗

n) ≥ max
π

Jµ∗
n(π)− ε .

Proof. By Lemma A.8.10, we have
⃓⃓
⃓QΦ̃ηn (µ)(µ, t, x, u)−Q∗(µ, t, x, u)

⃓⃓
⃓→ 0 uniformly. There-

fore, for any ε > 0, there exists by uniform convergence an integer n′ such that for all integers
n > n′ we have

Qπ∗
n(µ∗

n, t, x, u) ≥ Q∗(µ∗
n, t, x, u)− ε = max

π∈Π
Qπ(µ∗

n, t, x, u)− ε ,

and since by Lemma A.3.1, we have

Jµ∗
n(π∗

n) =
∑︂

x∈X
µ0(x) ·

∑︂

u∈U
Qπ∗

n(µ∗
n, t, x, u)

≥
∑︂

x∈X
µ0(x) ·max

π∈Π

∑︂

u∈U
Qπ(µ∗

n, t, x, u)− ε

= max
π∈Π

Jµ∗
n(π)− ε ,

the desired result follows immediately. ■

By repeating the previous argumentation for Boltzmann MFE with Lemma A.5.6 and replacing
Lemma A.8.4 with Lemma A.8.11, we obtain the desired result for RelEnt MFE.

a.9 relative entropy mean field games

We show that the necessary conditions for optimality hold for the candidate solution. (For further
insight, see also [376], [377] and references therein.) Fix a MF µ ∈M and formulate the induced
problem as an optimization problem, with ρt(x) as the probability of our representative agent
visiting state x ∈ X at time t ∈ T , to obtain

max
ρ,π

T−1∑︂

t=0

∑︂

x∈X
ρt(x)

∑︂

u∈U
πt(u | x)r(x, u, µt)
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s.t. ρt+1(x
′) =

∑︂

x∈X
ρt(x)

∑︂

u∈U
πt(u | x)p(x′ | x, u, µt) ∀x′ ∈ X , t ∈ {0, . . . , T − 2},

1 =
∑︂

x∈X
ρt(x) ∀t ∈ {0, . . . , T − 1},

1 =
∑︂

u∈U
πt(u | x) ∀x ∈ X , t ∈ {0, . . . , T − 1},

0 ≤ ρt(x), 0 ≤ πt(u | x) ∀x ∈ X , u ∈ U , t ∈ {0, . . . , T − 1},
µ0(x) = ρ0(x) ∀x ∈ X .

Note that if the agent follows the MF policy of the other agents, we have ρt = µt. The optimized
objective is just the expectation E

[︂∑︁T−1
t=0 r(xt, ut)

]︂
. As in [378], we change this objective to

include a KL-divergence penalty weighted by the state-visitation distribution ρt by introducing the
temperature η > 0 and prior policy q ∈ Π to obtain

max
ρt,πt

T−1∑︂

t=0

∑︂

x∈X
ρt(x)

∑︂

u∈U
πt(u | x)r(x, u, µt)− η

T−1∑︂

t=0

∑︂

x∈X
ρt(x)KL(πt(· | x) ∥ qt(· | x))

s.t. ρt+1(x
′) =

∑︂

x∈X
ρt(x)

∑︂

u∈U
πt(u | x)p(x′ | x, u, µt) ∀x′ ∈ X , t ∈ {0, . . . , T − 2},

1 =
∑︂

x∈X
ρt(x) ∀t ∈ {0, . . . , T − 1},

1 =
∑︂

u∈U
πt(u | x) ∀x ∈ X , t ∈ {0, . . . , T − 1},

0 ≤ ρt(x), 0 ≤ πt(u | x) ∀x ∈ X , u ∈ U , t ∈ {0, . . . , T − 1},
µ0(x) = ρ0(x) ∀x ∈ X .

We ignore the constraints 0 ≤ πt(u | x) and 0 ≤ ρt(x) and see later that they will hold automatically.
This results in the simplified optimization problem

max
ρt,πt

T−1∑︂

t=0

∑︂

x∈X
ρt(x)

∑︂

u∈U
πt(u | x)r(x, u, µt)− η

T−1∑︂

t=0

∑︂

x∈X
ρt(x)KL(πt(· | x) ∥ qt(· | x))

s.t. ρt+1(x
′) =

∑︂

x∈X
ρt(x)

∑︂

u∈U
πt(u | x)p(x′ | x, u, µt) ∀x′ ∈ X , t ∈ {0, . . . , T − 2},

1 =
∑︂

x∈X
ρt(x) ∀t ∈ {0, . . . , T − 1},

1 =
∑︂

u∈U
πt(u | x) ∀x ∈ X , t ∈ {0, . . . , T − 1},

µ0(x) = ρ0(x) ∀x ∈ X ,

for which we introduce Lagrange multipliers λ1(t, s), λ2(t), λ3(t, s), λ4(x) and the Lagrangian

L(ρ, π, λ1, λ2, λ3, λ4)

=
T−1∑︂

t=0

∑︂

x∈X
ρt(x)

∑︂

u∈U
πt(u | x)

(︃
r(x, u, µt)− η log

πt(u | x)
qt(u | x)

)︃

−
T−1∑︂

t=0

∑︂

x′∈X
λ1(t, x

′)

(︄
ρt+1(x

′)−
∑︂

x∈X
ρt(x)

∑︂

u∈U
πt(u | x)p(x′ | x, u, µt)

)︄
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−
T−1∑︂

t=0

λ2(t)

(︄
1−

∑︂

x∈X
ρt(x)

)︄

−
T−1∑︂

t=0

∑︂

x∈X
λ3(t, s)

(︄∑︂

u∈U
πt(u | x)− 1

)︄

−
∑︂

x∈X
λ4(x) (µ0(x)− ρ0(x))

with the artificial constraint λ1(T − 1, s) ≡ 0, which allows us to formulate the following necessary
conditions for optimality. For ∇πt(u|x)L

!
= 0 and all x ∈ X , u ∈ U , t ∈ {0, . . . , T − 1}, we

obtain

∇πtL = ρt(x)

(︄
r(x, u, µt)− η log

πt(u | x)
qt(u | x)

− η +
∑︂

x′∈X
λ1(t, x

′)p(x′ | x, u, µt)

)︄
− λ3(t, s)

=⇒ π∗
t (u | x) = qt(u | x) exp

⎛
⎝r(x, u, µt)− η +

∑︁
x′ λ1(t, x

′)p(x′ | x, u, µt)− λ3(t,s)
ρt(x)

η

⎞
⎠ .

For ∇λ3L
!
= 0 and all x ∈ X , t ∈ {0, . . . , T − 1}, by inserting π∗

t we obtain

∇λ3(t,s)L = 1−
∑︂

u∈U
πt(u | x)

=⇒ 1 =
∑︂

u∈U
qt(u | x) exp

⎛
⎝r(x, u, µt)− η +

∑︁
x′∈X λ1(t, x

′)p(x′ | x, u, µt)− λ3(t,s)
ρt(x)

η

⎞
⎠

which is fulfilled by choosing

λ∗
3(t, s) = ηρt(x) log

∑︂

u∈U
qt(u | x) exp

(︃
r(x, u, µt)− η +

∑︁
x′∈X λ1(t, x

′)p(x′ | x, u, µt)

η

)︃

since it fulfills the required equation

∑︂

u∈U
qt(u | x) exp

⎛
⎝r(x, u, µt)− η +

∑︁
x′∈X λ1(t, x

′)p(x′ | x, u, µt)− λ∗
3(t,s)
ρt(x)

η

⎞
⎠

=
∑︂

u∈U
qt(u | x) exp

(︃
r(x, u, µt)− η +

∑︁
x′∈X λ1(t, x

′)p(x′ | x, u, µt)

η

)︃

·
(︄∑︂

u∈U
qt(u | x) exp

(︃
r(x, u, µt)− η +

∑︁
x′∈X λ1(t, x

′)p(x′ | x, u, µt)

η

)︃)︄−1

= 1 .

Finally, inserting λ∗
3 and π∗, for∇ρt(x)L we obtain

∇ρt(x)L

=
∑︂

u∈U
πt(u | x)

(︃
η + λ2(t) +

λ3(t, s)

ρt(x)

)︃
− λ1(t− 1, s)

!
= 0

which implies

λ∗
1(t− 1, s)



A.10 implementation details 181

= η + λ2(t) + η log
∑︂

u∈U
qt(u | x) exp

(︃
r(x, u, µt)− η +

∑︁
x′∈X λ1(t, x

′)p(x′ | x, u, µt)

η

)︃
.

We can subtract λ2(t) and shift the time index to obtain the soft value function Ṽ η(µ, t, s) defined
via terminal condition Ṽ η(µ, T, s) ≡ 0 and the recursion

Ṽ η(µ, t, s) = η log
∑︂

u∈U
qt(u | x) exp

(︄
r(x, u, µt) +

∑︁
x′∈X Ṽ η(µ, t+ 1, x′)p(x′ | x, u, µt)

η

)︄

since then, by normalization the optimal policy for all x ∈ X , u ∈ U , t ∈ {0, . . . , T − 1} is
equivalent to

π∗
t (u | x) =

qt(u | x) exp
(︂
r(x,u,µt)+

∑︁
x′∈X λ1(t,x′)p(x′|x,u,µt)

η

)︂

∑︁
u′∈U qt(u′ | x) exp

(︂
r(x,u′,µt)+

∑︁
x′∈X λ1(t,x′)p(x′|x,u′,µt)

η

)︂

=

qt(u | x) exp
(︃

r(x,u,µt)+
∑︁

x′∈X Ṽ η(µ,t+1,x′)p(x′|x,u,µt)

η

)︃

∑︁
u′∈U qt(u′ | x) exp

(︃
r(x,u′,µt)+

∑︁
x′∈X Ṽ η(µ,t+1,x′)p(x′|x,u′,µt)

η

)︃ .

To obtain a recursion in Q̃η, define

Q̃η(µ, t, x, u)

≡ r(x, u, µt) +
∑︂

x′∈X
p(x′ | x, u, µt)η log

∑︂

u′∈U
qt+1(u

′ | x′) exp
(︄
Q̃η(µ, t+ 1, x′, u′)

η

)︄

with terminal condition Q̃η(µ, T, x, u) ≡ 0 to obtain

π∗
t (u | x) =

qt(u | x) exp
(︃

Q̃η(µ,t,x,u)

η

)︃

∑︁
u′∈U qt(u′ | x) exp

(︃
Q̃η(µ,t,x,u

′)

η

)︃

which is the desired result as π∗ fulfills all constraints and determines ρ uniquely. For the uniform
prior qt(u | x) = 1/|U|, we obtain the maximum entropy solution.

a.10 implementation details

For all the DQN experiments, we use the configurations given in Table A.1 and hyperparameters
given in Table A.2. Note that we add epsilon scheduling and a discount factor to DQN for stability
reasons, i.e. the loss term has an additional factor smaller than one before the maximum operation,
cf. [33]. For the action-value network, we use a fully connected dueling architecture ([379]) with
one shared hidden layer of 256 neurons, and one separate hidden layer of 256 neurons for value and
advantage stream each. As the activation function, we use ReLU. Further, we use gradient norm
clipping and the ADAM optimizer. To allow for time-dependent policies, we append the current
time to the observations. The precise algorithms are given in Algorithms 4 to 9.

We transform all discrete-valued observations except time to corresponding one-hot vectors, except
in the intractably large Taxi environment where we simply observe one value in {0, 1} for each tile’s
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Algorithm 4 Exact FPI

1: Initialize µ0 = Ψ(q) as the MF induced by the uniformly random policy q.
2: for k = 0, 1, · · · do
3: Compute the Q-function Q∗(µk, t, x, u) for fixed µk.
4: Choose πk ∈ Π such that πk

t (u | x) =⇒ u ∈ argmaxu∈U Qk(µk, t, x, u) for all
t ∈ T , x ∈ X , u ∈ U by putting all probability mass on the first optimal action, or evenly on
all optimal actions.

5: Optionally: Overwrite πk ← 1
k+1π

k + k
k+1π

k−1. (FP averaged policy)
6: Compute the MF µk+1 = Ψ(πk) induced by πk.
7: Optionally: Overwrite µk+1 ← 1

k+1µ
k+1 + k

k+1µ
k. (FP averaged MFs)

Algorithm 5 Boltzmann / RelEnt iteration
1: Input: Temperature η > 0, prior policy q ∈ Π.
2: Initialize µ0 = Ψ(q) as the MF induced by q.
3: for k = 0, 1, · · · do
4: Compute the Q-function (Boltzmann) or soft Q-function (RelEnt) Q(µk, t, x, u) for fixed µk.

5: Define πk by πk
t (u | x) =

qt(u|x) exp
(︃

Q(µk,t,x,u)
η

)︃
∑︁

u′∈U qt(u′|x) exp
(︂

Q(µk,t,x,u′)
η

)︂ for all t ∈ T , x ∈ X , u ∈ U .

6: Optionally: Overwrite πk ← 1
k+1π

k + k
k+1π

k−1. (FP averaged policy)
7: Compute the MF µk+1 = Ψ(πk) induced by πk.
8: Optionally: Overwrite µk+1 ← 1

k+1µ
k+1 + k

k+1µ
k. (FP averaged MFs)

passenger status. For evaluation of exploitability, we compare the values of the optimal policy and
the evaluated policy in the MDP induced by the MF generated by the evaluated policy. In intractable
cases, we use DQN to approximately obtain the optimal policy. In this case, we obtain the values by
averaging over many episodes in the MDP induced by the MF generated by the evaluated policy via
Algorithm 8.

a.11 problems

Summarizing properties of the considered problems are given in Table A.3.

Algorithm 6 Boltzmann DQN iteration
1: Input: Temperature η > 0, prior policy q ∈ Π.
2: Input: Simulation parameters, DQN hyperparameters.
3: Initialize µ0 ≈ Ψ(q) as the MF induced by q using Algorithm 8.
4: for k = 0, 1, · · · do
5: Approximate the Q-function Q∗(µk, t, x, u) using Algorithm 7 on the MDP induced by µk.

6: Define πk by πk
t (u | x) =

qt(u|x) exp
(︃

Q∗(µk,t,x,u)
η

)︃
∑︁

u′∈U qt(u′|x) exp
(︂

Q∗(µk,t,x,u′)
η

)︂ for all t ∈ T , x ∈ X , u ∈ U .

7: Approximately simulate MFs µk+1 ≈ Ψ(πk) induced by πk using Algorithm 8.



A.11 problems 183

Algorithm 7 DQN

1: Input: Number of epochs L, mini-batch size N , target update frequency M , replay buffer size
D.

2: Input: Probability of random action ϵ, Discount factor γ, ADAM and gradient clipping
parameters.

3: Initialize network Qθ, target network Qθ′ ← Qθ and replay buffer D of size D.
4: for L epochs do
5: for t = 1, . . . , T do
6: One environment step
7: Let new action at ← argmaxu∈U Qθ(t, x, u), or with probability ϵ sample uniformly

random instead.
8: Sample new state xt+1 ∼ p(xt+1 | xt, ut).
9: Add transition tuple (xt, ut, r(xt, ut), xt+1) to replay buffer D.

10: One mini-batch descent step
11: Sample from the replay buffer: {(xit, uit, rit, xit+1)}i=1,...,N ∼ D.
12: Compute loss JQ =

∑︁N
i=1

(︁
rit + γmaxu′∈U Q(t+ 1, xit+1, u

′)−Q(t, xit, u
i
t)
)︁2.

13: Update θ according to∇θJQ using ADAM with gradient norm clipping.
14: if number of steps modM = 0 then
15: Update target network θ′ ← θ.

Algorithm 8 Stochastic MF simulation
1: Input: Number of MFs K, number of particles M , policy π.
2: for k = 1, . . . ,K do
3: Initialize particles x0m ∼ µ0 for all m = 1, . . . ,M .
4: for t ∈ T do
5: Define empirical measure µk

t ← 1
M

∑︁M
m=1 δxt

m
.

6: for m = 1, . . . ,M do
7: Sample action u ∼ πt(u | xtm).
8: Sample new particle state xt+1

m ∼ p(xt+1
m | xtm, u, µk

t ).
9: return average empirical MF ( 1

K

∑︁K
k=1 µ

k
t )t∈T

lr. Similar to the example mentioned in the main text, we let a large number of agents choose
simultaneously between going left (L) or right (R). Afterwards, each agent shall be punished
proportional to the number of agents that chose the same action, but more-so for choosing right
than left.

More formally, let X = {C,L,R}, U = X \ {C}, µ0(C) = 1, r(x, u, µt) = −1{L}(x) · µt(L)−
2 · 1{R}(x) · µt(R) and T = {0, 1}. Note the difference to the toy example in the main text: right
is punished more than left. The transition function allows picking the next state directly, i.e. for all
s, x′ ∈ X , u ∈ U ,

P(xt+1 = x′ | xt = x, ut = u) = 1{x′}(u) .

For this example, we have KQ = 1 since the return Q of the initial state changes linearly with µ1

and lies between 0 and −2, while the distance between two MFs is also bounded by 2. Analogously,
KΨ = 1 since (Ψ(π))1 similarly changes linearly with π0, and both can change at most by 2. Thus,
we obtain guaranteed convergence via Boltzmann iteration if η > 1. In numerical evaluations, we
see convergence already for η ≥ 0.7.



184 a supplementary details on section 3.1

Algorithm 9 Prior descent
1: Input: Number of outer iterations I .
2: Input: Initial prior policy q ∈ Π.
3: for outer iteration i = 1, . . . , I do
4: Find η heuristically or minimally such that Algorithm 5 with temperature η and prior q

converges.
5: if no such η exists then
6: return q
7: q ← solution of Algorithm 5 with temperature η and prior q.

table a.1: Hyperparameter configurations for Boltzmann DQN Iteration.

Parameter RPS SIS Taxi

FPI count 1000 50 15
Number of particles for MF 1000 1000 200
Number of MFs 5 5 5
Number of episodes for evaluation 2000 2000 500

rps. This game is inspired by [380] and their generalized non-zero-sum version of Rock-Paper-
Scissors, for which classical FP would not converge. Each of the agents can choose between rock,
paper and scissors, and obtains a reward proportional to double the number of beaten agents minus
the number of agents beating the agent. We modify the proportionality factors such that a uniformly
random prior policy does not constitute a MFE.

Let X = {0, R, P, S}, U = X \ {0}, µ0(0) = 1, T = {0, 1}, and for any u ∈ U , µt ∈ P(X ),

r(R, u, µt) = 2 · µt(S)− 1 · µt(P ),

r(P, u, µt) = 4 · µt(R)− 2 · µt(S),

r(S, u, µt) = 6 · µt(P )− 3 · µt(R) .

The transition function allows picking the next state directly, i.e. for all x, x′ ∈ X , u ∈ U ,

P(xt+1 = x′ | xt = x, ut = u) = 1{x′}(u) .

table a.2: Hyperparameter configurations for DQN.

Hyperparameter Value

Replay buffer size 10000
ADAM Learning rate 0.0005
Discount factor 0.99
Target update frequency 500
Gradient clipping norm 40
Mini-batch size 128
Epsilon schedule 1 linearly down to 0.02 at 0.8 times maximum steps
Total epochs 1000
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table a.3: Overview of problem properties.

Problem |T | |X | |U|
LR 2 3 2
RPS 2 4 3
SIS 50 2 2
Taxi 100 ∼227 5

sis. In this problem, a large number of agents can choose between social distancing (D) or going
out (U). If a susceptible (S) agent chooses social distancing, they may not become infected (I).
Otherwise, an agent may become infected with a probability proportional to the number of agents
being infected. If infected, an agent will recover with a fixed chance every time step. Both social
distancing and being infected have an associated cost.

Let X = {S, I}, U = {U,D}, µ0(I) = 0.6, r(x, u, µt) = −1{I}(x) − 0.5 · 1{D}(u) and
T = {0, . . . , 50}. We find that similar parameters produce similar results, and set the transition
probability mass functions as

P(xt+1 = S | xt = I) = 0.3

P(xt+1 = I | xt = S, ut = U) = 0.92 · µt(I)

P(xt+1 = I | xt = S, ut = D) = 0 .

taxi. In this problem, we consider aK×L grid. The state is described by a tuple (x, y, x′, y′, p, B)
where (x, y) is the agent’s position, (x′, y′) indicates the current desired destination of the passenger
or is (0, 0) otherwise, and p ∈ {0, 1} indicates whether a passenger is in the taxi or not. Finally, B
is a K ×L matrix indicating whether a new passenger is available for the taxi on the corresponding
tile. All taxis start on the same tile and have no passengers in the queue or on the map at the
beginning. The problem runs for 100 time steps.

The taxi can choose between five actions W,U,D,L,R, where W (Wait) allows the taxi to pick up
/ deliver passengers, and U,D,L,R (Up, Down, Left, Right) allows it to move in all four directions.
As there are many taxis, there is a chance of a jam on tile s given by min(0.7, 10 · µt(x)), i.e. the
taxi will not move with this probability. The taxi also cannot move into walls or back into the
starting tile, in which case it will stay on its current tile. With a probability of 0.8, a new passenger
spawns on one randomly chosen free tile of each region. On picking up a passenger, the destination
is generated by randomly picking any free tile of the same region. Delivering passengers to a
destination and picking them up gives a reward of 1 in region 1 and 1.2 in region 2.

For our experiments, we use the following small map, where S denotes the starting tile, 1 denotes a
free tile from region 1, 2 denotes a free tile from region 2 and H denotes an impassable wall:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 1 1
1 1 1
H S H
2 2 2
2 2 2
2 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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This produces a similar situation as in LR, where a fraction of taxis should choose each region so
the values balance out, while also requiring solution of a problem that is intractable to solve exactly
via dynamic programming.

a.12 additional experiments

In Figure A.1, we observe that prior descent for both Boltzmann and RelEnt MFE with the same
uniform prior policy performs qualitatively similarly, and coincide in LR and SIS except for
numerical inaccuracies. It can be seen that using a temperature sufficiently low to converge in LR
and RPS allows prior descent to descend to the exact MFE iteratively. In SIS on the other hand,
picking a fixed temperature that converges for the initial uniform prior policy does not guarantee
monotonic improvement of exploitability afterwards. Instead, by applying the heuristic

ηi+1 = ηi · c

for each outer iteration i, where c ≥ 1 adjusts the temperature after each outer iteration, we avoid
scanning over all temperatures in each step and reach convergence to a good approximate MFE for
both Boltzmann and MaxEnt iteration.
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figure a.1: Convergence in exploitability of prior iteration algorithm. Mean exploitability (straight lines),
maximum and minimum (dashed lines) over the final 10 iterations of the last outer iteration. 50 outer
iterations and 100 inner iterations each; (a, d) LR; (b, e) RPS; (c, f) SIS. Maximum entropy (MaxEnt) results
begin at higher temperatures due to limited floating point accuracy. The exploitability of the initial uniform
prior policy is indicated by the dashed horizontal line.

In Figure A.2 empirical results are shown for FP variants averaging only policy or MF. In the simple
one-step toy problems LR and RPS, averaging the policies appears to converge to the exact solution
without regularization and to the regularized solution with regularization. Averaging the MF on
the other hand fails, since this method can only produce deterministic policies. By applying any
amount of regularization, averaging the MF is led to success in LR and SIS. Nonetheless, both
methods fail to converge to the MFE in SIS and produce worse results than obtained by prior descent
in Figure A.1.
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figure a.2: Convergence in exploitability of FP algorithm. Mean exploitability over the final 10 iterations.
Dashed lines represent maximum and minimum over the final 10 iterations. (a) LR, 10000 iterations; (b)
RPS, 10000 iterations; (c) SIS, 1000 iterations. The exploitability of the uniform prior policy is indicated by
the dashed horizontal line.

In Figure A.3 we depict the convergence of exploitability and MF of MaxEnt iteration in SIS.
The results are qualitatively similar with Boltzmann iteration and, as in the main text, show the
convergence behaviour near the critical temperature leading to convergence.
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figure a.3: Change in exploitability and MF over iterations. (a) Difference between current and final
minimum exploitability over the last 10 iterations; (b) Distance between current and final MF, cut off at 500
iterations for readability. Plotted for the η-RelEnt iterations in SIS for the indicated temperature settings and
uniform prior policy.

In Figure A.4 we depict the convergence of exploitability for Boltzmann DQN iteration in SIS and
Taxi during one of the runs. All 4 other runs show similar qualitative behaviour. As can be seen, the
highest temperature of 0.2 shows less oscillatory behaviour, stabilizing Boltzmann DQN iteration.
In Taxi, it can be seen that the used temperatures are insufficient to allow Boltzmann DQN iteration
to converge. We believe that using prior descent could allow for better results. We could not verify
this due to the high computational cost, as this includes repeatedly and sequentially solving an
expensive RL problem.

Finally, in Figure A.5 we depict the resulting behavior in the SIS case. In the Boltzmann iteration
result, at the beginning the number of infected is high enough to make social distancing the optimal
action to take. As the number of infected falls, it reaches an equilibrium point where both social
distancing or potentially getting infected are of equal value. Finally, as the game ends at time
t = T = 50, there is no point in social distancing any more. Our approach yields intuitive results
here, while exact FPI and FP fail to converge.
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figure a.4: Change in exploitability over Boltzmann DQN iterations. Difference between current and final
estimated minimum exploitability over the last 5 iterations. (a) SIS, 50 iterations; (b) Taxi, 15 iterations.
Plotted for the η-Boltzmann DQN iteration for the indicated temperature settings and uniform prior policy.

0 10 20 30 40 50

iteration k

0.0

0.2

0.4

0.6

0.8

1.0

µ
t(
I
)

(a) Boltzmann: fraction of infected

0 10 20 30 40 50

iteration k

0.0

0.2

0.4

0.6

0.8

1.0

µ
t(
I
)

(b) Exact: fraction of infected

0 10 20 30 40 50

iteration k

0.0

0.2

0.4

0.6

0.8

1.0

µ
t(
I
)

(c) FP: fraction of infected

0 10 20 30 40 50

iteration k

0.00

0.25

0.50

0.75

1.00

π
t(
D
|S

)

(d) Boltzmann: fraction of distancing

0 10 20 30 40 50

iteration k

0.00

0.25

0.50

0.75

1.00

π
t(
D
|S

)

(e) Exact: fraction of distancing

0 10 20 30 40 50

iteration k

0.00

0.25

0.50

0.75

1.00

π
t(
D
|S

)

(f) FP: fraction of distancing

figure a.5: Qualitative behavior in SIS. Fraction of infected agents and fraction of susceptible agents
picking social distancing over time. (a, d): Boltzmann iteration (η = 0.07); (b, e): exact FPI; (c, f): FP
(averaging both policy and MF) results in SIS after 500 iterations. More iterations and averaging only policy
or MF show same qualitative results.
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b.1 theoretical details

In this section, we will give all intermediate results required to prove the results in the main text, as
well as additional results, e.g. for the uncontrolled case. For convenience, we first state all obtained
theoretical result. Proofs for each of the theorems and corollaries can be found in their own sections
further below.

Note that except for Theorem 3.2.1, as mentioned in the main text we can also slightly weaken
Assumption 3.2.2 to block-wise Lipschitz continuous W , i.e. there exist LW > 0 and disjoint
intervals {I1, . . . , IQ}, ∪iIi = I s.t. ∀i, j ∈ {1, . . . , Q},

|W (x, y)−W (x̃, ỹ)| ≤ LW (|x− x̃|+ |y − ỹ|), ∀(x, y), (x̃, ỹ) ∈ Ii × Ij (B.1.1)

which is fulfilled e.g. for block-wise Lipschitz-continuous or block-wise constant graphons.
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For α ∈ I, define the α-neighborhood maps Gα :Mt → P(X ) and empirical α-neighborhood
maps Gα

N :Mt → P(X ) as

Gα(µt) :=

∫︂

I
W (α, β)µβ

t dβ, Gα
N (µt) :=

∫︂

I
WN (α, β)µβ

t dβ (B.1.2)

and note how we naturally have Gα
t = Gα(µt) in the MF system and Gi

t = G
i
N
N (µN

t ) in the finite
system. Finally, for ν,ν ′ ∈ Mt, π ∈ Π and graphon W , define the ensemble transition kernel
operator Pπ

t,ν,W :Mt →Mt via

(︁
νPπ

t,ν′,W

)︁α ≡
∑︂

x∈X
να(x)

∑︂

u∈U
πα
t (u | x)p

(︃
· | x, u,

∫︂

I
W (α, β)ν ′β dβ

)︃
(B.1.3)

and note how we have µt+1 = µtP
π
t,µt,W

in the MF system.

After showing Theorem 3.2.2, we continue by showing convergence of the law of deviating agent
state xit to the law of the corresponding auxiliary MF systems given by

x̂
i
N
0 ∼ µ0, û

i
N
t ∼ π̂t(û

i
N
t | x̂

i
N
t ), x̂

i
N
t+1 ∼ p(x̂

i
N
t+1 | x̂

i
N
t , û

i
N
t ,G

i
N
t ), ∀t ∈ T (B.1.4)

for almost all agents i as N →∞.

Lemma B.1.1. Consider Lipschitz continuous π ∈ Π up to a finite number of discontinuities Dπ,
with associated MF ensemble µ = Ψ(π). Under Assumptions 3.2.1 and 3.2.2 and the N -agent
policy (π1, . . . , πi−1, π̂, πi+1, . . . , πN ) ∈ ΠN where (π1, π2, . . . , πN ) = ΓN (π) ∈ ΠN , π̂ ∈ Π
arbitrary, for any uniformly bounded family of functions G from X to R and any ε, δ > 0, t ∈ T ,
there exists N ′ ∈ N such that for all N > N ′ we have

sup
g∈G

⃓⃓
⃓⃓E
[︁
g(xit)

]︁
− E

[︃
g(x̂

i
N
t )

]︃⃓⃓
⃓⃓ < ε (B.1.5)

uniformly over π̂ ∈ Π, i ∈ JN for some JN ⊆ VN with |JN | ≥ ⌊(1− δ)N⌋.
Similarly, for any uniformly Lipschitz, uniformly bounded family of measurable functionsH from
X × B1(X ) to R and any ε, δ > 0, t ∈ T , there exists N ′ ∈ N such that for all N > N ′ we have

sup
h∈H

⃓⃓
⃓⃓E
[︃
h(xit,G

i
N
N (µN

t ))

]︃
− E

[︃
h(x̂

i
N
t ,G

i
N (µt))

]︃⃓⃓
⃓⃓ < ε (B.1.6)

uniformly over π̂ ∈ Π, i ∈ JN for some JN ⊆ VN with |JN | ≥ ⌊(1− δ)N⌋.

As a direct implication of the above results, the objective functions of almost all agents converge
uniformly to the MF objectives.

Corollary B.1.1. Consider Lipschitz continuous π ∈ Π up to a finite number of discontinuities
Dπ, with associated MF ensemble µ = Ψ(π). Under Assumptions 3.2.1 and 3.2.2 and the N -agent
policy (π1, . . . , πi−1, π̂, πi+1, . . . , πN ) ∈ ΠN where (π1, π2, . . . , πN ) = ΓN (π) ∈ ΠN , π̂ ∈ Π
arbitrary, for any ε, δ > 0, there exists N ′ ∈ N such that for all N > N ′ we have

⃓⃓
⃓⃓JN

i (π1, . . . , πi−1, π̂, πi+1, . . . , πN )− Jµ
i
N

(π̂)

⃓⃓
⃓⃓ < ε (B.1.7)

uniformly over π̂ ∈ Π, i ∈ JN for some JN ⊆ VN with |JN | ≥ ⌊(1− δ)N⌋.
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The approximate Nash property (Theorem 3.2.3) of a GMFE (π,µ) then follows immediately from
the definition of a GMFE, since π is by definition optimal under µ.

As a corollary, we also obtain results for the uncontrolled case without actions, which is equivalent
to the case where |U| = 1, i.e. there being only one trivial policy that is always optimal.

Corollary B.1.2. Under Assumption 3.2.1 and |U| = 1, we have for all measurable functions
f : X × I → R uniformly bounded by |f | ≤Mf and all t ∈ T that

E
[︁⃓⃓
µN
t (f)− µt(f)

⃓⃓]︁
→ 0 . (B.1.8)

Furthermore, if the convergence in Assumption 3.2.1 is at rate O(1/
√
N), the rate of convergence

is also at O(1/
√
N).

If further Assumption 3.2.2 holds, then for any uniformly bounded family of functions G from X to
R and any ε, δ > 0, t ∈ T , there exists N ′ ∈ N such that for all N > N ′ we have

sup
g∈G

⃓⃓
⃓⃓E
[︁
g(xit)

]︁
− E

[︃
g(x̂

i
N
t )

]︃⃓⃓
⃓⃓ < ε (B.1.9)

uniformly over i ∈ JN for some JN ⊆ VN with |JN | ≥ ⌊(1− δ)N⌋, and similarly for any
uniformly Lipschitz, uniformly bounded family of measurable functionsH from X × B1(X ) to R
and any ε, δ > 0, t ∈ T , there exists N ′ ∈ N such that for all N > N ′ we have

sup
h∈H

⃓⃓
⃓⃓E
[︃
h(xit,G

i
N
N (µN

t ))

]︃
− E

[︃
h(x̂

i
N
t ,G

i
N (µt))

]︃⃓⃓
⃓⃓ < ε (B.1.10)

uniformly over i ∈ JN for some JN ⊆ VN with |JN | ≥ ⌊(1− δ)N⌋.

b.2 proof of theorem 3.2.1

Proof. First, we will verify [24], Assumption 1 for the MFG with dynamics given by Eq. (3.2.14).
For this purpose, as in [24] let us metrize the product space with the sup-metric, and equip the space
P(X × I) with the weak topology. Note that the results hold for both the finite and infinite horizon
setting, see [24], Remark 6.

(a) The reward function r̃((x, α), u, µ̃) := r(x, u,
∫︁
I W (αt, β)µ̃t(·, β) dβ) is continuous, since

for ((xn, αn), un, µ̃n)→ ((x, α), u, µ̃) we have
∫︂

I
W (αn, β)µ̃n(·, β) dβ →

∫︂

I
W (α, β)µ̃(·, β) dβ

by Lipschitz continuity of W and weak convergence of µ̃n, and therefore

r(xn, un,

∫︂

I
W (αn, β)µ̃n(·, β) dβ)→ r(x, u,

∫︂

I
W (α, β)µ̃(·, β) dβ)

by Assumption 3.2.2.

(b) The action space is compact and the state space is locally compact.

(c) Consider the moment function w(x, α) ≡ 2. In this case, we can choose ζ = 1 (we use ζ
instead of α in [24]).
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(d) The stochastic kernel p̃ that fulfills Eq. (3.2.14) such that (x̃t+1, αt+1) ∼ p̃(x̃t+1, αt+1 |
(x̃t, αt), ũt, µ̃t) is weakly continuous, since for ((xn, αn), un, µ̃n)→ ((x, α), u, µ̃) we again
have

∫︂

I
W (αn, β)µ̃n(·, β) dβ →

∫︂

I
W (α, β)µ̃(·, β) dβ

and therefore for any Lipschitz and bounded f : X × I → R,
∫︂

X×I
f(y, α) p̃(d(y, α) | (xn, αn), un, µ̃n)

=

∫︂

I

∫︂

X
f(y, α) p(dy | (xn, α), un, µ̃n) δαn(dα)

=

∫︂

X
f(y, αn) p(dy | xn, un,

∫︂

I
W (αn, β)µ̃n(·, β) dβ)

→
∫︂

X
f(y, α) p(dy | x, u,

∫︂

I
W (α, β)µ̃(·, β) dβ)

=

∫︂

X×I
f(y, α) p̃(d(y, α) | (x, α), u, µ̃)

by disintegration of p̃ and Eq. (3.2.14).

(e) By boundedness of r, we trivially have v(x) ≡ 1 ≤ ∞.

(f) By boundedness of r, we can trivially choose β = 1 (we flip the usage of β and γ).

(g) As a result of the above choices, ζγβ = γ < 1 trivially.

By [24], Theorem 3.3 we have the existence of a MFE (π̃, µ̃) with some Markovian feedback
policy π̃ acting on the state (x̃t, αt). By defining the MF and policy ensembles π, µ via
πα
t (u | x) = π̃t(u | x, α), µα

t (x) = µ̃t(x, α), we obtain existence of the α-a.e. optimal policy
ensemble π, since at any time t ∈ T , the joint state-action distribution µ̃t ⊗ π̃t puts mass 1 on
optimal state-action pairs (see [24], Theorem 3.6), implying that for a.e. α the policy must be
optimal, as otherwise there exists a non-null set I0̃ ⊆ I such that for all α ∈ I0̃, there is some
suboptimality ε > 0, which directly contradicts the prequel.

For the remaining suboptimal α ∈ I0 in the null set I0 ⊆ I, we redefine π optimally for those
α (always possible in our case, see e.g. [68]). This policy ensemble generates µ = Ψ(π) α-a.e.
uniquely, and we need only consider its α-a.e. unique equivalence class for optimality, implying
π ∈ Φ(µ). Furthermore, µ is always measurable by definition, whereas π is measurable because
π̃t is by definition a Markov kernel, and thus π̃t(u | ·, ·) = π̃t({u} | ·, ·) for Borel set {u} is a
measurable function, which implies measurability of π̃t(u | x, ·) (see e.g. [381], Appendix E).
Therefore, we have proven existence of the GMFE (π,µ).

b.3 proof of theorem 3.2.2

Proof. The proof is by induction as follows.



B.3 proof of theorem 3.2.2 193

initial case. For t = 0, we trivially have for all measurable functions f : X × I → R
uniformly bounded by |f | ≤Mf a LLN result

E
[︁⃓⃓
µN
0 (f)− µ0(f)

⃓⃓]︁

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X
µN,α
0 (x) f(x, α)−

∑︂

x∈X
µα
0 (x) f(x, α) dα

⃓⃓
⃓⃓
⃓

]︄

= E

⎡
⎣
⃓⃓
⃓⃓
⃓⃓
1

N

∑︂

i∈VN

(︄∫︂

( i−1
N

, i
N
]
f(xi0, α) dα− E

[︄∫︂

( i−1
N

, i
N
]
f(xi0, α) dα

]︄)︄⃓⃓
⃓⃓
⃓⃓

⎤
⎦

≤

⎛
⎝E

⎡
⎣
⎛
⎝ 1

N

∑︂

i∈VN

(︄∫︂

( i−1
N

, i
N
]
f(xi0, α) dα− E

[︄∫︂

( i−1
N

, i
N
]
f(xi0, α) dα

]︄)︄⎞
⎠

2⎤
⎦
⎞
⎠

1
2

=

⎛
⎝ 1

N2

∑︂

i∈VN

E

⎡
⎣
(︄∫︂

( i−1
N

, i
N
]
f(xi0, α) dα− E

[︄∫︂

( i−1
N

, i
N
]
f(xi0, α) dα

]︄)︄2
⎤
⎦
⎞
⎠

1
2

≤ 2Mf√
N

by definition of µN
t , independence of {xi0}i∈VN

and xi0 ∼ µ0 = µα
0 for all i ∈ VN , α ∈ I, where

the second equality follows from Fubini’s theorem.

induction step. Assume that the induction assumption holds at t. Then by definition of µN
t ,

for all bounded function f : X × I → R with |f | ≤Mf ,

E
[︁⃓⃓
µN
t+1(f)− µt+1(f)

⃓⃓]︁
≤ E

[︂⃓⃓
⃓µN

t+1(f)− µN
t PπN

t,µN
t ,WN

(f)
⃓⃓
⃓
]︂

+ E
[︂⃓⃓
⃓µN

t PπN

t,µN
t ,WN

(f)− µN
t PπN

t,µN
t ,W

(f)
⃓⃓
⃓
]︂

+ E
[︂⃓⃓
⃓µN

t PπN

t,µN
t ,W

(f)− µN
t Pπ

t,µN
t ,W

(f)
⃓⃓
⃓
]︂

+ E
[︂⃓⃓
⃓µN

t Pπ
t,µN

t ,W
(f)− µN

t Pπ
t,µt,W (f)

⃓⃓
⃓
]︂

+ E
[︁⃓⃓
µN
t Pπ

t,µt,W (f)− µt+1(f)
⃓⃓]︁

.

first term. We have by definition of µN
t

E
[︂⃓⃓
⃓µN

t+1(f)− µN
t PπN

t,µN
t ,WN

(f)
⃓⃓
⃓
]︂

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X
µN,α
t+1 (x) f(x, α) dα

−
∫︂

I

∑︂

x∈X
µN,α
t (x)

∑︂

u∈U
πN,α
t (u | x)

∑︂

x′∈X
p

(︃
x′ | x, u,

∫︂

I
WN (α, β)µN,β

t dβ

)︃
f(x′, α) dα

⃓⃓
⃓⃓
⃓

]︄

= E

⎡
⎣
⃓⃓
⃓⃓
⃓⃓
1

N

∑︂

i∈VN

(︄∫︂

( i−1
N

, i
N
]
f(xit+1, α) dα− E

[︄∫︂

( i−1
N

, i
N
]
f(xit+1, α) dα

⃓⃓
⃓⃓
⃓ xt

]︄)︄⃓⃓
⃓⃓
⃓⃓

⎤
⎦

≤

⎛
⎝E

⎡
⎣
⎛
⎝ 1

N

∑︂

i∈VN

(︄∫︂

( i−1
N

, i
N
]
f(xit+1, α) dα− E

[︄∫︂

( i−1
N

, i
N
]
f(xit+1, α) dα

⃓⃓
⃓⃓
⃓ xt

]︄)︄⎞
⎠

2⎤
⎦
⎞
⎠

1
2
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=

⎛
⎝ 1

N2

∑︂

i∈VN

E

⎡
⎣
(︄∫︂

( i−1
N

, i
N
]
f(xit+1, α) dα− E

[︄∫︂

( i−1
N

, i
N
]
f(xit+1, α) dα

⃓⃓
⃓⃓
⃓ xt

]︄)︄2
⎤
⎦
⎞
⎠

1
2

≤ 2Mf√
N

where the last equality follows from conditional independence of {xit+1}i∈VN
given xt ≡ {xit}i∈VN

and the law of total expectation.

second term. We have

E
[︂⃓⃓
⃓µN

t PπN

t,µN
t ,WN

(f)− µN
t PπN

t,µN
t ,W

(f)
⃓⃓
⃓
]︂

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X
µN,α
t (x)

∑︂

u∈U
πN,α
t (u | x)

∑︂

x′∈X
p

(︃
x′ | x, u,

∫︂

I
WN (α, β)µN,β

t dβ

)︃
f(x′, α) dα

−
∫︂

I

∑︂

x∈X
µN,α
t (x)

∑︂

u∈U
πN,α
t (u | x)

∑︂

x′∈X
p

(︃
x′ | x, u,

∫︂

I
W (α, β)µN,β

t dβ

)︃
f(x′, α) dα

⃓⃓
⃓⃓
⃓

]︄

≤ |X |MfLpE
[︃∫︂

I

⃦⃦
⃦⃦
∫︂

I
WN (α, β)µN,β

t dβ −
∫︂

I
W (α, β)µN,β

t dβ

⃦⃦
⃦⃦ dα

]︃

≤ |X |2MfLp sup
x∈X

E
[︃∫︂

I

⃓⃓
⃓⃓
∫︂

I
WN (α, β)µN,β

t (x)−W (α, β)µN,β
t (x) dβ

⃓⃓
⃓⃓ dα

]︃
→ 0

by Assumption 3.2.1 and µN,β
t (x) trivially being bounded by 1. If the convergence in Assump-

tion 3.2.1 is at rate O(1/
√
N), then this convergence is also at rate O(1/

√
N).

third term. We have

E
[︂⃓⃓
⃓µN

t PπN

t,µN
t ,W

(f)− µN
t Pπ

t,µN
t ,W

(f)
⃓⃓
⃓
]︂

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X
µN,α
t (x)

∑︂

u∈U
πN,α
t (u | x)

∑︂

x′∈X
p

(︃
x′ | x, u,

∫︂

I
W (α, β)µN,β

t dβ

)︃
f(x′, α) dα

−
∫︂

I

∑︂

x∈X
µN,α
t (x)

∑︂

u∈U
πα
t (u | x)

∑︂

x′∈X
p

(︃
x′ | x, u,

∫︂

I
W (α, β)µN,β

t dβ

)︃
f(x′, α) dα

⃓⃓
⃓⃓
⃓

]︄

≤ |X ||U|MfE
[︃∫︂

I

⃓⃓
⃓πN,α

t (u | x)− πα
t (u | x)

⃓⃓
⃓ dα

]︃

= |X ||U|MfE

⎡
⎣ ∑︂

j∈VN\{i}

∫︂

( j−1
N

, j
N
]

⃓⃓
⃓⃓π

⌈Nα⌉
N

t (u | x)− πα
t (u | x)

⃓⃓
⃓⃓ dα

⎤
⎦

+ |X ||U|MfE

[︄∫︂

( i−1
N

, i
N
]
|π̂t(u | x)− πα

t (u | x)| dα
]︄

≤ |X ||U|Mf ·
Lπ

N
+ |X ||U|Mf ·

2|Dπ|
N

+ |X ||U|Mf ·
2

N

by assumption of Lipschitz continuous π up to a finite number of discontinuities Dπ as well as the
deviating agent i’s error term, for which the integrands are bounded by 2.
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fourth term. We have

E
[︂⃓⃓
⃓µN

t Pπ
t,µN

t ,W
(f)− µN

t Pπ
t,µt,W (f)

⃓⃓
⃓
]︂

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X
µN,α
t (x)

∑︂

u∈U
πα
t (u | x)

∑︂

x′∈X
p

(︃
x′ | x, u,

∫︂

I
W (α, β)µN,β

t dβ

)︃
f(x′, α) dα

−
∫︂

I

∑︂

x∈X
µN,α
t (x)

∑︂

u∈U
πα
t (u | x)

∑︂

x′∈X
p

(︃
x′ | x, u,

∫︂

I
W (α, β)µβ

t dβ

)︃
f(x′, α) dα

⃓⃓
⃓⃓
⃓

]︄

≤Mf |X |E
[︃
sup
x,u

∫︂

I

⃓⃓
⃓⃓p
(︃
x′ | x, u,

∫︂

I
W (α, β)µN,β

t dβ

)︃

− p

(︃
x′ | x, u,

∫︂

I
W (α, β)µβ

t dβ

)︃⃓⃓
⃓⃓ dα

]︃

≤Mf |X |Lp

∑︂

x′∈X
E
[︃∫︂

I

⃓⃓
⃓⃓
∫︂

I
W (α, β)µN,β

t (x′) dβ −
∫︂

I
W (α, β)µβ

t (x
′) dβ

⃓⃓
⃓⃓ dα

]︃

≤Mf |X |2Lp ·
C ′(1)√

N

in the case of rate O(1/
√
N), or uniformly to zero otherwise, from Lipschitz P by defining

the functions f ′
x′,α(x, β) = W (α, β) · 1x=x′ for any (x′, α) ∈ X × I and using the induction

assumption on f ′
x′,α to obtain

E
[︃∫︂

I

⃓⃓
⃓⃓
∫︂

I
W (α, β)µN,β

t (x′) dβ −
∫︂

I
W (α, β)µβ

t (x
′) dβ

⃓⃓
⃓⃓ dα

]︃

=

∫︂

I
E
[︃⃓⃓
⃓⃓
∫︂

I
W (α, β)µN,β

t (x′) dβ −
∫︂

I
W (α, β)µβ

t (x
′) dβ

⃓⃓
⃓⃓
]︃
dα

=

∫︂

I
E
[︁⃓⃓
µN
t (f ′

x′,α)− µt(f
′
x′,α)

⃓⃓]︁
dα ≤ C ′(1)√

N

for some C ′(1) > 0 uniformly over all f ′ bounded by 1 if the convergence in Assumption 3.2.1 is at
rate O(1/

√
N), or uniformly to zero otherwise.

fifth term. We have

E
[︁⃓⃓
µN
t Pπ

t,µt,W (f)− µtP
π
t,µt,W (f)

⃓⃓]︁

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X
µN,α
t (x)

∑︂

u∈U
πα
t (u | x)

∑︂

x′∈X
p

(︃
x′ | x, u,

∫︂

I
W (α, β)µβ

t dβ

)︃
f(x′, α) dα

−
∫︂

I

∑︂

x∈X
µα
t (x)

∑︂

u∈U
πα
t (u | x)

∑︂

x′∈X
p

(︃
x′ | x, u,

∫︂

I
W (α, β)µβ

t dβ

)︃
f(x′, α) dα

⃓⃓
⃓⃓
⃓

]︄

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X
µN,α
t (x)f ′(x, α) dα−

∫︂

I

∑︂

x∈X
µα
t (x)f

′(x, α) dα

⃓⃓
⃓⃓
⃓

]︄

= E
[︁⃓⃓
µN
t (f ′)− µt(f

′)
⃓⃓]︁
≤ C ′(Mf )√

N
.

in the case of rateO(1/
√
N), or uniformly to zero otherwise, again by induction assumption applied

to the function

f ′(x, α) =
∑︂

u∈U
πα
t (u | x)

∑︂

x′∈X
p

(︃
x′ | x, u,

∫︂

I
W (α, β)µβ

t dβ

)︃
f(x′, α)
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bounded by Mf . This completes the proof by induction.

b.4 proof of lemma B.1.1

Proof. First, we will show that Eq. (B.1.5) implies Eq. (B.1.6).

proof of (B.1.5) =⇒ (B.1.6) . We consider a uniformly Lipschitz, uniformly bounded
family of measurable functionsH fromX ×B1(X ) to R. Let Mh be the uniform bound of functions
inH and Lh be the uniform Lipschitz constant. Then, for arbitrary h ∈ H we have

⃓⃓
⃓⃓E
[︃
h(xit,G

i
N
N (µN

t ))

]︃
− E

[︃
h(x̂

i
N
t ,G

i
N (µt))

]︃⃓⃓
⃓⃓

=

⃓⃓
⃓⃓E
[︃
h(xit,G

i
N
N (µN

t ))

]︃
− E

[︃
h(xit,G

i
N
N (µt))

]︃⃓⃓
⃓⃓

+

⃓⃓
⃓⃓E
[︃
h(xit,G

i
N
N (µt))

]︃
− E

[︂
h(xit,G

i
N (µt))

]︂⃓⃓
⃓⃓

+

⃓⃓
⃓⃓E
[︂
h(xit,G

i
N (µt))

]︂
− E

[︃
h(x̂

i
N
t ,G

i
N (µt))

]︃⃓⃓
⃓⃓

which we will analyze in the following.

first term. We have
⃓⃓
⃓⃓E
[︃
h(xit,G

i
N
N (µN

t ))

]︃
− E

[︃
h(xit,G

i
N
N (µt))

]︃⃓⃓
⃓⃓

≤ E
[︃
E
[︃⃓⃓
⃓⃓h(xit,G

i
N
N (µN

t ))− h(xit,G
i
N
N (µt))

⃓⃓
⃓⃓
⃓⃓
⃓⃓ xit
]︃]︃

≤ LhE
[︃⃦⃦
⃦⃦G

i
N
N (µN

t )−G
i
N
N (µt)

⃦⃦
⃦⃦
]︃

= Lh

∑︂

x∈X
E
[︃⃓⃓
⃓⃓
∫︂

I
WN (

i

N
, β)µN,β

t (x) dβ −
∫︂

I
WN (

i

N
, β)µβ

t (x) dβ

⃓⃓
⃓⃓
]︃
≤ C(1)√

N

by Theorem 3.2.2 applied to the functions f ′
N,i,x(x

′, β) = WN ( i
N , β) · 1x=x′ uniformly bounded

by 1.

second term. Similarly, we have
⃓⃓
⃓⃓E
[︃
h(xit,G

i
N
N (µt))

]︃
− E

[︂
h(xit,G

i
N (µt))

]︂⃓⃓
⃓⃓

≤ Lh∥G
i
N
N (µt)−G

i
N (µt)∥1

≤ Lh

∑︂

x∈X

⃓⃓
⃓⃓
∫︂

I

(︃
WN (

i

N
, β)−W (

i

N
, β)

)︃
µβ
t (x) dβ

⃓⃓
⃓⃓

≤ Lh

∑︂

x∈X

⃓⃓
⃓⃓
⃓

∫︂

I

(︄
WN (

i

N
, β)−N

∫︂

( i−1
N

, i
N
]
W (α, β) dα

)︄
µβ
t (x) dβ

⃓⃓
⃓⃓
⃓
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+ Lh

∑︂

x∈X

⃓⃓
⃓⃓
⃓

∫︂

I

(︄
N

∫︂

( i−1
N

, i
N
]
W (α, β) dα−W (

i

N
, β)

)︄
µβ
t (x) dβ

⃓⃓
⃓⃓
⃓

where the latter term can be bounded as

Lh

∑︂

x∈X

⃓⃓
⃓⃓
⃓

∫︂

I

(︄
N

∫︂

( i−1
N

, i
N
]
W (α, β) dα−W (

i

N
, β)

)︄
µβ
t (x) dβ

⃓⃓
⃓⃓
⃓

≤ Lh

∑︂

x∈X

⃓⃓
⃓⃓
⃓

∫︂

I
N

∫︂

( i−1
N

, i
N
]

(︃
W (α, β)−W (

⌈Nα⌉
N

, β)

)︃
µβ
t (x) dα dβ

⃓⃓
⃓⃓
⃓

≤ Lh|X |N ·
1

N
· LW

N
=

LWLh|X |
N

by Assumption 3.2.2.

Alternatively, if we assumed the weaker block-wise Lipschitz condition on W in Eq. (B.1.1), we
can obtain the same result for almost all i ∈ VN , i.e. for any δ0 > 0 there exists N ′ ∈ N such that
for any N > N ′, there exists a set J 0

N , |J 0
N | ≥ ⌊(1− δ0)N⌋ such that for all i ∈ J 0

N the above is
true: Since by Eq. (B.1.1) there exist only a finite number Q of intervals and therefore jumps, there
can be only Q many i for which the above fails, while for all other i we again have

⃓⃓
⃓⃓
⃓

∫︂

I
N

∫︂

( i−1
N

, i
N
]

(︃
W (α, β)−W (

⌈Nα⌉
N

, β)

)︃
µβ
t (x) dα dβ

⃓⃓
⃓⃓
⃓

≤
∑︂

j∈{1,...,Q}

⃓⃓
⃓⃓
⃓

∫︂

Ij
N

∫︂

( i−1
N

, i
N
]

(︃
W (α, β)−W (

⌈Nα⌉
N

, β)

)︃
µβ
t (x) dα dβ

⃓⃓
⃓⃓
⃓

≤ N · 1
N
· LW

N
=

LWLh|X |
N

by Eq. (B.1.1), as ( i−1
N , i

N ]× Ij ⊆ Ik × Ij for some k ∈ {1, . . . , Q}.
For the former term we observe that

Lh

∑︂

x∈X

⃓⃓
⃓⃓
⃓

∫︂

I

(︄
WN (

i

N
, β)−N

∫︂

( i−1
N

, i
N
]
W (α, β) dα

)︄
µβ
t (x) dβ

⃓⃓
⃓⃓
⃓

≤ Lh

∑︂

x∈X
N

∫︂

( i−1
N

, i
N
]

⃓⃓
⃓⃓
∫︂

I
(WN (α, β)−W (α, β))µβ

t (x) dβ

⃓⃓
⃓⃓ dα

and by defining for any x ∈ X the terms INi (x) via

INi (x) := N

∫︂

( i−1
N

, i
N
]

⃓⃓
⃓⃓
∫︂

I
(WN (α, β)−W (α, β))µβ

t (x) dβ

⃓⃓
⃓⃓ dα

and noticing that we have

1

N

N∑︂

i=1

INi (x) =

∫︂

I

⃓⃓
⃓⃓
∫︂

I
(WN (α, β)−W (α, β))µβ

t (x) dβ

⃓⃓
⃓⃓ dα→ 0

by Assumption 3.2.1, we can conclude that for any ε1, δ1 > 0 there exists N ′ ∈ N such that for any
N > N ′, there exists a set J 1

N , |J 1
N | ≥ ⌊(1− δ1)N⌋ such that for all i ∈ J 1

N we have

INi (x) < ε1,
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since by the above we can chooseN ′ ∈ N such that for anyN > N ′ we have 1
N

∑︁N
i=1 I

N
i (x) < ε1δ1,

and from INi (x) ≥ 0 it would otherwise follow that 1
N

∑︁N
i=1 I

N
i (x) ≥ 1

N · ⌈δ1N⌉ ε1 ≥ ε1δ1 which
would be a direct contradiction. Therefore, for all i ∈ J 1

N , we have uniformly

Lh

∑︂

x∈X
N

∫︂

( i−1
N

, i
N
]

⃓⃓
⃓⃓
∫︂

I
(WN (α, β)−W (α, β))µβ

t (x) dβ

⃓⃓
⃓⃓ dα = Lh

∑︂

x∈X
INi (x)→ 0 .

third term. By Eq. (B.1.5), for any ε2, δ2 > 0 there exists a set J 2
N , |J 2

N | ≥ ⌊(1− δ2)N⌋
such that for all i ∈ J 2

N we have
⃓⃓
⃓⃓E
[︂
h(xit,G

i
N (µt))

]︂
− E

[︃
h(x̂

i
N
t ,G

i
N (µt))

]︃⃓⃓
⃓⃓ < ε2

independent of π̂ ∈ Π.

The intersection of J 0
N , J 1

N , J 2
N has at least N − ⌈δ0N⌉ − ⌈δ1N⌉ − ⌈δ2N⌉ agents fulfilling

Eq. (B.1.6), which completes the proof of (B.1.5) =⇒ (B.1.6) for almost all agents by choosing
ε1, ε2 sufficiently small and δ0, δ1, δ2 <

δ
3 such that N −⌈δ0N⌉− ⌈δ1N⌉− ⌈δ2N⌉ ≥ ⌊(1− δ)N⌋,

which is equivalent to 1 − ⌈δ0N⌉
N − ⌈δ1N⌉

N − ⌈δ2N⌉
N ≥ ⌊(1−δ)N⌋

N and is true for sufficiently large
N , since in the limit, 1− ⌈δ0N⌉

N − ⌈δ1N⌉
N − ⌈δ2N⌉

N → 1− δ0 − δ1 − δ2 and ⌊(1−δ)N⌋
N → 1− δ as

N →∞.

proof of (B.1.5) . All that remains is to show Eq. (B.1.5), which will automatically imply
Eq. (B.1.6) at all times t ∈ T by the prequel. We will show Eq. (B.1.5) by induction.

initial case. At t = 0, L(xit) = µ0 = L(x̂
i
N
t ) by definition. Thus, trivially

⃓⃓
⃓⃓E
[︁
g(xi0)

]︁
− E

[︃
g(x̂

i
N
0 )

]︃⃓⃓
⃓⃓ = 0 < ε .

induction step. For any uniformly bounded family of functions G from X to R with bound
Mg, we will show that for any ε, δ > 0, there exists N ′ ∈ N such that for all N > N ′ we have

⃓⃓
⃓⃓E
[︁
g(xit+1)

]︁
− E

[︃
g(x̂

i
N
t+1)

]︃⃓⃓
⃓⃓ < ε

uniformly over π̂ ∈ Π, i ∈ JN for some JN ⊆ VN with |JN | ≥ ⌊(1− δ)N⌋. Observe that
⃓⃓
⃓⃓E
[︁
g(xit+1)

]︁
− E

[︃
g(x̂

i
N
t+1)

]︃⃓⃓
⃓⃓ =

⃓⃓
⃓⃓E
[︃
lN,t(x

i
t,G

i
N
N (µN

t ))

]︃
− E

[︃
lN,t(x̂

i
N
t ,G

i
N (µt))

]︃⃓⃓
⃓⃓

where we defined the uniformly bounded, uniformly Lipschitz functions

lN,t(x, ν) ≡
∑︂

u∈U
π̂t(u | x)

∑︂

x′∈X
p(x′ | x, u, ν)g(x′)

with Lipschitz constant |X |MgLp and uniform bound Mg. By the induction assumption and (B.1.5)
=⇒ (B.1.6) from the prequel, there exists N ′ ∈ N such that for all N > N ′ we have

⃓⃓
⃓⃓E
[︃
lN,t(x

i
t,G

i
N
N (µN

t ))

]︃
− E

[︃
lN,t(x̂

i
N
t ,G

i
N (µt))

]︃⃓⃓
⃓⃓ < ε

uniformly over π̂ ∈ Π, i ∈ JN for some JN ⊆ VN with |JN | ≥ ⌊(1− δ)N⌋, which completes the
proof by induction.
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b.5 proof of corollary B.1.1

Proof. Define the uniformly bounded, uniformly Lipschitz functions

rπ̂(x, ν) ≡
∑︂

u∈U
r(x, u, ν)π̂t(u | x)

with Lipschitz constant |U |Lr and uniform bound Mr such that by Lemma B.1.1 and Fubini’s
theorem, there exists N ′ ∈ N such that for all N > N ′ we have

⃓⃓
⃓⃓JN

i (π1, . . . , πi−1, π̂, πi+1, . . . , π̂)− Jµ
i
N

(π̂)

⃓⃓
⃓⃓

≤
T−1∑︂

t=0

⃓⃓
⃓⃓E
[︂
rπ̂t(x

i
t,G

i
N (µt))

]︂
− E

[︃
rπ̂t(x̂

i
N
t ,G

i
N (µt))

]︃⃓⃓
⃓⃓ < ε .

uniformly over π̂ ∈ Π, i ∈ JN for some JN ⊆ VN with |JN | ≥ ⌊(1− δ)N⌋ by choosing the
maximum over all N ′ at each finite time step from Lemma B.1.1.

In case of the infinite horizon discounted objective, we instead first cut off at a time T >
log

ε(1−γ)
4Mr

log γ
such that trivially

T−1∑︂

t=0

γt
⃓⃓
⃓⃓E
[︂
rπ̂t(x

i
t,G

i
N (µt))

]︂
− E

[︃
rπ̂t(x̂

i
N
t ,G

i
N (µt))

]︃⃓⃓
⃓⃓

+ γT
∞∑︂

t=T

γt−T

⃓⃓
⃓⃓E
[︂
rπ̂t(x

i
t,G

i
N (µt))

]︂
− E

[︃
rπ̂t(x̂

i
N
t ,G

i
N (µt))

]︃⃓⃓
⃓⃓

<

T−1∑︂

t=0

γt
⃓⃓
⃓⃓E
[︂
rπ̂t(x

i
t,G

i
N (µt))

]︂
− E

[︃
rπ̂t(x̂

i
N
t ,G

i
N (µt))

]︃⃓⃓
⃓⃓+ ε

2

and then handle the remaining term analogously to the finite horizon case.

b.6 proof of theorem 3.2.3

Proof. By Corollary B.1.1, for any ε, δ > 0 there exists N ′ ∈ N such that for all N > N ′ we have

max
π∈Π

(︁
JN
i (π1, . . . , πi−1, π, πi+1, . . . , πN )− JN

i (π1, . . . , πN )
)︁

≤ max
π∈Π

(︃
JN
i (π1, . . . , πi−1, π, πi+1, . . . , πN )− Jµ

i
N

(π)

)︃

+max
π∈Π

(︃
Jµ

i
N

(π)− Jµ
i
N

(π
i
N )

)︃

+

(︃
Jµ

i
N

(π
i
N )− JN

i (π1, . . . , πN )

)︃

<
ε

2
+ 0 +

ε

2
= ε

uniformly over i ∈ JN for someJN ⊆ VN with |JN | ≥ ⌊(1− δ)N⌋, since π
i
N ∈ argmaxπ J

µ
i
N

(π)

by definition of a GMFE. Reordering completes the proof.
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b.7 proof of corollary B.1.2

Proof. The proof follows immediately from Theorem 3.2.2 and Lemma B.1.1 by considering
the trivial policy π that always chooses the only action available together with its generated MF
µ = Ψ(π).

b.8 proof of proposition 3.2.2

Proof. The set Π is a complete metric space, since existence of limits follows from completeness
of R, pointwise limits of measurable functions are measurable, and policies will remain normalized.
Banach’s fixed point theorem applied to Φ̂ ◦ Ψ̂ gives us the desired result.

b.9 proof of theorem 3.2.4

Proof. Formally, we approximate the MFs by Ψ̂(π) =
∑︁M

i=1 1α∈Ĩi
µ̂αi for any fixed policy ensemble

π, and similarly policies Φ̂(µ) =
∑︁M

i=1 1α∈Ĩi
παi where παi is the softmax policy of αi for fixed

µ, i.e.

πα
t (u | x) =

exp
(︂
Qµ

α(t,x,u)
η

)︂

∑︁
u∈U exp

(︂
Qµ

α(t,x,u)
η

)︂ . (B.9.11)

By the Bellman equation (3.2.13), Qµ
α(t, x, u) is Lipschitz in µ for all (t, x, u) ∈ T × X × U

under Assumption 3.2.2. Since the Lipschitz constants are shared over all α, by [9], Lemma
B.7.5, Eq. (B.9.11) is therefore Lipschitz with Lipschitz constant proportional to 1/η, which
immediately implies that Φ̂ is also Lipschitz with Lipschitz constant c1/η. By its recursive definition
as compositions of Lipschitz functions, Ψ̂ is Lipschitz as well with some constant c2. Therefore,
the composition of both functions Ψ̂ ◦ Φ̂ is Lipschitz with constants c1c2/η, which will be less than
1 for sufficiently large η. By Proposition 3.2.2, the equivalence classes algorithm Ψ̂ ◦ Φ̂ converges
to a fixed point.

b.10 proof of theorem 3.2.5

Proof. First, note that under the equivalence classes method, the distance between any α and its
representant αi uniformly shrinks to zero as M →∞, i.e. maxi=1,...,M supα∈Ĩi

|α− αi| → 0.

We begin by showing that a solution of the M equivalence classes method (π,µ) ∈ Π ×M,
π ∈ Φ̂(µ), µ = Ψ̂(π) following Eq. (B.11.12), Eq. (B.11.13) fulfills approximate optimality, i.e.
for any ε > 0 there exists M ′ s.t. for all M > M ′

sup
α∈I

max
π∈Π

(︁
J µ̄
α (π)− J µ̄

α (π
α)
)︁
< ε,

where we introduced the true, exact MF ensemble µ̄ = Ψ(π) following Eq. (3.2.12) generated by
the block-wise solution policy

∑︁M
i=1 1α∈Ĩi

παi of the M equivalence classes method, as well as the
true MF system under µ̄ and any policy π ∈ Π

x̄α0 ∼ µ0(x̄
α
0 ), ūαt ∼ πt(ū

α
t | x̄αt ), x̄αt+1 ∼ p(x̄αt+1 | x̄αt , ūαt , Ḡ

α
t ), ∀(α, t) ∈ I × T
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with B1(X )-valued Ḡα
t :=

∫︁
I W (α, β)µ̄β

t dβ and J µ̄
α (π) ≡ E

[︂∑︁T−1
t=0 r(x̄αt , ū

α
t , Ḡ

α
t )
]︂
, while

system (3.2.9) is to be understood as the system under the approximate MF ensemble µ.

To see this, we will analyze

sup
α∈I

max
π∈Π

(︁
J µ̄
α (π)− J µ̄

α (π
α)
)︁
≤ max

i=1,...,M
sup
α∈Ĩi

max
π∈Π

(︁
J µ̄
α (π)− Jµ

α (π)
)︁

+ max
i=1,...,M

sup
α∈Ĩi

max
π∈Π

(︁
Jµ
α (π)− Jµ

αi
(π)
)︁

+ max
i=1,...,M

sup
α∈Ĩi

max
π∈Π

(︁
Jµ
αi
(π)− Jµ

αi
(παi)

)︁

+ max
i=1,...,M

sup
α∈Ĩi

(︁
Jµ
αi
(παi)− Jµ

α (π
αi)
)︁

+ max
i=1,...,M

sup
α∈Ĩi

(︁
Jµ
α (π

α)− J µ̄
α (π

α)
)︁
.

first term. For any π ∈ Π, define the uniformly bounded, uniformly Lipschitz functions

rπ(x, ν) ≡
∑︂

u∈U
r(x, u, ν)πt(u | x)

with Lipschitz constant |U |Lr and uniform bound Mr such that for the first term, we have
(︁
J µ̄
α (π)− Jµ

α (π)
)︁
≤
⃓⃓
J µ̄
α (π)− Jµ

α (π)
⃓⃓

≤
T−1∑︂

t=0

⃓⃓
E
[︁
rπ(x̄

α
t , Ḡ

α
t )
]︁
− E [rπ(x

α
t ,Gα

t ]
⃓⃓

≤
T−1∑︂

t=0

⃓⃓
E
[︁
rπ(x̄

α
t , Ḡ

α
t )− rπ(x̄

α
t ,Gα

t

]︁⃓⃓
+

T−1∑︂

t=0

|E [rπ(x̄
α
t ,Gα

t ]− E [rπ(x
α
t ,Gα

t ]|

≤
T−1∑︂

t=0

|U |Lr

⃦⃦
⃦⃦
∫︂

I
W (α, β)(µ̄β

t − µβ
t ) dβ)

⃦⃦
⃦⃦+

T−1∑︂

t=0

|E [rπ(x̄
α
t ,Gα

t ]− E [rπ(x
α
t ,Gα

t ]| .

For the former term, note that
⃦⃦
⃦⃦
∫︂

I
W (α, β)(µ̄β

t − µβ
t ) dβ)

⃦⃦
⃦⃦ =

⃦⃦
⃦⃦
⃦
∑︂

i

∫︂

Ĩi

W (α, β)(µ̄β
t − µαi

t ) dβ)

⃦⃦
⃦⃦
⃦

≤ max
i=1,...,M

sup
α∈Ĩi

|X | ∥µ̄α
t − µαi

t ∥

and we will show by induction over t = 0, 1, . . . , T that supα∈Ĩi
∥µ̄α

t − µαi
t ∥ → 0 over all α

uniformly over all equivalence classes Ĩi. At t = 0, we have trivially µ̄0 = µ0. Assume that
supα∈Ĩi

∥µ̄α
t − µαi

t ∥ → 0. Then for t+ 1, we have

sup
α∈Ĩi

⃦⃦
µ̄α
t+1 − µαi

t+1

⃦⃦

= sup
α∈Ĩi

⃦⃦
⃦⃦
⃦
∑︂

x∈X
µ̄α
t (x)

∑︂

u∈U
πα
t (u | x)p(· | x, u, Ḡ

α
t )−

∑︂

x∈X
µαi
t (x)

∑︂

u∈U
παi
t (u | x)p(· | x, u,Gαi

t )

⃦⃦
⃦⃦
⃦

≤ sup
α∈Ĩi

⃦⃦
⃦⃦
⃦
∑︂

x∈X
µ̄α
t (x)

∑︂

u∈U
πα
t (u | x)p(· | x, u, Ḡ

α
t )−

∑︂

x∈X
µ̄αi
t (x)

∑︂

u∈U
παi
t (u | x)p(· | x, u, Ḡαi

t )

⃦⃦
⃦⃦
⃦
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+

⃦⃦
⃦⃦
⃦
∑︂

x∈X
µ̄αi
t (x)

∑︂

u∈U
παi
t (u | x)p(· | x, u, Ḡαi

t )−
∑︂

x∈X
µαi
t (x)

∑︂

u∈U
παi
t (u | x)p(· | x, u, Ḡαi

t )

⃦⃦
⃦⃦
⃦

+

⃦⃦
⃦⃦
⃦
∑︂

x∈X
µ̄αi
t (x)

∑︂

u∈U
παi
t (u | x)p(· | x, u, Ḡαi

t )−
∑︂

x∈X
µαi
t (x)

∑︂

u∈U
παi
t (u | x)p(· | x, u,Gαi

t )

⃦⃦
⃦⃦
⃦

≤ sup
α∈Ĩi

⃦⃦
⃦⃦
⃦
∑︂

x∈X
µ̄α
t (x)

∑︂

u∈U
πα
t (u | x)p(· | x, u, Ḡ

α
t )−

∑︂

x∈X
µ̄αi
t (x)

∑︂

u∈U
παi
t (u | x)p(· | x, u, Ḡαi

t )

⃦⃦
⃦⃦
⃦

+ |X |2 ∥µ̄αi
t − µαi

t ∥+ |X |2|U|Lp ∥µ̄αi
t − µαi

t ∥ → 0

asM →∞, since the first term is uniformly Lipschitz inα by Eq. (3.2.12) as a recursive composition,
finite multiplication and addition of Lipschitz functions, whereas the other terms tend to zero
by induction hypothesis. Since the Lipschitz constants do not depend on Ĩi, the convergence is
uniform.

To bound the latter term, we first note that rπ(x,Gα
t ) is always bounded by Mr regardless of

t, x, α, π, i.e. it again suffices to show that for any family of functions G from X to R uniformly
bounded by Mr, we have

sup
g∈G
|E [g(x̄αt )]− E [g(xαt )]| → 0 .

The proof is by induction. At t = 0, we trivially have L(x̄αt ) = µ0 = L(xαt ). Assuming that the
induction hypothesis holds at t, then at t+ 1 we have

sup
g∈G

⃓⃓
E
[︁
g(x̄αt+1)

]︁
− E

[︁
g(xαt+1)

]︁⃓⃓
= sup

g∈G
|E [lt(x̄

α
t ,Gα

t ))]− E [lt(x
α
t ,Gα

t )]| → 0

by the induction hypothesis, where we defined the uniformly bounded functions

lt(x, ν) ≡
∑︂

u∈U
πt(u | x)

∑︂

x′∈X
p(x′ | x, u, ν)g(x′)

with uniform bound Mr. Therefore,
⃓⃓
J µ̄
α (π)− Jµ

α (π)
⃓⃓
→ 0 uniformly over all α, π.

second term. For the second term, we analogously have
(︁
Jµ
α (π)− Jµ

αi
(π)
)︁
≤
⃓⃓
Jµ
α (π)− Jµ

αi
(π)
⃓⃓

≤
T−1∑︂

t=0

|U |Lr

⃦⃦
⃦⃦
∫︂

I
(W (α, β)−W (αi, β))µ

β
t dβ)

⃦⃦
⃦⃦+

T−1∑︂

t=0

|E [rπ(x
α
t ,G

αi
t ]− E [rπ(x

αi
t ,Gαi

t ]|

where the former term uniformly tends to zero as M → ∞ over all α by Lipschitz W from
Assumption 3.2.2 and increasingly fine partition intervals Ĩi, while for the latter term we again
show that for any family of functions G from X to R uniformly bounded by Mr, we have

sup
g∈G
|E [g(xαt )]− E [g(xαi

t )]| → 0 .

The proof is by induction. At t = 0, we trivially have L(xαt ) = µ0 = L(xαi
t ). Assuming that the

induction hypothesis holds at t, then at t+ 1 we have

sup
g∈G

⃓⃓
E
[︁
g(xαt+1)

]︁
− E

[︁
g(xαi

t+1)
]︁⃓⃓

= sup
g∈G
|E [lt(x

α
t ,G

αi
t ))]− E [lt(x

αi
t ,Gαi

t )]| → 0

by the induction hypothesis, where we defined the uniformly bounded functions

lt(x, ν) ≡
∑︂

u∈U
πt(u | x)

∑︂

x′∈X
p(x′ | x, u, ν)g(x′)

with uniform bound Mr. Therefore,
⃓⃓
Jµ
α (π)− Jµ

αi(π)
⃓⃓
→ 0 uniformly over all α, π.
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third term. By definition, we have optimality of π ∈ Φ̂(µ) under the approximate MF µ at
each representative αi. Therefore, the term maxπ∈Π

(︁
Jµ
αi(π)− Jµ

αi(π
αi)
)︁

is upper bounded by 0,
as there is no policy π that improves over παi .

fourth and fifth term. The results follow from the first and second term by inserting πα

for π.

variations on the setting. The infinite horizon discounted case is handled as in the proof
of Corollary B.1.1, i.e. repeating the above up to some chosen time horizon T and trivially bounding
all terms with t ≥ T . The block-wise Lipschitz graphon case in Eq. (B.1.1) is handled by choosing
the equivalence classes Īi ⊆ Ij such that they are part of at most one block Ij of the graphon.

proof of theorem 3.2.5. Now fix any ε, δ > 0. As a result of the prequel, we have that there
exists M ′ s.t. for all M > M ′

sup
α∈I

max
π∈Π
|Jµ

α (π
α)− Jµ

α (π)| <
ε

3
.

Pick any such M > M ′. By Corollary B.1.1 (for the first and third term, since π is constant with at
most M discontinuities) and the prequel (for the second term), there exists N ′ ∈ N such that for all
N > N ′ we have

max
π∈Π

(︁
JN
i (π1, . . . , πi−1, π, πi+1, . . . , πN )− JN

i (π1, . . . , πN )
)︁

≤ max
π∈Π

(︃
JN
i (π1, . . . , πi−1, π, πi+1, . . . , πN )− J µ̄

i
N

(π)

)︃

+max
π∈Π

(︃
J µ̄

i
N

(π)− J µ̄
i
N

(π
i
N )

)︃

+

(︃
J µ̄

i
N

(π
i
N )− JN

i (π1, . . . , πN )

)︃

<
ε

3
+

ε

3
+

ε

3
= ε

which holds uniformly over i ∈ JN for some JN ⊆ VN with |JN | ≥ ⌊(1− δ)N⌋, since
π

i
N ∈ argmaxπ J

µ
i
N

(π) by definition of a GMFE. Reordering completes the proof.

b.11 experimental details

In this section, we will give a full description of all the algorithms and hyperparameters we used
during our experiments. For RL, we use PPO [73].

For the approximate equivalence classes, we shall consider grids (αm ∈ [0, 1])m=1,...,M with
associated policies (παm ∈ Π)m=1,...,M and MFs (µαm ∈ P(X )T )m=1,...,M . For the grid, we
choose the points αm = m

100 with m = 0, . . . , 100. Here, an agent α shall use the policy παm with
the closest αm.
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To be precise, for the approximate MF µ = Ψ̂(π) we define µα ≡ µ̂αm for the αm closest to α, i.e.
formally, we thus have

Ψ̂(π) =
M∑︂

m=1

1α∈Ĩm
µ̂αm (B.11.12)

for any fixed policy ensemble π, with µ̂ defined through the recursive equation

µ̂αm
0 ≡ µ0, µ̂αm

t+1(x
′) ≡

∑︂

x∈X
µ̂αm
t (x)

∑︂

u∈U
παm
t (u | x)p(x′ | x, u, Ĝαm

t ), m = 1, . . . ,M

(B.11.13)

where under the assumption of equivalence classes Ĩm ≡ [am, bm] of size (bm − am), we obtain
neighborhood MF via

Ĝα
t =

M∑︂

m=1

(bm − am)W (α, αm)µ̂αm
t . (B.11.14)

Note that in our algorithms, we shall assume equisized partitions and use (bm−am) = 1
M . Similarly,

the policy ensemble is approximated by

Φ̂(µ) =
M∑︂

i=1

1α∈Ĩi
παi (B.11.15)

where παi is the optimal policy of αi for any fixed µ, i.e. the optimal policy and MF of each
α is approximated by the optimal solution and MF of the closest αi, which is an increasingly
good approximation for sufficiently fine grids under the standing Lipschitz assumptions. In the
case of block-wise Lipschitz continuous graphons via Eq. (B.1.1), a similar justification holds
as long as each equivalence class remains constrained to one of the blocks of the graphon, see
Theorem 3.2.5.

In Algorithm 10, the learning scheme is described on a high level. In our experiments, we either use
approximate equivalence classes via Algorithms 11 and 12, or RL in the form of PPO together with
sequential Monte Carlo in Algorithm 13, though in principle one can mix arbitrary methods.

Algorithm 10 FPI

1: Initialize µ0 as the MF induced by the uniformly random policy q.
2: for k = 0, 1, . . . do
3: Computeπk ∈ Π either directly by PPO on Eq. (3.2.14), or by computingQµ via Algorithm 11

and using Eq. (B.13.19) to obtain a softmax policy.
4: Compute µk+1 induced by πk using Algorithm 12, or for RL the neighborhood MFs Gα

t

directly using Algorithm 13.

We ran each trial of our experiments on a single conventional CPU core, with typical wall-clock
times reaching up to at most a few days. We estimate the required compute to approximately 6500
core hours. We did not use any GPUs or TPUs. More specifically, the training of our approximate
equivalence class approach took on average approximately 24 hours for 250 iterations in SIS and 50
iterations in Investment. As a result, Figure B.1 for the selection of appropriate temperatures took
around 2500 core hours. The PPO experiments took approximately 3 days for each configuration,
resulting in approximately 200 core hours for Figure B.3. Finally, for the N -agent evaluations in
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Algorithm 11 Backwards induction
1: Input: Grid (αm ∈ [0, 1])m=1,...,M , MF µ ∈M.
2: for m = 1, . . . ,M do
3: Initialize terminal condition Qµ

α(T, x, u) ≡ 0 for all (x, u) ∈ X × U .
4: for t = T − 1, . . . , 0 do
5: for (x, u) ∈ X × U do
6: Qµ

αm(t, x, u)← r(x, u,Gαm
t ) +

∑︁
x′∈X p(x′ | x, u,Gαm

t )maxu′ Qµ
αm(t+ 1, x′, u′).

7: Return (Qµ
αm)m=1,...,M

Algorithm 12 Forward simulation
1: Input: Grid (αm ∈ [0, 1])m=1,...,M , policy π ∈ Π.
2: Initialize starting condition µαm

0 ≡ µ0 for all m = 1, . . . ,M .
3: for t = 0, . . . , T − 2 do
4: for m = 1, . . . ,M do
5: µαm

t+1 ←
∑︁

x∈X µαm
t (x)

∑︁
u∈U παm

t (u | x)p(x, u, 1
M

∑︁M
n=1W (αm, αn)µ

αn
t ).

6: Return (µαm)m=1,...,M

Figure 3.8, each run up to 100 agents takes up to 4 core hours. Adding on top of that around 250
core hours for the rest of the experiments results in a total of approximately 4000 core hours.

For PPO, we used the RLlib implementation by [76] (version 1.2.0, Apache-2.0 license). To allow for
time-dependent policies, we append the current time to the network inputs. Further, discrete-valued
observations are one-hot encoded. Any other parameter configurations are given in Algorithms 10,
11, 12 and 13, as well as in Table B.2.

As for the specific configurations used in the PPO experiments, we give the hyperparameters in
Table B.1 and used with a feedforward neural network policy consisting of two hidden layers with
256 nodes and tanh activations, outputting a softmax policy over all actions.

b.12 problem definitions

For each possible problem setting, we list the applied temperature setting in Table B.2. In the
following, let G ∈ P(X ).

Algorithm 13 Sequential Monte Carlo
1: Input: Number of trajectories K = 5, number of particles L = 200, policy π ∈ Π.
2: for k = 1, . . . ,K do
3: Initialize particles αm ∼ Unif([0, 1]), xm,k

0 ∼ µ0 for all m = 1, . . . , L.
4: for t = 1, . . . , T − 1 do
5: for m = 1, . . . , L do
6: Sample action u ∼ παm

t (u | xm,k
t ).

7: Sample new particle state xm,k
t+1 ∼ p(xm,k

t+1 | xm,k
t , u, 1

L

∑︁L
n=1W (αm, αn)δxn,k

t
).

8: return neighborhood MF Gα
t ≈ 1

K

∑︁K
k=1

1
L

∑︁L
m=1W (α, αm)δ

xm,k
t

.



206 Appendix B supplementary details on section 3.2

table b.1: Hyperparameter configurations for PPO.
Symbol Function Value

lr Learning rate 0.00005
γ Discount rate 1
λ GAE lambda 0.99
cKL KL coefficient 0.2
β KL target 0.006
cent Entropy coefficient 0.01
ϵ Clip parameter 0.2
B Training batch size 4000
Bm Mini batch size 128
ISGD SGD iterations per training batch 30

sis-graphon. In the SIS-Graphon game as described in the main text, we have X = {S, I},
U = {U,D}, µ0(I) = 0.5, r(x, u,G) = −2 · 1{I}(x) − 0.5 · 1{D}(u) and T = {0, . . . , 49}.
Similar parameters produce similar results, and we set the transition probabilities as

P(S | I, ·, ·) = 0.2,

P(I | S,U,G) = 0.8 ·G(I),

P(I | S,D, ·) = 0 .

investment-graphon. Similarly, in the Investment-Graphon game we haveX = {0, 1, . . . 9},
U = {I,O}, µ0(0) = 1, r(x, u,G) = 0.3x

1+
∑︁

x′∈X x′G(x′) − 2 · 1{I}(u) and T = {0, . . . , 49}. We
set the transition probabilities for x = 0, 1, . . . , 8 as

P(x+ 1 | x, I, ·) = 9− x

10
,

P(x | x, I, ·) = 1 + x

10
,

P(x | x,O, ·) = 1,

while for x = 9 the next state is always x = 9.

b.13 exploitability and temperature choice

In the following, we will explain our choice of temperatures in Table B.2 by approximately evaluating
the average exploitability of GMFE candidates (π,µ) – as it is intractable to approximately evaluate
the maximum exploitability over all α ∈ I – defined by

∆J(π,µ) =

∫︂

I
sup
π∗∈Π

Jµ
α (π

∗)− Jµ
α (π

α) dα . (B.13.16)

More specifically, when using approximate equivalence classes, we compute the exploitability of
some policy π by computing the optimal policy π∗ obtained via Algorithm 11, under the fixed MF
µ generated by π via Algorithm 12, inserting π∗,α into Eq. (B.13.16) and then approximating by

∫︂

I
Jµ
α (π) dα ≈

1

M

∑︂

m=1,...,M

∑︂

x∈X
µ0(x)

∑︂

u∈U
π0(u | x)Qµ,π

αm
(0, x, u) . (B.13.17)
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Here, we defined for any policy π ∈ Π and α ∈ I the policy evaluation functions Qµ,π
α as usual

via

Qµ,π
α (t, x, u) = r(x, u,Gα

t ) +
∑︂

x′∈X
p(x′ | x, u,Gα

t )
∑︂

u′∈U
π0(u

′ | x)Qµ,π
α (t+ 1, x′, u′)

(B.13.18)

with terminal condition Qµ,π
α (T, x, u) ≡ 0, which can be computed as in Algorithm 11, see also

[68] for a review.

To achieve convergence of FPI to approximate equilibria, for previous µn ∈M we compute the
action value function Qµn

α via Algorithm 11 using approximate equivalence classes and then define
the next policy πn+1 = Φ̂(µn) for every α ∈ I via the softmax function

πn+1,αi
t (u | x) =

exp

(︃
Qµn

αi
(t,x,u)

η

)︃

∑︁
u∈U exp

(︃
Qµn

αi
(t,x,u)

η

)︃ (B.13.19)

for the closest αi with some temperature η > 0 chosen minimally for convergence.

For choosing the temperature, we evaluate the approximate final exploitability at various temperatures.
The results can be seen in Figure B.1, where we plot the average, minimum and maximum
exploitability over the last 10 iterations of the fixed point learning scheme. The reasoning behind
choosing our temperatures as in Table B.2 is that we can see no fluctuations (indicating convergence of
our learning scheme) together with a low approximate exploitability at the indicated temperatures.
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(a) SIS-Graphon, 250 iterations

η-Boltzmann, unif graphon
Uniform policy, unif graphon
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figure b.1: Convergence in exploitability of GMFG algorithms. Final approximate exploitability mean
and its minimum / maximum (shaded region) over the last 10 iterations for various temperatures η. We
can see convergence for sufficiently high temperatures and choose the lowest temperature such that we still
have convergence with low exploitability. Furthermore, compared to the uniformly random policy, our
approximate exploitability is significantly lower, indicating a good approximate GMFE. For the Investment-
Graphon problem, the approximate exploitability of the uniform policy is not shown, as it is above 30. (a):
SIS-Graphon; (b): Investment-Graphon.

b.14 additional experiments

In Figure B.2, we plot investment behavior at quality x = 0 as well as expected quality for each α
of the approximate equivalence class solution, and similarly in Figure B.3 for the PPO solution with
sequential Monte Carlo. Here, for each α we averaged quality over all particles within a distance of
0.05 to α. We can see that PPO achieves qualitatively and quantitatively similar behavior, deviating
slightly due to the approximate optimality of the PPO algorithm. To be precise, when evaluating
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table b.2: Temperature configurations.
Experiment η for approximate equivalence classes

SIS-Graphon, Wunif 0.101
SIS-Graphon, Wrank 0.3
SIS-Graphon, Wer 0.101
Investment-Graphon, Wunif 0
Investment-Graphon, Wrank 0
Investment-Graphon, Wer 0.05
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figure b.2: Approximate equivalence classes solution of Investment-Graphon. We plot the probability
of investing at state x = 0 (top) together with the evolution of average quality (bottom) for M = 100. (a):
Uniform attachment graphon; (b): Ranked attachment graphon; (c): ER graphon.

exploitability via either solution, we find that the learned policy exploitability remains around ε ≈ 2,
compared to ε > 30 for the uniform random policy.

In Figure B.4 the equilibrium behavior is shown for the Investment-Graphon problem without
softmax policy regularization (except for the ER graphon case), as we find that the problem already
converges to a very good equilibrium with low approximate exploitability, see Figure B.1. In this
problem, we find that the resulting (deterministic without regularization) policy will let agents
invest up to a certain quality, after which any further investment is avoided. The agents with higher
connectivity will invest up to a lower quality, as they are in competition with more products.

In Figures B.5 and B.6, we have performed ablations over the number of equivalence classes for
the SIS-Graphon problem. As can be observed, the solution obtained by approximate equivalence
classes remains stable regardless of the particular number of equivalence classes, showing the
stability of discretization approach and supporting Theorem 3.2.5.

Finally, in Figure B.7 we exemplarily show training results of applying state-of-the-art MARL
methods such as MAPPO [88] on the finite-agent system with observed, randomized-per-episode
graphon indices and W -random graphs. Here, we use the same hyperparameters as shown in
Table B.1. As can be seen, due to the non-stationarity of the other agents, a naive application of
MARL techniques fails to converge at all.
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figure b.3: Qualitative behavior of learned PPO equilibrium. The probability of investing at state x = 0
(top) together with the evolution of average quality (bottom) for PPO. The solution is similar to Figure B.2,
though slightly different due to the approximations stemming from PPO and sequential Monte Carlo. (a):
Uniform attachment graphon; (b): Ranked attachment graphon; (c): ER graphon.
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figure b.4: Achieved equilibrium via M = 100 approximate equivalence classes in Investment-Graphon.
Top: Maximum quality x̂ up to which agents will invest (πα

t (I | x̂) > 0.5), shown for each α ∈ I, t ∈ T .
Bottom: Expected quality versus time of each agent α ∈ I. It can be observed that agents with less
connections (higher α) will invest more. (a): Uniform attachment graphon; (b): Ranked attachment graphon;
(c): ER graphon.
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figure b.5: Achieved equilibrium via approximate equivalence classes in SIS-Graphon for uniform
attachment graphon, plotted for each representative αi ∈ I. Top: Probability of taking precautions when
healthy. Bottom: Probability of being infected. (a): M = 10; (b): M = 30; (c): M = 50.



210 Appendix B supplementary details on section 3.2

0 20 40
t

0.0

0.5

1.0

π
α t
(D
|S

)

(a) Wrank

0.0

0.5

1.0
α

0 20 40
t

0.0

0.5

1.0

π
α t
(D
|S

)

(b) Wrank

0.0

0.5

1.0
α

0 20 40
t

0.0

0.5

1.0

π
α t
(D
|S

)

(c) Wrank

0.0

0.5

1.0
α

0 20 40
t

0.00

0.25

0.50

µ
α t
(I

)

0.0

0.5

1.0
α

0 20 40
t

0.00

0.25

0.50

µ
α t
(I

)

0.0

0.5

1.0
α

0 20 40
t

0.00

0.25

0.50

µ
α t
(I

)

0.0

0.5

1.0
α

figure b.6: Achieved equilibrium via approximate equivalence classes in SIS-Graphon for ranked
attachment graphon, plotted for each representative αi ∈ I. Top: Probability of taking precautions when
healthy. Bottom: Probability of being infected. (a): M = 10; (b): M = 20; (c): M = 30.

figure b.7: Learning curve and results for direct application application of MAPPO [88]. Left: Sum of
expected agent objectives over learning iterations; Right: Final policy probability of taking precautions when
healthy.
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c.1 proof of theorem 3.3.1

Proof. Under our assumptions, we can verify [24, Assumption 1] for the equivalent standard MFG
given by Eq. (3.3.38) as in [7]. By [24, Theorem 3.3] there exists a MFE (π̃, µ̃) for Eq. (3.3.38). The
policy µ̃ is α-a.e. optimal under the MF µ̃ by [24, Theorem 3.6]. For all other α, there trivially exists
an optimal action, i.e. we can change π̃ such that it is optimal for all α. Since the change is on a null
set of I , (π̃, µ̃) remains a MFE. Define the hypergraphon MF policy π by πα

t (u | x) = π̃t(u | x, α),
then π is optimal under the hypergraphon MF µ where µ = Ψ(π), since µα

t (x) = µ̃t(x, α) for
almost every α. Finally, both π and µ are measurable. Therefore, we have proven existence of the
HMFE (π,µ).

c.2 proof of theorem 3.3.2

In this section, we provide the full proof of Theorem 3.3.2. In contrast to prior work such as [7],
we (i) extend existing MF convergence results to n-fold products of the state distributions; and (ii)
replace the state distributions by their symmetrized version, in order to obtain convergence results
under the generalized cut norm in Eq. (3.3.20). Propagating these changes forward, the rest of the
proof is (somewhat) readily generalized and given in the following.

To begin, we introduce some notation to improve readability. Define the D-dimensional neighbor-
hood MF να,µW with d-th component

να,µW,d(x) :=

∫︂

Ir<[kd]\{1}
Wd(α,β)

kd−1∏︂

j=1

µβj (xj) dβ

211



212 Appendix C supplementary details on section 3.3

for all µ ∈ P(X )I , W := (W1, . . . ,WD) ∈×D
d=1Wkd as well as the transition operator

P t,π,µ
W : P(X )I → P(X )I such that

(︂
µ′P t,π,µ

W

)︂α
=
∑︂

x∈X
µ′α(x)

∑︂

u∈U
πα(u | x)p

(︁
·
⃓⃓
x, u, να,µW

)︁

for all µ′ ∈ P(X )I , π ∈ P(U)X , such that e.g.

µt+1 = µtP
t,πt,µt

W .

Proof. In the following, consider arbitrary measurable functions f : X ×I → [−Mf ,Mf ], Mf > 0
and the telescoping sum

E

[︄⃓⃓
⃓⃓
⃓

n⨂︂
µN
t (f)−

n⨂︂
µt(f)

⃓⃓
⃓⃓
⃓

]︄

≤
n−1∑︂

i=0

E

[︄⃓⃓
⃓⃓
⃓
n−i⨂︂

µN
t ⊗

i⨂︂
µt(f)−

n−i−1⨂︂
µN
t ⊗

i+1⨂︂
µt(f)

⃓⃓
⃓⃓
⃓

]︄

=

n−1∑︂

i=0

E

[︄⃓⃓
⃓⃓
⃓
n−i−1⨂︂

µN
t ⊗

(︁
µN
t − µt

)︁
⊗

i⨂︂
µt(f)(f)

⃓⃓
⃓⃓
⃓

]︄

=
n−1∑︂

i=0

E

⎡
⎣
⃓⃓
⃓⃓
⃓⃓
∫︂

I

∑︂

xi∈X

∫︂

I[n]\{i}

∑︂

x̃∈X [n]\{i}

f(x, (α,β))

·
n−i−1∏︂

j=1

µN,βj (x̃j)

n∏︂

j=n−i+1

µβj (x̃j) dβ ·
[︁
µN,α(xi)− µα(xi)

]︁
dα

⃓⃓
⃓⃓
⃓⃓

⎤
⎦

=

n−1∑︂

i=0

E

⎡
⎣
⃓⃓
⃓⃓
⃓⃓
∫︂

I

∑︂

xi∈X
g(xi, α)

[︁
µN,α(xi)− µα(xi)

]︁
dα

⃓⃓
⃓⃓
⃓⃓

⎤
⎦

where we defined g : X × I → [−Mf ,Mf ] as

g(x, α) :=

∫︂

I[n]\{i}

∑︂

x−i∈X [n]\{i}

f((x, x−i), (α,β))
n−i−1∏︂

j=1

µN,βj (xj)
n∏︂

j=n−i+1

µβj (xj) dβ.

Since g is a measurable function bounded by Mf , due to the prequel it suffices at any time t ∈ T to
prove Eq. (3.3.42) for n = 1, which will imply the statement for all n ∈ N.

The proof is by induction over t for n = 1. At t = 0,

E
[︁⃓⃓
µN
0 (f)− µ0(f)

⃓⃓]︁

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X
µN,α
0 (x) f(x, α)−

∑︂

x∈X
µα
0 (x) f(x, α) dα

⃓⃓
⃓⃓
⃓

]︄

= E

⎡
⎣
⃓⃓
⃓⃓
⃓⃓
∑︂

i∈[N ]

(︄∫︂

INi

f(xi0, α) dα− E

[︄∫︂

INi

f(xi0, α) dα

]︄)︄⃓⃓
⃓⃓
⃓⃓

⎤
⎦
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≤

⎛
⎝V

⎡
⎣∑︂

i∈[N ]

∫︂

INi

f(xi0, α) dα

⎤
⎦
⎞
⎠

1
2

=

⎛
⎝∑︂

i∈[N ]

V

[︄∫︂

INi

f(xi0, α) dα

]︄⎞
⎠

1
2

≤ 4Mf√
N

by i.i.d. xi0 ∼ µ0 = µα
0 and V

[︂∫︁
INi

f(xi0, α) dα
]︂
≤
(︂
4Mf

N

)︂2
.

Assume that Eq. (3.3.42) holds at t ∈ T . Then at time t+ 1 we have

E
[︁⃓⃓
µN
t+1(f)− µt+1(f)

⃓⃓]︁

≤ E
[︂⃓⃓
⃓µN

t+1(f)− µN
t P

t,πN
t ,µN

t

WN (f)
⃓⃓
⃓
]︂

+ E
[︂⃓⃓
⃓µN

t P
t,πN

t ,µN
t

WN (f)− µN
t P

t,πN
t ,µN

t
W (f)

⃓⃓
⃓
]︂

+ E
[︂⃓⃓
⃓µN

t P
t,πN

t ,µN
t

W (f)− µN
t P

t,πt,µN
t

W (f)
⃓⃓
⃓
]︂

+ E
[︂⃓⃓
⃓µN

t P
t,πt,µN

t
W (f)− µN

t P t,πt,µt

W (f)
⃓⃓
⃓
]︂

+ E
[︂⃓⃓
⃓µN

t P t,πt,µt

W (f)− µt+1(f)
⃓⃓
⃓
]︂

and in the following we will analyze each term.

For the first term, observe first that by definition,

∫︂

Ir<[kd]\{1}
WN

d (α,β)

kd−1∏︂

j=1

µ
N,βj

t dβ =
1

Nkd−1

∑︂

m∈[N ]kd−1

1Ed[HN ](m ∪ i)δ×j ̸=i x
mj
t

and therefore

µN
t P

t,πN
t ,µN

t

WN (f) = E

[︄∫︂

INi

f(xit+1, α) dα

⃓⃓
⃓⃓
⃓ xt

]︄

such that we again obtain

E
[︂⃓⃓
⃓µN

t+1(f)− µN
t P

t,πN
t ,µN

t

WN (f)
⃓⃓
⃓
]︂

= E

⎡
⎣
⃓⃓
⃓⃓
⃓⃓
∑︂

i∈[N ]

(︁
g(xit+1)− E

[︁
g(xit+1)

⃓⃓
xt

]︁)︁
⃓⃓
⃓⃓
⃓⃓

⎤
⎦

≤

⎛
⎝E

⎡
⎣
⎛
⎝∑︂

i∈[N ]

(︁
g(xit+1)− E

[︁
g(xit+1)

⃓⃓
xt

]︁)︁
⎞
⎠

2⎤
⎦
⎞
⎠

1
2

=

⎛
⎝∑︂

i∈[N ]

E
[︂(︁
g(xit+1)− E

[︁
g(xit+1)

⃓⃓
xt

]︁)︁2]︂
⎞
⎠

1
2

≤ 4Mf√
N

where g(x) :=
∫︁
INi

f(x, α) dα, |g| ≤ Mf

N , by using the law of total expectation and conditional
independence of {xit+1}i∈[N ] given xt := {xit}i∈[N ].
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For the second term, first note that we can replace the distributional terms by their symmetrized
version: For any k ∈ N, any W ∈ Symind

< [k] and any step empirical measure or MF µ ∈ P(X )I ,
we have by symmetry that the associated neighborhood probabilities are invariant to all permutations
σ ∈ Sym([k − 1]) of states X k−1, i.e. for any x ∈ X k−1, α ∈ I

∫︂

Ir<[k]\{1}
W (α, β)

k−1∏︂

i=1

µβi(xi)) dβ

=
1

(k − 1)!

∑︂

σ∈Sym([k−1])

∫︂

Ir<[k]\{1}
W (α, β)

k−1∏︂

i=1

µβi(xσ(i))) dβ

=

∫︂

Ir<[k]\{1}
W (α, β)

1

(k − 1)!

∑︂

σ∈Sym([k−1])

k−1∏︂

i=1

µβi(xσ(i)))

⏞ ⏟⏟ ⏞
u1∈Symind

≤ [k−1]

dβ

and hence Assumption 3.3.1 implies that
∫︂

I

⃓⃓
⃓⃓
∫︂

Ir<[k]\{1}
W (α, β)u1(β[k]\{1}]) dβ

⃓⃓
⃓⃓ dα

≤
∫︂

I[k]

⃓⃓
⃓⃓
∫︂

Ir<[k]\[k]
W (α, β)u1(α[k]\{1}]) dβ

⃓⃓
⃓⃓ dα

≤ sup
u1 : Ir[k−1]→I,
u1∈Symind

≤ [k−1]

∫︂

I[k]

⃓⃓
⃓⃓
∫︂

Ir<[k]\[k]
W (α, β) dβu1(α[k]\{1}])

⃓⃓
⃓⃓ dα

= sup
u1 : Ir[k−1]→I,
u1∈Symind

≤ [k−1]

∫︂

I[k]

∫︂

Ir<[k]\[k]
W (α, β) dβu1(α[k]\{1}]) dα

≤ ∥W∥□k−1 → 0

for any x ∈ X k−1, α ∈ I by letting u1(αr<([k]\{i})) :=
1

(k−1)!

∑︁
σ∈Sym([k−1])

∏︁k−1
i=1 µβi(xσ(i))) in

Eq. (3.3.20). Therefore,

E
[︂⃓⃓
⃓µN

t P
t,πN

t ,µN
t

WN (f)− µN
t P

t,πN t,µN
t

W (f)
⃓⃓
⃓
]︂

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X
µN,α
t (x)

∑︂

u∈U
πN,α
t (u | x)

∑︂

x′∈X
f(x′, α)

·
[︂
p
(︂
x′ | x, u, να,µ

N
t

WN

)︂
− p

(︂
x′ | x, u, να,µ

N
t

W

)︂]︂
dα
⃓⃓
⃓
]︂

≤ |X |MfLpE
[︃∫︂

I

⃦⃦
⃦να,µ

N
t

WN − ν
α,µN

t
W

⃦⃦
⃦ dα

]︃

≤ |X |MfLpE

⎡
⎣
∫︂

I

∑︂

d∈[D]

∑︂

x∈Xkd−1

⃓⃓
⃓⃓
⃓⃓
∫︂

Ir<[kd]\{1}

⎛
⎝

kd−1∏︂

j=1

µN,βj (xj)

⎞
⎠

·
[︁
WN

d (α,β)−Wd(α,β)
]︁
dβ
⃓⃓
dα
]︁

≤ |X |MfLp|X |
∑︂

d∈[D]

∥WN
d −Wd∥□kd−1 → 0

by Assumption 3.3.1, and at rate O(1/
√
N) if Eq. (3.3.23) converges at rate O(1/

√
N).
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For the third term, we have

E
[︂⃓⃓
⃓µN

t P
t,πN

t ,µN
t

W (f)− µN
t P

t,πt,µN
t

W (f)
⃓⃓
⃓
]︂

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X
µN,α
t (x)

∑︂

u∈U

[︂
πN,α
t (u | x)− πα

t (u | x)
]︂

·
∑︂

x′∈X
p
(︂
x′ | x, u, να,µ

N
t

W

)︂
f(x′, α) dα

⃓⃓
⃓⃓
⃓

]︄

≤MfE
[︃∫︂

I

⃓⃓
⃓πN,α

t (u | x)− πα
t (u | x)

⃓⃓
⃓ dα

]︃

= MfE

⎡
⎣ ∑︂

j∈[N ]\{i}

∫︂

INj

⃓⃓
⃓⃓π

⌈Nα⌉
N

t (u | x)− πα
t (u | x)

⃓⃓
⃓⃓ dα

⎤
⎦

+MfE

[︄∫︂

INi

|π̂t(u | x)− πα
t (u | x)| dα

]︄

≤Mf ·
Lπ

N
+Mf ·

2|Dπ|
N

+Mf ·
2

N

by π ∈ ΠLip with Lipschitz constant Lπ and up to Dπ discontinuities, where we bound the
integrands by 2.

For the fourth term, we find that

E
[︂⃓⃓
⃓µN

t P
t,πt,µN

t
W (f)− µN

t P t,πt,µt

W (f)
⃓⃓
⃓
]︂

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X
µN,α
t (x)

∑︂

u∈U
πα
t (u | x)

∑︂

x′∈X
f(x′, α)

·
[︂
p
(︂
x′ | x, u, να,µ

N
t

W

)︂
− p

(︁
x′ | x, u, να,µt

W

)︁]︂
dα
⃓⃓
⃓
]︂

≤ |X |MfLpE
[︃∫︂

I

⃦⃦
⃦να,µ

N
t

W − να,µt

W

⃦⃦
⃦ dα

]︃

≤ |X |MfLpE

⎡
⎣
∫︂

I

∑︂

d∈[D]

∑︂

x∈Xkd−1

⃓⃓
⃓⃓
∫︂

Ir<[kd]\{1}
Wd(α,β)

·

⎡
⎣
kd−1∏︂

j=1

µN,βj (xj)−
kd−1∏︂

j=1

µβj (xj)

⎤
⎦ dβ

⃓⃓
⃓⃓
⃓⃓ dα

⎤
⎦

= |X |MfLp

∫︂

I

∑︂

d∈[D]

∑︂

x∈Xkd−1

E
[︃⃓⃓
⃓⃓
∫︂

I[kd]\{1}

∫︂
Wd(α,β, ζ) dζ

·

⎡
⎣
kd−1∏︂

j=1

µN,βj (xj)−
kd−1∏︂

j=1

µβj (xj)

⎤
⎦ dβ

⃓⃓
⃓⃓
⃓⃓ dα

⎤
⎦

= |X |MfLp

∫︂

I

∑︂

d∈[D]

∑︂

x∈Xkd−1

E

[︄⃓⃓
⃓⃓
⃓

kd−1⨂︂
µN
t (f ′

x,α)−
kd−1⨂︂

µt(f
′
x,α)

⃓⃓
⃓⃓
⃓

]︄
dα→ 0
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at the rate in the induction assumption, by applying the induction assumption Eq. (3.3.42) for
n = kd − 1 to the functions

f ′
x,α(x

′, β) =

∫︂

Ir<[kd]\[kd]
Wd(α,β, ζ) dζ · 1{x}(x′)

for any (x, α) ∈ X kd−1 × I.

For the fifth term, we analogously obtain

E
[︂⃓⃓
⃓µN

t P t,πt,µt

W (f)− µtP
t,πt,µt

W (f)
⃓⃓
⃓
]︂

= E

[︄⃓⃓
⃓⃓
⃓

∫︂

I

∑︂

x∈X

[︂
µN,α
t (x)− µα

t (x)
]︂∑︂

u∈U
πα
t (u | x) ·

∑︂

x′∈X
p
(︁
x′ | x, u, να,µt

W

)︁
f(x′, α) dα

⃓⃓
⃓⃓
⃓

]︄

= E
[︁⃓⃓
µN
t (f ′)− µt(f

′)
⃓⃓]︁
→ 0.

at the rate in the induction assumption, by applying the induction assumption Eq. (3.3.42) to

f ′(x, α) =
∑︂

u∈U
πα
t (u | x)

∑︂

x′∈X
p
(︁
x′ | x, u, να,µt

W

)︁
f(x′, α).

This concludes the proof by induction.

c.3 proof of theorem 3.3.3

The proof of Theorem 3.3.3 mirrors the proof in [7] apart from propagating the multidimensional
convergence results forward, and we give the entire proof for completeness and convenience.
Again, we introduce some notation to improve readability. For any α ∈ I, d ∈ [D], define maps
ναd : P(X )I → P(X ) and ναN,d : P(X )I → P(X ) as

ναd (µ)(x) :=

∫︂

Ir<[kd]\{1}
Wd(α,β)

kd−1∏︂

j=1

µβj (xj) dβ,

ναN,d(µ)(x) :=

∫︂

Ir<[kd]\{1}
WN

d (α,β)

kd−1∏︂

j=1

µβj (xj) dβ

with D-dimensional shorthands

να(µ) := (ναd (µ))d∈[D],

ναN (µ) := (ναN,d(µ))d∈[D]

such that by definition ναt = να(µt) and νN,i
t = ν

i
N
N (µN

t ).

Proof. To begin, we prove (3.3.45) =⇒ (3.3.46) at any fixed time t. Define the uniform bound
Mh and uniform Lipschitz constant Lh of functions inH. For any h ∈ H we have

⃓⃓
⃓⃓E
[︃
h(xit, ν

i
N
N (µN

t ))

]︃
− E

[︃
h(x̂

i
N
t , ν

i
N (µt))

]︃⃓⃓
⃓⃓

=

⃓⃓
⃓⃓E
[︃
h(xit, ν

i
N
N (µN

t ))

]︃
− E

[︃
h(xit, ν

i
N
N (µt))

]︃⃓⃓
⃓⃓
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+

⃓⃓
⃓⃓E
[︃
h(xit, ν

i
N
N (µt))

]︃
− E

[︂
h(xit, ν

i
N (µt))

]︂⃓⃓
⃓⃓

+

⃓⃓
⃓⃓E
[︂
h(xit, ν

i
N (µt))

]︂
− E

[︃
h(x̂

i
N
t , ν

i
N (µt))

]︃⃓⃓
⃓⃓

which we will analyze as N →∞.

For the first term, we obtain
⃓⃓
⃓⃓E
[︃
h(xit, ν

i
N
N (µN

t ))

]︃
− E

[︃
h(xit, ν

i
N
N (µt))

]︃⃓⃓
⃓⃓

≤ E
[︃
E
[︃⃓⃓
⃓⃓h(xit, ν

i
N
N (µN

t ))− h(xit, ν
i
N
N (µt))

⃓⃓
⃓⃓
⃓⃓
⃓⃓ xit
]︃]︃

≤ LhE
[︃⃦⃦
⃦⃦ν

i
N
N (µN

t )− ν
i
N
N (µt)

⃦⃦
⃦⃦
]︃

= LhE

⎡
⎣∑︂

d∈[D]

∑︂

x∈Xkd−1

⃓⃓
⃓⃓
∫︂

Ir<[kd]\{1}
WN

d (α,β)

·

⎡
⎣
kd−1∏︂

j=1

µN,βj (xj)−
kd−1∏︂

j=1

µβj (xj)

⎤
⎦ dβ

⃓⃓
⃓⃓
⃓⃓

⎤
⎦→ 0

uniformly by applying Theorem 3.3.2 to the functions

f ′
N,i,x(x

′, β) =

∫︂

Ir<[kd]\[kd]
WN

d (
i

N
,β, ζ) dζ · 1{x}(x′).

For the second term, we analogously have
⃓⃓
⃓⃓E
[︃
h(xit, ν

i
N
N (µt))

]︃
− E

[︂
h(xit, ν

i
N (µt))

]︂⃓⃓
⃓⃓

≤ Lh∥ν
i
N
N (µt)− ν

i
N (µt)∥1

≤ Lh

∑︂

d∈[D]
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x∈Xkd−1
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⃓⃓
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⎛
⎝
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µβj (xj)

⎞
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·
[︃
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d (
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N
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N
,β)

]︃
dβ

⃓⃓
⃓⃓

≤ Lh

∑︂

d∈[D]

∑︂

x∈Xkd−1

⃓⃓
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⃓⃓
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⎛
⎝

kd−1∏︂

j=1

µβj (xj)

⎞
⎠

·
[︄
WN

d (
i

N
,β)−N

∫︂

INi

Wd(α, β) dα

]︄
dβ

⃓⃓
⃓⃓
⃓

+ Lh

∑︂

d∈[D]

∑︂

x∈Xkd−1

⃓⃓
⃓⃓
⃓⃓
∫︂

Ir<[kd]\{1}

⎛
⎝

kd−1∏︂

j=1

µβj (xj)

⎞
⎠

·
[︄
N

∫︂

INi

Wd(α, β) dα−Wd(
i

N
,β)

]︄
dβ

⃓⃓
⃓⃓
⃓
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where for the former (finite) sum we have
⃓⃓
⃓⃓
⃓⃓
∫︂

Ir<[kd]\{1}

⎛
⎝

kd−1∏︂

j=1

µβj (xj)

⎞
⎠

·
[︄
WN

d (
i

N
,β)−N

∫︂

INi

Wd(α, β) dα

]︄
dβ

⃓⃓
⃓⃓
⃓

=

⃓⃓
⃓⃓
⃓⃓N
∫︂

INi

∫︂

Ir<[kd]\{1}

⎛
⎝

kd−1∏︂

j=1

µβj (xj)

⎞
⎠

·
[︁
WN

d (α,β)−Wd(α, β)
]︁
dβ dα

⃓⃓

≤ N

∫︂

INi

⃓⃓
⃓⃓
⃓⃓
∫︂

Ir<[kd]\{1}

⎛
⎝

kd−1∏︂

j=1

µβj (xj)

⎞
⎠

·
[︁
WN

d (α,β)−Wd(α, β)
]︁
dβ
⃓⃓
dα

=: INi

since by definition of the step-hypergraphon, WN
d ( i

N ,β) = WN
d (α,β) over α ∈ INi . Therefore,

1

N

N∑︂

i=1

INi =

∫︂

Ir<[kd]

[︁
WN

d (β)−Wd(β)
]︁ kd−1∏︂

j=1

µβj (xj) dβ → 0

as in the proof of Theorem 3.3.2 by Assumption 3.3.1. Fix ε, δ > 0. As N becomes sufficiently
large, there must exist JN

1 , |JN
1 | ≥ ⌊(1− δ)N⌋ such that

INi < ε, ∀i ∈ JN
1 .

We prove this by contradiction: Assume there does not exist such JN
1 , then there exist at least

⌈pN⌉ agents where INi ≥ ε. Since INi ≥ 0, it follows that 1
N

∑︁N
i=1 I

N
i ≥ 1

N ⌈δN⌉ ε ≥ εδ, which
contradicts the convergence to zero of 1

N

∑︁N
i=1 I

N
i . Repeating the argument for each d ∈ [D],

x ∈ X kd−1 bounds the first sum.

For the latter (finite) sum, we have
⃓⃓
⃓⃓
⃓⃓
∫︂
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⎛
⎝
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⎞
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·
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]︄
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⃓⃓
⃓
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⃓⃓
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⎝
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⎞
⎠

·
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, β)
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dβ dα

⃓⃓
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⃓⃓ dβ dα
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1

N
· LW

N
=

LW

N
→ 0
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by Assumption 3.3.2. Alternatively, under only block-wise Lipschitz W as in Eq. (3.3.35), the same
result is obtained by first separating out finitely many i (at most Q− 1) for which Lipschitzness
fails, trivially bounding their terms by 2(Q−1)

N . For all other i, there exists k ∈ {1, . . . , Q} such that
INi × Ij ⊆ Ik × Ij , i.e. the Lipschitz bound applies.

For the third term, again fix ε, δ > 0. Then, by our initial assumption of Eq. (3.3.45), for sufficiently
large N there exists a set JN

2 , |JN
2 | ≥ ⌊(1− δ)N⌋ such that

⃓⃓
⃓⃓E
[︂
h(xit, ν

i
N (µt))

]︂
− E

[︃
h(x̂

i
N
t , ν

i
N (µt))

]︃⃓⃓
⃓⃓ < ε, ∀i ∈ JN

2

independent of π̂ ∈ Π.

This completes the proof of (3.3.45) =⇒ (3.3.46) at any time t, since by the prequel, the
intersection of all correspondingly chosen, finitely many sets JN

i for sufficiently large N has at
least N −∑︁i ⌈δiN⌉ elements, which is always larger than N − ⌈δN⌉ for any δ > 0 by choosing δi
sufficiently small.

Finally, we show Eq. (3.3.45) at all times t using the prequel by induction, which will imply
Eq. (3.3.46). By definition for t = 0, x̂

i
N
t ∼ µ0 and xit ∼ µ0 imply

⃓⃓
⃓⃓E
[︁
g(xi0)

]︁
− E

[︃
g(x̂

i
N
0 )

]︃⃓⃓
⃓⃓ = 0.

For the induction step, define the uniform bound Mg of functions in G. Observe that
⃓⃓
⃓⃓E
[︁
g(xit+1)

]︁
− E

[︃
g(x̂

i
N
t+1)

]︃⃓⃓
⃓⃓

=

⃓⃓
⃓⃓E
[︃
lN,t(x

i
t, ν

i
N
N (µN

t ))

]︃
− E

[︃
lN,t(x̂

i
N
t , ν

i
N (µt))

]︃⃓⃓
⃓⃓

using the uniformly bounded and Lipschitz functions

lN,t(x, ν) :=
∑︂

u∈U
π̂t(u | x)

∑︂

x′∈X
p(x′ | x, u, ν)g(x′)

with bound Mg and Lipschitz constant |X |MgLp. By induction assumption (3.3.45) and (3.3.45)
=⇒ (3.3.46), there exists N ′ ∈ N such that for all N > N ′ we have

⃓⃓
⃓⃓E
[︃
lN,t(x

i
t, ν

i
N
N (µN

t ))

]︃
− E

[︃
lN,t(x̂

i
N
t , ν

i
N (µt))

]︃⃓⃓
⃓⃓ < ε

uniformly over π̂ ∈ Π, i ∈ JN for some JN ⊆ [N ] with |JN | ≥ ⌊(1− δ)N⌋. This concludes the
proof by induction.

c.4 proof of corollary 3.3.1

Proof. The result follows more or less directly from Theorem 3.3.3. Consider first the finite horizon
case T = {0, 1, . . . , T − 1}. Define

rπ̂(x, ν) :=
∑︂

u∈U
r(x, u, ν)π̂t(u | x)
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with uniform bound MR and Lipschitz constant |U |Lr. Therefore, by choosing the maximum over
all N ′ for all finitely many times t ∈ T via Theorem 3.3.3, there exists N ′ ∈ N such that for all
N > N ′ we have

⃓⃓
⃓⃓JN

i (π1, . . . , πi−1, π̂, πi+1, . . . , π̂)− Jµ
i
N

(π̂)

⃓⃓
⃓⃓

≤
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t=0

⃓⃓
⃓⃓E
[︂
rπ̂t(xit, ν

i
N (µt))

]︂
− E
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rπ̂t(x̂
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N
t , ν

i
N (µt))

]︃⃓⃓
⃓⃓ < ε.

uniformly over π̂ ∈ Π, i ∈ JN for some JN ⊆ [N ] with |JN | ≥ ⌊(1− δ)N⌋.

For the infinite horizon problem T = N0, we first pick some time T ′ >
log

ε(1−γ)
4MR

log γ such that
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t=0

γt
⃓⃓
⃓⃓E
[︂
rπ̂t(x

i
t, ν

i
N (µt))

]︂
− E

[︃
rπ̂t(x̂

i
N
t , ν

i
N (µt))

]︃⃓⃓
⃓⃓

+ γT
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]︃⃓⃓
⃓⃓+ ε

2

and again apply Theorem 3.3.3 to the remaining finite sum.

c.5 proof of corollary 3.3.2

Proof. The result follows directly from Corollary 3.3.1. Let ε, δ > 0, then by Corollary 3.3.1 there
exists N ′ ∈ N such that for all N > N ′ we have

max
π∈Π

(︁
JN
i (π1, . . . , πi−1, π, πi+1, . . . , πN )− JN

i (π1, . . . , πN )
)︁

≤ max
π∈Π

(︃
JN
i (π1, . . . , πi−1, π, πi+1, . . . , πN )− Jµ

i
N

(π)

)︃

+max
π∈Π

(︃
Jµ

i
N

(π)− Jµ
i
N

(π
i
N )

)︃

+

(︃
Jµ

i
N

(π
i
N )− JN

i (π1, . . . , πN )

)︃

<
ε

2
+ 0 +

ε

2
= ε

uniformly over i ∈ JN for some JN ⊆ [N ] with |JN | ≥ ⌊(1− δ)N⌋, where by definition of
equilibrium optimality we obtained

max
π∈Π

(︃
Jµ

i
N

(π)− Jµ
i
N

(π
i
N )

)︃
= 0.

This concludes the proof.
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c.6 additional experiments

In Figure C.1, we show additional results for the Rumor problem and inverted 3-uniform hyper-
graphons. There, we find almost inverted results as in Figure 3.12, indicating that the influence
of connections from the second layer are more important under the given problem parameters.
However, we note that surprisingly, the highest awareness is reached for intermediate α.
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figure c.1: Equilibrium behavior for the Rumor problem. (a): (Wrank, Ŵ inv−unif); (b):
(Wunif , Ŵ inv−unif).

As an additional example, in the timely SIS problem, we assume that there exists an epidemic that
spreads to neighboring nodes according to the classical SIS dynamics, see e.g. [49]. Analogously,
we may consider extensions to arbitrary variations of the SIS model such as SIR or SEIR. Each
healthy (or susceptible, S) agent can take costly precautions (P) to avoid becoming infected (I),
or ignore (P̄) precautions at no further cost. Since being infected itself is costly, an equilibrium
solution must balance the expected cost of infections against the cost of taking precautions.

Formally, we define the state space X = {S, I} and action space U = {P̄,P} such that

p(I | S, P̄,ν) = min

⎛
⎝1,

∑︂

d∈[D]

τdνd
(︁
1{I}

)︁
⎞
⎠

p(I | S,P, ·) = 0, p(S | I, ·, ·) = δ

with infection rates τd > 0,
∑︁

d τd ≤ 1, recovery rate δ ∈ (0, 1) and rewards r(x, u, ·) =
cP1{P}(u) + cI1{I}(x) with infection and precaution costs cP > 0, cI > 0. In our experiments,
we will use τd = 0.8, δ = 0.2, cP = 0.5, cI = 2, µ0(I) = 0.5 and T = {0, 1, . . . , 49}.
Existing state-of-the-art approaches such as online mirror descent (OMD) [117](and similarly FP,
see e.g. [9]) as depicted in Figure C.2 and Figure C.3 for 10 discretization points did not converge to
an equilibrium in the considered 2000 iterations, though we expect that the methods will converge
when running for significantly more iterations – e.g. 400000 iterations as in [130] – which we could
not verify here due to the computational complexity. We expect that existing standard results using
monotonicity conditions [22, 117] can be extended to the hypergraphon case in order to guarantee
convergence of aforementioned learning algorithms. However, this remains outside the scope of our
work. In particular for the ranked-attachment graphon and hypergraphon, the final behavior as seen
in Figure C.2 remains with an average final exploitability ∆J of above 0.25, which is defined as

∆J(π) =

∫︂

I
sup
π∗∈Π

JΨ(π)
α (π∗)− JΨ(π)

α (π) dα

and must be zero for an exact equilibrium.
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figure c.2: Equilibrium policy and MF for graphons (Wunif , Ŵ unif) from Figure C.3 at different iterations
n. It can be observed that in the SIS problem, the solution oscillates between taking precautions and not
taking precautions. (a): n = 20; (b): n = 100; (c): n = 500; (d): n = 1500.
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(Wer, Ŵunif)

(Wer, Ŵind)

figure c.3: Average exploitability over iterations n of Online Mirror Descent [117] on the SIS problem. It
can be observed that for some configurations, the method fails to converge to an equilibrium.
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d.1 continuous time fictitious play with major and minor agents

In this section, we prove the FP convergence result for the MFG with a major agent by extending the
ideas of [127] to include the major agent.

The aim of this proof is to show the total exploitability is a strong Lyapunov function by showing
d
dτ

(︁
E(π̄τ , π̄0,τ ) + E0(π̄τ , π̄0,τ )

)︁
≤ − 1

τ

(︁
E(π̄τ , π̄0,τ ) + E0(π̄τ , π̄0,τ )

)︁
. In the proof we focus on

showing d
dτ

(︁
E(π̄τ , π̄0,τ )

)︁
≤ − 1

τ

(︁
E(π̄τ , π̄0,τ )

)︁
first and d

dτ

(︁
E0(π̄τ , π̄0,τ )

)︁
≤ − 1

τ

(︁
E0(π̄τ , π̄0,τ )

)︁

second and we combine the results at the end. Before going into the details of the proof of
Theorem 3.4.2, we introduce some properties that extend from the ones introduced by [127] where
we exchange their common noise formulation Σ0

t with state-action histories (i.e., we condition on
the noise in order to avoid having to conditioning on the major agent’s randomness as common
noise).

We first recall a few definitions:
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mean field. We recall the conditional MF for minor agents, now conditioned on histories, i.e.
recursively

µπ
t+1|x0

0:t,u
0
0:t
(x′) := Pπ(xt+1 = x′ | x00:t, u00:t)

=
∑︂

x,u∈X×U
Pπ(xt+1 = x′ | xt = x, ut = u, x00:t, u

0
0:t)Pπ(ut = u, xt = x | x00:t, u00:t)

=
∑︂

x,u∈X×U
p(x′|x, u, x0t , u0t )πt(u|x, x00:t, u00:t−1)µ

π
t|x0

0:t−1,u
0
0:t−1

(x).

while for major agents, we define joint history MFs

µπ0

t+1(x
0
t+1, x

0
0:t, u

0
0:t) := Pπ0(x0t+1, x

0
0:t, u

0
0:t)

= µπ0

t (x0t , x
0
0:t−1, u

0
0:t−1)π

0
t (u

0
t | x0t , x00:t−1, u

0
0:t−1)p

0(x0t+1 | x0t , u0t )

averaged policies. We recall the minor agent FP policy as

π̄τ
t (ut | xt, x00:t, u00:t−1) =

∫︁ τ
0 πBR,s(ut | xt, x00:t, u00:t−1)µ

πBR,s
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)ds

∫︁ τ
0 µ

πBR,s
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)ds

(D.1.1)

and similarly for the major agent

π̄0,τ
t (u0t | x0t , x00:t−1, u

0
0:t−1) =

∫︁ τ
0 π0,BR,s(u0t | x0t , x00:t−1, u

0
0:t−1)µ

π0,BR,s
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)ds

∫︁ τ
0 µ

π0,BR,s
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)ds

.

(D.1.2)

averaged mean field. We also recall the average FP MF for minor agents

µ̄τ
t|x0

0:t−1,u
0
0:t−1

(xt) :=
1

τ

∫︂ τ

0
µ
πBR,s
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)ds. (D.1.3)

and for major agents

µ̄0,τ
t (x0t , x

0
0:t−1, u

0
0:t−1) :=

1

τ

∫︂ τ

0
µ
π0,BR,s
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)ds (D.1.4)

Property D.1.1. When the game is monotone, we have:
∑︂

x∈X

⟨︂
∇µr(x, x

0, µ),
d

dτ
µ
⟩︂ d

dτ
µ(x) ≤ 0

Proof. For all s ≥ 0 monotonicity condition says that for a fixed x0 ∈ X 0:
∑︂

x∈X
(µτ (x)− µτ+s(x))(r(x, x0, µτ )− r(x, x0, µτ+s)) ≤ 0

⇒
∑︂

x∈X

µτ (x)− µτ+s(x)

s

r(x, x0, µτ )− r(x, x0, µτ+s)

s
≤ 0.

Therefore, the result follows when s→ 0.
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Property D.1.2. The above FP policy π̄0 generates the average FP MF µ̄, i.e.

µ̄0,s
t = µ

π̄0,s
0:t−1

t (D.1.5)

at all times t, τ , and analogously for the minor agents

µ̄s
t = µ

π̄s
0:t−1

t . (D.1.6)

Proof. The joint probabilities of any policy π0,BR,s are always given by

µ
π0,BR,s
0:t

t+1 (x0t+1, x
0
0:t, u

0
0:t)

= p0(x0t+1 | x0t , u0t )µ
π0,BR,s
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)π

0,BR,s
t (u0t | x0t , x00:t−1, u

0
0:t−1)

and therefore, integrating over all times τ , we have

1

τ

∫︂ τ

0
µ
π0,BR,s
0:t

t+1 (x0t+1, x
0
0:t, u

0
0:t)ds

= p0(x0t+1 | x0t , u0t )
1

τ

∫︂ τ

0
µ
π0,BR,s
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)π

0,BR,s
t (u0t | x0t , x00:t−1, u

0
0:t−1)ds.

Then, using definitions of µ̄0,s and π̄0,s, we have by induction starting with µ̄0,s = µ0
0 = µ

π̄0,s
0:t

0 ,

µ̄0,s
t+1(x

0
t+1, x

0
0:t, u

0
0:t)

= p0(x0t+1 | x0t , u0t )µ̄0,s
t (x0t , x

0
0:t−1, u

0
0:t−1)π̄

0,s
t (u0t | x0t , x00:t−1, u

0
0:t−1)

= p0(x0t+1 | x0t , u0t )µ
π̄0,s
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)π̄

0,s
t (u0t | x0t , x00:t−1, u

0
0:t−1)

= µ
π̄0,s
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)

which is the desired result, i.e. the MF generated by π̄0 is the same as the average MF of best
responses.

For the minor agents, the proof is analogous: The conditional probabilities of any policy πBR,s are
always given by

µ
πBR,s
0:t

t+1|x0
0:t,u

0
0:t
(xt+1)

= PπBR,s(x0t+1 | x00:t, u00:t)

=
∑︂

xt,ut∈X×U
p(xt+1 | xt, ut, x0t , u0t )µ

πBR,s
0:t

t|x0
0:t−1,u

0
0:t−1

(xt)π
BR,s
t (ut|xt, x00:t, u00:t−1)

and therefore, by integrating over all times τ ,

µ
πBR,s
0:t

t+1|x0
0:t,u

0
0:t
(xt+1)

=
∑︂

xt,ut∈X×U
p(xt+1 | xt, ut, x0t , u0t )

1

τ

∫︂ τ

0
µ
πBR,s
0:t

t|x0
0:t−1,u

0
0:t−1

(xt)π
BR,s
t (ut|xt, x00:t, u00:t−1)ds

we obtain

µ̄s
t+1|x0

0:t,u
0
0:t
(xt+1)
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=
∑︂

xt,ut∈X×U
p(xt+1 | xt, ut, x0t , u0t )µ

π̄s
0:t

t|x0
0:t−1,u

0
0:t−1

(xt)π̄
s
t (ut|xt, x00:t, u00:t−1)ds

= µ
π̄s
0:t

t+1|x0
0:t,u

0
0:t
(xt+1)

which again implies the desired result for minor agents by induction.

Property D.1.3. At all times t, τ and state-actions x00:t−1, u
0
0:t−1, x

0
t , we have

d

dτ
µ
π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1) =

1

τ

[︂
µ
π0,BR,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)− µ

π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)

]︂
(D.1.7)

µ
π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)

d

dτ
π̄0,τ
t (u0

t | x0
t , x

0
0:t−1, u

0
0:t−1) (D.1.8)

= µ
π0,BR,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)

1

τ

[︂
π0,BR,τ
t (u0

t | x0
t , x

0
0:t−1, u

0
0:t−1)− π̄0,τ

t (u0
t | x0

t , x
0
0:t−1, u

0
0:t−1)

]︂
.

and also for the minor agents

d

dτ
µ
π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt) =
1

τ

[︂
µ
πBR,τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)− µ
π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)
]︂

(D.1.9)

µ
π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)
d

dτ
π̄τ
t (ut | xt, x

0
0:t, u

0
0:t−1) (D.1.10)

= µ
πBR,τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)
1

τ

[︂
πBR,τ
t (ut | xt, x

0
0:t, u

0
0:t−1)− π̄τ

t (ut | xt, x
0
0:t, u

0
0:t−1)

]︂
.

Proof. The properties are shown together inductively. First, note that Eq. (D.1.7) implies Eq. (D.1.8):
Start with Property D.1.2, giving

µ̄0,s
t (x0t , x

0
0:t−1, u

0
0:t−1)π̄

0,τ
t (x0, x00:t−1, u

0
0:t−1)

=
1

τ

∫︂ τ

0
π0,BR,s(x0, x00:t−1, u

0
0:t−1)µ

π0,BR,s
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)ds

which implies by taking the derivative d
dτ that

d

dτ
µ̄0,s
t (x0

t , x
0
0:t−1, u

0
0:t−1)π̄

0,τ
t (x0, x0

0:t−1, u
0
0:t−1)

+ µ̄0,s
t (x0

t , x
0
0:t−1, u

0
0:t−1)

d

dτ
π̄0,τ
t (x0, x0

0:t−1, u
0
0:t−1)

= − 1

τ2

∫︂ τ

0

π0,BR,s(x0, x0
0:t−1, u

0
0:t−1)µ

π0,BR,s
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)ds

+
1

τ

[︂
π0,BR,s(x0, x0

0:t−1, u
0
0:t−1)µ

π0,BR,s
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)ds

]︂
.

Applying Eq. (D.1.7) and Property D.1.2 gives

µ̄0,s
t (x0

t , x
0
0:t−1, u

0
0:t−1)

d

dτ
π̄0,τ
t (x0, x0

0:t−1, u
0
0:t−1)

= − 1

τ2

∫︂ τ

0

π0,BR,s(x0, x0
0:t−1, u

0
0:t−1)µ

π0,BR,s
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)ds

+
1

τ

[︂
π0,BR,s(x0, x0

0:t−1, u
0
0:t−1)µ

π0,BR,s
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)ds

]︂

− 1

τ

[︂
µ
π0,BR,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)− µ

π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)

]︂
π̄0,τ
t (x0, x0

0:t−1, u
0
0:t−1)

= µ
π0,BR,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)

1

τ

[︂
π̄0,τ
t (u0

t | x0
t , x

0
0:t−1, u

0
0:t−1)− π0,BR,τ

t (u0
t | x0

t , x
0
0:t−1, u

0
0:t−1)

]︂
.
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Now to show Eq. (D.1.7) at all times t, we use induction. At time 0, the property is trivially fulfilled
by fixed µ0

0. Assume Eq. (D.1.7) and therefore Eq. (D.1.8) holds at time t, then for the induction
step, at time t+ 1, by Property D.1.2, we have

d

dτ
µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)

=
d

dτ

[︂
µ
π̄0,τ
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)π̄

0,τ
t (u0t | x0t , x00:t−1, u

0
0:t−1)p

0(x0t+1 | x0t , u0t )
]︂

=
d

dτ
µ
π̄0,τ
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)π̄

0,τ
t (u0t | x0t , x00:t−1, u

0
0:t−1)p

0(x0t+1 | x0t , u0t )

+ µ
π̄0,τ
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)

d

dτ
π̄0,τ
t (u0t | x0t , x00:t−1, u

0
0:t−1)p

0(x0t+1 | x0t , u0t )

=
1

τ

[︂
µ
π0,BR,τ
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)− µ

π̄0,τ
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)

]︂

· π̄0,τ
t (u0t | x0t , x00:t−1, u

0
0:t−1)p

0(x0t+1 | x0t , u0t )

+ µ
π0,BR,τ
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)

· 1
τ

[︂
π0,BR,τ
t (u0t | x0t , x00:t−1, u

0
0:t−1)− π̄0,τ

t (u0t | x0t , x00:t−1, u
0
0:t−1)

]︂
p0(x0t+1 | x0t , u0t )

=
1

τ
µ
π0,BR,τ
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)π

0,BR,τ
t (u0t | x0t , x00:t−1, u

0
0:t−1)p

0(x0t+1 | x0t , u0t )

− 1

τ
µ
π̄0,τ
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)π̄

0,τ
t (u0t | x0t , x00:t−1, u

0
0:t−1)p

0(x0t+1 | x0t , u0t )

=
1

τ

[︂
µ
π0,BR,τ
0:t

t+1 (x0t+1, x
0
0:t, u

0
0:t)− µ

π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)
]︂

where we used the induction assumption on

µ
π̄0,τ
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)

d

dτ
π̄0,τ
t (u0t | x0t , x00:t−1, u

0
0:t−1)

to obtain Eq. (D.1.7).

For the minor agents, the proof is analogous in that Eq. (D.1.9) implies Eq. (D.1.10) by Property D.1.2.
Meanwhile, Eq. (D.1.9) follows readily by noting µ̄s

t = µ
π̄s
0:t−1

t by Property D.1.2 and taking instead
the derivative of the definition of µ̄s

t .

Proof of Theorem 3.4.2. With the above properties established, we can show the convergence of
exploitabilities to zero.

step 1: focusing on the exploitability of the minor agent. We first start with
showing that the exploitability of minor agents, E(π̄τ , π̄0,τ ) is a strong Lyapunov function. Using
the definition of exploitability of the minor agent, we can write:

d

dτ
E(π̄τ , π̄0,τ )

=
d

dτ

[︂
max
π′

J(π′, π̄τ , π̄0,τ )− J(π̄τ , π̄τ , π̄0,τ )
]︂

=
d

dτ

∑︂

t∈T

∑︂

xt∈X ,ut∈X ,

x0
0:t∈X 0t+1

,

u0
0:t−1∈U0t

[︂
PπBR,τ ,π̄τ ,π̄0,τ (xt, ut, x

0
0:t, u

0
0:t−1)− Pπ̄τ ,π̄τ ,π̄0,τ (xt, ut, x

0
0:t, u

0
0:t−1)

]︂
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· r(xt, ut, x0t , µ
π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

and, e.g., at time t for the FP policy

d

dτ

∑︂

xt∈X ,ut∈X ,

x0
0:t∈X 0t+1

,

u0
0:t−1∈U0t

Pπ̄τ ,π̄τ ,π̄0,τ (xt, ut, x
0
0:t, u

0
0:t−1)r(xt, x

0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

=
d

dτ

∑︂

t∈T

∑︂

xt∈X ,ut∈X ,

x0
0:t∈X 0t+1

,

u0
0:t−1∈U0t

µ
π̄0,τ
0:t−1

t (x0t , x
0
0:t−1, u

0
0:t−1)µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)π̄
τ
t (ut | xt, x00:t, u00:t−1)

· r(xt, ut, x0t , µ
π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

and similarly for the BR policy. By the envelope theorem on maxπ′ J0(π̄τ , π′), the partial derivative
with respect to πBR can be dropped. To be precise, here and in [127, Appendix A], continuous
differentiability of the objectives with respect to τ is implicitly assumed, which if needed may be
guaranteed by introducing a minimal regularization. This is not a problem however, as for example
entropy-regularized MFE still achieve arbitrarily good unregularized finite game equilibria, see e.g.
[9, Theorem 4]. Therefore, we obtain

d

dτ

∑︂

t∈T

∑︂

xt∈X ,ut∈X ,

x0
0:t∈X 0t+1

,

u0
0:t−1∈U0t

[︂
PπBR,τ ,π̄τ ,π̄0,τ (xt, ut, x

0
0:t, u

0
0:t−1)− Pπ̄τ ,π̄τ ,π̄0,τ (xt, ut, x

0
0:t, u

0
0:t−1)

]︂

· r(xt, ut, x
0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

=
∑︂

t∈T

∑︂

xt∈X ,ut∈X ,

x0
0:t∈X 0t+1

,

u0
0:t−1∈U0t

[︄

d

dτ
µ
π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)µ

πBR,τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)π
BR,τ
t (ut | xt, x

0
0:t, u

0
0:t−1)r(xt, ut, x

0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

+ µ
π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)µ

πBR,τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)

· πBR,τ
t (ut | xt, x

0
0:t, u

0
0:t−1)

d

dτ
r(xt, ut, x

0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

− d

dτ
µ
π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)π̄
τ
t (ut | xt, x

0
0:t, u

0
0:t−1)r(xt, ut, x

0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

− µ
π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)

d

dτ
µ
π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)π̄
τ
t (ut | xt, x

0
0:t, u

0
0:t−1)r(xt, ut, x

0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

− µ
π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)
d

dτ
π̄τ
t (ut | xt, x

0
0:t, u

0
0:t−1)r(xt, ut, x

0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

− µ
π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)π̄
τ
t (ut | xt, x

0
0:t, u

0
0:t−1)

d

dτ
r(xt, ut, x

0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

]︄

where for the first and third term, we use the property from major agent, while for fourth term we
use Eq. (D.1.9) in Property D.1.3, and for the fifth we use Eq. (D.1.10) in Property D.1.3.

Therefore, combining the first and third, second and last term, and fourth and fifth terms, we have

d

dτ
E(π̄τ , π̄0,τ )
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=
∑︂

t∈T

∑︂

xt∈X ,ut∈X ,

x0
0:t∈X 0t+1

,

u0
0:t−1∈U0t

[︄

1

τ

[︂
µ
π0,BR,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)− µ

π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)

]︂
r(xt, ut, x

0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

·
[︂
µ
πBR,τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)π
BR,τ
t (ut | xt, x

0
0:t, u

0
0:t−1)− µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)π̄
τ
t (ut | xt, x

0
0:t, u

0
0:t−1)

]︂

+ µ
π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)

τ

τ

[︂
µ
πBR,τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)− µ
π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)
]︂

·
⟨︂
∇µr(xt, ut, x

0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

),
d

dτ
µ
π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)
⟩︂

− 1

τ
µ
π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)r(xt, ut, x

0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

·
[︂
µ
πBR,τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)π
BR,τ
t (ut | xt, x

0
0:t, u

0
0:t−1)− µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

(xt)π̄
τ
t (ut | xt, x

0
0:t, u

0
0:t−1)

]︂]︄

=
1

τ
Ẽ(π̄τ , π0,BR,τ , π̄0,τ )− 1

τ
E(π̄τ , π̄0,τ )

+
∑︂

t∈T

∑︂

xt∈X ,ut∈X ,

x0
0:t∈X 0t+1

,

u0
0:t−1∈U0t

τµ
π̄0,τ
0:t−1

t (x0
t , x

0
0:t−1, u

0
0:t−1)

d

dτ
µ
π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

·
⟨︂
∇µr(xt, ut, x

0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

),
d

dτ
µ
π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)
⟩︂]︄

− 1

τ
E(π̄τ , π̄0,τ ) ≤ −1

τ
E(π̄τ , π̄0,τ )

where we use monotonicity and Assumption 3.4.4 to obtain the last inequality.

step 2: focusing on the exploitability of the major agent. Similarly to the case
of minor agents, we can write:

d

dτ
E0(π̄τ , π̄0,τ )

=
d

dτ

[︂
max
π′

J0(π̄τ , π′)− J0(π̄τ , π̄0,τ )
]︂

=
d

dτ

∑︂

t∈T

∑︂

x0
0:t∈X 0t+1,u0

0:t∈U0t+1

[︂
Pπ̄τ ,π0,BR,τ (x0

0:t, u
0
0:t)− Pπ̄τ ,π̄0,τ (x0

0:t, u
0
0:t)
]︂
r0(x0

t , u
0
t , µ

π̄τ
0:t−1

t|x0
0:t−1,u

0
0:t−1

)

=
d

dτ

∑︂

x0
0∈X 0,u0

0∈U0

[︂
Pπ̄τ ,π0,BR,τ (x0

0, u
0
0)− Pπ̄τ ,π̄0,τ (x0

0, u
0
0)
]︂
r0(x0

0, u
0
0, µ0)

+
d

dτ

∑︂

x0
0:1∈X 02,u0

0:1∈U02

[︂
Pπ̄τ ,π0,BR,τ (x0

0:1, u
0
0:1)− Pπ̄τ ,π̄0,τ (x0

0:1, u
0
0:1)
]︂
r0(x0

1, u
0
1, µ

π̄τ
0

1|x0
0,u

0
0
)

+
d

dτ

∑︂

x0
0:2∈X 03,u0

0:2∈U03

[︂
Pπ̄τ ,π0,BR,τ (x0

0:2, u
0
0:2)− Pπ̄τ ,π̄0,τ (x0

0:2, u
0
0:2)
]︂
r0(x0

2, u
0
2, µ

π̄τ
0:1

2|x0
0:1,u

0
0:1
)

+ ...

Generally, at all times t, we have

d

dτ

∑︂

x0
0:t∈X 0t+1,u0

0:t∈U0t+1

Pπ̄τ ,π̄0,τ (x0
0:t+1, u

0
0:t+1)r

0(x0
t+1, u

0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)
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=
d

dτ

∑︂

x0
0:t,u

0
0:t

µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)π̄

0,τ
t+1(u

0
t+1 | x0

t+1, x
0
0:t, u

0
0:t)r

0(x0
t+1, u

0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)

=
∑︂

x0
0:t,u

0
0:t

d

dτ
µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)π̄

0,τ
t+1(u

0
t+1 | x0

t+1, x
0
0:t, u

0
0:t)r

0(x0
t+1, u

0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)

+
∑︂

x0
0:t,u

0
0:t

µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)

d

dτ
π̄0,τ
t+1(u

0
t+1 | x0

t+1, x
0
0:t, u

0
0:t)r

0(x0
t+1, u

0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)

+
∑︂

x0
0:t,u

0
0:t

µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)π̄

0,τ
t+1(u

0
t+1 | x0

t+1, x
0
0:t, u

0
0:t)

d

dτ
r0(x0

t+1, u
0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)

This leads to the desired result
d

dτ

∑︂

x0
0:t,u

0
0:t

[︂
Pπ̄τ ,π0,BR,τ (x0

0:t+1, u
0
0:t+1)− Pπ̄τ ,π̄0,τ (x0

0:t+1, u
0
0:t+1)

]︂
r0(x0

t+1, u
0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)

=
∑︂

x0
0:t,u

0
0:t

µ
π0,BR,τ
0:t−1

t+1 (x0
t+1, x

0
0:t, u

0
0:t)π

0,BR,τ
t+1 (u0

t+1 | x0
t+1, x

0
0:t, u

0
0:t)

d

dτ
r0(x0

t+1, u
0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)

−
∑︂

x0
0:t,u

0
0:t

d

dτ
µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)π̄

0,τ
t+1(u

0
t+1 | x0

t+1, x
0
0:t, u

0
0:t)r

0(x0
t+1, u

0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)

−
∑︂

x0
0:t,u

0
0:t

µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)

d

dτ
π̄0,τ
t+1(u

0
t+1 | x0

t+1, x
0
0:t, u

0
0:t)r

0(x0
t+1, u

0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)

−
∑︂

x0
0:t,u

0
0:t

µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)π̄

0,τ
t+1(u

0
t+1 | x0

t+1, x
0
0:t, u

0
0:t)

d

dτ
r0(x0

t+1, u
0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)

by equating the middle two terms to the exploitability terms at time t+ 1, and analyzing the first
and last term as

∑︂

x0
0:t,u

0
0:t

µ
π0,BR,τ
0:t−1

t+1 (x0
t+1, x

0
0:t, u

0
0:t)π

0,BR,τ
t+1 (u0

t+1 | x0
t+1, x

0
0:t, u

0
0:t)

d

dτ
r0(x0

t+1, u
0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)

−
∑︂

x0
0:t,u

0
0:t

µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)π̄

0,τ
t+1(u

0
t+1 | x0

t+1, x
0
0:t, u

0
0:t)

d

dτ
r0(x0

t+1, u
0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
)

=
∑︂

x0
0:t,u

0
0:t

µ
π0,BR,τ
0:t−1

t+1 (x0
t+1, x

0
0:t, u

0
0:t)
⟨︂
∇µr̄

0(x0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
),

d

dτ
µ
π̄τ
0:t

t+1|x0
0:t,u

0
0:t

⟩︂

−
∑︂

x0
0:t,u

0
0:t

µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)
⟨︂
∇µr̄

0(x0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
),

d

dτ
µ
π̄τ
0:t

t+1|x0
0:t,u

0
0:t

⟩︂

= τ
∑︂

x0
0:t,u

0
0:t

d

dτ
µ
π̄0,τ
0:t

t+1 (x
0
t+1, x

0
0:t, u

0
0:t)
⟨︂
∇µr̄

0(x0
t+1, µ

π̄τ
0:t

t+1|x0
0:t,u

0
0:t
),

d

dτ
µ
π̄τ
0:t

t+1|x0
0:t,u

0
0:t

⟩︂
≤ 0

using Property D.1.3, and that the term is non-positive by Assumption 3.4.4.

Therefore, we have

d

dτ
E0(π̄τ , π̄0,τ ) ≤ −1

τ
E0(π̄τ , π̄0,τ ).

Step 3: Combining the results. In Step 1, we showed that d
dτ E(π̄τ , π̄0,τ ) ≤ − 1

τ E(π̄τ , π̄0,τ ) and in
Step 2, we showed that d

dτ E0(π̄τ , π̄0,τ ) = − 1
τ E0(π̄τ , π̄0,τ ). Therefore we can conclude that

d

dτ

(︁
E(π̄τ , π̄0,τ ) + E0(π̄τ , π̄0,τ )

)︁
≤ −1

τ

(︁
E(π̄τ , π̄0,τ ) + E0(π̄τ , π̄0,τ )

)︁
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which shows the total exploitability of the system is a strong Lyapunov function and therefore it
converges with rate 1

τ .

d.2 continuity of mf dynamics

In this section, we show continuity of the MF dynamics T π
t , which will be used in the following

proofs.

Lemma D.2.1. Under Assumptions 3.4.1 and 3.4.3, the transition operator T π
t is uniformly Lipschitz

continuous with constant LT := |X |Lp + |X ||U|LΠ + |X |2|U|.

Proof of Lemma D.2.1. For any (x0, u0, µ), (x0′, u0′, µ′) ∈ X 0 × U0 × P(X ), we have
⃦⃦
T π
t (x

0, u0, µ)− T π
t (x

0′, u0′, µ′)
⃦⃦

=
∑︂

x∗∈X

⃓⃓
⃓⃓
∫︂∫︂

p(x∗ | x, u, x0, u0, µ)πt(du | x, x0, µ)µ(dx)

−
∫︂∫︂

p(x∗ | x, u, x0′, u0′, µ′)πt(du | x, x0′, µ′)µ′(dx)

⃓⃓
⃓⃓

≤
∑︂

x∗∈X

∫︂∫︂ ⃓⃓
p(x∗ | x, u, x0, u0, µ)− p(x∗ | x, u, x0′, u0′, µ′)

⃓⃓
πt(du | x, x0, µ)µ(dx)

+
∑︂

x∗∈X

∫︂ ⃓⃓
⃓⃓
∫︂

p(x∗ | x, u, x0′, u0′, µ′)
(︁
πt(du | x, x0, µ)− πt(du | x, x0′, µ′)

)︁⃓⃓⃓⃓µ(dx)

+
∑︂

x∗∈X

⃓⃓
⃓⃓
∫︂∫︂

p(x∗ | x, u, x0′, u0′, µ′)πt(du | x, x0′, µ′)
(︁
µ− µ′)︁ (dx)

⃓⃓
⃓⃓

≤
(︁
|X |Lp + |X ||U|LΠ + |X |2|U|

)︁
d((x0, u0, µ), (x0′, u0′, µ′))

by Assumptions 3.4.1 and 3.4.3, where we have the distances d((x0, u0, µ), (x0′, u0′, µ′) =
max(1x0(x0′),1u0(u0′),1µ(µ

′)) as discussed in the main text.

d.3 approximation of action-value functions

In this section, we give approximation lemmas for the value functions, together with definitions that
were omitted in the main text, and are used in some of the following proofs.

For fixed (π, π0), the true minor action-value function is defined by the Bellman equation

Qπ,π0(t, x, u, x0, µ)

=
∑︂

u0

π0
t (u

0 | x0, µ)
[︃
r(x, u, x0, u0, µ) +

∑︂

x0′

p0(x0′ | x0, u0, µ)

·
∑︂

x′

p(x′ | x, u, x0, u0, µ)max
u′

Qπ,π0(t+ 1, x′, u′, x0′, T π
t (x

0, u0, µ))

]︃
,

while its approximated variant follows

Q̂π,π0(t, x, u, x0, µ)
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=
∑︂

u0

π0
t (u

0 | x0,projδµ)
[︃
r(x, u, x0, u0,projδµ) +

∑︂

x0′

p0(x0′ | x0, u0,projδµ)

·
∑︂

x′

p(x′ | x, u, x0, u0,projδµ)max
u′

Q̂π,π0(t+ 1, x′, u′, x0′, T π
t (x

0, u0,projδµ))

]︃
,

since we have

Q̂π,π0(t+ 1, x′, u′, x0′, projδT
π
t (x

0, u0,projδµ)) = Q̂π,π0(t+ 1, x′, u′, x0′, T π
t (x

0, u0, projδµ))

by definition.

We can show that the approximate Q functions tend uniformly to the true Q functions as the
δ-partition becomes fine. Here, the supremum over policies is over Π,Π0.

Lemma D.3.1. Under Assumptions 3.4.1, 3.4.2 and 3.4.3, we have for µ, ν ∈ P(X ) at all times
t ∈ T that

sup
x0,u0,π,π0

⃓⃓
⃓Q̂0

π,π0(t, x0, u0, µ)− Q̂
0
π,π0(t, x0, u0, ν)

⃓⃓
⃓ = O(δ + ∥µ− ν∥), (D.3.11)

sup
x,u,x0,π,π0

⃓⃓
⃓Q̂π,π0(t, x, u, x0, µ)− Q̂π,π0(t, x, u, x0, ν)

⃓⃓
⃓ = O(δ + ∥µ− ν∥). (D.3.12)

Lemma D.3.2. Under Assumptions 3.4.1, 3.4.2 and 3.4.3, at all times t, the approximate major and
minor action-value functions uniformly converge to the true action-value functions,

sup
x0,u0,µ,π,π0

|Q̂0
π,π0(t, x0, u0, µ)−Q0

π,π0(t, x
0, u0, µ)| = O(δ), (D.3.13)

sup
x,u,x0,µ,π,π0

|Q̂π,π0(t, x, u, x0, µ)−Qπ,π0(t, x, u, x0, µ)| = O(δ). (D.3.14)

d.4 proof of lemma D.3.1

Proof of Lemma D.3.1. At time T − 1, we have for any δ > 0 and µ, ν that by Assumption 3.4.2,

sup
x0,u0,π,π0

⃓⃓
⃓Q̂0

π,π0(T − 1, x0, u0, µ)− Q̂
0
π,π0(T − 1, x0, u0, ν)

⃓⃓
⃓

= sup
x0,u0,π,π0

⃓⃓
r0(x0, u0, projδµ)− r0(x0, u0, projδν)

⃓⃓

≤ Lr(2δ + ∥µ− ν∥) = O(δ + ∥µ− ν∥)

by triangle inequality, as the projection of µ, ν can shift µ, ν at most by δ each.

Similarly, for the induction step, assuming Eq. (D.3.11) at time t+ 1, then at time t we have:

sup
x0,u0,π,π0

⃓⃓
⃓Q̂0

π,π0(t, x0, u0, µ)− Q̂
0
π,π0(t, x0, u0, ν)

⃓⃓
⃓

≤ sup
x0,u0,π,π0

⃓⃓
r0(x0, u0,projδµ)− r0(x0, u0,projδν)

⃓⃓

+ sup
x0,u0,π,π0

⃓⃓
⃓⃓
⃓
∑︂

x0′

p0(x0′ | x0, u0,projδµ)max
u0′

Q̂
0
π,π0(t+ 1, x0′, u0′, T π

t (x
0, u0, projδµ))
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−
∑︂

x0′

p0(x0′ | x0, u0,projδν)max
u0′

Q̂
0
π,π0(t+ 1, x0′, u0′, T π

t (x
0, u0, projδν))

⃓⃓
⃓⃓
⃓

≤ Lr(2δ + ∥µ− ν∥) +Q0
max|X 0|Lp0(2δ + ∥µ− ν∥)

+ 2 sup
x0,u0,x0′,u0′,π,π0

⃓⃓
⃓Q̂0

π,π0(t+ 1, x0′, u0′, T π
t (x

0, u0, projδµ))

−Q0
π,π0(t+ 1, x0′, u0′, T π

t (x
0, u0,projδν))

⃓⃓
⃓

= O(δ + ∥µ− ν∥)

by Assumptions 3.4.1 and 3.4.2, and induction assumption using

sup
x0,u0

⃦⃦
T π
t (x

0, u0, projδµ)− T π
t (x

0, u0, projδν)
⃦⃦
≤ LT (2δ + ∥µ− ν∥)

by Lemma D.2.1. Here, Q0
max := T max r0.

The same argument for the minor agent completes the proof for Eq. (D.3.12):

At time T − 1, we have for any δ > 0 and µ, ν that by Assumption 3.4.2, again

sup
x,u,x0,π,π0

⃓⃓
⃓Q̂π,π0(T − 1, x, u, x0, µ)− Q̂π,π0(T − 1, x, u, x0, ν)

⃓⃓
⃓

= sup
x,u,x0,π,π0

⃓⃓
⃓⃓
⃓
∑︂

u0

π0
T−1(u

0 | x0,projδµ)r(x, u, x0, u0, projδµ)

−
∑︂

u0

π0
T−1(u

0 | x0,projδν)r(x, u, x0, u0, projδν)
⃓⃓
⃓⃓
⃓

≤ |U0|LΠ0(2δ + ∥µ− ν∥)max r0 + Lr(2δ + ∥µ− ν∥) = O(δ + ∥µ− ν∥).

For the induction step, assuming Eq. (D.3.12) at time t+ 1, then at time t we have:

sup
x,u,x0,π,π0

⃓⃓
⃓Q̂π,π0(t, x, u, x0, µ)− Q̂π,π0(t, x, u, x0, ν)

⃓⃓
⃓

≤ sup
x,u,x0,π,π0

⃓⃓
⃓⃓
⃓
∑︂

u0

π0
t (u

0 | x0,projδµ)r(x, u, x0, u0, projδµ)

−
∑︂

u0

π0
t (u

0 | x0,projδν)r(x, u, x0, u0, projδν)
⃓⃓
⃓⃓
⃓

+ sup
x,u,x0,π,π0

⃓⃓
⃓⃓
⃓
∑︂

u0

π0
t (u

0 | x0,projδµ)
∑︂

x0′

p0(x0′ | x0, u0,projδµ)

·
∑︂

x′

p(x′ | x, u, x0, u0, projδµ)max
u′

Q̂π,π0(t+ 1, x′, u′, x0′, T π
t (x

0, u0,projδµ))

−
∑︂

u0

π0
t (u

0 | x0, projδµ)
∑︂

x0′

p0(x0′ | x0, u0, projδν)

·
∑︂

x′

p(x′ | x, u, x0, u0, projδµ)max
u′

Q̂π,π0(t+ 1, x′, u′, x0′, T π
t (x

0, u0,projδν))

⃓⃓
⃓⃓
⃓

≤ |U0|LΠ0(2δ + ∥µ− ν∥)max r0 + Lr(2δ + ∥µ− ν∥) + |U0|QmaxLΠ0(2δ + ∥µ− ν∥)
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+ |X 0|QmaxLp0(2δ + ∥µ− ν∥) + |X |QmaxLp(2δ + ∥µ− ν∥)
+ 2 sup

x0,u0,x′,u′,x0′,π,π0

⃓⃓
⃓Q̂π,π0(t+ 1, x′, u′, x0′, T π

t (x
0, u0, projδµ))

−Q0
π,π0(t+ 1, x′, u′, x0′, T π

t (x
0, u0, projδν))

⃓⃓
⃓

= O(δ + ∥µ− ν∥)

by Assumptions 3.4.1, 3.4.2 and 3.4.3, and applying the induction assumption on the last term,
where we again use supx0,u0

⃦⃦
T π
t (x

0, u0, projδµ)− T π
t (x

0, u0,projδν)
⃦⃦
≤ LT (2δ+ ∥µ− ν∥) by

Lemma D.2.1. Here, Qmax := T max r. This completes the proof for Eq. (D.3.12).

d.5 proof of lemma D.3.2

Proof of Lemma D.3.2. The proof is by (reverse) induction. At terminal time t = T − 1, we have
by Assumption 3.4.2

sup
x0,u0,µ,π,π0

⃓⃓
⃓Q̂0

π,π0(T − 1, x0, u0, µ)−Q0
π,π0(T − 1, x0, u0, µ)

⃓⃓
⃓

= sup
x0,u0,µ,π,π0

⃓⃓
r0(x0, u0,projδµ)− r0(x0, u0, µ)

⃓⃓
≤ Lrδ

Assume Eq. (D.3.13) holds at time t+ 1, then at time t we have

sup
x0,u0,µ,π,π0

⃓⃓
⃓Q̂0

π,π0(t, x0, u0, µ)−Q0
π,π0(t, x

0, u0, µ)
⃓⃓
⃓

≤ sup
x0,u0,µ,π,π0

⃓⃓
r0(x0, u0,projδµ)− r0(x0, u0, µ)

⃓⃓

+ sup
x0,u0,µ,π,π0

⃓⃓
⃓⃓
⃓
∑︂

x0′

p0(x0′ | x0, u0, projδµ)max
u0′

Q̂
0
π,π0(t+ 1, x0′, u0′, T π

t (x
0, u0,projδµ))

−
∑︂

x0′

p0(x0′ | x0, u0, µ)max
u0′

Q0
π,π0(t+ 1, x0′, u0′, T π

t (x
0, u0, µ))

⃓⃓
⃓⃓
⃓

≤ Lrδ +Q0
max|X 0|Lp0δ +O(δ)

+ 2 sup
x0,u0,µ,x0′,u,π,π0

⃓⃓
⃓Q̂0

π,π0(t+ 1, x0′, u, T π
t (x

0, u0, µ))

−Q0
π,π0(t+ 1, x0′, u, T π

t (x
0, u0, µ))

⃓⃓
⃓ = O(δ)

by Assumptions 3.4.1 and 3.4.2, the estimate from Lemma D.3.1 with |T π
t (x

0, u0, projδµ) −
T π
t (x

0, u0, µ)| ≤ LT δ = O(δ) by Lemma D.2.1, and the induction assumption for the final term.
Here, Q0

max := T max r0. This completes the proof for Eq. (D.3.13).

For the minor agent in Eq. (D.3.14), we have by the same argument

sup
x,u,x0,µ,π,π0

⃓⃓
⃓Q̂π,π0(T − 1, x, u, x0, µ)−Qπ,π0(T − 1, x, u, x0, µ)

⃓⃓
⃓

≤ sup
x,u,x0,u0,µ,π,π0

⃓⃓
r(x, u, x0, u0,projδµ)− r(x, u, x0, u0, µ)

⃓⃓
≤ Lrδ
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at terminal time T − 1, and then inductively at any time t

sup
x,u,x0,µ,π,π0

⃓⃓
⃓Q̂π,π0(t, x, u, x0, µ)−Qπ,π0(t, x, u, x0, µ)

⃓⃓
⃓

≤ sup
x,u,x0,u0,µ,π,π0

⃓⃓
r(x, u, x0, u0, projδµ)− r(x, u, x0, u0, µ)

⃓⃓

+ sup
x0,u0,µ,π,π0

⃓⃓
⃓⃓
⃓
∑︂

u0

π0
t (u

0 | x0, projδµ)
∑︂

x0′

p0(x0′ | x0, u0, projδµ)

·
∑︂

x′

p(x′ | x, u, x0, u0,projδµ)max
u′

Q̂π,π0(t+ 1, x′, u′, x0′, T π
t (x

0, u0, projδµ))

−
∑︂

u0

π0
t (u

0 | x0, µ)
∑︂

x0′

p0(x0′ | x0, u0, µ)

·
∑︂

x′

p(x′ | x, u, x0, u0, µ)max
u′

Qπ,π0(t+ 1, x′, u′, x0′, T π
t (x

0, u0, µ))

⃓⃓
⃓⃓
⃓

≤ Lrδ +Qmax|U0|LΠ0δ +Qmax|X 0|Lp0δ +Qmax|X |Lpδ +O(δ)
+ sup

µ,x0′,u,π,π0

⃓⃓
⃓Q̂π,π0(t+ 1, x′, u′, x0′, T π

t (x
0, u0, µ))

−Qπ,π0(t+ 1, x′, u′, x0′, T π
t (x

0, u0, µ))
⃓⃓
= O(δ)

using also Assumption 3.4.3 and Qmax := T max r, which completes the proof by induction.

d.6 proof of theorem 3.4.1

Proof of Theorem 3.4.1. For readability, we abbreviate the states and actions at time t as Jt :=
(x0,Nt , u0,Nt , x1,Nt , u1,Nt , . . . , xN,N

t , uN,N
t ), and write EJt for the conditional expectation given Jt.

Without loss of generality, we show the statements for families F that are additionally uniformly
bounded by some constant Mf , since the support of f ∈ F is compact and we can add any constant
to f without changing the difference between expectations in Eq. (3.4.53). We also define the
conditional expectation of the empirical MF at time t+ 1 given variables at time t,

µ̂N
t+1 := T π

t (x
0,N
t , u0,Nt , µN

t ).

We show Eq. (3.4.53) at all times by induction. At time t = 0, the statement follows from a LLN,
see also below. Assuming that Eq. (3.4.53) holds at time t, then at time t+ 1 we have

sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓E
[︂
f(x1,N

t+1, u
1,N
t+1, x

0,N
t+1, u

0,N
t+1, µ

N
t+1)− f(xt+1, ut+1, x

0
t+1, u

0
t+1, µt+1)

]︂⃓⃓
⃓

≤ sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓E
[︂
f(x1,N

t+1, u
1,N
t+1, x

0,N
t+1, u

0,N
t+1, µ

N
t+1)− f(x1,N

t+1, u
1,N
t+1, x

0,N
t+1, u

0,N
t+1, µ̂

N
t+1)

]︂⃓⃓
⃓ (D.6.15)

+ sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓⃓E
[︃∫︂

f(x1,N
t+1, u

1,N
t+1, x

0,N
t+1, u

0, µ̂N
t+1)π

0
t+1(du

0 | x0,N
t+1, µ

N
t+1)

]︃

−E
[︃∫︂

f(x1,N
t+1, u

1,N
t+1, x

0,N
t+1, u

0, µ̂N
t+1)π

0
t+1(du

0 | x0,N
t+1, µ̂

N
t+1)

]︃⃓⃓
⃓⃓

(D.6.16)

+ sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓⃓E
[︃∫︂∫︂

f(x1,N
t+1, u, x

0,N
t+1, u

0, µ̂N
t+1)π

0
t+1(du

0 | x0,N
t+1, µ̂

N
t+1)π̂t+1(du | x1,N

t+1, x
0,N
t+1, µ

N
t+1)

]︃

−E
[︃∫︂∫︂

f(x1,N
t+1, u, x

0,N
t+1, u

0, µ̂N
t+1)π

0
t+1(du

0 | x0,N
t+1, µ̂

N
t+1)π̂t+1(du | x1,N

t+1, x
0,N
t+1, µ̂

N
t+1)

]︃⃓⃓
⃓⃓

(D.6.17)
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+ sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓⃓E
[︃∫︂∫︂

f(x1,N
t+1, u, x

0,N
t+1, u

0, µ̂N
t+1)π

0
t+1(du

0 | x0,N
t+1, µ̂

N
t+1)π̂t+1(du | x1,N

t+1, x
0,N
t+1, µ̂

N
t+1)

]︃

−E
[︃∫︂∫︂

f(xt+1, u, x
0
t+1, u

0, µt+1)π
0
t+1(du

0 | x0
t+1, µt+1)π̂t+1(du | xt+1, x

0
t+1, µt+1)

]︃⃓⃓
⃓⃓

(D.6.18)

The first term (D.6.15) is

sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓E
[︂
f(x1,Nt+1, u

1,N
t+1, x

0,N
t+1, u

0,N
t+1, µ

N
t+1)− f(x1,Nt+1, u

1,N
t+1, x

0,N
t+1, u

0,N
t+1, µ̂

N
t+1)

]︂⃓⃓
⃓

≤ sup
π̂,π,π0

LfE
[︁⃦⃦
µN
t+1 − µ̂N

t+1

⃦⃦]︁

= sup
π̂,π,π0

LfE

[︄∑︂

x∈X

⃓⃓
µN
t+1(x)− µ̂N

t+1(x)
⃓⃓
]︄

= sup
π̂,π,π0

Lf

∑︂

x∈X
E

[︄⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=1

1x(x
i,N
t+1)−

1

N

N∑︂

i=2

1x(x
i,N
t+1)

⃓⃓
⃓⃓
⃓

]︄

+ sup
π̂,π,π0

Lf

∑︂

x∈X
E

[︄
EJt

[︄⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=2

1x(x
i,N
t+1)− EJt

[︄
1

N

N∑︂

i=2

1x(x
i,N
t+1)

]︄⃓⃓
⃓⃓
⃓

]︄]︄

+ sup
π̂,π,π0

Lf

∑︂

x∈X
E

[︄⃓⃓
⃓⃓
⃓
1

N

∑︂

u∈U
p(x | x1,Nt , u, x0,Nt , u0,Nt , µN

t )πt(u | x1,Nt , x0,Nt , µN
t )

⃓⃓
⃓⃓
⃓

]︄

≤ Lf |X |
(︄

1

N
+

√︃
4

N
+
|U|
N

)︄
= O(1/

√
N)

and tends to zero at rate O(1/
√
N), where the last term is the difference between

EJt

[︂
1
N

∑︁N
i=2 1x(x

i,N
t+1)

]︂
and µ̂N

t+1(x) = EJt

[︂
1
N

∑︁N
i=1 1x(x

i,N
t+1)

]︂
, while the middle term is ob-

tained by tower rule and analyzed by a weak LLN argument, i.e.

sup
π̂,π,π0

Lf

∑︂

x∈X
E

[︄
EJt

[︄⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=2

1x(x
i,N
t+1)− EJt

[︄
1

N

N∑︂

i=2

1x(x
i,N
t+1)

]︄⃓⃓
⃓⃓
⃓

]︄]︄

= sup
π̂,π,π0

Lf

∑︂

x∈X
E

[︄
EJt

[︄⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=2

(︂
1x(x

i,N
t+1)− EJt

[︂
1x(x

i,N
t+1)

]︂)︂⃓⃓⃓⃓
⃓

]︄]︄

≤ sup
π̂,π,π0

Lf

∑︂

x∈X
E

⎡
⎣EJt

⎡
⎣
(︄

1

N

N∑︂

i=2

(︂
1x(x

i,N
t+1)− EJt

[︂
1x(x

i,N
t+1)

]︂)︂)︄2
⎤
⎦
⎤
⎦
1/2

= sup
π̂,π,π0

Lf

∑︂

x∈X
E

[︄
EJt

[︄
1

N

N∑︂

i=2

(︂
1x(x

i,N
t+1)− EJt

[︂
1x(x

i,N
t+1)

]︂)︂2
]︄]︄1/2

≤ Lf |X |
√︃

N − 1

N2
· 22 ≤ Lf |X |

√︃
4

N

by conditional independence of xi,Nt+1 given Jt.
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Similarly, for the second term (D.6.16) we obtain

sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓⃓E
[︃∫︂

f(x1,Nt+1, u
1,N
t+1, x

0,N
t+1, u

0, µ̂N
t+1)π

0
t+1(du

0 | x0,Nt+1, µ
N
t+1)

]︃

−E
[︃∫︂

f(x1,Nt+1, u
1,N
t+1, x

0,N
t+1, u

0, µ̂N
t+1)π

0
t+1(du

0 | x0,Nt+1, µ̂
N
t+1)

]︃⃓⃓
⃓⃓

≤ |U0|MfLΠ0E
[︁⃦⃦
µN
t+1 − µ̂N

t+1

⃦⃦]︁
= O(1/

√
N)

by Assumption 3.4.3, and also for the third term (D.6.17),

sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓⃓E
[︃∫︂∫︂

f(x1,N
t+1, u, x

0,N
t+1, u

0, µ̂N
t+1)π

0
t+1(du

0 | x0,N
t+1, µ̂

N
t+1)π̂t+1(du | x1,N

t+1, x
0,N
t+1, µ

N
t+1)

]︃

−E
[︃∫︂∫︂

f(x1,N
t+1, u, x

0,N
t+1, u

0, µ̂N
t+1)π

0
t+1(du

0 | x0,N
t+1, µ̂

N
t+1)π̂t+1(du | x1,N

t+1, x
0,N
t+1, µ̂

N
t+1)

]︃⃓⃓
⃓⃓

≤ |U|MfLΠE
[︂⃦⃦
⃦µN

t+1 − µ̂N
t+1

⃦⃦
⃦
]︂
= O(1/

√
N).

For the last term (D.6.18), we have

sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓⃓E
[︃∫︂∫︂

f(x1,N
t+1, u, x

0,N
t+1, u

0, µ̂N
t+1)π

0
t+1(du

0 | x0,N
t+1, µ̂

N
t+1)π̂t+1(du | x1,N

t+1, x
0,N
t+1, µ̂

N
t+1)

]︃

−E
[︃∫︂∫︂

f(xt+1, ut+1, x
0
t+1, u

0
t+1, µt+1)π

0
t+1(du

0 | x0
t+1, µt+1)π̂t+1(du | xt+1, x

0
t+1, µt+1)

]︃⃓⃓
⃓⃓

= sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓⃓E
[︃∫︂∫︂

g2(x, x
0, x1,N

t , u1,N
t , x0,N

t , u0,N
t , µN

t )

p0(dx0 | x0,N
t , u0,N

t , µN
t )p(dx | x1,N

t , u1,N
t , x0,N

t , u0,N
t , µN

t )
]︂

−E
[︃∫︂∫︂∫︂∫︂

g2(x, x
0, xt, ut, x

0
t , u

0
t , µt)p

0(dx0 | x0
t , u

0
t , µt)p(dx | xt, ut, x

0
t , u

0
t , µt)

]︃⃓⃓
⃓⃓

where we define

g2(x, x
0, xt, ut, x

0
t , u

0
t , µt)

:=

∫︂∫︂
f(x, u, x0, u0, Tπ

t (x
0
t , u

0
t , µt))π

0
t+1(du

0 | x0, Tπ
t (x

0
t , u

0
t , µt))π̂t+1(du | x, x0, Tπ

t (x
0
t , u

0
t , µt)).

We show that the terms inside the expectations are Lipschitz in (x1,Nt , u1,Nt , x0,Nt , u0,Nt , µN
t ) and

(xt, ut, x
0
t , u

0
t , µt), which will imply convergence of the second term at rate O(1/

√
N) by the

induction assumption, completing the proof of Eq. (3.4.53).

First, note that T π
t is Lipschitz with constant LT by Lemma D.2.1. Therefore, the map

(x, u, x0, u0, x0t , u
0
t , µt) ↦→ f(x, u, x0, u0, T π

t (x
0
t , u

0
t , µt)) is also Lipschitz with constant LfLT .

We similarly iteratively obtain Lipschitzness of the maps

g1(x, u, x
0, xt, ut, x

0
t , u

0
t , µt) :=

∫︂
f(x, u, x0, u0, T π

t (x
0
t , u

0
t , µt))π

0
t+1(du

0 | x0, T π
t (x

0
t , u

0
t , µt))

g2(x, x
0, xt, ut, x

0
t , u

0
t , µt) :=

∫︂
g1(x, u, x

0, xt, ut, x
0
t , u

0
t , µt)π̂t+1(du | x, x0, T π

t (x
0
t , u

0
t , µt))

g3(x, xt, ut, x
0
t , u

0
t , µt) :=

∫︂
g2(x, x

0, xt, ut, x
0
t , u

0
t , µt)p

0(dx0 | x0t , u0t , µt)

g4(xt, ut, x
0
t , u

0
t , µt) :=

∫︂
g3(x, xt, ut, x

0
t , u

0
t , µt)p(dx | xt, ut, x0t , u0t , µt)
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with Lipschitz constants Lg1 = LfLT + |U0|MfLΠ0LT , Lg2 = Lg1 + |U|MfLΠLT , Lg3 =
Lg2 + |X 0|MfLp0 , Lg4 = Lg3 + |X |MfLp, and finally note that the last term (D.6.18) is equal to

sup
π̂,π,π0

sup
f∈F

⃓⃓
⃓E
[︂
g4(x

1,N
t , u1,Nt , x0,Nt , u0,Nt , µN

t )− g4(xt, ut, x
0
t , u

0
t , µt)

]︂⃓⃓
⃓ = O(1/

√
N),

tending to zero by applying the induction assumption to families of Lg4-Lipschitz functions.

Proof of Corollary 3.4.1. The result follows immediately from Theorem 3.4.1 by noting that
F0 ⊆ F when considering functions in F0 as constant functions over the deviating minor agent’s
variables in F .

d.7 proof of corollary 3.4.2

Proof of Corollary 3.4.2. Under (π, π0), we have for any ε > 0 that there exists N ′ ∈ N such that
for all N > N ′ we have

sup
π̂∈Π

⃓⃓
J1
N ((π̂, π, . . . , π), π0)− J(π̂, π, π0)

⃓⃓

≤ sup
π̂∈Π

⃓⃓
⃓⃓
⃓E
[︄∑︂

t∈T
r(x1,Nt , u1,Nt , x0,Nt , u0,Nt , µN

t )

]︄
− E

[︄∑︂

t∈T
r(xt, ut, x

0
t , u

0
t , µt)

]︄⃓⃓
⃓⃓
⃓

= sup
π̂∈Π

⃓⃓
⃓⃓
⃓
∑︂

t∈T
E
[︂
r(x1,Nt , u1,Nt , x0,Nt , u0,Nt , µN

t )− r(xt, ut, x
0
t , u

0
t , µt)

]︂⃓⃓⃓⃓
⃓→ 0

by Theorem 3.4.1 and Assumption 3.4.2.

Therefore, using the previous paragraph, for any ε > 0 we also have

sup
π̂∈Π

(︁
JN
1 ((π̂, . . . , π), π0)− JN

1 ((π, . . . , π), π0)
)︁

≤ sup
π̂∈Π

(︁
JN
1 ((π̂, π, . . . , π), π0)− J(π̂, π, π0)

)︁

+ sup
π̂∈Π

(︁
J(π̂, π, π0)− J(π, π, π0)

)︁

+
(︁
J(π, π, π0)− JN

1 ((π, . . . , π), π0)
)︁

<
ε

2
+ 0 +

ε

2
= ε

for N large enough by definition of M3FNE, which is the desired statement for i = 1. By symmetry,
this applies to all i ≥ 1.

In the alternate infinite-horizon case with discount γ ∈ (0, 1) and T := N, we first have for any
ε > 0 that there exists N ′ ∈ N such that for all N > N ′ we have

sup
π̂∈Π

⃓⃓
J1
N ((π̂, π, . . . , π), π0)− J(π̂, π, π0)

⃓⃓

≤ sup
π̂∈Π

⃓⃓
⃓⃓
⃓E
[︄ ∞∑︂

t=0

γtr(x1,Nt , u1,Nt , x0,Nt , u0,Nt , µN
t )

]︄
− E

[︄ ∞∑︂

t=0

γtr(xt, ut, x
0
t , u

0
t , µt)

]︄⃓⃓
⃓⃓
⃓

= sup
π̂∈Π

⃓⃓
⃓⃓
⃓

T∑︂

t=0

γtE
[︂
r(x1,Nt , u1,Nt , x0,Nt , u0,Nt , µN

t )− r(xt, ut, x
0
t , u

0
t , µt)

]︂⃓⃓⃓⃓
⃓+

ε

2
→ 0
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by choosing T large enough, and then applying Theorem 3.4.1.

An analogous argument for the major agent completes the proof, as

sup
π̂∈Π

⃓⃓
J0
N ((π̂, π, . . . , π), π0)− J0(π̂, π, π0)

⃓⃓

≤ sup
π̂∈Π

⃓⃓
⃓⃓
⃓E
[︄∑︂

t∈T
r0(x0,Nt , u0,Nt , µN

t )

]︄
− E

[︄∑︂

t∈T
r(xt, ut, x

0
t , u

0
t , µt)

]︄⃓⃓
⃓⃓
⃓

= sup
π̂∈Π

⃓⃓
⃓⃓
⃓
∑︂

t∈T
E
[︂
r0(x0,Nt , u0,Nt , µN

t )− r(xt, ut, x
0
t , u

0
t , µt)

]︂⃓⃓⃓⃓
⃓→ 0

by Corollary 3.4.1 and Assumption 3.4.2.

d.8 proof of theorem 3.4.3

Proof of Theorem 3.4.3. Observe that the convergence of approximate minor objectives to the true
objectives as δ → 0,

sup
x,x0,µ,π,π0

⃓⃓
⃓V̂ π

π,π0(t, x, x0, µ)− V π
π,π0(t, x, x

0, µ)
⃓⃓
⃓ = O(δ)→ 0 (D.8.19)

at all times t, follows by the same arguments as in Lemma D.3.2. The only difference is that we
estimate one more term from policy evaluation instead of the max operation, using continuity for π
by Assumption 3.4.3.

Therefore, the approximate minor objective converges as desired,

Ĵ(π, π0) :=
∑︂

x,x0

µ0(x)µ
0
0(x

0)V̂
π
π,π0(0, x, x0, µ0)

→
∑︂

x,x0

µ0(x)µ
0
0(x

0)V π
π,π0(0, x, x

0, µ0)

= J(π, π0).

On the other hand, for the approximate exploitability of the minor agent

Ê(π, π0) =
∑︂

x,x0

µ0(x)µ
0
0(x

0)

(︃
max
π̂′∈Π̂

V̂
π̂′

π,π0(0, x, x0, µ0))− V̂
π
π,π0(0, x, x0, µ0)

)︃

and its true exploitability

E(π, π0) =
∑︂

x,x0

µ0(x)µ
0
0(x

0)

(︃
max
π′∈Π

V π′

π,π0(0, x, x
0, µ0))− V π

π,π0(0, x, x
0, µ0)

)︃

we first note that maxπ̂′∈Π̂ V̂
π̂′

π,π0 = V̂ π,π0 and maxπ′∈Π V π′

π,π0 = Vπ,π0 [69, Theorem 3.2.1 and
Condition 3.3.4], where the approximate and true optimal value functions are defined by the
maximum of the action-value functions over actions,

V̂ π,π0(t, x, x0, µ) := max
u

Q̂π,π0(t, x, u, x0, µ), Vπ,π0(t, x, x0, µ) := max
u

Qπ,π0(t, x, u, x0, µ).
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Therefore, we obtain

Ê(π, π0)− E(π, π0)

=
∑︂

x,x0

µ0(x)µ
0
0(x

0)
(︂
V̂ π,π0(0, x, x0, µ0)− Vπ,π0(0, x, x0, µ0)

)︂

+
∑︂

x,x0

µ0(x)µ
0
0(x

0)
(︂
V π
π,π0(0, x, x

0, µ0)− V̂
π
π,π0(0, x, x0, µ0)

)︂
= O(δ)→ 0

where the first term is estimated by Lemma D.3.2, and similarly the second by Eq. (D.8.19).

Analogous arguments for the major agent complete the proof.

d.9 additional experimental details

In the following, we give a detailed description of the problems considered in evaluation. For
initialization of policies, unless mentioned, we use the policy that always picks the first action, in
order of definition in the main text. We run our experiments each on a single core of an Intel Xeon
Platinum 9242 CPU with 4 GB of memory (RedHat 8.8, and without GPUs). We used around
20 000 CPU core hours. The code is based on Python 3.9 and NumPy 1.23.4 [382], and can be
found in the supplementary material.

sis epidemics model. Formally, minor agents have states X := {S, I} for susceptible (S) and
infected (I), and can choose between actions U := {P, P̄} for prevention (P ) and no prevention (P̄ ).
The major agent has states X 0 := {H,L} for high (H) and low (L) transmissibility regimes (e.g.
from seasonal changes or virus mutations), and actions U0 := {F, F̄} for forcing (F ) preventative
actions, or not (F̄ ). The minor dynamics are then given by

p(I | S, P̄ , x0, u0, µt) = (0.5 + 1H(x0) + 1F̄ (u
0))αµt(I)∆t,

p(I | S, P, . . .) = 0, p(S | I, . . .) = β∆t

for transmissibility α > 0, recovery rate β > 0 and step size ∆t > 0. The major dynamics are
exogeneous and given by

p0(H | L, . . .) = p0(L | H, . . .) = α0∆t

for rate α0 > 0. Lastly, the reward functions will be set as

r(x, u, x0, u0, µ) = −cI1I(x)− cP1P (u)(1F (u
0) + 0.5),

r0(x0, u0, µ) = −c0µµ(I)− c0F1F (u
0)(0.5− µ(I)),

i.e. the major agent wants to keep infections low via preventative actions, while the minor agents
are interested only in their own infection, trading off between infection and costly prevention. The
major government agent has an reputation cost associated with forcing preventative actions that
decreases with increasing number of infected agents.

Concretely, as parameters we use α = 0.8, β = 0.2, µ0(I) = 0.2, µ0
0(H) = 0.5, α0 = 0.4,

∆t = 0.1, cI = 0.75, cP = 0.5, c0µ = 2, c0F = 1 and a horizon of T = 300 for each episode.
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buffet problem. Formally, minor agents have states X = [L] for L buffet locations, and can
choose to move to any location U = [L] with geometric arrival rate, resulting in minor dynamics

p(n | [L] \ n, n, . . .) = α∆t,

p(n | [L] \ n, [L] \ n, . . .) = 1− α∆t,

p(n | n, n, . . .) = 1.

The major agent state consists of the food state of the foraging locations, and the major agent at any
time tries to fill one of the 3 foraging locations such that the locations remain as full as possible, and
optionally as equal as possible. Hence, the major agent has states X 0 = {0, . . . , B− 1}L indicating
the buffet filling status at each of L locations, and actions U0 = [L] for filling up the buffet at a
specific location. The major dynamics are such that a filling at location n is gained with probability
α0
+∆t and lost with probability α0

−µ(n)∆t whenever the current MF is µ.

Lastly, the rewards are defined as

r(x, u, x0, u0, µ) = cfx
0
x − ccµ(x)− cu(1− 1x(u)),

r0(x0, u0, µ) =
1

L

∑︂

i∈[L]

⎛
⎝c0fx

0
i − c0b

⃓⃓
⃓⃓
⃓⃓x0i −

1

L

∑︂

i∈[L]

x0i

⃓⃓
⃓⃓
⃓⃓

⎞
⎠ ,

where we have the reward coefficients cf and c0f for filled buffets, the crowdedness cost cc, the
movement cost cu, and the imbalance cost c0b .

Concretely, as parameters we use B = 5, L = 2, α = 0.7, µ0(0) = 1, µ0
0 = Unif , α0

+ = 0.9,
α0
− = 1.0, ∆t = 0.2, cf = 0.75, cc = 0.5, cu = 1.0, c0f = 2, c0b = 1 and a horizon of T = 100 for

each episode.

advertisement duopoly model. The regulator chooses one of the actions U0 = {0, 1, 2},
where 0 denotes average price, 1 denotes low price and 2 denotes high price for advertisement
by the second company. The regulator’s state is X 0 = {1, 2} where i, i = {1, 2} denotes the
case where Company i is more aggressive in their advertisement. According to the state and the
action of the regulator, the company i chooses their advertisement level ai(u0, x0) where ai is a
deterministic function. Similar to the SIS model, major dynamics are not influenced and given by
p0(1|2, . . . ) = p0(2|1, . . . ) = c∆t where c > 0 is an exogenous constant.

Minor agents’ state space is X = {1, 2} where i, i = {1, 2} denotes that they buy product i and
they choose one of the actions U = {O,C} where O denotes that they are open to changes and C
denotes that they are close to changes.

p(i|i−1, x0, u0, u) = [ai(x
0, u0)− ai−1(x0, u0)]λu∆t

where λu is a coefficient that depends on the control of minor agent with λO > λC .

The reward functions are given as

r(x, u, x0, u0, µ) =
∑︂

x∈X
1{x=i}

[︁
cµ(µ(i)− µ(i−1)) + caai(x

0, u0)
]︁
−
∑︂

u′∈U
1{u=u′}cu′ ,

r0(x0, u0, µ) = −c0m|µ(1)− µ(2)|+ c0a1{u0≥1}.

Concretely, as parameters we use ∆t = 0.3, c = 0.05, µ0 = Unif , µ0
0(1) = 1, cC = 0.75,

cO = 1.0, ca = 1.0, cµ = 1.0, c0a = 0.1, c0m = 1, λU = 0.2, λO = 1.2, we let ai(u0, x0) =
k0 + k0x1i(x

0) + k0u1i(u
0) for k0 = 0.2, k0x = 0.5, k0u = 0.7, and consider a horizon of T = 100

for each episode.
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more finite horizon results Extending the qualitative results in the main text, in Figures D.1
and D.2 we see plausible qualitative equilibrium behavior in the finite horizon case for the Buffet
and Advertisement problem. In Buffet, agents begin to move to the other location as the difference
in fillings becomes sufficiently large, until the other location reaches a sufficiently high number of
other agents. This can be seen both in the visualization of policies, and in the example trajectory
plot. Such behavior is plausible, as the instantaneous cost of moving from one location to another
must be higher than the perceived future gain from being at the desired location, leading to the
observed hysteresis effect. We can also observe the effect of a finite time horizon as t→ T , as a
potential change in location before the buffet ends is not useful in terms of improving rewards. As
expected, the learned policies are symmetric in the locations. Meanwhile, in Advertisement, agents
quickly run into an equilibrium that primarily depends on the exogeneous major agent state.
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figure d.1: Qualitative behavior in the finite horizon case for Buffet.

Further, as shown in Figure D.3, the behavior of the FP algorithm is consistent regardless of the
choice of initialization. This implies robustness against the initialization of the algorithm. And as
shown in the main text for the learned policy, we also have for the maximum entropy uniform policy
a convergence of objectives over both discretization and number of agents, see Figures D.4 and D.5
respectively. In particular, this maximum entropy policy trivially fulfills Lipschitz conditions as in
Assumption 3.4.3, and again verifies Theorems 3.4.1 and 3.4.3.
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figure d.2: Qualitative behavior in the finite horizon case for Advertisement.
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(d)

100 101 102

Iteration n

100

102

(e)

100 101 102

Iteration n

100

101

(f)

first last unif

figure d.3: The training curve of FP for various initializations. first: initial policy assigns all mass on the
first action; last: all mass on the last action; unif : the uniform maximum entropy policy. Here, actions are
ordered as they appear in the problem description. (a-c): Minor exploitability, (d-f): major exploitability, (a,
d): SIS, (b, e): Buffet, (c, f): Advertisement.

infinite-horizon discounted results As discussed in the main text, we can extend our
algorithm to the infinite-horizon discounted objective case. We observe similar results and behavior
as for the finite-horizon. For the infinite-horizon case, we apply value iteration to compute best
responses, stopping value iteration when the maximum TD error over all states is less than 10−5.

In particular, in Figure D.6, we observe the usual non-convergence of FPI, whereas the FP algorithm
together with value iteration converges in terms of exploitability. Only sometimes does the FPI
converge (here in SIS for M = 80), which again motivates the formulation of a FP algorithm. In
the second part of the figure, we verify our empirical contribution, i.e. the FP algorithm, which
generalizes also to the infinite-horizon discounted objectives.

In Figure D.7,we can see the convergence of objectives over discretization, both for the maximum
entropy policy and the FP-learned policy, as well as the stability of the FP algorithm over discretization.
The qualitative behavior is similar as the one seen in the main text for the finite horizon case.
Further, in Figure D.8, the convergence of objectives and therefore the propagation of chaos over
an increasing number of agents is again supported, both for the maximum entropy policy and the
FP-learned policy.

Lastly, in Figure D.9, the qualitative behavior of SIS is shown and is comparable to the behavior in
Figure 3.20, except for the absence of a transient finite-horizon effect near the end of the problem,
due to the stationarity of the optimal policy under the discounted infinite-horizon objective.
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figure d.4: Convergence of discretized objectives in the limit of fine discretization. The approximate
objectives of the uniform policy (dashed: right-most entry) quickly converge with finer discretization. (a-c):
Minor exploitability, (d-f): major exploitability, (a, d): SIS, (b, e): Buffet, (c, f): Advertisement.
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Ĵ

(a)

20 40
40

60

(b)

100 200

40

60 (c)

100 200
Num agents

−150

−100

−50

Ĵ
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figure d.5: Convergence of finite objectives in the limit. The mean N -agent objective (red) over 1000 (or
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248 Appendix E supplementary details on section 4.2

e.1 related work

In this section, we provide additional context on related works. Since the introduction of MFGs
in continuous and discrete time [22–24], MFGs have been studied in various forms, ranging from
partially observed systems [79, 243] over learning-based solutions [9, 95, 97, 117, 118, 127, 367]
on graphs [7, 139, 383, 384] to considering correlated equilibria [343, 369, 385].

While many works focus on non-cooperative settings with self-interested agents, this can run counter
to the goal of engineering many-agent behavior, e.g., achieving cooperative behavior in swarms
of drones. Instead, we focus on the related setting of cooperative MFC [103, 105, 201], see also
work on differential [67], static [386], or discrete-time deterministic MFC [387]. For the unfamiliar
reader, we point towards many extensive surveys on the topic of MF systems [25, 67, 124].

In general comparison, another well-known line of MF MARL [120, 241, 242, 388] focuses on
approximating the influence of other agents on any particular agent by their average actions.
Relatedly, some MARL algorithms introduce approximations over agent neighborhoods based on
exponential decay [92, 93, 389]. In contrast, MFC assumes dependence on the entire distribution of
agents and not, e.g., pairwise terms for each neighbor, per agent.

e.2 deterministic mean field control

In the following, we provide proofs that were omitted in the main text. To begin, in this section we
recap standard deterministic MFC. Here, our general proof technique is introduced. It generalizes to
the M3FC case and allows approximation properties and dynamic programming principles beyond
finite spaces and Lipschitz continuity assumptions in compact spaces, for MFC models under simple
continuity. In standard MFC, we have the model without major agents,

ui,Nt ∼ πt(u
i,N
t | xi,Nt , µN

t ), (E.2.1)

xi,Nt+1 ∼ p(xi,Nt+1 | xi,Nt , ui,Nt , µN
t ) (E.2.2)

while in the limit, we have the MF evolution

µt+1 = T (µt, µt ⊗ πt(µt)) :=

∫︂∫︂
p(· | x, u, µt)πt(du | x, µt)µt(dx) (E.2.3)

and MFC system

ht ∼ π̂t(ht | µt), µt+1 = T (µt, ht) (E.2.4)

with objective J(π̂) = E
[︁∑︁∞

t=0 γ
tr(µt)

]︁
.

dynamic programming and propagation of chaos. We may solve the hard finite-agent
system (E.2.1) near-optimally by instead solving the MFC MDP, allowing direct application of
single-agent RL to the MFC MDP with approximate optimality in large systems. Mild continuity
assumptions are required.

Assumption E.2.1. The transition kernel p and reward r are continuous.

Assumption E.2.2. The considered class of policies Π is equi-Lipschitz, i.e. there exists LΠ > 0
such that for all t and π ∈ Π, πt ∈ P(U)X×P(X ) is LΠ-Lipschitz.
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We note that Assumption E.2.1 holds true in studied finite spaces, if each transition matrix entry of
P is continuous in the |X |-dimensional MF vector on the simplex (but not necessarily Lipschitz as
in [104, 105], the conditions of which we relax for deterministic MFC).

We show a dynamic programming principle [69] to solve for and show existence of a deterministic,
stationary optimal policy via the value function V ∗ as the fixed point of the Bellman equation
V ∗(µ) = maxh∈H(µ) r(µ) + γV ∗(T (µ, h)).

Theorem E.2.1. Under Assumption E.2.1, there exists an optimal stationary, deterministic policy π̂
for Eq. (E.2.4), with π̂(µ) ∈ argmaxh∈H(µ) r(µ) + γV ∗(T (µ, h)).

This DPP can be used for computing solutions or to show optimality of stationary policies and
existence of an optimum. Next, we show propagation of chaos [218]. Here, prior proof techniques
[104, 105] are extended by our approach from finite to general compact spaces.

Theorem E.2.2. Fix any family of equicontinuous functions F ⊆ RP(X ). Under Assumptions E.2.1
and E.2.2, the empirical MF converges weakly, uniformly over f ∈ F , π ∈ Π, π̂ = Φ−1(π), to the
limiting MF at all times t ∈ N, supπ∈Π supf∈F

⃓⃓
E
[︁
f(µN

t )
]︁
− E [f(µt)]

⃓⃓
→ 0.

Importantly, propagation of chaos allows one to show approximate optimality of MFC policies in the
large finite control problem, which is of practical relevance for solving many-agent problems.

Corollary E.2.1. Under Assumptions E.2.1 and E.2.2, an optimal deterministic MFC policy π∗ ∈
argmaxπ̂ J(π̂) yields ε-optimal finite-agent policy Φ(π∗) ∈ Π, JN (Φ(π∗)) ≥ supπ∈Π JN (π)− ε,
with ε→ 0 as N →∞.

e.3 continuity of mean field dynamics

First, we find continuity of the MFC dynamics T , which is used in the following proofs.

Lemma E.3.1. Under Assumption E.2.1, we have T (µn, νn) → T (µ, ν) whenever (µn, νn) →
(µ, ν),

Proof. To show T (µn, νn) → T (µ, ν), consider any Lipschitz and bounded f with Lipschitz
constant Lf , then

⃓⃓
⃓⃓
∫︂

f d(T (µn, νn)− T (µ, ν))

⃓⃓
⃓⃓

=

⃓⃓
⃓⃓
∫︂∫︂∫︂

f(x′)p(dx′ | x, u, µn)νn(dx,du)−
∫︂∫︂∫︂

f(x′)p(dx′ | x, u, µ)ν(dx, du)
⃓⃓
⃓⃓

≤
∫︂∫︂ ⃓⃓

⃓⃓
∫︂

f(x′)p(dx′ | x, u, µn)−
∫︂

f(x′)p(dx′ | x, u, µ)
⃓⃓
⃓⃓ νn(dx,du)

+

⃓⃓
⃓⃓
∫︂∫︂∫︂

f(x′)p(dx′ | x, u, µ)(νn(dx,du)− ν(dx,du))

⃓⃓
⃓⃓

≤ sup
x∈X ,u∈U

LfW1(p(· | x, u, µn), p(· | x, u, µ))

+

⃓⃓
⃓⃓
∫︂∫︂∫︂

f(x′)p(dx′ | x, u, µ)(νn(dx,du)− ν(dx,du))

⃓⃓
⃓⃓→ 0
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for the first term by 1-Lipschitzness of f
Lf

and Assumption E.2.1 (with compactness implying the
uniform continuity), and for the second by νn → ν and from continuity by the same argument of
(x, u) ↦→

∫︁∫︁
f(x′)p(dx′ | x, u, µ).

e.4 proof of theorem E.2.1

Proof. The MFC MDP fulfills [69], Assumption 4.2.1. Here, we use [69], Condition 3.3.4(b1) instead
of (b2), see also alternatively [390].

More specifically, for [69], Assumption 4.2.1(a), the cost function −r is continuous by Assump-
tion E.2.1, therefore also bounded by compactness of P(X ), and finally also inf-compact on the
state-action space of the MFC MDP, since for any µ ∈ P(X ) the set {h ∈ H(µ) | −r(µ) ≤ c} is triv-
ially given byH(µ) whenever−r(µ) ≤ c, and ∅ otherwise. Here, we show thatH(µ) ⊆ P(X ×U)
is a closed subset of the compact space P(X × U) and therefore also compact. Note first that
two measures µ, µ′ ∈ P(X ) are equal if and only if for all continuous and bounded f we have∫︁
f dµ =

∫︁
f dµ′, see e.g. [215], Theorem 1.3.

Therefore, asH(µ) is defined by its first marginal µ,H(µ) can be written as an intersection

H(µ) =
⋂︂

f∈Cb(X )

{︃
h ∈ P(X × U)

⃓⃓
⃓⃓
∫︂

f ⊗ 1dh =

∫︂
f dµ

}︃

of closed sets: Since h ↦→
∫︁
f ⊗ 1dh is continuous, its preimage of the closed set {

∫︁
f dµ} is

closed. Here, ⊗ denotes the tensor product of f with the function 1 equal one, i.e. f ⊗ 1 is the map
(x, u) ↦→ f(x).

Similarly, for [69], Assumption 4.2.1(b), the transition dynamics T are weakly continuous, as for
any (µn, νn)→ (µ, ν) ∈ P(X )× P(X × U) we have T (µn, νn)→ T (µ, ν) by Lemma E.3.1 and
therefore

∫︁
f dδT (µn,νn) = f(T (µn, νn)) → f(T (µ, ν)) =

∫︁
f dδT (µ,ν) for any continuous and

bounded f : P(X )→ R.

Furthermore, the MFC MDP fulfills [69], Assumption 4.2.2 by boundedness of r from Assump-
tion E.2.1. Therefore, the desired statement follows from [69], Theorem 4.2.3.

e.5 proof of theorem E.2.2

Proof. Note that we can also show the slightly stronger L1 convergence statement with the absolute
value inside of the expectation, supπ∈Π supf∈F E

[︁⃓⃓
f(µN

t )− f(µt)
⃓⃓]︁
→ 0, but since this statement

is only true for deterministic MFC, we avoid it here to later extend our proof directly to M3FC.

The statement supπ∈Π supf∈F
⃓⃓
E
[︁
f(µN

t )
]︁
− E [f(µt)]

⃓⃓
→ 0 is shown inductively over t ≥ 0. At

time t = 0, it holds by the weak LLN argument, see also the first term below. Assuming the
statement at time t, then for time t+ 1 we have

sup
π∈Π

sup
f∈F

⃓⃓
E
[︁
f(µN

t+1)− f(µt+1)
]︁⃓⃓

≤ sup
π∈Π

sup
f∈F

⃓⃓
E
[︁
f(µN

t+1)− f(T (µN
t , µN

t ⊗ πt(µ
N
t )))

]︁⃓⃓
(E.5.5)

+ sup
π∈Π

sup
f∈F

⃓⃓
E
[︁
f(T (µN

t , µN
t ⊗ πt(µ

N
t )))− f(µt+1)

]︁⃓⃓
. (E.5.6)
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For the first term (E.5.5), first note that by compactness of P(X ), F is uniformly equicontinuous,
and hence admits a non-decreasing, concave (as in [353], Lemma 6.1) modulus of continuity
ωF : [0,∞) → [0,∞) where ωF (x) → 0 as x → 0 and |f(µ) − f(ν)| ≤ ωF (W1(µ, ν)) for all
f ∈ F .

We also have uniform equicontinuity of F with respect to the space (P(X ), dΣ) instead of
(P(X ),W1), as the identity map id : (P(X ), dΣ)→ (P(X ),W1) is uniformly continuous (as both
dΣ and W1 metrize the topology of weak convergence, and P(X ) is compact), and therefore there
exists a modulus of continuity ω̃ for the identity map such that for any µ, ν ∈ (P(X ), dΣ), by the
prequel

|f(µ)− f(ν)| ≤ ωF (W1(idµ, id ν)) ≤ ωF (ω̃(dΣ(µ, ν)))

with ω̃F := ωF ◦ ω̃, which can be replaced by its least concave majorant (again as in [353],
Lemma 6.1).

Therefore, by Jensen’s inequality, for Eq. (E.5.5) we obtain
⃓⃓
E
[︁
f(µN

t+1)− f(T (µN
t , µN

t ⊗ πt(µ
N
t )))

]︁⃓⃓

≤ E
[︁
ω̃F (dΣ(µ

N
t+1, T (µ

N
t , µN

t ⊗ πt(µ
N
t ))))

]︁

≤ ω̃F
(︁
E
[︁
dΣ(µ

N
t+1, T (µ

N
t , µN

t ⊗ πt(µ
N
t )))

]︁)︁

irrespective of π, f via concavity of ω̃F . Introducing for readability xNt ≡ {xi,Nt }i∈[N ], we then
obtain

E
[︁
dΣ(µ

N
t+1, T (µ

N
t , µN

t ⊗ πt(µ
N
t )))

]︁

=

∞∑︂

m=1

2−mE
[︃⃓⃓
⃓⃓
∫︂

fm d(µN
t+1 − T (µN

t , µN
t ⊗ πt(µ

N
t )))

⃓⃓
⃓⃓
]︃

≤ sup
m≥1

E
[︃
ExN

t

[︃⃓⃓
⃓⃓
∫︂

fm d(µN
t+1 − T (µN

t , µN
t ⊗ πt(µ

N
t )))

⃓⃓
⃓⃓
]︃]︃

,

and by the following weak LLN argument, for the squared term and any fm

ExN
t

[︃⃓⃓
⃓⃓
∫︂

fm d(µN
t+1 − T (µN

t , µN
t ⊗ πt(µ

N
t )))

⃓⃓
⃓⃓
]︃2

= ExN
t

[︄⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=1

(︂
fm(xi,Nt+1)− ExN

t

[︂
fm(xi,Nt+1)

]︂)︂⃓⃓⃓⃓
⃓

]︄2

≤ ExN
t

⎡
⎣
⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=1

(︂
fm(xi,Nt+1)− ExN

t

[︂
fm(xi,Nt+1)

]︂)︂⃓⃓⃓⃓
⃓

2
⎤
⎦

=
1

N2

N∑︂

i=1

ExN
t

[︃(︂
fm(xi,Nt+1)− ExN

t

[︂
fm(xi,Nt+1)

]︂)︂2]︃
≤ 4

N
→ 0

by bounding |fm| ≤ 1, as the cross-terms are zero by conditional independence of xi,Nt+1 given xNt .
By the prequel, the term (E.5.5) hence converges to zero.

For the second term (E.5.6), we have

sup
π∈Π

sup
f∈F

⃓⃓
E
[︁
f(T (µN

t , µN
t ⊗ πt(µ

N
t )))− f(µt+1)

]︁⃓⃓
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= sup
π∈Π

sup
f∈F

⃓⃓
E
[︁
f(T (µN

t , µN
t ⊗ πt(µ

N
t )))− f(T (µt, µt ⊗ πt(µt)))

]︁⃓⃓

≤ sup
π∈Π

sup
g∈G

⃓⃓
E
[︁
g(µN

t )− g(µt)
]︁⃓⃓
→ 0

by the induction assumption, where we defined g = f ◦ T̃ πt from the class G of equicontinuous
functions with modulus of continuity ωG := ωF ◦ ωT , where ωT denotes the uniform modulus of
continuity of µt ↦→ T̃

πt
(µt) := T (µt, µt ⊗ πt(µt))) over all policies π. Here, this equicontinuity

of {T̃ πt}π∈Π follows from Lemma E.3.1 and the equicontinuity of functions µt ↦→ µt ⊗ πt(µt) due
to uniformly Lipschitz Π as we show in the following, completing the proof by induction:

Consider µn → µ ∈ P(X ), then we have

sup
π∈Π

W1(µn ⊗ πt(µn), µ⊗ πt(µ))

= sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂

f ′ d(µn ⊗ πt(µn)− µ⊗ πt(µ))

⃓⃓
⃓⃓

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)(πt(du | x, µn)− πt(du | x, µ))µn(dx)

⃓⃓
⃓⃓

+ sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)πt(du | x, µ)(µn(dx)− µ(dx))

⃓⃓
⃓⃓

where for the first term

sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)(πt(du | x, µn)− πt(du | x, µ))µn(dx)

⃓⃓
⃓⃓

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

∫︂ ⃓⃓
⃓⃓
∫︂

f ′(x, u)(πt(du | x, µn)− πt(du | x, µ))
⃓⃓
⃓⃓µn(dx)

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

sup
x∈X

⃓⃓
⃓⃓
∫︂

f ′(x, u)(πt(du | x, µn)− πt(du | x, µ))
⃓⃓
⃓⃓

= sup
π∈Π

sup
x∈X

W1(πt(· | x, µn), πt(· | x, µ))

≤ LΠW1(µn, µ)→ 0

by Assumption E.2.2, and similarly for the second by first noting 1-Lipschitzness of x ↦→∫︁ f ′(x,u)
LΠ+1 πt(du | x, µ), as for y ̸= x

⃓⃓
⃓⃓
∫︂

f ′(y, u)

LΠ + 1
πt(du | y, µ)−

∫︂
f ′(x, u)

LΠ + 1
πt(du | x, µ)

⃓⃓
⃓⃓

≤
⃓⃓
⃓⃓
∫︂

f ′(y, u)− f ′(x, u)

LΠ + 1
πt(du | y, µ)

⃓⃓
⃓⃓+
⃓⃓
⃓⃓
∫︂

f ′(x, u)

LΠ + 1
(πt(du | y, µ)− πt(du | x, µ))

⃓⃓
⃓⃓

≤ 1

LΠ + 1
d(y, x) +

1

LΠ + 1
W1(πt(· | y, µ), πt(· | x, µ))

≤
(︃

1

LΠ + 1
+

LΠ

LΠ + 1

)︃
d(x, y) (E.5.7)

with 1
LΠ+1 + LΠ

LΠ+1 = 1 ≤ 1, and therefore again

sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)πt(du | x, µ)(µn(dx)− µ(dx))

⃓⃓
⃓⃓
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= sup
π∈Π

sup
∥f ′∥Lip≤1

(LΠ + 1)

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)

LΠ + 1
πt(du | x, µ)(µn(dx)− µ(dx))

⃓⃓
⃓⃓

≤ (LΠ + 1)W1(µn, µ)→ 0.

This completes the proof by induction.

e.6 proof of corollary E.2.1

Proof. First, we show that from uniform convergence in Theorem E.2.2, the finite-agent objectives
converge uniformly to the MFC limit.

Lemma E.6.1. Under Assumptions E.2.1 and E.2.2, the finite-agent objective converges uniformly
to the MFC limit,

sup
π∈Π

⃓⃓
JN (π)− J(Φ−1(π))

⃓⃓
→ 0. (E.6.8)

Proof. For any ε > 0, choose time T ∈ N such that
∑︁∞

t=T γtE
⃓⃓[︁
r(µN

t )− r(µt)
]︁⃓⃓
≤

γT

1−γ maxµ 2|r(µ)| < ε
2 . By Theorem E.2.2,

∑︁T−1
t=0 γtE

⃓⃓[︁
r(µN

t )− r(µt)
]︁⃓⃓

< ε
2 for sufficiently

large N . The result follows. ■

The approximate optimality of MFC solutions in the finite system follows immediately: By
Lemma E.6.1, we have

JN (Φ(π∗))− sup
π∈Π

JN (π) = inf
π∈Π

(JN (π∗)− JN (π))

≥ inf
π∈Π

(JN (Φ(π∗))− J(π∗)) + inf
π∈Π

(J(π∗)− J(Φ−1(π))) + inf
π∈Π

(J(Φ−1(π))− JN (π))

≥ −ε

2
+ 0− ε

2
= −ε

for sufficiently large N , where the second term is zero by optimality of π∗ in the MFC problem.

e.7 stochastic mean field control

For convenience, we also restate the results for MFC with major states, or common noise. We have
the finite MFC system with major states

ui,Nt ∼ πt(u
i,N
t | xi,Nt , x0,Nt , µN

t ), (E.7.9a)

xi,Nt+1 ∼ p(xi,Nt+1 | xi,Nt , ui,Nt , x0,Nt , µN
t ), x0,Nt+1 ∼ p0(x0,Nt+1 | x0,Nt , µN

t ) (E.7.9b)

and objective JN (π) = E
[︂∑︁∞

t=0 γ
tr(x0,Nt , µN

t )
]︂

analogous to Eq. (E.2.1), with the corresponding
limiting MFC MDP with major states analogous to Eq. (E.2.4),

ht ∼ π̂t(ht | x0t , µt), µt+1 = T (x0t , µt, ht), x0t+1 ∼ p0(x0t+1 | x0t , µt) (E.7.10)

with objective J(π̂) = E
[︁∑︁∞

t=0 γ
tr(x0t , µt)

]︁
, where

T (x0, µ, h) :=

∫︂∫︂
p(· | x, u, x0, µ)h(dx, du).
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Assumption E.7.1. The transition kernels p, p0 and rewards r are Lipschitz continuous with
constants Lp, Lp0 , Lr.

Assumption E.7.2. The class of policies Π are equi-Lipschitz, i.e. there exists LΠ > 0 such that
for all t and π ∈ Π, πt ∈ P(U)X×P(X ) is LΠ-Lipschitz.

Theorem E.7.1. Under Assumption E.7.1, there exists an optimal stationary, deterministic policy π̂
for the MFC MDP Eq. (E.7.10) by choosing π̂(x0, µ) from the maximizers of argmaxh∈H(µ) r(x

0, µ)+

γEy0∼p0(y0|x0,µ)V
∗(y0, T (x0, µ, h)), with V ∗ the unique fixed point of the Bellman equation

V ∗(x0, µ) = maxh∈H(µ) r(x
0, µ) + γEy0∼p0(y0|x0,µ)V

∗(y0, T (x0, µ, h)) (value function).

Theorem E.7.2. Fix any family of equi-Lipschitz functions F ⊆ RX 0×P(X ) with shared Lipschitz
constant LF for all f ∈ F . Under Assumption E.7.1, the random variable (x0,Nt , µN

t ) converges
weakly, uniformly over F , Π, to (x0t , µt) at all times t ∈ N,

sup
π∈Π

sup
f∈F

⃓⃓
⃓E
[︂
f(x0,Nt , µN

t )− f(x0t , µt)
]︂⃓⃓
⃓→ 0. (E.7.11)

Corollary E.7.1. Under Assumptions E.7.1 and E.7.2, optimal deterministic MFC policies π∗ ∈
argmaxπ J(π) result in ε-optimal policies Φ(π∗) in the finite-agent problem with ε → 0 as
N →∞,

JN (Φ(π∗)) ≥ sup
π∈Π

JN (π)− ε. (E.7.12)

The proofs and interpretation are directly analogous to the M3FC case and the following proofs, by
leaving out the major agent actions, or alternatively using the M3FC results with a trivial singleton
major action space, |U0| = 1.

e.8 proof of theorem 4.2.1

Proof. The proof is analogous to Appendix E.4 by first showing the continuity of T (proof further
below).

Lemma E.8.1. Under Assumption 4.2.1, for any sequence (x0n, u
0
n, µn, νn) → (x0, u0, µ, ν) ∈

X 0 × U0 × P(X )× P(X × U), we have T (x0n, u0n, µn, νn)→ T (x0, u0, µ, ν).

For [69], Assumption 4.2.1(a), the cost function−r is continuous by Assumption 4.2.1, therefore also
bounded by compactness ofX 0×P(X ), and finally also inf-compact on the state-action space of the
M3FC MDP, since for any (x0, µ) ∈ X 0×P(X ) the set {(h, u0) ∈ H(µ)×U0 | −r(x0, u0, µ) ≤ c}
is given by H(µ)× r̃−1((−∞, c]), where we defined r̃(u0) := −r(x0, u0, µ). Note that H(µ) is
compact by the same argument as in Appendix E.4, while r̃ is continuous by Assumption 4.2.1 and
therefore its preimage of the closed set (−∞, c] is compact.

For [69], Assumption 4.2.1(b), consider any continuous and bounded f : X 0 × P(X )→ R. The
continuity is uniform by compactness. Hence, supx′∈X 0 |f(x′, µ′

n)− f(x′, µ′)| → 0 as µ′
n → µ′ ∈

P(X ). Thus, whenever (x0n, u0n, µn, νn)→ (x0, u0, µ, ν) ∈ X 0 × U0 × P(X )× P(X × U), we
have

⃓⃓
⃓⃓
∫︂∫︂

f(x′, µ) δT ∗
n
(dµ′) p0(dx′ | x0n, u0n, µn)−

∫︂∫︂
f(x′, µ) δT ∗(dµ′) p0(dx′ | x0, u0, µ)

⃓⃓
⃓⃓
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=

⃓⃓
⃓⃓
∫︂

f(x′, T ∗
n) p

0(dx′ | x0n, u0n, µn)−
∫︂

f(x′, T ∗) p0(dx′ | x0, u0, µ)
⃓⃓
⃓⃓

≤
⃓⃓
⃓⃓
∫︂

f(x′, T ∗
n) p

0(dx′ | x0n, u0n, µn)−
∫︂

f(x′, T ∗) p0(dx′ | x0n, u0n, µn)

⃓⃓
⃓⃓

+

⃓⃓
⃓⃓
∫︂

f(x′, T ∗) p0(dx′ | x0n, u0n, µn)−
∫︂

f(x′, T ∗) p0(dx′ | x0, u0, µ)
⃓⃓
⃓⃓

≤ sup
x′∈X 0

⃓⃓
f(x′, T ∗

n)− f(x′, T ∗)
⃓⃓

+

⃓⃓
⃓⃓
∫︂

f̃(x′) p0(dx′ | x0n, u0n, µn)−
∫︂

f̃(x′) p0(dx′ | x0, u0, µ)
⃓⃓
⃓⃓→ 0

for the first term by the prequel where T ∗
n := T (x0n, u

0
n, µn, νn) → T ∗ := T (x0, u0, µ, ν) by

Lemma E.8.1, and for the second term by applying Assumption 4.2.1 to f̃(x′) := f(x′, T ∗). This
shows weak continuity of the dynamics.

Furthermore, the M3FC MDP fulfills [69], Assumption 4.2.2 by boundedness of r from Assump-
tion 4.2.1. Therefore, the desired statement follows from [69], Theorem 4.2.3.

e.9 proof of lemma E.8.1

Proof. To show T (x0n, u
0
n, µn, νn)→ T (x0, u0, µ, ν), consider any Lipschitz and bounded f with

Lipschitz constant Lf , then
⃓⃓
⃓⃓
∫︂

f d(T (x0n, u
0
n, µn, νn)− T (x0, u0, µ, ν))

⃓⃓
⃓⃓

=

⃓⃓
⃓⃓
∫︂∫︂∫︂

f(x′)
(︁
p(dx′ | x, u, x0n, u0n, µn)νn(dx,du)− p(dx′ | x, u, x0, u0, µ)ν(dx, du)

)︁⃓⃓⃓⃓

≤
∫︂∫︂ ⃓⃓

⃓⃓
∫︂

f(x′)p(dx′ | x, u, x0n, u0n, µn)−
∫︂

f(x′)p(dx′ | x, u, x0, u0, µ)
⃓⃓
⃓⃓ νn(dx, du)

+

⃓⃓
⃓⃓
∫︂∫︂∫︂

f(x′)p(dx′ | x, u, x0, u0, µ)(νn(dx,du)− ν(dx,du))

⃓⃓
⃓⃓

≤ sup
x∈X ,u∈U

LfW1(p(· | x, u, x0n, u0n, µn), p(· | x, u, x0, u0, µ))

+

⃓⃓
⃓⃓
∫︂∫︂∫︂

f(x′)p(dx′ | x, u, x0, u0, µ)(νn(dx,du)− ν(dx,du))

⃓⃓
⃓⃓→ 0

for the first term by 1-Lipschitzness of f
Lf

and Assumption 4.2.1 (with compactness implying the
uniform continuity), and for the second by νn → ν and continuity of (x, u) ↦→

∫︁∫︁
f(x′)p(dx′ |

x, u, x0, u0, µ) by the same argument.

e.10 proof of theorem 4.2.2

Proof. The statement supf,π,π0

⃓⃓
⃓E
[︂
f(x0,Nt , u0,Nt , µN

t )− f(x0t , u
0
t , µt)

]︂⃓⃓
⃓ is shown inductively over

t ≥ 0. At time t = 0, it holds by the weak LLN argument, see also the first term below. Assuming
the statement at time t, then for time t+ 1 we have

sup
(π,π0)∈Π×Π0

sup
f∈F

⃓⃓
⃓E
[︂
f(x0,Nt+1, u

0,N
t+1, µ

N
t+1)− f(x0t+1, u

0
t+1, µt+1)

]︂⃓⃓
⃓
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≤ sup
π,π0

sup
f∈F

⃓⃓
⃓E
[︂
f(x0,Nt+1, u

0,N
t+1, µ

N
t+1)− f(x0,Nt+1, u

0,N
t+1, µ̂

N
t+1)

]︂⃓⃓
⃓ (E.10.13)

+ sup
π,π0

sup
f∈F

⃓⃓
⃓E
[︂
f(x0,Nt+1, u

0,N
t+1, µ̂

N
t+1)− f(x0t+1, u

0
t+1, µt+1)

]︂⃓⃓
⃓ (E.10.14)

where for readability, we again write πt(x
0
t , µt) := πt(· | ·, x0t , µt) and introduce the random

variable

µ̂N
t+1 := T (x0,Nt , u0,Nt , µN

t , µN
t ⊗ πt(x

0,N
t , µN

t )).

By compactness of X 0 × U0 × P(X ), F is uniformly equicontinuous, and hence admits a non-
decreasing, concave (as in [353], Lemma 6.1) modulus of continuity ωF : [0,∞)→ [0,∞) where
ωF (x)→ 0 as x→ 0 and |f(x, u, µ)− f(x′, u′, ν)| ≤ ωF (d(x, x

′) + d(u, u′) +W1(µ, ν)) for all
f ∈ F , and analogously there exists such ω̃F with respect to (P(X ), dΣ) instead of (P(X ),W1)
as in Appendix E.5.

For the first term (E.10.13), let xNt ≡ {xi,Nt }i∈[N ]. Then, by the weak LLN argument,

sup
π,π0

sup
f∈F

⃓⃓
⃓E
[︂
f(x0,Nt+1, u

0,N
t+1, µ

N
t+1)− f(x0,Nt+1, u

0,N
t+1, µ̂

N
t+1)

]︂⃓⃓
⃓

≤ sup
π,π0

E
[︁
ω̃F (dΣ(µ

N
t+1, µ̂

N
t+1))

]︁

≤ sup
π,π0

ω̃F

(︄ ∞∑︂

m=1

2−mE
[︁⃓⃓
µN
t+1(fm)− µ̂N

t+1(fm)
⃓⃓]︁
)︄

≤ sup
π,π0

ω̃F

(︃
sup
m≥1

E
[︁
EJt

[︁⃓⃓
µN
t+1(fm)− µ̂N

t+1(fm)
⃓⃓]︁]︁)︃

= sup
π,π0

ω̃F

(︄
sup
m≥1

E

[︄
EJt

[︄⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=1

(︂
fm(xi,Nt+1)− EJt

[︂
fm(xi,Nt+1)

]︂)︂⃓⃓⃓⃓
⃓

]︄]︄)︄

≤ sup
π,π0

ω̃F

⎛
⎜⎝sup

m≥1
E

⎡
⎣EJt

⎡
⎣
⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=1

(︂
fm(xi,Nt+1)− EJt

[︂
fm(xi,Nt+1)

]︂)︂⃓⃓⃓⃓
⃓

2
⎤
⎦
⎤
⎦
1/2
⎞
⎟⎠

= sup
π,π0

ω̃F

⎛
⎝sup

m≥1

(︄
1

N2

N∑︂

i=1

E
[︃
EJt

[︃(︂
fm(xi,Nt+1)− EJt

[︂
fm(xi,Nt+1)

]︂)︂2]︃]︃
)︄1/2

⎞
⎠

≤ ω̃F

(︃
2√
N

)︃
→ 0 (E.10.15)

where Jt := (x0,Nt , u0,Nt , xNt ) by bounding |fm| ≤ 1, as the cross-terms disappear.

For the second term (E.10.14), by noting µ̂N
t+1 = T (x0,Nt , u0,Nt , µN

t , µN
t ⊗ πt(x

0,N
t , µN

t )), we have

sup
π,π0

sup
f∈F

⃓⃓
⃓E
[︂
f(x0,Nt+1, u

0,N
t+1, µ̂

N
t+1)− f(x0t+1, u

0
t+1, µt+1)

]︂⃓⃓
⃓

= sup
π,π0

sup
f∈F

⃓⃓
⃓⃓E
[︃∫︂∫︂

f(x′, u′, µ̂N
t+1)π

0
t (du

′ | x′, µN
t+1)p

0(dx′ | x0,Nt , u0,Nt , µN
t )

−
∫︂∫︂

f(x′, u′, µt+1)π
0
t (du

′ | x′, µt+1)p
0(dx′ | x0t , u0t , µt)

]︃⃓⃓
⃓⃓
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≤ sup
π,π0

sup
f∈F

E
[︃
sup
x′

⃓⃓
⃓⃓
∫︂

f(x′, u′, µ̂N
t+1)(π

0
t (du

′ | x′, µN
t+1)− π0

t (du
′ | x′, µ̂N

t+1))

⃓⃓
⃓⃓
]︃

(E.10.16)

+ sup
π,π0

sup
g∈G

⃓⃓
⃓E
[︂
g(x0,Nt , u0,Nt , µN

t )− g(x0t , u
0
t , µt)

]︂⃓⃓
⃓ (E.10.17)

and analyze each term separately, where we defined the function g : X 0 × U0 × P(X ) as

g(x0, u0, µ) :=

∫︂∫︂
f(x′, u′, T ∗)π0

t (du
′ | x′, T ∗)p0(dx′ | x0, u0, µ)

from the class G of such functions for any policies π, π0, where T ∗ := T (x0, u0, µ, µ⊗ πt(x
0, µ)).

For Eq. (E.10.16), defining a modulus of continuity ω̃Π0 for Π0 as for F , we have

sup
π,π0

sup
f∈F

E
[︃
sup
x′

⃓⃓
⃓⃓
∫︂

f(x′, u′, µ̂N
t+1)(π

0
t (du

′ | x′, µN
t+1)− π0

t (du
′ | x′, µ̂N

t+1))

⃓⃓
⃓⃓
]︃

≤ sup
π,π0

E
[︃
LF sup

x′
W1(π

0
t (· | x′, µN

t+1), π
0
t (· | x′, µ̂N

t+1))

]︃

≤ sup
π,π0

E
[︁
LF ω̃Π0(dΣ(µ

N
t+1, µ̂

N
t+1))

]︁
≤ LF ω̃Π0

(︃
2√
N

)︃
→ 0.

Lastly, for Eq. (E.10.17), we first note that the class G of functions is equi-Lipschitz.

Lemma E.10.1. Under Assumptions 4.2.1 and 4.2.2, the map (x0, u0, µ) ↦→ T (x0, u0, µ, µ ⊗
πt(x

0, µ)) is Lipschitz with constant LT := (2LΠ + 1) · (Lp + (Lp + 1)LΠ + (Lp + LΠ + 1)).

Lemma E.10.2. Under Assumptions 4.2.1 and 4.2.2, for any equi-Lipschitz F with constant LF ,
the function class G is equi-Lipschitz with constant LG := (LFLT + LFLΠ0LT + LFLΠLp0).

Therefore, for Eq. (E.10.17), we have

sup
π,π0

sup
g∈G

⃓⃓
⃓E
[︂
g(x0,Nt , u0,Nt , µN

t )− g(x0t , u
0
t , µt)

]︂⃓⃓
⃓→ 0

by the induction assumption over the class G of equi-Lipschitz functions, completing the proof by
induction. The existence of independent optimal π, π0 follows from Remark 4.2.3. This completes
the proof.

For finite minor states, we can quantify the convergence rate more precisely as O(1/
√
N), since

the two metrizations dΣ and W1 are then Lipschitz equivalent and the above moduli of continuity
simply become a multiplication with the Lipschitz constant, so for convenience we simply use the
L1 distance. The convergence in the first term (E.10.13) is immediate by the weak LLN

sup
π,π0

sup
f∈F

⃓⃓
⃓E
[︂
f(x0,Nt+1, u

0,N
t+1, µ

N
t+1)− f(x0,Nt+1, u

0,N
t+1, µ̂

N
t+1)

]︂⃓⃓
⃓

≤ sup
π,π0

LfE

[︄∑︂

x∈X

⃓⃓
µN
t+1(x)− µ̂N

t+1(x)
⃓⃓
]︄

= sup
π,π0

Lf

∑︂

x∈X
E
x0,N
t ,u0,N

t ,µN
t

[︄
E

[︄⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=1

1x(x
i,N
t+1)− E

x0,N
t ,u0,N

t ,µN
t

[︄
1

N

N∑︂

i=1

1x(x
i,N
t+1)

]︄⃓⃓
⃓⃓
⃓

]︄]︄

≤ Lf |X |
√︃

4

N
,

and for the second term (E.10.14) we again use the induction assumption, completing the proof.
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e.11 proof of lemma E.10.1

Proof. First note Lipschitz continuity of (x0, µ) ↦→ µ⊗ πt(x
0, µ) as in Appendix E.5, as for any

(x0∗, µ∗), (x
0, µ) ∈ X 0 × P(X ), then

sup
π∈Π

W1(µ∗ ⊗ πt(x
0
∗, µ∗), µ⊗ πt(x

0, µ))

= sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂

f ′ d(µ∗ ⊗ πt(x
0
∗, µ∗)− µ⊗ πt(x

0, µ))

⃓⃓
⃓⃓

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)(πt(du | x, x0∗, µ∗)− πt(du | x, x0, µ))µ∗(dx)

⃓⃓
⃓⃓

+ sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)πt(du | x, x0, µ)(µ∗(dx)− µ(dx))

⃓⃓
⃓⃓

where for the first term

sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)(πt(du | x, x0∗, µ∗)− πt(du | x, x0, µ))µ∗(dx)

⃓⃓
⃓⃓

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

∫︂ ⃓⃓
⃓⃓
∫︂

f ′(x, u)(πt(du | x, x0∗, µ∗)− πt(du | x, x0, µ))
⃓⃓
⃓⃓µ∗(dx)

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

sup
x∈X

⃓⃓
⃓⃓
∫︂

f ′(x, u)(πt(du | x, x0∗, µ∗)− πt(du | x, x0, µ))
⃓⃓
⃓⃓

= sup
π∈Π

sup
x∈X

W1(πt(· | x, x0∗, µ∗), πt(· | x, x0, µ))

≤ LΠd((x
0
∗, µ∗), (x

0, µ))

by Assumption 4.2.2, and similarly for the second by noting 1-Lipschitzness of x ↦→
∫︁ f ′(x,u)

LΠ+1 πt(du |
x, x0, µ), as before in Eq. (E.5.7), and therefore again

sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)πt(du | x, x0, µ)(µ∗(dx)− µ(dx))

⃓⃓
⃓⃓

= sup
π∈Π

sup
∥f ′∥Lip≤1

(LΠ + 1)

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)

LΠ + 1
πt(du | x, x0, µ)(µ∗(dx)− µ(dx))

⃓⃓
⃓⃓

≤ (LΠ + 1)W1(µ∗, µ).

Hence, the map (x0, u0, µ) ↦→ µ⊗ πt(x
0, µ) is Lipschitz with constant (2LΠ + 1).

As a result, the entire map (x0, u0, µ) ↦→ T (x0, u0, µ, µ⊗ πt(x
0, µ) is Lipschitz, since for any

W1(T (x
0
∗, u

0
∗, µ∗, µ∗ ⊗ πt(x

0
∗, µ∗)), T (x

0, u0, µ, µ⊗ πt(x
0, µ))

= sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂∫︂

f ′(x′)p(dx′ | x, u, x0∗, u0∗, µ∗)πt(du | x, x0∗, µ∗)µ∗(dx)

−
∫︂∫︂∫︂

f ′(x′)p(dx′ | x, u, x0, u0, µ)πt(du | x, x0, µ)µ(dx)
⃓⃓
⃓⃓

≤ sup
∥f ′∥Lip≤1

sup
(x,u)∈X×U

⃓⃓
⃓⃓
∫︂

f ′(x′)(p(dx′ | x, u, x0∗, u0∗, µ∗)− p(dx′ | x, u, x0, u0, µ))
⃓⃓
⃓⃓



E.12 proof of lemma E.10.2 259

+ sup
∥f ′∥Lip≤1

sup
x∈X

⃓⃓
⃓⃓
∫︂∫︂

f ′(x′)p(dx′ | x, u, x0, u0, µ)(πt(du | x, x0∗, µ∗)− πt(du | x, x0, µ))
⃓⃓
⃓⃓

+ sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂∫︂

f ′(x′)p(dx′ | x, u, x0, u0, µ)πt(du | x, x0, µ)(µ∗(dx)− µ(dx))

⃓⃓
⃓⃓

≤ sup
(x,u)∈X×U

W1(p(· | x, u, x0∗, u0∗, µ∗), p(· | x, u, x0, u0, µ))

+ sup
x∈X

(Lp + 1)W1(πt(· | x, x0∗, µ∗), πt(· | x, x0, µ))

+ sup
(x,u)∈X×U

(Lp + LΠ + 1)W1(µ∗, µ)

≤ (Lp + (Lp + 1)LΠ + (Lp + LΠ + 1))⏞ ⏟⏟ ⏞
L∗

d((x0∗, u
0
∗, µ∗), (x

0, u0, µ))

with Lipschitz constant LT := (2LΠ + 1) · L∗ from Assumptions 4.2.1 and 4.2.2, using the same
argument as in Eq. (E.5.7).

e.12 proof of lemma E.10.2

Proof. For any g ∈ G, for any (x0∗, u
0
∗, µ∗), (x

0, u0, µ) ∈ X 0 × U0 × P(X ), let T∗ :=
T (x0∗, u

0
∗, µ∗, µ∗ ⊗ πt(x

0
∗, µ∗)) and T ∗ := T (x0, u0, µ, µ⊗ πt(x

0, µ)) for brevity. We have
⃓⃓
g(x0∗, u

0
∗, µ∗)− g(x0, u0, µ)

⃓⃓

=

⃓⃓
⃓⃓
∫︂∫︂

f(x′, u′, T∗)π
0
t (du

′ | x′, T∗)p
0(dx′ | x0∗, u0∗, µ∗)

−
∫︂∫︂

f(x′, u′, T ∗)π0
t (du

′ | x′, T ∗)p0(dx′ | x0, u0, µ)
⃓⃓
⃓⃓

≤ sup
x′,u′

⃓⃓
f(x′, u′, T∗)− f(x′, u′, T ∗)

⃓⃓
(E.12.18)

+ sup
x′

⃓⃓
⃓⃓
∫︂

f(x′, u′, T ∗)(π0
t (du

′ | x′, T∗)− π0
t (du

′ | x′, T ∗))

⃓⃓
⃓⃓ (E.12.19)

+

⃓⃓
⃓⃓
∫︂∫︂

f(x′, u′, T ∗)π0
t (du

′ | x′, T ∗)(p0(dx′ | x0∗, u0∗, µ∗)− p0(dx′ | x0, u0, µ))
⃓⃓
⃓⃓ .

(E.12.20)

By Lemma E.10.1, for Eq. (E.12.18) we obtain

sup
x′,u′

⃓⃓
f(x′, u′, T (x0∗, u

0
∗, µ∗, µ∗ ⊗ πt(x

0
∗, µ∗)))− f(x′, u′, T (x0, u0, µ, µ⊗ πt(x

0, µ)))
⃓⃓

≤ LFLTd((x
0
∗, u

0
∗, µ∗), (x

0, u0, µ)).

Similarly for Eq. (E.12.19), by Assumption 4.2.2 we analogously have

sup
x′

⃓⃓
⃓⃓
∫︂

f(x′, u′, T (x0, u0, µ, µ⊗ πt(x
0, µ)))

(π0
t (du

′ | x′, T (x0∗, u0∗, µ∗, µ∗ ⊗ πt(x
0
∗, µ∗)))− π0

t (du
′ | x′, T (x0, u0, µ, µ⊗ πt(x

0, µ))))
⃓⃓

≤ LFW1(π
0
t (· | x′, T (x0∗, u0∗, µ∗, µ∗ ⊗ πt(x

0
∗, µ∗))), π

0
t (· | x′, T (x0, u0, µ, µ⊗ πt(x

0, µ)))

≤ LFLΠ0LTd((x
0
∗, u

0
∗, µ∗), (x

0, u0, µ)).
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Lastly, for Eq. (E.12.20), as before in Eq. (E.5.7), by Assumptions 4.2.1 and 4.2.2 we have again
⃓⃓
⃓⃓
∫︂∫︂

f(x′, u′, T (x0, u0, µ, µ⊗ πt(x
0, µ)))π0

t (du
′ | x′, T (x0, u0, µ, µ⊗ πt(x

0, µ)))

(p0(dx′ | x0∗, u0∗, µ∗)− p0(dx′ | x0, u0, µ))
⃓⃓

≤ LFLΠW1(p
0(· | x0∗, u0∗, µ∗), p

0(· | x0, u0, µ))
≤ LFLΠLp0d((x

0
∗, u

0
∗, µ∗), (x

0, u0, µ)).

Therefore, G is equi-Lipschitz with Lipschitz constant (LFLT + LFLΠ0LT + LFLΠLp0).

e.13 proof of corollary 4.2.1

Proof. As in Lemma E.6.1, for any ε > 0, choose time T ∈ N such that
∞∑︂

t=T

γt
⃓⃓
⃓E
[︂
r(x0,Nt , u0,Nt , µN

t )− r(x0t , u
0
t , µt)

]︂⃓⃓
⃓ ≤ γT

1− γ
max
µ

2|r(µ)| < ε

2
.

By Theorem 4.2.2,

T−1∑︂

t=0

γt
⃓⃓
⃓E
[︂
r(x0,Nt , u0,Nt , µN

t )− r(x0t , u
0
t , µt)

]︂⃓⃓
⃓ < ε

2

for sufficiently large N . Therefore, sup(π,π0)∈Π×Π0

⃓⃓
JN (π, π0)− J(Φ−1(π), π0)

⃓⃓
→ 0.

As a result, we have

JN (Φ(π̂∗), π0∗)− sup
(π,π0)∈Π×Π0

JN (π, π0) = inf
(π,π0)∈Π×Π0

(JN (Φ(π̂∗), π0∗)− JN (π, π0))

≥ inf
(π,π0)∈Π×Π0

(JN (Φ(π̂∗), π0∗)− J(π̂∗, π0∗))

+ inf
(π,π0)∈Π×Π0

(J(π̂∗, π0∗)− J(π, π0))

+ inf
(π,π0)∈Π×Π0

(J(π, π0)− JN (π, π0))

≥ −ε

2
+ 0− ε

2
= −ε

for sufficiently large N , where the second term is zero by optimality of (π̂∗, π0∗) in the M3FC
problem.

e.14 proof of theorem 4.2.3

First, for completeness we give the finite M3FC system equations under the assumed Lipschitz
parametrization for joint stationary M3FMARL policies π̃θ used during centralized training with
correlated minor agent actions. Note that deterministic joint policies π̃θ (e.g. at convergence, or if
using deterministic policy gradients [257]) are equivalent to using separate deterministic minor and
major policies in Eq. (4.2.29), see also Remark 4.2.3. The finite M3FC system equations are then
given as

u0,Nt , ξNt ∼ π̃θ(u0,Nt , ξNt | x0,Nt , µN
t ), π′N

t = Γ(ξNt ), ui,Nt ∼ π′N
t (ui,Nt | xi,Nt ),
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xi,Nt+1 ∼ p(xi,Nt+1 | xi,Nt , ui,Nt , x0,Nt , u0,Nt , µN
t ), x0,Nt+1 ∼ p0(x0,Nt+1 | x0,Nt , u0,Nt , µN

t ),

as well as the limiting M3FC MDP under such parametrization as

u0t , ξt ∼ π̃θ(u0t , ξt | x0t , µt), π′
t = Γ(ξt), ht = µt ⊗ π′

t,

µt+1 = T (x0t , u
0
t , µt, ht), x0t+1 ∼ p0(x0t+1 | x0t , u0t , µt).

Then, by [221], the exact policy gradient for the limiting M3FC MDP is given as

∇θJ(π̃
θ) =

∞∑︂

t=T

γtE
[︂
Qθ(x0t , µt, u

0
t , ξt)∇θ log π̃

θ(u0t , ξt | x0t , µt)
]︂

under the action-value function

Qθ(x0, µ, u0, ξ) = E

[︄ ∞∑︂

t=0

γtr(x0t , u
0
t , µt)

⃓⃓
⃓⃓
⃓ x

0
0 = x0, µ0 = µ, u00 = u0, ξ0 = ξ

]︄
,

while the approximation for the policy gradient on the finite M3FC system is given instead by

ˆ︃∇θJ(π̃
θ) =

∞∑︂

t=T

γtE
[︂
ˆ︁Qθ(x0,Nt , µN

t , u0,Nt , ξNt )∇θ log π̃
θ(u0,Nt , ξNt

⃓⃓
⃓ x0,Nt , µN

t )
]︂

and the finite-agent action-values

ˆ︁Qθ(x0, µ, u0, ξ) = E

[︄ ∞∑︂

t=0

γtr(x0,Nt , u0,Nt , µN
t )

⃓⃓
⃓⃓
⃓ x

0,N
0 = x0, µ0 = µ, u0,N0 = u0, ξN0 = ξ

]︄
,

which are obtained, e.g., by on-policy samples and using critic estimates. Note that here, the
conditional expectations are given by redefining the systems (4.2.29) and (4.2.31) with the values
conditioned upon.

We then show that the approximation of the policy gradient is good for large systems, i.e.
⃦⃦
⃦ˆ︃∇θJ(π̃

θ)−∇θJ(π̂
θ)
⃦⃦
⃦→ 0 (E.14.21)

as N →∞, uniformly over all current policy parameters θ.

Proof of Theorem 4.2.3. We use the following lemmas in the proof of Theorem 4.2.3, for which the
proofs are given below.

Proposition E.14.1. Propagation of chaos holds for the M3FC systems with parameterized actions
as in Theorem 4.2.2, i.e. under Assumptions 4.2.1, 4.2.2 and 4.2.3, for any equi-Lipschitz family F ,
at all times t ∈ N uniformly,

sup
f,π,π0

⃓⃓
⃓E
[︂
f(x0,Nt , u0,Nt , µN

t )− f(x0t , u
0
t , µt)

]︂⃓⃓
⃓→ 0. (E.14.22)

Proposition E.14.2. Under Assumptions 4.2.1 and 4.2.2, the approximate action-values converge
uniformly, ˆ︁Qθ → Qθ as N →∞.
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As a result, we obtain
⃦⃦
⃦ˆ︃∇θJ(π̃

θ)−∇θJ(π̂
θ)
⃦⃦
⃦

=

⃦⃦
⃦⃦
⃦

∞∑︂

t=0

γtE
[︂
ˆ︁Qθ(x0,N

t , µN
t , u0,N

t , ξNt )∇θ log π̃
θ(u0,N

t , ξNt | x0,N
t , µN

t )

−Qθ(x0
t , µt, u

0
t , ξt)∇θ log π̃

θ(u0
t , ξt | x0

t , µt)
]︁⃦⃦

≤
⃦⃦
⃦⃦
⃦

∞∑︂

t=0

γtE
[︂(︂
ˆ︁Qθ(x0,N

t , µN
t , u0,N

t , ξNt )−Qθ(x0,N
t , µN

t , u0,N
t , ξNt )

)︂
∇θ log π̃

θ(u0,N
t , ξNt | x0,N

t , µN
t )
]︂⃦⃦⃦⃦
⃦

+

⃦⃦
⃦⃦
⃦

∞∑︂

t=T

γtE
[︂
Qθ(x0,N

t , µN
t , u0,N

t , ξNt )∇θ log π̃
θ(u0,N

t , ξNt | x0,N
t , µN

t )

−Qθ(x0
t , µt, u

0
t , ξt)∇θ log π̃

θ(u0
t , ξt | x0

t , µt)
]︁⃦⃦

+

⃦⃦
⃦⃦
⃦
T−1∑︂

t=0

γtE
[︂
Qθ(x0,N

t , µN
t , u0,N

t , ξNt )∇θ log π̃
θ(u0,N

t , ξNt | x0,N
t , µN

t )

−Qθ(x0
t , µt, u

0
t , ξt)∇θ log π̃

θ(u0
t , ξt | x0

t , µt)
]︁⃦⃦

for any T , such that the first term disappears by Assumption 4.2.3 uniformly bounding ∇θ log π̃
θ

and Proposition E.14.2. Note that we bounded ∇θ log π̃
θ here, but we can also assume bounded

gradients∇θπ̃
θ instead, e.g. Eq. (E.14.23).

For the second term, we similarly uniformly bound ∇θ log π̃
θ by Assumption 4.2.3 and Q by

Assumption 4.2.1, then choose T sufficiently large.

Finally, for the last term, we note that we can write the difference as
⃦⃦
⃦⃦
⃦
T−1∑︂

t=0

γtE
[︂
Qθ(x0,N

t , µN
t , u0,N

t , ξNt )∇θ log π̃
θ(u0,N

t , ξNt | x0,N
t , µN

t )

−Qθ(x0
t , µt, u

0
t , ξt)∇θ log π̃

θ(u0
t , ξt | x0

t , µt)
]︁⃦⃦

=

⃦⃦
⃦⃦
⃦
T−1∑︂

t=0

γtE

[︄ ∞∑︂

t′=0

γtE
[︂
r(x0′

t′ , u
0′
t′ , µ

′
t′)
⃓⃓
⃓ x0′

0 = x0,N
t , µ′

0 = µN
t , u0′

0 = u0,N
t , ξ′0 = ξNt

]︂

·∇θ log π̃
θ(u0,N

t , ξNt | x0,N
t , µN

t )

−
∞∑︂

t=0

γtE
[︁
r(x0′

t′ , u
0′
t′ , µ

′
t′)
⃓⃓
x0′
0 = x0

t , µ
′
0 = µt, u

0′
0 = u0

t , ξ
′
0 = ξt

]︁

·∇θ log π̃
θ(u0

t , ξt | x0
t , µt)

]︁⃦⃦

≤
⃦⃦
⃦⃦
⃦
T−1∑︂

t=0

γtE

[︄ ∞∑︂

t′=T ′

γtE
[︂
r(x0′

t′ , u
0′
t′ , µ

′
t′)
⃓⃓
⃓ x0′

0 = x0,N
t , µ′

0 = µN
t , u0′

0 = u0,N
t , ξ′0 = ξNt

]︂

·∇θ log π̃
θ(u0,N

t , ξNt | x0,N
t , µN

t )

−
∞∑︂

t=T ′

γtE
[︁
r(x0′

t′ , u
0′
t′ , µ

′
t′)
⃓⃓
x0′
0 = x0

t , µ
′
0 = µt, u

0′
0 = u0

t , ξ
′
0 = ξt

]︁

·∇θ log π̃
θ(u0

t , ξt | x0
t , µt)

]︁⃦⃦

+

⃦⃦
⃦⃦
⃦⃦
T−1∑︂

t=0

γtE

⎡
⎣
T ′−1∑︂

t′=0

γtE
[︂
r(x0′

t′ , u
0′
t′ , µ

′
t′)
⃓⃓
⃓ x0′

0 = x0,N
t , µ′

0 = µN
t , u0′

0 = u0,N
t , ξ′0 = ξNt

]︂

·∇θ log π̃
θ(u0,N

t , ξNt | x0,N
t , µN

t )

−
T ′−1∑︂

t=0

γtE
[︁
r(x0′

t′ , u
0′
t′ , µ

′
t′)
⃓⃓
x0′
0 = x0

t , µ
′
0 = µt, u

0′
0 = u0

t , ξ
′
0 = ξt

]︁
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·∇θ log π̃
θ(u0

t , ξt | x0
t , µt)

]︁⃦⃦

where we write the conditional M3FC system and random variables in the inner expectation with a
prime, bounding again the former terms by choosing sufficiently largeT ′ and using Assumptions 4.2.1
and 4.2.3, while for the latter terms we use Proposition E.14.1 on the functions

f(x0, µ) =

∫︂∫︂
E
[︁
r(x0′

t′ , u
0′
t′ , µ

′
t′)
⃓⃓
x0′
0 = x0, µ0 = µ, u0′

0 = u0, ξ′0 = ξ
]︁
∇θπ̃

θ(u0, ξ | x0, µ)d(u0, ξ)

(E.14.23)

for all t′, which are uniformly Lipschitz by Assumptions 4.2.1 and 4.2.3. This completes the
proof.

e.15 proof of proposition E.14.1

Proof. The proof is exactly analogous to the proof of Theorem 4.2.2, except that instead of
using Lipschitz constants of x0t , u

0
t , µt, ht ↦→ T (x0t , u

0
t , µt, ht), one uses Lipschitz constants

of x0t , u
0
t , µt, ξt ↦→ T (x0t , u

0
t , µt, µt ⊗ Γ(ξt)) via the additional Assumption 4.2.3 on top of

Assumptions 4.2.1 and 4.2.2.

e.16 proof of proposition E.14.2

Proof. To show ˆ︁Qθ → Qθ as N →∞ uniformly, it suffices to prove pointwise convergence due to
compact support.

Therefore, fix any x0, µ, u0, ξ. The convergence follows as in Corollary 4.2.1, from showing at any
time t that

sup
f∈F

⃓⃓
E
[︁
f(x0t , u

0
t , µt)

⃓⃓
x00 = x0, µ0 = µ, u00 = u0, ξ0 = ξ

]︁

−E
[︂
f(x0,Nt , u0,Nt , µN

t )
⃓⃓
⃓ x0,N0 = x0,N , µ0 = µ, u0,N0 = u0, ξN0 = ξ

]︂⃓⃓
⃓→ 0

over any equi-Lipschitz family of functions F , and applying for f = r (using the set F of
Lr-Lipschitz functions) by Assumption 4.2.1.

The statement is shown by considering time t = 0, and then by induction for any t ≥ 1. At time
t = 0, the statement follows from the weak LLN as in Theorem 4.2.2. For any subsequent times, we
similarly have
sup
f∈F

⃓⃓
E
[︁
f(x0

t+1, u
0
t+1, µt+1)

⃓⃓
x0
0 = x0, µ0 = µ, u0

0 = u0, ξ0 = ξ
]︁

−E
[︂
f(x0,N

t+1, u
0,N
t+1, µ

N
t+1)

⃓⃓
⃓ x0,N

0 = x0,N , µ0 = µ, u0,N
0 = u0, ξN0 = ξ

]︂⃓⃓
⃓

≤ sup
f∈F

⃓⃓
E
[︁
f(x0

t+1, u
0
t+1, µt+1)

⃓⃓
x0
0 = x0, µ0 = µ, u0

0 = u0, ξ0 = ξ
]︁

−E
[︂
f(x0,N

t+1, u
0,N
t+1, T (x

0,N
t , u0,N

t , µN
t , µN

t ⊗ Γ(ξNt )))
⃓⃓
⃓ x0,N

0 = x0,N , µ0 = µ, u0,N
0 = u0, ξN0 = ξ

]︂⃓⃓
⃓

+ sup
f∈F

⃓⃓
⃓E
[︂
f(x0,N

t+1, u
0,N
t+1, T (x

0,N
t , u0,N

t , µN
t , µN

t ⊗ Γ(ξNt )))
⃓⃓
⃓ x0,N

0 = x0,N , µ0 = µ, u0,N
0 = u0, ξN0 = ξ

]︂

−E
[︂
f(x0,N

t+1, u
0,N
t+1, µ

N
t+1)

⃓⃓
⃓ x0,N

0 = x0,N , µ0 = µ, u0,N
0 = u0, ξN0 = ξ

]︂⃓⃓
⃓ .

As in Theorem 4.2.2, the latter term is bounded by induction assumption, using uniform Lipschitzness
of the dynamics, x0t , u0t , µt, ξt ↦→ T (x0t , u

0
t , µt, µt ⊗ Γ(ξt)) via Assumptions 4.2.2 and 4.2.3, while

the former term is bounded as usual by the weak LLN. This completes the proof.
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e.17 extended mfc optimalities

Intuitively, in large MF systems governed by dynamics of the form (4.2.29), almost all information
of the joint state (x0,Nt , x1,Nt , . . . , xN,N

t ) is contained in (x0,Nt , µN
t ), while heterogeneous policies

should by LLN be replaceable by a shared one. To fully complete the theory of MFC, it is therefore
interesting to establish the optimality of the considered MF policies over arbitrary other policies
acting on the joint state (x0,Nt , x1,Nt , . . . , xN,N

t ).

It seems plausible that it would be possible to extend optimality (Corollary 4.2.1) over larger
classes of policies in the finite system. In particular, at least for finite state-action spaces, (i) any
joint-state policy π(du | x0,Nt , x1,Nt , . . . , xN,N

t ) might in the limit be replaced by an averaged
policy π̄(du | x0, µ) := ∑︁

xN∈XN : 1
N

∑︁
i δxi,N=µ π(du | x0, xN ) under some exchangeability of

agents; (ii) any optimal policy π outputting joint actions for all agents might be replaced by an
independent but identical policy for each agent, as in the limit all information is contained in the
joint state-action distribution, any of which may be approximated increasingly closely by LLN; and
(iii) heterogeneous policies for each minor agent π1, . . . , πN might similarly be replaced by some
averaged policy π̄(π1, . . . , πN ), averaging the action distributions in any specific state over the
proportion of agent likelihoods in that state.

Showing such results would allow us to conclude that the policy classes Π are natural and sufficient
in MF systems, including MFC and also the competitive MFGs, as more general or heterogeneous
policies will not perform much better. A result related to (iii) has been shown for static cases [8,
386] and more recently in MFC and its two-team generalizations [128].

e.18 experimental details

In this section, we give lengthy experimental details that were omitted in the main text. Hyperpa-
rameters are given in Table E.1.

table e.1: Shared hyperparameter configurations for all algorithms.

Symbol Name Value

γ Discount factor 0.99
λ GAE lambda 1
β KL coefficient 0.03
ϵ Clip parameter 0.2
lr Learning rate 0.00005

Blen Training batch size 24000
blen Mini-batch size 4000

NSGD Gradient steps per training batch 8

e.18.1 Problem Details

In this section, we give details to the problems considered. We omit superscript N if clear from
context.
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2g. In the 2G problem, we formally let X = [−2, 2]2, U = [−1, 1]2, X 0 = {0, 1, . . . 49}
according to Eq. (E.7.9). We allow noisy movement of minor agents following the Gaussian law

p(xit+1 | xit, uit) = N
(︃
xit+1

⃓⃓
⃓⃓ xit + vmax

uit
max(1, ∥uit∥2)

,diag(σ2, σ2)

)︃

for some maximum speed vmax = 0.2, noise covariance σ2 = 0.03 and projecting back actions u
with norm larger than 1, with the additional modification that agent positions are clipped back into
X whenever the agents move out of bounds.

We then consider a time-variant mixture of two Gaussians

µ∗
t :=

1 + cos(2πt/50)

2
N
(︁
e1,diag(σ

2
∗, σ

2
∗)
)︁
+

1− cos(2πt/50)

2
N
(︁
−e1,diag(σ2

∗, σ
2
∗)
)︁

for unit vector e1 and covariance σ2
∗ = 0.05, i.e. we have a period of 50 time steps, and let the

major state follow the clock dynamics p0(x0 + 1 mod 50 | x0, µ) = 1.

The goal of minor agents is to minimize the Wasserstein metric Ŵ 1 under the squared Euclidean
distance,

Ŵ 1(µ, µ
′) := inf

γ∈Γ(µ,µ′)

{︃∫︂
∥x− y∥22γ(dx,dy)

}︃

defined over all couplings Γ(µ, µ′) with first and second marginals µ, µ′ (which is strictly speaking
not a metric but an optimal transportation cost, since the squared Euclidean distance fails the
triangle inequality), between their empirical distribution and the desired mixture of Gaussians

r(x0t , µt) = −Ŵ 1(µt, µ
∗
t )

which is computed numerically by the empirical distance, sampling 300 samples from µ∗
t .

The initialization of minor agents is uniform, i.e. µ0 = Unif(X ), and x00 = 0. For sake of
simulation, we define the episode length T = 100 after which a new episode starts.

formation. The Formation problem is an extension of the 2G problem, where instead
X 0 = X × X and U0 = U , the major agent follows the same dynamics as the minor agents, and
movements are noise-free, i.e. σ2 = 0. The major agent state x0t = (x̂0t , x

∗
t ) here contains both the

major agent position x̂0t and its target position x∗t . The desired minor agent distribution is centered
around the major agent

µ∗
t := N

(︁
x̂0t ,diag(σ

2
∗, σ

2
∗)
)︁

with covariance σ2
∗ = 0.3, and is also observed by agents as in 2G via binning. Additionally, the

major agent should follow a random target x∗t following discretized Ornstein-Uhlenbeck dynamics

x∗t+1 ∼ N
(︁
0.95x∗t , diag(σ

2
targ, σ

2
targ)

)︁

with σ2
targ = 0.02. Thus, similar to 2G, the reward function becomes

r(x0t , u
0
t , µt) = −∥x̂0t − x∗t ∥2 − Ŵ 1(µt, µ

∗
t ).

The initialization of agents is uniform, while the target starts around zero, i.e. µ0 = Unif(X ) and
µ0
0 = Unif(X )⊗N

(︁
0,diag(σ2

targ, σ
2
targ)

)︁
. For sake of simulation, we define the episode length

T = 100 after which a new episode starts.



266 Appendix E supplementary details on section 4.2

beach bar process. In the discrete beach bar process, we consider a discrete torus X =
{0, 1, . . . , 4}2, X 0 = X × X and actions U = U0 = {(0, 0), (−1, 0), (0,−1), (1, 0), (0, 1)}
indicating movement in any of the four cardinal directions. The major agent state x0t = (x̂0t , x

∗
t ) here

contains both the major agent position x̂0t and its target position x∗t . In other words, the dynamics
follow

x̂0t+1 = x̂0t + u0t mod (5, 5), xit+1 = xit + uit mod (5, 5).

The target position follows a random walk on the torus

x∗t+1 ∼ x∗t + ϵtUnif((−1, 0), (0,−1), (1, 0), (0, 1)) mod (5, 5)

with walking probability ϵt ∼ Bernoulli(0.2), uniformly in any direction.

The costs are then given by the average toroidal distance d (the L1 “wrap-around” distance on the
torus) between the major agent and its target, the average distance between major and minor agents,
and the crowdedness of agents

r(x0t , u
0
t , µt) = −0.5d(x0t , x∗t )− 2.5

∫︂
d(x, x0t )µt(dx)− 6.25

∫︂
µt(x)µt(dx).

The initialization of agents is uniform, while the target starts at zero, i.e. µ0 = Unif(X ) and
µ0
0 = Unif(X )⊗ δ(0,0). For sake of simulation, we define the episode length T = 200 after which

a new episode starts.

For the neural network policy, we use a one-hot encoding of major states as input, i.e. the
concatenation of two 5-dimensional one-hot vectors for the major agent position x̂0t and its target
position x∗t respectively.

foraging. In the Foraging problem, we formally define X = [−2, 2]2 × [0, 1], U = [−1, 1]2 =
U0 and X 0 = ([−2, 2] × [−2,−1]) ×⋃︁5

n=0

(︁
[−2, 2]2 × [0, 1.5]

)︁n. The minor agent states xit =
(x̂it, x̃

i
t) here contain their positions x̂it ∈ [−2, 2]2 and encumbrance (or inversely, free cargo space)

x̂it ∈ [0, 1]. Meanwhile, the major agent state x0t = (x̂0t , x
env
t ) here contains both the major agent

position x̂0t restricted to [−2, 2] × [−2,−1], and the current environment state xenvt . Here, the
minor and major agents move as in Formation, though with different maximum velocities for minor
agents vmax = 0.3 and major agent v0max = 0.1 respectively.

An additional environmental state consists of up to 5 spatially localized foraging areas, which
is not observed by the agents. In each time step, Nt = Pois(0.2) new foraging areas appear,
up to a maximum total number of 5. The location xmt of each foraging area m = 1, . . . , 5 is
sampled uniformly randomly from Unif(X ), while their total initial size Lm

t is sampled from
Unif([0.5, 1.5]), making up the environment state xenvt = (xmt , Lm

t )m. At every time step, the
foraging areas m are depleted by nearby agents closer than range 0.5,

Lm
t+1 = Lm

t −∆Lm(µt),

∆Lm(µt) := min(Lm
t+1 − Lm

t ,min(0.1,

∫︂
(0.5− ∥x− xmt ∥2)+ µt(dx))

where (·)+ := max(0, ·), until they are fully depleted and disappear (Lm
t+1 ≤ 0).

Foraging minor agents simulate encumbrance, gaining it from nearby foraging areas and depositing
to a nearby major agent, by splitting the foraged amount among all nearby minor agents according
to their foraged contribution, and wasting any amount going beyond maximum encumbrance 1,

x̃it+1 =

{︄
min(1, x̃it +∆Lm(µt) · (0.5−∥x−xm

t ∥2)+∫︁
(0.5−∥x−xm

t ∥2)+ µt(dx)
) if ∥xit − x0t ∥2 ≥ 0.5,

0 else.
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The reward at each time step is then given by the according total foraged and then deposited amount
by the minor agents, where any clipped amount is wasted.

The initialization of agents is uniform, while the environment starts empty, i.e. µ0 = Unif(X ) and
µ0
0 = Unif(X )⊗ δ∅. For sake of simulation, we define the episode length T = 200 after which a

new episode starts.

potential. Lastly, in Potential we consider minor agents on a continuous one-dimensional
torus X = [−2, 2] (where the points −2 and 2 are identified), actions U = [−1, 1] and major state
X 0 = X × X . The minor agents move as in Foraging (wrapping around the torus instead of
clipping), while the major agent follows the gradient of the potential landscape generated by minor
agents, with the goal of staying close to its current target. The major agent state x0t = (x̂0t , x

∗
t ) here

contains both the major agent position x̂0t and its target position x∗t . For simplicity, here we use a
linear repulsive force decreasing from 1

N to 0 over a range of 1,

x̂0t+1 = x̂0t +
1

20

∑︂

xoff∈{−4,0,4}

∫︂
(1− ∥x̂0t − x+ xoff∥2)+

x̂0t − x+ xoff

∥x̂0t − x+ xoff∥2
µt(dx) mod [−2, 2]

where we let terms 0/0 = 0 and use the offset xoff to account for the wrap-around on the torus.

The target follows the discretized Ornstein-Uhlenbeck process

x∗t+1 ∼ N
(︁
0.99x∗t , diag(σ

2
targ, σ

2
targ)

)︁

with covariance σ2
targ = 0.005, and gives rise to the reward function via the toroidal distance

between target and major agent

r(x0t , µt) = −d(x̂0t , x∗t ).

The initialization of agents is uniform, while the target starts around zero, i.e. µ0 = Unif(X ) and
µ0
0 = Unif(X )⊗N

(︁
0,diag(σ2

targ, σ
2
targ)

)︁
. For sake of simulation, we define the episode length

T = 100 after which a new episode starts. In contrast to M = 72 = 49 in 2G, Formation and
Foraging, here we use M = 7 bins for the one-dimensional problem.

e.18.2 Comparison to M3FA2C

In Figure E.1 we can see that vanilla M3FA2C typically performs worse than M3FPPO, getting stuck
in worse local optima. Here, we used the same hyperparameters as in PPO. This validates our choice
of PPO for M3FMARL.
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figure e.1: Training curves (mean episode return vs. time steps) of M3FPPO in red, compared to M3FA2C in
blue. (a) 2G; (b) Formation; (c) Beach; (d) Foraging; (e) Potential.
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e.18.3 Qualitative Results

In Figure E.2, M3FPPO successfully learns to form mixtures of Gaussians in 2G, and a Gaussian
around a moving major agent that tracks its target in Formation. As expected in 2G, the two
Gaussians at their sinusoidal peaks t = 25 and t = 50 are not perfectly tracked, in order to minimize
the cost in following time steps, when the other Gaussian reappears. Finally, in Potential the minor
agents succeed in pushing the major agent towards its target, while spreading on both sides of the
major agent to be able to track any random movement of the target.
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figure e.2: Qualitative visualization of learned M3FC behavior in the 2G (a-d), Formation (e-h) and
Potential (i-l) problems. Red: minor agent; blue triangle: major agent; green triangle: major agent target.
(i-l): As in (e-h), with arrow for potential gradient (not to scale).

e.18.4 Training M3FPPO, IPPO and MAPPO on smaller systems

In Figure 4.10 we verified the training of M3FPPO on small finite system. Comparing to Figures 4.9
and 4.13, for M3FPPO we see little difference between training on a small finite-agent system
versus training on a large system and applying the policy on the smaller system. For the chosen
hyperparameters, the performance in the Potential problem depends on the initialization. However,
M3FPPO compares especially favorably to IPPO in Beach and Foraging, even when directly training
on the finite system. This shows that we can either (i) directly apply M3FPPO as a MARL algorithm
to small systems, or (ii) train on a fixed system, and transfer the learned behavior to systems of
almost arbitrary other sizes.

Analogously, in Figures E.3 and E.4 we show the training results for around a day of IPPO and
MAPPO for numbers of agents N = 5, N = 10 and N = 20. As seen in the plot, the results for each
number of agents is comparable to the analysis shown in the main text. In particular, transferring
M3FPPO or comparing with Figure 4.10, we observe that M3FPPO continues to outperform or match
the performance of IPPO and MAPPO, even in the setting with fewer agents.
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figure e.3: Training curves (mean episode return vs. time steps) of IPPO, trained on the systems with
N ∈ {5, 10, 20}. (a) 2G; (b) Formation; (c) Beach; (d) Foraging; (e) Potential.
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f.1 proof of theorem 4.3.1

Proof of Theorem 4.3.1. As in the main text, we usually equip P(X ) with the 1-Wasserstein
distance. In the proof, however, it is useful to also consider the uniformly equivalent metric
dΣ(µ, µ

′) :=
∑︁∞

m=1 2
−m|

∫︁
fm d(µ−µ′)| instead. Here, (fm)m≥1 is a fixed sequence of continuous

functions fm : X → [−1, 1], see e.g. [216, Theorem 6.6] for details.

First, let us define the measure ζπ,µt on X × U , defined for any measurable set A×B ⊆ X × U by
ζπ,µt (A×B) :=

∫︁
A

∫︁
Y
∫︁
B πt(du | y)pY(dy | x, µt)µt(dx). For notational convenience we define

the MF transition operator T̃ such that

T̃ (µt, ζ
π,µ
t ) :=

∫︂∫︂
p(· | x, u, µt)ζ

π,µ
t (dx,du) = µt+1. (F.1.1)

Continuity of T̃ follows immediately from Assumption 4.3.1a and [1, Lemma 2.5] which we recall
here for convenience.

Proposition F.1.1 ([1], Lemma 2.5). Under Assumption 4.3.1a, (µn, ζn) → (µ, ζ) implies
T̃ (µn, ζn)→ T̃ (µ, ζ).

The rest of the proof is similar to [1, Theorem 2.7] – though we remark that we strengthen the
convergence statement from weak convergence to convergence in L1 uniformly over f ∈ F – by
showing via induction over t that

sup
π∈Π

sup
f∈F

E
[︁⃓⃓
f(µN

t )− f(µt)
⃓⃓]︁
→ 0. (F.1.2)

Note that the induction start can be verified by a weak LLN argument which is also leveraged in the
subsequent induction step. For the induction step we assume that Eq. (F.1.2) holds at time t. At
time t+ 1 we have

sup
π∈Π

sup
f∈F

E
[︁⃓⃓
f(µN

t+1)− f(µt+1)
⃓⃓]︁

≤ sup
π∈Π

sup
f∈F

E
[︂⃓⃓
⃓f(µN

t+1)− f
(︂
T̃
(︂
µN
t , ζπ,µ

N

t

)︂)︂⃓⃓
⃓
]︂

(F.1.3)

+ sup
π∈Π

sup
f∈F

E
[︂⃓⃓
⃓f
(︂
T̃
(︂
µN
t , ζπ,µ

N

t

)︂)︂
− f(µt+1)

⃓⃓
⃓
]︂
. (F.1.4)

We start by analyzing the first term and recall that a modulus of continuity ωF of F is de-
fined as a function ωF : [0,∞) → [0,∞) with both limx→0 ωF (x) = 0 and |f(µ) − f(ν)| ≤
ωF (W1(µ, ν)), ∀f ∈ F . By [353, Lemma 6.1], such a non-concave and decreasing modulus ωF
exists for F because it is uniformly equicontinuous due to the compactness of P(X ). Analogously,
we have that F is uniformly equicontinuous in the space (P(X ), dΣ) as well. Recalling that P(X )
is compact and the topology of weak convergence is metrized by both dΣ and W1, we know that
the identity map id : (P(X ), dΣ)→ (P(X ),W1) is uniformly continuous. Leveraging the above
findings, we have that for the identity map there exists a modulus of continuity ω̃ such that

|f(µ)− f(ν)| ≤ ωF (W1(idµ, id ν)) ≤ ωF (ω̃(dΣ(µ, ν)))

holds for all µ, ν ∈ (P(X ), dΣ). By [353, Lemma 6.1], we can use the least concave majorant of
ω̃F := ωF ◦ ω̃ instead of ω̃F itself. Then, Eq. (F.1.3) can be bounded by

E
[︂⃓⃓
⃓f(µN

t+1)− f
(︂
T̃
(︂
µN
t , ζπ,µ

N

t

)︂)︂⃓⃓
⃓
]︂
≤ E

[︂
ω̃F

(︂
dΣ

(︂
µN
t+1, T̃

(︂
µN
t , ζπ,µ

N

t

)︂)︂)︂]︂
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≤ ω̃F

(︂
E
[︂
dΣ

(︂
µN
t+1, T̃

(︂
µN
t , ζπ,µ

N

t

)︂)︂]︂)︂

irrespective of both π and f by the concavity of ω̃F and Jensen’s inequality. For notational
convenience, we define xNt := (xi,Nt )i∈[N ], and arrive at

E
[︂
dΣ

(︂
µN
t+1, T̃

(︂
µN
t , ζπ,µ

N

t

)︂)︂]︂
=

∞∑︂

m=1

2−mE
[︃⃓⃓
⃓⃓
∫︂

fm d
(︂
µN
t+1 − T̃

(︂
µN
t , ζπ,µ

N

t

)︂)︂⃓⃓
⃓⃓
]︃

≤ sup
m≥1

E
[︃
E
[︃⃓⃓
⃓⃓
∫︂

fm d
(︂
µN
t+1 − T̃

(︂
µN
t , ζπ,µ

N

t

)︂)︂⃓⃓
⃓⃓
⃓⃓
⃓⃓ xNt

]︃]︃
.

Finally, we require the aforementioned weak LLN argument which goes as follows

E
[︃⃓⃓
⃓⃓
∫︂

fm d
(︂
µN
t+1 − T̃

(︂
µN
t , ζπ,µ

N

t

)︂)︂⃓⃓
⃓⃓
⃓⃓
⃓⃓ xNt

]︃2

= E

⎡
⎣
⃓⃓
⃓⃓
⃓⃓
1

N

∑︂

i∈[N ]

(︁
fm(xit+1)− E

[︁
fm(xit+1)

⃓⃓
xNt
]︁)︁
⃓⃓
⃓⃓
⃓⃓

⃓⃓
⃓⃓
⃓⃓ xNt

⎤
⎦
2

≤ E

⎡
⎣
⃓⃓
⃓⃓
⃓⃓
1

N

∑︂

i∈[N ]

(︁
fm(xit+1)− E

[︁
fm(xit+1)

⃓⃓
xNt
]︁)︁
⃓⃓
⃓⃓
⃓⃓

2 ⃓⃓
⃓⃓
⃓⃓ xNt

⎤
⎦

=
1

N2

∑︂

i∈[N ]

E
[︂(︁
fm(xit+1)− E

[︁
fm(xit+1)

⃓⃓
xNt
]︁)︁2 ⃓⃓⃓ xNt

]︂
≤ 4

N
→ 0.

Here, we have used that |fm| ≤ 1, as well as the conditional independence of xit+1 given xNt . In
combination with the above results, the term (F.1.3) thus converges to zero. Moving on to the
remaining second term (F.1.4), we note that the induction assumption implies that

sup
π∈Π

sup
f∈F

E
[︂⃓⃓
⃓f
(︂
T̃
(︂
µN
t , ζπ,µ

N

t

)︂)︂
− f(µt+1)

⃓⃓
⃓
]︂

= sup
π∈Π

sup
f∈F

E
[︂⃓⃓
⃓f
(︂
T̃
(︂
µN
t , ζπ,µ

N

t

)︂)︂
− f

(︂
T̃ (µt, ζ

π,µ
t )

)︂⃓⃓
⃓
]︂

≤ sup
π∈Π

sup
g∈G

E
[︁⃓⃓
g(µN

t )− g(µt)
⃓⃓]︁
→ 0

using the function g := f ◦ T̃ πt

∗ which belongs to the class G of equicontinuous functions with
modulus of continuity ωG := ωF ◦ ωT̃ . Here, ωT̃ is the uniform modulus of continuity over all
policies π of µt ↦→ T̃

πt

∗ (µt) := T̃ (µt, ζ
π,µ
t ). The equicontinuity of {T̃ πt

∗ }π∈Π is a consequence of
Proposition F.1.1 as well as the equicontinuity of functions µt ↦→ ζπ,µt which in turn follows from
the uniform Lipschitzness of Π. The validation of this claim is provided in the next lines. Note that
this also completes the induction and thereby the proof. For a sequence of µn → µ ∈ P(X ) we can
write

sup
π∈Π

W1(ζ
π,µn
t , ζπ,µt )

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂∫︂

f ′(x, u)πt(du | y)(pY(dy | x, µn)− pY(dy | x, µ))µn(dx)

⃓⃓
⃓⃓

+ sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂∫︂

f ′(x, u)πt(du | y)pY(dy | x, µ)(µn(dx)− µ(dx))

⃓⃓
⃓⃓ .
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Starting with the first term, we apply Assumptions 4.3.1a to 4.3.1b to arrive at

sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂∫︂

f ′(x, u)πt(du | y)(pY(dy | x, µn)− pY(dy | x, µ))µn(dx)

⃓⃓
⃓⃓

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

∫︂ ⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)πt(du | y)(pY(dy | x, µn)− pY(dy | x, µ))
⃓⃓
⃓⃓µn(dx)

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

sup
x∈X

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)πt(du | y)(pY(dy | x, µn)− pY(dy | x, µ))
⃓⃓
⃓⃓

≤ LΠ sup
x∈X

W1(pY(· | x, µn), pY(· | x, µ))

≤ LΠLpYW1(µn, µ)→ 0

with Lipschitz constant LΠ corresponding to the Lipschitz function y ↦→
∫︁
f ′(x, u)πt(du | y).

Alternatively, if pY is assumed independent of the MF in Assumption 4.3.1b, the term is zero.

In a similar fashion, we point out the 1-Lipschitzness of x ↦→
∫︁∫︁ f ′(x,u)

LΠLpY+1πt(du | y)pY(dy | x, µ),
as

⃓⃓
⃓⃓
∫︂∫︂

f ′(z, u)

LΠLpY + 1
πt(du | y)pY(dy | z, µ)−

∫︂∫︂
f ′(x, u)

LΠLpY + 1
πt(du | y)pY(dy | x, µ)

⃓⃓
⃓⃓

≤
⃓⃓
⃓⃓
∫︂∫︂

f ′(z, u)− f ′(x, u)

LΠLpY + 1
πt(du | y)pY(dy | z, µ)

⃓⃓
⃓⃓

+

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)

LΠLpY + 1
πt(du | y)(pY(dy | z, µ)− pY(dy | x, µ))

⃓⃓
⃓⃓

≤ 1

LΠLpY + 1
d(z, x) +

LΠ

LΠLpY + 1
W1(pY(dy | z, µ), pY(dy | x, µ))

≤
(︃

1

LΠLpY + 1
+

LΠLpY

LΠLpY + 1

)︃
d(x, y) = d(x, y)

for z ̸= x. Alternatively, if the state space is assumed finite in Assumption 4.3.1b, the Lipschitzness
follows directly.

This eventually yields the convergence of the second term, i.e.

sup
π∈Π

sup
∥f ′∥Lip≤1

⃓⃓
⃓⃓
∫︂∫︂∫︂

f ′(x, u)πt(du | y)pY(dy | x, µ)(µn(dx)− µ(dx))

⃓⃓
⃓⃓

= sup
π∈Π

sup
∥f ′∥Lip≤1

(LpYLΠ + 1)

⃓⃓
⃓⃓
∫︂∫︂

f ′(x, u)

LpYLΠ + 1
πt(du | y)pY(dy | x, µ)(µn(dx)− µ(dx))

⃓⃓
⃓⃓

≤ (LpYLΠ + 1)W1(µn, µ)→ 0

and thus completes the proof.

In the special case of finite states and actions, the approximation rate can also be quantified to
O(1/

√
N) by considering equi-Lipschitz families of functions F with constant Lf . Then, there is

no need to consider the two different metrizations dΣ and W1, as they are Lipschitz equivalent, and
one can simply use the L1 distance. The convergence in the first term (F.1.3) is then directly via the
weak LLN at rate O(1/

√
N) by

sup
π∈Π

sup
f∈F

E
[︂⃓⃓
⃓f(µN

t+1)− f
(︂
T̃
(︂
µN
t , ζπ,µ

N

t

)︂)︂⃓⃓
⃓
]︂
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≤ sup
π∈Π

LfE

[︄∑︂

x∈X

⃓⃓
⃓µN

t+1(x)− T̃
(︂
µN
t , ζπ,µ

N

t

)︂
(x)
⃓⃓
⃓
]︄

= sup
π∈Π

Lf

∑︂

x∈X
E

[︄
E

[︄⃓⃓
⃓⃓
⃓
1

N

N∑︂

i=1

1x(x
i,N
t+1)− E

[︄
1

N

N∑︂

i=1

1x(x
i,N
t+1)

⃓⃓
⃓⃓
⃓ x

N
t

]︄⃓⃓
⃓⃓
⃓

⃓⃓
⃓⃓
⃓ x

N
t

]︄]︄

≤ Lf |X |
√︃

4

N
,

while for the second term (F.1.4) we use the induction assumption, since T̃ is uniformly Lipschitz.

f.2 agents with memory and history-dependence

For agents with bounded memory, we note that such memory can be analyzed by our model by
adding the memory state to the usual agent state, and manipulations on the memory either to the
actions or transition dynamics.

For example, let zit ∈ Q := {0, 1}Q be the Q-bit memory of an agent at any time. Then, we may
consider the new X ×Q-valued state (xit, zit), which remains compact, and the new U ×Q-valued
actions (uit, w

i
t), where wi

t is a write action that can arbitrarily rewrite the memory, zit+1 = wi
t.

Theoretical properties are preserved by discreteness of added states and actions.

Analogously, extending transition dynamics to include observations y also allows for description of
history-dependent policies. This approach extends to infinite-memory states, by adding observations
y also to the transition dynamics, and considering histories for states and observations. Define
the observation space of histories Y ′ :=

⋃︁∞
i=0 Y × (Y × U)i, and the according state space

X ′ :=
⋃︁∞

i=0X × (Y × U)i. The new MF µN
t , µt are thus P(X ′)-valued. The new observation-

dependent dynamics are then defined by

P ′(· | x, y, u, µ) = p(· | x1, u,marg1 µ)⊗ δ(x2,y,u)

wheremarg1 mapsµ to its first marginal, x1 is the first component of x, andx2 is the (Y×U)t-valued
past history. Here, (x2, y, u) defines the new history of an agent, which is observed by

P y′(· | x, µ) = pY(· | x1,marg1 µ)⊗ δx2 .

Clearly, Lipschitz continuity is preserved. Further, we obtain the MF transition operator

T ′(µt, h
′
t) :=

∫︂∫︂∫︂
P ′(· | x, y, u, µt)h

′
t(dx, dy,du).

using X ′×Y ′×U -valued actions h′t = µt⊗pY(µt)⊗ π̌[h′t] for some Lipschitz π̌[h′t] : Y ′ → P(U).
And in particular, the proof of e.g. Theorem 4.3.1 extends to this new case. For example, the weak
LLN argument still holds by

E
[︁
dΣ
(︁
µN
t+1, T

′ (︁µN
t , h′t

)︁)︁]︁

≤ sup
m≥1

E
[︃
E
[︃⃓⃓
⃓⃓
∫︂

fm d
(︁
µN
t+1 − T ′ (︁µN

t , h′t
)︁)︁⃓⃓⃓⃓
⃓⃓
⃓⃓ xNt

]︃]︃

≤ sup
m≥1

E

⎡
⎣
⃓⃓
⃓⃓
⃓⃓
1

N

∑︂

i∈[N ]

(︁
fm(xit+1, y

i
0, u

i
0, . . . , y

i
t, u

i
t)
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−E
[︁
fm(xit+1, y

i
0, u

i
0, . . . , y

i
t, u

i
t)
⃓⃓
xNt
]︁)︁⃓⃓2 ⃓⃓⃓ xNt

]︂ 1
2 ≤ 4

N
→ 0.

for appropriate sequences of functions (fm)m≥1, fm : X × (Y × U)t+1 → [−1, 1] [216] and
∫︂

fm dT ′ (︁µN
t , h′t

)︁
=

∫︂
fm(xt+1, y0, u0, . . . , yt, ut)P

′(dxt+1 | xt, yt, ut, µN
t )

π̌[h′t](dut | yt)P y′(dyt | xt, µN
t )µN

t (dxt, dy0, du0, . . . ,dyt−1,dut−1).

Analogously, we can see that the above is part of a set of equicontinuous functions, and again allows
application of the induction assumption, completing the extension.

f.3 proof of corollary 4.3.1

Proof of Corollary 4.3.1. The finite-agent discounted objective converges uniformly over policies
to the MFC objective

sup
π∈Π

⃓⃓
JN (π)− J(π)

⃓⃓
→ 0 as N →∞, (F.3.5)

since for any ε > 0, let T ∈ T such that
∑︁∞

t=T γtE
⃓⃓[︁
r(µN

t )− r(µt)
]︁⃓⃓
≤ γT

1−γ maxµ 2|r(µ)| < ε
2 ,

and further let
∑︁T−1

t=0 γtE
⃓⃓[︁
r(µN

t )− r(µt)
]︁⃓⃓

< ε
2 by Theorem 4.3.1 for sufficiently large N .

Therefore, approximate optimality is obtained by

JN (π)− sup
π′∈Π

JN (π′) = inf
π′∈Π

(JN (π)− JN (π′))

≥ inf
π′∈Π

(JN (π)− J(π)) + inf
π′∈Π

(J(π)− J(π′)) + inf
π′∈Π

(J(π′)− JN (π′))

≥ −ε

2
+ 0− ε

2
= −ε

by the optimality of π ∈ argmaxπ′∈Π J(π′) and Eq. (F.3.5) for sufficiently large N .

f.4 proof of proposition 4.3.1

Proof of Proposition 4.3.1. We begin by showing the first statement. The proof is by showing
µ̄t = µt at all times t ∈ T , as it then follows that J̄(π̄) =

∑︁∞
t=0 γ

tr(µ̄t) =
∑︁∞

t=0 γ
tr(µt) = J(π).

At time t = 0, we have by definition µ̄0 = µ0. Assume µ̄t = µt at time t, then at time t+ 1, by
Eq. (4.3.34) and Eq. (4.3.35), we have

µ̄t+1 =

∫︂∫︂∫︂
p(x, u, µt)π̄t(du | y, µ̄t)pY(dy | x, µ̄t)µ̄t(dx) (F.4.6)

=

∫︂∫︂∫︂
p(x, u, µt)πt(du | y)pY(dy | x, µt)µt(dx) = µt+1 (F.4.7)

which is the desired statement. An analogous proof for the second statement completes the
proof.
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f.5 proof of corollary 4.3.2

Proof of Corollary 4.3.2. Assume J(Φ(π̄)) < supπ′∈Π J(π′). Then there exists π′ ∈ Π such that
J(Φ(π̄)) < J(π′). But by Proposition 4.3.1, there exists π̄′ ∈ Π̄ such that J̄(π̄′) = J(π′) and
hence J̄(π̄) = J(Φ(π̄)) < J(π′) = J̄(π̄′), which contradicts π̄ ∈ argmaxπ̄′∈Π̄ J̄(π̄′). Therefore,
Φ(π̄) ∈ argmaxπ′∈Π J(π′).

f.6 proof of theorem 4.3.2

Proof of Theorem 4.3.2. We verify the assumptions in [390]. First, note the (weak) continuity of
transition dynamics T̂ .

Proposition F.6.1. Under Assumption 4.3.1a, T̂ (µn, hn)→ T̂ (µ, h) for any sequence (µn, hn)→
(µ, h) of MFs µn, µ ∈ P(X ) and joint distributions hn ∈ H(µn), h ∈ H(µ).

Proof. The convergence hn → h also implies the convergence of its marginal
∫︁
Y hn(·,dy, ·) →∫︁

Y h(·, dy, ·). The proposition then follows immediately from Proposition F.1.1. ■

Furthermore, the reward is continuous and hence bounded by Assumption 4.3.1a. It is inf-compact
by

{h ∈ H(µ) | −r(µ) ≤ c} =
{︄
H(µ) if −r(µ) ≤ c,
∅ else,

whereH(µ) is closed by Appendix E.4, and Lemma F.8.1 if considering equi-Lipschitz policies in
Assumption 4.3.1b.

Further, by compactness of P(X × Y × U),H(µ) is compact as a closed subset of a compact set.

Lastly, lower semicontinuity of µ ↦→ H(µ) is given, since for any µn → µ and h = µ⊗pY(µ)⊗ π̌ ∈
H(µ), we can find hn ∈ H(µn): Let hn = µn ⊗ pY(µn)⊗ π̌, then

W1(hn, h) = sup
f∈Lip(1)

∫︂∫︂∫︂
f(x, y, u)π̌(du | y) (pY(dy | x, µn)µn(dx)− pY(dy | x, µ)µ(dx))

≤ sup
f∈Lip(1)

∫︂∫︂∫︂
f(x, y, u)π̌(du | y) (pY(dy | x, µn)− pY(dy | x, µ))µn(dx)

+ sup
f∈Lip(1)

∫︂∫︂∫︂
f(x, y, u)π̌(du | y)pY(dy | x, µ) (µn(dx)− µ(dx))

≤ sup
f∈Lip(1)

∫︂ ⃓⃓
⃓⃓
∫︂∫︂

f(x, y, u)π̌(du | y) (pY(dy | x, µn)− pY(dy | x, µ))
⃓⃓
⃓⃓µn(dx)

+ sup
f∈Lip(1)

∫︂∫︂∫︂
f(x, y, u)π̌(du | y)pY(dy | x, µ) (µn(dx)− µ(dx))→ 0

since the integrands are Lipschitz by Assumption 4.3.1a and analyzed as in the proof of Theorem 4.3.1.

The proof concludes by [390, Theorem 4.2].
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f.7 convergence lemma

Lemma F.7.1. Assume that (X, d) is a complete metric space and that (xn)n∈N is a sequence of
elements of X . Then, the convergence condition of the sequence (xn)n∈N, i.e. that

∃x ∈ X : ∀ε > 0 : ∃N ∈ N : ∀n ≥ N : d(x, xn) < ε (F.7.8)

holds, is equivalent to the statement

∀ε > 0 : ∃x ∈ X : ∃N ∈ N : ∀n ≥ N : d(x, xn) < ε. (F.7.9)

Proof. (F.7.8)⇒ (F.7.9): follows immediately.

(F.7.9)⇒ (F.7.8): Choose some strictly monotonically decreasing, positive sequence of (εi)i∈N
with limi→∞ εi = 0. Then, by statement (F.7.9) we can define corresponding sequences (xi)i∈N
and (Ni)i∈N such that

∀n ≥ Ni : d(xi, xn) < εi. (F.7.10)

Consider i, i′ ∈ N and assume w.l.o.g. i < i′. We know by the triangle inequality

∀n ≥ max{Ni, Ni′} : d(xi, xi′) ≤ d(xi, xn) + d(xn, xi′) ≤ 2εi. (F.7.11)

Thus, the sequence (xi)i∈N is Cauchy and therefore converges to some x ∈ X because (X, d) is a
complete metric space by assumption. Specifically, this is equivalent to

∃x ∈ X : ∀ε > 0 : ∃I ∈ N : ∀i ≥ I : d(x, xi) < ε. (F.7.12)

Finally, statements (F.7.11), (F.7.12), and the triangle inequality yield

∃x ∈ X : ∀2ε > 0 : ∃N ∈ N : ∀n ≥ N : d(x, xn) ≤ d(x, xi) + d(xi, xn) < 2ε

which implies the desired statement (F.7.8) and concludes the proof.

f.8 closedness of joint measures under equi-lipschitz kernels

Lemma F.8.1. Let µxy ∈ P(X ×Y) be arbitrary. For any hn = µxy ⊗ π̌n → h ∈ P(X ×Y ×U)
with LΠ-Lipschitz π̌n ∈ P(U)Y , there exists LΠ-Lipschitz π̌ ∈ P(U)Y such that h = µxy ⊗ π̌.

Proof. For readability, we write µy ∈ P(Y) for the second marginal of µxy. The required π̌ is
constructed as the µy-a.e. pointwise limit of y ↦→ π̌n(y) ∈ P(U), as P(U) is sequentially compact
under the topology of weak convergence by Prokhorov’s theorem [215]. For the proof, we assume
Hilbert Y and finite actions U , making P(U) Euclidean.

First, (i) we show that π̌n(y) must converge for µy-a.e. y ∈ Y to some arbitrary limit, which
we define as π̌(y). It then follows by Egorov’s theorem (e.g. [253, Lemma 1.38]) that for any
ϵ > 0, there exists a measurable set A ∈ Y such that µy(A) < ϵ and π̌n(y) converges uniformly
on Y \ A. Therefore, we obtain that π̌ restricted to Y \ A is LΠ-Lipschitz as a uniform limit of
LΠ-Lipschitz functions, hence µy-a.e. LΠ-Lipschitz. (ii) We then extend π̌ on the entire space Y to
be LΠ-Lipschitz. (iii) All that remains is to show that indeed, the extended π̌ fulfills h = µy ⊗ π̌,
which is the desired closedness.
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(i) almost-everywhere convergence. To prove the µy-a.e. convergence, we perform a
proof by contradiction and assume the statement is not true. Then there exists a measurable set
A ⊆ Y with positive measure µy(A) > 0 such that for all y ∈ A the sequence π̌n(y) ∈ P(U)
does not converge as n → ∞. We show that then, µy ⊗ π̌n does not converge to any limiting
h̃ ∈ P(Y × U), which is a contradiction with the premise and completes the proof.

Lemma F.8.2. There exists y∗ ∈ A such that for any r > 0, the set Br(y
∗) ∩ A has positive

measure.

Proof of Lemma F.8.2. Consider an open cover
⋃︁

y∈ABr(y) of A using balls Br with radius r, and
choose a finite subcover {Br(yi)}i=1,...,K of A by compactness of Y . Then, there exists a ball
Br(y

∗) from the finite subcover around a point y∗ ∈ Y such that µy(Br(y
∗)∩A) > 0, as otherwise

µy(A) = µy(
⋃︁K

i=1Br(yi) ∩A) ≤∑︁K
i=1 µy(Br(yi) ∩A) = 0 contradicts µy(A) > 0.

By repeating the argument, there must exist y∗ ∈ A for which we have for any r > 0 that the
ball Br(y

∗) ∩ A has positive measure. More precisely, consider a sequence of radii rk = 1/k,
k ≥ 1, and repeatedly choose balls Brk+1

⊆ Brk from an open cover of Brk ∩ A such that
µ(Brk+1

∩ Brk ∩ A) > 0, starting with Br1 ⊆ Y such that µ(Br1 ∩ A) > 0. By induction,
we thus have for any k that µ(Brk ∩ A) > 0. The sequence (Brk)k∈N produces a decreasing
sequence of compact sets by taking the closure of the balls B̄rk . By Cantor’s intersection
theorem [391, Theorem 2.36], the intersection is non-empty,

⋂︁
k∈N B̄rk ̸= ∅. Choose arbitrary

y∗ ∈ ⋂︁k∈N B̄rk , then for any r > 0 we have that Brk ⊆ Br(y
∗) for some k by rk → 0. Therefore,

µ(Br(y
∗) ∩A) ≥ µ(Brk ∩A) > 0. ■

bounding difference to assumed limit from below. Choose y∗ according to
Lemma F.8.2. By Eq. (F.7.9) in Lemma F.7.1, since π̌n(y

∗) ∈ P(U) does not converge, there exists
ϵ > 0 such that for all r > 0, infinitely often (i.o.) in n,

W1

(︄
π̌n(· | y∗),

1

µy(Br(y∗))

∫︂

Br(y∗)
π̃(· | y)µy(dy)

)︄

=
1

2

∑︂

u∈U

⃓⃓
⃓⃓
⃓π̌n(u | y∗)−

1

µy(Br(y∗))

∫︂

Br(y∗)
π̃(u | y)µy(dy)

⃓⃓
⃓⃓
⃓ > ϵ

where for finite U , W1 is equivalent to the total variation norm [392, Theorem 4], which is half the
L1 norm, and π̃ is not necessarily Lipschitz and results from disintegration of h into h = µy ⊗ π̃
[253].

Now fix arbitrary ϵ′ ∈ ( ϵ2 , ϵ). Then, by the prequel, we define the non-empty set Ū(r) ⊆ U by
excluding all actions where the absolute value is less than ϵ−ϵ′

|U| , i.e.

Ū(r) :=
{︄
u ∈ U

⃓⃓
⃓⃓
⃓

⃓⃓
⃓⃓
⃓π̌n(u | y∗)−

1

µy(Br(y∗))

∫︂

Br(y∗)
π̃(u | y)µy(dy)

⃓⃓
⃓⃓
⃓ ≥

ϵ− ϵ′

|U|

}︄
,

such that

1

2

∑︂

u∈Ū(r)

⃓⃓
⃓⃓
⃓π̌n(u | y∗)−

1

µy(Br(y∗))

∫︂

Br(y∗)
π̃(u | y)µy(dy)

⃓⃓
⃓⃓
⃓ > ϵ′ (F.8.13)
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since we have the bound on the value contributed by excluded actions u ̸∈ Ū(r)

1

2

∑︂

u̸∈Ū(r)

⃓⃓
⃓⃓
⃓π̌n(u | y∗)−

1

µy(Br(y∗))

∫︂

Br(y∗)
π̃(u | y)µy(dy)

⃓⃓
⃓⃓
⃓ ≤

ϵ− ϵ′

2
< ϵ− ϵ′. (F.8.14)

By LΠ-Lipschitz π̌n, we also have for all y ∈ Br(y
∗) that W1(π̌n(y), π̌n(y

∗)) < LΠr. Hence, in
particular if we choose r = 1

LΠ
min

(︂
ϵ′ − ϵ

2 ,
ϵ′

2 ,
ϵ−ϵ′

4|U|

)︂
, then for all y ∈ Br(y

∗)

1

2

∑︂

u∈U
|π̌n(u | y)− π̌n(u | y∗)| < min

(︃
ϵ′ − ϵ

2
,
ϵ′

2
,
ϵ− ϵ′

4|U|

)︃
(F.8.15)

and in particular also

|π̌n(u | y)− π̌n(u | y∗)| <
ϵ− ϵ′

2|U|

for all actions u ∈ Ū(r), such that by definition of Ū(r), we find that the sign of the value inside the
absolute value must not change on the entirety of y ∈ Br(y

∗), i.e.

sgn

(︄
π̌n(u | y)−

1

µy(Br(y∗))

∫︂

Br(y∗)
π̃(u | y′)µy(dy

′)

)︄

= sgn

(︄
π̌n(u | y∗)−

1

µy(Br(y∗))

∫︂

Br(y∗)
π̃(u | y′)µy(dy

′)

)︄

which implies, since the signs must match for all y with the term for y∗, by integrating over y

sgn

(︄∫︂

Br(y∗)
π̌n(u | y′)µy(dy

′)−
∫︂

Br(y∗)
π̃(u | y′)µy(dy

′)

)︄

= sgn

(︄∫︂

Br(y∗)

(︁
π̌n(u | y∗)− π̃(u | y′)

)︁
µy(dy

′)

)︄
. (F.8.16)

From the triangle inequality,

1

2

∑︂

u∈Ū(r)

⃓⃓
⃓⃓
⃓

∫︂

Br(y∗)
(π̌n(u | y∗)− π̃(u | y))µy(dy)

⃓⃓
⃓⃓
⃓

≤ 1

2

∑︂

u∈Ū(r)

⃓⃓
⃓⃓
⃓

∫︂

Br(y∗)
(π̌n(u | y∗)− π̌n(u | y))µy(dy)

⃓⃓
⃓⃓
⃓

+
1

2

∑︂

u∈Ū(r)

⃓⃓
⃓⃓
⃓

∫︂

Br(y∗)
(π̌n(u | y)− π̃(u | y))µy(dy)

⃓⃓
⃓⃓
⃓ ,

it follows then that for all y ∈ Br(y
∗) by Eq. (F.8.13) and Eq. (F.8.15), i.o. in n

1

2

∑︂

u∈Ū(r)

⃓⃓
⃓⃓
⃓

∫︂

Br(y∗)
(π̌n(u | y)− π̃(u | y))µy(dy)

⃓⃓
⃓⃓
⃓
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≥ 1

2

∑︂

u∈Ū(r)

⃓⃓
⃓⃓
⃓

∫︂

Br(y∗)
(π̌n(u | y∗)− π̃(u | y))µy(dy)

⃓⃓
⃓⃓
⃓

− 1

2

∑︂

u∈Ū(r)

⃓⃓
⃓⃓
⃓

∫︂

Br(y∗)
(π̌n(u | y∗)− π̌n(u | y))µy(dy)

⃓⃓
⃓⃓
⃓

> ϵ′ − ϵ′

2
=

ϵ′

2
. (F.8.17)

pass to limit of lipschitz functions. Now consider the sequence of m-Lipschitz
functions fm : Y × U → [0, 1],

fm(y, u) = min
{︂
1,
(︁
1− (md(y, y∗)−mr + 1)+

)︁+}︂

· sgn
(︄∫︂

Br(y∗)

(︁
π̌n(u | y∗)− π̃(u | y′)

)︁
µy(dy

′)

)︄
,

where (·)+ = max(·, 0) and sgn is the sign function. Note that fm = 0 for all y ̸∈ Br(y
∗). Further,

as m→∞,

fm(y, u) ↑ 1Br(y∗)(y) sgn

(︄∫︂

Br(y∗)

(︁
π̌n(u | y∗)− π̃(u | y′)

)︁
µy(dy

′)

)︄
.

Then, by the prequel, we have by monotone convergence, as m→∞,
∫︂∫︂

fm(y, u)(π̌n(du | y)− π̃(du | y))µy(dy)

=

∫︂

Br(y∗)

∑︂

u∈U
fm(y, u)(π̌n(u | y)− π̃(u | y))µy(dy)

→
∫︂

Br(y∗)

∑︂

u∈U
sgn

(︄∫︂

Br(y∗)

(︁
π̌n(u | y∗)− π̃(u | y′)

)︁
µy(dy

′)

)︄
(π̌n(u | y)− π̃(u | y))µy(dy)

=
∑︂

u∈Ū(r)

⃓⃓
⃓⃓
⃓

∫︂

Br(y∗)
(π̌n(u | y)− π̃(u | y))µy(dy)

⃓⃓
⃓⃓
⃓

+
∑︂

u̸∈Ū(r)

sgn

(︄∫︂

Br(y∗)

(︁
π̌n(u | y∗)− π̃(u | y′)

)︁
µy(dy

′)

)︄∫︂

Br(y∗)
(π̌n(u | y)− π̃(u | y))µy(dy)

≥
∑︂

u∈Ū(r)

⃓⃓
⃓⃓
⃓

∫︂

Br(y∗)
(π̌n(u | y)− π̃(u | y))µy(dy)

⃓⃓
⃓⃓
⃓

−
∑︂

u̸∈Ū(r)

⃓⃓
⃓⃓
⃓

∫︂

Br(y∗)
(π̌n(u | y)− π̌n(u | y∗))µy(dy)

⃓⃓
⃓⃓
⃓

−
∑︂

u̸∈Ū(r)

⃓⃓
⃓⃓
⃓

∫︂

Br(y∗)
(π̌n(u | y∗)− π̃(u | y))µy(dy)

⃓⃓
⃓⃓
⃓

>
ϵ′

2
· 2µy(Br(y

∗))− 2ϵ′ − ϵ

4
· 2µy(Br(y

∗))− ϵ− ϵ′

2
· 2µy(Br(y

∗))



282 Appendix F supplementary details on section 4.3

=
1

2

(︂
ϵ′ − ϵ

2

)︂
µy(Br(y

∗)) > 0

i.o. in n, for the first term by Eq. (F.8.16) and Eq. (F.8.17), second by Eq. (F.8.15) and third by
Eq. (F.8.14), noting that ϵ′ > ϵ

2 .

Hence, we may choose m∗ such that e.g.
∫︂∫︂

fm∗(y, u)(π̌n(du | y)− π̃(du | y))µy(dy) >
1

4

(︂
ϵ′ − ϵ

2

)︂
µy(Br(y

∗)).

lower bound. Finally, by noting that 1
m∗ fm∗ ∈ Lip(1) and applying the Kantorovich-

Rubinstein duality, we have

W1(µy ⊗ π̌n, µy ⊗ π̃) = sup
f∈Lip(1)

∫︂∫︂
f(y, u)(π̌n(du | y)− π̃(du | y))µy(dy)

≥
∫︂∫︂

1

m∗ fm∗(y, u)(π̌n(du | y)− π̃(du | y))µy(dy)

>
1

m∗
1

4

(︂
ϵ′ − ϵ

2

)︂
µy(Br(y

∗)) > 0

i.o. in n, and therefore µy⊗ π̌n ↛ µy⊗ π̃. But h̃ = µy⊗ π̃ was assumed to be the limit of µy⊗ π̌n,
leading to a contradiction. Hence, µy-a.e. convergence must hold.

(ii) lipschitz extension of lower-level policies. For finite actions, note that P(U) is
(Lipschitz) equivalent to a subset of the Hilbert space R|U|. Therefore, by the Kirszbraun-Valentine
theorem (see e.g. [393, Theorem 4.2.3]), we can modify π̌ to be LΠ-Lipschitz not only µy-a.e., but
on full Y .

(iii) equality of limits. We show that for any ϵ > 0, W1(h, µy ⊗ π̌) < ϵ, which implies
W1(h, µy ⊗ π̌) = 0 and therefore h = µy ⊗ π̌. First, note that by the triangle inequality, we have

W1(h, µy ⊗ π̌) ≤W1(h, µy ⊗ π̌n) +W1(µy ⊗ π̌n, µy ⊗ π̌)

and thus by µy ⊗ π̌n → h for sufficiently large n, it suffices to show W1(µy ⊗ π̌n, µy ⊗ π̌) < ϵ.

By the prequel, we choose a measurable set A ⊆ Y such that µy(A) < ϵ
2 diam(U) and π̌n(y)

converges uniformly on Y \A. Now by uniform convergence, we choose n sufficiently large such
that W1(π̌n(y), π̌(y)) <

ϵ
2 on Y \A. By Kantorovich-Rubinstein duality, we have

W1(µy ⊗ π̌n, µy ⊗ π̌) = sup
f∈Lip(1)

∫︂∫︂
f(y, u)(π̌n(du | y)− π̌(du | y))µy(dy)

≤
∫︂ (︄

sup
f∈Lip(1)

∫︂
f(y, u)(π̌n(du | y)− π̌(du | y))

)︄
µy(dy)

=

∫︂
W1(π̌n(y), π̌(y))µy(dy)

=

∫︂

A
W1(π̌n(y), π̌(y))µy(dy) +

∫︂

Y\A
W1(π̌n(y), π̌(y))µy(dy)

<
ϵ

2 diam(U) diam(U) +
(︃
1− ϵ

2 diam(U)

)︃
ϵ

2
< ϵ.

This completes the proof.
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f.9 proof of proposition 4.3.2

Proof of Proposition 4.3.2. The proof is similar to the proof of Proposition 4.3.1 by induction. We
begin by showing the first statement. We show µ̄t = µ̂t at all times t ∈ T , as it then follows that
J̄(π̄) =

∑︁∞
t=0 γ

tr(µ̄t) =
∑︁∞

t=0 γ
tr(µ̂t) = Ĵ(π̂) under deterministic π̂ ∈ Π̂. At time t = 0, we

have by definition µ̄0 = µ0 = µ̂0. Assume µ̄t = µ̂t at time t, then at time t+ 1, we have

µ̂t+1 = T̂ (µ̂t, ht) =

∫︂∫︂∫︂
p(x, u, µ̂t)π̌[ht](du | y)pY(dy | x, µ̂t)µ̂t(dx) (F.9.18)

=

∫︂∫︂∫︂
p(x, u, µt)π̄t(du | y, µ̄t)pY(dy | x, µ̄t)µ̄t(dx) = µ̄t+1 (F.9.19)

by definition of π̄t(ν) = π̌[ht], which is the desired statement. An analogous proof for the second
statement in the opposite direction completes the proof.

f.10 proof of corollary 4.3.3

Proof of Corollary 4.3.3. As in the proof of Corollary 4.3.2, we first show Dec-POMFC optimality
of Φ(Ψ(π̂)). Assume J(Φ(Ψ(π̂))) < supπ′∈Π J(π′). Then there exists π′ ∈ Π such that
J(Φ(Ψ(π̂))) < J(π′). But by Proposition 4.3.1, there exists π̄′ ∈ Π̄ such that J̄(π̄′) = J(π′).
Further, by Proposition 4.3.2, there exists π̂′ ∈ Π̄ such that J̄(π̄′) = Ĵ(π̂′). Thus, Ĵ(π̂) = J̄(π̄) =
J(Φ(Ψ(π̂))) < J(π′) = J̄(π̄′) = Ĵ(π̂′), which contradicts π̂ ∈ argmaxπ̂′ Ĵ(π̂′). Therefore,
Φ(Ψ(π̂)) ∈ argmaxπ′∈Π J(π′). Hence, Φ(Ψ(π̂)) fulfills the conditions of Corollary 4.3.1,
completing the proof.

f.11 proof of proposition 4.3.3

Proof of Proposition 4.3.3. First, note that

|∇yκ(yb, y)| = exp

(︃−∥yb − y∥2
2σ2

)︃ |⟨yb − y, y⟩|
2σ2

≤ 1

2σ2
diam(Y)max

y∈Y
∥y∥

for diameter diam(Y) <∞ by compactness of Y , which is equal one for discrete spaces. Further,
⃓⃓
⃓⃓
⃓⃓
∑︂

b′∈[MY ]

κ(yb′ , y)

⃓⃓
⃓⃓
⃓⃓ =

∑︂

b′∈[MY ]

κ(yb′ , y) ≥MY exp

(︃
−diam(Y)2

2σ2

)︃

and |κ(yb, y)| ≤ 1.

Hence, the RBF kernel y ↦→ κ(yb, y)pb = exp(−∥yb−y∥2
2σ2 ) with parameter σ2 > 0 on Y is Lipschitz

for any b ∈ [MY ], since for any y, y′ ∈ Y ,
⃓⃓
∇y

(︁
Z−1(y)κ(yb, y)

)︁⃓⃓

=

⃓⃓
⃓⃓
⃓⃓
⃓

∇yκ(yb, y)
∑︁

b′∈[MY ] κ(yb′ , y) +
∑︁

b′∈[MY ]∇yκ(yb′ , y)κ(yb, y)
(︂∑︁

b′∈[MY ] κ(yb′ , y)
)︂2

⃓⃓
⃓⃓
⃓⃓
⃓
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≤ 1

M2
Y exp2

(︂
−diam(Y)2

2σ2

)︂
(︃

1

2σ2
diam(Y)max

y∈Y
∥y∥MY +MY

1

2σ2
diam(Y)max

y∈Y
∥y∥
)︃

=
diam(Y)maxy∈Y∥y∥

σ2MY exp2
(︂
−diam(Y)2

2σ2

)︂

for any b ∈ [MY ]. Hence, by noting that the following supremum is invariant to addition of
constants,

W1

⎛
⎝Z−1(y)

∑︂

b∈[MY ]

κ(yb, y)pb, Z
−1(y′)

∑︂

b∈[MY ]

κ(yb, y
′)pb

⎞
⎠

= sup
f∈Lip(1)

∫︂
f

⎛
⎝Z−1(y)

∑︂

b∈[MY ]

κ(yb, y)dpb − Z−1(y′)
∑︂

b∈[MY ]

κ(yb, y
′)dpb

⎞
⎠

= sup
f∈Lip(1),|f |≤ 1

2
diam(U)

∫︂
f

⎛
⎝Z−1(y)

∑︂

b∈[MY ]

κ(yb, y)− Z−1(y′)
∑︂

b∈[MY ]

κ(yb, y
′)

⎞
⎠dpb

≤
∑︂

b∈[MY ]

⃓⃓
Z−1(y)κ(yb, y)− Z−1(y′)κ(yb, y

′)
⃓⃓

sup
f∈Lip(1),|f |≤ 1

2
diam(U)

∫︂
fdpb

≤MY
diam(Y)maxy∈Y∥y∥

σ2MY exp2
(︁
− 1

2σ2 diam(Y)2
)︁∥y − y′∥ · 1

2
diam(U).

which is LΠ-Lipschitz if

diam(Y) diam(U)maxy∈Y∥y∥
2σ2 exp2

(︁
− 1

2σ2 diam(Y)2
)︁ ≤ LΠ

⇐⇒ σ2 exp2
(︃
− 1

2σ2
diam(Y)2

)︃
≥ 1

LΠ
diam(Y) diam(U)max

y∈Y
∥y∥.

Note that such σ2 > 0 exists, as σ2 exp2
(︁
− 1

2σ2 diam(Y)2
)︁
→ +∞ as σ2 → +∞.

f.12 proof of theorem 4.3.3

Proof of Theorem 4.3.3. Keeping in mind that we have the centralized training system for stationary
policy π̂θ parametrized by θ,

ξ̃t ∼ π̂θ(µ̃N
t ), π̌t = Λ(ξ̃t)

ỹit ∼ pY(ỹ
i
t | x̃it, µ̃N

t ), ũit ∼ π̌t(ũ
i
t | ỹit), x̃it+1 ∼ p(x̃it+1 | x̃it, ũit, µ̃N

t ), ∀i ∈ [N ],

which we obtained by parametrizing the MDP actions via parametrizations ξ ∈ Ξ, the equivalent
Dec-MFC MDP system concomitant with Eq. (4.3.36) under parametrization Λ(ξ) for lower-level
policies is

ξt ∼ π̂θ(µ̂t), µ̂t+1 = T̂ (µ̂t, ξt) :=

∫︂∫︂∫︂
p(x, u, µ̂t)Λ(ξt)(du | y)pY(dy | x, µ̂t)µ̂t(dx)

(F.12.20)

where we now sample ξt instead of ht. Note that for kernel representations, this new T̂ is indeed
Lipschitz, which follows from Lipschitzness of µ̂t ⊗ pY(µ̂t)⊗ Λ(ξt) in (µ̂t, ξt).
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Lemma F.12.1. Under Assumptions 4.3.1a and 4.3.3, the transitions T̂ of the system with
parametrized actions are LT̂ -Lipschitz with LT̂

:= 2Lp + LpLλ + 2L′LpY .

Proofs for lemmas are found in their respective following sections.

First, we prove dN
π̂θ → dπ̂θ in P(P(X )) by showing at any time t that under π̂θ, the centralized

training system MF µ̃N
t converges to the limiting Dec-MFC MF µ̂t in Eq. (F.12.20). The convergence

is in the same sense as in Theorem 4.3.1.

Lemma F.12.2. For any equicontinuous family of functions F ⊆ RP(X ), under Assumptions 4.3.1a,
4.3.1b and 4.3.3, at all times t we have

sup
f∈F

⃓⃓
E
[︁
f(µ̃N

t )− f(µ̂t)
]︁⃓⃓
→ 0. (F.12.21)

We also show that Q̃θ
(µ, ξ)→ Qθ(µ, ξ), since we can show the same convergence as in Eq. (F.12.21)

for new conditional systems, where for any µ, ξ we let µ̃0 = µ = µ0 and ξ̃0 = ξ = ξ0 at time zero,
where µ̃0 is the initial state distribution of the centralized training system.

Lemma F.12.3. Under Assumptions 4.3.1a and 4.3.3, as N → ∞, we have for any µ ∈ P(X ),
ξ ∈ Ξ that

⃓⃓
⃓Q̃θ

(µ, ξ)−Qθ(µ, ξ)
⃓⃓
⃓→ 0.

Furthermore, Qθ(µ, ξ) is also continuous by a similar argument.

Lemma F.12.4. For any equicontinuous family of functions F ⊆ RP(X ), under Assumptions 4.3.1a
and 4.3.3, at all times t ∈ T , the conditional expectations version of the MF is continuous in the
starting conditions, in the sense that for any (µn, ξn)→ (µ, ξ),

sup
f∈F
|E [f(µ̂t) | µ̂0 = µn, ξ0 = ξn]− E [f(µ̂t) | µ̂0 = µ, ξ0 = ξ]| → 0.

Lastly, keeping in mind dN
π̂θ = (1− γ)

∑︁
t∈T γtLπ̂θ(µ̃N

t ), we have the desired statement
⃦⃦
⃦(1− γ)−1Eµ∼dN

π̂θ ,ξ∼π̂θ(µ)

[︂
Q̃

θ
(µ, ξ)∇θ log π̂

θ(ξ | µ)
]︂
−∇θJ(π̂

θ)
⃦⃦
⃦

≤ (1− γ)−1
⃦⃦
⃦Eµ∼dN

π̂θ ,ξ∼π̂θ(µ)

[︂(︂
Q̃

θ
(µ, ξ)−Qθ(µ, ξ)

)︂
∇θ log π̂

θ(ξ | µ)
]︂⃦⃦
⃦

+
⃦⃦
⃦(1− γ)−1Eµ∼dN

π̂θ ,ξ∼π̂θ(µ)

[︂
Qθ(µ, ξ)∇θ log π̂

θ(ξ | µ)
]︂
−∇θJ(π̂

θ)
⃦⃦
⃦

≤ (1− γ)−1
⃦⃦
⃦Eµ∼dN

π̂θ ,ξ∼π̂θ(µ)

[︂(︂
Q̃

θ
(µ, ξ)−Qθ(µ, ξ)

)︂
∇θ log π̂

θ(ξ | µ)
]︂⃦⃦
⃦

+

⃦⃦
⃦⃦
⃦

∞∑︂

t=T

γtEξ∼π̂θ(µ̃N
t )

[︂
Qθ(µ̃N

t , ξ)∇θ log π̂
θ(ξ | µ̃N

t )−Qθ(µ̂t, ξ)∇θ log π̂
θ(ξ | µ̂t)

]︂⃦⃦⃦⃦
⃦

+

⃦⃦
⃦⃦
⃦
T−1∑︂

t=0

γtEξ∼π̂θ(µ̃N
t )

[︂
Qθ(µ̃N

t , ξ)∇θ log π̂
θ(ξ | µ̃N

t )−Qθ(µ̂t, ξ)∇θ log π̂
θ(ξ | µ̂t)

]︂⃦⃦⃦⃦
⃦

→ 0
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for the first term from Q̃
θ
(µ, ξ)→ Qθ(µ, ξ) uniformly by Lemma F.12.3 and compactness of the

domain, for the second by Assumptions 4.3.1a and 4.3.3 uniformly bounding∇θ log π
θ, Qθ and

choosing sufficiently large T , and for the third by repeating the argument for Q: Notice that
⃦⃦
⃦⃦
⃦
T−1∑︂

t=0

γtEξ∼π̂θ(µ̃N
t )

[︂
Qθ(µ̃N

t , ξ)∇θ log π̂
θ(ξ | µ̃N

t )−Qθ(µ̂t, ξ)∇θ log π̂
θ(ξ | µ̂t)

]︂⃦⃦⃦⃦
⃦

≤
⃦⃦
⃦⃦
⃦
T−1∑︂

t=0

γtEξ∼π̂θ(µ̃N
t )

[︄ ∞∑︂

t′=T ′

γt
′
(︂
E
[︁
r(µ̂t′)

⃓⃓
µ̂0 = µ̃N

t , ξ0 = ξ
]︁
∇θ log π̂

θ(ξ | µ̃N
t )

−E [r(µ̂t′) | µ̂0 = µ̂t, ξ0 = ξ]∇θ log π̂
θ(ξ | µ̂t)

)︂]︂⃦⃦
⃦

+

⃦⃦
⃦⃦
⃦
T−1∑︂

t=0

γtEξ∼π̂θ(µ̃N
t )

[︄
T ′−1∑︂

t′=0

γt
′
(︂
E
[︁
r(µ̂t′)

⃓⃓
µ̂0 = µ̃N

t , ξ0 = ξ
]︁
∇θ log π̂

θ(ξ | µ̃N
t )

−E [r(µ̂t′) | µ̂0 = µ̂t, ξ0 = ξ]∇θ log π̂
θ(ξ | µ̂t)

)︂]︂⃦⃦
⃦ ,

where the inner expectations are on the conditional system. Letting T ′ sufficiently large
bounds the former term by uniform bounds on the summands from Assumption 4.3.3.
Then, for the latter term, apply Lemma F.12.2 at times t′ < T ′ to the functions f(µ) =∫︁
E [r(µ̂t′) | µ̂0 = µ, ξ0 = ξ]∇θ log π̂

θ(ξ | µ)π̂θ(dξ | µ)dξ, which are continuous up to any finite
time t′ by Lemma F.12.4 and Assumption 4.3.3.

f.13 proof of lemma F.12.1

Proof of Lemma F.12.1. We have by definition
∫︂∫︂∫︂

p(x, u, µ̂)Λ(ξ)(du | y)pY(dy | x, µ̂)µ̂(dx)

=

∫︂∫︂∫︂
p(x, u, µ̂)

∑︁
b∈[MY ] κ(yb, y)λb(ξ)(du)∑︁

b∈[MY ] κ(yb, y)
pY(dy | x, µ̂)µ̂(dx).

Consider any ξ, ξ′ ∈ Ξ, µ̂, µ̂′ ∈ P(X ). Then, for readability, write

µ̂xy := µ̂⊗ pY(µ̂), µ̂xyu := µ̂xy ⊗ Λ(ξ), µ̂xyux′ := µ̂xyu ⊗ p(µ̂),

µ̂′
xy := µ̂′ ⊗ pY(µ̂

′), µ̂′
xyu := µ̂′

xy ⊗ Λ(ξ′), µ̂′
xyux′ := µ̂′

xyu ⊗ p(µ̂′),

∆p(· | x, u) := p(· | x, u, µ̂)− p(· | x, u, µ̂′),

∆Λ(· | y) :=
∑︁

b κ(yb, y) (λb(ξ)(·)− λb(ξ
′)(·))∑︁

b κ(yb, y)
,

∆pY(· | x) := pY(· | x, µ̂)− pY(· | x, µ̂′), ∆µ := µ̂− µ̂′

to obtain

W1

(︃∫︂∫︂∫︂
p(x, u, µ̂)

∑︁
b κ(yb, y)λb(ξ)(du)∑︁

b κ(yb, y)
pY(dy | x, µ̂)µ̂(dx),

∫︂∫︂∫︂
p(x, u, µ̂′)

∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

pY(dy | x, µ̂′)µ̂′(dx)

)︃

= sup
f∈Lip(1)

∫︂∫︂∫︂∫︂
f(x′)

(︁
µ̂xyux′(dx,dy,du,dx′)− µ̂′

xyux′(dx,dy,du,dx′)
)︁
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≤ sup
f∈Lip(1)

∫︂∫︂∫︂∫︂
f(x′)∆p(dx′ | x, u)µ̂xyu(dx,dy,du)

+ sup
f∈Lip(1)

∫︂∫︂∫︂∫︂
f(x′)p(dx′ | x, u, µ̂′)∆Λ(du | y)µ̂xy(dx, dy))

+ sup
f∈Lip(1)

∫︂∫︂∫︂∫︂
f(x′)p(dx′ | x, u, µ̂′)

∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

∆pY(dy | x)µ̂(dx)

+ sup
f∈Lip(1)

∫︂∫︂∫︂∫︂
f(x′)p(dx′ | x, u, µ̂′)

∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

pY(dy | x, µ̂′)∆µ(dx)

≤ sup
f∈Lip(1)

sup
(x,y,u)∈X×Y×U

⃓⃓
⃓⃓
∫︂

f(x′)∆p(dx′ | x, u)
⃓⃓
⃓⃓

+ sup
f∈Lip(1)

sup
(x,y)∈X×Y

⃓⃓
⃓⃓
∫︂∫︂

f(x′)p(dx′ | x, u, µ̂′)∆Λ(du | y)
⃓⃓
⃓⃓

+ sup
f∈Lip(1)

sup
x∈X

⃓⃓
⃓⃓
∫︂∫︂∫︂

f(x′)p(dx′ | x, u, µ̂′)

∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

∆pY(dy | x)
⃓⃓
⃓⃓

+ sup
f∈Lip(1)

⃓⃓
⃓⃓
∫︂∫︂∫︂∫︂

f(x′)p(dx′ | x, u, µ̂′)

∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

pY(dy | x, µ̂′)∆µ(dx)

⃓⃓
⃓⃓

bounded by the same arguments as in Theorem 4.3.1:

For the first term, we have that the function x′ ↦→ f(x′) is 1-Lipschitz, and therefore

sup
f∈Lip(1)

sup
(x,y,u)∈X×Y×U

⃓⃓
⃓⃓
∫︂

f(x′)
(︁
p(dx′ | x, u, µ̂)− p(dx′ | x, u, µ̂′)

)︁⃓⃓⃓⃓ ≤ LpW1(µ̂, µ̂
′)

by Assumption 4.3.1a.

For the second term, we have Lp-Lipschitz u ↦→
∫︁
f(x′)p(dx′ | x, u, µ̂′), since for any f ∈ Lip(1)

and (x, y) ∈ X × Y , we obtain
⃓⃓
⃓⃓
∫︂

f(x′)p(dx′ | x, u, µ̂′)−
∫︂

f(x′)p(dx′ | x, u′, µ̂′)

⃓⃓
⃓⃓

≤W1(p(x, u, µ̂
′), p(x, u′, µ̂′)) ≤ Lpd(u, u

′)

for any u, u′ ∈ U by Assumption 4.3.1a, and therefore

sup
f∈Lip(1)

sup
(x,y)∈X×Y

⃓⃓
⃓⃓
∫︂∫︂

f(x′)p(dx′ | x, u, µ̂′)

∑︁
b κ(yb, y) (λb(ξ)(du)− λb(ξ

′)(du))∑︁
b κ(yb, y)

⃓⃓
⃓⃓

≤
∑︁

b κ(yb, y)LpW1 (λb(ξ), λb(ξ
′))∑︁

b κ(yb, y)
≤ LpLλd(ξ, ξ

′)

by Assumption 4.3.3.

For the third term, we have L′-Lipschitz y ↦→
∫︁∫︁

f(x′)p(dx′ | x, u, µ̂′)
∑︁

b κ(yb,y)λb(ξ
′)(du)∑︁

b κ(yb,y)
where

we define L′ := Lp
diam(Y) diam(U)maxy∈Y∥y∥
2σ2 exp2

(︂
− 1

2σ2 diam(Y)2
)︂ , since for any f ∈ Lip(1) and x ∈ X , we obtain

⃓⃓
⃓⃓
∫︂∫︂

f(x′)p(dx′ | x, u, µ̂′)

(︃∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

−
∑︁

b κ(yb, y
′)λb(ξ

′)(du)∑︁
b κ(yb, y

′)

)︃⃓⃓
⃓⃓

≤ Lp ·
diam(Y) diam(U)maxy∈Y∥y∥
2σ2 exp2

(︁
− 1

2σ2 diam(Y)2
)︁ d(y, y′)
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for any y, y′ ∈ Y by Proposition 4.3.3 and the prequel, and therefore, for any f ∈ Lip(1), x ∈ X
⃓⃓
⃓⃓
∫︂∫︂∫︂

f(x′)p(dx′ | x, u, µ̂′)

∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

(︁
pY(dy | x, µ̂)− pY(dy | x, µ̂′)

)︁⃓⃓⃓⃓

≤ L′LpYW1(µ̂, µ̂
′)

by Assumption 4.3.1a.

Lastly, for the fourth term, x ↦→
∫︁∫︁∫︁

f(x′)p(dx′ | x, u, µ̂′)
∑︁

b κ(yb,y)λb(ξ
′)(du)∑︁

b κ(yb,y)
pY(dy | x, µ̂′) is

similarly (Lp + L′LpY )-Lipschitz, since for any f ∈ Lip(1), we obtain
⃓⃓
⃓⃓
∫︂∫︂∫︂

f(x′)p(dx′ | x, u, µ̂′)

∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

pY(dy | x, µ̂′)

−
∫︂∫︂∫︂

f(x′)p(dx′ | x′′, u, µ̂′)

∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

pY(dy | x′′, µ̂′)

⃓⃓
⃓⃓

≤
⃓⃓
⃓⃓
∫︂∫︂∫︂

f(x′)
(︁
p(dx′ | x, u, µ̂′)− p(dx′ | x′′, u, µ̂′)

)︁ ∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

pY(dy | x, µ̂′)

⃓⃓
⃓⃓

+

⃓⃓
⃓⃓
∫︂∫︂∫︂

f(x′)p(dx′ | x′′, u, µ̂′)

∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

(︁
pY(dy | x, µ̂′)− pY(dy | x′′, µ̂′)

)︁⃓⃓⃓⃓

≤ Lpd(x, x
′′) + L′LpYd(x, x

′′) = (Lp + L′LpY )d(x, x
′′)

for any x, x′′ ∈ X by the prequel, which implies

sup
f∈Lip(1)

⃓⃓
⃓⃓
∫︂∫︂∫︂∫︂

f(x′)p(dx′ | x, u, µ̂′)

∑︁
b κ(yb, y)λb(ξ

′)(du)∑︁
b κ(yb, y)

pY(dy | x, µ̂′)
(︁
µ̂(dx)− µ̂′(dx)

)︁⃓⃓⃓⃓

≤ (Lp + L′LpY )W1(µ̂, µ̂
′).

Overall, the map T̂ is therefore Lipschitz with constant LT̂ = 2Lp + LpLλ + 2L′LpY .

f.14 proof of lemma F.12.2

Proof of Lemma F.12.2. The proof is the same as the proof of Theorem 4.3.1. The only difference is
that for the weak LLN argument, we condition not only on x̃Nt , but also on ξ̃t, while for the induction
assumption, we still apply to equicontinuous functions by Assumption 4.3.3 and Lemma F.12.1.

In other words, for the weak LLN we use

E
[︂
dΣ

(︂
µ̃N
t+1, T̃

(︂
µ̃N
t , ξ̃t

)︂)︂]︂
=

∞∑︂

m=1

2−mE
[︃⃓⃓
⃓⃓
∫︂

fm d
(︂
µ̃N
t+1 − T̃

(︂
µ̃N
t , ξ̃t

)︂)︂⃓⃓
⃓⃓
]︃

≤ sup
m≥1

E
[︃
E
[︃⃓⃓
⃓⃓
∫︂

fm d
(︂
µ̃N
t+1 − T̃

(︂
µ̃N
t , ξ̃t

)︂)︂⃓⃓
⃓⃓
⃓⃓
⃓⃓ x̃Nt , ξ̃t

]︃]︃
.

and obtain

E
[︃⃓⃓
⃓⃓
∫︂

fm d
(︂
µ̃N
t+1 − T̃

(︂
µ̃N
t , ξ̃t

)︂)︂⃓⃓
⃓⃓
⃓⃓
⃓⃓ x̃Nt , ξ̃t

]︃2

= E

⎡
⎣
⃓⃓
⃓⃓
⃓⃓
1

N

∑︂

i∈[N ]

(︂
fm(xit+1)− E

[︂
fm(xit+1)

⃓⃓
⃓ x̃Nt , ξ̃t

]︂)︂
⃓⃓
⃓⃓
⃓⃓

⃓⃓
⃓⃓
⃓⃓ x̃Nt , ξ̃t

⎤
⎦
2

≤ 4

N
→ 0,

while for the induction assumption we use the equicontinuous functions µ ↦→
∫︁
f(T̂ (µ, ξ))π̂θ(ξ |

µ)dξ by Assumption 4.3.3 and Lemma F.12.1.
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f.15 proof of lemma F.12.3

Proof of Lemma F.12.3. We show the required statement by first showing at all times t that

sup
f∈F

⃓⃓
⃓E
[︂
f(µ̃N

t )− f(µ̂t)
⃓⃓
⃓ µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0

]︂⃓⃓
⃓→ 0. (F.15.22)

This is clear at time t = 0 by µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0 and the weak LLN argument as in the
proof of Lemma F.12.2. At time t = 1, we analogously have

sup
f∈F

⃓⃓
⃓E
[︂
f(µ̃N

1 )− f(µ̂1)
⃓⃓
⃓ µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0

]︂⃓⃓
⃓

≤ sup
f∈F

⃓⃓
⃓E
[︂
f(µ̃N

1 )− f(T̂ (µ̃N
0 , ξ̃0))

⃓⃓
⃓ µ̃0 = µ, ξ̃0 = ξ

]︂⃓⃓
⃓

+ sup
f∈F

⃓⃓
⃓E
[︂
f(T̂ (µ̃N

0 , ξ̃0))− f(µ̂1)
⃓⃓
⃓ µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0

]︂⃓⃓
⃓ ,

and

sup
f∈F

⃓⃓
⃓E
[︂
f(µ̃N

t+1)− f(µ̂t+1)
⃓⃓
⃓ µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0

]︂⃓⃓
⃓

≤ sup
f∈F

⃓⃓
⃓⃓E
[︃
f(µ̃N

t+1)−
∫︂

f(T̂ (µ̃N
t , ξ′))π̂θ(ξ′ | µ̃N

t )dξ′
⃓⃓
⃓⃓ µ̃0 = µ, ξ̃0 = ξ

]︃⃓⃓
⃓⃓

+ sup
f∈F

⃓⃓
⃓⃓E
[︃∫︂

f(T̂ (µ̃N
t , ξ′))π̂θ(ξ′ | µ̃N

t )dξ′ − f(µ̂t+1)

⃓⃓
⃓⃓ µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0

]︃⃓⃓
⃓⃓ ,

for times t+ 1 ≥ 1, each with the weak LLN arguments applied to the former terms (conditioning
not only on x̃Nt , but also ξ̃t), and the induction assumption applied to the latter terms, using the
equicontinuous functions µ ↦→

∫︁
f(T̂ (µ, ξ))π̂θ(ξ | µ)dξ by Assumption 4.3.3 and Lemma F.12.1.

f.16 proof of lemma F.12.4

Proof of Lemma F.12.4. For any (µn, ξn) → (µ, ξ), we show again by induction over all times t
that for any equicontinuous family F ,

sup
f∈F
|E [f(µ̂t) | µ̂0 = µn, ξ0 = ξn]− E [f(µ̂t) | µ̂0 = µ, ξ0 = ξ]| → 0 (F.16.23)

as N →∞, from which the result follows. At time t = 0, we have by definition

sup
f∈F
|E [f(µ̂0) | µ̂0 = µn, ξ0 = ξn]− E [f(µ̂0) | µ̂0 = µ, ξ0 = ξ]| = 0.

Analogously, at time t = 1 we have

sup
f∈F
|E [f(µ̂1) | µ̂0 = µn, ξ0 = ξn]− E [f(µ̂1) | µ̂0 = µ, ξ0 = ξ]|

= sup
f∈F

⃓⃓
⃓E
[︂
f(T̂ (µ̂0, ξ0))

⃓⃓
⃓ µ̂0 = µn, ξ0 = ξn

]︂
− E

[︂
f(T̂ (µ̂0, ξ0))

⃓⃓
⃓ µ̂0 = µ, ξ0 = ξ

]︂⃓⃓
⃓

= sup
f∈F

⃓⃓
⃓f(T̂ (µ̂n, ξn))− f(T̂ (µ̂, ξ))

⃓⃓
⃓→ 0
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by equicontinuous f and continuous T̂ from Lemma F.12.1.

Now assuming that Eq. (F.16.23) holds at time t ≥ 1, then at time t+ 1 we have

sup
f∈F

⃓⃓
E
[︁
f(µ̂t+1)

⃓⃓
µ̂0 = µn, ξ0 = ξn

]︁
− E

[︁
f(µ̂t+1)

⃓⃓
µ̂0 = µ, ξ0 = ξ

]︁⃓⃓

= sup
f∈F

⃓⃓
⃓⃓E
[︃∫︂

f(T̂ (µ̂t, ξ
′))π̂θ(ξ′ | µ̂t)dξ

′
⃓⃓
⃓⃓ µ̂0 = µn, ξ0 = ξn

]︃

−E
[︃∫︂

f(T̂ (µ̂t, ξ
′))π̂θ(ξ′ | µ̂t)dξ

′
⃓⃓
⃓⃓ µ̂0 = µ, ξ0 = ξ

]︃⃓⃓
⃓⃓

= sup
g∈G
|E [g(µ̂t) | µ̂0 = µn, ξ0 = ξn]− E [g(µ̂t) | µ̂0 = µ, ξ0 = ξ]| → 0

by induction assumption on equicontinuous functions g ∈ G by Assumptions 4.3.1a and 4.3.3,
Lemma F.12.1, and equicontinuous f ∈ F , as in Theorem 4.3.1.

The convergence of
⃓⃓
Qθ(µn, ξn)−Qθ(µ, ξ)

⃓⃓
→ 0 thus follows by Assumption 4.3.1a.

f.17 additional experiments

In this section, we give additional details on experiments. The mathematical description of problems
can be found in Appendix F.19.

We use the manifolds as depicted in Figure F.1 and as described in the following. Here, we visualize
the qualitative results as in the main text for the remaining topologies. Due to technical limitations,
all agents are drawn, including the ones behind a surface. To indicate where an agent belongs, we
colorize the inside of the agent with the color of its corresponding surface.

torus manifold. The (flat) torus manifold is obtained from the square [−1, 1]2 by identifying
(x,−1) ∼ (x, 1) and (−1, y) ∼ (1, y) for all x, y ∈ [−1, 1]. For the metric, we use the toroidal
distance inherited from the Euclidean distance d2, which can be computed as

d(x, y) = min
t1,t2∈{−1,0,1}

d2(x, y + 2t1e1 + 2t2e2)

where e1, e2 denote unit vectors. In Figure F.1, we visualize the torus by mapping each point
(x, y) ∈ [−1, 1]2 to a point (X,Y, Z) in 3D space, given by

X = (2 + 0.75 cos (π(x+ 1))) cos (π(y + 1)) ,

Y = (2 + 0.75 cos (π(x+ 1))) sin (π(y + 1)) ,

Z = 0.75 sin (π(x+ 1)) .

The results have been described in the main text in Figure 4.20. Here, also note that the torus –
by periodicity and periodic boundary conditions – can essentially be understood as the case of an
infinite plane, consisting of infinitely many copies of the square [−1, 1]2 laid next to each other.
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figure f.1: Two-dimensional manifolds visualized in three-dimensional space. In order from left to right:
Möbius strip, torus, projective plane (Boy’s surface), and Klein bottle (pinched torus).

möbius strip. The Möbius strip is obtained from the square [−1, 1]2 by instead only identifying
(−1,−y) ∼ (1, y) for all y ∈ [−1, 1], i.e. only the top and bottom side of the square, where
directions are flipped. We then use the inherited distance

d(x, y) = min
t2∈{−1,0,1}

d2(x, (1− 2 · 1t2 ̸=0, 1)
T ⊙ y + 2t2e2)

where ⊙ denotes the elementwise (Hadamard) product.

We visualize the Möbius strip in Figure F.1 by mapping each point (x, y) ∈ [−1, 1]2 to

X =
(︂
1 +

x

2
cos
(︂π
2
(y + 1)

)︂)︂
cos (π(y + 1)) ,

Y =
(︂
1 +

x

2
cos
(︂π
2
(y + 1)

)︂)︂
sin (π(y + 1)) ,

Z =
x

2
sin
(︂π
2
(y + 1)

)︂
.

As we can see in Figure F.2, the behavior of agents is learned as expected: Agents learn to align
along one direction on the Möbius strip.

figure f.2: Qualitative visualization of Vicsek behavior on the Möbius strip manifold for uniform
initialization. The 300 agents (triangles) align into one direction on the Möbius strip.

projective plane. Analogously, the projective plane is obtained by identifying and flipping
both sides of the square [−1, 1]2, i.e. (−x,−1) ∼ (x, 1) and (−1,−y) ∼ (1, y) for allx, y ∈ [−1, 1].
We use the inherited distance

d(x, y) = min
t1,t2∈{−1,0,1}

d2(x, (1− 2 · 1t2 ̸=0, 1− 2 · 1t1 ̸=0)
T ⊙ y + 2t1e1 + 2t2e2)
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and though an accurate visualization in less than four dimensions is difficult, we visualize in
Figure F.3 by mapping each point (x, y) ∈ [−1, 1]2 to a point (X,Y, Z) on the so-called Boy’s
surface, with

z =
x+ 1

2
exp (iπ(y + 1)) ,

g1 = −
3

2
Im

(︃
z(1− z4)

z6 +
√
5z3 − 1

)︃
,

g2 = −
3

2
Re

(︃
z(1− z4)

z6 +
√
5z3 − 1

)︃
,

g3 = Im

(︃
1 + z6

z6 +
√
5z3 − 1

)︃
− 1

2
,

X =
g1

g21 + g22 + g23
,

Y =
g2

g21 + g22 + g23
,

Z =
g2

g21 + g22 + g23
.

As we can see in Figure F.3, under the inherited metric and radial parametrization, agents tend to
gather at the bottom of the surface.

figure f.3: Qualitative visualization of Vicsek behavior on the projective plane manifold for uniform
initialization. The 300 agents (triangles) align over time by gathering at the bottom right.

klein bottle. Similarly, the Klein bottle is obtained by identifying both sides of the square
[−1, 1]2 and flipping one side, i.e. (x,−1) ∼ (x, 1) and (−1,−y) ∼ (1, y) for all x, y ∈ [−1, 1].
We use the inherited distance

d(x, y) = min
t1,t2∈{−1,0,1}

d2(x, (1− 2 · 1t2 ̸=0, 1)
T ⊙ y + 2t1e1 + 2t2e2)

and visualize in Figure F.4 by the pinched torus, i.e. mapping each (x, y) ∈ [−1, 1]2 to a point
(X,Y, Z) with

X = (2 + 0.75 cos (π(x+ 1))) cos (π(y + 1)) ,

Y = (2 + 0.75 cos (π(x+ 1))) sin (π(y + 1)) ,

Z = 0.75 sin (π(x+ 1))) cos
(︂π
2
(y + 1)

)︂
.

As we can see in Figure F.4, agents may align by aggregating on the inner and outer ring, such that
they may avoid switching sides at the pinch.
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figure f.4: Qualitative visualization of behavior on Klein bottle topology for uniform initialization: The
visualization in 3D is limited. Here, we use a pinched torus visualization that inverts itself at the flat pinch
(i.e. there is no "connection" between blue and red surfaces at the bottom). Over time, 300 agents (triangles)
sometimes align by aggregating on the inner, avoiding side switches at the pinch.

box. Lastly, the box manifold is the square [−1, 1]2 equipped with the standard Euclidean
topology, i.e. distances between two points x, y ∈ [−1, 1]2 are given by

d(x, y) =
√︁

(x1 − y1)2 + (x2 − y2)2,

while the sides of the square are not connected to anything else. We use the box manifold for the
following experiments in Aggregation, and mention it here for sake of completeness.

ablation on number of agents. As seen in Figures F.5 and F.6, we can successfully train
on various numbers of agents, despite the inaccuracy of the MF approximation for fewer agents
as inferred from Figure 4.18. This indicates that our algorithm is general and – at least in the
considered problems – scales to arbitrary numbers of agents.

figure f.5: Training curves for Vicsek (torus), using RBF / discretization solutions. (a): RBF, N = 25; (b):
Discretization, N = 25; (c): RBF, N = 50; (d) : Discretization, N = 50.

figure f.6: Training curves for Vicsek (torus), using RBF / discretization solutions. (a): RBF, N = 100;
(b): Discretization, N = 100; (c): RBF, N = 150; (d) : Discretization, N = 150.

qualitative results for kuramoto. The Kuramoto model, see Figure F.7, demonstrates
instability during training and subsequent lower-grade qualitative behavior compared to the Vicsek
model. This disparity persists even when considering more intricate topologies, despite being a
specialization of the Vicsek model. One explanation is that the added movement makes it easier
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to align agents over time. Another general explanation could be that, despite initially distributing
agents uniformly across the region of interest, the learned policy causes the agents to aggregate into
a few or even a single cluster (though we do not observe such behavior in Figure F.7). The closer
particles are to each other, the greater the likelihood that they perceive a similar or identical MF,
prompting alignment only in local clusters. A similar behavior is observed in the classical Vicsek
model, where agents tend to move in the same direction after interaction. Consequently, they remain
within each other’s interaction region and have the potential to form compounds provided there are
no major disturbances. These can come from either other particles or excessively high levels of
noise [394]. Although agents are able to align, the desired alignment remains to be improved, either
via more parameter tuning or improved algorithms.

figure f.7: Qualitative behavior of the learned behavior in the Kuramoto model with histogram over
angles, where in contrast to Vicsek, agents remain fixed in their initial position.

effect of kernel method. While for low dimensions, the effect of kernel methods is not
as pronounced and mostly ensure theoretical guarantees, in Figures F.8 and F.9 we can see that
training via our RBF-based methods outperforms discretization-based methods for dimensions
higher than 3 as compared to a simple gridding of the probability simplex with associated histogram
representation of the MF. Here, for the RBF method in Aggregation, we place 5 equidistant points yb
on the axis of each dimension. This is also the reason for why the discretization-based approach
is better for low dimensions d = 2 or d = 3, as more points will have more control over actions
of agents, and can therefore achieve better results, in exchange for tractability in high dimensions.
This shows the advantage of RBF-based methods in more complex, high-dimensional problems.
While the RBF-based method continues to learn even for higher dimensions up to d = 5, the
discretization-based solution eventually stops learning due to very large action spaces leading to
increased noise on the gradient. The advantage is not just in terms of sample complexity, but also in
terms of wall clock time, as the computation over exponentially many bins also takes more CPU
time as shown in Table F.1.

figure f.8: Training curves for d-dimensional Aggregation, RBF vs. discretization. (a): RBF, d = 2; (b):
Discretization, d = 2; (c): RBF, d = 3; (d) : Discretization, d = 3.

ablations on time dependency and starting conditions. As discussed in the main
text, we also verify the effect of using a non-time-dependent open-loop sequence of lower-level
policies, and also an ablation over different starting conditions. In particular, for starting conditions,
to begin we will consider the uniform initialization as well as the beta-1, beta-2 and beta-3
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figure f.9: Training curves for d-dimensional Aggregation, RBF vs. discretization. (a): RBF, d = 4; (b):
Discretization, d = 4; (c): RBF, d = 5; (d) : Discretization, d = 5.

table f.1: Wall clock time for one training step averaged over 500 iterations in d-dimensional Aggregation,
for 50 agents.

Dimensionality d RBF MFC [s] Discretization MFC [s] MARL (IPPO) [s]

2 5.64 5.69 146.58
3 6.16 7.96 147.03
4 6.97 17.26 147.29
5 8.31 76.33 146.91

initializations with a beta distribution over each dimension of the states, using α = β = 0.5,
α = β = 0.25 and α = β = 0.75 respectively.

As we can see in Figure F.10, the behavior learned for the Vicsek problem on the torus with
N = 200 agents allows for using the first lower-level policy π̌0 at all times t under the Gaussian
initialization used in training to nonetheless achieve alignment. This validates the fact that a
time-variant open-loop sequence of lower-level policies is not always needed, and the results even
hold for slightly different initial conditions from the ones used in training.

figure f.10: Open-loop behavior by using the lower-level decision policy at time t = 0 for all times,
on Vicsek (torus) with N = 200 agents and various initializations. A: uniform initialization; B: beta-2
initialization; C: beta-1 initialization; D: beta-3 initialization.

Analogously, we consider some more strongly concentrated and heterogeneous initializations: The
peak-normal initialization is given by a more concentrated zero-centered diagonal Gaussian with
covariance σ2 = 0.1. The squeezed-normal is the same initialization as in training, except for
dividing the variance in the y-axis by 10. The multiheaded-normal initialization is a mixture of two
equisized Gaussian distributions in the upper-right and lower-left quadrant, where in comparison to
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the training initialization, position variances are halved. Finally, the bernoulli-multiheaded-normal
additionally changes the weights of two Gaussians to 0.75 and 0.25 respectively.

As seen in Figure F.11, the lower-level policy π̌0 for Gaussian initialization from training easily
transfers and generalizes to more complex initializations. However, the behavior may naturally be
more suboptimal due to the training process likely never seeing more strongly concentrated and
heterogeneous distributions of agents. For example, in the peak-normal initialization in Figure F.11,
we see that the agents begin relatively aligned, but will first misalign in order to align again, as the
learned policy was trained to handle only the wider Gaussian initialization.

figure f.11: Open-loop behavior by using the lower-level decision policy at time t = 0 for all times,
on Vicsek (torus) with N = 200 agents and various initializations. A: peak-normal initialization; B:
squeezed-normal initialization; C: multiheaded-normal initialization; D: bernoulli-multiheaded-normal
initialization.

no observations. As an additional verification of the positive effect of MF guidance on PG
training, we also perform experiments for training PPO without any RL observations, as in the
previous paragraph we verified the applicability of learned behavior even without observing the
MF that is observed by RL during training. In Figure F.12 we see that PPO is unable to learn useful
behavior, despite the existence of such a time-invariant lower-level policy from the preceding
paragraph, underlining the empirical importance of MF guidance that we derived.

figure f.12: Qualitative behavior of training without observations for Vicsek (torus).

transfer to differing agent counts. In Figure F.13, we see qualitatively that the
behavior learned for N = 200 agents transfers to different, lower numbers of agents as well. The
result is congruent with the results shown in the main text, such as in Figure 4.18, and further
supports the fact that our method scales to nearly arbitrary numbers of agents.
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figure f.13: Qualitative behavior of the policy learned for N = 200 on Vicsek (torus), transferred to
different numbers of agents N . A: N = 25; B: N = 50; C: N = 100; D: N = 150.

forward velocity control. We also allow agents to alternatively control their maximum
velocity in the range [0, v0]. Forward velocity can similarly be controlled, and allows for more
uniform spreading of agents in contrast to the case where velocity cannot be controlled. This shows
some additional generalization of our algorithm to variants of collective behavior problems. The
corresponding final qualitative behavior is depicted in Figure F.14.

figure f.14: Qualitative behavior on Vicsek (torus) with N = 200 agents, additional forward velocity
control, and various initializations. A: peak-normal initialization; B: squeezed-normal initialization; C:
multiheaded-normal initialization; D: bernoulli-multiheaded-normal initialization.

comparison of ippo and mappo for low numbers of agents. Lastly, for completeness
we show the comparison of IPPO and MAPPO training results for various numbers of agents in
Figures F.15 and F.16. The overall achieved performances are overall comparable to the results of
the Dec-POMFPPO method in Figure 4.18.

f.18 experimental details

We use the RLlib 2.0.1 (Apache-2.0 license) [76] implementation of PPO [73] for both MARL via
IPPO, and our Dec-POMFPPO. For MAPPO, we used the MARLlib 1.0.0 framework [91], which builds
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figure f.15: IPPO training curves (episode return) with shaded standard deviation over 3 seeds and various
N , in (a) Aggregation (box), (b) Vicsek (torus), (c) Kuramoto (torus). For comparison, we also plot the best
return averaged over 3 seeds for Dec-POMFPPO in Figure 4.16 (MF).

figure f.16: MAPPO training curves (episode return) with shaded standard deviation over 3 seeds and
various N , in (a) Aggregation (box), (b) Vicsek (torus), (c) Kuramoto (torus). For comparison, we also plot
the best return averaged over 3 seeds for Dec-POMFPPO in Figure 4.16 (MF).

upon RLlib. For our experiments, we used no GPUs and around 60 000 Intel Xeon Platinum 9242
CPU core hours, and each training run usually took at most three days by training on up to 96 CPU
cores. Implementation-wise, for the upper-level policy NNs learned by PPO, we use two hidden
layers with 256 nodes and tanh activations, parametrizing diagonal Gaussians over the MDP actions
ξ ∈ Ξ (parametrizations of lower-level policies).

In Aggregation, we define the parameters ξ ∈ Ξ for continuous spaces X ,Y,U ⊆ Rd by values in
Ξ := [−1, 1]2d. Each component of ξ is then mapped affinely to mean in U or diagonal covariance in
[ϵ, 0.5+ ϵ] with ϵ = 10−10/4, of each dimension. Meanwhile, in Vicsek and Kuramoto, we pursue a
"discrete action space" approach, letting Ξ := [−1, 1]3. We then affinely map components of ξ ∈ Ξ
to [ϵ, 0.5 + ϵ], which are normalized to constitute probabilities of actions in {−1, 0, 1} ⊆ U .

For the kernel-based representation of MFs in d-dimensional state spaces X , we define points xb
by the center points of a d-dimensional gridding of spaces via equisized (MX = 5d hypercubes)
partitions. For the histogram, we similarly use the equisized hypercube partitions. For observation
spaces Y and the kernel-based representation of lower-level policies, unless noted otherwise (e.g.
in the high-dimensional experiments below, where we use less than exponentially many points), we
do the same but additionally rescale the center points ỹb around zero, giving yb = cỹb for some
c > 0 and MY = 5d. We use c = 0.75 for Aggregation and c = 0.1 for Vicsek and Kuramoto. For
the (diagonal) bandwidths of RBF kernels, in Aggregation we use σ = 0.12/

√
MX for states and

σ = 0.12c for observations. In Vicsek and Kuramoto, we use σ = 0.12/
√
2 for state positions,

σ = 0.12π for state angles, and σ = 0.06c or σ = 0.12πc for the first or second component of
observations respectively. For IPPO and MAPPO, we observe the observations yt directly. For
hyperparameters of PPO, see Table F.2.

f.19 problem details

In this section, we will discuss in more detail the problems considered in our experiments.

aggregation. The Aggregation problem is a problem where agents must aggregate into a
single point. Here, X = Y = [−1, 1]d ⊆ Rd for some dimensionality parameter d ∈ N, and
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table f.2: Hyperparameter configurations for PPO.

Hyperparameter Value

Discount factor γ 0.99
GAE lambda 1
KL coefficient 0.03
Clip parameter 0.2
Learning rate 0.00005

Training batch size Blen 4000
Mini-batch size blen 1000

Steps per batch NPPO 5

analogously U = [−1, 1]d for per-dimension movement actions. Observations are the own, noisily
observed position, and movements are similarly noisy, using Gaussian noise. Overall, the dynamics
are given by

yt ∼ N
(︁
xt,diag(σ

2
y , . . . σ

2
y)
)︁
,

xt+1 ∼ N
(︃
xt + v0

ut
max(1, ∥ut∥2)

, diag(σ2
x, . . . σ

2
x)

)︃

for some velocity v0, where additionally, observations and states that are outside of the box [−1, 1]d
are projected back to the box.

The reward function for aggregation of agents is defined as

r(µt) = −cd
∫︂∫︂
∥x− y∥1µt(dx)µt(dy)− cu

∫︂∫︂ ⃦⃦
⃦⃦ u

max(1, ∥u∥2)

⃦⃦
⃦⃦
1

πt(du | x)µt(dx),

for some disaggregation cost cd > 0 and action cost cu > 0, where we allow the dependence of
rewards on actions as well: Note that our framework still applies to the above dependence on actions,
as discussed in Section 4.3.1, by rewriting the system in the following way. At any even time 2t,
the agents transition from state x ∈ X to state-actions (x, u) ∈ X × U , which will constitute the
states of the new system. At the following odd times 2t+ 1, the transition is sampled for the given
state-actions. In this way, the MF is over X ∪ (X × U) and allows description of dependencies on
the state-action distributions instead of only the state distribution.

For the experiments, we use σ2
x = 0.04, σ2

y = 0.04 and v0 = 0.1. The initial distribution of agent
positions is a Gaussian centered around zero, with variance 0.4. The cost coefficients are cd = 1
and cu = 0.1. For simulation purposes, we consider episodes with length T = 100.

vicsek. In classical Vicsek models, each agent is coupled to every other agent within a
predefined interaction region. The agents have a fixed maximum velocity v0 > 0, and attempt to
align themselves with the neighboring particles within their interaction range D > 0. The equations
governing the dynamics of the i-th agent in the classical Vicsek model are given in continuous time
by

dpi = (v0 sin(ϕ
i), v0 cos(ϕ

i))Tdt

dϕi =
1

|Ni|
∑︂

j∈Ni

sin
(︁
ϕj − ϕi

)︁
dt+ σdW
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for all agents i, where Ni denotes the set of agents within the interaction region, Ni := {j ∈ [N ] |
d(xi, xj) ≤ D}, and W denotes Brownian motion.

We consider a discrete-time variant where agents may control independently how to adjust their
angles in order to achieve a global objective (e.g. alignment, misalignment, aggregation). For states
xt ≡ (pt, ϕt), actions ut and observations yt, we have

(x̄, ȳ)T =

(︃∫︂∫︂
sin(ϕ− ϕt)1d(pt,p)≤Dµt(dp,dϕ),

∫︂∫︂
cos(ϕ− ϕt)1d(pt,p)≤Dµt(dp,dϕ)

)︃T

,

yt =
(︁
∥(x̄, ȳ)T ∥2, atan2 (x̄, ȳ)

)︁T
,

pt+1 = (pt,1 + v0 sin(ϕt), pt,2 + v0 cos(ϕt))
T ,

ϕt+1 ∼ N (ϕt + ω0ut, σ
2
ϕ)

for some maximum angular velocity ω0 > 0 and noise covariance σ2
ϕ > 0, where atan2(x, y) is the

angle from the positive x-axis to the vector (x, y)T . Therefore, we have X = [−1, 1]2 × [0, 2π),
where positions are equipped with the corresponding topologies discussed in Appendix F.17, and
standard Euclidean spaces Y = [−1, 1]2 and U = [−1, 1]. Importantly, agents only observe the
relative headings of other agents within the interaction region. As a result, it is impossible to model
such a system using standard MFC techniques.

As cost functions, we consider rewards via the polarization, plus action cost as in Aggregation.
Defining polarization similarly to e.g. [395],

polt :=

∫︂∫︂
∠(x, x̄t)µt(dp,dϕ),

∠(x, y) := arccos

(︃
(cos(ϕ), sin(ϕ))T · y

∥y∥2

)︃
,

x̄t :=

∫︂∫︂
(cos(ϕ), sin(ϕ))Tµt(dp,dϕ)

where high values of polt indicate misalignment, we define the rewards for alignment

r(µt) = −capolt − cu

∫︂∫︂
|u|πt(du | x)µt(dx),

and analogously for misalignment

r(µt) = +capolt − cu

∫︂∫︂
|u|πt(du | x)µt(dx).

For our training, unless noted otherwise, we let D = 0.25, v0 = 0.075, ω0 = 0.2, σϕ = 0.02 and
µ0 as a zero-centered (clipped) diagonal Gaussian with variance 0.4. The cost coefficients are
ca = 1 and cu = 0.1. For simulation purposes, we consider episodes with length T = 200.

kuramoto. The Kuramoto model can be obtained from the Vicsek model by setting the
maximal velocity v0 of the above equations to zero. Hence, we obtain a random geometric graph,
where agents see only their neighbor’s state distribution within the interaction region, and the
neighbors are static per episode. For parameters, we let D = 0.25, v0 = 0, ω0 = 0.2, σϕ = 0 and
µ0 as a zero-centered (clipped) Gaussian with variance 0.4. The cost coefficients are ca = 1 and
cu = 0.1. For simulation purposes, we consider episodes with length T = 200.



NO TAT I O N

symbol description

N The set of natural numbers.
N0, N≥0 The set of natural numbers with element zero.
R The set of real numbers.
R≥0 The set of real numbers with elements greater or equal zero.
P(A) The space of probability measures over a metric space A, equipped with

the 1-Wasserstein distance.
B1(A) The space of Borel measures over a metric space A bounded by 1.
1A The indicator function equal one if the argument is in A (if A is a set) or A

is true (if A is a predicate), and zero otherwise.
δx The Dirac measure equal one if the argument contains x, and zero otherwise.
W1 The 1-Wasserstein distance.
T The space of discrete decision epochs.
X The space of agent states.
U The space of agent actions.
Π The space of admissible agent policies.
M The space of mean fields P(X )T , i.e. state measures at all times t ∈ T .
[k] The set of all integers {1, 2, . . . , k} up to k ∈ N.
∇x The gradient w.r.t. x.
E [X] The expectation of a random variable X .
EY [X], E [X | Y ] The conditional expectation of a random variable X given Y .
V [X] The variance of a random variable X .
L(X) The probability law of a random variable X .
KL(p ∥ q) The Kullback-Leibler divergence between probability measures p and q.
Unif(·) The uniform distribution on some implicitly defined space.
N (· | µ,Σ) The multivariate Gaussian distribution with mean µ and covariance Σ.
W The space of graphons.
∥·∥□ The cut norm.
Wk The space of k-uniform hypergraphons.
∥·∥□k−1 The generalized cut (semi-)norm for k-uniform hypergraphons.⨆︁

The disjoint union.
r(A,m) The set of all distinct non-empty subsets of A with at most m elements.
r<(A) The set of all distinct non-empty, proper subsets of A.
r(A) The set of all distinct non-empty subsets of A.
Sym(A) The set of all permutations of a set A.
Symind

< [k] The space of bounded, symmetric functions f : r<[k]→ R.
Symind

≤ [k] The space of bounded, symmetric functions f : r[k]→ R.
Symind[k] The space of bounded, symmetric functions f : [k]→ R.
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a2c Advantage Actor Critic

apf Artificial Potential Field

ctde Centralized Training Decentralized Execution

dec-mfc Decentralized Mean-Field-Observable Mean Field Control

dec-pomdp Decentralized Partially-Observable Markov Decision Process

dec-pomfc Decentralized Partially-Observable Mean Field Control

dec-pomfppo Decentralized Partially-Observable Mean Field PPO

dpp Dynamic Programming Principle

dqn Deep Q-Network

er Erdős–Rényi

fp Fictitious Play

fpi Fixed Point Iteration

gmfe Graphon Mean Field Equilibrium

gmfg Graphon Mean Field Game

hmfe Hypergraphon Mean Field Equilibrium

ippo Independent PPO

llm Large Language Model

lln Law of Large Numbers

m2m Machine-To-Machine

m3fa2c Major-Minor Mean Field Advantage Actor Critic

m3fc Major-Minor Mean Field Control

m3fg Major-Minor Mean Field Game
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304 acronyms

m3fmarl Major-Minor Mean Field Multi-Agent Reinforcement Learning

m3fne Major-Minor Mean Field Nash Equilibrium

m3fppo Major-Minor Mean Field PPO

mappo Multi-Agent PPO

marl Multi-Agent Reinforcement Learning

mdp Markov Decision Process

mec Multi-access Edge Computing

mf Mean Field

mfc Mean Field Control

mfe Mean Field Equilibrium

mfg Mean Field Game

mmdp Multi-agent Markov Decision Process

pg Policy Gradient

pomdp Partially-Observable Markov Decision Process

ppo Proximal Policy Optimization

rbf Radial Basis Function

rl Reinforcement Learning

rq Research Question

sg Stochastic Game

uav Unmanned Aerial Vehicle

ue User Edge device
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