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Zusammenfassung

Der am Europäischen Kernforschungszentrum (CERN) betriebene Beschleunigerkomplex umfasst Tausende
normal- und supraleitende Elektromagnete sowie Permanentmagnete, welche die Teilchenstrahlen leiten,
fokussieren und defokussieren. In diesem Zusammenhang muss das Magnetfeld in der Regel strengen Quali-
tätsanforderungen genügen, wobei relative Fehler von nur wenigen Zehntausendstel toleriert werden. Für den
Betrieb der Magnete werden Messungen und Simulationen der Magnetsysteme und der von ihnen erzeugten
Felder verwendet. Trotz der Fortschritte in numerischen Methoden und Rechenleistung in den vergangenen
Jahrzehnten sind simulierte Feldvorhersagen für den Betrieb von Beschleunigermagneten weiterhin unzurei-
chend. Die Simulationen sind sowohl mit bekannten und unbekannten Fehlern als auch mit aleatorischen und
epistemischen Unsicherheiten behaftet, beispielsweise ist das Wissen über die zugrunde liegenden physikali-
schen Prozesse oft begrenzt. Messungen wiederum sind mit zufälligen und systematischen Unsicherheiten
behaftet. Um feldbezogene Größen vorherzusagen (Interpolation und Extrapolation) und um Einblicke in
schwer messbare lokale Größen (Introspektion) zu erhalten, wurden Modelle von Beschleunigermagneten
und den von ihnen erzeugten Feldern entwickelt, die Simulationen mit Messdaten kombinieren. Durch die
Kombination beider Ansätze können einige der jeweiligen Einschränkungen überwunden werden. Diese Stra-
tegie wird auch als hybride Modellierung bezeichnet. Obwohl die Modelle von Beschleunigermagneten sehr
verschieden sind, lassen sich einige gemeinsame Methoden zu ihrer Entwicklung und Anpassung erkennen.
Dazu gehören deterministische und stochastische Modellaktualisierung sowie das Lösen inverser und nicht
wohlgestellter Probleme.
Unter Anwendung dieser Methoden werden in dieser Arbeit drei magnetostatische Modelle von Beschleuniger-
magneten entwickelt, die sich auf unterschiedliche Aspekte konzentrieren. Zuerst wird ein datengetriebenes
stochastisches B(H)-Kurvenmodell, das auf Permeameter-Messungen von Materialproben des Jochs und der
Karhunen-Loève-Entwicklung basiert, verwendet, um die Aktualisierung der B(H)-Kurve des Jochs durch
eine Approximation mit niedrigem Rang zu regularisieren. Im zweiten Projekt werden die Permanentmagne-
tisierungen in einem dreidimensionalen Modell des ersten kurzen Halbach-Dipols des FASER-Experiments
mit Bayes’scher Inferenz aktualisiert. Dabei wird aufgezeigt, dass die Diskrepanz zwischen den gemessenen
und den vorhergesagten Multipolkoeffizienten höherer Ordnung durch die Anpassung der Magnetisierun-
gen im Bereich ihrer Fertigungstoleranzen erklärt werden kann. Die dritte Anwendung befasst sich mit der
Feldbeschreibung in gekrümmten Magnetsystemen, bei denen die klassische Feldbeschreibung basierend
auf Multipolen in zylindrischen Koordinaten nicht richtig ist. Die toroidale harmonische Entwicklung ist
eine bekannte Alternative, jedoch sind Algorithmen zur Bestimmung ihrer Koeffizienten anhand von Feld-
beobachtungen bisher kaum untersucht worden. Zu diesem Zweck werden ein Identifizierungsansatz mit
Hilfe der Methode der kleinsten Quadrate und eine integralbasierte Identifizierungsmethode hergeleitet und
beurteilt. Die drei entwickelten Modelle folgen dem Konzept hybrider Modellierung, indem sie physikbasierte
Methoden mit datenbasierten Methoden kombinieren. Die Einbeziehung des aus Messungen gewonnenen
Wissens verbessert in allen untersuchten Anwendungsfällen die Feldvorhersagen der Modelle, sogar über den
Bereich der Trainingsdaten hinaus. Die Validierung dieser Methodik im Kontext von Beschleunigermagneten
trägt dazu bei, eine engere Verbindung zwischen den Modellen, den Datensätzen und den physischen Objekten
herzustellen, die in der TE-MSC-TM Abteilung am CERN betrieben werden.
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Abstract

The accelerator complex operated at the European Organization for Nuclear Research (CERN) consists of
thousands of normal- and superconducting electromagnets and permanent magnets, which are guiding,
focusing, and defocusing the particle beams. In this context, the magnetic field usually has to meet high
quality requirements allowing relative errors of only a few units in 10000. Simulations and measurements of
magnet systems and their generated fields are used for operation. Despite the improvements in numerical
methods and computing power in the last decades, simulated field predictions are insufficient for the operation
of accelerator magnets, because the simulations are affected by aleatory and epistemic uncertainty as well as
acknowledged and unacknowledged errors. For example, the knowledge of the underlying physical processes
is often limited. Measurements on the other hand are affected by random and systematic uncertainties. To
predict field-related quantities of interest (interpolation and extrapolation), and to gain insight into local
quantities (introspection) that are not easily measurable, system models of accelerator magnets and their
generated field have been developed that combine simulations with measurement data. By the combination of
both approaches, some of their respective limitations can be overcome. This strategy is also known as hybrid
modeling. Even though the system models of accelerator magnets found in the literature are heterogeneous,
some common methods can be identified to build and adjust them. These include deterministic and stochastic
model updating, solving inverse problems, and addressing their ill-posedness.
Applying these methods, three system models of accelerator magnets in the static operation mode are derived
in this thesis, focusing on different aspects. First, we use a data-driven stochastic B(H)-curve model, based
on permeameter measurements of yoke material specimens and the Karhunen-Loève expansion, to regularize
by low-rank approximation the updating of the yoke’s B(H)-curve. Second, the permanent magnetizations
in a three-dimensional system model of the first short Halbach dipole of the FASER experiment are updated
with Bayesian inference. We show that the mismatch between the measured and the predicted higher-order
multipole coefficients can be explained by adjusting the magnetizations in the range of their manufacturing
tolerances. The third application addresses the field description in curved magnet systems, where the classical
field description based on the circular harmonic expansion fails. The toroidal harmonic expansion is a well-
known alternative, but algorithms to determine its coefficients based on field observations have rarely been
studied. For this purpose, we derive and evaluate an identification approach based on linear least squares
fitting and an identification method based on integration.
The three derived system models follow the spirit of hybrid modeling by combining physics-based methods
with data-based methods. Including knowledge obtained from measurements improves in all the studied
use cases the field predictions of the system model, even outside the regime of the training data. The
validation of this methodology in the context of accelerator magnets contributes to establishing more in-
terconnections between the models, data sets, and physical objects operated at the TE-MSC-TM section
at CERN.
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1 Introduction

1.1 CERN

The European Organization for Nuclear Research (CERN) is one of the largest research facilities in particle
physics in the world. Its mission is to uncover what the universe is made of [32]. For this purpose, collisions
of charged particles at high energies are studied. To increase the particle energy and to steer the particles to
the interaction points within the four large experiments ATLAS, ALICE, CMS, and LHCb, a particle accelerator
complex, including the world’s largest and most powerful particle accelerator, the Large Hadron Collider (LHC),
is operated at CERN.

Charged particles are affected by electromagnetic fields, according to the Lorentz force F = q(E+ v ×B),
where E is the electric field, B is the magnetic flux density, q is the charge, and v is the velocity of the particle.
The change of the particle’s energy can be only influenced by the electric field, since v ·F = qv ·E. Therefore,
the particles are accelerated using oscillating electric fields that are contained in radio frequency cavities.
Charged particles can be steered in other directions than their trajectory using electric and magnetic fields.
However, at high energy, an electric field having the same influence as a magnetic field of 1T would require
a field strength of GVm−1 magnitude. Therefore, solely magnetic fields are used for particle steering in
high-energy circular accelerators [119].

The CERN accelerator complex consists of thousands of magnets. Thereof, 1232 main dipoles, each 15m long
and with a weight of around 35 t, are installed in the LHC. The various magnets serve different purposes,
e.g., dipole magnets bend the particle beam, quadrupole magnets focus and defocus the particle beam,
separation dipoles bring together the two opposing particle beams before and separate them after they
pass the interaction points, higher-order multipole magnets correct for imperfections, and spectrometer
magnets within the experiments bend charged particles after the collision for characterization. Magnets are
used not only in the accelerator complex and in the large experiments, but there are also various smaller
experiments hosted by CERN. Besides the accelerators, two particle decelerators are operated. Different
magnet technologies, such as normal- and superconducting electromagnets as well as permanent magnets
are used at CERN. Moreover, magnet systems find use in other disciplines such as nuclear fusion [11] and
medicine [22].
Each application of amagnet system specifies a set of field requirements such as field gradient, field homogeneity,
field integrals, or multipoles. These requirements are associated with tolerable error budgets that specify the
desired field quality. For the LHC main dipole, error limits for the dimensionless relative multipole coefficients
at a 17mm reference radius are derived in [27]. Their magnitude is a few units in 10000. Meeting the field
requirements is essential for machine performance because a high field quality reduces the probability of
particle losses that can cause quenches and a high field quality increases the particle circulation duration,
leading to higher beam intensities and higher luminosity [27].
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1.2 Motivation

1.2.1 Magnetic measurements and simulations

The TM section in the MSC group of the TE department (TE-MSC-TM) at CERN is in charge of testing
and measuring CERN’s accelerator magnets. One mission of the TE-MSC-TM section is to provide the
latest technologies for magnetic measurements [31]. This includes developing, operating, and maintaining
measurement systems, data acquisition software, and data processing software.

The magnetic field generated by a magnet system can be simulated using numerical models and measured using
suitable field transducers. For this purpose, various field transducers such as rotating coil magnetometers,
fluxmeters, stretched wires, and a 3D Hall probe mapper are operated by the TE-MSC-TM section. The
numerical models are usually based on the finite element method (FEM), the boundary element method (BEM),
or a combination of both. Software tools such as the Routine for the Optimization of magnet X - sections,
Inverse field calculation and coil End design (ROXIE) [121], GetDP [60] Opera [42], or RAT [93] are used for
implementation.

Purpose of magnetic measurements and simulations Magnetic measurements and simulations accompany
the entire life cycle of a magnet system, consisting of the design, prototype, production, characterization, and
operation phases. A discussion about the necessity of measurements and simulations in each phase can be
found in [120]:

• In the design phase of a magnet system, numerical models are used to find a magnet configuration that
generates the magnetic field that meets the requirements of a physical experiment.
To validate the material laws, implemented in the model of the magnet, and to study the effects of
manufacturing tolerances on the field requirements, measurements of material specimens for magnetic
characterization are conducted. Examples are split-coil permeameter measurements to obtain the B(H)-
curve of the iron yoke material and Helmholtz coil measurements for determining the magnetization
vector of permanent magnet blocks.

• In the prototype phase of a magnet system, field measurements of the prototype are performed to
validate the field prediction of the numerical model. If the field predictions and the field measurements
differ significantly, the model assumptions and model parameters are reconsidered to find a reason for
the deviation and to improve the model or prototype accordingly.

• During the production phase of a series of magnets, measurement campaigns are carried out to follow
up production and for quality assurance of the magnet components.

• For magnet systems that went through a long Research and Development (R&D) phase and that are
manufactured in series production such as the LHC main dipoles, field predictions of numerical models
and field measurements usually coincide and achieve the required accuracy to confirm the specified
field requirements. However, field predictions and field measurements can differ significantly for magnet
systems that cannot benefit from long R&D phases to validate their numerical models and from series
production that reduces variations in the manufacturing process. Therefore, field measurements are
performed after the production phase, and solely the measurements are used to characterize the magnet
as built.
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• To provide field-related quantities of interest for magnet operation, the numerical model of the magnet
system itself is often not required. Instead, less complex models based on solutions to the Laplace
equation in vacuum such as multipole expansions are used to describe the characterized field. For some
specific magnets, e.g., in the LHC injector chain, where dynamic effects, hysteresis, and the powering
cycle of the magnet during operation have to be taken into account, the predictions of the common
models are often not sufficiently accurate. In these cases, real-time field measurements of reference
magnets are conducted that are excited with the same powering cycle as the magnet in operation.

Challenges of magnetic measurements According to the Guide to the Expression of Uncertainty in Mea-
surement (GUM), the word “uncertainty” means doubt [16, Def. 2.2.1]. The uncertainty of a measurement
is defined as a “parameter, associated with the result of a measurement that characterizes the dispersion
of the values that could reasonably be attributed to the measurand”, where the result of a measurement is
the best estimate for the value of the measurand [16, Def. 2.2.3]. Uncertainty in measurements arises from
random effects and the imperfect correction of systematic effects. These effects include for example variations
in repeated measurements, inadequate knowledge of the effects of environmental conditions, approximations
and wrong assumptions incorporated in the measurement method, and finite instrument resolution [16,
Def. 3.3.2].
The error of a measurement is the “result of a measurement minus a true value of the measurement” [16,
Def. B.2.19]. Because a true value is indeterminate by nature, measurement errors are an idealized concept and
can not be known exactly [16, Def. 3.2.1, Def. B.2.3]. Therefore, the GUM suggests discussing measurement
uncertainty rather than measurement errors.
Uncertainty in magnetic measurements arises for example due to random measurement noise, systematic
errors such as stray fields and perturbations caused by the measurement device, and uncertainties and errors
of the sensor model that maps raw signals to the result of the measurement, e.g., wrong calibration data,
numerical approximations, or mathematical simplifications and assumptions such as the linearity of a sensor
response or the orthogonality of the sensor alignment in a Hall probe.
Moreover, field measurements are limited by the availability of suitable measurement equipment, aperture
constraints (not every position can be measured), and budget constraints (not every operation mode can
be measured).

Challenges of magnetic simulations A general framework to identify uncertainties and errors in compu-
tational simulations that involve the solution of partial differential equations is developed in [101]. The
terms “aleatory uncertainty” and “epistemic uncertainty” describe the uncertainty in modeling and simulation.
Aleatory uncertainty describes the “inherent variation associated with the physical system or environment
under consideration” [101], an example is the randomness of input parameters such as material laws or
geometry parameters. Uncertainties that occur due to limited or inadequate knowledge of the involved physical
processes are part of the epistemic uncertainty that is “a potential inaccuracy in any phase of the modeling
process that is due to the lack of knowledge” [101].
In simulation and modeling, the term “error” refers to “a recognizable inaccuracy in any phase or activity of
modeling and simulation that is not due to lack of knowledge” [101]. One distinguishes between acknowl-
edged errors such as the ignorance of physical effects, simplifications in the mathematical representation or
discretization errors, and unacknowledged errors such as implementation mistakes. Typical acknowledged
errors in the simulation of accelerator magnets are the neglection of non-linear, anisotropic, hysteretic material
properties, the neglection of the coupling of magnetic, thermal, and mechanical phenomena, or the neglection
of dynamic effects such as eddy currents.
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Figure 1.1: Organization of physical objects, system models, and software tools that are operated by the
TE-MSC-TM section. Figure adapted from [120].

Framework for magnetic measurements and simulations The physical objects, system models, and software
tools that are developed and used in the TE-MSC-TM section can be organized into six main categories which
are (1) design software, (2) numerical models, (3) magnets and devices, (4) transducers and instrumentation,
(5) measurement data, and (6) data acquisition (DAQ) and analysis software. The magnets and devices
together with the transducers and instrumentation can be summarized as physical objects. The numerical
models and measurement data both belong to the system models. Figure 1.1 (adapted from [120]) depicts
these categories’ organization, interrelations, and underlying management methodologies. Model-based
systems engineering and system generation engineering are required for project management and traceability.
In this overall picture, the project of this thesis is located within the system model category and its interactions
with the physical objects category.

1.2.2 System models

In this work, the term model is understood as specified by the definition of Stachowiak [128] according to
that a model can be characterized by the following three properties: (1) Mapping: a model is related to an
original, (2) Reduction: a model does not capture all of the original’s attributes, and (3) Pragmatism: a model
serves a certain purpose, e.g., being a replacement of the original for a certain purpose and under certain
circumstances.
A zoom-in into the physical objects and system models categories and their interrelations is shown in Fig-
ure 1.2 (adapted from [120]). Given an admissible operation mode, system models can predict quantities
of interest, such as field maps, and derive quantities comparable to measured quantities by applying an
observation function. System models should have the pragmatic property of also enabling interpolative
and extrapolative predictions. For example, they should be able to make accurate predictions for parts of
their admissible range, e.g. concerning the space or the excitation currents that were not used to build
the models.
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We distinguish between operation-centric and component-centric models. The operation-centric models are
also referred to as generalized field descriptions [120]. Component-centric models are divided into models used
for design and models that are adapted to a magnet system as built. The difference between operation-centric
and component-centric models is, that component-centric models include a model of the magnet system such as
the yoke and the conductors while the operation-centric models only describe the field in free space. Therefore,
component-centric models require additional knowledge about the magnet system such as material laws
or geometry parameters. Consequently, operation-centric models can be retrieved from component-centric
models, whereas the inverse is not possible without additional knowledge of the magnet system. The advantage
of component-centric models is that they are also suitable for magnet introspection. This means that they can
be used to gain insight into quantities related to the magnet system that are not (easily) measurable, such as
material curves of the yoke. This capability is especially of interest during the prototype phase of a magnet
to find explanations for observed deviations between predicted and measured quantities and to diagnose
deficiencies of the prototype. For characterizing the field of a magnet as built, both operation-centric models
and component-centric models can be used. However, operation-centric models are usually chosen, as they
require less knowledge.

In this work, both operation-centric and component-centric models for field prediction andmagnet introspection
are investigated. The available sources of knowledge to build these models are the numerical design model,
which is limited by the challenges of simulation, and measurement data, which is limited by the challenges
of magnetic measurements. The approach is therefore to combine both sources of knowledge to overcome
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some of the limitations. We restrict the investigation to the magnetostatic case and to describing the magnet
system and its generated magnetic field at a given time in the magnet life cycle, e.g., the characterization
after production, and neglect changes of the magnet system over time.

1.3 State of the art and related concepts

An abstract workflow to derive system models is given in [73]. It consists of (1) conceptual modeling, (2)
mathematical modeling, (3) approximate analytical modeling, (4) numerical modeling, and (5) computational
modeling. In case a simplification of the model is required, these steps can be followed by a model order
reduction. Each step depends on the modeled device and the purpose of the system model and requires
expert knowledge.
Applying this workflow results in an initial system model that has to be validated and most likely adapted to a
specific magnet system as built and its measured observable quantities. Therefore, further expert knowledge
on acknowledged errors and the aleatory uncertainty is required. The possibilities for improving the model are
limited by the epistemic uncertainty, the availability of data, and the computational effort to avoid acknowl-
edged errors. Typically not only information about governing physical laws but also measured observations
from different sources are available that can be combined to improve the model.
Due to the problem and application dependence of system models, the models and methods for their creation
found in the literature are heterogeneous. However, common concepts and approaches can be identified
such as model updating and model refinement [145], inverse problems [80], and hybrid modeling [86].
The concept of digital twins [144] is also related to the idea of system models, however, in this work
we limit the investigations to system models that do not reflect changes in the described physical object
over time.

1.3.1 State of the art

Operation-centric system models A prominent operation-centric system model suitable for straight magnet
systems and integral fields and already in use for decades is referred to as “field harmonics” or “multi-
poles” [119]. This model relies on the circular harmonic expansion of the radial magnetic flux density
component on a reference radius, located in the free space of the magnet aperture. The model parameters,
the multipole coefficients or field harmonics, can be determined using rotating coil magnetometers. From the
circular harmonic expansion of the magnetic scalar potential, scaling laws can be derived to extrapolate the
coefficients to other radii than the reference radius. Consequently, in space extrapolated predictions of the
magnetic flux density are possible.
More recent examples of generalized field descriptions can be found, e.g., in [8, 74, 92, 122]. The system
models in [74] and [122] are similar to the field harmonics. Instead of the two-dimensional circular harmonic
expansion, a Fourier-Bessel expansion and a Lobatto spline Fourier expansion are used to describe three-
dimensional solutions to the Laplace equation. In [92], the boundary element method is used to describe
solutions to the Laplace equation. For an overview of further series expansions and closed-form expansions to
describe three-dimensional magnetic fields, particularly including the fringe field region of an accelerator
magnet, the reader is referred to [143, Section 1.3].
A fully data-driven system model used in the context of material characterization is derived in [8]. Instead of
relying on Maxwell’s equations, a multi-layered neural network is trained to predict the maximal magnetic field
in a quadrupole, given an excitation current and previous excitation currents.
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Component-centric system models Numerical models of magnets as built are investigated, e.g., in [126,
127, 132]. In [127], the system model is a time-dependent reduced-order model of a normal-conducting
coil-dominated magnet without iron magnetization. The model is based on coupled linear reduced-order
models of the yoke and the coil. The matrix coefficients of the reduced-order model are the parameters
of this system model. The method described in [126] extends the method of [127] by considering also
non-linear materials. The model is based on FEM and the magnetization coefficients of the yoke domain are
used as parameters. The system model in [132] is based on a FEM model of the two-dimensional transient
eddy-current problem. In this work, high- and low-fidelity models of the same magnet system, which differ by
the mesh choice, are compared. Moreover, a discrepancy function describing the difference between the two
is learned using a recurrent neural network.

1.3.2 Digital twin

The concept of system models is closely related to digital twins. In literature, varying definitions of the
term “digital twin” can be found, e.g., in [96, 113, 144]. In [113], digital twins are defined as a “virtual
representation of a physical asset enabled through data and simulators for real-time prediction, optimization,
monitoring, controlling, and improved decision making”. The concept of getting a virtual representation of a
physical asset agrees with the definition of system models, however, the use cases differ. While digital twins
reflect the change of a physical asset over time using dynamic updates and adjustments [144], we restrict our
definition of system models to describing a magnet system and predicting field-related quantities only at a
given time in the magnet life cycle.

1.3.3 Deterministic and stochastic model updating and model refinement

Strategies for improving and adapting a system model to a specific magnet and its measured quantities can
be divided into two categories: model refinement and model updating [145]. For model updating, one can
further distinguish between deterministic and stochastic model updating.
• Model refinement is defined in [145, Section 1] as “changing the physical principles in modeling or
using other means to build a more sophisticated model that better represents the physics of the problem”.
Consequently, model refinement reduces the acknowledged error of the simulation model.

• Model updating is defined in [145, Section 1] as utilizing “mathematical means to match model
predictions with the physical observations”, such as determining model parameters or bias correction,
i.e. deriving a discrepancy function, which describes the difference between observations and model
predictions. The observations used to derive a model update are referred to as observation training data
in this work. Within model updating, one can further distinguish between deterministic and stochastic
updating [137]. Deterministic model updating estimates a deterministic parameter, while stochastic
model updating includes the uncertainty of the observation and estimates a parameter distribution.
Consequently, deterministic model updating will answer the question what is the value of this parameter?,
while stochastic model updating answers the question what is our information about this parameter? [78,
Section 3]. Methods for statistical inversion that can be used for stochastic model updating are introduced
in more detail in Chapter 3.

The state-of-the-art system models introduced in Section 1.3.1 use both deterministic and stochastic model
updating methods with the following characteristics:
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• Deterministic model updating. In [8], the hyperparameters and weights of a multi-layered neural
network are learned, which predicts a field-related quantity of interest, given an excitation current and a
set of previous excitation currents and responses. In [132], deterministic model updating of a low-fidelity
model is realized using a neural network that determines a discrepancy function for bias correction.
In [126], deterministic magnetization coefficients of an iron-dominated magnet are determined by
solving a constraint optimization problem based on fitting integrated multipole coefficients.

• Stochastic model updating. In [122], the coefficients of the Fourier-Bessel expansion are determined
either by least squares fitting using Hall-probe measurements leading to a deterministic model updating
method or from rotating coil measurements using a Wiener-Kolmogorov filter leading to a stochastic
model updating method. The model and the updating method in [74] are similar. The Fourier-Bessel
expansion is replaced by a Lobatto spline Fourier expansion, and the values of the coefficients are derived
by Kalman filtering based on rotating coil measurements. The method described in [92] is another
extension to the two preceding methods, instead of an expansion, the solution to the Laplace equation
is parameterized with the boundary element method. Using ensemble Kalman filtering, the boundary
values are determined from magnetic flux density measurements with a Hall probe mapper system.
In [127], the matrix coefficients of a reduced-order model of a linear dynamic system that predicts the
transient field of an air-coil magnet are stochastically updated using Kalman filtering.

1.3.4 Inverse problems and ill-posedness

Determining model parameters to match model predictions and observations is a typical inverse problem.
Following [80], two problems are called inverse to each other if the formulation of each involves all or part of
the solution of the other. Often, the two problems have different properties regarding their well-posedness. A
definition of well-posedness according to the three criteria defined by Hadamard is given in [50] and [83]: A
problem is called well-posed if:
1. Existence. For all admissible data, a solution exists.
2. Uniqueness. For all admissible data, the solution is unique.
3. Stability. The solution depends continuously on the data.

Problems for which at least one of the properties does not hold are called ill-posed. In our case, the direct
problem, predicting the field given the parameters, is well-posed, while determining parameters given field
observations is rather ill-posed.
Ill-posedness can have various reasons [55, 62]. An over-determined problem and noisy data can lead to the
non-existence of a solution. The solution is not unique if the operator that describes the forward problem has
a non-trivial null space. If the inverse problem is ill-conditioned, the noise of the data is amplified, leading to
an unstable solution.
Mathematical methods can neither compensate a lack of information [87] that leads to non-uniqueness nor
make an inherently unstable problem stable [50]. However, the ill-posedness of inverse problems can be
addressed with several methods, depending on the problem and the cause of the ill-posedness. An overview
is given in [50, Section 2]. Existence can be enforced by relaxing the notion of a solution. In the case of
non-unique solutions, prior and expert knowledge about the problem can be used to decide which solution is
of interest [50].
In case of instability, regularization, that is approximating the ill-posed problem with a well-posed problem [28,
50], can be applied. Popular regularization methods are for example the Tikhonov regularization [50, 78,
83], Landweber iteration [50, 78, 83], finite-dimensional approximations, e.g., using Galerkin methods [83]
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or low-rank approximations such as the truncated singular value decomposition [83]. It is important to
notice that the listed methods to address ill-posedness are interconnected. For example, it is helpful to define
the regularization functional within the Tikhonov regularization based on prior knowledge of reasonable
parameter values, and it can be shown that determining the maximum a posteriori estimate resulting from
statistical inversion can be equivalent to Tikhonov regularizations under some assumptions [28].
Besides mathematical concepts, the experimental setup can be adjusted to improve the conditioning of a
parameter determination problem. In [91], for example, the geometry of an induction coil magnetometer is
optimized such that zeros in the sensitivity function are avoided within a spatial frequency domain of interest,
leading to a better-conditioned problem.

1.3.5 Hybrid modeling

Model updating and especially parameter determination are popular and successful approaches for good
reason. This becomes clear when considering these methods in the context of hybrid modeling. Following [86],
hybrid models combine first principle-based with data-based models into a joint architecture. Thereby, the
first principle-based models refer to the domain knowledge that results from physics, in the context of system
models of accelerator magnets, this includes Maxwell’s equations and constitutive equations. The data can be
obtained from any source, especially from field and material measurements or simulations.
To combine first principle-based models with data, different architectures are possible. In the above-discussed
examples for model updating in [74, 92, 122, 126, 127, 132], the preliminary system model is based on first
principles. Consequently, model updating, which involves the comparison of the prediction with data, leads to
a hybrid model. Another possibility to combine data and first principles is addressing the ill-posedness of the
inverse problem of parameter determination by using prior knowledge gained from data.
The advantages and disadvantages of purely data-based and purely first principle-based models are discussed,
e.g., in [109, 113, 140]. Purely data-based models are flexible and do not require knowledge of the physical
laws that govern a problem. However, their predictions often fail beyond the regime of the training data,
their predictions might not be consistent with physics, and they can not observe causal relationships, thus the
results lack interpretability and are therefore not suitable for magnet introspection. Purely first principle-based
models are advantageous in terms of consistency, predictive capacities, and interpretability, but the required
knowledge might not be available or simplifications have to be applied that lead to acknowledged errors.
Hybrid models combine available data and available first-principle knowledge in one model that comprises
the best of both worlds [109].

1.4 Structure of this thesis

This thesis studies methods to build and update hybrid system models for magnet introspection and field
prediction. As the methods and the sources of knowledge for building system models are highly problem-
and application-specific, the investigation is based on three specific examples, which are treated in detail
in Chapters 4, 5 and 6. The most important methods and findings for each example are summarized in
the following paragraphs of this section. Well-known methods that are used in more than one chapter such
as the fundamentals of electromagnetism required for the first principle-based part of the hybrid models
and methods for statistical inference required for stochastic model updating are introduced in Chapter 2
and Chapter 3.
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Overall problem structure Figure 1.3 shows an overview of the sources of knowledge and the methods
that we apply to build and update the system models. All system models treated in this thesis are hybrid
models as they combine knowledge of the underlying electromagnetic laws with data derived from magnetic
field measurements. The component-centric models also allow the inclusion of measured material data. The
material data is mainly used to identify suitable parameters of the model and to obtain prior knowledge of the
distribution of these parameters. The field observations are mainly used as a reference to update the initial
model, such that the model predictions are improved and the system model is tailored to a specific physical
object. The weighting between data-driven methods and first principle-based methods differs between the
studied system models.

Update of the B(H)-curve in iron-dominated magnets (Chapter 4) For iron-dominated magnets, the B(H)-
curve of the yoke material is a crucial input of their component-centric system model. In Chapter 4, we
formulate, regularize, and solve in a test case an inverse problem to determine the H(B)-curve from observa-
tions of the magnetic flux density. For regularization, we propose a low-rank approximation of the search
space with the data-driven stochastic model [117, 118], which is derived using truncated Karhunen-Loève
expansion (KLE) and split-coil permeameter measurements of yoke material specimens. We show with a
4-fold cross-fold validation that this KLE-based H(B)-curve model is more suitable to describe the measured
(B,H)-data of American Rolling Milling Company (ARMCO)® Pure Iron [5] specimens, than common closed-
form expression for B(H)- and H(B)-curves that can be found in the literature.
With the sensitivity analysis derived in [117], we analyze the stability of the approximated inverse problem,
showing that despite the regularization, there remain choices of training data on which the approximated
inverse problem is unstable and thus ill-posed. We solve the approximated inverse problem with deterministic
and stochastic model updating methods and evaluate field predictions of the updated model, finding that the
updated models are suitable for interpolative field predictions for excitation currents that are not included in
the training data.

Update of the magnetization of circular Halbach arrays (Chapter 5) The magnet system of the Forward
Search Experiment (FASER) experiment [3] consists of three circular Halbach dipoles, each composed of a
series of circularly arranged permanent magnet (PM) blocks. Former studies [49] have shown a mismatch
between predicted and measured higher-order multipole coefficients that might be caused by manufacturing-
related variations of the PM blocks’ magnetizations [131].
In Chapter 5, we update the magnetization of the PM blocks in the system model of the first short FASER
dipole. With Bayesian inference, measurement data of the magnetization of the PM blocks determined with
a tri-axial Helmholtz coil system, measurement data of field-related quantities of interest observed with a
Hall probe mapper system, and first principle-based knowledge on the magnetostatic problem are combined
into a stochastically updated hybrid model. The updating method is first verified on simulated observation
data and then applied to measured observations of multipole coefficients. It is shown that adjustments of
the magnetization within the 3σ neighborhood of the Helmholtz coil system measurements can explain
the mismatch between the observed and the measured multipole coefficients. Moreover, the magnetic flux
density prediction with the updated model in the homogeneous field region is improved by around one order
of magnitude.
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Figure 1.3: Sources of knowledge and methods to build and update system models of accelerator magnets.
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Determination of toroidal harmonic coefficients from the magnetic flux density (Chapter 6) In the aper-
ture’s free space of strongly curved magnet systems, the toroidal harmonic expansion is more suitable to
describe the magnetic field than the circular harmonic expansion [135]. In Chapter 6, two methods are
derived to determine the toroidal harmonic coefficients from observations of the magnetic flux density. The
first method is based on integrating the magnetic flux density and using the orthogonality of the trigonometric
functions, which leads to recursive formulas for the toroidal harmonic coefficients. However, these formulas
are not stable due to recursive error propagation. The second method approximates a finite number of toroidal
harmonic coefficients by linear least squares fitting. The conditioning of the problem is improved by optimizing
the observation positions of the magnetic flux density. Moreover, we prove that the functions spanning the
skew part of the magnetic flux density in the toroidal harmonic expansion are linearly dependent, consequently,
as for other methods based on scalar potential formulations, a gauging condition is required to uniquely
determine the toroidal harmonic coefficients from the magnetic flux density.
The predictions of the operation-centric system models, whose coefficients are determined by least squares fit-
ting are validated on the example of the magnetic fields generated by the coil arrangements of the International
Thermonuclear Experimental Reactor (ITER) tokamak and a curved canted cosine theta (CCT) dipole sim-
ulated with the CERN field computation program ROXIE [121]. The derived system model can describe
the magnetic field generated by the ITER coil arrangement with only a few coefficients. More coefficients
are required in the curved CCT dipole example, and still, the relative error in the fringe field region is
above the common accuracy threshold of 1 unit in 10000. Hence, other field descriptions, not based on
the toroidal harmonic expansion might be more suitable for building an operation-centric system model for
this application.
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2 Electromagnetic fundamentals

The system models discussed in this work rely on solving the magnetostatic problem. This chapter summarizes
the key concepts to derive and solve the magnetostatic problem starting from the full set of Maxwell’s equations.
These concepts can be identified with the steps of the workflow to derive an initial system model described
in [73]:
1. Conceptual modeling: model assumptions (domain, material, boundary, sources), Maxwell’s equations,
constitutive equations,

2. Mathematical modeling: strong and weak formulation of the magnetostatic problem, expansions of
solutions to the Laplace equation, gauging,

3. Approximate analytical modeling: discretization with finite elements, discrete Fourier transform,
truncation of expansions,

4. Numerical modeling: Picard method, Newton-Raphson method, algorithms to solve linear equation
systems, numerical integration,

5. Computational model: software such as GetDP [60] for implementation.
A more comprehensive treatment of Maxwell’s equations, the derivation of the boundary value problem of
magnetostatics, and more details on field harmonics are given, e.g., in [65, 76, 119]. For more details on the
numerical approximation of the boundary value problem of magnetostatics in vector potential formulation,
the reader is referred to [21, 23, 99, 119].

2.1 Maxwell’s equations

Maxwell’s equations in integral form and SI units are given by∫
∂A

H · dr =

∫
A
J · da+

d

dt

∫
A
D · da (2.1)∫

∂A
E · dr = − d

dt

∫
A
B · da (2.2)∫

∂V
B · da = 0 (2.3)∫

∂V
D · da =

∫
V
ρ dV, (2.4)

where A ⊂ R3 is a surface and V ⊂ R3 is a volume. Thereby, H is the magnetic field ([H] = 1Am−1) and
B is the magnetic flux density ([B] = 1V sm−2 = 1T), E is the electric field ([E] = 1Vm−1) and D is the
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electric flux density ([D] = 1A sm−2), ρ is the electric charge density ([ρ] = 1A sm−3), and J is the electric
current density ([J] = 1Am−2). The electric current density J = Js + σE consists of the source current
density Js and the ohmic part σE, where σ is the electric conductivity ([σ] = 1AV−1m−1). All quantities
are functions of space and time. These dependencies are omitted for readability. With dr, we denote the line
element that is aligned with the tangent of the integration curve, and with da we denote the vectorial surface
element that is aligned with the surface normal.
Assuming all necessary conditions on the regularity of the surface A and the volume V and on the differ-
entiability of the involved functions to apply Stokes Theorem and Gauss Theorem yields the local form of
Maxwell’s equations

curlH = J+
∂

∂t
D (2.5)

curlE = − ∂

∂t
B (2.6)

divB = 0 (2.7)
divD = ρ. (2.8)

In the magnetostatic case, Maxwell’s equations can be simplified to

curlH = Js (2.9)
divB = 0. (2.10)

Consequently, Js has to be divergence-free. The applications in this work are restricted to magnetostatics.
Therefore, the eddy currents phenomenon is disregarded and it holds J = Js. Equation (2.9) is referred to as
Ampère’s law, and equation (2.10) is known as the magnetic flux conservation law. Having more unknowns
than equations, Maxwell’s equations are underdetermined. To find solutions to Maxwell’s equations in the
magnetostatic case, the magnetic fieldH and the magnetic flux density B are related by a material law that is
given by the constitutive equation

B = µH, (2.11)
where µ is the permeability ([µ] = 1V sA−1m−1). The permeability of air is close to the vacuum permeability
µ0 = 4π · 10−7V sA−1m. The inverse of the permeability is the reluctivity ν ([ν] = 1AmV−1 s−1) with the
corresponding constitutive equation

H = νB. (2.12)
If permanent magnetic material is involved, the constitutive equation is

B = µ(H+M). (2.13)

whereM ([M] = 1Am−1) is the magnetization.
In the following section, we further specify conditions for the domain and the material for which we solve
Maxwell’s equations. Moreover, boundary conditions and interface conditions between different materials are
formulated.
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Figure 2.1: Elementary model problem on a domainD with its subdomains and interfaces.

2.2 Magnetostatic model

All system models that are considered in this thesis are based on solving the magnetostatic approximation of
Maxwell’s equations, neglecting time-dependent effects. To formulate suitable boundary value problems, we
specify further assumptions on the domain and the material, impose conditions on the boundary and the inter-
faces, and define the magnetic scalar potential and the magnetic vector potential.

2.2.1 Model assumptions

Domain assumptions To study the solution of Maxwell’s equations within and around a magnet system, it
is sufficient to consider a two- or three-dimensional bounded domain D covering the magnetic sources and
the fringe fields. Choosing the boundaries far enough from the magnet system allows the assumption that its
boundary Γ := ∂D is piecewise Lipschitz and connected. Moreover, it is assumed, if not stated otherwise, that
the domain D is simply-connected.

The domain D consists usually of two disjoint sub-regions Di and Da with D = Di ∪Da. The subregion Da

contains all material regions of D for which we can assume vacuum permeability, e.g., air and copper both
have almost vacuum permeability. The source region is denoted by DJ := supp(J) ⊂ Da. The subregion Di

contains materials with non-linear permeabilities such as the iron yoke. The interface between the two regions
is denoted by Γai = Di ∩Da. If permanent magnetic material is involved, the domain is subdivided into three
disjoint regions D = Di ∪Da ∪Dm where Dm := supp(M) is the domain of the permanent magnetic material.
The interface between the air region and the permanent magnetic material is denoted by Γam = Da ∩Dm.
For all interfaces, we assume as for the boundary that they are piecewise Lipschitz. Notice that we specified
interfaces only between regions with different permeabilities. Since we assume the same permeability for air
and copper, no interface is defined at the boundary of DJ. A sketch of a domain D and its subdomains and
interfaces can be found in Figure 2.1.
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Material assumptions The permeability and the reluctivity are material dependent. In this thesis, we assume
that all materials are homogeneous, isotropic, stationary, and anhysteretic.

For linear material laws, the permeability is independent of the magnetic field strength and can be ex-
pressed by

µ = µ0µr, (2.14)
where µ0 = 4π · 10−7V sA−1m is the the vacuum permeability and µr ∈ R+ is a material dependent and
dimensionless constant. For air, copper, and aluminum, we assume µr = 1.
In linear isotropic permanently magnetized material, the magnetic field, and the magnetization are in the
proportional relation

M = χmH, (2.15)
where χm is the dimensionless magnetic susceptibility. Inserting equation (2.15) into equation (2.13) yields
µr = 1 + χm due to

B = µ0(H+ χmH) = µ0(1 + χm)H. (2.16)

In non-linear material such as iron, the permeability µ(H) also depends on the intensity H := ∥H∥ of the
magnetic field and the reluctivity ν(B) depends on the intensity of the magnetic flux density B := ∥B∥. Here
and throughout the thesis we refer with ∥·∥ to the Euclidean norm. The non-linear relations for B,H ̸= 0 are
given by

µ(H) =
fBH(H)

H
and ν(B) =

fHB(B)

B
, (2.17)

where fHB, fBH : R+
0 → R+

0 are the bijective functions defined by

fBH : H 7→ B and fHB : B 7→ H. (2.18)

They are by definition inverse to each other and fBH is referred to as B(H)-curve and fBH is referred to as
H(B)-curve.

Assumption 1. Following [103], we assume four natural properties for the H(B)-curve:

1. The curve fHB is continuously differentiable,

2. there is a constant α > 0 such that 0 < α ≤ f ′HB(B) ≤ 1
µ0
<∞ for all B ∈ R+

0 ,

3. fHB(0) = 0, and

4. limB→∞ f ′HB(B) = 1
µ0
.

Corollary 1. From the properties of fHB, the following properties of the reluctivity function ν : R+
0 → R+

(according to [77], we set ν(0) := α) can be deducted [103, Corollary 2.2]:

1. ν is continuous and α ≤ ν(B) ≤ 1
µ0

for all B ∈ R+
0 ,

2. B 7→ ν(B)B = fHB(B) is strongly monotone, and

3. B 7→ ν(B)B = fHB(B) is Lipschitz continuous.
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We will later see that these conditions are required to prove the existence of unique solutions to the boundary
value problem of magnetostatics with the Zaratonello Lemma [148]. An alternative set of assumptions on the
reluctivity function, which is also sufficient to verify the conditions of the Zaratonello Lemma, can be found
in [70].

To take into account different definitions of the reluctivity in different material regions of the domain D, the
reluctivity function is also denoted as ν : D × R+

0 → R+ with

ν(x, B) =


ν0 x ∈ Da

νrν0 x ∈ Dm

νi(B) x ∈ Di

(2.19)

where ν0 = µ−1
0 is the vacuum reluctivity, νr = µ−1

r , and νi : R+
0 → R+ is the non-linear reluctivity in the iron

domain. To save on notation, we often omit the position dependence of ν.

Boundary and interface conditions On the boundary Γ = ∂D, the magnetic flux density B and the magnetic
fieldH satisfy boundary conditions. These conditions are either related to magnetic surface charges or surface
currents and imposed on disjoint domains ΓB,ΓH with Γ = ΓB ∪ ΓH.

OnΓB, the normal component of themagnetic flux density is imposed by the condition

B · n = σm on ΓB, (2.20)

where n is the outer unit normal ofD and σm is a fictitious magnetic surface charge density. On boundaries far
from the iron yoke and the sources, or boundaries parallel to the magnetic flux density, σm = 0 can be assumed.
This condition is also known as the perfect electric conductor condition.

On ΓH, the tangential component of the magnetic field is imposed by

H× n = α on ΓH, (2.21)

where α is a real or fictitious surface current density. On boundaries where the field enters the domain
perpendicularly, the condition

n× (H× n) = 0 on ΓH (2.22)
is imposed. This condition is met in particular, if H× n = 0 on ΓH, and also known as the perfect magnetic
conductor condition.

On the interface Γai, two regions with different permeabilities meet and the magnetic flux density and the
magnetic field are discontinuous. To formulate boundary conditions, the jump of a vector field is introduced:
For a vector field F on D and x ∈ Γai the jump JFKai is defined by

JFKai(x) := lim
x1∈Da→x

F(x1)− lim
x2∈Di→x

F(x2). (2.23)

With the flux conservation law, it can be shown that in the absence of magnetic surface charges at the interface,
the normal component of the magnetic flux density is continuous at the interface

n · JBKai = 0 on Γai, (2.24)
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where n is the outer unit normal of Di. Similarly, with Ampère’s law, it can be shown that if no surface
currents are present at the interface, the tangential component of the magnetic field is continuous at the
interface, i.e.

n× JHKai = 0 on Γai. (2.25)
If permanent magnetized material is involved, surface currents occur at the interface Γam, leading to the
interface condition

n× JHKam − n× JMKam = 0 on Γam, (2.26)
where n is the outer unit normal of Dm.

2.2.2 Magnetostatic boundary value problem formulations

In the magnetostatic case, Maxwell’s equations reduce to (2.9) and (2.10). A solution to Maxwell’s equations
can be found using a constitutive equation that relates B and H and imposing boundary conditions on ∂D
and interface conditions at the interfaces of different materials. This problem is referred to as the boundary
value problem of magnetostatics.
In the literature, e.g., in [17], different formulations of the boundary value problem of magnetostatics can be
found based on the definition of further scalar or vector potentials. The idea is to combine the two remaining
equations of Maxwell’s equations. In this work, the scalar potential formulation is only applied if the considered
domain has vacuum permeability and is free of sources (J = 0 andM = 0), otherwise, the vector potential
formulation is used. Hence, we use the scalar potential formulation for operation-centric models, and the
vector potential formulation for component-centric models.

Vector potential formulation GivenMaxwell’s equations in themagnetostatic case,

curlH = J and divB = 0 inD (2.27)

a divergence-free magnetic flux density is obtained by introducing a vector potential A ([A] = 1V sm−1) that
satisfies

curlA = B (2.28)
because divB = div curlA = 0. Inserting equations (2.28) and (2.11) into Ampère’s law yields

curl ν(∥curlA∥) curlA = J in D (2.29)

which is also known as the curl-curl equation or the magnetostatic vector potential equation. Using the magnetic
vector potential, the boundary and interface conditions can be written as

n× ν(∥curlA∥) curlA = 0 on ΓH

n · curlA = 0 on ΓB

n× Jν(∥curlA∥) curlAKai = 0 on Γai

n · JcurlAKai = 0 on Γai.

(2.30)

Notice that the first equation in (2.30) yields a Neumann boundary condition on ΓH and the second a Dirichlet
boundary condition on ΓB. Equation (2.29) together with the conditions (2.30) is referred to as the boundary
value problem of magnetostatics in vector potential formulation.
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If A satisfies the boundary value problem of magnetostatics in vector potential formulation, the problem is
also satisfied by A+ gradψ for any sufficiently smooth scalar field ψ. To avoid non-uniqueness, the following
conditions of the Coulomb gauge

div νA = 0 in D
n ·A = 0 on ΓH

n · JAKai = 0 on Γai

n×A = 0 on ΓB

JAKai = 0 on Γai

(2.31)

can be imposed [39, 119]. Notice that due to n · curlA = div(n×A) the two last conditions in (2.31) imply
the boundary condition n ·curlA = 0 on ΓB and interface condition n ·JcurlAKai = 0 on Γai in (2.30). To avoid
a mixed formulation [119, equation 4.151] we apply Coulomb gauging only for two-dimensional problems.
Otherwise, the tree-cotree gauging method introduced in Section 2.3.3 is applied.

If permanent magnetic material is involved, the constitutive equation (2.13) is inserted into the equations (2.27)
instead, which yields

curl ν(∥curlA∥) curlA = J+ curlM in D. (2.32)
The interface condition on Γam rewritten for the vector potential is

n× Jν(∥curlA∥) curlAKam − n× JMKam = 0 on Γam. (2.33)

Scalar potential formulation Since the scalar potential formulation is in this work only applied on source-
free (J = 0 andM = 0) domains D with vacuum permeability, the scalar potential formulation is derived
under these assumptions. In a source-free domain, the magnetostatic approximation of Maxwell’s equations
simplifies to

curlH = 0 and divB = 0 inD. (2.34)
By introducing a total magnetic scalar potential ϕm ([ϕm] = 1A) with

− gradϕm = H, (2.35)

a curl-free magnetic field is obtained because curlH = curl gradϕm = 0. Inserting equations (2.35) and (2.11)
into the flux conservation law yields

div(µ0 gradϕm) = 0 in D. (2.36)

Due to the linearity of the permeability, this equation further simplifies to the Laplace equation

∆ϕm = 0 in D. (2.37)

Inserting the magnetic scalar potential into the boundary yields

n× (gradϕm × n) = 0 on ΓH

n · µ0 gradϕm = 0 on ΓB
(2.38)

Notice that the first equation (2.38) yields a Dirichlet boundary condition on ΓH, and the second equation is a
Neumann boundary condition on ΓB. Equation (2.36) together with the conditions (2.38) is referred to as
the boundary value problem of magnetostatics in scalar potential formulation.
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If ϕm solves the boundary value problem of magnetostatics in scalar potential formulation with Neumann bound-
ary conditions, the problem is also solved by ϕm+ c for any constant c ∈ R. To avoid non-uniqueness, the mag-
netic scalar potential can be gauged by imposing ϕm(x0) = ϕ0 at an arbitrary point x0 ∈ D andwith an arbitrary
constant ϕ0 ∈ R. Hence, a Dirichlet boundary condition can be used for gauging.
In the following sections, a numerical approach based on the approximation with finite elements to finding
solutions to the boundary value problem of magnetostatics in vector potential formulation and a theoretical
approach to finding solutions to the scalar potential formulation based on the separation of variables in various
coordinate systems [100] are introduced.

2.3 Numerical approximation of the vector potential formulation

The boundary value problem of magnetostatics in vector potential formulation can be formulated in weak form
by weighting the curl-curl equation with suitable test functions and integrating over the domain D. Based on
this weak formulation, the problem can be discretized and solved using the FEM [21, 23, 99, 111].
Recall that in Section 2.2.1 it was assumed that the boundary Γ of the studied domainD is piecewise Lipschitz.
This condition is used in this section for the definition of the function spaces [99, Theorem 3.33].

2.3.1 Weak formulation

For the weak formulation of the magnetostatic problem in the vector potential formulation, the following
Sobolev spaces [99] are required

H1(D) :=
{
v ∈ L2(D) | grad v ∈ L2(D,R3)

} (2.39)
H(curl;D) :=

{
v ∈ L2(D,R3) | curlv ∈ L2(D,R3)

} (2.40)
H(div;D) :=

{
v ∈ L2(D,R3) | divv ∈ L2(D,R)

}
. (2.41)

If the functions additionally meet zero Dirichlet boundary conditions onΓB wewrite

H1
0 (D) :=

{
v ∈ H1(D) | v = 0 on ΓB

} (2.42)
H0(curl;D) := {v ∈ H(curl;D) | v × n = 0 on ΓB} (2.43)
H0(div;D) := {v ∈ H(div;D) | v · n = 0 on ΓB} , (2.44)

where n is the outward pointing unit normal vector of D. Following [99, Section 3.7] the image of each
operator of the sequence

H1
0 (D)

grad→ H0(curl;D)
curl→ H0(div;D)

div→ L2(D) (2.45)
equals the kernel of the following operator in the sequence, if the domainD is simply-connected. This property
also holds for the analog sequence without zero Dirichlet boundary conditions on ΓB [33, Section 2.9]. This jus-
tifies the existence of suitable functions ϕm ∈ H1(D) to define the magnetic scalar potential via equation (2.35)
andA ∈ H0(curl;D) to define the magnetic vector potential via equation (2.28).
A weak version of Coulomb gauging is included in H0(curl, D) by defining

V :=

{
v ∈ H0(curl;D)

∣∣∣∣ ∫
D
v · gradφ dV = 0 ∀φ ∈ H1

0 (D)

}
, (2.46)
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because all v ∈ V satisfy∫
D
φ · divv dV = −

∫
D
v · gradφ dV +

∫
∂D

φ(v · n) da = 0 ∀φ ∈ H1
0 (D). (2.47)

Multiplying the curl-curl equation (2.29) with a test function v ∈ V and applying the boundary and interface
conditions of the magnetostatic problem and the boundary condition of v ∈ V yields the followingweak formula-
tion of the magnetostatic problem in vector potential formulation: FindA ∈ V such that∫

D
curlv · ν(∥curlA∥) curlA dV =

∫
D
v · J dV (2.48)

for all v ∈ V.
Analogously, the weak formulation of the magnetostatic problem in vector potential formulation involving
permanent magnetic material can be obtained: Find A ∈ V such that∫

D
curlv · ν(∥curlA∥) curlA dV =

∫
D
v · J dV +

∫
D
curlv ·M dV ∀v ∈ V. (2.49)

Notice that in the derivation of the last equation, the interface condition (2.33) and the assumption that
the interface Γam does neither intersect with the boundary of the iron domain nor the boundary Γ of the
computational domain, are used.
According to [39], the weak magnetostatic problem remains well-posed if V is replaced by H0(curl, D), but
uniqueness can not be guaranteed. For linear reluctivities ν, the solution’s existence, and uniqueness can be
proven with the Lax-Milgram Theorem [129]. For non-linear reluctivities, the existence and the uniqueness
can be proven with the Zaratonello Lemma [148, Theorem 25.B]. To verify the conditions of the Zaratonello
Lemma, the existence of the lower bound 0 < α < ν, i.e. the strong monotonicity of the H(B)−curve fHB, the
weak divergence-freeness of V , and the stronger boundary and interface conditions discussed in Section 2.2.2
are crucial [39, 147].

2.3.2 Simplifications in 2D

Although all accelerator magnet systems are three-dimensional objects, working with two-dimensional system
models is justified in some cases. Solving a 2D instead of a 3D problem is advantageous because it reduces the
degrees of freedom and with that the model complexity and the computation time. Typical scenarios for which
we choose 2D models are the simulation of magnet systems having a homogeneous field region, unaffected
by fringe effects, along one axis in their center (e.g., Bz = 0, ∂/∂z=0). Homogeneity along one axis can
also be achieved by integration along that axis, and the integrated quantities of interest can be simulated
using two-dimensional system models. A proof that solving the Laplace equation and integrating the solution
along a straight axis perpendicular to a plane of symmetry of the magnet system, can be interchanged is given
in [119, Section 6.1.2].
Working with a two-dimensional domain D and with isotropic material, several simplifications can be made.
We generally assume that D is a subset of the xy-plane (i.e. ∂/∂z = 0) and we assume that the source current
J = (0, 0, Jz)

⊤ flows parallel to the z-axis, several simplifications can be made. The curl operator simplifies to
curl(0, 0, Az) = gradAz × ez and the Euclidean vector norms are equal

∥curl(0, 0, Az)∥ = ∥gradAz∥ . (2.50)
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The boundary conditions on ΓB and the interface condition on Γai included for Coulomb gauging can be
simplified to

Az = 0 on ΓB, (2.51)
JAzKai = 0 on Γai (2.52)

since n is perpendicular to A = (0, 0, Az)
⊤. The Coulomb gauge condition div νA = 0 is automatically

satisfied since ∂/∂z = 0. Thus, the weak formulation of the magnetostatic problem in 2D is: Find Az ∈ H1
0 (D)

such that ∫
D
grad v · ν(∥gradAz∥) gradAz dV =

∫
D
v Jz dV (2.53)

for all v ∈ H1
0 (D).

2D conductor model In the two-dimensional setting, the source region DJ ⊂ D is subdivided into two
disjoint subdomains DJ = D

(+)
J ∪ D(−)

J . In D
(+)
J the imposed current flows in the direction of the z-axis,

in D(−)
J it flows in the opposite direction. To avoid the resolution of single wires in the FEM, the stranded

conductor model [15] is used to model DJ ⊂ D. Thereby, we assume that the source current density Jz is
constant within the subdomains and set

Jz =


NJIJ

area(D
(+)
J )

on D(+)
J

−NJIJ

area(D
(−)
J )

on D(−)
J ,

(2.54)

where NJ is the number of turns and IJ is the electric current.

2.3.3 Finite element method

For linear B(H)-curves, the discretization using the finite element method (FEM) transforms the weak
formulation of the magnetostatic problem in vector potential formulation into a system of linear equations.
The drawback of the FEM compared to other methods such as the boundary element method (BEM) [119,
Section 15.1] or the combination of both [119, Chapter 15] is that finer meshes with a high number of degrees
of freedom are necessary for magnet systems with detailed geometry because FEM requires the meshing
of each subdomain of D. However, the resulting matrices of the linear equation system are sparse which
simplifies their solution.
For non-linear B(H)-curves that lead to non-linear reluctivities, the discretization with the FEM yields a
non-linear equation system which we solve iteratively using the Picard method [59] or the Newton-Raphson
method [43]. For implementation, the open-source FEM solver GetDP [60] is chosen. We summarize in this
section only the key concepts of the FEM. For a more detailed description, the reader is referred, e.g., to [13,
21, 23, 99].

Discretization The weak formulation of the magnetostatic problem in vector potential formulation (2.48) is
discretized by choosing a family of finite-dimensional subspaces Vh ⊂ H0(curl;D) to approximate the solution
space and the space of test functions. This approach is known as the Ritz-Galerkin method (see, e.g., [23,
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Chapter 4]). Let Ndof be the dimension of the subspace Vh, and let {v1, . . . ,vNdof
} be a set of basis functions.

Thus, every element Ah ∈ Vh can be expressed in this basis by

Ah =

Ndof∑
n=1

anvn (2.55)

where a = (a1, . . . , aNdof
)⊤ is a (possibly after gauging) uniquely defined coefficient vector. Substituting V

with the space Vh in the weak form formulation of the magnetostatic problem (2.48) yields the problem: Find
a ∈ RNdof such that

Ndof∑
n=1

an

∫
D
ν

(∥∥∥∥∥
Ndof∑
n=1

an curlvn

∥∥∥∥∥
)
curlvn · curlvm dV =

∫
D
vm · J dV (2.56)

for all basis functions vm ∈ {v1, . . . ,vNdof
}. Under the assumption that the reluctivity ν is linear (the Picard

method and the Newton-Raphson method to treat the non-linearity are discussed below), equation (2.56)
can be written in matrix form

Ka = f (2.57)

where the stiffness matrix K is given by

(K)mn =

∫
D
ν curlvm · curlvn dV (2.58)

and the right hand side f is given by

(f)m =

∫
D
vm · J dV. (2.59)

Consequently, an approximation Ah ∈ Vh of the weak solution to the magnetostatic problem can be found
by solving the linear equation system (2.57). The choice of Vh influences the convergence of the solution.
Notice that the definitions of K and f require the evaluation of an integral. We use an approximation of these
integrals via Gaussian quadrature [107, Section 6.8].

Meshing To construct the finite-dimensional subspace Vh, an approximation of the domain D and its
subdomains Di, Da, DJ and Dm with a triangular mesh for two-dimensional domains and a tetrahedral mesh
for three-dimensional domains is used. Both meshes are referred to with Th, where the index h describes
the maximal diameter of an element T ∈ Th. The meshes have to satisfy the geometric constraints specified
in [99, Section 5.3] such that the edges and faces of the mesh respect the boundaries of the subdomains. The
domains D and their subdomains studied in this thesis have polyhedral boundaries, such that they can be
discretized with a suitable triangular or tetrahedral mesh Th without approximation error. To generate the
mesh, we use the software Gmsh [61].
The definition of the finite-dimensional subspace Vh for the FEM is based on the definition of piecewise
polynomial functions on Th. Moreover, the basis functions of Vh are chosen such that each basis function has
only local support. Consequently, the stiffness matrix K defined in equation (2.58) is sparse, which simplifies
the solution of the problem (2.57).
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Figure 2.2: 2D basis vector fields of first-order edge elements visualized on the reference triangle.

Lagrange elements In the two-dimensional setting, we use first-order Lagrange elements [111, page 85] on a
triangularmesh Th that are defined by the finite-dimensional subspace Vh ⊂ H0(D)with

Vh :=
{
vh ∈ C0(D) | vh|T ∈ P1(T ) ∀T ∈ Th, vh|ΓB

= 0
} (2.60)

where P1(T ) denotes the space of polynomials on T of degree 1. Since the functions in Vh are by definition
elementwise affine, they are uniquely determined by the function values at the nodes of the mesh. Consequently,
the dimension Ndof of Vh is given by the number of nodes of the mesh Th without the nodes on ΓB because in
these nodes the functions are set to zero to meet the boundary condition (2.51). A basis on Vh is given by the
nodal basis {φ1, . . . , φNdof

} that satisfies

φi(kj) = δij ∀1 ≤ j ≤ Ndof (2.61)

where kj are the nodes of Th that are not on ΓB. Due to the continuity of the basis functions in Vh across edges
and the assumption that material interfaces align with the edges, the interface condition (2.52) is satisfied. An a
priori estimate of the convergence depending on h can be found in [111, Theorem 3.1].

Edge elements In three dimensions we use first-order edge elements [99, 139] on a tetrahedral mesh Th that
are defined by the finite-dimensional subspace Vh ⊂ H0(curl;D) [99, Theorem 5.37] with

Vh := {vh ∈ H(curl;D) | vh|T ∈ R1(T ) ∀T ∈ Th, vh|ΓB
× n = 0} (2.62)

where R1(T ) is defined by

R1(T ) := (P0(T ))
3 ⊕

{
r ∈ (P̃1)

3
∣∣∣ x · r(x) = 0, ∀ x ∈ T

}
. (2.63)

Thereby, Pn is the space of polynomials of order n, and P̃n is the space of homogeneous polynomials of
order n. An a priori estimate of the convergence can be found in [99, Theorem 5.41]. Following [139], a
six-dimensional basis of R1(T ) can be defined such that each coefficient of the basis representation of a vector
field v ∈ R1(T ) is related to the average of v · t on one of the edges of T , where t is the unit tangent vector. A
two-dimensional plot of the three basis vector fields of the first-order edge elements on the reference triangle
can be found in Figure 2.2. The basis vectors vh ∈ Vh are tangentially continuous across edges and faces
and the dimension Ndof of Vh is given by the number of edges in Th without the edges on ΓB. On ΓB, the
tangential component of vh is set to zero to satisfy the boundary condition. However, the elements of Vh
in the three-dimensional setting do not automatically satisfy conditions (2.31) for Coulomb gauging. Thus,
additional gauging conditions are imposed to obtain a unique solution.
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Tree-cotree gauging We apply tree-cotree gauging (see, e.g., [6, 39, 112]) to obtain a unique solution
Ah ∈ Vh to the weak formulation of the magnetostatic problem in vector potential formulation when edge
elements are used for discretization. A tree τ of the mesh Th is defined as a loop-free subset of edges of Th that
connects all nodes. The complement τ ′ = Th\τ is called the cotree. We assume in this section that ΓB = ∂D and
that the tree is chosen such that it defines also a tree on ΓB. A subspace of Vh spanned by the first-order edge
element basis functions ψe, that correspond to edges in the cotree τ ′, is defined by

Vh,τ ′ = span
{
ψe | e ∈ τ ′ \ ΓB

}
. (2.64)

Following [39, Theorem 2.2], for all Ah ∈ Vh, there is a decomposition

Ah = Ah,τ ′ + gradw (2.65)

with w ∈ H1
0 (D) and Ah,τ ′ ∈ Vh,τ ′ . The basis representation (2.55) of Ah ∈ Vh with the coefficient vector

a ∈ RNdof can be rearranged such that a = (aτ ,aτ ′), where the coefficients in aτ correspond to edges in the
tree and aτ ′ corresponds to edges in the cotree respectively. Likewise, the linear equation system (2.57) can
be rewritten as (

Kτ ′τ ′ Kτ ′τ

Kττ ′ Kττ

)(
aτ ′

aτ

)
=

(
fτ ′

fτ

)
. (2.66)

The classical tree-cotree gauging method consists of choosing aτ = 0 and solving the subsystemKτ ′τ ′aτ ′ = fτ ′

on the cotree that admits a unique solution [112, Theorem 1]. It can be shown that the resulting magnetic flux
density curlAh,τ is independent of the choice of the tree τ [39, Corollary 2.1].

Picard method and Newton-Raphson method Due to non-linear H(B)-curves, non-linear reluctivities can
occur such that instead of the linear problem (2.57) the equation

K(a)a = f (2.67)

has to be solved with a non-linear dependence of K on a. Using the Picard method (also known as fixed point
method, see e.g., [59, Section 5.2.2]), equation (2.67) is solved iteratively, inserting in the i-th iteration step
the solution to the preceding iteration step into the reluctivity function. Given an initial guess a0 close enough
to the solution, the linear problems

K(ai−1)ai = f (2.68)
can be solved subsequently, yielding the formal iteration ai = K(ai−1)

−1f . However, the Picard method
features only linear convergence, while with the Newton-Raphson method locally quadratic convergence can
be achieved in some cases, however, not in the limit h→ 0. A discussion on the convergence of both methods
in the context of the non-linear magnetostatic problem can be found in [117, Section 3.4] and [103, Section
4.1.3]. In the Newton-Raphson method [43, Section 1.2], the iteration

ai = ai−1 + (Dr(ai−1))
−1 (f −K(ai−1)ai−1) (2.69)

is used, where the matrixDr(ai−1) is the Jacobian matrix of the residual function r(a) := K(a)a− f evaluated
at ai−1. The definition of this iteration step is based on equating the first-order Taylor approximation of the
residual function r with zero [43, Section 1.2].
Writing out the weak formulation of them-th line of the Picardmethod reads: FindAi ∈ Vh such that∫

D
ν (∥curlAi−1∥) curlAi · curlvm dV =

∫
D
vm · J dV, (2.70)
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where vm ∈ Vh is them-th basis function. Them-th line of the Newton-Raphsonmethod reads respectively [117,
equation 3.53]: Find Ai ∈ Vh such that∫

D vm · J dV =
∫
D ν (∥curlAi−1∥) curlAi−1 · curlvm dV
+
∫
D νd (curlAi−1) curlAi · curlvm dV

−
∫
D νd (curlAi−1) curlAi−1 · curlvm dV

(2.71)

is satisfied for the basis function vm ∈ Vh. Thereby, νd is the differential reluctivity tensor [117, definition 5]
which is for t ∈ R3 defined by

νd(t) := ν(∥t∥)I+ ν ′(∥t∥)
∥t∥ t⊗ t. (2.72)

A proof that deriving the JacobianmatrixDr yields the differential reluctivity is given in [117, Lemma 3].

2.4 Field harmonics

Unlike the numerical approximation introduced in the last section, the field harmonic approach seeks closed-
form expressions of solutions to the boundary value problem of magnetostatics. The field harmonic approach
can be applied in the vacuum domain to the scalar potential formulation and the two-dimensional vector poten-
tial formulation. In both cases, the formulation yields a Laplace equation that can be solved using variable sepa-
ration [100]. The coefficients of these solutions are also referred to as field harmonics ormultipoles. For instance,
in the two-dimensional polar coordinates, this approach yields the normal and skew dipoles, quadrupoles, etc.
which are well-known coefficients in the magnet design community.
An overview of field harmonic expansions in different coordinate systems is given in [120]. In this work, we
are using polar coordinates and toroidal coordinates. Methods to determine the coefficients of the toroidal
harmonic expansion will be derived and discussed in Chapter 6. The coefficients of the circular harmonic
expansion can be determined, e.g., by equating the coefficients of the general solution with the Fourier
coefficients of Neumann boundary data, and by measurements with rotating coil magnetometers [119]. This
establishes a valuable link between system models based on circular harmonics and magnetic measurements.
In particular, this link yields a set of comparable quantities (see Figure 1.2) that can be used for inverse
computations and model updating.

2.4.1 Circular harmonics

Circular cylindrical coordinates (r, θ, y) [100, p. 12] are defined by the mapping

(r, θ, y) 7→
(
r cos(θ), y, r sin(θ)

) (2.73)

where (r, θ) are the polar coordinates in the xz-plane and y describes the longitudinal position. Thereby, the
longitudinal position along the y-axis is chosen for consistency with the toroidal coordinate system defined
in (2.82). A formula for the Laplace operator ∆ = div grad in curvilinear coordinates depending on scaling
factors (here hr = 1, hθ = r, hy = 1) is given in [119, equation 3.224]. Thus, in circular cylindrical coordinates,
Laplace’s equation for the magnetic scalar potential ϕm is given by

1

r

∂

∂r

(
r
∂ϕm
∂r

)
+

1

r2
∂2ϕm
∂θ2

+
∂2ϕm
∂y2

= 0. (2.74)
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Figure 2.3: Magnetic flux density in a normal circular dipole, quadrupole, and sextupole (from left to right).
The arrow length is scaled with the absolute value.

In long and straight magnet systems that generate homogeneous magnetic flux densities B with respect to the
longitudinal position y, we can assume

0 =
∂By
∂y

=
∂2ϕm
∂y2

. (2.75)

Consequently, the last summand in the Laplace equation (2.74) vanishes. The remaining differential equation
can be solved using variable separation. All possible solutions can be found in [100, p. 14]. Omitting solutions
that are infinite for r → 0 and solutions that are aperiodic in θ yields

ϕm(r, θ) =
∞∑
n=0

rn(Ac
n cos(nθ) + Bc

n sin(nθ)). (2.76)

The coefficients Ac
n,Bc

n ∈ R are referred to as circular harmonic coefficients or multipole coefficients. Notice
that they are independent of the coordinates r and θ. The magnetic scalar potential is related to the
magnetic flux density via B = −µ0 gradϕm, hence the radial component Br of the magnetic flux density is
given by

Br(r, θ) = −µ0
∞∑
n=1

nrn−1(Ac
n cos(nθ) + Bc

n sin(nθ)). (2.77)

Using the orthogonality of the trigonometric functions, we obtain on a reference circle with radius r0

Ac
n = − 1

nπµ0r
n−1
0

∫ 2π

0
Br(r0, θ) cos(nθ) dθ (2.78)

Bc
n = − 1

nπµ0r
n−1
0

∫ 2π

0
Br(r0, θ) sin(nθ) dθ (2.79)

for n ≥ 1. However, the circular harmonic coefficientAc
0 can not be obtained from the magnetic flux density but

is given by a gauge condition, i.e. Ac
0 = ϕm(0, 0). For Bc

0 we can assume that Bc
0 = 0 because sin(0θ) = 0. From

the circular harmonic coefficients Ac
n,Bc

n, the circular skew and normal multipole coefficients An(r0), Bn(r0) in
units of tesla [119, Section 6.1.1.1] can be derived by

An(r0) = −nrn−1
0 µ0Ac

n, Bn(r0) = −nrn−1
0 µ0Bc

n. (2.80)
The scaling laws of these coefficients regarding different radii r are

An(r) =
rn−1

rn−1
0

An(r0), Bn(r) =
rn−1

rn−1
0

Bn(r0). (2.81)

Themagnetic flux density in a normal dipole, quadrupole, and sextupole is illustrated in Figure 2.3.
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Figure 2.5: Sketch of a toridal wedge with toroidal radius ρ and poloidal radius R.

2.4.2 Toroidal harmonics

Toroidal coordinates Toroidal coordinates (τ, σ, φ) [100, p. 112] are defined by themapping

(τ, σ, φ) 7→
(
a sinh(τ) cos(φ)
cosh(τ)−cos(σ) ,

a sinh(τ) sin(φ)
cosh(τ)−cos(σ) ,

a sin(σ)
cosh(τ)−cos(σ)

)
, (2.82)

where (τ, σ) are the bipolar coordinates [100, p. 64]. In the xz-plane, the τ - and σ-isolines are the set of
Apollonian circles with focal points F1 = (−a, 0) and F2 = (a, 0), see Figure 2.4. The τ -isosurfaces are tori.
Let D be a solid torus with major, toroidal radius ρ and minor, poloidal radius R (Figure 2.5). This domain
can be defined as the product D = U2 × S1 of the disk U2 with radius R and the circle S1 with radius ρ. The
radius a of the focal ring, such that a τ -isosurface of the corresponding toroidal coordinates (2.82) describes
the boundary of D, is given by

a = R

√
(ρ/R)2 − 1. (2.83)

The boundary Γ = ∂D is then described by the τ -isosurface with
cosh(τ) = ρ/R. (2.84)

These formulas are given, e.g., in [135] and can be easily verified using the definition (2.82) of the toroidal
coordinates. The eccentricity is the ratio ϵ := ρ/R of major to minor radius which determines the shape of the
torus. An American donut has the eccentricity ϵ ≈ 2, a toroidal domain with the eccentricity ϵ = 19 resembles
a bicycle tube. The scaling factors of the toroidal coordinates system are given by

hτ = hσ =
a

cosh(τ)− cos(σ)
and hφ =

a sinh(τ)

cosh(τ)− cos(σ)
. (2.85)
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Scalar potential formulation in multiply-connected domains The toroidal domain D = U2 × S1 is multiply-
connected. On simply-connected domains we have, according to [33, Theorem 8],

im
(
grad

(
H1(D)

))
= ker (curl (H(curl;D))) . (2.86)

The image of the gradient is always a subset of the kernel of the curl operator, whereas the inverse is not true
in multiply-connected domains D. Consequently, finding solutions ϕm ∈ H1(D) to the Laplace equation in D
is not sufficient to obtain viaH = − gradϕm allH ∈ H(curl;D) with curlH = 0. Instead, again following [33,
Theorem 8], each H ∈ H(curl;D) with curlH = 0 admins a decomposition

H = gradψ + h, (2.87)

where ψ ∈ H1(D) and h is an element of the cohomology space H1(D). This cohomology space is char-
acterized in [33, Proposition 8]. Let D be a multiply-connected domain with boundary Γ = ∂D and let
Σi be cuttings of D such that Ḋ := D \ ⋃iΣi is simply-connected. Then, the cohomology space H1(D) is
given by

H1(D) =

{
h ∈ L2(D,R3)

∣∣∣∣ ∃ f ∈ H1(Ḋ) such that h = grad f in Ḋ, with
∆f = 0 in Ḋ, ∂nf |Γ = 0, JfKΣi = ci const., J∂nfKΣi = 0

}
(2.88)

where n is the outward unit normal vector on Γ or respectively the unit normal vector on the cut Σi.
Moreover, the dimension of H1(D) equals the number of required cuts Σi. For the toroidal domain D, the
cut Σ = U2 × {0} is sufficient such that Ḋ = D \ Σ is simply-connected, thus H1(D) is one-dimensional. Let
f : Ḋ = U2 × [0, 2π] → R be the mapping defined by

f : (τ, σ, φ) 7→ Etφ (2.89)

for a constant Et ∈ R. It can be easily verified that f satisfies the conditions in (2.88) and that the resulting
cohomology space

H1(D) =
{
grad Etφ

∣∣ Et ∈ R
} (2.90)

is one-dimensional. Therefore, we found all functions h relevant for the decomposition in equation (2.87). As
a result, we seek on toroidal domains magnetic scalar potentials ϕm of the form

ϕm(τ, σ, φ) = Etφ+ ψ(τ, σ, φ), (2.91)

where ψ ∈ H1(D) is a solution to the Laplace equation on D. Notice that ϕm also solves the Laplace equation
on Ḋ. However, for Et ̸= 0 the potential is not an element of H1(D) because it has a jump at the cut Σ.
According to [40, Section 6.5.2], the term Etφ considers currents through the hole of the current-free toroidal
domain D.
In the next paragraph, we derive a general formula using R-separation that describes all possible solutions
ψ ∈ H1(D) to the Laplace equation.

Toroidal harmonic expansion Inserting the scaling factors (2.85) into the Laplace equation in curvilinear co-
ordinates [119, equation 3.224] yields the Laplace equation in toroidal coordinates

0 = (cosh(τ)−cos(σ))3

a3 sinh(τ)

[
∂
∂τ

(
a sinh(τ)

cosh(τ)−cos(σ)
∂ψ
∂τ

)
+ ∂

∂σ

(
a sinh(τ)

cosh(τ)−cos(σ)
∂ψ
∂σ

)
+ ∂
∂φ

(
a

(cosh(τ)−cos(σ)) sinh(τ)
∂ψ
∂φ

)]
.

(2.92)
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Unlike the cylindrical coordinates, which admit a simple separation [100, Definition I, p. 96] of the Laplace
equation, the Laplace equation is not simply separable in toroidal coordinates. However, it is R-separable [100,
Definition II, p. 96], meaning that using the assumption

ψ(τ, σ, φ) = R(τ, σ, φ)X1(τ)X2(σ)X3(φ) (2.93)

for R ̸= const. permits a separation of the Laplace equation into three ordinary differential equations. Those
are according to [100, p. 114] given by

d2X1
dτ2

(τ) + coth(τ)dX1(τ)
dτ + (14 − α1 − α2

sinh2(τ)
)X1(τ) = 0,

d2X2
dσ2 (σ) + α1X2(σ) = 0,
d2X3
dϕ2

(φ) + α2X3(φ) = 0,

(2.94)

with parameters α1, α2 ≥ 0. The corresponding term R is given by

R(τ, σ, φ) :=
√
κ(τ, σ) :=

√
cosh(τ)− cos(σ). (2.95)

Solutions to the ordinary differential equations (2.94) depending on α1, α2 can be found in [100, p. 114].
The solution to the differential equation concerning X1 involves the associated Legendre functions of the first
and second kind of half-integer degree Pmn−1/2 and Qmn−1/2 [2, 64, 124]. More details on these functions are
given in Appendix 8.1.
Omitting solutions that are aperiodic in σ or φ or that are infinite on the focal ring yields the following solution
ψ ∈ H1(D) of the Laplace equation

ψ(τ, σ, φ) =
√
κ(τ, σ)

∑∞
m,n=0Q

m
n− 1

2

(cosh(τ))
(
At
n,m cos(nσ) cos(mφ) + Bt

n,m sin(nσ) cos(mφ)

+ Ct
n,m cos(nσ) sin(mφ) +Dt

n,m sin(nσ) sin(mφ)
) (2.96)

with constants At
n,m,Bt

n,m, Ct
n,m,Dt

n,m ∈ R that are independent of the coordinates (τ, σ, φ). Notice that we
can assume by definition that Bt

0,m = 0 for all m ≥ 0, Ct
n,0 = 0 for all n ≥ 0, Dt

0,m = 0 for all m ≥ 0, and
Dt
n,0 = 0 for all n ≥ 0.
Inserting the solution ψ ∈ H1(D) of the Laplace equation on D given in equation (2.96) into the magnetic
scalar potential (2.91) yields

ϕm(τ, σ, φ) = Etφ+
√
κ(τ, σ)

∑∞
m,n=0Q

m
n− 1

2

(cosh(τ))
(
At
n,m cos(nσ) cos(mφ) + Bt

n,m sin(nσ) cos(mφ)

+ Ct
n,m cos(nσ) sin(mφ) +Dt

n,m sin(nσ) sin(mφ)
)
.

(2.97)
We refer to this equation as the toroidal harmonic expansion. The coefficients are called toroidal harmonics.
For numerical stability, it is suggested in [133] to normalize the toroidal harmonics by multiplication with the
factor Q0

n−1/2(cosh(τ0)), where the parameter τ0 is chosen such that the τ0-isosurface is in the center of the
region of interest. To save on notation, we introduce the symbol

Q̃m
n− 1

2

(τ) :=
Qmn−1/2(cosh(τ))

Qmn−1/2(cosh(τ0))
, (2.98)

and rewrite the toroidal harmonic expansion (abusing the notation of the toroidal harmonic coefficients) as

ϕm(τ, σ, φ) = Etφ+
√
κ(τ, σ)

∑∞
m,n=0 Q̃

m
n− 1

2

(τ)
(
At
n,m cos(nσ) cos(mφ) + Bt

n,m sin(nσ) cos(mφ)

+ Ct
n,m cos(nσ) sin(mφ) +Dt

n,m sin(nσ) sin(mφ)
)
.
(2.99)
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Having the normalized toroidal harmonic expansion (2.99), the components of magnetic flux density in toroidal
coordinates can be derived usingB = −µ0 gradϕm. The formulas are reported in Appendix 8.2.

As described in Section 2.2.2, if a scalar potential ϕm solves Laplace’s equation, then ϕm+ c is for any constant
c ∈ R also a solution. Uniqueness can be achieved by gauging, e.g., by imposing that the scalar potential
attains a certain value at a specific point in the computational domain D. For the circular harmonic expansion,
this gauging condition uniquely determines the value of Ac

0. In Section 6.1.2 we prove that gauging the
magnetic scalar potential in the toroidal harmonic expansion is equivalent to imposing an additional condition
on the skew toroidal harmonic coefficients At

n,m. Moreover, methods to determine the toroidal harmonic
coefficients from the magnetic flux density are derived in Chapter 6.

Rotationally symmetric case We are particularly interested in the toroidal harmonic expansion in config-
urations such that the magnetic flux density is independent of the coordinate φ, e.g., for local expansions
inside homogeneous field regions. If the differentiable solution ψ ∈ H1(D) of the Laplace equation on D is
independent of φ, the Laplace equation (2.92) simplifies to

0 =
(cosh(τ)− cos(σ))3

a3 sinh(τ)

[
∂

∂τ

(
a sinh(τ)

cosh(τ)− cos(σ)

∂ψ

∂τ

)
+

∂

∂σ

(
a sinh(τ)

cosh(τ)− cos(σ)

∂ψ

∂σ

)]
. (2.100)

Notice that this equation differs from the Laplace equation in bipolar coordinates. To find solutions, R-
separation is applied with the ansatz

ψ(τ, σ) =
√
κ(τ, σ)X1(τ)X2(σ) (2.101)

yielding the two ordinary differential equations [100, p. 115]{
d2X1(τ)
dτ2

+ coth(τ)dX1(τ)
dτ + (14 − α1)X1(τ) = 0,

d2X2(σ)
dσ2 + α1X2(σ) = 0.

(2.102)

Solutions to these ordinary differential equations can be found in [100, p. 115]. Again, we omit solutions that
are aperiodic in σ and that are infinite on the focal ring. As a result, we obtain

ψ(τ, σ) =
√
κ(τ, σ)

∞∑
n=0

Q0
n− 1

2

(cosh(τ))
(
At
n cos(nσ) + Bt

n sin(nσ)
)
. (2.103)

Including the normalization (2.98) and inserting ψ ∈ H1(D) into (2.91) yields the normalized toroidal har-
monic expansion in the rotationally symmetric case of the magnetic scalar potential

ϕm(τ, σ, φ) = Etφ+
√
κ(τ, σ)

∞∑
n=0

Q̃0
n− 1

2

(cosh(τ))
(
At
n cos(nσ) + Bt

n sin(nσ)
)
. (2.104)

In analogy to the circular harmonic coefficients, we call the coefficientsAt
n skew coefficients and the coefficients

Bt
n normal coefficients. Notice that the magnetic scalar potential is not rotationally symmetric due to the
linear term Etφ. However, the corresponding magnetic flux density is rotationally symmetric. Its formulas are
reported in Appendix 8.2. The rotationally symmetric magnetic flux density on the cross-section of a toroidal
domain with ρ/R = 3 for a normal dipole (Bt

1 ̸= 0), a normal quadrupole (Bt
2 ̸= 0), and a normal sextupole

(Bt
3 ̸= 0) is shown in Figure 2.6.
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Figure 2.6: Magnetic flux density in a rotationally symmetric toroidal (Bt
1 ̸= 0), normal quadrupole (Bt

2 ̸= 0),
and normal sextupole (Bt

3 ̸= 0) with ρ/R = 3 (from left to right). The focal point F1 = (a, 0) is
marked in red. The arrow length is scaled with the absolute value. The magnetic flux density is
computed using the formulas given in equation (8.15).

2.5 Summary

We introduced Maxwell’s equations that describe electromagnetic fields in general. Neglecting time-dependent
effects, we reduced the full set of Maxwell’s equations to the magnetostatic case. To build system models of
accelerator magnets, we introduced domain and material assumptions as well as boundary and interface con-
ditions, yielding the scalar and vector potential formulation of the boundary value problem of magnetostatics.
Subsequently, we discussed the numerical approximation of the vector potential formulation with the FEM. To
find solutions to the scalar potential formulation, we introduced the field harmonics in polar and toroidal
coordinates. In Chapters 4 and 5, we will apply the FEM to simulate a normal conducting iron-dominated
magnet and a Halbach magnet that is composed of permanently magnetized blocks. The properties of the
toroidal harmonic expansion and particularly the determination of its coefficients from magnetic flux density
observations will be investigated in Chapter 6.
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3 Methods for statistical inversion

In this chapter, methods of statistical inversion are introduced which will be applied for stochastic model
updating in Chapter 4 and Chapter 5.
Deterministic and stochastic model updating was introduced in Section 1.3.3. Both methods aim to adjust a
model such that the model’s predictions match corresponding observations of comparable quantities [145].
A widely used approach for model updating is the update of model parameters. While deterministic model
updating returns a parameter value, stochastic model updating returns a probability distribution of the
parameter. Following [78, Section 3], stochastic model updating therefore rather answers the question “What
is our information about this parameter?”, than the question “What is the value of this parameter?”, which is
answered by deterministic model updating. Consequently, stochastic model updating is a suitable approach
for updating system models of accelerator magnets where different sources of information about the magnet
system that are affected by uncertainty are available such as measurement data of its components (e.g.,
material curves or magnetizations), and measurements of field-related quantities of interest (e.g., the magnetic
flux density in the air gap or multipole coefficients). The Bayes formula is the key to combining these sources
of information and inferring information about the parameters, see e.g., [12, 28, 78].
There are several advantages of stochastic model updating compared to deterministic model updating. First,
the resulting probability distribution of the parameters can be used for uncertainty quantification. Propagating
this uncertainty through the systemmodel enables the quantification of uncertainties of the model’s predictions.
Second, although the aim of parameter updating is not to find the true parameters, but parameters such that
predictions and observations match (pragmatic model property), the results of model updating can be used for
magnet introspection, i.e. to gain insight into possible reasons that explain the observed differences between
a numerical design model and a magnet system as built. For this application, as well as to ensure that the
predictions of the updated model are also valid outside the regime of the training data, it is necessary that the
updated model parameters are within physically reasonable ranges. In stochastic model updating with Bayesian
inference, this consideration is automatically included via the prior distribution of the parameters. Third,
according to [78, Section 3], stochastic model updating can help addressing the ill-posedness of an inverse
problem by restating the problem in the space of probability distributions.

To apply stochastic model updating, the model parameters p and the model predictions q and the measured
observations qobs are understood as realizations of random vectors P,Q and Qobs. With Bayesian inference,
the conditional probability density of the random parameter vector P|Qobs given observation data qobs

is determined. Subsequently, properties of the corresponding distribution (e.g., expected value or covari-
ance) can be explored, for example, with estimators or sampling methods such as the Metropolis-Hastings
algorithm [28].
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3.1 Stochastic setting

Basic definitions Let (Ω,F ,P) be a probability space, consisting of a sample space Ω, an event space F that
is a σ-algebra on Ω and a probability measure P : F → R. For a more comprehensive introduction to the
mathematical objects defined in this paragraph, the reader is referred to [18, 28, 78, 94]. An N -dimensional
random vector is a measurable function X : Ω → RN , vectors X(ω) ∈ RN are called realizations of X, and
one-dimensional random vectors are called random variables. Notice that all concepts are more generally
introduced for random vectors instead of random variables, since in the later applications, in Chapter 4 and
Chapter 5, multi-dimensional parameter spaces are considered. The expected value E[X], the variance Var[X],
and the covariance Cov(X) of a random vector X are defined by

E[X] :=

∫
Ω
X(ω) dP (3.1)

Var[X] := E[(X− E[X])2] (3.2)
Cov(X)n,m := E[(Xn − E[Xn])(Xm − E[Xm])]. (3.3)

Given a set of realizations {x1, . . . ,xK} of X the expected value and the covariance matrix can be esti-
mated due to the Law of Large Numbers [28, Section 4.1] by the sample mean and the unbiased sample
covariance

m̂ :=
1

K

K∑
k=1

xk (3.4)

Ĉ :=
1

K − 1

K∑
k=1

(xk − m̂)(xk − m̂)⊤. (3.5)

The probability distribution function λX of a random vector X is a probability measure on the Borel σ-algebra
B such that

λX(A) = P(X−1(A)) ∀A ∈ B. (3.6)
A function π : RN → R that satisfies π(x) ≥ 0 and ∫RN π(x) dx = 1 is called a probability density function. If
moreover a probability density function πX satisfies

λX(A) =

∫
A
πX(x) dx ∀A ∈ B, (3.7)

then πX is called a probability density function of X. The cumulative distribution function ϕX : R → R of a
real-valued random variable X is defined by

ϕX(x) :=

∫ x

−∞
πX(x

′) dx′. (3.8)

Let X : Ω → RN1 ,Z : Ω → RN2 be two random vectors on the same sample space Ω. The joint probability
distribution λXZ is defined by

λXZ(A1, A2) = P(X−1(A1) ∩ Z−1(A2)) ∀A1 ∈ B1, A2 ∈ B2. (3.9)

A non-negative function πXZ : RN1×RN2 → R satisfying for all Borel setsA1 ∈ B1, A2 ∈ B2 that

λXZ(A1, A2) =

∫
A1×A2

πXZ(x, z) dV (x, z) (3.10)
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is called joint probability density ofX andZ. The random vectorsX andZ are called independent if

πXZ(x, z) = πX(x)πZ(z). (3.11)

For the two not necessarily independent random vectors X,Z with joint probability density πXZ the marginal
density of Z is given by

πZ(z) =

∫
RN1

πXZ(x, z) dV (x) (3.12)

and describes the probability of Z while X may take any value. Under the assumption πZ(z) ̸= 0, equa-
tion (3.12) can be rewritten as ∫

RN1

πXZ(x, z)

πZ(z)
dV (x) = 1. (3.13)

Consequently, the integrand defines a probability density function πX|Z that is called conditional probability
density of X given Z

πX|Z(x|z) =
πXZ(x, z)

πZ(z)
. (3.14)

Normal distribution An important example of a probability distribution that is used throughout this thesis
is the multivariate Gaussian or normal distribution N (m,Σ) with mean m ∈ RN and a covariance matrix
Σ ∈ RN×N , which is is symmetric and positive definite [28, Section 3.2]. The corresponding probability
density function of a random vector X ∼ N (m,Σ) is given by

πX(x) =

(
1

(2π)N det(Σ)

)1/2

exp

(
−1

2
(x−m)⊤Σ−1(x−m)

)
. (3.15)

By integration it can be verified that E[X] = m and Cov(X) = Σ.
Given N mutually independent normal distributed random variables X1, . . . , XN , it can be shown [28, Section
3.2] that the random vector X = (X1, . . . , XN ) is normal distributed.
To verify that a random variable is normal distributed, we conduct in Chapter 4 and Chapter 5 the Kolmogorov-
Smirnov test [44] available in MATLAB® [130]. An overview of normality tests can be found in [41]. Given
samples x1, . . . , xK of a real-valued random variableX and a cumulative distribution function ϕ, the two-sided
Kolmogorov-Smirnov test compares ϕ to the empirical distribution function [44] defined by

h(x) :=
1

K
#({xk | xk ≤ x}) , (3.16)

where the operator #(·) returns the cardinality of a set. The null hypothesis of the test is that h = ϕ. The
statistical test is defined by

T := sup
x

|ϕ(x)− h(x)|. (3.17)

For a significance level α ∈ (0, 1) and dependent on the number of samples K, a value t can be looked up in
Kolmogorov-Smirnov tables [116]. The null hypothesis is rejected if T > t. By inserting for ϕ the cumulative
distribution function of the normal distribution

ϕ(x) =
1√
2πσ2

∫ x

−∞
exp

(
− 1

2σ2
(x−m)2

)
dx, (3.18)

the Kolmogorov-Smirnov test can be used to study if a set of samples {x1, . . . , xK} is normal distributed
with N (m,σ2).
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Table 3.1: Overview of symbols and definitions to describe parameters, operation modes, and predictions
and observations of quantities of interest.

symbol meaning
P ⊂ RN1 parameter space
P : Ω → P random parameter vector
p ∈ P parameter vector, realization of P

Q : Ω → Q prediction of quantities of interest, Q = H(P)

Qobs : Ω → Q observation of quantities of interest, Qobs = H(P) +U

q ∈ Q realization of Q
qobs ∈ Q realization of Qobs

U : Ω → RN2 random measurement uncertainty, U ∼ N (0,Σ)

s, s0 ∈ S ⊂ RN3 operation modes

M : (p, s) 7→ q system modelM : (P, s) 7→ Q

H : p 7→ q forward modelM(·, s0) = H(·)H : P 7→ Q

Forward model A system model can be understood as a mapping

M : P × S → Q
(p, s) 7→ q,

(3.19)

where P is a parameter space (e.g., parameters of a material curve, harmonic coefficients, boundary data), S
is a space of operation modes (e.g., current excitations), and Q is the codomain of the system model (e.g., field
maps, harmonics, field integrals). Generally, we can assume that the values that are taken by the parameters
p ∈ P, the operation modes s ∈ S, and the predictions q ∈ Q of the quantity of interest are real-valued
vectors. A summary of the meaning of the symbols defined in this and the next paragraph is given in Table 3.1.
In the stochastic setting, those vectors are modeled as random vectors that are affected by uncertainties
according to the modeler’s belief [28, Section 5]. In this work, we assume that the operation modes s ∈ RN3

are not affected by uncertainties while the predictions q and the parameters p are modeled as random vectors
P : Ω → P ⊂ RN1 , Q : Ω → Q ⊂ RN2 over a common sample space Ω. Fixing an operation mode s0 in the
system model yields the forward model

H(P) := M(P, s0) = Q (3.20)

that maps each random parameter vectorP to a predictionQ of a quantity of interest. Notice that by abuse of no-
tation, we use the same symbolsH,M to the random vectorsP,Q and their realizationsp,q.
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Noise model The random vectorQ = H(P) describes the prediction of a quantity of interest via the forward
model given the random parameter vectorP. Using this model is based on the assumption that any randomness
of Q is inherited from the randomness of P while other uncertainties of the model, e.g., due to inadequate
knowledge of all relevant physical effects, are omitted.
If the quantity of interest can be measured with field transducers, there is along with the (simulated) prediction
Q : Ω → Q another random vector Qobs : Ω → Q that describes the (measured) observations of the same
quantity of interest, i.e. measurement results qobs are realizations of Qobs [78, Section 3.1]. The two random
vectors Q and Qobs are referred to as comparable quantities in Figure 1.2. The randomness of Qobs reflects
the measurement uncertainty.
Different noise models to describe the conditional distribution of Qobs given P can be found in the literature,
e.g., [28, Section 5.2], [78, Section 3.2]. A popular noisemodel is the additive noisemodel

Qobs = H(P) +U (3.21)

where U : Ω → RN2 is a random vector that is independent of P and that describes the measurement
uncertainty. Notice that the additive noise model omits errors and uncertainties of the forward model.
Discussions on the determination of the distribution πU of the measurement uncertainty U for rotating coil
measurements of multipoles and for Hall probe mapper measurements of field maps can be found in [90]. In
this work, we assume U ∼ N (0,Σ).
Having a forward model, a noise model, and the measurement result qobs, the most likely model parameters
p ∈ P can be determined. This approach is known as maximum likelihood estimation [67, Section 2.3].
Bayesian inference exceeds this approach by deriving the distribution of P given Qobs = qobs using the
Bayes formula.

3.2 Bayesian inference

The conditional probability density of the random vector Qobs|P is given by

πQobs|P(q
obs|p) =

πQobsP(q
obs,p)

πP(p)
. (3.22)

Interchanging the roles ofQobs andP and equating the two resulting expressions for πQobsP(q
obs,p) yields

πQobsP(q
obs,p) = πQobs|P(q

obs|p)πP(p) = πP|Qobs(p|qobs)πQobs(qobs) (3.23)

and thus the Bayes formula

πP|Qobs(p|qobs) =
πQobs|P(q

obs|p)πP(p)
πQobs(qobs)

(3.24)

if πQobs(qobs) ̸= 0. The marginal probability density πQobs is independent of the realizations p and can
be therefore interpreted as a normalizing constant that can be neglected. Thus, the Bayes formula can be
rewritten as

πP|Qobs(p|qobs) ∝ πQobs|P(q
obs|p)πP(p) (3.25)

where the symbol ∝ indicates proportionality. The left-hand side is called the posterior density function of P
and expresses the knowledge about P after observing Qobs = qobs. The conditional probability density of
Qobs given parameter realizations p of P can be viewed as a function p 7→ πQobs|P(q

obs|p) called likelihood
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expert
knowledge

noise model
forward model
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Figure 3.1: Overview of the Bayesian approach to inverse problems. Figure adapted from [29].

function [18, Section 1.2.3]. It describes the likelihood of the measurement result Qobs = qobs given the
realization P = p. The probability density function πP is called prior density and expresses the expert
knowledge on the unknown parameter P before the measurement. In this work, we also use the symbol π0 to
refer to prior densities.

Bayesian approach to inverse problems The Bayesian approach to inverse problems seeks the distribution
of the random parameter vector P given observations qobs of Qobs. This distribution is the posterior density
function πP|Qobs on the left-hand side of the Bayes formula (3.25). Figure 3.1 shows an overview of the
approach. Following [78, Section 3.1], solving an inverse problem using Bayesian inference can be divided
into three subtasks:

1. Construction of a prior model. Find a probability density function π0 that reflects all prior information
about P. In this work, we gain this information from measurements of material specimens. For all of the
studied applications, we verify with Kolmogorov-Smirnov tests the assumption that the prior distribution
is given by N (m0,C0) for somem0 ∈ RN1 and C0 ∈ RN1×N1 .

2. Construction of a likelihood model. Find a likelihood function p 7→ πQobs|P(q
obs|p). It can be

constructed based on the forward model and the noise model. More details about the likelihood model
used in this work are given in the following paragraph.

3. Exploration of the posterior probability density. If closed-form expressions of the posterior are
available, estimators or statistical parameters such as the expected value and the variance can be
computed. If no closed-form expression is available, we use Markov chain Monte Carlo sampling to
draw samples of the posterior distribution and evaluate the sample mean and covariance.

Although the result of the Bayesian approach to an inverse problem is the posterior probability density πP|Qobs ,
a deterministic value pup of the parameter vector can be derived subsequently for model updating, e.g., with
estimators. Like the posterior distribution, the deterministic value pup depends on both, the prior model and the
likelihood model (including the noise model) and their assumed uncertainties, which weights their influence
on πP|Qobs and pup. The prior model ensures that samples of the posterior distribution are within a physically
reasonable range, which is important for using the updated model for magnet introspection and predictions
outside the regime of training data. The likelihoodmodel ensures that the derived parameter vectorpup actually
leads to a model update, in the sense of the definition in [145], by ensuring that there is an improvement of
the predictions with the updated model on the regime of the training data.
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Likelihood model Consider the forward model H : P → Q and the additive noise model Qobs = H(P) +U
withU ∼ N (0,Σ) and letU be independent of P. Due to the independence, we have πU|P = πU. If P = p is
fixed, the randomness of Qobs is only inherited from U according to the additive noise model. This yields
the equation

πQobs|P(q
obs|p) = πU(qobs −H(p)). (3.26)

Consequently, Qobs|P ∼ N (H(p),Σ) with likelihood function

πQobs|P(q
obs|p) =

(
1

(2π)N2 det(Σ)

)1/2

exp

(
−1

2
(qobs −H(p))⊤Σ−1(qobs −H(p))

)
. (3.27)

Posterior density for linear forward models In case of a linear forward modelHp = q, a Gaussian likelihood
function (3.27) and a Gaussian prior distribution N (m0,C0), the posterior density function πP|Qobs is also
Gaussian distributed [18, Section 2.3.3]. Rearranging the terms on the right-hand side of equation (3.25)
yields πP|Qobs ∼ N (m1,C1) [28, Section 8.4], [78, Theorem 3.7] with

m1 = C1

(
H⊤Σ−1qobs +C−1

0 m0

)
, (3.28)

C1 =
(
H⊤Σ−1H+C−1

0

)−1
. (3.29)

The closed-form expression of the posterior density function is

πP|Qobs(p|qobs) =
(

1
(2π)N1 det(C1)

)1/2
exp

(
−1

2

(
p−C1

(
H⊤Σ−1qobs +C−1

0 m0

))⊤
C−1

1

(
p−C1

(
H⊤Σ−1qobs +C−1

0 m0

)))
.

(3.30)
The next section focuses on the exploration of the posterior density by computing estimators and by drawing
samples of the distribution. These techniques are particularly relevant to gain information about the posterior
distribution if no closed-form expression such as in the linear case (3.30) is available.

3.3 Exploring the posterior distribution

Having the posterior density, we are interested in exploring its stochastical properties such as the ex-
pected value and covariance, or we want to retrieve a deterministic value pup for insertion into the for-
ward model for predictions. In the literature, many methods to explore the posterior distribution can
be found:
• Sampling methods. An overview of sampling methods such as Markov chain Monte Carlo sampling or
rejection sampling is given in [18, Section 11].

• Estimators, such as the maximum a posteriori estimate. A collection of useful estimators can be found
in [78, Section 3.1.1].

• Bayesian filtering, e.g., using the ensemble Kalman filter [67, Section 3].
• Approximate inference [18, Section 10] that is based on analytical approximations of the posterior
distribution, such as variational inference [18, Section 10.1], which minimizes the Kullback-Leibler
divergence between the posterior distribution and its approximation.
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In this work, we use the maximum a posteriori estimate for linear forward models to explore the poste-
rior distribution. In the case of non-linear forward models, we use Markov chain Monte Carlo sampling
based on the Metropolis-Hastings algorithm with the preconditioned Crank-Nicolson proposal, because
it admits an easily implementable algorithm that requires only one evaluation of the forward model per
step [28].

3.3.1 Estimators

The application of point estimators is particularly interesting for stochastic model updating when a deterministic
value pup has to be retrieved from the posterior distribution for insertion into a deterministic numerical model.
A popular point estimator is the maximum a posteriori estimate pMAP defined by

pMAP := argmax
p∈P

πP|Qobs(p|qobs), (3.31)

provided that a maximizer exists. Notice that this estimate might not be unique. The maximum a posteriori
estimate answers the question “Given the data qobs and the prior, what is the most probable value of P?” [78,
Section 3.1.1]. The maximum likelihood estimate pML maximizes the likelihood function instead of the
posterior density function

pML := argmax
p∈P

πQobs|P(q
obs|p). (3.32)

Although the definitions of the maximum a posteriori estimate and the maximum likelihood estimate read
similar, the underlying ideas differ. While the maximum a posteriori estimate considers the parameters as a
random vector and seeks the most probable realization given the data qobs, the maximum likelihood estimate
is a non-Bayesian estimator that seeks the (not necessarily random) parameters that are the most likely to
produce the data qobs [67, Section 2.3], [78, Section 3.1.1].
Inserting the likelihood function (3.27) into the definition of themaximum likelihood estimate yields

pML = argmin
p∈P

∥∥∥qobs −H(p)
∥∥∥2
Σ−1

. (3.33)

Analogously, inserting the posterior density (3.25) with the Gaussian likelihood function (3.27) and the Gaus-
sian prior distribution N (m0,C0) into the maximum a posteriori estimate yields

pMAP = argmin
p∈P

(∥∥∥qobs −H(p)
∥∥∥2
Σ−1

+ ∥p−m0∥2C−1
0

)
. (3.34)

Consequently, the prior translates to a regularization functional, and using the maximum a posteriori estimate
instead of the maximum likelihood estimate is equivalent to performing a Tikhonov regularization [28, Section
7.2]. In the case of the linear forward model with the posterior density function (3.30) the maximum a
posteriori estimate is given by

pMAP = argmin
p∈P

∥∥∥p−C1

(
H⊤Σ−1qobs +C−1

0 m0

)∥∥∥2
C−1

1

(3.35)

and thus the maximum a posteriori estimate in the linear case is given by the expected value of the posterior
distribution [78, Section 3.4].
Besides point estimators, spread estimators such as the conditional covariance or the Bayesian credibility set
can be used to gain insight into the posterior distribution [28, Section 3.1.1].
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3.3.2 Markov chain Monte Carlo sampling

Given the posterior probability density πP|Qobs and its corresponding posterior distribution λP|Qobs , the goal
of Markov chain Monte Carlo sampling is the definition of a Markov chain whose states are samples of πP|Qobs .
Based on these samples, statistical quantities such as the sample mean and the sample covariance can be
determined using equations (3.4) and (3.5).
First, we briefly give an overview of useful definitions and technical details regarding Markov chains. For a
more comprehensive introduction, the reader is referred to [18, 67, 78]. Subsequently, the Metropolis-Hastings
algorithm [12, 28, 67, 78] in combination with the preconditioned Crank-Nicolson proposal [28, 37] are
explained as one example of defining and implementing a suitable Markov chain.

Markov chain fundamentals A time-discrete stochastic process {X0,X1,X2, . . . } is an ordered set of random
vectors Xi : Ω → RN , i ≥ 0. The process is called Markov chain if

P(Xi+1 ∈ A | Xi = xi, . . . ,X0 = x0) = P(Xi+1 ∈ A | Xi = xi) (3.36)

for all Borel sets A ∈ B. Thus, the probability of the future state of a Markov chain only depends on the
current state. A probability transition kernel is a mapping K : RN ×B → [0, 1] such that for all A ∈ B the
mapping x 7→ K(x, A) is a measurable function, and for all x ∈ RN the mapping A 7→ K(x, A) is a probability
distribution. A Markov chain is called time homogeneous with transition kernel K if there is a probability
transition kernel K such that

P(Xi+1 ∈ A | Xi = xi) = K(xi, A) (3.37)
for all i ≥ 0. Thus, the transition probability is the same for all time steps i. The i-th iterate of the chain
starting at x0 is defined as Ki(x0, A) = P(Xn ∈ A | X0 = x0). The transition kernel K is called λ-irreducible
for a probability distribution λ on B, if for all x ∈ RN and all sets A ∈ B with λ(A) > 0, there is an integer
i ≥ 1 such that Ki(x0, A) > 0. Thus, the Markov chain generated by the transition kernel K will visit any set
of non-zero measure with a positive probability, regardless of the starting point x0. A λ-irreducible transition
kernel K is called periodic if there is an integer I ≥ 2 and disjoint sets A1, . . . , AI ∈ B with non-zero measure
such that for all x ∈ Ai with i ≤ I − 1 we have K(x, Ai+1) = 1 and K(x, A1) = 1 for all x ∈ AI . Thus, the
Markov chain remains in a loop. Otherwise, the kernel K is called aperiodic. A probability distribution λ is
called invariant or stationary distribution of a Markov chain with kernel K if

λ(A) =

∫
RN

K(x, A)λ(x) dx (3.38)

for all A ∈ B. It can be shown [67, Lemma 2.1] that a distribution λ whose density function π satisfies the
detailed balance equation

π(x)k(x,y) = π(y)k(y,x) (3.39)
is a stationary distribution of a Markov chain with kernel K. In this case, the density function π is called
invariant density. Thereby, k : RN ×RN → R is a density function, called transition kernel density that satisfies
for all A ∈ B

K(x, A) =

∫
A
k(x,y) dy. (3.40)

To draw samples of the posterior distribution λP|Qobs using a Markov chain, we are particularly interested
in λP|Qobs-irreducible and aperiodic Markov chains with a transition kernel K for which λP|Qobs is invariant
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because it can be shown that under these conditions, the distribution of the Markov chain converges to
λP|Qobs [78, Proposition 3.11], i.e.

lim
i→∞

Ki(x0, A) = λP|Qobs(A) (3.41)

for all x0 ∈ RN and all Borel sets A ∈ B. Thus, the samplesXi generated by the iterations of the Markov chain
with transition kernelK are samples of the posterior distribution λP|Qobs for i sufficiently large.
There are different possibilities to define a transition kernel K for which the posterior distribution λP|Qobs is
invariant. Each choice leads to a different Markov chain Monte Carlo sampling method, such as the Gibbs
sampler [12, 78] or the Metropolis-Hastings algorithm [12, 28, 67, 78], which is based on the definition of a
kernel density function k that satisfies the detailed balance equation (3.39).

Metropolis-Hastings algorithm Let l : RN ×RN → R+ be a transition kernel density, called proposal density,
with ∫RN l(x,y) dy = 1 for all x ∈ RN . For now, we assume that l is given, common choices to define l are
discussed below. If the proposal density l satisfies the detailed balance equation (3.39), we are done by setting
k = l. Otherwise, we define

α(x,y) := min

{
1,
π(y)l(y,x)

π(x)l(x,y)

}
(3.42)

and obtain by setting k(x,y) = α(x,y)l(x,y) a transition kernel density that satisfies the detailed balance
equation (3.39) [28, Section 11.2.2]. To draw samples xi using the Metropolis-Hastings algorithm, the
following steps are to be conducted [12, 28, 78]:
1. Initialize with a point x0 ∈ RN . Since the Markov chain is supposed to be irreducible, the choice of the
initialization point is arbitrary. However, if available, prior knowledge can be included, e.g., by choosing
the expected value of the prior density as the initialization point. Set i = 1.

2. Draw a sample x̃ of the proposal density l(xi−1, x̃). Accept x̃ by setting xi := x̃ with probability
α(xi−1, x̃). Else, set xi := xi−1.

3. Set i = i+ 1. Return to step 2.
Due to the possibility of rejecting proposed samples, the resulting set of samples {xi}i can contain repetitions.
These repetitions reflect the importance of the sample [28]. To only consider the samples that are drawn when
the Markov chain already reached the stationary distribution, the first bunch of samples, referred to as burn-in
is usually neglected. Further criteria to assess the quality of a Metropolis-Hastings sample set are discussed
in [28, Section 11.2.3]. It can be shown [78, Proposition 3.12] that the transition kernel that corresponds to
l has to satisfy the same conditions of aperiodicity and π-irreducibility as K to guarantee that the samples
generated with the Metropolis-Hastings are samples of π.
Depending on the choice of the proposal density l, different versions of the Metropolis-Hastings algorithm can
be defined: If l is chosen symmetric with l(x,y) = l(y,x) the Metropolis algorithm is obtained that immediately
accepts the drawn sample x̃ if it has a higher probability than the current sample xi−1 and sometimes moves
to samples with lower probability depending on the probability ratio. Independence Metropolis-Hastings
algorithms such as the randomize-then-optimize Metropolis-Hastings algorithm [12, Section 6.3.3] use
proposal densities that are independent of the current state l(x,y) = l(x). Adaptive Metropolis-Hastings
algorithms update the proposal density based on the history of the Markov chain [12]. In this work, we use
the preconditioned Crank-Nicolson proposal [28, 37] because it admits an easy and illustrative simplification
of the acceptance probability α. Compared to the independence proposal that is used in the randomize-then-
optimize Metropolis-Hastings algorithm [12, Section 6.3.3], the Crank-Nicolson proposal requires solely one
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evaluation of the forward model H per iteration i. We apply the Metropolis-Hastings algorithm in Chapter 4
and Chapter 5.

Preconditioned Crank-Nicolson proposal In this work, we assume that the prior distribution is Gaussian
with N (m0,C0) for some m0 ∈ RN1 and C0 ∈ RN1×N1 . The preconditioned Crank-Nicolson proposal [28,
37] is defined by

l(x,y) ∼ N (
√
1− s2x, sC0) (3.43)

where s ∈ (0, 1) is a real parameter, called step size. Inserting into the acceptance probability (3.42) for π the
posterior density function πP|Qobs and for l the Crank-Nicolson proposal yields

α(pi−1, p̃) = min

1,
exp

(
−1

2

∥∥H(p̃)− qobs
∥∥2
Σ−1

)
exp(⟨p̃,m0⟩C−1

0
)

exp
(
−1

2 ∥H(pi−1)− qobs∥2Σ−1

)
exp(⟨pi−1,m0⟩C−1

0
)

 . (3.44)

If we can further assume that the prior density has zero mean, i.e. by applying the translation p−m0, the
acceptance probability further simplifies to

α(pi−1, p̃) = min

1,
exp

(
1
2

∥∥H(pi−1)− qobs
∥∥2
Σ−1

)
exp

(
1
2 ∥H(p̃)− qobs∥2Σ−1

)
 . (3.45)

Notice that in the last equation, we also flipped the numerator and the denominator by omitting the signs
within the exponential function. The proposal p̃ is immediately accepted if the likelihood is higher than the
likelihood of the current state pi−1. Moreover, it can be also accepted if the likelihood is lower. In this case,
the acceptance probability depends on the ratio of the two likelihoods.
The only remaining choice to implement the Metropolis-Hastings algorithm, is the choice of the step size s.
This parameter influences the acceptance rate of the Metropolis-Hastings algorithm that should be according
to [28, Section 11.4] below or around 50%, and optimally between 20% and 30% [28, Section 11.2.3]. For
high dimensions N1 of the parameter space P ⊂ RN1 this acceptance rate typically results in a small step size
s such that many samples are required. Consequently, the method may become computationally expensive as
for each sample pi the forward model H has to be evaluated on the proposal p̃ to determine the acceptance
probability with equation (3.44) or equation (3.45).

3.4 Summary

In this chapter, we introduced statistical fundamentals and methods for stochastic model updating. Thereby,
parameters and observations were modeled as random vectors and related via a forward model and an additive
noise model. For stochastic model updating, we were interested in determining the posterior distribution of
the parameters given an observation. Thus, not only deterministic solution parameters can be estimated but
also their uncertainty can be quantified. The key to finding the posterior distribution was Bayes’ formula. It
combines prior knowledge about the parameters with a likelihood model, that is based on the forward model,
the additive noise model, and observations. Different strategies, e.g., the maximum a posteriori estimator and
the Metropolis-Hastings algorithm, which is a Markov chain Monte Carlo sampler, were introduced to explore
the posterior distribution. These methods will be applied in the following chapters to find stochastic updates
of the parameters of a B(H)-curve model of an iron-dominated magnet and the magnetization parameters of
the permanent magnet blocks in a Halbach magnet.
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4 Update of the B(H)-curve of iron-dominated magnets

Component-centric system models of iron-dominated magnets depend on the yoke material’s B(H)-curve. In
this chapter, we combine a first principle-based FEM model of an accelerator magnet with data of material
measurements of the yoke material, and data of measurable field-related quantities of interest to update
the B(H)-curve of the system model. The goal is to obtain an updated model that correctly predicts the
field-related quantities of interest on which it is trained, and that allows reliable field predictions for operation
modes not considered in the training data. Parts of the results discussed in this chapter are published in the
author’s paper [53]. For simplification, we neglect hysteresis, anisotropy, and non-homogeneity and restrict
our analysis to magnetostatic fields in this thesis.

Systemmodel In Chapter 3, a systemmodel is abstractly describedwith themapping (3.19)

M : (p, s) 7→ q, (4.1)

where p describes parameters, s describes operation modes and q is a prediction of a quantity of interest.
Parameters and operation modes are both inputs of the system model. We distinguish between parameters
that are the variables of the design and the prototype phase, and operation modes are the variables of the
operation phase. In the case of normal conducting iron-dominated accelerator magnets, typical parameters
are the yoke material and the magnet geometry (e.g., yoke shape, source position, number of turns). A
typical operation mode is the excitation current. Only constant current excitations are considered since we
restrict the study to magnetostatic fields. Typical quantities of interest in magnetostatics are for example
evaluations of the magnetic flux density at certain points, integrated fields, or the multipole coefficients
defined in equation (2.80). The prediction q of these quantities of interest can be derived from the parameters
p and operation modes s by applying the methods introduced in Chapter 2.
In this chapter, we consider an example inspired by the magnet system “PXMBHGGHWC-OR000113” depicted
in Figure 4.1, which was built in 1963 and used at the Proton Synchrotron at CERN. In 2015, it was refurbished
to be re-used. It is an H-shaped dipole with a gap height of 170mm and NJ = 180 turns per coil. For current
excitations of 600A, it provides a magnetic flux density of 1.5T in the center of the air gap. A 2D sketch
of the domain D including the source domain DJ, the air domain Da and the iron domain Di is shown in
Figure 4.1. Notice that the boundary ∂D is chosen far enough from the iron and the source domain such that
∂D = ΓB and B · n = 0 on ΓB can be assumed. We further assume that the geometry is well enough known
from drawings, such that the parameters reduce to the B(H)-curve or respectively its inverse, the H(B)-curve
of the yoke material.
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Figure 4.1: Left: “PXMBHGGHWC-OR000113” dipole magnet. Right: Sketch of the corresponding two-
dimensional domain D with source domain DJ, air domain Da and iron domain Di. Figure
adapted from [53]

The central field in the example magnet system is simulated by solving the weak formulation of the two-
dimensional boundary value problem of magnetostatics in vector potential formulation onD introduced in Sec-
tion 2.2.2: Given a source current density J and a reluctivity function ν : D×R+

0 → R+

ν(x, t) =

{
ν0 x ∈ Da

νi(t) = fHB(t)/t x ∈ Di,
(4.2)

find A ∈ V such that ∫
D
curlv · ν(∥curlA∥) curlA dV =

∫
D
v · J dV (4.3)

for all v ∈ V. This problem is numerically solved using the FEM software GetDP [60]. Thereby, the 2D
conductor model described in Section 2.3.2 is used to define J. If the non-linear H(B)-curve defining the
reluctivity function νi satisfies the properties given in Assumption 1, a unique solution to (4.3) exists, and
thus there is a well-defined mapping

νi 7→ A[νi]. (4.4)

Quantities of interest Quantities of interest such as evaluations of the magnetic flux density at certain
points and multipole coefficients can be mathematically described as linear functionals Q : V → R of
the form

Q(A) :=

∫
Dobs

q1(A) + q2(curlA) dV (4.5)

with linear functionals q1, q2 : V → R and an observation domain Dobs ⊂ D [117, Section 4.1]. Since the
mapping (4.4) is well-defined, we can similarly introduce a well-definedmapping

Q̂ : νi 7→ Q[A[νi]]. (4.6)
The quantities of interest that are studied in the following are theBy(x) component of the magnetic flux density
evaluated at a position x ∈ Da and the normal multipole coefficients Bn(r0), defined in equation (2.80), on a
reference radius r0. The functionalQB of the fieldmap quantity of interest is given by

QB(A) := QB(A)(x) := By(x) =

∫
{x}

pry(curlA) dV (4.7)
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Figure 4.2: Magnetic flux density B[νi] for the excitation current I = 500A. Left: By evaluated on the inner
air domain. Right: B evaluated on circles with radius r0 = 6 cm.

where pry : R3 → R is the projection on the y-component. The functional QM,n of the multipole coefficient
quantity of interest is given by

QM,n(A) := Bn(r0) =

∫ 2π

0

1

π
prr(curlA(r0, θ)) sin(nθ) dθ (4.8)

where prr : R3 → R is the projection on the radial component and θ ∈ [0, 2π] is the parametrization of the
observation domain Dobs that is given by a reference circle with radius r0 in Da. Notice that both functionals
QB and QM,n are linear because the projections pry and prr are linear.
The concatenation of the boundary value problem of magnetostatics with a quantity of interest Q yields the
system model (4.1). For a given H(B)-curve (its determination will be explained later), and the operation
mode of the excitation current I = 500A, the predicted field map quantity of interest QB and the magnetic
flux density along two reference circles, that are in the following used to analyze the multipole coefficient
quantity of interest QM,n, are shown in Figure 4.2. The corresponding normal multipole coefficients Bn(r0)
are shown in Figure 4.11.

Forward and inverse problem Assume that a set of J operation modes {s1, . . . , sJ} is given by the set of
excitation currents {I1, . . . , IJ} corresponding to the source current densities {J1, . . . ,JJ}. The following
forward problem and the inverse problem have to be solved to compute predictions of quantities of interest
given parameters and operation modes, or to update the parameters given operation modes and observations
of quantities of interest.

Problem 1. (Forward problem) Given a (non-linear) H(B)-curve fHB : R+
0 → R+

0 that meets the properties
of Assumption 1. Let νi : R+

0 → R+ be the corresponding reluctivity function on the iron domain Di defined
by νi(t) = fHB(t)/t. Find for each j = 1, . . . , J the magnetic vector potential Aj [νi] ∈ V that solves the weak
formulation of the boundary value problem of magnetostatics (4.3) and evaluate the quantity of interestQ(Aj [νi]).

Problem 2. (Inverse problem) Given observations Qobs
j of a quantity of interest Q observed at the excitation

currents {I1, . . . , IJ}. Find a H(B)-curve fHB : R+
0 → R+

0 meeting the properties in Assumption 1, such that the
solutions Aj [νi] ∈ V of (4.3) satisfy Qobs

j = Q(Aj [νi]) for all j = 1, . . . , J , where the reluctivity νi on the iron
domain Di is defined by νi(t) = fHB(t)/t.
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B(H)- and H(B)-curves To solve the forward problem, a continuous H(B)-curve of the yoke material
satisfying the properties of Assumption 1 is required. Hence, in the design phase of the magnet, toroidal
material specimens (Figure 4.4) of the yoke material are often ordered, and a discrete (B,H)-data table of
each specimen is measured, e.g., with a split-coil permeameter [10, 71]. More details on the measurement
technology are given later in Section 4.1.1. Based on the discrete (B,H)-data tables, continuous H(B)-curves
can be determined using different methods; most common are
1. Closed-form expressions. The parameters of a closed-form expression, that is based on expert knowledge
of underlying physical laws, can be fitted to the measured (B,H)-data table, e.g., [1, 24, 72, 98, 110,
141]. Section 4.1.2 gives an overview of common closed-form expressions.

2. Spline methods. The values in the measured (B,H)-data table can be interpolated or approximated
with monotone spline curves, e.g., [70, 104, 108, 114]. Section 4.1.3 gives an overview of suitable spline
approaches.

Curve models with a few parameters and that have the flexibility to be adjusted to many different materials
are favored. Spline methods typically have more parameters than the closed-form expressions found in the
literature. However, closed-form expressions have limited flexibility to be adjusted to measured data [106,
Section 5.1].
Split-coil permeameter measurements of a set of 26 ARMCO® Pure Iron Grade 4 [5] specimens revealed
variations of the (B,H)-data tables between the specimens that exceed the measurement uncertainty signifi-
cantly [106, Section 3.6]. The observed variation can be caused by material impurities and stresses during the
manufacturing process [106, Section 3.6]. Also, material aging can affect the H(B)-curve [106, Section 3.5].
We assume that the yoke’s (B,H)-data table is within the range of the measured (B,H)-data tables of the
specimens. To include the measured variations of the (B,H)-data tables into the curve model of the yoke,
the data-driven stochastic H(B)-curve model introduced by [117, 118] is used. The idea of this approach
is based on describing the H(B)-curve of the yoke with a random field (an introduction to random fields is
given in Section 4.1.4) rather than a single curve to reflect the uncertainty related to the measured variations.
The continuous H(B)-curves derived from the (B,H)-data tables of material specimen measurements are
interpreted as realizations of the random field in this setting. The random field is discretized in [117, 118]
using the truncated KLE [88]. We refer to this model as the KLE-based H(B)-curve model and analyze its
applicability in the context of model updating in this chapter. It combines the advantages of closed-form
expressions and spline curves: Being adjustable to any H(B)-curve within the measured variations of the
(B,H)-data tables of the material specimens while only having a minimal number of parameters. The latter is
reduced to the number of the most important variations, observed in the measurements of the yoke material
specimens because it can be shown that the truncated KLE satisfies an optimality condition [123, Theorem
2.7] regarding the best approximation of an underlying random field.

Model updating Having a continuous H(B)-curve obtained from spline interpolations or closed-form ex-
pressions, an initial system model of the magnet system can be obtained by solving the forward problem 1.
In the prototype phase of the magnet, predictions of the initial system model and measurements of comparable
quantities of interest (Figure 1.2) are compared for validation. If a non-negligible mismatch between the two
quantities is detected, the initial system model needs to be adapted to improve the predictions and to find
explanations for the observed deviations. Model updating by determining suitable model parameters given
measured observations is a common strategy (see Section 1.3.3). Since the (B,H)-data table of the yoke
is not measurable and the (B,H)-data tables of yoke material specimens show large variations due to the
manufacturing process, the H(B)-curve of the yoke in the system model is a reasonable parameter to adjust.
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Determining an H(B)- or B(H)-curve from observations of field-related quantities of interest requires the so-
lution of the inverse problem 2. Several approaches to updating spline curves or the parameters of closed-form
expression can be found in the literature [1, 38, 79, 98, 126]. Fitting the parameters of splines or closed-form
expressions regularizes the inverse problem with a finite-dimensional approximation of the search space.
Reducing the number of parameters of the search space of the inverse problem 2 by applying the truncated
KLE yields a regularization by low-rank approximation. The idea of this regularization method is similar to
the truncated singular value decomposition [83].

Structure of this chapter The different sources of knowledge and the updating methods used in this chapter
are summarized in Figure 4.3. The updated modelM(pup, ·) is a hybrid model because it combines first
principle-based domain knowledge with data from material and field measurements.
The remainder of this chapter is organized as follows: In Section 4.1 we derive and analyze the KLE-based
H(B)-curve model. First, the measurement principle of a split-coil permeameter is introduced and we give
an overview of popular closed-form expressions for B(H)- and H(B)-curves. Subsequently, the KLE-based
H(B)-curve model is derived following the ideas of [117, 118] for the split-coil permeameter measurements
of ARMCO® Pure Iron specimens given in [106, Section 3.6]. We show that a two-dimensional parameter
space is sufficient to approximate the measured variations. Using 4-fold cross-validation, we assess the ability
of the KLE-based H(B)-curve model and the closed-form expressions to describe the ARMCO® measurements
and find that the KLE-based model is the most suitable H(B)-curve model and the Wlodarski model [141] is
the most suitable B(H)-curve model in the comparison.
In Section 4.2, we address the ill-posedness of the inverse problem 2 by using the KLE-basedH(B)-curve model
to approximate the problem. Moreover, the inverse problem is relaxed such that the observations affection by
random measurement uncertainty is also considered. Subsequently, the sensitivity analysis derived in [117] is
applied to quantify changes in the prediction of the quantities of interest QB and QM,n that are related to
changes in the reluctivity in the direction of the most important modes of the truncated KLE. The sensitivity
analysis results are used to assess the stability of the approximated and relaxed inverse problem. It is shown
that there are observation positions x ∈ D and multipole orders n for which the inverse problem is unstable.
Conversely, we use sensitivity analysis as a tool to improve the formulation of the inverse problem regarding
stability by choosing suitable training data.
For the quantity of interest QB, the approximated and relaxed inverse problem is solved in Section 4.3. Since
no magnet system is currently available in the laboratory for which both material data and magnetic flux
density data are available, we first simulate observation training data that is disturbed with uncertainties of
the same order of magnitude as the random measurement uncertainty that is to be expected. We conduct
deterministic model updating by optimization and stochastic model updating using Bayesian inference and
explore the resulting posterior distributing with Markov chain Monte Carlo sampling using the Metropolis-
Hastings algorithm with the preconditioned Crank-Nicolson proposal. Evaluating the relative error between
the ground truth prediction of QB and the prediction with the updated models shows that the accuracy of the
updated model is better than the common threshold of 1 unit in 10000 for operation modes that interpolate
the operation modes of the training data. For operation modes extrapolating the operation modes of the
training data, the relative errors are less than 3 units in 10000.
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Figure 4.3: Overview of sources of knowledge and methods for data-driven updates ofH(B)-curves. From
split-coil permeameter measurements of yoke material specimens a data-driven material model
called KLE-basedH(B)-curve model is derived. The parameters p of this model are determin-
istically and stochastically updated using optimization and Bayesian inference. Thereby, the
first principle-based magnetostatic problem is combined with observed data qobs. Given an
operation mode s, the mapping s 7→ M(pup, s) can be used to predict quantities of interest with
the resulting updated hybrid system model.
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Figure 4.4: Left: Split-coil permeameter. Right: Toroidal ARMCO® Pure Iron Grade 4 material specimens.

4.1 Models of B(H)- and H(B)-curves

In this section, an introduction to the measurement principle of split-coil permeameters is given, and com-
mon closed-form expressions and spline-based methods to model continuous B(H)- and H(B)-curves are
summarized. Subsequently, the stochastic data-driven H(B)-curve model [117, 118] which also includes
the observed variations of the measured (B,H)-data tables corresponding to different material specimens is
derived and analyzed. This model is based on the low-rank approximation of a random field with the truncated
KLE [88] and is referred to in this work as KLE-based H(B)-curve model.

4.1.1 Split-coil permeameter measurements

A split-coil permeameter [10, 71] (see Figure 4.4 left) is a measurement device to sample the average magnetic
induction B̄ in a toroidal material specimen with rectangular cross-section shape (see Figure 4.4 right), given
an average magnetizing field H̄. The split-coil permeameter consists of two toroidal windings (a 180-turn
winding for excitation and a 90-turn winding for measurement) that can be opened to place the specimen. The
specimen is first demagnetized using an excitation cycle of several decreasing current plateaus [10, Section
3]. Subsequently, its virgin state that satisfies B̄ = 0 for H̄ = 0 can be measured. For the measurement, the
excitation windings are powered with L increasing current plateaus. For the plateau current Il with 1 ≤ l ≤ L,
the average magnetizing field is given by

H̄l =
1

r1 − r2

∫ r2

r1

NeIl
2πr

dr =
NeIl
2πR

, (4.9)

where Ne is the number of excitation windings, r1 is the inner and r2 is the outer radius of the toroidal
specimen and R = (r2 − r1)/ ln(r2/r1). The corresponding average magnetic induction B̄l can be determined
from the flux Φl that is measured with the search coil by using the formula

B̄l =
1

2NcAc
Φl +

(
1

2NcAc
− 1

2NcAs

)
Φ0, (4.10)
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Figure 4.5: (B,H)-data tables of ARMCO® specimens, measured with a split-coil permeameter. For better
visibility, only the datasets k ≤ 3, corresponding to three specimens, are visualized.

where Nc is the number of turns of the search coil, Ac is the cross-section area of the search coil and As is the
specimens cross-section area. Since the search coil windings are not tight on the specimen, the correction by
the measured flux Φ0 without the specimen is applied.

Assuming that the material is homogeneous, the (Bl, Hl) data points of the sample are identified with the aver-
age values (B̄l, H̄l). Collecting data points for L current plateaus and repeating the measurement for K speci-
mens, we obtain discrete sets 0 = Bk

1 < · · · < Bk
L and corresponding evaluations

0 = Hk
1 = fkHB(B

k
1 ) < · · · < Hk

L = fkHB(B
k
L) (4.11)

of the H(B)-curve fkHB of each sample with 1 ≤ k ≤ K. This data is referred to as (B,H)-data tables.
The relations between the values at the evaluated points in (4.11) are a consequence of the required strict
monotonicity of H(B)-curves. In this work, we use measured (B,H)-data of K = 26 specimens of ARMCO®
Pure Iron Grade 4 [5] from AK Steel. In Figure 4.5, the measured (B,H)-data tables of the specimens with
1 ≤ k ≤ 3 are visualized. It can be seen that there is a variation between the (B,H)-data tables corresponding to
different specimens even though they are made of the same material. The variations can be caused by material
impurities or stresses during the manufacturing process [106, Section 3.6].

Most solvers use continuous models of the B(H)-curve or the H(B)-curve. In the following sections, different
methods to derive a continuous curve, given a (B,H)-data table are discussed.
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4.1.2 Closed-form expressions

Closed-form expressions for anhysteretic B(H)-curves fBH : H 7→ B and H(B)-curves fHB : B 7→ H can be
found, e.g., in [1, 24, 72, 98, 110, 141]

fBH(H) :=
H

a+ bH
(Froelich equation) (4.12)

fBH(H) := a tan−1(bH) (4.13)

fBH(H) := b tan−1

(
H

c

)
+ aµ0H (4.14)

fHB(B) := c

[(
B

b

)
+

(
B

b

)a]
(4.15)

fHB(B) := (a exp(bB2) + c)B (Brauer model) (4.16)
where a, b, c ∈ R are parameters. Moreover, formulas for B(H)-curves can be obtained by inserting a
M(H)-curve (whereM := ∥M∥) into

fBH(H) = µ0(H +M(H)). (4.17)
This approach is based on the constitutive equation (2.13). Popular closed-form expressions forM(H)-curves
are given, e.g., in [110, 141]

M(H) := aH + bH2 (Rayleigh model) (4.18)

M(H) := Msat

[
2J + 1

2J
coth

(
2J + 1

2J

H

a

)
− 1

2J
coth

(
1

2J

H

a

)]
(Brillouin equation) (4.19)

M(H) := MaL

(
H

a

)
+Mb tanh

(
H

b

)
L

(
H

b

)
(Wlodarski model) (4.20)

with parameters a, b,Msat, J,Ma,Mb ∈ R and a function L that is defined by

L

(
H

a

)
:= coth

(
H

a

)
− a

H
. (4.21)

Moreover, these models can be combined by using piecewise different models [72]. Some parameters are
related to physical meanings, Msat for instance is the saturation magnetization, and Ma and Mb are the
reversible and irreversible components of the saturation magnetization. The parameters of these models can
be identified by fitting the models to measured discrete (B,H)-data. Repeating the parameter fitting for
multiple (B,H)-data tables of different specimens of the same material allows the derivation of a probability
distribution of the parameters [110].
The drawback of closed-form expressions is that a measured (B,H)-data table might not be in their span [106,
Section 5.1]. Spline-based models, in contrast, are more flexible.

4.1.3 Spline-based models

Given the measured (B,H)-data table (4.11)
(Bl, fHB(Bl)) 1 ≤ l ≤ L (4.22)

evaluated in L positions 0 = B1 < · · · < BL. Different spline-based approaches can be found in the litera-
ture [70, 104, 108, 114] to interpolate and approximate the (B,H)-data table:
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Figure 4.6: Workflow to derive the KLE-based H(B)-curve model from material measurements. Figure
adapted from [53].

• Monotone cubic Fritsch-Carlson splines [57] can be used to interpolate the (B,H)-data table [70]. The
resulting spline curve has 4(L− 1) parameters.

• The method described in [114] and its further development described in [104] do not only interpolate
the (B,H)-data table but take into account the measurement uncertainty of the split-coil permeameter
measurements and approximate the measurement results of multiply (B,H)-data tables corresponding
to the same specimen. The resulting spline has 2L− 4 or respectively at least more than L parameters.

• In [108], the B(H)-curve is subdivided into 5 segments, and to each segment a polynomial of order 3 is
fitted, leading to a curve description with 20 parameters.

Since the variation between the measured (B,H)-data tables corresponding to different specimens of the
same material exceeds the measurement uncertainty of the split-coil permeameter [106, Section 3.6], the
uncertainty of the split-coil permeameter measurements is neglected in this work. To obtain for each of the K
material specimens a continuous interpolating function

fk : I := [0,min
k
Bk
L] → R+

0 k = 1, . . . ,K, (4.23)

we interpolate the measured (B,H)-data table with the monotone cubic Fritsch-Carlson spline [57]. Later,
when a finite-dimensional basis representation of these functions is needed, the functions fk are approximated
with radial basis functions [68, Section 6.7].

4.1.4 Data-driven stochastic H(B)-curve model

Notice that the B(H)- and H(B)-curve models discussed so far are deterministic and do not include the
observed variations between the (B,H)-data tables corresponding to different specimens. As suggested
in [110], the spread of the parameters of fitted closed-form expressions or spline curves corresponding to
different specimens could be analyzed. As an alternative, the data-driven stochastic H(B)-curve model
derived in [117, 118] is introduced. The steps of its derivation are visualized with a flow chart in Figure 4.6
and each step of the derivation is explained in more detail in the remainder of this section. This model
is based on interpreting the continuous spline functions fk in equation (4.23) as realizations of a random
field. This random field is approximated with the truncated KLE [88], yielding a H(B)-curve model, whose
parametrization reflects the most important measured variations in the (B,H)-data tables of the material
specimens.

The advantages of this model, besides the inclusion of the observed variations, are its flexibility to be adapted
to any measured material, and its low number of parameters due to the low-rank approximation with the
truncated KLE [88].
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Stochastic setting Let I be the closed interval that reflects the dependence of the H(B)-curve on B and let
(Ω,F ,P) be the probability space (see Section 3.1 for a definition) that reflects the random variation of the
H(B)-curves. A more comprehensive introduction to the fundamentals of random fields, summarized in this
paragraph, is given, e.g., in [4, 94, 146].
A random field f is a mapping f : Ω× I → R such that for all t ∈ I the function f(·, t) : Ω → R is a random
variable. The mean E[f ] of f is defined by

E[f ](t) :=
∫
Ω
f(ω, t) dP. (4.24)

The Hilbert spaceL2(Ω,F ,P) [146, Chapter 2] of square-integrable random variables is defined by

L2(Ω,F ,P) :=
{
Y | E[Y 2] <∞

} (4.25)

endowed with the scalar product ⟨X,Y ⟩ := E[XY ]. A random field f is called square-integrable if f ∈
L2(Ω,F ,P)× L2(I), i.e., f(·, t) is square-integrable for all t ∈ I. The covariance function Cov[f ] : I × I → R
of a square-integrable random field f is defined by

Cov[f ](s, t) :=

∫
Ω
(f(ω, s)− E[f ](s)) (f(ω, t)− E[f ](t)) dP. (4.26)

The continuous monotone curves fk that interpolate the measured (B,H)-data tables of the K material
specimen can be interpreted as realizations of the random field f that describes reasonable H(B)-curves
of the yoke. Consequently, the expected value and the covariance function of the random field f can
be estimated from the sample mean f̂ : I → R and the unbiased sample covariance Ĉ : I × I → R
defined by

f̂(t) :=
1

K

K∑
k=1

fk(t) (4.27)

Ĉ(t, s) :=
1

K − 1

K∑
k=1

(
fk(t)− f̂(t)

)(
fk(s)− f̂(s)

)
. (4.28)

Karhunen-Loève expansion The KLE can be interpreted as a generalization of Fourier analysis from deter-
ministic functions to random fields [138]. Analogously to Fourier analysis, the KLE yields a decomposition
into orthonormal functions. The coefficients of the KLE are random variables. Applications of the KLE include
dimensionality reduction and feature extraction [18].
Let f ∈ L2(Ω,F ,P)× L2(I) be a square-integrable random field with continuous covariance function Cov[f ].
Following the Karhunen-Loève Theorem [88] (a proof is given in [63, Theorem 4.6]), there are orthonormal
functions em ∈ L2(I), real coefficients λm ∈ R and orthonormal random variables Ym ∈ L2(Ω,F ,P) with zero
mean such that f can be expanded as

f(ω, t) = E[f ](t) +
∞∑
m=1

√
λmYm(ω)em(t). (4.29)

Equation (4.29) is referred to as the Karhunen-Loève expansion (KLE). We refer to the term √
λmem(t)

as m-th mode of the KLE. An important property of the KLE is that it separates the dependence of the
random field f on the random space Ω and on the interval I into the functions em, that only depend on I,
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and the random variables Ym, that only depend on Ω. The orthonormality of the functions em ∈ L2(I) is
defined by ∫

I
ei(t)ej(t) dt = δij (4.30)

and the random variables Ym ∈ L2(Ω,F ,P) are orthonormal in the sense that

E[YiYj ] =
∫
Ω
Yi(ω)Yj(ω) dP = δij , (4.31)

where δij is the Kronecker delta. Consequently, the random variables Ym are centered, uncorrelated,
and with unit variance. For simplicity, it is assumed, such as in [117] that they are mutually indepen-
dent.
Inserting the expansion (4.29) into the covariance function (4.26) and applying the orthonormality of the
functions em and the random variables Ym yields∫

I
Cov[f ](s, t)em(s) ds = λmem(t). (4.32)

Thus, the functions em are eigenfunctions of the operator

Tf : L2(I) → L2(I), Tf (u)(t) :=

∫
I
Cov[f ](s, t)u(s) ds (4.33)

and the real values λm are the corresponding eigenvalues. We assume that the eigenvalues are enumerated in
decreasing order λ1 ≥ λ2 ≥ · · · ≥ 0. The eigenvalues are non-negative because the covariance function defines
a positive semidefinite integration kernel [63, remark 4.1]. Moreover, the orthonormality of the functions em
yields for non-zero eigenvalues that the random variables Ym are given by

Ym(ω) =
1√
λm

∫
I
(f(ω, t)− E[f ](t)) em(t) dt. (4.34)

Consequently, the expansion (4.29) can be obtained by computing first the eigenpairs of Tf . Then, realizations
of the random field can be inserted into equation (4.34) to obtain the corresponding realizations of the
random variables Ym.
The eigenvalue problem can be solved numerically using the Galerkin method [14]. To apply the method, we
need the eigenvalue problem in its variational form: Find 0 ̸= λ ∈ R and 0 ̸= u ∈ L2(I) such that∫

I

∫
I
Cov[f ](s, t)u(s)v(t) ds dt = λ

∫
I
v(t)u(t) dt (4.35)

for all v ∈ L2(I). Let Vh ⊂ L2(I) be a n-dimensional subspace of L2(I) spanned by the basis functions
{φ1, . . . φn}. The coefficients w = (w1, . . . , wn) ∈ Rn of an eigenfunction uh =

∑n
i=1wiφi ∈ Vh and its

corresponding eigenvalue λh that satisfy∫
I

∫
I
Cov[f ](s, t)uh(s)vh(t) ds dt = λh

∫
I
vh(t)uh(t) dt (4.36)

for all vh ∈ Vh, can be determined by solving the followingmatrix eigenvalue problem

Kw = λhMw (4.37)
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with matricesM,K ∈ Rn×n defined by

Kij =

∫
I

∫
I
Cov[f ](s, t)φi(s)φj(t) ds dt (4.38)

Mij =

∫
I
φi(t)φj(t) dt. (4.39)

According to [85, Theorem 18.1 and 18.2], the eigenpairs, found by solving the eigenvalue problem (4.37),
converge to eigenpairs of the eigenvalue problem Tfu = λu as Vh approximates L2(I). In [117, 118], Vh is
chosen as a B-spline space. In this work, we use a function space Vh spanned by radial basis functions [68,
Section 6.7].

Truncated Karhunen-Loève expansion The KLE defined in equation (4.29) has infinitely many terms
and is therefore unfeasible for implementations. We therefore use the approximation with the truncated
Karhunen-Loève expansion (KLE) defined by

fM (ω, t) := E[f ](t) +
M∑
m=1

√
λmYm(ω)em(t). (4.40)

Using the orthonormality of em and Ym, it can be shown that the L2(Ω,F ,P)× L2(I)-error between f and
fM is given by ∥∥f − fM

∥∥2
L2(Ω,F ,P)×L2(I)

=
∞∑

m=M+1

λm. (4.41)

Following [56, Proposition 2.5], there is a constantC > 0 such that the eigenvalues λm satisfy

0 ≤ λm ≤ Cm−l (4.42)

ifCov[f ] ∈ C l(I×I). We therefore assume as in [118] that l ≥ 2 such that we can deduct

∥∥f − fM
∥∥2
L2(Ω,F ,P)×L2(I)

≤ C

∞∑
m=M+1

m−2 <∞ (4.43)

and thus the truncated KLE fM converges in L2(Ω,F ,P)× L2(I) to the random field f asM → ∞. Conse-
quently, forM sufficiently large, the truncated KLE can approximate a random field f with arbitrarily high
accuracy. A heuristic on how to choose a reasonable truncation thresholdM is given in [117]. Moreover, it can
be shown that the truncated KLE is optimal concerning the L2(Ω,F ,P)× L2(I)-error among all expansions
that approximate f with a series ofM terms [123, Theorem 2.7].

KLE-based H(B)-curve model The truncated KLE fM is used as an approximation of the random field
f , that describes possible H(B)-curves of the iron yoke, given K realizations of H(B)-curves fk (equa-
tion (4.23)) derived from split-coil permeameter measurements of yoke material specimens. The dependence
of truncated KLE fM on the sample space Ω is only via the random variables Ym. By inserting the realiza-
tions fk of f and the sample mean f̂ into equation (4.34), the corresponding realizations Y k

m of Ym can
be determined

Y k
m =

1√
λm

∫
I

(
fk(t)− f̂(t)

)
em(t) dt. (4.44)
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Substituting the random variables Ym in the truncated KLE (4.40) with real parameters p = (p1, . . . , pm) ∈ RM
and estimating the expected value of f with the sample mean f̂ yields

fMHB(p, t) := f̂(t) +

M∑
m=1

√
λmpmem(t). (4.45)

We refer to the function fMHB : RM × I → R as the KLE-based H(B)-curve model. Due to the truncation and
the property of the truncated KLE of being the optimalM -term expansion regarding the L2-error, the number
M of parameters of the KLE-based H(B)-curve model can be restricted to a small number of most important
observed variations in the H(B)-curves fk of the measured specimens.
The existence of a unique solution to the weak formulation of the boundary value problem of magnetostatics
in vector potential formulation requires the properties of the H(B)-curve given in Assumption 1, e.g., the
strict monotonicity. For a random field-based H(B)-curve f(ω, ·) it is sufficient to assume that the conditions
in Assumption 1 are satisfied for almost all ω ∈ Ω and that the parameter α is ω-independent [118, Section 3].
To guarantee the existence of a unique solution if the KLE-based H(B)-curve model (4.45) is used, a subset
P ⊂ RM is defined such that for all p ∈ P the KLE-basedH(B)-curve model fMHB(p, ·) is strictly monotone. Due
to the monotonicity of the realizations fk, the sample mean f̂ is monotone. Let

pmin
m := min

1≤k≤K
Y k
m and pmax

m := max
1≤k≤K

Y k
m ∀1 ≤ m ≤M (4.46)

be the minimal and the maximal realization of Ym. We verify the strict monotonicity of the KLE-based
H(B)-curve model fMHB for each combination of minimal and maximal realization, otherwise the bounds are
subsequently tightened, starting with the parameter p1 of the first mode with the highest weight

√
λ1. Conse-

quently, the KLE-based H(B)-curve model is a strictly monotone H(B)-curve that admits a unique solution
to the weak formulation of the boundary value problem of magnetostatics in vector potential formulation
for all

p ∈ P := [pmin
1 , pmax

1 ]× · · · × [pmin
M , pmax

M ]. (4.47)
In the following, we compute the KLE-based H(B)-curve model for the ARMCO® Pure Iron Grade 4 measure-
ments [106] and compare the resultingmodel to the closed-from expressions in Section 4.1.2.

4.1.5 B(H)- and H(B)-curve of ARMCO® Pure Iron

The iron yokes of the High Luminosity Large Hadron Collider (HL-LHC) magnets are made of ARMCO® Pure
Iron Grade 4 from AK Steel [5]. For the follow-up of the magnet production, the anhysteretic H(B)-curves of
K = 26material specimens were measured [106] inL = 28 points with a split coil permeameter [71]. The spec-
imen with k = 5 is selected as a test specimen to evaluate the ability of the KLE-basedH(B)-curve model (4.45)
and the closed-form expressions defined in Section 4.1.2 to describe a model that matches the measured
(B,H)-data. The specimens with k ̸= 5 are referred to as remaining specimens.

KLE-based H(B)-curve model The KLE-based H(B)-curve model is derived based on the measured (B,H)-
data tables of the remaining specimens without the data of the test specimen. To determine a suitable
truncation threshold M for the truncated KLE (4.40), [118] suggests to choose M such that the relative
information content

ΨM :=

(
M∑
m=1

λm

)(
M ′∑
m=1

λm

)−1

(4.48)
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Figure 4.7: Ten largest eigenvalues λm and eigenfunctions em of the operator Tf defined in equation (4.33)
evaluated for the ARMCO® Pure Iron Grade 4 specimens without the test specimen. Figure
adapted from [53].
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Figure 4.8: Ten largest eigenvalues λm and eigenfunctions em of the operator Tf defined in equation (4.33)
evaluated for the FeSi M270-50A specimens.

satisfies ΨM > 0.95 whereM ′ ≫M . The eigenpairs (λm, em) obtained for the ARMCO® specimens without
the test specimen are depicted in Figure 4.7. For this dataset, the eigenvalues decay fast such that the relative
information content forM = 1 already satisfies Ψ1 > 98.76%. ForM = 2, we obtain Ψ2 > 99.93% and thus
selectM = 2 for this study. Inserting the realizations fk into equation (4.44) yields the realizations Y k

m of the
random variables Ym of the KLE. Assuring that for all combinations of the upper and lower bounds of the
random variable realizations the KLE-based H(B)-curve model is strictly monotone, we obtain the following
parameter space

P = [pmin
1 , pmax

1 ]× [pmin
2 , pmax

2 ] = [−2.06, 2.50]× [−2.55, 1.38]. (4.49)

Additionally to the ARMCO® specimens, L = 18 ferrosilicon M270-50A (according to DIN EN 10106) speci-
mens, the yoke material of the dipoles of the Synchrotron-Light for Experimental Science and Applications in
the Middle East (SESAME) [125], were measured with a split-coil permeameter. The corresponding eigenpairs
of the KLE are shown in Figure 4.8. It can be observed that the two eigenfunctions e1 and e2 that are weighted
the most in the KLE, are similar to the corresponding eigenfunctions of the ARMCO® specimens. Analyzing
more material groups might allow the relation of the shape of eigenfunctions to properties of the manufacturing
process. However, this conjecture was not further investigated in this thesis.

X-fold cross-validation The prediction error of the KLE-based H(B)-curve model (4.45) and the closed-
form expressions defined in Section 4.1.2 on the measured ARMCO® (B,H)-data is estimated using X-fold
cross-validation [68]. For this purpose, the L = 28 data points of the test specimen (k = 5) are divided into
X = 4 disjoint subsets T1, . . . , T4 (see Figure 4.9). Each B(H)-curve model fBH is trained four times by fitting
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Table 4.1: 4-fold cross-validation estimates CV (fBH) and CV (fHB) of the prediction error of the B(H)-
curves and H(B)-curves introduced in Section 4.1.2 and the KLE-based H(B)-curve model on
measured ARMCO® (B,H)-data tables.

model CV (fBH) CV (fHB)

Froehlich equation (4.12) 0.0952
equation (4.13) 0.0899
equation (4.14) 0.0680
equation (4.15) 0.0855
Brauer model (4.16) 0.2158
Rayleigh model (4.18) 0.5863
Brillouin equation (4.19) 0.0901
Wlodarski model (4.20) 0.0324
KLE-based H(B)-curve model (4.45) 0.0087

the model parameters such that the residual

EBH :=
L−1∑
l=2

El + El+1

2

Hl+1 −Hl

HL −H2
with El := E(fBH(Hl), Bl) :=

√(
fBH(Hl)−Bl
fBH(Hl) +Bl

)2

(4.50)

defined in [141] is minimized. ForH(B)-curvemodels fHB, weminimize analogously the residual

EHB =

L−1∑
l=2

E′
l + E′

l+1

2

Bl+1 −Bl
BL −B2

with E′
l := E′(fHB(Bl), Hl) :=

√(
fHB(Bl)−Hl

fHB(Bl) +Hl

)2

. (4.51)

In the x-th training step, the data subset Tx is left out from the training data set. The fittedmodel in the x-th step
is referred to as fxBH (or fxHB). Let κ : l 7→ {1, 2, 3, 4} be themapping with κ(l) = x if l /∈ Tx. The cross-validation
estimate [68] of the prediction error of a fitted B(H)-curve model is given by

CV (fBH) =
1

L

L∑
l=1

E(f
κ(l)
BH (Hl), Bl) (4.52)

for the residual function E defined in equation (4.50). To compute the cross-validation estimate of the
prediction error of a fitted H(B)-curve model, the residual function E is substituted by E′ in equation (4.52).
The smaller the cross-validation estimate of the prediction error, the more suitable the material model to
describe the measured ARMCO® (B,H)-data.
Figure 4.9 shows the B(H)- and H(B)-curves that are fitted to the training set T2 ∪ T3 ∪ T4. Besides the
Rayleigh model, all of the investigated models can be roughly fitted to the data. The cross-validation estimates
of the prediction error are given in Table 4.1. Among the H(B)-curves, the estimated prediction error of
the KLE-based H(B)-curve model is the smallest. Among the B(H)-curves, the Wlodarski curve has the
smallest cross-validation estimate. Due to the different relative error functions used in the definition of the
cross-validation estimate for B(H)-curves and H(B)-curves, the values are not directly comparable. However,
Figure 4.9 reveals that the Wlodarski model is less suitable than the KLE-based H(B)-curve model to describe
the data in the low field region. The same observation was made by [106].
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Figure 4.9: Top: Measured (B,H)-data of 26 ARMCO® Pure Iron Grade 4 specimens. Red line: linear interpo-
lation of (B,H)-data of test specimen, grey lines: linear interpolation of (B,H)-data of remaining
specimens, scattered: (B,H)-data of test specimen organized in four disjoint subsets T1, . . . , T4
for cross-validation. Bottom: Best fitting B(H)- andH(B)-curves to the data T2 ∪ T3 ∪ T4 accord-
ing to the residual defined in equation (4.50) and (4.51).
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4.2 Addressing the ill-posedness of the inverse problem

The magnet system “PXMBHGGHWC-OR000113” that is used as an example in this chapter, was built in
1963. Due to its age, no material specimens of the yoke material are available. Thus, a KLE-based H(B)-curve
model (4.45) that matches the magnet as built can not be derived. However, in the prototype phase of
new magnet systems, it can be assumed that the required material specimens are available. To study the
methodology of updating theH(B)-curve using the KLE-basedH(B)-curve model, we assume in the following
that the yoke material of the studied example magnet system is ARMCO® Pure Iron Grade 4 [5]. Consequently,
the KLE-based H(B)-curve model derived in Section 4.1.5 can be used.

In this section, we approximate the forward problem 1 and the inverse problem 2 using the KLE-based
H(B)-curve model and the two-dimensional parameter space P determined in equation (4.49). This low-rank
approximation leads to a regularization of the inverse problem. The sensitivity analysis derived in [117] is
used to analyze the stability of the approximated problem. We show that there are observation positions
x ∈ D and multipole orders n for which the inverse problem for the quantities of interest QB and QM,n is still
ill-posed due to instability.

4.2.1 Approximation of the forward and the inverse problem

Inserting the KLE-based H(B)-curve model fMHB(p, ·) defined in equation (4.45) into the definition of the
reluctivity νi in the iron domain Di in equation (4.2) yields

νi(t) = νp(t) :=
fMHB(p, t)

t
. (4.53)

To indicate the dependence of the reluctivity inDi on the parameterp, we use the notation νp.

Approximated forward problem Restricting the forward problem 1 to reluctivities that are induced by the
KLE-based H(B)-curve model, we obtain the following problem: Given p ∈ P and the set of source current
densities {J1, . . . ,JJ}, find the magnetic vector potentials Aj [νp] ∈ V, for j = 1, . . . , J , that solve the weak
formulation of the boundary value problem of magnetostatics (4.3) and evaluate the quantity of interest
Q(Aj [νp]).

Due to the choice of the parameter domain P, that admits for all p ∈ P unique solutions Aj [νp], the
forward model

H : P → Q
p 7→ Q(Aj [νp]),

(4.54)

that maps the parameters p to evaluations of the quantities of interest, is well-defined. The forward model is
related to the system model (4.1) via

M(p, Ij) = H(p) = Q(Aj [νp]), (4.55)

where the operation modes {s1, . . . , sJ} are given by the excitation currents {I1, . . . , IJ} which correspond to
the source current densities {J1, . . . ,JJ}.
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Approximated inverse problem Approximating the inverse problem 2 with the KLE-basedH(B)-curve model
yields the following problem: Given observations Qobs

j of a quantity of interest Q observed at the excitation
currents {I1, . . . , IJ}, find p ∈ P such that for all j = 1, . . . , J the weak solution Aj [νp] ∈ V of (4.3) satisfies
Qobs
j = Q(Aj [νi]).

Using the KLE-basedH(B)-curve model fMHB(p, ·) in equation (4.53) yields a finite-dimensional approximation
of the search space. Additionally, prior knowledge is incorporated about which variations of the H(B)-curve
are the most important according to the KLE of the random field, whose realizations are theH(B)-curves of the
material specimens. Thus, we obtain not only a finite-dimensional but in particular a low-rank approximation
of the inverse problem.
Due to the approximation and the fact that the observations are affected by uncertainty, a solution to the
approximated inverse problem stated above might not exist. Typical standard deviations that have to be
considered due to random measurement uncertainty with modern-day measurement equipment are σ = 10−4

for relative observations of the magnetic flux density and the dipole coefficient, and σ = 10−6 for relative
observations of higher-order multipole coefficients. We therefore relax the notion of a solution by considering
the following inverse problem.

Problem 3. (Approximated and relaxed inverse problem) Given for r = 1, . . . , R and n = 1, . . . , N observa-
tions Bobs

y,j (xr) or (Bn(r0))obsj of the respective quantity of interest observed at the excitation currents Ij . Find
p ∈ P such that the weak solution Aj [νp] ∈ V of (4.3) satisfies

1

JR

∑
j,r

|Bobs
y,j (xr)−QB(Aj [νp])(xr)|

|Bmax
y,j | < ϵtol,B (4.56)

or respectively, depending on the quantity of interest,

1

J

∑
j

|(Bn(r0))obsj −QM,n(Aj [νp])|
|(B1(r0))j |

< ϵtol,M,n ∀n = 1, . . . , N. (4.57)

Thereby, the maximal central field |Bmax
y,j | and the first normal multipole coefficient |(B1(r0))j | are used for nor-

malization. We choose the tolerances ϵtol,B := ϵtol,M,1 := 10−4 and ϵtol,M,n := 10−6 for n > 1.

4.2.2 Sensitivity analysis

A framework to study the sensitivity of solutions to the boundary value problem of magnetostatics in vector
potential formulation to perturbations of the reluctivity function νi in the iron domain is derived in [117,
Section 4.4]. We apply this framework to assess the stability of the approximated and relaxed inverse problem 3
and to identify suitable positions {x1, . . . ,xR} and multipole orders n for the observation training data, which
is used to solve the approximated and relaxed inverse problem for model updating. A similar method is used
in Section 5.1 to study the sensitivity of solutions to the boundary value problem of magnetostatics in vector
potential formulation to perturbations of the magnetization.

63



Sensitivity of linear quantities of interest to perturbations of the reluctivity In this section, we consider
perturbations of the nominal reluctivity ν̄i in the iron domain of the following form: For a function ν̃ : R+

0 → R+

we define
νs(x, t) =

{
ν0 x ∈ Da

νi(t) = ν̄i(t) + sν̃(t) x ∈ Di.
(4.58)

According to [117, Section 4.3, Proposition 1], there is a constant s0 such that for all 0 < s < s0 there is a
weak solution A[νs] ∈ V of∫

D
curlv · νs(∥curlA[νs]∥) curlA[νs] dV =

∫
D
v · J dV (4.59)

for all v ∈ V. Moreover, A[νs] converges to A := A[ν̄i] as s→ 0.
Let X,Y be normed spaces and U ⊂ X an open subset. The function f : U → Y is called Gâteaux
differentiable [105, definition 2.23] at u0 ∈ U , if there is a linear and continuous map f ′ : X → Y such that
for all v ∈ U

f ′(v) = lim
s↘0

f(u0 + sv)− f(u0)

s
. (4.60)

Gâteaux differentiability is weaker than the Fréchet differentiability [105, definition 2.43] in u0 ∈ U , which
requires the existence of a continuous linear map δf : X → Y and a remainder o [105, definition 2.39] such
that for v close to 0

f(u0 + v) = f(u0) + δf(v) + o(v). (4.61)

For themapping νi → A[νi], the Gâteaux derivative at ν̄i in direction of the perturbation ν̃ is defined by

A′[ν̃] = lim
s↘0

A[ν̄i + sν̃]−A[ν̄i]

s
. (4.62)

Following [117, Proposition 2], the Gâteaux derivative satisfies A′ ∈ V and can be found as the weak solution
to the problem

curl (νd(curlA) curlA′) = − curl (ν̃(∥curlA∥) curlA) on Di

curl (ν0 curlA′) = 0 on Da

A′ × n = 0 on ΓB,
Jνd(curlA) curlA′Kai = −ν̃(∥curlA∥) curlA× n on Γai,

JAKai = 0 on Γai

(4.63)

where νd is the differential reluctivity tensor [117, definition 5] that is for t ∈ R3 defined by

νd(t) := ν̄i(∥t∥)I+
ν̄ ′i(∥t∥)
∥t∥ t⊗ t. (4.64)

The corresponding weak formulation is: Find A′ ∈ V such that∫
Di

νd(curlA) curlA′ · curlv dV +

∫
Da

µ0 curlA′ · curlv dV = −
∫
Di

ν̃(∥curlA∥) curlA · curlv dV (4.65)

for all v ∈ V.
For the sensitivity analysis of the forward problem, we are interested in the Gâteaux derivative

Q̂′[ν̃] = lim
s↘0

Q̂[ν̄i + sν̃]− Q̂[ν̄i]

s
(4.66)
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of the mapping defined in equation (4.6) by a quantity of interest Q. According to [117, Section 4.4], this
derivative can be computed by inserting A′ into the (linear) quantity of interest

Q̂′[ν̃] =

∫
Dobs

q1(A
′[ν̃]) + q2(curlA

′[ν̃]) dV. (4.67)

Sensitivity analysis concerning perturbations related to the KLE-based H(B)-curve model The KLE-based
H(B)-curve model (4.45) for the ARMCO® specimens is given by

f2HB(p, t) = f̂(t) + p1
√
λ1e1(t) + p2

√
λ2e2(t) (4.68)

where f̂ is the sample mean, (λm, em) are the eigenpairs of the KLE and p = (p1, p2) is the parameter vector.
This paragraph aims to study the sensitivity of the quantities of interest QB and QM,n defined in equation (4.7)
and (4.8), to perturbations of the KLE-based H(B)-curve model in the direction of the KLE’s modes √λmem
at the sample mean f̂ . Thus, the sample mean reluctivity

ν̄i(t) = f̂(t)/t (4.69)

is used in equation (4.58) as nominal reluctivity in the iron domain Di and for m = 1, 2 the reluctivity
perturbations are defined by

ν̃m(t) :=

√
λmem(t)

t
. (4.70)

We use the scaling of the reluctivity perturbations with pm = 1 because the standard deviation of the
random variables Ym in the KLE (4.29), from which the parameters pm are derived, is one. Due to the
linearity of the Gâteaux derivative, the resulting values of the Gâteaux derivative can be scaled, e.g., with
the upper bounds of P to estimate the maximal change of a quantity of interest caused by the corresponding
perturbation.
The Gâteaux derivatives A′[ν̃m] at ν̄i are computed by solving for m = 1, 2 the problem (4.63) at a cur-
rent excitation of 500A. Insertion of A′ into the quantities of interest QB and QM,n yields the Gâteaux
derivatives

Q̂′
B[ν̃m] = B′

y[ν̃m](x) (4.71)
Q̂′

M,n[ν̃m] = Bn(r0)
′[ν̃m]. (4.72)

In Figure 4.10, the resulting absolute values |B′
y[ν̃m]| of the Gâteaux derivatives of QB at ν̄i in the direction

of ν̃m are plotted in logarithmic scale. Moreover, the Gâteaux derivatives B′[ν̃m] are visualized on the two
circles defined in Figure 4.2, and the corresponding Gâteaux derivatives |Bn(r0)′[ν̃m]| of QM,n are shown in
Figure 4.11. For comparison, the simulated predictions of Q̂B[ν̄i] and Q̂M,n[ν̄i] at I = 500A are shown in
Figure 4.2 and Figure 4.11.
In the next paragraphs, these results are used to analyze the stability of the approximated and relaxed inverse
problem 3.

Stability of the approximated and relaxed inverse problem for the field map quantity of interest The
absolute values |B′

y[ν̃m]| of the Gâteaux derivatives of QB at 500A shown in Figure 4.2 do not exceed the
order of magnitude of 10−3 T in the inner air gap. For the reluctivity perturbation ν̃1, the maximum is
attained towards the shims, for the perturbation ν̃2 the maximum is attained towards the center of the air gap
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in T
Figure 4.10: Gâteaux derivatives B′[ν̃m] of the magnetic flux density in direction of the reluctivity perturba-

tions corresponding to the scaled eigenfunctions of the KLE-basedH(B)-curve model. On the
inner air domain |B′

y[ν̃m]| is visualized, on the circles defined in Figure 4.2 B′[ν̃m] is visualized.
Figure adapted from [53].
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Figure 4.11: Absolute values of the normal multipoles at circle 1 and circle 2 (Figure 4.2) and their Gâteaux
derivatives |Bn(r0)′[ν̃2]| and |Bn(r0)′[ν̃2]| in direction of the reluctivity perturbations correspond-
ing to the scaled eigenfunctions of the KLE-basedH(B)-curve model.

x1 x2 point cloud {x1, . . . ,xR}

Figure 4.12: Left: Exaggerated positions x1 and x2 to demonstrate the stability and instability of the approx-
imated and relaxed inverse problem 3. Right: Selected positions {x1, . . . ,xR} to observe the
quantity of interest By(xr) for improved stability of the inverse problem. Figure adapted from
[53].
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(Figure 4.10). In both regions, the magnetic flux density By[ν̄i] attains values around 1.25T. Consequently,
a perturbation of p with p1 ≥ 1 or p2 ≥ 1 yields a relative change of the order of magnitude of 10−3 in the
prediction of the quantity of interest QB in this region. We assumed that the standard deviation of the random
measurement uncertainty of observations of QB relative to the maximal field is of the order of magnitude of
10−4. Thus, the effects of the perturbation are distinguishable from the random measurement uncertainty.
This is not necessarily the case in lower field regions between the source regions DJ. To justify this claim, we
compute the relative change

Ejrel,B(xr) :=
|QB(Aj [ν̄i])(xr)−QB(Aj [νp])(xr)|

|Bmax
y,j | (4.73)

between the prediction ofQB for the unperturbed reluctivity ν̄i and the perturbed reluctivity νp = ν̄i+ν̃1 in two
exaggerated positions x1 and x2 (Figure 4.12 left) in the inner air domain. Thereby, the position x1 is located
centrally between the shims, where a high relative change of the quantity of interest is expected, and the posi-
tion x2 is located far outside the center of the aperture, where a low relative change of the quantity of interest
is expected according to the absolute values |B′

y[ν̃1]| of the Gâteaux derivative shown in Figure 4.11. For the
excitation I = 500A, we obtain in the two points x1 and x2 the relative changes

Ejrel,B(x1) = 1.31 · 10−3 (4.74)
Ejrel,B(x2) = 5.87 · 10−5. (4.75)

Consequently, the inverse problem is unstable in x2 (in the sense of the definition given in Section 1.3.4)
because small perturbations of the magnetic flux density observations in the order of magnitude below the
standard deviation σ = 10−4 of the relative random measurement uncertainty can lead to non-negligible
differences in the solution (p = (0, 0) versus p = (1, 0) for P = [−2.06, 2.50]× [−2.55, 1.38]).
The choice of the position x2 is exaggerated on purpose to demonstrate the possibility of ill-posedness of
the approximated and relaxed inverse problem 3. In contrast, in more reasonable and centered positions
such as x1, the problem 3 is more stable. Consequently, the results of the sensitivity analysis can be used
to identify suitable measurement positions. In the following, we use the point cloud {x1, . . . ,xR} shown in
Figure 4.12 (right) to solve the approximated and relaxed inverse problem 3 for observations of the quantity
of interest QB.

Stability of the approximated and relaxed inverse problem for the multipole coefficient quantity of interest
A similar analysis of the stability of the approximated and relaxed inverse problem 3 formulated for the
quantity of interest QM,n can be conducted. According to the magnitude of the absolute values of the normal
multipole coefficients shown in Figure 4.11, there is an almost perfect dipole field on circle 1. In contrast,
on circle 2 for all n = 1, 2, 3 the absolute values |Bn(r0)[ν̄i]| of the normal multipole coefficients are around
the same order of magnitude. The absolute values |Bn(r0)′[ν̃m]| of the Gâteaux derivatives of the normal
multipole coefficients in the direction of the reluctivity perturbations ν̃m are all above the standard deviation
of the random measurement uncertainty except for the second coefficient B2(r0)

′[ν̃m] on circle 1. To show
that there are multipole coefficients for which the approximated and relaxed inverse problem is unstable, we
compute the relative changes

Ejrel,M(n) :=
|QM,n(Aj [ν̄i])−QM,n(Aj [νp])|

|(B1(r0))j |
(4.76)
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between the prediction of QM,n on circle 1 for the unperturbed reluctivity ν̄i and the perturbed reluctivity
νp = ν̄i + ν̃1 at the excitation current I = 500A. We obtain

Ejrel,M(1) = 7.35 · 10−4 > ϵtol,M,1 (4.77)
Ejrel,M(2) = 2.89 · 10−7 < ϵtol,M,2 (4.78)
Ejrel,M(3) = 9.01 · 10−6 > ϵtol,M,3. (4.79)

With the same reasoning as above, we conclude that the approximated and relaxed inverse problem is unstable
for QM,2 at circle 1 because variations in the observation caused by random measurement uncertainty can
lead to large differences in solutions to the approximated and relaxed inverse problem 3. Again, the sensitivity
analysis results can be used to determine appropriate multipole orders n and circle positions to improve the
stability of the inverse problem.

4.3 Solution of the inverse problem

The goal of this section is to determine the parameters p ∈ P of the KLE-based H(B)-curve model fMHB(p, ·)
from observations of a quantity of interest, i.e., solving the approximated and relaxed inverse problem 3.
Having a solution pup, we can update the system model (3.19) by predicting quantities of interest for given
operation modes s with the mapping

s 7→ M(pup, s). (4.80)
The inverse problem 3 can be solved deterministically by solving an optimization problem or the statistical
inversion methods introduced in Chapter 3 can be applied to estimate a solution. We restrict the analysis to
observations of the field map quantity of interest QB defined in equation (4.7). For this quantity of interest,
the forward model (4.54) is given by

H(p) = QB(Aj [νp])(xr) = By,j(xr) (4.81)
depending on a current level Ij and an observation position xr. Notice that also the last term of this equation de-
pends (implicitly) on p. If we consider J current levels and R observation positions, we can summarize the sin-
gle observations of the forwardmodels (4.81) into themulti-observation forwardmodel

H : P ⊂ RM → Q ⊂ RJR
p 7→ q := (By,1(x1), . . . , By,J(x1), . . . , By,1(x1), . . . , By,J(xR))

(4.82)

for which we use the same letter H by abuse of notation. The right-hand side q is also referred to as model
prediction. Data that results from measurements or other simulations, and that is comparable to the prediction
q is referred to as observation qobs.

Observation training data Since the material of the magnet system “PXMBHGGHWC-OR000113” does not
coincide with the available ARMCO® or ferrosilicon specimens whose measured (B,H)-data was used to
build the KLE-based H(B)-curve model fMHB, we can not use measured magnetic flux density observations
qobs in this section. Instead, simulated observation data qobs is used. To generate this observation data, a
parameter vector ptrue ∈ P is selected that represents the ground truth. We set ptrue = (1.5,−2) and obtain
by insertion into equation (4.53) the ground truth reluctivity function

νptrue(t) =
f2HB(p

true, t)

t
. (4.83)
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Moreover, random measurement uncertainty is included in the simulated observation data using the additive
noise model introduced in equation (3.21). Therefore, the random vector U : Ω → RJR is defined with
U ∼ N (0,Σ), where the covariance matrix is chosen by Σ = σ2I with σ := 10−4T, according to the standard
deviation of modern day measurement equipment.
Let u = (u1,1, . . . , uJ,1, . . . , u1,R, . . . , uJ,R) ∈ RJR be a realization of U. The observations qobs are then
defined by

qobs := H(ptrue) + u. (4.84)
The (r − 1)J + j-th component of qobs is given by

Bobs
y,j (xr) := qobs(r−1)J+j = QB(Aj [νptrue ])(xr) + u(r−1)J+j = By,j(xr) + u(r−1)J+j . (4.85)

In the following, we refer to qobs also as observation training data. We use J = 8 equally distributed current
excitations Ij ∈ [20A, 450A] and the R = 10 observation points in the air gap, which are visualized in
Figure 4.12.
The ground truth prediction QB(Aj [νptrue ])(xr) is computed by solving the forward problem. For each evalua-
tion of the forward model H defined in equation (4.82), the boundary value problem of magnetostatics has to
be solved J times for the different source current densities Jj with 1 ≤ j ≤ J . Since the magnetostatic problems
for different currents are independent of each other, they are solved in parallel.

4.3.1 Deterministic model updating

Given the observation training data qobs ∈ RJR defined in equation (4.85) with components Bobs
y,j (xr), a

deterministic update of the parameter vector p = (p1, p2) ∈ P can be determined by solving the following
optimization problem

min
p∈P

g(p) :=
∑
r,j

∥∥∥Bobs
y,j (xr)−QB(Aj [νp])(xr)

∥∥∥2 (4.86)

s.t.: ∀1 ≤ j ≤ J and ∀v ∈ V∫
D
ν(∥curlAj [νp]∥) curlAj [νp] · curlv dV =

∫
D
v · Jj dV

ν(t) =

{
1/t
(
f̂(t) +

∑2
m=1

√
λm pm em(t)

)
in Di

ν0 in Da.

Notice that using the forwardmodel (4.81), the objective function can be rewritten as g(p) =
∥∥qobs −H(p)

∥∥2.
We solve the optimization problem using particle swarm optimization [81]. The advantage of the particle
swarm optimizer is that it does not require gradients of the objective function g, there is an implementation
available in MATLAB® [95, 130], and it is globally convergent. Particle swarm optimization is based on
iteratively evaluating the objective function on a set of particles located in the search space P whose position
is updated in each iteration. Initially, the particle positions are chosen randomly and each particle is related to
an initially also randomly chosen velocity vector w ∈ P, which determines its position in the next iteration.
Let p(i) and w(i) the position and the velocity of a particle in the swarm at the beginning of the i-th iteration
of the particle swarm algorithm. First, the objective function g(p(i)) is evaluated. The algorithm keeps track of
the individual best position pind

best of each particle and the global best position popt discovered by any particle.
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Then, the subsequent position p(i+ 1) of the particle is determined by p(i+ 1) = p(i) +w(i+ 1), where the
updated velocity vector is given by

w(i+ 1) = a1w(i) + a2u1(p
ind
best − p(i)) + a3u2(p

sub
best − p(i)). (4.87)

Thereby, psub
best is the best position of a particle within a randomly chosen subgroup of the swarm at the

beginning of the i-th iteration, the coefficients a1, a2, a3 ∈ R are weighting parameters, and u1, u2 ∈ R are
realizations of an uniformly distributed random variable U ∼ U(0, 1). If the updated position p(i + 1) is
outside P, the particle is placed on the boundary of P, and the velocity in the direction of the normal to the
boundary is set to zero. When a stopping criterion is reached, the particle swarm optimizer returns the global
best position popt discovered by any particle. We use a swarm of 20 particles and as a stopping criterion that
the relative change of the best observed objective function value within the last 20 iterations is less than 10−6.
This criterion is satisfied after 22 iterations and the algorithm returns popt = (1.61,−2.05). Thus, the objective
function g and with that the forward model H are evaluated 440 times in total by the optimization algorithm
to obtain popt.
To prove that popt is a solution to the approximated and relaxed inverse problem 3 according to the condition
given in (4.56), we evaluate

1

JR

∑
j,r

|Bobs
y,j (xr)−QB(Aj [νpopt ])(xr)|

|Bmax
y,j | (4.88)

on the observation training dataBobs
y,j (xr) defined in equation (4.85). With J = 8 andR = 10,

1

80

∑
j,r

|Bobs
y,j (xr)−QB(Aj [νpopt ])(xr)|

|Bmax
y,j | = 1.16 · 10−5 < 10−4 = ϵtol,B (4.89)

is obtained. Consequently, popt = (1.61,−2.05) is a solution to the approximated and relaxed inverse
problem 3.

Tikhonov regularization If the finite-dimensional approximation of the search space from the set of functions
fHB ∈ C1(I,R) that satisfy the properties of Assumption 1 to the search space P ⊂ R2 is not sufficient to reg-
ularize the inverse problem, the objective function g can be modified using the Tikhonov regularization [136].
Let X,Z be Hilbert spaces and H : X → Z be a mapping between the two spaces. An inverse problem is
defined by: given y ∈ Y find x ∈ X such thatH(x) = y. The generalized Tikhonov functional Ta of the inverse
problem has the form

Ta(x; z) = d(H(x), z) + aR(x) (4.90)
where d : Z × Z → R is a data discrepancy function, e.g., a metric on Z, a > 0 is a regularization parameter,
and R : X → R is a regularization functional [136, Section 2.4]. Instead of minimizing the objective function
g in the optimization problem (4.86), the generalized Tikhonov functional

greg(p) := g(p) + a ∥p− E[Y]∥2Σ−1 (4.91)

can be minimized. Thereby, E[Y] is the expected value, and Σ is the covariance matrix of the random vector
Y of the truncated KLE (4.40). Notice that by definition of the KLE and due to the assumption that the random
variables are independent, it holds that E[Y] = 0 and Σ = I. This definition of the regularization functional
R penalizes deviations of pm from E[Ym] the more, the smaller the variance of Ym. Thus, expert knowledge of
reasonable values of p according to the material measurements is incorporated. This regularization is related
to determining the maximum a posteriori estimate defined in Section 3.3.1.
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4.3.2 Stochastic model updating

In the stochastic setting, the parameters p and and the observations qobs are understood as realizations of
random vectors P,Qobs over a common sample space Ω. We assume that they are related via the forward
model H (4.82) and the additive noise model (3.21)

Qobs = H(P) +U, (4.92)

where U : Ω → RJR with U ∼ N (0,Σ) and Σ = σ2I with σ := 10−4T is a random vector that reflects the
random measurement uncertainty of the measurement equipment.
In Chapter 3, the fundamentals of statistical inversion to determine the posterior probability density function
πP|Qobs with Bayesian inference were introduced. Thereby, πP|Qobs describes the conditional probability
density function of the random parameter vector P given the observation Qobs = qobs. Consequently, using
stochastic model updating, we can not only estimate a deterministic parameter update pup but also quantify
its uncertainty.
To apply Bayesian inference, a prior density function π0 that reflects prior knowledge on the distribution of the
random parameter vector P and a likelihood model πQobs|P are required. Inserting the noise model into the
probability density function πU yields the likelihood model given in equation (3.27). The components pm of
the parameter vector p ∈ RM in the KLE-based H(B)-curve model fMHB(p, ·), defined in equation (4.45), were
defined as realizations of the random variables Ym of the truncated KLE. Thus, we can use the knowledge of
the stochastic properties of the random variables Ym to build a prior model. According to the Karhunen-Loève
Theorem [63, Theorem 4.6] the random variables Ym have zero mean and are pairwise orthonormal (see
equation (4.31)). Consequently, they have unit variance. Computing the KLE-based H(B)-curve model for
the ARMCO® Pure Iron specimens yielded realizations Y k

m for each random variable Ym. By conducting the
Kolmogorov-Smirnov test, introduced in Chapter 3, we verify that Ym ∼ N (0, 1). Since we assumed that the
random variables are mutually independent, we can conclude that Y ∼ N (0, I). As a result, the prior distribu-
tion of P is a normal distribution π0 ∼ N (m0,C0) withm0 = 0 and C0 = I.
Since the H(B)-curve defined by the KLE-based H(B)-curve model is non-linear in B, the forward model
H is non-linear. Thus, the posterior density function and the maximum a posteriori estimate are not easily
determinable with the closed-form expressions in equations (3.30) and (3.35). Instead, we explore in this
chapter, analogously to the non-linear case in Chapter 5, the posterior distribution by drawing samples using
the Metropolis-Hastings algorithm with the preconditioned Crank-Nicolson proposal. Since the parameter
space P is only two-dimensional, the movement of the Markov chain and the covariance ellipses of the prior and
the posterior distribution can be visualized easily. Alternatively, due to the low dimensional parameter space,
also numerical integration methods could be considered to compute the expected value and the covariance of
the posterior distribution using equations (3.1) and (3.3) instead of sampling.
The Metropolis-Hastings algorithm is initialized with the expected valuem0 = 0 of the prior distribution. The
step size s tunes the proposal density of the Crank-Nicolson proposal distribution N (

√
1− s2p̃, sC0), where

p̃ is the current value of the Markov chain and C0 is the covariance matrix of the prior distribution. The
smaller the step size s, the higher the probability that the Euclidean distance between p̃ and the proposal for
the next sample by the Metropolis-Hastings algorithm is small. For the choice of the step size s = 1/4, an
acceptance rate of 8.75% is reached after 2000 samples. For s = 1/8, we obtain an acceptance rate of 21.66%
after drawing 1000 samples. The 2D paths of the samples drawn by the two Markov chains are shown in
Figure 4.14. The corresponding decays of the residual

EpCN(i) :=
1

2

∥∥∥H(pi)− qobs
∥∥∥2
Σ−1

(4.93)
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Figure 4.13: Residual EpCN(i) (defined in equation (4.93)) between the observation qobs and the prediction
H(pi) with the i-th sample of the Metropolis-Hastings algorithm with preconditioned Crank-
Nicolson proposal for different step sizes s.

between the observation qobs and the prediction H(pi) with the i-th sample of the Markov chain are shown
in Figure 4.13. This residual is the key quantity of the Metropolis-Hastings algorithm with preconditioned
Crank-Nicolson proposal to determine with equation (3.45) the acceptance probability of the sample that is
proposed by the Metropolis-Hastings algorithm.
After 50 steps for s = 1/4 and respectively 80 steps for s = 1/8, the residualEpCN reaches a plateau. Therefore,
we consider the first 50 (respectively 80) steps as burn-in and omit these samples in further data analysis.
It can be observed that for s = 1/8 the the residual EpCN and thus the values of the samples of the Markov
chain change more often. Consequently, we observe for s = 1/8 a higher acceptance rate. However, the
improvement of the residual EpCN per step is smaller on average since the proposal is closer to the preceding
sample in the Markov chain, leading to a longer burn-in phase for s = 1/8. Moreover, it can be observed that
between the 100-th and the 1000-th step of the Markov chains the residual EpCN for s = 1/8 is in almost
every step slightly smaller than for s = 1/4, which is also a consequence of proposing close samples after
already having found a sample with small residual.

Omitting the burn-in, we compute from the remaining samples the sample meanm1 and the sample covariance
C1 with the equations (3.4) and (3.5) to estimate the posterior mean and the posterior covariance. For the
sample mean, we obtain

m1 =

{
(1.44,−1.95) s = 1/4, 1950 samples
(1.48,−2.01) s = 1/8, 920 samples. (4.94)

The covariance ellipses corresponding to C1 whose half-axes have the length of 1σ, 2σ, and 3σ and point into
the direction of the eigenvectors of C1 are shown in Figure 4.14 to visualize the posterior distributions. The
observed sample variances for the Markov chain with step size s = 1/4 and 2000 steps are slightly smaller
than for s = 1/8 and 1000 steps. It can be observed that the ground truth parameter ptrue lies within the
1σ-ellipse of both computed posterior distributions and the volumes of the posterior ellipses are significantly
smaller than the volume of the prior ellipse, indicating smaller uncertainties.

For stochastic model updating, the posterior sample mean m1 is inserted into the forward model. We
restrict the further analysis to sample mean m1 = (1.44,−1.95) obtained with the step size s = 1/4 and
after drawing 2000 samples. Analogously to the deterministic solution, we evaluate equation (4.88) on
the observation training data Bobs

y,j (xr) (4.85) with J = 8 and R = 10 to proof that m1 is a solution to the
approximated and relaxed inverse problem 3 according to the condition specified in (4.56). Indeed, it can be
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truth solution ptrue and the deterministic model update popt.
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verified that
1

80

∑
j,r

|Bobs
y,j (xr)−QB(Aj [νm1 ])(xr)|

|Bmax
y,j | = 8.99 · 10−6 < 10−4 = ϵtol,B. (4.95)

4.3.3 Evaluation of the updated models

TheH(B)-curve in the systemmodelM(p, s) of the iron-dominated accelerator magnet is updated by inserting
the parameter vector

pup :=

{
popt deterministic model updating
m1 stochastic model updating. (4.96)

To assess the quality of the updates we compare the resulting KLE-based H(B)-curve models and predictions
of the quantity of interest QB with the system modelM(pup, ·).
The relative error

Erel
pup(B) :=

|fMHB(p
up, B)− fMHB(p

true, B)|
fHB(ptrue, B)

(4.97)

between the KLE-based H(B)-curve models for the ground truth parameter ptrue and the updated parameter
pup is shown in Figure 4.15. The relative error does not exceed 1% for both, the deterministic and the
stochastic model update.
The prediction of the field map quantities of interest QB of the (deterministically and stochastically) updated
forward modelM(pup, ·) are compared at different positions x in the inner air gap and for J = 6 currents
Ij ∈ [20, 600] A. Contrary to the evaluations in equations (4.89) and (4.95), we are not interested in
comparing the predictions to the training data defined in equation (4.85), but to ground truth observation
data QB(Aj [νptrue ])(x) for current excitations Ij and in positions x ∈ D that were not part of the training
data set. Using equation (4.81), we evaluate the relative error

Erel
B,j(x) :=

|QB(Aj [νpup ])(x)−QB(Aj [νptrue ])(x)|
|Bmax

y,j | , (4.98)

where |Bmax
y,j | is the absolute value of the maximal central magnetic flux density component By predicted

byM(ptrue, ·) that varies between 0.27T for I1 = 102A and 1.51T for IJ = 600A. A common threshold for
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Figure 4.16: Relative error Erel
B,5(x) (defined in equation (4.98)) of the prediction of the quantity of interest

QB with the updated models compared to the ground truth prediction at I5 = 517A.

sufficient accuracy is that the relative error Erel
B,j(x) should not exceed 1 unit in 10000.

The relative error Erel
B,5(x) for the excitation current I5 = 517A for all positions x in the inner air domain is

shown in Figure 4.16. In all positions and for both model updates, the relative error Erel
B,5(x) does not exceed 1

unit in 1000 and attains its maximum close to the shims. Besides the regions close to the shims, the accuracy
requirement of a relative error Erel

B,j(x) smaller than 1 unit in 10000 is met. In most positions, the relative
error of the stochastic model update is smaller or equal to the relative error of the deterministic model update.
The opposite holds only in a few positions close to the boundary. These observations can be explained by the
following reasons:

1. For the excitation current I5 = 517A, the absolute value of the magnetic flux density is 1.55T or more
in the parts of the yoke close to the center of the air gap. In this domain, the relative error Erel

m1
(B) of

the stochastically updated H(B)-curves is smaller than the relative error Erel
popt(B) (see Figure 4.15).

Consequently, the prediction with the stochastically updated model is slightly better.

2. Both solution parameter vectors popt andm1 differ slightly more from the ground truth parameter vector
ptrue in the first component than in the second component. Thus, the maximal relative error Erel

B,5(x) is
observed where the quantity of interest QB is the most sensitive to perturbations of the reluctivity in the
direction of the parameter p1 (see Figure 4.10 left).

Moreover, we evaluate Erel
B,j(x) in positions x along the central axis of the air gap (dotted lines sketched

in Figure 4.16) for J = 5 excitation currents Ij ∈ [102, 600]A. A visualization of the resulting relative
errors is given in Figure 4.17. For the excitation current levels Ij = 102, 268, 434A that interpolate the
excitation currents for which data was included in observation training data (4.85), the relative error Erel

B,j(x)
is less than 1 unit in 10000. For the stochastic model update, this statement also holds in almost all
positions x along the central line for the two higher excitation currents of Ij = 517, 600A. The relative
error Erel

B,j(x) of the deterministic model update does not exceed 3 units in 10000 for all of the evaluated
current excitations.
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4.4 Summary

In this chapter, we updated the H(B)-curve of the component-centric system model (Section 1.2.2) of an
iron-dominated magnet to improve its predictions of field-related quantities of interest. Thereby, we considered
a test case inspired by the magnet system “PXMBHGGHWC-OR000113”. An inverse problem as defined in
Section 1.3.4 had to be solved to determine the update. For regularization, we used a low-rank approximation
of the problem by considering only solutions in the span of a data-driven stochastic H(B)-curve model with
only two parameters. This curve model was derived with the truncated KLE from measured (B,H)-data tables
of yoke material specimens.
The parameters of the KLE-based H(B)-curve model were determined using deterministic model updating
based on optimization, and stochastic model updating by applying Bayesian inference as introduced in
Section 3.2. Specifically, Markov chain Monte Carlo sampling (Section 3.3.2) with the Metropolis-Hastings
algorithm was applied because of the nonlinearity of the forward model. Due to the only two-dimensional
parameter space, a visualization of the Markov chain was possible. The same method will also be applied in
Chapter 5 to parameter spaces of higher dimensions.
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5 Update of the magnetization of circular Halbach
arrays

Multipole magnets that are composed of specifically circularly arranged permanent magnet (PM) blocks, are
known as Halbach arrays [66]. The magnetization strengths and directions of the single blocks are crucial to
obtain the specified multipole field. The magnet system of the FASER experiment [51] comprises three 0.57T
dipole magnets, each consisting of a series of circular Halbach arrays [3, Chapter 5]. They were designed,
built, and measured at CERN. Magnetic flux density measurements of the built magnets revealed a variation of
the higher-order multipole coefficients that differs from the prediction of these coefficients with the numerical
design model. In this chapter, we combine a 3D FEM model of a FASER dipole with measurement data of the
magnetization of the PM blocks, and measurements of the magnetic flux density and the multipole coefficients
of the built magnet. The goal is a data-driven update of the magnetization of the PM blocks in the numerical
design model to match the predictions with the measured observations. Parts of this chapter are already
published in the author’s paper [52].

Halbach arrays Karl Halbach derived the ideal magnetization of permanently magnetized material between
two concentric circles such that a perfect multipole field inside the inner circle and zero magnetic flux
density outside is achieved [66]. He proposed to approximate this ideal magnetization with geometrically
identical trapezoidal blocks, each having a constant permanent magnetization [66, Section 4.2]. Therefore,
permanent multipole magnets such as the dipole magnets of the FASER experiment [51], that follow this
design, are known as circular Halbach arrays. More details on the magnetization of the individual blocks are
given below.
In this chapter, we consider the first short FASER dipole “PXMDMCAHAC-CR000001”. A picture of the magnet
system and sketches of its PM blocks and their magnetization are shown in Figures 5.1 and 5.2. It is composed

Da

y

z
x

Dm

Figure 5.1: Left: First short FASER Halbach dipole “PXMDMCAHAC-CR000001” (Source: Melvin Liebsch).
Right: Sketch of the corresponding three-dimensional computational domain D omitting the
external construction steel ring. Figure adapted from [52].
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of a series of 12 circular Halbach arrays, each composed of K = 16 trapezoidal PM Sm2Co17 grade YXG32H
blocks (see Figure 5.3). This design follows the best practice, suggested in [66, equation 25], of using at least
8 trapezoidal segments to build a circular Halbach array dipole.
The PM blocks of the S = 12 Halbach arrays are held in place by an aluminum guiding profile and aluminum
pushing plates [3, Figure 32], which are neglected in the system model by considering that the permeability
of aluminum is adequately described by the vacuum permeability µ0. The PM blocks and their guiding
structure are additionally surrounded by an external construction steel grade S355JR ring of 1.6 cm width
with non-negligible permeability. However, the influence of this ring on the magnetic flux density in the center
of the magnet system is low, since the ideal Halbach magnetization that is approximated by the PM blocks
shields the magnetic flux density (see Figure 5.2).
The magnet system does not contain other sources than the PM blocks, i.e. J = 0 and DJ = ∅. The present
electromagnetic fields can be described with sufficient accuracy by Maxwell’s equations in the magnetostatic
case and the constitutive equation (2.13). For the reluctivity ν, we assume

ν(t) =


1/µ0 in Da

1/(µrµ0) in Dm

fHB(t)/t in Di

(5.1)

with relative permeability µr = 1.06. This value is obtained by linear regression from the almost linear
segment of the B(H)-curve of the PM Sm2Co17 blocks. The actual H(B)-curve fHB of the used construction
steel grade S355JR ring was not available in the data sheets. Hence, we assumed the (B,H)-data table of
construction steel grade S355 J2+N, which was measured with a split-coil permeameter [10], knowing that
the choice of the curve only has a small influence on the magnetic flux density in the center of the magnet
system. Nevertheless, we want to demonstrate by using a non-linear H(B)-curve that parts of the methods
discussed in this chapter also apply to non-linear models.
We study the following two versions of a component-centric system model describing the first short FASER
Halbach dipole:
1. 2D non-linear model. A 2D cross-section of the computational domain D = Da ∪Dm ∪Di of one of the
12 circular Halbach arrays including the external construction steel ring is sketched in Figure 5.2. The
subdomain Dm := supp(M) is the disjoint union of the PM blocks Dk with 1 ≤ k ≤ K = 16.

2. 3D linear model. Omitting the construction steel ring by setting Di = ∅ and considering the full series
of 12 circular Halbach arrays yields the computational domain D = Da ∪Dm sketched in Figure 5.1.
With Dk,s, we indicate the k-th PM block in the s-th Halbach array. Thus, the subdomain Dm containing
the PM blocks is given by Dm =

⋃
k,sD

k,s.
In both cases, the boundary ΓB = ∂D is chosen 8.5 cm from the magnet system such that, due to the
shielding of the PM blocks, B · n = 0 on ΓB can be assumed (see Figure 5.2). The magnetic flux den-
sity generated by the magnet system can be simulated by solving the weak boundary value problem of
magnetostatics in vector potential formulation: Given the magnetizationM of the PM blocks, find A ∈ V
such that ∫

D
curlv · ν(∥curlA∥) curlA dV =

∫
D
curlv ·M dV (5.2)

for all v ∈ V. The FEM software GetDP [60] is used to solve the problem. We provide the input files for the
two models in [54]. The uniqueness of the solution to the 2D non-linear model is guaranteed by assuming
that the H(B)-curve satisfies the conditions in Assumption 1. In the 3D linear model, we apply tree-cotree
gauging to obtain a unique solution.
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Figure 5.2: 2D cross-section of the first short FASER Halbach dipole. Left: Computational domainD. Center:
Absolute value |Bx| of the x-component of the magnetic flux density B. Right: Magnetic flux
density evaluated on a circle with radius r0 = 75mm. The nominal magnetization directions of
the PM blocksDk are sketched in black. Figure adapted from [52].

Quantities of interest Based on the magnetic vector potential A, quantities of interest can be evaluated.
Analogously to Chapter 4, quantities of interest that can be mathematically described with a linear functional
Q : V → RN2 of the form

Q(A) :=

∫
Dobs

q1(A) + q2(curlA) dV (5.3)

with linear functionals q1, q2 : V → R and an observation domain Dobs ⊂ D [117, Section 4.1] are studied.
Again, we are interested in the field map quantity of interest QB, here defined by

QB(A) := B(x) (5.4)

for a position x ∈ D and themultipole coefficient quantity of interestQM,n here defined by

QM,n(A)(z) := (An(r0)(z), Bn(r0)(z)) , (5.5)

whereAn(r0)(z), Bn(r0)(z) are the skew and normal multipole coefficients of order n defined in equation (2.80)
on a centered circle with radius r0 at the longitudinal position z of themagnet system.

Magnetization of the permanent magnet blocks Following [66], the ideal magnetization angle in the xy-
plane of a circular Halbach 2L-multipole composed ofK segments changes by 360◦(L+1)/K from one segment
to the next. In the case of a K = 16 segmented dipole (L = 1), this leads to a change of the magnetization
direction by 45◦ between neighboring segments. The nominal magnetizationMk,s of the k-th segment Dk,s in
each of the S = 12 circular Halbach arrays of the first FASER dipole is given by

Mk,s := mk vol(Dk,s)−1 (cos(αk), sin(αk), 0)
⊤. (5.6)

Thereby, αk := 180◦ + 45◦(k − 1) are the nominal magnetization angles around the z-axis and mk = 330Am2

are the nominal magnetic moments for 1 ≤ k ≤ 16 and 1 ≤ s ≤ 12. The directions of the nominal magnetization
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Figure 5.3: Left: Tri-axial Helmholtz coil system. Right: Trapezoidal permanently magnetized
Sm2Co17 blocks.

are sketched in Figure 5.2. Notice that the nominal magnetization angles around the x-axis and the y-axis are
zero and that the nominal magnetization is independent of the array number s.

Due to manufacturing tolerances, the magnetizationsMk,s of the procured PM blocks can differ from the
nominal magnetizationsMk,s. Their difference is denoted by the magnetization deviation vector ∆Mk,s ∈
R3, thus

Mk,s = Mk,s +∆Mk,s. (5.7)
The magnetizationMk,s of each PM block was measured with a tri-axial Helmholtz coil system [115] (see
Figure 5.3 (left)) before the assembly of the FASER dipoles. The measurement data is available in [45–47].
All measured magnetizations were within the specified tolerances [131]: The maximal measured deviation of
the magnetic moment was less than 2% off the nominal value and the maximal measured deviation of the
magnetization angle was less than 1.9◦. In this work, the measurement uncertainty of the Helmholtz coil
system is neglected.

Systemmodel and forwardmodel The systemmodel (3.19) of amagnet system

M : (p, s) 7→ q (5.8)

maps a parameterp and an operationmode s to a prediction of a quantity of interest q. Since the Halbach array’s
only magnetic sources are the PM blocks, there are no operation modes s to consider, and the system model
M coincides by definition with the corresponding forward model H : p 7→ q.

To select suitable parameters p which are relevant to the first short FASER dipole, the case study [131, Figure
6] on the effects of possible deviations of the built magnet system from the numerical design model such
as deviations of the nominal magnetization or misalignments of the PM blocks is considered. It was found
that deviations of the magnetization have the largest impact on affecting the field quality by generating
higher-order multipoles. Therefore, we consider in the following the magnetizationsMk,s ∈ R3 of the K · S
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PM blocks of the magnet system as parameters of the system model. We define the magnetization parameter
vector p by

p :=
(
M⊤

1,1, . . . ,M
⊤
16,1, . . . ,M

⊤
1,12, . . . ,M

⊤
16,12

)
∈ R16·12·3=576 (5.9)

for the three-dimensional system model. In the two-dimensional case, the z-component of the magnetization
can be neglected, leading to

p :=
(
M⊤

1 , . . . ,M
⊤
16

)
∈ R16·2=32. (5.10)

In the following, we denote withMp the magnetization that is defined by a parameter vector p ∈ R576 or
p ∈ R32 with

Mp
k,s :=

(
p3K(s−1)+3(k−1)+1, p3K(s−1)+3(k−1)+2, p3K(s−1)+3(k−1)+3

)⊤ (5.11)
for 1 ≤ k ≤ 16 and 1 ≤ s ≤ 12 in the three-dimensional case and with

Mp
k :=

(
p2(k−1)+1, p2(k−1)+2

)⊤ (5.12)

for 1 ≤ k ≤ 16 in the two-dimensional case. Alternative approaches to describe and parameterize the magneti-
zation of PM blocks which are affected by uncertainties are given, e.g., in [20, 102]. We choose the piecewise
constant parametrization because the nominal values (5.6) are piecewise constant and with the Helmholtz coil
system measurements, only piecewise constant magnetizations are observed.

Assuming that the H(B)-curve satisfies the conditions in Assumption 1 and applying tree-cotree gauging in
the three-dimensional case, the mapping

p 7→ A[Mp] (5.13)
is well-defined, where A[Mp] is the solution to (5.2) withM = Mp. Concatenating the mapping (5.13) with
the quantity of interestQ defined in equation (5.3) yields the well-defined forwardmodel

H : p 7→ q := Q(A[Mp]). (5.14)

Notice that the forward model is only linear if the external construction steel ring with its non-linear H(B)-
curve is omitted. We therefore distinguish in the following between the 2D non-linear forward model and the
3D linear forward model, where the external construction steel ring is omitted.

Mismatch of prediction and observation The predictions q of the forward model can be compared to
measured observations qobs of the built magnet. Predictions with the forward model can be either based on
the nominal magnetization parameter vector p0 or on the magnetization parameter vector pmeas measured
with the Helmholtz coil system. The prediction with p0 yields the nominal predictions using the numerical
design model that neglects manufacturing errors. The prediction with pmeas yields a first update of the system
model according to the Helmholtz coil measurements.

In Figure 5.2 (center), the absolute value |Bx| of the x-component of the magnetic flux density, predicted for
p0 with the 2D non-linear forward model is shown in the air domain Da. It can be seen that the nominal
magnetization of the PM blocks produces a homogeneous horizontal field of around 0.578T inside the circular
Halbach array and shields the magnetic flux density from the exterior part of the air domain. Moreover,
the magnetic flux density on the centered reference circle with radius 75mm predicted for p0 with the 2D
non-linear forward model is shown in Figure 5.2 (right). The corresponding absolute values of the skew
multipole coefficients are shown in Figure 5.7 (left).
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Figure 5.4: Comparison between the nominal prediction (H(p0)), the prediction based on the Helmholtz
coil measurements (H(pmeas)), and the measured qobs relative multipole coefficient cn(z) along
the z-axis of the first FASER Halbach dipole. The predictions H(p0) and H(pmeas) are computed
using a three-dimensional FEM model.

With the 3D linear forward model, we predict for p0 and pmeas the multipole coefficient quantity of interest
QM,n on a circle with radius r0 = 75mm along the longitudinal z-axis of the magnet system. Based on QM,n,
the relative coefficients cn(z) defined by

cn(z) :=

√
(An(r0)(z))2 + (Bn(r0)(z))2

Bmax
, (5.15)

with Bmax = 0.578T, are computed. Moreover, an observation qobs of the relative coefficients cn(z) is derived
from measurements of the magnetic flux density with a Hall probe mapper system on the same reference
radius. The observation qobs is plotted next to the nominal prediction H(p0) and the prediction H(pmeas)
based on the Helmholtz coil measurements in Figure 5.4. The visualization of the observations qobs can be
also found in [49, Figure 13].The data sets are available in [48].
According to the nominal prediction H(p0), the relative coefficients cn(z) are almost constant for z ∈
[−0.3, 0.3] m (the length of the magnet system in z-direction is 1m). The observation qobs differs from
this prediction in the order of magnitude of 10−3 in the Euclidean norm. The observed relative coefficients
cn(z) are not constant in the center of the magnet system, and the values of the coefficients are higher.
Consequently, higher-order multipoles are present in the magnet system as built. However, the measured
magnetic flux densities are still within the specifications [131]. In [49], the assumption is expressed that
the segmented structure of the magnet system might cause the observed instability. According to [131], the
mismatch between the prediction and the simulation might be caused by small misalignments of some PM
blocks due to the forces during the magnet assembly. The prediction of the relative coefficients cn(z) based on
the measured magnetization parameter vector pmeas are around a similar magnitude as the coefficients derived
from the Hall probe measurements. Moreover, the predictions H(pmeas) also have an unstable pattern along
the z-axis, however, the pattern differs from the pattern of the observations. To improve the prediction with the
forward model and to gain insight into the magnetization deviations that might explain the observed relative
coefficients cn(z), the magnetization parameter vector is updated in this chapter.

Forward and inverse problem Simulating predictions with the forwardmodel and updating themagnetization
parameter vectorp is related to solving the following forward and inverse problems.
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Problem 4. (Forward problem) Given a magnetization parameter vector p, find the magnetic vector potential
A[Mp] ∈ V that solves the weak formulation of the boundary value problem of magnetostatics in vector potential
formulation (5.2) and evaluate the quantity of interest Q(A[Mp]).

Problem 5. (Inverse problem) Given observations qobs of a quantity of interest Q. Find a real-valued vector p
such that the solution A[Mp] ∈ V of (5.2) satisfies Q(A[Mp]) = qobs.

The observations qobs are typically affected by measurement uncertainty that can arise for example from
vibrations of the Hall probe mapper, stage misalignment, wrong sensor calibrations, or random measurement
uncertainty. For modern-day measurement equipment, a standard deviation σB = 10−4 of random measure-
ment uncertainty for relative observations of the field map quantity of interest is QB can be assumed. For
the relative dipole coefficient quantity of interest QM,1, a standard deviation of σM,1 = 10−4 and for relative
higher-order multipole coefficients with n > 1, a standard deviation of σM,n = 10−6 can be assumed. These
values are typically estimated from repeated measurements.
However, a standard deviation of 10−6 can only be reached with rotating coil magnetometers. Computing
multipole coefficients from magnetic flux density measurements with a Hall probe mapper system leads to
higher uncertainties due to vibrations and misalignment (mapper system, magnet system, simulation) [90].
For the available data we therefore assume that

σM,n(z) =

{
5 · 10−5 z in the homogeneous dipole region,
5 · 10−3 z in the fringe field region (5.16)

for n > 1. The value is chosen position-dependent because the effect of vibrations and misalignment is larger
in the fringe field region. Similarly, due to vibrations and misalignment for the available measurements of the
magnetic flux density, we assume the position-dependent standard deviation

σB(z) =

{
1 · 10−4 z in the homogeneous dipole region,
1 · 10−3 z in the fringe field region. (5.17)

Due to the affection of observations qobs by measurement uncertainty, a solution to the inverse problem 5
might not exist. Consequently, we relax the notion of a solution to the inverse problem similar to Chapter 4, by
requesting that the predicted quantities of interest have a small distance to the observed quantities of interest
for some error metric.

Problem 6. (Relaxed inverse problem) Given observations qobs of a quantity of interest Q in R positions xr
and zr, find a real-valued vector p such that the solution A[Mp] ∈ V of (5.2) satisfies

1

R

∑
r

( |Bobs
∗ (xr)−QB(A[Mp])∗(xr)|

|Bmax|

)
< ϵtol,B (5.18)

for all components ∗ ∈ {x, y, z} of the magnetic flux density, or respectively, depending on the quantity of interest,

1

2R

∑
r

(∥∥(Aobs
n (r0), B

obs
n (r0)

)
(zr)−QM,n(A[Mp])(r0)(zr)

∥∥
|Bmax|

)
< ϵtol,M,n (5.19)

for all n ≤ N . The tolerances are chosen by ϵtol,B = ϵtol,M,1 := 10−4 and ϵtol,M,n := 5 · 10−5 for n > 1.
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Model updating In this chapter, we update the magnetization parameter vector p of system models of the
first short FASER dipole by using the methods for statistical inversion introduced in Chapter 3. Due to the
weighting of the prior and the likelihood model in the Bayesian approach, the updated parameter vector pup is
not automatically a solution to the relaxed inverse problem 6 in the sense of the conditions (5.18) and (5.19).
However, we verify these conditions for pup to prove that using this magnetization parameter vector provides
a model update, at least on the regime of the training data, according to the definition of [145].
The Bayesian approach is particularly suitable for this application since measurement data concerning the
magnetization of the PM blocks taken during the prototype phase and observations of the magnetic flux density
and multipole coefficients measured for characterization are available but both are affected by uncertainties.
Figure 5.5 shows an overview of the applied methods and sources of knowledge. The resulting updated
system modelM(pup) is a hybrid model [86] because measurement data and first principle-based knowledge
of the underlying magnetostatic problem are combined to compute the updated magnetization parameter
vector pup.
State-of-the-art methods to update permanent magnetizations in subdomains of a computational domain D
given observations of field-related quantities of interest that can be found in the literature include physics-
informed neural networks [84], truncated singular value decomposition of a linear equation system [9, 35],
optimization in combination with Tikhonov regularization [26], and Bayesian inference by computing the
maximum a posteriori estimate for a linear problem [34]. Our method extends the latter approach by also con-
sidering non-linear system models. We address the ill-posedness of the underlying inverse problem by the finite-
dimensional problem formulation based on the assumption that the magnetization is piecewise constant for
each PM block, and by conducting a sensitivity analysis to improve the stability.

Structure of this chapter The remainder of this chapter is organized as follows: First, in Section 5.1
a sensitivity analysis similar to Section 4.2.2 based on Gâteaux derivatives is derived and conducted to
identify observation positions where the quantities of interest QB and QM,n are sensitive to changes of the
magnetization parameter vector p. It is verified that the observation positions chosen in the available data set
[48] are suitable for detecting changes in QB and QM,n that are caused by the mean magnetization deviation
of the 13-th PM block of the Halbach array, according to the measurements with the Helmholtz coil system.
Subsequently, in Section 5.2, the methods of stochastic model updating introduced in Chapter 3 are applied.
Using Bayesian inference, a posterior distribution of the magnetization parameter vector given an observation
of a quantity of interest is derived. For the non-linear forward model, the posterior distribution is sampled
with Markov chain Monte Carlo sampling using the Metropolis-Hastings algorithm with the preconditioned
Crank-Nicolson proposal. For the linear forward model, the maximum a posteriori estimate is computed. First,
it is verified on simulated observation data that both methods can retrieve a previously selected ground truth
magnetization parameter vector with sufficient accuracy such that the sample mean of the Markov chain and
the maximum a posteriori estimate solve the relaxed inverse problem 6 according to the criteria defined in
the equations (5.18) and (5.19).
Afterwards, the linear system model of the first short FASER Halbach dipole is updated based on the measured
observations [48] of the relative multipole coefficients cn(z). The update does not only reduce the mismatch
between the measured and the predicted relative coefficients but also improves predictions of other quantities
of interest that were not part of the training data.
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measurements of the
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Figure 5.5: Overview of sources of knowledge and methods for data-driven updates of the magnetization of
Halbach arrays. From themeasurement of themagnetization of the PMblocks, a prior distribution
of the magnetization parameter vector p is derived. This parameter vector is updated using
statistical inference methods such as maximum a posteriori estimation and Markov chain Monte
Carlo sampling. Thereby, the first principle-based magnetostatic problem is combined with
observations qobs of quantities of interest. Consequently, the resulting updated system model
M(pup) is a hybrid model. Notice that the material measurements and the measurements of the
magnetic flux density are conducted during different phases of the magnet life cycle.
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5.1 Sensitivity analysis

A sensitivity analysis is conducted to select suitable observation positions of the quantities of interest that are
used as training data to compute the model update. Similar to the sensitivity analysis concerning perturbations
of the source current density derived in [117, Proposition 4], we derive the weak formulation of a boundary
value problem to determine the Gâteaux derivative of the magnetic vector potential in the direction of
deviations from the nominal magnetization. Thereby, we follow the lines of the proof of [117, Proposition 2].
In Section 5.1, a similar method (see also [117, Proposition 2]) is used to study the sensitivity of solutions
to the boundary value problem of magnetostatics in vector potential formulation to perturbations of the
reluctivity in the iron domain.

Sensitivity of linear quantities of interest to deviations of the magnetization Recall that under the assump-
tions made in this chapter, the mappingM 7→ A[M] is well-defined after gauging. LetM be the nominal mag-
netization of the PM blocks and let∆M be a magnetization deviation. We define

Ms := M+ s∆M (5.20)
for s > 0. Let A = A[M],A[Ms] ∈ V be the weak solutions that satisfy∫

D
curlv · ν(∥curlA∥) curlA dV =

∫
D
curlv ·M dV (5.21)∫

D
curlv · ν(∥curlA[Ms]∥) curlA[Ms] dV =

∫
D
curlv ·Ms dV (5.22)

for all v ∈ V. The Gâteaux derivative of the mappingM 7→ A[M] atM in the direction of the deviation ∆M
is defined by

A′[∆M] := lim
s↘0

A[M+ s∆M]−A[M]

s
. (5.23)

Subtracting equation (5.21) from equation (5.22) yields∫
D s∆M · curlv dV =

∫
Di

(ν(∥curlA[Ms]∥) curlA[Ms]− ν(∥curlA∥) curlA) · curlv dV

+
∫
Da

1/µ0 curl (A[Ms]−A) · curlv dV

+
∫
Dm

1/(µ0µr) curl (A[Ms]−A) · curlv dV.

(5.24)

Dividing by s and taking the limit s↘ 0 we can conclude with [117, Lemma 3] that the Gâteaux derivative
satisfies A′ ∈ V and ∫

D∆M · curlv dV =
∫
Di

νd(curlA) curlA′ · curlv dV

+
∫
Da

1/µ0 curlA
′ · curlv dV

+
∫
Dm

1/(µ0µr) curlA
′ · curlv dV

(5.25)

for all v ∈ V, where νd is the differential reluctivity tensor [117, definition 5] defined in equation (2.72).
Consequently, the Gâteaux derivative A′[∆M] in the direction of ∆M atM can be determined by solving
equation (5.25) in GetDP [60].
Analogously to Chapter 4, the Gâteaux derivative A′[∆M] of the magnetic vector potential can be inserted
into linear quantities of interest Q to determine the Gâteaux derivative of the respective quantity of interest.
In the following, we analyze the sensitivity of QB and QM,n to deviations of the permanent magnetization of
one PM block in a circular Halbach array by computing the Gâteaux derivative at the nominal magnetization
into the direction of the deviation.
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Figure 5.6: Gâteaux derivative B′[∆M] of the magnetic flux density at the nominal magnetization in the
direction of the sample mean magnetization deviation of the 13-th PM block defined in equa-
tion (5.26). On the air domain, the absolute value |B′[∆M]| is visualized. On the circle with radius
75mm, B′[∆M] is visualized.

Sensitivity analysis concerning deviations of the permanent magnetization in the FASER Halbach dipole
In this paragraph, the sensitivity of the linear quantities of interestQB andQM,n to deviations of the permanent
magnetization in the PM blockD13 of the FASER Halbach dipole is studied with the 2D non-linear systemmodel.
LetM be the nominal magnetization and let the deviation ∆M be given by

∆Mk =

{
∆̂M13 :=

1
12

∑12
s=1

(
M13,s −M13,s

)
=
(
7.00 · 104,−7.64 · 104

)
Am−1 k = 13

0 else (5.26)

where ∆̂M13 is the sample mean deviation of the measured magnetizationsM13,s from the nominal magneti-
zationM13,s of the 13-th PM block (see equation (5.7)).

The Gâteaux derivative of the magnetic flux density in the direction of ∆M atM is determined by solving the
weak problem (5.25) and computing B′[∆M] = QB(A

′[∆M]). A visualization of the absolute value |B′[∆M]|
of the Gâteaux derivative in the air domain Da is given in Figure 5.6. Moreover, the Gâteaux derivative
B′[∆M] is shown on a centered circle with radius 75mm. The absolute values |A′

n[∆M]| of the Gâteaux
derivative of the corresponding skew multipole coefficients are shown in Figure 5.7 next to the absolute values
of the nominal skew multipole coefficients.
As expected, it can be seen that the absolute value |B′[∆M]| of the Gâteaux derivative is maximal in the
vicinity of the PM block D13 that is affected by the magnetization deviation. The maximal absolute value is of
the order of magnitude of 10−3 T, leading to a change at least of the order of magnitude of 10−3 relative to
the maximal magnetic flux density Bmax = 0.578T, exceeding the assumed standard deviation of the random
measurement uncertainty.
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Figure 5.7: Left: Absolute values |An| of the nominal skew multipole coefficients on the centered circle with
radius 75mm. Right: Absolute values |A′

n[∆M]| of the Gâteaux derivative of the skew multipole
coefficients in the direction of the sample mean magnetization deviation of the 13-th PM block
(equation 5.26) and at the nominal magnetization on the centered circle with radius 75mm.

A similar reasoning can be used for observations of the multipole quantity of interest. According to the nominal
prediction of the absolute values of the skew multipole coefficients |An|, the magnet system is an almost
perfect skew dipole (see Figure 5.7). The corresponding Gâteaux derivatives |A′

n[∆M]|, however, contain
higher-order skew multipole coefficients, which for 2 ≤ n ≤ 8 exceed the assumed standard deviation of the
random measurement uncertainty.
We conclude that according to the results of the sensitivity analysis, the centered circle with radius 75mm is a
suitable choice to compare predictions and observations of the quantities of interest QB and QM,n. Hence, the
data set available in [48], corresponding to a former measurement campaign [49] for magnet characterization,
can be used as training data for model updating.

5.2 Stochastic model updating

The goal of this section is the derivation of stochastic model updatesM(pup) of the system models of the first
short FASER dipole, motivated by the observed mismatch between the numerical design model’s predictions
and the measured observations of the relative higher-order multipole coefficients cn(z) (Figure 5.4). To apply
the methods of statistical inference introduced in Chapter 3, i.e., the Bayesian approach, the parameters p and
the observations qobs are interpreted as random vectors P : Ω → RN1 and Qobs : Ω → RN2 . The randomness
reflects the uncertainty caused by the random occurrence of production errors of the PM blocks and the
random measurement uncertainty affecting the observations.
A prior density function π0 of the random parameter vector P can be estimated from the measurements of the
magnetization of the PM blocks with the Helmholtz coil system. Having measurements of the magnetization
of S = 12 PM blocks with the same nominal magnetization, we estimate the mean and the covariance matrix
of P using the sample meanm0 and the sample covariance C0 defined in equations (3.4) and (3.5). Notice
that due to the independence of the magnetization of the different PM blocks, the sample covariance matrix
C0 is a block diagonal matrix. To be able to work with a normal distributed prior, it is moreover assumed
that also within the blocks, the x, y, and z components are independent. It is verified by conducting the
Kolmogorov-Smirnov test introduced in Chapter 3 that each random variable Pn with 1 ≤ n ≤ N1 is normal
distributed. Consequently, it can be concluded from the independence and the normality of the random
variables Pn that P ∼ N (m0,C0), where C0 is a diagonal matrix.
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Besides the prior density function π0, a likelihood model that describes the conditional probability density
function πQobs|P is required for Bayesian inference. To set up a likelihood model, the uncertainty of the random
observation vector Qobs is estimated based on the standard deviations σB and σM,n of random measurement
uncertainty defined in equations (5.16) and (5.17). With the additive noise model defined in equation (3.21),
that omits errors and uncertainties of the forward model, the likelihood model πQobs|P ∼ N (H(p),Σ) with
Σ = σ2I is obtained.

Observation training data Computing a stochastic model update requires training data of observed quantities
of interest. Before applying the methods of statistical inference to measured data, the model is evaluated on
simulated data based on a ground truth magnetization parameter vector ptrue, which is chosen as a realization
of the random parameter vector P ∼ N (m0,C0). Using the additive noise model (3.21), the simulated
observations

qobs = H(ptrue) + u (5.27)

are generated, which take into account random measurement uncertainty. They can be interpreted as a
realization of the random observation vector Qobs. The vector u ∈ RN2 is a realization of the random
measurement uncertainty U ∼ N (0,Σ) with Σ = σ2I. Reasonable values for the standard deviation σ of the
random measurement uncertainty are given in equations (5.16) and (5.17).

Measured observations of QB and QM,n on a centered circle with radius 75mm are available in the data sets
[48] corresponding to the measurement report [49]. Even though these data sets were collected four years ago
in the context of magnet characterization, we can verify by conducting the Gâteaux derivative-based sensitivity
analysis conducted in Section 5.1 that the quantities of interest QB and QM,n are sufficiently sensitive to the
expected variations of the magnetization parameter vector in the available observation positions. Hence, we
use the same observation positions for the simulated training data.

To update the 2D non-linear system model, observations of the field map quantity of interest QB in R = 60
equally distributed positions {x1, . . . ,x60} on the centered circle with radius 75mm are used. In the 3D linear
case, we use observations of the field map quantity of interest QB on a centered cylinder with radius 75mm
in 60 radial times 156 longitudinal positions {x1, . . . ,xR} with R = 60 · 156 = 9360, covering the full range
of the magnet system including the fringe field. Moreover, observations of the multipole coefficient quantity
of interest QM,n for 1 ≤ n ≤ 8 on the same radius and in the same longitudinal positions {z1, . . . , zR} are
chosen. Consequently, the observation vector qobs is given by

qobs :=


qobs
B :=

(
Bobs
x (x1), B

obs
y (x1), . . . , B

obs
x (xR), B

obs
y (xR)

)
+ u 2D model, QB

qobs
B :=

(
Bobs
x (x1), B

obs
y (x1), B

obs
z (x1), . . . , B

obs
x (xR), B

obs
y (xR), B

obs
z (xR)

)
+ u 3D model, QB

qobs
M :=

(
Aobs

1 (z1), B
obs
1 (z1), . . . , A

obs
8 (z1), B

obs
8 (z1), . . . ,

Aobs
1 (zR), B

obs
1 (zR), . . . , A

obs
8 (zR), B

obs
8 (zR)

)
+ u

3D model, QM,n

(5.28)
depending on the dimension of the systemmodel and the observed quantity of interest.

In the following, we first validate the update of the 2D non-linear system model derived by Markov chain
Monte Carlo sampling with the Metropolis-Hastings algorithm. Then, the updated 3D linear system model
using the maximum a posteriori estimate is validated. Finally, we apply the latter updating scheme to the
measured observations of the multipole coefficient quantity of interest QM,n, whose corresponding relative
coefficients cn(z) are shown in Figure 5.4 (right).
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Figure 5.8: Values of the residual EpCN(i) defined in equation (5.29) that is used in the Metropolis-Hastings
algorithm with the preconditioned Crank-Nicolson proposal (s = 1/100) to compute the accep-
tance probability of the i-th proposal.

5.2.1 Validation in the 2D non-linear case

Due to the non-linearity of the forward model, we use the Metropolis-Hastings algorithm with the precon-
ditioned Crank-Nicolson proposal to draw 8000 samples of the posterior distribution πP|Qobs . The proposal
density is given by N (

√
1− s2p̃, sC0), where p̃ is the current value of the Markov chain and C0 is the co-

variance matrix of the prior distribution. The step size s = 1/100 is chosen significantly smaller than in the
application in Chapter 4 because of the higher dimension N1 = 32 of the parameter space. With this choice,
an acceptance rate of 48.51% was reached. Due to the small step size, the Euclidean distances between the
current states of the Markov chain and the proposals are small, leading to the necessity of drawing more
samples than in Chapter 4. The values of the residual

EpCN(i) :=
1

2

∥∥∥H(pi)− qobs
B

∥∥∥2
Σ−1

, (5.29)

that is used in equation (3.44) to compute the acceptance probability, are shown in Figure 5.8. Thereby,
H(pi) is the prediction of the quantity of interest based on the i-th state pi of the Markov chain. Following
the decay of the residual EpCN(i), the first 2000 samples are considered as burn-in and are thus omit-
ted in the computation of the sample mean m1 and the sample covariance C1 with the equations (3.4)
and (3.5).

In Figure 5.9, the ground truth ptrue, the expected valuem0 of the prior distribution and the sample mean
m1 of the posterior distribution is visualized. Moreover, the 1σ, 2σ and 3σ intervals around m0 and m1

according to the values on the diagonal of the covariance matrix C0 and the sample covariance matrix
C1 are shown. The average absolute difference between the posterior sample mean m1 and the ground
truth parameters ptrue is decreased by 43% compared to the average absolute difference between the prior
expected valuem0 and the ground truth parameters ptrue. Moreover, the volumes of the 3σ intervals of the
posterior distribution are decreased compared to the prior distribution. However, the ground truth parameters
are not always in the range of the 3σ interval of the posterior. Nevertheless, it can be verified that the
posterior sample meanm1 is a solution to the relaxed inverse problem 6 according to the condition defined
in equation (5.18). Thus, updating the non-linear two-dimensional system model with the magnetization
parameter vector m1 improves the predictions of the magnetic flux density at least on the regime of the
training data.
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Figure 5.9: Comparison between the ground truth, the prior, and the posterior distribution for updating the
2D non-linear system model (top for x, bottom for y). The posterior distribution is determined
based on observations qobs

B of the field map quantity of interest. For all distributions, the discrete
mean and the 1σ, 2σ, 3σ intervals are visualized with continuous curves to enhance readability.
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5.2.2 Validation in the 3D linear case

The dimensionN1 of the parameter space of the three-dimensional system model is withN1 = 576 significantly
larger than for the two-dimensional system model with N1 = 32. Consequently, a much smaller step size s
and thus much more iterations of the Metropolis-Hastings algorithm with the Crank-Nicolson proposal would
be required to obtain a sufficient acceptance rate. Moreover, the run time of the forward model, which is
solved for every proposal of the Metropolis-Hastings algorithm, is much more time-consuming than in the
two-dimensional case. For these two reasons (i) more iterations, and (ii) longer run-time per iteration, the
computation of a stochastic model update using the Metropolis-Hastings algorithm with the Crank-Nicolson
proposal is computationally prohibitive.
For this reason, the three-dimensional system model is simplified such that the forward model is linear. Due
to the linearity and the assumption that the prior and the random measurement uncertainty are normal
distributed, the maximum a posteriori estimate pMAP is given by the expected value of the posterior distri-
bution (see equation (3.34)). Moreover, the posterior distribution πP|Qobs ∼ N (m1,C1) can be determined
from the linear forward model H, the covariance matrix of the random measurement uncertainty Σ, the
prior distribution π0 ∼ N (m0,C0) and observations qobs using the equations (3.28) and (3.29). In this
section, we use the simulated observations qobs

B of the magnetic flux density and the simulated observa-
tions qobs

M of the multipole coefficients defined in equation (5.28). The resulting posterior distributions are
denoted by

πB
P|Qobs ∼ N (mB

1 ,C
B
1 )

πM
P|Qobs ∼ N (mM

1 ,C
M
1 ).

(5.30)

In Figure 5.10, the ground truth ptrue is shown together with the expected valuem0 of the prior distribution
and the two expected values of the posterior distributionsmB

1 andmM
1 . Moreover the 1σ, 2σ, and 3σ intervals

according to the entries on the diagonal of C0, CB
1 and CM

1 are visualized, which can be used to estimate
the uncertainty.
The average absolute difference between the maximum a posteriori estimatemB

1 and the ground truth ptrue is
32% smaller than the average absolute difference between the prior meanm0 and ground truth. The same
comparison yields an improvement of 28% for the maximum a posteriori estimatemM

1 . Moreover, the ground
truth is only in very few positions outside the 3σ interval of both posterior distributions. The volumes of
the 1σ, 2σ, and 3σ intervals of the posterior distributions are smaller than for the prior distribution. It can
be verified by checking the conditions (5.18) and (5.18) that both expected values mB

1 and mM
1 lead to a

model update in the sense that the prediction of quantities of interest is improved at least in the regime of the
training data.
Consequently, the computation of a stochastic model update of the three-dimensional linear system model
using the maximum a posteriori estimator is validated for observations of QB and QM,n. In the following
section, this method is applied to measured observations qobs

M of QM,n.

5.2.3 Application to measured observations

In this section, the method of updating the magnetization parameter vector p of the three-dimensional
linear system model of the first short FASER dipole by computing the maximum a posteriori estimate is
applied to measurements of the magnetic flux density conducted with a Hall probe mapper system. More
details on the measurement campaign are given in [49] and the measurement data is available in [48].
The observations Aobs

n (zr), B
obs
n (zr) of the multipole coefficients are derived by approximating the integrals
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Figure 5.10: Comparison between the ground truth ptrue, the prior, and the two posterior distributions for
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Figure 5.11: Comparison between the prediction H(pmeas) based on the Helmholtz coil measurements, the
updated prediction H(pup) based on the maximum a posteriori estimate and the measured
observations qobs of the relative multipole coefficients cn(z) defined in equation (5.15). The
predictions H(pmeas) and H(pup) are computed using a three-dimensional FEM model.

in equation (2.79) with a finite sum. This observation data was already used in equation (5.15) and in
Figure 5.4 to compare system model predictions to measured observations. Due to a possible misalignment of
the mapper system, the magnet system, and the simulation, the standard deviations defined in equation (5.16)
are assumed.
The system model is updated by setting pup = pMAP = mM

1 . We verify that the updated magnetization
parameter vector is still within the 3σ neighborhood of the prior mean. Hence, unreasonable over-fitting
is prevented. Analogously to Figure 5.4, the prediction of the relative coefficients cn(z) with the updated
system model H(pup) is compared in Figure 5.11 to the corresponding observations qobs of cn(z) that can be
determined from qobs

M using equation (5.15). It can be seen that the magnitude and the pattern along the
z-axis of the predicted relative coefficients cn(z) match well with the observations. However, this result is not
surprising, since the coefficients cn(z) are via equation (5.15) closely related to the training data qobs

M , which
was used to compute the update.
To assess the quality of predictions with the updated system model outside the regime of the training data,
predictions and measurements of the field map quantity of interest QB are compared before and after the
model update. Since the magnet system is a skew dipole, the comparison is restricted to the x-component of
the magnetic flux density. We define the relative residual

Erel(z,p) :=
|Bobs

x (z)−QB(A[Mp])x|
|Bmax|

(5.31)

where Bobs
x (z) are observations measured with a Hall probe and QB(A[Mp])x are the corresponding pre-

dictions with the system model. In Figure 5.12, the relative residual Erel(z,p) is shown for the magneti-
zation parameter vector pmeas measured with the Helmholtz coil system and for the updated parameter
vector pup. Although the relative residual exceeds for both predictions and in most positions the common
threshold of 1 unit in 10000, the relative residual for predictions with the updated parameter vector is
in most positions of the homogeneous field region around one order of magnitude smaller than before
the update.
There are several possible reasons why the relative residual between observations and updated predictions is
not smaller. First, the measured observations qobs are affected by uncertainty, and these uncertainties might not
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Figure 5.12: Relative residual Erel(z,p) defined in equation (5.31) between predictions and measurements
of the magnetic flux density before and after the model update. Figure adapted from [52].

be limited to the random measurement uncertainty considered in the noise model. Second, the forward model,
which is an essential part of the additive noise model and for computing predictions is affected by aleatory
and epistemic uncertainties such as the limited knowledge of other possibly relevant physical effects such as
small demagnetizations of the PM blocks or uncertainty in their positioning.

5.3 Summary

In this chapter, the magnetization of PM blocks in component-centric system models (Section 1.2.2) of the first
short FASER dipole was updated. To derive the stochastic model updates, we used the methods for statistical
inference introduced in Chapter 3. Bayesian inference (Section 3.2) combined prior knowledge about the
magnetization of the PM blocks that was measured with a tri-axial Helmholtz coil system before the assembly
of the Halbach dipole with observations of field-related quantities of interest measured in a later phase of the
life cycle of the magnet system.
Similarly to the updates of B(H)-curves in the previous chapter, we used Markov chain Monte Carlo sampling
with the Metropolis-Hastings algorithm (Section 3.3.2) with the preconditioned Crank-Nicolson proposal to
update a two-dimensional non-linear version of the system model that includes the outer construction steel
ring of the FASER dipole. The permanent magnetizations of a three-dimensional linear system model of the
FASER dipole that omits the steel ring were updated with the maximum a posteriori estimate introduced in
Section 3.3.1. With this update, the prediction of the relative multipole coefficients cn(z) and the prediction
of the magnetic flux density in the homogeneous field region were improved. In particular, adjustments of
the magnetizations of the PM blocks within the 3σ neighborhood of the prior distribution were sufficient to
explain the discrepancy between the predicted and measured relative multipole coefficients observed before
the model update.
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6 Determination of toroidal harmonic coefficients from
the magnetic flux density

Operation-centric system models are typically used to store the information about the magnetic field gained
during the characterization of a magnet system as built and are particularly relevant to predicting three-
dimensional field maps for particle tracking [143]. In this chapter, a model based on the toroidal harmonic
expansion (2.97) is studied for describing the magnetic flux density in curved magnet systems. The toroidal
harmonic coefficients are the parameters of this system model. We aim to determine these coefficients from
the magnetic flux density observable by standard methods of magnetic measurements. For this purpose,
an integration-based and a fitting-based method are derived and evaluated on simulated magnetic flux
density data.

System model We restrict the study to static fields at a given operation mode s0. Since operation-centric sys-
tem models do not include a model of the magnet system, only quantities of interest in that operation mode can
be predicted. Consequently, the system model coincides with the forward model

M(p, s0) = H(p). (6.1)

The parameters p depend on the system model’s definition. Most state-of-the-art operation-centric system
models discussed in Section 1.3.1 are based on the scalar potential formulation of the magnetostatic boundary
value problem, which yields under the assumption of linear permeability and the absence of sources, the
Laplace equation with boundary conditions. The difference between the models is the choice of basis used to
represent solutions to the Laplace equation. The approaches reach from classical expansions of the magnetic
scalar potential [74, 119, 122] to an approach based on the double-layer potential and the BEM [92].
Criteria to choose a suitable representation of the magnetic scalar potential on a given domain D and for a
given field are according to [135]:

1. The underlying coordinate system is such that symmetries of the magnet system coincide with an
invariance along one of the coordinates, and the domain boundary coincides with an isosurface of one
of the coordinates.

2. The contribution of the expansion terms to the described field decreases as the order increases. For
example, the magnetic field generated by a perfect straight dipole magnet can be described by a single
coefficient in the circular harmonic expansion (2.76). And, more generally, the field generated by
most straight accelerator magnets can be described by only a few coefficients of the circular harmonic
expansion.

3. The expansion’s coefficients are directly observable by a measurement method, e.g., the circular har-
monics can be directly observed with rotating coil magnetometers.
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This chapter focuses on operation-centric system models for curved magnet systems, thus we assume that the
computational domain is either a solid torus D or a toroidal wedge D̃ ⊂ D. According to the criteria above,
the toroidal coordinate system defined in equation (2.82) is a suitable choice, since τ -isosurfaces are tori (see
Section 2.4.2) and the rotational symmetry yields an invariance of the field regarding the toroidal angle φ.
If a cylindrical computational domain in the free space of a curved magnet system is used instead of a toroidal
domain, the circular harmonic expansion (2.76) might still be insufficient to describe the generated magnetic
field because this expansion is based on the assumption (2.75) that the derivative with respect to the longitu-
dinal component of the magnetic flux density vanishes. This limitation of the circular harmonic expansion is
discussed in [135]. We illustrate this limitation with an example in Section 6.3.1.
As a result of these considerations, the system models on toroidal domains and toroidal wedges studied in this
chapter are based on the toroidal harmonic expansion of themagnetic scalar potential

ϕm(τ, σ, φ) = Etφ+
√
κ(τ, σ)

∑∞
m,n=0Q

m
n− 1

2

(cosh(τ))
(
At
n,m cos(nσ) cos(mφ) + Bt

n,m sin(nσ) cos(mφ)

+ Ct
n,m cos(nσ) sin(mφ) +Dt

n,m sin(nσ) sin(mφ)
)
(6.2)

or its normalized version (2.99) introduced in Section 2.4.2, where Qmn−1/2 are the associated Legendre func-
tions of the second kind of half-integer degree (see Appendix 8.1), the coefficients At

n,m,Bt
n,m, Ct

n,m,Dt
n,m ∈ R

are the toroidal harmonic coefficients, and Et ∈ R is the linear coefficient. The symbol κ(τ, σ) defined
in equation (2.95) is used to save on notation. The formulas for the toroidal harmonic expansion of the
magnetic flux density are given in Appendix 8.2. For the special case that B is independent of φ, which
is referred to as the rotationally symmetric case, the toroidal harmonic expansion of ϕm simplifies to equa-
tion (2.104).
We consider the following three use cases of operation-centric system models based on the toroidal harmonic
expansion:
(i) Description of the magnetic flux density B in toroidal domains D = U2 × S1, where U2 is a disk with
radius R and S1 is a circle with radius ρ.

(ii) Description of the magnetic flux density B in a toroidal wedge D̃ ⊂ D with toroidal angle φ ∈ [0, l] and
l ≤ 2π.

(iii) Description of the average magnetic flux density ∫ B dφ with respect to the coordinate φ.
For the first use case, the parameters p of the forward and the system model are given by the linear coef-
ficient Et and the toroidal harmonic coefficients At

n,m,Bt
n,m, Ct

n,m and Dt
n,m (or respectively At

n,Bt
n in the

rotationally symmetric case). The forward model maps the parameters p to predictions of the magnetic
flux density

H : p = (Et,At
n,m,Bt

n,m, Ct
n,m,Dt

n,m) 7→ B(τ, σ, φ) (6.3)
using the formulas (8.12), (8.13), (8.14) and (8.15). The other two use cases are introduced in the following
paragraphs in more detail.

Magnetic flux density on toroidal wedges For some curved accelerator magnets such as the curved dipole
magnets of the ELENA decelerator [30] (see Figure 6.1 (left)), the computational domain of a toroidal wedge
D̃ ⊂ D is more suitable than the toroidal domain D because the aperture’s air gap only covers a fraction of
D. In rotationally symmetric machines such as the ITER tokamak [75] (see Figure 6.1 (right)), the nominal
magnetic flux density is periodic on torus wedges of toroidal angle π

9 if all 18 toroidal field coils are powered
with the same excitation current. Consequently, the description of the magnetic scalar potential and the
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Figure 6.1: Left: Curved dipole magnet of the ELENA decelerator. Right: Part of the ITER tokamak (Source:
Piotr Rogacki).

magnetic flux density on a toroidal wedge with φ ∈ [0, π9 ] is sufficient in this case. In this paragraph, the
toroidal harmonic expansion on a toroidal wedge with φ ∈ [0, l] is derived for l ≤ 2π. Thereby, wedges with
2π
l ∈ N are particularly suitable because equation (8.1) can be used to compute the associated Legendre
functions of the second kind of half-integer degree and due to the periodicity, the number of toroidal harmonic
coefficients concerning the order m can be reduced.

Let D̃ ⊂ D be the toroidal wedge that covers the image of the toroidal coordinates for φ ∈ [0, l]. Assume that
the magnetic flux density is periodic on [0, l], i.e.

B(τ, σ, 0) = B(τ, σ, l) (6.4)

for all τ ∈ (0,∞) and all σ ∈ [0, 2π]. This condition is in particular satisfied in symmetric apertures, or
if the bounds of the interval [0, l] are chosen far from the magnet system, where it can be assumed that
B(τ, σ, 0) = B(τ, σ, l) = 0. Exploiting the periodicity condition (6.4) yields with the same argumentation as
in Section 2.4.2 the toroidal harmonic expansion of ϕm on D̃

ϕm(τ, σ, φ) = Etφ+
√
κ(τ, σ)

∞∑
m,n=0

Q
2πm

l

n− 1
2

(cosh(τ))

[
At
n,m cos(nσ) cos

(
2πmφ

l

)
+ Bt

n,m sin(nσ) cos

(
2πmφ

l

)
+ Ct

n,m cos(nσ) sin

(
2πmφ

l

)
+Dt

n,m sin(nσ) sin

(
2πmφ

l

)]
.

(6.5)

In comparison to the toroidal harmonic expansion of ϕm on D given in equation (6.2), the only difference is
that the order m is replaced by the term 2πm

l . The corresponding formulas for the magnetic flux density on D̃
are given in Appendix 8.3. Again, the formulas only differ by replacing m with the term 2πm

l . Consequently,
toroidal harmonic coefficients on a toroidal wedge can be determined with the same methods as on the toroidal
domain D.

99



The forward model to predict the magnetic flux density on the toroidal wedge is analogously defined to the
mapping (6.3) by

H : p = (Et,At
n,m,Bt

n,m, Ct
n,m,Dt

n,m) 7→ B(τ, σ, φ), (6.6)
where now the equations (8.33), (8.34) and (8.35) are used.

Average magnetic flux density In [119, Section 6.1.3], it is shown that if the magnetic scalar potential
satisfies the Laplace equation in 3D Cartesian coordinates and if [0, l] is a segment on the longitudinal y-axis of
the magnet system, such that the respective component of the magnetic field satisfies Hy(x, 0, z) = Hy(x, l, z)

(e.g., due to symmetry or because the field equals zero), then the average magnetic scalar potential ∫ l0 ϕm dy
satisfies the Laplace equation in 2D Cartesian coordinates in the xz-plane. This result is useful because it
justifies the application of the scaling laws of the multipole coefficients (2.81) also to integrated quantities
as discussed in [119, Section 6.1.3]. In this paragraph, a similar result in toroidal coordinates is derived
and discussed.
Given a toroidal wedge with φ ∈ [0, l] and l ≤ 2π inside the air domain of a magnet system and assume that
the φ-component of the magnetic field satisfies the symmetry condition Hφ(τ, σ, 0) = Hφ(τ, σ, l). The latter
condition is satisfied particularly if the interval bounds are chosen far from the aperture and for symmetric
apertures.
If the magnetic scalar potential ϕm in the toroidal wedge satisfies the Laplace equation in toroidal coordi-
nates (2.92), the average solution ϕm on [0, l] defined by

ϕm(τ, σ) :=

∫ l

0
ϕm(τ, σ, φ) dφ. (6.7)

satisfies the same simplified Laplace equation (2.100) as the magnetic scalar potential in the rotationally
symmetric case (2.104). The following calculation justifies this claim:

κ(τ, σ)3

a3 sinh(τ)

[
∂

∂τ

(
a sinh(τ)

κ(τ, σ)

∂ϕm
∂τ

)
+

∂

∂σ

(
a sinh(τ)

κ(τ, σ)

∂ϕm
∂σ

)]
(6.8)

=

∫ l

0

κ(τ, σ)3

a3 sinh(τ)

[
∂

∂τ

(
a sinh(τ)

κ(τ, σ)

∂ϕm
∂τ

)
+

∂

∂σ

(
a sinh(τ)

κ(τ, σ)

∂ϕm
∂σ

)]
dφ (6.9)

= −
∫ l

0

κ(τ, σ)3

a3 sinh(τ)

[
∂

∂φ

(
a

κ(τ, σ) sinh(τ)

∂ϕm
∂φ

)]
dφ (6.10)

= − κ(τ, σ)2

a2 sinh2(τ)

∫ l

0

∂2ϕm
∂φ2

dφ (6.11)

=
κ(τ, σ)

a sinh(τ)
[Hφ(φ)]

l
0 . (6.12)

Thereby, we used the Leibniz rule to interchange integration and differentiation in equation (6.9), the fact that
the scaling factors hτ , hσ and hφ are independent of φ in equation (6.9) and (6.11), and the definition of the
magnetic scalar potential (2.35) according to that Hφ = hφ∂ϕm/∂φ. The right-hand side of equation (6.12)
equals zero if and only if the symmetry condition Hφ(τ, σ, 0) = Hφ(τ, σ, l) is satisfied.
Consequently, the toroidal harmonic expansion of the magnetic scalar potential in the rotationally symmetric
case (2.104) can also be used to describe the average magnetic scalar potential ϕm. Formulas for the average
magnetic flux density ∫ l0 B dφ are given in Appendix 8.3. They have the same structure as the rotationally
symmetric magnetic flux density formulas. Hence, the toroidal harmonic coefficients of the average magnetic
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flux density can be determined with the same methods as the coefficients in the rotationally symmetric case.
The forward model, in this case, is defined by

H : p = (Et,At
n,0,Bt

n,0) 7→
∫ l

0
B(τ, σ, φ) dφ. (6.13)

Notice that this result does not hold for the integrated transversemagnetic scalar potential defined by

ϕ̃m(τ, σ) :=

∫ l

0
ϕm(τ, σ, φ) dr̃ =

∫ l

0
ϕm(τ, σ, φ)hφ dφ, (6.14)

where dr̃ is the line element describing the integration curve in toroidal coordinates that varies in φ. Due to
the dependence of hφ on both τ and σ the partial derivative with respect to τ and σ and the term hφ can not
be interchanged.

Inverse problem Determining the toroidal harmonic coefficients from observations of the magnetic flux den-
sity on a toroidal domain D can be formulated as the following inverse problem:

Problem 7. (Inverse problem) Given observationsBobs of the magnetic flux density inD, find the linear coefficient
and the toroidal harmonic coefficients p = (Et,At

n,m,Bt
n,m, Ct

n,m,Dt
n,m) such that the equations (8.12), (8.13)

and (8.14) hold, i.e. H(p) = Bobs.

Inverse problems can be defined equivalently for the other two use cases concerning the magnetic flux density
on toroidal wedges and the average magnetic flux density. Notice that implementations of the forward model
are limited to a finite number of parameters, thus we usually work with a finite-dimensional approximation of
the inverse problem. In this case, and also if the observations Bobs are affected by uncertainty, the condition
H(p) = Bobs has to be relaxed like in the preceding chapters to address that a solution to the inverse problem 7
might not exist.
Several approaches can be found in the literature to determine the toroidal harmonic coefficients from the
magnetic flux density, the magnetic vector potential, or the magnetic scalar potential. Using the trigonometric
functions’ orthogonality, the toroidal harmonic expansion coefficients are determined by integration from
the magnetic vector potential [36]. The same method is used in [150], where the magnetic scalar potential
is integrated.
Another approach to determine a finite set of toroidal harmonic coefficients is fitting. In [58], toroidal
harmonic coefficients are fitted to observations of the magnetic scalar potential, [19, 89, 133] suggest fitting
the coefficients to observations of the magnetic flux density. Determining the toroidal harmonic coefficients
based on observations of the magnetic flux density is advantageous because standard magnetic measurement
methods can observe this quantity of interest. In contrast, the magnetic scalar and vector potential cannot
be measured. In addition, many field simulation software allows calculating B, while different potential
formulations may be underlying. The approaches [19, 133] use knowledge of the observed field that leads
to simplifications of the expansion, e.g., by assuming symmetries, whereas the recently published approach
described in [89] is, like our approach, also suitable for general fields.
Similar to the approaches in the literature, we consider a determination method based on integration and an
approach based on fitting. The derived integration method differs from the existing ones by integrating the
magnetic flux density instead of a potential. The fitting method differs from existing methods by including
gauging and considering optimal observation positions.
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domain knowledge

magnetostatic problem in
free space (µ = µ0)

torodial harmonic expansion
of ϕm and B

forward model
H : p 7→ q

torodial harmonic coefficients
p := (Et,At

n,m,Bt
n,m, Ct

n,m,Dt
n,m)

magnetic flux density observations

observations qobs := Bobs

curlH = 0 in D
divB = 0 in D

operation-centric system model M(s0,p
up)

pLS = arg minp
∥∥Hp− qobs

∥∥2

measurable with Hall probe
mapper

Deterministic model update

pup := pLS

least squares fittingIntegration

recursive formulas

Figure 6.2: Overview of sources of knowledge and methods to build an operation-centric system model on a
toroidal domain based on the toroidal harmonic expansion. From the magnetostatic problem in
free space, the toroidal harmonic expansion of the magnetic scalar potential, and the magnetic
flux density are derived using R-separation. The coefficients of this expansion are determined
using integration and least squares fitting. The least squares fitting method is recommended
since the recursive formulas obtained by integration are numerically unstable. The resulting
systemmodel can be used to predict the magnetic flux density in positions that were not included
in the observations qobs.
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Structure of this chapter Figure 6.2 summarizes the methods and sources of knowledge combined in this
chapter to determine the toroidal harmonic coefficients. The remainder of the chapter is organized as follows:
First, in Section 6.1, some basic properties of the toroidal harmonic expansion are discussed, e.g., the linear
occurrence of the toroidal harmonic coefficients and the linear dependence of the functions spanning the skew
part of the magnetic flux density in the toroidal harmonic expansion. Due to the first property, the inverse
problem 7 is linear. According to the second property, the magnetic flux density does not uniquely define the
skew harmonic coefficients, hence gauging is required.
Subsequently, in Section 6.2, two methods are derived to determine the toroidal harmonic coefficients
from magnetic flux density observations. The first method is based on the orthogonality of the trigonometric
functions. Similar to the equations (2.78) and (2.79) for obtaining the circular harmonic coefficients, recursive
formulas to determine the toroidal harmonics can be derived by integrating the magnetic flux density on
τ -isolines. However, due to their recursive nature, these formulas are numerically unstable. More suitable
for applications is the second method, which determines a finite number of toroidal harmonic coefficients by
linear least squares fitting. Imposing a gauging condition on the skew harmonic coefficients, and optimizing
the observation positions of the magnetic flux density improves the conditioning of the problem.
In the last section of this chapter, the least squares fitting method is applied for validation to simulated
observations of the magnetic flux density generated by the coil arrangements of the ITER tokamak and of a
curved CCT magnet. We show on rotationally symmetric data that the toroidal harmonic expansion is more
suitable for describing the field inside the ITER tokamak than the circular harmonic expansion. Moreover,
the operation-centric model based on the determined toroidal harmonic coefficients is assessed by evaluating
the relative error between its predicted magnetic flux density and the ground truth magnetic flux density
simulated with the software ROXIE [121]. For the ITER example, a few toroidal harmonic coefficients are
sufficient to obtain a relative prediction error of the order of magnitude of 10−6. Hence, the toroidal harmonic
expansion is a suitable operation-centric system model in this case. In the curved CCT dipole example, more
toroidal harmonic coefficients are required to predict the magnetic flux density in the center of the aperture
with a relative error of the order of magnitude of 10−5. Despite the large number of coefficients, the common
threshold for sufficient accuracy of the relative prediction error of 1 unit in 10000 is exceeded in the fringe
field region for the curved CCT example. An operation-centric system model that is not based on a periodicity
assumption of the data, might be more suitable for this application.

6.1 Properties of the toroidal harmonic expansion

6.1.1 Linearity

The toroidal harmonic coefficients At
n,m,Bt

n,m, Ct
n,m and Dt

n,m appear as linear coefficients in both, the toroidal
harmonic expansion of the magnetic scalar potential (2.99) and the toroidal harmonic expansions of the
magnetic flux density components (8.12), (8.13) and (8.14). Consequently, the magnetic flux density can be
computed from a given (finite) set of toroidal harmonic coefficients with a matrix-vector multiplication. The
linearity is significant because it yields that the forward model H is linear. Conversely, the inverse problem 7
can be approximated and solved by resolving the corresponding finite linear equation system for the toroidal
harmonic coefficients.
In this paragraph, the notation of this linear equation system is defined. The solution is discussed later in
Section 6.2.2. In Appendix 8.2, the functions

fAn,m, f
B
n,m, f

C
n,m, f

D
n,m, gAn,m, g

B
n,m, g

C
n,m, g

D
n,m, hAn,m, h

B
n,m, h

C
n,m, h

D
n,m : (τ, σ, φ) 7→ R

fAn , f
B
n , gAn , g

B
n , hE : (τ, σ) 7→ R (6.15)
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are defined such that themagnetic flux density components can bewritten as the linear combinations

Bτ =

∞∑
m,n=0

[
At
n,mf

A
n,m + Bt

n,mf
B
n,m + Ct

n,mf
C
n,m +Dt

n,mf
D
n,m

] (6.16)

Bσ =
∞∑

m,n=0

[
At
n,mg

A
n,m + Bt

n,mg
B
n,m + Ct

n,mg
C
n,m +Dt

n,mg
D
n,m

] (6.17)

Bφ =
∞∑

m,n=0

[
At
n,mh

A
n,m + Bt

n,mh
B
n,m + Ct

n,mh
C
n,m +Dt

n,mh
D
n,m

]
+ EthE . (6.18)

If these series of toroidal harmonic expansions are truncated at n = N andm =M , the equations (6.16), (6.17)
and (6.18) can be collected in the linear equation system

BτBσ
Bφ

 =

 0 fA fB fC fD

0 gA gB gC gD

hE hA hB hC hD



Et

At

Bt

Ct

Dt

 . (6.19)

Thereby, the vectors At,Bt, Ct,Dt are defined by

At :=
(
At

0,0 . . . At
0,M . . . At

N,0 . . . At
N,M

)⊤
Bt :=

(
Bt
1,0 . . . Bt

1,M . . . Bt
N,0 . . . Bt

N,M

)⊤
Ct :=

(
Ct
0,1 . . . Ct

0,M . . . Ct
N,1 . . . Ct

N,M

)⊤
Dt :=

(
Dt

1,1 . . . Dt
1,M . . . Dt

N,1 . . . Dt
N,M

)⊤ (6.20)

and the matrix entries are the corresponding vector-valued functions evaluated in (τ, σ, φ), summarizing the
functions defined in (6.15), e.g.,

fA :=
(
fA0,0 . . . fA0,M . . . fAN,0 . . . fAN,M

)
. (6.21)

This notation omits the dependence of the functions on (τ, σ, φ) for readability. Notice that equation (6.19) is a
finite-dimensional approximation of the forwardmodel q = Hp defined in equation (6.3).

In the rotationally symmetric case, the problem is simplified and the components of the magnetic flux density
are given by

Bτ =

∞∑
n=0

[
At
nf

A
n + Bt

nf
B
n

] (6.22)

Bσ =

∞∑
n=0

[
At
ng

A
n + Bt

ng
B
n

] (6.23)

Bφ =EthE , (6.24)

with the spanning functions fAn , fBn , gAn , gBn : (τ, σ) 7→ R that satisfy

fAn := fAn,0, fBn := fBn,0, gAn := gAn,0, gBn := gBn,0 (6.25)
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for all n ∈ N. Analogously to the general case, we truncate the expansions in equation (6.22) and (6.23) at
n = N and collect the equations in the linear equation systemBτBσ

Bϕ

 =

 0 fA fB

0 gA gB

hE 0 0

Et

At

Bt

 . (6.26)

In the following paragraph, we show that the functions {fAn }0≤n and the functions {gAn }0≤n, which span
the skew part of the magnetic flux density, are linearly dependent. Although the truncated sets {fAn }0≤n≤N
and {gAn }0≤n≤N are linearly independent, it is observed that the matrix in equation (6.26) remains poorly
conditioned. To improve the conditioning, a row that defines At

0 can be added to the matrix, taking advan-
tage of the freedom of choice due to the linear dependence of the full set of functions. More details are
discussed later in Section 6.2.2. The study of linear dependence is restricted to the rotationally symmetric
case.

6.1.2 Linear dependence

In this paragraph, we show that there is a non-trivial choice of skew harmonic coefficients At
n such that the

corresponding magnetic scalar potential given by

ϕm(τ, σ, φ) = Etφ+
√
κ(τ, σ)

∞∑
n=0

Q0
n− 1

2

(cosh(τ))
(
At
n cos(nσ) + Bt

n sin(nσ)
) (6.27)

is constant. Consequently, the corresponding magnetic flux density is zero, even though not all coefficients
of the linear combination in the equations (6.22) and (6.23) are zero. Hence, the sets of functions {fAn }0≤n
and {gAn }0≤n spanning the skew part of the magnetic flux density are linearly dependent and the forward
mapping defined in equation (6.3) has a non-trivial kernel. A similar calculation to determine the expansion
coefficients leading to a vector field with zero curl in a vector potential formulation in toroidal coordinates is
conducted in [36].
Assume that the magnetic scalar potential ϕm in toroidal harmonic expansion equals a constant c ∈ R \ {0},
yielding the equation

c = Etφ+
√
κ(τ, σ)

∞∑
n=0

Q0
n− 1

2

(cosh(τ))
(
At
n cos(nσ) + Bt

n sin(nσ)
)
. (6.28)

From this equation, the toroidal harmonic coefficients At
n and Bt

n can be obtained by multiplication with the
term cos(lσ)/

√
κ(τ, σ) (or respectively sin(lσ)/

√
κ(τ, σ)) and integration over σ on the interval [−π, π].

We begin with the determination of the skew toroidal harmonic coefficients by resolving∫ π

−π
c
cos(lσ)√
κ(τ, σ)

dσ =

∫ π

−π

cos(lσ)√
κ(τ, σ)

(
Etφ+

√
κ(τ, σ)

∞∑
n=0

Q0
n− 1

2

(cosh(τ))
(
At
n cos(nσ) + Bt

n sin(nσ)
))

dσ

(6.29)
for At

n. This equation can be simplified by inserting the equation∫ π

−π

cos(lσ)√
κ(τ, σ)

dσ = 2
√
2Q0

l− 1
2

(cosh(τ)), (6.30)
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which is given in [36, Section 5], into equation (6.29), yielding
2
√
2Q0

l− 1
2

(cosh(τ))c = 2
√
2Q0

l− 1
2

(cosh(τ))Etφ

+
∑∞

n=0Q
0
n− 1

2

(cosh(τ))
∫ π
−π

At
n
2 (cos((n− l)σ) + cos((n+ l)σ))

+Bt
n
2 (sin((n− l)σ) + sin((n+ l)σ)) dσ

= 2
√
2Q0

l− 1
2

(cosh(τ))Etφ+At
l δlπQ

0
l− 1

2

(cosh(τ)),

(6.31)

where δl := 2 for l = 0 and δl := 1 for l > 0. Thereby, we used the addition formulas [2, equation 4.3.16,
4.3.17] and the equations ∫ 2π

0 sin(mσ) dσ = 0 for all m ∈ N0 and
∫ 2π
0 cos(mσ) dσ = 0 for all integers m > 0.

Since the left-hand side of equation (6.31) is independent of φ, the linear coefficient Et has to equal zero.
Resolving equation (6.31) for At

l yields
At
l =

2
√
2c

δlπ
̸= 0. (6.32)

To obtain the normal toroidal harmonic coefficients Bt
n, the term cos(lσ) in equation (6.29) is replaced with

sin(lσ) and the equation ∫ π

−π

sin(lσ)√
κ(τ, σ)

dσ = 0 (6.33)

is inserted, yielding the equation
0 =

∑∞
n=0Q

0
n− 1

2

(cosh(τ))
∫ π
−π

At
n
2 (sin((n− l)σ) + sin((n+ l)σ)) + Bt

n
2 (cos((n− l)σ)− cos((n+ l)σ)) dσ

= Bt
l δlπQ

0
l− 1

2

(cosh(τ)),

(6.34)
where δl := 0 for l = 0 and δl := 1 for l > 0. Hence, Bt

n = 0 for all n ≥ 0.
In conclusion, there is a non-trivial choice of skew toroidal harmonic coefficients At

n, trivial normal toroidal
harmonic coefficients Bt

n and trivial linear coefficient Et, such that the magnetic scalar potential ϕm is constant.
Inserting these coefficients into the equations (6.22) and (6.23) yields that the functions {fAn }0≤n and
the functions {gAn }0≤n are linearly dependent. Equation (6.25) yields that {fAn }0≤n ⊂ {fAn,m}0≤n,m and
{gAn }0≤n ⊂ {gAn,m}0≤n,m, thus also in the general case, the functions spanning the skew part of the magnetic
flux density are linearly dependent.
The consequence of the observed linear dependence is that the skew toroidal harmonic coefficients are not
uniquely determinable from the magnetic flux density. Hence, the inverse problem 7 is ill-posed.
To address the ill-posedness, an additional condition defining a relation between one or more skew toroidal
harmonic coefficients can be imposed, e.g., At

0 = 0 or At
0 = At

1. Due to the linear dependence of the
functions spanning the skew part of the magnetic flux density, the choice of the imposed condition does
not affect the value of the magnetic flux density. Thus, all sets of resulting coefficients based on different
imposed conditions are solutions to the inverse problem 7. However, the choice of the imposed condition
affects the value of the magnetic scalar potential, e.g., the magnetic scalar potential in the focal ring is
given by

lim
τ→∞

ϕm(τ, σ, ϕ) = Etϕ+
π√
2
At

0. (6.35)

Consequently, the choice of the imposed condition can be understood as a gauging condition such as setting
ϕm(x0) = ϕ0 at an arbitrary point x0 ∈ D and with an arbitrary constant ϕ0 ∈ R as discussed in Section 2.2.2.
We will also see later in Section 6.2.1 that the derived formulas to compute the skew harmonic coefficients
from the magnetic flux density by integration are recursive and require a value for At

0 to determine the
further coefficients At

n with n > 0. In this method, gauging can conveniently be applied by imposing a value
for At

0.
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6.2 Methods to determine the toroidal harmonics

Two different methods are derived in this section to solve the inverse problem 7. The first method is based on
integrating the magnetic flux density, leading to recursive formulas, the second method resolves the linear
system of equations (6.19) with the least squares method and yields an approximation of a finite set of toroidal
harmonic coefficients.

6.2.1 Integration of the magnetic flux density

Using the orthogonality of the trigonometric functions, the circular harmonic coefficients Ac
n,Bc

n can be deter-
mined by integrating the radial component Br of the magnetic flux density (see equations (2.78) and (2.79)).
In this section, similar formulas are derived for the toroidal harmonic coefficients At

n,Bt
n and the linear coeffi-

cient Et. We restrict the study to the rotationally symmetric case (∂B/∂φ = 0).
As in the circular harmonic case, the formulas are based on integrating the magnetic flux density components
Bτ , Bσ, Bφ. For this purpose, the following integrals are introduced

Iτk (τ) :=

∫ 2π

0

1√
κ(τ, σ)

Bτ (τ, σ) cos(kσ) dσ, (6.36)

Iσk (τ) :=

∫ 2π

0

1√
κ(τ, σ)

Bσ(τ, σ) cos(kσ) dσ, (6.37)

Iφ(τ) :=

∫ 2π

0
Bφ(τ, σ) dσ, (6.38)

where k ≥ 0 is an integer. The choice of the integrands is driven by the idea of exploiting the orthogonality
of the trigonometric functions as much as possible. In the following paragraphs, it is shown that the skew
toroidal harmonic coefficients At

n can be determined from the term Iτk (τ), the normal coefficients Bt
n can be

determined from Iσk (τ), and the linear coefficient can be determined from Iφ(τ).

Determination of the normal toroidal harmonic coefficients Inserting the toroidal harmonic expansion of
Bσ given in equation (8.15) into equation (6.37) yields

Iσk (τ) =
∫ 2π
0

Bσ(τ,σ)√
κ(τ,σ)

cos(kσ) dσ

=
∫ 2π
0 −µ0

a

∑∞
n=0 Q̃

0
n− 1

2

(τ)Bt
n

[
1

2
sin(σ) sin(nσ) + n cosh(τ) cos(nσ)− n cos(σ) cos(nσ)

]
cos(kσ)dσ

=
∫ 2π
0 −µ0

a

∑∞
n=0 Q̃

0
n− 1

2

(τ)Bt
n

[
1− 2n

8
cos((n− k − 1)σ) +

1− 2n

8
cos((n+ k − 1)σ)

−1 + 2n

8
cos((n− k + 1)σ)− 1 + 2n

8
cos((n+ k + 1)σ)

+
n cosh(τ)

2
cos((n− k)σ) +

n cosh(τ)

2
cos((n+ k)σ)

]
dσ.

Thereby, we used the addition formulas [2, equation 4.3.16, 4.3.17] and fact that ∫ 2π
0 sin(mσ) dσ = 0 for all

m ∈ N0. Moreover, also the integral
∫ 2π
0 cos(mσ) dσ equals zero for integers m > 0. Consequently, inserting
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k = 0, 1 into the last equation yields

Iσ0 (τ) = −4πµ0
a

(
1− 2

8
Q̃0

1− 1
2

(τ)Bt
1

)
, (6.39)

Iσ1 (τ) = −2πµ0
a

(
1− 4

8
Q̃0

2− 1
2

(τ)Bt
2 +

cosh(τ)

2
Q̃0

1− 1
2

(τ)Bt
1

)
. (6.40)

Otherwise, for k ≥ 2, the right-hand side simplifies to

Iσk (τ) = −2πµ0
a

(
1− 2(k + 1)

8
Q̃0
k+1− 1

2

(τ)Bt
k+1 −

1 + 2(k − 1)

8
Q̃0
k−1− 1

2

(τ)Bt
k−1 +

k cosh(τ)

2
Q̃0
k− 1

2

(τ)Bt
k

)
.

(6.41)
Resolving the equations (6.39), (6.40), and (6.41) for the normal toroidal harmonic coefficients, and knowing
that Bt

0 = 0 (by definition) yields the recursive equation system

Bt
n =



0 n = 0
a2Iσ0 (τ)

πµ0Q̃0

1− 1
2

(τ)
n = 1

4

3Q̃0

2− 1
2

(τ)

(
cosh(τ)Q̃0

1− 1
2

(τ)Bt
1 +

aIσ1 (τ)
πµ0

)
n = 2

4

(2n−1)Q̃0

n− 1
2

(τ)

(
(n− 1) cosh(τ)Q̃0

n−1− 1
2

(τ)Bt
n−1 − 2n−3

4 Q̃0
n−2− 1

2

(τ)Bt
n−2 +

aIσn−1(τ)

πµ0

)
n ≥ 3

(6.42)

Determination of the skew toroidal harmonic coefficients With similar reasoning, the skew toroidal har-
monic coefficients can be determined from the integral Iτk (τ) defined in equation (6.36). Inserting the toroidal
harmonic expansion of Bτ yields

Iτk (τ) =

∫ 2π

0

∞∑
n=0

− µ0At
n

aQ0
n− 1

2

(cosh(τ0))

sinh(τ)Q0
n− 1

2

(cosh(τ))

4
+

cosh(τ) d
dτQ

0
n− 1

2

(cosh(τ))

2


(cos((n− k)σ) + cos((n+ k)σ))

−
d
dτQ

0
n− 1

2

(cosh(τ))

4
(cos((n− k − 1)σ) + cos((n− k + 1)σ))

−
d
dτQ

0
n− 1

2

(cosh(τ))

4
(cos((n+ k − 1)σ) + cos((n+ k + 1)σ))

dσ.

Depending on the integer k, this equation can be further simplified to

Iτ0 (τ) = −µ0
a

(
2πAt

0

S0

− 1
2

(cosh(τ))

Q0

− 1
2

(cosh(τ0))
−At

1π

d
dτ
Q0

1− 1
2

(cosh(τ))

Q0

1− 1
2

(cosh(τ0))

)

Iτ1 (τ) = −µ0
a

(
−πAt

0

d
dτ
Q0

− 1
2

(cosh(τ))

Q0

− 1
2

(cosh(τ0))
+ πAt

1

S0

1− 1
2

(cosh(τ))

Q0

1− 1
2

(cosh(τ0))
− πAt

2

d
dτ
Q0

2− 1
2

(cosh(τ))

Q0

2− 1
2

(cosh(τ0))

)

Iτk (τ) = −µ0
a

(
−πAt

k−1

d
dτ
Q0

k−1− 1
2

(cosh(τ))

2Q0

k−1− 1
2

(cosh(τ0))
+ πAt

k

S0

k− 1
2

(cosh(τ))

Q0

k− 1
2

(cosh(τ0))
+ πAt

k+1

d
dτ
Q0

k+1− 1
2

(cosh(τ))

2Q0

k+1− 1
2

(cosh(τ0))

)
,

(6.43)
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where the last equation holds only for k ≥ 2. Thereby, the abbreviation S0
n− 1

2

(cosh(τ)) was used to save on
notation, which we define by

S0
n− 1

2

(cosh(τ)) :=
1

2
sinh(τ)Q0

n− 1
2

(cosh(τ)) + cosh(τ)
d

dτ
Q0
n− 1

2

(cosh(τ)). (6.44)

Resolving for the skew toroidal harmonic coefficients yields the recursive equation system

At
n =



Q0

1− 1
2

(cosh(τ0))

d
dτ
Q0

1− 1
2

(cosh(τ))

(
2S0

− 1
2

(cosh(τ))

Q0

− 1
2

(cosh(τ0))
At

0 +
aIτ0 (τ)
πµ0

)
n = 1

2Q0

2− 1
2

(cosh(τ0))

d
dτ
Q0

2− 1
2

(cosh(τ))

(
−

d
dτ
Q0

− 1
2

(cosh(τ))

Q0

− 1
2

(cosh(τ0))
At

0 +
S0

1− 1
2

(cosh(τ))

Q0

1− 1
2

(cosh(τ0))
At

1 +
aIτ1 (τ)
πµ0

)
n = 2

2Q0

n− 1
2

(cosh(τ0))

d
dτ
Q0

n− 1
2

(cosh(τ))

(
−

d
dτ
Q0

n−2− 1
2

(cosh(τ))

2Q0

n−2− 1
2

(cosh(τ0))
At
n−2 +

S0

n−1− 1
2

(cosh(τ))

Q0

n−1− 1
2

(cosh(τ0))
At
n−1 +

aIτn−1(τ)

πµ0

)
n ≥ 3.

(6.45)

Notice that unlike for the normal toroidal harmonic coefficients, the recursive formulas for the skew toroidal
harmonic coefficients require At

0. This is due to the linear dependence of the functions spanning the skew part
of the magnetic flux density shown in Section 6.1. Consequently, any value can be chosen for At

0 to determine
a valid solution. Selecting this value means gauging the solution.

Determination of the linear coefficient The linear coefficient Et can be directly determined from the
φ-component of the magnetic flux density in a single observation position by

Et = − a sinh(τ)

µ0κ(τ, σ)
Bφ(τ, σ). (6.46)

However, if observations of Bφ on a τ -isocircle are available, also the integral Iφ(τ) defined in equation (6.38)
can be used to compute the average solution

Et = −a tanh(τ)
2πµ0

Iφ(τ). (6.47)

Limitations Although the recursive formulas (6.42) and (6.45) provide an expression for every toroidal
harmonic coefficient, the formulas are unsuitable for determining the toroidal harmonic coefficients from
a finite set of magnetic flux density observations Bobs, i.e. for solving the inverse problem 7. Their limited
applicability to real-world examples is caused by the recursion and the fact that the formulas are based on the
evaluation of the integrals Iτk (τ) and Iσk (τ) defined in equation (6.36) and (6.37). Any error or uncertainty
that is related to these terms is propagated to the toroidal harmonic coefficients. These errors and uncertainties
are caused, e.g., by uncertainties of the magnetic flux density observations and approximation errors of the
integral evaluation, which we compute from a finite set of observations using the trapezoidal rule [107].
Due to the recursion, the coefficients At

n and Bt
n are not only affected by the errors and uncertainties in

the evaluation of the integrals Iτk (τ) and respectively Iσk (τ) with k = n− 1 but all integrals with k ≤ n− 1.
Consequently, the determination of toroidal harmonic coefficients with this method is unstable (see also the
example in Section 6.3.1). Instead, we typically solve the inverse problem 7 with the least squares fitting
method described in the next paragraph.
Following equation (6.25) it holds that At

n,0 = At
n and Bt

n,0 = Bt
n for all n ∈ N. Consequently, integration-

based formulas for the toroidal harmonic expansion in the general case would also be affected by the same
problem of recursive error propagation.
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6.2.2 Linear least squares fitting

In Section 6.1, the finite linear equation system (6.19) was introduced, which relates the toroidal harmonic
coefficients to the components of the magnetic flux density with a matrix-vector multiplication. To work with
a finite equation system, the toroidal harmonic expansion of the magnetic flux density is truncated at n = N
and m =M . This truncation yields a finite-dimensional approximation of the forward model Hp defined in
equation (6.3).
Given at least as many observations of the magnetic flux density as unknown toroidal harmonics, the equation
system (6.19) can be resolved to determine values for the toroidal harmonic coefficients. Because a finite
expansion is only an approximation and since observations Bobs of the magnetic flux density are affected by
uncertainty, typically observations in more positions than unknown coefficients are used, and the coefficients
are determined by linear least squares fitting.

Truncation of the toroidal harmonic expansion The fitting of the toroidal harmonic coefficients requires a fi-
nite number of coefficients. In general, no prior knowledge is available about which of the functions

fAn,m, f
B
n,m, f

C
n,m, f

D
n,m, gAn,m, g

B
n,m, g

C
n,m, g

D
n,m, hAn,m, h

B
n,m, h

C
n,m, h

D
n,m, h

E : (τ, σ, φ) 7→ R, (6.48)

spanning the toroidal harmonic expansion of the magnetic flux density are the most relevant to describe
a given observation of the magnetic flux density. For example, knowledge of symmetry can be used to
omit several degrees n or orders m. Otherwise, the number of coefficients is limited by truncating the
toroidal harmonic expansion at some N,M ∈ N and considering only the functions listed in equation (6.48)
with n ≤ N and m ≤ M . We will see that this choice is suitable for the applications demonstrated in
Section 6.3.

Given a set of R observations of the magnetic flux densityBobs at the positions {(τr, σr, φr)}1≤r≤R in a toroidal
domain D. We define the observation vector qobs by

qobs :=
(
Bobs(τ1, σ1, φ1)

⊤, . . . ,Bobs(τR, σR, φR)
⊤
)⊤

. (6.49)

Solving the finite-dimensional equation system (6.19) inR positions simultaneously yields by abuse of notation
with the matrix

H :=



0 fA(τ1, σ1, φ1) fB(τ1, σ1, φ1) fC(τ1, σ1, φ1) fD(τ1, σ1, φ1)
0 gA(τ1, σ1, φ1) gB(τ1, σ1, φ1) gC(τ1, σ1, φ1) gD(τ1, σ1, φ1)

hE(τ1, σ1, φ1) hA(τ1, σ1, φ1) hB(τ1, σ1, φ1) hC(τ1, σ1, φ1) hD(τ1, σ1, φ1)
... ... ... ... ...
0 fA(τR, σR, φR) fB(τR, σR, φR) fC(τR, σR, φR) fD(τR, σR, φR)
0 gA(τR, σR, φR) gB(τR, σR, φR) gC(τR, σR, φR) gD(τR, σR, φR)

hE(τR, σR, φR) hA(τR, σR, φR) hB(τR, σR, φR) hC(τR, σR, φR) hD(τR, σR, φR)


(6.50)

and the parameter vector
p :=

(
Et At Bt Ct Dt

)⊤
, (6.51)

as defined in equation (6.20), the finite-dimensional linear system of equations

qobs = Hp. (6.52)
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Linear least squares solution We can assume that the number of rows of the matrix H defined in equa-
tion (6.50) exceeds its number of columns since at least as many equations as unknowns are required to
solve the inverse problem: Find p such that qobs = Hp. Since measured magnetic flux density observations
are affected by measurement uncertainty and due to the truncation of the expansion, a solution p to the
latter equation might not exist. Thus, we seek an approximate solution that minimizes the residual vector
defined by

r := qobs −Hp (6.53)

concerning the squared Euclidean norm. Notice that if errors and uncertainties of the forward model H are
neglected and if we assume that the uncertainties affecting qobs can be described with the additive noise model
defined in Section 3.1 and a perturbation vector u, which is a realization of the random vector U ∼ N (0, σ2I)
describing the random measurement uncertainty, then the least squares solution pLS coincides with the
maximum likelihood estimate given in equation (3.33) [12, Section 1.2].
It can be shown that the linear least squares solution pLS is the unique solution to the linear equation
system

H⊤Hp = H⊤qobs, (6.54)

if H has full rank [59, p.268]. The latter assumption holds because the truncated sets {fAn,m}0≤n,m≤N,M and
{gAn,m}0≤n,m≤N,M spanning the skew part of the truncated toroidal harmonic expansion of the magnetic flux
density are linearly independent. To compute the least squares solution, we solve equation (6.52) with QR
decomposition [59, Section 6.5.1].

Improvement of the conditioning by gauging The conditioning of a problem measures its sensitivity to small
changes in the data [59, p.24]. The conditioning of the linear systems of equations (6.54) can be quantified
with the condition number [59, Theorem 3.5]. Concerning the Euclidean norm, the condition number of
H⊤H is given by

κ2(H⊤H) :=
∥∥∥H⊤H

∥∥∥
2

∥∥∥(H⊤H)−1
∥∥∥
2
=
σmax(H⊤H)

σmin(H⊤H)
= κ2(H)2 (6.55)

where σmax(H⊤H) and σmin(H⊤H) are the maximal and the minimal singular values of H⊤H. The smaller
the condition number, the smaller the relative Euclidean difference between the least squares solutions for
observations qobs affected by different perturbations [59, Theorem 3.5]. Discussing the condition number
κ2(H) is equivalent to discussing the condition number κ2(H⊤H) due to equation (6.55).
Even though the matrixH defined in equation (6.50) has full rank, it is often poorly conditioned. Including the
gauging condition ϕm(τ0, 0, 0) = 0, where cosh(τ0) = ρ/R, by appending the row(
0
√
κ(τ0, 0)Q̃

0
0− 1

2

(τ0) . . .
√
κ(τ0, 0)Q̃

M
0− 1

2

(τ0) . . .
√
κ(τ0, 0)Q̃

0
N− 1

2

(τ0) . . .
√
κ(τ0, 0)Q̃

M
N− 1

2

(τ0) 0
)

(6.56)
to the matrix H and appending the value 0 to the observation vector qobs improves the condition number
κ2(H) in both test cases studied in the following section (see Table 6.2 and Table 6.3). Notice that by abuse of
notation, we use the same symbol H for the matrix with the additional row.

Adjusting the experimental design is a possibility to further improve the condition number of the linear least
squares problem. The following paragraph discusses optimal observation positions (τ, σ, φ) ∈ D regarding the
condition number. The study is restricted to the rotationally symmetric case.
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Figure 6.3: Observation positions of themagnetic flux density to determine the toroidal harmonic coefficients
by least squares fitting.

Improvement of the conditioning by experimental design The coefficients of the matrix H defined in
equation (6.50) depend on the positions {(τr, σr, φr)}1≤r≤R in which the magnetic flux density is observed.
In the rotationally symmetric case, the toroidal angle φ can be omitted and the positions {(τr, σr)}1≤r≤R can
be summarized with the two vectors τ := (τ1, . . . , τR) and σ := (σ1, . . . , σR). We use the notation H(τ ,σ) to
indicate the dependence of H on τ and σ.
Particularly, if the observations qobs of the magnetic flux density are determined by magnetic measurements
instead of simulations, a measurement setup having only a few measurement positions and an optimal
conditioning of the problem is favorable. For improving the condition number of the matrix H(τ ,σ), the
following optimization problem is formulated [7]

minτ ,σ∈RR κ2(H(τ ,σ))
s.t. τ0 < τr < 2.5τ0 ∀ 1 ≤ r ≤ R

0 ≤ σr ≤ 2π ∀ 1 ≤ r ≤ R.
(6.57)

We use the particle swarm algorithm [81], that is available in MATLAB® [95, 130], to solve the optimization
problem. The algorithm is introduced in more detail in Section 4.3.1. To reduce the number of required
iterations, the search space is bounded towards the focal ring by the 2.5τ0-isosurface, omitting a small toroidal
domain (see Figure 6.3).
The optimized experimental setup is computed for a toroidal domain D with toroidal radius ρ = 1m and
poloidal radius R = 0.5m (eccentricity 2). It is supposed that the truncation threshold of the toroidal harmonic
expansion isN = 9 and that observations inR = 10 positions are considered to determine the toroidal harmonic
coefficients with the least squares solution. The optimal positions are visualized in Figure 6.3. Noticeably, the
optimal positions are not equally distributed in space but almost equally distributed according to the poloidal
angle σ. Indeed, changing the observation positions on the boundary ofD from a space-equidistant distribution
to a σ-equidistant distribution improves the condition number by one order of magnitude. The values for
the condition number κ2(H) for the different experimental setups shown in Figure 6.3 are summarized in
Table 6.1.
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Table 6.1: Condition number of the linear least squares problem to determine the toroidal harmonic coeffi-
cients for the three different distributions of observation positions shown in Figure 6.3.

space-equidistant positions σ-equidistant positions optimized positions
κ2(H) 1.33 · 107 3.33 · 106 1.45 · 106

6.3 Application and validation

In this section, the two algorithms to determine the toroidal harmonic coefficients by integration and least
squares fitting are applied to magnetic flux density observations obtained from ROXIE [121] simulations. In
practice, measurement uncertainties are also affecting these observations. In the following, these uncertainties
are neglected and we apply the methods derived in Section 6.2 directly to the ROXIE output data. Thus, also
the considerations regarding optimal experimental design discussed in the preceding section are omitted.
We focus on the validation of the algorithms rather than claiming that a generalized field description based on
the toroidal harmonic expansion is the most suitable operation-centric system model for the considered use
cases, which are:
1. ITER tokamak The magnetic flux density generated by the superconducting coil arrangement (Fig-
ure 6.4) of the ITER tokamak before plasma injection.

2. Curved CCT dipole The magnetic flux density generated by a curved CCT dipole (Figure 6.11) with a
bending angle of about 45 degrees.

In both cases, training data of magnetic flux density data to determine the toroidal harmonic coefficients is
taken on a reference torus, i.e. a τ -isosurface in the toroidal coordinate system enclosing a toroidal domain
D. In the ITER example, the eccentricity of D is ρ/R = 3.1, in the curved CCT example, the eccentricity is 6.
The determined coefficients are subsequently validated by comparing the predicted magnetic flux density to
ground truth magnetic flux density observations simulated with the same ROXIE model as the training data
but evaluated at different positions inside the toroidal domain D.

6.3.1 ITER tokamak

The International Thermonuclear Experimental Reactor (ITER) [75] is a test reactor for nuclear fusion which
is currently built in the south of France. The reactor’s design is based on the tokamak principle [11]. A magnet
system consisting of six central solenoidal coils surrounded by 18 toroidal field coils, six poloidal coils, and
18 corrector coils is used to confine, shape, and stabilize the plasma, and to ramp up and create a position
equilibrium of the plasma current. Figure 6.4 shows the coil arrangement of the magnet system omitting the
correction coils. Inside the free space surrounded by the coil arrangement a toroidal domain D with toroidal
radius ρ = 7m and the poloidal radius R = 2.3m can be placed. We choose the focal ring of the toroidal
coordinate system such that ∂D is a τ -isosurface.
In tokamak devices, not only the coils but also the plasma itself has a non-negligible contribution to the
magnetic field inside the aperture. However, the domain inside the aperture is in the presence of the plasma
not source-free, hence, the magnetic scalar potential does not satisfy the Laplace equation. Consequently, we
consider the magnetic field generated by the coil system at the moment before the plasma injection to obtain a
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Figure 6.4: Superconducting coil arrangement of the ITER tokamak from two perspectives. The arrangement
consists of 6 solenoidal coils that are stacked in the center. The central solenoid is surrounded
by 18 identical toroidal field coils and six poloidal field coils. The correction coils are not included
in this model. The toroidal domainD, that is placed inside the coil arrangement, has the toroidal
radius ρ = 7m and the poloidal radius R = 2.3m. This figure is generated with ROXIE [121].

valid test case for the formulation studied in this work. In this test case, a constant current of 68 kA is applied
to each toroidal field coil. The considered constant powering of the poloidal field coils is 25.4, -6.4, 1.0, 1.0,
2.6, and 32.9 kA from top to bottom. The solenoidal coils in the center of the aperture are constantly powered
with 36.96, 35.08, 36.20, 36.20, 33.92, and 28.82 kA from top to bottom. To test not only the determination
of the toroidal harmonics in the general case but also in the rotationally symmetric case, we also consider
a powering scheme without current in the toroidal field coils. Figure 6.5 shows the absolute value of the
magnetic flux density on ∂D in the general case and the rotationally symmetric case simulated in ROXIE.
As discussed in the introduction of this chapter, for symmetry reasons it is sufficient to build the system model
only on a toroidal wedge D̃ ⊂ D with toroidal angle φ ∈ [0, π/9]. To apply the methods of determining the
toroidal harmonic coefficients, magnetic flux density observations on a grid of 432 positions with respect to
the poloidal angle σ and 100 positions with respect to the toroidal angle φ are chosen on ∂D̃. For verification,
the magnetic flux density observations on the boundary of a concentric toroidal wedge D̃test with poloidal
radius 1m are considered. Due to the concentric position of the toroidal wedge D̃test, its boundary ∂D̃test is
not a τ -isosurface.
In the following, we evaluate the determination of the toroidal harmonics in the rotationally symmetric case
with the integration and the fitting method described in Section 6.2. We find that the toroidal harmonic
coefficients determined with the integration method diverge. Nevertheless, the fitting method can be validated.
Moreover, we show that for the considered example due to the low eccentricity of ρ/R = 3.1 an operation-
centric model based on circular harmonic coefficients is not suitable. Subsequently, the determination
of the toroidal harmonic coefficients by fitting is evaluated on the general ground truth data shown in
Figure 6.5 (left).

Limitation of the circular harmonic expansion The magnetic flux density generated by the solenoidal
and the poloidal field coils does not satisfy the requirement that ∂By/∂y = 0 in equation (2.75) which is
necessary to describe the corresponding magnetic scalar potential with the circular harmonic expansion
given in equation (2.76). As discussed in [150], for magnet systems with high eccentricity ρ/R, the circular
harmonic expansion is nevertheless often used as an operation-centric system model because the determination
of the coefficients, which are directly measurable with rotating coil magnetometers, is much easier than the
determination of the toroidal harmonic coefficients. One reason for which this acknowledged error still yields a
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Figure 6.5: Absolute value of themagnetic flux density generated by the coil arrangement of the ITER tokamak
shown in Figure 6.4 for the powering scheme before the plasma injection. The absolute value is
visualized on the boundary of a toroidal domainD with toroidal radius ρ = 7m and the poloidal
radiusR = 2.3m placed inside free space surrounded by the coil arrangement. The magnetic flux
density observations in these positions are used to determine the toroidal harmonic coefficients.
Left: Magnetic field which is generated if all coils are powered. The black lines mark one toroidal
wedge of length l = π/9. Right: Rotationally symmetric field, generated when the toroidal field
coils are turned off.

system model feasible for operation is that the toroidal harmonic multipole fields converge to the corresponding
circular harmonic multipole fields as observed by [25, Figure 4].
We use the present example of the rotationally symmetric magnetic flux density data on the toroidal domain
with eccentricity 3.1 to demonstrate the limitations of the circular harmonic expansion for toroidal domains
with low eccentricity.

Given R = 432 equally in space distributed observations Bobs of the magnetic flux density in the rotationally
symmetric case on ∂D̃, we determine the toroidal harmonic coefficients pt = (Et,At

n,Bt
n) using the least

squares fitting approach described in Section 6.2.2 with the truncation thresholdN = 20. The same number of
circular harmonic coefficients pc = (Ac

n,Bc
n) is determined by approximating the equations (2.78) and (2.79)

with the trapezoidal rule [107]. The determined harmonic coefficients are the parameters of the forward
models Ht and Hc based on toroidal and the circular harmonic expansions of the magnetic flux density. We
use the superscripts in the notation to distinguish the two models that are used here.
With each system model, the magnetic flux density on ∂D̃test is predicted and compared to the ground truth
magnetic flux density Btrue obtained from the ROXIE simulation for validation. Let Bt,pred = Ht(pt) and
Bc,pred = Hc(pc) be the two predictions. For the components ∗ ∈ {τ, σ} and each model x ∈ {t, c}, the
relative error

Ex
∗ (τ, σ) :=

∥∥∥Bx,pred
∗ (τ, σ)−Bx,true

∗ (τ, σ)
∥∥∥

Bmax
(6.58)

is shown in Figure 6.6, where Bmax = 0.07T is the maximal magnetic flux density for the considered operation
mode in the rotationally symmetric case. It can be seen that the relative errors of the predictions based on
the toroidal harmonic coefficients pt are multiple orders of magnitudes smaller than the relative errors of
the predictions based on the circular harmonic coefficients pc. Hence, the circular harmonic expansion is
infeasible to build an operation-centric system model for this example field.
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Figure 6.6: Relative error Ex
∗ defined in (6.58) between the predicted magnetic flux density and the ground

truthmagnetic flux density simulatedwith the ROXIEmodel evaluated on ∂D̃test for the rotationally
symmetric magnetic flux density data of the ITER example. The two predictions in comparison
are based on the circular harmonic expansion and the toroidal harmonic expansion. The toroidal
harmonics are determined by fitting and shown in Figure 6.7.

Limitation of the integration method The last paragraph showed that the fitting method is suitable for
determining the toroidal harmonic coefficients in the rotationally symmetric case. Figure 6.7 shows the
absolute values of the toroidal harmonic coefficients At

n,Bt
n scaled with 1/Q0

n−1/2(ρ/R) obtained by fitting
and by integration. In both cases, the gauging At

0 = 0 is applied. While the absolute values of the toroidal
harmonic coefficients determined by fitting decrease as n → ∞, the coefficients determined by the inte-
gration method diverge. As discussed in Section 6.2.1, this method is thus unfeasible for determining the
toroidal harmonics.

Validation of the fitting method in the general case After validating in the preceding paragraphs that the
fitting method is suitable for building a system model based on the toroidal harmonic expansion to describe
and predict the magnetic flux density generated by the solenoidal and the poloidal field coils of the ITER
tokamak, the fitting approach is evaluated in this paragraph for the general case.
For the truncation thresholds N = 15 andM = 4, the absolute values of the determined toroidal harmonic
coefficients are visualized in Figure 6.8. As in the rotationally symmetric case, a decreasing trend for
|At

n,m|, |Bt
n,m| and |Ct

n,m| as the order m and the degree n increase can be observed, indicating that the
expansion is suitable to describe the observed field according to the criteria of [135]. The toroidal harmonic
coefficients |Dt

n,m| are small independently of the order and the degree. Notice that the plotted values are
normalized with 1/Qmn−1/2(cosh(τ0)), where cosh(τ0) = ρ/R and that the gauging condition ϕm(τ0, 0, 0) = 0

was imposed. A comparison of the numerically estimated condition numbers κ2(H) with and without gauging
are given in Table 6.2.

For validation, the determined parameters pLS = (Et,At
n,m,Bt

n,m, Ct
n,mDt

n,m) shown in Figure 6.8 are inserted
into the forward model H and used to predict the magnetic flux density Bpred = H(pLS) on the toroidal
wedge D̃test on which simulated ground truth data Btrue of the magnetic flux density is available. For each
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Figure 6.7: Comparison of the absolute values of the toroidal harmonic coefficients determined by the
integration method described in Section 6.2.1 and the fitting method described in Section 6.2.2
for the rotationally symmetric magnetic flux density data of the ITER example.
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Figure 6.8: Absolute values of the fitted toroidal harmonic coefficients for the coil arrangement of the ITER
tokamak. Notice that the coefficients are scaled with 1/Qmn−1/2(cosh(τ0)), where cosh(τ0) = ρ/R

and the gauging condition ϕm(τ0, 0, 0) = 0 is imposed.

Table 6.2: Condition number of the linear least squares problem to determine the toroidal harmonic coeffi-
cients (N = 15,M = 4) for the coil arrangement of the ITER tokamak before and after gauging
with the condition ϕm(τ0, 0, 0) = 0.

with gauging without gauging
κ2(H) 4.43 · 108 1.51 · 1017
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Figure 6.9: Relative error E∗ defined in equation (6.59) between the predicted magnetic flux density based
on the toroidal harmonic coefficients (N = 15,M = 4) shown in Figure 6.8 and the ground truth
magnetic flux density simulated with the ROXIE model. The relative error is evaluated on the
boundary of the toroidal wedge D̃test, which is chosen concentric to the toroidal wedge D̃ shown
in Figure 6.5 (left) on which the magnetic flux density observations to determine the toroidal
harmonic coefficients are given.

component ∗ ∈ {τ, σ, φ} we define the relative error

E∗(τ, σ, φ) :=

∥∥∥Bpred
∗ (τ, σ, φ)−Btrue

∗ (τ, σ, φ)
∥∥∥

Bmax
(6.59)

between the predicted magnetic flux density and the ground truth magnetic flux density simulated with the
ROXIE model, where Bmax = 6.98T is the maximal magnetic flux density for the considered operation mode.
The relative errors E∗ evaluated on ∂D̃test are shown in Figure 6.9. In all positions and for all components,
the relative errors are of the order of magnitude of 10−6 and hence below the threshold of 1 unit in 10000
that is typically considered sufficient for the simulation of accelerator magnets.
To study the influence of the choice of the truncation thresholdsN andM , the average relative error

E∗ :=
1

100 · 432
100∑
i=1

432∑
j=1

E∗(τi,j , σj , φi) (6.60)

on the data grid on ∂D̃test is shown for different values of N andM in Figure 6.10. It can be seen that the
thresholds M ≥ 1 and N ≥ 5 should be selected to predict the magnetic flux density on ∂D̃test in average
better than 1 unit in 10000. Considering further functions with orders higher thanM = 2 or increasing the
number of considered degrees to more than N = 10 does not further improve the prediction. Consequently, in
this case, only a few toroidal harmonic coefficients are sufficient to describe the observed field. According to
[135], this fact indicates that the toroidal harmonic expansion is a suitable field description in this case.
One reason for the observation that the average relative error is not further improved, despite the increment
of the truncation thresholds N andM , is that the data Bobs violates the periodicity assumption (6.4) up to
the order of magnitude of 10−5 T.
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Figure 6.10: Average relative error defined in equation (6.60) on ∂D̃test between the predicted magnetic
flux density based on the determined toroidal harmonic coefficients for different truncation
thresholdsN andM and the ground truth magnetic flux density simulated with the ROXIE model
for the ITER example.
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Figure 6.11: Curved CCT dipole with a bending angle of around 45 degrees. The cable characteristics, pitch
lengths, and slot sizes are chosen equivalently to the curved CCT demonstrator described in
[69]. This figure is generated with ROXIE [121].

6.3.2 Curved CCT dipole

The concept of canted cosine theta (CCT) magnets was first proposed by [97]. They consist of two nested
solenoids both tilted with the angle θ but in opposite directions. Hence, the solenoidal field components
cancel out, while the dipolar field components of the two coils are added, yielding a uniform dipole field
in the air gap. The objective of the Fusillo study at CERN is the development of a strongly curved CCT
magnet which is bent over 90 degrees [69]. Curved CCT magnet systems find use, e.g., for field correc-
tions and are particularly suitable for compact particle accelerators [82] and compact ion therapy gantry
systems [149].
We consider a curved CCT magnet system similar to the prototype magnet developed in the Fusillo project
[69] in this section. The curved CCT magnet shown in Figure 6.11 has a bend angle of around 45 degrees, the
toroidal radius ρ = 600mm. The poloidal radii of the solenoids are ρ = 125mm and ρ = 147.9mm. Hence, the
source-free computational domain in the center of the magnet system has the shape of a toroidal wedge. The
cable characteristics, pitch lengths, and slot sizes are chosen identically to the prototype magnet developed in
the Fusillo project. The groves in the winding mandrel are 17.10× 5.88mm, housing 70 wires of 0.985mm
in diameter.
To apply and validate the algorithm for determining the toroidal harmonics, the curved CCT magnet is
simulated using ROXIE [121]. Thereby a static excitation current of 287.5A per wire is applied, leading to a
maximal field of 1.46T.
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Figure 6.12: Absolute value of the magnetic flux density generated by the curved CCT magnet system shown
in Figure 6.11 for the excitation current of 287.5A per wire. The absolute value is visualized on
the boundary of the toroidal wedge D̃, which has a toroidal angle of 180 degrees, the toroidal
radius ρ = 600mm and the poloidal radiusR = 100mm. The magnetic flux density observations
in these positions are used to determine the toroidal harmonic coefficients.

To determine the toroidal harmonic coefficients using the least squares fitting approach described in Sec-
tion 6.2.2, observations of the magnetic flux density on a grid covering the boundary of a toroidal wedge
D̃ with toroidal angle φ ∈ [0, π], a toroidal radius ρ = 600mm and a poloidal radius R = 100mm is chosen.
Thus, the toroidal wedge is concentric to the solenoids. The step size of the grid is 432 observations with
respect to the poloidal angle and 180 observations regarding the toroidal angle. The focal ring of the toroidal
coordinate system is set such that the boundary of the toroidal wedge D̃ is a τ -isosurface.
The longitudinal center of the magnet system regarding the toroidal angle φ is aligned with the center of
the toroidal wedge D̃. Since the toroidal wedge covers the angle of 180 degrees, while the magnet system is
only bent around 45 degrees, the toroidal wedge and hence the magnetic flux density observations cover the
central field and the fringe field. The condition thatB(τ, σ, 0) = B(τ, σ, π), which is specified in equation (6.4)
as a requirement to apply the toroidal harmonic expansion to the magnetic flux density on torus wedges, is
violated by 6.97 · 10−3T at most for all components of the magnetic flux density. The absolute values of the
magnetic flux density observations on ∂D̃ are shown in Figure 6.12.

The toroidal harmonic coefficients are determined by least squares fitting as described in Section 6.2.2. For
the truncation thresholds N = 10 andM = 50, we obtain the coefficients whose absolute values are visualized
in Figure 6.13. Notice that to obtain these values, we used the normalization of the toroidal harmonic
expansion with 1/Qmn−1/2(cosh(τ0)), where cosh(τ0) = ρ/R, and applied gauging by imposing the condition
ϕm(τ0, 0, 0) = 0. Table 6.3 emphasizes the influence of the gauging on the numerically estimated condition
number κ2(H). For the toroidal harmonics, a decreasing trend of the absolute values as the degree n and
the order m increase can be observed. According to the conditions discussed in the introduction of this
chapter and in [135], the decrease indicates the suitability of the toroidal harmonic expansion to describe
the field.

To validate the determined parameter values pLS of the toroidal harmonic coefficients At
n,m,Bt

n,m, Ct
n,m and

Dt
n,m and the linear coefficient Et and to justify the chosen thresholds N andM , the magnetic flux density is
predicted on the boundary of a toroidal wedge D̃test, which is chosen concentric to the wedge D̃, with a poloidal
radius of 80mm. Notice that this surface is not an isosurface of the toroidal harmonic coordinate system.
Let Bpred = H(pLS) be the magnetic flux density predicted by the forward model. As for the ITER example,
we evaluate for each component ∗ ∈ {τ, σ, φ} the relative error E∗ defined in equation (6.59) between the
predicted magnetic flux density and the ground truth magnetic flux density Btrue simulated with the ROXIE
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Figure 6.13: Absolute values of the fitted toroidal harmonic coefficients for the curved CCT magnet system.
Notice that the coefficients are scaled with 1/Qmn−1/2(cosh(τ0)), where cosh(τ0) = ρ/R and the
gauging condition ϕm(τ0, 0, 0) = 0 is imposed.

Table 6.3: Condition number of the linear least squares problem to determine the toroidal harmonic coeffi-
cients (N = 10,M = 50) for the curved CCT dipole before and after gauging with the condition
ϕm(τ0, 0, 0) = 0.

with gauging without gauging
κ2(H) 7.72 · 107 4.26 · 1016
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Figure 6.14: Relative error E∗ defined in equation (6.59) between the predicted magnetic flux density based
on the toroidal harmonic coefficients (N = 10,M = 50) shown in Figure 6.13 and the ground
truth magnetic flux density simulated with the ROXIE model. The relative error is evaluated on
the boundary of the toroidal wedge D̃test, which is chosen concentric to the toroidal wedge D̃
shown in Figure 6.12 on which the magnetic flux density observations to determine the toroidal
harmonic coefficients are given.

model. Here, the maximal magnetic flux density for the considered operation mode is Bmax = 1.46T.
Figure 6.14 shows E∗(τ, σ, φ) evaluated on the boundary of the toroidal wedge D̃test. In the central field
region the relative errors Eτ and Eφ are of the order of magnitude of 10−6, the relative error Eσ is with the
magnitude of 10−5 slightly bigger but still below the threshold of 1 unit in 10000. However, in the fringe
field regions, the relative error between prediction and ground truth exceeds this limit, in particular towards
the ends of the toroidal wedge at φ = 0 and φ = π. Possible reasons for this mismatch might be that the
considered orders and degrees of the toroidal harmonic coefficients are insufficient to describe the field
with the truncated toroidal harmonic expansion in this region and that the condition (6.4) is violated by
the observations.
To illustrate that the predictions of the magnetic flux density with the generalized field description of the
curved CCT magnet system based on toroidal harmonic coefficients improve the more toroidal harmonic
coefficients are considered, the average

E∗ :=
1

180 · 432
180∑
i=1

432∑
j=1

E∗(τi,j , σj , φi) (6.61)

of the relative errors E∗ on the chosen observation grid on ∂D̃test is shown in Figure 6.15 for different
truncation thresholds N andM . It can be seen that to a certain extent, a possibility to further improve the
predictive capacities of the system model is increasing the truncation thresholds N and M . However, this
strategy contradicts the idea of a compact field description with only a few harmonic coefficients. Moreover,
the errors at the ends of the toroidal wedge D̃test will not decrease by considering more coefficients, since the
periodic ansatz does not match the data. Therefore, another method without periodicity assumption, e.g., the
BEM-based generalized field description described in [92], might be more suitable to build a system model of
the generated field in this case.
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Figure 6.15: Average relative error defined in equation (6.61) on ∂D̃test between the predicted magnetic
flux density based on the determined toroidal harmonic coefficients for different truncation
thresholdsN andM and the ground truth magnetic flux density simulated with the ROXIE model
for the curved CCT example.

6.4 Summary

In this chapter, we derived and evaluated two methods to determine the coefficients of the toroidal harmonic
expansion, introduced in Section 2.4.2, from observations of the magnetic flux density. The determination of
these coefficients is an ill-posed inverse problem as defined in Section 1.3.4. We showed that one cause of
the ill-posedness is the non-uniqueness of the solution because the functions spanning the skew part of the
magnetic flux density in the toroidal harmonic expansion are linearly dependent. Consequently, the forward
model has a non-trivial kernel and the skew coefficients can not be uniquely determined from the magnetic
flux density. As discussed in Section 2.2.2, a gauging condition is required to uniquely determine a solution
to the boundary value problem of magnetostatics in scalar potential formulation under Neumann boundary
conditions.
The fitting-based method to determine the toroidal harmonic coefficients was used to build and update
operation-centric system models (Section 1.2.2), describing the magnetic fields generated by the coil arrange-
ments of the ITER tokamak and a curved CCT dipole. Particularly in the ITER example, the magnetic flux
density was describable with only a few toroidal harmonic coefficients. However, for the curved CCT example,
alternative operation-centric system models based on other expansions, not requiring a periodicity assumption
of the data might be more suitable.
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7 Conclusion and prospects for future research

Conclusion In this thesis, three systemmodels of accelerator magnets were derived and updated for predicting
quantities of interest for operation and magnet introspection. This task was challenging for multiple reasons,
e.g., the uncertainties affecting measurable quantities related to the magnet system, the limited knowledge of
the governing physical processes, and the necessity to identify and reasonably adapt model parameters.
To face these challenges, we used hybrid modeling, i.e. combining first principle-based with data-driven
methods. This strategy linked different sources of knowledge about a magnetic system, including data from
different measurement campaigns, and established useful connections between the models and data sets
operated in the TE-MSC-TM section at CERN. The field-related quantities predicted with the resulting hybrid
models were reliable, even in areas outside the range of the training data, because the models were both
based on physical laws and adapted to measured observations.
Concerning the simulation of iron-dominated magnet systems, a method to update the non-linear H(B)-curve
of the yoke using a data-driven H(B)-curve model based on split-coil permeameter measurements of yoke
material specimens and the KLE was derived in Chapter 4. The KLE provided a low-rank approximation
of the corresponding inverse problem requiring only two parameters to be determined. Despite the few
parameters, the data-driven H(B)-curve model was more suitable for describing the measured data than
common closed-form expressions based on physical laws. Even though the KLE-based H(B)-curve model
is material-specific, we observed similar modes of the KLE for different materials. Moreover, it was shown
that a sensitivity analysis based on the Gâteaux derivative in the direction of the KLE modes can be used to
assess the inverse problem’s stability and to identify suitable observation positions of comparable quantities of
interest for model updating. A deterministic approach based on particle swarm optimization and a stochastic
approach based on Markov chain Monte Carlo sampling were compared for model updating. Both updated
models met at operation modes that interpolate the operation modes used in the training data, the common
accuracy requirement of a relative prediction error of less than 1 unit in 10000. Also for higher excitation
currents that extrapolate the currents of the training data, the relative error never exceeded 3 units in 10000
in all analyzed positions. Suppose that an application requires only a deterministic update of the parameter
values without uncertainty quantification. In that case, the optimization-based approach is already sufficient
and requires fewer evaluations of the forward model and less theoretical background on Bayesian inference
and Markov chains than the stochastic approach.
In Chapter 5, the observed mismatch between predictions of the numerical design model of the first short FASER
Halbach dipole and measured higher-order multipole coefficients was explained by adjusting the magnetization
of the PM blocks in the range of their manufacturing variations. To update the three-dimensional model of
the magnet system with its high dimensional parameter space, stochastic model updating based on Markov
chain Monte Carlo sampling was unfeasible due to the large number of required model evaluations and the
increased computation time per evaluation of the 3D FEM model. Omitting the outer construction-steel ring
was a reasonable acknowledged error to obtain a linear system model that can be stochastically updated with
the maximum a posteriori estimate, whose computation required fewer evaluations of the time-consuming
FEM model. Similar to the previous chapter, a sensitivity analysis based on Gâteaux derivatives helped to
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identify suitable measurement positions to observe the data used for model updating. It turned out that the
data collected during a measurement campaign four years ago, before the installation of the magnet system,
was suitable.
A method based on integrating the magnetic flux density and a method based on least squares fitting to
determine the coefficients of the toroidal harmonic expansion from magnetic flux density observations were
derived in Chapter 6. While the integration method was unsuitable for application due to recursive error
propagation, the fitting-based method was verified on the example of the magnetic field generated by the
coil arrangements of the ITER tokamak and by a curved CCT dipole. In the ITER example, very few toroidal
harmonic coefficients were sufficient to describe the magnetic field, whereas in the curved CCT example more
coefficients were required and the field prediction was less accurate.
As for any other scalar potential formulation, a gauging condition was required to uniquely determine
the magnetic scalar potential under Neumann boundary conditions. We showed that a non-trivial linear
combination of skew harmonic coefficients yields a constant scalar potential, and thus, the functions spanning
the skew part of the magnetic flux density are linearly dependent.

Prospects for future research In this work, we assumed for each system model that only one aspect e.g. the
material curve requires an update to improve the model’s predictions. In future works, updating multiple
aspects of a system model could be considered, e.g., for an iron-dominated magnet the material curve of the
yoke and the yoke geometry. The sensitivity analysis regarding different parameter sets derived in [117]
could be used to quantify the relevance of a parameter to predict a specific quantity of interest. Particularly
interesting in this context would be the investigation if a quantity of interest can be sensitive to one parameter
set and at the same time insensitive to another parameter set in an observation position and an operation
mode. This investigation could be conducted by computing Gâteaux derivatives in the direction of parameter
variations with the methods described in [117]. If such positions and operation modes can be identified,
different aspects of the model could be updated independently.
Deriving a low-rank approximation of an inverse problem based on the KLE and measured observations is
neither limited to B(H)-curves nor to parameters that are real-valued functions. Instead, the KLE can be
applied to any aspect of a magnet system affected by uncertainty that can be described with a random field.
While in this thesis hysteresis is omitted, further research could include updating hysteresis curves using
similar methods. A description of hysteresis models using the KLE can already be found in [77]. Further
possibilities to enhance the component-centric system model derived in Chapter 4, are besides the inclusion of
hysteresis, the inclusion of eddy currents or temperature effects.
Moreover, the investigations on updating B(H)-curves in this thesis were limited to simulated magnetic flux
density observations. If an iron-dominated magnet system with both (B,H)-data of the yoke material and
measured observation data of a quantity of interest becomes available, the verification of the proposed method
on these data sets would complete this study.
We did not apply model order reduction methods or surrogate models to accelerate the computation time for
evaluating the forward model in this work. Our approach has the advantage that no additional recognized
errors are introduced to the forward model. However, some methods such as the Markov chain Monte Carlo
sampling became infeasible due to the computation time. For this application, the investigation of a surrogate
model could be interesting. Moreover, alternative methods to explore the posterior distribution such as
approximate inference could be studied in this case.
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Our study of methods to determine the toroidal harmonic coefficients showed that their determination is much
more challenging than the determination of the circular harmonic coefficients, which are directly observable
by rotating coil magnetometers. In [25], the observation is described that the multipole fields of the toroidal
harmonic expansion converge to those of the circular harmonic expansion for toroidal domains with high
eccentricity. If this observation would be supported with a calculation estimating the difference between both
fields in dependence on the eccentricity, the importance of the acknowledged error, when considering the
circular harmonic expansion for simplicity, could be quantified.
Furthermore, we only considered measurements of the magnetic flux density taken with a Hall probe mapper
system to determine the toroidal harmonic coefficients. Another common approach to measuring integrated
fields in curved magnet systems is by curved fluxmeters. Analogously to the least squares fitting method based
on the magnetic flux density, a least squares fitting approach based on the fluxmeter measurements could
be derived.
To compute the update of the first short FASER dipole’s magnetizations, Helmholtz coil measurement data
of the magnetizations was combined with measurement data of the magnetic flux density conducted with a
Hall probe mapper system four years ago. The assumed standard deviations of the random and systematic
measurement uncertainty in the fringe field regions are relatively large in this data set. In the meantime,
the vibrations and the sensor orientation of the Hall probe mapper system are better understood, leading
to smaller measurement uncertainties of recently taken measurements with the same system. Consequently,
the weighting of the different data sets according to their uncertainty with the Bayesian approach would
be different if more recent data was available. In this context, the computation of subsequent updates of
a magnet system during its life cycle using Bayesian inference could be investigated. In each iteration, the
previous update could be used as a prior model and the most recent measurement data could be used to
determine the update. Furthermore, a modeler could adapt the weighting of different data sets by including
his expert knowledge of outdated measurement methods. This approach could be particularly interesting in
the refurbishing process of a magnet system.
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8 Appendix

8.1 Associated Legendre functions of half-integer degree

The associated Legendre functions of the second kind of half-integer degree Qm
n− 1

2

: R → R are given for x > 1

and integers n,m ≥ 0 by [2, equation 8.1.3]

Qm
n− 1

2

(x) =
(−1)m

√
π

2n+
1
2

Γ(n+m+ 1
2)

Γ(n+ 1)

1

xn+m+ 1
2

(x2 − 1)
m
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(
1

2

(
n+m+

3

2

)
,
1

2

(
n+m+

1

2

)
;n+ 1;x−2

)
,

(8.1)
where Γ is the Gamma function and F denotes the hypergeometric function that is for real parameters
a, b, c ∈ R and a real argument 0 < z < 1 given by [2, equation 15.1.1]

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

zk

k!
=

∞∑
k=0

S(k) (8.2)

with the function S defined by

S(k) :=

{
1 k = 0,
(a+k−1)(b+k−1)

(c+k−1)
z
kS(k − 1) k > 0.

(8.3)

Notice that we evaluate the associated Legendre functions (8.1) for arguments x = cosh(τ) = ρ/R > 1 due
to the definition of the major radius ρ and the minor radius R. To evaluate Qm− 3

2

(x) we use the recursive
formula [64, equation 8.732]

2nx Qm
n− 1

2

(x) = (n−m+ 1/2)Qm
n+ 1

2

(x) + (n+m− 1/2)Qm
n− 3

2

(x) (8.4)

which yields for n = 0 the identity
Qm− 3

2

(x) = Qm1
2

(x). (8.5)

Discussions on the evaluation and implementation of the associated Legendre functions of the second kind
of half-integer degree can be found, e.g., in [124, 133, 134]. We implement them using the series given
in equation 8.2 truncated at k = K. An estimation of the truncation error is given in [133]. We choose
K = 50.
Inserting x = cosh(τ) into equation (8.1) yields
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2
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)
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(8.6)
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Notice that it can be verified with Mathematica [142] that the term√
cosh(τ)− cos(σ)Qmn−1/2(cosh(τ)) (8.7)

is finite for τ → ∞ for all σ ∈ [0, 2π] and n,m ≥ 0. However, the term√
cosh(τ)− cos(σ)Pmn−1/2(cosh(τ)) (8.8)

diverges for τ → ∞ for all σ ∈ [0, 2π] and n,m ≥ 0, where the concatenation of the associated Legendre func-
tions of the first kind of half-integer degreePmn−1/2 with cosh(τ) is given by [133, equation A.1]
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n− 1

2
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)
.

(8.9)

For this reason, solutions to the Laplace equation involving
√

cosh(τ)− cos(σ)Pmn−1/2(cosh(τ)) can be omitted
if the computational domain includes the focal ring of the toroidal coordinate system [19, 25].

The derivative of Qm
n− 1

2

(x) with respect to x is given by [64, equation 8.732]
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=
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Applying the chain rule yields
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8.2 Magnetic flux density in toroidal coordinates

Computing B = −µ0 gradϕm for the normalized toroidal harmonic expansion (2.99) of the magnetic scalar
potential ϕm yields the magnetic flux density in toroidal coordinates.
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Rotationally symmetric case
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∑∞
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To save on notation, we introduce the functions

fAn,m, f
B
n,m, f

C
n,m, f

D
n,m, gAn,m, g

B
n,m, g

C
n,m, g

D
n,m, hAn,m, h

B
n,m, h

C
n,m, h

D
n,m, h

E : (τ, σ, φ) 7→ R (8.16)

which are defined by
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Inserting these functions into the equations (8.12), (8.13) and (8.14) yields
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(8.30)
Analogously in the rotationally symmetric case, themagnetic flux density components can be rewritten
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(8.31)

where the functions fAn , fBn , gAn , gBn : (τ, σ) 7→ R are given by

fAn := fAn,0, fBn := fBn,0, gAn := gAn,0, gBn := gBn,0. (8.32)

In Figure 8.1, the absolute values of the functions fAn,m, gBn,m and hCn,m at the point (1.2τ0, 0, 0) in the interior
of D are plotted as functions of n and m. Thereby, the parameter τ0 is chosen such that cosh(τ0) = ρ/R = ϵ,
where ϵ is the eccentricity of the toroidal domain. We compare a toroidal domain D1 with eccentricity ϵ = 2
and a domain D2 with eccentricity ϵ = 10. It can be observed that the functions converge to zero for n→ ∞
and m→ ∞. The convergence concerning m is much slower for the functions on the toroidal domain D2 with
higher eccentricity. Consequently, the natural scaling, neglecting the toroidal harmonic coefficients, of the
functions spanning the toroidal harmonic expansion of the magnetic flux density is such that functions with
a low order and a low degree are weighted more, and this observation holds in particular in domains with
low eccentricity.

8.3 Magnetic flux density on toroidal wedges

The toroidal harmonic expansion of magnetic flux density on a toroidal wedge D̃ ⊂ D that covers the domain
φ ∈ [0, l] can be derived from the toroidal harmonic expansion of ϕm on D̃ given in equation (6.5) using the
equation B = −µ0 gradϕm, which yields
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(8.33)
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Figure 8.1: Absolute values of the functions fAn,m, gBn,m and hCn,m which are part of the toroidal harmonic
expansion of the magnetic flux density evaluated at the point (1.2τ0, 0, 0) and plotted as functions
of the degree n and the orderm. Top row: Toroidal domain D1 with eccentricity ϵ = 2. Bottom
row: Toroidal domainD2 with eccentricity ϵ = 10.
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Averaging these components for φ ∈ [0, l] yields the following formulas
∫ l
0 Bτ dφ =

∑∞
n=0 At

n,0

(
−µ0l cos(nσ)κ(τ,σ)

a

[
sinh(τ)

2
√
κ(τ,σ)

Q0
n− 1

2

(cosh(τ)) +
√
κ(τ, σ) d

dτQ
0
n− 1

2

(cosh(τ))

])
+Bt

n,0

(
−µ0l sin(nσ)κ(τ,σ)

a

[
sinh(τ)

2
√
κ(τ,σ)

Q0
n− 1

2

(cosh(τ)) +
√
κ(τ, σ) d

dτQ
0
n− 1

2

(cosh(τ))

])
∫ l
0 Bσ dφ =

∑∞
n=0 At

n,0

(
−
µ0lQ0

n− 1
2

(cosh(τ))κ(τ,σ)

a

[
sin(σ)

2
√
κ(τ,σ)

cos(nσ)−
√
κ(τ, σ)n sin(nσ)

])

+Bt
n,0

(
−
µ0lQ0

n− 1
2

(cosh(τ))κ(τ,σ)

a

[
sin(σ)

2
√
κ(τ,σ)

sin(nσ) +
√
κ(τ, σ)n cos(nσ)

])
∫ l
0 Bφ dφ = −Et µ0lκ(τ,σ)

a sinh(τ) .

(8.36)
Thereby, we use that ∫ l0 sin (2πml φ

)
dφ = 0 for all m ≥ 0 and ∫ l0 cos (2πml φ

)
dφ = l iff m = 0, and the fact

that Ct
n,0,Dt

n,0 = 0 for all n ≥ 0.
The structure of these equations equals the structure of the magnetic flux density components in the rotationally
symmetric case (8.15). Indeed, the averagemagnetic scalar potential ∫ l0 ϕmdφ and themagnetic scalar potential
in the rotationally symmetric case satisfy the same differential equation (2.100), as shown in the introduction
of Chapter 6.
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List of acronyms

ARMCO American Rolling Milling Company
BEM boundary element method
CCT canted cosine theta
CERN European Organization for Nuclear Research
FASER Forward Search Experiment
FEM finite element method
GUM Guide to the Expression of Uncertainty in Measurement
HL-LHC High Luminosity Large Hadron Collider
ITER International Thermonuclear Experimental Reactor
KLE Karhunen-Loève expansion
LHC Large Hadron Collider
PM permanent magnet
R&D Research and Development
ROXIE Routine for the Optimization of magnet X - sections, Inverse field calculation and coil End design
SESAME Synchrotron-Light for Experimental Science and Applications in the Middle East
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