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Abstract
Structural optimization of crash-related problems usually involves nonlinearities in geometry, material, and contact. The 
Equivalent Static Load (ESL) method provides a method to solve such problems. It has previously been extended to employ 
an individual Finite Element model describing the deformed geometry at each considered time step under the name Dif-
ference-based Equivalent Static Load (DiESL) method. This paper demonstrates how an appropriate selection of the time 
steps in each cycle can further improve the convergence behavior of the DiESL method. It is shown that the adaptive selec-
tion of time steps leads to better objective values and more reliable convergence to the presumed global optimum. Further-
more, the DiESL extension enables the adaption of path-dependent structural properties of the original nonlinear problem like 
material stiffness in each linear auxiliary load case. In this paper, an adaption of the Young’s modulus on element level 
in the linear auxiliary problem corresponding to the local plasticization in the nonlinear dynamic problem is successfully 
implemented. Here, the test examples indicate that an observable improvement can only be obtained if neither the elements 
in the elastic nor in the plastic range are dominating the structure’s behavior.
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Abbreviations
AT	� Adaptive selection of ESL-times
DiESL	� Difference-based Equivalent Static Load
DOE	� Design of Experiments
ESL	� Equivalent Static Load
ET	� Equidistant ESL-time distribution
FEA	� Finite Element Analysis
LA	� Local adaption of Young’s moduli
LSMs	� Linear sub-models
MPI	� Message passing interface

MMO	� Multi-Model Optimization
NLA	� No local adaption of Young’s moduli

1  Introduction

Linear static response structural optimization is highly effi-
cient and is therefore embedded in a considerable number 
of applications commonly used during the design process in 
industry. Many commercial codes such as MSC NASTRAN, 
Altair OptiStruct, or VRAND GENESIS are available in 
this area, enabling sizing, shape, and topology optimization 
in an acceptable amount of time. The time saving can espe-
cially be attributed to the availability of (semi-)analytical 
sensitivity analysis enabling the application of very efficient 
gradient-based optimizers. In contrast to the well-established 
optimization based on linear analysis, the real challenge in 
optimization is the optimization of highly nonlinear dynamic 
systems. A prime example is the optimization of crash-
related problems in automotive industry, which is also the 
main objective of this paper. Furthermore, we restrict our-
selves to the use of commercial crash solvers for the non-
linear dynamic analysis to ensure that the proposed DiESL 
method can be applied to real automotive crash problems. 
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Worldwide, only Finite Element Analysis (FEA) explicit 
solvers are used in automotive crash analysis. Here, the most 
dominating part of the nonlinearities does not result from 
material or geometric nonlinearities but from contact forces. 
They may not only change in magnitude but especially in 
location from time step to time step. As a consequence it 
is very difficult to apply sensitivity analysis which may be 
the reason that no commercial code in this area is able to 
compute sensitivities enabling gradient-based optimiza-
tion for crash. Instead, metamodel-based methods are often 
used. Examples for such metamodels are polynomials, radial 
basis functions (Powell 1992; Schaback and Wendland 2001; 
Schaback 2002), Neural Networks (Hornik et al. 1990, 1992; 
Waszczyszyn 1999), and Kriging models (Matheron 1963; 
Cressie 1988, 1989, 1990). The drawback of the metamodel-
based optimization is that the number of design variables 
is limited and applications with extremely high number of 
design variables such as topology optimization are impos-
sible due to the large number of required designs needed to 
be evaluated in order to fit the metamodels.

A promising approach to circumvent the missing sen-
sitivity problem of commercial crash solvers is to define 
linear auxiliary load cases enabling linear static response 
optimization. This means that the nonlinear dynamic opti-
mization problem is solved by solving a sequence of linear 
static response optimization sub-problems. The ESL method 
provides a procedure to compute such auxiliary load cases. 
These auxiliary load cases are created by applying ESLs to 
linear statics.

The ESL method has been successfully applied to vari-
ous kinds of optimization like sizing, shape, free sizing, and 
topology optimization (Choi and Park 2002; Park et al. 2005; 
Lee et al. 2013b; Shin et al. 2007; Lee et al. 2007, 2013a; 
Jeong et al. 2008; Jang et al. 2009; Hong et al. 2010; Kim and 
Park 2010; Park 2011; Lee and Park 2015; Karev et al. 2018, 
2019; Choi et al. 2018). Nevertheless, the ESL method has 
some limitations and disadvantages. The main issues result 
from the fact that the ESLs are always calculated based on the 
undeformed initial geometry. To circumvent this drawback, 
a difference-based approach for calculating the ESLs—the 
DiESL method—has been introduced recently (Triller et al. 
2021). It has been shown that the DiESL method enables a 
significant increase in approximation quality for displacements 
and strains from nonlinear dynamic problems while simul-
taneously providing faster convergence. The DiESL method 
splits the nonlinear displacement path into increments, for 
each of which one linear auxiliary load case is created. This 
enables the adaption of path-dependent structural properties, 
e.g., material stiffness, in the auxiliary load cases. The sig-
nificantly lower tangent modulus of elements exceeding yield 
stress during the nonlinear dynamic analysis can be adopted 
in the corresponding linear auxiliary load cases by adapting 
the Young’s modulus on element level. Such an adaptation is 

tested in the following using a bilinear material model. In addi-
tion to the adaptation of the material properties, the question 
arises whether the approximation quality of the DiESL method 
can be improved by an appropriate selection of the time incre-
ments. Therefore, an adaptive selection of ESL-times is tested 
in this paper. The intention is to place ESL-times at points in 
time at which nonlinear structural changes are dominant.

This paper is structured in the following way: In Sect. 2, the 
DIESL approach is explained. Furthermore, the algorithm for 
adaptively selecting the ESL-times and the local adaption of 
the Young’s moduli is presented. In Sect. 3 both approaches 
are tested numerically using two different sizing optimization 
examples. Finally, a conclusion and an outlook is worked out.

2 � The DiESL (Difference‑based Equivalent 
Static Loads) method

The basic procedure of the DiESL method is very similar to 
the ESL method, introduced by Choi and Park (2002). The 
main idea is to create linear auxiliary load cases for nonlinear 
dynamic response optimization problems, which are used in 
optimization based on linear statics. This approach is advanta-
geous for many reasons: Firstly, the missing sensitivity prob-
lem is solved. Secondly, well-developed commercial software 
systems can be used for analysis and optimization and no 
development of an own sensitivity analysis and optimization 
algorithm is necessary.

The original nonlinear dynamic response optimization 
problem can be stated as

Here, f (�) is the objective function, m the number of con-
straints gj , and �L and �U the lower and upper bounds of the 
design variables � , respectively. The displacement vector 
�T (t) =

(
�
T
1
(t), �T

2
(t), … , �T

nN
(t)

)
 is the solution of

and contains the nonlinear displacements of all nN nodes 
at the time t . The general procedure of the DiESL method 
to create the linear auxiliary load cases is the following 
(Fig. 1): First, a nonlinear dynamic analysis is performed. 
For specified time steps ti , i = 1,… , nT the displacement 
fields �

(
ti
)
 are derived from nonlinear dynamic analysis 

afterward. The basic difference between ESL and DiESL is 
depicted in Fig. 2: the standard ESL method uses the unde-
formed geometry to compute the nodal displacements �i for 
any given time ti (Fig. 2, middle). Consequently it falls short 

(1a)min f (�, �(�, t))

(1b)s.t. gj(�, �(�, t)) ≤ 0; j = 1,… ,m

(1c)�
L
≤ � ≤ �

U; � ∈ ℝ
n.

(1d)𝐌NL(𝐱)𝐮̈(t) + 𝐂NL(𝐱)𝐮̇(t) +𝐊NL(𝐱, 𝐮(t))𝐮(t) = 𝐟(t)
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of following the nonlinear displacement path (Fig. 2, left). In 
contrast, DiESL is able to follow the nonlinear displacement 
path by splitting it into linear increments. Each increment 
Δ�

(
ti
)
 is computed based on the linear submodel at time ti 

(Fig. 2, right), which we call LSMi in the following. The 
i-th LSMi is defined by the coordinates of all nodes at time 
step ti . The vector

contains the coordinates �j
(
ti
)
 of all nN nodes. Accordingly, 

�
(
t0
)
 describes the coordinates of all nodes of the unde-

formed model.
The coordinates of a linear submodel LSMi describing the 

deformed geometry at time ti can therefore be calculated by

The incremental nonlinear displacements leading from 
�
(
ti
)
 to �

(
ti+1

)
 are calculated by

(2)�
T
(
ti
)
=

(
�
T
1

(
ti
)
, �T

2

(
ti
)
, … , �T

nN

(
ti
))

(3)�
(
ti
)
= �

(
t0
)
+ �

(
ti
)
.

Note that all LSMi have the same mesh topology and that 
they differ only in the coordinates �

(
ti
)
 . In each LSMi we 

then calculate the loads Δ� i
DiESL

 yielding the incremental dis-
placement Δ�

(
ti
)
 in linear statics leading from the structure 

�
(
ti
)
 to the subsequent deformed structure �

(
ti+1

)
.

To determine the incremental equivalent static loads 
Δ� i

DiESL
 in the linear submodel LSMi , the corresponding 

stiffness matrix �i = �
(
�, �

(
ti
))

 , which depends on the 
design variables � and the nodal coordinates �

(
ti
)
 of LSMi , 

has to be multiplied by the vector of the incremental nonlin-
ear displacements Δ�

(
ti
)

Using the incremental equivalent static loads Δ� i
DiESL

 , 
gradient-based linear static response optimization can 
now be performed. In contrast to the ESL method, which 
requires only a single FE model representing the undeformed 

(4)Δ�
(
ti
)
= �

(
ti+1

)
− �

(
ti
)
.

(5)�
iΔ�

(
ti
)
= Δ� i

DiESL
;i = 0, … , nT − 1.

Fig. 1   Optimization process of the DiESL method for a nonlinear dynamic problem

Fig. 2   Displacement path of an arbitrary node during the deformation of a structure (left) and the corresponding displacement �
(
ti
)
 (middle) and 

Δ�
(
ti
)
 (right) used for the computation of the ESLs and DiESLs at time steps ti , respectively.
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structure of the initial model with the coordinates �
(
t0
)
 , nT 

FE models have to be considered in one optimization run 
in the DiESL method. Consequently, Multi-Model Optimi-
zation (MMO) has to be applied where more than one FE 
model is taken into account simultaneously in one linear 
static response optimization run. Here, the FE equation of 
linear statics

is solved for each LSMi , which yields the incremental linear 
displacements Δ�iT =

(
Δ�iT

1
,Δ�iT

2
,… ,Δ�iT

nN

)
 . The dis-

placement fields Δ�
(
ti
)
 and Δ�i of the nonlinear and the 

linear analysis are identical only at the beginning of the lin-
ear static response optimization (inner loop). At the end of 
the inner loop the linear and the nonlinear dynamic 
responses no longer match because the linear auxiliary load 
cases are only an approximation of the nonlinear behavior 
of the system. Therefore, nonlinear dynamic analysis has to 
be applied again with the updated design variables. If the 
difference is too high the process is iterated (outer loop) until 
the difference is small enough and additional termination 
criteria (Shin et al. 2007; Jeong et al. 2010; Kim and Park 
2010; Park 2011) are fulfilled. It can be expected that the 
difference between the linear and nonlinear dynamic 
responses increases with the length of the inner loop opti-
mization path. If this difference is too high, the update in the 
outer loop may result in huge changes in the search direc-
tions and convergence is slowed down or even not guaran-
teed anymore. For this reason commercial ESL codes, such 
as VRAND ESLDYNA, limit the number of iterations and 
offer the application of move limits to restrict the length of 
the inner loop optimization path in each cycle. In the follow-
ing the outer loop iterations are called cycles to distinguish 
them from the iterations of the inner loop in the linear static 
response sub-problem.

Summarizing, the DiESL approach solves the following 
optimization problem:

where Δ�i is the solution of

in LSMi , the difference-based equivalent static loads Δ� i
DiESL

 
are computed as

(6)�
iΔ�i = Δ� i

DiESL

(7a)min f
(
�,Δ�0(�),… ,Δ�nT−1(�)

)

(7b)s.t. gj
(
�,Δ�0(�),… ,Δ�nT−1(�)

)
≤ 0; j = 1,… ,m

(7c)�
L
≤ � ≤ �

U; � ∈ ℝ
n,

(7d)�
(
�, �

(
ti
))
Δ�i = Δ� i

DiESL
;i = 0, … , nT − 1

with Δ�
(
ti
)
= �

(
ti+1

)
− �

(
ti
)
 in which �

(
ti
)
 is the solution 

of

for the selected time steps ti . The objective function and 
the constraints used in the linear static response optimiza-
tion and in the nonlinear dynamic response optimization are 
identical. The only difference is that the nonlinear dynamic 
responses are approximated by linear static responses. For 
dynamic responses such as section forces, velocities, and 
accelerations, which are not defined in linear statics, it is 
necessary to find proper approximations. For velocity and 
acceleration, for instance, simple finite forward (Jeong et al. 
2010; Triller et al. 2021) or central (Karev et al. 2018, 2019) 
differences between adjacent load cases (corresponding to 
adjacent time steps) can be used.

2.1 � Computation of displacements

During optimization of all LSMs using MMO, each LSM 
analysis yields incremental displacements. The total linear 
displacement of a node at time ti is used as an approximation 
of the respective nonlinear displacement �i ≈ �

(
ti
)
 . It can be 

computed recursively as

where Δ�i−1 is the solution of (7) or (8b) for LSMi−1 . 
Accordingly, the cumulated displacements can be calcu-
lated as

In general �0 = 0 applies. The accumulation is processed 
by the MMO, which handles all LSMs and accumulates their 
solutions Δ�i.

2.2 � Computation of adaptive ESL‑times

Instead of using equidistant time steps (Triller et al. 2021), 
we now propose how to select the value of all nT ESL-times � 
adaptively in each cycle. The ESL-times should be placed at 
points in time at which nonlinearities are dominant. There-
fore, a time-dependent function indicating the nonlinearities 
is needed. In this paper, we focus on crash problems, where a 
rigid impactor collides with a structure. In this case the con-
tact force f may be used to detect nonlinearities. For example 
in Fig. 3 the contact force curve and three different states of 
deformation for a crash box are illustrated (refer to Sect. 3.2 
for a description of the model). The oscillating course of 

(7e)Δ� i
DiESL

= �
(
�, �

(
ti
))
Δ�

(
ti
)
;i = 0, … , nT − 1

(7f)𝐌NL(𝐱)𝐮̈(t) + 𝐂NL(𝐱)𝐮̇(t) +𝐊NL(𝐱, 𝐮(t))𝐮(t) = 𝐟 (t)

(8)�
i = �

i−1 + Δ�i−1,

(9)�
i = �

0 +

i−1∑

j=0

Δ�j.
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the contact force reflects the creation of plastic hinges and 
subsequent contacting.

Thus, it can be expected that especially at the extrema 
of the contact force curve nonlinearities are dominat-
ing. The idea is now to fit the contact force curve f (t) by 
a polygonal line l(t) with ESL-times � =

{
t0, t1, t2,… , tnT

}
 

as breakpoints, directly after the nonlinear dynamic anal-
ysis in each cycle. To do so, the results of the nonlinear 
dynamic analysis (i.e., contact force and displacement 
field) must be stored for all nτ + 1 possible ESL-times 
� =

{
�0, �0 + Δ�, �0 + 2Δ�,… , �nτ − Δ�, �nτ

}
 . Due to stor-

age requirements nτ should be limited. In this publication, 
Δ� = 1ms is selected leading to n� = 100 if the overall simu-
lation time is 100. Based on the stored data, we approximate 
the function f (t) as a piecewise linear function:

(10)

f (t) = fi−1 +
fi − fi−1

𝜏i − 𝜏i−1

(
t − 𝜏i−1

)
;𝜏i−1 ≤ t < 𝜏i;i = 1,… , nτ.

The number of ESL-times nT should also be limited, 
because each ESL-time corresponds to an LSM and each 
LSM increases the computational effort in the design 
domain (inner loop). In case of limited resources this 
can become prohibitive for very large models. However, 
commercial optimizers like OptiStruct employ (MPI) in 
their MMO implementation which permits the analysis of 
each LSM on an individual host. Consequently, the set of 
ESL-times � is a sub-set of all possible ESL-times �. To 
determine the optimal selection of � , the piecewise linear 
function l(t) , defined by the ESL-times �

is fitted to the piecewise linear function f (t) defined 
by � (Fig. 4). Therefore, we minimize the sum of squared 
residuals between l(t) and f (t):

where the number nD of discrete design variables � is 
not equal nT because we allow the definition of nfix pre-
scribed ESL-times �fix =

{
t0,fix = �0,… , tnfix = tnT

}
 . The lat-

ter must contain the first and the last ESL-time but could 
also contain ESL-times in between, e.g., the maximum of 
f (t) . Consequently, the number of discrete design variables 
� is given as

(11)

l(t) = f
(
tj−1

)
+

f
(
tj
)
− f

(
tj−1

)

tj − tj−1

(
t − tj−1

)
;tj−1 < t ≤ tj;j = 1,… , nT

(12a)

min SSR(�);SSR(�) =
1

nτ

nτ∑

i=0

(
f
(
τi
)
− l

(
τi
))2

;� ∈ ℝ
nD

(12b)
s.t.

||
|
ti,� �� − xj

||
|
≥ Δ�; j = 1,… , nD, i = 0,… , nfix,

(12c)xj − xj−1 ≥ Δ�; j = 1,… , nD

Fig. 3   Deformation of a crash box model at three different times and 
corresponding contact force curve between impactor and crash box 
(times of deformations indicated with red circles)

Fig. 4   Piecewise linear fit of contact force curve f (t) by polygonal line with ESL-times �∗ as breakpoints before (left) and after (right) optimiza-
tion
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Note that this optimization problem must not be mixed up 
with the inner loop in Fig. 1. It has to be applied between 
nonlinear analysis and the computation of ESLs (step 7 in 
overall flow scheme in chapter 2.4).

With this approach times corresponding to certain curve 
characteristics can be prescribed, e.g., the maximum contact 
force. Furthermore, the last ESL-time tnT can be set such that 
only the relevant part of the deformation process is captured, 
which for example can be specified by the time of maximum 
intrusion. In this case, the sum of squared residuals ( SSR) 
in Eq. (12a) is modified as follows: The value nτ is replaced 
by ñτ such that �ñτ = tnT . To ensure that each possible ESL-
time �i is only taken once, the distance between two adjacent 
ESL-times or design variables � must be at least the time 
increment Δ� . This optimization problem is solved using 
sequential least square programming in Python. To reduce 
computational effort, the original discrete optimization prob-
lem is solved by the relaxed continuous auxiliary problem 
and the results are rounded afterward according to the stored 
data at the times �:

The fitted ESL-times �∗ thus follow from the rounded 
results x∗

r,i
 and all prescribed times �fix . Furthermore, the 

initial values �(0) are determined by a successive removal 
strategy: the number of design variables nD is initially set to 
the largest value possible such that each of the breakpoints 
tj of l(t) is located on a time �i . In this case, SSR(�) = 0 . 
Then one breakpoint is removed, namely the breakpoint with 
the smallest impact on SSR. This process of removing one 
breakpoint is successively repeated until the desired number 
of design variables nD is obtained. This strategy of succes-
sive breakpoint removal can be beneficial especially for con-
tact force curves where the extremes are unevenly distrib-
uted. In this case, the likelihood of the optimizer terminating 
in a local optimum decreases. This advantage is illustrated 
in Fig. 5, where SSR

(
�∗
r

)
 is given for different numbers of 

ESL-times nT : initialing optimization problem (13a) with 
equidistant breakpoints fails to find the optimum solution 
for all shown values of nT . It is important to note that the 
number of ESL-times nT remains constant throughout the 
entire optimization (outer loop) in this implementation.

2.3 � Local adaption of Young’s modulus

The DiESL approach also enables the adaptation of path-
dependent structural properties in the LSMs correspond-
ing to the associated increment or times. In the course of 
the nonlinear dynamic analysis, plasticization occurs, for 

(13)nD = nT + 1 − nfix.

(14)x∗
r,i
=

x∗
i

Δ�
+ 0.5Δ�;i = 1,… , nD.

example, and the stiffness of some elements is drastically re. 
To adopt stiffness changes to the linear auxiliary problem, a 
bilinear material model is introduced to the design domain, 
defined by the Young’s modulus E and the tangent modulus 
ET . Depending on the existence of a plastic strain εj,pl

(
ti
)
 

within an element in the analysis domain, the element’s 
material property is adapted to a smaller value ET in the cor-
responding LSMi . Additionally, the Poisson’s ratio is set to 
0.49 to approximate the incompressibility in the plasticized 
area. This is a very simplified and crude approach. It cannot 
describe elements that start in the elastic domain and enter 
the plastic domain within one time increment. Nevertheless, 
it should be sufficient to study the beneficial effects on the 
approximation quality of DiESL. Following this approach 
the stiffness matrix

now also depends on the vector

containing the plastic strains of all nE elements in the 
analysis domain. In Fig. 6 this procedure is illustrated for a 
deformed state of the side impact model, which will be intro-
duced in Sect. 3. The determination of the ESL-times as well 
as the local adaption of Young’s moduli has to be performed 
right before the computation of Δ� i

DiESL
 . The computation 

of the DiESLs and the linear static response optimization 
then is performed using the adopted stiffness matrices �̂i 
instead of �i.

2.4 � Implementation

The overall program flow of the DiESL method has been 
implemented in Python. It uses the commercial solver LSTC 

(15)�̂
i = �

(
�, �

(
ti
)
, �pl

(
ti
))

(16)�
T
pl

(
ti
)
=

(
εT
1,pl

(
ti
)
, εT

2,pl

(
ti
)
, … , εT

nE,pl

(
ti
))

Fig. 5   SSR
(
�∗
r

)
 over nT for different choices of initial designs �(0) : 

equidistant versus successive breakpoint removal
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LS-DYNA (LSTC 2015) for nonlinear dynamic analysis and 
OptiStruct (HyperWorks 2019) for the computation of the 
ESLs and for the linear static response optimization. Two 
termination criteria have been used. The first criterion is 
that the design has to be feasible. Since the linear static sub-
problem only provides estimations for the actual problem, 
the optimized responses of the linear static analysis often 
differ from those of the nonlinear dynamic analysis. Thus, 
the convergence check has to be performed after the nonlin-
ear dynamic analysis and therefore a small constraint viola-
tion is tolerated. Hence, the implemented first convergence 
criterion is that the maximum normalized constraint viola-
tion gmax has to be smaller than a specified limit 𝛿 > 0:

For both test problems � = 0.01 has been used, which is 
sufficiently small such that all converged designs still can be 
considered feasible. The second criterion is that the relative 
change of the objective function between two subsequent 
cycles k − 1 and k has to be smaller than a given value �:

Again for both test problems the value � = 0.01 has 
been used. If this criterion is satisfied, the objective hardly 
changes and continuing the optimization is not worthwhile 
in most cases. Note that time-dependent responses (e.g., 
intrusions) are only checked at the selected ESL-times. Fur-
thermore, the optimization is terminated with no conver-
gence after 40 cycles, because the move limits D become too 
small to allow a considerable change of the design thereafter.

To attribute the fact that the linear static sub-problem 
is only an approximation of the actual nonlinear dynamic 

(17)gmax ≤ �.

(18)

|||
f
(
�(k)

)
− f

(
�(k−1)

)|
||

||
|
f
(
�(k)

)||
|

≤ �.

response optimization problem, the length of the optimiza-
tion path of each inner loop is limited. For this purpose, the 
same strategy is used as in the commercial code ESLDYNA 
(VRAND 2012) based on two parameter sets. The first set 
controls the move limits of the current cycle k:

Parameter D controls the size of the current move lim-
its in cycle k by means of two parameters Dini and � . The 
parameter Dini corresponds to the initial value of D in (20). 
The reduction factor �red ∈ (0, 1] is used to control how D 
changes from cycle to cycle (outer loop)

In this publication, the parameter set Dini = 0.2 and 
� = 0.9 has been used in all test problems. Since the move 
limits only limit the length of the optimization path of each 
iteration a second restriction is needed. The second param-
eter set controls the number of iterations (inner loop) by the 
parameter maxiter defining the maximum number of itera-
tions per cycle (outer loop). For all examples shown below, 
the parameter maxiter = 2 has been used. This means that 
each cycle contains 2 iterations.

Due to the fact that DiESL does not start from a sin-
gle undeformed initial model but from deformed structures 
related to the different times, it may happen that the linear 
static response optimization terminates with an error dur-
ing the calculation of the ESLs due to excessively deformed 
elements and thus poor element quality. In order to realize 
a robust application of DiESL, an automated repair mecha-
nism for the mesh of the affected LSM s has been developed 

(19)
x̂
U,(k)

j
= min

(
xU
j
, x

(k−1)

j
+ D

|||
x
(k−1)

j

|||

)

x̂
L,(k)

j
= max

(
xL
j
, x

(k−1)

j
− D

|||
x
(k−1)

j

|||

)
D ∈ [0, 1].

(20)
D(1) = Dini; k = 1

D(k) = D(1)𝛽k−1; k > 1

Fig. 6   Plastic strain of non-
linear dynamic analysis of the 
side impact (Sect. 3) for all 
xi = 0.8 mm at time t = 82 ms 
and corresponding linear 
submodel
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by deleting the failed elements. The deleted elements of the 
previous cycle are added back at the beginning of each cycle 
and it is checked again if there are failed elements.

The overall flow scheme explained before is implemented 
as follows:

Step 1: Set initial design variables and 
parameters ( k = 0, �(k=0), �,� , 
Dini , �, maxiter)

Step 2: Perform nonlinear dynamic analy-
sis with �(k)

Step 3: If adaptive time selection is used, 
determine ESL-times �∗ by fit-
ting appropriate response, e.g., 
contact force

Step 4: If k > 0 , check convergence 
criteria: If Eqs. (17) and (18) 
are satisfied then terminate the 
process

Step 5: Calculate the incremental dis-
placements Δ�

(
ti
)
 and the node 

coordinates �
(
ti
)
 of all LSMs for 

all selected time steps ti

Step 6: Check the element quality of 
each LSM FE mesh. If check 
was not successful, delete failed 
elements in respective LSM and 
repeat Step 6 for the remaining 
mesh

Step 7 If local adaption of Young’s 
moduli is used, check maximum 
plastic strain of each element: If 
εj,pl

(
ti
)
> 0 then adapt Young’s 

modulus and Poisson’s ratio of 
element j in LSMi to ET

Step 8: Calculate the incremental equiva-
lent static loads Δ� i

DiESL

Step 9: Update the move limits D accord-
ing to Eq. (20)

Step 10: Solve the linear static response 
optimization problem with the 
incremental equivalent static 
loads Δ� i

DiESL

Step 11: Update the design variables in the 
nonlinear model, set k = k + 1 
and go to step 2

3 � Test problems

Two test problems for the examination of the influence of 
the adaptive selection of ESL-times and the local adaption 
of Young’s moduli on the convergence of the DiESL method 
are presented in this chapter. The first test problem is a sim-
plified model of a crash side impact problem with 7 design 
variables. The second test problem is a crash box defined by 
12 design variables colliding with a rigid impactor. During 

the deformation process of the crash box, a lot of buckling 
and self-contacting can be observed. Therefore, this highly 
nonlinear example is well suited for the examination of the 
influence of the local adaption of ESL-times and the local 
Young’s modulus adaption on the convergence behavior 
of the DiESL method. Both test problems represent sizing 
optimization problems in which the mass of the structure 
is to be minimized, while the intrusion of an impactor is 
constrained. A separate contact formulation for the contact 
between impactor and structure is used in LS-DYNA for 
both test problems. For the side impact problem, a contact 
between impactor and structure is defined in the OptiStruct 
model such that the displacement of the impactor can be 
constrained directly. For the crash box, no contact is defined 
in the OptiStruct model. Instead, the displacement of a 
structural node which is known to be in permanent con-
tact with the impactor is constrained instead (Fig. 14). For 
both test problems, the adaptive time selection is compared 
to an equidistant distribution of ESL-times. Furthermore, 
we compare the results of both problems with and without 
local adaption of the Young’s moduli in the design domain. 
Finally, the combination of both extensions is tested.

3.1 � Side impact

Figure 7 shows a rigid pole ( mass = 44.67kg ) with initial 
speed vy = −8 ms colliding with a frame structure. Symme-
try conditions with respect to the YZ plane are inserted to 
reduce the computational effort and to improve numerical 
stability. The translational degrees of freedom of the pole in 
x - and z-direction as well as all its rotations are locked. The 
structure is clamped along the distant edge in all 6 degrees 
of freedom using single-point constraints (SPC). The frame 
structure is made of steel (Young’s modulus E = 210GPa , 
density � = 7850kg/m3 , fully integrated shell elements, num-
ber of nodes = 6412) and bilinear plastic material behavior is 
applied (tangent modulus ET = 0.6 GPa, yield stress = 0.25 
GPa). In this case, the material properties of the linear auxil-
iary models can be adapted correctly because the linear mod-
els use the same two stiffness values. The simulation end time 
is 100ms. This captures the pole’s maximum intrusion and 
part of its rebound. Consequently, for the equidistant ESL-
time distribution (ET) the last ESL-time step is selected as 
100 ms. In contrast to this, the last ESL-time is always set to 
the time of maximum intrusion when using adaptive selection 
of ESL-times (AT). Furthermore, the time corresponding to 
the maximum crash force is prescribed in each DiESL cycle.

As shown in Fig. 7 the design of the FE model is specified 
by seven design variables each corresponding to a single 
sheet metal thickness (except x1 representing all 12 facets of 
both crossbars and x7 representing both end caps of rocker 
profile). The same mesh is used for both linear and nonlin-
ear analysis to avoid results mapping. The objective is to 
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minimize the mass of the frame structure while constraining 
the maximum intrusion of the pole in negative y-direction 
d(x) . Mathematically, the problem is given as follows:

First the adaptive selection of ESL-times (AT) is com-
pared to an equidistant distribution of ESL-times (ET). A 
multi-start optimization study was conducted in order to 
evaluate the results independently from the initial values: 
A DOE was created to generate 20 configurations of uni-
formly distributed design variables (space filling design) 
used as initial values. The DOE was created as a Strength 
Two Orthogonal Array. Furthermore, the number of ESL-
times nT is varied between 5, 10, and 20. For evaluation, 
two criteria are used: the number of cycles* necessary for 
convergence and the resulting objective value ( mass∗) . Both 
are related to the approximation quality of the linear aux-
iliary problem: both faster convergence and smaller mass∗ 
suggest a better quality of the linear approximation model 
in the design domain. Figure 8 displays the resulting mass∗ 
against the cycles necessary for convergence for each multi-
start optimization run. The results are lumped in two clusters 
that can be distinguished by their mass. They represent two 
different local optima in the design space. Table 1 shows the 

minmass(�)

s.t. d(�) ≤ 200 mm

0.5 mm ≤ xj ≤ 3 mm ;j = 1,… , 7.

averaged results over all configurations for both approaches. 
Furthermore, the averaged results for the two clusters are 
given. It can be seen that the averaged mass∗ is similar for 
ET and AT independent of the observed scenario (all runs or 
individual cluster). The average number of cycles* until con-
vergence is slightly better for AT. This advantage increases if 
the number of ESL-times is reduced. This can be confirmed 
by comparing individual results of both approaches in Fig. 8.

The superior convergence behavior of the AT approach 
with respect to cycles* for smaller nT may be attributed to 
the fact that the last ESL-time is set as the time of maximum 
intrusion of the impactor. Hence, AT has a better utilization 
of the small number of ESL-times which concentrate on the 
relevant deformation process.

Now we want to examine the influence of the local adap-
tion of Young’s moduli (LA) with and without adaptive time 
selection of ESL-times on the DiESL method’s approxima-
tion quality. Again the averaged results are presented in tabu-
lar format (Table 2) and the individual results are plotted in 
Fig. 9. It turned out that a considerable number of runs with 
local adaption of Young’s moduli (LA) converged to a new 
optimum with mass∗ ≤ 7.0kg . Based on the huge amount of 
design points evaluated in the course of this and other stud-
ies and from examination of contour plots we conclude that 
this is the global optimum. However, in average, the runs 
with LA need more cycles to converge than the correspond-
ing runs without adaption (NLA). These convergence issues 

Fig. 7   FE model of the pole 
impact and labeling of design 
variables (left). Contact force 
curve f (t) and corresponding 
optimized fit l(t) for nT = 20 and 
the initial design xj = 0.8mm 
(right)

Fig. 8   Resulting masses and 
corresponding cycles of all 
multi-start optimization runs, 
varying nT , and the selection of 
ESL-times
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can be attributed to the oscillation of some design variables 
over cycles in the region of the global optimum.

In order to understand why LA converges to a better 
optimum, we want to compare the constraint’s contour lines 
for the nonlinear dynamic problem and the corresponding 
DiESL approximation for the selected design points. To 
facilitate visualization of the contour lines suitable regions 
have to be identified in which only 2 design variables are 
relevant. We start by comparing the optima resulting from 
all runs summarized in Table 2. Depending on the values 
of the design variables, �∗ and the resulting mass∗ four dif-
ferent groups can be observed, which are illustrated on the 
left side of Fig. 10 as parallel coordinates. Here, the aver-
age value of the resulting designs �∗ and the corresponding 
standard deviations are plotted for each optimum. It can be 
seen that all design variables except for x1, x4 , and x5 are at 
their lower bound. Furthermore, it can be concluded that 

Table 1   Multi-start results for equidistant distribution of ESL-times (ET) and adaptive time selection (AT)

nT ESL-times All runs Runs mass∗ ≤ 7.1 kg Runs mass∗ > 7.1 kg

# Avg. cycles* Avg.mass∗ # Avg. cycles* Avg.mass∗ # Avg. cycles* Avg.mass∗

20 ET 20 9.55 7.114 13 10.77 7.039 7 7.285 7.255
AT 20 9.45 7.153 9 9.22 7.019 11 9.636 7.263

10 ET 20 13.7 7.122 8 12.25 7.021 12 15.88 7.274
AT 20 10.1 7.174 8 10.13 7.030 12 10.08 7.269

5 ET 20 15.2 7.20 5 19.4 7.032 15 13.8 7.261
AT 20 11.25 7.21 4 11.00 7.034 16 11.31 7.255

Table 2   Multi-start results for equidistant distribution of ESL-times (ET) and adaptive time selection (AT) with (LA) and without (NLA) local 
adaption of Young’s moduli

nT Method ESL-times All runs Runs mass∗ ≤ 7.0 kg Runs mass∗ > 7.0 kg

# Avg. cycles* Avg.mass∗ # Avg. cycles* Avg.mass∗ # Avg. cycles* Avg.mass∗

20 NLA ET 20 9.5 7.105 0 – – 20 9.55 7.114
LA ET 20 11.2 7.153 7 16.0 6.961 13 8.61 7.179

20 NLA AT 20 9.45 7. 106 0 – – 20 9.45 7.153
LA AT 20 14.75 7. 106 8 23.874 6.942 12 8.67 7.215

Fig. 9   Resulting masses and corresponding cycles of all multi-start 
results using nT = 20 for equidistant ESL-times (left) and with adap-
tive ESL-times selection (right)

Fig. 10   Averaged �∗ with cor-
responding standard deviation 
for all runs using nT = 20 split 
into 4 groups: a mass∗ ≥ 7.2kg , 
b 7.0kg ≤ mass∗ < 7.2kg 
and x4 > 1.1mm runs, c 
7.0kg ≤ mass∗ < 7.2kg 
and x4 ≤ 1.1mm , and d 
mass∗ < 7.0kg (left) and thick-
nesses x1(cross), x5 (circle) over 
x4 (right)
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the four groups can be classified by their value x4.On the 
right side of Fig. 10 x∗

1
 and x∗

5
 are therefore plotted over x∗

4
 . 

In the range x∗
4
≤ 1.1 mm , all values x∗

5
 are at their upper 

bound. Therefore, we conclude that x5 is irrelevant in this 
range. On the other hand for x∗

4
> 1.1mm , all values x∗

1
 are 

at their lower bound. Thus, we end up with two ranges, each 
spanned by only two design variables.

For each range, a DiESL approximation is created in one 
representative design point, and the intrusion contour lines of 
these approximations are compared to those from the nonlinear 
dynamic problem. The contour lines of both design points are 
illustrated in Fig. 11 for NLA and LA each combined with ET 
and AT. In general, all DiESL approximations fit the overall 
trend of the original problem for both design points. The noisy 
contour line of the nonlinear dynamic problem is smoothed by 
the DiESL approximation, which is worthwhile when apply-
ing gradient-based optimization. The local adaption of Young’s 
moduli improves the approximation quality of DiESL in both 
design points. This improvement can be seen most clearly 
in Fig. 11 right, which represents the global optimum with 
mass∗ ≤ 7.0 kg . The contour lines illustrate why this opti-
mum is found only with LA: The angle between the objective’s 
and constraint’s contour line changes its sign. While the NLA 
DiESL approximations suggest that increasing x4 will yield a 
smaller mass at constant intrusion, both LA approximations 
indicate the opposite. Furthermore, with LA both mass and 
intrusion contour lines are almost parallel near x4 = 0.6mm , 
which may explain the observed oscillations of design variables 
in the region of the global optimum: Two nearby design points 
may lead to angles between mass and intrusion with opposite 
sign, this will cause the optimizer to invert its search direction.

It can therefore be concluded that LA seems to gener-
ally improve DiESL approximation quality. The delayed 
convergence caused by oscillations around the global opti-
mum which were only observed when using LA cannot be 

attributed to LA as an inherent weakness, instead it can be 
explained with the nature of the examined example. The 
fact that only LA managed to find the global optimum is 
clearly a product of the improved approximation quality.

In order to better understand why the DiESL method 
reflects the original problem’s global trend, we plot the 
contour lines of the design point in range 2 (Fig. 11 right) 
for all selected ESL-times � in Figs. 12 and 13. Since the 
ESL-times differ, Fig. 12 contains the equidistant ESL-times 
and Fig. 13 the ones resulting from AT. For sake of clarity, 
the legend is omitted as it is identical to that in Fig. 11. As 
explained earlier, the total displacements in DiESL are the 
cumulated sum of displacement increments of all previous 
LSMs. Consequently, the sensitivities or the orientation of 
the contour lines are also sums of all previous LSMs. The 
orientation of the contour lines or direction of sensitivities 
can therefore also be understood as the weighted average of 
the LSMs sensitivities, where the weight factors are the sen-
sitivity magnitudes. Examining Figs. 12 and 13 the previous 
findings can be reconfirmed: both extensions “adaptive time 
selection” (AT) as well as “local stiffness adaption” (LA) 
improve the approximation quality of the standard DiESL 
approach using equidistant times (ET) and no local stiffness 
adaption NLA. It can also be seen that poor DiESL approxi-
mations at early time steps get propagated to subsequent 
times and have a negative impact, although this may get 
mitigated.

3.2 � Crash box

Figure 14 shows a crash box being crushed by a rigid impac-
tor ( mass = 622kg ) with initial speed vy = 4.167 ms . This 
model has been published originally by (Ma et al. 2020) but 
several changes have been made. For example, symmetry 
conditions with respect to the YZ plane have been inserted 

Fig. 11   Intrusion contour lines of objective and constraints for the 
nonlinear dynamic problem and the DiESL approximation for range 
1: design point x4 = 1.98mm ; x5 = 2.73mm ; d(�) = 199.1mm 
(left) and range 2: design point x1 = 0.8mm ; x4 = 0.6mm ; 

d(�) = 200.6mm (right). Notes: (1) All remaining design variables 
are set to their respective bound ( 0.5mm or 3.0mm ), (2) two mass 
contour lines have been added to each plot
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in order to reduce the computational effort and to improve 
numerical stability. The impactor’s translational degrees of 
freedom in x - and z-direction as well as all its rotations are 

locked. The structure is clamped along the distant edge in all 
6 degrees of freedom using single-point constraints (SPC). 
The crash box structure is made of steel (Young’s modulus 

Fig. 12   Contour lines of intrusion constraint for the nonlinear dynamic problem and the ET DiESL approximation for range 2: design point 
x1 = 0.8mm ; x4 = 0.6mm for all equidistant ESL-times and respective intrusions. Note: the legend is given in Fig. 11

Fig. 13   Contour lines of intrusion constraint for the nonlinear dynamic problem and the AT DiESL approximation for range 2: design point 
x1 = 0.8mm ; x4 = 0.6mm of all adaptively selected ESL-times and respective intrusions. Note the legend is given in Fig. 11
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E = 210GPa , density � = 7850kg/m3 , fully integrated shell 
elements, number of nodes = 5842). In contrast to the side 
impact model, a piecewise linear material behavior is applied 
here (Fig. 14, right). This means the material behavior can-
not be adapted correctly by using a bilinear material model 
in the design domain. For sake of simplicity the stiffness of 
elements in the plastic range is globally approximated using 
the tangent modulus ET = 0.4 GPa, this corresponds to the 
slope of the dashed yield curve in Fig. 14, right. This is con-
sidered to be accurate enough, since as illustrated in Fig. 15 
most parts of the structure are in the plastic range even at the 
very beginning of the deformation process.

As shown in Fig. 14 the design of the crash box is speci-
fied by twelve design variables, each corresponding to a 
single sheet metal thickness. As before, the same mesh is 
used for both linear and nonlinear analysis to avoid results 
mapping. A contact is defined between the crash box struc-
ture and the impactor in the nonlinear model only. The 
linear model does not include a contact definition, nor does 
it include the impactor. The objective of the optimization 
problem again is to minimize the mass of the structure 
while constraining the maximum intrusion in y-direction 

d(x) . The impactor’s intrusion in the design domain is 
approximated by using the displacement of a structural 
node in the impact zone. Mathematically the problem is 
given as follows:

Figure 16 shows the contact force curve for a very soft 
design. This soft design with consequently high intrusion 
has been chosen deliberately in order to determine the larg-
est ESL-time to be considered for the equidistant ESL-time 
distribution (ET): the last equidistant ESL-time is selected 
as tnT = 98ms , such that the maximum intrusion of the soft 
design is captured. Since the maximum intrusion exceeds 
the constraint of 160 mm in this case, feasible designs 
are expected to reach the maximum intrusion earlier. As 
before, with the adaptive selection of ESL-times (AT), the 
last ESL-time is always prescribed as the time at which 
maximum intrusion occurs for any given design. Addition-
ally, the time corresponding to the maximum crash force 

minmass(�)

s.t. d(�) ≤ 160 mm

0.5 mm ≤ xj ≤ 2.5 mm ;j = 1,… , 12.

Fig. 14   FE model of the crash 
box and labeling of design 
variables (left); applied mate-
rial model and corresponding 
approximation for local adap-
tion of Young’s moduli (right)

Fig. 15   Plastic strain in non-
linear dynamic analysis of the 
crash box model for an initial 
design of the multi-start study 
at an early time step t = 8 ms 
(left) and corresponding linear 
submodel (right)
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is prescribed in each DiESL cycle as illustrated in Fig. 16, 
right.

For the crash box, the evaluation of both extensions AT 
and LA introduced in this paper model follows the same 
procedure as explained before for the side impact example. 
Now, the number of ESL-times varied between 7, 14, and 
31. Furthermore, the number of multi-start optimization 
runs has been increased to 40 uniformly distributed initial 
designs, since the number of design variables is higher in 
this case.

First we want to check the influence of the adaptive 
selection of ESL-times on the approximation quality of the 
DiESL method. In Table 3, the averaged multi-start results 
are given for both settings ET and AT. We introduce one 
subgroup of all runs, namely, the runs converged to the best 

optimum found which is characterized by 2 features: firstly, 
all design variables cluster in a small region of the design 
space and secondly they have a mass smaller than 0.55 kg. 
Filtering optimal multi-start designs by the second criterion 
always yields designs located in the first cluster criterion, 
hence the second is used to define the subgroup. The cluster 
outlining this best optimum is illustrated in Fig. 17 (right) 
using nT = 14 . Here, the average value for each design vari-
able of the resulting design �∗ and the corresponding stand-
ard deviation is plotted for all 40 runs as well as for the best 
optimum. The standard deviation of all runs is very high 
which means that many local optima were found. This can 
be explained by the nature of this crash box example: it is 
a highly nonlinear example with a lot of local optima, and 
we did not employ a global optimizer. Therefore, it is rather 

Fig. 16   Contact force curve for 
xj = 1.2mm and correspond-
ing piecewise linear fit using 
nT = 14 equidistant ESL-times 
(left) and nT = 14 adaptive 
ESL-times (right)

Table 3   Averaged multi-
start results for equidistant 
distribution of ESL-times (ET) 
and adaptive time selection 
(AT)

nT Method All runs Runs converged to best optimum 
( mass∗ ≤ 0.55 kg)

Avg. number 
of cycles

Average mass∗/kg Number of 
runs

Avg. number 
of cycles

Average mass∗/kg

31 ET 20.9 0.563 21 23.6 0.531
AT 20.4 0.555 23 22.0 0.526

14 ET 19.6 0.605 4 27.5 0.533
AT 20.3 0.568 19 17.0 0.527

7 ET 25.4 0.634 1 34.0 0.538
AT 23.6 0.595 11 23.45 0.532

Fig. 17   Resulting masses and 
corresponding cycles of multi-
start study for nT = 14 (left) and 
averaged �∗ with corresponding 
standard deviation for the two 
groups: a all runs and b runs 
converged to the best optimum 
for nT = 14 (right)
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less surprising that the DiESL method yields several dif-
ferent local minima. Nevertheless, it can be seen in Fig. 17 
(left) and in Table 3 that with AT the method converges 
more often to the best optimum (e.g., 4 ET vs. 19 AT for 
nT = 14 ). This trend holds if the number of ESL-times is 
varied (Table 3, Fig. 18 right).

Additionally, the average mass∗ of both, all runs and sub-
group runs, is smaller if adaptive time selection is applied 
when compared to equidistant times, cf. Figure 18 (left, mid-
dle). It can also be seen that the benefits of AT become more 
pronounced for small numbers of ESL-times nT : Fig. 18 
(left) shows that the averaged mass∗ of all runs increases and 
Fig. 18 (right) illustrates that the number of runs converg-
ing to the subgroup goes down as nT is reduced. This holds 
for both methods ET and AT, but ET suffers much more. In 
contrast, the average number of cycles necessary for con-
vergence for all runs does not reveal a consistent trend, see 
Table 3.

Summarizing for the crash box example, the adaptive 
selection of ESL-times leads to several advantages: lower 
objective value, faster convergence to the best optimum sub-
group and even better objective values for runs converged to 
the subgroup. These observations lead us to the conclusion 
that adaptive time selection indeed improves the approxima-
tion quality of DiESL in this example.

Finally, the local adaption of Young’s moduli and 
its combination with AT is investigated. The number 
of ESL-times is set to nT = 31 for all runs. In this case 
we limit ourselves to the tabular comparison in Table 4. 

Evaluating all runs for ET, the average mass∗ increases if 
LA is applied. Also, the number of runs converged to the 
best optimum reduces. In this case, the local adaption of 
Young’s moduli seems to reduce the approximation quality 
of the DiESL method. This may be explained by the fol-
lowing consideration: with the local adaption of Young’s 
moduli the tangent stiffness at the start of the increment 
is employed for the whole increment represented by an 
LSM. With ET these increments may be relatively big. 
If the increments are chosen regardless on the nonlinear 
behavior of the structure, the tangent stiffness may be a 
worse approximation for the whole increment.

For AT the combination with LA has negligible impacts 
on the number of cycles and mass∗ and leads to no consid-
erable advantage. There is one conceivable explanation 
for the missing benefits obtained with LA: In the crash 
box example there is a huge amount of elements which 
enter the plastic domain very early during the simulation. 
Consequently, nearly all LSMs predominantly consist of 
elements in the plastic range. In that case, elements in 
the elastic range have only a small impact on the over-
all behavior. Therefore, the improvement due to the LA 
implementation can be neglected. Note that in the extreme 
case where all elements are in the plastic domain, the LA 
approach has no impact on the optimization results at 
all: for a reduced global stiffness in the linear models, 
the ESL forces scale accordingly, but the linear model 
yields identical results from the linear optimizer’s per-
spective. This means the LA approach can only improve 

Fig. 18   Average mass against 
number of ESL-times for all 
runs (left) and runs converged 
to the best optimum subgroup 
(middle); number of runs 
converged to the best optimum 
subgroup (right)

Table 4   Averaged multi-start 
results for local adaption of 
Young’s moduli in each LSM 
(LA), no local adaption (NLA) 
in combination with both 
equidistant (ET) and adaptive 
(AT) selection of ESL-times 
using n

T
= 31

Young ‘s 
modulus

ESL-times All runs Runs converged to best optimum 
( mass∗ ≤ 0.55)

Avg. number 
of cycles

Average mass∗/kg Number 
of runs

Avg. number 
of cycles

Average mass∗/kg

NLA ET 20.875 0.563 21 23.57 0.5307
LA ET 20.975 0.579 17 21.65 0.5310
NLA AT 20.35 0.5546 23 22.04 0.5257
LA AT 19.75 0.5598 23 19.47 0.5250
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the approximation quality of the DiESL models if there 
is a reasonable mix of plastic and non-plastic elements.

4 � Conclusion

In this paper, two extensions of the DiESL method are 
presented: First the adaptive selection of ESL-times (AT) 
and secondly a local adaption of Young’s moduli (LA) in 
the design domain. Both extensions are evaluated on the 
basis of two representative sizing optimization examples 
by minimizing mass with a displacement constraint on an 
impactor.

The evaluation is conducted by means of several DOE-
based multi-start optimization studies with varying initial 
designs. Three criteria are used to evaluate the influence 
of the extensions on the DiESL method’s performance: 
the average number of cycles required for convergence, 
the number of multi-start runs converging to the global 
optimum, and the resulting average objective value.

The adaptive selection of ESL-times yields different 
results depending on the example considered. For the side 
impact example no significant influence on the chosen cri-
teria can be observed, as long as the number of ESL-times 
is sufficiently high. As the numbers of ESL-times decrease 
the DiESL methods converge faster if the ESL-times are 
selected adaptively. Observing the crash box example, the 
adaptive selection of ESL-times leads to a considerable 
improvement of all criteria: It is shown that on average 
the extension converges both faster and more often to the 
global optimum, and the average objective is better for 
the overall multi-start runs. These advantages become 
more dominant if the number of ESL-times is reduced. It 
is plausible that the difference between both approaches 
is less dominant for bigger nT because in that case Δt is 
small even for equidistant times (ET). It is worth noticing 
that AT enables the reduction of nT without drastically 
reducing the approximation quality compared to ET. As 
the number of nT reduces, less LSMs have to be assembled 
and the computational effort decreases, which is especially 
beneficial when handling large models or if computational 
resources are limited. However, in some cases the usage 
of ET may also be beneficial, for example if structural 
responses like velocities or accelerations are involved in 
the optimization problem, because they require the usage 
of finite differences. The major differences between the 
crash box and the side impact example are the number 
and intensity of structural nonlinearities forming in the 
course of the simulation. For example the crash box devel-
ops more strong contacts and plastic hinges than the side 
impact. This difference is reflected in the shape of the con-
tact force curve and it may explain the different results of 
the two examples.

Due to the fact that the optimal number of ESL-times 
nT is unknown at the beginning of the optimization it may 
be beneficial if not only the locations of breakpoints are 
optimized but also nT itself instead of defining it. A crude 
approach is to compute the SSR values for a predefined 
range of nT values and to select the smallest nT still fulfill-
ing the SSR accuracy requirements. An alternative may be 
to use a more sophisticated approximation of the response 
curve and an optimization algorithm wherein both the 
number and the position of ESL-times are optimized. Such 
methods are described for instance in Costa et al. (2018),  
Bertolino et al. (2021) and they could be the basis for 
improving the AT algorithm in future.

The local adaption of Young’s moduli also yields differ-
ent results depending on the observed example: In the case 
of the side impact, LA yielded a new optimum. The advan-
tages of LA are clearly illustrated by comparing the intru-
sion constraint’s contour lines of the original nonlinear 
dynamic problem with the DiESL approximation. How-
ever, for the crash box less runs yield the best optimum 
when combining LA and ET. This disadvantage could be 
compensated by the combination of LA with AT, but still 
it does not lead to an improvement. The reason may be 
related to the ratio of elements in the elastic and plastic 
domain: Most elements of the crash box plasticize already 
at very early stages of the deformation process, whereas 
in the case of the side impact only some parts of the struc-
ture do. We therefore conclude that the local adaption of 
Young’s moduli only leads to improved approximation 
quality of the DiESL method if neither the plasticized nor 
the elastic element portion dominates the ratio.

Summarizing, the applicability of both extensions 
depends on the problem at hand. The adaptive selection of 
ESL-times (AT) leads to a considerable improvement of 
the DiESL method’s approximation quality if the contact 
force clearly indicates the presence of intense nonlinearities. 
The local adaption of Young’s moduli (LA) only yields an 
observable improvement if neither the elements in the elas-
tic nor in the plastic domain are dominating the structure’s 
behavior. In general, the DiESL method leads to sufficiently 
good approximations even without either extension. In order 
to better assess the influence of both extensions in practice, 
further examples should be optimized.
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