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Abstract 
Droplets within droplets occur in numerous situations in which two immiscible liquids interact, for instance, binary drop 
collisions or when a drop of one liquid impacts onto a film of a different liquid, ejecting secondary droplets containing both 
liquids. In the present study, an imaging technique for determining the volume fraction of each liquid component in such 
two-component droplets is introduced, in which multiple images of the same droplet at different times are used. The pro-
cessing of these images is supported by a machine learning algorithm, which is taught using synthetically generated images 
and validated on droplets with known mixture fractions placed in an acoustic levitator. The application of the technique is 
demonstrated by measuring the volume fraction in splashed secondary droplets following the impact of a drop of one liquid 
onto a film of a different liquid.

Graphical abstract

Keywords  Drop impact · Multiphase flow · Secondary droplets · Droplet imaging

1  Introduction

The impact of a single drop onto a liquid film can result 
in different outcomes such as deposition, formation of a 
corona without splash, partial rebound and splash. This 
study focuses on situations where the drop impact results 
in a splash. Whether or not a drop impact results in a splash 

depends on many different parameters the most important of 
which are the Reynolds (Re) and Weber (We) numbers and 
the dimensionless film thickness (Yarin et al. 2017; Moreira 
et al. 2010).

The critical threshold above which splashing occurs can 
be described by the K-number in the form K = WeaReb , 
first introduced by Mundo et al. (1995). Liang and Muda-
war (2016) summarize numerous semi-empirical correla-
tions which have been developed to describe the splashing 
threshold in this form.

The case in which the drop and film liquid differ in their 
essential parameters of density, viscosity and surface tension 
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is particularly relevant to exhaust gas after-treatment systems 
and internal combustion engines.

Due to the ever-smaller engines, the understanding of the 
drop/spray wall interaction is becoming increasingly impor-
tant, since secondary droplets resulting from drops impact-
ing the oil film on the cylinder and piston wall can trans-
port oil into the combustion chamber and thus influence the 
mixture composition, potentially leading to pre-ignition and/
or knocking (Kubach et al. 2018). One example of a drop 
impact with differing liquids is shown in Fig. 1, in which a 
red-dyed water drop has impacted onto a film of transparent 
silicone oil. It can be observed that two-component droplets 
are ejected from the tips of the finger jets. The entire splash 
event can be viewed as a high speed video in Film 1 of the 
supplementary material.

In situations of drop impact with drops and film being of 
different liquids, one measurement quantity of interest is the 
volume fraction of one liquid in the other. This problem has 
not been widely studied; more emphasis has been placed on 
the influence of differing liquids on the splash threshold or 
the hydrodynamics of crown evolution (Kittel et al. 2018; 
Geppert et al. 2016, 2017; Chen et al. 2017).

Optical methods are preferable for such a volume frac-
tion measurement because of their non-intrusiveness. For 
instance, the addition of a fluorescent dye in the impact-
ing drop could be considered, in which case the intensity 
of emitted light at the fluorescent wavelength would be 
proportional to the amount of liquid in the two-component 
droplet, that originated from the impacting drop. However, 
the illumination would have to be appropriate to ensure that 
all dye molecules in the droplet were uniformly excited, the 
total volume of the droplet would still have to be determined, 
and internal absorption and secondary scattering would 
have to be accounted for, as with other quantitative applica-
tions of laser-induced fluorescence (Greszik et al. 2011). 
Optical techniques using elastic light scattering could also 
be considered. Although analytical solutions for the light 

scattering from a sphere with an eccentrically located spheri-
cal inclusion have been presented (Gouesbet and Gréhan 
2000; Videen et al. 1995; Borghese et al. 1992; Fuller 1995; 
Wang et al. 2011; Cui and Han 2014), these analyses have 
yet to lead to instruments capable of quantifying the inclu-
sion volume. Given that no technique is presently available 
for this measurement task, the present study introduces a 
chromatic, high-speed imaging approach, employing two 
simultaneous imaging perspectives to estimate the embed-
ded volume fraction.

The method presented is applicable beyond the context 
of drop impact. The handling of two-component droplets is 
of growing importance for the development and designs of 
miniaturized microfluidic devices, with applications in the 
food or pharmaceutical industry (Blanken et al. 2021). An 
example of an application already made possible by a better 
understanding of the behavior of composite droplets is high 
throughput biological assays (Mary et al. 2011) .

2 � Problem description

Quantification of the volume fraction of two-component 
droplets is challenging, because the orientation of the drop-
let with respect to the illumination and/or imaging optics is 
not known a priori and also changes with time. For instance, 
Fig. 2 shows a red-colored water droplet encapsulated in 
silicone oil suspended in an acoustic levitator at consecu-
tive time steps. While at t = 0.232 s, the projected part of 
the inner droplet only covers a small portion of the total 
projected area, at t = 0.6 s, it occupies almost the entire area. 
The size of the projected image of the encapsulated droplet 
varies depending on its position in the outer droplet relative 
to the observer.

Fig. 1   a Snapshot of a red-colored water droplet ( D = 3 mm, u = 3.2 
m/s) impinging onto a film of silicone oil ( � = 10 × 10−6  m2s−1 ) of 
600 μm thickness, illustrating the generated secondary droplets; b, c 
Time sequence of secondary droplets ejected from finger jets

Fig. 2   Levitated two-component droplet ( Vfrac = 0.13 ) of red colored 
water and silicone oil ( � = 20 × 10−6  m2s−1 ) for various time 
instances
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To quantitatively determine the size of the projected area 
of the inner droplet, an elementary ray-tracing approach 
was employed, as illustrated in Fig. 3a. Assuming the inner 
droplet is sufficiently illuminated, light emanating from the 
inner (colored) droplet will reach the observer (positioned at 
y = −∞ ) after being refracted once at the outer droplet/gas 
interface. By examining all rays coming from the observa-
tion direction that intersect the droplet, Snell’s law is applied 
at the gas/droplet interface to determine whether the ray will 
emanate from the inner droplet or not. This we term ’inverse 
ray-tracing’. For this, the refractive index of the gas, n0 and 
that of the liquid droplet n must be known. Thus, the black 
rays in Fig. 3a will not image the inner, colored droplet and the 
projected image, here in the X-Z plane, will appear as shown in 
Fig. 3b. This approach neglects rays with two or more internal 
reflections before reaching the observer, but in a similar study, 
such secondary reflections were shown to be negligible (Frack-
owiak and Tropea 2010), making a more complex ray-tracing 
routine unnecessary.

The ratio of projected areas from the inner to outer droplet 
can be expressed as

The relative position of the inner droplet has a strong influ-
ence on the shape and size of the projected area of the 
inner droplet on the image. In order to describe the position 
explicitly, a coordinate system located in the center of the 
two-component droplet is introduced in Fig. 3c. The posi-
tion of the inner droplet is denoted by the eccentricity ei 

(1)Aratio =
Ainner

Atotal

.

describing the normalized vector between the center of mass 
of the inner droplet and that of the outer droplet:

where (x, y, z) describes the position of the center of the 
inner droplet, and Dmin and Dmax are the directional asso-
ciated half-axes of the ellipsoidal-shaped droplet. The 
eccentricity vector ei is not directly observable from the 
experiments since the projected images of the inner droplet 
are distorted due to refraction. In order to be able to esti-
mate the position of the inner droplet, the normalized pro-
jected eccentricity ei,proj is introduced, describing the vector 
between the centers of the two projected areas, outer to inner 
droplet (see Fig. 3d). Since the shape of the projected image 
is also influenced by the local curvature of the outer droplet, 
and thus, by the deformation of the entire droplet, the ellip-
soidal deformation � is introduced

A ray-tracing approach was used to provide quantitative 
insight into how different parameters influence the projected 
area ratio and eccentricity and how these relate to the vol-
ume fraction Vfrac , defined by

whereby Vouter includes the inner volume.
A comparison between an actual two-component droplet 

and a corresponding synthetic image is displayed in Fig. 4. 
In the figure, the known volume fraction of the droplet 
imaged in Fig. 4a was used in the ray-tracing tool, and the 
eccentricities of the inner drop were adjusted iteratively 

(2)ex =
x

Dmaj∕2
, ey =

y

Dmaj∕2
, ez =

z

Dmin∕2
.

(3)� =
Dmin

Dmaj

.

(4)Vfrac =
Vinner

Vouter

Fig. 3   a Schematic representation of ray paths refracted in a two-
component droplet in a sectional view. b projected image from a 
viewer’s perspective. c definition of coordinate system origin. d defi-
nition of projected eccentricity vector

Fig. 4   a Levitated two-component droplet of red-colored water 
and silicone oil ( � = 20 × 10−6  m2s−1 ), Vfrac = 0.13 , Aratio = 0.41 , 
ex,proj = −0.21,ez,proj = −0.15 , � = 0.68 . b Projected view on a two-
component droplet modeled after (a) using ray-tracing resulting in 
Aratio = 0.41 , ex,proj = −0.2 , ez,proj = −0.17
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until the synthetic image in Fig. 4b was similar to that in 
Fig. 4a. The resulting area ratio and eccentricities collated 
very closely to those from the experiment, verifying the 
ray-tracing approach for simulating the light scattering from 
such two-component droplets.

The influence of Vfrac on the projected Aratio is displayed 
in Fig. 5a. For this computation spherical droplets are con-
sidered for three cases with varying positions of the inner 
droplet in the x direction as illustrated in Fig. 5b. In the first 
case, the inner droplet is located on the front side facing 
the observer; in the second case, the inner droplet is in the 
center; and in the last case, the inner droplet is on the back-
side of the outer droplet. Three conclusions can be drawn 
from these results.

•	 The Aratio depends strongly on the Vfrac and ei , which 
means that a prediction of Vfrac by only the Aratio is not 
possible unambiguously.

•	 There is a limit when the Aratio reaches unity, since no 
information about the inner droplet position can be 
extracted anymore and the outer droplet appears as if it 
is composed of only one component. The limiting Vfrac , 
indicated by the dashed lines in the figure, increases the 
closer the inner droplet is located to the observer.

•	 The slope of the curves decreases the closer the inner 
droplet is positioned to the front side, allowing a more 
accurate volume fraction quantification.

As can be seen from Fig. 5, information about the posi-
tion of the inner droplet is necessary to determine Vfrac . For 
this reason, a second imaging perspective, orthogonal to 
the first one, is added, enabling depth perception. Figure 6a 
shows a schematic sectional view from above, whereas 
Fig. 6b shows the corresponding projected images from the 

two perspectives. The location of the inner droplet can be 
estimated by considering the projected eccentricities ei,proj 
from both perspectives. In the present example, both pro-
jected eccentricities ex,proj, ey,proj are on the left side of the 
two-component droplet center, and thus, the position of the 
inner droplet is in the upper left quadrant of the sectional 
view. Moreover, the additional information from the second 
projected area ratio Aratio can improve the volume fraction 
estimation. The further the inner droplet moves away from 
the center of the outer droplet, the larger are the shape and 
size differences on the projected images.

3 � Description of method

It becomes apparent that due to the influence of refraction 
inside the two-component droplet, the real position of the 
enclosed droplet cannot be determined unambiguously. Only 
the projected eccentricities e⃗i,proj can be measured directly 
from the recordings. This makes direct solution of the 
inverse problem difficult. On the other hand, the projected 
Aratio in combination with e⃗i,proj does include information 
about Vfrac . In order to utilize this information to determine 
the Vfrac , a support vector machine (SVM) is used. The SVM 
is a methodology from the field of machine learning, first 
introduced by Cortes and Vapnik (1995), which has become 
widely used for solving classification problems (Awad and 
Khanna 2015).

3.1 � SVM for volume ratio determination

The aim of using a SVM in the context of this study is to 
provide an algorithm, which is able to predict a volume frac-
tion V̂frac based on experimentally observable features, sum-
marized in an observation vector b⃗.

SVMs belong to the category of supervised learning 
methods, meaning that they are trained with labeled data. 
With the previously described ray-tracing approach, this 
labeled data can be easily provided because the Vfrac of every 

(a) (b)

Fig. 5   a Relation between Vfrac and Aratio in dependence of the relative 
position of the inner droplet ( ey = ez = 0 , n∕n0 = 1.41 ). Dashed lines 
represent the Vfrac for which the Aratio = 1 . b Light ray paths of a two-
component droplet in sectional view, resulting in varying Aratio

Fig. 6   a Schematic of a sectional view of the two-component droplet. 
b Corresponding projected images from two sides. The blue and red 
dots represent the center of mass of the two-component droplet and 
the projected area, respectively



Experiments in Fluids (2022) 63:114	

1 3

Page 5 of 13  114

synthetically generated droplet image pair is known. The 
output size, in this case V̂frac , is divided into a fixed number 
of bins each of which is assigned to a specific class k. After 
training a decoding function d(b⃗) can be solved for every 
class, i.e., volume fraction bin. The class that is then pre-
dicted by the SVM based on the observation b⃗ is determined 
by solving the following maximization problem:

A detailed description of this procedure can be found in 
Appendix  1.

To train a SVM with the aim to predict V̂frac , first, a set of 
classes has to be defined. It becomes apparent from Fig. 5 
that the projected Aratio is close to unity for high Vfrac even 
if the inner droplet is positioned on the side facing the 
observer. The Vfrac of cases with Aratio ≈ 1 cannot be deter-
mined unambiguously, since the projected image of the 
droplet contains limited information. A reasonable tradeoff 
is to limit the measuring range of Vfrac between 0 and 0.5. 
This measuring range is then divided into equal bin sizes of 
0.025 resulting in 21 discrete classes each representing 5% 
intervals of the upper measuring range limit.

In Sect. 2, it is shown that the projected Aratio depends 
on V

frac
 , the refractive index n, the relative position ei of the 

inner drop and the aspect ratio � of the two-component drop. 
With the aim to determine Vfrac , the information of Aratio , 
n, � and ei must therefore be taken into account. Since it is 
not possible to directly determine the exact position of the 
inner droplet from the recordings, its position is estimated 
by considering the center of the projected area of the inner 
droplet in each perspective image ei,proj , with ei,proj being a 
two-dimensional vector as depicted in Fig. 3d. The SVM 
is trained for a fixed n = 1.41 of silicone oil, and thus, the 
observation vector b⃗ becomes

 The area ratios can be summarized in A ratio, p and the eccen-
tricities in ei,proj,p , where the subscript p ∈ [1, 2] denotes the 
respective perspective 1 or 2 and the subscript i denotes the 
components of the eccentricity vector. The classification is 
based on these seven features.

In the next step, the algorithm needs to be trained, i.e., 
the hyperplanes for the l= 210 binary classifiers need to be 
found. For this purpose, 67500 synthetic observations b⃗ were 
generated. For each observation, two orthogonal projections 
are generated, as is illustrated in Fig. 6. The Vfrac and the 
position of the inner droplet ei are randomly varied, whereby 
Vfrac is limited to the interval [0, 0.5] and ei is constrained by 
the condition that the inner droplet must be wholly within 
the outer droplet. An image processing script based on the 

(5)V̂frac = arg max
k

(1 − |d|).

(6)
b⃗ = [𝜀,Aratio,1,Aratio,2,

ex,proj,1, ez,proj,1, ey,proj,2, ez,proj,2].

MATLAB image processing toolbox is then used to extract 
Aratio,p , � and ei,proj,p from the synthetically generated image 
pairs. These quantities are then combined in b⃗ , and each 
observation is labeled with the Vfrac it was generated with.

Using the MATLAB machine learning toolbox, the SVM 
is then trained based on this large set of labeled data. Dur-
ing the training process, a K-fold cross-validation technique 
is applied for validation (Awad and Khanna 2015). There-
fore, the training data set is divided into K = 5 samples of 
equal size, whereby four samples are used for training, while 
one sample is used for validation. This step is repeated five 
times. In order to evaluate the quality of the trained SVM, a 
classification cost as shown in the matrix of Table 1 is used. 
By means of this matrix, penalties for improper classifica-
tion can be defined which are then incorporated into further 
training.

The trained SVM can then be used to predict the volume 
fraction based on an observation vector b⃗ . The output of the 
SVM contains the d̃ values for every class, as shown exem-
plary in Fig. 7. Following the relation in Eq. (5), the class 
with the maximum value of d̃ = 1 − |d| will be the resulting 

Table 1   Improper classification cost matrix

True class Predicted class

k-2 k-1 k k+1 k+2

k-2 0 0.25 0.75 2 2
k-1 0.25 0 0.25 0.75 2
k 0.75 0.25 0 0.25 0.75
k+1 2 0.75 0.25 0 0.25
k+2 2 2 0.75 0.25 0

Fig. 7   Output of decoding function d̃ for every Vfrac class after clas-
sification. The chosen class with the maximum d̃ is marked with a 
circle



	 Experiments in Fluids (2022) 63:114

1 3

114  Page 6 of 13

Vfrac estimate. Thus, d̃ can be interpreted as a measure for 
the likelihood that a particular class best describes the true 
Vratio . The color shading in Fig. 7 is superfluous; however, 
this shading is introduced here to be consistent with later 
representation of data in Sect. 5.2

4 � Validation

4.1 � Validation using synthetic data

The approach described above is first validated using a large 
set of synthetically generated data. Each artificial droplet 
configuration is sorted into one of the 21 Vfrac classes and 
classified individually. The mean estimated volume fraction 
⟨V̂frac⟩ and standard deviation are calculated from the sorted 
data. The results are displayed in Fig. 8. The red dashed 
line represents the theoretically correct classification result 
Vfrac = V̂frac . Very good agreement between the mean clas-
sified volume fraction ⟨V̂frac⟩ and the actual volume frac-
tion Vfrac is evident over the entire range of volume fraction. 
Slight deviations from the mean are apparent for Vfrac > 0.3 . 
Furthermore, the standard deviation increases, reaching its 
peak at Vfrac ≈ 0.4.

Both deviations can be explained by the upper limit of 
volume ratio quantification from Fig. 5. This figure shows 
that inner droplets positioned at the center of the two-
component droplet reach a projected area ratio Aratio = 1 
for volume fractions above Vfrac > 0.3 . This means that the 
information content decreases for larger inner droplets as 
they approach the center of the outer droplet, leading to an 
increase in standard deviation. To determine the influence 
of the number of bins on the prediction, two further SVMs 

were trained with 11 and 41 bin, respectively. The prediction 
error is then quantified by calculating the root-mean-square 
error VRSME over all predictions according to the following 
Eq. 7:

Hereby N is the total number of predictions, and Vfrac,true 
is the true value used to generate the synthetic data. The 
Vfrac,true differs from the labeled Vfrac since the labeled Vfrac 
is already discretized by rounding Vfrac,true into the bins. 
In the step from 11 to 21 bins, the error reduces from 
VRMSE,11 = 0.0424 , to VRMSE,21 = 0.0396 , while from 21 to 
41 bins, the error VRMSE,41 = 0.0392 only reduces slightly. 
The segmentation into 21 bins is a compromise, since a fur-
ther increase of bin number would result in a larger training 
effort while reducing the RMSE only marginally.

4.2 � Experimental validation

4.2.1 � Experimental method

The technique was experimentally validated using two-
component droplets of known volume fraction placed in an 
acoustic levitator. Figure 9 shows the experimental set-up, 
comprising an acoustic levitator and an image acquisition 
system using two orthogonally aligned chromatic cameras 
(Photron SA-X2 with a Tokina Macro 100 ATX Pro lens and 
14 mm spacer, GoPro Hero7 with Nikkon AF Micro 60 mm 
lens). The setup yields a spatial resolution of 0.186  mm/
px and a framerate of 250 fps for the Photron SA-X2 and a 
spatial resolution of 0.0151 mm/px and framerate of 240fps 

(7)VRSME =

√
1

N

∑

N

(
(
V̂frac − Vfrac,true

)
.

Fig. 8   Relation between labeled Vfrac and classified V̂
frac

 . The red 
dashed line indicates perfect agreement, i.e., Vfrac = V̂frac

Fig. 9   Sketch of the setup for experimental validation of the tech-
nique in the acoustic levitator
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for the GoPro Hero7. Illumination is provided by two LED 
lights (Veritas Constellation 120e). The background consists 
of opaque white acrylic glass. The acoustic levitator was a 
commercial instrument (Tec5, Steinbach am Taunus) oper-
ated at 58 kHz. The sound pressure level (SPL) was chosen 
as a minimum to still maintain a stable position of the drop-
let; hence minimizing the overall drop deformation. Further 
information regarding the deformation of droplets due to 
acoustic pressure in the levitator can be found in Yarin et al. 
(1998).

Injection and positioning of the droplet in the acoustic 
levitator are performed manually with a syringe in two steps. 
First, the red colored water droplet is inserted after which the 
silicone oil is added, forming the two-component droplet. 
For this experiment, a silicone oil with a kinematic viscosity 
of 20×10−6 m2s−1 was used, labeled here as S20. The inner 
drop was colored using fuchsine. The surface tension of the 
dyed drop was measured to be 70±2 mN/m using a DCAT 
25 tensiometer (Dataphysics), indicating that the dye had 
no significant influence on the surface tension of the liquid.

The individual volumes of the liquid injected with the 
syringe are known, yielding the volume fraction. The camera 
images are then processed using an edge detection routine; 
the inner projected area Ainner from the red channel of the 
RGB image. The projected eccentricities ei,proj and ellipsoid 
deformation � are calculated by applying the regionprops 
function of MATLAB

4.2.2 � Results

Experimental validation was conducted using a total of 32 
individual silicon droplets, 20 of which had red-colored 
water droplets inside and 12 of which had solid, spherical 
particles ( D = 1mm) inside. The results of these measure-
ments are shown in Fig. 10, in which the 32 experiments 
are plotted with increasing volume fraction along the X-axis 
according to their identification number (ID). The uncer-
tainty bars correspond to ±1 px on the respective image, 
which increase with volume fraction due to the growing 
influence of the diameter Vfrac = f (D3

inner
∕D3

total
).

The volume fraction V̂frac estimated from the two images 
is marked by black markers. The graph shows good agree-
ment between estimated and known values of volume 
fraction, particularly for Vfrac < 0.3 , similar to the results 
obtained using synthetic data. Furthermore, the classifica-
tion results for spherical particles are significantly better 
than the droplet-in-droplet cases, especially for larger val-
ues of Vfrac . This may be due to an increasing deformation 
of larger inner droplets.

There are three main reasons why the inner droplet may 
deviate from the spherical shape, leading to the large disa-
greement shown in Fig. 10 between ground truth and meas-
urement, especially for larger volume fractions. The first is 

because the outer droplet is deformed due to the pressure 
forces exerted by the acoustic field to levitate the droplet in 
earth’s gravity. This may lead to a shape distortion of the 
inner droplet as well. The second reason is that an inner and 
outer acoustic streaming is generated in the levitator, as is 
described in Yarin et al. (1998). Finally, the droplet levi-
tated in the pressure node undergoes rotation and centrifu-
gal forces will then act on the inner droplet, possibly also 
leading to shape distortion. Therefore, since droplet rotation 
normally plays an insignificant role in practical applications, 
e.g., in a corona splash, and furthermore, in practical situ-
ations, there is no acoustic pressure or acoustic streaming, 
and the results of the particle experiments should be more 
representative of the achievable accuracy with this method.

5 � Corona splash experiments

For a further demonstration of this method, measurements 
were made of secondary, two-component droplets originat-
ing from a corona splash. Since the method requires two 
orthogonal perspectives, a novel setup using mirrors has 
been employed, illustrated in Fig. 11. Referring to Fig. 11, 
the camera imaging chip is divided into half by employing 
a centrally placed prismatic mirror, observing the splash 
through two equally spaced side mirrors. This optical con-
figuration enables observation with two orthogonal perspec-
tives using a single chromatic high speed camera. Two issues 
when imaging from two perspectives must be considered: 
limited depth of field (DOF) and obscuring of the droplet of 
interest from other surrounding droplets in the experiment. 

Fig. 10   Comparison between experimental and classification-based 
volume fraction Vfrac determination. Blue markers indicate droplet-
in-droplet experiments with red-colored water inside S20 silicone oil, 
whereas red markers indicate spherical particles ( D = 1mm) inside 
S20 silicone oil droplets. The black symbols correspond to the esti-
mated volume fraction from the experimental images
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These issues are largely avoided by restricting the observed 
portion of the splash to only a quarter of the spatial regime 
of splashing. A sketch of the side view of the experimental 
setup is presented in Fig. 12. The impinging drop is pro-
duced with a cannula and a micropump. It is accelerated by 
gravity onto the liquid film. The liquid is contained in a pool 
enclosed within surrounding multiple layers of PVC foil 
which are affixed to a sapphire glass plate. The liquid film 
depth is controlled by a confocal chromatic film thickness 
sensor confocalDT 2421 in combination with a IFS2405-1 
probe from Micro Epsilon. The impact point of the drop is 
chosen such that it is visible near the outer edges of both 
observation fields of view (FOVs). This results in good vis-
ibility of the splash as well as enabling the velocity and 
volume of the impinging drop to be determined.

The setup uses the Photron SA-X2 with the same objec-
tive, spacer and background configuration as in the levitator 
experiment. The framerate was 10000 fps at an f-stop of 11, 
and the DOF was 11mm. The resolution was 0.037mm/px. A 

typical single frame image is shown in Fig. 13, upon which 
the trajectories of several droplets have been superimposed. 
The trajectories have been obtained from frames taken 
before and after the frame pictured in this figure. The entire 
splash event captured with the split image can be viewed in 
Film 2 of the supplementary material.

5.1 � Image processing

The secondary droplets created during the splash must be 
recognized in images from both observation directions. 
However, this causes difficulties since not all droplets are 
visible on both images due to the limited FOV. Furthermore, 
droplets can only be observed in focus within the limited 
depth of field. The DOF is therefore used to detect relevant 
droplets which are visible on both images. Those droplets 
are identified by a gradient based, circle finding algorithm 
which neglects drops that are too far out of focus. A simple 
PTV algorithm based on the nearest neighbor principle is 
then used to determine the droplets trajectories in consecu-
tive images. The height of the droplet above the impact plane 
as a function of time, as well as the radius of the droplets, 
is then used to match droplets to one another on each of 
the images. To ensure comparability in the matching pro-
cess, only droplets with a diameter of 10 pixels or more are 
considered.

The focal plane of each viewing perspective is positioned 
in relation to the outer edge of the FOV from the other view-
ing perspective. Its distance to the outer edge is exactly half 
of the experimentally predetermined DOF length. This 
results in a rectangular area in which a droplet is imaged 
sharply on both images, as indicated in Fig. 11. Droplets 
outside of this area may only be visible on one image or are 

Fig. 11   Sketch of the splashing setup showing the respective fields of 
view (FOV), focal planes (FP) and depth of field

Fig. 12   Schematic representation of the experimental setup in a side 
view

Fig. 13   Single frame image from the experiment of an red-colored 
drop impinging onto a silicone oil film of � = 10 × 10−6  m2s−1 , 
t = 25 ms after impact. The trajectories of the droplets are highlighted 
by colored lines, whereby matched pairs have the same color
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blurred, due to being outside the DOF. The assignment pro-
cess is understandably less prone to error with lower volume 
number densities of secondary droplets.

5.2 � Experimental results

A typical measurement result, obtained by tracking a single 
two-component secondary droplet, is shown in Fig. 14. This 
corresponds to the droplet trajectory labeled #4 in Fig. 13. In 
Fig. 14, the complementary decoding function d̃ = 1 − |d| 
is expressed in color as a function of the Vfrac class between 
0 and 0.5. The maximum value of d̃ for each image frame 
along the trajectory is marked with a black dot, and the vol-
ume fraction class in which the black dot lies corresponds to 
the most likely value of V̂frac . The figure shows a total of 74 
frames, equally spaced in time and increasing along the ordi-
nate. As can be seen from this figure, the estimated volume 
fraction lies between 0.15 and 0.225. The different estimated 
values of Vfrac at different trajectory positions (frames) arise 
because the orientation of the droplet with respect to the two 
observation directions changes along its trajectory.

A total of 15 drop impact events were performed, result-
ing in a total of 95 secondary, two-component droplets being 
tracked from both imaging directions. For each secondary 
droplet, a result similar to that shown in Fig. 14 was obtained 
and a median value of V̂frac was obtained by summing over 
all frames in which the droplet could be observed. A median 
value was used instead of a mean to diminish effects of out-
liers arising from the image processing, e.g., through out-
of-focus blurring. In the case of Fig. 14, this median value 
results in V̂frac = 0.175 . A histogram of the obtained median 

volume fractions was then computed and is shown in Fig. 15. 
By far the most frequently encountered droplets are those 
with no embedded droplet, i.e., for V̂frac = 0 . The frequency 
of droplet occurrences for the class at V̂frac = 0.5 must be 
interpreted as V̂frac ≥ 0.5 , since above a value of 0.5 no dis-
tinction regarding the true value can be made. This result 
cannot be verified, since ground truth is not known and no 
alternative measurement technique is available for compari-
son. Fig. 15 is therefore intended only as an illustration of 
what results can be derived from the measured values of V̂frac

6 � Discussion and conclusion

Two further aspects concerning the accuracy of the meas-
urements using this technique should be discussed. For one, 
the variance of the V̂frac estimates from consecutive frames 
appears to increase with increasing values of Vfrac . This is 
observable in Figs. 8 and 10. Indeed, when Aratio = 1 , the 
uncertainty becomes a maximum and it is reasonable to 
assume that the uncertainty grows monotonically between 
values of Aratio between 0 and 1. The second issue is the 
question: to what degree does the accuracy depend on the 
number of image pairs captured along a droplet trajectory? 
For instance, if the droplet does not change its orientation or 
distance from the focal plane of each observation direction 
with time, then identical images will be obtained for each 
frame. This results in a large amount of data, but no new 
information. In such a case, one single frame would suffice 
to estimate Vfrac.

To investigate these two aspects, the ray-tracing tool out-
lined in Sect. 2 can be used. By generating synthetic images 
and processing these as though they were measured images 
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Fig. 14   Output d̃ of the complementary decoding function for a set of 
74 observations taken at equal times along the trajectory of a single 
two-component droplet, plotted as a function of the Nr classes of V̂frac . 
For reasons of presentability, only every second result is shown. The 
maximum d̃ , i.e., the most likely value of Vfrac , is marked with a black 
dot for each frame

Fig. 15   Histogram of V̂frac measured from 95 two-components drop-
lets originating from 15 drop impact events
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with known values of Vfrac , the accuracy of the estimators 
can be investigated. This has been performed for exemplary 
values of Vfrac , whereby each image pair used a random 
selection of ei,proj,p values at a fixed droplet deformation of 
� = 1 . Using random values ensures that each new data set 
(image pair) represents also new information. The results of 
this exercise are shown in Fig. 16 from which the following 
observations can be made:

•	 The mean error and its deviation decrease faster for 
smaller values of Vfrac . Only a few data sets (frames) are 
necessary for a reliable prediction if Vfrac is relatively 
small.

•	 There is virtually no error at Nd = 30 for low values of 
volume fraction, i.e., Vfrac < 0.15 . For larger values of 
Vfrac , the uncertainty of the estimated volume fraction no 
longer decreases with increasing number of data sets, as 
evident from Figs. 16b and d.

These observations both suggest that this technique is par-
ticularly well suited for applications in which low volume 
fractions can be expected. In such cases, the required num-
ber of image frames is quite modest, whereby this refers 
to the number of independent frames, since the data in 
Fig. 16 were generated using random input values for the 
observation vector b⃗ . Using a high speed camera, consecu-
tive images would normally be highly correlated with one 
another; hence, they would not each be delivering totally 
new information as with randomly chosen b⃗ vectors. The 
time between frames to insure that new, uncorrelated infor-
mation is obtained would depend on the integral time scale 
of the image pattern variations, a quantity which would be 
very specific to a particular application and is therefore, 
beyond the scope of the present study.

Nevertheless, the fact that reliable V̂frac estimates can be 
made with only few image pairs suggests that shorter seg-
ments of the droplet trajectory can be used for processing, 
for instance, by restricting the SVM procedure to images 
with much less out-of-focus blur. This would also decrease 

the number of outliers in the estimation procedure and is 
one of the planned refinements of the present study.

Another field of future study is the application of this 
technique to examine droplets with embedded solid par-
ticles. Such situations arise in encapsulation processes, 
when solid particles are encapsulated by spraying an atom-
ized liquid into a fluidized bed of particles. After some 
period, the outer liquid shell solidifies and encapsulates 
the inner particle, a process common in the pharmaceuti-
cal industry. Application of this technique would of course 
necessitate a clear difference in color between the solid 
particle and the surrounding liquid.

The situation of solid particles embedded in an outer 
liquid droplet also offers an interesting alternative method 
of validating the measurement technique. If monodis-
persed particles were used, then the volume fraction would 
always be known, once the outer drop diameter was deter-
mined. This known value could then be compared with the 
measured value. This would complement the validation 
presented here using the acoustic levitator.

In conclusion, a novel imaging technique for measur-
ing the volume fraction of two-component droplets has 
been introduced and shown to be reliable for low values of 
volume fraction. The technique has been validated using 
droplets with known volume fraction placed in an acoustic 
levitator and demonstrated in practice with the example of 
secondary droplets emanating from the corona splash of a 
drop impinging onto a film of a different liquid.

7 � Supplementary material

Two films of splash events are attached as supplemen-
tary material, from which the images shown in Figs. 1 and 
13 have been extracted. Further supplementary material 
including raw-data as well as a version of the trained SVM 
can be found in Stumpf et al. (2022).

(a) (b) (c) (d)

Fig. 16   Relation between the number of available data sets for classification ( Nd ) and the mean absolute error between known and estimated vol-
ume fraction ⟨‖V̂frac − Vfrac‖⟩
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Appendix A Support Vector Machine

To apply a SVM to a specific problem it first needs to be 
trained. The training data have n features and each data point 
is labeled to a specific class. The learning process can be 
interpreted geometrically by assigning each feature to an 
individual axis and plotting each data point into the fea-
ture space. The SVM then finds the optimal n-dimensional 
hyperplane which separates the classes from each other. 
In Fig. 17, a simplistic example of classification into two 
classes based on two features is given.

The solid line describes the optimal separating hyper-
plane, while the dashed lines describe the margin between 
the classes. The margin is defined by support vectors which 
are marked by the dashed circles in the figure.

In case the data are not perfectly separable (Cortes and 
Vapnik 1995) introduced the soft margin SVM, which toler-
ates a certain amount of data inside the region of the margin. 
A further method to increase the applicability of SVMs is 
the use of kernel functions (Boser et al. 1992). If the data 
are not separable by linear hyperplanes, the n-dimensional 
feature space can be transformed into a higher dimensional-
ity N and be separated by a N-dimensional hyperplane. In 
this way, it is possible to create arbitrary hypersurfaces to 
separate the patterns of classes. A detailed description of 
the optimization problem can be found in Awad and Khanna 
(2015); Cortes and Vapnik (1995); Steinwart and Christ-
mann (2008); Bhavsar and Panchal (2012).

The result of the training process is a classifier fj(b⃗) , 
whereby the observation b⃗ is a vector assigned with values 
of the observed features. This classifier can then perform 

a prediction, whether the observation b⃗ belongs to class 1 
or class 2. The geometrical interpretation of the process 
would be to plot b⃗ into the feature space and depending 
on which side of the hyperplane it is on, it is assigned to 
either class 1 or class 2. SVMs in general are binary clas-
sifiers and well suited to discriminate two classes against 
each other. In order to solve a multi-class problem, as in 
the present case, more advanced strategies such as the 
error correcting output (ECOC) framework, first intro-
duced by Dietrich and Bakiri (1995), need to be applied. 
This framework allows for a separation of the multi-class 
problem into multiple binary classification problems. Basi-
cally, the ECOC method consists of a encoding step that 
assigns which classes of which binary classifier are to be 
compared, and a decoding step where the outputs of all 
the binary classifiers are evaluated and a predicted class is 
assigned Escalera et al. 2010; Allawein et al. 2000).

Two of the most prominent strategies to encode in 
ECOC is the one-versus-all (OVA) and the one-versus-
one (OVO) method. If c is the total number of classes, 
in the OVA method, a number of l = c binary classifiers 
are trained, distinguishing between one individual class 
and the set of all other classes. Whereas in the OVO 
method, a number of l = c(c − 1)∕2 classifiers are trained, 
building classifiers for every possible class pair (Awad 
and Khanna 2015; Chaitra and Saravana Kumar 2018). 
Which binary classifier discriminates between which 
classes is specified in the coding matrix mkj , which has 
the dimension i × l and for whose elements the following 
applies: mkj ∈ {1, 0,−1}(k ∈ {1..c}, j ∈ {1..l}) . In follow-
ing Table 2, an example for a coding matrix for classifica-
tion into three classes organized according to the OVO 
method is given. The value 1 can be translated with “class 
to compare,” 0 with “class to ignore” and -1 with “class 
to compare to” (Allawein et al. 2000). The columns define 
which classes are compared with each other in the respec-
tive classifier. In this example, the classifier f1 discrimi-
nates between class 1 and class 2 while ignoring class 3 as 
defined in the first column of the coding matrix.

Each binary classifier fj(b⃗) has an output sj ∈ {1,−1} , 
indicating the outcome of the binary decision. According 
to the coding matrix in Table 2, the output of f1 would 
be s1 = 1 if the observation b⃗ is assigned to class 1 and 
s1 = −1 if b⃗ is assigned to class 2.

Fig. 17   Simplified example of the classification principle of an SVM 
after Richter (2019). The solid line shows the optimal hyperplane, the 
dashed lines show the optimal margin, and the support vectors are 
marked with black circles

Table 2   Coding matrix mkj for 
a three class problem organized 
according to the OVO method

f
1
(b⃗) f

2
(b⃗) f

3
(b⃗)

Class 1 1 1 0
Class 2 − 1 0 1
Class 3 0 − 1 − 1
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In order to infer a predicted class from the output infor-
mation sj of the individual classifiers, a decoding step is 
necessary. The predicted class k̂ is chosen by searching for 
the class k where the decoding function d(mkj, fj(b⃗) = sj) is 
minimal for a given input observation.

In this study, a loss-weighted decoding following (Escalera 
et al. 2010) is applied resulting in the following decoding 
function:

with g(mkj, sj) being the loss function for which in this study 
the “hamming” principle has been chosen.

The output of the decoding function is a measure of how 
often the binary decisions based on an observation turn out 
in favor of a specific class. In the limiting case, d becomes 0 
if every decision is in favor of the class, or d = 1 if no deci-
sion is in favor of the class. The decoding step can alterna-
tively be expressed as a maximization problem by using the 
complement of the decoding function d̃ = 1 − |d| and the 
classification applies as

This complementary approach is used in the presented study.
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(8)k̂ = arg min
k

d(mkj, sj)

(9)d =

∑l

j=1
�mkj�g(mkj, sj)

∑l

j=1
�mkj�

.

(10)g(mkj, sj) =
1 − sign(mkjsj)

2

(11)k̂ = arg max
k

(1 − |d|).
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