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Abstract
Mesh optimization is essential to enable sufficient element quality for numerical methods such as the finite element method
(FEM). Depending on the required accuracy and geometric detail, a mesh with many elements is necessary to resolve
small-scale details. Sequential optimization of large meshes often imposes long run times. This is especially an issue for
Delaunay-based methods. Recently, the notion of harmonic triangulations [1] was evaluated for tetrahedral meshes, revealing
significantly faster run times than competing Delaunay-based methods. A crucial aspect for efficiency and high element
quality is boundary treatment. We investigate directional derivatives for boundary treatment and massively parallel GPUs for
mesh optimization. Parallel flipping achieves compelling speedups by up to 318×. We accelerate harmonic mesh optimization
by 119× for boundary preservation and 78× for moving every boundary vertex, while producing superior mesh quality.

Keywords Numerical optimization · GPGPU · Simplicial meshes · Simulation

1 Introduction

Meshing a domain� into a set of simplices T is a fundamen-
tal task in geometry processing. The resulting mesh can be
used to solve differential equations, enabling a wide range of
applications including physically based animation using the
FEM [19,34] and spectral geometry processing [17,39].

Mesh generation for numerical computation is not only
concerned with finding a triangulation T of �. Elements of
small volume or area, i.e., ill-shape, must be avoided too.
In fact, a single ill-shaped element may cause numerical
methods to fail [27]. For this reason, current meshing tools
[13,30] perform an optimization step after generating an ini-
tial mesh. However, it is an open issue for tetrahedral meshes
that quality functions are not consistent with the Delaunay
triangulation, leading to ill-shaped elements [18]. Recently,
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Alexa [1] introduced harmonic triangulations, defining an
energy whose minimization significantly improves element
quality of Delaunay meshes.

The accuracy of numerical methods improves with the
mesh resolution. Thus, meshes with many elements are
required for the analysis of complex geometric structures.
Sequential mesh optimization on the CPU results in slow
run times for large meshes, which is especially an issue in
interactive settings [33]. Parallel algorithms that use mod-
ern parallel processors, specificallymassively parallel GPUs,
are necessary to optimize large meshes quickly. As harmonic
triangulations outperform established Delaunay-based opti-
mization methods, we use them as a basis to devise a parallel
mesh optimization algorithm.

In this paper, we extend harmonic mesh optimization to
faster run times, improved convergence and boundary treat-
ment. Our contributions are:

– A novel mesh optimization scheme that efficiently
improves high-resolution tetrahedral meshes.

– A robustly converging mesh optimization scheme.
– Novel massively parallel algorithms for mesh optimiza-
tion.

– Gradient-based boundary vertex optimization , replacing
reprojection.
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2 Preliminaries and notation

Although we focus on tetrahedral meshes, our notation cov-
ers arbitrary dimensions, because we extend the harmonic
triangulations framework. We define a d-dimensional sim-
plicial meshM = (T,V) as a tuple of a d-simplex sequence
T and a sequence of vertices V ⊂ R

d . Boundary vertices are
included in ∂V,where ∂V ⊆ V.We denote a k-simplex τ as a
(k + 1)-tuple (x0, . . . , xk) ∈ Vk+1 of vertices, where k ≤ d.
Oriented volumes, face areas, and normals are represented by
vτ , aτ , and nτ , respectively. The i th vertex of τ is given by
τi ∈ V. Likewise, the i th element in T or V is denoted as Ti

or Vi , respectively. The matrix of a d-simplex’ vertex set can
be written as Xτ = (τ0, . . . , τd) ∈ R

d×(d+1), where the i th
column is the position of τi . We use the matrixMd to express
the vertices of a d-simplex in relation to its first vertex such
that vτ = det(τ1 − τ0, . . . , τd − τ0)/d! = det(XτMd)/d!:

Md =
(
-1 -1 . . . -1
e1 e2 . . . ed

)
∈ R

(d+1)×d , (1)

where ei denotes the i th canonical unit vector of Rd .
As the subtriangulation forming the one-ring neighbor-

hood of a specific vertex x ∈ V is of interest during
optimization, we introduce the following notation:

t(x) = {τ ∈ T | x ∈ τ }. (2)

For any k-simplex τ we obtain the (k−1)-sub-simplex oppo-
site to τi with the set difference τ \ τi . The goal of harmonic
mesh optimization [1] is to minimize the trace of the Lapla-
cian LT consisting of tr(Lτ ), where τ ∈ T:

tr(Lτ ) = 1

d2

∑d
i=0 a

2
τ\τi

|vτ | (3)

tr(LT) =
∑
τ∈T

tr(Lτ ). (4)

Dropping the constant factor leads to the harmonic index η:

η(τ) =
∑d

i=0 a
2
τ\τi

|vτ | , where τ ∈ T. (5)

The optimized triangulation shall respect the input boundary
B and be free of inversions to satisfy the requirements of
numerical methods. Considering these conditions leads to
the following nonlinear optimization problem:

minimize
M=(T,V)

tr(LT)

subject to ∂T ∼= B ∧ ∀τ ∈ T, vτ > 0,
(6)

where ∼= denotes an approximate congruence between the
target boundary B and the discrete boundary ∂T. For full

Fig. 1 By using a bistellar 2-3 or 3-2 flip, we retriangulate a convex
region defined by five points (interior faces and edges are shaded red)

boundary preservation, we can enforce ∂T = B. Addition-
ally, we prohibit inversions, i.e., tetrahedra τ with vτ < 0.
We denote boundary vertices surrounded by co-planar faces
as VF ⊆ ∂V, boundary vertices on a geometrical edge as
VE ⊆ ∂V, and boundary vertices representing a geometrical
corner as VC ⊆ ∂V.

To perform harmonic mesh optimization, Alexa [1] com-
bines a flipping algorithm and a gradient descent scheme.
The flipping algorithm performs 2-3 and 3-2 bistellar flips
(see Fig. 1). If a bistellar flip reduces tr(LT), it is a harmonic
flip. Harmonic flips can be locally ordered by their reduc-
tion of the trace. Prioritizing harmonic flips with the largest
reduction of the traces produces good element quality. Thus,
harmonic flips may be arranged in an ordered queue favoring
flips by their reduction of tr(LT). Additionally, a harmonic
flip either coincides with a Delaunay flip or it produces a
local triangulation of two tetrahedra, while the Delaunay flip
would produce three tetrahedra.

In order tominimize tr(LT), a gradient descent scheme can
be used to relocate vertices. The first step is to assemble a
gradient for each vertex of the mesh by calculating a gradient
for each tetrahedron τ ∈ T:

∂tr(Lτ )

∂Xτ

= 1

d! (XτMd)
−	M	

d (tr(Lτ )I − 2Lτ ) (7)

To avoid inverted elements, Alexa uses binary search to find
a single step size λ for one gradient descent step on the entire
mesh. Instead of using λ for vertex relocation, Alexa uses
Brent’s method [23] to find a minimum along the steepest
descent located at some α ∈ [0, λ]. Boundary vertices are
reprojected onto the surface after global gradient descent.

3 Related work

The literature comprises a long history in investigating
tetrahedral mesh optimization. Freitag et al. [9] improve
tetrahedral meshes by swapping common faces or edges
and relocating vertices. For fast run times, Freitag et al. [8]
relocate batches of non-adjacent vertices in parallel, while
preventing element inversions. Many mesh optimization
frameworks use computational efficient Laplacian smooth-
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Fast harmonic retrahedral mesh optimization 3421

ing, relocating a vertex in the direction of the arithmetic
average of the adjacent vertices [9,26,29,36]. However,
Laplacian smoothing does not strictly guarantee to produce
a high-quality or even inversion-free mesh. In addition, the
gradient of the Laplacian does not vanish in general, which
complicates finding appropriate termination criteria. Conse-
quently, previous works devised different quality functions
for a mesh element [27]. Knupp [16] confirms the use of the
Jacobian as a building block for quality functions of a finite
element. Today, many mesh optimization methods rely on
distortion methods using the Jacobian. We provide a review
of distortion-based methods in Sect. 3.1. As our work con-
tributes massively parallel algorithms for mesh optimization,
we discuss related work in this field in Sect. 3.2. We also dis-
cuss boundary treatment in our work and highlight previous
work in Sect. 3.3.

3.1 Distortion energies for mesh optimization

Besides mesh improvement, energies minimizing global dis-
tortion are typically used for parameterization tasks such as
surface fitting or remeshing. Hormann et al. [12] introduce
the most isometric parameterizations (MIPS). Originally,
MIPS is intended for mapping a triangulation of data points
to a triangulation in the plane. Fu et al. [10] extend MIPS to
the advanced MIPS (AMIPS) energy that effectively mini-
mizes distortion in 2D and 3D. For vertex relocation, they
perform nonlinear Gauss–Seidel iterations simultaneously
on sets of non-adjacent vertices. However, nonlinear opti-
mization methods typically impose slow run times and do
not scale well to meshes with many elements. For this rea-
son, Rabinovich et al. [24] present a local/global algorithm
that scales to large data sets through replacing the nonlinear
energy with a simple proxy energy. The local step calcu-
lates weights mapping gradients to the distortion of elements
using the proxy energy.With the weighted gradients, a global
system can be efficiently assembled and solved. For solving
the global system, an initial inversion-free step size is found
using the method of Smith et al. [31].

While distortion energies are effective in improving ill-
shaped elements, harmonic triangulations provide a local
order of bistellar flips [1]. As flips are locally ordered by
energy reduction, we formulate a massively parallel algo-
rithm performing locally most beneficial flips that quickly
improves element quality. Additionally, our work focuses on
Delaunay-based methods, as harmonic flips are related to
Delaunay flips. We achieve scalability by neat paralleliza-
tion.

3.2 Parallel tetrahedral mesh optimization

Lots of recent work address parallel tetrahedral mesh opti-
mization. Benitez et al. [3] perform smoothing and untan-

gling in a distributed environment using domain decomposi-
tion. Shontz et al. [28] relocate vertices by solving ordinary
differential equations on a distributed system using domain
decomposition. Zint et al. [40] describe a GPU-parallel
method to search for an optimal vertex position on a coarse
grid of candidate positions. While this enables optimization
of non-differentiable functions, we focus on differentiable
energies, as they enable first-order methods that converge
more quickly than exhaustive search. In addition, we focus
on fine-grained parallelism that leads to fast run times on a
single machine and does not require a distributed system.

In contrast to parallel vertex relocation, parallel local
reconnection of vertices imposes the additional challenge
of preventing concurrent processing of overlapping regions.
Nonetheless, vertex relocation and reconnection should be
used in concert [15] to achieve an effective optimization.
D’Amato et al. [5] designed a CPU-GPU framework that
performs local remeshing and vertex relocation in parallel
using a decomposition of the mesh into clusters. Shang et
al. [26] present a multi-threaded algorithm for parallel local
reconnection, whichmaps reconnection operations to feature
points sorted along a space filling curve. They assume geo-
metrical separation of remeshing operations so that regions
rarely overlap. Ibanez et al. [14] schedule the application of
cavity-based remeshing on shared memory systems. Their
method finds independent sets of cavities for processing in
batches of these independent sets. Drakopoulos et al. [7]
describe a parallel speculative local remeshing approach for
high-performance computing. They use atomic operations
for synchronization in case of overlapping regions. In con-
trast to established parallel local reconnection methods, our
parallel flipping algorithm does not require a precomputed
decomposition of the mesh or atomic operations but relies
on the local order of harmonic flips.

3.3 Boundary treatment in tetrahedral mesh
optimization

Boundary treatment in tetrahedral mesh optimization is a
sparsely discussed field. While somemethods rely on curved
boundaries [6], we only rely on the boundary of the discrete
mesh. Many methods either subdivide ill-shaped boundary
elements [15] or reproject boundary vertices back on the orig-
inal surface [1]. Subdivision of boundary elements increases
the element count, which is a drawback, as each element
costs computationally. The drawbacks of boundary repro-
jection are that it requires to find the closest point on the
boundary and the reprojection step does not respect energy
minimization leading to reduced convergence.

Yin et al. [38] replace reprojection of boundary vertices
with shape functions approximating the surface based on
the discrete mesh. They incorporate the shape functions as
a penalty term into the to-be-optimized function to enforce
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boundary conformance. Contrary to our method, the penal-
ization approach requires the choice of a suitable penalty
number. Wicke et al. [35] address optimization of the mesh
boundary for dynamic domain remeshing. They penalize
relocation of boundary vertices by augmenting the optimiza-
tion function with a quadric error term. Although this allows
for efficient relocation of boundary vertices, element qual-
ity to surface distance is an apples-to-oranges comparison.
Xu et al. [37] propose harmonic guided optimization to fur-
ther improve the quality of boundary elements despite the
usage of a quadric error term. They precompute a harmonic
scalar field on a voxelized grid. As the field is maximal at
the boundary and minimal for the medial axis of the mesh, it
enables the computation of weights tweaking the importance
of boundary preservation and element quality. Our method
keeps boundary vertices on the surfacewithout using a penal-
ization term and thereby without the need of precomputing
additional weights.

4 Optimization algorithms

In this section, we describe a harmonic mesh optimization
algorithm suitable for parallelization on massively parallel
GPUs. In order to compute subsimplex-to-simplex relation-
ships or simplex-to-subsimplex relationships, we employ the
mesh data structure developed by Mueller-Roemer et al.
[20,21], because it provides memory-efficient organization
of these relationships in a compactly encoded ternary sparse
row format. The following algorithms assume an inversion-
free mesh, i.e., every oriented volume vτ must be positive.

4.1 Vertex relocation

We focus on gradient descent of interior vertices first and
detail the treatment of boundary vertices in Sect. 4.2. We
achieve conflict-free parallelization by coloring vertices into
independent setsSC . Therefore,Algorithm1,which outlines
our vertex relocation scheme, can process vertices in Gauss–
Seidel iteration order.

A drawback of Alexa’s gradient descent scheme [1] is
that a single line search is performed for all vertices of the
mesh. Thus, vertices potentially affect each other leading to
a small set of vertices preventing substantial optimization of
the majority of vertices. Additionally, the gradient directions
of vertices might lead to conflicting updates, reducing the
convergence rate. Instead of performing a single line search
for the entire mesh, we perform local gradient descent.

Since each pass over an independent set of vertices affects
mesh quality, it is beneficial for the optimization to recalcu-
late the gradients for each batch of independent sets. As the
gradient of each vertex depends onmultiple tetrahedra, paral-
lel gradient assembly using Eq. (7) requires synchronization

primitives, such as atomic operations, in order to handlewrite
conflicts. Thus, we propose calculating the harmonic gradi-
ent for each vertex using the following equation instead of
Eq. (7), which facilitates parallel processing in independent
sets:

∂tr(Lτ )

∂x
= aτ\x

d!d3vτ

((
2a2

τ\x
vτ

−η(τ)

)
nτ\x+2

∑
v∈(τ\x)

a2
τ\v
n	

τ\xnτ\v
vτ

nτ\v

)

(8)

The proof of Eq. (8) can be found in the appendix. It is an
interesting observation that the harmonic gradient is a linear
combination of the face normals of τ .We leave the geometric
interpretation of Eq. (8) for future work.

With one pass over t(x), the gradient of the incident tetra-
hedra can be calculated by application of the sum rule. For
convenience,we introduce a notation for the gradient of tetra-
hedra incident to x:

∇xtr(Lt(x)) =
∑

τ∈t(x)

∂tr(Lτ )

∂x
(9)

Unlike Alexa [1], we locally compute an inversion-free inter-
val [0, λx] for vertexx given its local gradient.As an inversion
occurs when vertex x passes the plane spanned by the oppos-
ing triangle τ \x, the exact step size λx can be determined by
performing a simple plane-ray intersection test. An illustra-
tion of this principle appears in Fig. 2. Starting from λx, an
inversion free step size can be foundwith binary search using
the root finding method of Smith et al. [31]. To avoid unnec-
essary search iterations, we reduce λx by a factor μ ∈ [0, 1)
beforehand. We choose μ = .95 in our work. We set λx to
the resulting step size. As a result, the local gradient descent
update formula is as follows:

x ← x − α∇xtr(Lt(x)), where α ∈ [0, λx], x ∈ V. (10)

A bracketing scheme is used to determine α. Like Alexa,
we use Brent’s [23] method in our work; however, we use it
locally.

Fig. 2 Calculating the inversion-free interval [0, λx] for the red vertex
x in the triangulation on the left can be achieved by finding the closest
intersection point of the gradient ray with planes defined by opposing
faces. The field of tr(Lt(x)) is shown on the right

123



Fast harmonic retrahedral mesh optimization 3423

Algorithm 1 Parallel vertex relocation algorithm.
1: procedure relocateVertices(M =(T,V), SC )
2: for all c ∈ SC do � Go through independent sets
3: for all i ∈ c do � In parallel
4: x ← Vi ; λ ← ∞
5: if subject to ∂T=B ∧ x ∈ VC then
6: continue
7: end if
8: g ← ∇xtr(Lt(x)) � See Eq.(9)
9: if subject to ∂T=B ∧ (x ∈ VF ∨ x ∈ VE ) then
10: g ←tangentSubSpaceDerivative(x, g)
11: else if subject to ∂T∼=B ∧ x ∈ ∂V then
12: g ←findTangentDerivative(x, λ, g)
13: end if
14: if ‖g‖ < εg then continue end if
15: g ← − g

‖g‖2
16: t0 ← min

τ∈t(x)
{t | t = intersect-ray-plane(g, x, τ \ x)}

17: λ ← min(t0, λ)

18: λ ← λ · μ � Prevent division by zero at upper bound
19: search ← true
20: do
21: Vi ← x + λg
22: search← is vτ < εv for any τ ∈ t(x)
23: if subject to ∂T∼=B then
24: search← is x still on boundary primitive?
25: end if
26: if search then λ ← λ/2 endif
27: while search
28: Vi ← x
29: α ← bracketing(x, g, [0, λ], tr(Lt(x))) � We use [23]
30: Vi ← x + αg
31: if subject to ∂T∼=B then
32: identifyBoundaryState(x)
33: end if
34: end for
35: end for
36: end procedure

4.2 Directional derivatives for boundary treatment

Unlike relocation of interior vertices, gradient descent of
boundary vertices can deform the surface resulting in a signif-
icant loss of geometric detail.We intend to avoid reprojection
of vertices onto the boundary in our work, while still keep-
ing boundary vertices on the boundary. For this purpose,
we investigate directional derivatives for mesh optimization.
We first address full preservation of the mesh surface and
detail an algorithm for relocating every boundary vertex in
Sect. 4.3. If the primary concern is to fully preserve the
input surface, we only allow gradients to be co-planar to the
boundary surface. We classify boundary vertices depending
on their adjacent surface triangles to obtain rules for full sur-
face preservation, which we summarize in Algorithm 2. For
full boundary preservation, the following rules apply:

– x ∈ VF : All incident boundary triangles are co-planar.
Thus, there is a unique tangent plane.

– x ∈ VE : Two sets of incident boundary triangles are co-
planar. Thus, there is a unique tangent line.

– x ∈ VC : There is no unique tangent plane or line. A cor-
ner vertex cannot be moved without altering the surface.

For full boundary preservation, we apply homogeneous
Neumann boundary conditions [2], while alternative bound-
ary conditions are an ongoing research topic [32]:

n	
x ∇xtr(Lt(x)) = 0, where x ∈ ∂V.

Thus, a boundary vertex is only relocated along a tangent
plane or line. Let p be a tangent plane on the surface with
linearly independent unit vectors u1 and u2:

p(t, s) = x + t u1 + s u2, where n	
x u1=0,

n	
x u2=0, t, s ∈ R.

We now show, how we apply directional derivatives to the
surface of a tetrahedral mesh. Let the function gx replace a
boundary vertex x with a given vertex x′ and calculate the
trace for all incident tetrahedra:

gx(x′) =
∑

τ∈t(x)

tr(L(τ\x)∪x′). (11)

With the use of gx and p we can express the field of tr(Lt(x))

on the tangent plane as:

gx(p(t, s)), where t, s ∈ R. (12)

As our goal is to obtain a gradient for x on the tangent plane
p, we evaluate the gradient at t = 0 and s = 0. The gradient
follows by the chain rule:

∇gx(p(0, 0)) =∇p(0,0)gx(p(0, 0))∇p(0, 0)

=∇xgx(x)∇p(0, 0) (13)

The gradient of the tangent plane p evaluates to (u1,u2)	.
Because gx(x) replaces x with itself, we can further simplify
the gradient to:

∇gx(p(0, 0)) = ∇xtr(Lt(x))

(
u1
u2

)
=

(
t0
s0

)
∈ R

2. (14)

The gradient on the plane can be transformed toR3, resulting
in the directional derivative:

R
3 � ∇x|p tr(Lt(x)) = t0 u1 + s0 u2 (15)

In case of a tangent line for x ∈ VE , one can just drop u2
and perform the analog calculations. The use of directional
derivatives provides several benefits for mesh optimization:
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Algorithm 2 Derivative on a tangent sub-space.
1: procedure tangentSubSpaceDerivative(x, g)
2: if x ∈ VF then
3: τb ← get_boundary_triangle(x)
4: (u1,u2) ← tangent_plane(τb)
5: return (u	

1 g)u1 + (u	
2 g)u2

6: else � Otherwise x ∈ VE

7: eb ← get_boundary_edge(x)
8: u1 ← tangent_line(eb)
9: return (u	

1 g)u1
10: end if
11: end procedure

1. Reprojection of vertices after gradient descent is not
necessary. Thus, it becomes obsolete to find the closest
surface triangle, which can be computationally expen-
sive.

2. Line search on a tangent subspace converges against a
local minimum. No special convergence criteria are nec-
essary for the boundary.

3. Projection of relocated vertices to the closest surface tri-
angle can produce inversions or projection of vertices
onto opposing faces. We avoid these issues by inversion
free intervals for line searches along the boundary.

4.3 Moving every boundary vertex

We present an algorithm that relies on directional derivatives
to optimize boundary vertices while keeping them on the
mesh surface. As a result, the approximation error due to
boundary vertex relocation is controlled by the input mesh
surface, which is assumed to be of high resolution such that
the approximation error for curved surfaces is low enough.
The main idea of our algorithm is to relax the homogeneous
Neumann boundary condition such that the gradient has to lie
only on a single tangent plane (or line) p. At the same time,
we relocate boundary vertices only along the boundary:

n	
p ∇x|p tr(Lt(x)) = 0, where x ∈ ∂V

x − α∇x|p tr(Lt(x)) is on B, where α ∈ [0, λx]

This relaxation enables relocation of a vertex along a sin-
gle boundary primitive granting deviations from the input
surface for better mesh quality. In order to ensure that the
updated vertex still lies on the boundary, we need to bound
λx such that x does not leave the boundary. Algorithm 3
exhibits our method of finding a descent direction for a ver-
tex on the boundary. During the optimization, our algorithm
maintains the location of the vertex on the boundary, which
leads to the following three states:

1. On vertex: The vertex overlaps with a boundary vertex.
This is the initial state for each boundary vertex.

2. On edge: The vertex lies on a boundary edge but not on
either of its vertices.

3. On triangle: The vertex lies within a boundary triangle
but not on any of its edges.

Depending on the state, we calculate the directional deriva-
tive for each boundary primitive adjacent to the vertex. Our
algorithm checks for each directional derivative, if its descent
direction does not relocate the vertex away fromB, i.e., con-
forms toB. Following the rule of steepest descent, we choose
the directional derivativewith the largestmagnitude. Figure 3
shows how our algorithm relocates a vertex on the boundary
maintaining the state of the vertex. In order to keep the state
consistent after gradient descent, we limit the step size such
that the vertex remains on its boundary primitive.

After relocation, we check if a vertex of state on triangle
is now on edge or on vertex. Likewise, we check if a vertex
of state on edge is now on vertex. This check is outlined
by Algorithm 4 and uses the barycentric coordinates of the
vertex regarding its current boundary triangle. If one or two
barycentric coordinates are close to zero, the vertex is set to
the corresponding edge or vertex, respectively.

4.4 Flips

Performing flips in parallel requires conflict detection,
because otherwise flipping does not guarantee a valid mesh,
as can be seen in Fig. 4. In harmonic triangulations, pri-
oritizing flips by their reduction of the trace leads to good

Fig. 3 We use directional derivatives, in order to relocate the vertex
(red) along the boundary. Initially, the directional derivative on the
boundary with the largest magnitude is along an edge. After relocat-

ing the vertex, the directional derivative of the triangle to the right of
the edge is chosen. Finally, vertex relocation converges after relocating
the vertex on the triangle
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Algorithm 3 Algorithm to find directional derivative for
boundary vertex
1: procedure findTangentDerivative(x, λ, g)
2: gp ← 0 � gp ∈ R

d

3: if x is on boundary vertex xb then
4: for boundary triangle τb containing xb do
5: (u1,u2) ← tangent_plane(τb)
6: dp ← (u	

1 g)u1 + (u	
2 g)u2

7: if ray x − βdp intersects τb \ xb ∧ ‖gp‖2 < ‖dp‖2 then
8: gp ← dp
9: λ ← β0 � For β0 point along ray is on τb \ xb
10: Set x on τb
11: end if
12: end for
13: for boundary edge eb containing xb do
14: u1 ← tangent_line(eb)
15: dp ← (u	

1 g)u1
16: if ray x − βdp intersects eb \ xb ∧ ‖gp‖2 < ‖dp‖2 then
17: Analogous to lines 8 and 9
18: Set x on eb
19: end if
20: end for
21: else if x is on boundary edge eb then
22: for boundary triangle τb adjacent to eb do
23: Analogous to lines 5 and 6
24: (x0, x1) ← eb
25: if ray x − βdp intersects τb \ x0 or τb \ x1 then
26: if ‖gp‖2 < ‖dp‖2 then
27: Analogous to lines 8 - 10
28: end if
29: end if
30: end for
31: Check eb analogous to lines 14 - 19
32: else x is on boundary triangle τb
33: for boundary edge eb in τb do
34: Check eb analogous to lines 14 - 19
35: end for
36: end if
37: return gp
38: end procedure

Algorithm 4 Algorithm to identify the boundary state
1: procedure identifyBoundaryState(x)
2: if x is on a boundary triangle τb then
3: λ0, λ1, λ2 ← barycentrics(x, τb)
4: if λi ≈ 0 ∧ λ j ≈ 0 ∧ j �= i then
5: Set x on corresponding edge
6: else if λi ≈ 0 then
7: Set x on corresponding vertex
8: end if
9: end if
10: if x is on a boundary edge eb then
11: λ0, λ1 ← barycentrics(x, eb)
12: if λi ≈ 0 then
13: Set x on corresponding vertex
14: end if
15: end if
16: end procedure

element quality [1]. We exploit this property and resolve the
issue of conflict detection by finding the locally most bene-
ficial harmonic flip, as shown in Fig. 5. As a result, we are

Fig. 4 Suppose one thread is assigned to each of the two orange trian-
gles adjacent to the white triangle. Concurrently, both threads perform
a flip, which leads to an invalid triangulation

Fig. 5 In case of conflicting flips, we choose the locally most beneficial
flip. As a result, we obtain a valid triangulation

able to performharmonic flipsmassively parallelwithout sig-
nificant differences to sequential computations. We present
Algorithm 5 that identifies feasible and locally most benefi-
cial flips. We encode flips by the index of the flipped mesh
facet and an identifier for the type of the flip:

flip = (i,id) ∈ Z × {2-3-flip, 3-2-flip,∅} (16)

Our algorithm performs a parallel pass over all τ ∈ T to
identify the most beneficial flip for each τ . Each τ can be
flipped at either one of its six edges or one of its four faces.
Hence, we evaluate feasibility checks and quality improve-
ments regarding η of the potential flips in a predetermined
order. Face or edge flips are only feasible on interior faces or
edges, respectively. Each flip requires its incident tetrahedra
to form a convex subtriangulation. Whenever a flip is fea-
sible, we compare its quality improvement to the currently
most beneficial flip. As a result, we obtain themost beneficial
harmonic flip for τ . If no harmonic flip has been found, our
flipping algorithm terminates. Otherwise, we proceed with
another parallel pass over all τ ∈ T.

In order to prepare for building a new Triangulation T′,
we allocate an array of markers indicating whether τ ∈ T is
part of T′ or not and an array of integers for the number of
newly added tetrahedra. For each τ ∈ T, we find locally most
beneficial flips in parallel. Using flip type and facet index, we
obtain the tetrahedra incident to the flip using the precom-
puted connectivity relationships. No conflict occurs, if the
flip is the most beneficial flip for each incident tetrahedron
in the convex region of the flip. In this case, the flip is locally
the most beneficial and is selected to be performed. Con-
sequently, the tetrahedron associated with the thread can be
marked for removal.We elect a coordinator thread to perform
the flip. If the index of τ is the lowest of the incident tetrahe-
dra, the associated thread is declared as the coordinator. The
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coordinator thread sets its integer value to the number of tetra-
hedra added by performing the flip. Since only coordinator
threads write to the array of integers, thread i is a coordinator
thread if this array holds a non-zero entry at position i .

An exclusive prefix sum over the integers for new tetra-
hedra provides offset positions and the total number of
tetrahedra to be added. The marker values of the tetrahedra
in sum amount to the number of remaining tetrahedra. We
allocate a new buffer for the resulting tetrahedra and copy
the remaining tetrahedra through a stream compaction to a
newly allocated buffer. In a final parallel pass over the tetra-
hedra, the coordinator threads perform the flips and append
the resulting tetrahedra to the remaining tetrahedra using the
offset positions.

4.5 Combined vertex relocation and flipping

We perform several alternating passes of vertex relocation
and harmonic flipping. Our algorithm terminates if its effect
on the mesh becomes insignificant. Gradient descent con-
verges if the gradient approaches zero. Therefore, we termi-
nate if ∇tr(LT) is sufficiently small. Thus, when ‖∇tr(LT)‖
is smaller than some εc, gradient descent is not expected
to cause significant improvements. In addition, update rates
can become vanishingly small. To avoid this situation, we
terminate if the difference of the current to the prior gradient
is smaller than εc. As tr(LT) is scale dependent, we advise
to choose a relative εc. We opt for choosing εc based on a
constant ε governing the accuracy in finding a minimum:

εc ← max(ε, ε‖(∇tr(LT))‖) (17)

As some vertices converge more quickly than others, we do
not further optimize a vertex with a gradient norm smaller
than εg . We choose ε = 10−5 = εg and ‖ · ‖22 as the norm in
our work.

Connectivity relationships and coloringneed tobeupdated
after flipping. Checking for flips is an unnecessary overhead
if flips are unlikely to be found. Thus, we apply a heuristic
reducing the number of checks. A counter k f holds the num-
ber of iterations without flip checking and is initialized as
k f = 1. Whenever flip checking fails to find flips, we dou-
ble k f . Analogously, if flip checking finds flips, k f is halved
rounding up. If the counter has reached a predetermined num-
ber 2N , we terminate, as additional flips are unlikely to be
found. We opt for choosing N = 3. In summary, we termi-
nate at iteration i , if one of the following conditions is met:

(C1) ‖(∇tr(LT))i‖ < εc
(C2) ‖(∇tr(LT))i − (∇tr(LT))i−1‖ < εc
(C3) k f = 2N

Algorithm 5 Parallel flipping algorithm to optimize M
1: procedure flipMesh(M = (T,V))
2: flips ← ((-1,∅), . . . , (-1,∅)) ∈ (Z×{2-3-flip, 3-2-flip,∅})|T|
3: for i = 0, . . . , |T| − 1 do � Find flips in parallel
4: ηimpr ← 0; flip ← (-1, -1); τ ← Ti
5: for all faces f in τ do � In predetermined order
6: if 2-3-flip( f , τ ) is feasible ∧ ηimpr < ηflip then
7: flipsi ← (index_of( f ), 2-3-flip)
8: end if
9: end for
10: for all edges e in τ do � In predetermined order
11: if 3-2-flip(e, τ ) is feasible ∧ ηimpr < ηflip then
12: flipsi ← (index_of(e), 3-2-flip)
13: end if
14: end for
15: end for
16: if (-1,∅) = flipsi for i = 0, . . . , |T| − 1 then
17: return false
18: end if
19: new_tets ← (0, . . . , 0) ∈ Z

|T|
20: tets_marked ← (1, . . . , 1) ∈ {0, 1}|T|
21: for i = 0, . . . , |T| − 1 do � Detect conflicts in parallel
22: ( j, type) ← flipsi; is_coordinator ← true; agree ←

true
23: if j = -1 then continue end if
24: for all tetrahedron τ involved in flip( j, type) do
25: k ← index_of(τ ); ( jadj, typeadj) ← flipsk
26: agree ← agree ∧ type = typeadj ∧ j = jadj
27: is_coordinator ← is_coordinator ∧ i ≤ k
28: end for
29: if agree then tets_markedi ← 0 end if
30: if agree ∧ is_coordinator then
31: new_tetsi ← if type = 2-3-flip then 3 else 2 end if
32: end if
33: end for
34: offsets ← (0, . . . , 0) ∈ Z

|T|+1

35: for i = 1, . . . , |T| : offsetsi ← offsetsi−1 +
new_tetsi−1

36: Nremaining ← ∑|T|−1
i=0 tets_markedi

37: T′ ← allocate(Nremaining + offsets|T|)
38: copy_if_marked(src = T, dst = T′,tets_marked)

39: for i = 0, . . . , |T| − 1 do � Perform flips in parallel
40: if new_tetsi �= 0 then
41: ( j, type) ← flipsi; offset ← Nremaining + offsetsi
42: T′

offset ← flip( j, type)
43: end if
44: end for
45: M ← (T′,V)

46: return true
47: end procedure

5 Results

We present experiments to demonstrate the benefits of our
algorithms from Sect. 4. To ensure a fair comparison, we
implemented the algorithms from scratch using C++ and
CUDA [22].We compiled the code using Visual Studio 2019
and CUDA 11.2 on Windows 10. We ran the experiments on
a machine equipped with an NVIDIA RTX 3090 GPU and
an Intel i7 3930K CPU. In order to avoid outliers in run time
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measurements,we have determined themedian run time from
10 executions.

5.1 Parallel harmonic flips

We compare our GPU parallel harmonic flipping algorithm
performing locallymost beneficial flips to the sequentialCPU
algorithm performing flips in an ordered queue. We perform
flips on the input mesh, until no further harmonic flips can
be found. The results appear in Table 1. While Alexa [1] per-
formed harmonic flips on Delaunay triangulations of point
sets, we perform flips on meshes generated with Tetgen [30]
a constrained Delaunay mesher, leading to a lesser reduction
of the number of tetrahedra. We detail the exact numbers of
tetrahedra in the resulting triangulations, in order to show that
postponing locally not most beneficial flips to later flipping
passes does not lead to significant differences in the resulting
triangulation. Our experiments reveal substantial speedups
of 106×–318×. As harmonic bistellar flips either coincide
with the Delaunay triangulation or reduce a triangulation of
three tetrahedra to two tetrahedra, our parallel flipping algo-
rithm is a useful tool for mesh optimization and generation,
quickly reducing the tetrahedron count while somewhat pre-
serving the Delaunay criterion. Our experiments confirm that
harmonic flipping well preserves the percentage of locally
Delaunay tetrahedra.

5.2 Robustness

In order to validate the practicability of our parallel algo-
rithms, we have applied our optimization algorithm in
Sect. 4.5 to the 10k tetrahedral meshes generated by Hu et
al. [13]. Our algorithm did not produce any inversion due
to the choice of the inversion free interval for each vertex
x. After termination, each triangular face was connected to
one or two tetrahedra. In addition, we consistently observed
alternating face orientations for triangular faces adjacent to

two tetrahedra. The Manhattan distance of distinct vertices
was larger than 10−10 for all except for two meshes meaning
that our optimizationmethod does not produce geometrically
duplicated vertices. For the two meshes with geometrically
close vertices, we observed smaller vertex distances already
before optimization.

We calculate the one-sided Hausdorff distance of the
boundary vertices of the optimized mesh to the input mesh
surface, in order to validate that our vertex relocation algo-
rithm on the boundary (c.f. Sect. 4.3) keeps vertices on the
boundary. We divide the resulting distances by the aver-
age boundary edge length to put them in relation to the
dimensions of the model. For 99.95% of the meshes, the
one-sided Hausdorff distance was below 10−3, which shows
that boundary vertices remain on the input surface consider-
ing round off errors. In four out of the five remaining cases,
roundoff errors on directional derivative calculation accumu-
late to a degree that the resulting deviation is roughly 10−2. In
only one case, a significant deviation of .19 can be observed.
As the meshes generated by Hu et al. [13] generally are of
high quality and already optimized, the experiments regard-
ing runtime, convergence and mesh quality use unoptimized
meshes.

5.3 Element quality and convergence

We investigate resulting element quality and convergence of
both Alexa’s method [1] and our method. Our work covers
twomethods of using directional derivatives at the boundary.
Using directional derivatives only for vertices in VF and
VE provides surface preservation (∂T = B). In addition,
directional derivatives can be used to move vertices along the
input surface (∂T∼=B) to optimize all vertices at the cost of
altering the model shape. We compare Alexa’s reprojection-
based method [1] to both variants of boundary treatment.

Our boundary preserving method is most useful for input
meshes with few corner vertices. Thus, we investigate the

Table 1 We compare our
harmonic flipping algorithm to
the original harmonic flipping
algorithm. The table includes
the exact numbers for |T| to
show that our algorithm does not
produce significantly different
results. We observe substantial
speedups of 106×–318×

Mesh Sequential flipping Ours (GPU)

Name |T| Time (sec) |T| Time (sec) |T|
Block 78690 .425 76037 0.004 76037

Ghost 160799 1.139 154263 0.005 154263

Die 232767 1.751 225689 0.006 225689

Snowman 227567 1.704 217837 0.006 217837

Barrel 463797 4.649 443838 0.014 443838

Falcon 1072784 8.178 1034101 0.027 1034103

Part 1099271 8.583 1057930 0.030 1057930

Cube 1538635 15.282 1471163 0.048 1471162

World 1786620 16.504 1725729 0.055 1725730

Pot 4034608 34.847 3886310 0.137 3886309
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Fig. 6 Test meshes used in the evaluation

boundary preserving method on the top four meshes shown
in Fig. 6 and provide the results in Table 2. Although all of
the input meshes include critical minimal dihedral angles,
both methods achieve to improve the minimal angle, while
our method achieves significantly larger minimal angles with
the exception of similar minimal angles for the Part. Like-
wise, the lower 5% of dihedral angles is significantly larger
with the exception of the Part. If we relocate every boundary
vertex of the Partmodel, we achieve aminimal dihedral angle
of 8.12◦ and a lower 5-percentile φ5% of 38.63◦, which is a
better result than the reprojection-based method. Relocating
every boundary vertex does not result in significant differ-
ences for the other three meshes. Our method consistently
results in lower energy states for η regarding the maximum,
95-percentile and the sum over T.

For meshes with many corner vertices forming curved
surfaces, optimizing all boundary vertices is important, as
boundary preserving optimization typically results in lower
minimal angles oftentimes not even half as large.We evaluate
our method on the bottom four meshes shown in Fig. 6 and
provide the results in Table 3. While our method improves
theminimal angles of all inputs, reprojection-basedoptimiza-
tion impairs the initial minimal angles on the Block and Pot

meshes.As the reprojection step does not respect energymin-
imization, a degradation of mesh quality may occur. Using
directional derivatives along the boundary respects energy
minimization leading to lower energy states for η with the
exception of the 95-percentile of the Block.

We have investigated the impact on the mesh surfaces
and the convergence of the optimization methods on dif-
ferent meshes. We present typical results in Fig. 7. While
reprojection of boundary vertices distorts sharp detail, direc-
tional derivatives along boundary faces and edges can be
used to preserve the mesh surface. Moreover, the reprojec-
tion step mitigates convergence, because it does not respect
energy minimization. On the contrary, gradient descent of
directional derivatives converges to a local minimum on the
boundary, as can be seen in the monotonously decreasing
curve of the gradient norm for the Barrel.We observe conver-
gence for relocating every vertex along the boundary as well.
The reprojection based optimization oftentimes terminates
in a premature state. Since Alexa’s [1] algorithm poten-
tially chooses small step sizes, reprojection to the closest
point on the mesh surface oftentimes does not significantly
change vertex positions from the initial state leaving a lot
of optimization potential. Directional derivatives along the
boundary respect energy minimization even when migrating
to different boundary primitives. However, the gradient norm
does not reduce as monotonous as for choosing a constant
boundary primitive, as gradient norms change, when a vertex
is associated with another boundary primitive. Convergence
is achieved though, while the input shape is approximately
preserved. This is notable, as our use of directional deriva-
tives enables robust improvement in high-resolution meshes
and keeps boundary vertices on the boundary while converg-
ing.

5.4 Run time

We compare run times of Alexa’s [1] and our massively
parallel algorithm for full and approximate boundary preser-
vation. Figure 8 shows the run time comparisons for full
and approximate boundary preservation. For full boundary
preservation, we achieve notable speedups of 9.17×–119×.
Although the boundary reprojection prevents convergence on
these meshes, the competing algorithm still performs a con-
siderable number of iterations until no harmonic flips can
be found. This is not the case for the more complex meshes
we used for comparison with our vertex relocation along
the boundary (c.f. Sect. 4.3). The reduced convergence of
reprojecting vertices on the boundary leads to lower iteration
numbers of the competing optimization algorithm. Addition-
ally, our method for optimizing vertices along the boundary
imposes more branching than the full boundary preserva-
tion reducing the impact of massively parallel processing
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Fig. 7 We compare our method (red) to Alexa’s [1] reprojection based
method (blue). We visualize resulting boundaries and plot the gradient
norm throughout optimization

and leading to up to 40% slower run times. Thus, we obtain
lower but still notable speedups of 3.51×–78×.

6 Conclusions

In summary, we have devised an efficient and robustly con-
verging mesh optimization method processing millions of
tetrahedra in a few seconds. We have introduced massively
parallel algorithms and parallelization strategies for optimiz-
ing meshes while preventing inverted elements. Our parallel
flipping algorithm achieves speedups of 106×–318× with-
out producing significantly different results from sequential
flipping. We have evaluated the use of directional derivatives
for boundary treatment in mesh optimization. Our method
supports both, full preservation of the surface and optimiza-
tion of boundary vertices along the surface. The results for

using directional derivatives are compelling, as we achieve
significantly better mesh quality compared to reprojection,
while keeping vertices on the boundary without adding any
error terms to the optimization function. Our method tends
to smooth sharp surface details, which is a limitation. A nat-
ural extension to our method is to calculate the directional
derivative for curved surfaces such asCADbodies to improve
precision. As a result of improved convergence and neat par-
allelization, we accelerate harmonic mesh optimization by
up to 119× in the boundary preserving case and by up to
78× for relocating all boundary vertices.

As the convergence is governed by gradient descent, the
use of a nonlinear conjugate gradient method [11] or a
momentum method [25] might improve convergence. A fast
adaptive mesh optimization could be obtained through the
use of parallel refinement, which potentially leads to better
mesh quality and improved surface approximation. An inter-
esting idea is to incorporate parallel harmonic flipping into
GPU-accelerated Delaunay meshers such as [4] to diminish
element count and improve mesh quality.
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Appendix

Proof of Eq. (8): We know from [1] that:

(XτMd)
−	M	

d = −1

dvτ

(aτ\τ0nτ\τ0 , . . . , aτ\τdnτ\τd ) (18)

(Lτ )i j = 1

d2vτ

aτ\τi aτ\τ jn	
τ\τinτ\τ j (19)

Inserting Eq. (18) and Eq. (3) in Eq. (7) results in:

∂tr(Lτ )

∂Xτ

= −1

d!dvτ

(aτ\τ0nτ\τ0 ,..., aτ\τdnτ\τd)

(∑
v∈τ

a2τ\v
d2|vτ | ·I−2Lτ

)

(20)

We develop the matrix on the right side of the product. While
the non-diagonal entries are directly given by Eq. (19), the
diagonal entries evaluate to:

( ∑
v∈τ a

2
τ\v

d2|vτ | · I − 2Lτ

)
i i

= 1

d2

( ∑
v∈τ a

2
τ\v

|vτ | − 2

vτ

a2τ\τi

)

(21)

Without loss of generality, we assume that x = τi ∈ τ . As the
goal is to obtain a formula for the partial derivative regarding
x ∈ τ , we evaluate the product of the left row vector with the
i th column vector of the matrix on the right side of Eq. (20)
to obtain the harmonic gradient for a single vertex:

∂tr(Lτ )

∂τi
= −1

ddvτ

(
aτ\τi
d2

nτ\τi

(∑
v∈τ

a2
τ\v

|vτ | − 2

vτ

a2
τ\τi

)

−2
d∑
j=0
j �=i

aτ\τ jnτ\τ j (Lτ ) j i

)

We insert Eq. (19) for (Lτ ) j i and simplify to:

∂tr(Lτ )

∂τi
= aτ\τi

d!d3vτ

((2a2
τ\τi

vτ

−η(τ)

)
nτ\τi+2

∑
v∈(τ\τi )

a2
τ\v
n	

τ\τinτ\v

vτ

nτ\v

)

If we let τi = x, we obtain Eq. (8) ��
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