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Abstract
Wear is one of the decisive factors for the economic efficiency of sheet metal forming processes. Thereby, progressive wear 
phenome lead on the one hand to a poor workpiece quality and on the other hand to tool failure resulting in high machine 
downtimes. This trend is intensified by processing high-strength materials and the reduction of lubricant up to dry forming. 
In this context, data-driven monitoring methods such as machine learning (ML) provide the potential of detecting wear at 
an early stage to overcome manual and cost-intensive process inspections. The presented study aims to provide a ML based 
inline quantification of wear states within sheet metal forming processes. The development of this monitoring approach is 
based on a procedure model the Knowledge Discovery in Time series and image data in Engineering Epplications (KDT-EA) 
which is validated on two forming processes, blanking and roll forming, that strongly differ in their physical process behavior 
and their acquired process data. The presented inline quantification allows an estimation of wear states with a deviation of 
less than 0.83% for the blanking process and 2.21% for the roll forming process from the actual wear state. Furthermore, 
it is shown that combining different feature extraction methods as well as a compensation of unbalanced data using data 
augmentation techniques are able to improve the performance of the investigated ML models.

Keywords Sheet metal forming · Roll forming · Blanking · Machine learning for forming · Wear detection

1 Introduction

Forming processes represent one of the most economical 
steps in the value-added chain in manufacturing industry. 
Compared to additive manufacturing or machining, form-
ing processes are characterized by an optimum utilization 
of material and lower specific energy costs per manufac-
tured workpiece [1, 2]. Even with these technical and eco-
nomic advantages, forming companies are under high cost 
pressure caused by low margins per product. As a result, 
manufacturers are faced with the challenge of optimizing 
the degree of utilization of their processes while ensuring 
high quality standards [3]. In this context, one of the main 
cost drivers of forming processes is the wear-related failure 
of machines or tools and the resulting deteriorated quality 
of the workpiece. The impact of wear on the profitability in 

such processes increases through the environmental sustain-
ability demanded by the automotive industry. This forces 
companies to process high-strength materials using only low 
amounts of lubricant, which especially accelerates abrasive 
wear phenomena [4, 5]. Due to this trend, wear is identified 
as the major cause for unplanned machine downtimes [6], 
required removal of tools [7] or the failure of the whole sys-
tem [8]. In order to achieve an inline estimations about the 
actual wear state within a sheet metal forming process and 
to plan maintenance properly, data driven techniques like 
ML help to generate this process knowledge by identifying 
highly complex and non-linear patterns in given data sets 
[9]. Especially in sheet metal forming processes, where a 
description of the interdependencies between wear, process 
parameters and workpiece properties is no longer possible 
by analytical and empirical models, ML offers the potential 
to describe and even predict these correlations. As a frame-
work for the application of such ML approaches, trustwor-
thy holistic procedure models play a crucial role. Fayyad's 
Knowledge Discovery in Databases (KDD) approach was 
developed as one of the first procedure models to support 
the systematic implementation of ML models in practice and 
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to assist personnel in extracting useful information (knowl-
edge) from the rapidly growing volumes of data, taking the 
overall data management of the process into account [10]. 
This KDD approach was extended in the following years by 
Chapman et al. as well as Huber et al. for the use in engi-
neering applications, considering the underlying database as 
well as the related process knowledge [11, 12]. Kubik et al. 
extended the existing procedure model with the KDT-EA to 
include the step of data acquisition and adapted the steps of 
data preparation, data transformation as well as modelling 
to the boundary conditions of manufacturing processes [13]. 
Thereby, the KDT-EA focuses on the use of process-related 
time series and image data, and allows an adaptation of each 
single step by inserting domain knowledge. Even though the 
use of holistic procedure models in combination with ML 
models offers major advantages for inline estimation of the 
actual process state, few authors have investigated the actual 
application of such models in practice. In particular, estab-
lishing ML models for inline wear estimation in sheet metal 
forming processes are rarely found in the literature. Espe-
cially, no study demonstrates that the application of holistic 
procedure models is transferable to multiple processes, tak-
ing highly divergent time series characteristics into account. 
But especially sensorial acquired data in sheet metal forming 
process show a heterogeneous characteristic from stationary 
to highly dynamic and transient profiles. Therefore, the aim 
of this study is to demonstrate that knowledge from sheet 
metal forming processes can be generated by the system-
atic procedure model KDT-EA, despite the heterogeneity of 
the physical process sequence and the characteristics of the 
underlying data. As use cases, a blanking process charac-
terized by a transient, stroke-related force signal and a roll 
forming process characterized by continuous and stationary 
torque signal are considered. In both cases abrasive wear 
states are to be estimated inline by an artificial neuronal net-
work (ANN). Special attention will be paid to the selection 
of features extracted during the transformation phase of the 
KDT-EA. The aim is to validate the accuracy and reliability 
of different feature types (model-based features and engi-
neered features) as well as combine them in order to increase 
the model's ability to inline estimate the current wear state. 
Since the data from the roll forming process is not generated 
in sufficient quantity and shows an unbalanced characteris-
tic, a data augmentation technique is performed in the data 
preparation step of the KDT-EA to expand the data set and 
thus increase the model performance. Therefore, the study 
is structured as follows and orients itself on the procedure 
of the KDT-EA. Section 3 discusses the experimental set up 
of this study and the characteristics of the given time signals 
during blanking and roll forming. In Section 4, features are 
extracted from the given time series. This transformation is 
done on the one hand by a feature engineering approach and 
on the other hand by a model-based dimension reduction 

approach using a  principal component  analysis (PCA). 
Finally, in Section 5 the ability to estimate abrasive wear 
states depending on the extracted set of features and their 
combination is quantified.

2  Data‑driven methods for tool wear 
estimation in sheet metal forming 
processes

2.1  The blanking and roll forming process

Blanking is generally one of the most frequently used manu-
facturing processes in sheet metal forming and represents 
the most efficient step in the process chain. Nearly every 
manufactured workpiece is trimmed in its intermediate con-
tour and separated from the semi-finished product [14]. As 
shown in Fig. 1, a blanking process is divided into three 
phases according to the force–displacement curve. In the 
punch-phase (I), the punch impacts on the sheet metal and 
starts to elastically deform the material. If the occurring 
stresses exceed the maximum shear strength of the mate-
rial, it tends to deform plastically. When the shearing stress 
finally exceeds the shear fracture limit, the material tears 
and the stored elastic energy is abruptly released. In the fol-
lowing push-phase (II), the workpiece or the grid-shaped 
discard is completely pushed out of the die and the punch 
passes through the bottom dead center. Finally, the punch is 
pulled out of the die in the withdraw-phase (III) and with-
drawal forces occur as a result of jamming between the sheet 
and the punch.

Roll forming is a continuous forming process with a 
potentially high output rate. In roll forming, the sheet metal 
is transported through several forming steps by rotating tools 
and formed according to the tool shapes. Since the diameters 
of the tool vary along the rolls width due to their given tool 
shape, the circumferential speeds deviate locally from the 
sheet speed, resulting in various slip conditions. As a result, 

Fig. 1  Force-displacement curve during blanking of sheet metals sep-
arated in three characteristic phases [15]
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both rolling friction and sliding friction occur, whereas the 
sliding friction lead to tool wear [16].

Figure 2 shows the torque over time curve of the lower 
forming roll. The cyclostationary phase characterizes the 
continuous roll forming process, whereas its duration 
depends on the sheet or coil length. During the move in and 
move out phases, the torque increases or decreases linearly.

2.2  Wear phenomena during blanking and roll 
forming processes

In sheet metal forming, a trend towards the processing of 
Advanced High-Strength Steel (AHSS) is emerging. Espe-
cially in the automotive industry, such materials are used 
to reduce weight or optimize crash performance [17]. In 
addition, driven by the demand for sustainable production, 
the manufacturing industry has set itself the goal of avoid-
ing lubricants as far as possible in the processing of AHSS 
[18]. However, the low-lubricant processing of high-strength 
materials has led to an increase in abrasive wear phenom-
ena. A significant correlation between the strength of the 
sheet material and the resulting abrasive wear is observed. 
Hohmann et al. discovered this dependency in their work 
investigating force–displacement curves extracted from a 
blanking process in long-term experiments. While soft coil 
material (< 400 MPa) is prone to adhesive wear, a signifi-
cant increase in wear volume was observed when process-
ing high-strength materials (> 850 MPa) [19]. In addition 
to these findings, a geometric change of the tool contour 
caused by abrasive wear significantly affects the quality of 
the formed workpieces [20].

To ensure the resilience of the process despite increased 
wear caused by low-lubricant processing of AHSS, it is 
necessary to obtain real time information on the tool wear 
conditions without stopping the process or performing time-
consuming and costly inspections. In the literature, this chal-
lenge is mainly faced by estimating the wear state by ana-
lytical or empirical models. An example for this approach 
is the model according to Archard, which estimates the 

wear volume as a function of the wear coefficient, the nor-
mal force, the tool hardness and the sliding distance [21]. 
While the tool hardness and sliding distance are constant or 
pre-known parameters, the normal force (depending on the 
machine and tool parameters, wear condition, etc.) as well 
as the wear coefficient (depending on the material pairing, 
temperature, lubricant, etc.) are estimated.

Over the last decade, many experimental and empirical 
studies have been conducted to understand wear in blanking 
and roll forming processes. On the one hand, they investi-
gated the influence of tool parameters (e. g. forming [22] or 
cutting [23] edge radii) and machine parameter (e. g. stroke 
rate [24, 16] or feeding speed [16]) as well as properties 
of the semi-finished product (e. g. sheet-metal thickness 
[25]) on the wear evolution. On the other hand, the influ-
ence of occurring wear on the quality of the manufactured 
workpieces was investigated [8, 26]. In addition to these 
empirical and experimental investigations, great progress 
has been made in the 2D and 3D numerical simulation of 
wear phenomena. Using computational methods in blanking, 
several authors tried to predict tool wear and the resulting 
form errors on the blanked workpieces [27] to optimize pro-
cess parameters and reduce these errors [28]. In roll forming 
by contrast, to the knowledge of the authors only one analyti-
cal approach to predict wear based on the prevailing contact 
normal stresses is known [16].

Since wear and its characteristics depend on a large num-
ber of parameters, a quantitative description of wear by sim-
ulations is only possible to a limited extent. This also applies 
to analytical or experience-based models, which cannot esti-
mate temporary wear events at all and progressive wear only 
to a limited extent. A detailed description of wear states 
requires the process to be stopped and the tools to be disas-
sembled and visually inspected. In order to avoid this step of 
manual inspection and to enable a quantitative description of 
the wear state in real time, an intelligent analysis of available 
in-process data is necessary.

2.3  Data‑driven methods for tool wear prediction

In practical application, the identification of wear in sheet 
metal forming processes is limited to condition monitoring 
systems, which focus on the detection, isolation and identifi-
cation of errors as they occur [29]. In these systems, domain 
specific knowledge is necessary to determine thresholds and 
envelopes. In this case, the full potential of the data is not 
used and is limited to identifying discrete faults [30, 31]. 
These error types describe a binary condition (ok/nok) of 
the machine and tool (e. g. protecting the press by achiev-
ing maximum process force to prevent overload and system 
failure) as well as the quality of the manufactured work-
pieces. Identification of error-cause dependencies, derived 
from time signals recorded by inline process sensors, does 

0

10

20

to
rq

u
e

in
 N

m

0 10 20 30 40

time in s

run-outrun-in cyclostationary

Fig. 2  Torque-time curve during roll forming of the lower roller tool 
with cyclostationary phase between move in and out phases
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not take place in industrial practice. In contrast, studies are 
found in the literature that show approaches to fully exploit 
the potential of existing process data to identify faulty pro-
cess conditions and assign them to a specific cause [32]. 
From a theoretical point of view, this data-driven fault 
diagnosis fits a model to describe the system behavior by 
acquired process data. These approaches are either use engi-
neering or numerical models, such as sensitivity analyses, 
linear regressions or Kalman filters, or ML models such as 
neural networks, decision trees or support vector machines 
[33]. As an example for an engineering model, Klingenberg 
and de Boer identified the length of the punch phase during 
a blanking process and correlated this feature with the onset 
of wear on the cutting edge of the punch [34]. Hohmann 
et al. extended these investigations, deriving ten engineered 
features from force-displacement graphs to quantify differ-
ent wear states in a blanking process. Thereby, a correlation 
was found between the extracted features and the number 
of strokes conducted in the endurance test. This sensitivity 
analysis proved a dependency between the blanked mate-
rial, the number of strokes conducted and the type of wear 
occurring [19]. In their study, Kubik et al. established cor-
relations between the parameters of a blanking tool and 
12 handcrafted engineered features determined from a force 
signal. These correlations served as basis for a decision tree 
to assist in the detection of varying system properties. In 
addition, the influence of the blanking tool parameters on the 
characteristics of the cutting edge surface was investigated 
[20]. Another paper in this field presented by Hoppe et al. 
compared engineered features with model-based features 
extracted by a PCA. These features were used to estimate 
the abrasive wear state on a blanking tool and the angle 
in a bending process using a least absolute shrinkage and 
selection operator regression. Furthermore, the study ranked 
the extracted features according to their importance for the 
modelling procedure. However, an analysis and interpreta-
tion of why PCA features provide better performance than 
engineered features, taking into account the physical bound-
ary conditions of the process, was not given. In addition, 
the influence of combining engineered features with model-
based features on the performances was not considered [35].

Regarding wear prediction in roll forming, the authors are 
not aware of any publication on the topic of consisting data-
driven methods. Becker and Groche investigated correlations 
between tool positions and process data such as driving tor-
ques and workpiece geometry to train a classification model 
of discrete failure classes [36]. Based on a limited amount 
of data, wear detection was not considered in this approach.

Due to the highly non-linear behavior of sheet metal 
forming processes, a detailed description of process condi-
tions by means of engineering or numerical models is only 
possible to a limited extent [25]. In contrast, ML models 
enable a classification, evaluation as well as prediction of 

process conditions and have become an important part of 
the current literature in the domains of machining and health 
monitoring [37, 38]. The most common regressive ML 
models for predicting process states that are not analyti-
cally describable include polynominal regression analysis, 
artificial neural networks (ANN), support vector regression 
(SVR), random forest (RF) and Gaussian process regression 
(GPR) [39].

Polynominal regression analysis is the simplest ML tech-
nique to predict an outcome variable based on the value of 
one or more input variables. Al-Momani et al. presented a 
multiple regression analysis (MRA) to predict burr height 
during a blanking process. The inputs of the MRA model 
consist of force-displacement graphs generated by a finite 
element model considering different clearances, sheet metal 
thicknesses and blank holder forces as well as the simu-
lated burr height. The results showed that the trained MRA 
model provides an accurate prediction of the burr height 
[40]. Kirchen et al. developed a model for predicting the 
homogeneity of the thickness of tailored blanks during a 
rolling process using an incremental regression method. 
Experimental results showed that the regression model was 
able to accuratly predict the sheet thickness with a maximum 
deviation of 5% [41]. Hao et al. developed an interaction 
model that uses a linear regression model to quantify the 
onset of wear during a multistage manufacturing process, 
considering product quality degradation and the interaction 
between a current stage and a subsequent stage [42].

The RF algorithm is an aggregation of several decision 
trees and is characterized by fast training procedure, espe-
cially with large data sets, and its simple “out of the box” 
implementation [43]. However, prediction accuracy on 
complex problems is usually inferior to advanced regres-
sion models. Patil et al. used a RF to estimate the quality 
of a blanked workpiece based on the value of the surface 
roughness. The model was able to assigned the quality of the 
blanked surfaces to three different classes with an accuracy 
of 96% [44]. Even though the implementation process of 
this model type is very simple, there are only few studies in 
the area of manufacturing which applied RF for regression.

Another ML technique which has been attracting the inter-
est of researchers for several years are support vector machines 
(SVM) and its adaption to regression problems (SVR). Ge 
et al. presented in their work SVMs with different kernel func-
tions to classify erroneous states during a blanking process. 
The experimental results showed that SVM can achieve a 99% 
success rate in detecting these faults [45]. Singh und Gupta 
developed an SVM to classify the spring-back in a W-bend-
ing process. Considering the material and tool parameters, 
the dimensional accuracy and forming quality of the bended 
workpieces, a relative error between the predicted values and 
the experimental values of 0.3% was determined [46]. In their 
study, they presented a one-class SVM for detecting abnormal 
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health conditions (ok/nok) of a progressive stamping machine. 
To achieve a desirable performance considering a trade-off rela-
tionship between the false alarm rate and miss detection rate, 
hyperparameter of the SVR had to be optimized [47]. Kubik 
et al. classified five abrasive wear states in a blanking process. 
However, the focus of this study was not on optimizing the 
model performance but rather on quantifying the influence of 
the individual phases of a procedure model on the performance 
of the SVM. The authors were able to show that the type of sen-
sor used to capture the database and the speed of the process 
have a significant influence on the performance of ML models.

The Gaussian process regression (GRP) is nonparametric 
kernel-based probabilistic model which describes probabil-
ity distributions over functions. The GPR algorithm offers 
the possibility to directly determine a distribution for the 
prediction value, rather than just a single prediction value 
but requires a great computational effort. In literature only 
a few applications for the GPR in the field of manufacturing 
and especially in the field of forming are found.

Using ANN in sheet metal forming has been part of the 
literature for several decades. Many studies are concerned 
with the spring-back behavior in bending processes [48–50], 
the error diagnosis and process control in incremental 
forming [51], and characterization of material properties 
[52–54]. In contrast, ANN approaches are rarely applied 
to the identification of wear states in sheet metal forming. 
Hambli presented a backpropagation neural network algo-
rithm for predicting the burr height formation on blanked 
workpieces, considering tool clearance and wear state. The 
inputs of the ANN were generated by a finite element analy-
sis of the circular blanking process. Validating the results 
from the ANN showed a good agreement with a deviation 
of 10% between predicted and experimentally determined 
burr height [55]. A similar procedure was chosen by Stanke 
et al., who compared the performance of an ANN and SVM 
for prediction of the die roll height in fine blanking. They 
demonstrated, that an ANN is able to predict the die height 
with high accuracy even considering a small data set [56]. Li 
et al. developed an ANN to predict friction resistance and to 
estimate wear states considering different surface roughness 
conditions. Here, the ANN results showed high agreement 
with the experimentally recorded frictional resistances [57].

3  Experimental setup and procedure

The procedure to inline estimate abrasive wear states in sheet 
metal forming processes based on the KDTE-EA is shown 
in Fig. 3. First, a labled data set consisting of process (force 
and torque signals) and quality (abrasive wear state) data is 
generated. While stroke related force signals are measured 
during the blanking process, torque signals are captured con-
tinuously during roll forming. The quality data described by 

a wear-dependent rounding of the cutting edge radii of the 
blanking tool and of the roll edge radii is measured offline 
by an optical system. Subsequently, the acquired time series 
are preprocessed and characteristic values are extracted by 
an engineering feature as well as a model-based feature 
approach. The extracted features are normalized and serve 
as an input for the modelling step which is carried out with 
the regression learner toolbox of the software MATLAB 
2021b [58]. To choose a suitable regression model a twostep 
grid search is conducted. In the first step, various regression 
model types are trained based on their initial hyperparameter 
configuration. 12 features extracted by a PCA serve as an 
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sheet metal forming processes
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Fig. 3  The required steps for predicting the abrasive wear states 
including data acquisition, feature extraction and application of ML 
model
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input for the training process during the first step of selecting 
a suitable model. The accuracy of each model is quantified 
by a five-fold cross validation which is 30 times repeated to 
statistically secure the prediction quality. In the second step, 
the best model is optimized via a hyperparameter variation. 
Thereby, the data is split into three subsets. The first subset 
(training data), which is used for computing the parameters 
of the model. The second subset (validation data), which is 
used to monitor the error on the validation data. The third 
subset (test data), which is used to validate the model with 
unseen input via the root mean square error (RMSE). Fur-
ther on the labeled data set is described by the force during 
blanking Fi and the torque during roll forming Ti as well as 
the cutting edge radii of the punch rB

i
 and the edge radii of 

the roller rR
i
 . The extracted and normalized features from the 

labeled data set are described by rB
PCA,i

 for the model-based 
features and rB

ENG,i
 for the engineered features during blank-

ing as well as rR
PCA,i

 for the model-based features and rR
ENG,i

 
for the engineered features during roll forming.

3.1  Experimental tool and setup

In the case of the blanking process, all experiments for the 
acquisition of process data were conducted on a Bruderer 
high-speed mechanical press (BSTA 810). The machine 
parameters for the experiment were set to a stroke distance 
of 35 mm and stroke speeds of 300 spm. The geometry of 
the punch was chosen to be cylindrical with a diameter 
of 6 mm. In terms of wear investigations, the punch edge 
radius was varied over five different states. The gap between 
punch and die is set to 0.15 mm, which results in a clear-
ance of 7.5% using a sheet thickness of 2 mm. A cold rolled 
steel 1.0347 was used. In case of the roll forming process 
all experiments were conducted using a Dreistern GmbH 
roll forming line with four forming steps (P3.070.04). The 
stand distances are 150 mm and the incremental bending 
angles of the four stages are 12°, 14°, 16° and 12° to achieve 

a final flange angle of 56°. The sheet metal has an initial 
width of 100 mm and is formed in a 2:1 ratio between web 
and flanges. The tool parameters are 112 mm diameter for 
the upper and 80 mm diameter for the lower forming rolls. 
The initial bending radius is 1.0 mm at each forming roll. 
In terms of wear investigations, the roll edge radius of the 
upper roll in the last forming stage was varied over four 
different states. The feed speed of 75 mm/s and the sheet 
length of 2000 mm were constant for all experiments. A 
cold rolled dual phase steel 1.0936 with a sheet thickness of 
1.0 mm was used.

Table 1 shows the tool and machine parameters as well 
as the properties of the sheet metal for the blanking and roll 
forming process.

For data acquisition in the blanking process, a multi-
sensory tool consisting of a lower and an upper workpiece 
connected by four guide columns is used. The cylindrical 
punch is connected to the adapter plate in the upper tool via 
a plunger. A piezo electrical force washer (Kistler 9051C) 
is integrated into the direct force flux. The distance of the 
upper tool during the stroke is measured by an eddy current 
sensor (Micro-Epsilon EU8). Figure 4a shows the detailed 
design of the tool, its integration into the press and the posi-
tioning of the sensor.

For data acquisition in the roll forming process, a strain 
gauge-based sensor is integrated into a cardan shaft, record-
ing the torque load on the shaft and transmitting the data 
to a receiver via bluetooth low energy as shown in Fig. 4b. 
The pre-calibrated cardan shaft measure the torques in both 
directions of rotation. During roll forming, negative torques 
often occur at individual rolls due to interactions between 
neighboring stands caused by different rotational speeds, slip 
behavior and contact conditions between forming roll and 
workpiece. The position of the sensor is set to the last upper 
forming roll where the different wear states are investigated. 
Since a change of the roll radius is expected to move the 
position of the highest contact normal stresses between tool 

Table 1  Tool and machine 
parameters and the properties of 
the sheet metal for conducting 
the experiments

Blanking Roll forming

Tool properties
 Punch diameter in mm 6 Upper roll diameter in mm 112
 Clearance in % 7.5 Lower roll diameter in mm 80
 Cutting edge radii in µm 7 …358 Roll edge radii in mm 1…4
 Tool steel punch 1.2379 Tool steel rolls 1.2379

Machine properties
 Stroke speed in spm 300 Feed speed in mm/s 75
 Stroke distance in mm 35 Sheet length in mm 2000

Material properties
 DC03 1.0347 DP 600 1.0936
 Tensile strength in MPa 299 ± 2.9 Tensile strength in MPa 651 ± 4.9
 Sheet thickness in mm 2 ± 0.02 Sheet thickness in mm 1 ± 0.02
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and sheet metal, this slightly changes the driving diameter 
of the forming roll. In roll forming, the driving diameter is 
defined as the section of the forming roll where the slip is 
considered zero and static friction occurs. Former investiga-
tions by Traub et al. show that even though a change of the 
driving diameter at one single forming roll influences the 
roll torques at several stages of the roll forming line, the 
major influence occurs at the varied stage [60].

3.2  Acquisition of quality and process data

Quality data described by the abrasive wear states of the 
punch and the upper roll are optically measured by a con-
focal white light microscope (NanoFocus AG type μsurf 
explorer). It is assumed that abrasive wear causes a rounding 
of the cutting edge radii of the punch in the blanking process 
and of the roll edge radii in the roll forming process. In order 
to approximate the reproducible abrasive wear conditions 
without the need for time-consuming long-term experiments, 

the edge radii are mechanically rounded by pre-machining. 
For the blanking process the edge radii is varied in five steps, 
starting from a sharp cutting edge rB,0 to a critical wear state 
rB,4 . In case of the roll forming process, the roll edge radii 
is varied in four steps starting from an unworn roll rR,0 to a 
critical wear state of the roll rR,3 . In the following discussion 
of the results, the index B stands for the blanking process, 
the index R for the roll forming process using the index 0 for 
the reference state and the unworn tool condition. For the 
blanking process, literature suggests differing magnitudes 
for reaching an excessive wear state. The bearable amount 
of wear described by the cutting edge radii of the blanking 
tool is individual for the underlying process configuration 
and depends on the acceptable degradation of the workpiece 
quality. Since a critical wear state at the cutting edge has to 
be specified individually for each process configuration in 
this study a range up to rB,4 = 358.154 µm shall be estimated 
by the developed ML model. This meets the maximum limit 
of excessive wear which is assumed in the literature in a 
range of 0.1 mm to 0.4 [34, 55, 61]. Since the cutting edge 
radii of the punch is artificially generated, its geometry is 
inspired by a real abrasive wear pattern. Figure 5 shows 
the actual geometry applied to the punch for rB,1 and rB,3 
measured by a confocal microscope. It demonstrates that 
the radius gradually tapers off with increasing distance to 
the bottom of the punch [26]. This results in radial aB,i (face 
ware) and axial bB,i (flank wear) length of punch, where aB,i 
< bB,i . In order to aggregate the wear lengths to a single 
label, an approximated value quantified by the edge radii 
rB,i is defined. Due to the asymmetric distribution of aB,i 
and bB,i the measured cutting edge radii tends to be smaller 
as the intended target edge radii (see Table 2). In roll form-
ing, the state of the art provides no empirical data so far on 
the extent of wear under long-term conditions. Therefore, 
wear radii of rR,0 = 1 mm to rR,3 = 4 mm are selected as to 
be classified even though the range is larger than the toler-
ance specifications of the final manufactured profile radius. 
This is due to intermediate profile deviations within the roll 
forming process are usually being eliminated by successive 
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forming stages, and thus the contour of a single roll is not 
regarded as a criterion for the tolerance compliance of the 
manufactured profile. In addition, the regressive ML model 
is adaptable to various tool configurations since the model 
is able to estimate the actual wear state over an extended 
range of the roll edge radii. By optimizing the selected ML 
model in this study (see Section 5), a deviation of the roll 
edge radii < 22 µm is detectable. 

Table 2 shows the results of the optically measured wear 
states represented by the edge radii.

The process data for training the ML model are obtained 
in both processes by a CompactRIO (NI 9047) with an inte-
grated measuring modul NI 9220 (analog input ± 10 V). 
During blanking, the vertical process forces are acquired by 
a piezoelectric force washer with a sampling frequency of 
50 kHz. Assuming five wear conditions and 100 experiments 
conducted per wear state, this results in 500 independent 
time series. This determines a complete stroke cycle of the 
Bruderer press from top dead center through bottom dead 
center back to top dead center. The actual tool engagement 
time only takes place in a limited angular range. Assuming a 
stroke speed of 300 spm and an angular range of 160°–210°, 
this results in a time during data acquisition of 0.07 s per 
stroke. This leads to approximately 3395 data points per 
time series. Hence, the raw data for the blanking process are 
stored in a dimensional matrix � ∈ ℝ

500×3395 . To keep the 
amount of data as small as possible, features are extracted 
from the dimensional matrix F (engineered features and 
model-based features) by dividing the force signal into three 
phases according to Kubik et al. (see Section 4). Figure 6 
shows the mean and the standard deviation of the acquired 
force signals including the dimension of the raw data as well 
as the dimension of the extracted engineered features.

During roll forming, the torque is measured at the upper 
forming roll in the last pass of the line where mostly abra-
sive wear occurs. Assuming four wear conditions and five 
experiments conducted per wear state, this results in 20 
independent time series. Thereby, a sheet with a length 
of 2000 mm was run through the four passes of the roll 

forming machine. As a result, each time series consists of a 
run-in and run-out section as well as a section in which the 
sheet is fully entered in all stages. Assuming a feed speed 
of 75 mm/s, a length of 2000 mm of the sheet and a sam-
pling rate of 40 Hz, this results in approximately 1266 data 
points per time series. Since 20 time series are not enough to 
train a ML model, a data augmentation technique is used to 
increase the amount of data. For this purpose, the Synthetic 
Minority Over-sampling TEchnique (SMOTE) according to 
Chawla et al. was applied to the data. The SMOTE approach 
generates synthetic data between each data point of its k 
nearest neighbors. For each of the samples, the k nearest 
neighbors are located and new synthetic data is generated 
between the sample and each of its neighbors. It should be 
noted, that on the one hand, continuous data is necessary 
for the SMOTE approach, and on the other hand, the gener-
ated synthetic data is linearly dependent. With respect to 
the SMOTE approach, the amount of data for the roll form-
ing process is increased and stored in a dimensional matrix 
� ∈ ℝ

400×1266 . As with blanking, to keep the amount of data 
as small as possible, engineered features are extracted from 
the dimensional matrix � . Figure 7 shows the mean and the 
standard deviation of the acquired torque signals including 
the dimension of the raw data as well as the dimension of 
the extracted features.

A Comparison of the data sets for blanking and roll form-
ing demonstrates strongly different time series character-
istics, which depend on both the forming process and the 
sensor type.

Table 2  Experimentally measured wear states

Wear state Cutting edge
radii r

�,� in µm
Roll edge
radii r

�,� in mm

No abrasive wear edge radii 
r0

7.624 1.021

Small abrasive wear edge 
radii r1

66.717 2.018

Medium abrasive wear edge 
radii r2

127.281 3.007

High abrasive wear edge 
radii r3

258.459 4.006

Critical abrasive wear cutting 
edge radii r4

358.154 –
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Fig. 6  Extracted features from force signals of the blanking process
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In contrast, the time series for blanking are characterized 
by a nonlinear, transient and stroke-related profile. Espe-
cially, the dynamic effects resulting from the impact of the 
punch on the sheet metal and the material breakage show up 
in form of superimposed oscillations. Furthermore, the force 
signal increases in the push- and withdraw-phase, caused by 
reinforced frictional forces. After material breakage, there 
is an elastic spring-back of the sheet metal, which leads to 
increased contact normal stresses between the lateral surface 
of the punch and the sheet metal. In addition, the frictional 
forces in the push- and withdraw-phase are determined by 
the frictional length. The frictional length is directly corre-
lated to the quality of the cutting edge of the blanked work-
piece. In case of a wear-induced rounding, the cutting edge 
radius of the punch increases. Kubik et al. were able to show 
that the height of the burr and the shear zone increases with 
increasing cutting edge radii [20]. The enlarged height of 
the shear zone increases the frictional length hf as shown 
in Fig. 8a. Due to the combination of elastic spring-back of 
the sheet metal and enlargement of the frictional length, the 
absolute maximal force in the push- and withdraw-phase 
increases.

At the sensorial equipped roll forming tool, a negative 
torque occurs while the sheet runs in. The running-in pro-
cess is characterized by a transient phase in which the sheet 
initially enters all forming stages without tensile or compres-
sive stresses. Due to the tensile and compressive stresses 

that subsequently develop between the interacting forming 
stages, the sliding and contact conditions initially change 
until a cyclostationary phase is reached. At this point, the 
torque reaches a uniform level with oscillations in the range 
of the rotational frequency of the tool rolls. This process 
condition is characterized by a continuous industrial roll 
forming process using sheet metal coils. In case of a wear-
induced rounding, the tool edge radius increases. An increas-
ing radius moves the position of the highest contact normal 
stresses between the tool and the sheet metal outwards. 
Consequently, the driving diameter dt,ri of the forming roll 
decreases as shown in Fig. 8b. At this local spot the lower 
circumferential speed of the forming roll leads to increased 
slip between the tool and the sheet metal due to the remain-
ing sheet feed of the lower forming roll and the neighbor-
ing forming stages. The measured process data show an 
increased absolute torque level in comparison to the initial 
unworn state with smaller edge radius.

4  Data transformation

Section 3.2 illustrates that blanking and roll forming pro-
cesses are characterized by heterogeneous time series. How-
ever, in order to show that the KDT-EA is capable of predict-
ing the wear states in this study even for these heterogeneous 
time series, the data must be transformed . Thus, data trans-
formation aims to reduce dimensionality as well as remove 
noise and redundancy of given data without removing rel-
evant information [62]. In addition to the feature extrac-
tion step, the number of features can be further reduced 
by a feature selection step to generate an optimal feature 
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subspace for the ML model. Since a large dataset results in 
high model complexity which leads to poor generalizability 
of the model and high computational times, feature extrac-
tion and selection are a key factor for successful ML projects 
[63]. According to Li, extracting features from time signals 
is done either from the time domain, the frequency domain, 
the time–frequency domain or based on a model approach 
[64]. In this context, feature from the time domain is straight 
forward and widely used in sheet metal forming process 
monitoring, as features can be extracted directly from the 
time signal. Mostly, these features are statistical parameters 
such as maximum values, mean values, standard deviations, 
skewness, kurtosis or the root mean square [65]. Next to 
these statistical moments of first to fourth order several 
studies extract engineered features depending on the char-
acteristic of the process-related time series [34]. The feature 
engineering approach for the blanking process used in this 
paper is based on the results of Kubik et al. and is shown in 
Fig. 9a [20]. Therefore, the force signal is initially divided 
into three phases and characteristic points are identified to 
define the start and end points as well as the extrema during 
each phase. Finally, these characteristic points are used to 
derive the features that can be described by the length lj,i , 
the maximum force Fmaxj,i and the work done Wj,i at each 
point. In this case, the index j describes the respective phase 
of the cutting process (punch-phase ( p ), push-phase ( pu ), 
withdraw-phase ( w )) and i the number of obervations in the 
experiments.

The features used in this study for the roll forming pro-
cess are divided into two categories: temporal features and 
engineered features. The temporal features consider the two 
mathematical moments of second order variance and fourth 
order kurtosis , as well as the mean of the absolute devia-
tions of the data around the mean MAD and the mean of the 
deviations of the data around the mean MD . In addition, the 
area under the squared magnitude of the considered signal 
totalenergy and the center of mass of the time signal centroid 
are taken into account. In the second category, engineered 
features are extracted based on the results of Becker and 
Groche as shown in see Fig. 9b [36]. The mean values of the 
measured data are dependent on many process parameters 
during the cyclostationary phase. In former investigations, 
Traub et al. used mean values of the cyclostationary phase 
to find correlations between the torque data and the driv-
ing diameter respectively the circumferential velocity of the 
tools [60]. During the run-in process, the slope and the area 
under the curve change depending on the contact conditions 
between the roll forming tools and the sheet metal.

In addition to the engineered features, model-based fea-
tures are automatically extracted from time series using a 
PCA. In this context, PCA is one of the commonly used 
data transformation techniques in the literature [66]. In 
engineering applications, PCA is used for the purpose of 

quality control [67], condition monitoring [68] and pre-
dictive maintenance [69]. PCA is a multivariate statistical 
technique that handles large amounts of data via orthogo-
nal projection. It reduces the dimensionality of a data set 
by projecting original data into a lower dimensional space 
defined by significant eigenvectors. Applied to a blanking 
and roll forming process, this means searching for a compact 
representation of the measured force and torque signals that 
still contains the information about relevant variations. The 
features of the PCA are derived from the two dimensional 
matrices � ∈ ℝ

m×p and � ∈ ℝ
m×p in which each row vector 

f i is a complete cycle of a force signal and ti is a complete 
cycle of a torque signal with p measurement points, and m 
is the total number of observations. The principal compo-
nents are computed by solving the eigenvalue problem of 
the covariance matrix � ∈ ℝ

p×p of the dimensional matrices. 
The received vector vj ∈ ℝ

p×1 ( j = 1, ..., p ) determines the 
normalized eigenvector of the covariance matrix. Calculat-
ing the dot product between the eigenvector and each row 
vector in the dimensional matrix results in the feature fBi,j 
from the force signal during blanking and the features fRi,j 
from the torque signal during roll forming. Projecting the 
data on the eigenvectors, it is often found that only the first 
few eigenvectors, corresponding to the largest eigenvalues, 
are associated with the physical-related process variations. 
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All remaining eigenvectors reflect more and more the vari-
ations of the process noise. Therefore, the p features of the 
original PCA are reduced to ensure that more than 99% of 
the variance in the force signal can be explained by the popt 
largest eigenvalues in this study. This leads to 11 features 
for the roll forming process fRi,j with j ∈ {1,… , 11} and to 
five features for the blanking process fBi,j with j ∈ {1,… , 5}.

In order to compare the different features with each other, 
two criteria must be met. On the one hand, the features must 
be normalized by the Z-score. On the other hand, the perfor-
mance of the ML model must be quantified on the basis of 
an equal number of features. This is mainly due to the fact 
that with a growing number of features the informational 
content of the input to the model increases and thus model 
performance is expected to improve. For this reason, model-
based features determined by PCA and engineered features 
are reduced to a fixed value of five. In case of the PCA fea-
tures, this is achieved by selecting the five largest principal 
axes. On the other hand, the five engineered features with 
the highest informational content are selected. For this pur-
pose, a feature selection method, the minimum redundancy 
maximum relevance algorithm (MRMR) is used. The algo-
rithm measures how much uncertainty of one variable A 
is reduced by knowing the other variable B . Thereby, the 
mutual information I of the discrete random variable A and 
B is defined as

The objective of the MRMR algorithm is to find an opti-
mal set S of features that maximizes VS the relevance of S 
with respect to a response variable y , and minimizes WS , the 
redundancy of S.

At this point, it should be noted that the procedure of 
feature selection risks losing essential information for pre-
dicting process with an ML model [35]. Figures 10 and 11 
show the feature importance for the blanking and the roll 
forming process.

In summary, the features kurtosis , MAD , mean , variance
and centroid are used for further modelling in case of the roll 
forming process. For the blanking process, the engineered 
features work done in each phase Wj as well as the absolute 
maximal force in the punch phase Fmax,p and withdraw phase 
Fmax,w are used as input the ML model. In addition to these 
engineered features the five most relevant PCA features are 
considered in both processes for the modeling step.

(1)

I(A,B) =
∑

i,j
P
(
A = ai,B = bj

)
log

P
(
A = ai,B = bj

)

P
(
A = ai

)
P
(
B = bi

)

(2)VS =
1

|S|
∑

x∈S
I(x, y) and WS =

1

|S|2
∑

x,z∈S
I(x, z)

5  Tool wear prediction using ANN

5.1  Selection of regressive ML model 

To inline estimate the wear states of the blanking as well 
as roll forming process a suitable regression model has to 
be selected. Therefore, various regression model types are 
trained based on their initial hyperparameter configuration. 
As reference input data, to compare the ability of the regres-
sive ML models, 12 features extracted by a PCA as well 
as 12 engineered features (see Section. 4) are fixed for the 
training procedure. During this selection step the accuracy 

Fig. 10  Importance of engineered features extracted from the force 
signal during blanking

Fig. 11  Importance of features extracted from the torque signal dur-
ing roll forming
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of each model is quantified by a five-fold cross validation 
which is 30 times repeated to statistically secure the esti-
mation results. Since there are many different model types 
for regression tasks the most common one based on the 
regression learner toolbox of the software MATLAB 2021b 
are chosen. These include eight models trained with their 
initial parameter configuration considering linear regres-
sion (LR), quadratic regression (QR), linear SVR (lSVR), 
quadratic SVR (qSVR), cubic SVR (cSVR), RF, GPR and a 
simple one-layer neuronal network (NN1). Figure 12a shows 
the performance of each model estimating the wear state 
of the blanking tool quantified by the RMSE of the cut-
ting edge radii based on PCA features as well as engineered 
features. For the blanking process, the one-layer neural net-
works (NN1) delivers the best results on average. However, 
it should be noted that a higher model complexity does not 
necessarily correspond with an improved performance. For 
example, the cSVR with a high polynomial kernel function 
tends to overfit starting at a degree of three, while the qSVR 
delivers the best results, especially when using engineered 
features. In general, regressive ML model trained with engi-
neered features tend to show a better performance than the 
models trained with model-based features. This is mainly 
due to the fact that the force signal of the blanking process 
shown in Fig. 6 is closely linked to the physics of the form-
ing procedure.  Thus, wear-induced increasing of the cut-
ting edge radii supposes hydrostatic stress in the forming 
zone, resulting in an extension of the plastic deformation 
phase. As a result, the rupture of the material is shifted to 
a later point in time and the length of the punch-phase and 
thus the work performed in the punch-phase increases. As 
Fig. 8 shows, a higher frictional length also causes the abso-
lute maximum force and the work done in the push- und 
withdraw phases to increase. Thus, the engineered features 
strongly depend on the current wear state of the blanking 
process, which strengthens the model performance achieved 
by these feature type. One exception is given for of the RF 
in combination with PCA features which provide the best 
model performance. The suitability of the RF is probably 
due to the simple structure of the algorithm, which is com-
posed of uncorrelated decision trees. Since the RF shows 
worse model performance when using the PCA features 
and only provides a single hyperparameter (depth of the 
tree structure) to be optimized, ANNs are recommended as 
suitable regressive ML type.

Figure 12b shows the performance of each model estimat-
ing the wear state of the roller quantified by the RMSE of 
the edge radii based on PCA features as well as engineered 
features. In contrast to the blanking process, all model types 
show better results if they are trained with the PCA features. 
This is due to the constant signal of the torque, which merely 
changes even under significant fluctuating process condi-
tions. While each phase of the blanking process has its own 

characteristic in the force signal, the torque signal slightly 
varies around a constant mean (see Fig. 7). In this context, 
model-based extraction algorithms like PCA are able to 
detect even slight changes in a given signal and using them 
for modelling. Similar to the blanking process the one-layer 
neural network (NN1) delivers the best results on average.

After the selection of the ANN as suitable regressive ML 
model type, its hyperparameter are optimized. Therefore, a 
Bayesian optimization with 30 iterations is conducted. Using 
the structure of ANN, the number of layers of the network 
and the number of neurons per layer are varied. To avoid the 
problem of overfitting during the training procedure of the 
ANN the regularization strength � is optimized. It prevents 
the network to memorize the training data and helps to gen-
eralize the ANN to unseen test data. A constant activation 
function of the network (rectified linear unit activation func-
tion) is determined. The structure of the ANN, the hyperpa-
rameter to be varied as well as their range and the achievable 
performance of the optimized ANN is shown in Table 3. By 
optimizing the ANN, estimation of the cutting edge radii rB

i
 

during blanking is improved by 1.426 µm using the PCA 
features and by 1.784 µm using the engineered features. In 
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Fig. 12  Model performance quantified by the RMSE for estimating 
the edge radii based on an initial parameter configuration for blanking 
(a) and the roll forming (b) using engineered features as well as PCA 
features as input data
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roll forming, estimation of the roll edge radii rR
i
 is improved 

by 0.585 mm using the PCA features and by 0.013 mm using 
the engineered features.

5.2  Results for predicting the wear state based 
on PCA features and engineered features

After the ANN is optimized its final performance to estimate 
the edge radii for both process is quantified by the RMSE. To 
confirm the certainty of these statistical parameters within 
a confidence interval of 99%, the ANN is trained 30 times. 
The resulting confidence interval is calculated based on a 
one-sample t test and a Student’s t-distribution.

Consequently, the estimated edge radii are located within 
an interval around the mean estimated value of the model 
with a probability of 99%. Table 4 summarizes the results of 
the estimated edge radii for the the blanking and roll form-
ing process using engineered and model-based features as 
input for the ANN.

For roll forming it is obvious, that the PCA features 
provide better results than the engineered features. This 
is mainly due to the fact that the engineered features react 
sensitively to small variations of the algorithmically deter-
mined characteristic points in the torque signal. Thereby, the 
cyclostationary torque signal shows hardly any characteris-
tic variation and fluctuates around a quasi-stationary mean. 
A change in the physical state of the roll forming process 
causes only a minimal change in the torque signal. In con-
trast, PCA features are able to detect even small fluctuations 
in the cyclostationary torque signal when the process state 
changes. Besides removing redundant data and ignoring 

small changes in the background of the data (e. g noise), 
the PCA maximizes the variance of the signal. This means 
that even these small fluctuations resulting from physical 
changes in the process are detected and amplified, while 
noise or a bias is automatically removed. Since the engi-
neered features are redundant using multiple of them would 
not provide any further information for the ANN model. In 
this context, the model performance of the ANN for the roll 
forming process using engineered features reaches a RSME 
of 271.313 ± 14.929 µm, but the best estimation quality is 
provided by the PCA features with 22.901 ± 1.825 µm. In 
contrast, the characteristic profile of the blanking force ena-
bles the determination of features in different phases, which 
correlate directly with the physical properties of the process. 
Thus, the engineered features combined with the optimized 
ANN are able to estimate the cutting edge radii of the punch 
with an 1.696 ± 0.247 µm and the PCA features combined 
with this model only provide an estimation quality of 2.141 
± 0.601 µm.

5.3  Results for predicting the wear state based 
on combined features

Since both features types are suitable for an inline estimation 
of abrasive wear states in forming processes, their combina-
tion can improve the ML model performance. For this pur-
pose, it is necessary to perform a feature selection. There-
fore, in this study a wrapper method in feedforward selection 
mode is used. Wrapper methods analyses the performance 
of the ML model when a certain subset of features is chosen 
[70]. Afterwards, the feature subset that leads to the highest 
performance of the ML model is selected. The application 
of wrapper methods is an iterative process in which differ-
ent compositions of features are fed to model. The wrapper 
algorithm in this study selects a subset of features from the 
combined feature matrix fCOM∈ ℝ

m×24 where the number 
of 24 feature is composed of 12 model-based features from 
the PCA and 12 engineered features. The procedure starts 
with a zero model which selects a single feature that mini-
mize the loss of the ANN. Afterwards, a second feature is 
added while the first feature is fixed. Again, the algorithm 
tries to minimize the loss of the ANN. This procedure will 
be repeated until 12 feature are selected. Table 5 show the 
results for the optimized feature subset and the improvement 
while using a single feature type. It is shown that for both 
processes an improvement of the model quality is achieved. 

Table 3  Results of the hyperparameter optimization for the ANN

Model parameter Blanking Roll forming

Number of layers 3 3
Neurons layer 1 102 99
Neurons layer 2 5 222
Neurons layer 3 238 298
Regularization strength � 6.162 ∙ 10–5 1.483 ∙ 10–5
Engineered features—improve-

ment to initial configuration Δ 
RMSE [µm]

1.784 12.951

PCA features – improvement to 
initial configuration Δ RMSE 
[µm]

1.426 585.044

Table 4  Model performance quantified by the RMSE to estimate the wear states using engineered feature as well as PCA features

Features process Blanking Roll forming

PCA Engineered PCA Engineered

RMSE [µm] 2.141 ± 0.601 1.696 ± 0.147 22.901 ± 1.825 217.313 ± 14.629
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The RMSE reduced by 0.864 µm during blanking and by 
0.691 µm during roll forming.

6  Conclusions and future work

The results in this study show that a regressive ML model 
is able to inline estimate abrasive wear states on sheet metal 
forming tools. Two sheet metal forming processes, blanking 
and roll forming, are investigated. Although the time series 
characteristics of the two processes are substantially differ-
ent, good results are obtained in estimating the cutting edge 
radii and the roll edge radii on the forming tools taking into 
account the systematic procedure of the KDT-EA. Based on 
this procedure model, the acquired time series (blanking-
force and roll forming-torque) are preprocessed and two dif-
ferent feature types are extracted. Thereby, from each time 
series 12 model-based PCA features and 12 engineered 
features are extracted. Whereas the PCA features combined 
with the optimized ANN are able to estimate the wear 
state with a RMSE of 2.141 ± 0.601 µm for blanking and 
22.901 ± 1.825 µm for roll forming, the engineered features 
estimate the wear state with a RMSE of 1.696 ± 0.147 µm 
during blanking and 217.313 ± 14.629 µm during roll form-
ing. Next to the optimization procedure of the ANN as well 
as artificially expending the data set by data augmentation 
techniques (SMOTE), an optimal selected feature subset out 
of combined feature matrix fCOM improves the estimation 
quality for blanking up to 0.832 ± 0.258 µm for roll forming 
up to 22.214 ± 1.765 µm for roll forming. In addition to good 
quality of estimation the study shows that the KDT-EA is 
suitable for inline detecting abrasive wear states on sheet 
metal forming tools. This offers a systematic procedure to 
implement and transfer ML models to industrial condition 
monitoring applications regardless of the sensorial acquired 
data characteristics but considering technical boundary con-
ditions of manufacturing processes. Especially the step of an 
automatically transformation (feature extraction and feature 

selection) combined with the model optimization increase 
the overall ML model performance and supports companies 
who are inexperienced in the field of ML with the selection 
and implementation via the systematic procedure.
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Table 5  Model performance 
quantified by the statistical 
parameter to predict the wear 
states using a combination of 
engineered feature as well as 
features extracted by a PCA

combined features Blanking Roll forming
f1 , f3 , f11 , f5 , Wpunch , Fpunch,max , Fpush,mean , Fpush,std , 
Fpush,max , Fwith,mean , Fwith,std , Fwith,max,

f2, f3 , f4, f5, f6, f7, f9
, f10, f11 , kurtosis and 
variance

RMSE [µm] 0.832 ± 0.258 22.214 ± 1.765
Improvement to optimized 

model [µm]
0.864 0.691
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