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Abstract
This contribution picks up on a novel approach for a first order homogenization procedure based on the Irving-Kirkwood
theory and provides a finite element implementation as well as applications to beam and plate structures. It does not have
the fundamental problems of dependency from representative volume element (RVE) size in determining the shear and
torsional stiffness for beams and plates, that is present in classic Hill-Mandel methods. Due to the possibility of using minimal
boundary conditions whilst simultaneously reusing existing homogenization algorithms, creation of models and numerical
implementation are much more straight forward. The presented theory and FE formulation are limited to materially and
geometrically linear problems. The approach to determining shear stiffness is based on the assumption of a quadratic shear
stress distribution over the height (and width in case of the beam), which causes warping of the cross-section under transverse
shear loading. Results for the homogenization scheme are shown for various beam and plate configurations and compared to
values from well known analytical solutions or computed full scale models.

Keywords Multiscale simulation of beam and plate systems · FE2 · Boundary conditions on the RVE · Irving-Kirkwood
theory · Standard nodal degrees of freedom

1 Introduction

When modeling large structures, there are two main con-
cepts to reduce model complexity and with it computational
costs. One is the use of beam, plate and shell elements, if
the geometric prerequisites are met by the structure of inter-
est. The other is a multiscale approach, that uses two layers
of models - a macro level with a coarse mesh, in which the
structure is assumed to be at least partwise homogeneous and
a micro/meso level that accounts for inhomogeneities. The
micro/meso scale serves the purpose of generating a mate-
rial law for every point of the macro scale by arguments
of separation of scales and homogenization. We use the term
micro/meso scale as for beams and plates the lengths of inho-
mogeneties can be of the same order of magnitude as the
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lengths of the cross-sections. Therefore, the cross-section is
modeled in full length in the micro/meso scale which makes
it more of a meso than a micro scale for beams and plates.
For more details, see Sect. 4.2.2.

For a maximum reduction of computational costs, it is
desirable to use both techniques at the same time. Using the
well established Hill-Mandel FE2 methods, see e.g. [1,2],
for multiscale modeling in combination with structural ele-
ments such as beams, plates and shells, leads to significant
challenges, see e.g. [3–7]. Solutions for these difficulties have
only recently been introduced for shells in [8,9] and for beams
in [7]. In [8] a higher order homogenization scheme was
introduced for shells with shear soft kinematics and success-
fully tested on complex structures. However, the authors did
not provide any benchmark results for well known proper-
ties of homogeneous structures. In [9] a classic Hill-Mandel
FE2 approach was considered for shells, but lead to trans-
verse shear stiffness parameters, that were dependent on the
size of the RVE, as was shown in [10]. In [7] the classic
Hill-Mandel FE2 approach was applied to shear soft beams
and additional inner constraintswere introduced via interface
elements on the micro/meso level. This method leads to well
established cross-sectional values for linear elastic bench-
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mark tests and shows results in accordance with full scale
models for complex structures with nonlinear geometry and
materials. However, the method relies on interface elements
for additional constraints and periodic boundary conditions
on themicro/meso scale.Both are not easy to use in a practical
sense as they have special requirements regarding meshing
of the structure. They need to be taken into consideration by
the user and are not easy to meet, depending on the nature of
the modeled structure.

The aim of this contribution is to show a homogenization
scheme for shear soft structures such as beams and plates,
that is not based on the Hill-Mandel condition. Instead, it
uses the more recently developed homogenization scheme
based on the Irving-Kirkwood theory, that was presented in
[11,12]. This approach does not need any interface elements
when applied to shear soft beams or plates and has no a-
priori requirements concerning boundary conditions, as the
micro/meso scale is no longer loadedvia boundary conditions
but rather via an additional, global constraint that links strains
between macro and micro/meso scale.

Main properties of the presented multiscale approach for
beams and plates are:

• The macro structure is modeled with a shear soft kine-
matic as Timoshenko beam and Reissner-Mindlin plate.
Therefore, basic elements with six degrees of freedom
for spatial beams and five degrees of freedom for plates,
including membrane deformation, are used.

• Onmacro andmicro/meso level all strains are assumed to
be small. A linear geometry and linear elastic materials
are considered.

• RVEs on the micro/meso scale are modeled in three
dimensions and allow the modeling of arbitrary inho-
mogenieties.

• Results for homogenized properties are independent of
the RVE’s length without any further adjustments.

• Benchmark tests show perfect accordance with well-
known values, except for shear correction factors in more
complex geometry. The latter still show good estimates
and reasons for their deviation are identified and dis-
cussed.

• Inhomogenieties in beam axis direction and reference
surface directions are considered and reactions of the
macro structure show good accordance with full scale
reference solutions.

2 Beam and plate theory

We limit the theory to small strains and thus linear geom-
etry. Furthermore, we make the following assumptions and
simplifications for beams and plates:

beams:

• prismatic with straight, untwisted reference axis,
• reference axis through centroids of cross-sections,
• cross-sections are doubly symmetric,
• no warping of cross-sections,
• stresses Sxx , Sxy, Sxz are small and can be neglected.

plates:

• reference surface is plane and the mid surface,
• inextensibility in thickness direction
• no warping of cross-sections,
• in-plane strains of reference surface are included,
• thickness normal stresses Szz are small and can be
neglected.

We denote the linear strain tensor by ε̂. To avoid confusion
with beamandplate strains, denoted byεB andεP,we rename
its Voigt’s notation with respect to a cartesian base system
{ex , ey, ez} to EV = εV = [Exx , Eyy, Ezz, 2Exy, 2Exz,

2Eyz]T = [ε̂xx , ε̂yy, ε̂zz, 2ε̂xy, 2ε̂xz, 2ε̂yz]T.
For a beam, the relevant parts are denoted by EB =

[Exx , 2Exz, 2Eyz]T and for a plate by EP = [Exx , Eyy,

2Exy, 2Exz, 2Eyz]T.
Analogous to the strains, the stress tensor is denoted

by σ̂ and its Voigt’s notation renamed to SV = σV =
[Sxx , Syy, Szz, Sxy, Sxz, Syz]T = [σ̂xx , σ̂yy, σ̂zz, σ̂xy, σ̂xz,

σ̂yz]T to avoid confusion with beam and plate stress resul-
tants, denoted by σB and σ P. Relevant parts of the stresses for
beams are denoted by SB = [Sxx , Sxy, Sxz]T and for plates
by SP = [Sxx , Syy, Sxy, Sxz, Syz]T.

2.1 Kinematics

LetB0 be the body of interest (beam or plate) and {ex , ey, ez}
an orthonormal base system. For a beam, the base system is
chosen in a way that ex aligns with the undeformed beam
axis. For a plate, ex and ey span the plane of the undeformed
reference surface.

In accordance with the Timoshenko beam theory, dis-
placements ū = [ūx , ū y, ūz]T of any point in the beam with
coordinates x = [x, y, z]T are given with respect to the dis-
placements and rotations uB = [ux , uy, uz, βx , βy, βz]T of
the reference axis as

ūx (x, y, z) = ux (x) + z βy(x) − y βz(x)

ū y(x, y, z) = uy(x) − z βx (x)

ūz(x, y, z) = uz(x) + y βx (x). (1)
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Fig. 1 Kinematics of a spatial beam

Then the relevant strains are given with (·)′ = d(·)
dx as

Exx = ūx,x = u′
x + z β ′

y − y β ′
z

2Exy = ūx,y + ū y,x = −βz + u′
y − z β ′

x

2Exz = ūx,z + ūz,x = βy + u′
z + y β ′

x . (2)

The six independent beam strains εB = [εx , γxy, γxz, κx , κy,
κz]TB are defined and connected to the relevant strains:

EB =
⎡
⎣

Exx

2Exy

2Exz

⎤
⎦ =

⎡
⎣
1 0 0 0 z −y
0 1 0 −z 0 0
0 0 1 y 0 0

⎤
⎦

︸ ︷︷ ︸
AB

⎡
⎢⎢⎢⎢⎢⎢⎣

εx
γxy
γxz
κx
κy
κz

⎤
⎥⎥⎥⎥⎥⎥⎦
B

EB = AB εB , (3)

εB =

⎡
⎢⎢⎢⎢⎢⎢⎣

εx
γxy
γxz
κx
κy
κz

⎤
⎥⎥⎥⎥⎥⎥⎦
B

=

⎡
⎢⎢⎢⎢⎢⎢⎣

u′
x

u′
y − βz

u′
z + βy

β ′
x

β ′
y

β ′
z

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

For plates, a Reissner-Mindlin kinematic is used. The dis-
placements and rotations of the reference surface are given
by uP = [ux , uy, uz, βx , βy]T. The displacements ū =

[ūx , ū y, ūz]T of any point within the plate with coordinates
x = [x, y, z]T are then given by

ūx = ux (x, y) + z βx (x, y)

ū y = uy(x, y) + z βy(x, y)

ūz = uz(x, y) . (5)

The relevant strains are

Exx = ūx,x = ux,x + z βx,x

Eyy = ū y,y = uy,y + z βy,y

2Exy = ūx,y + ū y,x = ux,y + z βx,y + uy,x + z βy,x

2Exz = ūx,z + ūz,x = βx + uz,x

2Eyz = ū y,z + ūz,y = βy + uz,y . (6)

The eight plate strains εP = [εx , εy, γxy, κx , κy, κxy, γxz,
γyz]TP are defined and connected to the relevant strains:

EP =

⎡
⎢⎢⎢⎢⎣

Exx

Eyy

2Exy

2Exz

2Eyz

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 z 0 0 0 0
0 1 0 0 z 0 0 0
0 0 1 0 0 z 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
AP

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εx
εy
γxy
κx
κy
κxy
γxz
γyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
P

(7)

εP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εx
εy
γxy
κx
κy
κxy
γxz
γyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
P

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux,x
uy,y

ux,y + uy,x

βx,x

βy,y

βx,y + βy,x

βx + uz,x
βy + uz,y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

We solely include the in-plane strains of the plate to showcase
the potential of the presented theory for extension to shell
structures. The in-plane parts are not an area of focus in
this contribution, but it can be shown that the corresponding

Fig. 2 Kinematics and stress resultants of a plate
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entries in the homogenized stiffness matrix are computed as
the analytical values for a homogeneous material [13].

2.2 Constitutive equations for the stress resultants

Thebeamstress resultants are normal and transverse forces as
well as torsional and bending moments, which are arranged
in a vector

σB(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

N
Qy

Qz

Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎦

=
∫

A

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 −z y
z 0 0

−y 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
Sxx
Sxy
Sxz

⎤
⎦ dA

σB(x) =
∫

A

AT
B SB dA . (9)

Here, A denotes the area of the beam cross-section.
A linear elastic isotropic material model is used to com-

pute the stresses

SB =
⎡
⎣
Sxx
Sxy
Sxz

⎤
⎦ =

⎡
⎣
E 0 0
0 G 0
0 0 G

⎤
⎦

︸ ︷︷ ︸
CB

⎡
⎣

Exx

2Exy

2Exz

⎤
⎦ = CB EB . (10)

Where E and G = E/[2(1 + ν)] denote Young’s and shear
modulus, respectively, and ν the Poisson’s ratio.

Introducing (10) into (9) yields

σB =
∫

A

AT
BCBAB dA εB = DB εB . (11)

The material matrix DB for the beam is modified to

DB =

⎡
⎢⎢⎢⎢⎢⎢⎣

E A 0 0 0 0 0
0 �yGA 0 0 0 0
0 0 �zGA 0 0 0
0 0 0 GIT 0 0
0 0 0 0 E Iy 0
0 0 0 0 0 E Iz

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

with shear correction factors �y and �z . They are introduced
to correct the overly stiff response to transverse shear loading.
The area moments of inertia are denoted by Iy and Iz while
IT denotes the torsional moment of inertia.

In an analogous way, stress resultants for a plate with
thickness h are defined as

σ P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nx
ny
nxy
mx

my

mxy

qx
qy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
h/2∫

−h/2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
z 0 0 0 0
0 z 0 0 0
0 0 z 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Sxx
Syy
Sxy
Sxz
Syz

⎤
⎥⎥⎥⎥⎦

dz

σ P =
h/2∫

−h/2

AT
P SP dz . (13)

Again, a linear elastic isotropic material model is used to
connect stresses and strains and then introduced into (13):

SP =

⎡
⎢⎢⎢⎢⎣

Sxx
Syy
Sxy
Sxz
Syz

⎤
⎥⎥⎥⎥⎦

= E

1 − ν2

⎡
⎢⎢⎢⎢⎣

1 ν 0 0 0
ν 1 0 0 0
0 0 1−ν

2 0 0
0 0 0 1−ν

2 0
0 0 0 0 1−ν

2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Exx

Eyy

2Exy

2Exz

2Eyz

⎤
⎥⎥⎥⎥⎦

SP = CPEP . (14)

σ P =
h/2∫

−h/2

AT
PCPAP dz εP = DP εP . (15)

The material matrix DP contains the entries

DP =
⎡
⎣
Dm 0 0
0 Db 0
0 0 Ds

⎤
⎦ (16)

where

Dm = Eh

1 − ν2

⎡
⎣
1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎦ ,

Db = Eh3

12(1 − ν2)

⎡
⎣
1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎦ ,

Ds = �
Eh

(1 − ν2)

[ 1−ν
2 0
0 1−ν

2

]
. (17)

Analogous to the beam, the shear part Ds is modified to
incorporate a shear correction factor � to correct the overly
stiff response to transverse shear loading.
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3 Multiscale framework

3.1 Basics

This section briefly describes the relevant parts of the find-
ings presented in [12]. There, a homogenization framework
for solid bodies was presented, that is based on the Irving-
Kirkwood theory (see [14]). It does not depend on any a priori
assumptions on boundary conditions or loading conditions of
the micro/meso scale, but only assumes volumetric averag-
ing between micro/meso and macro scale solely for basic
extensive mechanical quantities mass, linear momentum and
energy.

A bodyB is described in two scales. On a first, macro scale
it is assumed to be homogeneous. On a second, micro/meso
scale, a lot more details are incorporated, including inho-
mogeneities or a micro/meso structure with characteristic
lengths, that are small compared to those of the macro struc-
ture of the body. For details regarding size requirements
between macro and micro/meso scale and inhomogeniza-
tions, see for example [15–17].

The body B takes up the region 	 with boundary ∂	. Its
macro scale representation is described in an ortho-normal
base system {ey1 , ey2 , ey3}, its micro/meso scale representa-
tion accordingly in {ex1, ex2 , ex3}. A point within the body
can then be identified with its coordinates y and x in macro
and micro/meso scale, respectively.

With ρ the mass density, v the velocity of a material point,
t the boundary force vector on ∂	 and b the body force vec-
tor, the continuity equation for mass and the balance of linear
momentum can be formulated independently from each other
for the whole body in the macro scale and for a small subsec-
tion P with boundary ∂P of the micro/meso scale. Entities
of the macro scale are denoted by superscript (·)M, those of
the micro/meso scale with (·)m.

The continuity of mass then reads as

d

dt

∫

	

ρM dvM = 0 , (18)

d

dt

∫

P
ρm dvm = 0 (19)

and the balance of linear momentum as

d

dt

∫

	

ρM vM dvM =
∫

∂	

tM daM +
∫

	

bM dvM , (20)

d

dt

∫

P
ρm vm dvm =

∫

∂P
tm dam +

∫

P
bm dvm . (21)

To connect the entities of both scales, an averaging theorem
for mass density and linear momentum is introduced

ρM( y) = 1

vm

∫

P
ρm(x) dvm , (22)

ρM( y)vM( y) = 1

vm

∫

P
ρm(x) vm(x) dvm . (23)

For this averaging theorem, it is essential, that the subsection
P is a small surrounding area of the point y. It is in fact the
RVE corresponding to y.

The authors in [11] and [12] showed that this theorem
connects both scales in a consistent manner and that they
bring about averaging equations for the body force vector
and stress tensor, that can be described for the quasi-static
case as

bM = 1

vm

∫

P
bm dvm , (24)

σ̂
M = 1

vm

∫

P
σ̂
m dvm . (25)

For entities of the reference configuration, analogous homog-
enization equations can be derived.

3.2 Macro tomicro/meso transition

On macro level, the strong form of the boundary value prob-
lem is described by

Div
(
σ̂
M
)

+ bM = 0 in 	 (26)

uM = ū on ∂	u (27)

tM = t̄ on ∂	t . (28)

Where 	 with boundary ∂	 is the region occupied by the
body. σM is the stress tensor, bM denotes the body force
vector. The boundary ∂	 is divided into a part ∂	u with
given boundary displacements ū and a part ∂	t with given
boundary forces t̄ . The union of both parts makes up the full
boundary: ∂	 = ∂	u ∪ ∂	t .

Onmicro/meso level, the equilibrium equation for stresses
and body forces holds, but as mentioned before, there are no
a priori boundary conditions so far (apart from restraining
rigid body motions):

Div
(
σ̂
m)+ bm = 0 in P. (29)

In order to define a load on the micro/meso level consistent
with the macro level, a homogenization of the strain tensor
analogous to the homogenization Eqs. (22)-(25) is assumed
[12]:
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ε̂
M = 1

Vm

∫

P
ε̂
m dVm. (30)

Since the micro/meso region P corresponds to a single point
in themacro scale, themacro strains ε̂M are constant through-
out P . Therefore,

∫

P

(
ε̂
M − ε̂

m
)
dVm = 0 (31)

holds. This is essentially an additional constraint for the
micro/meso scale boundary value problem, that can be intro-
duced into the weak form of (29) in Voigt’s notation via
Lagrange parameters:

ḡ(u, δu,λV, δλV)

= g(u, δu) +
∫

P
δλT

V

(
EM
V − Em

V

)
dV

+
∫

P
λT
V

(
δEM

V − δEm
V

)
dV = 0 . (32)

Here, g(u, δu)denotes theweak formof (29) and δ(·)denotes
the variation of the quantity (·). A vector of Lagrange param-
eters λV ∈ R

6 is used to enforce (31). They clearly show to
be stresses.

We assume EM
V , Em

V and λV as unknown. Assuming EM
V

as an unknown quantity leads to a symmetric system matrix
in the finite element formulation and alsomakes it possible to
use already existing algorithms to generate the homogenized
entities later on.Thegivenvalues of EM

V will thenbeprovided
by means of boundary conditions.

Equation (32) shows the need for appropriate ansatz func-
tions forλV in order to fulfill the side conditions in aweighted
average instead of a point wise manner. A point wise fulfill-
ment of the side conditionwouldmeanauniformstrain across
all of P and simply lead to Voigt’s bound for homogenized
entitites, which does not account for the internal structure and
material distribution within P . In essence, the micro/meso
scale needs to allow for more complex deformation than the
macro scale to make the concept of homogenization worth-
while.

The completeweak form for themicro/meso scalewithout
boundary and body forces then reads

ḡ(u, δu,λV, δλV)

=
∫

P
δEm

V
T (SV − λV

)
dV +

∫

P
δλT

V

(
EM
V − Em

V

)
dV

+
∫

P
δEM

V
T

λV dV . (33)

4 Finite element formulation and
application to beams and plates

4.1 Required element formulations

A standard isoparametric, displacement-based finite element
formulation is invoked. We use the same basic scheme for
brick, plate and beam elements. The region 	, that is occu-
pied by the body of interest B, is approximated with a finite

number of elements 	e: 	 ≈ 	h =
numel⋃
e=1

	e. The super-

script h refers to the finite element approximation and numel
is the total number of elements.

Geometry, displacements and rotations, as well as virtual
quantities are interpolated with functions NK . We use linear
and quadratic functions NK (ξ) for beam elements, bilin-
ear/biquadratic NK (ξ, η) for plates and trilinear/triquadratic
NK (ξ, η, ζ ) for brick elements, where ξ , η, ζ are the coor-
dinates in parameter space with ξ, η, ζ ∈ [−1, 1]. The
interpolations then are

Xh =
nel∑
K=1

NK XK , xh =
nel∑
K=1

NK xK , (34)

uh =
nel∑
K=1

NK vK , δuh =
nel∑
I=1

NI δv I , (35)

εh = Luh =
nel∑
K=1

LNK vK =
nel∑
K=1

BK vK , (36)

δεh =
nel∑
I=1

B I δv I . (37)

Here, nel denotes the number of nodes per element and
L describes a differential operator that connects the dis-
placement vector to the strain vector. It is different for each
application (3D body/ plate/ beam). For a 3D body (brick
element) a displacement vector uV = [ux , uy, uz]T with
three translational degrees of freedom is used. The strains
are εV = EV and the corresponding differential operator
LV reads

εV =

⎡
⎢⎢⎢⎢⎢⎢⎣

Exx

Eyy

Ezz

2Exy

2Exz

2Eyz

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x 0 0
0 ∂y 0
0 0 ∂z
∂y ∂x 0
∂z 0 ∂x
0 ∂z ∂y

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
ux
uy

uz

⎤
⎦ = LVuV . (38)

For a beam, a displacement vector uB = [ux , uy, uz, βx , βy,

βz]T with three displacements and three rotations of the ref-
erence axis is used. The corresponding differential operator
reads
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εB =

⎡
⎢⎢⎢⎢⎢⎢⎣

εx
γxy
γxz
κx
κy
κz

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

u′
x

u′
y − βz

u′
z + βy

β ′
x

β ′
y

β ′
z

⎤
⎥⎥⎥⎥⎥⎥⎦

εB =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x 0 0 0 0 0
0 ∂x 0 0 0 −1
0 0 ∂x 0 1 0
0 0 0 ∂x 0 0
0 0 0 0 ∂x 0
0 0 0 0 0 ∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ux
uy

uz
βx

βy

βz

⎤
⎥⎥⎥⎥⎥⎥⎦

= LB uB . (39)

For a plate, a displacement vector uP = [ux , uy, uz, ϕx , ϕy]T
with three translations and two rotations of the reference sur-
face is used. The two rotations ϕx = −βy and ϕy = βx are
used for easier application of boundary conditions and read-
ability of results. The corresponding differential operator LP

reads

εP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εx
εy
γxy
κx
κy
κxy
γxz
γyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux,x
uy,y

ux,y + uy,x

βx,x

βy,y

βx,y + βy,x

βx + uz,x
βy + uz,y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

εP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x 0 0 0 0
0 ∂y 0 0 0
∂y ∂x 0 0 0
0 0 0 0 ∂x
0 0 0 −∂y 0
0 0 0 −∂x ∂y
0 0 ∂x 0 1
0 0 ∂y −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ux
uy

uz
ϕx

ϕy

⎤
⎥⎥⎥⎥⎦

= LP uP . (40)

The approximations (34)-(37) are inserted into theweak form
in vector notation on themacro scale. Omitting the subscripts
(·)V, (·)P and (·)B for a general representation, standard pro-
cedure leads to

g(uh, δuh) =
numel∑
e=1

δveT
(
keve + f e

)

g(uh, δuh) = δvT (Kv + F) = 0 . (41)

The quantities K , v and F are generated by assembling all
element quantities ke, ve, f e into one corresponding system
quantity each.

For beam and plate elements, a selectively reduced inte-
gration scheme is used to mitigate the effects of transverse
shear locking. One fewer Gauss point is used per element
dimension to integrate the shear parts of the element stiff-
ness matrix ke than is used for the other parts.

4.2 Elements onmicro/meso level

On micro/meso scale, 3D brick elements are used. For
approximation of displacement quantities and micro/meso
strains in the weak form (33), we use the method described
in Sect. 4.1. The approximation of Lagrange parameters is
dependent on the type of elements used on macro level as
they need to account for the relations between beam or plate
on macro level and 3D body on micro/meso level. We first
develop an implementation for use with 3D bodies on macro
level to show differences between the approaches presented
here and in [12]. We do not showcase any numerical exam-
ples for 3D bodies as this was already done there.

4.2.1 3D bodies

When brick elements are used on macro level to describe a
three dimensional body, macro and micro/meso scale both
use the same strains within their respective elements. There-
fore, the macro strain vector εMV = EM

V is directly available
for use in the weak form on micro/meso level (33) and none
of its entries are zero by definition. This means, an approxi-
mation for EM

V and λV with constant functions as in

EM
V
h = AV εMV , δEM

V
h = AV δεMV ,

λhV = ĀV λV , δλh
V = ĀV δλV (42)

with

AV = ĀV = diag{1, 1, 1, 1, 1, 1} (43)

is feasible. The assumption of constant Lagrange parameters
for the whole micro/meso model leads to a fulfillment of the
side condition (31) only in an averaged manner as desired
(see Sect. 3.2). Inserting those approximations together with
(34)-(37) into (33) leads to

ḡh =
numel∑
e=1

[
δve

T ( f ev + keve − Me
V λV

)

+ δλT
V

(
f eλ + T e

V εMV − Me
V
T

ve
)

+ δεMV
(
f eε + T e

V λV

)]
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where

Me
V =

⎡
⎢⎢⎢⎢⎢⎢⎣

Me
V1
...

Me
V I
...

Me
Vnel

⎤
⎥⎥⎥⎥⎥⎥⎦

, f ev =

⎡
⎢⎢⎢⎢⎢⎢⎣

f ev1
...

f ev I
...

f evnel

⎤
⎥⎥⎥⎥⎥⎥⎦

,

T e
V =

∫

Pe

Ā
T
VAV dV e ,

f eλ =
∫

Pe

Ā
T
V

(
EM
V − Em

V

)
dV e ,

f eε =
∫

Pe

AT
VλV dV e

with

Me
V I =

∫

Pe

BT
I ĀV dV e (44)

and

f ev I =
∫

Pe

BT
I

(
SV − λV

)
dV e .

Assembly of element quantities into system quantities leads
to

ḡh = δvT
(
Fv + Kv − MV λV

)

+ δλT
V

(
Fλ + TV εMV − MT

V v
)

+ δεMV
(
Fε + TV λV

) = 0 (45)

or

ḡh =
⎡
⎣

δv

δλV

δεMV

⎤
⎦
T⎛
⎝
⎡
⎣

K −MV 0
−MT

V 0 TV

0 TT
V 0

⎤
⎦
⎡
⎣

v

λV

εMV

⎤
⎦

+
⎡
⎣
Fv

Fλ

Fε

⎤
⎦
⎞
⎠ = 0. (46)

As mentioned before, the system matrix shows to be
symmetric.

The additional degrees of freedom for εMV and λV are
associated with additional global nodes, that are shared by
all elements on micro/meso level, see Fig. 3. Degrees of
freedom, that are used for storage of εMV i , are fixed at their
respective values.

Fig. 3 Some elements within an RVE with black element nodes (dis-
placement dof) and blue global nodes shared by all elements (εMV i and
λVi dofs). (Color figure online)

4.2.2 Beams

When using beam elements onmacro level, the macro strains
EM
V needed for the weak form on micro/meso level are not

directly accessible as those elements internally use the beam
strains εB. However, they can easily be converted by using
Eq. (4): EM

B = AB εMB . As there are only three strains in
EM
V , that are non-zero, a meaningful side condition can only

be invoked for those three. The following is introduced for a
consistent notation:

λV =

⎡
⎢⎢⎢⎢⎢⎢⎣

λxx

0
0

λxy

λxz

0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�B

⎡
⎣

λxx

λxy

λxz

⎤
⎦

︸ ︷︷ ︸
λ̄B

= �B λ̄B ,

Em
B = �T

B Em
V . (47)

This leads to an expression of the weak form in the micro/
meso scale as

ḡ(u, δu,λV, δλV) =
∫

P
δEm

V
T (SV − �Bλ̄B

)
dV

+
∫

P
δλ̄

T
B

(
AB εMB − �T

B Em
V

)
dV

+
∫

P
δεMB

T
AT
B λ̄B dV . (48)

In this representation, the Lagrange parameters are stresses.
This leads to some problems, that need to be addressed.
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Fig. 4 RVE for a beam: on top the reference axis with assigned cross-section, below a corresponding RVE

When using a 3D body on macro scale, the micro/meso
scale is viewed as a point of the continuum and a very
small surrounding with negligible lengths in all three dimen-
sions compared to the characteristic lengths of the macro
scale. This makes it possible to assume constant Lagrange
parameters (see Sect. 4.2.1), that represent an averaged stress
quantity. They describe the averaged reaction of the 3D body
to the imposed macro strains at that macro point with suffi-
cient information.

When using a beam on macro level, the argument of sep-
aration of scales only holds true for one dimension - the
direction of the beam axis. The cross-section of the beam
needs to be represented in full within the micro/meso scale
because there is no separation of length scales for the remain-
ing two dimensions (see Figure 4). This also means, that
there cannot be constant Lagrange parameters λi j associ-
ated with averaged stress entities, that accurately describe
the beam’s reactions to the imposed macro strains without
major information loss. For example, a beam experiencing
bending would react with a linear normal stress Sxx across its
width or height. An over the cross-section averaged normal
stress, and subsequently the corresponding Lagrange param-
eter, would be zero and all information on the beam’s reaction
would be lost. Therefore, the Lagrange parameters cannot be
assumed constant, but need appropriate global ansatz func-
tions with associated parameters to accurately describe the
beam’s reactions. The ansatz functions need to be global in

order to fulfill the side condition (31) only in an averaged
manner.

In the stress resultants, there is a quantity that is con-
stant for each cross-section and can easily be connected to
the stresses. Therefore, they are used as new parameters
and ansatz functions are built around them. Thus the vec-
tor λB = [λN , λQy , λQz , λMx , λMy , λMz ]T is introduced and
connected to the Lagrange parameters by

λ̄B = ĀB λB (49)

where

ĀB =

⎡
⎢⎢⎣

1 0 0 0 z −y

0 1 −
(

y
ymax

)2
0 −z 0 0

0 0 1 −
(

z
zmax

)2
y 0 0

⎤
⎥⎥⎦ . (50)

This leads to constant normal stresses for a normal force
and linear normal stresses for bending moments. A tor-
sional moment leads to shear stresses, that are proportional
to the distance from the beam axis. Torsional warping is not
accounted for. This limits the applicability of the proposed
theory to either warp-free cross-sections or problems, where
torsion is negligible.

Shear stresses caused by transverse forces are assumed
to be quadratic in an attempt to account for shear warping
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without giving up the Timoshenko theory on the macro level.
They are assumedquadratic as this is the easiest enhancement
from constant shear stresses and fulfills the stress boundary
condition for free boundaries. The effects of this assumption
are studied in Sect. 5.

The presented approximations are now introduced into
the weak form and analogous equations and quantities to
Sect. 4.2.1 are derived:

ḡ(u, δu,λ, δλ) =
∫

P
δEm

V
T (SV − �B ĀB λB

)
dV

+
∫

P
δλT

B Ā
T
B

(
AB εMB − �T

B Em
V

)
dV

+
∫

P
δεMB

T
AT
B ĀB λB dV , (51)

ḡh =
numel∑
e=1

[
δve

T( f ev + keve − Me
B λB

)

+ δλT
B

(
f eλ + T e

B εMB − Me
B
T
ve
)

+δεMB

(
f eε + T e

B
T

λB

)]
(52)

where

Me
B =

⎡
⎢⎢⎢⎢⎢⎢⎣

Me
B1
...

Me
B I
...

Me
Bnel

⎤
⎥⎥⎥⎥⎥⎥⎦

, f ev =

⎡
⎢⎢⎢⎢⎢⎢⎣

f ev1
...

f ev I
...

f evnel

⎤
⎥⎥⎥⎥⎥⎥⎦

,

T e
B =

∫

Pe

Ā
T
B AB dV e ,

f eλ =
∫

Pe

Ā
T
B

(
ABεMB − �T

B Em
V

)
dV e ,

f eε =
∫

Pe

AT
B λ̄B dV e

with

Me
B I =

∫

Pe

BT
I �B ĀB dV e

and

f ev I =
∫

Pe

BT
I

(
SV − λV

)
dV e .

Assembly of element quantities into system matrices leads
to the expression

ḡh =
⎡
⎣

δv

δλB

δεMB

⎤
⎦
T⎛
⎝
⎡
⎣

K −MB 0
−MT

B 0 TB

0 TT
B 0

⎤
⎦
⎡
⎣

v

λB

εMB

⎤
⎦+

⎡
⎣
Fv

Fλ

Fε

⎤
⎦
⎞
⎠

= 0 . (53)

4.2.3 Plates

Using plate elements on macro level leads to very similar
problems as using beam elements. Subsequently, analogous
strategies can be applied.

First, the plate strains are converted: EM
P = AP εMP . Sec-

ond, the number of Lagrange parameters is set according to
the number of non-zero strains and an analogous notation is
invoked:

λV =

⎡
⎢⎢⎢⎢⎢⎢⎣

λxx

λyy

0
λxy

λxz

λyz

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�P

⎡
⎢⎢⎢⎢⎣

λxx

λyy

λxy

λxz

λyz

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
λ̄P

= �Pλ̄P ,

Em
P = �T

P Em
V . (54)

In a third step, an ansatz for the Lagrange parameters is cho-
sen, that is based on the stress resultants and quadratic shear
stresses, such that λP ∈ R

8 with

λ̄P = ĀPλP (55)

where

ĀP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 z 0 0 0 0
0 1 0 0 z 0 0 0
0 0 1 0 0 z 0 0

0 0 0 0 0 0 1 −
(

z
zmax

)2
0

0 0 0 0 0 0 0 1 −
(

z
zmax

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (56)

Finally, the micro/meso problem can be described with same
equations as the beam by substituting quantities with sub-
script (·)B with respective quantities with subscript (·)P, see
Eqs. (51) - (53).

4.3 Consistent boundary deformations

Using the described theory and approximations and FE inter-
polations without any boundary conditions other than to
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restrict rigid body motions may lead to inconsistent bound-
ary displacements. This is due to the fact, that the additional
constraints and therefore the kinematic relations between
macro and micro/meso scale are only fulfilled in an aver-
aged manner, when implementing the Lagrange parameters
as described. As this average fulfillment includes the bound-
ary of the micro/meso scale, boundary displacements are
not subjected to any hard, point wise requirements, so they
deform as if they are free boundaries. But the micro/meso
model is essentially a subsection of the whole body and
therefore its boundaries are not free. They are interfaces to
the remainder of the body’s continuum, except for the outer
boundaries of the cross-section for the beam and the top and
bottom surfaces for the plate, which are real outer boundaries
and therefore free in their deformation.

These interfaces to the body’s continuum cannot undergo
arbitrary deformations if basic physics are to be respected.
Especially they cannot deform in a way, that would lead to
holes or interpenetrationwithin thewhole continuum.Rather,
they need to be periodic. Boundary deformations of oppos-
ing boundaries (if they are continuum interfaces) need to fit
together without any holes or interpenetration.

4.3.1 Displacement boundary conditions

The most obvious way to make opposing boundaries deform
periodically is to apply periodic or linear displacement
boundary conditions. The former are rather complicated to
implement and need special consideration when discretizing
the micro/meso problem, which contradicts the aim of an
easy to use, one for all homogenization scheme. This leads
to the consideration of linear displacement boundary condi-
tions (DBC). They are easily implemented and impose no
requirements on the used discretization.

For 3D bodies, DBC are applied onto the continuum inter-
face boundaries of the micro/meso scale using the following
expressions for the boundary displacements uR

uR =
⎡
⎣
Exx Exy Exz

Exy Eyy Eyz

Exz Eyz Ezz

⎤
⎦
M⎡
⎣
x
y
z

⎤
⎦

uR =
⎡
⎢⎣
x 0 0 1

2 y
1
2 z 0

0 y 0 1
2 x 0 1

2 z

0 0 z 0 1
2 x

1
2 y

⎤
⎥⎦

︸ ︷︷ ︸
RV

⎡
⎢⎢⎢⎢⎢⎢⎣

Exx

Eyy

Ezz

2Exy

2Exz

2Eyz

⎤
⎥⎥⎥⎥⎥⎥⎦

M

uR = RV EM
V . (57)

For beams, shear deformations are applied to uRx only and
the expression

uR =
⎡
⎣

εx + zκy − yκz γxy γxz
−zκx 0 0
yκx 0 0

⎤
⎦
M⎡
⎣
x
y
z

⎤
⎦

uR =
⎡
⎣
x y z 0 xz −xy
0 0 0 −xz 0 0
0 0 0 xy 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

εx
γxy
γxz
κx
κy
κz

⎤
⎥⎥⎥⎥⎥⎥⎦

M

(58)

arises. However, if DBC are applied like this to uRy and uRz ,
they lead to wrong results for the bending and extensional
stiffness, similar to the findings in [9]. As those boundary
conditions only apply torsional deformations and there are
no incompatible boundary deformations caused by torsional
loads because torsional warping is neglected, they can be
omitted. Accordingly, DBC are only applied to uRx :

uRx = [
x y z 0 xz −xy

]
︸ ︷︷ ︸

RB

⎡
⎢⎢⎢⎢⎢⎢⎣

εx
γxy
γxz
κx
κy
κz

⎤
⎥⎥⎥⎥⎥⎥⎦

M

= RB εMB . (59)

For plates, analogous arguments hold for applying DBC and
therefore only uRx and uRy are subject to prescribed boundary
displacements using

[
ux
uy

]R
=
[
x 0 1

2 y xz 0 1
2 yz z 0

0 y 1
2 x 0 yz 1

2 xz 0 z

]

︸ ︷︷ ︸
RP

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εx
εy
γxy
κx
κy
κxy
γxz
γyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M

[
ux
uy

]R
= RP εMP . (60)

4.3.2 Scaling of Lagrange parameters

A less obvious way to achieve consistent boundary deforma-
tions, but one without the need for boundary conditions, is
a slight modification of the ansatz for the Lagrange parame-
ters.However, it can only be applied if beamor plate elements
are used on the macro scale and special requirements for the
internal structure of the material are met.

If the body consists of a layered structure with each con-
sisting of a homogeneous material, the previously proposed
ansatz of overall constant λxx for a given εMx leads to non-
uniform strains across the layers, but constant normal stress
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Fig. 5 Effect of scaled Lagrange parameters; top: no scaling, bottom: with scaling according to local stiffness

Sxx in accordancewith constantλxx (see top rowof Figure 5).
If the ansatz is modified in a way, that the Lagrange param-
eter is not overall constant, but only constant within each
layer and the value dependent on the stiffness of the layer,
the strains would become uniform across all layers and thus
consistent boundary deformations would be achieved (see
bottom row of Figure 5).

This method can obviously only be applied if there is no
change of material along the direction of the beam axis or
within the directions of the reference surface of the plate.
Would there be such an inhomogeneity, there would then
be a jump in the normal stresses at the material interface,
that would violate the equilibrium conditions. For the same
reason it cannot be applied to 3D bodies.

In detail, the necessary modifications to the Lagrange
parameters affect only the ones related to stresses in beam
axis direction and the directions of the reference surface of
the plate. Those Lagrange parameters will be multiplied with
the associated entries of the material matrix C ∈ R

6×6 in
Voigt notation for a 3D continuum:

ĀB =

⎡
⎢⎢⎣

C11 0 0 0 C11z −C11y

0 1 −
(

y
ymax

)2
0 −z 0 0

0 0 1 −
(

z
zmax

)2
y 0 0

⎤
⎥⎥⎦ , (61)

ĀP =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 0 0 C11z 0 0 0 0
0 C22 0 0 C22z 0 0 0
0 0 C44 0 0 C44z 0 0

0 0 0 0 0 0 1 −
(

z
zmax

)2
0

0 0 0 0 0 0 0 1 −
(

z
zmax

)2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(62)

4.4 Micro/meso tomacro transition

In order to generate the homogenized quantities from the
solution of the micro/meso problem, we adapt the algorithm
presented in [9].

The overall discretized, coupled problem is described by
its weak form as in

gh(uM, δuM, um, δum,λ, δλ)

=
numel∑
e=1

(
δve

MT
keMve

M + f eM

+
NGP∑
i=1

1

�i
ḡi (umi , δumi ,λi , δλi )

)
. (63)

Here, �i denotes the averaging quantity dependent on the
macro problem (RVE volume for 3D body, RVE mid surface
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area for plate, RVE length for beam) and NGP denotes the
number of Gauss points per macro element. For every macro
Gauss point, there is one micro/meso problem described by
its weak form ḡi .

Using the FEdiscretization described previously and com-
bining all degrees of freedom, system matrices and load
vectors of each micro/meso problem together with �i into
new generalized entities v̂

m, K̂
m
and F̂

m
, the coupled prob-

lem is represented by

gh =
numel∑
e=1

⎡
⎢⎢⎢⎣

δvM

δv̂
m
1
...

δv̂
m
NGP

⎤
⎥⎥⎥⎦

eT
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

kM 0 · · · 0
0 K̂

m
1 · · · 0

...
...

. . .
...

0 0 · · · K̂m
NGP

⎤
⎥⎥⎥⎥⎦

e

×

⎡
⎢⎢⎢⎣

vM
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m
1
...

v̂
m
NGP
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e
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m
NGP
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⎥⎥⎥⎥⎦

e⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (64)

The element stiffness matrix keM and element load vector
f eM of the macro system are dependent on the solution of
the micro/meso problems. But the entities describing the
micro/meso problem are independent from each other, so
they can be solved independently in parallel computations.

The overall structure of the equation describing the
micro/meso problem is the same for 3D bodies, plates and
beams

1

�i
ḡi = 1

�i

⎡
⎣

δv

δλ

δεM

⎤
⎦
T

i

×
⎛
⎝
⎡
⎣

K −M 0
−MT 0 T
0 TT 0

⎤
⎦
i

⎡
⎣

v

λ

εM

⎤
⎦
i

+
⎡
⎣
Fv

Fλ

Fε

⎤
⎦
i

⎞
⎠ (65)

or with element representation:

1

�i
ḡi = 1

�i

numel∑
e=1

⎡
⎣

δve

δλ

δεM

⎤
⎦
T

i

×
⎛
⎝
⎡
⎣

ke −Me 0
−MeT 0 T e

0 T eT 0

⎤
⎦
i

⎡
⎣

ve

λ

εM

⎤
⎦
i

+
⎡
⎣
f ev
f eλ
f eε

⎤
⎦
i

⎞
⎠ .

(66)

For this representation, it is assumed, that all rigid body
motions are already restrained by boundary conditions and
all corresponding degrees of freedom are accounted for by
static condensation. This leads to K being regular.

In cases, where there are any additional displacement
boundary conditions, displacements ve can be split into a
part veR subjected to boundary conditions and a free part veF.
The latter can be connected to the overall displacement vector
v using the assembly matrix ae while veR can be connected to
the macro strains using the matrix R I according to Sect. 4.3:

ve =
[
vF
vR

]e
=
[

ae v

Re εM

]
(67)

and

δve =
[
δvF
δvR

]e
=
[

ae δv

Re δεM

]
, (68)

where

Re =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ1R1
...

δI R I
...

δnel Rnel

⎤
⎥⎥⎥⎥⎥⎥⎦

(69)

with

δI =
{
1 for boundary condition present on node I ,

0 else.

Inserting (68) into (66) and introducing corresponding splits
for ke, Me and f ev into

ke =
[
keFF keFR
keRF keRR

]
, Me =

[
Me

F
Me

R

]
,

f ev =
[
f evF
f evR

]
(70)

leads to

1
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. (71)

123



1180 Computational Mechanics (2022) 70:1167–1187

Combining the two εM and δεM rows and columns and
introducing

KFF =
numel∑
e=1

aeT keFF a
e ,

KRR =
numel∑
e=1

ReTkeRRR
e ,

KRF = KT
FR =

numel∑
e=1

ReTkeRF a
e ,

MF =
numel∑
e=1

aeTMe
F ,

MR =
numel∑
e=1

ReTMe
R ,

FF =
numel∑
e=1

aeT f eF ,

FR =
numel∑
e=1

ReT f eR ,

Fλ =
numel∑
e=1

f eλ ,

Fε =
numel∑
e=1

f eε

leads to

1

�i
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+
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FF
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⎥⎦
i

⎞
⎟⎠ . (72)

Lastly, unknown degrees of freedom for displacements and
Lagrange parameters are combined

v̄ =
[
v

λ

]
, δv̄ =

[
δv

δλ

]
(73)

and correspondingly

K̄FF =
[
KFF −MF

−MT
F 0

]
,

K̄FR =
[

KFR

T − MT
R

]
,

F̄F =
[
FF

Fλ

]
and F̄ε = Fε + FR (74)

are introduced, which then leads to

1

�i
ḡi = 1

�i

[
δv̄

δεM

]T

i

([
K̄FF K̄FR

K̄
T
FR KRR

]

i

[
v̄

εM

]

i

+
[
F̄F

F̄ε

]

i

)

= 0 . (75)

Using [δv̄T, δεM
T]i �= 0, static condensation is possible.

The unknown displacements and Lagrange parameters can
be obtained from the first row with

K̄FF v̄ + K̄FR εM + F̄F = 0

⇒ v̄ = −K̄
−1
FF

(
K̄FR εM + F̄F

)
. (76)

This can be inserted into the second row of (75) and the
homogenized entities can be obtained by comparing coeffi-
cients

δεMi
T
[
DMεM + σM

]
i

= 1

�i
δεMi

T
[(

KRR − K̄
T
FR K̄

−1
FF K̄FR

)
εM

+F̄ε − K̄
T
FR K̄

−1
FF F̄F

]
i
. (77)

The homogenized material matrix DM
i and the vector of

homogenized stresses or stress resultants σM
i at Gauss point

i in element e of the macro problem are given by

DM
i = 1

�i

(
KRR − K̄

T
FR K̄

−1
FF K̄FR

)
i

, (78)

σM
i = 1

�i

(
F̄ε − K̄

T
FR K̄

−1
FF F̄F

)
i

. (79)

5 Examples

The developed models are programmed in FEAP [18]. All
computations are done with FEAP, if not explicitly stated
otherwise.

In this section, we use abbreviations according to Table 1.
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Table 1 Used abbreviations in numerical examples

Abbreviation Meaning

p = [1, 2] order for the ansatz functions (1: linear, 2: quadratic).

DBC RVE uses formulation presented in this paper with linear displacement boundary conditions according to Sect. 4.3.1.

Scal RVE uses formulation presented in this paper with scaling of Lagrange parameters according to Sect. 4.3.2.

(·)norm, �(·)rel see Eq. (80)

Normalized values Wnorm and relative errors / relative
deviations �Wrel are computed by

Wnorm = Whom

Wref
, �Wrel = Wnorm − 1 . (80)

Here Whom denotes a value received from the presented
homogenization scheme andWref a reference value obtained
from literature results or a full scale model.

For beams, only plane macro problems are investigated
as torsional warping is neglected and all other deformations
can be linear superposed for the different directions, due to
the linear elastic material and linear geometry.

5.1 Influence of RVE length, boundary conditions
and order of ansatz functions

In contrast to classic Hill-Mandel homogenization scheme,
where torsional and shear stiffness of beams (and plates) are
dependent on boundary conditions and RVE length, if no fur-
ther adjustments are made (see [7,10]), the homogenization
scheme presented here does not show any such effects.

Solely the use of linear displacement boundary condi-
tions leads to expected boundary effects, because they stand
in opposition to the assumption of quadratic shear stresses
by using a quadratic ansatz funktion for the correspond-
ing Lagrange parameters. The influence of those boundary
effects decreases with increasing RVE length (see the fol-
lowing examples in this section).

In Sect. 5.2, results show that elements with quadratic
ansatz functions have much better convergence rates over
linear elements (see Fig. 6 and 7 ). Therefore, only quadratic
elements are used in all following examples.

5.2 Homogeneous, isotropic beamwith square
cross-section

A homogeneous isotropic beam with a square cross-section
is used as a benchmark to demonstrate basic functionality of
the proposed homogenization method.

We consider a square cross-section with a width of b =
h = 1 cm and a linear elastic, isotropic material with
E = 21 000 kN/cm2 and ν = 0.3. This leads to a reference
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DBC p = 1 Scal p = 1
DBC p = 2 Scal p = 2

Fig. 6 Convergence of homogenized bending stiffness for beam RVE
with length identical to height LRVE = h and homogeneous square
cross-section
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Fig. 7 Convergence of homogenized shear stiffness for beamRVEwith
length identical to height LRVE = h and homogeneous square cross-
section

material matrix DB = diag{D11, D22, D33, D44, D55, D66},
where

D11 = E A = 21 000 kN ,

D22 = D33 = �GA = � · 8 077 kN ,

D44 = GIP = G(Iy + Iz) = 1 346 kN cm2 ,

D55 = D66 = E I = 1 750 kN cm2 .

For the shear correction factor �, a lot of literature can be
found, e.g. [19–24], in which some depend on the value of ν,
but their deviation from ν = 0 is minimal for a square cross-
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Table 2 Results for beamRVEwith homogeneous square cross-section

Beam with square cross-section

DBC Scal

p = 1 p = 2 p = 1 p = 2

Di j;i �= j = 0 exact exact exact exact

E A exact exact exact exact

GIP exact exact exact exact

E I Fig. 6 exact Fig. 6 exact

�GA Fig. 7 and 8 Fig. 7

1 2 3 4 5 6 7 8
0.1

1

10

normed RVE length LRVE/HRVE [ - ]

Δ
(κ

G
A

) r
el

[%
]

DBC p = 2

Fig. 8 Relative error in homogenized shear stiffness for beam RVE
with homogeneous square cross-section and configuration DBC with
varied RVE length LRVE; element edge length of le = 0.25 HRVE

section and ν = 0.3. Therefore, we use the universal� = 5/6
as reference value. The proposed beam kinematics do not
account for torsional warping, which is why IP = Iy + Iz is
used for reference instead of IT .

Table 2 summarizes results obtained with the newly pro-
posed homogenization scheme.

The correct diagonal structure for DB is obtained. There
are no erroneous coupling terms. Extensional and torsional
stiffness are always exact. Bending stiffness is always exact
for quadratic elements and converges correctly with increas-
ing discretization if linear elements are used (Fig. 6).
The shear stiffness converges with increasing discretiza-
tion against the correct value (Fig. 7). Although there is a
boundary effect caused by application of DBC, its influence
decreases with increasing RVE length (Fig. 8). This is due
to the DBC hindering shear warping displacements near the
boundary. With larger RVE lengths this effect becomes neg-
ligible.

Comparison with results from our previously proposed
homogenization scheme [7], which is based on a classi-
cal Hill-Mandel approach, shows, that only the torsional
stiffness differs. The previous approach yielded the Saint-
Venant torsional stiffness GIT = 1 130 kN cm2 instead of
GIP = 1 346 kN cm2.

Fig. 9 Geometry of the layered
beam cross-section with overall
lengths
b = h = hC + 2hL = 1 cm

b

hL

hC

hL

y

z

5.3 Beamwith layered cross-section

As a more complex example, a layered cross-section with
geometry according to Fig. 9 is studied. The fraction ρC =
hC/h describes the ratio of core height hC to total height
h = hC + 2hL and is varied as well as the stiffness ratio
α = EC/EL ofYoung’smodulus EC of the core andYoung’s
modulus EL of the face layers. The Young’s modulus of the
face layers is fixed at EL = 1 000 kN/cm2 and Poisson’s ratio
for face layers and core is chosen as ν = 0.3.

5.3.1 Homogenized material matrix

Considering a typical use of such structures, focus lies in
studying results for extensional stiffness D11 = E A, bending
stiffness D55 = E I y and shear stiffness D33 = �zGA.

Analytical values for the considered stiffness parameters
Dii are given by

D11 = E A = ELb (αhC + 2hL)

D55 = E I y = ELb

(
α
h3C
12

+ 2

[
h3L
12

+ s2LhL

])

D33 = GASz = �zGLb (αhC + 2hL) . (81)

Here, sL = (hC + hL)/2 and �z can be computed according
to [25] with

�z = 4

9

T 2
1

T2T4
(82)

and

Ã = (1 − ρC )3

15

(
3ρ2

C + 9ρC + 8
)

,

T1 =
(
1 − ρ3

C

)
+ ρ3

C α ,

T2 = 1 − ρC

α
+ ρC ,

T3 =
(
1 − ρ2

C

)2 + 8

15
α2ρ4

C + 4

3
α ρ2

C

(
1 − ρ2

C

)
,

T4 = Ã α + ρCT3 . (83)

These analytical values are also achieved with our previ-
ous approach based on classical Hill-Mandel homogeniza-
tion presented in [7] and henceforth referred to as reference
values. Table 3 summarizes results of the computations.
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Table 3 Results for a beam with layered cross-section

Beam with layered cross-section

p = 2 DBC Scal

Di j;i �= j = 0 exact exact

E A exact exact

E I y exact exact

�z Fig. 13 Fig. 12
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Fig. 10 Comparison of numerical and analytical extensional stiffness
E A for beam with layered cross-section

Again, DB is computed correctly as diagonal matrix and
the values for E A and E I y are exactly the reference values
(Fig. 10 and 11 ). The boundary effect of the DBC config-
uration is stronger than for the homogeneous cross-section
and much higher RVE length and discretization are needed
for the deviation in �z between DBC and Scal configuration
to become negligible (Fig. 13). The DBC configuration is
therefore deemed to be not feasible for this example and all
further investigations aremadewithin the Scal configuration.

The computed shear correction factor �z shows to be near
the reference values for all considered combinations of ρC
and α but does not meet it exactly (Fig. 12). The relative
deviation between computed and reference value increases
with increasing core height and increasing stiffness ratio to
up to 16.6%. For a detailed study into the reason for this
deviation, see Sect. 5.3.2.

5.3.2 Multiscale model

In order to better understand the influence of the error in
shear stiffness, a macro problem of a clamped beam is con-
sidered (see Fig. 14). It is loaded with a concentrated load in
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Fig. 11 Comparison of numerical and analytical bending stiffness E Iy
for beam with layered cross-section
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Fig. 12 Comparison of numerical and analytical shear correction factor
�z for beam with layered cross-section
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Fig. 13 Relative deviation for shear correction factor �z between
configurations Scal and DBC for α = 0.1, ρC = 0.6 for vary-
ing RVE length; discretization with constant element length over
all computations
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10 cm 10 cm

Fz = 0.1 kN

w

x

Fig. 14 Clamped beamwith concentrated load Fz and vertical displace-
ment w

Table 4 Comparison of the maximum displacementw of the beam axis
between full scale reference model and FE2model for the layered beam

Vertical displacement w

α = 0.5, ρ = 0.5 α = 0.01, ρ = 0.8

Reference model 0.111 cm 0.445 cm

FE2 model 0.112 cm 0.509 cm

Relative deviation 0.9% 14.4%

its center. We study the maximum displacement w and the
stresses Sxx and Sxz for two exemplary configurations with
α = 0.5, ρC = 0.5 (I) and α = 0.01, ρC = 0.8 (II).

Considering symmetry of the system, only half of the
beam is simulated. The macro problem is discretized with
20 linear Timoshenko beam elements according to Sect. 4.1.
For the micro/meso problem 24 quadratic brick elements are
used per direction with eight elements over the height for
each layer. For reference, we use a full scale model with
quadratic brick elements and same discretization density as
for the micro/meso problem (15 360 brick elements overall).

Table 4 shows results for the displacementw of both mod-
els. The error in the displacement is slightly lower than, but
clearly increasing with, the error in shear stiffness.

Taking a look at stress distributions Sxx (z) and Sxz(z) at
x = 7.75 cm in Fig. 15 and 16 , the normal stresses show per-
fect accordance with the full scale model. The shear stresses
however show a significant deviation. While the RVE can
only show a quadratic shear stress distribution due to the
ansatz in Eqs. (50) and (61), the full scale model shows a
more complex distribution. For configuration (I), deviation
from a quadratic parabola is small, but for configuration (II) it
ismuchmore significant and hence the error in shear stiffness
is much larger.

5.4 Beamwith soft inclusions

Figure 18 shows the geometry of a beamwith soft inclusions,
that shall be studied in this section. Main material and inclu-
sions are again linear elastic, isotropic with Young’smodulus
E1 = 21 000 kN/cm2 and Poisson’s ratio ν1 = 0.3 for the
main material and E2 = 10kN/cm2, ν2 = 0 for the inclu-
sions.

−3 −2 −1 0 1 2 3

−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5

Normal stress Sxx [kN/cm2]

C
oo

rd
in

at
e

z
[c

m
]

α, ρC = 0.5, 0.5 α, ρC = 0.01, 0.8

Ref. Ref.
FE2 FE2

Fig. 15 Comparison of Sxx (z) at x = 7.75 cm between full scale /
reference model and FE2 model for the layered beam
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Fig. 16 Comparison of Sxz(z) at x = 7.75 cm between full scale /
reference model and FE2 model for the layered beam

As the beam is inhomogeneous in direction of the beam
axis, the RVE can only be modeled by means of the DBC
configuration instead of the Scal configuration. Considering
results from previous examples, a convergence study is con-
ducted considering RVE length and RVE discretization. This
shows aRVE consisting of three inclusions (LRVE = 60mm)
discretized with quadratic brick elements with edge length
le ≈ 0.9mm is sufficient. One inclusion is then discretized
with eight elements per direction and the main material
accordingly. The used RVE can be seen in Fig. 19.

As macro problem, a clamped beam is chosen (see
Fig. 17). The midpoint of the beam is displaced by w =
18mm and reaction forces are studied. For reference, a full
scale model with 27-node quadratic brick elements is used.
The full scale model is discretized with the same density
as the RVE (41 472 elements overall). The macro model of
the FE2 study is discretized with 16 linear beam elements
according to Sect. 4.1.
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180 mm 180 mm

w = 18mm

x
z

My
Fz

Fig. 17 Clamped beam with prescribed displacement w

Fig. 18 Geometry of beam with soft inclusions; width in y-direction:
8mm

Table 5 shows results for reaction force and reaction
moment. Both quantities show good accordance between full
scale and FE2 model with only 1.10 - 1.85% lower quanti-
ties in the FE2 model. As the inclusions lower reactions by
7.5% (Fz) and 6.6% (My) in comparison to a beam consist-
ing only of the main material, the FE2 model only slightly
overestimates the weakening effect caused by the inclusions.

5.5 Plate with inclusions

As examples for a homogeneous and a layered plate lead to
very similar results as the homogeneous and layered beam,
they are not discussed in detail. Instead, a more complex
example of a plate with periodically distributed cube shaped
inclusions is considered. The geometry of one such inclusion
and its surroundings are displayed in Fig. 20.

Table 5 Comparison of reaction force Fz and reaction moment My
between full scale / reference model and FE2 model for the beam with
soft inclusions

Reaction force and moment

Fz My

Reference model 37.22 kN 3 375 kNmm

FE2 model 36.81 kN 3 313 kNmm

Relative deviation −1.10% −1.85%

Fig. 20 Geometry of an inclusion within the plate

The matrix material of the plate is chosen as E1 =
21 000 kN/cm2 and ν1 = 0.3. The inclusion material is cho-
sen as E2 = 100 kN/cm2 and ν2 = 0.45. The plate has a
thickness of h = 50 cm, the distance between two inclusions
is 30 cm for both x- and y-direction.

Again, convergence studies considering RVE length and
discretization are carried out. They show a RVE length of
100 cm in both directions and an element edge length of
le ≈ 5.6 cm to be sufficient when using quadratic elements.
This means, one inclusion is discretized with three quadratic
elements per direction. The discretized RVE is displayed in
Fig. 22.

Fig. 19 RVE for the beam with
soft inclusions
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Fig. 21 Clamped plate under constant loading

For the macro problem, a clamped plate under constant
loading is studied (Fig. 21). Using symmetry arguments,
only a quarter of the plate is simulated. For reference, a full
scale model with quadratic brick elements is used, where
the load is applied on the upper surface of the plate. It is
computed in ABAQUS CAE 6.14 [26] with elements of type
3D20 (20-node brick element with quadratic ansatz func-
tions), because of memory issues in FEAP due to the size of
themodel. Convergence studies lead to a discretization of the
full scale model with 5.19 million degrees of freedom. The
macro model of the FE2 model is discretized with 50 linear
elements per direction (elements according to Sect. 4.1).

Results in Table 6 show good accordance between FE2
and full scale model and only minimal deviation of 0.27%
in the vertical displacement at themidpoint of the plate. Com-
parison with a homogeneous plate shows that the inclusions
cause a 1.0% increase of the vertical displacement in the ref-
erence models. The weakening effect is not as strong as for
the beam with inclusions, but still measurable and the FE2

Table 6 Comparison of vertical
displacement of the midpoint of
the plate with cube shaped
inclusions for full scale
reference model and FE2 model

Vertical displacement w

Reference model 56.57 cm

FE2 model 56.72 cm

Relative deviation 0.27%

model is able to display this effect in good accordance with
the reference model.

6 Conclusions

A first order homogenization scheme based on the Irving-
Kirkwood theory is presented and applied to shear soft beam
andplate structures. Themicro/meso scale is loaded via a side
condition, that enforces themacro scale strains to be the volu-
metric average of the micro/meso scale strains. No boundary
conditions are needed to enforce the macro deformations on
the micro/meso scale. Nontheless, minimal boundary con-
ditions must be applied to prevent rigid body motions and
additional ones can be applied for other purposes if nec-
essary, e.g. to incorporate boundary conditions in an RVE
located at the support of the macro structure.

The side condition and 3Dmodeling of the RVE allow for
broader capabilities than just simple cross-sectional mod-
eling within the Timoshenko or Reissner kinematic of the
macro scale. A simple extension to quadratic shear stresses
over the cross-section within the RVE leads to decent results

Fig. 22 RVE for plate with cube
shaped inclusions
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for shear correction factors, even for non-homogeneous
cross-sections.Macro quantities like reaction forces, reaction
moments, in-plane stresses and displacements show good
accordance between the proposed multiscale modeling and
full scale models.
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