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Abstract
Topology optimization of crash-related problems usually involves a huge number of design variables as well as nonlineari-
ties in geometry, material, and contact. The Equivalent Static Load (ESL) method provides an approach to solve such prob-
lems. This method has recently been extended under the name Difference-based Equivalent Static Load (DiESL) method 
to employ a set of Finite Element models, each describing the deformed geometry at an individual time step. Only sizing 
optimization problems were considered so far. In this paper, the DiESL method is extended to topology optimization utilizing 
a Solid Isotropic Material with Penalization approach (SIMP). The method is tested using an example of a rigid pole col-
liding with a simple beam, where the intrusion of the pole is minimized. The initial velocity of the pole is varied in order to 
examine the influence of inertia effects on the optimized structures. It is shown that the results differ significantly depending 
on the chosen initial velocity and, consequently, that they exhibit inertia effects. This cannot be seen in the results derived 
by the standard ESL method. Consequently, the results of the DiESL method’s show a considerable improvement compared 
to those of the standard ESL method.
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Abbreviations
DiESL	� Difference-based Equivalent Static Load
ESL	� Equivalent Static Load
FE	� Finite Element
HCA	� Hybrid Cellular Automata
LSMs	� Linear sub models
MMO	� Multi-Model-Optimization
SIMP	� Solid Isotropic Material with Penalization
SPC	� Single Point Constraint (i.e. prescribed 

displacements)

1  Introduction

Topology optimization strives to find the optimal distribu-
tion of material within a discretized design domain under 
specified load cases, constraints, and objectives (Bendsøe 

1989). For linear static response topology optimization, sev-
eral approaches are available, enabling an efficient appli-
cation during the design process in many fields of indus-
try. The most common methods are summarized below: 
the homogenization method (Bendsøe and Kikuchi 1988), 
which utilizes a material model corresponding to a periodic 
microstructure consisting of infinitely small square cells 
with rectangular holes. Through numerical homogenization, 
the macroscopic material properties of the micro cells can 
be obtained, depending on certain parameters describing the 
size and orientation of holes in the microcells. These param-
eters are then optimized to maximize the performance of the 
structure. The resulting multi-scale structures are often hard 
to interpret due to manufacturability problems, although 
advances in additive manufacturing technologies are push-
ing the boundaries nowadays. These difficulties do not arise 
if the Solid Isotropic Material with Penalization (SIMP) 
approach is applied, where the distribution of a homogenous 
isotropic material is optimized (Bendsøe 1989; Zhou and 
Rozvany 1991; Bendsøe and Sigmund 1999). Here, only 
one design variable per element is used—the normalized 
density—which is related to the element’s stiffness. This 
density-based approach is the most prominent, and many 
commercial codes such as MSC NASTRAN, Altair Opti-
Struct, or VRAND GENESIS are utilizing it. Furthermore, 
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approaches like Soft Kill Option (SKO) (Baumgartner et al. 
1992; Harzheim and Graf 2005), Evolutionary Structural 
Optimization (ESO) (Xie and Steven 1993; Huang et al. 
2010), the Phase Field method (Bourdin and Chambolle 
2003), and the Level Set method (Wang et al. 2003; Allaire 
et al. 2004) are to be mentioned. Unfortunately, none of 
these approaches is applicable directly when it comes to 
nonlinear dynamic response optimization like crashwor-
thiness optimization, where a transient problem including 
nonlinearities in geometry, material, and contact has to be 
solved. In this case, sensitivity information is either very 
expensive or not even available.

Nevertheless, efforts are made toward an applicable and 
efficient calculation of sensitivities for highly nonlinear 
problems: Weider et al. (2018, 2019) are computing the 
topological derivatives using adjoint sensitivity analysis 
considering nonlinearities in material and geometry. Ivars-
son et al. (2018) are employing the adjoint sensitivity analy-
sis involving a transient finite strain material model. The 
gradients are used to maximize the absorbed viscoplastic 
energy of structures subjected to impact. Both efforts have 
in common that an adjoint terminal value problem has to be 
solved, which needs to be integrated backwards in time after 
the original nonlinear dynamic problem has been analyzed. 
To decrease the computational effort of this procedure, usu-
ally implicit time integration schemes are utilized due to 
their capability of handling larger time steps. Furthermore, 
matrices like the factorized tangent stiffness can be stored 
during the analysis of the original problem and be reused 
during the backward integration to further decrease the com-
putational costs. However, this can be very storage demand-
ing especially for large-scale automotive models. The major 
drawback affects problems where multiple contacts are the 
dominant nonlinearity: Here, the time step size is limited to 
a small value even for implicit time integration schemes in 
order to resolve each contact. Additionally, implicit integra-
tion schemes may fail for complex contact problems such 
as crash. For this reason, explicit integration schemes are 
typically used for crash analysis in automotive industry. 
Thus, the usage of adjoint sensitivity analysis for nonlinear 
dynamic response optimization may be limited to problems 
in which contact has no major influence.

Alternative approaches circumventing the calculation 
of sensitivities comprise the following: The Graph and 
Heuristic-based Topology optimization (GHT) has been 
introduced to optimize the cross-section of profiles (Ort-
mann and Schumacher 2013) and has been extended by 
Beyer et al. (2020) to three-dimensional structures. Here, 
the topology of the structure is alternately changed accord-
ing to heuristic rules based on expert knowledge and then 
optimized in terms of size and shape. Furthermore, Patel 
(2009) introduced Hybrid Cellular Automata (HCA) to 
crashworthiness optimization. The main idea here is to 

find a topology with uniform internal strain energy at the 
final state by a heuristic update-approach. The normal-
ized density of each cell is updated as a function of the 
internal strain energy. Here, the internal strain energies are 
filtered by using a von Neumann neighborhood in the cel-
lular automata paradigm. The material properties of each 
element are related to the density by using an extended 
SIMP approach for elasto-plastic materials.

Another prominent approach to circumvent the sensi-
tivity problem is to define linear auxiliary load cases ena-
bling linear static response optimization. The nonlinear 
dynamic optimization problem then is split into an analysis 
domain where nonlinear dynamic analysis is performed 
and a design domain where a set of linear static response 
optimization subproblems is solved afterward. A well-
known method to compute such auxiliary load cases is 
the Equivalent Static Load (ESL) method. There are many 
examples for a successful application in sizing, shape, free 
sizing, and topology optimization (Choi and Park 2002; 
Park et al. 2005; Shin et al. 2007; Jeong et al. 2008; Kim 
and Park 2010; Park 2011; Lee et al. 2013, 2015; Lee and 
Park 2015; Choi et al. 2018; Karev et al. 2018). Neverthe-
less, the ESL method has some limitations and drawbacks. 
This can largely be attributed to the fact that the ESLs are 
always calculated based on the undeformed initial geom-
etry. To overcome this disadvantage, a difference-based 
approach—the DiESL method—has been introduced for 
sizing optimization (Triller et al. 2021). It has been shown 
that the DiESL method provides a significant increase in 
approximation quality of structural responses such as dis-
placements and strains from nonlinear dynamic problems 
while at the same time accelerating convergence. It was 
shown that the DiESL method succeeded in finding the 
optimum of a nonlinear problem where the ESL method 
failed. Furthermore, it has been shown how an appropriate 
selection of ESL times in each cycle can further increase 
the approximation quality of the DiESL method (Triller 
et al. 2022). Additionally, it has been demonstrated that 
local stiffness adaption could improve the result if the ele-
ments neither in the elastic nor in the plastic range are 
dominating the structure’s behavior. As a next step, the 
DiESL method is extended to topology optimization and is 
presented in this paper, which is structured in the follow-
ing way: In Sect. 2, the ESL and the DiESL methods are 
explained. Furthermore, all necessary extensions for topol-
ogy optimization are elaborated. In Sect. 3, the method 
is tested numerically using a simple beam structure sub-
jected to an impact, and results are compared to results 
of the ESL method. In order to examine the influence of 
inertia effects on the resulting structure, the initial veloc-
ity and mass of the impactor are varied. This includes a 
linear static load case representing zero impactor velocity. 
Finally, a conclusion and an outlook are worked out.
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2 � The DiESL (Difference‑based Equivalent 
Static Loads) method for topology 
optimization

The setup of the DiESL method is very similar to the ESL 
method introduced by Choi and Park (2002), which has been 
extended to nonlinear dynamic response topology optimi-
zation by Lee and Park (2015). The basic idea of the ESL 
method is to create linear auxiliary load cases for nonlinear 
dynamic response optimization problems, which are then 
used as approximation of the nonlinear system in optimiza-
tion. The user has to select nT time steps ti corresponding to 
the number of auxiliary load cases. For each linear auxiliary 
load case, so-called equivalent static loads � i

ESL
 are calcu-

lated in the linear static system by

Here, �(ti) is the solution of the nonlinear dynamic analy-
sis for the selected time steps ti

where � (t) , �NL, �NL, and �NL are the external dynamic 
force, the mass, the damping, and the stiffness matrix, 
respectively. Consequently, each equivalent static load � i

ESL
 

yields the same displacement vector �(ti) in linear statics as 
those obtained in the nonlinear dynamic system. In other 
words, the loads � i

ESL
 received are equivalent in the sense 

that they lead to same displacement fields.
The basic procedure is thus the following: in the analysis 

domain, the nonlinear system is simulated, and afterward, 
the system is optimized in the design domain (inner opti-
mization loop) based on linear static auxiliary load cases. 
Because the linear approximation is not perfect, this pro-
cedure is iterated (outer loop). Note that the displacements 
in the linear and nonlinear system are only identical at the 
beginning of each inner loop.

This approach is advantageous for many reasons: Firstly, 
the missing sensitivity problem for highly nonlinear prob-
lems is addressed. Secondly, well-developed commercial 
software systems can be used for analysis and optimization 

(1)�i�
(
ti
)
= � i

ESL
;i = 0, … , nT − 1.

(2)𝐌NL𝐮̈
(
ti
)
+ 𝐂NL𝐮̇

(
ti
)
+𝐊NL𝐮

(
ti
)
= 𝐟

(
ti
)

and no development of an own sensitivity analysis and opti-
mization algorithm is necessary.

The original nonlinear dynamic response optimization 
problem can be stated as

Here, f  , m , and nD are the objective function, the num-
ber of constraints gj , and the number of design variables 
xi , respectively. The latter has lower and upper bound xL

i
 

and xU
i

 , respectively. The displacement vector �T (�, t) is the 
solution of (1).

2.1 � Comparison of ESL and DiESL

The basic difference between ESL and DiESL is depicted in 
Fig. 1: consider the displacement path of an arbitrary node, 
i.e., its coordinates �(t) as obtained by a nonlinear dynamic 
simulation (Fig. 1, left). Results are given at discrete times 
t0,… , ti . The standard ESL method uses the undeformed 
geometry (i.e., at time t0 ) to assemble the stiffness matrix. 
The loads � i

ESL
 to derive the nodal displacements �(ti) are 

calculated using one subcase for each given time ti (Fig. 1, 
middle). Consequently, it falls short of following the given 
nonlinear displacement path (Fig. 1, left). In contrast, DiESL 
is designed to follow the nonlinear displacement path by 
splitting it into linear increments (Fig. 1, right) and by 
using linear submodels with the corresponding deformed 
geometry at each time ti . Consequently, the DiESL approach 
requires nT linear submodels, one for each time step ti , 
i = 0,… , nT − 1 . We call such a Linear Submodel at time ti 
LSMi in the following. The i th LSMi is defined by the coor-
dinates of all nodes at time step ti which can be combined 
in the vector 

(3a)min f (�, �(�, t))

(3b)s.t. gj(�, �(�, t)) ≤ 0; j = 1,… ,m

(3c)xL
i
≤ xi ≤ xU

i
; i = 1,… , nD.

(4)�T
(
ti
)
=
(
�T
1

(
ti
)
, �T

2

(
ti
)
,… , �T

nN

(
ti
))

Nonlinear
displacement
path of a node

. . .

DiESL path

. . .

ESL “path“

Fig. 1   Displacement path of an arbitrary node during the deformation of a structure (left) and the corresponding displacement �(ti) (middle) and 
Δ�

(
ti
)
 (right) used for the computation of the ESLs and DiESLs at time steps ti , respectively.
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containing the coordinates �j
(
ti
)
 of all nN nodes of the 

FE-model. Accordingly, �
(
t0
)
 describes the coordinates 

of all nodes of the undeformed model. All LSMi have the 
same mesh topology and they differ only in the coordi-
nates �(ti) . The coordinates of a linear submodel LSMi 
describing the deformed geometry at time ti can therefore 
be calculated by

where displacement field �(ti)

is the solution of (1) at time ti containing the displace-
ments of all nN nodes at time ti.

In contrast to ESL, which requires only a single FE-model 
representing the undeformed structure of the initial model 
with the coordinates �

(
t0
)
 , DiESL requires the computation 

of incremental equivalent static loads Δ� i
DiESL

 in each linear 
submodel LSMi,

where the linear statics stiffness matrix �i = �(�, �
(
ti
)
) 

depends on the design variables � and the nodal coordinates 
�
(
ti
)
 of LSMi . The incremental nonlinear displacements 

Δ�
(
ti
)
 leading from �

(
ti
)
 to �

(
ti+1

)
 are calculated by

For optimization, multimodel optimization (MMO) has to 
be applied where multiple FE-models are taken into account 
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− �
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simultaneously in one linear static response optimization 
run.

2.2 � DiESL procedure for topology optimization

The general procedure of the DiESL method for nonlinear 
dynamic responses optimization is the following (Fig. 2): 
First, a nonlinear dynamic analysis is performed and the dis-
placement fields �(ti) are obtained for all specified time steps 
ti , i = 1,… , nT . Based on the nonlinear displacement fields 
�(ti) or the deformed mesh coordinates �(ti) , the incremental 
displacements Δ�

(
ti
)
 can be calculated using (8).

In each LSMi , we then calculate the loads Δ� i
DiESL

 accord-
ing to Eq. (7). Using the incremental equivalent static loads 
Δ� i

DiESL
 , gradient-based linear static response multimodel 

optimization (inner loop) can now be performed. Since the 
linear auxiliary load cases are only an approximation of the 
nonlinear behavior of the system, the linear static and the 
nonlinear dynamic responses no longer match at the end 
of the inner loop. Consequently, nonlinear dynamic analy-
sis has to be applied again using the updated design vari-
ables. Then response differences to the previous cycle can 
be calculated. If the difference is too high, the process is 
iterated (outer loop) until the difference is small enough and 
additional termination criteria are fulfilled (Shin et al. 2007; 
Jeong et al. 2010; Kim and Park 2010; Park 2011; Lee and 
Park 2015).

The difference between the linear and nonlinear dynamic 
responses is expected to increase with the length of the inner 
loop optimization path, i.e., with the amount of design 
change. If this difference is too high, the update in the 
outer loop may result in significant changes in the search 
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Fig. 2   General optimization process of the DiESL method for nonlinear dynamic response optimization
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directions causing convergence to be slowed down or even 
unachievable. For this reason, commercial ESL codes, such 
as VRAND ESLDYNA, limit the number of iterations in 
the inner loop and offer the application of move limits to 
restrict the length of the optimization path in each cycle. For 
sizing and shape optimization, the transfer of the optimized 
design from design domain to analysis domain can be done 
without problems for both ESL and DiESL approach. This 
is not true for topology optimization employing the SIMP 
approach where the design variables are the normalized den-
sities of nE elements. Here, the resulting densities have to be 
interpreted after each optimization, and nonlinear dynamic 
analysis is executed using the interpreted model.

A detailed explanation of this interpretation process is 
given in the next section.

2.2.1 � Density interpretation

In contrast to sizing and shape optimization, topology opti-
mization generally does not provide a final optimized design 
but only a design proposal. Consequently, an interpretation 
of the proposal and a conversion into a detailed engineering 
component is always necessary. Whereas such conversion 
can be done manually after an ordinary linear static response 
topology optimization, an automatic procedure is required in 
each DiESL cycle for transforming the density-based design 
proposal into a nonlinear model. The easiest approach seems 
to be transferring the optimized density field �∗ resulting of 
the inner loop optimization directly to the analysis domain. 
However, it is well known that low-density elements with 
corresponding low stiffness may cause mesh distortion prob-
lems in the nonlinear model due to excessive deformations 
of these elements. This is a severe issue because it may ter-
minate the nonlinear simulation run and hence the entire 
optimization process.

The mesh distortion problem has been addressed by Lee 
and Park (2015) and others (Bai et al. 2019; Lu et al. 2021).
To prevent the problem, they generate a zero–one design 
after each linear static response optimization using a thresh-
old �vf . Densities equal or below �vf are interpreted as voids 
and all densities above are interpreted as solids. Lee and 
Park recommend to use the value of the volume fraction 
constraint for �vf . However, they also state that this proce-
dure “does not always work well” (Lee and Park 2015) and 
further research is required in order to find a technique to 
determine the threshold �vf.

We propose an alternative approach here: Only ele-
ments with densities smaller than a low threshold value �v 
are interpreted as voids and densities above a high thresh-
old �s are interpreted as solids. Void elements are deleted, 
solid elements are assigned to the original solid material. 
All remaining densities between �v and �s are carried over 

to the analysis domain as-is. This is done by introducing a 
transformation variable �i for each element i defined as

In the nonlinear model, we assign the density �i to ele-
ment i if 𝜒i > 0 whereas �i = 0 means that element i has to 
be deleted. In the following, we refer to the resulting non-
linear model as container model.1 Note that this works only 
if the meshes in the linear statics and nonlinear model are 
congruent. This is the case for the example presented in this 
publication. If the meshes are not congruent, then a mapping 
of the density values is required from one mesh to the other 
and (9) has to be applied to the mapped densities.

As a consequence, islands of unconnected elements may 
develop. They need to be identified and deleted automati-
cally since they do not contribute to the structure’s stiff-
ness. This is accomplished using the “connectivity” tool of 
the pre-processor ANSA, which groups interconnected ele-
ments. Islands of unconnected elements can then be distin-
guished from the main structure based on their low mass and 
can be deleted. The overall procedure is visualized in Fig. 3. 
Note that in Fig. 3, the borders of the deleted void elements 
are still shown for illustration purposes. In the nonlinear 
simulation model, all unconnected nodes are also deleted.

We propose to use �v=0.1 and �s=0.9. This ensures to 
keep continuity in material distribution from cycle to cycle 
and thus enables the topology to evolve in a smooth way. 
The continuity is seen as an advantage over the zero–one 
design approach as presented by Lee and Park (2015). It is 
beneficial especially in early stages of the DiESL procedure, 
after all densities have been initialized with a uniform value, 
and while a discrete structure has not evolved yet. In these 
early stages, the choice of one threshold �vf would be of 
major influence on the result of the subsequent nonlinear 
dynamic analysis. In the extreme case that the densities of all 
elements are smaller than �vf , all elements would be deleted. 
The other extreme case is that the densities of all elements 
are larger than �vf , thus no element would be deleted. These 
extreme cases show that generally either too many or too 

(9)𝜒i =

⎧
⎪⎨⎪⎩

0 if xi ≤ 𝜀v
xi if 𝜀v < xi ≤ 𝜀s
1 if xi > 𝜀s

; i = 1,… , nE.

1  The name refers to the approach’s implementation: For each mate-
rial that is referenced in the design space, a set of nc material con-
tainers is defined. Each container represents a density range of 
width Δ� = (�s − �v)∕nc such that the union of all containers spans 
the entire normalized density range from �v to �s . The actual den-
sity transformation is then realized by assigning each element in the 
design space to the material container associated with the respec-
tive normalized density. For testing this approach, nc = 200 has been 
used. The material distribution is therefore considered to be continu-
ous from �v to �s in the following.
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few elements are deleted, depending on the choice of �vf . 
Hence, the mass of the nonlinear dynamic model signifi-
cantly depends on �vf . In the approach presented here, inter-
mediate densities are transferred and the number of deleted 
elements is kept low by using a relatively small �v.

As in the design domain, the densities � of the nonlin-
ear dynamic simulation model need to be related to mate-
rial properties. We use an extended SIMP approach for the 
elasto-plastic properties of a piecewise linear plastic mate-
rial—the physical density, the Young’s modulus E , the yield 
stress �Y , and the strain hardening modulus H:

where E0 , �Y ,0 , and Hi,0 are the values of the respective origi-
nal solid material (Fig. 4). This approach is similar to the 
one used in (Patel 2007; Patel et al. 2009) with the difference 
that a common exponent pNL is used here. Note that pNL 
should not have the same value as in the SIMP approach 
of the linear statics model where we used a penalty expo-
nent ofp = 3 . Problems are to be expected in the nonlinear 
system for such a value because elements with 0 < 𝜒 < 0.4 
would obtain very low stiffnessE < 0.064E0 . This can cause 
mesh distortion problems in the analysis domain during 
simulation, as described above. In Fig. 5, these problems 
are exemplified using the SIMP penalty exponent pNL = 3 
in Eqs. (10). For areas with low densities, plasticized areas 
of excessive deformation and the so-called hedgehog effect 
can occur (Karev et al. 2018). The latter can be observed 
in impact zones, where individual nodes are flying away in 
the nonlinear dynamic simulation. This can be attributed to 
the high mass/stiffness ratio of elements with small densi-
ties. An element’s mass is proportional to its density, but 
according to Eq. (10a) its stiffness is proportional to the 
density raised to the powerpNL = 3 . Therefore, small density 

(10a)E(�) = �pNLE0

(10b)�Y (�) = �pNL�Y ,0

(10c)Hi(�) = �pNLHi,0

elements suffer from extremely small stiffness and may not 
be able to retain their nodes in place if they are located in the 
impact zone where they are subjected to high contact forces. 
According to Fig. 6, left, a threshold �v ≈ 0.4 would be nec-
essary for p = 3 in order to resolve this issue completely by 
deleting all affected elements. However, this would negate 
the benefits of using the container approach described above.

To circumvent this, the SIMP penalty exponent pNL used 
in the design domain is reduced in order to decrease the 
mass/stiffness ratio of elements with small densities. Using 
a penalty exponent pNL = 1 in the analysis domain prevents 
mesh distortion entirely. For this benefit, an inconsistency 
in stiffness between analysis and design domain is tolerated. 
This inconsistency is illustrated in Fig. 6. On the left side, 
the normalized stiffness of elements in the design domain 
�i = E(xi)∕E0 and in the analysis domain �i,NL = E(�i)∕E0 
is plotted over the density xi and �i , respectively. On the 
right hand side, the difference Δ� = �NL − � between both is 
given employing the container model as well as the zero–one 
interpretation according to (Lee and Park 2015). It can be 

Delete 
unconnected

elements

Transform 
densities

Design Domain ( ) Analysis Domain ( )

1

0

Fig. 3   Interpretation of densities resulting from linear static response optimization (inner loop) for usage in subsequent nonlinear dynamic analy-
sis

Fig. 4   Elasto-plastic piecewise linear material model for different 
densities � using SIMP with pNL = 1
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seen that this inconsistency is worse for the zero–one inter-
pretation. However, it should be noted that the inconsistency 
of both interpretations decreases with progressing optimiza-
tion, since the SIMP approach penalizes intermediate den-
sities in the linear static response optimization and strives 
toward a zero–one design.

2.2.2 � Reconstruction of the LSM mesh coordinates

As previously explained in Sect. 2.1, the linear static opti-
mization in DiESL utilizes the deformed geometry from the 
analysis domain at given times ti to derive the LSMs. At this 
point, a problem arises that is specific to topology optimiza-
tion: The nonlinear model employed in the analysis domain 
is incomplete in the sense that it is not capable of providing 
the complete deformation field in the entire design space. 
This is because all elements considered void are deleted 

during interpretation of the design densities (see previous 
section). This includes deletion of any free node that is no 
longer connected to an element. Furthermore, all nodes and 
elements in isolated areas are deleted. Hence, the displace-
ments of the deleted nodes are not available after nonlinear 
analysis and the corresponding coordinates cannot be com-
puted in the LSMs as illustrated in Fig. 7 for an incomplete 
FE mesh (top left) with deformation results (top right).

We propose the following method to reconstruct the miss-
ing coordinates: A dedicated reconstruction FE analysis is 
executed in the design domain. This FE analysis uses the 
complete undeformed geometry in the design space to con-
stitute the model. For each ESL time ti , a subcase is created 
to solve the following problem:

(11)�0�̃
(
ti
)
= � i; i = 0,… , nT − 1

Fig. 5   Mesh distortion problems during nonlinear dynamic analysis using SIMP approach with pNL = 3 and non-binary density distribution: 
hedgehog effect (left), excessive deformation (right)
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The vector �̃
(
ti
)
 contains both the known deformations 

transferred from the analysis domain and the missing coor-
dinates of the deleted void nodes. This means the known dis-
placements are applied as SPCs (prescribed displacements) 
in a linear static analysis (Fig. 7, bottom left). As a result, 
the remaining nodes are dragged along and plainly follow 
the prescribed deformation of the surrounding mesh (Fig. 7, 
bottom right). This way, all missing displacements can be 
computed in a single FE analysis where each ESL time ti is 
covered in a separate subcase. Note that the reconstruction 
FE run is executed as a topology optimization restart-run 
with 0 iterations using the densities of the previous cycle of 
all elements (see the coloring scheme in Fig. 7).

3 � Summary of the DiESL approach 
for nonlinear dynamic response Topology 
Optimization

Summarizing, the DiESL approach solves the following sur-
rogate optimization problem in each cycle:

where Δ�i is the solution of the FE equation of linear statics 
in LSMi:

(12a)min f (�,Δ�0(�),… ,Δ�nT−1(�))

(12b)
s.t. gj

(
�,Δ�0(�),… ,Δ�nT−1(�)

)
≤ 0; j = 1,… ,m

(12c)�L ≤ � ≤ �U; � ∈ ℝ
n

The difference-based equivalent static loads Δ� i
DiESL

 are 
computed from the same equation using the given deforma-
tion fields from the analysis domain Δ�̃

(
ti
)
 after reconstruc-

tion of the missing nodes:

The prescribed deformations Δ�̃
(
ti
)
= �̃

(
ti+1

)
− �̃

(
ti
)
 

are computed as the incremental deformation from time ti 
to time ti+1 . Here, �̃

(
ti
)
 contains two portions of displace-

ments: Firstly, the solution of the nonlinear simulation in the 
analysis domain given by

for the selected time steps ti . Secondly, the displace-
ments of all missing nodes approximated by the recon-
struction analysis

The vector �̃
(
ti
)
 therefore contains both the known 

deformations transferred from the analysis domain �
(
ti
)
 as 

well as the missing coordinates of the deleted void nodes. 
This results in the overall procedure illustrated in Fig. 8 

(12d)�(�, �
(
ti
)
)Δ�i = Δ� i

DiESL
; i = 0,… , nT − 1.

(12e)Δ� i
DiESL

= �(�, �
(
ti
)
)Δ�̃

(
ti
)
; i = 0,… , nT − 1.

(12f)

𝐌NL(𝛘)𝐮̈(t) + 𝐂NL(𝛘)𝐮̇(t) +𝐊NL

(𝛘,𝐮(t))𝐮(t) = 𝐟 (t); 𝜒i =

⎧⎪⎨⎪⎩

0 if xi ≤ 𝜀v
xi if 𝜀v < xi ≤ 𝜀s
1 if xi > 𝜀s

(12g)�0�̃
(
ti
)
= � ; i = 0,… , nT − 1.

Fig. 7   Workaround for calculat-
ing the deformed mesh coordi-
nates of the nodes deleted in the 
nonlinear dynamic analysis
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involving all necessary extensions of the DiESL procedure 
for topology optimization elaborated above.

3.1 � Computation of displacement

During optimization of all LSMs using MMO, each LSM 
analysis yields incremental displacements Δ�i . The total 
linear displacement of a node at time ti is used as an 
approximation of the respective nonlinear displacement. 
It can be computed recursively as

where Δ�i−1 is the solution of (12d) for LSMi−1 . Accord-
ingly, the cumulated displacements can be calculated as

In general, �0 = 0 applies because the undeformed 
geometry has not seen any deformations by definition. The 

(13)�i = �i−1 + Δ�i−1

(14)�i = �0 +

i−1∑
j=0

Δ�j.

accumulation is processed by the MMO, which adminis-
ters all LSMs and accumulates their solutions Δ�i accord-
ing to Eq. (14).

3.2 � Implementation

The DiESL method’s overall program flow has been imple-
mented in Python. It employs the commercial solver LS-
DYNA (LSTC 2015) for nonlinear dynamic analysis in the 
analysis domain and OptiStruct (HyperWorks 2021) for 
linear static response optimization in the design domain. 
Because the linear static subproblem only approximates 
the actual problem, the optimized responses in the design 
domain often differ from those in the analysis domain. Thus, 
the convergence check has to be performed after the nonlin-
ear dynamic analysis. Here, a small constraint violation is 
tolerated.

Three termination criteria have been used. The first crite-
rion is that the design has to be feasible. This is implemented 
by the requirement that the maximum normalized constraint 
violation gmax has to be smaller than a specified limit εg > 0:

Computation of DiESLs
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Fig. 8   General optimization process of the DiESL method for nonlinear dynamic response topology optimization
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For all calculations εg = 0.01 has been used, which is suf-
ficiently small such that all converged designs still can be 
considered feasible.

The second criterion is that the relative change of the 
objective function between two subsequent cycles k − 1 and 
k has to be smaller than or equal to a given value �f:

Again, for all calculations, the value �f = 0.01 has been 
used. If this criterion is satisfied, the objective hardly 
changes and continuing the optimization is not worthwhile 
in most cases.

The third criterion is that the relative change of discrete-
ness of the structure has to be smaller than a given value �d ∶

The discreteness index D reported by OptiStruct is the 
mass fraction of all elements with a density above or equal 
0.9 relative to the whole mass of the structure (HyperWorks 
2021):

where nE is the number of all elements in the design space 
and Vi is the volume of the i th element. Here, D = 1 corre-
sponds to a zero–one design. For all calculations, the value 
�d = 0.02 has been used.

To account for the fact that the linear static subproblem 
is only an approximation of the actual nonlinear dynamic 
response optimization problem, the length of each inner 
loop optimization path is limited by introducing move lim-
its. These are used to constrain the change of each design 
variable per iteration:

Parameter �(l) controls the size of the current move limits 
in iteration l . The initial value of � in (19) is defined by the 
parameter �ini

(15)gmax ≤ εg.

(16)
||f (�(k)) − f (�(k−1))||

||f (�(k))||
≤ �f .

(17)
||D(�(k)) − D(�(k−1))||

||D(�(k))||
≤ �d

(18)D(�) =

∑nE
i
xiVi, if 0.9 ≤ xi ≤ 1.0

∑nE
i
xiVi,

(19)
x̂
U,(l)

j
= min

(
xU
j
, x

(l−1)

j
+ 𝜗(l)

|||x
(l−1)

j

|||
)

x̂
L,(l)

j
= max

(
xL
j
, x

(l−1)

j
− 𝜗(l)

|||x
(l−1)

j

|||
)
; 𝜗 ∈ [0, 1].

(20)�(1) = �ini.

The value � changes in each iteration. In OptiStruct, it 
cannot be further specified how � is changing, since this 
is handled internally and no detailed explanation is given 
in the manual. At the start of a new cycle, the value � is 
initialized from the value at the end of previous cycle. In 
this publication, the parameter �ini = 0.2 has been used in 
all test problems. Since the move limits only limit the length 
of the optimization path per iteration, a second restriction is 
needed. The second parameter maxiter defines the maximum 
number of iterations (inner loop) per cycle (outer loop). 
For all examples shown below, the parameter maxiter = 4 
has been used. This means, each cycle contains 4 iterations 
(unless the linear static response optimization converges 
before reaching 4 iterations).

Because DiESL does not start from a single undeformed 
initial model but from deformed structures related to the 
different ESL times ti , it may happen that the linear static 
response optimization does not pass the initial element qual-
ity check due to excessively deformed elements and thus 
poor element quality. In order to realize a robust application 
of DiESL, an automated repair mechanism for the mesh of 
the affected LSM s has been developed by deleting the dis-
torted elements. This elements deletion is not permanent 
but is applied to the affected LSM s in the current cycle only. 
Every new cycle starts with all elements in all LSMs.

Note that time dependent responses (e.g., intrusions) are 
only checked at the selected ESL times. Consequently, it is 
essential here to define an adequate number nT of ESL times 
to avoid inaccuracy due to insufficient time resolution. How-
ever, because each ESL time corresponds to an LSM, and 
each LSM increases the computational effort in the design 
domain, the number of ESL times should be limited (inner 
loop).2 To address this balancing act, the positions of all nT 
ESL times ti are selected adaptively in each cycle such that 
an appropriate response curve is fitted by a polygonal line, 
where the ESL times are the breakpoints. This way the ESL 
times should be placed at points in time at which nonlineari-
ties are dominant. In this paper, a beam structure subjected 
to an impact is examined. The contact–force curve between 
impactor and beam was chosen as response curve to deter-
mine the ESL times because it is considered a good indica-
tor for the occurrence of nonlinearities. For a more detailed 
description of the procedure, refer to Triller et al. (2022).

The overall flow scheme explained before is implemented 
as follows:

2  For really big models, this can become prohibitive if resources 
are restricted. However, commercial optimizers such as OptiStruct 
use a Message Passing Interface (MPI) in their MMO implementa-
tion, which allows to run each LSM on a single host. This enables the 
use of a high number of LSMs without increasing the overall elapsed 
time significantly provided a sufficient number of hosts is available.
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Step 1: Set initial design variables and 
parameters: k = 0,�(k) = �(k),�v
,�s,εg,�f,�d,�ini,maxiter,nT

Step 2:
Step 3:

Perform nonlinear dynamic analy-
sis with �(k)

Determine the position of all ESL 
times by fitting an appropriate 
response, e.g., contact force

Step 4: If k > 0 , check convergence 
criteria: If Eqs. (15), (16), (17) 
are satisfied then terminate the 
process

Step 5: If k > 0, reconstruct missing 
coordinates by calculating the 
displacement field �̃

(
ti
)
 includ-

ing all nodes for all selected 
time steps ti

Step 6: Calculate the incremental dis-
placements Δ�̃

(
ti
)
 and the node 

coordinates �
(
ti
)
 of all LSMs for 

all selected time steps ti

Step 7: Check the element-quality of each 
LSM FE mesh. If check was not 
successful, delete distorted ele-
ments in respective LSM

Step 8: Calculate the incremental equiva-
lent static loads Δ� i

DiESL

Step 9: Solve the linear static response 
optimization problem with the 
incremental equivalent static 
loads Δ� i

DiESL

Step 10: Interpret the resulting design vari-
ables �∗(k) and update the design 
variables �(k) in the analysis 
domain, increment k by 1 and go 
to step 2

4 � Test problem

In this section, the previously described approach for 
topology optimization is tested using a simple beam 
structure subjected to an impact. As illustrated in Fig. 9, 

the beam structure is clamped at both ends in all 6 
degrees of freedom using single-point constraints (SPC). 
A cylindrical rigid pole impacts the structure in the mid-
dle with the initial velocity v0 . The impactor’s transla-
tional degrees of freedom in x - and z-direction as well as 
all its rotations are locked. In order to decrease compu-
tational costs, symmetry conditions are applied and only 
a quarter of the original beam is used in the simulation. 
This problem is similar to one used by Patel to verify the 
HCA optimization scheme (Patel 2007). Three parameter 
sets’ initial velocity v0 and mass mi of the impactor are 
studied for the purpose of examining the influence of 
inertia effects:(v0,mi) =

{
(10

m

s
, 65.7kg);(40

m

s
, 65.7kg);(150

m

s
, 4.69kg)

} . 
For the last set, the impactor’s mass is reduced in order 
to keep its kinetic energy the same compared to the set 
with v0 = 40

m

s
 . Both surface contact between the beam 

structure and the impactor and self-contact for the beam 
are defined in LS-DYNA. In the LSMs, no contact is 
defined because this leads to reduced numerical stability. 
Hence, the impactor is not present in the linear static 
models and the impactor’s intrusion in OptiStruct has to 
be approximated. This is done by averaging the displace-
ments in y-direction of one column of structural nodes 
in the impact zone (i.e., along z-direction in the middle 
of the whole beam). The beam structure is made of alu-
minum (Young’s  modulus  E = 70GPa  ,  dens i ty 
� = 2700kg∕m3 , number of nodes = 9664), and piecewise 
linear material behavior is applied (Fig. 9 right). Twenty 
ESL times are used resulting in 20 different FE-models. 
When performing multimodel topology optimization 
with OptiStruct, minimum member size control is used 
by default and cannot be turned off. Here, the default 
value of 3 times the average element size is used 
(30 mm).

The objective of the optimization problem is to minimize 
the intrusion of the pole in y-direction d(�) while constrain-
ing the mass mb of the beam structure. Mathematically, the 
problem can be written as:

0
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Fig. 9   Nonlinear FE model of the beam exposed to an impact (left); piecewise linear material model (right)
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The optimizer is initialized using a homogeneous density 
distribution of xi = 0.2 such that the mass constraint is active 
(i.e.mb

(
�0
)
= 4.33kg ). The optimization problem is solved 

for each of the given sets of initial velocity and impactor 
mass mi individually. Afterward, the results are compared 
both visually and by means of a cross validation, where 
each optimal structure is exposed to the remaining other 
load cases, in order to check the plausibility of the results.

min f (�) = d(�)

s.t. mb(�) ≤ 4.33 kg

The history of optimization and subsequent interpretation 
is exemplified for v0 = 40

m

s
 . In Fig. 10, the optimization 

history is shown. The objective function and the maximum 
normalized constraint violation are plotted in the left dia-
grams as function of iterations. Blue circles show the values 
of each linear static response optimization per iteration and 
red circles mark values obtained from the nonlinear analysis 
in each cycle. In the right plot of Fig. 10, the convergence 
criteria are plotted over cycles. The overall convergence 
behavior is relatively smooth, and all three convergence cri-
teria are fulfilled after 26 cycles. Note that the constraint 
violation is zero at the start and at the end of the optimiza-
tion. It increases to a maximum of 12% in cycle 3 and then 

Fig. 10   Objective function and maximum relative constraint violation over iterations (left) and convergence criteria over cycles (right) using 
DiESL and v0 = 40

m

s

Fig. 11   Container model of converged cycle 26 for v0 = 40
m

s
 (left) as isometric (top) and top view (bottom); corresponding zero–one interpreta-

tions (right) using “same objective” (top) and “same constraint” (bottom) strategies
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gradually reduces. This behavior is a side effect of using the 
TOPDISC parameter in OptiStruct.

Figure  11, left, illustrates the container model as 
obtained by the optimization. As the final discreteness 
value does not reach 100% (see Fig. 10, right bottom), the 
container model still contains elements with intermedi-
ate densities, most prominently a connection between the 
front part of the structure’s impact zone and the rear part 
(see Fig. 10, left top, dashed ellipse). In order to identify 
a zero–one structure with similar performance as the con-
tainer model, two different strategies were tested. For both 
strategies, a 0–1 design is created and any intermediate 
densities are eliminated by setting the density thresholds 
�v = �s . In the next step, we use bisection to determine the 
value of the single variable � = �v = �s by postulating that 
one of the two conditions is fulfilled:

1.	 The value of the objective functions of the 0–1 model 
and the container model must be equal

2.	 The mass constraint of the 0–1 model and the container 
model must be equal

The reason for this procedure is that it is usually not 
possible to find a unique � value for a design that ful-
fills both conditions. In this sense, our procedure leads 
to designs on the extremes of possible solutions. If both 
designs are identical in a topological way then it is a hint 
that the solution is unique and robust. This is the case 
for the resulting zero–one designs that are illustrated in 
Fig. 11 right and denoted in Table 1. The appearance and 
performance of both interpretations are very similar and 
no significant tradeoff between the interpretations has to 
be made. This also holds for the other two parameter sets 
of initial velocity v0 and mass mi.

Table 1 lists the optimization results for all three param-
eters sets and for all three optimal designs for each set 
(container model as well as zero–one interpretations by 
“same objective” and “same constraint” strategies). Due to 
the interpretation process described in Sect. 2.2.2 and the 

deletion of elements smaller than �v , the mass of the con-
tainer models is considerably smaller than the defined upper 
bound. Column D(�∗) reports the discreteness calculated by 
OptiStruct for the container model, and it is set to 1 for the 
zero–one interpretations by definition. From the examples 
tested, we conclude that the introduced procedure for topol-
ogy optimization yields zero–one designs that can easily 
be interpreted. In the following, we will use the container 
models in illustrations and comparisons because their per-
formance is extremely similar to their respective zero–one 
interpretations.

Table 2 shows the results of the cross validation of the 
derived optimal structures. In this study, we evaluated the 
performance of each optimal container model when loaded 
under the other remaining initial velocity and mass condi-
tions. It can be seen that each container model performs best 
for its respective load case (bold), e.g., for the initial velocity 
v0 = 10

m

s
 , the design that has been obtained for this velocity 

has the lowest intrusion 13.2 mm compared to the other two 
designs that were obtained for other initial velocities.

In the following, the optimal structures of all three load 
cases are discussed and compared visually. For comparison, 
the results of a linear static load case are shown additionally. 
As shown in Fig. 12, the pole is removed and replaced by 
a static force that is imposed on the middle of the original 
contact zone (blue line). Furthermore, rigid elements (RBE2) 
are defined in the contact zone to distribute the loading force 

Table 1   Optimization results 
using DiESL and corresponding 
interpretations

v0 

(
m

s

)
Ekin,0 (kJ) Model type Cycle* �v �s d(�∗) (mm) D(�∗) mass(�∗)

(kg)

10 3.3 Container model 33 0.1 0.9 13.2 0.82 4.17
Interpr. same obj 0.355 13.3 1.0 4.36
Interpr. same constr 0.37 13.4 1.0 4.33

40 52.6 Container model 26 0.1 0.9 128.1 0.77 4.16
Interpr. same obj 0.37 128.0 1.0 4.28
Interpr. same constr 0.355 127.3 1.0 4.32

150 52.6 Container model 23 0.1 0.9 113.9 0.79 4.16
Interpr. same obj 0.4 113.9 1.0 4.36
Interpr. same constr 0.35 112.3 1.0 4.32

Table 2   Cross validation: resulting intrusions d(�∗) for the three opti-
mal structures (container models) shown in Fig. 13 subjected to each 
of three initial velocities and masses

Actual v0 

(
m

s

)
d(�∗) (33)

Optimum 
v0 = 10

m

s

Optimum 
v0 = 40

m

s

Optimum 
v0 = 150

m

s

10 13.2 14.0 14.9
40 178.3 128.1 142.8
150 136.2 120.9 113.9
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across the entire zone (red area). Based on this load case, 
the linear static response optimization problem is solved 
according to the previously defined optimization problem 
but without employing the ESL algorithm. Figure 13 illus-
trates the results of the linear and all nonlinear dynamic load 
cases as an iso-surface visualization of the container mod-
els. Each result is displayed as reconstructed full model in 
an isometric view (left) as well as three projections viewed 
from front, top, and bottom (right, top to bottom). The linear 
static result mainly consists of compression-loaded diagonal 
connections between the impact zone and the rear end of the 
clamping (see Fig. 13, upper left, dashed ellipse). The nonlin-
ear dynamic load cases can be interpreted as evolutions from 
this design: with increasing impactor velocity, these compres-
sion-loaded connections first become smaller and then vanish 
for v0 = 40

m

s
 and v0 = 150

m

s
 . In contrast, the tension-loaded 

diagonal connection between the rear end of the impact zone 
and the front of the clamping (see Fig. 13, lower right, dotted 

ellipse) seems to become increasingly more important. Fur-
thermore, it can be seen that for v0 = 150

m

s
 , more mass is dis-

tributed in the center of the structure and in the impact zone. 
This can possibly be explained by the increasing influence 
of inertia effects using v0 = 150

m

s
 . With increasing mass in 

the contact zone, the structure’s tendency to resist accelera-
tions increases. A similar trend has been observed by Ivars-
son et al. (2018) optimizing a 2D structure by employing the 
adjoint method. However, the computational effort for this 
significantly exceeds that of the DiESL method.

For comparison, the standard ESL method is applied to 
some of the load cases discussed before. The same container 
approach is employed in the analysis domain. As described 
before, ESL uses the undeformed mesh geometry for each 
auxiliary load case. Therefore, no MMO has to be per-
formed. For the same reason, the missing coordinates of 
nodes in a deformed mesh geometry in the analysis domain 
do not have to be reconstructed according to Sect. 2.2.2.

The iso-surface visualization of the container models 
obtained with the ESL method is given in Fig. 14, and the 
final objective values are listed in Table 3. Generally, it can 
be seen that ESL needs fewer cycles to converge in compari-
son with DiESL. However, the discreteness of the derived 
designs is lower for both load cases compared to DiESL.

Both ESL results are dominated by the previously 
described compression-loaded connection of the linear 
static load case. Thus, the difference to DiESL for v0 = 10

m

s
 

is comparably small. This is also reflected by the resulting 
objective value, which is only slightly better than for DiESL. 
Since the impactor’s intrusion and therefore the beam’s 
deflection are relatively small for this load case, DiESL 
obviously cannot draw a benefit from using the deformed 

Fig. 12   Linear static load case for comparison of DiESL and ESL 
results for nonlinear dynamic response optimization

Fig. 13   Resulting container model in iso-surface visualization ( �iso = 0.4) for linear static load case (upper left) and using DiESL: v0 = 10
m

s
 

(upper right), v0 = 40
m

s
 (lower left), and v0 = 150

m

s
 (lower right)
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mesh and from following the displacement path incremen-
tally. This is different for a higher velocity ( v0 = 40

m

s
 ) where 

the amount of deformation is increased. In this case, the 
intrusion of the ESL result is almost double the correspond-
ing DiESL result (Fig. 15) because the compression-loaded 
members buckle. Obviously, ESL is not able to handle 
highly nonlinear problems and related inertia effects in a 
proper way whereas DiESL is able.

5 � Conclusions and outlook

In this paper, a novel procedure for nonlinear dynamic 
response topology optimization has been presented. The 
DiESL method has been extended to topology optimiza-
tion. For this purpose, the SIMP approach is utilized to 
relate the design variables to all relevant properties of an 
elasto-plastic material, like Young’s modulus, yield stress, 
and strain hardening modulus. To prevent mesh distortion 
problems, a smaller penalty exponent has been used in the 
analysis domain than in the design domain. Furthermore, 
intermediate densities derived in the design domain are 
transferred unchanged to the analysis domain, in order to 

enable a continuous and smooth change of designs from 
cycle to cycle.

The proposed method has been tested using a simple 
beam structure impacted by a rigid pole. The pole’s initial 
velocity and mass have been varied in order to examine 
their influence on the resulting optimized structures. For 
all load cases, the DiESL method yields discrete and thus 
easy to interpret designs. A cross validation of the opti-
mized structures, where each optimal structure is exposed 
to the remaining other load cases, has been conducted. 
Each optimized structure performs best for its respec-
tive load case, which confirms the plausibility of each 
result. Additionally, the resulting structures have been 
compared and discussed visually. For that purpose, the 
results of a linear static load case have been presented as 
well. It turns out that the linear static result is most simi-
lar to the optimized structure of the nonlinear dynamic 
problem for the smallest initial velocity. The optimal 
structure changes significantly if the initial velocity is 
increased. For the highest velocity, mass is accumulated 
in the impact zone, reflecting the increasing influence 
of inertia effects. We therefore conclude that the DiESL 
method is able to handle inertia effects.

Fig. 14   Resulting container model in iso-surface visualization ( �iso = 0.4) using ESL for v0 = 10
m

s
 (left) and v0 = 40

m

s
 (right)

Table 3   Optimization results 
using ESL

v0 Cycle* �v �s d(�∗) (mm) D(�∗) mass (�∗) (kg)

10 10 0.1 0.9 12.9 0.65 4.16
40 21 0.1 0.9 233.1 0.69 4.17

Fig. 15   Deformed container 
model in iso-surface visualiza-
tion ( �iso = 0.4) using ESL 
(left) and DiESL (right) for 
v0 = 40

m

s
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Moreover, the standard ESL method has been 
applied to some of the load cases. For both small and 
high velocities, the resulting structures are dominated 
by the characteristics of the result of the linear static 
load case. This indicates that ESL is not capable of 
handling inertia effects. For high velocities, the DiESL 
result outperforms the ESL result by far. Furthermore, 
DiESL outperforms ESL in terms of discreteness of the 
optimized designs and thus yields easier to interpret 
the structures.

For future investigations, further practice-relevant 
examples should be examined, involving other crash rel-
evant responses like accelerations or contact forces. For 
the latter, a reliable approach must be developed to handle 
contact forces in combination with DiESL.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00158-​022-​03309-7.
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