
SCHWERPUNKTBEITRAG

https://doi.org/10.1007/s13222-022-00429-8
Datenbank Spektrum (2022) 22:227–239

Towards a Benchmark for Shared Databases [Vision Paper]

Muhammad El-Hindi1 · Ashwin Arora1 · Simon Karrer1 · Carsten Binnig1

Received: 24 August 2022 / Accepted: 24 October 2022 / Published online: 6 December 2022
© The Author(s) 2022

Abstract
Traditionally, data has been held in silos and was rarely shared with other organizations. However, recently data sharing
across organizations is becoming more and more important as evidenced by governmental and industrial initiatives such as
the EU data strategy. As a result, both academia and industry have been proposing new systems for shared databases, that
allow multiple organizations to collaboratively insert and manage data in a common database. Yet, each new system seems
to come with its own architectural choices and custom guarantees that make it hard for users to navigate the plethora of
shared database systems. While standard benchmarks like the TPC-C database benchmark have been a well-established
tool to compare and analyze traditional database systems, they seem to be unsuited to evaluate shared database systems.
This is because these systems are built with fundamentally different assumptions in mind, such as a different threat/trust
model since multiple (untrusted) parties access and modify the same data. In this paper, we present a vision and initial
ideas for a new benchmark to evaluate shared databases and capture their unique characteristics.

Keywords Shared Databases · DBMS for Data Sharing · Data Sharing · Benchmarking · TPC-C

1 Introduction

Traditionally, data has been held in silos and was rarely
shared with other organizations. However recently, data
sharing across organizations is becoming more and more
important. Industry and governments alike are launching
various initiatives to support and encourage data shar-
ing [1–3] in different areas such as supply chain [4–7],
healthcare [8] or finance [9, 10]. At the same time, deal-
ing with data is becoming more and more regulated by
legislations such as the European Union (EU)’s General
Data Protection Regulation (GDPR) or the California Con-
sumer Privacy Act (CCPA) and Consumer Data Protection
Act (CDPA) in the United States. Such regulations are

� Muhammad El-Hindi
muhammad.el-hindi@cs.tu-darmstadt.de

Ashwin Arora
ashwin.arora@stud.tu-darmstadt.de

Simon Karrer
skarrer@trustdble.com

Carsten Binnig
carsten.binnig@cs.tu-darmstadt.de

1 Technical University of Darmstadt, Darmstadt, Germany

even more important when data is shared and additional
complexity is introduced in terms of governance and com-
pliance [11].

While data sharing is seeing more and more adoption for
different use cases and settings, the focus of this paper is
on the setting of shared databases where the same database
(DB) is accessed by different parties (i.e., owners and con-
sumers). In this paper, we differentiate between OLTP-style
(collaborative) and OLAP-style shared databases. Fig. 1
shows the setup for an OLTP-style (collaborative) shared
database which is also in the focus of this paper. In this
setting, two main characteristics are important: First, it in-
volves that two or more organizations share ownership of
the same database (i.e., multi-owner). Second, both organi-
zations execute read and write operations on the shared da-
tabase, i.e., the workload can rather be classified as an On-
line Transaction Processing (OLTP) workload. Such multi-
owner scenarios have recently become more and more rele-
vant since they enable a broad set of different use cases. For
instance, medical data sharing where doctors and hospitals
collaboratively work on the patients’ data but also other use
cases such as tracking information along a supply chain can
be mapped to such a collaborative setting where multiple
parties read/write to the same DB.

In contrast to the multi-owner (collaborate) setting, other
data sharing scenarios with shared databases exist that target

K

https://doi.org/10.1007/s13222-022-00429-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-022-00429-8&domain=pdf
http://orcid.org/0000-0001-5295-1316


228 Datenbank Spektrum (2022) 22:227–239

Fig. 1 Shared database concept. Shared DBs enable multiple database
owners to collaboratively write and read data to a common database –
this workload can be classified as an OLTP workload

more Online Analytical Processing (OLAP) style sharing.
In such scenarios, an owner provides DB-access to a con-
sumer for read-only queries. In this setting, only the owning
organization is allowed to update the data, while the other
organization is limited to read workloads. This read-only
data sharing mechanism was recently introduced, e.g., in
Snowflake with its Secure Data Sharing feature. Common
to both settings (i.e., OLTP- and OLAP-style data sharing),
however, is the assumption that the partnering organiza-
tions do not fully trust each other, e.g., due to conflicts of
interests or malicious behavior of potential inside attackers.
Hence, additional technical measures must be provided to
prevent or detect incorrect behavior of any sharing partner.

With the advent of new technologies such as trusted exe-
cution environments (TEE)s and distributed ledger technol-
ogy (DLT) various systems using different architectures and
approaches have been proposed to implement OLTP-style
shared databases (e.g., [12–16]). However, different from
established non-shared databases that provide well-known
interfaces and guarantees, each new shared databases sys-
tem seems to come with its own architectural choices and
custom guarantees that make it hard for users to navigate the
plethora of shared database systems. In this paper, we argue
that traditional database benchmarks (like the TPC bench-
marks) are not sufficient for analyzing the shared databases.
Moreover, we present initial ideas for a new benchmark
that helps us to better understand this wide space of differ-
ent shared database systems and the impact of their archi-
tectural and technical choices on the system performance.
While we think that traditional database benchmarks like
TPC-C [17], Smallbank [18] or YCSB [19] are still a good
starting point, we argue that these benchmarks do not cover
all important dimensions for shared databases. For instance,
while classical databases were built with an isolated single-
owner setting in mind, shared databases assume a multi-
owner setting. This observation is also evidenced by the
common practice in several of the above-mentioned sys-
tems, that all implement (additional) custom benchmarks

and evaluation frameworks. Naturally, this makes it hard to
compare those systems with each other.

To address this issue we thus propose that a new stand-
ardized benchmark for evaluating shared database systems
is needed. As a main contribution, we discuss an ini-
tial design for such a benchmark where we consider the
unique characteristics of shared databases and address the
challenges of designing systems for shared databases. To
achieve this goal we provide the following contributions in
this paper:

� We first analyze the unique characteristics of shared
databases in contrast to traditional (non-shared) databases
(Sect. 2).

� Based on that, we then discuss in detail the shortcomings
of traditional benchmarks (Sect. 3).

� Finally, we propose our vision and initial ideas for such
a new benchmark design for shared databases (Sect. 4).
In this vision paper, we set the main focus on a bench-
mark design for shared OLTP databases while an exten-
sion towards shared OLAP databases is an interesting fu-
ture avenue.

2 Shared Databases

In this section, we first analyze the unique characteristics
and capabilities of shared database systems. Afterwards, in
Sect. 3, we present why existing benchmarks are insufficient
for evaluating shared databases.

2.1 Fundamental Paradigm Shifts

Shared databases for data sharing across organizations are
based on fundamentally different assumptions than tradi-
tional data management solutions: First, obviously, the very
traditional assumption that data is managed and accessed by
a single organization is not true anymore. Instead, data shar-
ing and shared databases involve multiple organizations in
different roles. For instance, data owners write to and up-
date data in a database, while data consumers only require
read access. Further, external entities such as regulators or
government institutions are often involved as auditors or
overseeing participants that need access to meta-data and
histories of the database. As such, in contrast to the tradi-
tional setup of classical data management, shared databases
require that a different number of participants (e.g., multi-
ple data owners) that do not necessarily trust each other
have access to the same data. It is important to note that
this should not be confused with multi-tenancy in traditional
database management system (DBMS)s which is about han-
dling multiple isolated databases (i.e., access is restricted
to a single organization).

K



Datenbank Spektrum (2022) 22:227–239 229

Fig. 2 Shift in trust assumptions in data sharing. In the past, DBs were
designed for use by a single, trusted organization (left). While the da-
tabase or the database operator might still be untrusted as in the out-
sourced DB setting (middle), the additional concern of data sharing is
to address trust issues among database owners (right)

Second, shared databases and cross-organizational shar-
ing come with a new threat/trust model. This is necessary
since DBMSs now not only need to manage the access
of multiple users with potentially different roles, but they
also need to manage the access of different legal entities
(i.e., organizations). As shown in Fig. 2, classical databases
were built for use by or within a single trusted organization
(left). Even with the introduction of cloud computing and
outsourced database (middle), this fundamental assumption
did not change. While organizations started to be concerned
about the trustworthiness of the service provider (i.e., the
organization operating the DB) and the correct operation of
the database, they still assumed that their database is iso-
lated from other organizations and will only be accessed by
their own organization. In the context of shared databases,
this assumption changed. Now, multiple organizations with
potentially conflicting interests can access or even update
the same database (cf. Fig. 2 right). As a consequence, ad-
ditional security and compliance guarantees became first-
class citizens in shared DBs to make sure or at least be able
to monitor that none of the involved organizations manipu-
late the shared database.

These fundamental paradigm shifts motivated the devel-
opment of new capabilities and abstractions that are essen-
tial in DBMSs for shared databases. Despite their impor-
tance, however, current benchmarks do not evaluate how
well new systems cover these capabilities or what influ-
ence these capabilities have on a system’s performance. In
the following, we will first discuss the new capabilities of
shared DBs in more detail and outline the shortcomings of
existing benchmarks in the next section.

2.2 New Capabilities

In summary, shared databases come with four new abstrac-
tions and capabilities that are essential to allow multiple
organizations to collaborate on data: shared tables, verifia-
bility, data usage & compliance as well as auditability.

Thereby, shared tables provide a new abstraction for or-
ganizations to access shared data in a relational DBMS.
Verifiability and data usage & compliance allow monitoring
and controlling of how other organizations interact with the

shared data. Lastly, auditability enables an external organ-
ization to check if all involved parties have been behaving
correctly. We will describe each new capability in the fol-
lowing.

2.2.1 Shared Tables

In the context of relational databases, shared tables are
a common abstraction to allow the user to access both pri-
vate and shared data transparently, while still taking the
special characteristic of shared data into account. Differ-
ent from private data, shared data can be maintained (i.e.,
added and updated) by multiple organizations. For instance,
organization A can write orders for a product to a shared
orders table that is also accessible to organization B , which
will fulfill the order. Thereby, organization A accesses the
shared orders table in the same way it would access any
other private table. At the same time, the same instance of
this table is also accessible to organization B , which can
also add and update records to the shared orders table.

Shared tables as such are only an abstraction and do
not demand a specific implementation. For example, one
DBMS might choose to implement the shared table abstrac-
tion in a centralized manner, while another system might
actually maintain two copies of the table at different lo-
cations and keep the copies consistent. Yet, these different
implementation strategies might come with various perfor-
mance implications that are necessary to account for when
evaluating a database system. Further, to make sure that no
participant manipulates or processes the data incorrectly,
shared tables are also backed by additional data structures
and algorithms that are used to implement the other capabil-
ities of shared DBs (i.e., variability, compliance, auditabil-
ity). However, these additional security measures come with
additional overheads that current database benchmarks do
not cover sufficiently.

2.2.2 Verifiability

Shared tables are only meaningful for organizations if they
truly provide a trustworthy and consistent view of the data
across all organizations. In a setting with highly fluctuating
prices, for instance, it is critical for an organization A to
prove that it placed an order before B changed the price
for the ordered product. Similarly, it should not be possible
for an organization to tamper with the data without being
noticed by the other parties.

To achieve this trustworthy and consistent view, Allen et.
al. introduce the abstraction of shared verifiable tables [12].
Verifiability refers to the ability of the system to provide
proofs to any of the involved organizations about the state
and the behavior of the database. In the above examples, for
instance, a shared verifiable table would enable organization

K



230 Datenbank Spektrum (2022) 22:227–239

A to prove that it placed the order with the latest price. At
the same time, organization B will not be able to prove that
its claimed price existed at any point in time in the shared
table.

These examples show the need for shared verifiable ta-
bles to enable organizations to check the integrity of the data
(i.e., that no organization can tamper with the data without
the other noticing it). However, the concept of verifiability
is not limited to data integrity. Rather, verifiability is also
critical for computation or query/transaction execution (in-
tegrity of execution). For example, while organization B

might execute a transaction (TX) to increase the price of
a product by 10%, organizationAmight change the logic of
the transaction to decrease the price instead. Similar manip-
ulations are also possible in the case of read-only queries
that could, e.g., be manipulated to only return incomplete
or false results and thus lead an organization that consumes
data from another one to wrong decisions. To address these
situations, verifiability provides a mechanism to prove that
a transaction or query was executed correctly and resulted
in the expected outcome.

Last but not least, there are also non-functional execu-
tion aspects that can be subject to verification. For instance,
in [20] the authors show how the adherence of a system
to isolation levels, in particular serializable, can be veri-
fied. Another important non-functional aspect is if a system
conforms with policies and regulations for data sharing. For
example, when the deletion of a record is requested, e.g.,
in the context of regulations such as GDPR, a shared da-
tabase needs to prove that all instances of a record have
been deleted. This is especially challenging in a shared da-
tabase setting since the database is controlled by multiple
organizations.

To support verifiability, shared database systems imple-
ment several new routines (e.g., proof generation) and pro-
vide new interfaces (e.g., a new verify() interface) that
allow participants to make use of the verifiability capability.
Further, as we will discuss later, shared DB systems might
use different verification strategies with different perfor-
mance characteristics. We believe that a new benchmark
for shared DBs is required to take the new interface(s)
into account and be able to assess the different verification
strategies properly.

2.2.3 Data Usage & Compliance

In traditional databases role-based access control (RBAC)
is used to control access to data. Data sharing systems and
shared DBs, however, are not only concerned about access,
but also about usage. This means it is not only sufficient to
limit who can access which data. In addition, we need to
control how the entities accessing the data are allowed to
use the data. For instance, in RBAC we can only specify

that a certain user has read-access to a single column age,
but we cannot control which queries the user executes on
the data, e.g., only allowing aggregates queries that include
a certain minimum population.

Furthermore, there are also other factors that are impor-
tant for organizations that are related to data usage control
A major dimension is the ability of systems to enable users
to specify data usage requirements regarding compliance.
For example, certain use cases might require that data is
not allowed to leave the premises of an organization, which
is a common requirement in the financial industry. In this
case, the DBMS must store data locally and is not allowed
to, e.g., replicate the data to another organization or loca-
tion.

Supporting such more fine-grained usage controls clearly
comes with an additional cost that needs to be evaluated
when benchmarking shared databases.

2.2.4 Auditability

As mentioned earlier, besides data owners that collaborate
on a shared database, sometimes additional external organi-
zations, e.g. auditors, require occasional or recurring access
to the meta-data and the history of the database. However,
since such external entities are not regular users of the sys-
tem, they do not have access to the shared state or the
transaction history for example. Hence, different from ver-
ifiability, auditability describes the capability of the system
to allow external organizations to efficiently check the cor-
rect state and behavior of the system. Further, while verifi-
ability focuses on the timely validation of interactions and
queries, auditability has a more retrospective view. Hence,
for auditability, it is required to keep the previous state
around to enable external parties to audit actions that hap-
pen in the past. Moreover, in contrast to verification which
needs to be fast and efficient, auditing can be a resource-
intensive task that is executed out-of-band from normal da-
tabase operations.

Similar to verifiability, auditability comes with additional
overheads and interfaces that were not required in tradi-
tional database systems. Hence, as will discuss in the next
section, current benchmarks do not sufficiently evaluate the
effects of these aspects on the system performance.

3 Shortcomings of Existing Benchmarks

Traditional benchmarks for data management systems test
a DBMS end-to-end from the perspective of an actual end-
user. However, these benchmarks are designed with the
classical assumptions in mind that there is only one organi-
zation accessing the data. Therefore, traditional benchmarks
are unsuitable for evaluating shared database systems.

K



Datenbank Spektrum (2022) 22:227–239 231

Moreover, also more recent benchmark proposals like
LEDGERBENCH [21] that target data sharing systems,
do not consider all data sharing requirements. For exam-
ple, while aspects to cover verification and auditing are
included, these benchmarks lack important benchmark di-
mensions, such as the number of participants, that are re-
quired to evaluate systems holistically. Moreover, the work-
loads are often rather simplistic and do not really reflect
the complexity we see in many real-world scenarios. In
the following, we will discuss these limitations of existing
benchmarks with regard to shared databases in more detail.
As mentioned before, in this vision paper we set the main
focus on a benchmark design for shared OLTP databases
while an extension towards shared OLAP databases is an
interesting future avenue.

3.1 NewWorkload Requirements

Classical benchmarks were built with the premise of
a single database user and a single workload in mind.
As such, they only define a main application workload
from the perspective of a single organization that users ex-
ecute, e.g., either an OLAP or OTLP workload. In contrast
to that, data sharing involves multiple different organiza-
tions and roles that require a system to handle different
types of workloads. As such, there is a need to adapt the
benchmark workloads accordingly. First, in contrast to
traditional benchmarks, the application workload of the
benchmark needs to include shared tables as well as trans-
actions accessing these shared tables. Moreover, workloads
of data sharing systems should test other aspects than tra-
ditional workloads. For example, since the overhead of
data sharing typically increases if more organizations are
involved in data sharing, testing the scalability with the
number of participants is an important aspect in addition to
testing the scalability with the size of data which traditional
benchmarks typically focus on as we discuss next. Finally,
in addition to the application workload, other aspects such
as verifiability and auditability must be considered with
new dedicated workloads. For example, external auditors
must also be considered as a special form of clients that
can request more intensive proof generation and checking.

3.2 Other Forms of Scalability

Data and workload scalability characterize the behavior of
a system when the amount of data or the number of re-
quests are increased. All of the major database benchmarks
consider these aspects. However, data sharing additionally
introduces participant scalability that describes the behav-
ior of a system under test (SUT) when the number of data
sharing participants varies. Due to the dynamic nature of
data sharing, some tables might be shared with only a few

partners while other tables might have many participating
organizations. Depending on the use case, the fluctuation
of partners can be high or rather low, leading to shorter or
longer-lasting relationships.

An interesting observation in this context is that due
to different possible architectures of shared DB systems,
adding a new data sharing partner might involve different
aspects depending on the system. For instance, in a cen-
tralized shared database adding a new organization might
simply involve granting access to a new account of the plat-
form. However, for some systems (e.g., decentralized sys-
tems) adding a participant might require spinning up a new
node and replicating the entire data to that node. To the best
of our knowledge, none of the existing data management
benchmarks (including LEDGERBENCH) takes this aspect
of data sharing into account.

3.3 Private and Shared Data

As discussed before, a new benchmark for shared databases
needs to include shared tables as well as transactions ac-
cessing these shared tables. This means that when defining
the data model, we must distinguish between data that is
shared with other organizations and private data that will not
be exposed to others. Such a distinction is important since
a system usually needs to build additional data structures
for the shared tables, e.g., to be able to guarantee data in-
tegrity. Similarly, querying or executing transactions on this
data might involve more computational overhead to prove
the validity of a transaction or check data usage controls,
for instance. We refer to such transactions touching shared
data as shared transactions. Due to the additional overhead
that is involved in the execution of shared TXs compared to
private transaction, we believe that the amount of executed
shared transactions is another important dimension that is
currently not considered in existing benchmarks.

3.4 New TransactionModel

As mentioned previously, shared transactions incur more
overhead during transaction processing. Among other rea-
sons, this is mainly because of the additional verifiability
requirement (cf. Sect. 2.2) that allows data sharing partici-
pants to check whether a system executed a given transac-
tion correctly. As discussed in previous work [22], several
data sharing systems incorporate such verification checks
in their transaction model and require that all or a majority
of participants (i.e., data owners) agree on the outcome of
a shared transaction before a transaction is committed to
the shared DB.

This is achieved using some form of conensus protocol
such as Raft[23] or PBFT[24]. In the Veritas system, for
example, a transaction is only committed once all nodes

K



232 Datenbank Spektrum (2022) 22:227–239

approve it. This is done by shipping transaction log records
periodically to all other Veritas nodes. The other nodes then
apply the log and verify the to-be-committed transactions.
Afterward, they broadcast their votes to all other nodes and
commit or abort the transaction based on the outcome of
a Cesar consensus [12].

Important to note is that existing shared DB systems dif-
fer in how they incorporate verifiability in their transaction
model. In general, we can distinguish two approaches: On-
line verification follows a synchronous approach, in which
a shared transaction can only be committed to the shared
database if the verification of the transaction succeeds (e.g.,
the majority of participants vote to commit). Offline veri-
fication (or deferred verification) is an asynchronous ap-
proach in which a transaction can be committed similar
to the traditional execution model without verification. Yet,
the systems allow participants to trigger the verification pro-
cess after some delay to verify multiple TXs at once and
amortize the verification overhead. Moreover, some system
like FalconDB [15] even implement different models for
write and read transactions. That is, while write transac-
tions that update the state of the shared DB are verified
synchronously, FalconDB employs offline verification for
read-only queries.

While verification thus plays a crucial role in shared
databases, existing benchmarks are not able to determine
the overhead involved in verification. This is because tradi-
tional benchmarks only measure the time it takes to commit
a transaction and are not aware of additional verification
steps that potentially need to be triggered asynchronously.
To address this issue and be able to compare the perfor-
mance and cost of verification in detail we propose to in-
clude an additional workload category (i.e., a verification
workload) in our benchmark. This workload category anal-
yses the overhead of verification under different setups (i.e.,
online vs. offline), as will be explained in the next section.

4 A New Benchmark Design

To address the unique characteristics and capabilities of
shared databases discussed before, we envision a new stand-
ardized benchmark that evaluates shared database systems
end-to-end. In the following, we will first give an overview
of our proposed benchmark design before we present initial
concrete ideas on how to realize such a benchmark.

4.1 Overview

As we discussed previously, shared databases come with
new capabilities (cf. Sect. 2.2) that are essential to support
the different participants (i.e., data owner, auditor) of the
system. In order to include these aspects in our benchmark

Fig. 3 High-level benchmark design. Our benchmark defines three
main workload types (Application, Verification, Audit) with novel
benchmark dimensions

design, we suggest introducing three different workload cat-
egories (application, verification, and auditing) as shown
in Fig. 3. While the application workload models the core
(OLTP-)workload of organizations involved in data sharing,
the verification and auditing workload focus on more spe-
cific aspects: The verification workload aims to reveal the
overhead of different verification schemes implemented in
data sharing systems (e.g., online vs. offline verification).
The auditing workload models the access patterns of an
auditor which is much more read-heavy and scan oriented
since it needs to go over a long history of data updates to
see where potential issues (e.g., illegal data modifications)
occurred. Overall, we envision that a benchmark execution
has to include the application workload, while the other
two categories are optional. This (modular) approach of
workload categories enables the usage of the benchmark
for systems that do not offer a certain capability (e.g., au-
diting).

4.2 Systems Under Test

Besides studying the effects of the paradigm shifts, our new
benchmark allows us to analyze different existing architec-
tures for shared databases that come with very different
overheads. To reveal these overheads, our benchmark de-
fines three important dimensions (i.e., the number of par-
ticipants, the fraction of shared transactions, as well as the
read/write ratio) that we evaluate for each workload cate-
gory as shown in Fig. 3. As we discuss later, these dimen-
sions have a significant impact on the performance of a data
sharing system. For example, the number of participants can
have a severe impact on the overall system performance in
terms of throughput and latency. To make the importance
of our dimensions more clear, in the following sections we
consider two architecture stereotypes for the systems under
test (i.e., the shared database systems) depicted in Fig. 4 as
examples1:

Centralized Architecture. In this architecture, multiple
organizations access the same shared database platform.

1 This is not meant to be an exhaustive list. In fact, the principled anal-
ysis of possible architectures for shared databases is an interesting area
for future work.

K



Datenbank Spektrum (2022) 22:227–239 233

Fig. 4 Architecture stereotypes used as examples. In the centralized
architecture (left) all participants access the same shared DB platform.
The decentralized approach (right) removes the need for a central plat-
form. Instead, every organization operates its own DBMS node and
additional protocol are in place to keep all nodes in sync. Depending
on the chosen architecture we expect systems to exhibit different be-
haviors in the benchmark

The central DBMS usually provides additional verifiability
and auditability guarantees to establish trust in the plat-
form and among the participants. Examples for such an
architecture are Microsoft’s SQL Ledger [25] or Alibaba’s
LedgerDB [26].

Decentralized Architecture. This architecture eliminates
the requirement for a central entity that provides the shared
database platform. Instead, every participating organization
is in charge of operating its own DBMS node that stores
a copy of the shared data as is the case in many of the
proposed hybrid-blockchain-database systems. Verifiabil-
ity and auditability guarantees are provided via additional
protocols, such as consensus protocols. Recent examples
for this architecture are systems like Veritas [12] or Fal-
conDB [15].

Both of these architectures might show differences and
commonalities when evaluated with a specialized bench-
mark for shared DBs. Lastly, note that due to the funda-
mental shift in the trust model, shared databases come with
new security and compliance challenges (e.g., in the context
of data usage). However, “benchmarking” security is known
to be hard or even impossible [27]. Hence, in the following,
we will focus on evaluating the performance characteristic
and regard defining suitable security evaluation frameworks
for shared DBs as an important area of future work.

4.3 Workload & Data Definition

As mentioned before, our benchmark design proposes three
workload categories to evaluate the performance of a shared
database; i.e., the system under test. The categories address
the different capabilities of shared database systems and
include application, verification and audit workloads. In the
following, we will first discuss the application workload –
the mandatory part of our benchmark. For the application
workload, we will also discuss how the novel benchmark

dimensions (e.g., participant scalability) can help to analyze
shared DB systems. After that, we will focus on the main
characteristics of the remaining two workload categories.
However, for these workloads, we will provide fewer de-
tails.

4.3.1 Application Workloads

Application workloads usually model a real-world use case
and corresponding database queries that are executed by
clients (also called terminals). Since we focus on OLTP-
style workloads for shared databases, we believe that a clas-
sical benchmark such as TPC-C and its workload patterns
(i.e., the transaction mix and data access patterns) is ac-
tually a good starting point2. However, it can clearly not
be used out of the box without any modifications for data
sharing since the TPC-C benchmark models the activities
of one organization only – a wholesale supplier, who ac-
cepts product orders at and for different warehouses. In the
following, we thus explain how the application workload of
TPC-C can be adapted to model multiple organizations as
well as which metrics we aim to report.

Data Model and Workload Mix. In order to model an
OLTP-workload for shared databases, we need to define
multiple data owners in the TPC-C workload. We think
that this comes naturally for TPC-C since the data model
is already partitioned by warehouse. As such, to model dif-
ferent owners and be able to scale participants at the same
time, we assign each warehouse to a different data owner
(i.e., each warehouse belongs to a different organization).
To reflect this change in the data model, we suggest extend-
ing the TPC-C data model to use private and shared tables
as shown in Fig. 6.

The figure illustrates that we adopt the classical TPC-C
data model and additionally partition the data into shared
and private tables (i.e., data). For example, the four green
relations in Organization A’s database (warehouse,
district, customer, item) are only written to by
Organization A – they represent private data. To support
certain transaction types (e.g., new-order that queries
a price of an item) read-access on specific columns and
rows can be allowed for other organizations. However,
the five red relations (stock, order-line, new-
order, order and history) are written to by multi-
ple owners to support the concept of remote order-lines in
TPC-C. A remote order-line is an item that is supplied by
a different warehouse, resulting in, e.g., a corresponding
stock update for that other warehouse. To support this stock
update in a remote warehouse (of another organization),
we define a shared stock table that contains the stock

2 We use TPC-C as a concrete example in this paper, but we envision
that other benchmarks can and will be used similarly.

K



234 Datenbank Spektrum (2022) 22:227–239

Fig. 5 Application workload to
measure the end-to-end system
performance. We propose to
use the TPC-C benchmark as
starting point and re-use its per-
formance metrics (e.g., through-
put). However, we introduce
new benchmark dimensions
(Participant Scalability, Shared
Transactions, Write Ratio) to
help uncover differences in the
performance of different shared
DB systems

information of any shared item. This corresponds to a par-
titioning of the stock table to private stock-information
for items that are never ordered by other warehouses (rep-
resented by the green/red stock table in organization A’s
DB) and shared stock-information for items that can be part
of a remote-order line (represented by the red stock table
in the shared DB).

To fully support, e.g., the new-order transaction
profile, we similarly partition the other involved tables
(order-line, new-order, order) into a private
and shared table. Transactions that do not include any
remote order-lines can be simply executed using only pri-
vate tables. Any new-order transaction, however, that
contains at least one remote order-line will be executed as
a shared transaction. This involves writing to the shared
new-order, order and order-line tables. Note
that slight modifications to the transaction profiles are re-
quired for certain TXs (e.g., the payment TX) to avoid
access to private information in the warehouse table
for example. However, a detailed discussion of necessary
changes to the transaction profiles is out of scope for this
paper.

In addition to the data model, we need to specify a work-
load mix to include such shared transactions. Here, we again
propose to rely on the TPC-C transaction mix with its five
transaction types and the ratio of remote order-lines that is
defined in the benchmark. However, as discussed later, the
main difference is that we propose to change the ratio de-
liberately to vary the fraction of shared TXs in a workload
mix as one important dimension of our benchmark.

Performance Metrics. We suggest reporting the classical
performance metrics like latency and throughput as bench-
mark metrics. As mentioned earlier, we decided not to at-
tempt to include the level of security or trust that a system
provides as a measurable metric. The reason for this is that it
is inherently hard to measure “security” or trust as discussed
in previous work [27] since these concepts require measur-
ing the effect of potentially unknown attacks. However, se-
curity-relevant system parameters like the used verification
strategy or certain data usage policies can impact the end-
to-end performance. Hence, we suggest reporting such se-

curity- and trust-related properties as part of the benchmark
report. In the future, this might also enable a classification-
based evaluation of a system’s security/trust as suggested
in [27].

In the following, we now discuss in more depth the new
benchmark dimensions (participant scalability, fraction of
shared transactions, and read/write ratio). We propose that
these dimensions are varied in our benchmark to reveal
the performance characteristics of a shared database. In the
following, we discuss the dimensions for the application
workload but the same dimensions can also be varied for
the verification and auditing workload.

Participant Scalability. Scaling the number of partici-
pants in a shared DB (Fig. 5 left) is different from sim-
ply adding additional database clients (terminals). This is
because the number of participants can be scaled indepen-
dently from the number of clients that generate the trans-
actions. As described earlier, in TPC-C we can model each
warehouse as an independent organization. Adding more
participants would then mean increasing the number of
warehouses. Note that, although it is the case for TPC-C,
increasing the number of participants does not necessarily
mean that the amount of data needs to be scaled.

Fig. 6 Adapted TPC-C data model. In our data model, it is assumed
that every warehouse belongs to a different organization. Therefore,
we modify the TPC-C data model to distinguish between private data
(green) and shared data (red). To support private-only transactions, i.e.
orders that do not include remote order-lines, every organization has
a private partition of the initially shared tables (green/red)

K



Datenbank Spektrum (2022) 22:227–239 235

Moreover, in contrast to scaling the number of clients,
increasing the number of participants (i.e., data owners) can
actually have a negative performance effect on some sys-
tems as shown in Fig. 5 (left). The figure shows that in the
case of a centralized architecture (green line) the system
might first benefit from adding participants since they, e.g.,
might first improve the utilization of the platform. In con-
trast to this, joining a new organization in a decentralized
system like Veritas [12], for instance, requires adding a new
node to the network which has been shown to reduce the
throughput of the system significantly [12] (yellow line).

Fraction of Shared Transactions. As discussed previ-
ously, we can adapt the data model of the TPC-C workload
to easily incorporate shared data and transactions in the
workload. More precisely, we can model, e.g., new-
order transactions that involve remote order-lines as
shared transactions since they access the shared tables
new-order, order, order-line and stock.

The goal of the new shared transactions dimension is to
investigate the performance overhead that a system incurs
when more and more shared transactions are executed. In
our TPC-C based benchmark, we can control this by grad-
ually increasing the ratio of remote order-lines in a new-
order transaction. As shown in Fig. 5 (middle), when
we do not include any shared transactions (i.e., 0% shared
TXs), a shared database system should reach the perfor-
mance of a traditional database, in the best case. Yet, with
an increasing amount of shared TXs, the performance might
vary depending on the design choices of a system. For
example, in a system with an online verification scheme,
a performance drop will be observable as soon as shared
transactions dominate transaction execution (due to high
verification costs). This is represented by the gray line in
Fig. 5 (middle). In contrast to that, a system using an off-
line verification scheme (red line), will first show a perfor-
mance drop but later stabilize. This is because the costly
verification runs asynchronously after transaction commit
and hence does not affect the commit throughput which is
measured by application workloads.

Read/Write Ratio. With the last benchmark dimension,
we plan to uncover differences in how systems handle veri-
fication for reads and writes. To do that, in the case of
TPC-C, for example, we propose to change the workload
mix to vary the ratio of writes in the workload. That is, the
classical TPC-C benchmark defines a fixed transaction mix
with mostly write-heavy transactions (44.5% new-order
and 43.1% payment). For the write-ratio benchmark di-
mension, we modify the transaction mix to gradually in-
crease the ratio of write-heavy transactions.

As shown in Fig. 5 (right), in a system that uses online
verification for both read and write-heavy transactions, we
expect to see a verification overhead even with a low write-
ratio. With an increasing write-ratio, however, the perfor-

mance might be further reduced due to a potentially more
costly verification of writes. In a system that uses a mixed
verification scheme (e.g. online verification for writes, off-
line verification for reads), we can expect that the system
performance is initially high because of the low write-ratio.
However, as soon as the write-ratio increases performance
will drop significantly due to the high verification cost of
writes.

4.3.2 Verification Workloads

As mentioned earlier, traditional database benchmarks only
measure the throughput of a system until the commit/abort
of a transaction and ignore any further verification steps
that can run asynchronously. As a consequence, when we
look at the performance of systems with an offline/deferred
verification scheme in the application workloads category,
we will see that those systems usually provide noticeably
better performance than online verification systems. The
reason for this is that online verification schemes verify
transactions before the commit of a transaction, while off-
line verification schemes can commit without waiting for
the outcome of the asynchronously triggered verification.

To address this issue and shed light on the verification
performance of such systems, we propose including addi-
tional verification workloads when benchmarking shared
databases. Verification workloads take the new transaction
model of shared databases into account and use the veri-
fication interfaces of these systems to measure both the
TX-execution and TX-verification performance for a given
transaction (type). Thereby, the same transaction types of
the application workloads can be used.

For instance, for TPC-C, we envision that the same work-
load mix as in the application workload category is exe-
cuted. However, to measure the verification performance,
we assume that the benchmark client is extended to use
the additional verify() interfaces that shared database
systems provide. That is, the benchmark runner not only
sends the transaction to the database but additionally calls
the verify() interface to retrieve the verification result
from the system. As shown by the multiple yellow lines
in Fig. 7, the benchmark includes repeating this measure-
ment for multiple verification settings or strategies depend-
ing on the SUT (e.g., different batching/delay settings). To
reveal this overhead, we propose to also measure the perfor-
mance without calling the verify() interface (blue line
in Fig. 7).

Depending on the given system, the performance of TX-
execution might be significantly affected by TX-verification
(e.g., if both processes contend on the same data structures)
and other factors (e.g., the number of participants). There-
fore, we suggest using the previous benchmark dimensions

K



236 Datenbank Spektrum (2022) 22:227–239

Fig. 7 Verification workloads measure verification effects that are not
visible in application workloads. For example, they help to detect dif-
ferences in the used verification strategies. While the workloads in this
category re-use traditional performance metrics (throughput/latency),
we make use of our previously described benchmark dimensions (e.g.,
participant scalability) to uncover performance differences of different
systems and verification strategies

in this workload category, as exemplified by the participant
scalability dimension in Fig. 7.

Note that analyzing the throughput and latency of verifi-
cation is important since many offline verification schemes
employ batching to amortize the verification overhead.
While this can improve the throughput, it can also deterio-
rate the latency. In fact, in some shared database systems,
the transaction latency increases significantly from mil-
liseconds to seconds when verification is involved. Because
of such effects, we thus propose to explicitly consider
the latency (in addition to throughput) as a metric. This
additional metric can help to reveal the difference between
verification and the commit latency (called latency delta).
This metric can be easily computed from the measured
latencies and is a practical way to visualize whether verifi-
cation or commit latency is affected more severely by, e.g.,
an increasing number of data owners.

4.3.3 Audit Workloads

Audit workloads are designed to assess the auditability ca-
pability of a shared database. Recap that auditability allows
an external auditor to check the correct behavior of the
shared DB system. Compared to verification, auditing can
be resource-intensive and require checking long histories
or more complicated proofs. Hence, some systems assume
a dedicated auditor component exists to perform this task.
This component is usually not involved in regular TX-pro-
cessing and hence does not have any previous state infor-
mation. Therefore, the auditing process involves retrieving
previous TX log entries from the system and applying them
to verify the data integrity and correct execution of trans-
actions.

To implement this procedure, we again envision extend-
ing the benchmark runner to encompass or mimic the role
of the audit component. Systmes for shared DBs, e.g., [26]
or [28], ususally do not offer dedicated audit() inter-
faces. Instead, they provide interfaces to retrieve a veri-

fiable part of the system’s transaction log that an auditor
can replay to compare it with the claimed state of the da-
tabase. Some systems, e.g., [25] also allow the use of the
verify() interface for auditing purposes, i.e., verifying
historical state and data.

Traditional auditing-related benchmarks or workloads
focus on the performance of the auditing process itself,
e.g., the auditing latency on the auditor component. While
this is an important aspect, we propose to focus on how
auditing affects the performance of the shared DB system.

To this end, we envision the following benchmarks in
the audit workload category (cf. Fig. 8).

Audit Frequency. As shown in the first plot of Fig. 8,
we suggest measuring the system throughput (e.g., using
an application workload from before) while changing the
frequency of audit requests. In the case of TPC-C, for ex-
ample, we propose running the standard workload mix and
initiating additional audit operations in parallel. However,
we do not necessarily focus on the audit performance as
suggested by other benchmarks. Instead, this benchmark
aims to investigate how auditing operations affect system
performance. We expect an influence on most systems’ per-
formance because auditing involves requesting proofs from
the DBMS, which has to generate proofs while serving
regular database transactions. These proofs can have differ-
ent forms ranging from historical transaction logs to more
concise cryptographic proofs. Depending on the proof ge-
neration overhead, we expect some systems to show a more
significant throughput degradation than others, as exempli-
fied by System B (yellow line).

We believe this dimension also has practical implications
for determining when and how often to schedule audits. For
example, in a system with a high impact on performance,
the benchmark helps to determine that it is best to schedule
audits less frequently, e.g., only during the night, to avoid
performance degradation.

Proof Generation. The aforementioned proof generation
overhead is analyzed in more detail by a dedicated exper-
iment. We suggest measuring the proof generation latency,

Fig. 8 Instead of measuring the audit performance of the auditor, we
propose to analyze the effect of auditing on the system performance.
Audit workloads consider different metrics from the perspective of the
shared DB, e.g., how transaction throughput is affected by an increas-
ing audit frequency (left) or how proof generation latency (middle) or
log-size (right) are influenced

K



Datenbank Spektrum (2022) 22:227–239 237

i.e., the time an auditor waits to get the requested proof
back, for a varying time duration. A longer time dura-
tion corresponds to a longer history which has to be au-
dited. However, often longer histories involve longer proofs,
which cause an increase in proof generation latency of the
systems (cf. middle plot in Fig. 8). For example, compared
to classical verification operations, proof generation can
take up to several hours [15]. We believe that discover-
ing and understanding these overheads can help engineers
to determine bottlenecks and optimize the proof generation
in a system.

Log Size. While it is possible to investigate the influ-
ence of all previously suggested benchmark dimensions,
we believe that the most relevant dimension for the audit
workloads is the write ratio. As previously, the reason is
that the write ratio has a direct impact on the number of
log entries that are written. However, some systems also
log read operations to, e.g., be able to audit data usage con-
trols. To be able to capture such differences, we propose
the experiment that is sketched in the left plot of Fig. 8.

The plot measures the log size after running a workload
for a fixed duration while varying the percentage of exe-
cuted write transactions. As before, in the case of TPC-C,
this can be achieved by varying the workload mix to in-
clude more or less write-heavy transactions. Fig. 8 (right)
visualizes that System C logs both read and write opera-
tions and, hence, has a constant log size. In contrast to that
the other systems only log write operations in the audit log.
This leads to an increasing log size the more write trans-
actions are executed. That log size can be a critical factor
for shared databases is indicated by the recent discussion
about blockchain-based systems. There, high storage re-
quirements hinder the addition of new nodes (i.e., partic-
ipants) that are resource-restricted to the network. Hence,
investigating the log-size and similar space amplifications
are important to support participant scalability.

4.3.4 End-to-end Comparison

For a better end-to-end comparison of various systems, we
additionally envision an extension of the application work-
loads to include specific verification and audit requirements.
This extension is different from the previous verification
and audit workload categories that allow an assessment of
varying verification/audit schemes within one system.

Similar to the rationale behind TPC-C, we believe real-
world usage scenarios should ideally drive this extension.
The specific verification and audit requirements could, for
example, be derived from particular industry practices or
legislations that mandate, e.g., the frequency of audits or the
timeliness of verification (which controls the applicability
of offline verification). We believe such requirements might
already exist in regulated industries, such as healthcare or

finance. However, in-depth industry know-how is required
to formulate realistic verification and audit requirements for
an end-to-end scenario. We believe our current verification
and audit workload categories can aid future discussions
with industry experts to define these requirements.

5 RelatedWork

Custom Benchmarks. As mentioned in the introduction, so
far most academic works introduced custom benchmarks
to evaluate and compare their proposed shared DB sys-
tem. Both Blockchain Relational Database and LedgerDB
use handcrafted benchmarks with custom workloads due
to their specific interfaces. Spitz [28], BlockchainDB [13],
Veritas [12] use a custom YCSB-like key-value bench-
mark to evaluate their system end-to-end without consid-
ering verification and audit workloads in particular. Fal-
conDB [15] uses the YCSB while ChainfyDB [14] and
Basil [29] use the Smallbank benchmark to investigate the
end-to-end performance of the system. These systems ad-
ditionally include custom benchmarks to assess verifica-
tion effects. The most extensive evaluation so far has been
done in GlassDB [30] which defines the new YCSB work-
loads workload-X and workload-Y to test verifiability
interfaces. Further, they extend the five types of transac-
tions in TPC-C to verified versions and add a new transac-
tion type called VerifiedWarehouseBalance which
determines the last 10 versions of the year-to-date bal-
ance of a warehouse. Their work also includes additional
microbenchmarks to evaluate verification or storage over-
heads. Our work differentiates from the above-mentioned
efforts by proposing a standard approach to benchmarking
shared DB systems.

Specialized Benchmarks. More similar to our work in
this regard are recent papers that introduce new specialized
benchmarks. LEDGERBENCH [21], for instance, is a spe-
cialized benchmark for Ledger Databases. It uses Small-
bank [18] and a custom range-experiment as macro bench-
marks. Further, they define a set of micro benchmarks to
evaluate the verification, audit, and storage overhead of
ledger databases. In contrast to them, we follow a more
modular benchmark design which allows us to incorpo-
rate other application workloads. Moreover, we introduce
novel benchmark dimensions, e.g., participant scalability,
that are critical for evaluating systems in a shared database
setting. Further, we propose to perform audit-related bench-
marks with a stronger focus on the system instead of an
auditor perspective. BLOCKBENCH [31] is a specialized
benchmark that targets private blockchains. While private
blockchains can be used as a shared database system, they
only represent a single possible architecture. Further, they
do not distinguish between local and shared transactions

K



238 Datenbank Spektrum (2022) 22:227–239

since all data and workloads on a blockchain are shared.
Another specialized benchmark is GDPRBench [32] which
defines workloads that correspond to the core entities of
GDPR: controller, customer, processor, and regulator. This
is similar to our approach of defining workload categories
that evaluate the system based on different capabilities.
However, a fundamental difference is that GDPRBench fo-
cuses on assessing GDPR-related features of database ma-
nagement system, while our focus is on the performance of
shared DBs.

6 Conclusions & FutureWork

In this paper, we presented our vision and ideas for a novel
benchmark design to evaluate shared database systems. Our
benchmark design takes the new paradigm shifts introduced
by shared DBs into account and also considers the unique
capabilities of those systems.

This is done by defining three categories of workloads,
namely application, verification, and audit workloads. Ap-
plication workloads represent existing database benchmarks
like TPC-C or YCSB and are used to evaluate the overall
performance of a system. Verification and audit workloads
zoom in to the two new characteristics of shared databases,
verifiability and auditability. They are designed to evalu-
ate the overhead of verification and auditing on the overall
system to enable a holistic evaluation.

Further, we introduce new benchmark dimensions that
are used in our workload categories to assess the effects
of typical shared database overheads. These dimensions in-
clude participant scalability, shared transactions, write ratio,
and audit frequency among others.

For the future, we envision two main areas that are worth
exploring in more detail. First, we plan to realize a reference
implementation for our proposed benchmark that enables
the evaluation of different shared DB systems. Second, as
mentioned earlier, we did not focus on data usage and com-
pliance capabilities of shared DB systems, since it is hard
to benchmark security in the classical sense. However, we
believe that developing frameworks for classifying and as-
sessing the security properties (similar to the approach fol-
lowed in [33]) is one important area of future work.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Funding The research leading to these results received funding from
the Federal Ministry of Education and Research (BMBF) under Grant
Agreements No 16KIS1267, 2WDG017A and its Research Insti-
tute ATHENE as well as from the Federal Ministry for Economic

Affairs and Climate Action (BMWK) under Grant Agreement No
01MK21002K.

Conflict of interest All authors certify that they have no affiliations
with or involvement in any organization or entity with any financial
interest or non-financial interest in the subject matter or materials dis-
cussed in this manuscript.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Publications Office of the European Union European Commission
launched the Support Centre for Data Sharing! – data.europa.eu.
https://data.europa.eu/en/news/european-commission-launched-
support-centre-data-sharing. Accessed 19 Aug 2022

2. European Comission Proposal for a REGULATION OF THE
EUROPEAN PARLIAMENT AND OF THE COUNCIL on Eu-
ropean data governance (Data Governance Act). https://eur-lex.
europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0767.
Accessed 19 Aug 2022

3. Microsoft News Center Adobe, Microsoft and SAP announce
the Open Data Initiative to empower a new generation of cus-
tomer experiences. https://news.microsoft.com/2018/09/24/adobe-
microsoft-and-sap-announce-the-open-data-initiative-to-empower-
a-new-generation-of-customer-experiences/. Accessed 19 Aug
2022

4. Ottaviano P (ed) National freight data portal one step closer to
reality. businesswire.com. https://www.businesswire.com/news/
home/20220310005691/en/National-Freight-Data-Portal-One-
Step-Closer-to-Reality. Accessed 19 Aug 2022

5. Port of Long Beach West coast ports support ’supply chain infor-
mation highway. https://polb.com/port-info/news-and-press/west-
coast-ports-support-supply-chain-information-highway-03-03-
2022/. Accessed 19 Aug 2022

6. International Air Transport Association ONE Record Homepage.
https://www.iata.org/one-record/. Accessed 19 Aug 2022

7. Catena-X Automotive Network e.V. Catena-X Homepage. https://
catena-x.net/en/. Accessed 19 Aug 2022

8. Hulsen T (2020) Sharing is caring: data sharing initiatives in health-
care. Int J Environ Res Public Health 17(9):3046. https://doi.org/10.
3390/ijerph17093046

9. Consumer Financial Protection Bureau CFPB outlines princi-
ples for consumer-authorized financial data sharing and aggrega-
tion. https://www.consumerfinance.gov/about-us/newsroom/cfpb-
outlines-principles-consumer-authorized-financial-data-sharing-
and-aggregation/. Accessed 19 Aug 2022

10. EUROPEAN COMMISSION COMMUNICATION FROM THE
COMMISSION TO THE EUROPEAN PARLIAMENT, THE
COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL
COMMITTEE AND THE COMMITTEE OF THE REGIONS
on a Digital Finance Strategy for the EU. https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=CELEX. Accessed 19 Aug 2022

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://data.europa.eu/en/news/european-commission-launched-support-centre-data-sharing
https://data.europa.eu/en/news/european-commission-launched-support-centre-data-sharing
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0767
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0767
https://news.microsoft.com/2018/09/24/adobe-microsoft-and-sap-announce-the-open-data-initiative-to-empower-a-new-generation-of-customer-experiences/
https://news.microsoft.com/2018/09/24/adobe-microsoft-and-sap-announce-the-open-data-initiative-to-empower-a-new-generation-of-customer-experiences/
https://news.microsoft.com/2018/09/24/adobe-microsoft-and-sap-announce-the-open-data-initiative-to-empower-a-new-generation-of-customer-experiences/
https://www.businesswire.com/news/home/20220310005691/en/National-Freight-Data-Portal-One-Step-Closer-to-Reality
https://www.businesswire.com/news/home/20220310005691/en/National-Freight-Data-Portal-One-Step-Closer-to-Reality
https://www.businesswire.com/news/home/20220310005691/en/National-Freight-Data-Portal-One-Step-Closer-to-Reality
https://polb.com/port-info/news-and-press/west-coast-ports-support-supply-chain-information-highway-03-03-2022/
https://polb.com/port-info/news-and-press/west-coast-ports-support-supply-chain-information-highway-03-03-2022/
https://polb.com/port-info/news-and-press/west-coast-ports-support-supply-chain-information-highway-03-03-2022/
https://www.iata.org/one-record/
https://catena-x.net/en/
https://catena-x.net/en/
https://doi.org/10.3390/ijerph17093046
https://doi.org/10.3390/ijerph17093046
https://www.consumerfinance.gov/about-us/newsroom/cfpb-outlines-principles-consumer-authorized-financial-data-sharing-and-aggregation/
https://www.consumerfinance.gov/about-us/newsroom/cfpb-outlines-principles-consumer-authorized-financial-data-sharing-and-aggregation/
https://www.consumerfinance.gov/about-us/newsroom/cfpb-outlines-principles-consumer-authorized-financial-data-sharing-and-aggregation/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX


Datenbank Spektrum (2022) 22:227–239 239

11. Eiss R (2020) Confusion over Europe’s data-protection law is
stalling scientific progress. Nature 584(7822):498–498. https://doi.
org/10.1038/d41586-020-02454-7

12. Allen L, Antonopoulos P, Arasu A, Gehrke J, Hammer J, Hunter
J et al (2019) Veritas: shared verifiable databases and tables in the
cloud. CIDR 2019:1–9. https://www.cidrdb.org/cidr2019/papers/
p111-gehrke-cidr19.pdf. Accessed 19 Aug 2022

13. El-Hindi M, Binnig C, Arasu A, Kossmann D, Ramamurthy
R (2019) BlockchainDB: a shared database on blockchains.
Proc VLDB Endow 12(11):1597–1609. https://doi.org/10.14778/
3342263.3342636

14. Schuhknecht FM, Sharma A, Dittrich J, Agrawal D (2021) chaini-
fyDB: How to get rid of your Blockchain and use your DBMS in-
stead. CIDR 2021:1–10. http://cidrdb.org/cidr2021/papers/cidr2021_
paper04.pdf. Accessed 19 Aug 2022

15. Peng Y, DuM, Li F, Cheng R, Song D (2020) FalconDB: blockchain-
based collaborative database. In: Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data
SIGMOD ’20. Association for Computing Machinery, Portland,
pp 637–652 https://doi.org/10.1145/3318464.3380594

16. El-Hindi M, Karrer S, Doci G, Binnig C (2020) TrustDBle: towards
trustable shared databases. In: Third international symposium on
foundations and applications of blockchain. virtual conference, pp
1–4 (https://scfab.github.io/2020/FAB2020_p7.pdf)

17. Transaction Processing Performance Council (TPC) TPC BENCH-
MARK C – standard specification – revision 5.11. Transaction pro-
cessing performance council. https://www.tpc.org/tpc_documents_
current_versions/pdf/tpc-c_v5.11.0.pdf. Accessed 19 Aug 2022

18. Alomari M, Cahill M, Fekete A, Rohm U (2008) The cost of seri-
alizability on platforms that use snapshot isolation. In: 2008 IEEE
24th international conference on data engineering, pp 576–585

19. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010)
Benchmarking cloud serving systems with YCSB. In: Proceedings
of the 1st ACM symposium on Cloud computing SoCC ’10. Asso-
ciation for Computing Machinery, New York, pp 143–154 https://
doi.org/10.1145/1807128.1807152

20. Xia Y, Yu X, Butrovich M, Pavlo A, Litmus DS (2022) Towards
a practical database management system with verifiable ACID
properties and transaction correctness. In: Proceedings of the 2022
international conference on management of data SIGMOD ’22.
Association for Computing Machinery, New York, pp 1478–1492
https://doi.org/10.1145/3514221.3517851

21. Zhang M, Yue C, Zhu C, Zhong Z (2022) LEDGERBENCH:
a framework for benchmarking ledger databases. Bull Tech Comm
Data Eng 45(2):11

22. El-Hindi M, Zhao Z, Binnig CACID-V (2021) Towards a new class
of DBMss for data sharing. In: Rezig EK, Gadepally V, Mattson
T, Stonebraker M, Kraska T, Wang F, al (eds) Heterogeneous data
management, polystores, and analytics for healthcare. Lecture notes
in computer science. Springer, Cham, pp 60–64

23. Ongaro D, Ousterhout J (2014) In search of an understandable
consensus algorithm. In: 2014 USENIX annual technical con-
ference (USENIX ATC 14). USENIX Association, Philadelphia,
pp 305–319 (https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ongaro)

24. Castro M, Liskov B (1999) Practical Byzantine Fault Tolerance.
In: 3rd Symposium on Operating Systems Design and Implemen-
tation (OSDI 99). USENIX Association, New Orleans (https://
www.usenix.org/conference/osdi-99/practical-byzantine-fault-
tolerance)

25. Antonopoulos P, Kaushik R, Kodavalla H, Rosales Aceves S, Wong
R, Anderson J et al (2021) SQL ledger: cryptographically veri-
fiable data in Azure SQL database. In: Proceedings of the 2021
international conference on management of data SIGMOD ’21.
Virtual Event China: ACM, pp 2437–2449 https://doi.org/10.1145/
3448016.3457558

26. Yang X, Zhang Y, Wang S, Yu B, Li F, Li Y et al (2020) LedgerDB:
a centralized ledger database for universal audit and verification.
Proc VLDB Endow 13(12):3138–3151. https://doi.org/10.14778/
3415478.3415540

27. Neto AA, Vieira M (2011) TO BEnchmark or NOT TO BEnch-
mark security: That is the question. In: 2011 IEEE/IFIP 41st Inter-
national Conference on Dependable Systems and Networks Work-
shops (DSN-W), pp 182–187

28. Zhang M, Xie Z, Yue C, Spitz ZZ (2020) A verifiable database
system. Proc VLDB Endow 13(12):3449–3460. https://doi.org/10.
14778/3415478.3415567

29. Suri-Payer F, Burke M, Wang Z, Zhang Y, Alvisi L, Crooks NB
(2021) Breaking up BFT with ACID (transactions). In: Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles SOSP ’21. Association for Computing Machinery, New
York, pp 1–17 https://doi.org/10.1145/3477132.3483552

30. Yue C, Dinh TTA, Xie Z, Zhang M, Chen G, Ooi BC, al al Y (eds)
GlassDB: practical verifiable ledger database through transparency.
arxiv. Number: arxiv:2207.00944. http://arxiv.org/abs/2207.00944.
Accessed 19 Aug 2022

31. Dinh TTA, Wang J, Chen G, Liu R, Ooi BC, Tan KL (2017) Block-
bench. A framework for analyzing private blockchains. In: Proceed-
ings of the 2017 ACM International Conference on Management of
Data SIGMOD ’17. Association for Computing Machinery, New
York, pp 1085–1100. https://doi.org/10.1145/3035918.3064033

32. Shastri S, Banakar V, Wasserman M, Kumar A, Chidambaram V
(2020) Understanding and benchmarking the impact of GDPR on
database systems. Proc VLDB Endow 13(7):1064–1077. https://
doi.org/10.14778/3384345.3384354

33. Vieira M, Madeira H (2005) Towards a security benchmark for da-
tabase management systems. In: 2005 International Conference on
Dependable Systems and Networks (DSN’05), pp 592–601

K

https://doi.org/10.1038/d41586-020-02454-7
https://doi.org/10.1038/d41586-020-02454-7
https://www.cidrdb.org/cidr2019/papers/p111-gehrke-cidr19.pdf
https://www.cidrdb.org/cidr2019/papers/p111-gehrke-cidr19.pdf
https://doi.org/10.14778/3342263.3342636
https://doi.org/10.14778/3342263.3342636
http://cidrdb.org/cidr2021/papers/cidr2021_paper04.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper04.pdf
https://doi.org/10.1145/3318464.3380594
https://scfab.github.io/2020/FAB2020_p7.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3514221.3517851
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://doi.org/10.1145/3448016.3457558
https://doi.org/10.1145/3448016.3457558
https://doi.org/10.14778/3415478.3415540
https://doi.org/10.14778/3415478.3415540
https://doi.org/10.14778/3415478.3415567
https://doi.org/10.14778/3415478.3415567
https://doi.org/10.1145/3477132.3483552
http://arxiv.org/abs/2207.00944
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.14778/3384345.3384354
https://doi.org/10.14778/3384345.3384354

	Towards a Benchmark for Shared Databases [Vision Paper]
	Abstract
	Introduction
	Shared Databases
	Fundamental Paradigm Shifts
	New Capabilities
	Shared Tables
	Verifiability
	Data Usage & Compliance
	Auditability


	Shortcomings of Existing Benchmarks
	New Workload Requirements
	Other Forms of Scalability
	Private and Shared Data
	New Transaction Model

	A New Benchmark Design
	Overview
	Systems Under Test
	Workload & Data Definition
	Application Workloads
	Verification Workloads
	Audit Workloads
	End-to-end Comparison


	Related Work
	Conclusions & Future Work
	References


