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Abstract This work presents concepts and algorithms for the simulation of dynamic fractures with a Lattice
Boltzmann method (LBM) for linear elastic solids. This LBM has been presented previously and solves the
wave equation, which is interpreted as the governing equation for antiplane shear deformation. Besides the
steady growth of a crack at a prescribed crack velocity, a fracture criterion based on stress intensity factors
has been implemented. This is the first time that crack propagation with a mechanically relevant criterion
is regarded in the context of LBMs. Numerical results are examined to validate the proposed method. The
concepts of crack propagation introduced here are not limited to mode III cracks or the simplified deformation
assumption of antiplane shear. By introducing a rather simple processing step into the existing LBM at the
level of individual lattice sites, the overall performance of the LBM is maintained. Our findings underline the
validity of the LBM as a numerical tool to simulate solids in general as well as dynamic fractures in particular.

Keywords Lattice Boltzmann method · Solids · Dynamic fracture mechanics · Computational engineering ·
Computational solid mechanics

1 Introduction

Regarding solid bodies and structures, not only the deformation under external loads is of interest. Differ-
ent fields of science and engineering, such as geophysics or civil engineering, are also concerned with the
mechanism of fracture and the study thereof. Thus, a number of different numerical techniques for the sim-
ulation of dynamic crack propagation and other fracture related phenomena have emerged. More prominent
among these are the finite element method (FEM) [1,2] the boundary element method [3,4], or more recently
peridynamics [5,6] and phase field methods [7,8].
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Lattice Boltzmann methods (LBM) [9] are another approach to simulations in engineering and are now
widely used in computational fluid dynamics. The principle, however, can be adapted to different problems
in various disciplines of science [10,11]. The usage of LBM in computational solid mechanics is recently
developed [12–15], and the application to problems involving fractures has been considered in [16–18]. LBMs
are mesoscale methods, employing elements of statistical mechanics, and work with a rather simple transport
mechanism on a regular grid. This promises good computational efficiency, especially when the algorithm is
parallelized [19,20]. This work regards the dynamics of antiplane shear, which reduces the Navier–Cauchy
equation to a 2D wave equation. Different LBMs [16,21,22] have been proposed to solve the problem of wave
propagation. Chopard and Luthi [23] even proposed an LBM to simulate crack growth in a simplified solid.
However, this model is not consistent with linear elastic solid mechanics, nor does it include a fracture criterion
based on theories of classical fracture mechanics.

In a previouswork [17], we have shown the LBM for antiplane shear, based on the formulation of Yan’s [21]
LBMforwaves, and applied this to a stationary crackwithmode III opening.We then improved thereonwith the
introduction of non-lattice conforming boundary conditions [24], which are highly relevant for the utilization
of the LBM in the field of fracture mechanics.

Now,we directly build on this by introducing the extension to dynamic crack propagation. It is our intention
to demonstrate that crack growth can be modeled with the LBM in a way that is in agreement with classical
fracture mechanics. However, the comparison with competing approaches such as finite element simulations
of phase field models for fracture [25,26] and the X-FEM [2] is beyond the scope of this work. In essence,
handling dynamic cracks is reduced to a post-processing of lattice sites, without a need for remeshing due to
the fixed grid. The criterion for crack propagation that we employ is based on the concept of stress intensity
factors (SIFs) by Irwin [27]. The SIF characterizes the load on the crack tip and is evaluated via the elastic
fields in the vicinity of the crack tip in our approach.

Our work is structured as follows. First, a short background on continuum and fracture mechanics is given
in Sect. 2, followed by a review of the LBM for waves in Sect. 3. Next, in Sect. 4, we present the algorithm and
discuss details regarding the implementation of crack propagation and fracture criteria. In Sect. 5, numerical
results are shown for two problems. In order to demonstrate the agreement with classical fracture mechanics
and to increase the reliability of our approach, we deliberately chose relatively simple problems for which
an analytical benchmark solution exists. In the first example, we do not employ any fracture criterion to
decide whether a crack will propagate, but simply force the crack to grow at a certain speed. For this case, we
demonstrate that the LBM is able to predict the elastic fields surrounding a moving crack tip, i.e., the SIF, in
agreement with analytic solutions.

In the second numerical example, the implementation of the fracture criterion is tested and it is shown that,
in our algorithm, a crack propagates if the fracture criterion is fulfilled.

Lastly, Sect. 6 summarizes the results. It also discusses the algorithm and its generalization to different LB
schemes, such as plane strain, or different propagation criteria.

2 Mechanics of linear elastic solids and fractures

This section summarizes the concepts of solid mechanics and fracture mechanics that the proposed new LBM
builds upon.

2.1 Antiplane shear deformation of linear elastic solids

A linear elastic body with shear modulus μ in a Cartesian x, y, z-coordinate system is considered, for which
the displacement field is restricted to u = w(x, y)ez . Here, x/y are the in-plane coordinates and ez is the unit
vector in the out-of-plane direction, see Fig. 1. This deformation, in which the out-of-plane displacement is
the only nonzero displacement component and is a function of the in-plane coordinates, is commonly referred
to as antiplane shear deformation.

For a linear elastic body with density ρ, the governing equation of the displacement field is the wave
equation

1

c2s

∂2w

∂t2
= ∂2w

∂x2
+ ∂2w

∂y2
, where cs =

√
μ

ρ
. (1)
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Fig. 1 Antiplane shear deformation of a linear elastic solid with outer normal vector n subjected to Neumann boundary conditions
t∗ and Dirichlet boundary conditionsw∗, cf. Schlüter et al. [17]. The outline of the body in the deformed configuration is indicated
by dashed lines

Fig. 2 Local crack tip coordinate system. The coordinate ξ represents orientation of the crack tip

2.2 Dynamic linear elastic fracture mechanics

For sufficiently brittle materials, the debonding of the material during fracturing is determined by the mechani-
cal fields directly in the vicinity of the so-called process zone in which material separation actually takes place.
It is commonly assumed that in such a case, the fields surrounding the process zone can still be determined with
sufficient accuracy by the theory of linear elasticity. Thus, fracture criteria are constructed by characterizing the
elastic fields in the vicinity of crack tips and comparing these to critical values, which need to be determined
in experiments for a given crack loading mode and material.

In this work, attention is restricted to one such fracture criterion in order to model crack growth in brittle
materials. The elastic fields surrounding the crack tip are obtained by the LBM and are fed into the fracture
criterion that eventually determines whether a crack propagates.

The criterion employed in this work is Irwin’s stress intensity factor (SIF) [27] criterion, which states that
for a given crack deformation, i.e., a particular crack opening mode, the elastic fields in the vicinity of the
crack field are dominated by a universal function in a polar coordinate system attached to the crack tip, see
Fig. 2, in which the only unknown is a single scalar parameter. This parameter determines the ‘intensity’ of the
loading in the process zone and is referred to as the SIF K . For pure antiplane shear loading, the displacement
field in the vicinity of the crack tip is approximated in terms of K by

w(r, ϕ) ≈ 2K

μ

√
r

2π
sin

(ϕ

2

)
. (2)

Equation (2) can be used to determine K for a given, i.e., simulated, displacement field. For example, in a
problem with a characteristic length scale L the displacement jump across a crack at a small distance r � L
away from the crack is given by

δ = |w(r, π) − w(r, −π)| = 4K

μ

√
r

2π
, (3)
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(a) (b)

Fig. 3 a Lattice representation B of the elastic solid and b and the associated lattice velocity vectors (lattice links) for a single
lattice point, cf. Schlüter et al. (2018) [17]

which can be solved for K as

K = δ
μ

4

√
2π

r
, for r � L . (4)

The current stress intensity can subsequently be compared to a material specific critical SIF KC at which crack
growth occurs in experiments in order to obtain a crack growth criterion given by

K = KC, (5)

i.e., a crack will grow if the SIF reaches the critical value.

3 Lattice Boltzmann method for the wave equation

The LB scheme for wave equations, as proposed by Yan [21], was already presented in [17] and summarized
in [24] as well. Therefore, only a short overview is given here, which aims at readers that are already familiar
with the LBM in general.

The body B is discretized by a lattice representation B with uniform spacing �h, see Fig. 3. A D2Q5
lattice scheme is used, meaning that five distribution functions f α per lattice site are regarded, one for each
lattice velocity cα , α ∈ {0, 1, 2, 3, 4}, defined as

c0 =
(
0
0

)
, c1 =

(
c
0

)
, c2 =

(
0
c

)
, c3 =

(−c
0

)
, c4 =

(
0

−c

)
, (6)

where c = �h/�t with a time step �t and c is closely related to the shear wave speed cs .
The lattice Boltzmann equation with the BGKW-collision operator [28,29] is given by

f α
(
x + cα�t, t + �t

) = f α(x, t) − �t

τ

[
f α(x, t) − f α

eq(x, t)
]
. (7)

For the wave equation, the distribution functions are connected to the particle velocity

∂w(x, t)

∂t
= ẇ(x, t) =

∑
α

f α(x, t) (8)

and the equilibrium distributions for the wave equation are defined as

f 0eq = ∂w

∂t
− 2λw

c2
,

f κ
eq = λw

c2
for κ ∈ {1, 2, 3, 4},

(9)
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Fig. 4 A section of the considered body where non-lattice conforming boundary conditions are applied at boundary lattice point
xB

where

λ = 1

�t (τ − 1/2)
and τ = �t.

Finally, the displacement w is computed from the particle velocity ẇ by an Euler integration scheme via

w(x, t) = w(x, t − �t) + �t ẇ(x, t). (10)

3.1 Non-Lattice conforming boundary conditions

Boundary conditions, which are able to accommodate arbitrary boundary geometries, are important for the
accurate representation of a crack within the body B. For the LBM used in this work, two strategies have been
proposed in [24]. A summary of the macroscopic strategy is given here, since boundary handling is relevant
to the algorithm proposed in Sect. 4.1.

The LB equation (7) is able to determine the evolution of the distribution functions, and thus, also the
evolution of themacroscopic displacement, in the interior of the domain.However, lattice points at the boundary
miss one or more lattice links, i.e., neighbor lattice points. These lattice points are denoted as boundary
lattice points xB. For boundary lattice points, not all distribution functions can be obtained from collision and
streaming, i.e., by the lattice Boltzmann equation (7). Instead, the missing distribution functions have to be
determined by the boundary conditions.

In this work, we employ a macroscopic algorithm that is capable of handling non-lattice conforming
boundary conditions. The algorithm approximates the displacement field w in the vicinity of a particular
boundary lattice point by means of a quadratic polynomial that is determined by the value of the boundary
condition as well as the displacement field at two interior points xI and xII, see Fig. 4. The value of the
displacement field at the interior points is determined by bilinear interpolation inside the cells CI and CII.
Evaluating the resulting polynomial at xB yields a linear equation in terms of the unknown displacements at
boundary lattice points for each xB. These equations are assembled in a linear system of equations of the form

S(t + �t)wB(t + �t) = R(t + �t), (11)

where S only contains information depending on discretization and geometry, and R also involves the current
value of the boundary conditions. Note that S is time dependent if geometry and lattice change over time as is
the case during crack propagation.

The system of equation is subsequently solved for the unknown displacements at the boundary lattice
points wB, which is then used to determine the value of the missing distribution functions according to

f α(xB, t + �t) = 1

nmiss

⎡
⎣w(xB, t + �t) − w(xB, t)

�t
−

∑
β∈FxB

f β(xB, t + �t)

⎤
⎦ ,

∀α /∈ FxB,

(12)
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(a) (b) (c)

Fig. 5 Handling of a dynamic crack (dark red) with processing of boundary points (filled circles). (Color figure online)

where FxB is the set of distribution functions that can be determined by the LB equation (7) and nmiss is the
number of missing distribution functions at xB that cannot.

The part of the algorithm that deals with the implementation of the boundary conditions determines the
macroscopic field w(xB, t + �t) at each boundary lattice point such that it is consistent with the boundary
conditions on the macroscopic scale. This is why, we refer to the algorithm as a ‘macroscopic’ algorithm for
the treatment of the boundary conditions.

4 Implementation

This section describes the algorithm and considerations for the implementation in general terms. Further details
can be found in Sect. 5, where numerical models and results are discussed.

4.1 Concepts and algorithm of crack propagation

The propagation of dynamic cracks is handled mostly in a rather simple geometric manner. An initial crack
is needed. It is modeled as a line and independent of the lattice. This also defines the initial crack tip, viewed
as a point, and the boundary conditions. Additionally, the direction ĉ of crack growth is needed. This restricts
problems to straight cracks, but in turn the lattice can be easily aligned to single cracks. Our implementation
allows two types of simulations. First, it is possible to prescribe crack growth at a constant rate ȧ = �a/�t.
The second option is to let crack growth be determined by the K -criterion, based on the SIF. For this case, the
critical value KC at which a crack will grow must be specified.

A time step1 of the LBM ends with the time integration (10), thus the displacement field is fully updated
at every point of the latticeB. The handling of crack propagation is then appended to the end as an additional
step. This step itself is subdivided, as described in Algorithm 1. First, the criterion is evaluated. This is trivial
for steady growth. For the K -criterion, the SIF is computed according to Eq. (4) and compared to the critical
value KC, see also Sect. 2.2. This procedure is repeated for multiple crack tips, if needed.

If the crack grows, the crack tip is moved along the direction ĉ. Subsequently, a new segment is created,
see Fig. 5a, between the previous and the new crack tip position, with length

�a = ȧ �t (13)

where v = ȧ/cs is the relative speed. Since this new segment acts as a boundary within the computational
domain, the adjoining lattice points need to be processed accordingly. Generally, these points must be found
first. For each point, every associated lattice link is examined, see Fig. 5b. These links can be treated as lines
connecting the point and its respective neighbor and are checked for an intersection with the crack segment.

1 The steps of the LBM, including boundary conditions, are summarized in Algorithm 1 of [24].
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Algorithm 1 Handling of dynamic cracks in the LBM

Require: criterion, direction d̂, ȧ for steady growth, KC for K -criterion

1: procedure CrackGrowth
2: propagation ← EvaluateCriterion
3: if propagation = True then
4: v ← ȧ · d̂
5: cr_tipprev ← cr_tip
6: cr_tip ← cr_tip + v�t
7: create cr_segment(cr_tipprev � cr_tip) � new crack segment
8: B ← CheckLinks(cr_segment)
9: ProcessPoints(B)
10: end if
11: end procedure

12: function CheckLinks(cr_segment)
13: letN (p) be the set of neighbors linked to lattice points p
14: let (Bprev) be the set of boundary points from previous increment
15: Q ← N (Bprev) � queue
16: B ← ∅ � new boundary points
17: V ← ∅ � visited
18: while |Q| > 0 do
19: let p ∈ Q
20: Q ← Q\{p} � pop p from queue
21: V ← V ∪ {p} � mark as visited
22: for all n p ∈ N (p) do
23: create link(p � n p2)
24: if cr_segment intersects link(p � n p) then
25: B ← B ∪ {p, n p}
26: Q ← Q ∪ N (n p)\V
27: end if
28: end for
29: end while
30: return B
31: end function

Any intersected link is subsequently severed, and no information is exchanged along it in further time steps.
Both associated points need to be processed for the boundary conditions and their implementation, as for
the initial crack. For the macroscopic implementation proposed in [18,30] and used throughout the numerical
models in Sect. 5, this entails extending and inverting the boundary coefficient matrix and expanding the vector
of interpolation coefficients by the newly found boundary points, see Fig. 5c. This task is computationally
expensive and requires more time, the longer the crack grows.

While the growth of the crack and determining severed lattice links is a universally applicable concept,
the processing of new boundary points needs to be adapted to different techniques of boundary handling, e.g.,
when a different LBM for solids is employed.

For this LBM, the lattice wave speed c should surpass the shear wave speed cs , i.e., c = κ cs , where κ � 1.
Since ȧ < cs , it follows that �a < �h/κ � �h. Thus, only one pair of new boundary points is expected, at
most, for straight cracks. Thus, the number of links to be checked can be severely reduced by regarding only
the immediate vicinity of the crack tip. A queue is generated from the neighbors of the last pair of boundary
points that have been found. For every point in the queue, the associated links need to be checked. Once a
severed link is found, the neighbors of the linked points are added to the queue. The number of checks to be
performed can reduced further by marking points that have been completely visited, i.e., all associated links
have been checked.

This type of processing also works for different kinds of LB methods, e.g., on D2Q9 lattices, and for cases
in which the direction of crack propagation is not prescribed.
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(a) (b)

Fig. 6 Functions introduced to define continuous parameters for the K -criterion

Fig. 7 Points (blue circles) along the crack (red line) at a distance r ∈ [rmin, rmin + �h] (gray area) are used for the evaluation
of the SIF. (Color figure online)

4.2 Further details for the K -criterion

Evaluation of stress intensity factors

The evaluation of the SIF is carried out according to Eq. 4. The crack opening displacement δ is computed as
the difference between w at two lattice points adjacent to, but not on the crack itself, see Fig. 7. For stationary
cracks, such as in [17,18], this is straight forward, with a clearly defined distance r from the crack tip. The
SIF can be determined in a post-processing step. However, with a growing crack r varies between time steps
and for the K -criterion especially. In addition, the SIF has to be evaluated in every time step. The lattice points
for evaluation are chosen, such that their distance r to the crack tip lies within an interval [rmin, rmin + �h].
As reported in [17,18], the results for the SIF are closer to analytical values when the evaluation occurs at a
distance from the crack tip, which is indicated here by the parameter rmin. The SIF K is rather sensitive to
r , thus for the K -criterion this parameter should be adaptable during runtime. Preliminary numerical results
showed a correlation with v, which can be modeled by

rmin = r0
1 − v

, r0 ≡ r(v = 0). (14)

This function is shown in Fig. 6a, together with the values of rmin used for steady growth in Sect. 5.1. It is
chosen purely from empirical considerations.

Regularization of the crack velocity

With the discretization of time, crack propagation is discretized as well, allowing the crack to grow by a finite
length �a within �t . When using the K -criterion to determine the crack propagation, K is evaluated at the
end of each time step and might surpass the critical value KC. This kind of overshooting the critical SIF should
be avoided since in real systems, the crack growth would continue to such a state that K � Kc.
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(a) (b)

(c)

Fig. 8 a Geometry of Mandal’s original problem [31] and b domain considered for the numerical examination. c Numerical
realization of this geometry

In order to reduce the unphysical overshoot of the SIF, the crack velocity is allowed to increase, up to the
maximum crack velocity of vmax. Here, the crack velocity is assumed to be a continuous function of K ,

v (K ; KC) ∼ vmax tanh

⎛
⎝

√(
K

KC

)4

− 1

⎞
⎠ , K > KC, (15)

see Fig. 6b.

5 Numerical results

This section shows numerical results to validate the algorithm and its implementation presented in the previous
section. The first examples verify the evaluation of K in a dynamical model. Since this has not been done
before with a propagating crack, a problem with an analytical solution is used for steady crack growth. The
second example delivers proof of concept for the K -criterion. The numerical results are assessed with regard
to plausibility.

5.1 Steady crack growth in a semi-infinite strip

Stress intensity factor

We consider a semi-infinite crack that grows at a constant rate ȧ < cs , i.e., v < 1, in a semi-infinite elastic
body, as shown in Fig. 8a. We consider the surface y = h to be subject to a Dirichlet boundary condition

w(x, h) = w0 (16)

and the (moving) crack faces to be traction-free, i.e.,

σyz(ξ < 0, η = ±0) = 0. (17)

In [31], it is shown that the steady-state stress intensity factor for the problem described above is

K = −μw0

√
2β

L(2βL + 1)
(18)



942 H. Müller

Table 1 Numerical and statistical data regarding steady crack growth for different values of v; K theo is the expected value from
(18). The mean with standard deviation σ and median with differences to the 25th and 75th percentile (cf. Fig. 9) are gathered
from experimental values for K , evaluated at rmin/�h

v rmin/�h K theo mean ±σ median −25% +75%

0.2 1.50 0.1627 0.1664 0.0083 0.1640 0.0036 0.0064
0.4 2.25 0.1609 0.1642 0.0057 0.1624 0.0035 0.0068
0.6 4.00 0.1569 0.1576 0.0029 0.1584 0.0033 0.0018
0.8 8.00 0.1477 0.1475 0.0007 0.1477 0.0008 0.0005

Fig. 9 SIFs for different crack velocities v in comparison with the analytical values of Eq. (18). The values represent the median
with errorbars indicating the range from the 25th to the 75th percentile

where
β =

√
1 − v2. (19)

The original problem depicted in Fig. 8a implies that w = 0 at the lower crack face. In this work, a slightly
different but related problem is simulated, see Fig. 8b. We apply

w(x,±L) = ± 1
2w0 (20)

at the top and bottom edges of a strip with width 2L in which a traction-free crack propagates at a steady
velocity in x-direction. Although only half the displacement, i.e., 1

2w0, is applied at the top and bottom edge
compared to the original analytical solution in which only the top edge is loaded, see Fig. 8a, we expect the
total crack opening and the stress intensity factor for the problem Fig. 8b to be the same as in the original
analytical solution, since both crack faces are displaced. The infinite strip problem from Fig. 8b is eventually
approximated by a finite domain in our simulations, see Fig. 8c.

Validation

The analytical solution for the SIF by Mandal [31] is based on the assumption of a quasi-stationary problem.
This implies certain constraints on the geometry of the domain and the prescribed boundary conditions. As
mentioned before, we approximate the infinite strip Fig. 8b by the domain Fig. 8c. The left and right edges, as
well as the crack faces, are free boundaries. On the upper and lower edge, the displacement is prescribed by

w(t) = 1
2w0 ·

{
sin2(π

2
t
t0

), t < t0,

1, t � t0.
(21)

Since sudden changes in the load can excite spurious waves, the displacement is gradually increased to its final
value of 1

2w0 at the time t0, where t0 is chosen in relation to the rate of crack growth. The crack continues to
grow in a quasi-stationary period until a time of t f > t0 + 15 cs/L.

The initial crack is rather short compared to rmin, with a length of 0.5L . But it grows during the start
up period and can be considered to be semi-infinite between t0 and t f . The position b of the right edge is
chosen, such that it does not influence the fields around the crack tip at t f , i.e., b(v) > vcs t f + 2L . Thus,
both the start up time t0 and the total length of the strip have to increase with the relative speed v in order to
yield comparable results to the infinite strip. This numerical experiment has been conducted for different crack
speeds, i.e., v = 0.2, 0.4, 0.6 and 0.8, with a lattice spacing of �h = L/16.
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Fig. 10 Domain for the validation of the K -criterion

As described in Sect. 4.2, rmin is adjusted for each value of v. But the actual value of r differs between time
steps within a certain interval, cf. Fig. 7, because the crack tip position changes relative to the lattice points that
are used to evaluate K . Due to the sensitivity of K regarding r , this causes K to fluctuate around the expected
steady value. Thus, a statistical evaluation is undertaken with a total of 300 data points, that are sampled for
t ∈ [t f − 15 cs/L, t f ]. From this data, the arithmetic mean value with the standard deviation and the median
value with the 25th- and 75th-percentile are gathered. This evaluation is compiled in Table 1, and the median is
also depicted in Fig. 9. The results are close to the analytical curve, each within the margin of error indicated
by the percentiles. This margin gets smaller for higher v. The values of K lie above the analytical values, with
the exception of v = 0.8, where it is easier to adjust rmin.

5.2 Validation of the K -criterion

The domain for this example is a rectangle of size 3L by 8L with an initial crack of length 1L along the x-axis,
within x = ±0.5L . The crack is located at 1L from the upper and 2L from the lower edge, as depicted in
Fig. 10. The lattice spacing is given by �h = 2−6 L , resulting in a total of 98,304 lattice points.

Both crack tips can propagate horizontally along the x-axis. For this example, KC = 0.0055μ
√
L is chosen,

with r0 = 0.03L ≈ 2�h for rmin in Eq. (14) and vmax = 0.85 as the maximum velocity. For all boundaries,
the macroscopic implementation of non-lattice conforming boundary conditions, as described in [24], is used.
The lower edge is subjected to homogeneous Dirichlet boundary conditions w∗ = 0. Both lateral edges and
the crack faces are traction-free with t∗z = 0, while the upper edge has a time-dependent Dirichlet boundary
condition prescribed by

w(t) = 0.01L

{
sin(π

8 t), t < 8 L
cs

,

0, t � 8 L
cs

,
(22)

which is a half-period of a sine-function. This excites an elastic wave, which then propagates through the
domain and is reflected at the outer edges and the crack.

Upon reaching the crack, the incident waves cause the SIF to rise, as can be seen in Fig. 11. When KC is
surpassed at a crack tip, the increment �a = v �t is computed by means of the function v(K ; KC) as defined
in Eq. (15). Figure 11 shows the SIF before the crack grows; thus, K can be still be higher than KC, in spite of
the modification (15). In the next iteration, K should be close to KC. However, since the configuration changes
dynamically, K can potentially surpass the critical value again.

The initial wave leads to an increase in K , such that both crack tips initiate crack growth. The subsequent
reflected wave also leads to a propagation of the crack tips. This time, K exceeds KC slightly more, due to
the changed geometry of the domain, and this results in a higher velocity. During a period of crack growth, K
stays at a value close to KC. After the wave has passed, crack growth halts since K decreases again.

5.3 Remarks on efficiency

To get an impression of the impact, the additional crack propagation step has on the efficiency of the LBM and
the added computational cost has been examined2. For this, the steady growth example with v = 0.4 has been

2 Intel Core I7-1165G7 @ 2.8GHz × 8; Python 3.9.13
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Fig. 11 Stress intensity factors, velocity of crack propagation and total additional length for the example of crack growth with
the K -criterion, with a maximum allowed velocity vmax = 0.85. Due to symmetry, only data for the crack tip propagating in
positive x-direction are shown

repeated. 2 000 time steps were computed with a total of 10 496 lattice points. The CPU time spent solely on
the crack propagation, but also on the computation in total, was measured. By design of the example, crack
growth occurs in every time step, but only accounts for about 2.8% of the CPU time.

The example with the criterion was assessed in a similar manner. It ran for a total of 5 050 time steps. Here,
0.7% percent of the CPU time was spent on crack propagation, since the crack only grows in a limited number
of time steps, thus effectively skipping the algorithm.

6 Discussion and conclusion

This work introduced a method to simulate dynamic crack propagation using an LBM for solids. In contrast
to the more established alternatives, such as finite element methods, it is based on the rather efficient concept
of processing very few lattice points in each time step. This keeps the regular lattice unchanged, without
the need to re-mesh the domain. While no intensive study on the efficiency has been undertaken so far, it
can be projected that the overall efficiency of the LBM is maintained. Only a small number of lattice points
is processed for the identification of new boundary points. This processing step is only needed if the crack
propagates. Furthermore, boundary conditions are not initialized in each time step that crack growth occurs.
Thus, little computational effort is added to the LBM due to this crack propagation step. This is corroborated
by the comparison of CPU times for the examples in Sect. 5.3. Additionally, the matrix inversion necessary
for the boundary conditions is a computationally expensive operation, which accounts for some of the needed
CPU time. With different boundary conditions, the additional cost could be reduced.

Two cases have been implemented and validated in numerical experiments. In the first one, steady growth
of a mode III crack has been compared to analytical results. This shows a good accuracy for the evaluation of
the SIF in a dynamical model, as described in Sect. 4.2. In the other case, crack propagation with a criterion
based on the SIF has been simulated. This example shows the expected results and delivers evidence that the
algorithm is conceptually capable of describing crack growth based on a fracture criterion. Difficulties stem
from the evaluation of K . It is very sensitive to changes in the fields surrounding the crack tip. However, the
algorithm introduced here is not tied to the evaluation of K . In fact, not only the method to obtain K , but the
criterion, as well as the entire LB scheme, could be exchanged and the underlying geometric considerations
would still hold.
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Moreover, to clarify the generalization beyond the reduced problem of antiplane shear deformation, it can
be noted that the algorithm is modular by design. Effectively, it only depends on the geometric aspects of the
lattice. Since crack propagation is appended as a post-processing step, the LB scheme can be swapped out,
as long as it supplies the data necessary for the evaluation of the criterion. Furthermore, the criterion can be
exchanged, e.g., to one regarding a mixed mode propagation based on KI and KII in plane strain.

As topics of future research, this generalization should be undertaken. More studies on the physicality
of the results and comparisons to the established numerical methods, especially regarding the computational
efficiency, would be of great interest as well.
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