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Abstract: We show that the effective mass of the Fröhlich Polaron is bounded below
by cα2/5 for some constant c > 0 and for all coupling constants α. The proof uses the
point process representation of the path measure of the Fröhlich Polaron.

1. Introduction and Results

The Polaron models the slow movement of an electron in a polar crystal. The electron
drags a cloud of polarization along and thus appears heavier, it has an “effective mass”
larger then its mass without the interaction. In the Fröhlich model of the Polaron, the
Hamiltonian describing the interaction of the electron with the lattice vibrations is the
operator given by

Hα = 1

2
p2 ⊗ 1 + 1 ⊗ N +

√
α√
2π

∫
R3

1

|k|
(
eik·x ak + e−ik·x a∗

k

)
dk

that acts on L2(R3) ⊗ F (where F is the bosonic Fock space over L2(R3)). Here x
and p are the position and momentum operators of the electron, N ≡ ∫

R3 a∗
k ak dk is the

number operator, the creation and annihilation operators a∗
k and ak satisfy the canonical

commutation relations [a∗
k , ak′ ] = δ(k − k′) and α > 0 is the coupling constant. The

Hamiltonian commutes with the total momentum operator p ⊗ 1 + 1 ⊗ Pf , where
Pf ≡ ∫

R3 ka∗
k akdk is the momentum operator of the field, and has a fiber decomposition

in terms of the Hamiltonians

Hα(P) = 1

2
(P − Pf )

2 + N +

√
α√
2π

∫
R3

1

|k| (ak + a∗
k ) dk

at fixed total momentum P (which act on F). Of particular interest is the energy-
momentum relation Eα(P) := inf spec(Hα(P)). It is known that Eα is rotationally
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symmetric and has a global minimum at P = 0, which is believed to be unique (DS20).
The effective mass meff(α) is defined as the inverse curvature at P = 0 i.e.

Eα(P) − Eα(0) = 1

2meff(α)
|P|2 + o(|P|2).

While the asympotics of the ground state energy Eα(0) in the strong coupling limit
α → ∞ are known, the asymptotics of the effective mass meff(α) still remain an im-
portant open problem. For the ground state energy, Donsker and Varadhan (DV83) gave
a probabilistic proof (using the path integral formulation) of Pekars conjecture (Pek49)
that states

lim
α→∞

Eα(0)

α2 = min
ψ∈H1,‖ψ‖L2=1

[
‖∇ψ‖2L2

− √
2

∫∫
R3×R3

dxdy
|ψ(x)ψ(y)|2

|x − y|
]
. (1.1)

There also exists a functional analytic proof by Lieb and Thomas (LT97), that addition-
ally contains explicit error bounds. Formal computations by Landau and Pekar (LP48)
suggest that

lim
α→∞

meff(α)

α4 = 16
√
2π

3

∫
R3

dx |ψ(x)|4, ψ minimizer of (1.1), (1.2)

and Feynman (Fey55) obtains the same α4-asymptotics (but not the prefactor) by com-
pletely different methods. Rigorous results on the effective mass have been obtained
only much later and they are significantly weaker: Lieb and Seiringer (LS20) show that
limα→∞ meff(α) = ∞ by estimating

1

2meff(α)
� lim

P→0

1

|P|2
(〈φα,P , Hα(P)φα,P 〉 − Eα(0)

)

with suitably chosen trial states φα,P . For models with stronger regularity assumptions
(excluding the Fröhlich Polaron), quantitative estimates on the effective mass were re-
cently obtained in (MS21). Our goal is to show that there exists some constant c > 0
such that for all α > 0

meff(α) � ca2/5 (1.3)

and thereby giving a first quantitative growth bound for the effectivemass of the Fröhlich
Polaron.

We give a short introduction into the probabilistic representation of the effective
mass. We refer the reader to (DS20) for details in this representation, and to (Moe06)
for a review covering functional analytic properties of the Polaron. An application of
the Feynman-Kac formula to the semigroup (e−T Hα )T � 0 leads to the path measure

Pα,T (dx) = 1

Zα,T
exp

(
α

2

∫ T

0

∫ T

0

e−|t−s|

|xt − xs | dsdt

)
W(dx) (1.4)

in finite volume T > 0, where W is the distribution of three dimensional Brownian
motion and the partition function Zα,T is a normalization constant. In particular, the
partition function can be expressed as the matrix element Zα,T = 〈�, e−T Hα(0)�〉,
where � is the Fock vacuum. This leads to Eα(0) = − limT →∞ log(Zα,T )/T , which
was applied (up to boundary conditions) in the aforementionedproof of Pekars conjecture
by Donsker and Varadhan. Spohn conjectured (Spo87) that the path measure (in infinite
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volume) converges under diffusive rescaling to Brownian motion with some diffusion
constant σ 2(α), and showed that the effective mass then has the representation

meff(α) = (σ 2(α))−1.

The existence of the infinite volumemeasure and the validity of the central limit theorem
were shown by Mukherjee and Varadhan (MV19) for a restricted range of coupling
parameters. The proof relies on a representation of the measures (1.4) as a mixture of
Gaussian measures, the mixing measure being the distribution of a point process on
{(s, t) ∈ R

2 : s < t} × (0,∞) which has a renewal structure. This approach was
extended in (BP21) to a broader class of path measures and a functional central limit
theorem, and, for the Fröhlich Polaron, to all coupling parameters (relying on known
spectral properties of Hα(0)). We also refer the reader to (MV21), (BMPV22), where
proofs are given that do not need the spectral properties of Hα(0). We use this point
process representation and derive a “variational like” formula for the effective mass (see
Proposition 3.2). We obtain the estimate (1.3) by minimizing over sub-processes of the
full point process.

Without additional effort, we can allow for a bit more generality and look at the
probability measures Pα,T on C([0,∞),Rd) defined by

Pα,T (dx) = 1

Zα,T
exp

(
α

2

∫ T

0

∫ T

0
g(t − s)v(xs,t ) dsdt

)
W(dx) (1.5)

where d � 2, v(x) = 1/|x |γ with γ ∈ [1, 2) and g : [0,∞) → (0,∞) is a probability
density with finite first moment satisfying supt � 0(1 + t)g(t) < ∞ and xs,t := xt − xs

for x ∈ C([0,∞),Rd) and s, t � 0. By the results in (BMPV22), these conditions are
sufficient for the existence of an infinite volume measure and the validity of a functional
central limit theorem in infinite volume. By the proof of the central limit theorem given
in (MV19)1 the respective diffusion constant σ 2(α) can also be obtained by taking the
“diagonal limit”, that is

σ 2(α) = lim
T →∞

1

dT
Eα,T [|X0,T |2].

Here Xt (x) := xt for any x ∈ C([0,∞),Rd) and t � 0, that is we denote by X the
random variable that is given by the identity on C([0,∞),Rd).

Theorem 1.1. There exists a constant C > 0 (depending on γ , g and d) such that

σ 2(α) � Cα−2/(2+d)

for all α > 0. Consequently, there exists a constant c > 0 such that the effective mass
of the Fröhlich Polaron satisfies meff(α) � cα2/5 for all α > 0.

As we will point out in Remark 2.1, the results obtained in (BMPV22) imply for the
Fröhlich Polaron with minor additional effort the existence of some c̃ > 0 such that
σ 2(α) � e−c̃α2

for reasonably large α.

1 It is generalizable to the measures above, see Remark 4.14 in (BP21).
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2. Point Process Representation

By using the identity 1
|x | =

√
2
π

∫ ∞
0 du e−u2|x |2/2 and expanding the exponential into a

series, Mukherjee and Varadhan (MV19) represented the path measure of the Fröhlich
Polaron as a mixture of Gaussian measures Pξ,u , the mixing measure �̂α,T being the
distribution of a suitable point process on {(s, t) ∈ R

2 : s < t}×[0,∞). In the following,
we give an introduction to the point process representation in the form given in (BP21).
We will additionally use the invariance of (1.5) under replacing v by vε(x) := v(x) + ε

for some ε � 0. While this transformation does not change the measure Pα,T , we will
obtain different point process representations depending on the choice of ε.

Let α,T be the distribution of a Poisson point process on � := {(s, t) ∈ R
2 : s < t}

with intensity measure

μα,T (dsdt) := αg(t − s)1{0 � s<t � T }dsdt.

By expanding the exponential into a series and interchanging the order of summation
and integration, we obtain for any A ∈ B(C([0,∞),Rd)) and any ε � 0

Pα,T (A) = 1

Z ε
α,T

∫
A
W(dx) exp

(
α

∫∫
0 � s<t � T

dsdt g(t − s)vε

(
xs,t

))

= 1

Z ε
α,T

∞∑
n=0

1

n!
∫

�n
μ⊗n

α,T (ds1dt1, . . ., dsndtn)

∫
A
W(dx)

n∏
i=1

vε

(
xsi ,ti

)

= ecα,T

Z ε
α,T

∫
N f (�)

α,T (dξ)

∫
A
W(dx)

∏
(s,t)∈supp(ξ)

vε

(
xs,t

)
(2.1)

where N f (�) is the set of finite integer valued measures on �. We will view ξ =∑n
i=1 δ(si ,ti ) ∈ N f (�) as a collection of intervals {[si , ti ] : 1 � i � n}.
The measure α,T can be interpreted in the following way: Consider a M/G/∞-

queue started empty at time 0 where the arrival process
∑∞

n=0 δsn is a homogeneous
Poisson process with rate α, and the service times (τn)n are iid with density g and
are independent of the arrival process. Consider the process η = ∑∞

n=1 δ(sn ,tn) where
tn := sn +τn is for n ∈ N the departure of customer n. Then the process off all customers
in η that arrive and depart before T has distribution α,T .

For ξ ∈ N f (�) we define

Fε(ξ) := EW
[ ∏

(s,t)∈supp(ξ)

vε(Xs,t )
]

and the perturbed point process ̂ε
α,T by

̂ε
α,T (dξ) := ecα,T

Z ε
α,T

Fε(ξ)α,T (dξ).

Then Eq. (2.1) yields the representation Pα,T (·) = ∫
̂ε

α,T (dξ)Pε
ξ (·) of Pα,T as a mixture

of the perturbed path measures

Pε
ξ (dx) := 1

Fε(ξ)

∏
(s,t)∈supp(ξ)

vε(xs,t )W(dx).
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The function Fε depends in an intricate manner on the configuration ξ , depending on
number, length and relative position of the intervals. Nevertheless, the perturbedmeasure
̂ε

α,T can still be interpreted as a queuing process by identifying (s, t) ∈ supp(ξ) with a
service interval [s, t] as indicated above. Under the given assumptions on g and v, ̂ε

α,T
can then be expressed in terms of an iid sequence of “clusters” of overlapping intervals,
separated by exponentially distributed dormant periods not covered by any interval. The
processes of increments can be drawn independently along these dormant periods and
clusters (according to the kernel (ξ, A) �→ Pε

ξ (A)). This yields the existence of the
infinite volume limit as well as the functional central limit theorem (BP21), (BMPV22).

In order to make the connection to the representation used in (MV19), we notice that
for all x ∈ R

d \ {0}

vε(x) = 1/|x |γ + ε =
∫

[0,∞)

νε(du)e−u2|x |2/2

where

νε(du) = 2(2−γ )/2

(γ /2)
uγ−1du + εδ0(du).

It will turn out to be useful to make the atoms of out point process distinguishable.
We will abuse notation and identify probability measures on N f (�) with symmetric
probability measures on �∪ := ⋃∞

n=0 �n . With Eq. (2.1), we obtain

Pα,T (A) = ecα,T

Z ε
α,T

∫
�∪

α,T (dξ)

∫
[0,∞)N (ξ)

ν⊗N (ξ)
ε (du)

∫
A
W(dx)e−∑N (ξ)

i=1 u2i |xsi ,ti |2/2

where N := ∑∞
n=0 n · 1�n . We define for ξ = ((si , ti ))1 � i � N (ξ) ∈ �∪ and u ∈

[0,∞)N (ξ) the Gaussian measures

Pξ,u(dx) := 1

φ(ξ, u)
e−∑N (ξ)

i=1 u2i |xsi ,ti |2/2 W(dx) (2.2)

where φ(ξ, u) := EW
[
e−∑N (ξ)

i=1 u2i |Xsi ,ti |2/2] and, for ξ ∈ �∪ with2 Fε(ξ) < ∞ the
measures

κε(ξ, du) := φ(ξ, u)

Fε(ξ)
ν⊗N (ξ)
ε (du)

and obtain

Pα,T (·) =
∫

�∪
̂ε

α,T (dξ)

∫
[0,∞)N (ξ)

κε(ξ, du)Pξ,u(·). (2.3)

We will view (s, t, u) ∈ � × [0,∞) as an interval [s, t] equipped with the mark u. In
contrast to the representation in (MV19), we draw a sample of the mixing measure �̂α,T
(which is the distribution of a point process on � × [0,∞)) in two steps: First, draw a
sample ξ according to ̂0

α,T and then draw marks u according to the kernel κ0(ξ, ·). This
added flexibility will be useful later. If we define

σ 2
T (ξ, u) := 1

dT
EPξ,u [|X0,T |2]

2 By finiteness of the partition function, we have Fε(ξ) < ∞ for α,T almost all ξ .
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we get with the previous considerations

1

dT
Eα,T [|X0,T |2] =

∫
�∪

̂ε
α,T (dξ)

∫
[0,∞)N (ξ)

κε(ξ, du) σ 2
T (ξ, u). (2.4)

Taking the limit T → ∞ in (2.4) then yields the diffusion constant i.e. the inverse of
the effective mass.

One can also express the perturbed measure ̂ε
α,T in terms of the path measures Pα,T

(a similar calculation was already made in (MV21, (4.18))). The Laplace transform of
̂ε

α,T evaluated at the measurable function f : � → [0,∞) is

∫
N f (�)

̂ε
α,T (dξ)e− ∫

� f dξ = 1

Z ε
α,T

∞∑
n=0

1

n!
∫

�n
μ⊗n

α,T (dsdt)EW
[ n∏

i=1

vε(Xsi ,ti )e
− f (si ,ti )

]

= 1

Z ε
α,T

EW
[ ∞∑

n=0

1

n!
(∫

�
μα,T (dsdt)vε(Xs,t )e

− f (s,t)
)n]

= 1

Z ε
α,T

EW
[
exp

(∫
�

μα,T (dsdt)vε(Xs,t )e
− f (s,t)

)]

= Eα,T

[
exp

( ∫
�

μα,T (dsdt)vε(Xs,t )
(
e− f (s,t) − 1

))]
.

That is, ̂ε
α,T is the distribution of a Cox process3 with driving measure μα,T (dsdt)

vε(Xs,t ) with (Xt )t ∼ Pα,T .
The introduction of vε with ε > 0, which in the context of (1.5) is a simple shift of

energy, thus creates a component of ̂ε
α,T that is quite easy to understand. Indeed, ̂ε

α,T is

the distribution of the sum ηα,T + ηε
α,T where ηα,T ∼ ̂0

α,T and where the Poisson point
processηε

α,T ∼ εα,T is independent ofηα,T .ηε
α,T leads to additional intervals, but on the

other hand, for given ξ , under the measure κε(ξ, ·) now u has components that are equal
to zero with positive probability. Intervals of ξ corresponding to these components will
be invisible to the measure Pξ,u as can be seen directly from its definition (2.2). These
two effects balance since Pα,T is independent of ε. However, given a realization ξ of
ηα,T +ηε

α,T it is not the case that κε(ξ, ·) just produces zero components of u precisely for
those intervals coming from ηε

α,T ; on the contrary, κε(ξ, ·) does not depend on whether
any given interval in ξ was produced by ηα,T or by ηε

α,T . The proof of Theorem 1.1 now
uses the following strategy:

(1) We show in Lemma 3.1 that u �→ σ 2
T (ξ, u) is decreasing along each coordinate

axis. This in particular implies that σ 2
T (ξ, u) increases if intervals are deleted from

ξ , which corresponds to setting the suitable components of u to zero.While not nec-
essary4 for the proof of Theorem 1.1, we also give a characterization of σ 2

T (ξ, u) in
terms of a L2-distance which emphasizes the variational type flavor of our approach
and might be useful for further refining the method.

3 I.e. ̂ε
α,T is the distribution of a point process that is conditionally on (Xt )t ∼ Pα,T a Poisson point

process with intensity measure μα,T (dsdt)vε(Xs,t ).
4 Lemma 3.3 later in the text can also be shown directly by using independence of Brownian increments.
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(2) The dependence of the distribution κε(ξ, ·) on the whole configuration ξ prevents us
from simply deleting intervals from ξ in order to obtain an estimate on the variance
in (2.4). To get around this, we fix some C(α) (to be determined later), and show
that κε(ξ, ·) stochastically dominates a kernel that assigns the marks 0 and C(α)

independently to each interval in ξ with suitable probabilities. This is done in Sect. 4.
(3) The two previous items mean that we obtain an upper bound on the value of (2.4)

when we first replace κε by our new kernel and then delete intervals from ξ . On the
other hand, for interval configurations ξ that consist only of non-overlapping inter-
vals, σ 2

T (ξ, u) can be computed explicitly, see Lemma 3.3. By deleting a sufficient
number of intervals (including all those coming from ηα,T ), and by optimizing over
the parameter C , we obtain our result.

Remark 2.1. For the Fröhlich Polaron, i.e. for d = 3, γ = 1 and g(t) = e−t for all
t � 0, the point process representation implies the existence of some constant c̃ > 0
such that σ 2(α) � e−c̃α2

for all reasonably large α > 0. Given ξ ∈ N f (�) and r ∈ R

let Nr (ξ) := ξ({(s, t) : s � r � t}) be the number of intervals that contain r . We
call t dormant under ξ , if Nt (ξ) = 0, else we call t active under ξ . Under ξ , the interval
[0, T ] can be decomposed into alternating dormant and active periods. Let

DT (ξ) := λ({t ∈ [0, T ] : Nt (ξ) = 0})
(where λ is the Lebesguemeasure) be the sum of lengths of all dormant periods in [0, T ].
One can easily convince oneself that σ 2

T (ξ, u) � 1
T DT (ξ) for all u ∈ [0,∞)n (this

follows from Proposition 3.2 later in the text as well). By applying Jensens inequality to
the measure 1

T dt Pα,T (dx) and using Brownian scaling in order to interpret the resulting
expression in terms of the derivative of ψ(α) := limT →∞ log(Zα,T )/T = −Eα(0), it
was shown in (BMPV22) that

lim inf
T →∞

1

T

∫ T

0
̂0

α,T (Nt = 0) dt = lim inf
T →∞

1

T

∫ T

0

Zα,t Zα,T −t

Zα,T
dt � e− 3

2αψ ′(α)
.

By Fubini’s Theorem ∫ T

0
̂0

α,T (Nt = 0) dt = Ê0
α,T

[DT ]

and thusσ 2(α) � e− 3
2αψ ′(α) by (2.4). By convexity ofψ and since limα→∞ ψ(α)/α2 ∈

(0,∞) we have

ψ ′(α) � ψ(2α) − ψ(α)

α
∈ O(α)

and hence there exists some c̃ > 0, α0 > 0 such that σ 2(α) � e−c̃α2
for all α � α0.

3. Properties of σ 2
T (ξ, u)

We derive a few properties of σ 2
T (ξ, u). First, we will show that σ 2

T (ξ, ·) is decreasing
with respect to the partial order on [0,∞)N (ξ) defined by u � ũ iff ui � ũi for all
1 � i � N (ξ). We will then express σ 2

T (ξ, u) in terms of a L2-distance and calculate
σ 2

T (ξ, u) in case that ξ consists of pairwise disjoint intervals.

Lemma 3.1. For fixed ξ ∈ �∪, the function σ 2
T (ξ, ·) is decreasing on [0,∞)N (ξ).
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Proof. Let ξ = ((si , ti ))1 � i � N (ξ) ∈ �∪. Then

∂σ 2
T (ξ, u)

∂ui
= ∂

∂ui

EW
[|X0,T |2e−∑N (ξ)

j=1 u2j |Xs j ,t j |2/2]

EW
[
e−∑N (ξ)

j=1 u2j |Xs j ,t j |2/2]
= −ui CovPξ,u (|X0,T |2, |Xsi ,ti |2).

By Isserlis’ theorem (and as the coordinate processes X1, . . ., Xd are iid under the
centered Gaussian measure Pξ,u)

CovPξ,u (|X0,T |2, |Xsi ,ti |2) = d · CovPξ,u ((X1
0,T )2, (X1

si ,ti )
2)

= 2d · EPξ,u

[
X1
0,T X1

si ,ti

]2 � 0.

��
In particular, σ 2

T (ξ, u) is increasing under deletion of a marked interval (si , ti , ui ) (set
ui = 0).

As already used in (MV19), the normalization constant φ(ξ, u) can also be expressed
in terms of a determinant of the covariance matrix of a suitable Gaussian vector. To see
this, let (Bt )t � 0 be an one dimensional Brownian motion and (Zn)n be an iid sequence
ofN (0, 1) distributed random variables, independent of (Bt )t � 0. Then, by Lemma 6.1
of the appendix, we have

φ(ξ, u) = 1

det(C(ξ, u))d/2

where C(ξ, u) is the covariance matrix of the Gaussian vector

(u1Bs1,t1 + Z1, . . ., uN (ξ) BsN (ξ),tN (ξ)
+ Z N (ξ)).

Proposition 3.2. The diffusion constant has the representation

σ 2(α) = lim
T →∞

∫
�∪

̂ε
α,T (dξ)

∫
[0,∞)N (ξ)

κε(ξ, du) σ 2
T (ξ, u)

where for ξ = ((si , ti ))1 � i � N (ξ) ∈ �∪ and u ∈ [0,∞)N (ξ)

σ 2
T (ξ, u) = 1

T
distL2

(
B0,T , span{ui Bsi ,ti + Zi : 1 � i � N (ξ)}

)2
. (3.1)

Proof. It is left to show Equality (3.1). We have

T σ 2
T (ξ, u) = − 2/d

φ(ξ, u)

∂

∂v
EW

[
e− 1

2 v|X0,T |2−∑N (ξ)
i=1

1
2 u2i |Xsi ,ti |2

]∣∣∣
v=0

. (3.2)

For v,w ∈ R let CT (ξ, u, v, w) ∈ R
(N (ξ)+1)×(N (ξ)+1) be the covariance matrix of the

Gaussian vector (u1Bs1,t1 +Z1, . . ., uN (ξ) BsN (ξ),tN (ξ)
+Z N (ξ),

√
vB0,T +wZ N (ξ)+1). Then,

with Lemma 6.1, Eq. (3.2) becomes

T σ 2
T (ξ, u) = − 2

d
det(C(ξ, u))d/2 ∂

∂v

1

det(CT (ξ, u, v, 1))d/2

∣∣∣
v=0

= 1

det(C(ξ, u))

∂

∂v
det(CT (ξ, u, v, 1))

∣∣∣
v=0
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since det(CT (ξ, u, 0, 1)) = det(C(ξ, u)). By using that the determinant is multilinear
in the rows and columns, we have

det(CT (ξ, u, v, 1)) = det(C(ξ, u)) + v det(CT (ξ, u, 1, 0))

and hence
∂

∂v
det(CT (ξ, u, v, 1))

∣∣∣
v=0

= det(CT (ξ, u, 1, 0)).

Finally, by Lemma 6.2

det(CT (ξ, u, 1, 0))

det(C(ξ, u))
= distL2

(
B0,T , span{ui Bsi ,ti + Zi : 1 � i � N (ξ)}

)2

which concludes the proof.

Lemma 3.3. Let ξ = ((si , ti ))1 � i � N (ξ) ∈ �∪ with [si , ti ] ⊆ [0, T ] for all 1 � i �
N (ξ) and [si , ti ] ∩ [s j , t j ] = ∅ for i �= j . Then, for u ∈ [0,∞)N (ξ)

σ 2
T (ξ, u) = 1 − 1

T

N (ξ)∑
i=1

τi +
1

T

N (ξ)∑
i=1

τi

τi u2
i + 1

where τi := ti − si for 1 � i � N (ξ).

Proof. We project B0,T onto span{ui Bsi ,ti + Zi : 1 � i � N (ξ)} and obtain

N (ξ)∑
i=1

E[B0,T · (ui Bsi ,ti + Zi )] ui Bsi ,ti + Zi

E[(ui Bsi ,ti + Zi )2] =
N (ξ)∑
i=1

τi ui

u2
i τi + 1

(ui Bsi ,ti + Zi ).

Hence

T σ 2
T (ξ, u) = dist

(
B0,T , span{ui Bsi ,ti + Zi : 1 � i � N (ξ)})2

= E

[(
B0,T −

N (ξ)∑
i=1

Bsi ,ti +
N (ξ)∑
i=1

1

u2
i τi + 1

Bsi ,ti − uiτi

u2
i τi + 1

Zi

)2]

= E

[(
B0,T −

N (ξ)∑
i=1

Bsi ,ti

)2]
+

N (ξ)∑
i=1

τi

(u2
i τi + 1)2

+
u2

i τ
2
i

(u2
i τi + 1)2

= T −
N (ξ)∑
i=1

τi +
N (ξ)∑
i=1

τi

τi u2
i + 1

.

��
In the situation above, 1− 1

T

∑N (ξ)
i=1 τi = 1

T λ
([0, T ]\⋃N (ξ)

i=1 [si , ti ]
)
, where λ denotes

the Lebesgue measure. Assume that τi � 1 and ui � C for all 1 � i � N (ξ)

where C > 0. Then

1

T

N (ξ)∑
i=1

τi

τi u2
i + 1

� 1

C2 + 1

1

T

N (ξ)∑
i=1

τi � 1

C2 + 1
. (3.3)

For a general configuration (ξ, u), the previous considerations allow us to obtain esti-
mates on σ 2

T (ξ, u) by considering subconfigurations (ξ ′, u′) of pairwise disjoint marked
intervals with intervals lengths exceeding 1 and marks exceeding C . In combination
with an application of renewal theory, this implies the following technical Lemma:
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Lemma 3.4. Let f : [0,∞) → [0,∞) be measurable with
∫ ∞
0 (1 + t) f (t) dt < ∞ and

f (t) = 0 for almost all t ∈ [0, 1]. For T > 0 let �T be the law of a Poisson point
process with intensity measure f (t − s)1{0<s<t<T }dsdt and let C > 0. Then

lim sup
T →∞

∫
�∪

�T (dξ)

∫
[0,∞)N (ξ)

δ
⊗N (ξ)
C (du) σ 2

T (ξ, u) � 1

1 +
∫ ∞
0 t f (t) dt

+
1

C2 + 1
.

Proof. In case that f = 0 a.e. the statement is trivial, so assume
∫ ∞
0 f (t) dt > 0. Let

β :=
∫ ∞

0
f (r)dr, ρ(t) := f (t)∫ ∞

0 f (r)dr

for t � 0. We consider the Poisson point process η = ∑∞
n=1 δ(sn ,tn) of a M/G/∞-

queue where the arrival process
∑∞

n=1 δsn is a homogeous Poisson point process with
intensity β, the service times (τn)n are iid, have density ρ and are independent of the
arrival process and tn := sn + τn is for n ∈ N the departure of customer n. Then
the restriction of η to the process of all customers that arrive and depart before T has
distribution �T . We inductively define i0 := 0, t0 := 0 and

in+1 := inf{ j > in : s j > tin }
for n � 0, i.e. customer in+1 is for n � 1 the first customer that arrives after the
departure of customer in . The waiting times (sin − tin−1)n � 1 are iid Exp(β) distributed
and are independent of the iid service times (tin − sin )n � 1 which have density ρ.
Notice that (tin )n � 0 defines a renewal process. Let NT := inf{n : tin � T }. By the
considerations after Lemma 3.3, we have

∫
�∪

�T (dξ)

∫
[0,∞)N (ξ)

δ
⊗N (ξ)
C (du) σ 2

T (ξ, u) � E

[ BT

T
+

1

T

NT −1∑
n=1

sin − tin−1

]
+

1

C2 + 1

where t0 := 0 and BT := T − tiNT −1 is the backward recurrence time of the renewal
process (tin )n at time T . By renewal theory, (BT )T � 0 converges in distribution as T →
∞. Let (Tk)k be a sequence in [0,∞) that converges to infinity. Then BTk /Tk → 0 in
probability as k → ∞. Hence, there exists a subsequence (Tk j ) j such that BTk j

/Tk j → 0
almost surely as j → ∞. By dominated convergence, E[BTk j

/Tk j ] → 0 as j → ∞.
As (Tk)k was arbitrary, we have E[BT /T ] → 0 as T → ∞. By renewal theory

NT /T → 1

E[ti1]
= 1

β−1 +
∫ ∞
0 rρ(r) dr

(3.4)

almost surely as T → ∞ and by the law of large numbers we thus have

1

T

NT −1∑
n=1

sin − tin−1 → β−1

β−1 +
∫ ∞
0 rρ(r) dr

= 1

1 +
∫ ∞
0 r f (r) dr

almost surely as T → ∞. By the dominated convergence theorem, we have convergence
in L1 as well and the statement follows.
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4. Estimation of the Kernel κε

While the component ηε
α,T ∼ εα,T is far easier to understand than the whole process,

the distribution of marks of ηε
α,T under κε still depends on the whole process. We get

rid of this problem by estimating κε by a suitable product kernel that marks the intervals
independent of each other. For t, C > 0 we define

hε(t) := EW [vε(Xt )] =
∫

[0,∞)

νε(du)
1

(1 + u2t)d/2

and

pε(C) := 2−γ /2

(1 + 4C2)d/2

(
1 − ε/hε(2)

)
.

Notice that there exists some constant cγ,d such that hε(t) = cγ,d t−γ /2 + ε for all t > 0.
In particular, ε/hε(2) < 1 and

Pε,C (t, ·) :=
{

δ0 if t > 2
pε(C)δC + (1 − pε(C))δ0 if t � 2

defines for t > 0 a probability measure. Fix ξ = ((si , ti ))1 � i � N (ξ) ∈ �∪ with
Fε(ξ) < ∞. We will show that κε(ξ, ·) stochastically dominates

κ̃ε,C (ξ, ·) :=
N (ξ)⊗
i=1

Pε,C (ti − si , · )

that is ∫
[0,∞)N (ξ)

κε(ξ, du) f (u) �
∫

[0,∞)N (ξ)

κ̃ε,C (ξ, du) f (u)

for any decreasing function f : [0,∞)N (ξ) → R. By Proposition 3.2 and the mono-
tonicity of σ 2

T (ξ, ·), we then obtain

σ 2(α) � lim sup
T →∞

∫
�∪

̂ε
α,T (dξ)

∫
{0,C}N (ξ)

κ̃ε,C (ξ, du) σ 2
T (ξ, u).

Since σ 2
T (ξ, u) is increasing under deletion of marked intervals we can further estimate

σ 2(α) � lim sup
T →∞

∫
�∪

εα,T (dξ)

∫
{0,C}N (ξ)

κ̃ε,C (ξ, du) σ 2
T (ξ, u). (4.1)

Notice that intervals with zero mark do not contribute to σ 2
T (ξ, u). Estimate (4.1) in

combination with Lemma 3.4 will yield Theorem 1.1.

Lemma 4.1. Let C > 0 and ξ = ((si , ti ))1 � i � N (ξ) ∈ �∪ with Fε(ξ) < ∞. Then
κε(ξ, · ) stochastically dominates κ̃ε,C (ξ, ·).
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Proof. Let J (ξ) := {1 � i � N (ξ) : ti − si � 2}. The statement is trivial for
J (ξ) = ∅, so assume J (ξ) �= ∅. We define

χ : [0,∞)N (ξ) → {0, C}J (ξ), χi := C · 1{ui � C}

for i ∈ J (ξ). Let π : [0,∞)N (ξ) → [0,∞)J (ξ) be the restriction map u �→ (ui )i∈J (ξ)

and let φ : [0,∞)N (ξ) → [0,∞)N (ξ) be defined by

φi (u) :=
{

ui if i ∈ J (ξ)

0 else

for u ∈ [0,∞)N (ξ). Let f : [0,∞)N (ξ) → R be decreasing and let f̃ : [0,∞)J (ξ) → R

be such that f̃ ◦ π = f ◦ φ. Then∫
[0,∞)N (ξ)

κε(ξ, du) f (u) �
∫

[0,∞)N (ξ)

κε(ξ, du) f̃ (χ(u))

∫
[0,∞)N (ξ)

κ̃ε,C (ξ, du) f (u) =
∫

[0,∞)N (ξ)

κ̃ε,C (ξ, du) f̃ (χ(u)).

Hence, it is sufficient to show that the distribution of χ underμ := κε(ξ, ·) stochastically
dominates the distribution ofχ under μ̃ := κ̃ε,C (ξ, ·). In order to show this, it is sufficient
(see e.g. (FV17, pp. 137–138)) to show that for any ω ∈ {0, C}J (ξ) and any i ∈ J (ξ)

μ(χi = C |χ j = ω j∀ j �= i) � pε(C) = μ̃(χi = C |χ j = ω j∀ j �= i).

To simplify notation, we assume w.l.o.g. that i = 1 ∈ J (ξ) and set τ1 := t1 − s1. Let
ω ∈ {0, C}J (ξ) be fixed and let A ⊆ [0,∞)N (ξ)−1 be such that {χ j = ω j ∀ j �= 1} =
[0,∞) × A. For u1 ∈ [0,∞) and u = (u2, . . ., uN (ξ)) ∈ [0,∞)N (ξ)−1 we have by
Corollary 6.3 of the appendix and since (C + u1)

2/2 � C2 + u2
1

φ(ξ, (u1 + C, u)) = EW
[
e−(C+u1)2|Xs1,t1 |2/2

N (ξ)∏
i=2

e−u2i |Xsi ,ti |2/2
]

� EW
[
e−C2|Xs1,t1 |2e−u21|Xs1,t1 |2

N (ξ)∏
i=2

e−u2i |Xsi ,ti |2/2
]

� 1

(1 + 4C2)d/2 φ(ξ, (
√
2u1, u))

since τ1 � 2 as 1 ∈ J (ξ). We get (by using the fact that the density of νε|(0,∞) with
respect to the Lebesgue measure is increasing)

μ
(
χ1 = C, χ j = ω j ∀ j �= 1

)

= 1

Fε(ξ)

∫
(C,∞)

νε(du1)

∫
A

ν⊗(N (ξ)−1)
ε (du)φ(ξ, (u1, u))

� 1

Fε(ξ)

∫
(0,∞)

νε(du1)

∫
A

ν⊗(N (ξ)−1)
ε (du)φ(ξ, (u1 + C, u))

� 1

(1 + 4C2)d/2

1

Fε(ξ)

∫
(0,∞)

νε(du1)

∫
A

ν⊗(N (ξ)−1)
ε (du)φ(ξ, (

√
2u1, u))
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= 2−γ /2

(1 + 4C2)d/2

1

Fε(ξ)

∫
(0,∞)

νε(du1)

∫
A

ν⊗(N (ξ)−1)
ε (du)φ(ξ, (u1, u))

= 2−γ /2

(1 + 4C2)d/2

1

Fε(ξ)

(∫
[0,∞)

νε(du1)

∫
A

ν⊗(N (ξ)−1)
ε (du)φ(ξ, (u1, u))

− ε

∫
A

ν⊗(N (ξ)−1)
ε (du)φ(ξ ′, u)

)

where ξ ′ = ((s2, t2), . . ., (sN (ξ), tN (ξ))). By Corollary 6.3, for any u1 ∈ [0,∞), u ∈
[0,∞)N (ξ)−1

φ(ξ, (u1, u)) � φ(ξ ′, u)

(1 + u2
1τ1)

d/2
� φ(ξ ′, u)

(1 + 2u2
1)

d/2

which yields
∫

[0,∞)

νε(du1)

∫
A

ν⊗(N (ξ)−1)
ε (du)φ(ξ, (u1, u))

�
∫

[0,∞)

νε(du1)

(1 + 2u2
1)

d/2

∫
A

ν⊗(N (ξ)−1)
ε (du)φ(ξ ′, u)

= hε(2)
∫

A
ν⊗(N (ξ)−1)
ε (du)φ(ξ ′, u).

Hence, we get

μ
(
χ1 = C, χ j = ω j ∀ j �= 1

)

� 2−γ /2

(1 + 4C2)d/2

(
1 − ε/hε(2)

) 1

Fε(ξ)

∫
[0,∞)

νε(du1)

∫
A

ν⊗(N (ξ)−1)
ε (du)φ(ξ, (u1, u))

= pε(C)μ
(
χ j = ω j ∀ j �= 1

)

which yields the claim. ��

5. Finishing the Proof of Theorem 1.1

Proof of Theorem 1.1. For C > 0 let ζ
ε,C
α,T be a Poisson point process on � × {0, C}

with intensity measure

αεg(t − s)1{0<s<t<T }dsdt Pε,C (t − s, du).

Then Estimate (4.1) becomes5

σ 2(α) � lim sup
T →∞

E[σ 2
T (ζ

ε,C
α,T )] � lim sup

T →∞
E[σ 2

T (ζ̃
ε,C
α,T )] (5.1)

where ζ̃
ε,C
α,T is the restriction of ζ

ε,C
α,T to {(s, t) : 1 � t − s � 2} × {C} and thus a

Poisson point process with intensity measure

αεpε(C)g(t − s)1{1 � t−s � 2}1{0<s<t<T }dsdt δC (du).

5 Here σ 2
T ((s1, t1, u1), . . ., (sn , tn , un)) := σ 2

T

(
((s1, t1), . . ., (sn , tn)), (u1, . . ., un)

)
.
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By Lemma 3.4 we have

lim sup
T →∞

E[σ 2
T (ζ̃

ε,C
α,T )] � 1

1 + αεpε(C)
∫ 2
1 rg(r) dr

+
1

C2 + 1
.

Choosing C = α1/(2+d) yields the claim.

Remark 5.1. Replacing the arbitrarily chosen cut-off parameters 1 and 2 for the lifespan
by general A < B and optimizing over A, B, C, ε leads to

σ 2(α) � inf
0<A<B, 0<C, 0<ε

(
1 +

2−γ /2α

(1 + 2BC2)d/2

εh0(B)

ε + h0(B)

∫ B

A
rg(r)dr

)−1

+ (1 + AC2)−1

which leads to the same exponent −2/(2 + d) for the decay in α. The non-dependency
of this exponent on γ is presumably the result from the estimate (C + r)γ−1 � rγ−1

that has been used in the proof of Lemma 4.1.

6. Appendix: Facts About Gaussian Measures

In the following, we collect a few facts about Gaussianmeasures (whichwere in a similar
form already applied in (MV19)) in order to be self contained.

Lemma 6.1. Let X = (X1, . . ., Xn) be a centered Gaussian vector with covariance
matrix C. Then

E

[ n∏
i=1

e−X2
i /2

]
= 1√

det(In + C)
.

Proof. Write C = O�OT with O ∈ R
n×n orthogonal and � ∈ R

n×n diagonal with
non-negative entries. Then C = AAT with A := O�1/2. Let Z = (Z1, . . ., Zn) ∼
N (0, 1)⊗n . Then AZ

d= X and thus

E

[ n∏
i=1

e−X2
i /2

]
= E

[
e−|X |2/2] = 1

(2π)n/2

∫
Rn

e−|Az|2/2e−|z|2/2dz

= 1

(2π)n/2

∫
Rn

e−∑n
i=1(1+λi )z2i /2dz

=
n∏

i=1

(1 + λi )
−1/2.

Since
∏n

i=1(1 + λi ) = det(I + �) = det(I + C) the statement follows. ��
Lemma 6.2. Let X = (X1, . . ., Xn) be a centered Gaussian vector with covariance
matrix C. Then

det(C) =
n∏

k=1

distL2(Xk, span{X1, . . ., Xk−1})2.
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Proof. Write Xn = Yn+Zn withYn ∈ span{X1, . . ., Xn−1} and Zn ⊥ span(X1, . . ., Xn−1).
Define Yi := Xi for 1 � i � n − 1. Let C ′ and C ′′ be the covariance matrices of
(Y1, . . ., Yn−1) and (Y1, . . ., Yn) respectively. Then, by the Leibniz formula for the de-
terminant

det(C) =
∑
σ∈Sn

sgn(σ )

n∏
i=1

E[Xi Xσ(i)]

= E[X2
n]

∑
σ :σ(n)=n

sgn(σ )

n−1∏
i=1

E[Xi Xσ(i)] +
∑

σ :σ(n) �=n

sgn(σ )

n∏
i=1

E[Xi Xσ(i)]

= (
E[Y 2

n ] + E[Z2
n]) ∑

σ :σ(n)=n

sgn(σ )

n−1∏
i=1

E[Yi Yσ(i)] +
∑

σ :σ(n) �=n

sgn(σ )

n∏
i=1

E[Yi Yσ(i)]

= E[Z2
n] det(C ′) + det(C ′′).

Since Yn ∈ span{Y1, . . ., Yn−1} we have det(C ′′) = 0 and the statement follows induc-
tively.

Corollary 6.3. For any centered Gaussian vector X = (X1, . . ., Xn) we have

E

[ n∏
i=1

e−X2
i /2

]
� 1√

1 + E[X2
n]
E

[ n−1∏
i=1

e−X2
i /2

]
.

Proof. Let Z = (Z1, . . ., Zn) ∼ N (0, 1)⊗n be independent of X . Then the covariance
matrix of Z + X is I + C , where C is the covariance matrix of X . By the previous two
lemmas,

E

[ n∏
i=1

e−X2
i /2

]
=

E

[∏n−1
i=1 e−X2

i /2
]

distL2
(
Xn + Zn, span{X1 + Z1, . . ., Xn−1 + Zn−1}

) .

The statement follows from

distL2(Xn + Zn, span{X1 + Z1, . . ., Xn−1 + Zn−1} � E[(Xn + Zn)2]1/2

=
√
1 + E[X2

n].
��
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