
Vol.:(0123456789)1 3

Production Engineering (2023) 17:237–245 
https://doi.org/10.1007/s11740-022-01173-4

MECHANICAL ENGINEERING

Quality prediction for milling processes: automated parametrization 
of an end‑to‑end machine learning pipeline

Alexander Fertig1   · Christoph Preis1 · Matthias Weigold1

Received: 13 September 2022 / Accepted: 21 November 2022 / Published online: 29 November 2022 
© The Author(s) 2022

Abstract
The application of modern edge computing solutions within machine tools increasingly empowers the recording and further 
processing of internal data streams. The datasets derived by contextualized data acquisition form the basis for the develop-
ment of novel data-driven approaches for quality monitoring. Nevertheless, for the desired data-driven modeling and data 
handling, heavily specialized human resources are required. Additionally, domain experts are indispensable for adequate 
data preparation. To reduce the manual effort regarding data analysis and modeling this paper presents a new approach for 
an automated parametrization of an end-to-end machine learning pipeline (MLPL) to develop and select the best-performing 
quality prediction models for usage in machining production. This supports domain experts with a lack of specific knowledge 
of data science to develop well-performing models for machine learning-based quality prediction of milled workpieces. 
The results show that the presented algorithm enables the automated generation of data-driven models at high prediction 
performances to use for quality monitoring systems. The algorithm’s performance is tested and evaluated on four real-world 
datasets to ensure transferability.
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1  Introduction

In production with machine tools it is increasingly possible 
to record and process the internally processed data at high 
frequencies. By means of context-sensitive data acquisi-
tion [11], it is becoming feasible to automatically evaluate 
the obtained high-quality datasets and to utilize these for 
developing new data-driven approaches to process optimi-
zation and quality monitoring. Nevertheless, for the desired 
data-driven modeling and data handling, heavily specialized 
human resources are required [24]. Therefore, it is important 
to use the domain knowledge of experts for adequate data 

preparation and to automate the subsequent development of 
ML-based predictive models as well as possible.

Based on the results from Fertig et al. [12] this paper 
presents a new approach for an automated parametrization of 
an end-to-end machine learning pipeline (MLPL) to develop 
quality prediction models for usage in machining production. 
The presented algorithm provides an individual identifica-
tion and parameterization of appropriate methods for feature 
extraction and selection. The obtained findings are used to 
build models for the prediction of the manufactured work-
piece quality. This enables domain experts with a lack of 
specific knowledge of data science to develop automatically 
predictive models based on an acquired production dataset. 
Further these models can be used in machine learning based 
quality monitoring systems.

2 � State of the art

In the field of quality prediction of machined workpieces, 
there are some research publications, which, as shown in 
Fertig et al. [12], can be divided into the three categories 
machining theory-based approaches, designed experiments 
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approaches, and artificial intelligence approaches accord-
ing to Benardos and Vosniakos [4]. The artificial intelli-
gence-based approaches consider on one side the possibil-
ity to use varying technology parameters to train models 
for the prediction of surface qualities. To improve the 
model predictions these approaches are extended by apply-
ing signals from accelerometers as model inputs [2, 14, 
20, 21, 28, 37]. In addition to the prediction of the surface 
quality schuh, schorr, ziegenbein and brecher illustrate 
studies for predicting quality parameters, such as diameter, 
roundness, and concentricity of drilled and reamed holes 
as well as straightness of milled surfaces using internal 
machine tool data as input for the models’ predictions [5, 
6, 34, 35, 38].

However, these approaches require manual and pro-
cess-specific data analysis. A high level of expertise in 
the area of data analysis and modeling is required for 
feature extraction and selection, as well as for the sub-
sequent development of prediction models. In addition, 
these solutions are individually created for the respective 
process, which requires the manual steps to be repeated 
when transferring them to further processes. For this rea-
son, methods from the field of automated machine learning 
(AutoML) are increasingly being used in production engi-
neering, which enable automated prediction models to be 
created based on a specific input dataset. However, exist-
ing approaches usually provide domain-unspecific solu-
tions. [24] Furthermore, to apply AutoML to time series 
classification, prior domain-specific feature extraction is 
required. The methods are designed to automatically select 
and train models by optimization of their hyperparame-
ters based on a given feature-based dataset [8, 18, 22]. To 
overcome these issues this paper introduces an algorithm, 
which considers domain-specific requirements to automate 
the parametrization of an implemented machine learning 
pipeline for developing quality prediction models.

3 � Machine learning pipeline

To develop the algorithm for automated pipeline param-
eterization, the contextualized machine tool data collected 
according to Fertig et al. [11] was used. A MLPL imple-
mented with Python serves as the basis, which takes seg-
mented time series data according to Fertig et al. [12] for 
each geometric element located on the workpiece along 
with the associated quality data. The module-based MLPL 
consists of submodules for feature extraction, feature 
selection, and machine learning, which can be parameter-
ized via a main PipelineConfig.json file.

3.1 � Feature extraction

In signal processing, the techniques for extracting relevant 
features to perform process monitoring tasks can be divided 
into time domain, frequency domain, and time-frequency 
domain methods [1, 26, 27, 36]. Typically, it is necessary to 
manually identify and select the appropriate features with 
respect to the underlying process. To reduce the manual 
effort and maximize the automation of the feature extraction 
process, the Python library TSFEL  [3] is used to compute 
the process describing features. The extracted features are 
defined using a features.json file, in which the avail-
able features are categorized by domain into statisti-
cal, temporal, and spectral features.

To additionally consider information from the time-
frequency domain an extension of TSFEL by the domain 
temporal-spectral is implemented. The extension 
applies the discrete wavelet transform (DWT) and Hilbert-
Huang transform (HHT) to the input time series data. The 
DWT decomposes the input signal into individual frequency 
bands by repeating high-pass and low-pass filtering. The 
decomposition level determines the number of transforma-
tion steps. In each decomposition level, the high-pass fil-
tered signal components are coded as wavelet coefficients. 
The low-pass filtered signal components finally serve as a 
basis for the subsequent decomposition step. The calculation 
of the wavelet coefficients c(�, s) within the DWT is done 
for discrete values of the scaling parameter s and shifting 
parameter � according to Eq. (1)

whereby x(t) corresponds to the time series under investiga-
tion and � represents the selected wavelet basis function [10, 
23, 29]. For the determination of characteristic features, the 
calculation of the mean, root mean square, standard devia-
tion, kurtosis, crest factor, and the peak to peak distance 
for the coefficient profiles of each decomposition level is 
performed according to  [36]. Additionally, the residual was 
taken into account during feature extraction.

The empirical mode decomposition as the initial step 
of the HHT decomposes the signal into a finite number of 
intrinsic mode functions (IMF) based on the sifting algo-
rithm. To identify an IMF, the local maxima are connected 
via a cubic spline to create the upper envelope. Similarly, the 
lower envelope is obtained by using the local minima. By 
averaging the two envelopes, the resulting time series m1 is 
obtained. The subtraction of m1 from the original signal x(t) 
results in the first IMF component h1 , which serves as input 
signal for the following iteration. These steps are repeated 
until a previously defined stopping criterion is reached. The 
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second step of the HHT, is the application of the Hilbert 
transform to the IMFs, which uses the resulting instantane-
ous frequencies and instantaneous amplitudes of the signal 
to form the energy-frequency-time spectrum. This is known 
as Hilbert-Huang Transform [15–17, 33]. Due to the high 
output dimension of the HHT matrix, the characteristic fea-
tures mean, root mean square, standard deviation, crest fac-
tor, peak to peak distance and absolute energy are calculated 
in the same manner as described above for the DWT [7, 31].

3.2 � Feature selection

A majority of the features obtained from the automated 
feature extraction based on Sect. 3.1 typically yield non-
relevant information regarding the prediction task or exhibit 
indifferent behavior under changing process conditions. 
Additionally, an enlarged number of input dimensions 
leads to an increased demand for training data and the risk 
of overfitting rises. Therefore, in order to achieve highest 
prediction performances with correspondingly high gener-
alization capability of the predictive models, subsequent to 
feature extraction, the designed feature selection algorithm 
(illustrated in Fig. 1) is applied. It is based on the presented 
feature selection method from Fertig et al. [12], which has 
been extended within this work to ensure a more general 
application. Initially, all features exhibiting a variance of 
0 across the analyzed dataset are removed by means of a 
variance threshold filter. The next step applies a set S of 
feature selection algorithms on the reduced feature set. S 
represents a subset of the implemented features selection 
algorithms (eg. S = 

[
uniStat, LogisRe

]
 , cf. Sect. 3.4). A final 

proprietary feature set (propFeatSet) is obtained for each 
geometric element (geomElem), located on a workpiece (cf. 
the workpiece shown in Fig. 3 consists of seven quality-rele-
vant geomElem) by the set of features which are selected by 
the previously defined amount of SWfs,prop feature selection 

algorithms. Thereby SWfs,prop (eg. SWfs,prop = 2 , cf. Sect. 3.4) 
can be varied from 1 to the quantity of implemented and thus 
available feature selection algorithms.

The implementation provides four selection algorithms, 
which can be combined arbitrarily. The first one consists 
of a univariate feature selection (uniStat) based on the 
determination of the mutual information between the fea-
ture vector and target variable. In addition, logistic regres-
sion (LogisRe) with elastic net regularization is utilized 
for feature selection. This regularization technique is par-
ticularly suited for a large number of features and a small 
number of training samples [39]. Lasso regression (Lasso), 
a shrinkade method, uses L1 and L2 regression penalty 
terms to shrink the coefficients of irrelevant features to 0. 
This model-based selection method allows a straightfor-
ward selection of the influential features by analyzing the 
model coefficients [13, 19]. For Lasso feature selection, the 
Least Angle Regression (LARS) algorithm developed by 
Efron et al. [9] is used to compute the coefficients, which 
calculates all Lasso estimates at high computational effi-
ciency. In particular, LARS shows its advantages in high-
dimensional datasets. Efron et al. [9] The fourth method for 
feature selection consists of the efficient wrapper approach 
boruta (Boruta). It aims to the identification of all relevant 
features for the prediction task. For this purpose, shadow 
features exhibiting random values are taken into account in 
addition to the real features. Finally, the feature selection is 
performed by comparing the feature importance, given by 
the used random forest, between the real and the shadow 
features. Kursa and Rudnicki [25]

3.3 � ML algorithms and optimization

Adapted from Fertig et al. [12] the 6 ML algorithms, Sup-
port Vector Machine (SVM), k-Nearest Neighbors (KNN), 
Ridge Regression classifier (RidgeRe), Gaussian Naive 
Bayes classifier (GNB) Decision Tree (DT), Multilayer 
Perceptron (MLP) and the 3 ensemble algorithms Random 
Forest (RF), Extra Trees classifier (XT), AdaBoost classi-
fier were implemented within the MLPL. The optimization 
of the hyperparameters for each algorithm is done using a 
grid search combined with stratified 3-fold cross-validation 
using precision as scoring function. For implementing the 
algorithms as well as the feature selection the python library 
scikit-learn was used [30].

3.4 � Interim conclusion

By using the underlying pre-processed internal data from 
the machine tool and quality assurance, the developed 
MLPL enables automated individualized modeling for each 
quality-relevant geomElem on a workpiece. The following Fig. 1   Schematic illustration of the feature selection algorithm [12]
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parameterization of the MLPL was applied by Fertig et al. 
[12]:

•	 feature extraction domains: statistical, tempo-
ral, spectral (cf. Sect. 3.1).

•	 feature selection : S = 
[
uniStat, LogisRe

]
 with 

SWfs,prop = 2 (cf. Sect. 3.2)
•	 scaling method: standardisation

The promising prediction results show the potential of the 
obtained models for quality prediction. Nevertheless, the 
numerous parameterization options of the MLPL lead to 
the assumption that the performance of the models can be 
further increased by suitable parameter combinations. After 
each run, 9 models are available for each geomElem. Thus 
the appropriate model suitable for the quality prediction 
must be selected to be used in the application. The presented 
algorithm in the following sections provides the automated 
parameterization of the MLPL via the PipelineConfig.
json to obtain and select the best suitable models for the 
quality prediction task.

4 � Algorithm for automated parametrization 
of MLPL

The objective of the automated parameterization is to deter-
mine the configuration that leads to the best-performing 
models using the MLPL for the given use case. In addition, 
for each geomElem, the appropriate model intended for use 
in data-based quality prediction will be selected, based on a 
domain-specifically elaborated scoring approach. This ena-
bles domain experts to efficiently create quality prediction 
models for individual workpieces and machine tools without 
additional manual intervention.

4.1 � Algorithm description

The developed algorithm consists of multiple consecutive 
optimization steps (optSteps), which are executed sequen-
tially to identify the optimal parameters gradually. The 
decision to perform a stepwise parameter optimization was 
motivated by the consideration that a full factorial imple-
mentation of the selected parameter combinations requires 
more than 600,000 MLPL runs, which leads to an unaccep-
table computational effort. After performing an optimiza-
tion step, the corresponding identified parameters are set 
and the optimized configuration is applied to perform the 
next optimization step. Fig. 2 shows the operation proce-
dure of the algorithm, which consists of running the MLPL, 
described in Sect. 3, with different configurations to identify 

the best-performing values for each parameter. The follow-
ing six optSteps are considered within the algorithm:

•	 Optimization of feature extraction 

1.1	optStepDWT : Optimization of DWT Hyperparam-
eters (basis-wavelet, decomposition level)

1.2	optStepHHT : Optimization of HHT Hyperparam-
eters (number of IMFs)

Fig. 2   Algorithm for automated parametrization of the MLPL
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2.	 Optimization of domain temporal-spectral
3.	 Optimization of domains and window function to 

use

•	 Optimization of feature selection 

4.	 Optimization of feature selection algorithms, 
SWfs,prop , and scaling method to use

•	 Final run with optimized parameter configuration of the 
MLPL 

5.	 Final run and seletion of the best-performing models 
per geomElem SWfs,prop

These are defined in a configTable_optSteps. For 
each optStep a separate configTable_optStep_runs 
provides the specified parameter values run_param to be 
set for the MLPL runs. Accordingly, the MLPL is iterated 
within an optStep according to the number of parameter 
combinations of the configTable_optStep_runs with 
individually adjusted parameter values. The results for each 
run are stored as a metrics report, which contains the result-
ing prediction metrics. Additionally, the MLPL provides 
the trained models for the corresponding run. Basically, the 
main concept consists of a modular and extensible design, 
which allows the algorithm to run through additional opti-
mization steps by extending the configTable_optSteps 
with the corresponding configTable_optStep_runs.

After performing an optimization iteration, the metric-
sReports are read for each run to rank and sort the results 
per geomElem following the developed scoring approach (cf. 
Sect. 4.2). These results are subsequently used to determine 
which parameter values lead to the highest performance met-
rics. Finally, the PipelineConfig gets reparameterized 
for the next optStep based on the identified parameters.

Both the DWT and the HHT exhibit hyperparameters, 
which need to be adapted to the characteristics of the avail-
able data for adequate feature extraction. For this purpose, 
the optStepDWT thus envisages runs under altered basis-
wavelets as well as decomposition levels. Included are the 
wavelet families daubechies, coiflet, symlet, biorthogonal 
with 9 shapes and the decomposition levels 3–7. Owing to 
the different processes resulting from the individual geom-
etry of each geomElem, individual DWT hyperparameters 
are selected for each geomElem, which leads to the param-
eterization of the created individual features.json 
configuration files. The same applies to the HHT, in which 
the number of IMFs (in this case 1–7) is selected individu-
ally for each geomElem. Following the determination of 
the individual hyperparameters, a subsequent decision is 
required on whether features extracted using HHT should be 
considered in addition to DWT based features. Preliminary 
tests showed that the DWT is considerably more powerful 
compared to the HHT in terms of prediction performance. 

The combination of both time-frequency methods yielded 
no improvement in the results. Since it cannot be excluded 
that in particular cases the additional use of HHT features 
may achieve better performance, the described optStep 2 
is included as well. The final step of optimizing the feature 
extraction is to select which domains should be included in 
the model building process. For the spectral domain, the 
Hanning, Hamming, and Blackman window functions are 
additionally examined to improve the quality of the spectral 
analysis [32]. The selection of domains to be considered 
is based on different subsets of the available domains. The 
subsets consist of each domain individually (4 subsets), the 
combinations of temporal-spectral with the other domains (3 
subsets) as well as all domains together (1 subset).

The feature selection is optimized based on the feasible 
combinations of the four implemented algorithms. SWfs,prop 
is adjusted according to the number of algorithms used per 
run. When using one feature selection method, a threshold 
SWfs,prop = 1 follows. Above two to four methods, SWfs,prop 
iterates between 2 and 4 respectively. Each of the result-
ing 21 parameter combinations is executed once with the 
standardization and normalization of the scaling methods, 
requiring 42 runs for optimizing the feature selection. The 
final run finally performs the MLPL using the optimal con-
figuration identified by the algorithm to build and select the 
final prediction models for each geomElem.

The modular architecture and the various configuration 
files as well as tables enable a flexible extension of the algo-
rithm by simple adaptation. This ensures broad applicabil-
ity by allowing additional values to be easily added to the 
verification procedure if desired.

4.2 � Scoring and parameter value selection

At the completion of each optStep, the results need to be 
analyzed and the parameter values that lead to the best pre-
diction performance need to be determined based on the 
metricsReports created for each geomElem, which 
contain the classification performance measures for accu-
racy (ACC), precision (PREC), recall (REC) and specificity 
(SPEC) [12]. Additionally, the ROC AUC and the number of 
false positive predictions (FP). The metrics within the met-
ricsReports are determined on the validation set. To achieve 
the identification of the parameters, a rank is assigned to 
each model. The ranks are determined using the number of 
FP predictions, the values for specificity and accuracy, as 
well as ROC AUC. A lower value for the number of FP as 
well as higher values of the remaining metrics lead to a bet-
ter rank and thus to a preferred selection as a final model of a 
geomElem. Due to the desired application in quality predic-
tion, FP predictions are considered to be particularly critical 
in a production environment. These lead to further process-
ing and assembly of a workpiece that has been manufactured 
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in violation of its tolerances. As a result, it may not fulfill 
its function and may not be able to withstand the operating 
loads acting on it. For this reason, the ascending sorted ranks 
belonging to the number of FP forms the first basis to select 
the best performing models. If the number of FP is equal for 
several models, the subsequent sorting base considers the 
sum of ranks across all metrics. If this is still insufficient for 
unambiguous identification, the sorting procedure takes into 
account the ranks of ROC AUC, specificity, and accuracy 
for decision-making. This individual analysis for specific 
geomElem allows the hyperparameters of the time-frequency 
feature extraction methods to be determined and adjusted. 
The subsequent optSteps are evaluated globally across all 
geometric elements. Preliminary tests have shown that this 
individualized consideration yields significant improvements 
in model performance. However, no improvements and thus 
no advantages were obtained by individualized evaluation 
of the other optSteps. To reduce complexity and preserve 
comprehensibility, the subsequent optSteps are evaluated 
globally across all geometric elements. For each parameter 
combination, the resulting sum of FPs on the validation set 
predicted from the previously determined best-performing 
models per run is calculated across the entire workpiece thus 
all geometric elements. The parameter combination which 
leads to the lowest number of FPs is finally selected.

This domain-adapted scoring approach allows the identi-
fication of the best-performing models per geomElem within 
each optimization step. The underlying configuration param-
eters are finally set in the corresponding config files to be 
considered during the next optStep.

5 � Results

In this chapter, the effectiveness of the presented optimiza-
tion algorithm is demonstrated by applying it to different 
available datasets.

5.1 � Datasets

The datasets were generated in the TEC-Lab of PTW using 
the 3-axis DMC 850 V machining center from the manu-
facturer DMG MORI (DMG) and the 5-axis GROB G350 
2. Gen (GROB) machining center, which both are equipped 
with a Sinumerik 840 D control system. For data acquisi-
tion per machine, an installed edge computing solution was 
used, that provides the internal drive signals from the con-
troller at a sampling frequency of 500 Hz. The respectively 
recorded signals and the experimental design as well as the 
data acquisition and matching from quality measurement 
can be obtained from Fertig et al. [12]. In addition to the 
dataset DSDMG1 presented in Fertig et al. [12], two further 
datasets were generated using the given experimental design 

and the considered reference geometry. DSDMG2 was pro-
duced approximately 1.5 years apart from DSDMG1 on the 
same machine tool. DSGROB accordingly using the GROB 
machining center. Table 1 summarizes additional informa-
tion about the datasets.

The fourth dataset is applied for validation of the pre-
sented algorithm using a different workpiece geometry. 
For this purpose the pocket geometry made from the mate-
rial 42CrMo4V, which is shown in Fig. 3 is considered. It 
consists of 7 quality-relevant geometric elements and was 
manufactured using the DMG machine tool. A total of 392 
pockets were produced based on the previously mentioned 
experimental setup. For finishing the pocket, a carbide end 
milling tool (article number: 203089 10) made by Hoffmann 
Group was used. The tool features N z = 5 teeth at a nomi-
nal diameter of D tool = 10 mm. The technology parameters 
were summarized in Fig. 3. The pockets were arranged on 
8 cuboidal plates made of 42CrMo4V with the dimensions 
l × w × h = 305 × 305 × 30 mm3 in a 7 × 7 grid for opti-
mized experimental procedure. This results in 392 pockets 
for the subsequent analysis.

5.2 � Results of the automated parametrization

Figure 4 summarizes the evaluated metrics on the test data-
set for each trained model obtained from the final run for 
each dataset. Each dot represents the corresponding score 
of one trained model. The black bars represent the average 
value across all models. The gray bar represents the results 

Table 1   Datasets

ID Machine tool Number 
workpieces

Production period

DS
DMG1

DMC 850V 200 07.2020–08.2020 (summer)
DS

GROB
G350 200 02.2021 (winter)

DS
DMG2

DMC 850V 200 03.2022 (winter/spring)
DS

DMG3
DMC 850V 392 09.2020–10.2020 (summer)

Fig. 3   Schematic representation of the produced validation workpiece 
“pocket”
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of the MLPL in default configuration (cf. Sect. 3.4). The 
improvements in specificity and ROC AUC are clearly vis-
ible for each dataset. The average values of the other metrics 
also exhibit minor improvements. To analyze the improve-
ments in more detail, Table 2 summarizes the percentage 
improvement of the average values relative to the default 
configuration. Except for the recall at DSDMG1 and DSDMG2 , 
the metrics in the total view across all models and geomE-
lems show a partially significant improvement by the opti-
mization algorithm. The improvements can be particularly 
observed when considering the scores of specificity and 
ROC AUC. This reflects the optimization target of mini-
mizing the FP predictions since the number of FP, in this 
case, impacts the specificity values most. After optimizing 

the parameters, it is shown that for each of the 4 datasets 
for feature extraction, the temporal-spectral domain 
without HHT is considered solely for the prediction model 
development. The base-wavelets and decomposition levels 
selected individually for each geomElem thus provide the 
highest information density for quality prediction regard-
ing the analyzed datasets. These best-performing hyperpa-
rameter values used for DWT furthermore differ among the 
geomElems and datasets. This supports the design of the 
algorithm toward individual parameter identification. In 
addition, the optimization algorithm selects different model 
algorithms for each geometric element, which leads to the 
conclusion that multiple model algorithms are required for 
the most accurate prediction.

Nevertheless, these results only provide an overall 
impression of the algorithm’s performance. When consid-
ering Fig. 4 several cases can be identified where models 
show poor scores, especially for the specificity. For this rea-
son, it is necessary to select the best performing model for 
each geomElem based on the presented scoring approach 
(cf. Sect. 4.2). Table 3 summarizes the results of the final 
model selection. Shown are the mean values of the achieved 
metrics on the test dataset across all geomElems. Addition-
ally, the achieved metrics of the non-optimized pipeline 
are displayed. This clearly shows that for each data set the 

Fig. 4   Comparison of prediction scoring metrics between datasets

Table 2   Percentage improvement of metrics average by using the 
developed optimization algorithm

ID Acc in% PREC in% REC in% SPEC in% ROC AUC 
in%

DS
DMG1

0.38 0.55 − 0.09 3.81 1.62
DS

DMG2
0.75 1.25 − 0.45 10.51 2.12

DS
GROB

2.63 2.40 0.35 7.74 3.30
DS

DMG3
3.21 1.47 2.60 5.13 3.14

Table 3   Comparison of the 
optimized average scores on the 
test dataset for the final selected 
models per geometric element 
with the non-optimized average 
scores

The non-optimized scores are shown in brackets

ID ACC in% (non-opt.) PREC in% (non-opt.) SPEC in% (non-opt.) ROC AUC 
in% (non-
opt.)

FP (non-opt.)

DS
DMG1

97.47 (95.60) 98.77 (97.17) 94.79 (87.95) 97.32 (93.79) 0.47 (1.13)
DS

DMG2
98.00 (90.00) 99.66 (96.77) 98.56 (93.75) 98.85 (97.43) 0.13 (1.00)

DS
GROB

92.00 (78.00) 98.49 (73.33) 96.74 (68.00) 94.92 (86.40) 0.40 (2.07)
DS

DMG3
93.73 (77.84) 99.45 (98.58) 97.74 (96.57) 97.12 (91.24) 0.43 (0.71)
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optimization according to the presented algorithm leads to 
significant improvements regarding the final selected mod-
els. Overall, all average scores achieved high values above 
90\,%. The average number of FP per geomElem is reduced 
to less than 0.5 for each dataset. It is worth mentioning that 
the FP predictions are not equally distributed among the 
geomElems. The total of 7 FP on the test dataset DSDMG1 
are allocated to 5 geomElem. On DSDMG2 , 2 FP occurred in 
two geomElem and on DSGROB 6 FP predictions were made 
on the test dataset which consists of 50 Workpieces thus 750 
geomElems. The size of the test dataset was kept the same 
for each of these datasets. The final selected models perform 
on the test dataset, consisting of 98 pockets and accordingly 
686 geomElems, of DSDMG3 only 3 FP predictions which are 
associated to one element.

6 � Conclusion

In this paper, a new optimization algorithm for parametri-
zation of an end-to-end machine learning pipeline (MLPL) 
for the development of an artificial intelligence-based qual-
ity monitoring system for milling processes is developed. 
The basis consists of a domain-specific developed MLPL, 
which automates feature engineering, feature selection and 
model training. The module based implementation allows 
to wrap the presented optimization algorithm around the 
MLPL. Using the preprocessed machine tool and quality 
data as described in Fertig et al. [11] and Fertig et al. [12] 
the algorithm is able to optimize the Hyperparameters of the 
different steps in the MLPL to train quality prediction mod-
els without the invest of manual effort by a domain expert. 
In particular, methods for feature engineering based on the 
time-frequency domain, which usually require elaborate 
pre-analyses of the data by experts, are parameterized and 
adapted to the specific task automatically using the optimi-
zation algorithm. Furthermore, the modular implementation 
via appropriate configuration files allows an effortless exten-
sion of the search space regarding the parameters to be opti-
mized. The results of the analyzed four datasets demonstrate 
that the algorithm automatically trains and selects models 
with high prediction capabilities. The successful applica-
tion using four different datasets further highlights the broad 
applicability and transferability to different machine tools 
and workpieces of the developed approach.

To improve the models’ scores and thus deployability 
in production more samples of well contextualised data to 
increase the training datasets have to be aquired. The size of 
the training datasets used within this study seems to small to 
represent highly complex interrelationships between internal 
machine tool data and resulting workpiece quality in order 
to get even better prediction capabilities. In addition, it is 

necessary to examine the robustness of the models’ predic-
tions to obtain an estimation of how confident a particular 
model is with respect to its prediction.
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