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Abstract
Many optimization problems in electrical engineering consider a large number of design parameters. A sensitivity analysis
identifies the design parameters with the strongest influence on the problem of interest. This paper introduces the adjoint
variable method as an efficient approach to study sensitivities of nonlinear electroquasistatic problems in time domain. In
contrast to themore commondirect sensitivitymethod, the adjoint variablemethodhas a computational cost nearly independent
of the number of parameters. The method is applied to study the sensitivity of the field grading material parameters on the
performance of a 320kV cable joint specimen, which is modeled as a finite element nonlinear transient electroquasistatic
problem. Special attention is paid to the treatment of quantities of interest, which are evaluated at specific points in time or
space. It is shown that the method is a valuable tool to study this strongly nonlinear and highly transient technical example.

Keywords Adjoint variable method · Nonlinear electroquasistatic problem · Sensitivity analysis · Time domain

1 Introduction

When developing electrical equipment, engineers optimize
initial design proposals by carefully identifying a number of
design parameters related to, e.g., material properties and
geometric dimensions. In doing so, they rely on rules of
thumb, know-how and previous experience, existing stan-
dards and, increasingly, simulation and optimization tools.
Numerical optimization is used to simultaneously improve—
possibly conflicting—quantities of interest (QoIs), robust-
ness and costs. While stochastic optimization plays a major
role, derivative-based deterministic optimization algorithms
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are becoming, again, increasingly interesting [12]. Their
advantages over stochastic methods are a faster convergence,
i.e. less expensive optimization runs, and efficient coupling
withmesh refinement and reduced ordermodels. However, in
case of derivative-based approaches, the problem of efficient
gradient computation arises. The most common methods for
gradient computation, e.g., finite differences and the direct
sensitivitymethod (DSM), are notwell suited for applications
with many design parameters because their computational
costs scale with the number of parameters [16,18]. The
adjoint variable method (AVM), on the other hand, has com-
putational costs that are almost independent of the number of
parameters [3,16]. So far, the AVM has been applied mainly
in the analysis of electric networks [8,18] and, since the
2000s, more and more often in the context of electromag-
netic simulation [1,9,15]. Zhang et. al. recently introduced
the AVM for linear electroquasistatic (EQS) problems in fre-
quency domain [23]. However, many problems in the field
of high-voltage (HV) engineering require an investigation in
time domain since they are exposed to transient overvolt-
ages and contain strongly nonlinear materials [11,21]. In this
work, the AVM is formulated and solved numerically for the
nonlinear transient EQS problem. Additionally, a method for
sensitivity calculation of (QoIs) evaluated at a given point in
time is presented, since the AVM naturally only considers
time-integrated (QoIs). The AVM is validated using an ana-
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lytical example. Subsequently, a nonlinear resistively graded
320kV high-voltage direct current (HVDC) cable joint under
impulse operation serves as a prominent technical exam-
ple. It is shown that the AVM is capable of computing the
sensitivities of this highly transient nonlinear problem with
reasonable computational effort. This is an important step
toward gradient-based optimization of electric devices in HV
engineering.

2 Electroquasistatic problem

The EQS problem in time domain reads

− div (σ grad (φ)) − div (∂t (ε grad (φ))) = 0

t ∈ [0, T ], r ∈ � ; (1a)

φ = φfixed

t ∈ [0, T ], r ∈ �e ; (1b)

− (σ grad (φ) + ∂t (ε grad (φ)) · n = 0

t ∈ [0, T ], r ∈ �m ; (1c)

φ = φ0

t = 0, r ∈ �, (1d)

where φ is the electric potential and σ and ε represent the
electric conductivity and permittivity, respectively. The time
variable is denoted by t and the position vector by r .� is the
computational domain and T is the terminal simulation time.
φfixed are the fixed voltages at the electrodes,�e �= ∅, and n is
the unit vector at themagnetic boundaries,�m = ∂�\�e. The
initial condition is denoted byφ0. In case of a field-dependent
conductivity or permittivity, i.e. σ = σ(E(r, t), r) and ε =
ε(E(r, t), r), (1) becomes nonlinear.

The standard two-dimensional (2D) axisymmetric finite
element (FE) problem of (1) is formulated by discretiz-
ing φ(r, t) ≈ ∑

j u j N j , where N j (r) are linear nodal FE
shape functions. The degrees of freedom are u j (t), which are
assembled in the vector u. The semi-discrete version of (1)
according to the Ritz–Galerkin procedure reads

Kσu + ∂t (Kεu) = 0, (2)

with

[Kσ ]i j
=

∫

�

σ grad
(
N j

) · grad (Ni ) d� i, j = 1, ..., NN ,

(3)

[K ε]i j =
∫

�

ε grad
(
N j

) · grad (Ni ) d� i, j = 1, ..., NN ,

(4)

where NN denotes the number of nodes. For the time dis-
cretization, the implicit Euler time stepping scheme is used.
The Newton method is applied in every time step to handle
the material nonlinearities.

3 Adjoint method for nonlinear EQS
problems

Numerical optimization studies the effects ofmultiple design
parameters, p = [p1, ..., p j , ..., pNP ], on the (QoIs),
Gk(φ, p), k = 1, ..., NQoI. In each FE simulation, one
parameter combination p0 is adopted, and the (QoIs) are ana-
lyzed by post processing the electric scalar potential. Com-
mon design parameters are, in particular, material parameters
and the dimensions of the geometry. Taking the cable joint
of Sect. 4.2 as an example, possible (QoIs) are, e.g., the
maximum tangential field stress at material interfaces, or the
electric losses during impulse operation [11,22].

The AVM is a method for gradient or sensitivity calcu-
lation, which is particularly efficient when the number of
parameters, NP, is significantly larger than the number of
QoIs, NQoI [3,16]. Sensitivities describe how and how strong
a given QoI Gk is affected by a design parameter p j , i.e.

dGk

dp j
( p0) = ∂Gk

∂ p j
( p0) + ∂Gk

∂φ

dφ

dp j
( p0) , (5)

where p0 is the active parameter configuration. In case of
nonlinear media, the sensitivity of the electric potential with
respect to the parameter, dφ

dp j
, is typically unknown. The idea

of the AVM is to avoid the computation of dφ
dp j

by a clever
modification of the (QoIs) [3,16]: The (QoIs) are expressed in
terms of a functional gk , which is integrated over the temporal
and spatial computational domain, [0, T ]×�. Additionally,
the nonlinear EQS problem (1) is embedded, multiplied by
a test function wk(r, t), i.e.

Gk(φ, p) =
∫ T

0

∫

�

gk(φ, r, t, p) d� dt

−
∫ T

0

∫

�

wk(r, t)·
(− div (σ grad (φ)) − div (∂t (ε grad (φ))))
︸ ︷︷ ︸

=0

d� dt .

(6)

For any φ solving (1), the additional term is zero and the test
function can be chosen freely. The goal of the AVM is to
choose the test function in such a way, that the sensitivity of
the extended QoI no longer contains the unknown term φ

p j
.

After a lengthy derivation, it can be shown that the unknown
term is eliminated if the test function is chosen as the so-
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called adjoint variable, i.e. the solution of the adjoint problem
[3,16]. The adjoint problem for EQSproblemswith nonlinear
materials reads

− div (σ d grad (wk)) + div (εd ∂t ( grad (wk))) = dgk
dφ

,

t ∈ [0, T ], r ∈ � ; (7a)

wk = 0 , t ∈ [0, T ], r ∈ �e ; (7b)

− (σ d grad (wk) − εd∂t ( grad (wk)) · n = 0 ,

t ∈ [0, T ], r ∈ �m ; (7c)

wk = 0 , t = T , r ∈ �, (7d)

where all quantities are evaluated at the active parameter
configuration p0. Note the plus sign in front of the term with
the time derivative in (7a) instead of the minus sign in (1a)
and the terminal condition (7d) instead of the initial condition
(1d), which indicate that the adjoint problem needs to be
integrated backwards in time or the time reversing variable
transformation t̃ = T − t must be applied [2].

The adjoint problem is a linear partial differential equation
(PDE) that naturally includes the tensorial material lineariza-
tions σ d = dJ

dE and εd = dD
dE [7]. Through that, it implicitly

depends on the solution of the EQS problem, i.e., σ d(E) and
εd(E). Therefore, in order to so solve the adjoint problem
in backward mode, the EQS problem must first be solved
conventionally, i.e., in forward mode, and its solution stored
for all time steps. In case of FE simulations, this can lead to
a significant memory overhead [2,6]. For strategies on how
to reduce the memory requirement, see for example [2,6].

Once the solution of the electric potential and all adjoint
variables,wk , are available, all sensitivities can be computed
directly by

dGk

dp j
( p0) =

∫ T

0

∫

�

∂g

∂ p j
+ grad (wk) ·

∂σ

∂ p j
E − ∂t grad (wk) · ∂ε

∂ p j
E d�dt

−
∫

�

grad (wk) · dD
dp j

d�

∣
∣
∣
∣
t=0

,

(8)

where the derivative dD
dp j

(t = 0) is obtained by differentiating
the initial condition (1d). Again, all quantities are evaluated
for the active parameter configuration p0.

3.1 Finite element discretization

The derivative of the electric scalar potential to the parameter
p j and the adjoint variable are discretized using linear FE
nodal shape functions, i.e.

dφ

dp j
(r, t) ≈

Nnode∑

r=1

u′
r (t)Nr (r) w(r, t) ≈

Nnode∑

r=1

wr (t)Nr (r) ,

and the time axis is discretized using Nt samples, i.e., t ∈
{t1 = 0, ..., tn, ..., tNt = T }. The semi-discrete version of
the adjoint problem (7) then reads

Kσ dw − K εd

dw

dt
= q , (9)

with

[Kσ d ]rs =
∫

�

grad (Nr ) · σ d

· grad (Ns) d� r , s = 1, ..., NN ; (10)

[K εd ]rs =
∫

�

grad (Nr ) · εd

· grad (Ns) d� r , s = 1, ..., NN ; (11)

[q]r =
∫

�

∂g

∂ur
d� r = 1, ..., NN . (12)

Finally, the semi-discrete version for the sensitivity calcula-
tion reads

dGk

dp j
( p0) =

∫ T

0

∫

�

∂g

∂ p j
d� − uT Kσpw + uT K εp

∂w

∂t
dt

+ uT K εpw

∣
∣
∣
∣
t=0

+ (u′)T K εdw

∣
∣
∣
∣
t=0

,

(13)

with

[Kσp ]rs =
∫

�

∂σ

∂ p j
grad (Nr )

· grad (Ns) d� r , s = 1, ..., NN ; (14)

[K εp ]rs =
∫

�

∂ε

∂ p j
grad (Nr )

· grad (Ns) d� r , s = 1, ..., NN ; (15)

[q]r =
∫

�

∂g

∂ur
d� r = 1, ..., NN . (16)

In the scope of thiswork, the time integral of (13) is computed
using trapezoidal integration and the time derivative in (9) is
approximated using the implicit Euler method.

3.2 Treatment of pointwise QoIs

As can be seen from (6), the AVM is naturally suited for
integrated (QoIs). Often, however, it is desired to analyze
(QoIs) that are evaluated at certain points in space or time.
The evaluation at a certain position or time can be expressed
byDirac delta functions inside the functional gk . To illustrate

123



2322 Electrical Engineering (2023) 105:2319–2325

the effects this has on the AVM, the electric potential evalu-
ated at a specified position r ref and time tref is considered as
an example, i.e.

Gk =
∫ T

0

∫

�

gk d�dt =
∫ T

0

∫

�

δ(r − r ref)

δ(t − tref)φ d�dt , (17)

where δ is the Dirac delta function. The right-hand side of
the adjoint problem is then given by

dg

dφ
= δ(r − r0)δ(t − tQoI) , (18)

and after discretization in space one finds

q(t) = [
0 . . . 0 1 0 . . . 0

]T
δ(t − tQoI) . (19)

In (19), the spatial integration during the derivation of the FE
formulation has converted δ(r − r0) into a unit excitation at
the corresponding node. The temporal Dirac function δ(t −
tQoI) on the other handmust be approximated during numeric
integration. In the context of this work, this is done by hat
functions with an area of one, i.e.,

q(tn) = [
0 . . . 0 1 0 . . . 0

]T 1

	imp
δnnref , (20)

where 	imp denotes the time step size right before and after
tref. The approximation of the Dirac impulse with the help
of other functions, e.g., a normal distribution, led to simi-
lar results. However, the approximation by a hat function is
easy to implement and has the clear advantage of a compact
support.

4 Results

In this section, the AVM (7) for transient EQS problems is
validated. In the first step, the layered resistor of Fig. 1a
is considered, and the FE adjoint and analytic sensitivities
are compared. In a second step, the method is applied to a

nonlinear 320kV cable joint specimen and the results are
validated using results obtained by the DSM as a reference.

4.1 Analytical example

The first example is the layered resistor depicted in Fig. 1a.
The upper electrode is excited with a sinusoidal voltage, i.e.,
U (t) = 1V · sin(ωt) with ω = 2π50Hz, and the bottom
electrode is grounded. For t = 0, the potential is assumed to
be zero everywhere. The conductivities, σ1 = 10A/Vm and
σ2 = 20A/Vm, and the permittivities, ε1 = 40As/Vm and
ε2 = 60As/Vm, of the two materials are constant. The EQS
AVM is validated for an integrated QoI as well as for non-
integratedQoI.More specifically, the (QoIs) are the electrical
energy converted in the time span [0 s, 2π

ω
s],

Wel =
∫ 2π

ω
s

0 s

∫

�

σ(	φ)2 d� dt , (21)

and the potential in the middle of the upper material, i.e.,
rQoI = (0, d

2 ), evaluated at tQoI = π
2ω s,

φref =
∫ 2π s

0 s

∫

�

δ(r − rQoI)δ(t − tQoI)φ d� dt . (22)

First, the sensitivity dφref
dε1

of the reference potential with
respect to the permittivity of the upper material is com-
puted. The time axis is discretized using the step size 	main.
Directly before and after t = tQoI, the step size is reduced
to 	imp = 10−8	main in order to approximate the Dirac
impulse. Figure 1b shows that the AVM is able to reproduce
the analytic results of dφref

dε1
for a wide range of permit-

tivity values. In Fig. 1c a first-order convergence of the
relative error with respect to the number of time steps can
be observed, which matches the order of the implicit Euler
method.

Next, the sensitivity dWel
dσ1

of the electric energy with
respect to the conductivity of the upper material is com-
puted for conductivities ranging from 1A/Vm to 1000A/Vm
(see Fig. 2a). As shown in Fig. 2b the results again converge
linearly with respect to the number of time steps. The AVM

Fig. 1 a Resistor with two
material layers of thickness
d = 1 cm. b Sensitivity dφref

dε1
for

different values of ε1. c Relative
error of dφref

dε1
in % for different

numbers of time steps
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Fig. 2 a Sensitivity dWel
dσ1

for different values of σ1. b Relative error of
dWel
dσ1

in % for different numbers of time steps

has, thus, been successfully validated for a transient EQS
problem.

4.2 320 kV HVDC cable joint specimen

The development of HVDC cable systems is one of the great-
est challenges of our time for theHV engineering community
[5,10,17]. Cable joints are known to be the most vulnera-
ble part of HVDC systems, as they must safely handle field
strengths in the range of several kV/mm [4,5,13,19]. The
electric field stress can be reduced by adding a layer of so-
called FGM, which features a strongly nonlinear electric
conductivity and balances the electric field, similar to the
overvoltage clipping of metal-oxide surge arresters [20,21].

The AVM is applied to a 320kV HVDC cable joint spec-
imen, which is adopted from [11] and shown in Fig. 3. The
joint connects two copper conductors (domain 1) with an
aluminum connector (domain 2). These domains are cov-
ered by a layer of conductive silicone rubber (SiR) (domain
3). The cable insulation consists of cross-linked polyethylene
(XLPE) (domain 4) and the joint insulation of an insulating
SiR (domain 5). Both insulation layers are separated by a
nonlinear resistive FGM (domain 6, highlighted in green).
The outer conductive SiR sheaths of the cable (domain 7)
and the joint (domain 8) are on ground potential. Inside the
FGM, elevated field stresses occur at the triple points, i.e.,
the contact points of FGM, insulating material and conduc-
tive SiR (indicated by red circles). The joint is subjected to
an impulse overvoltage with an amplitude of Û = 100 kV
that is superimposed on the HVDC excitation of 320kV. The
transient standard 1.2/50 lightning impulse is given by [14]

Uimp(t) = Û
τ2

τ2 − τ1

(

exp

(

− t

τ2

)

− exp

(

− t

τ1

))

, (23)

with τ1 = 1.2µs
2.96 and τ2 = 50µs

0.73 . The excitation is applied to
the conductive SiR covering the conductor and the conductor
clamp, which is modeled as a perfect electric conductor.

Fig. 3 Schematic of the investigated HVDC joint in the 
-z-plane
(drawing is not to scale). The typical positions of the maximum tan-
gential field stresses are indicated by red circles [11]. The numbers
indicate the different materials as described in the text

Fig. 4 a Field dependence of the nonlinear conductivity defined for
different values of the switching field strength, a2. b Relative error of
dWel
da2

and dEc
da2

for different numbers of time steps in %

The field dependence of the conductivity of the FGM is
described by the analytic function

σ(E) = a1
1 + a

(E−a2) a
−1
2

4

1 + a
(E−a3) a

−1
2

4

, (24)

with the parameters a1 = 10−10 A/Vm, a2 = 0.7 · 106 V/m,
a3 = 2.4 · 106 V/m and a4 = 1864. The simulation is per-
formed with a mesh consisting of 51681 nodes and 106113
elements.

The results of the EQS AVM are validated against results
of the DSM for two exemplary sensitivities. Again, both a
time-integrated QoI and a QoI evaluated at a specific point
in time are considered, i.e., the electric losses, Wel, during
the time span [0µs, trise] and the critical electric field stress,
Ec, in the proximity of the triple point next to the conductor
clamp during peak excitation. The derivatives of the (QoIs)
are computed with respect to the switching field strength, a2,
which determines when the conductivity changes from the
base conductivitya1 = 10−10 S/m into the strongly nonlinear
region of (24) (see Fig. 4a).

Figure 4b shows the relative error of the derivatives for
different numbers of time steps. A first-order convergence
due to the Euler time-stepping scheme is observed for both
quantities of interest(QoIs). More importantly, the compu-
tational cost is reasonable for both the time-integrated QoI
and the QoI evaluated at a given point in time. With only 200
time steps, the relative errors are below one percent, requir-
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ing a simulation time in the range of tens of minutes. The
AVMwas, thus, successfully validated for a strongly nonlin-
ear and highly transient example. It was shown that with the
method presented in Sect. 3.2 theAVM is no longer restricted
to integrated quantities of interest(QoIs). Moreover, it was
demonstrated that even for this very challenging example
the computation time lies within reasonable limits, which is
an important first step toward gradient-based optimization.

5 Conclusion

The adjoint variable method is a method for calculating gra-
dients of selected quantities of interest with respect to a set
of design parameters. It has computational costs nearly inde-
pendent of the number of design parameters and is, thus,
very efficient for problems where the number of parameters
is larger than the number of quantities of interest. In thiswork,
the adjoint variable method is adopted for transient electro-
quasistatic problems with nonlinear material characteristics.
The adjoint partial differential equation is presented and for-
mulated as a two-dimensional axisymmetric finite element
problem. It is shown, how to consider quantities of interest
evaluated at specific points in space or time. After validating
themethod against an analytic example, themethod is applied
to a 320kV high-voltage direct current cable joint featuring
a layer of nonlinear field grading material which is exposed
to an impulse overvoltage. The results of the adjoint variable
method are validated using the direct sensitivity method, and
it is shown that the computational costs of the adjoint variable
method are, even for this strongly nonlinear technical exam-
ple, within reasonable limits. This is an important step toward
gradient-based optimization of high-voltage equipment.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00202-023-01797-
4.
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