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Abstract
Global Navigation Satellite System (GNSS) observations are commonly processed using various established methods, includ-
ing the processing of ionospheric-free (IF) linear combinations (LC), differences of observations as well as the processing 
of undifferenced, uncombined (UDUC) observations. The most general and flexible approach to GNSS processing is widely 
regarded to be the UDUC approach, as this approach is based on the raw observation equations of potentially all available 
observations. The IF approach uses IF-LC obtained by observations on different frequencies but the same receiver-satellite 
link to eliminate the ionospheric slant delay. The differencing approach also uses LC of observations, with the distinction 
that observations of the same signal but different receivers and/or satellites are being used. The purpose of differencing is the 
elimination of satellite/receiver clocks and biases and, in some cases, reducing or even eliminating atmospheric delays. We 
aim to uncover the implicit model assumptions made when using various IF and differencing approaches and in what case 
they are equivalent to the processing of the UDUC observations. This is achieved by introducing a reformulation method, 
which is then applied to the UDUC observations of code division multiple access GNSS to obtain the functional models of 
various IF and differencing approaches. The underlying assumptions in this reformulation can then be identified. The results 
of this theoretical contribution will provide insight into the most appropriate method for processing GNSS observations in 
different cases and what implicit assumptions are being made when the respective method is being used.
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Introduction

Precise point positioning (PPP) (Malys and Jensen 1990; 
Zumberge et al. 1997; Kouba and Héroux 2001; Kouba et al. 
2017) is a technique used to process GNSS observations to 
achieve highly accurate point positions. PPP can be divided 
into the network and the user side. The network side consists 
of globally distributed receivers observing one or multiple 
GNSS. With this network, precise satellite orbits and clocks 
can be computed and provided to the user for highly accurate 
point solutions. In order to generate accurate satellite orbits 
and clocks on the network side and accurate point positions 
on the user side, code and phase observations are required.

PPP-real-time kinematic (PPP–RTK) is a variation of PPP 
that includes the satellite phase bias parameters in addition 
to the satellite orbits and clocks. This enables the network 
and the user to estimate integer ambiguities through proper 
satellite phase bias and ambiguity datum handling (Geng 
et al. 2009; Laurichesse et al. 2009; Teunissen et al. 2010). 
PPP–RTK is a more general formulation of PPP, as it con-
siders existing phase biases of receivers and satellites. For a 
critical review of different PPP–RTK methods, see Teunis-
sen and Khodabandeh (2015). Here, we focus on the net-
work side of PPP–RTK, as this is the most general case that 
includes the user side as well, considering that a user can be 
interpreted as another receiver in the network.

One commonly used method for processing dual-fre-
quency observations is the use of IF-LC instead of the origi-
nal observations. In the IF-LC, the ionospheric slant delay 
has been eliminated and does not have to be accounted for 
in the functional model. Two methods have emerged regard-
ing dual-frequency observations using the IF-LC. The first 
method, often used in the conventional PPP approach where 
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no ambiguity fixing is desired, uses one IF-LC using code 
observations and another IF-LC only using phase observa-
tions. For the second method, an additional third IF-LC is 
introduced, the Hatch–Melbourne–Wübbena LC (HMW-
LC) (Hatch 1982; Melbourne 1985; Wübbena 1985) and 
is more commonly used in PPP–RTK see Ge et al. (2008), 
Collins et al. (2010), and Geng et al. (2019).

Another method of processing GNSS observations is 
double differencing (DD), which is commonly used in rela-
tive positioning but also used to process global networks 
and generate satellite orbits (Dach et al. 2021). In the DD 
approach, observations of the same signal are differenced 
between receivers and satellites, so satellite and receiver 
clocks and biases cancel out. When this approach is used 
for short baselines, it can also be assumed that atmospheric 
delays and orbit errors are eliminated or significantly 
reduced. Single differencing (SD) is also a well-known 
approach to GNSS processing. In the SD approach, observa-
tions are differenced between receivers or between satellites 
to eliminate the satellite clocks and biases or the receiver 
clocks and biases, respectively.

Finally, the approach of processing undifferenced and 
uncombined (UDUC) observations at the network and user 
levels (Teunissen et  al. 2010; Schönemann et  al. 2011; 
Zhang et al. 2011) has emerged. This is widely regarded as 
the most general approach, as the original observations are 
being processed, and no parameters are eliminated by LC 
or differencing of observations. It is regarded as the most 
flexible approach, offering a general formulation of the func-
tional model while maintaining the original physical and 
stochastic characteristics of the observations.

Schaffrin and Grafarend (1986) introduced a concept of 
nuisance parameter elimination at an observational level 
and applied this theory to single-frequency phase observa-
tions. It was found that SD and DD are equivalent reformula-
tions of the system of equations of single-frequency phase 
observations in which the satellite and/or receiver clock are 
eliminated. In contrast to the previously mentioned work, the 
reformulation method we present is applied to the general 
UDUC network equations, including multi-signal code and 
phase observations and considers existing rank deficiencies.

First, an overview of the processing of UDUC observations 
in the case of GNSS with CDMA is provided. This is done by 
briefly introducing the code and phase observation equations 
of a GNSS network, the resulting design matrix, and its rank 
deficiencies. For this, the relevant aspects of the S-system theory 
(Teunissen 1985) and the contribution of rank deficiencies in the 
UDUC processing of GNSS networks by Odijk et al. (2015) are 
used in this work. Then a reformulation of the system of network 
equations is presented. In subsequent chapters, we demonstrate 
that the two IF-LC and the differencing approaches are specific 
applications of the presented reformulation methods. By exam-
ining the implicit assumptions made in these approaches, we can 

show their mathematical equivalence to the respective results of 
the processing of UDUC observations.

UDUC network equations

The linearized code and phase observation equations for 
a receiver r, satellite s, and signal j can be formulated with 
(Hofmann-Wellenhof et al. 2007)

in case of CDMA GNSS. Here, E(⋅) denotes the expected 
value of the inherently stochastic observations. It is assumed 
that the observations have been corrected a priori with 
appropriate models (Kouba et al. 2017). Thus, terms usu-
ally not estimated as parameters in the context of PPP–RTK, 
such as phase wind-up, phase center offsets, and variations, 
are excluded in (1) and (2).

Given a network with r = 1,… , n receivers, s = 1,… ,m 
satellites observing j = 1,… , f  signals and i = 1,… , p 
epochs, we can formulate a system of equations with 
L + v = A ⋅ x , with L containing the linearized code and phase 
observations, v their residuals, A the design matrix and x the 
unknown parameters. The general design matrix A of an all-in 
view, i.e., all receivers observe all satellites and signals, net-
work can be formulated with (Odijk et al. 2015)

where

here en denotes the n-vector of ones, In ∈ ℝ
n×n the identity 

matrix, ⊗ the Kronecker matrix product, Λ is a diagonal 
matrix containing the wavelength of the observed signals, 
i.e., Λ = diag

(
�1,… , �f

)
 and � =

[
�1 �2 … �f

]T  . The 
design matrix Ageo references the geometric parameters 
(receiver/satellite coordinates and tropospheric delays) and 
is not further specified, as it is not of further relevance here-
after. All other submatrices have been created assuming 
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epoch-wise parameters, i.e., a new parameter for every epoch 
for satellite clocks and biases, receiver clocks and biases, 
and ionospheric slant delays.

The order of the z = 2pnmf  observations in L is chosen as 
follows: First, all phase observations of epoch i are ordered 
as follows:

Then, all code observations �(i) are ordered in the same man-
ner and finally

The parameter vector x is divided into subvectors of specific 
parameter groups with x =

[
xT
geo

xT
rec

xT
sat

xT
ion

xT
amb

]T
 , 

where xgeo contains all geometric parameters, i.e., receiver 
coordinates and tropospheric delays, xrec all receiver clocks 
and biases, xsat all satellite clocks and biases, xion all iono-
spheric slant delays, and finally xamb all ambiguities. The 
design matrix is formulated similarly, with the submatrices 
referencing the respective subvector.

The design matrix A is of rank(A) = dim (R(A)) = r ≤ k 
with R(A) denoting the range or column space. The rank 
deficiency k − r of matrix A is equal to the dimension of its 
null space, i.e., dim(N(A)) = def(A) . Here, N denotes the 
null space of a matrix. We can find a basis matrix of N(A) 
with V ∈ ℝ

k×k−r . Then, R(V) = N(A) and A ⋅ V = 0 . With 
a basis matrix S that has a complementary range space to V , 
i.e., R(S)⊗R(V) = ℝ

k, we obtain the parameter vector x 
as a unique linear combination of the form x = S ⋅ ã + V ⋅ 𝛽 . 
We can then reformulate the system of equations to

The basis matrix S is not unique, and its choice defines what 
estimable parameters one solves. The matrix S⊥ is defined as 
a basis matrix of the orthogonal complement of R(S), i.e., (
S⊥

)T
S = 0 . Its transpose 

(
S⊥

)T
∈ ℝ

(k−r)×k can be interpreted 
as containing the (k − r) restrictions imposed on the param-

eter vector, i.e., 
(
S⊥

)T
x = 0 (Khodabandeh and Teunissen 

2019), making 
[
AT S⊥

]T a full rank matrix.
The rank deficiencies in A can be described by the iden-

tification of the rank deficiencies in the submatrices and the 
additional rank deficiencies occurring between the subma-
trices, as explained in the following Corollary.

Corollary 1 ( Rank deficiencies in submatrices)  Let matrix 
A =

[
A1 A2

]
 with Ai ∈ ℝ

z×ki , def
(
Ai

)
= dim

(
N
(
Ai

))
= ri 

and def(A) = r1 + r2 + l . With Vi being a basis matrix of 

N
(
Ai

)
 , it follows that AV∗ =

[
A1 A2

][ V1 0

0 V2

]
= 0 and 

(6)
�(i) =
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�2

1,1

… �m
1,1
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2,1

… �m
2,1
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n,1
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1,2
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n,f

]

(7)L =
[
�(1) �(1) �(2) … �(p)

]T

(8)Ax = A(Sã + V𝛽) = ASã = Ãã

l ≥ 0 . If and only if l = 0 is V∗ a basis matrix of N(A) , in all 
other cases, we can extend V∗ to a basis matrix 

V =
[
V∗ W

]
=

[
V1 0 W1

0 V2 W2

]
 , with rank(W) = l . Note that 

all vectors in Wi are linearly independent of Vi . (Proof: Let 
us assume a vector w∗

1
 in W1 can be expressed as a LC of 

vectors in V1 . Then, we can find a matrix C , so that [
w∗
1

w∗
2

]
+ C

[
V1

0

]
=

[
0

w∗
2

]
∈ N

(
A2

)
 , which contradicts the 

assumption of linearly independent vectors in V .)

The rank deficiencies of A can therefore be interpreted 
as the r1 and r2 rank deficiencies of the submatrices A1 and 
A2 and the l between A1 and A2 rank deficiencies. We denote 
with

the rank deficiency between matrices.

In Odijk et al. (2015), the different types of rank deficien-
cies are specifically declared as.

1.	 Between receiver and satellite parameters

a.	 Between receiver and satellite clocks (size 1)
b.	 Between receiver and satellite biases (size 2f )

2.	 Between receiver biases and

a.	 Receiver clocks (size n − 1)
b.	 Ionospheric Slant Delays (size n − 1)

3.	 Between satellite biases and

a.	 Satellite clocks (size m)
b.	 Ionospheric Slant Delays (size m)

4.	 Between receiver biases and ambiguities (size f (n − 1))
5.	 Between satellite biases and ambiguities (size fm).

The size of these rank deficiencies in the scope of this 
research is understood to exist at each epoch, except for 
the rank deficiencies between ambiguities and biases, as 
ambiguities are introduced as constant in (5). Often used 
S-basis restrictions to eliminate these rank deficiencies are 
the “Common Clocks” (CC) S-basis. It is further classified 
into the CC-R and the CC-S S-basis. The CC-R S-basis uses 
the receiver clock and biases of one receiver as restrictions 
to eliminate rank deficiencies 1a and 1b, whereas the CC-S 
S-basis uses the mean satellite clock and biases of a satel-
lite system.

Since none of the individual S-basis restrictions in the 
CC models span across multiple parameter groups, we can 

(9)bdef
(
A1,A2

)
= def

([
A1 A2

])
−
(
def

(
A1

)
+ def

(
A2

))
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express (
S⊥

)T as a block diagonal matrix, with each matrix 
containing the restrictions imposed on a specific parameter 
group, as presented in the following Corollary.

Corollary 2 (Restrictions in GNSS processing)  Let 

�
S⊥

�T
∈ ℝ

r×k =

⎡
⎢⎢⎢⎣

�
S⊥
1

�
0 ⋯ 0

0
�
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2

�
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
�
S⊥
n

�

⎤
⎥⎥⎥⎦
= diag

��
S⊥
i

�T�   , 

i = 1,… , n , 
(
S⊥
i

)T
∈ ℝ

ri×ki and rank
((

S⊥
i

)T)
= ri . It follows 

that rank
��

S⊥
�T�

=
∑
i

ri = r.

We can find a basis matrix S ∈ ℝ
k×(k−r) of N

((
S⊥

)T) with 

S = diag
(
Si
)
 for all i ki ≠ ri and Si ∈ ℝ

kj×(kj−rj) being a basis 

matrix of N
((

S⊥
i

)T) , thus 
(
S⊥

)T
⋅ S = 0.

Applying Corollary 2 to our specific GNSS parameter 
g roups  y i e ld s  

(
S
⊥
)T

= diag
((

S
⊥
rec

)T
,
(
S
⊥
sat

)T
,
(
S
⊥
ion

)T
,(

S
⊥
amb

)T)
,  a n d  c o n s e q u e n t ly,  w e  c a n  f i n d 

S = diag
(
Srec, Ssat, Sion, Samb

)
 in a similar notation. The 

dimensions of the submatrices of 
(
S⊥

)T and S are defined as 
outlined in the corollary and vary depending on the number 
of S-basis restrictions imposed on each parameter group.

Transforming the network equations

This chapter is structured as follows. First, the theory 
required to achieve an equivalent reformulation of the UDUC 
network equations is presented. The presented reformulation 
takes existing rank deficiencies in the original design matrix 
and how they propagate into the transformed design matrix 
into account. This reformulation is then applied to obtain the 
two different IF, and the SD and DD processing approaches.

Theory

It is possible to transform the original system of equations 
as defined by the design matrix (3) of the UDUC observa-
tions with no loss of information. This is described in the 
following Lemma.

Lemma 1 (Reformulation of the Least Squares (LSQ) Prob‑
lem)  The solution of a system of equations of the form

(10)L + v = Ãã, vTPv → min,P positive definite

is given with

and is also known as the weighted LSQ solution with weight 
matrix P being the inverse of the variance covariance matrix 
(VCM) of the observations L.

An equal solution introducing a regular matrix V  can be 
found with

Lemma 1 can be summarized as follows: It is possible 
to use the LC L∗ = VL instead of the original observations 
L to obtain solution ã . The solution ã using observations 
L∗ is equal to the solution obtained by the original obser-
vations L , as long as V  is a regular matrix and the design 
and weight matrix of the observations are transformed as 
demonstrated.

The motivation to perform such a transformation is 
given in the following Lemma.

Lemma 2 (Partial LSQ solution)  The partial solution x1 of 
the LSQ problem

can be expressed with

if A3 is a regular matrix and P a symmetric and positive 
definite matrix.

Therefore, by applying an appropriate transformation, 
the matrix Ã∗ = VÃ can be transformed into the form of 
the design matrix presented in Lemma 2, allowing for the 
pre-elimination of certain parameters x2 at an observational 
level. This enables us to obtain the partial solution x1 using 
a reduced observation vector. This partial solution is math-
ematically equivalent to the partial solution obtained when 
all observations are considered.

A generalization of this approach, including possible 
complications arising due to rank deficiencies, is given 
in the following corollary, which serves as the founda-
tion for the next chapters, as the following methods of 

(11)ã =
(
ÃTPÃ

)−1
ÃTPL

(12)L∗ = VL, v∗ = Vv,P∗ =
(
VT

)−1
PV−1, Ã∗ = VÃ

(13)ã =
(
Ã∗TP∗Ã∗

)−1
Ã∗TP∗L∗

(14)
[
L1
L2

]
+ v =

[
A1 0

A2 A3

][
x1
x2

]
, vT

[
P11 P12

P21 P22

]
v → min

(15)P−1 = Q =

[
Q11 Q12

Q21 Q22

]

(16)x1 =
(
AT
1
Q−1

11
A1

)−1
AT
1
Q−1

11
L1
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GNSS processing can be shown to be an application 
thereof. Note that in Corollary 3, it is not assumed that 
rank

([
A1 A2

])
= rank

(
A1

)
+ rank

(
A2

)
 like it has been 

assumed in Schaffrin and Grafarend (1986).

Corollary 3 ( Reformulation of rank‑deficient LSQ)  For a 
rank-deficient LSQ problem

with L ∈ ℝ
z,A =

[
A1 A2

]
∈ ℝ

z×k, rank(A) = k − r,Ai ∈ ℝ
zi×ki , 

def
(
Ai

)
= ri and bdef

(
A1,A2

)
= b , one can find a regular 

Matrix V =

[
V1

V2

]
∈ ℝ

z×z with VT
1

 being a basis matrix of 

N
(
AT
2

)
 . The admissible S-basis restrictions are chosen so 

that 
(
S⊥

)T
∈ ℝ

r×k =

[ (
S⊥
1

)
0

0
(
S⊥
2

)
]
 with 

(
S⊥
1

)
∈ ℝ(r1+b)×k1 

and 
(
S⊥
2

)
∈ ℝ

r2×k2 .  I t  follows that we can f ind 

S =

[
S1 0

0 S2

]
∈ ℝ

k×(k−r)  w i t h  S1 ∈ ℝ
k1×(k1−rj−b)  a n d 

S2 ∈ ℝ
k2×(k2−r2) (see Corollary 2). We can then reformulate 

the LSQ problem with

where matrix V2A2S2 is a regular and V1A1S1 a full rank 
matrix. The partial solution ã1 can be computed by solving 
the reduced LSQ problem, as shown in Lemma 2.

The condition regarding the S-basis restrictions can be 
interpreted as follows: The restrictions 

(
S⊥
2

)T must exclu-
sively eliminate the r2 rank deficiencies in A2, and the 
restrictions 

(
S⊥
1

)T must eliminate the r1 rank deficiencies 
occurring in A1 , as well as the b rank deficiencies occurring 
between A1 and A2 (see Lemma 3).

Lemma 3 ( Null space after transformation)  Let A =
[
A1 A2

]
 

and V =

[
V1 0 W1

0 V2 W2

]
 be a basis matrix of N(A) , Vi a basis 

matrix of Ai , and FT
1

 a basis matrix of N
(
AT
2

)
 . Then, 

F1

[
A1 A2

]
=
[
F1A1 0

]
 and with F1AV = 0, it follows that 

F1A1

[
V1 W1

]
= 0 . The vectors in 

[
V1 W1

]
 are linearly 

(17)L + v =
[
A1 A2

]
S

[
ã1
ã2

]
, vTPv → min

(18)L∗ + v∗ =

[
V1A1S1 0

V2A1S1 V2A2S2

][
ã1
ã2

]
, vTP∗v → min

independent (see Corollary 1), and 
[
V1 W1

]
 is a basis matrix 

of  N
(
F1A1

)
 and def

(

F1A1
)

= def
(

A1
)

+ bdef
(

A1,A2
)

.

Ionospheric‑free linear combinations

In the next chapters, the GNSS processing approach of for-
mulating IF-LC is introduced and the equivalence to the 
processing of UDUC observations is demonstrated. First, the 
general case is presented, which provides an admissible and 
equivalent reformulation of the UDUC network equations as 
introduced with Eqs. (3–5) for any number of signals. Then, 
two common dual-frequency IF approaches are explored. 
The first approach, commonly used in PPP, involves using 
one code and one phase IF-LC. The second approach, often 
used in PPP–RTK, involves using the HMW-LC in addition 
to the previously mentioned IF-LC.

General case

LC in the context of GNSS processing specifically refer to 
LC using only code and phase observations of a specific 
receiver-satellite link. They can be formulated with

where �l are the resulting LC and 
[
�T
f �T

f

]T
 the code and 

phase observations of a receiver-satellite link on f = l

2
 dif-

ferent signals. Here, it is assumed that only observations of 
the same epoch are used.

Important properties of LC might be: IF, geometric free 
(GF), ionospheric maintaining (IM), and geometry maintain-

ing (GM). After introducing B =

[
ef ef
−� �

]
∈ ℝ

2×l , we can 

derive specific properties of a LC v ⋅
[
�T
f
�T
f

]T
:

1.	 IF and GM LC if B ⋅ vT
IF
=

[
1

0

]

2.	 GF and IF LC if B ⋅ vT
GIF

=

[
0

0

]

3.	 GF and IM LC if B ⋅ vT
IM

=

[
0

1

]

In the context of GNSS processing, LC are commonly 
used to eliminate the ionospheric slant delay present in the 
UDUC observations. For the given matrix B , we can find a 
matrix

(19)�l = Vl×l
⋅

[
�f

�f

]



	 GPS Solutions (2023) 27:173

1 3

173  Page 6 of 10

of l linear independent vectors v1,… , vl of which l − 1 are IF 
and one is IM. Denoting VIF =

[
vT
1
… vT

l−1

]T and VIM = vl 
and applying the LC defined by V  to the observations of all 
satellite-receiver links, we obtain the regular matrix W  of 
the entire network:

W i t h  rank
(
WT

IF

)
= z − pnm  ,  WIF ⋅ Aion = 0  a n d 

def
(
AT
ion

)
= z − pnm, we can conclude that WT

IF
 is a basis 

matrix of N
(
AT
ion

)
 . The transformed design matrix Ã∗ then 

reads

Since there exist no rank deficiencies in Aion, i.e., 

def
(
Aion

)
= 0 , we can find 

(
S⊥

)T
=

[ (
S⊥
1

)T
0

]
 and 

S =

[
S1 0

0 I

]
 (see Corollary 2). The full rank design matrix Ã 

can then be obtained with

where WT
IM

⋅ Aion ∈ ℝ
pnm×pnm is a regular matrix. Thus, we 

can obtain all parameters, excluding the ionospheric slant 
delays, only by processing the IF observations (see Lemma 
2). Both the CC-R and the CC-S basis are valid choices for 
an IF-LC approach since ionospheric slant delays are not 
used as restrictions to eliminate the rank deficiencies occur-
ring between 

[
Arec Asat

]
 and Aion . Those rank deficiencies 

are eliminated via restrictions on the receiver and satellite 
biases instead.

Note that the IF-LC combination matrix WT
IF

 is a basis 
matrix of N

(
AT
ion

)
 when epoch-wise ionospheric slant delay 

parameters are assumed and l − 1 linear independent IF-LC for 
each receiver-satellite link are used. If additional temporal or 
spatial ionospheric constraints were introduced into the sub-
matrix Aion , then WT

IF
 would not be a basis matrix of the null 

space of the transposed partial design matrix that includes the 
temporal and/or spatial constraints. With the greater dimen-
sion of the null space, more observations would be required.

(20)Vl×l =

⎡⎢⎢⎢⎣

v11 v12 ⋯ v1l
v21 v22 ⋯ v2l
⋮ ⋮ ⋮ ⋮

vl1 vl2 ⋯ v3l

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

v1
v2
⋮

vl

⎤⎥⎥⎥⎦

(21)
W =

[
W

IF

W
IM

]
=

[
Ip ⊗ V

IF

⊗
(
In ⊗ Im

)
Ip ⊗ V

IM

⊗
(
In ⊗ Im

)
]
,

WIF ∈ ℝ
z−pnm×z

,WIM ∈ ℝ
pnm×z

(22)Ã∗ = WAS =

[
WIFA1 0

WIMA1 WIMA2

]
S

(23)Ã =

[
WT

IF
A1S

⊥
1

0

WT
IM
A1S

⊥
1
WT

IM
Aion

]

We can conclude that the LSQ solution of the IF-LC 
approach using l − 1 linear independent IF-LC for each 
receiver-satellite link is mathematically equivalent to the 
solution when evaluating the UDUC network equations when 
ionospheric slant delays are assumed to be epoch-wise param-
eters. We also found that both the CC-R and CC-S S-basis 
restrictions are viable options for the IF-LC approach. Given 
that the estimation of epoch-wise ionospheric slant delays is 
a common assumption when processing UDUC observations, 
the IF-LC approach presents a valid alternative that reduces 
the number of observations and parameters when compared 
to the UDUC approach.

Current practice in dual frequency IF processing

In PPP, it is common practice to process dual-frequency 
GNSS observations using one IF and GM code and phase 
LC. The LC matrix V  can then be formulated with

where

 As demonstrated in the previous chapter and explicitly men-
tioned in Teunissen (2020), it is evident that this is not a 
valid IF reformulation of the functional model described by 
(3) to (5). This is due to the requirement of three linearly 
independent IF LC for every receiver-satellite link when 
considering dual-frequency observations.

When reformulating the design matrix of the ionospheric 
delays to introduce different ionospheric slant delay param-
eters for code and phase observations, i.e.,

the transposed of the matrix Ip ⊗ V2IF ⊗
(
In ⊗ Im

)
 (see (21)) 

becomes a basis matrix of N
(
AT
2ion

)
 and a valid reformulation 

can be achieved according to Corollary 3. The conclusion is 
that the implicit model assumptions, when processing only 
two linear independent IF-LC, are epoch-wise ionospheric 
slant delay parameters that are different for code and phase 
observations.

For the purpose of PPP–RTK based on IF-LC, it is com-
mon practice to use the HMW-LC in addition to the previ-
ously mentioned LC (24). Then, a valid reformulation with 
pre-eliminated ionospheric slant delays as described in Cor-
ollary 3 is achieved, and integer ambiguity resolution can 
be performed analog to when the UDUC observations are 

(24)V2IF =

[
�IF �IF 0 0

0 0 �IF �IF

]
,B ⋅ VT =

[
1 1

0 0

]

(25)�IF =
�2

�2 − �1

, �IF = −
�1

�2 − �1

(26)A2ion = Ip ⊗

([
−1 0

0 1

]
⊗

(
𝜇 ⊗ Inm

))
,
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processed. Note that this approach does not require a repa-
rameterization of the ambiguities. Integer estimable ambi-
guities can be achieved as described by Khodabandeh and 
Teunissen (2019), and an a priori wide-lane and narrow-lane 
reparameterization like it is often performed (Ge et al. 2008; 
Laurichesse et al. 2008) and is not required. The reparam-
eterization of the ambiguities via an admissible ambiguity 
transformation (Teunissen 1995) can be done independently 
of the chosen IF-LC. The same applies to all other remain-
ing parameters, including receiver and satellite phase biases. 
They can be estimated in the same manner as in the general 
UDUC approach, with the only exception being that iono-
spheric slant delays cannot be used as S-basis restrictions.

Single differencing

SD refers to a differencing of observations between satel-
lites (BSSD) or between receivers (BRSD) and is most com-
monly performed on the same signal.

Between receiver A and B , SD Δ ∗s
AB,j

 can be formulated 
with Δ ∗s

AB,j
=∗s

A,j
− ∗s

B,j
 , where ∗ is a wildcard for either a 

code or phase observations. Observations from different 
receivers but the same signal and satellite are differenced. 
In the resulting observation Δ ∗s

AB,j
 , satellite clocks and 

biases of satellite s have been eliminated. BSSD can be 
formulated similarly with Δ ∗

sAsB
r,j

=∗
sA
r,j
− ∗

sB
r,j
, i.e., observa-

tions of a single receiver and signal are differenced 
between the satellites sA and sB . Here, the receiver clocks 
and biases are eliminated in the resulting BSSD observa-
tion. In this chapter, both the BRSD and BSSD matrices 
are introduced, but for brevity, only the derivation of the 
implicit assumptions of BRSD is given as the derivation 
of the BSSD can be done similarly.

A general formulation of the BRSD and BSSD differenc-
ing matrix based on the observation order defined by (6) and 
(7) is given with:

 A well-known property of BRSD is that satellite clocks 
and biases are eliminated, i.e., Frec

SD
Asat = 0 . With 

Asat ∈ ℝ
z×pm(2f+1) , rank

(
Asat

)
= 2pmf  , it then follows that 

def
(
AT
sat

)
= 2pmf (n − 1) . Since FrecT

SD
∈ ℝ

z×2pmf (n−1) and is 

a full rank matrix, it is a basis matrix of N
(
AT
sat

)
 . We can 

obtain a square and invertible matrix F =
[
FrecT
SD

FT
r

]T with 

Fr ∈ ℝ
2pmf×z.

Analog to the presented method in Corollary 
3, we now use F  to reformulate the design matrix 
A =

[
Ageo Arec Aion Aamb Asat

]
=
[
A1 Asat

]
 (note that the 

(27)

Frec
SD = Ip ⊗ I2f ⊗

([

−en−1 In−1
]

⊗ Im
)

,Fsat
SD

= Ip ⊗ I2nf ⊗
[

−em−1 Im−1
]

order of the submatrices in A has been changed for ease of 
notation) and obtain:

with FrAsatSsat being a regular matrix if and only if rank defi-
ciencies occurring between A1 and Asat have been eliminated 
with restrictions imposed on parameters belonging to A1.

Neither the CC-R nor the CC-S S-basis restrictions can be 
used to obtain the partial solution since parameters in xsat are 
used as restrictions to eliminate rank deficiencies between 
A1 and Asat , or more precisely: satellite biases are used to 
eliminate rank deficiencies of type 3b. A valid S-basis alter-
native can be found by using one ionospheric slant delay per 
satellite as a restriction instead. The corresponding S-basis is 
the CC-R-SD S-basis in the case of BRSD and the CC-S-SD 
basis in the case of BSSD given in Table 1. One can now 
solve for the remaining parameters only using the SD obser-
vations FSD ⋅ L . The solution is then equal to the parameters 
obtained if one had used all observations and the S-basis 
restrictions shown in Table 1.

With this, it has been established that the LSQ solution 
of the BRSD (BSSD) GNSS processing approach is math-
ematically equivalent to the solution of the general UDUC 
when satellite (receiver) clocks and biases are estimated as 
epoch-wise parameters. The SD approach pre-eliminates the 
respective parameters at an observational level, reducing the 
number of observations and parameters in the functional 
model. The pre-eliminated parameters can no longer be used 
to eliminate rank deficiencies, and the SD observation design 
matrix “inherits” the rank deficiencies between its parameters 
and the pre-eliminated parameters (Lemma 3). This has to be 
accounted for when choosing the S-basis restrictions.

Double differencing

DD can be expressed with

(28)FAS =

[
FSD

Fr

][
A1 Asat

][ S1 0

0 Ssat

]
=

[
FSDA1S1 0

FrA1S1 FrAsatSsat

]

(29)ΔΔ ∗
sAsB
AB,j

= Δ ∗
sA
AB,j

−Δ ∗
sB
AB,j

= Δ ∗
sAsB
A,j

−Δ ∗
sAsB
B,j

Table 1   Adjustments to the CC-R and CC-S basis

Note that the adjustments for CC-R-DD and CC-S-DD include the 
previous adjustment above. The column rd# refers to the type of rank 
deficiency (see chapter on UDUC network equations) the new restric-
tion eliminates. The corresponding restriction in the original CC-R or 
CC-S S-basis (Odijk et al. 2015) is replaced. The CC-R-SD is a valid 
S-Basis for BRSD and the CC-S-SD for BSSD

S-Basis restriction rd# CC-R-SD rd# CC-S-SD

Ionospheric slant delays 3b Is
1

2b I1
r

CC-R-DD CC-S-DD
Ionospheric slant delays 2b I1

r>1
3b Is>1

1
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and can be interpreted as the difference of BRSD/BSSD 
between different satellites/receivers. In the DD observation 
ΔΔ ∗

sAsB
AB,j

 , all satellite and receiver clocks and biases cancel 
out.

For the all-in-view network case of GNSS processing, the 
DD observation equations are given as,

and eliminate all receiver and satellite clocks 
and  b ia ses ,  i . e . ,  FDD

[
Arec Asat

]
= 0  .  We  can 

extend the DD-matrix FDD to a full rank matrix 
F =

[
FT
DD

FT
DR

]T
, and we transform the Design Matrix 

A =
[
Ageo Arec Aion Aamb

[
Arec Asat

] ]
=
[
A1

[
Arec Asat

] ]
  

to

 The same principles apply to the DD case as to the SD case: 
It can be shown that FDD is a basis matrix of 
N
([

Arec Asat

]T) . One can then solve the partial system of 
equations using only the DD observations and obtain an 
equal solution to the UDUC approach in which receiver and 
satellite clocks and biases are estimated as epoch-wise 
parameters when similar S-basis restrictions are chosen.

Since the rank deficiencies 2b and 3b must be eliminated 
in the S-basis restrictions 

(
S⊥
1

)T , ionospheric delays must be 
used as restrictions to eliminate rank deficiencies 2b and 3b 
instead of receiver/satellite biases, as is done in the CC models. 
Since biases have been assumed epoch-wise, the rank defi-
ciencies between them and the ionospheric delays must also 
be eliminated at every epoch. An example S-basis is given in 
Table 1, denoted as CC-R-DD and CC-S-DD. The estimable 
ionospheric delays are then of double differenced nature.

On differencing with a constant bias assumption

As shown in the previous section, the classic SD and DD 
approaches are equivalent to the processing of UDUC obser-
vations when all biases and clocks are estimated as epoch-
wise parameters. Since biases are usually estimated as constant 
daily parameters (Geng et al. 2019; Schaer et al. 2021) or as 
varying slowly in time, the functional model of SD and DD 
GNSS processing is expected to be weaker due to the greater 
number of implicit parameters.

The SD and DD approaches can be modified so that the 
assumption of constant biases is made, resulting in identical 
outcomes to undifferenced processing with constant biases. To 

(30)
F
DD

= Ip ⊗ I
2f ⊗

([
−en−1 In−1

]
⊗

[
−em−1 Im−1

])
∈ ℝ

2pf (n−1)(m−1)×z

(31)
FAS =

[
FDD

FDR

][
A1

[
Arec Asat

] ][ S1 0

0 Srs

]

=

[
FDDA1S1 0

FDRA1S1 Fr

[
Arec Asat

]
Srs

]

obtain a modification of the SD and DD approaches with the 
assumption of constant biases, one must look at the null space 
of the transposed partial design matrices under the assumption 
of constant biases. The design matrices are given with

Note that the parameter order has been changed: The first 
column of both matrices contains the epoch-wise receiver/sat-
ellite clocks, and the second column the constant biases. The 
dimensions of the null spaces are given with

 The SD and DD observations (27) and (30) are also valid 
for the constant bias assumption, i.e., are linearly independ-
ent vectors in the null space of the respective matrix, but 
additional observations are required to achieve an equiva-
lent reformulation under the assumption of constant biases. 
The number of additional observations increases with the 
number of epochs p , signals f  , and receivers m/satellites 
n, respectively, as shown by (34) to (36) and will require 
between epoch and signal differencing in addition to the reg-
ular SD or DD. Given these considerations, the differencing 
approach, when assuming constant biases, does not seem to 
offer any significant benefits over an undifferenced approach.

Conclusions

We presented a method of reformulating the functional 
model of the UDUC observations to pre-eliminate 
parameters at an observational level. This reformulation 
addresses existing rank deficiencies and demonstrates 
how they propagate into the reformulated model. It was 
demonstrated that the IF and differencing approaches 
for processing GNSS observations are specific applica-
tions of this reformulation. By applying the reformula-
tion methods to the UDUC observations of CDMA GNSS 
to obtain the various other approaches, we were able to 
identify the implicit assumptions made in the two IF-LC 

(32)As,rec =

[
Ip ⊗

(
e2f ⊗

(
In ⊗ em

))
ep ⊗

([
𝜆 0

0 If

]
⊗

(
In ⊗ em

)) ]

(33)As,sat =

[
Ip ⊗

(
e2f ⊗

(
−en ⊗ Im

))
ep ⊗

([
𝜆 0

0 If

]
⊗

(
−en ⊗ Im

)) ]

(34)def
(
AT
s,sat

)
= def

(
AT
sat

)
+ m(p − 1)(2f − 1)

(35)def
(
AT
s,rec

)
= def

(
AT
rec

)
+ n(p − 1)(2f − 1)

(36)

def

([
As,sat As,rec

]T)
= def

([
Asat Arec

]T)
+ (n + m − 1)(2f − 1)(p − 1)
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and the multiple differencing approaches presented here. 
All approaches, or more precisely the parameters and 
their VCM, are mathematically equivalent to the results 
obtained when the UDUC functional model is evaluated 
with the identified assumptions.

Specifically, when using one IF code and phase obser-
vation, the dual frequency IF-LC approach assumes epoch-
wise ionospheric slant delay parameters that are different 
for the code and phase observations. The latter assumption 
is discarded when using a third IF-LC, e.g., the HMW-LC, 
in addition to the IF code and phase observations.

The various differencing approaches make the assump-
tions that the eliminated receiver and or satellite clocks 
and biases are epoch-wise parameters in the functional 
model of the UDUC observations. With the general theory 
behind the reformulation of the original model, it would 
be possible to adapt the differencing approaches to make 
the implicit assumption of constant biases.

Understanding the implicit assumptions in the vari-
ous methods of processing GNSS observations helps us 
to fairly compare the different approaches, their perfor-
mance, and the estimated parameters. When combining 
satellite clocks and biases computed by different data cent-
ers into one consistent solution, it is essential to be aware 
of the underlying functional models and imposed S-basis 
restrictions since they affect the interpretation of those 
parameters. Furthermore, the presented reformulation can 
be applied to other methods of GNSS processing where 
LC of observations are used. One example is given with 
cycle slip detection in the preprocessing of GNSS obser-
vations. With the presented methods and ideas, implicit 
assumptions in various established cycle slip detection 
methods could be detected and applied to, e.g., UDUC 
GNSS observations.
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