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Abstract
In this paper, we investigate the algebraic nature of the value of a higher Green func-
tion on an orthogonal Shimura variety at a single CM point. This is motivated by a
conjecture of Gross and Zagier in the setting of higher Green functions on the prod-
uct of two modular curves. In the process, we will study analogue of harmonic Maass
forms in the setting of Hilbert modular forms, and obtain results concerning the arith-
metic of their holomorphic part Fourier coefficients. As a consequence, we answer a
question of Zagier in his 1986 ICM proceeding.
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1 Introduction

Let j (z) be the modular j -invariant on the modular curve X0(1) := SL2(Z)\H with
H the upper-half plane. Its values at CM points are algebraic integers called singular
moduli. They play an important role in the explicit construction of class fields of
imaginary quadratic fields.

1.1 Conjecture and results

The function G1(z1, z2) := 2 log |j (z1)− j (z2)| is the automorphic Green function
on X0(1)×X0(1), and the limiting member of a family of automorphic functions

Gs(z1, z2) := −2
∑

γ∈�

Qs−1

(
1+ |z1 − γ z2|2

2�(z1)�(γ z2)

)
, �(s) > 1,

Qs−1(t) :=
∫ ∞

0
(t +

√
t2 − 1 cosh(u))−sdu,

(1.1)

that are eigenfunctions with respect to the Laplacians in z1 and z2. For integral param-
eters s = r + 1 ∈N, these functions are called higher Green functions, and played an
important role in calculating arithmetic intersections of Heegner cycles on Kuga-Sato
varieties [39]. Given a weakly holomorphic modular form f =∑

m�−∞ c(m)qm ∈
M !
−2r on X0(1), one can associate to it a higher Green function

Gr+1,f (z1, z2) :=
∑

m∈N
c(−m)mrGm

r+1(z1, z2),

Gm
s (z1, z2)=Gs(z1, z2) | Tm

=−2
∑

γ∈M2(Z), det(γ )=m

Qs−1

(
1+ |z1 − γ z2|2

2�(z1)�(γ z2)

)
.

(1.2)

Although the theory of complex multiplication does not directly apply, the values
of Gr+1,f at CM points on X0(1)2 should be algebraic in nature, as in the case of
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the automorphic Green function. More precisely, these values should be algebraic
multiples of logarithm of algebraic numbers. This was conjectured in [24, Conjecture
(4.4)] when z1, z2 have the same discriminant, and mentioned as a question in [22,
section V.1] for the general case (see also [30] and [34]). In this paper, we prove the
following result, which in particular solves problem (ii) raised by Don Zagier at the
end of his 1986 ICM proceeding [38].

Theorem 1.1 Let r ∈N and f ∈M !
−2r with integral Fourier coefficients. Suppose d1,

d2 are negative discriminants, such that one of them is fundamental when r is odd.
For any CM point zi with discriminant di , there exist κ ∈ N depending on d1, d2, r

and f , and α = α(z1, z2) ∈H such that

(d1d2)
r/2Gr+1,f (z1, z2)= 1

κ
log |α|, (1.3)

where H =H1H2 with Hi the ring class field extension of Ei :=Q(
√

di) associated
to zi . Furthermore, we have

α(zσ
1 , zσ

2 )= σ(α(z1, z2)) (1.4)

for any σ ∈Gal(H/E), where E =E1E2.

Remark 1.2 The group Gal(H/E) can be embedded as a subgroup of Gal(H1/E1)×
Gal(H2/E2), which then acts on the CM point (z1, z2).

There has been a lot of previous works concerning this question. The first such
result is due to Gross, Kohnen and Zagier [22], where r is even1 and one considers
average of the whole Gal(H/E)-orbit of (z1, z2). In that case, the value is a rational
multiple of the logarithm of a rational number. When E1 = E2, this conjecture fol-
lows from the work of Zhang [39], under the assumption of the non-degeneracy of
certain height pairing of Heegner cycles on Kuga-Sato varieties. In [34], Viazovska
gave an analytic proof without this assumption. When E1 �= E2, Mellit [30] gave a
strategy to systematically verify this conjecture with one of the points fixed, and car-
ried it out for z1 = i. In [28], we considered the average over the whole Gal(H/E)-
orbit with r odd, and were able to show that α ∈ Q(

√
d1d2) and give an explicit

factorization of the ideal it generates in the spirit of the seminal work of Gross and
Zagier on singular moduli [23]. Very recently, Bruinier, Ehlen and Yang made signifi-
cant progress and proved algebraicity result in the sense of Theorem 1.1 by averaging
over the Galois orbit of one of the two CM points with fundamental discriminant [11].
We have now removed this averaging in Theorem 1.1 to obtain an algebraicity result
at an individual CM point.

It is important to mention that one can replace SL2(Z) with a congruence subgroup
�0(N), define higher Green functions on X0(N)2 analogously, and ask the same
question. This was in fact the setting that [22] and [39] were in. By viewing X0(N)2

as the Shimura variety for the Q-split group O(2,2), it is natural to generalize the

1For odd r , they also obtain certain result, which turns out to be trivial in the case of level 1.
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setting to an arbitrary orthogonal Shimura variety, and ask the question about the
algebraic nature of the CM-values of higher Green functions on such varieties. This
framework, which was adopted in [11], will be the one we work in.

To be more precise, let V be a rational quadratic space of signature (n,2), and

XK(C)=XV,K(C)=H(Q)\DV ×H(Ẑ)/K (1.5)

the Shimura variety associated to the algebraic group H = HV = GSpinV and an
open compact subgroup K ⊂H(Ẑ) (see Sect. 2.3 for details). Given an even, integral
lattice L⊂ V such that K fixes L̂= L⊗Ẑ and acts trivially on the finite abelian group
L̂′/L̂, one can associate a higher Green function �r

L(z,h,f ) on XK to each weakly
holomorphic modular form f ∈M !

1−n/2−2r,ρ̄L
and r ∈N (see Equation (3.29)). It has

logarithmic singularity along special divisors on XK .
For a totally real field F of degree d , a quadratic CM extension E/F be-

comes a binary F -quadratic space W with respect to a quadratic form αNmE/F for
some α ∈ F×. Suppose W has signature ((0,2), (2,0), . . . , (2,0)) with respect to
the real embeddings σ1, . . . , σd of F and there is an isometric embedding WQ :=
ResF/QW ↪→ V . This not only implies

n+ 2≥ 2d, (1.6)

but also gives CM points Z(WQ)⊂XK (see Equation (2.32)). This 0-cycle is defined
over F , and each individual point (z0, h) ∈ Z(WQ) is defined over certain abelian
extension of E. We will prove the following result concerning the algebraic nature of
�r

L at CM points in Z(WQ).

Theorem 1.3 In the setting above, suppose f has integral Fourier coefficients. Then
there exist algebraic numbers λj ∈ F and αj ∈Eab for 1≤ j ≤ d such that

�r
L(z0, h1, f )−�r

L(z0, h2, f )=
d∑

j=1

λj log

∣∣∣∣
σh1(αj )

σh2(αj )

∣∣∣∣ (1.7)

for any (z0, hi) ∈ Z(WQ). Here σh ∈ Gal(Eab/E) is the element associated to h ∈
E×\Ê× via class field theory. In particular when F =Q(

√
D) is real quadratic and

n+ 2= 2d = 4, we can take λ1 =Dr/2/κ for some κ ∈N and λ2 = 0.

Remark 1.4 When (V ,Q)= (M2(Q),N · det), the Shimura variety XK(C) becomes
X0(N)2 for suitable K [37, Sect. 3.1]. In that case, for CM points zi with discrimi-
nant di , the CM point (z1, z2) is in Z(WQ) with W certain F =Q(

√
d1d2)-quadratic

space. These are called “big CM points”, resp. “small CM points”, when F is real
quadratic, resp. F =Q.

Remark 1.5 Theorem 1.3 applies even when Z(WQ) intersects the singularity of �r
L,

In that case, the function �r(z,1, f )−�r(z,h,f ) in z can be continued to a real-
analytic function in the neighborhood of the singularity, and its value at z= z0 defines
the quantity on the left hand side of (1.7).
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Previous results concerning any linear combinations of CM values of higher Green
function either assume n≤ 2 or d = 1. Theorem 1.3 is the first result where the cases
with n ≥ 3 and d ≥ 2 are addressed. In such cases, there is no known results even
when one averages the higher Green function over all the CM points in all Galois
conjugates of Z(WQ), unlike for Green functions studied in [13, 15]. Together with
Theorem 1.1, Theorem 1.3 naturally leads one to expect the following.

Conjecture 1.6 In the setting of Theorem 1.3, suppose f has integral Fourier coeffi-
cients and the singularity of �r

L(z,h,f ) does not intersect Z(WQ). Then there exists
λj ∈ F and αj ∈Eab for 1≤ j ≤ d such that

�r
L(z0, h, f )=

d∑

j=1

λj log
∣∣σh(αj )

∣∣ (1.8)

for all (z0, h) ∈Z(WQ).

When F is real quadratic, i.e. d = 2, we can confirm it in the following case.

Theorem 1.7 Conjecture 1.6 holds when F is a real quadratic field, r is even, n= 4,
and Z(WQ) is defined over Q, in which case we can take λ1 ∈Q and λ2 = 0.

Remark 1.8 When E/Q is Galois, there are many instances when Z(WQ) is defined
over Q (see e.g. Lemma 3.4 in [15]). In particular, the CM points on X0(1)2 sat-
isfy this condition (see Example 2.7). Therefore, the case for even r in Theorem 1.1
follows from Theorem 1.7.

Remark 1.9 In a recent joint work [8], we have proved Conjecture 1.6 when E/Q is
biquadratic.

1.2 General proof strategy

When F = Q, Conjecture 1.6 follows from Theorem 5.5 in [11]. Here we give a
sketch of its proof, which is analytic in nature. First, one expresses �r

L(z,h,f ) as an
integral of f against a suitable theta kernel Rr

τ�L(τ, z,h), where Rτ is the raising
operator (see (2.5)). Then a CM point (z0, h) ∈ Z(WQ) leads to a rational splitting of
V since F = Q. Suppose it leads to an integral splitting of L into L = L̃⊕N with
L̃ and N definite lattices of signature (n,0) and (0,2) respectively. Then the theta
kernel becomes2

�L(τ, z0, h)= θ
L̃
(τ )θN(τ), (1.9)

Note that θN is non-holomorphic and has weight −1. One can then construct a
preimage θ̂N of θN under the lowering operator Lτ . It is a harmonic Maass form
of weight 1. The notion of harmonic Maass form was introduced in the seminal work

2For simplicity, we omit the detail about the modular forms being vector-valued.
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of Bruinier and Funke [12], and studied around the same time by Zwegers in the
context of modular completion of Ramanujan’s mock theta functions [40].

Applying the Rankin-Cohen operator (see (2.6)) to θ
L̃

and θ̃N then gives us a
preimage of Rr

τ (θL̃
(τ )θN(τ)) under the Lτ . Putting these together and applying

Stokes’ theorem gives us

�r
L(z0, h, f )=

∫

X0(1)

f (τ )Rr
τ (θL̃

(τ )θN(τ))dμ(τ)

=
∫

X0(1)

f (τ )LτC(n/2,1),r (θL̃
(τ ), θ̃N (τ ))dμ(τ)

= {f (τ),C(n/2,1),r (θL̃
(τ ), θ̃+N (τ))} = CT(f̃ (τ ) · θ̃+N (τ)),

where {, } is a pairing of formal Fourier series (see (4.13)) and CT denotes the con-
stant term of a Fourier series. The function θ̃+N is the holomorphic part of θ̃N , and the
modular form f̃ in the last expression is weakly holomorphic with weight −1 and
rational Fourier coefficients.

The harmonic Maass form θ̃N of weight 1 was studied in [19, 20, 35]. It was shown
that the term CT(f̃ (τ ) · θ̃+N (τ)) is the logarithm of an algebraic number. To see this,
let P1, P2 be positive definite, unimodular lattices such that θP1 − θP2 is holomorphic
on H. One can rewind the process above (with r = 0) and write

CT(f̃ (τ ) · θ̃+N (τ))=
∫

X0(1)

f̃ (τ )θN(τ)dμ(τ)

=
∫

X0(1)

f̂ (τ )(θP1(τ )− θP2(τ ))θN(τ)dμ(τ)

=�L1(z1, f̂ )−�L2(z2, f̂ ),

where f̂ = f̃ · (θP1 − θP2)
−1 is weakly holomorphic and Li = Pi ⊕N . The functions

�Li
(z, f̂ ) are the regularized Borcherds lifts of f̂ and are logarithms of rational

functions on Shimura varieties associated to Li . Their values at CM points zi are
logarithms of algebraic numbers by the theory of complex multiplication. This fin-
ishes the sketch of the proof. The process of multiplying and dividing by θP1 − θP2 a
manifestation of the embedding trick (see [6, Sect. 8]).

The partial averaging result in [11, Theorem 1.2] used the coincidence that the
average of Gr+1,f (z1, z) over the Galois orbit of z1 is a higher Green function in z

on the modular curve, i.e. n+ 2= 3. This is a rather special phenomenon that only
happens when E/Q is biquadratic. By (1.6), one is reduced to the case of d = 1 in
Conjecture 1.6.

For d ≥ 2, the lattice L splits as L̃⊕ ResF/QN with N ⊂W an O-lattice of sig-
nature ((0,2), (2,0) . . . , (2,0)), and the analogue of (1.9) is

�L(τ, z0, h)= θ
L̃
(τ )θ�

N (τ), (1.10)

where θ�
N (τ) is the diagonal restriction of the Hilbert theta function θN(τ1, . . . , τd) of

weight (−1,1 . . . ,1) associated to N . When one tries to execute the above strategy to
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construct a preimage of θ�
N under the lowering operator, it is necessary to work with

Hilbert modular forms, and there are some serious obstacles.

• The analogous θ̂N should be a Hilbert modular form that satisfies suitable prop-
erties similar to those of harmonic Maass forms in the setting of elliptic modular
forms. However, there is no suitable extension of the notion of harmonic Maass
forms to higher rank groups.

• As harmonic Maass forms have singularities at the cusps, one would expect the
same for the analogous θ̂N . However, Koecher’s principle would imply that such
θ̂N could not have singularity only at the cusps, but in the interior of the Hilbert
modular variety as well. This also holds for its diagonal restriction and complicates
the application of Stokes’ theorem.

• To extract information about the Fourier coefficient of θ̂N , one needs the general-
ization of Borcherds’ lift over totally real fields. In a large part, this has been ac-
complished in [10] by considering regularized theta lifts of Whittaker forms. How-
ever, as the Shimura varieties appeared loc. cit. are compact, there is no Fourier
expansion and one has limited information about the rationality of the lift. Further-
more, it seems hopeless to direct generalize the embedding trick in [6] to totally
real fields.

Instead of studying the value at an individual CM point, one can average over
CM points in Z(WQ), and those in Z(W(j)Q) for 2 ≤ j ≤ d , where each W(j) is
a neighboring F -quadratic space of W (see Sect. 2.3). Then the rational quadratic
spaces ResF/QW(j) are all isomorphic and

∑

1≤j≤d

∑

(z,h)∈Z(W(j)Q)

�L(τ, z,h)= θ
L̃
(τ )⊗

∑

1≤j≤d

E�
N(j)(τ ),

EN(j)(τ1, . . . , τd) :=
∑

(zj ,h(j))∈Z(W(j)Q)

θN(j)((τ1, . . . , τd), h(j)),

with N(j) ⊂ W(j) suitable lattices. The Hilbert modular form θN(j0) is holomor-
phic in τj for j �= j0 and has weight (1, . . . ,1,−1,1, . . . ,1) with −1 at the j0-th
place. One can now explicitly construct an incoherent Hilbert Eisenstein series EN

of parallel weight 1 that maps to EN(j) under the lowering operator in τj for all
1 ≤ j ≤ d . For d = 2, this is the real-analytic Eisenstein series that appeared in the
seminal works of Gross and Zagier on singular moduli and the Gross-Zagier formula
[23, 24]. It also appeared in [15], and has been combined with the regularized theta
lifting of Borcherds to give fruitful generalizations of [23, 24] in [13, 16].

The advantage of EN is that its Fourier coefficients can be computed explicitly,
and shown to be logarithms of rational numbers. They furthermore can be interpreted
as arithmetic intersection numbers. On the other hand, it provides limited information
about the arithmetic of higher Green function at a single CM point, as the differential
operator in the strategy for d = 1 does not readily generalize except in the case n=
2d = 4 and r even (see the discussion at the end of Sect. 5 in [11]). The higher Green
functions studied by Gross, Kohnen and Zagier in [22] happen to be in this single
case.
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1.3 Ideas

We now describe some ideas and observations that help to overcome the obstacles
mentioned in the previous section:

• For any holomorphic Hilbert cusp form g(τ) and � ∈N sufficiently large, the prod-
uct g(τ)�θN(τ) has a modular preimage under the lowering operator in τ1 with no
singularity in H

d . Furthermore, this preimage is harmonic in τ1 and holomorphic
in τ2, . . . , τd .

• The generalization of Borcherds’ lift in [10] differs from the logarithm of an F -
rational function by a locally constant function, which can be canceled out when
considering differences of linear combinations of CM values.

• The embedding trick only needs to work along the diagonal of Hd , and one can ap-
ply the Siegel-Weil formula to replace the difficult task of finding suitable positive
definite O-lattice P to the simpler one of analyzing Eisenstein series.

The first idea is inspired by Zwegers’ work [40], where the product of a mock theta
function and a classical theta function is completed to become a real-analytic modular
form without singularity in H. Such products are also called “mixed mock-modular
forms” in [18] and are natural objects to consider. Since the differential operators
in τ1, . . . , τd are all independent, this idea can be applied in the setting of Hilbert
modular forms. The existence of the modular preimage will be proved using complex
geometry (see Sect. 4.1), as done in the elliptic case in [12]. The parameter � serves
to ensure certain cohomology group vanishes (see Theorem 4.1). The Rankin-Cohen
differential operator can also be generalized to be applied on such functions (see the
differential operator Dκ,r in (2.13)).

The second idea is a compromise so that one can still use the generalization of
Borcherds’ lift in [10] to deduce algebraicity results. Considering differences is quite
effective in removing the so-called “normalizing constant” in the regularized theta lift
(see Theorem 1.1 in [9]), as different linear combinations could give rise to the same
normalizing constant. Furthermore, considering the difference turns out to simplify
many other situations as well. For example, it is enough to construct a preimage of
g(τ)�(θN1(τ )− θN2(τ )) with g(τ) a holomorphic Hilbert cusp form. This is accom-
plished in Theorem 4.3, using the ampleness of twists of determinant of the Hodge
bundle on toroidal compactifications of Hilbert modular varieties, which is contained
in Theorem 4.1 and a result of independent interest.3 Also, one does not need to
worry so much about the singularity of �r

L (see Remark 1.5 and Lemma 4.5). The
linear combination we take will come from multiplying this preimage with an Eisen-
stein series E

P̃
. This leads to the crucial algebraicity result in Theorem 4.10, which

is of independent interest.
For the embedding trick, the last idea reduces the problem of dividing by a Hilbert

cusp form g, which is constructed from theta series, to dividing by its diagonal re-
striction g�, which is an elliptic modular form. Using the Siegel-Weil formula, we
can relate g to Hilbert Eisenstein series. By varying the weight, we will show that for
any finite set of points in H

d , there is a Hilbert Eisenstein series that does not vanish

3We thank the referee for a helpful suggestion that led to this result.
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on this set (see Lemma 3.2). This observation has its root in the classical work [31] of
Rankin and Swinnerton-Dyer on zeros of elliptic Eisenstein series, and leads to the
“partition of unity” result in Proposition 3.4.

By putting these ideas together, we are able to overcome the obstacles and prove
Theorem 1.3. When it is specialized to the case in Theorem 1.1, we can combine this
result about differences with the result about partial averages in [11] to complete the
proof.

1.4 Outlook and organization

To prove Conjecture 1.6, one needs algebraicity results concerning sums of CM
points, in addition to the “difference result” in Theorem 1.3. For real quadratic F ,
we have worked out such a “sum result” when E/Q is biquadratic in [8], which has
led to a proof of Conjecture 1.6 in this case. When d ≥ 3, one can try to relate the
(in)coherent Eisenstein series to Eisenstein series on O(2,1) over F , and realize them
as suitable theta lifts from SL2 over F . We plan to pursue this idea in a future work.

The paper is organized as follows. In Sects. 2 and 3, we setup notations and col-
lect various preliminary notions from the literature. Results such as Lemma 3.2 and
Proposition 3.4 seem to be new, and form a crucial trick in the proof of Theorem 1.3.
In Sect. 4, we construct certain real-analytic Hilbert modular form in Theorem 4.3
and prove algebraicity result about linear combinations of their Fourier coefficients
in Theorem 4.10. Putting these together, we give the proofs of Theorems 1.1, 1.3 and
1.7 in Sect. 5.

2 Preliminary

Fix an embedding Q ↪→ C. Throughout the paper, F will be a totally real field of
degree d with ring of integers O, different d and discriminant D. For 1≤ j ≤ d and
m ∈ F , denote σj : F ↪→ R the real embeddings of F and mj := σj (m). We write
m� 0 if m ∈ F is totally positive, i.e. mj > 0 for all 1≤ j ≤ d . For a number field
E with ring of integers OE , let AE and Ê := E ⊗ Ẑ be the adeles and finite adeles
respectively. The subgroup ÔE :=OE ⊗ Ẑ⊂ Ê is open and compact.

Given τ = (τ1, . . . , τd) ∈H
d , we write v = (v1, . . . , vd) := �(τ ) ∈ (R>0)

d . For a
function f on H

d , we will write f � for its diagonal restriction to H⊂H
d . For α ∈C,

denote

e(α) := e2πiα.

For x = (xj )1≤j≤d , y = (yj )1≤j≤d ∈C
d , we denote

xy = (xj yj )1≤j≤d ∈C
d, tr(x) :=

∑

1≤j≤d

xj , Nm(x) :=
∏

1≤j≤d

xj .

For a semigroup G and a G-graded ring R =⊕i∈GRi , we use

RG0 :=
⊕

i∈G0

Ri ⊂R
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for a sub-semigroup G0 ⊂ G. Also, we denote N the positive integers and N0 :=
N∪ {0}.

2.1 Modular forms

For a congruence subgroup � ⊂ SL2(O), a finite dimensional, unitary represen-
tation ρ of � on a finite dimensional hermitian space (V, 〈·, ·〉), and weight κ =
(k1, . . . , kd) ∈ Z

d , let Aκ,ρ(�) denote the C-vector space of vector-valued, real-
analytic functions on H

d invariant with respect to ρ on � of weight κ , and bounded
near the cusps of �\Hd . It contains the subspaces Sκ,ρ(�) ⊂Mκ,ρ(�) of cuspidal

and holomorphic Hilbert modular forms. We also write
−→
k := (k, . . . , k).

For any f ∈Aκ,ρ(�), the function on H
d

‖f (τ)‖2
Pet := 〈f (τ), f (τ )〉Nm(vκ) (2.1)

is �-invariant. Given f,g ∈ Aκ,ρ(�) such that at least one of them has exponential
decay near the cusps, we can define their Petersson inner product

(f, g)Pet := 1√
D

∫

�\Hd

〈f (τ), g(τ )〉Nm(vκ)dμ(τ), (2.2)

where dμ(τ) := dμ(τ1) . . . dμ(τd) is the invariant measure on H
d (see Equation

(4.21) in [10]). For κ = (k1, . . . , kd), denote the following related weights

κ̃ := (−k1, k2, . . . , kd), κ̂ := (2− k1, k2, . . . , kd). (2.3)

We omit �, resp. ρ, from the notation when F is fixed and � = �F := SL2(O), resp.
it is trivial. When F =Q, we will use the superscript ! to indicate modular forms with
singularities at the cusps.

When ρ is trivial, it is known that Mκ(�F )=Mκ(�F ,Q)⊗C, where Mκ(�F ,Q)

is the subspace of modular forms with rational Fourier coefficients. This is also the
case for Mκ,ρ when ρ is a Weil representation defined below (see [29], [10, Sect. 7]).

For later purposes, we will be interested in the (Nd -)graded ring

MF :=
⊕

κ∈Nd

Mκ(�F ,Q). (2.4)

2.2 Differential operators

For k ∈ Z, we have the usual raising, lowering and hyperbolic Laplacian operators
on H

Rτ,k := 2i∂τ + k

v
, R̃τ,k := (4π)−1Rτ,k, Lτ,k := −2iv2∂τ ,

�τ,k := −Rτ,k−2Lτ,k =−Lτ,k+2Rτ,k − k

=−v2
(
∂2
u + ∂2

v

)
+ ikv(∂u + i∂v).

(2.5)
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They change the weight by 2, −2 and 0 respectively. For κ = (k1, k2) ∈Q
2 and r ∈

N0, we can define the Rankin-Cohen operator on a real-analytic function f (τ1, τ2) ∈
H

2 by

Cκ,r (f )(τ )

:= (2πi)−r

r∑

s=0

(−1)s
(

k1 + r − 1

s

)(
k2 + r − 1

r − s

)(
∂(r−s)
τ1

∂(s)
τ2

f
)

(τ, τ ),

=
r∑

s=0

(−1)r−s

(
k1 + r − 1

s

)(
k2 + r − 1

r − s

)(
R̃r−s

τ1,k1
R̃s

τ2,k2
f

)
(τ, τ ),

(2.6)

where
(
m
n

) := m(m−1)(m−2)...(m−n+1)
n! is the binomial coefficient. The equality in the

second line can be proved by considering the generating series constructed from the
differential operators ∂τ and Rτ . The details are contained in Sect. 5.2 of [14], in
particular Propositions 18 and 19. The first expression shows that the operator pre-
serves holomorphicity. When κ ∈ Z

2, the second expression shows that it preserves
modularity in the sense that

Cκ,r (f ) |k1+k2+2r γ = Cκ,r (f |κ (γ, γ )) (2.7)

for any γ ∈ SL2(R). The same result holds in the metaplectic setting when κ ∈ 1
2Z

2.

Example 2.1 Suppose κ = (1,1) and f (τ1, τ2)= e(α1τ1+α2τ2) for α ∈Q(
√

D) with
tr(α) �= 0. Then

e(−tr(α)τ)Cκ,r (f )(τ )=
r∑

s=0

(
r

s

)2

αr−s
1 (−α2)

s

= tr(α)r2−r
r∑

s=0

(
r

s

)2 (
2α1

α1 + α2

)r−s ( −2α2

α1 + α2

)s

= tr(α)r2−r
r∑

s=0

(
r

s

)2

(x + 1)r−s(x − 1)s = tr(α)rPr(x)

with x = α1−α2
α1+α2

=
√

Dtr(α/
√

D)
tr(α)

and Pr(X) the r-th Legendre polynomial, which has
parity (−1)r . The last equality is a consequence of Rodrigues’ formula (see (8.6.18)
in [1]). This example will be used in the proof of Theorem 1.3.

When f (τ1, τ2) = f1(τ1)f2(τ2) with fi modular forms of weight ki ∈ 1
2Z, the

function [f1, f2]r := Cκ,r (f ) is the usual Rankin-Cohen bracket of f1 and f2 [14,
Sect. 5.2]. If f1 is harmonic of weight k1 and f2 is holomorphic of weight k2, then
we have

Lτ [f1, f2]r =
(

k1 + r − 1

r

)
Lτf1R̃

r
k2

f2 =
(

k1 + r − 1

r

)
R̃r

k1+k2−2Lτ (f1f2) (2.8)

for any r ∈N0.
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Lemma 2.2 For real-analytic functions f,g :H→ C, rational numbers k, � and an
integer r ≥ 0, if k+ � /∈ {−2r + 2,−2r + 3, . . . ,0},4 then there exists cr,a,j ∈Q such
that

R̃a
k f R̃r−a

� g =
r∑

j=0

cr,a,j R̃
r−j

k+�+2j [f,g]j (2.9)

for all 0≤ a ≤ r .

Proof This is done by induction on r . The base case of r = 0 is trivial. For the in-
ductive step to prove the case r + 1, we have k + � /∈ {−2r,−2r + 1, . . . ,0}. Denote
xa := R̃af R̃r+1−ag for 0≤ a ≤ r + 1. Applying R̃ to (2.9) shows that xa + xa+1 is
a rational linear combination of R̃r+1−j [f,g]j ’s over 0 ≤ j ≤ r for any 0 ≤ a ≤ r .
From definition, we also have

r+1∑

a=0

caxa = [f,g]r+1, ca := (−1)a
(

k+ r

r + 1− a

)(
�+ r

a

)
.

Therefore, the right hand side below is a rational linear combination of R̃r+1−j [f,g]j
for 0≤ j ≤ r+1 and it suffices to show that the square matrix on the left is invertible

(
A

c0 c1 . . . cr cr+1

)
·
⎛

⎜⎝
x0
...

xr+1

⎞

⎟⎠=

⎛

⎜⎜⎜⎝

x0 + x1
...

xr + xr+1
[f,g]r+1

⎞

⎟⎟⎟⎠ , A :=

⎛

⎜⎜⎝

1 1 0 0 . . .0
0 1 1 0 . . .0

. . .

0 0 . . .0 1 1

⎞

⎟⎟⎠ .

The right kernel of A is spanned by the vector ((−1)a)0≤a≤r+1. On the other hand

r+1∑

a=0

ca · (−1)a =
r+1∑

a=0

(
k+ r

r + 1− a

)(
�+ r

a

)
=

(
k+ �+ 2r

r + 1

)
,

which is zero precisely when k + � ∈ {−2r,−2r + 1, . . . ,−r}. This is not possible
by the condition imposed on k+ �. Therefore the matrix

(
A

c0...cr+1

)
is invertible. �

Now we will extend the Rankin-Cohen operator to functions on H
d for any

d ≥ 2 by first restricting it to H
2, before applying the usual Rankin-Cohen op-

erator. This can be expressed as a linear combination of the generalized Rankin-
Cohen operators studied in [26]. For f : Hd → C, κ = (k1, . . . , kd) ∈ Z

d , denote
f �,1(τ ′, τ1) := f (τ1, τ

′, . . . , τ ′), κ(1) := (tr(κ)− k1, k1) ∈ Z
2 and define

C1
κ,r (f )(τ ) := Cκ(1),r (f

�,1)(τ ). (2.10)

It is easy to check that (f |κ (γ, . . . , γ ))�,1 = f �,1 |κ(1) (γ, γ ) and

C1
κ,r (f ) |tr(κ)+2r γ = C1

κ,r (f |κ (γ, . . . , γ )) (2.11)

4We take this set to be empty for r = 0.
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for all γ ∈ SL2(R). Suppose f (τ)= q
α1
1 . . . q

αd

d with qj := e(τj ), αj ∈C, then

C1
κ,r (f )=

r∑

s=0

(−1)s
(

k1 + r − 1

s

)(
tr(κ)− k1 + r − 1

r − s

)
αr−s

1 (α − α1)
sqα, (2.12)

where α := α1 + · · · + αd . Analogous definitions also make sense when the index 1
above is replaced by any j ∈ {1, . . . , d}.

Finally for f,g ∈H
d →C real-analytic and κ ∈ Z

d , we define

Dκ,r (f, g) := (gr+1)�C1
κ,r (f/g)

= (2πi)−r

⎛

⎜⎜⎜⎝
∑

e=(e1,...,ed )∈Nd
0

tr(e)=r

aeg
r+1∂e1

τ1
. . . ∂ed

τd
(f/g)

⎞

⎟⎟⎟⎠

�

(2.13)

with ae ∈ Z explicit constants given by

ae := (−1)e2+···+ed

(
k1 + r − 1

e2 + · · · + ed

)(
k2 + · · · + kd + r − 1

e1

)
s!

e2! . . . ed ! .

From the definition, one sees that Dκ,r (f, g) is real-analytic on H and satisfies

Dκ,r (f |κ+λ (γ, . . . , γ ), g |λ (γ, . . . , γ ))=Dκ,r (f, g) |tr(κ+(r+1)λ)+2r γ (2.14)

for κ,λ ∈ Z
d and γ ∈ SL2(R). The upshot of this operator is the following result.

Lemma 2.3 For κ = (k1, . . . , kd) ∈ Z, let f :Hd →C be a real-analytic function that
is harmonic in τ1 of weight k1 and holomorphic in τ2, . . . , τd . For any holomorphic
function g :Hd →C, we have

LτDκ,r (f, g)=
(

k1 + r − 1

r

)
(g�)r+1R̃r

tr(κ)−2((Lτ1f )/g)� (2.15)

for all r ∈N0.

Proof This follows directly from the definition and equation (2.8). �

We can also componentwisely apply Dκ,r when f is vector-valued, in which case
we also write Dκ,r (f, g), and the result above holds as well.

2.3 Quadratic space and Shimura variety

Let V be a finite dimensional F -vector space of dimension n + 2 ≥ 0 with a non-
degenerate quadratic form Q. For our purpose, n is even when d ≥ 2, i.e. F �= Q.
Denote Vσj

:= V ⊗F,σj
R for 1≤ j ≤ d , which is an R-quadratic space of signature

(pj , qj ), and V (R) = V ⊗Q R=⊕iVσi
is an R-quadratic space of signature (p, q)
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with p =∑
j pj , q =∑

j qj . We say that V is totally positive if V (R) is positive
definite. The symmetric domain D associated to SO(V (R)) is realized as the Grass-
mannian of q-dimensional negative definite oriented subspaces of V (R). It consists
of 2 components unless q = 0, in which case it is a point.

Let GSpinV be the general spin group of V . We will be interested in the Q-
algebraic group

H =HV := ResF/QGSpinV , (2.16)

which fits into the exact sequence

1→ Z→H → ResF/QSO(V )→ 1 (2.17)

with Z(Q) ∼= F×. Denote ν : C(V ) → F× the spinor norm on the Clifford alge-
bra C(V ) of V , which induces a surjection ν : H → T := ResF/QGm of algebraic
groups.

Example 2.4 More generally, the group GSpin can be defined for a quadratic module
M over a commutative ring R. For a nice example, we consider the hyperbolic plane,
where M =R2 is a free R-module with quadratic form Q((a, b))= ab. Furthermore
denote e1, e2 the images of (1,0), (0,1) ∈ M in the Clifford algebra C(M), and
e0 := e1e2, e3 := e2e1 ∈ C(M). Then we have e0+ e3 = 1 in C(M) and an R-algebra
isomorphism

C(M)=
3⊕

i=0

R · ei
∼=M2(R), (a0, a1, a2, a3) �→

(
a0 a1
a2 a3

)
.

The even Clifford algebra C0(M) corresponds precisely to the diagonal matrices in
M2(R). The group GSpin then consists of invertible diagonal matrices, and the spinor
norm ν is just the determinant.

For the rest of this subsection, suppose V has signature

((n,2), (n+ 2,0), . . . , (n+ 2,0)), 2 | n. (2.18)

Then the hermitian symmetric space associated to H can be realized as the Grass-
mannian D = DV = D

+ � D
− of oriented negative-definite 2-planes of Vσ1 . If we

denote VC := V ⊗F,σ1 C and extend the quadratic form C-bilinearly to VC, then we
can identify D with the quadric

H := {[Z] ∈ P(VC) : (Z,Z)= 0, (Z, Z̄) < 0}, (2.19)

in the projective space P(VC) by sending [Z = X + iY ] to the oriented 2-plane
spanned by the ordered basis {X,Y } ⊂ Vσ1 . This endows D with a complex struc-
ture. We can furthermore identify the tube domain

H := {z ∈ V0 ⊗R C :Q(�(z)) < 0},
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where V0 := Vσ1 ∩ a⊥ ∩ b⊥ for isotropic vectors a, b ∈ Vσ1 with (a, b)= 1, with H
by sending z to the class of

w(z) := z+ a −Q(z)b

in P(VC). For γ ∈H(R), we have the automorphy factor j (γ, z)= (γw(z), b) from

γw(z)= j (γ, z)w(γ z).

For z ∈ D
±, denote z̄ ∈ D

∓ the 2-plane with the opposite orientation. The sub-
group of H(R) fixing D

+ is the subgroup H(R)+ consisting of elements with totally
positive spinor norm. For a compact open K ⊂ H(Q̂), the C-points of the Shimura
variety associated to H

XV,K =XK :=H(Q)\D×H(Q̂)/K (2.20)

is a complex quasi-projective variety of dimension n, and has a canonical model over
σ1(F ) [32]. When V is anisotropic over F , the variety XK is projective.

Example 2.5 For F =Q and (V ,Q)= (M2(Q),det), we have

H
2 ∪ (H−)2 ∼=D, (z1, z2) �→R�Z+R�Z,

where the line spanned by Z = Z(z1, z2) :=
(

z1 −z1z2
1 −z2

)
∈ V (C) is in the quadric H

defined in (2.19). For a congruence subgroup � ⊂ SL2(Z), there exists compact open
K� ⊂ H(Q̂) such that the connected component of the Shimura variety XV,K� can
be identified with the product of modular curves X� ×X� . See Sect. 3.1 in [37] for
more details.

A meromorphic modular form on XK of weight w ∈ Z is a collection of mero-
morphic functions �(·, h) :H →C for each h ∈H(Q̂) satisfying

�(z,hk)=�(z,h) for all k ∈K,

�(γ z, γ h)= j (γ, z)w�(z,h), for all γ ∈H(Q)
(2.21)

and are meromorphic at the boundary.5 For such a meromorphic modular form, we
also denote

‖�(z,h)‖Pet := |�(z,h)| · |y|w, (2.22)

which is a real-analytic function on XK (see Sect. 2 of [10]).
To describe the connected components of XK , we write

H(Q̂)=
∐

j

H(Q)+hjK,

5The boundary behavior is relevant for us when d = 1 as V will otherwise be anisotropic.
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where H(Q)+ = H(Q) ∩H(R)+. Then for n > 0, we have XK
∼=∐

j �hj
\D+ and

(1.8) of [25] gives us

π0(XK)∼=H(Q)+\H(Q̂)/K
ν∼= F×+ \F̂×/ν(K)∼=Gal(EK/F), (2.23)

where EK/F is a finite Galois extension that the connected component YK := �1\D+
is defined over. Furthermore, for σ ∈ Gal(EK/F) associated to ν(h−1

j ), we have
Yσ

K
∼= Y

hj Kh−1
j

over EK and

XK
∼=

∐

j

Y
hj Kh−1

j

∼=
∐

σ∈Gal(EK/F)

Y σ
K.

When restricted to the center Z in (2.17), the map ν above is simply the square map
and its image consists of square elements in Gal(EK/F).

When n= 0, the domain D has two points and the group GSpinV can be identified
with E×W for a totally imaginary, quadratic extension EW over F , the norm from EW

to F is simply the spinor norm, and

XK
∼=D×A

×
EW

/E×W(EW)×∞K. (2.24)

For 1≤ j ≤ d , there is a unique F -quadratic space V (j) with signature

sig(V (j))= ((n+ 2,0), . . . , (n+ 2,0), (n,2), (n+ 2,0), . . . , (n+ 2,0))

and isomorphic to V at all finite places. They are neighboring quadratic spaces of
an admissible incoherent quadratic space (V,Q) over F̂ (see [9, Sect. 7]). One can
carry out the construction before (2.20) to define XV (j),K , which is the C-points of a
Shimura variety defined over σj (F ). There is a quasi-projective variety XK defined
over F such that the base change to σj (F ) is XV (j),K , and the union of XV (j),K over
all j is the C-points of XK considered as a scheme over Q (see Lemma 7.1 of [9]).

2.4 Unimodular lattice

An O-lattice L ⊂ V , i.e. a finitely generated O-module satisfying L⊗O F = V , is
called even, resp. integral, if Q(L) is in d−1, resp. O. For an even O-lattice (L,Q),
the quadratic form QZ(x) := trF/QQ(x) is Z-valued, and we denote

L′ := {y ∈ V : (y,L)⊂ d
−1}, (2.25)

which is the dual of the Z-lattice L with respect to QZ. For μ ∈ L′/L and m ∈ F , we
write

Lm,μ := {λ ∈ L+μ :Q(λ)=m} ⊂ L′. (2.26)

which is empty if m /∈ d−1 +Q(μ).
Also, we denote

SL := ⊕μ∈L̂′/L̂Cφμ ⊂ S(V (F̂ )), φμ := char(L̂+μ) (2.27)
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the subspace of Schwartz functions with support on L̂′ := L′ ⊗ Ô and constant on
L̂ := L⊗ Ô. Note that L̂′/L̂= L′/L is a finite abelian group, and we write L̂m,μ :=
Lm,μ ⊗ Ô. For any h ∈H(Q̂), the lattice6

Lh := V ∩ h−1 · L̂⊂ V (2.28)

satisfies h−1 · L̂= L̂h and is in the same genus as L. Using the left action of h−1, we
identify

L′/L= L̂′/L̂∼= L̂′h/L̂h = L′h/Lh. (2.29)

The linear isomorphism ιh : SL → SLh
, which sends φμ to φh−1μ, then identifies ρL

with ρLh
.

We say that a lattice L is Z-unimodular if L′ = L. Then the set

UF := {(L,Q) : L is an even Z-unimodular O-lattice} (2.30)

is a commutative monoid with respect to⊕. Let U+F ⊂ UF denote the semigroup con-
sisting of totally positive, non-trivial lattices. This set is non-empty by the following
result.

Proposition 2.6 For any totally real field F , the semigroup U+F is non-trivial.

Proof For an integral O-lattice L⊂ V , let d(L) ⊂O be the discriminant ideal of L

(see [17]). Then d(L) = O if and only if L# = L, where L# := {y ∈ V : (y,L) ⊂
O} is the O-dual of L. In this case, L is called unimodular. Satz 1 in [17] gives a
necessary and sufficient condition for the existence of definite unimodular O-lattices,
which is easily seen to be satisfied when V =W⊕4 with dimF (W) is divisible by 2.
Furthermore, for any one of the 2d possible signatures for definite spaces, there is
a space V having this signature and containing a unimodular O-lattice. So for any
α ∈ F×, there is a definite space V such that it becomes totally positive definite after
scaling its quadratic form by α.

It is a well-known result of Hecke (see the last Theorem in [36]) that the class
of d in Cl(F ) is a square. So we can write d−1 = a2(δ) with a ⊂O and δ ∈ F . Let
(L,Q) be a non-trivial, integral unimodular O-lattice such that δQ is totally positive
definite. Then (aL,δQ) is an even O-lattice and

δ(λ,aL)⊂ d
−1 = a

2(δ)⇔ (λ,a−1L)⊂O

for all λ ∈ (aL)′. So λ ∈ aL# = aL and (aL,δQ) is non-trivial, Z-unimodular and
totally positive definite. �

2.5 Special cycles

Now suppose V decomposes as W ⊕ U such that U is totally positive subspace of
dimension r . Then the Grassmannian DU of U consists of one point zU , and DW can

6The inverse in this definition makes the action of h a right action.
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be realized as an analytic submanifold of D via

zW �→ (zW , zU ) ∈DV .

Similarly, the algebraic group HW := ResF/QGSpinW , resp. HU := ResF/QGSpinU ,
is isomorphic to the pointwise stabilizer of U , resp. W , in HV , which induces HW ×
HU ↪→ HV and we write7 (hW ,hU ) ∈ HV for hW ∈ HW , hU ∈ HU . Then for h ∈
HV (Q̂), the image of the natural map

HW(Q)\DW ×HW(Q̂)/HW(Q̂)∩ hKh−1, (z, h1) �→ (z,h1h)

defines a codimension-r cycle on XK , denoted by Z(W,h). A word of caution about
the notation: in [25], the items DW , HW and Z(W,h) were defined with W replaced
by U . We decide to change the notation here as U will be varying later and it is
important to keep track of W .

When r = n, the set DW = {z±W } consists of two elements and points of Z(W,h)

are called (small) CM points. For a subfield F0 ⊂ F , we can consider the F0-quadratic
space

WF0 := ResF/F0W. (2.31)

For any F0-quadratic space V0 =WF0 ⊕U0 with U0 totally positive, the image of the
above homomorphism HWF0

↪→HV0 is a torus denoted by T := TW ⊂HV0 . For any

open compact K ⊂HV0(Q̂), the torus T gives rise to the CM 0-cycle Z(WF0 , h) on
XV0,K defined over F . Its C-points are given by

Z(WF0 , h)(C)= T (Q)\{z±W } × T (Q̂)/Kh
T →XV0,K, [z±W , t] �→ [z±W , th], (2.32)

where Kh
T := hKh−1∩T (Q̂). These were called “big CM points” in [13] when F0 =

Q and U0 is trivial. We omit h from the notation when it is trivial.
To obtain a 0-cycle defined over Q, one considers the 0-cycle

Z(W) :=
∑

1≤j≤d, τj=σj ◦σ−1
1 :R→R

τj (Z(WQ)), (2.33)

where W is the admissible incoherent quadratic space with neighbors W(j). Note that
Z(W) is Z(W) in Equation (2.13) of [13]. The 0-cycles τj (Z(W)) can be constructed
as above with W replaced by W(j) for 1≤ j ≤ d (see [13, Lemma 2.2]).

Example 2.7 We follow the discussions in [37, Sect. 3] and [27, Sect. 3.2] to realize
the CM points appearing in Theorem 1.1 as big CM points. Let d1, d2 < 0 be discrim-
inants such that F =Q(

√
D) is a real quadratic field, where D := d1d2 > 0. We label

the real embeddings σj : F → R such that σ1(
√

D) = √D and σ2(
√

D) = −√D.
Then E := E1E2 is a CM extension of F and becomes an F quadratic space W

of signature ((0,2), (2,0)) with respect to the quadratic form Q(μ) := −Nμμ̄√
D

. For

7We will sometimes view HU , HW as subgroups of HV to lighten the notation.
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i = 1,2, let zi = −bi+√di

2ai
be a CM point of discriminant di . Denote Hi/Ei the ring

class field corresponding to zi , H =H1H2 and

Gi :=Gal(Hi/Ei)⊂ G̃i :=Gal(Hi/Q). (2.34)

The group Gal(H/Q) embeds into G̃1 × G̃2 via restriction, under which the image
of Gal(H/E) is a subgroup of G1 ×G2. If (V ,Q)= (M2(Q),det), then the map8

V →WQ, γ �→ (γ,Z(z1, z2))

is an isometry with N = a1a2. The CM 0-cycle Z(WQ) defined in (2.32) is given by

Z(W)=
∑

σ∈Gal(H/E)

(z1, z2)
σ + (−z1,−z2)

σ

=
∑

(σ1,σ2)∈G1×G2
σ1|H0=σ2|H0

(z
σ1
1 , z

σ2
2 )+ (−z1

σ1,−z2
σ2),

where H0 = H1 ∩ H2. Note that H0 = Q when d1, d2 are co-prime. On the other
hand, we have

Z(W(2)Q)=
∑

σ∈Gal(H/E)

(z1,−z2)
σ + (−z1, z2)

σ .

Lemma 3.2 in [27] tells us that H0/Q is abelian. Its proof even implies that every ele-
ment in Gal(H0/Q) has order dividing 2. From these, we then know that the element
σ2 ∈ Gal(H2/E2) satisfying z

σ2
2 =−z2 is a square and hence trivial when restricted

to H0. Therefore, Z(WQ)= Z(W(2)Q), and Z(WQ) is already defined over Q.

On the other extreme, when r = 1, we have W = (Fx0)
⊥ for some x0 ∈ F with

Q(x0)=m� 0, and the cycle Z(W,h) is a divisor. We define a weighted divisor by
the finite sum

Z(m,φ) :=
∑

HW (Q̂)\H(Q̂)/K

φ(h−1x0)Z(W,h) (2.35)

for any φ ∈ S(V (F̂ ))K . We also write

Z(m,μ) := Z(m,φμ) (2.36)

for μ ∈ L′/L and L⊂ V an even OF -lattice.

2.6 A helpful lemma

In this section, we record a result that will be helpful in studying zeros of definite
theta functions.

8Here (, ) is the bilinear pairing on M2(C) induced by the determinant.
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Lemma 2.8 Let θ1, . . . , θN ∈ R be Q-linearly independent irrational numbers, M ∈
N and b an integer with 0 ≤ b ≤M − 1. For any α1, . . . , αN ∈ R, there exists an
infinite subsequence {ni : i ∈N} ⊂N such that

lim
i→∞ e((Mni + b)θj )= e(αj )

for all 1≤ j ≤N .

Proof By replacing θj with Mθj and αj with αj − bθj , we can suppose that M = 1
and b = 0. We first prove the case αj = 0 for all 1 ≤ j ≤ N by constructing the
sequence {ni} inductively. For any ε > 0, by Kronecker’s approximation theorem [3,
Theorem 7.10], there exists n,hj ∈ Z such that

|nθj − hj − ε/3|< ε/3

for all 1≤ j ≤N , which is equivalent to

0 < nθj − hj < 2ε/3.

By replacing n, hj with −n, −hj , we can ensure that n ≥ 1 for ε < 3/2, while
|nθj − hj | < ε still holds. Denote n(ε) := n and ni := max{n(1/i′) : 1 ≤ i′ ≤ i}.
Then

lim
i→∞ e(niθj )= 1, 1≤ j ≤N,

and the sequence {ni} is infinite since θj ’s are irrational.
In the general case, we can first use Kronecker’s approximation theorem to pro-

duce a sequence {n′i} ⊂ Z such that limi→∞ e(n′iθj )= e(αj ) for all 1 ≤ j ≤ N . For
each i, we can find i′ > i such that n′′i := n′i + ni′ forms an increasing sequence in N,
where {ni} is the sequence we have constructed in the case all αj ’s are 0. Then the
new sequence {n′′i } satisfies the condition of the lemma. �

Lemma 2.9 Suppose αi, ci ∈C for i ∈N satisfy the condition that the series defining

φ(s) :=
∑

i∈N
αic

s
i

converges absolutely for s = s0 ∈R and equals to 0 for all but finitely many s ∈ Z>s0 .
Then we have

∑

i∈N, ci=c

αi = 0 (2.37)

for any c ∈C
×. In other words, φ(s) is identically zero.

Remark 2.10 If αi > 0 for all i ∈ N, then ci = 0 for all i ∈ N. This strengths Lemma
5.61 in [21].
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Proof Without loss of generality, we take s0 = 0. After rearranging and scaling all the
ci ’s, we can suppose that |ci | ≥ |ci+1| for all i ∈ N, and 1 := |c1| = |cm| > |cm+1|.
Denote

φ1(s) :=
m∑

i=1

αic
s
i .

Using induction, it is then enough to prove the lemma for φ1(s).
The condition φ(s)= 0 for all but finitely many s ∈N implies that

lim
s→∞|φ1(s)| = lim

s→∞|φ(s)− φ1(s)| = 0.

For 1≤ i ≤m with ci �= 0, we can now write

ci = ζ ri,0e

⎛

⎝
N∑

j=1

ri,j θj

⎞

⎠

with ζ = e(1/M) for some M ∈ N, (ri,j )0≤j≤N ∈ Z/MZ × Z
N and θj ∈ R such

that 1, θ1, . . . , θN are Q-linearly independent. Then we have ci = ci′ if and only if
ri,j = ri′,j for all 0≤ j ≤N . For any integer 0≤ b ≤M − 1, we have

φ1(s)= fb(e(sθ1), . . . , e(sθN)), s ∈MN+ b,

where fb(z1, . . . , zn) :=∑m
i=1 αi(ζ

b)ri,0
∏N

j=1 z
ri,j
j ∈C[z1, z

−1
1 , . . . , zN , z−1

N ].
For any β ∈ (R/Z)N , Lemma 2.8 implies that there exists an infinite subsequence

{nk : k ∈N} ⊂N such that

lim
k→∞(e((Mnk + b)θ1), . . . , e((Mnk + b)θN))= β.

Since fb is continuous, we then have

fb(β)= lim
k→∞fb(e((Mnk + b)θ1), . . . , e((Mnk + b)θ1))= lim

s→∞φ1(s)= 0.

This implies that the polynomial fb is identically zero, or equivalently
∑

1≤i≤m, (ri,j )1≤j≤N=r

αi(ζ
ri,0)b = 0

for all r ∈ Z
N and b ∈ Z/MZ. This then implies

∑

1≤i≤m, (ri,j )0≤j≤N=r ′
αi = 0

for all r ′ ∈ Z/MZ× Z
N and φ1(s) is identically 0. So the lemma holds for φ1, and

hence also for φ by induction. �

As an immediate consequence, we have the following result.
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Corollary 2.11 Let {ci : i ∈N}, {bj : j ∈N} be subsets of C, and

I := {i ∈N : ci �= 0}, J := {j ∈N : bj �= 0}.
Suppose there is s0 ∈R such that the series

f (s) :=
∑

i∈N
cs
i , g(s) :=

∑

j∈N
bs
j

converge absolutely for s = s0 and f (s) = g(s) for all but finitely many s ∈ Z>s0 ,
then there is a bijection σ : I → J such that ci = bσ(i) for all i ∈ I . In particular, I

is finite if and only if J is finite, in which case they have the same size.

3 Functions

3.1 Weil representation and theta function

Let G := ResF/Q(SL2) and

� := SL2(OF )⊂G(R)⊂G(A).

Also denote �f := SL2(Ô)⊂G(Q̂).
For an F -quadratic space (V ,Q) of even dimension, let ω = ωψ be the Weil rep-

resentation of G(A) on the space of Schwartz functions S(V (AF )) = S(V (F̂ )) ⊗⊗
1≤j≤d S(Vσj

), where ψ is the standard additive character on F\AF .
At the infinite local place, suppose (W,QW) is an R-quadratic space of signa-

ture (p, q) with 2 | (p + q). For a point w in the symmetric space DW associated
to SO(W), we obtain an orthogonal decomposition W = w⊥ ⊕ w and a Schwartz
function

φp,q(w,λ) := exp(−2π(QW(λw⊥)+QW(λw))) (3.1)

in S(W), which is acted on by SL2(R) via the Weil representation ωW to produce

φW(τ,w,λ) := vq/2e(Q(λw⊥)τ +Q(λw)τ). (3.2)

Note that

φW(τ,w,λ)= φW(τ, w̄, λ) (3.3)

as it is independent of the orientation of w. If q = 0, then the expressions in (3.1) and
(3.2) are independent of w and we omit them from the notation. In addition, we will
also be interested in the following “singular Schwartz function” when q ≥ 1

φW,∗(τ,w,λ)

:= e(Q(λ)τ)

{
−(−4πQ(λw))1−q/2�(q/2− 1,−4πQ(λw)v), λ /∈w⊥,

CTs=0
vs+q/2−1

s+q/2−1 , λ ∈w⊥.

(3.4)
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Here �(s, x) := ∫∞
x

ts−1e−t dt is the incomplete Gamma function. Direct calcula-
tions yield

Lτφ
W,∗(τ,w,λ)= φW(τ,w,λ). (3.5)

for all w ∈DW and λ ∈W .
To describe the finite local place, let L⊂ V be an even lattice and SL ⊂ S(V (F̂ ))

the subspace as in (2.27). Then � acts on the space SL via ω, whose complex con-
jugate we denote by ρL. Its explicit values on the generators of � can be found in
Sect. 3.2 of [10]. Furthermore, it is unitary with respect to the hermitian pairing on
SL

〈φ,ψ〉 :=
∑

μ∈L′/L
φ(μ)ψ(μ), φ,ψ ∈ SL. (3.6)

More generally, for lattices L, M and φ ∈ SM⊕L, ψ ∈ SM , we define 〈φ,ψ〉L ∈ SL

by

〈φ,ψ〉L(μ) :=
∑

ν∈M ′/M
φ((ν,μ))ψ(ν), μ ∈ L′/L. (3.7)

These pairings are then naturally defined for functions valued in SL.
For the rest of the section, suppose Vσj

is positive definite whenever j ≥ 2. Then

DVσj
is D for j = 1 and a point otherwise. For τ = (τj ) ∈H

d , z ∈ D, h ∈H(Q̂) and

φf ∈ S(V (F̂ )), we define the Siegel theta function

�(τ, z,h;φf ) :=
∑

λ∈V (F )

φf (h−1λ)φ∞(τ, z, λ),

φ∞(τ, z, λ) := φVσ1 (τ1, z, λ)
⊗

2≤j≤d

φ
Vσj (τj , λ).

(3.8)

Note that �(τ, z̄, h;φf )=�(τ, z,h;φf ) by (3.3). In the variable τ , this is a Hilbert
modular form of weight

κ̃ = κ̃(V ) := ((p1 − q1)/2, n/2+ 1 . . . , n/2+ 1) ∈ Z
d . (3.9)

For any even lattice L⊂ V , we also denote the associated theta function by

�L(τ, z,h) :=
∑

μ∈L′/L
�(τ, z,h;φμ)φμ, (3.10)

which is valued in SL. When h = 1, we omit it from the notation. The definition of
�L implies that

�L(τ, z)=�Lh
(τ, z,h), (3.11)

where Lh is defined in (2.28) and L′/L∼= L′h/Lh via (2.29).
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If Vσ1 is definite, then �L(τ, z,h) is independent of z and we write

θL(τ,h) :=�L(τ, z,h). (3.12)

In particular when L = P is positive definite and Z-unimodular, this is a scalar-
valued, holomorphic Hilbert modular form on �F of parallel weight n/2 + 1. We
denote the graded subring

Mθ
F := Span{θP (τ ) : P ∈ U+F } ⊂MF . (3.13)

For future convenience, we also define

�∗(τ, z,h;φf ) :=
∑

λ∈V (F )

φf (h−1λ)φVσ1 ,∗(τ1, z, λ)⊗2≤j≤d φ
Vσj (τj , λ),

�∗L(τ, z,h) :=
∑

μ∈L′/L
�∗(τ, z,h;φμ)φμ.

(3.14)

The sums converge absolutely since the singular Schwartz function decays as a
Schwartz function and z⊥ ∩ L′ is contained in a positive definite lattice. For fixed
(z,h), it defines a real-analytic function in τ , which satisfies the analogue of (3.11)
as well as

Lτ1�
∗
L(τ, z,h)=�L(τ, z,h) (3.15)

by (3.5). When Vσ1 is negative definite, we have q1 = n + 2 and the function
θ∗L(τ,h) :=�∗L(τ, z,h) can be written explicitly as

θ∗L(τ,h)

=−
∑

λ∈h(L′)∩V, λ�=0

e(tr(Q(λ)τ))(4π |Q(λ)1|)−n/2�(n/2,4π |Q(λ)1|v1)φλ

+CTs=0
v

s+n/2
1

s + n/2
φ0. (3.16)

Although θ∗L is not modular in τ , difference of such functions will become modular
after adding suitable holomorphic functions (see Theorem 4.3).

Remark 3.1 When dimF V is odd, all the constructions above still hold by working
with metaplectic covers. As this is not needed for most of the applications, we refrain
from introducing more notations and refer the readers to [10].

3.2 Eisenstein series and Siegel-Weil formula

Let B ⊂ SL2 the standard Borel subgroup, and I (s,χ) = ⊗vI (s,χv) :=
IndSL2(AF )

B(AF )
χ | · |s the induced representation of G(AQ) for χ = χV the quadratic
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Hecke character associated to an F -quadratic space (V ,Q) with signature ((p1, q1),

(n+ 2,0), . . . , (n+ 2,0)). For a standard section � ∈ I (s,χ), the Eisenstein series

E(g, s,�) :=
∑

γ∈B(F)\SL2(F )

�(γg, s) (3.17)

converges absolutely for �(s) � 0 and has meromorphic continuation to s ∈ C.
When s0 := n/2, the map λ : S(V (AF ))→ I (s0, χ) defined by

λ(φ)(g)= (ω(g)φ)(0) (3.18)

is SL2(AF )-equivariant, and λ(φ) can be extended uniquely to all s and produce a
standard sections in I (s,χ).

The infinite part ⊗1≤j≤dI (s,χσj
) is generated by functions �κ∞ :=

∏
j �

κj

R
with

κ = (κj ) ∈ Z
d satisfying κj ≡ n/2+ 1 mod 2, where

�R([kθ ,1])= eiθ/2, − π < θ ≤ π

is the image of φ
q+2,q∞ defined in (3.1) under λ for any q ∈ N [9, Lemma 4.1]. For

φf ∈ S(V (F̂ )) and κ̃ = κ̃(V ) as in (3.9), the Eisenstein series

E(τ,φf , κ̃) := v−κ̃/2E(gτ , s0, λ(φf )⊗�κ̃∞) (3.19)

is a Hilbert modular form of weight κ̃ . For any even lattice L⊂ V , we have

EL(τ, κ̃) :=
∑

μ∈L′/L
E(τ,φμ, κ̃)φμ ∈Aκ̃,ρL

. (3.20)

Suppose q = 2. For any compact open K ⊂H(Q̂) stabilizing L̂ and acting trivially
on L̂′/L̂, we have the Siegel-Weil formula [9, Lemma 4.3]

EL(τ, κ̃)= 1

vol(XK)

∫

XK

�L(τ, z,h)�n, n≥ 1, (3.21)

where � is the Kähler form on XK normalized as in [10] and vol(XK) = ∫
XK

�n.
For n= 0, the Siegel-Weil formula yields

EL(τ, κ̃)= 2

vol(XK)

∑

[z,h]∈XK

�L(τ, z,h). (3.22)

When q = 0, we have κ̃ =−−−→s0 + 1 and the lattice P = L is totally positive definite.
The classical Siegel-Weil formula yields

EP (τ) :=EP (τ, κ̃)= c−1
K

∑

h∈H(Q)\H(Q̂)/K

θP (τ,h),

cK =
∑

h∈H(Q)\H(Q̂)/K

1 ∈N.

(3.23)

Though θP � = θ�
P , the Eisenstein series EP� is almost never the same as E�

P !



400 Y. Li

Furthermore suppose that P ∈ U+F with rank 2r. Then EP (τ) is in Mθ
F and coin-

cides with the Hecke Eisenstein series for F of parallel weight r= n/2+ 1. It can be
written as (see Sect. 2 in [5])

EP (τ)=
∑

β∈P1(F )

c(β, τ )−r, c(β, τ ) :=
{

Aβ ·Nm(τ + β) β ∈ F,

1 β =∞,
(3.24)

for certain non-zero integers Aβ depending only on β . Note that since P � ∈ U+F
for any � ∈ N, we have EP�(τ ) ∈Mθ

F . Applying Lemma 2.9, we can deduce the
following results about zeros of theta functions.

Lemma 3.2 Let P ∈ U+F and S ⊂ H
d a finite set of points. Then there exists � ≥ 1

such that EP� does not vanish on S.

Proof Since SL2(R)d acts transitively on H
d , we can write S = {τ0, g1τ0, . . . , gNτ0}

with τ0 ∈H
d and gi ∈ SL2(R)d , where we set g0 to be the identity. Assume that for

every �≥ 1, there exists 0≤ i ≤N such that EP�(giτ0)= 0. Then the function

f�(τ ) :=
N∏

i=0

EP�(giτ )

vanishes at τ = τ0 for all �≥ 1. Using the expression (3.24) we can write

f�(τ )=
∑

β0,...,βN∈P1(F )

(
N∏

i=0

c(βi, giτ )

)−r�
.

By Remark 2.10, we have
∏N

i=0 c(βi, giτ0)= 0 for all β1, . . . , βN ∈ P
1(F ), which is

clearly a contradiction since
∏N

i=0 c(∞, giτ0)= 1. �

Lemma 3.3 For any τ0 ∈ H
d , there exist P1,P2 ∈ U+F in the same genus such that

θP1(τ0) �= θP2(τ0).

Proof Assume otherwise. Then for any P ∈ U+F , the function θP (τ,h) takes the same

value at τ0 for all h ∈H(Q̂) and we have

EP (τ0)= cK

∑

h∈H(Q)\H(Q̂)/K

θP (τ0, h)= θP (τ0)cK

∑

h∈H(Q)\H(Q̂)/K

1= θP (τ0).

Therefore EP�(τ0)= θP �(τ0)= θP (τ0)
� =EP (τ0)

� for all �≥ 1 and P ∈ U+F . Using
expression (3.24), we obtain

∑

β∈P1(F )

c(β, τ0)
−r� =EP (τ0)

�,

which contradicts Corollary 2.11 since c(β, τ0) �= 0 for all β ∈ P
1(F ). �
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Proposition 3.4 (Partition of Unity) Let F be a totally real field. Then there exist
m ∈ N, P̃i ,P1,i , P2,i ∈ U+F with ranks 2r̃i and 2ri for 1 ≤ i ≤ m such that P1,i and
P2,i are in the same genus for all i and there is no τ0 ∈ H such that (E

P̃i
(θP1,i

−
θP2,i

))�(τ0)= 0 for all i.
Furthermore, for any d1, . . . , dm, e1, . . . , em ∈ N, there exists elliptic modular

forms gi ∈M !
−(r̃idi+ri ei )d

with rational Fourier coefficients such

m∑

i=1

gi(E
di

P̃i
· (θP1,i

− θP2,i
)ei )� = 1. (3.25)

Proof Start with a point τ0 ∈H, we can find P1,P2 ∈ U+F in the same genus satisfying
(θP1 − θP2)

�(τ0) �= 0 by Lemma 3.3. If (θP1 − θP2)
� has no zero on H, then we can

apply Lemma 3.2 to take P̃1, P̃2 ∈ U+F such that E�

P̃1
and E�

P̃2
do not have common

zero on H. The forms E
P̃1
· (θP1 − θP2) and E

P̃2
· (θP1 − θP2) satisfy the first claim.

Otherwise, let τ2, . . . , τm ∈ H be the zeros of (θP1 − θP2)
� in a fundamen-

tal domain F of SL2(Z)\H. By Lemma 3.3, there exists P1,i and P2,i such that
θ�
P1,i

(τi) �= θ�
P2,i

(τi) for all 2 ≤ i ≤ m. Let S ⊂ F be the finite set of the zeros of
∏

1≤i≤m(θ�
P1,i
− θ�

P2,i
). Applying Lemma 3.2, we can find P̃ ∈ U+F such that E

P̃
does

not vanish on S. Let S′ ⊂F be the finite set of the zeros of E�

P̃

∏
1≤i≤m(θ�

P1,i
− θ�

P2,i
).

We can apply Lemma 3.2 to find E
P̃i

for 2 ≤ i ≤m such that they do not vanish on
S′. Now the forms E

P̃
· (θP1 − θP2) and E

P̃i
· (θP1,i

− θP2,i
) with 2≤ i ≤m satisfy the

first claim.
To prove the second claim, we can write

�−(r̃idi+ri ei )d (E
12di

P̃i
(θP1,i

− θP2,i
)12ei )� =Ai(j) ∈M !

0 =Q[j ]

with j = j (τ ) the j -invariant and Ai(x) ∈Q[x]. The first claim implies gcd(A1, . . . ,

Am)= 1, i.e. there exists B1, . . . ,Bm ∈Q[x] such that

m∑

i=1

Bi(x)Ai(x)= 1.

Setting gi := Bi(j)�−(r̃i di+ri ei )d (E
11di

P̃i
(θP1,i

− θP2,i
)11ei )� proves the second claim.

�

3.3 Higher Green function

We follow [11] to recall higher Green function on the Shimura variety XK for F =Q.
Let V/Q be a quadratic space of signature (n,2) and L⊂ V an even lattice with K

an open compact stabilizing L̂. Also, we denote

σ0 := n

4
− 1

2
. (3.26)
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For μ ∈ L′/L and m ∈ Z+Q(μ), the automorphic Green function is defined by

�m,μ(z,h, s)

:= 2
�(s + σ0)

�(2s)

∑

λ∈h(Lm,μ)

(
m

Q(λz⊥)

)s+σ0

F

(
s + σ0, s − σ0,2s; m

Q(λz⊥)

)
,
(3.27)

where F(a, b, c; z) is the Gauss hypergeometric function [1, Chap. 15]. The sum
converges normally on XK\Z(m,μ) for s > σ0 + 1 and defines an eigenfunction of
the Laplacian � on D, normalized as in [7], with eigenvalue 1

2 (s − σ0 − 1)(s + σ0).
Furthermore, it has a meromorphic continuation to s ∈ C with a simple pole at s =
σ0 + 1, whose constant term is denoted by �m,μ(z,h,σ0 + 1) and the regularized
theta lift of Hejhal-Poincaré series of index (m,μ) [7].

At s = σ0 + 1+ r with r ∈N, the function �m,μ(z,h, s) is called a higher Green
function. For the unimodular lattice L=M2(Z) and z= Z(z1, z2) as in Example 2.5,
we have

�m(z,1, r + 1)= 2(−1)r

�(2r + 2)
Gm

r+1(z1, z2), (3.28)

where Gm
s is defined in (1.2). For a harmonic Maass form f =∑

m,μ c(m,μ)q−m×
φμ +O(1) ∈Hk−2r,ρ̄L

with k := −2σ0, define

�r
L(z,h,f ) := r!

∑

m>0, μ∈L′/L
c(m,μ)mr�m,μ(z,h,σ0 + 1+ r) (3.29)

to be the associated higher Green function. Following from the work of Borcherds
[6] and generalization by Bruinier [7] (also see [11, 34]), the function �r

L has the
following integral representation

�r
L(z,h,f )= lim

T→∞

∫

FT

〈R̃r
τ f (τ ),�L(τ, z,h)〉dμ(τ)

= (−1)r lim
T→∞

∫

FT

〈f (τ), R̃r
τ�L(τ, z,h)〉dμ(τ),

(3.30)

where FT is the truncated fundamental domain of �Q\H at height T > 1.

4 Real-analytic Hilbert modular forms and algebraicity of pairing

In this section, we will prove the existence of certain real-analytic Hilbert modular
forms by generalizing the proof of Theorem 3.7 in [12], and give some results con-
cerning their Fourier coefficients. The notations F , D, O, d, d are the same as in
Sect. 2.
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4.1 Certain real-analytic Hilbert modular forms

Let ρ = ρL be a Weil representation, κ = (k1, . . . , kd) ∈ Z
d , � ⊂ �F a congruence

subgroup, and X = X(�) = �\Hd be the open Hilbert modular variety. By adding
finitely many cusps to X, we obtain the Baily-Borel compactification XBB. It can
also be constructed as the Proj of the ring of holomorphic modular forms on X, and
is a normal, Noetherian scheme over C. When � is neat, we fix a smooth toroidal
compactification X̃ of X. It is a compact complex manifold, and a desingularization
of XBB. We also have the natural map π : X̃→XBB and let E be the boundary divisor
on X̃. Suppose X̃ is associated to a projective �-admissible decomposition (see [4,
section II.2]).

Denote O and Ep,q the sheaf of holomorphic functions and smooth differential

forms of type (p, q) on X̃ respectively, and take the subsheaf E ′ := ker(E0,1 ∂̄→ E0,2).
Then the Dolbeault resolution of O gives us the short exact sequence

0→O→ E0,0 ∂̄→ E ′ → 0. (4.1)

For a Cartier divisor D and quasi-coherent sheaf F on X̃, we write F(D) for the
corresponding twisting sheaf. Also, let Lκ,ρ be the sheaf of modular forms of weight
κ and representation ρ on X. It extends to XBB and X̃ by Koecher’s principle, and
we use Lκ,ρ and L̃κ,ρ to denote these extensions. In particular,

H 0(X̃,E0,0 ⊗ L̃κ,ρ)⊃Aκ,ρ(�). (4.2)

Note that π∗L̃κ,ρ = Lκ,ρ , π∗Lκ,ρ = L̃κ,ρ . When ρ is trivial and κ = (1, . . . ,1),
L = Lκ,ρ is the determinant of the Hodge bundle and ample on XBB. However, the
extension L̃ is trivial at the fiber of a cusp, and in general not ample on X̃. Neverthe-
less, we can use it along with twisting by E to prove the following result.

Theorem 4.1 In the notations above, for any N ∈ N, there exists n0, k ∈ N>N such
that the following map

H 0(X̃,E0,0 ⊗ L̃κ,ρ ⊗ L̃−→
k
(−E)⊗n)

∂̄⊗1⊗1→ H 0(X̃,E ′ ⊗ L̃κ,ρ ⊗ L̃−→
k
(−E)⊗n) (4.3)

is surjective for all n≥ n0.

Proof For simplicity, suppose XBB has only one cusp x. By Theorem 2.2 in Chapter
IV of [4]), X̃ is the normalization of the blowing-up of XBB at certain coherent sheaf
I of ideals concentrated at x. As XBB is Noetherian, so is X̃ and π is quasi-compact.
We claim that L̃−→

k
(−E)=O

X̃
(−E)⊗ π∗L⊗k is ample on X̃ for some k > N .

Since normalization is a finite morphism in this case (see Lemma 33.27.1 in [33,
Tag 0BXQ]), it preserves ampleness and we can suppose that X̃ is the blowing-up
of XBB. By the discussion and Lemma 31.32.4(3) in [33, Tag 01OF] and Lemma
29.38.2 in [33, Tag 01VL], we know that O

X̃
(−E) = O

X̃
(1) is π -relatively ample.

Since L is ample on XBB, Lemma 29.37.7 in [33, Tag 01VG] proves the claim.

https://stacks.math.columbia.edu/tag/0BXQ
https://stacks.math.columbia.edu/tag/01OF
https://stacks.math.columbia.edu/tag/01VL
https://stacks.math.columbia.edu/tag/01VG
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By considering the long exact sequence in cohomology associated to (4.1), we
see that the surjectivity of (4.3) is equivalent to the vanishing of H 1(X̃, L̃κ,ρ ⊗
L̃−→

k
(−E)⊗n) for all n sufficiently large. This follows from standard vanishing re-

sult for cohomology (e.g. Lemma 30.17.1 in [33, Tag 01XO]), which finishes the
proof. �

Proposition 4.2 For κ ∈ Z
d , let κ̃, κ̂ ∈ Z

d be as in (2.3). Suppose f ∈ Aκ̃,ρ(�) is
holomorphic in τj for 2≤ j ≤ d . Given any g ∈ Sκ ′(�) of parallel weight, there exists
�0 ∈N and functions Ĝ� ∈Aκ̂+�κ ′,ρ(�) for all �≥ �0 such that they are holomorphic
in τj for 2≤ j ≤ d ,

Lτ1Ĝ� = g� · f, (4.4)

and Ĝ�′ = g�′−�Ĝ� for all �′ ≥ �≥ �0.

Proof Suppose � is neat and g is non-zero. Let κ ′ = −→k′ with k′ ∈ N and fix some
N > k′. Now choose n0, k > N as in Theorem 4.1 and set �0 = n0k. Given f ∈
Aκ̃,ρ(�), the differential form v−2

1 g(τ)�0f (τ)dτ̄1 is in the kernel of ∂̄ ⊗ 1⊗ 1 since
f is holomorphic in τ2, . . . , τd . Furthermore, it is orders of vanishing at the cusps
are at least �0 since f is bounded near the cusps. Therefore, it is a global section of
E ′ ⊗ L̃κ̂,ρ ⊗ L̃κ ′(−E)⊗�0 . Note that

L̃κ ′(−E)⊗�0 = L̃−→
k′k(−kE)⊗n0 ⊂ L̃−→

k′k(−k′E)⊗n0 = L̃−→
k
(−E)⊗n0k

′

since k′ < N < k and O
X̃
(−kE) is a subsheaf of O

X̃
(−k′E). By Theorem 4.1,

there exists Ĝ�0 ∈ H 0(X̃,E0,0 ⊗ L̃κ̂,ρ ⊗ L̃−→
k
(−E)n0k

′
) such that ∂̄(−2iĜ�0) =

v−2
1 g�0f dτ̄1. As f , g are real-analytic, so is Ĝ�0 . So for any �≥ �0, the real-analytic

modular form Ĝ� := g�−�0Ĝ�0 ∈Aκ̂+�κ ′,ρ is holomorphic in τ2, . . . , τd and satisfies

Lτ1Ĝ�(τ )=−2iv2
1∂τ̄1Ĝ�(τ )=−2ig(τ )�−�0v2

1∂τ̄1Ĝ�0(τ )= g(τ)�f (τ ).

From the construction, the last condition is also satisfied.
Finally for any congruence subgroup � ⊂ �F , there exists a neat, normal subgroup

�′ ⊂ � of finite index. Averaging the function Ĝ� ∈Aκ̂+�κ ′,ρ(�′) constructed above
over �/�′ then gives the desired function in level �. �

Now, we will apply this result to the case when f is the special value of a theta
kernel and g is the holomorphic theta function for a positive definite lattice.

Theorem 4.3 Let W be an F -quadratic space of dimension 2 with signature as
in (2.18), and P1,P2 ∈ U+F positive definite, Z-unimodular O-lattices of ranks 2r
and in the same genus. For an O-lattice N ⊂ W , there exists �0 ∈ N and δ̂(τ ) =
δ̂(τ ;N,h,P1,P2, �) ∈A−−−→

1+�r,ρN
for all �≥ �0 and h ∈HW(Q̂) having the following

properties.

1. It is holomorphic in τ2, . . . , τd and has exponential decay near the cusps.

https://stacks.math.columbia.edu/tag/01XO
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2. It satisfies

Lτ1 δ̂(τ )= (θP2(τ )− θP2(τ ))� (θN(τ)− θN(τ,h)) , (4.5)

for all τ ∈H
d , h ∈HW(Q̂) and �≥ �0.

3. We can write

δ̂(τ )= δ̂+(τ )+ (θP1(τ )− θP2(τ ))�
(
θ∗N(τ)− θ∗N(τ,h)

)
, (4.6)

where θ∗N(τ,h) is defined in (3.16), and δ̂+ is holomorphic in τ and �∞-invariant
with respect to ρN .

4. Given the Fourier expansions

δ̂(τ )=
∑

m,μ

âm,μ(v1)e(tr(mτ))φμ, δ̂+(τ, h)=
∑

m,μ

â+m,μe(tr(mτ))φμ,

we have â+m,μ = 0 unless m� 0, and

lim
v1→∞

âm,μ(v1)= â+m,μ (4.7)

for all m ∈ F and μ ∈ L′/L.
5. For any r1, . . . , rd ∈N0, we have

lim|v|→∞ ∂r1
τ1

. . . ∂rd
τd

(δ̂ − δ̂+)= 0. (4.8)

Remark 4.4 Up to holomorphic cusp forms of parallel weight r� + 1, the holomor-
phic part δ̂+ is uniquely determined by the conditions above. We will show later in
Theorem 4.10 that certain rational linear combinations of the Fourier coefficients of
δ̂+ are logarithms of algebraic numbers.

Proof By the Siegel-Weil formula, θN(τ) and θN(τ,h) have the same constant terms
at all cusps, and their difference decays rapidly towards all cusps (see e.g. Proposition
5.1 in [9]). By the same reason, θP1 − θP2 is a holomorphic cusp form, and we can
apply Proposition 4.2 above to f (τ)= θN(τ)− θN(τ,h) ∈Aκ,ρ and g = θP1 − θP2 ∈
S−→r . Note that �0 a priori depends on h. Since HW(Q)\HW (Q̂)/K is finite for any
open compact K ⊂ HW(Q̂), there are only finitely many possible h that give rise
to different θN(τ)− θN(τ,h), with possibly different �0’s. By taking the maximum
removes its dependence on h.

Notice that δ̂(τ ) − (θP1(τ ) − θP2(τ ))�(θ∗N(τ) − θ∗N(τ,h)) is annihilated by Lτ1

by (3.15) and (4.5). Therefore, it is holomorphic in τ1, . . . , τd . This proves part (3).
Equation (3.16) implies that θ∗N(τ) − θ∗N(τ,h) decays exponentially as v1 →∞.
Therefore, the same holds for δ̂ and the holomorphic part δ̂+, whose Fourier coef-
ficients are then supported only on totally positive indices. Equations (4.7) and (4.8)
now follows directly from (3.16). �
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4.2 Whittaker forms

Suppose d ≥ 2 for this section. We follow [9, 10] to recall Whittaker forms and their
regularized theta lifts. For an even O-lattice (L,Q) with signature as in (2.18) and
n > 2, denote

s0 := n/2, (4.9)

κ̃ = κ̃(V )= (s0 − 1, s0 + 1, . . . , s0 + 1) as in (3.9) and κ = (1− s0, s0 + 1, . . . , s0 +
1) ∈ Z

d . Given μ ∈ L′/L and totally positive m ∈ d−1 +Q(μ), the function

fm,μ(τ ) := Nm(4πm)s0

(4πm1)s0�(s0)d
(�(s0)− �(s0,4πm1v1))

× e4πm1v1e(−tr(mτ̄ ))φμ,

(4.10)

is called a harmonic Whittaker form of weight κ in the sense of [10]. The space gen-
erated by such forms is denoted by Hκ,ρ̄L

. Given f =∑
μ∈L′/L, m�0 c(m,μ)fm,μ ∈

Hκ,ρ̄L
, the Fourier polynomial

P(f ) :=
∑

μ∈L′/L

∑

m∈d−1+Q(μ)
m�0

c(m,μ)q−mφμ (4.11)

is called its principal part. It is invariant under �∞ := {
(

1 b
1

)
∈ SL2(O)} with re-

spect to ρ̄L. Conversely, given any polynomial of the above form, there is a unique
harmonic Whittaker form fP ∈ Hκ,ρ̄L

with this principal part. Note that such poly-
nomial only depends on the finite quadratic modular L′/L. We say that f or P(f ) is
rational if the polynomial P(f ) has rational coefficients.

Let κ̂ be the dual weight of κ as in (2.3). There is a natural surjection ξ = ξ
(1)
κ :

Hκ,ρ̄L
→ Sκ̂,ρL

ξ(f ) :=
∑

γ∈�∞\�F

v
−s0−1
1 Lτ1f (τ) |κ,ρL

γ, (4.12)

where the sum above converges absolutely as n > 2. This induces a bilinear pairing
between g =∑

n,ν b(n, ν)qnφν ∈Mκ̂,ρL
and f ∈Hκ,ρ̄L

given by

{g,f } = {g,P(f )} := (g, ξ(f ))Pet = CT(〈P(f ), g〉)
=

∑

μ∈L′/L, m�0

c(m,μ)b(m,μ).
(4.13)

A harmonic Whittaker form f is called weakly holomorphic if ξ(f ) vanishes iden-
tically, i.e. {g,f } = 0 for all g ∈ Sκ̂,ρL

. We use M !
κ,ρL

⊂ Hκ,ρL
to denote the sub-

space of such forms. Using the last expression in (4.13), we can extend {, } to for-
mal Fourier series in the parameter e(tr(mu)). For a subfield F ⊂ C, let M !

κ,ρ̄L
(F)
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denote the subspace of M !
κ,ρ̄L

with Fourier coefficients in F . Then the fact that
Mκ̂,ρL

(F)=Mκ̂,ρL
(Q)⊗F implies that

M !
κ,ρ̄L

(F)=M !
κ,ρ̄L

(Q)⊗F . (4.14)

4.3 Regularized theta lifts

For each f = fP =
∑

m,μ c(m,μ)fm,μ ∈ Hκ,ρ̄L
, Bruinier computed its regularized

theta lift in [10] and constructed an Arakelov Green function �(z,h,f ) for the divi-
sor

Z(f )= Z(P) :=
∑

μ∈L′/L, m�0

c(m,μ)Z(m,φμ) (4.15)

on the Shimura variety XK . When s0 = n/2 > 1, Corollary 5.3 of [9] expressed this
as

�L(z,h,f )

= 1√
D

∫ reg

�∞\Hd

〈f (τ),�L(τ, z,h)−EL(τ, κ̃)〉(v2 . . . vd)s0+1dμ(τ)

+B(f )(�′(1)+ s−1
0 ),

(4.16)

where �L ∈Aκ̃,ρL
with the weight κ̃ given (2.3), B(f )= B(P) := {EL(τ, κ̃),P} ∈

C and
∫ reg

�∞\Hd

G(τ)dμ(τ) :=
∫

v∈(R>0)
d

(∫

u∈O\Rd

G(τ)du

)
dv

Nm(v)2 (4.17)

for any �∞-invariant function G on H
d such that the integral converges.

The integral in (4.16) converges for s0 = n/2 > 1. (see Proposition 5.2 of [9]).
Furthermore, Equation (3.11) implies that

�L(z,h(h′)−1, f )=�Lh′ (z,h, ιh′ ◦ f ) (4.18)

for any h,h′ ∈H(Q̂), where the isomorphism ιh′ : SL→ SLh′ is defined in Sect. 2.4.

By Theorem 5.14 of [10], for any (z0, h0) ∈D×H(Q̂), the function

�L(z,h,f )+
∑

m,μ

c(m,μ)
∑

λ∈h0(Lm,μ)∩z⊥0

log |Q(λz)| (4.19)

is real-analytic in a neighborhood of (z0, h0). By inspecting its proof, we have the
following consequence.

Lemma 4.5 Suppose n > 2 and h0, h
′
0 ∈H(Q̂) satisfy9

h0 |V∩z⊥0
= h′0 |V∩z⊥0

. (4.20)

9Via the diagonal embedding, we tacitly view elements in V (Q) as in V (Q̂). The set of z0 in D such that
V ∩ z⊥0 is non-trivial has measure 0.
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Then �L(z,h0, f )−�L(z,h′0, f ) is real-analytic in an open neighborhood of z0 ∈
D, where it is given by

�L(z,h0, f )−�L(z,h′0, f )

= 1√
D

∫ reg

�∞\Hd

〈f (τ),�L(τ, z,h0)−�L(τ, z,h′0)〉(v2 . . . vd)s0+1dμ(τ)
(4.21)

In particular, the integral above converges at z= z0.

Proof Without loss of generality, we can suppose f = fm,μ. From (4.20), we have

h0(Lm,μ)∩ z⊥0 = h0(Lm,μ ∩ z⊥0 )= h′0(Lm,μ ∩ z⊥0 )= h′0(Lm,μ)∩ z⊥0 .

So the singularities of �L(z,h,f ) and �L(z,h′, f ) agree for (z,h) and (z,h′) in
open neighborhoods N1 × N2 and N ′

1 × N ′
2 of (z0, h0) and (z0, h

′
0) respectively.

Then �L(z,h0, f ) −�L(z,h′0, f ) is real-analytic in the open neighborhood N :=
N1 ∩ N2 ⊂ D of z0, which could be made to satisfy h0(Lm,μ) ∩ z⊥ = {0} for all
z ∈N \{z0}.

Then convergence of the integral at z /∈Z(m,μ) follows directly from Proposition
5.2 of [9]. For such z, we can apply the unfolding calculation in the proof of Theorem
5.3 of [10] while evaluating at s = s0. Then the following integrals are identically
equal for any z ∈N \{z0}

∫

u∈O\Rd

〈fm,μ(τ ),�L(τ, z,h0)−�L(τ, z,h′0)〉(v2 . . . vd)s0+1du

=
∫

u∈O\Rd

〈fm,μ(τ ),�′L(τ, z,h0)−�′L(τ, z,h′0)〉(v2 . . . vd)s0+1du,

where �′L(τ, z,h) := �L(τ, z,h) − ∑
λ∈h(Lm,μ)∩z⊥ φμ(h−1λ)φ∞(τ, z, λ)φμ. From

the second expression, we see that the integral in (4.21) also converges for z= z0. �

To evaluate the regularized theta integral, one can apply Stokes’ theorem when
certain primitive exist. The following lemma distilled from Theorems 6.3 and 7.2 in
[9] will be helpful for this purpose.

Lemma 4.6 Suppose n = 2s0 > 2 and f = ∑
m�0, μ∈L′/L c(m,μ)fm,μ is a har-

monic Whittaker form in Hκ,ρ̄L
. Let η ∈ Aκ̃,ρL

such that
∫ reg
�∞\Hd 〈f (τ), η(τ )〉(v2 . . .

vd)s0+1dμ(τ) converges. Suppose there exists

η̂(τ )=
∑

m∈F, μ∈L′/L
b̂m,μ(v1)e(tr(mτ))φμ ∈Aκ̂,ρL
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such that Lτ1 η̂(τ ) =−2iv2
1∂τ̄1 η̂(τ ) = η(τ) and the �F -invariant function ‖η̂(τ )‖Pet

is bounded on H
d . Then

∫ reg

�∞\Hd

〈f (τ), η(τ )〉(v2 . . . vd)s0+1dμ(τ)

=−(η̂, ξ(f ))Pet + lim
T→∞

∑

m,μ

c(m,μ)b̂m,μ(T ).

(4.22)

Remark 4.7 Since ξ(f ) is a cusp form, the integral defining the Petersson inner prod-
uct exists, and so does the limit in T .

Proof We will give the proof for f = fm,μ. The general case can be proved the same
way. Note that m is totally positive. By applying Lτ1 to the Fourier expansion of η̂,
we can write

η(τ)=
∑

m∈F, μ∈L′/L
bm,μ(v1)e(tr(mτ))φμ, ∂v1 b̂m,μ(v1)= v−2

1 bm,μ(v1).

Substituting this into the left hand side of (4.22) gives us

1√
D

∫ reg

�∞\Hd

〈f (τ), η(τ )〉(v2 . . . vd)s0+1dμ(τ)

= lim
T→∞

∫ T

T −1
bm,μ(v1)

�(s0)− �(s0,4πm1v1)

�(s0)

dv1

v2
1

.

Using integration by parts, we can rewrite the integral as

∫ T

T −1
bm,μ(v1)

�(s0)− �(s0,4πm1v1)

�(s0)

dv1

v2
1

=− (4πm1)
s0

�(s0)

∫ T

T −1
b̂m,μ(v1)v

s0−1
1 e−4πm1v1dv1

+ b̂m,μ(T )
�(s0)− �(s0,4πm1T )

�(s0)
− b̂m,μ(T −1)

�(s0)− �(s0,4πm1T
−1)

�(s0)

As T →∞, the first term on the right hand side becomes −(η̂, ξ(f ))Pet after unfold-
ing, and the second term becomes limT→∞ b̂m,μ(T ). For the third term, the bound-
edness of 〈η̂, η̂〉Nm(v)s0+1 implies that

b̂m,μ(t)=O(t(−s0−1)/2) as t → 0,

while �(s0)−�(s0,4πm1t)=O(ts0) as t → 0. Since s0 > 1, the third term vanishes
as T →∞. This finishes the proof. �
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4.4 Algebraicity result

Fix a quadratic space W over F having signature as in (2.18) with n= 0. Let N ⊂W

be an even O-lattice, KN ⊂ HW(Q̂) an open compact fixing N̂ and acting trivially
on N̂ ′/N̂ = SN . Now, let P̃ ,P1,P2 ∈ U+F be lattices such that P1, P2 are in the same
genus. Denote their ranks by 2r̃ and 2r with r̃, r ∈ N. Given integers � ∈ N and 0 ≤
i ≤ �, we write

Li :=N ⊕ P̃ ⊕ P i
1 ⊕ P �−i

2 ,

Ũ := P̃ ⊗ F, U := P �
1 ⊗ F = P �

2 ⊗ F,

V := Li ⊗ F = Ũ ⊕U ⊕W.

(4.23)

Note that ρLi
= ρN since P̃ , P1, P2 are Z-unimodular. For hW ∈HW(Q̂)⊂HV (Q̂),

we have

�Li
(τ, z0, hW )= θN(τ,hW )θ

P̃
(τ )θP1(τ )iθP2(τ )�−i ∈A−−→

r̃+r�+(−1,1,...,1),ρN
(4.24)

for a CM point (z0, hW ) ∈Z(W,1)⊂XV,K defined over Eab
W for a CM field EW/F ,

and K ⊂ HV (A) an open compact fixing Li for all 0 ≤ i ≤ �. Note that z0 depends
only on the rational splitting V = Ũ ⊕U ⊕W .

Theorem 4.3 shows that for all � ∈ N sufficiently large, there exists δ̂(τ ;N,hW ,

P1,P2, �) ∈A−−−→
r�+1,ρN

for every hW ∈HW(Q̂) such that

Lτ1 δ̂(τ )= (θP1(τ )− θP2(τ ))�(θN(τ)− θN(τ,hW )) (4.25)

and Lτj
δ̂ = 0 for 2 ≤ j ≤ d . Recall that δ̂+(τ ) is the holomorphic part of δ̂(τ ) as in

(4.6). We can now apply Lemmas 4.5 and 4.6 to the function

η̂
P̃
(τ ) := θ

P̃
(τ ) · δ̂(τ ), η̂+

P̃
(τ ) := θ

P̃
(τ ) · δ̂+(τ ), (4.26)

and express linear combinations of the Fourier coefficients of η̂+
P̃

in terms of special
values of the regularized theta lift �Li

(z,h,f ) for any harmonic Whittaker form
f ∈Hκ,ρ̄N

.

Proposition 4.8 Let Li , hW , δ̂, η̂
P̃

be as above. Then

∑

0≤i≤�

(−1)�−i

(
�

i

)(
�Li

(z0,1, f )−�Li
(z0, hW ,f )

)

=−(η̂
P̃
, ξ(f ))Pet + {η̂+

P̃
, f }

(4.27)

for any harmonic Whittaker form f ∈Hκ,ρ̄N
with κ = ˜̃κ(V ).

Proof It is easy to see that h0 = 1, h′0 = hW satisfy the condition (4.20). Since δ̂

has exponential decay near the cusps, the function ‖η̂
P̃
(τ )‖Pet is bounded on H

d .
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Furthermore, equation (4.25) and the holomorphicity of θ
P̃

implies that

Lτ1 η̂P̃
(τ )= Lτ1(θP̃

(τ )δ̂(τ ))= θ
P̃
(τ )Lτ1(δ̂(τ ))

= θ
P̃
(τ )(θP1(τ )− θP2(τ ))�(θN(τ)− θN(τ,hW )).

If we denote b̂m,μ(v1) and b̂+m,μ the Fourier coefficients of η̂
P̃

and η̂+
P̃

respectively,
then we have

lim
v1→∞

b̂m,μ(v1)= b̂+m,μ.

by Theorem 4.3. Therefore Lemmas 4.5 and 4.6 together with (4.24) imply

∑

0≤i≤�

(−1)�−i

(
�

i

)(
�Li

(z0,1, f )−�Li
(z0, hW ,f )

)

=
∫ reg

�∞\Hd

∑

0≤i≤�

(−1)�−i

(
�

i

)
〈f (τ),�Li

(τ, z0,1)−�Li
(τ, z0, hW )〉

× (v2 . . . vd)s0+1dμ(τ)

=
∫ reg

�∞\Hd

〈f (τ), (θN(τ)− θN(τ,hW ))θ
P̃
(τ )(θP1(τ )− θP2(τ ))�〉

× (v2 . . . vd)s0+1dμ(τ)

=−(η̂
P̃
, ξ(f ))Pet + lim

T→∞
∑

m,μ

c(m,μ)âm,μ(T )=−(η̂
P̃
, ξ(f ))Pet + {η̂+

P̃
, f }.

This finishes the proof. �

Remark 4.9 If we replace P̃ by P̃
h̃

with h̃ ∈H
Ũ

(Q̂), then P̃
h̃

is in the same genus as

P̃ and N ⊕ P̃
h̃
⊕P i

1 ⊕P �−i
2 = (h̃−1Li)∩V = L

i,h̃
with h̃ ∈H

Ũ
(Q̂)⊂HV (Q̂). Fur-

thermore, ι
h̃
◦ f = f since P̃ is Z-unimodular. The proposition above and Equation

(3.11) imply that the function η̂
P̃

h̃
satisfies

∑

0≤i≤�

(−1)�−i

(
�

i

)(
�Li

(z0, (1, h̃−1), f )−�Li
(z0, (hW , h̃−1), f )

)

=−(η̂
P̃

h̃
, ξ(f ))Pet + {η̂+

P̃
h̃

, f }
(4.28)

for all h̃ ∈H
Ũ

(Q̂).

If c(m,μ) ∈ Z for all m and μ, then Theorem 6.8 of [10] implies that there exists
a meromorphic modular form �L(z,h,f ) on XK with weight −B(f ) and a finite
order multiplier system such that

− log‖�L(z,h,f )‖2
Pet =�L(z,h,f ). (4.29)
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Furthermore, the divisor of �L(z,h,f ) is the special cycle Z(f ), which is defined
over F . Let M ∈ N be the order of the multiplier system. Then up to a locally con-
stant function CL(z,h,f ) on XK , the form �L(z,h,f )M equals to a meromorphic
modular form RL(z,h,f ) of weight −B(M · f ) ∈ Z on XK defined over σ1(F ), and
we can write

�L(z,h,f )= 2 log |CL(z,h,f )| − 2

M
log‖RL(z,h,f )‖Pet. (4.30)

Now we let L = Li for 0 ≤ i ≤ � as in Proposition 4.8. Since the spinor norm
ν : H

Ũ
→ T is surjective, the subgroup H

Ũ
(Q̂) ⊂ HV (Q̂) acts transitively on the

connected components of XK by (2.23). Therefore for any open compact K
Ũ
⊂K ∩

H
Ũ

(Q̂), the quantity

Ci (KŨ
, f ) :=

∏

h̃∈H
Ũ

(Q)+\HŨ
(Q̂)/K

Ũ

CLi
(z, (hW , h̃), f ) (4.31)

is independent of hW ∈HW(Q̂) and z ∈D.
Now, we are ready to state and prove the main result of this section.

Theorem 4.10 Let N , h, P1, P2, � and δ̂(τ ;N,h,P1,P2, �) ∈A−−−→
r�+1,ρL

be the same

as in Theorem 4.3 and P̃ , Li , V , κ the same as in Proposition 4.8. For any weakly
holomorphic Whittaker form f = fP ∈ M !

κ,ρ̄N
with coefficients in a number field

F ⊂ C, there exists λ1, . . . , λm ∈ F and α1, . . . , αm ∈ Eab
W independent of hW such

that

{E
P̃
(τ)δ̂+(τ ),P} =

m∑

i=1

λi log |αi/σ (αi)|, (4.32)

where σ ∈ Gal(Eab
W /EW) is the element associated to hW ∈HW(Q̂)∼= Ê×W via class

field theory.

Remark 4.11 We can choose λi , αi above such that the index m is bounded by the
degree of F/Q. Due to the order the multiplier system of the meromorphic modular
form �(z,h,f ) in (4.29), the denominator of λi depends on f even when it has
integral coefficients

Proof By (4.14), we can write f =∑m
i=1 λifi with fi ∈M !

κ,ρ̄N
(Q) and suppose that

F = Q. By replacing f with M · f for some M ∈ N, we can suppose that f has
integral Fourier coefficients and the modular form �Li

(z,h,f ) in (4.29) has trivial
character for all 0≤ i ≤ �. Let RL(z,h,f ) and CL(z,h,f ) be the same as in (4.30).

Let K ⊂HV (Q̂) be an open compact fixing L̂i , acting trivially on L̂′i/L̂i = N̂ ′/N̂ ,

and K∩HW(Q̂) contains KN . Denote K
Ũ
:=K∩H

Ũ
(Q̂) an open compact in H

Ũ
(Q)

and Ci(KŨ
, f ) the same as in (4.31). Fix SW ⊂ HW(Q̂) coset representatives of

HW(Q)\HW (Q̂)/KN .
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Since f is weakly holomorphic, the cusp form ξ(f ) vanishes identically. Com-
bining the Siegel-Weil formula in (3.23), Proposition 4.8, Remark 4.9 and Equations
(4.30), (4.31), we can then write

{E
P̃
(τ)δ̂+(τ ),P} = c−1

K
Ũ

∑

h̃∈H
Ũ

(Q)\H
Ũ

(Q̂)/K
Ũ

{θ
P̃
(τ, h̃)δ̂+(τ ),P}

= c−1
K

Ũ

∑

h̃∈H
Ũ

(Q)\H
Ũ

(Q̂)/K
Ũ

0≤i≤�

(−1)�−i

(
�

i

)(
�Li

(z0, (1, h̃), f )−�Li
(z0, (hW , h̃), f )

)

= 2c−1
K

Ũ

∑

0≤i≤�

(−1)�−i

(
�

i

)

×
⎛

⎜⎝log

∣∣∣∣
Ci (KŨ

, f )

Ci (KŨ
, f )

∣∣∣∣−
∑

h̃∈H
Ũ

(Q)\H
Ũ

(Q̂)/K
Ũ

log

∥∥∥∥∥
RLi

(z0, (1, h̃), f )

RLi
(z0, (hW , h̃), f )

∥∥∥∥∥
Pet

⎞

⎟⎠

=− 2

cK
Ũ
· #SW

∑

h̃∈H
Ũ

(Q)\H
Ũ

(Q̂)/K
Ũ

log |Q(z0, (1, h̃))/Q(z0, (hW , h̃))|,

where Q(z,h) is a meromorphic function on XK ′ defined over σ1(F ) given by

Q(z,h) :=
∏

0≤i≤�

∏

h0∈SW

(
RLi

(z,h,f )

RLi
(z,h(h0,1), f )

)(−1)i(�
i)

with K ′ :=K∩h0∈SW
h0Kh−1

0 . Since HW is abelian, we have KN×K
Ũ
⊂K ′. There-

fore, the CM 0-cycle Z(W) also lies on XK ′ and each CM point is defined over a
number field EKN

⊂Eab
W . The function RLi

is defined over σ1(F ), as well as the nat-

ural map XK ′ →XK given by right multiplication with h0 ∈HW(Q̂)⊂HV (Q̂) (see
[25, page 46]). Therefore, the modular function Q(z,h) is also defined over σ1(F ).
Furthermore, it is non-zero at (z,h)= (z0, (hW ,1)) for all hW ∈HW(Q̂). These val-
ues are algebraic numbers satisfying

σ(Q(z0, (1, h̃)))=Q(z0, (hW , h̃))

as σ fixes the function Q(z,h), which is defined over σ1(F ), and acts on CM points
in the CM 0-cycle Z(W, h̃) by Shimura’s reciprocity law (see Sects. 3.1 and 5.3 in
[2] for the relevant case here). Setting α = ∏

h̃∈H
Ũ

(Q)\H
Ũ

(Q̂)/K
Ũ

Q(z0, (1, h̃)) and

λ=− 2
cK

Ũ
·#SW

finishes the proof. �

5 Proofs of theorems

Now we are ready to prove the three theorems from the introduction.
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5.1 Proof of Theorem 1.3

Let N ⊂W be a lattice such that K ∩ HW(Ẑ) fixes N̂ and acts trivially on N̂ ′/N̂ .
By passing to sublattice, we can suppose that L = L̃ ⊕ N0 with N0 = ResF/QN

and L̃ positive definite of rank 2+ n− 2d . Then for any (z0, h) ∈ Z(WQ), we have
�L(τ, z0, h) = θ

L̃
(τ ) ⊗ θ�

N (τ,h). By replacing N with h1N̂ ∩ V if necessary, we
can suppose that h1 = 1 and write h = h2. We can apply Lemma 2.2 to g = θ

L̃
,

k = 1− n/2− 2r , �= 1+ n/2− d as k + �=−d + 2− 2r ≤ 1− 2r . This implies

〈R̃r
τ f (τ ),�L(τ, z0, h)〉 =

〈
〈R̃r

τ f (τ ), θ
L̃
(τ )〉N0, θ

�
N (τ,h)

〉

=
r∑

j=0

cr,r,j 〈R̃r−j
τ fj (τ ), θ�

N (τ,h)〉,

where cr,r,j ∈Q and

fj (τ ) := C(k,�),j 〈f (τ1), θL̃
(τ2)〉N0 ∈M !

2−2r−d+2j,ρN0

has rational Fourier coefficients. From the integral representation (3.30), we see that
it suffices to prove the theorem with f = f0 and L=N0, in which case

〈f (τ), R̃r
τ�L(τ, z0, h)〉 = 〈f0(τ ), R̃r

τ θ
�
N (τ,h)〉.

Now for 1 ≤ i ≤ m, let P̃i ,P1,i , P2,i ∈ U+F be O-lattices of ranks 2r̃i , 2ri as in
Proposition 3.4. For any � ∈N, it gives us gi ∈M !

−(r̃i+ri �i )(r+1)d
such that

〈f0(τ ), R̃r
τ θ

�
N (τ,h)〉

= 〈f0(τ ), R̃r
τ θ

�
N (τ,h)〉

m∑

i=1

gi(τ )(E�

P̃i
(τ )(θ�

P1,i
(τ )− θ�

P2,i
(τ ))�i )r+1,

and it suffices to prove the theorem for each i. We drop the index i and have

�r
L(z0,1, f )−�r

L(z0, h, f )

= lim
T→∞

∫

FT

〈f0(τ )g(τ ), (G�(τ))r+1R̃r
τ

(
θ�
N (τ)− θ�

N (τ,h)
)〉dμ(τ).

(5.1)

where we set G :=E
P̃
· (θP1−θP2)

�. Fix an �≥ �0 as in Theorem 4.3 and we obtain a
real-analytic Hilbert modular form δ̂(τ )= δ̂(τ ;N,h,P1,P2, �) ∈A−−−→

1+r�,ρN
with the

property

Lτ1 η̂(τ )=G(τ)(θN(τ)− θN(τ,h)), η̂ :=E
P̃
· δ̂ ∈Aκ̂,ρN

, (5.2)

where κ := (1− r̃− r�, r̃+ r�+1, . . . , r̃+ r�+1) and κ̂ is defined as in (2.3). We can
now use the differential operator D−→

1 ,r
from (2.13) to define a real-analytic, elliptic
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modular form

η̂r :=D−→
1 ,r

(η̂,G) ∈Ak,ρN0
, k := d((1+ r)(r̃+ r�)+ 1)+ 2r. (5.3)

By Lemma 2.3, this function satisfies

Lτ η̂r =G�(τ)r+1R̃r (Lτ1 η̂/G)� =G�(τ)r+1R̃r (θ�
N (τ)− θ�

N (τ,h)).

We can now apply Stokes’ theorem to the right hand side of (5.1) and part (5) of
Theorem 4.3 to obtain

�r
L(z0,1, f )−�r

L(z0, h, f )=− lim
T→∞

∫ 1

0
〈f0(u+ iT )g(u+ iT ), η̂r (u+ iT )〉du

=−{f0g, η̂+r },

where η̂+r :=D−→
1 ,r

(η̂+,G) is a formal Fourier series with coefficients being F -linear

combinations of those of η̂+. Note there exists a harmonic Whittaker form gr ∈Hκ,ρ̄N

with Fourier coefficients in F such that

{f0g,D−→
1 ,r

(δ,G)} = {gr, δ}.

for any Fourier series δ(τ )=∑
μ∈SN , m∈F c(m,μ)e(tr(μτ))φμ that is �∞-invariant

with respect to ρN . If δ ∈ Sκ̂,ρN
, then D−→

1 ,r
(δ,G) is in Sk,ρN0

and this pairing van-

ishes as f0g ∈M !
2−k,ρN0

. Therefore gr is weakly holomorphic and (1.7) follows from

�r
L(z0,1, f )−�r

L(z0, h, f )=−{f0g, η̂+r } = −{gr, η̂
+} =−{gr ,EP̃

δ̂+}

and Theorem 4.10.
When d = 2 = n/2, we already have L = N0 and the reduction step in the first

paragraph above is not necessary. The function η̂+r is simply (G�)r+1C(1,1),r (η̂
+/G),

and the last claim follows from Example 2.1.

5.2 Proof of Theorem 1.7

As Z(WQ) is defined over Q, i.e. Z(WQ)= Z(W(2)Q) on XV,K , we can apply The-
orem 5.10 in [11] to conclude that

2

deg(Z(WQ))
�r

L(Z(WQ), f )= CT(〈f,C(1,1),r (E+L )〉),

where E+L is the holomorphic part of the derivative of an incoherent Eisenstein series,
which is a real-analytic Hilbert modular form of weight (1,1). From Example 2.1,
we see that the constant term of C(1,1),r (E+L ) vanishes when r ≥ 1. Furthermore, since
f has rational Fourier coefficients, the term CT(〈f,C(1,1),r (E+L )〉) is a rational linear
combinations of the non-zero Fourier coefficients of E+L , which are rational multiple
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of logarithms of integers by Proposition 4.6 in [13]. Therefore, we have

∑

(z0,h)∈Z(WQ)

�r
L(z0, h, f )= 1

c′
log |a| (5.4)

for some c′ ∈N and a ∈Q.
We can now apply Theorem 1.3 to find c ∈N and α ∈E′ ⊂Eab

W such that

�r
L(z0,1, f )−�r

L(z0, h, f )= 1

c′c
log

∣∣∣∣
α

σ(α)

∣∣∣∣

for all (z0, h) ∈ Z(WQ). Denote N := |Z(WQ)|/2 ∈ N and β :=∏
σ∈Gal(E′/EW ) σ (α) ∈EW . The system of equations above has the unique solution

�r
L(z0, h, f )= 1

2Nc′c
log |σ(α̃)|

with α̃ = α2Nac/β2 ∈E′. This finishes the proof.

5.3 Proof of Theorem 1.1

When r is even, this follows from the discussion in Example 2.7 and Theorem 1.7.
When r is odd and d1 is fundamental, Theorem 7.13 of [11] gives the algebraicity
analogous to (5.4) with the left hand side replaced by certain partial average. Using
this and proceeding with the rest of the argument in the proof of Theorem 1.7 gives
Theorem 1.1.
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