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Abstract
The concept of concurrent material and structure optimization aims at alleviating the computational discovery of optimum 
microstructure configurations in multiphase hierarchical systems, whose macroscale behavior is governed by their micro-
structure composition that can evolve over multiple length scales from a few micrometers to centimeters. It is based on the 
split of the multiscale optimization problem into two nested sub-problems, one at the macroscale (structure) and the other at 
the microscales (material). In this paper, we establish a novel formulation of concurrent material and structure optimization 
for multiphase hierarchical systems with elastoplastic constituents at the material scales. Exploiting the thermomechanical 
foundations of elastoplasticity, we reformulate the material optimization problem based on the maximum plastic dissipa-
tion principle such that it assumes the format of an elastoplastic constitutive law and can be efficiently solved via modified 
return mapping algorithms. We integrate continuum micromechanics based estimates of the stiffness and the yield criterion 
into the formulation, which opens the door to a computationally feasible treatment of the material optimization problem. To 
demonstrate the accuracy and robustness of our framework, we define new benchmark tests with several material scales that, 
for the first time, become computationally feasible. We argue that our formulation naturally extends to multiscale optimiza-
tion under further path-dependent effects such as viscoplasticity or multiscale fracture and damage.

Keywords Multiphase topology optimization · Concurrent design · Continuum micromechanics · Homogenization · 
Elastoplasticity · Path-dependent optimization

1 Introduction

Multiphase hierarchical systems apply the concept of micro-
heterogeneity repetitively across a hierarchy of well-sepa-
rated length scales: composite microstructures at a smaller 
scale form the base constituents for new microstructures at 
the next larger scale. This principle constitutes the backbone 
of virtually all biological materials, enabling them to com-
bine various functional properties at different length scales 
with favorable mechanical properties at the macroscale 
through evolutionary mechanisms (Wegst et al. 2015; Zheng 

et al. 2014; Fratzl and Weinkamer 2007; Ritchie et al. 2009; 
Bhushan 2009; Egan et al. 2015). In other words, biologi-
cal materials adapt their form (or shape/structure) against 
the dynamic external environment and improve the micro-
structure architecture, fulfilling the local needs imposed by 
physiological, phylogenetic, and reproductive constraints 
(Wolff 1986; Gibson 2012; Gao et al. 2003). A rational 
understanding of microstructure interdependencies across 
hierarchical scales on the macroscale properties helps pave 
the way forward to many engineering applications involving 
biological materials such as the genetic tailoring of crops 
(Brulé et al. 2016; McCann et al. 2014), bone remodeling 
(Rodrigues et al. 1999; Blanchard et al. 2016), and the fab-
rication of bioinspired engineering materials (Wegst et al. 
2015; Holstov et al. 2015).

Multiscale modeling of hierarchical materials in con-
junction with structural optimization methods constitutes 
a promising pathway to elucidate optimum microstructure 
configurations in multiphase hierarchical systems. In this 
context, recently developed concurrent multiscale analysis 
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and topology optimization methods (Xia and Breitkopf 
2014, 2015; Rodrigues et  al. 2002; Coelho et  al. 2008; 
Nakshatrala et al. 2013; Da et al. 2017; Zhang et al. 2018) 
naturally fit to the dual optimization of structure (form) and 
material (microstructure architecture). The idea is to decom-
pose the multiscale problem into two nested sub-problems, 
one at the macroscale (structure) and the other at the micro-
scale (material). At each macroscale material point, the 
microscale sub-problem provides a locally optimal mate-
rial response and can be interpreted as the reformulation 
of a material constitutive law for the macroscale structure 
optimization problem. The material optimization problem is 
typically solved within an FE2 type computational homog-
enization framework (Feyel and Chaboche 2000; Fish 2013) 
at each macroscale Gauss point. Other approaches not based 
on scale separation or periodicity such as Nguyen and Schil-
linger (2019) also seem possible. We note that throughout 
the article, we will use the term multiphase hierarchical 
system for the combined representation of the multiphase 
hierarchical material and the macrostructure domain that 
habitats it.

The base constituents in multiphase hierarchical systems 
often exhibit elastoplastic material properties resulting in 
a path-dependent macroscale mechanical response and 
dissipation-driven self-adapting mechanisms. In the case 
of path-dependent problems, efficient methods for the com-
putational optimization of multiphase hierarchical systems 
are still in its infancy (Da 2019). In the context of fracture 
resistance and damage, recent contributions have proposed 
structure optimization methods optimizing the inclusion 
characteristics in matrix-inclusion type multiphase materi-
als for path-dependent objective functions (Xia et al. 2018; 
Li et al. 2021; Kato 2010; Kato and Ramm 2013; Hilchen-
bach and Ramm 2015). The corresponding optimization 
formulations, however, remain in the format of a monoscale 
design, where all the morphological design parameters of the 
material are represented at the structure scale. In this case, 
the structure scale discretization is dictated by the smallest 
length scale of constituents, making these methods com-
putationally prohibitive for multiphase hierarchical systems 
with several well-separated length scales. To the best of our 
knowledge, no work has been reported so far in the literature 
on a decomposed concurrent material and structure optimi-
zation formulation for path-dependent problems involving 
elastoplastic multiphase hierarchical systems.

The first major roadblock in the context of elastoplastic 
behavior across hierarchical scales is the non-trivial prob-
lem decomposition into material and structure optimization 
subproblems. The current state of concurrent material and 
structure optimization methods focuses only on end-com-
pliance type optimization problems with an overall linear 
elastic response at both the material and structure levels. 
Interested readers are referred to a recent review article by 

Wu et al. (2021) that extensively covers existing approaches 
for designing hierarchical structures for linear end-compli-
ance minimization problems. The variational structure of the 
displacement-based formulation of end-compliance optimi-
zation corresponds to a saddle point problem with respect 
to the admissible set for design variables and the space of 
kinematically admissible displacements (Lipton 1994). With 
pointwise definitions of material design variables, the sad-
dle point property enables a natural decomposition into the 
material and structure optimization subproblems (Jog et al. 
1994). The equivalent variational structure for combined 
analysis and optimization of path-dependent problems that 
consider the complete deformation process is non-trivial and 
yet to be investigated, which is also one of the conclusions 
in the current review article (Wu et al. 2021).

The second critical roadblock is the computational cost 
for multiscale analysis through computational homogeniza-
tion that for multiphase hierarchical systems grows exponen-
tially with each scale characterization (Yuan and Fish 2009; 
Le et al. 2015; Liu et al. 2016; Bessa et al. 2017). Adding 
the topology optimization at the structure level results in 
even higher computational cost, since it requires solving 
many multiscale problems for different realizations of the 
structure topology during a typical optimization algorithm. 
This drawback limits existing approaches to small two-scales 
problems, even in the simplest case of hierarchical materials 
with linear elastic constituents. Continuum micromechanics 
provides a rigorous framework to derive analytical estimates 
of macroscale elastoplastic properties (Zaoui 2002; Suquet 
2014; Morin et al. 2017) and has been successfully applied 
to describe many multiphase hierarchical systems such as 
plant, wood, bone, and cementitious materials (Gangwar 
and Schillinger 2019; Gangwar et al. 2021; Hofstetter et al. 
2005; Hellmich et al. 2004; Fritsch et al. 2009; Pichler and 
Hellmich 2011). In the context of concurrent material and 
structure optimization, we recently integrated continuum 
micromechanics based homogenized estimates in end-com-
pliance optimization problems, which rendered our frame-
work computationally tractable for multiphase hierarchical 
systems with several material length scales (Gangwar and 
Schillinger 2021).

In this article, we establish, for the first time, a thermo-
dynamically consistent formulation of concurrent material 
and structure optimization, including suitable sub-problem 
formulations for multiphase hierarchical systems with elas-
toplastic constituents at the material scales. The structure 
optimization problem addresses the macroscale density dis-
tribution, while the material optimization problem at each 
material point seeks the optimized macroscale response with 
respect to microscale (material) design variables. In par-
ticular, we reformulate the material optimization problem 
based on the maximum plastic dissipation principle such 
that it assumes the format of an elastoplastic constitutive law 
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that can be efficiently solved via modified return mapping 
algorithms. To focus on the key concepts of the decomposed 
formulation, we make a few assumptions on the macroscale 
behavior of the inelastic hierarchical materials including iso-
thermal processes, the existence of associative flow rule, and 
rate-independent ideal elastoplastic response.

We express the homogenized stiffness and yield cri-
terion as a function of material design variables within a 
continuum micromechanics framework, which enables the 
computationally tractable treatment of our optimization 
formulation. In particular, we focus on a quadratic stress 
average micromechanical approach for estimating homog-
enized yield criterion, which has been successfully used in 
modeling the limit strength of a broad range of hierarchical 
materials such as metal-matrix composite, cement-mortar, 
wood, and crop stems (Suquet 1997; Pichler and Hellmich 
2011; Hofstetter et al. 2008; Gangwar et al. 2021).

Our article is organized as follows: In Sect. 2, we briefly 
review the relevant thermomechanical principles of elasto-
plasticity along with multiscaling concepts in continuum 
micromechanics, which form the basis of our further devel-
opments. In Sect. 3, we formulate the path-dependent stiff-
ness maximization problem, decomposing material and 
structure optimization sub-problems for elastoplastic mul-
tiphase hierarchical systems. We then describe its discretiza-
tion within the framework of the finite element method. In 
Sect. 4, we develop an algorithmic procedure for the mate-
rial optimization problem based on the maximum plastic dis-
sipation principle. In Sect. 5, we consolidate all our devel-
opments in an algorithmic framework and provide pertinent 
implementation details. Finally, we verify our framework 
with benchmark problems in Sect. 6.

2  A brief review of fundamental concepts

2.1  Thermomechanical formulation 
of elastoplasticity

We start by briefly reviewing the basic principles of elasto-
plasticity from a thermodynamics viewpoint, including the 
mechanical work identity, the notion of plastic dissipation 
from the second law of thermodynamics, and the derivation 
of the constitutive equations for associative plasticity reflect-
ing on the principle of maximum plastic dissipation. We 
primarily follow the exposition of Simo and Hughes (2006).

2.1.1  The mechanical work identity

We consider a macroscale initial boundary value problem 
defined on a domain Ω and restrict our attention to a time 
interval [0, T] . The position of a material point in the domain 
Ω is denoted by x . The macroscale density at a material point 

x is denoted as �(x) . The domain Ω is subjected to a traction 
t̄(t) at the Neumann boundary ΓN and the prescribed displace-
ments ūE(t) at the Dirichlet boundary ΓD with a body force 
b(x, t) , where t ∈ [0, T] . Then, the macroscale displacement 
field ū(x, t) at a material point x and at time t ∈ [0, T] is a 
mapping ū ∶ Ω × [0, T] → ℝ

3 . We define the corresponding 
velocity and strain fields at (x, t) ∈ Ω × [0, T] as

where sym(◻) represents the symmetric part of a second-
order tensor.

With the kinematically admissible velocity field v(x, t) and 
the macroscale stress field �(x, t) , the mechanical work iden-
tity is

where

This identity directly comes from the application of the prin-
ciple of virtual power (PVP) with a specific choice of the 
velocity field as the test function (Simo and Hughes 2006). 
The PVP is a fundamental exposition and can be applied for 
various applications ranging from, for instance, modeling 
DNA macromolecules to elastic foundations (Kalliauer et al. 
2020; Höller et al. 2019). Please refer to  Germain for sys-
temic application of PVP to derive fundamental equations 
in continuum mechanics (Germain 1973).

Remark 1 We emphasize that we chose (◻̄) notation for the 
macroscale displacement ū , and the given boundary condi-
tions ūE and t̄ . Later in this article, the displacement solution 
and boundary conditions drive the optimization algorithm, 
and, therefore, this choice directly relates with the intro-
duced notations for the sought solutions for the optimized 
multiscale configurations.

2.1.2  Constitutive relations from the second law 
of thermodynamics

The constitutive relations between the macroscale stress 
�(x, t) and the macroscale displacement field ū(x, t) (through 

(1)v(x, t) ∶=
�ū(x, t)

�t
and E(x, t) ∶= sym

(
�ū(x, t)

�x

)

,

(2)
d

dt
T(v) + Pint(�, v) = Pext(v) ∀t ∈ [0, T],

(3)

kinetic energy T(v) =
1

2 ∫
Ω

�|v|2 dΩ,

stress power P
int
(�, v) = ∫

Ω

� ∶
�v

�x
dΩ,

external power P
ext
(v) = ∫

Ω

b(x, t) ⋅ v dΩ +

∫
Γ
N

t̄(t) ⋅ v ds.
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the macroscale strains E(x, t) ) close the global governing 
equations stated in (2) and (3). The second law of thermo-
dynamics governs the form of these constitutive relations, 
and we summarize the important results in the following. 
First, we decompose the macroscale strain tensor E into an 
elastic and plastic part assuming small strains, denoted by 
E
e and Ep , as

We introduce the notion of internal potential energy and 
dissipation within the context of elastoplasticity. We define 
the internal energy of the system as

where Ψ(Ee
) is the Helmholtz free energy density defined in 

terms of the stored elastic energy function W and the con-
tributions from hardening effects. In this presentation, we 
consider the case of perfect plasticity, which implies that the 
contribution from hardening is zero and Ψ = W .

Next, we look at the difference between the stress power 
Pint(�, v) and the rate of change of the internal energy Vint , 
which we denote by Dmech . Assuming isothermal conditions, 
the Clausius–Duhem version of the second law of thermo-
dynamics (Truesdell and Noll 2004; Tadmor et al. 2012) 
follows as

We identify Dmech as the total instantaneous mechanical dis-
sipation in the domain Ω at time t ∈ [0, T] , which is always 
non-negative.

Inserting the definitions of Pint(�, v) and Vint from (3) and 
(5) and using the strain decomposition (4), we arrive at

where (◻̇) denotes the material time derivative of a quantity. 
The rate of elastic and plastic part of the macroscale strain 
tensor lie in the space of second-order symmetric tensors 
� , that is Ėe

, Ė
p
∈ � . Any permissible value of Ėe

, Ė
p
∈ � 

will lead to a total strain rate, thanks to the additive decom-
position Ė = Ė

e
+ Ė

p
∈ � , which can describe a plausible 

kinematic process. The principle of thermodynamic deter-
minism requires that (7) remains valid for any kinematic 
process, which implies

 The first equation is a typical elastic constitutive relation, 
where the stress is defined as the derivative of the free 

(4)E = E
e
+ E

p.

(5)Vint = ∫
Ω

Ψ(E
e
) dΩ,

(6)D
mech ∶= Pint(�, v) −

d

dt
Vint ≥ 0 ∀t ∈ [0, T].

(7)D
mech = �

Ω

[(

� −
𝜕Ψ(Ee

)

𝜕Ee

)

∶ Ė
e + � ∶ Ė

p

]

dΩ ≥ 0,

(8)� =
𝜕Ψ(Ee

)

𝜕Ee and � ∶ Ė
p ≥ 0.

energy function with respect to the elastic part of the strain 
tensor. The second equation (8) represents the irreversible 
nature of an elastoplastic process implying that the dissipa-
tion energy is always non-negative. This relation constrains 
the possible stress states a material can undergo and indi-
cates that the stress depends on the rate of the plastic part 
of the strain tensor.

2.1.3  The principle of maximum plastic dissipation

The principle of maximum plastic dissipation is a corner-
stone of the mathematical formulation of associative plas-
ticity. In the following, we derive the material constitutive 
equations for perfect plasticity from the viewpoint of this 
principle. We first assume a yield criterion �(�) , with � ∈ � 
denoting any possible stress state. Its zero isosurface is the 
usually convex yield surface that encloses the space of 
admissible stresses

For a given plastic strain Ep
∈ � , we define the plastic dis-

sipation Dp at a material point for perfect plasticity as

where � ∈ �Σ now denotes an admissible stress state.
In the local form, the principle of maximum plastic dissi-

pation states that, for a given plastic strain Ep
∈ � , the plas-

tic dissipation Dp attains its maximum for the actual stress 
tensor � among all possible stresses � ∈ �Σ . Mathematically, 
the principle is

The classical formulation of associative plasticity (flow rule, 
loading/unloading conditions) directly follows from this 
principle. To this end, we first transform the maximization 
principle into a minimization problem by changing the sign 
of the objective function. Next, we transform the constraint 
minimization problem into an unconstrained problem by 
introducing the cone of Lagrange multipliers

where L2 denotes the space of all square integrable 
functions. The corresponding Lagrangian functional 
L
p ∶ 𝕊 × 𝕂 × 𝕊 → ℝ is then

The solution to (11) is then given by a point (�, �) ∈ � × � 
satisfying the Karush-Kuhn-Tucker optimality conditions for 
the Lagrangian functional (13). The conditions are

(9)�Σ ∶=

{

� ∈ � | �(�) ≤ 0
}

.

(10)D
p[�; Ė

p
] ∶= � ∶ Ė

p
.

(11)D
p[�; Ė

p
] = max

�∈�Σ

{

D
p[�; Ė

p
]

}

.

(12)� ∶=

{

� ∈ L2(Ω) | � ≥ 0
}

,

(13)L
p(� , 𝛿; Ė

p
) ∶= −� ∶ Ė

p
+ 𝛿 �(�).
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The first equation in (14) is the associated flow rule, often 
also called the normality of the flow rule. The second and 
third equations in (14) are the classical loading/unloading 
conditions. The only requirement for these equations to hold 
uniquely is the convexity of the elastic range �Σ . A suffi-
cient condition for this requirement is the convexity of the 
yield criterion function �(�) . We will exploit these aspects 
later on for devising solution strategies for our optimization 
framework.

2.2  Multiscaling concepts in continuum 
micromechanics

Continuum micromechanics forms a rigorous foundation for 
the (semi-)analytical estimation of homogenized stiffness and 
strength properties of materials with hierarchical microstruc-
tures. Here, we state the key results that are relevant in the 
context of this article. For a detailed review, interested readers 
are referred to the presentations given in Zaoui (2002), Suquet 
(1997).

2.2.1  Estimation of homogenized elastic properties

The goal of continuum micromechanics is to estimate the 
homogenized response of a representative volume element 
(RVE) filled with microheterogeneous material. For the exist-
ence of such an RVE, a minimal requirement is that the charac-
teristic length, d, of the considered inhomogeneities and defor-
mation mechanisms is much smaller than the size, l, of the 
RVE. Moreover, l must be much smaller than the characteristic 
length scale of the variation in the loading on the macroscale 
structure, L. Therefore, a proper scale separation implies

In each phase r of the RVE, the average microscopic stress 
�r , the average microscopic strain �r , and the phase stiffness 
�r are linked as: �r = �r ∶ �r . The kinematic compatibil-
ity for the homogeneous strain boundary conditions for the 
RVE relates the macroscale strain tensor E with the volume 
average of microscopic strains �r . Similarly, the equilibrated 
microscopic stresses �r and the macroscale stress tensor � 
fulfill the volume average relation following the homogene-
ous stress boundary conditions. With �r as the volume frac-
tion of the phase r, these relations are

(14)
𝜕 L

p(� , 𝛾; Ė
p
)

𝜕 �

|
|
|
|
|�,𝛾

= −Ė
p
+ 𝛾

𝜕�(�)

𝜕�

|
|
|
|
|�

= 0,

𝛾 ≥ 0, �(�) ≤ 0, and 𝛾 �(�) = 0.

(15)d ≪ l ≪ L.

A link between the macroscale strain E and the average 
microscopic strain �r of phase r is established with a fourth 
order concentration tensor �r as

A comparison of the macroscale constitutive relation 
� = ℂ ∶ E with (16) and (17) yields the homogenized stiff-
ness ℂ in terms of the volume fraction, stiffness, and con-
centration tensor of constituent phases as

It is clear from (18) that the estimation of the concentration 
tensors � entails the homogenized stiffness ℂ . The simplest 
choice for � is to assume a uniform strain state through-
out the RVE, that is � = � , where � is a fourth-order sym-
metric unit tensor. This choice leads to the well-established 
Voigt mixture rule for homogenized stiffness. However, the 
Voigt rule does not consider any other statistical informa-
tion beyond the volume fraction of phases. We note that the 
Voigt rule is often applied for “homogenization/interpola-
tion” between a solid material and voids in conjunction with 
relaxation to ill-defined 0-1 type problems in topology opti-
mization (Bendsøe and Sigmund 1999; Allaire and Aubry 
1999).

The estimation of the concentration tensor �r based on 
Eshelby’s matrix-inclusion solutions can incorporate the 
volume fraction, the shape of phases, and their interac-
tion with each other. Eshelby’s matrix-inclusion problem 
relates strains in an ellipsoidal inclusion perfectly bonded 
with the surrounded homogeneous infinite elastic matrix 
to the applied homogeneous strains at infinity. Following 
Zaoui (2002), the estimation of �r from the matrix-inclu-
sion problem entails the homogenized stiffness expression 
as

Here, the Hill tensor ℙ0
r
 characterizes the morphology of the 

inclusion phase r and its interaction with the surrounding 
reference matrix with stiffness tensor ℂ0 . The Hill tensor ℙ0

r
 

depends on the morphology, that is, the shape and orienta-
tion of the inclusion phase as well as the stiffness tensor of 

(16)E =
∑

r

�r�r and � =
∑

r

�r�r.

(17)�r = �r ∶ E.

(18)ℂ =
∑

r

�
rr
∶ 𝔸

r
.

(19)
ℂ =

∑

r

�r ∶ [𝕀 + ℙ
0

r
∶(𝕔r − ℂ

0)]−1 ∶

[∑

s

�s[𝕀+

ℙ
0

s
∶ (𝕔s − ℂ

0)]−1
]−1

.
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the reference matrix. The analytical expressions for ℙ0
r
 can 

be found in (Laws 1977, 1985; Masson 2008). With (19), 
the homogenized stiffness of the RVE can be expressed as a 
function of constituent phase characteristics.

2.2.2  Estimation of homogenized elastic limit strength

A macroscale RVE reaches the elastic limit state when any 
one of the constituents in the RVE yields. Let us focus on 
the weakest constituent phase, denoted by index r = w . We 
assume that its elastic limit behavior is described by the yield 
criterion

where �∗
w
 is the effective stress measure in the weak phase 

w. Moreover, we assume that it is the only constituent that 
exhibits inelastic behavior. The effective stress or “stress 
peaks” in phase w can then be estimated with the second-
order moment of the stress field in this phase, which is the 
quadratic stress average over the phase volume Vw Suquet 
(1997), expressed as

Next we assume that �w is a scalar deviatoric stress-based 
yield criterion such as the von Mises criterion with known 
yield strength �Y

w
 , bulk modulus �w and effective volume 

function �̄�w for the weak phase w. Following (Suquet 1997), 
with the admissible stress � and homogenized stiffness ℂ , 
the weak phase criterion �w translates to the macroscopic 
yield criterion � as

(20)�w(�
∗

w
) ≤ 0,

(21)�
∗

w
= ⟨� ∶ �⟩1∕2

w
=

�
1

Vw
∫Vw

1

2
� ∶ � dV

�1∕2

.

We emphasize that  (22)  is  of  the form of 
� =

√
� ∶ � ∶ � − R ≤ 0 that represents the general quad-

ratic form of classical rate-independent plasticity models. In 
the context of this article, it implies that the elastic domain 
defined by (22) satisfies two critical geometric properties. 
These properties are (1) the convexity of the elastic domain 
and (2) the degree-one homogeneity of the yield criterion. 
These properties are very important for developing solution 
algorithms for our optimization formulation, and we will 
recall them later in subsequent sections.

3  A framework for path‑dependent 
concurrent material and structure 
optimization

In this section, we formulate a concurrent material and struc-
ture optimization method maximizing the path-dependent 
stiffness for elastoplastic multiphase hierarchical systems. 
We then focus on the finite element discretization of this 
formulation.

3.1  Thermodynamically consistent formulation

We start by looking at a representative problem illustrated in 
Fig. 1. We assume a fixed reference domain Ω subjected to a 
traction t̄(t) at the Neumann boundary ΓN and the prescribed 
displacements ūE(t) at the Dirichlet boundary ΓD with a body 
force b(x, t) , where t ∈ [0, T] . 

(22)

�(�) =

√

� ∶ [ℂ]−1 ∶
𝜕ℂ

𝜕𝜇w

∶ [ℂ]−1 ∶ � −

√

�̄�w

3

𝜎Y
w

𝜇w

≤ 0.

Fig. 1  Sketch of a representa-
tive elastoplastic multiphase 
hierarchical system
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3.1.1  Global optimization problem with micromechanical 
design variables

We introduce the definition of macroscale density �(x) and 
microstructure characterization m(x, t) . We assume that the 
macroscale density �(x) is fixed with respect to time, while 
m(x, t) is a function of loading history representing a local 
adaption of microstructure with time. The set m(x, t) contains 
the geometric and mechanical characterization of phases that 
span multiple well-separated microscales, consisting of vol-
ume fraction, material properties, shape, and orientation of the 
different phases in the hierarchical system. The homogenized 
material constitutive relations defined by the plastic dissipation 
D

p and the Helmholtz free energy Ψ in Sect. 2.1 depend on the 
macroscale density �(x) and the microstructure characterization 
field m(x, t) . Therefore, the design vector is [�(x),m(x, t)]T.

A typical objective is to maximize the structural stiff-
ness for the path-dependent nonlinear structure designs. It 
translates as the maximization of the total mechanical work 
expended in the course of a deformation process (Fritzen 
et al. 2016). Assuming a quasi-static case with no inertial 
effects, the total mechanical work fw in the considered time 
interval [0, T] follows directly from the mechanical work 
identity (2) and the definition of stress power (6) as

Utilizing the definitions of Dmech , Vint and Pext(v) from 
Sect. 2.1, we arrive at

We note that the (pseudo-)time t represents the loading 
history.

Augmenting Dp and Ψ with �(x) and m(x, t) , we set up our 
optimization problem using the introduced definition of total 
mechanical work fw from (24) as

(23)fw = ∫
T

0

[

D
mech +

d

dt
Vint

]

dt = ∫
T

0

Pext(v)dt.

(24)
fw =∫

T

0

[

∫
Ω

{

D
p[�; Ė

p
] + Ψ̇(E

e
)

}

dΩ
]

dt

=∫
T

0

[

∫
Ω

b(x, t) ⋅ v dΩ + ∫
ΓN

t̄(t) ⋅ v ds
]

dt.

(25)

max

𝜌(x) ∈ Aad

m(x, t) ∈ Ead

fw = max

𝜌(x) ∈ Aad

m(x, t) ∈ Ead

∫
T

0
∫
Ω

{

D
p
[𝜌(x),m(x, t),�;Ė

p
]

+ Ψ̇[𝜌(x),m(x, t);Ee
]

}

dΩ dt

= max

𝜌(x) ∈ Aad

m(x, t) ∈ Ead

∫
T

0

[

∫
Ω

b(x, t) ⋅ v dΩ

+ ∫
ΓN

t̄(t) ⋅ v ds
]

dt.

Aad and Ead define the set of admissible design variables 
at the macro- and microscales, respectively, with possible 
design constraints. The second part of this equation is the 
continuous version of the objective function proposed in 
Fritzen et al. (2016). On the one hand, the velocity field 
v(x, t) and, thus, the displacement field ū(x, t) implicitly 
depend on �(x) and m(x, t) . On the other hand, the first part 
of (25) is an explicit expression in terms of the design varia-
bles �(x) and m(x, t) with known macroscale strains E and Ep 
that arise from the solution of the global equilibrium equa-
tions. The first part of (25) is the basis for the development 
and mathematical analysis of our optimization formulation. 
Later on in this article, we will come back to the second part 
of (25) to motivate sensitivity calculations.

3.1.2  Definition of the sets of admissible design variables

The admissible set Aad seeks a limit on the total material 
mass Mreq available for design. Mathematically, it can be 
defined as

where �min and �max are the bounds on the macroscale mate-
rial density �.

Without loss of generality, the definition of the admis-
sible set Ead is illustrated via the representative multiphase 
hierarchical system shown in Fig. 1. We observe a well-
separated three-scale hierarchical system with three base 
constituent materials denoted as Material A, B, and C 
with densities �A , �B , and �C , respectively. Material A and 
B are linear elastic, and Material C exhibits a perfectly 
elastoplastic response. At a material point P, the volume 
fraction of Material B and C at the lowermost scale are �B 
and �C such that �B + �C = 1 . Material B forms spherical 
inclusions in the matrix of Material C at this scale. The 
homogenized material from this scale forms the matrix M 
that hosts the inclusions of Material A with the orienta-
tion �A and elongation �A at the mesoscale. The density of 
the matrix M is simply �M = (�B�B + �C�C) . The volume 
fraction of Material A and matrix M are �A and �M with 
�A + �M = 1 . The microstructure characterization field set 
m(x, t) is thus {�A(x, t), �A(x, t), �A(x, t), �C(x, t)} . We note 
that this set can be arbitrarily extended if necessary.

With these definitions, the microscale design admissi-
ble set Ead for the representative multiphase hierarchical 
system shown in Fig. 1 follows as

(26)
Aad =

{

�(x) | �(x) = [�min, �max],

�
Ω

�(x)dΩ ≤ M
req
, x ∈ Ω

}

,
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Here, the volume fraction of Material A is bounded by �min
A

 
and �max

A
 , and the volume fraction of Material C is bounded 

by �min
C

 and �max
C

 at their respected scales. Furthermore, the 
elongation ratio of the inclusions of Material A is bounded 
by �max . We note that the bounds are constant and do not 
depend on the loading history or the material position in the 
domain. We emphasize again that the multiscale configu-
ration of Fig. 1 is used for illustration, but the underlying 
representation is easily generalized to cover any other mul-
tiphase hierarchical system.

3.1.3  Decomposition into material and structure 
optimization problems

The definition of the admissible set Ead at a material point x 
only depends on the macroscale density �(x) of this point. It 
implies that the definition of Ead is pointwise, and we can thus 
rewrite the statement (25) as

We also assume that the macroscale density �(x) is fixed 
with respect to the loading history. Therefore, we are 
allowed to swap the integral and maximization operations 
in (28), hence

The statement (29) allows us to decompose the optimiza-
tion problem into two sub-problems. The outer “structure” 
optimization problem is

(27)

Ead =

{

m(x, t) | 𝜌(x) = 𝜌A𝜙A(x, t) + 𝜌M(x, t)(1−

𝜙A(x, t)),

0 < 𝜙min
A

< 𝜙A(x, t) < 𝜙max
A

≤ 1,

𝜌M(x, t) = 𝜌B(1 − �C(x, t)) + 𝜌C 𝛾C(x, t),

0 < 𝛾min
C

< 𝛾C(x, t) < 𝛾max
C

≤ 1,

𝜃A(x, t) ∈ [−𝜋∕2,𝜋∕2],

�A(x, t) ∈ [1, 𝜁max], ∀(x, t) ∈ Ω × [0, T]
}

.

(28)

max

𝜌(x) ∈ Aad

max
m(x,t)∈Ead(𝜌(x))∫

T

0
∫
Ω

{

D
p[𝜌(x),m(x, t),�; Ė

p
]

+ Ψ̇[𝜌(x),m(x, t);Ee]

}

dΩ dt.

(29)

max

𝜌(x) ∈ Aad
∫

T

0
∫
Ω

max
m(x,t)∈Ead(𝜌(x))

{

D
p[𝜌(x),m(x, t),�;Ė

p
]

+ Ψ̇[𝜌(x),m(x, t);Ee]

}

dΩ dt.

We also explicitly write the equivalent statement in terms of 
the total external work done in the deformation process from 
(25), which we will exploit in the subsequent sections for 
discretization and sensitivity calculations. In this statement, 
m̄(x, t) optimizes the following sub-problem or “material” 
optimization problem:

The macroscale density �(x) dictates the construction of the 
admissible space Ead , and, therefore, we take it out from the 
definitions of Dp and Ψ in (31) and consider it in Ead . In the 
second line, we rewrite the definition of the plastic dissipa-
tion Dp with the help of the principle of maximum plastic 
dissipation discussed in Sect. 2.1.3.

The constitutive relations in (31) defined through the 
Helmholtz free energy Ψ and the plastic dissipation Dp 
remain to be discussed. For linearized elasticity, the stored 
elastic energy function W takes a quadratic form in the elas-
tic part of the strain tensor Ee

= E − E
p . The homogenized 

elasticity tensor ℂ is a function of the microstructure char-
acterization field set m(x, t) ∈ Ead(�(x)) . For the perfect 
plasticity case, that is Ψ = W  , the quadratic form follows as

The elastic constitutive equation from (8) entails the follow-
ing stress–strain relationship:

Similarly, the elastoplastic material constitutive equations 
through the maximum plastic dissipation principle stated in 
(11) is augmented to include �(x) and m(x, t) as

where the definition of the elastic closure �Σ in terms of �(x) 
and m̄(x, t) is

(30)

max

𝜌(x) ∈ Aad
∫

T

0
∫
Ω

{

D
p[𝜌(x), m̄(x, t),�; Ė

p
]+

Ψ̇[𝜌(x), m̄(x, t);Ee]

}

dΩ dt

= max

𝜌(x) ∈ Aad
∫

T

0

[

∫
Ω

b(x, t) ⋅ v dΩ + ∫
ΓN

t̄(t) ⋅ v ds
]

dt.

(31)

max
m(x,t)∈Ead(𝜌(x))

{

D
p[m(x, t),�;Ė

p
] + Ψ̇[m(x, t);Ee]

}

= max
m(x,t)∈Ead(𝜌(x))

{

max
�∈�Σ

{� ∶ Ė
p
} + Ψ̇[m(x, t);Ee

]

}

∀(x, t) ∈ Ω × [0, T].

(32)Ψ[m(x, t);Ee
] =

1

2
(E − E

p
) ∶ ℂ(m(x, t)) ∶ (E − E

p
),

(33)� =
�Ψ(Ee

)

�Ee = ℂ(m(x, t)) ∶ (E − E
p
).

(34)D
p[m(x, t),�; Ė

p
] = max

�∈�Σ

{

� ∶ Ė
p
}

,
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The homogenized stiffness ℂ(m(x, t)) and the homogenized 
yield criterion �(� ,m(x, t)) can be estimated as a function 
of microstructure variables for instance via the continuum 
micromechanics principles outlined in Sect. 2.2.

Remark 2 Please note that, in this article, we assume perfect 
plasticity for the definitions of the Helmholtz free energy Ψ 
and the plastic dissipation Dp appearing in the decomposed 
optimization formulation stated in (30) and (31). For mod-
eling plasticity with hardening within the decomposed for-
mulation, the Helmholtz free energy Ψ in (32) and the plastic 
dissipation Dp in (35) can be augmented to include harden-
ing contributions by utilizing continuum micromechanics-
based homogenization schemes, such as outlined in Fritsch 
et al. (2009); Morin et al. (2017) for the example of bones. 
Throughout this article, however, we keep the assumption 
of perfectly associated plasticity to focus on the foundations 
of the decomposed formulation and the general ideas for its 
computational treatment.

3.1.4  Interpretation as an inelastic constitutive law

The combination of (30) and (31) constitutes the concur-
rent material and structure optimization formulation. The 
maximization problem in (30) seeks the optimal material 
distribution �(x) in the domain Ω . For a given material distri-
bution �(x) , the optimization problem (31) finds the optimal 
microstructure configuration maximizing the stress/deforma-
tion power for the known macroscale strains at each material 
point x . Both statements are coupled through the macroscale 
strains and, therefore, through the displacement field solu-
tion ū(x, t) that satisfies the global equilibrium equations. 
This interdependency makes the global equilibrium a con-
stitutively nonlinear problem analogous to a typical initial 
boundary value problem with an inelastic constitutive law. 
Therefore, we propose to interpret the material optimization 
problem as a reformulated elastoplastic constitutive law that 
provides the locally optimal material response with respect 
to the external loading history. The microstructure variable 
m(x, t) can be thought of as an “internal state variable” anal-
ogous to any path-dependent history variable encountered 
in elastoplasticity formulations. This interpretation will be 
used in Sect. 4 for devising the optimization algorithm for 
the material optimization problem.

3.2  Finite element discretization

In the next step, we discretize our concurrent material and 
structure optimization formulation within the context of 
the finite element method. We use vector–matrix notation, 

(35)
�Σ ∶=

{

� ∈ � | m(x, t) ∈ Ead(�(x)), �(� ,m(x, t)) ≤ 0
}

.
consistent with the standard finite element discretization of 
the initial boundary value problem introduced in Simo and 
Hughes (2006), to represent the introduced quantities in the 
global equilibrium equations.

3.2.1  Model definitions in the discrete setting

We start by dividing the time interval [0, T] into nload parti-
tions and split the domain Ω into Ne finite elements:

Here, Ωj is the domain of element j, and each element is 
equipped with Ngp Gauss quadrature points. We focus on 
a typical (quasi-)time interval [tn, tn+1] with known equili-
brated state at time step tn . In the context of this work, we 
choose standard nodal finite elements with Lagrange basis 
functions that can be assembled to approximate the mac-
roscale displacements and strains at load increment (n + 1) 
over the complete domain:

where N is the (assembled) displacement interpolation oper-
ator and B is the (assembled) strain–displacement opera-
tor (Hughes 2000). In the sense of the standard Galerkin 
method, we use the same finite element basis functions for 
the representation of the solution and the test functions 
(Hughes 2000).

Remark 3 We emphasize that from here on, displacement-
type vector quantities with subscript n or (n + 1) such as 
un+1 denote the vector of unknown displacement-type coef-
ficients at the corresponding load increment. Tensor quanti-
ties with subscript n or (n + 1) such as macroscale strains 
En+1 or stresses �n+1 denote the corresponding tensor fields 
approximated in terms of the corresponding displacement 
finite element solution at the corresponding load increment.

The design vector [�(x),m(x, t)]T for our example mul-
tiscale configuration in Fig. 1 can now be defined in this 
discrete setting as [�,m]T , where

(36)[0, T] =

nload−1⋃

n=0

[tn, tn+1] and Ω =

Ne⋃

j=1

Ωj.

(37)u ≈ Nun+1 and E ≈ Bun+1

(38)

� = [�1, �2, �3, ..., �Ne
],

m = [m0,m1, ...,mn+1, ...,mnload−1
],

mn+1 = [(m
1,1

n+1
, ..,m

Ngp,1

n+1
), ..., (..,m

x,j

n+1
, ..), ...,

(m
1,Ne

n+1
, ..,m

Ngp,Ne

n+1
)],

m
x,j

n+1
= [�

x,j

A,n+1
, �

x,j

A,n+1
, �

x,j

A,n+1
, �

x,j

C,n+1
],

where x ∈ {1, ..,Ngp}, j ∈ {1, ..,Ne},

n ∈ {0, .., nload − 1}.
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The macroscale density �j is assumed to be constant in each 
element and load increment, with j being the element index. 
The microstructure design variable set m is defined at each 
(macroscale) Gauss point and load increment with mn+1 as 
the microstructure characterization set at load increment 
(n + 1) . The microstructure configuration mx,j

n+1
 at a Gauss 

point x inside element j at load increment (n + 1) consists of 
volume fraction �x,j

A,n+1
 , orientation �x,j

A,n+1
 elongation � x,j

A,n+1
 

for Material A, and volume fraction �x,j
C,n+1

 of Material C. We 
again emphasize that we use this definition of the multiscale 
configuration in Fig. 1 for illustration purposes, this proce-
dure can easily be generalized to cover any other multiphase 
hierarchical system.

The constitutive equation relating the macroscale stress 
�n+1 with the macroscale strains En+1 and Ep

n+1
 at the Gauss 

point x follows from (33) as

where the homogenized stiffness ℂ(mx,j

n+1
) is evaluated for the 

microstructure configuration mx,j

n+1
 . To derive the incremental 

form of the elastoplastic constitutive equations, the discrete 
version of the maximum plastic dissipation principle at the 
Gauss point x from (35) is

where the admissible stresses � lie in a set �Σn+1
 defined by 

the homogenized yield criterion �(� ,m
x,j

n+1
) evaluated at 

m
x,j

n+1
∶

The macroscale plastic strain Ep
n
 is known from the equili-

brated solution state at load step n. We note that we write 
these constitutive relations in tensor notation given its direct 
relation with continuum micromechanics principles stated 
in Sect. 2.2.

3.2.2  Discrete form of the structure optimization problem

With the introduced definitions, we can write the discrete form 
of the material and structure optimization formulation (30) 
and (31). In this work, we employ the trapezoidal rule for the 
numerical evaluation of the integrals over the (quasi-) time 
domain, which is second-order accurate with respect to the 
(quasi-)time step size. The discrete version of the structure 
optimization problem (30) then becomes

(39)�n+1 = ℂ(m
x,j

n+1
) ∶ (E

n+1
− E

p

n+1
),

(40)D
p[m

x,j

n+1
,�n+1;E

p

n+1
] = max

�∈�Σn+1

{

� ∶ (E
p

n+1
− E

p
n
)

}

,

(41)�Σn+1
∶=

{

� ∈ � | m
x,j

n+1
∈ Ead(�j), �(� ,m

x,j

n+1
) ≤ 0

}

.

In accordance with the notation introduced above in the con-
text of a finite element discretization, f ext

n+1
 is the external 

force vector, ūn+1 is the converged vector of the macroscale 
nodal displacements, and Δūn+1 ∶= ūn+1 − ūn is the incre-
ment of the displacement vector in load increment (n + 1) . 
The force residual r̄n+1 is calculated utilizing the optimal 
microstructure configuration m̄n+1 in load increment (n + 1) . 
We note that the optimal microstructure configuration m̄n+1 
and ūn+1 are dependent on each other justifying the choice of 
(◻̄) notations introduced in Sect. 2.1. M(�) is the total mass 
of the occupying domain, and �j and |Ωj| are the density and 
volume of element j.

The total mechanical work fw is the discrete version of the 
second statement in (30), which is equivalent to the objec-
tive function proposed in Fritzen et al. (2016). This essen-
tially is the area under the characteristic force-displacement 
curve approximated with the trapezoidal rule, as illustrated 
in Fig. 2. The first condition in (42) ensures that the global 
equilibrium is satisfied in all load steps. The second and 
third conditions of (42) are the discrete definitions of the 
macroscale admissible design variable set Aad . The total 

(42)

max
𝝆

∶ fw(𝝆) =
1

2

nload−1∑

n=0

(f ext
n+1

+ f
ext
n
)T Δūn+1

s.t. ∶ r̄n+1(𝝆, ūn+1, m̄n+1) = 0 ∀n = 0, 1, ..., nload − 1

M(𝝆) =

Ne∑

j=1

�j|Ωj| = Mreq = Mfrac × �C × |Ω|;

�j ∈ [�min, �max], ∀j = 1, 2, ...,Ne.

Fig. 2  Total mechanical work fw in the course of the deformation pro-
cess
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available mass Mreq can be expressed in terms of the frac-
tion Mfrac with respect to the mass when the densest material 
occupies the complete domain. 

The force residual r̄n+1 at load increment (n + 1) is defined 
as

where wx contains the Gauss point weight and the deter-
minant of the Jacobian matrix for element j. We observe 
that the microstructure design variable set m is implicitly 
accounted for by the residual definitions in each load incre-
ment. The macroscale stress �n+1 at each Gauss point is 
evaluated by solving the nonlinear elastoplastic constitutive 
relations (39) and (41) with known microstructure configu-
ration m̄x,j

n+1
 that solves the material optimization problem 

detailed in the following subsection. Therefore, the global 
equilibrium equation (43) is nonlinear and requires iterative 
solution approaches such as the Newton–Raphson incremen-
tal procedure (Simo and Hughes 2006; de Souza Neto et al. 
2011).

Structure optimization involving inelastic material mod-
els is potentially ill-posed in a force-controlled setting (Swan 
and Kosaka 1997; Huang and Xie 2008; Schwarz et al. 2001; 
Maute et al. 1998; Cho and Jung 2003). Therefore, we only 
consider displacement-controlled loading in this article, incre-
mentally applied through prescribed displacements ūE(t) , see 
Sect. 2.2.1. In a displacement-controlled setting, f ext

n+1
 repre-

sents the discretized form of the loading potential resulting 
from the non-zero displacement boundary conditions. This 
assumption also simplifies the sensitivity calculations of the 
objective function with respect to the design variables for the 
optimization algorithms, which we will discuss in Sect. 5.1.

3.2.3  Discrete form of the material optimization problem

For a given material distribution � and the macroscale dis-
placement solution vector ūn+1 , the material optimization prob-
lem for the Gauss point x inside element j for load increment 
(n + 1) follows from (31) as

The first part of this equation directly comes from the incre-
mental form of the principle of maximum plastic dissipation 
outlined in (41). Similarly, the second part is the incremen-
tal form of the Helmholtz free energy rate defined in (31). 

(43)

r̄n+1(𝝆, ūn+1, m̄n+1) ∶= f
ext
n+1

− f
int
n+1

= f
ext
n+1

−

Ne∑

j=1

[ Ngp∑

x=1

B
T
�n+1 wx

]

,

(44)
m̄

x,j

n+1
= argmax

m
x,j

n+1
∈Ead(𝜌j)

{

max
�∈�Σn+1

� ∶ (E
p

n+1
− E

p
n
)

+ Ψ(En+1 − E
p

n+1
) − Ψ(En − E

p
n
)

}

.

We emphasize that all quantities at load increment n are 
known, and, therefore, Ψ(En − E

p
n
) does not play any role 

in this maximization problem. The optimized configura-
tion m̄x,j

n+1
 is sought in the microscale design variable space 

m
x,j

n+1
= [�

x,j

A,n+1
, �

x,j

A,n+1
, �

x,j

A,n+1
, �

x,j

C,n+1
] with constraints defini-

tions that follow from the admissible set Ead (27). From (44), 
we can rewrite the material optimization statement as

including all constraints defined through the stress admis-
sible set �Σn+1

 and microscale design admissible set Ead . The 
first two conditions are essentially the elastoplastic constitu-
tive equations relating the macroscale stress with the mac-
roscale strains via (39) and the constraint on the macroscale 
stress defined through the homogenized yield criterion (41). 
The third condition is the definition of the Helmholtz free 
energy in terms of microscale design variable mx,j

n+1
 . The rest 

of the conditions follow in a straightforward manner from 
the constraints definitions in Ead . The solution of (45) at 
each Gauss point in each load increment yields the opti-
mized microstructure configuration set m̄.

We emphasize that in contrast to the equivalent strain 
energy maximization for concurrent optimization problems 
involving overall linear elastic multiphase hierarchical systems 
(Xia and Breitkopf 2014; Gangwar and Schillinger 2021), find-
ing the solution to the material optimization problem (45) is 
not straightforward. Both the macroscale plastic strain Ep

n+1
 

and the optimized microstructure m̄x,j

n+1
 are unknown. Intui-

tively, the material optimization problem maximizes the area 
under the homogenized elastoplastic stress–strain curve for 
each material point. Multiple stress–strain curves are avail-
able at each load increment, defined by the the microscale 
design variable mx,j

n+1
 . This inter-dependency couples the his-

tory variable Ep

n+1
 with mx,j

n+1
 , necessitating a challenging novel 

algorithmic treatment to tackle this maximization problem.

(45)

m̄
x,j

n+1
=argmax

m
x,j

n+1
(𝜌j)

{

�
n+1

∶ (E
p

n+1
− E

p
n
) + Ψ(En+1 −

E
p

n+1
) − Ψ(En − E

p
n
)

}

s.t. ∶ �n+1 = ℂ(m
x,j

n+1
) ∶ (E

n+1
− E

p

n+1
)

�(�n+1,m
x,j

n+1
) ≤ 0

Ψ(En+1 − E
p

n+1
) =

1

2
(En+1 − E

p

n+1
) ∶

ℂ(m
x,j

n+1
) ∶ (E

n+1
− E

p

n+1
)

𝜌j = 𝜌A𝜙
x,j

A,n+1
+ 𝜌M(1 − 𝜙

x,j

A,n+1
);

𝜌M = 𝜌B(1 − 𝛾
x,j

C,n+1
) + 𝜌C𝛾

x,j

C,n+1

𝜙
x,j

A,n+1
∈ [𝜙min

A
,𝜙max

A
]; 𝜃

x,j

A,n+1
∈ [−𝜋∕2,𝜋∕2];

𝜁
x,j

A,n+1
∈ [1, 𝜁max] 𝛾

x,j

C,n+1
∈ [𝛾min

C
, 𝛾max

C
],
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4  Algorithmic treatment of the material 
optimization problem

For the algorithmic treatment, we interpret the material 
optimization problem as a reformulated constitutive law 
at each material point that provides a locally optimal 
mechanical response to the loading history. This interpre-
tation allows us to treat the microscale design variable 
m

x,j

n+1
 as an additional internal state variable within the con-

text of the classical formulation of plasticity. With this 
interpretation, we first exploit the principle of maximum 
plastic dissipation to motivate a solution strategy for the 
material optimization problem. We then cast this strategy 
into an algorithmic procedure that assumes the format of 
a typical return map algorithm for the integration of elas-
toplastic constitutive equations. Finally, we leverage con-
tinuum micromechanics and the associated homogenized 
elastoplastic constitutive relations, which enable further 
simplifications that make our framework computationally 
feasible.

4.1  The principle of maximum plastic dissipation 
revisited

As explained above, the first part of the material optimi-
zation problem (44) is the incremental statement of the 
maximum plastic dissipation principle. This part defines 
the interaction between the next stress state �n+1 and the 
optimized microstructure state m̄x,j

n+1
 through the homog-

enized yield criterion �(� ,m
x,j

n+1
) . Focusing on this part 

only, we can combine both statements in a single one as 

where

 This maximization problem seeks the macroscale stress 
state �n+1 and a solution m̂x,j

n+1
 within the modified admis-

sible space definition �Σn+1
 . The solution m̂x,j

n+1
 restricts the 

search space for the solution m̄x,j

n+1
 of the original material 

optimization problem (45), which we will further detail in 
the subsequent discussion. We note that the interpretation of 
the microscale design variable mx,j

n+1
 as internal state variable 

naturally arises from these statements.

(46a){�n+1, m̂
x,j

n+1
} = argmax

(� ,m
x,j

n+1
) ∈ �Σn+1

{

� ∶ (E
p

n+1
− E

p
n
)

}

,

(46b)
�Σn+1

∶=

{

� ∈ �, m
x,j

n+1
∈ Ead(�j) | �(� ,m

x,j

n+1
) ≤ 0

}

.

We define a Lagrangian functional that converts the 
constraint optimization problem (46a) into an uncon-
strained problem following (13):

where � is in the cone of Lagrange multipliers defined 
through (12). The solution to (46a) is given by a point 
(�n+1, m̂

x,j

n+1
,Δ𝛾n+1) that satisfies the Karush-Kuhn-Tucker 

optimality conditions for (47). The conditions entail

The general structure of (48) is similar to the typical local 
constitutive equations for plasticity (flow rule, loading/
unloading conditions) as described in (14). Equation (48)2 
represents the evolution of microstructure state in a particu-
lar load increment (n + 1) . All these equations together form 
a coupled nonlinear system that requires a special compu-
tational treatment. The solution m̂x,j

n+1
 from (48) provides 

important insights into the interaction of the plastic update 
and the microstructure update. In the following, we will can 
utilize these insights to design an algorithmic framework 
for solving the original material optimization problem (44).

4.2  Algorithmic procedure in the form of return 
map algorithms

Analogous to the elastic–plastic operator split formulas 
for inelastic constitutive equations, we define a trial elastic 
state by freezing the plastic flow and microstructure evo-
lution state during the current load increment. It implies 
that the macroscale plastic strain and optimal microstruc-
ture configuration state in the current load increment are 
known and equal to that of the previous load increment, that 
is Ep

n+1
= E

p
n
, m̂

x,j

n+1
= m̄

x,j
n  . With these assumptions, the trial 

elastic state is

(47)
Ln+1(� ,m

x,j

n+1
, �;E

p

n+1
) ∶= − � ∶ (E

p

n+1
− E

p
n
)+

� �(� ,m
x,j

n+1
),

(48)

𝜕Ln+1

𝜕�
= −(E

p

n+1
− E

p
n
)+

Δ𝛾n+1

𝜕�(� ,m
x,j

n+1
)

𝜕�

|
|
|
|
|
|�n+1,m̂

x,j

n+1

= 0,

𝜕Ln+1

𝜕 m
x,j

n+1

= Δ𝛾n+1

𝜕�(� ,m
x,j

n+1
)

𝜕m
x,j

n+1

|
|
|
|
|
|�n+1,m̂

x,j

n+1

= 0,

Δ𝛾n+1 ≥ 0, �(�n+1, m̂
x,j

n+1
) ≤ 0, and

Δ𝛾n+1 �(�n+1, m̂
x,j

n+1
) = 0.
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Here, Ee,tr

n+1
 , �tr

n+1
 and �tr

n+1
 denote the macroscale trial elastic 

strain, trial elastic stress, and trial yield criterion, respec-
tively. Further, the convexity of the homogenized yield cri-
terion � leads to the following important property Simo and 
Hughes (2006):

where �
n+1

 is the homogenized yield criterion calculated at 
the macroscale stress �

n+1
 and the optimal microstructure 

configuration m̄x,j

n+1
 after load increment (n + 1).

4.2.1  Elastic trial state and plastic vs. microstructure 
updates

The trial state (49) and property (50) in combination with 
(48) lead to three important cases defining the restrictions 
posed by the solution m̂x,j

n+1
 on the search space for the origi-

nal material optimization problem (45). In the following, we 
will discuss all three cases in detail.

Case 1 If �tr
n+1

< 0 , then property (50) entails �
n+1

< 0 , 
implying a purely elastic step. In this case, the solution 

(49)

E
p

n+1
= E

p
n
⟹ E

e,tr

n+1
∶= E

n+1
− E

p
n

�
tr
n+1

∶= ℂ(m̄x,j
n
) ∶ (E

n+1
− E

p
n
)

�tr
n+1

∶= �(�
tr
n+1

, m̄x,j
n
).

(50)�tr
n+1

≥ �
n+1

, and �
n+1

∶= �(�
n+1

, m̄
x,j

n+1
),

{Σn+1, m̄
x,j

n+1
} to the original material optimization problem 

(44) automatically satisfies (48). To see this, one can put 
m̂

x,j

n+1
= m̄

x,j

n+1
 , implying �(�n+1, m̂

x,j

n+1
) = �

n+1
 , then the dis-

crete KKT condition Δ𝛾n+1 �(�n+1, m̂
x,j

n+1
) = Δ𝛾n+1 �n+1

= 0 
in (48) results in Δ�n+1 = 0 . This means that (48)1 implies 
E
p

n+1
= E

p
n
 , and (48)2 is automatically satisfied with no 

restrictions on the solution space of the microstructure con-
figuration mx,j

n+1
 . Therefore, with zero dissipation, the solu-

tion m̄x,j

n+1
 of the material optimization problem reduces to the 

strain energy maximization that follows from (45) as

In conclusion, the solution m̂x,j

n+1
 does not pose any restric-

tions to the search space Ead for the optimized microstruc-
ture configuration m̄x,j

n+1
 in this case.

To support our discussion of the remaining two cases, 
Fig. 3 presents a geometric interpretation in a typical return-
mapping context. We note that in Fig. 3, the gray region rep-
resents the family of available homogenized yield criterion 
envelops �(� ,m

x,j

n+1
) = 0 at each load increment, defined by 

the set of microscale design variables mx,j

n+1
 . 

Case 2 If �tr
n+1

> 0 , and if it is possible to find at least 
one microstructure configuration m̂x,j

n+1
∈ Ead(𝜌j) such that 

(51)
m̄

x,j

n+1
= argmax

m
x,j

n+1
∈Ead(𝜌j)

1

2
(En+1 − E

p

n+1
) ∶

ℂ(m
x,j

n+1
) ∶ (E

n+1
− E

p

n+1
).

Fig. 3  Geometric illustration of solution strategy for the material optimization problem, based on the return-map algorithm interpretation



 T. Gangwar, D. Schillinger 

1 3

195 Page 14 of 31

�
tr(2)

n+1
∶= �(�

tr
n+1

, m̂
x,j

n+1
) ≤ 0 , property (50) indicates that 

�
tr(2)

n+1
≥ �

n+1
⟹ �

n+1
< 0 . The solution is possible via 

the microstructure update provided that new microstructure 
state m̄x,j

n+1
 follows the constraint �(�

tr
n+1

, m̄
x,j

n+1
) ≤ �

tr(2)

n+1
≤ 0.

We call this case adaption to elastic state through micro-
structure evolution. We observe in Fig. 3a that due to the 
current microstructure state m̄x,j

n  (dashed line), the material 
goes into plastic state; however, the material adapts itself to 
fall back to the elastic state by updating the microstructure 
state to m̄x,j

n+1
 (dotted line), while maximizing the total strain 

energy.
Again, equation (48) leads to Ep

n+1
= E

p
n
 and Δ�n+1 = 0 

following the discussion in Case 1. The solution m̄x,j

n+1
 fol-

lows as

The constraint in this problem ensures that the state remains 
elastic and can be interpreted as a restriction on the search 
space for m̄x,j

n+1
 posed by the feasible solutions of (48). We 

write � in the strain space to emphasize that the strain state 
is known and problem (52) is a function of mx,j

n+1
 only.

C a s e  3  I f  �tr
n+1

> 0  ,  a n d  t h e  p r o b l e m 
�

tr(2)

n+1
∶= �(�

tr
n+1

, m̂
x,j

n+1
) = 0 does not have any solution. 

It implies that no microstructure state can solve (48) with 
the chosen trial elastic strain Ee,tr

n+1
 . Therefore, only a plas-

tic update is feasible, and Ep

n+1
≠ E

p
n
 . This condition leads 

(52)
m̄

x,j

n+1
= argmax

�(Ee
n+1

,m
x,j

n+1
)≤�tr(2)

n+1

1

2
(En+1 − E

p

n+1
) ∶

ℂ(m
x,j

n+1
) ∶ (E

n+1
− E

p

n+1
).

Fig. 4  Graphical solution of the material optimization problem in one dimension for the three possible cases
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to Δ𝛾n+1 > 0 from (48)1 , and the microstructure evolution 
condition from (48)2 entails ��∕�m

x,j

n+1
= 0 . It means that 

the microstructure configuration remains unchanged, that is 
m̄

x,j

n+1
= m̄

x,j
n  . It implies that the solution m̂x,j

n+1
 of (48) restricts 

the search space for m̄x,j

n+1
 to a single point, that is m̄x,j

n  . With 
m̄

x,j

n+1
= m̄

x,j
n  , the rest of the relations in (48) reduces to the 

typical elastoplastic constitutive equations with known stiff-
ness and yield criterion.

This is illustrated in Fig. 3b, where we see that no 
elastic update is possible for the current trial state; there-
fore, the microstructure state remains unchanged, and the 
next stress state �

n+1
 is solved with a standard return map 

algorithm such as the closest point projection algorithm 
(Simo and Taylor 1985).

4.2.2  An analogue to the elastoplastic return map 
algorithm

For an intuitive understanding, Fig. 4 presents a graphi-
cal solution of the material optimization problem for the 
example of a one-dimensional linear elastic-perfectly 
plastic model. The gray region in these graphs represents 
the family of stress–strain curves for different microstruc-
ture design configurations mx,j

n+1
 . The material state (stress, 

strain, microscale configuration) at load increment n is 
known, and the macroscale strain En+1 at load increment 
(n + 1) is given. Typical strain increments are infinitesi-
mal, and increments are large for illustration only. The 
next material state from the material optimization prob-
lem warrants that the area increment (red shaded region 
in the graphs) is maximized. 

The trial elastic stress state �tr
n+1

 assumes the micro-
structure state and the macroscale plastic strain in this 
load increment are equal to the previous load increment. 
Case  1 results in a purely elastic update as shown in 
Fig. 4a. Except for the first load increment, this leads to 
a trivial solution for linear-elastic perfectly plastic mod-
els with the same microstructure configuration, that is 
m̄

x,j

n+1
= m̄

x,j
n  . Case 2 in Fig. 4b is of particular interest. 

The trial stress �tr
n+1

 predicts a plastic update. However, it 
is possible to find material configurations m̂x,j

n+1
 such that 

�(�
tr
n+1

, m̂
x,j

n+1
) ≤ 0 . The material adapts itself by falling 

back onto the elastic state via an appropriate update of 
the microscale configuration m̄x,j

n+1
 (denoted with the red 

dashed line), maximizing the total strain energy following 
(52). In Case 3, no material configuration allows an elas-
tic state for the trial stress �tr

n+1
 . Therefore, the material 

configuration remains unchanged, and the stress–strain 
state is updated through a return-mapping/closest point 
projection algorithm as shown in Fig. 4c.

We cast these cases into an algorithmic frame analo-
gous to a standard elastoplastic return map algorithm. We 
summarize the result in the following box.

1. Given:En+1, En, Ep
n, m̄x,j

n , ρj
2. Compute elastic trial stress Σtr

n+1

Ep
n+1 = Ep

n

Σtr
n+1 := C(m̄x,j

n ) : (En+1 −Ep
n)

3. Check yield criterion Ftr
n+1 := F(Σtr

n+1, m̄
x,j
n )

IF: Ftr
n+1 ≤ 0

CASE 1: Elastic update ∆γn+1 = 0;Ep
n+1 = Ep

n

Microscale design m̄x,j
n+1 update through straightforward

strain energy maximization

argmax
mx,j

n+1∈Ead(ρj)

1
2
(En+1 −Ep

n+1) : C(m
x,j
n+1) :

(En+1 −Ep
n+1)

ELSE IF: Ftr
n+1 > 0

CHECK IF: F
tr(2)
n+1 := F(Σtr

n+1, m̂
x,j
n+1) ≤

0; for m̂x,j
n+1 ∈ Ead(ρj)

CASE 2: Evolve microscale design ensuring elastic

material behavior

∆γn+1 = 0; Ep
n+1 = Ep

n; m̄
x,j
n+1 is solution of

argmax
F(Ee

n+1,m
x,j
n+1)≤F

tr(2)
n+1

1
2
(En+1 −Ep

n+1) : C(m
x,j
n+1) :

(En+1 −Ep
n+1)

ELSE:

CASE 3: Only plastic update possible =⇒ ∆γn+1 >

0; m̄x,j
n+1 = m̄x,j

n

Update Ep
n+1 through closest point projection algorithm.

4. Output: m̄x,j
n+1,E

p
n+1, and Σn+1 = C(m̄x,j

n+1) :
(En+1 −Ep

n+1).

4.3  A special choice: continuum micromechanics 
based homogenization

In this article, we focus on homogenized yield crite-
rion based on the quadratic stress average that can be 
obtained within a continuum micromechanics framework 
as reviewed in Sect. 2.2.2. To illustrate the simplifica-
tions that can be achieved with this choice, we consider 
again the one-dimensional example from Fig. 4. Using the 
homogenized yield criterion based on continuum micro-
mechanics, we arrive at Fig. 5 that graphically illustrates 
the associated simplifications in the algorithmic procedure. 
In particular, the microscale configuration corresponding 
to the maximum stiffness (maximum strain energy den-
sity) also results in the maximum strength properties for 
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the homogenized response, which implies that adaption 
to elastic state through microstructure evolution (Case 2) 
cannot occur here. In the following, we will provide a 
more detailed account of these simplifications.

4.3.1  Special properties induced through this choice

For illustration purposes, we fall back to our initial 
example of a representative multiphase hierarchical sys-
tem defined in Fig. 1. We recall that Material C at the 
microscale is a perfectly elastoplastic material that fol-
lows the von Mises failure criterion with yield strength 
�Y
C

 and bulk modulus �C . For this example, we can then 
write the homogenized yield criterion � given in (22) as 
a function of the stress � and microscale design variable 
m

x,j

n+1
= [�

x,j

A,n+1
, �

x,j

A,n+1
, �

x,j

A,n+1
, �

x,j

C,n+1
]:

where �̄�C is the equivalent volume fraction of Material C 
computed as �̄�C = (1 − 𝜙

x,j

A,n+1
) 𝛾

x,j

C,n+1
 . For a detailed deri-

vation of the homogenized stiffness ℂ(mx,j

n+1
) , we refer inter-

ested readers to Appendix 1 in Gangwar and Schillinger 
(2021). These estimates hold the following three properties 
that form the basis for further simplifications in the algorith-
mic procedure for the material optimization:

Property 1 The microscale configuration m̄x,j

n+1
 correspond-

ing to the maximum stiffness (maximum strain energy den-
sity) from (51) also maximizes the homogenized strength 
response. Figure  5 graphically represents this property 
for the one-dimensional case with a family of possible 
stress–strain curves. Here, the microscale configuration 
corresponding to the higher linear-elastic slope leads to a 
higher limit strength for the homogenized response. Thus, 
the stress–strain curve for the configuration m̄x,j

n+1
 acts as an 

envelope for all the stress–strain curves defined by the possi-
ble microscale configurations mx,j

n+1
 . Utilizing the definitions 

E
e,tr

n+1
∶= E

n+1
− E

p
n
 and �tr

n+1
∶= ℂ(m̄

x,j
n ) ∶ (E

n+1
− E

p
n
) , this 

property can be summarized as

(53)

�(� ,mx,j
n+1)

=

√

�:[ℂ(mx,j
n+1)]−1:

� ℂ(mx,j
n+1)

� �C
:[ℂ(mx,j

n+1)]−1:�

−

√

�̄C

3
�Y
C

�C
≤ 0,

It is straightforward to see from (54) that if 
�(�

tr
n+1

, m̄
x,j

n+1
) > 0 , then �(�

tr
n+1

,m
x,j

n+1
) ≤ 0 is not possible 

for any microstructure configuration mx,j

n+1
 . Therefore, fol-

lowing our discussion in Sect. 4.2, we can conclude that an 
adaption to the elastic state through microstructure evolution 
(Case 2) is inconceivable for the continuum micromechanics 
schemes outlined in this paper.

Property 2 An important conclusion from the previous 
section is that the microscale design update is possible in 
an elastic step only. The elastic part of macroscale strain 
E
e
n+1

∶= E
n+1

− E
p

n+1
 at each Gauss point therefore entails 

the optimal material orientation �̄�x,j
A,n+1

 for load increment 
(n + 1) . In the elastic step, the material optimization problem 
is essentially a strain energy maximization. The maximum 
strain energy is obtained for a general orthotropic material 
by aligning the material axis with the principal strain axes 
for the elastic strains (Jog et al. 1994; Pedersen 1989).

Property 3 If the external loading is monotonically increas-
ing, the optimal material orientation �̄�x,j

A,n+1
 is the only micro-

scale variable that may change in each load increment. We 
denote the set of remaining microscale design variables as 
m

l(x,j)

n+1
= [�

x,j

A,n+1
, �

x,j

A,n+1
, �

x,j

C,n+1
] . The optimal configuration 

m̄
l(x,j)

n+1
 for ml(x,j)

n+1
 remains unchanged throughout the loading 

history, that is m̄l(x,j)

n+1
= m̄

l(x,j)
n ∀n = 1, 2, ..., nload − 1 . We pro-

vide a proof of this property in A.

(54)
E
e,tr

n+1
∶ ℂ(m̄

x,j

n+1
) ∶ E

e,tr

n+1
≥ E

e,tr

n+1
∶ ℂ(m

x,j

n+1
) ∶ E

e,tr

n+1

⟹ �(�
tr
n+1

, m̄
x,j

n+1
) ≤ �(�

tr
n+1

,m
x,j

n+1
).

Fig. 5  Simplifications in the algorithmic procedure for material opti-
mization induced by continuum micromechanics estimates. The opti-
mized material configuration m̄x,j

n+1
 remains unchanged with loading 

history



Thermodynamically consistent concurrent material and structure optimization of elastoplastic…

1 3

Page 17 of 31 195

4.3.2  Simplification of the material optimization problem

The three special properties discussed above entail two 
important simplifications. First, adaption to the elastic state 
through microstructure evolution (Case 2) cannot occur. Sec-
ond, except for the material orientation �x,j

A,n+1
 , the optimized 

material configuration remains unchanged throughout the 
loading history. This implies that the material optimization 
problem is solved for the first load increment only via the 
strain energy maximization (51) for the optimized config-
uration m̄x,j

n+1
 . Later, the optimized material orientation is 

updated for each load increment by aligning the material 
axis with the principal strain axes of the elastic part of the 
macroscale strain tensor Ee

n+1
.

We would like to emphasize the crucial role of the con-
tinuum micromechanics based estimates for the concurrent 
material and structure optimization of multiphase hier-
archical systems. These estimates render both objective 
functions and constraint definitions of the material opti-
mization statement (45) and, therefore, the strain energy 
maximization (51) as “discretization-free” analytical or 
semi-analytical expressions. This reduced problem is a 
straightforward constraint optimization problem that can 
be solved with standard gradient-based methods. The solu-
tion to this material optimization problem is equivalent to 
solving a set of (n + p) nonlinear equations with (n + p) 
variables, where n and p are the total number of micro-
scale design variables and the total number of equality 
constraints, respectively. Thus, the continuum microme-
chanics enables us to handle computational challenge as 
well as the complex constraint definitions in the optimi-
zation of multiphase hierarchical systems. For a detailed 
discussion on these aspects, please refer to our previous 
work (Gangwar and Schillinger 2021).

In conclusion, the total cost of solving all the material 
optimization problems is equivalent to the case of an end-
compliance type optimization problem with a linear elas-
tic response at the material scales. These simplifications 
result in an enormous reduction in computational effort, 
making our framework computationally tractable for the 
elastoplastic case.

5  Comments on computer implementation

In this section, we provide an overview of our optimiza-
tion framework with a focus on essential computer imple-
mentation details. First, we derive the essential sensitivity 
calculations of the objective function fw with respect to the 
design variables � for the structure optimization problem 
(42). We then briefly touch upon the optimality criteria 

method for updating the design variables in each structure 
optimization iteration, utilizing the computed sensitivities 
(Sigmund 2001). Finally, we consolidate all developments 
into a single algorithmic framework.

5.1  Sensitivity analysis

The format of the structure optimization problem (42) is 
equivalent to the topology optimization formulation for 
elastoplastic structures presented by Fritzen et al. (2016), 
Xia et al. (2017). They derive the sensitivities using the 
path-dependent adjoint method (Buhl et al. 2000; Cho 
and Jung 2003). In the following, we provide a sketch of 
the derivation and highlight the important results. For a 
detailed derivation, we refer interested readers to Fritzen 
et al. (2016), Xia et al. (2017).

The adjoint method begins with the construction of a 
Lagrangian function f ∗

w
 that satisfies the zero residual con-

straints r̄n+1 and r̄n at (quasi-)time tn+1 and tn for each term 
of the trapezoidal rule stated in (42). With the Lagrange 
multipliers �n+1 and �n+1 that are of the same dimensions 
as the vector of unknowns ūn+1 , the Lagrangian function 
f ∗
w
 follows as

Since r̄n+1 and r̄n vanish at the equilibrium solution, the sen-
sitivity of f ∗

w
 is same as that of f

w
 , implying that

The derivative of f ∗
w
 with respect to the design variable �j 

follows from (55) as

The derivative of r̄n+1 with respect to �j is evaluated follow-
ing the residual definition in (43). Substituting the definition 
of �n+1 given in (39) into (43), the derivative expression 
becomes

(55)
f ∗
w
=

1

2

nload−1∑

n=0

{

(f
ext
n+1

+ f
ext
n
)T Δūn+1
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)T r̄n+1 + (𝝁
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)T r̄n

}

.
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��j
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.
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K
tan
n+1

 is the global finite element stiffness matrix of the 
mechanical system at the equilibrium of load step (n + 1) . 
We note that the quantities inside the square brackets in the 

(58)

𝜕r̄n+1

𝜕𝜌j
=
f
ext
n+1

𝜕𝜌j
−

Ngp∑

x=1

[

B
T
𝜕ℂ(m̄

x,j

n+1
)

𝜕𝜌j
(En+1 − E

p

n+1
)wx

]

− K
tan
n+1

𝜕Δūn+1

𝜕𝜌j
,

and K
tan
n+1

= −
𝜕r̄n+1

𝜕ūn+1
.

second term of this equation are only computed for element 
j. For all remaining elements, �n+1 does not depend on �j . 
The second term is zero for all corresponding entries, main-
taining dimensional consistency with the vector f ext

n+1
.

We observe that the sensitivities of fw as expressed 
in (57) and (58) require computationally extensive cal-
culations of unknown derivatives. Therefore, our aim is 
to obtain the values of the Lagrange multipliers �n+1 and 
�n+1 in such a way that these unknown derivatives can be 
eliminated from the sensitivity expression. To this end, 
we classify the degrees of freedom (DOF) into essential 
(index E; associated with the Dirichlet boundary condi-
tions) and free (index F; remaining). According to this 
classification, we can partition vectors and matrices as 
shown for the following generic objects v and M:

Since the displacements ūE on the Dirichlet boundary ΓD are 
prescribed, they are independent of the current value of the 
optimization variable � . This observation leads to

at an arbitrary load step index q = 0, ..., nload − 1 . With dis-
placement-controlled loading, the only possible non-zero 
entries in the global force vector f ext

q
 are the reaction forces 

f
ext,E
p

 , that is

The relations (60) and (61) lead to an educated choices for 
the vectors �n+1 and �n+1 such that the unknown derivatives 
with respect to the design variables in (57) and (58) can 
be eliminated (see Fritzen et al. (2016); Xia et al. (2017) 
for details). The final expression for the sensitivity of the 
objective function fw with respect to the design variable �j is

With the prescribed displacement increments ΔūE
n+1

 , the 
choice of Lagrange multipliers �

n+1
 and �

n+1
 that lead to the 

above expression is

(59)v ∼

[
v
E

v
F

]

and M ∼

[
M

EE
M

EF

M
FE

M
FF

]

.

(60)
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ΔūF
q

]

=

[
0

�ΔūF
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=
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(62)
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.

Result: Optimized solution vector [ρ̄, m̄]T

1 Initialize ρ0,m0;

2 Set design iteration counter i = 0;

3 while ||ρi+1 − ρi||/||ρi|| > δtol do
4 Set up load increments ∆ūE

n+1 for each loading step

index n = 0, .., nload − 1;
5 Initialize load increment couter n = 0;
6 Initialize ū0 = 0 =⇒ E0 = 0, andEp

0 = 0;
7 for n ≤ nload − 1 do
8 Increment load ūE

n+1 = ūE
n +∆ūE

n+1;

9 Set Newton iteration counter k = 0;

10 ū
(0)
n+1 = ūn;

11 while ||r̄(k)
n+1|| < εtol do

12 forall macroscale Gauss points do
13 Compute the macroscale strain

E
(k)
n+1 = ∇s(ū(k)

n+1);

14 Update the state variables Σ
(k)
n+1, E

p,(k)
n+1 ,

and m̄x,j
n+1 by solving the material

optimization problem;

15 end
16 Evaluate the residual force vector

r̄
(k)
n+1 := f ext

n+1 − f int(Σ(k)
n+1);

17 Set up the linear system:

K
tan,(k)
n+1 δū(k+1) = r̄

(k)
n+1, and solve for

δū(k+1);

18 Apply Newton correction to the displacements:

ū
(k+1)
n+1 = ū

(k)
n+1 + δū(k+1);

19 k++;

20 end
21 Calculate and store Lagrange multipliers λn+1 and

µn+1 for senstivity calculations using converged

state variables;

22 n++;

23 end
24 Compute the objective function fw(ρ) and sensitivities

∂fw/∂ρ;
25 Update density ρi+1 using the optimality criteria

algorithm; i++;
26 end

Algorithm 1 Concurrent structure and material optimization frame-
work for elastoplastic structures with multiphase hierarchical materi-
als.
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We note that the history of kinematic state variables E and 
E
p in (62) are known from the solution of the global equilib-

rium equations at each load increment. For the representa-
tive multiscale configuration in Fig. 1, the derivative of the 
homogenized stiffness ℂ with respect to the element density 
�j in (62) can be evaluated by means of the chain rule. Fol-
lowing Gangwar and Schillinger (2021), the expression is

where �x,j

A,n+1
 and �x,j

C,n+1
 relate to �j via (45). The partial deriv-

atives of ℂ with respect to �x,j

A,n+1
 and �x,j

C,n+1
 are evaluated at 

the optimal microstructure configuration m̄x,j

n+1
 by using finite 

difference approximations.

5.2  Structure optimization scheme

We utilize the algorithmic procedure for the structure opti-
mization that we outlined in our previous work Gangwar 
and Schillinger (2021) and that we briefly summarize in the 
following. First, we define sensitivity numbers to rank the 
element sensitivities that are used to update the macroscale 
design variables in each design iteration:

To avoid mesh dependency and checkerboard patterns, 
the sensitivity numbers are first smoothed with a filtering 
scheme defined as

where Nj is the set of neighboring elements for which center-
to-center distance Δ(j, j� ) to element j′ is smaller than the 
filter radius rmin . To improve convergence, the sensitivity 
numbers are further averaged with the sensitivity numbers 
of the previous design iteration as

The ratio of sensitivity numbers and the mass constraint are 
combined to

(63)
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𝝀
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.

(64)
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𝜕𝜌j
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(65)�j = −
�fc

��j
.

(66)�j =

∑Nj

j
�
=1

gjj� �j

∑Nj

j
�
=1

gjj�
and gjj� = max {0, rmin − Δ(j, j

�

)},

(67)�i+1
j

→ (�i+1
j

+ �i
j
)∕2.

where Λi is the Lagrange multiplier corresponding to the 
total material mass constraint in design update i, and � is a 
damping parameter. The macroscale density is updated by 
means of the well-known optimality criteria method Sig-
mund (2001):

To prevent a singular global stiffness matrix, the lower limit 
�min on �j is limited by a small value, set in our case to 0.001. 
The maximum possible element density �max depends on 
the density of the constituents at the microscales and the 
prescribed bounds in (45). � is a small move parameter that 
improves the stability, for instance by preventing multiple 
holes appearing and disappearing during optimization. The 
Lagrange multiplier Λi is updated using the bisection method 
to satisfy the mass constraint. The design iterations stop 
when the density convergence criteria are met.

5.3  General algorithm

Algorithm  1 consolidates all the developments into an 
algorithmic framework. It mainly consists of three blocks. 
The outer block represents macroscale structure optimiza-
tion iterations with iteration index i, using the optimality 
criteria method detailed in (69). It stops when the relative 
change in macroscale density � falls below the tolerance 
�tol , and the converged solution is the optimum macroscale 
density �̄� . For a given macroscale density distribution, the 
middle block solves the initial boundary value problem with 
known load increments ΔūE

n+1
 at each load increment n. The 

global equilibrium for each load increment is solved with the 
Newton-Raphson method that uses the linearization of (43) 
(Simo and Hughes 2006). Here, (∙)(k)

n+1
 denotes the value of a 

particular variable (∙) at the kth iteration at load step (n + 1) . 
The Newton-Raphson scheme stops when the norm of the 
residual force vector drops below a tolerance threshold �tol , 
and we adopt �tol = 10−5 in this article.

The inner block solves the material optimization problem 
described in Sect. 4 at each Gauss point with prescribed 
state variables at this iteration stage for each load incre-
ment. For the schemes based on continuum micromechan-
ics outlined in this paper, the material optimization problem 
is solved for the optimized configuration m̄x,j

n+1
 maximizing 

the strain energy via (51) at the first load increment only. 
Thereafter, the material orientation is updated for each load 

(68)Bi
j
=

( �i
j

Λi|Ωj|

)�

,

(69)
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j
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⎧
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j
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increment by aligning the material axis with the principal 
strain axes of the elastic part of the macroscale strain tensor 
according to our discussion in Sect. 4.3. The equations due 
to strain energy maximization can be solved with standard 
gradient-based constraint optimization methods such as the 
quasi-Newton method of Broyden, Fletcher, GoldFarB, and 
Shanno (BFGS) or sequential least squares programming 
(SLSQP) methods.

6  Numerical examples

In this section, we define two test examples with elastoplas-
tic multiphase hierarchical material models that are suitable 
to illustrate the computational efficiency and validity of our 
path dependent concurrent material and structure optimi-
zation framework. First, we consider a standard cantilever 
type benchmark problem and modify its material definitions 
analogous to the multiscale configuration shown in Fig. 1. 
Later, we demonstrate the potential of our framework for 
biotailoring applications by solving a prototype problem 
that integrates a hierarchical material model for cereal stems 
Gangwar et al. (2021).

6.1  Cantilever benchmark problem

6.1.1  Problem description and hierarchical design

Figure 6 modifies the definition of the standard cantilever 
design problem to demonstrate the developed concepts in 
this article. The length and height of the macrostructure 
are 2.0 m and 1.0 m, respectively. The left edge is fixed, 
and a displacement loading of u∗ = 7.5 mm is prescribed at 
the central 10% of the right edge that we divide in six load 
steps with a constant load increment of ΔūE = 1.25 mm. We 
discretize the macroscale structure with an 80 × 40 mesh 
of 4-node plane strain quadrilateral elements, resulting in a 
characteristic element size of le = 25 mm and 3, 200 mac-
roscale design variables. Each element contains four Gauss 

points, resulting in 80 × 40 × 4 = 12, 800 material optimiza-
tion problems in each load step.

As illustrated in Fig. 6, we consider a hierarchical sys-
tem that consists of Material A, B, and C at two differ-
ent length scales. Their densities (in Kg/m3 ) are �A = 0 , 
�B = 0.5 , and �C = 1.0 , their Young’s moduli (in GPa) are 
EA = 0.0 , EB = 0.5 , and EC = 1.0 , and Poisson’s ratio of 
all constituents is 0.3. Material C is elastoplastic with yield 
strength 1 MPa. We assume that Material A forms cylin-
drical inclusions in the homogenized matrix of Material B 
and C. At each Gauss point, the material microstructure is 
parametrized by the volume fraction �x,j

A,n+1
 , the orientation 

�
x,j

A,n+1
 , and the volume fraction �x,j

C,n+1
 for load step (n + 1) , 

which results in 38, 400 microscale design variables in each 
load step.

The minimum volume fraction of Material A is set to 
�min
A

= 0.2 . The existence of the homogenized yield criterion 
� in (53) requires �̄�C = (1 − 𝜙

x,j

A,n+1
) 𝛾

x,j

C,n+1
> 0 . It implies 

that the bounds 𝜙max
A

< 1 − h and 𝛾min
C

> h , where h is a small 
positive number. We restrict �min to 0.001 and �max to 0.799 
to satisfy these requirements. The total amount of material 
mass available is restricted to 40% of the maximum possible 
mass. As an initial condition at the macroscale, we assume 
the maximum possible density �max in each element. At the 
material level, we assume an initial microstructure configu-
ration �

A
= 0.0 , �

A
= 0.0 , and �

C
= 1.0 at each Gauss point. 

In each design update, we reduce the target mass fraction by 
0.025 until we reach the specified mass fraction Mfrac = 0.4 . 
The move parameter � and the damping parameter � are set 
to 0.05 and 0.5. The filter radius rmin is reduced linearly from 
rmin = 20 le to rmin = 4 le with design iterations for improv-
ing the convergence of the structure optimization algorithm 
following Xia et al. (2017).

The structure optimization algorithm stops when the rela-
tive change in the macroscale density field falls below the 
tolerance �tol = 10−3 . Figure 7 illustrate the convergence of 
the macroscale design update. We notice that the algorithm 
takes 34 density updates to converge to the final design 

Fig. 6  Cantilever benchmark 
based on elastoplastic mul-
tiphase hierarchical materials
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with converged objective function value 0.39022 N-mm. 
Figure 8a and b plot the optimized macroscale density and 
equivalent plastic strains overlaid on the density plot, respec-
tively. The plastic strains are concentrated at the clamped 
end’s boundaries, consequently pushing the material towards 
these regions. As highlighted in Fig. 8b, the sharp features 
near the clamped end in the optimal density distribution 
mimic the plastic front emphasizing its importance for the 
final design.

Figure 9 illustrates the optimized morphology at the 
mesoscale and the equivalent volume fraction of Material 
B and C from the lowermost scale. The yellow color in 
Fig. 9a represents the matrix material that results from the 
homogenization of the lowermost scale, and the blue color 
displays the volume fraction and orientation of Material A 
inclusions. The inclusions follow the direction of the largest 
principal stress. The equivalent volume fractions of Mate-
rial A, B, and C at the macroscale are defined as: �̄�A = 𝜙A , 
�̄�B = (1 − 𝜙A)(1 − 𝛾C) , and �̄�C = (1 − 𝜙A)𝛾C . Figure  9b 
displays the equivalent volume fraction of Material B and 
C at the macroscale for the final design, where we use 60% 
opacity for both. We can observe the regions dominated by 
Material B, C, and a mixing zone. The stiffer Material C 
is deposited in the regions anticipated to yield first, while 
Material B dominates the transition zone.

Figure 10 illustrates the evolution of the optimization 
process by plotting equivalent plastic strains overlaid on 
the density distribution and the equivalent volume fraction 
of Material B and C, all at selected design iterations. The 
evolution of the macroscale density and equivalent plastic 
strains shows that the design process attempts to attenuate 
the plastic front. In this process, the algorithm pushes more 
material towards the region close to the clamped boundary, 
delaying yielding in this region. Material C is the stiffest 
material among the constituents and exhibits elastoplastic 
behavior. Its evolution is heavily influenced by the plastic 
front, which leads for instance to sharp features in the mac-
roscale density configuration.

6.1.2  Performance comparison with equivalent linear 
elastic design

We finally illustrate the impact of elastoplastic design on the 
structural performance by comparing with a corresponding 
design that only assumes linear elastic material response at 
the microscales and ignores any plasticity effects. To this 
end, Fig. 11 plots the optimized density distribution and the 
equivalent volume fraction of Material B and C for the lin-
ear elastic design that assumes purely elastic properties of 
Material C at the lowermost scale. Comparing these plots 
with Fig. 8 and 9b, we can find apparent differences in the 
optimized layouts. The plastic design places more material 
towards the clamped region with clear features imitating the 

plastic front, whereas these attributes are missing in the lin-
ear elastic design.

Figure 12 quantitatively compares the structural perfor-
mance of the elastoplastic design over the corresponding 
linear elastic design. We subject the optimal configurations 
in both cases to the same displacement loading of u∗ = 7.5 
mm, whereas Material C is elastoplastic for both configu-
rations (see Fig. 6). Figure 12 demonstrates the load–dis-
placement curves with the equivalent plastic strains plots for 
different load levels for both cases. Although the response 
at low load levels is practically identical, the load–displace-
ment curves start to deviate from each other at the higher 
load levels, when elastoplastic behavior originating from 
material scales governs the overall response. The features 
in elastoplastic design highlighted in Fig. 8b plays a crucial 
role in attenuating the propagation of plastic front by delay-
ing the plasticization of the hierarchical material system. 
Figure 12 demonstrates the differences in yielded regions 
and the magnitude of equivalent plastic strains in both cases, 
which clearly shows the superior behavior of the elastoplas-
tic design. Moreover, the relative percentage gain in the 
structural performance for the elastoplastic design, defined 
as ((fw,nl − fw,lin)∕fw,lin) × 100 , is 4% , where fw,nl and fw,lin are 
objective function values for the elastoplastic and equivalent 
linear elastic designs, respectively. This gain is expected to 
grow with the applied load level u∗ . Thus, we conclude that 
the linear elastic design and the plastic design are function-
ing differently, and it is important to consider plastic effects 
at different scales in multiphase hierarchical systems that 
are expected to develop dissipation-based energy absorption 
mechanisms against external impacts.

Fig. 7  Convergence of objective function fw (in N-mm) and mass 
fraction with respect to number of macroscale design iterations
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6.2  Towards predicting self‑adapting mechanisms 
in plants

Biomaterials exhibit multiscale inelastic behavior and 
develop dissipation-based energy absorption mechanisms 
optimizing its hierarchical composition across material 
microscales against the external biophysical stimuli through 
natural evolution (Wegst et al. 2015; Fratzl and Weinkamer 
2007; Bhushan 2009). A rational understanding of micro-
structure interdependencies with self-adapting mechanisms 
will pave the way towards many biotailoring applications 
with improved properties, for instance, in the context of the 
targeted breeding of agricultural crops (Brulé et al. 2016; 
Berry et al. 2004). A few studies have attempted the mul-
tiscale optimization of biological systems such as bone-
remodeling and bioinspired materials (Rodrigues et al. 1999; 
Coelho et al. 2008; Radman et al. 2013). Several roadblocks, 
however, such as high computational cost and non-trivial 
problem decomposition in the case of elastoplastic behav-
ior have limited these approaches to simple linear elastic 
problems with no more than two scales. With the follow-
ing prototype model, we demonstrate the potential of our 
optimization framework in overcoming these roadblocks for 
the computationally efficient modeling of self-adaption of 
biomaterials.

Crop stem materials organize themselves hierarchically 
across multiple length scales. The hierarchical scales in 
crops range from base constituents such as cellulose, hemi-
cellulose, and lignin, to cell wall, functional tissues, cross-
section, and structure scale node morphology levels. In our 
previous work, we experimentally profiled this hierarchi-
cal organization through microimaging (micro-CT, light 
microscopy, transmission electron microscopy) and chemi-
cal analysis, focusing on cereal stems (Gangwar et al. 

Fig. 8  Macroscale density distribution and equivalent plastic strain distribution of the cantilever benchmark problem for a total prescribed dis-
placement of u∗ = 7.5 mm. Highlighting circles demonstrates that the plastic front influences the optimal density distribution

Fig. 9  Optimal material configuration for total prescribed displace-
ment of u∗ = 7.5 mm
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2021), which we briefly summarize in Fig. 13. Exploiting 
this data, we developed and validated a continuum micro-
mechanics model of cereal stem materials that accurately 
relates material composition with elastoplastic mechanical 

behavior across different scales. We provide all implemen-
tation information relevant in the scope of this article in 1.

Figure 14 summarizes the prototype model for the hier-
archical optimization of a cereal node region, given that 

Fig. 10  Evolution of macro-
scale density configuration and 
equivalent plastic strains (rain-
bow colormap, ×10−3 units ) 
and equivalent volume fractions 
of Material B and C
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stem failure has been generally observed in this region. We 
take the length and height of the macrostructure domain as 
10 mm and 5 mm, which is typical of a node dimension. 
The left edge is completely fixed, and the displacement in 
X direction on the right edge is fixed. The prescribed dis-
placement in the Y direction on the right edge is u∗ = 0.4 
mm. The displacement u∗ = 0.4 mm is divided in four load 
steps with increment ΔūE = 0.1 mm. We discretize the 
macroscale structure with a 60 × 30 mesh of 4-node plane-
strain quadrilateral elements. This macrostructure model 
definition is equivalent to a cereal node cross-section that 
undergoes combined shear and bending loads.

Following our multiscale material model, the stem 
cross-section consists of an outer-shell layer and a solid-
pith region. The primary functions of the outer-shell are 

non-mechanical, such as protecting against insects and 
regulating gas exchange. Thus, we only consider the solid-
pith region for hierarchical optimization. The microstruc-
ture design variables mx,j

n+1
 consist of the cell wall fraction 

�
par(x,j)

wall,n+1
 in the parenchyma, the fiber fraction �x,j

fib,n+1
 in the 

vascular bundles, the vascular bundle fraction �x,j

vb,n+1
 , and 

the orientation �x,j
n+1

 of the anisotropy axis of the solid pith 
with respect to the global X direction (see Fig. 14). Lignin 
in the parenchyma cell wall material exhibits elastoplastic 
behavior. The parenchyma tissues and xylem-phloem ves-
sels in the vascular bundles are also responsible for food 
storage and nutrient-water transport. We incorporate these 
biological constraints by adopting the bounds on the vol-
ume fractions that we measured through microimaging 

Fig. 11  Final design of the cantilever benchmark in the equivalent linear elastic case (Material C purely elastic)

Fig. 12  Load vs displacement 
curves of the final designs in 
the equivalent linear elastic 
and elastoplastic cases with 
the equivalent plastic strains 
overlaid on the optimal density 
layout (in ×10−3 units, rainbow 
colormap)
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Gangwar et al. (2021) in the material optimization prob-
lem. At the structure scale, the total amount of material is 
restricted by the reported average density, which can be 
interpreted as the limitation posed by the available biologi-
cal energy required in the synthesis of biomass per unit of 
stem material.

Figures 15 and 16 illustrate the design evolution his-
tory and the final macroscale density with the equivalent 
plastic strains. The macroscale design algorithm takes 38 
density updates to converge to the final design. In the opti-
mal layout, the branches from the left internode converge 
to the central node region, and the branches of the right 
internode emerges, a morphology that was also observed 
in real plants through micro-CT images (Ghaffar and Fan 

2015). The plastic strains are concentrated at the end and 
middle regions due to the anticipated high shear deforma-
tions. The optimal density layout puts material in areas to 
attenuate plastic fronts, which can also be observed in the 
design evolution history in Fig. 15. These observations 
again emphasize the role of the plastic front in the optimal 
structural layout.

Figure 17 plots the optimal microstructure configuration 
at different scales at the final load level. At the mesoscale, 
the material orientation follows the stress flow direction in 
the main branches, while the morphology is more complex 
in the central node region. We also plot the optimal con-
figurations at lower material scales in the main branches. 
These results indicate the choice of a stronger solid-pith 

Fig. 13  Hierarchical structure of a cereal plant profiled through microimaging Gangwar et al. (2021)
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material for the optimal mechanical response. The predicted 
morphology is in qualitative agreement with what our col-
laborators in plant science have found via field experiments 
for lodging-resistant cereals (Gangwar et al. 2023). Based 
on these promising results, we believe that our optimiza-
tion framework can help pave the way towards efficient and 
sustained biotailoring applications, supported by modeling 
and simulation.

7  Summary, conclusions, and outlook

In this article, we established rigorous theoretical foun-
dations for an efficient concurrent material and structure 
optimization framework for multiphase hierarchical sys-
tems with elastoplastic constituents at the material scales. 
In particular, we developed an efficient solution strategy 
for the material optimization problem based on the maxi-
mum plastic dissipation principle in the format of a typi-
cal return map algorithm for an elastoplastic constitutive 
law. Finally, we integrated analytical expressions of the 

Fig. 15  Convergence of the 
objective function fw (in 10−3 
N-mm) with respect to the num-
ber of design iterations, plotted 
along with snapshots of the 
macroscale density configura-
tion and the equivalent plastic 
strains (in ×10−3 units, rainbow 
colormap)

Fig. 16  Final design of the cereal node region with equivalent plastic strain distribution for total prescribed displacement u∗ = 0.4 mm
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homogenized stiffness and the yield criterion that are 
derived via continuum micromechanics, enabling a com-
putationally tractable implementation for elastoplastic 
multiphase hierarchical systems.

We verified the validity and efficiency of our framework 
with newly defined benchmark problems that, for the first 
time, is computationally feasible via our framework. It con-
sists of a macroscale configuration in the form of a standard 
cantilever, but involves hierarchical material definitions with 
elastoplastic constituents at the microscale. The optimized 
macroscale and microstructure configurations computed via 
our framework demonstrated the importance of plasticity 
effects that originate from the material microscales in devel-
oping dissipation-based energy absorbing mechanisms. In 
addition, we applied our framework for investigating self-
adapting mechanisms in cereal plant structures, outlining 
its potential for biotailoring applications. Our framework 
is a first attempt at a decomposed material and structure 
formulation that optimizes the path-dependent macroscale 
mechanical response of elastoplastic multiphase hierarchi-
cal systems. We would also like to point out the limitations 
of the presented framework. In this article, we restricted 
ourselves to the class of inelastic hierarchical materials, 
for which we can assume the existence of an associative 
flow rule, a rate-independent ideal elastoplastic response, 
and an isothermal process at the macroscale. We also con-
fined the quadratic stress average based micromechanical 
scheme for estimating the homogenized yield criterion by 
an additional assumption that only one of the constituents 
in the hierarchical material exhibits inelastic behavior with 
a deviatoric stress-based yield criterion. These assumptions 
restrict the plausible elastoplastic failure mechanisms that 
originate from the material microscales. We anticipate that 
these mechanisms can be incorporated into our optimization 
framework, for instance by combining the variational pro-
cedure for incremental homogenization and transformation 

field analysis (TFA) (Dvorak and Benveniste 1992; Brassart 
et al. 2011). Moreover, the formulation can potentially be 
extended for other path-dependent problems, where nonlin-
ear effects such as viscoplasticity, fracture, and damage orig-
inate from the material microscales. Thus, our framework 
helps push forward path-dependent concurrent material and 
structure optimization to consider nonlinearities exhibited 
at the microscales, with a number of potential applications, 
including multiscale additive manufacturing and architect-
ing metamaterials (Meza et al. 2015; Sanders et al. 2021).

Appendix A Comments on continuum 
micromechanics‑based simplifications

We present a proof of Property 3 introduced in Sect. 4.3. 
First, we write the strain energy maximization expres-
sions in index notation. We denote the orthonormal basis 
that corresponds to the global coordinate system as {ep} . 
We drop superscript (x, j) from variables for conciseness. 
Problem (51) at load increment n with Ee

n
∶= E

n
− E

p
n
 can 

be rewritten in index notations as

The principle coordinate system, that is co-linear with the 
principal strain directions, uses the Roman indexed basis 
{êi} . The transformation matrix Qpi between both systems 
depends on the optimal configuration �̄�

A,n
 from Property 2. 

(70)

max
mn

1

2
E
e
n
∶ ℂ(mn) ∶ E

e
n

= max
mn

1

2
Ee
pq(n)

ep ⊗ eq ∶ Cpqrs(mn)ep ⊗ eq ⊗ er ⊗ es ∶

Ee
rs(n)

er ⊗ es

= max
mn

1

2
Ee
pq(n)

Cpqrs(mn) E
e
rs(n)

.

Fig. 17  Optimal microstructure 
configuration for total pre-
scribed displacement u∗ = 0.4 
mm
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Utilizing Qpi and its orthogonal property, we define the ten-
sor component transformations as

where Êe
ij(n)

 are the components of the elastic part of the 
macroscale strain tensor in the principle coordinate system. 
Also, Êe

ij(n)
= 0 if i ≠ j , and diagonal components ( i = j ) are 

the principle strain values. Similarly, Ĉijkl are the compo-
nents of the stiffness tensor in the principal coordinate sys-
tem. Using (71), we reformulate the maximization problem 
(70) in terms of ml

n
= [�

A,n
, �

A,n
, �

C,n
] as

With m̄l
n
 as the solution to this maximization problem, we 

can rewrite (72) as

We assume that the macroscale loading increases monotoni-
cally. Therefore, the elastic part of the macroscale tensor 
Êe
ij(n+1)

 at load increment (n + 1) in the principal coordinate 
system can be written in terms of the components Êe

ij(n)
 with 

an appropriate scaling. Exploiting the definition of the Kro-
necker delta � , we write Êe

ij(n+1)
 in terms of scaling compo-

nents ai� as

As the scaling components are non-negative, we augment 
the expression (73) and arrive at

This is the expression for the strain energy maximization 
problem at load increment (n + 1) analogous to (72) or (73).

We emphasize that our definition of the admissible set 
Ead depends only on the macroscale density distribution and, 
therefore, remains unchanged throughout the loading his-
tory. In addition, Case 2 is not conceivable as laid out in our 
discussion of Property 1 in Sect. 4.3. Therefore, it implies 
that the possible admissible solutions of the right hand side 
expression at increment (n + 1) in 75 are the same as those 
at increment n. Replacing ml

n
 with ml

n+1
 , we arrive at

(71)
ê
i
= Qpiep; Êe

ij(n)
= QpiQqjE

e
pq(n)

;

Cpqrs = QpiQqjQrkQslĈijkl,

(72)max
ml

n

1

2
Êe
ij(n)

Ĉijkl(m
l
n
) Êe

kl(n)
.

(73)Êe
ij(n)

Ĉijkl(m̄
l
n
) Êe

kl(n)
≥ Êe

ij(n)
Ĉijkl(m

l
n
) Êe

kl(n)
.

(74)Êe
ij(n+1)

= ai𝛼𝛿j𝛼Ê
e
ij(n)

and ai𝛼 ≥ 0.

(75)

ai𝛼𝛿j𝛼Ê
e
ij(n)

Ĉijkl(m̄
l
n
) ak𝛽𝛿l𝛽 Ê

e
kl(n)

≥ ai𝛼𝛿j𝛼Ê
e
ij(n)

Ĉijkl(m
l
n
) ak𝛽𝛿l𝛽 Ê

e
kl(n)

⟹ Êe
ij(n+1)

Ĉijkl(m̄
l
n
) Êe

kl(n+1)

≥ Êe
ij(n+1)

Ĉijkl(m
l
n
) Êe

kl(n+1)
.

Appendix B Details on the cereal prototype 
model

We briefly summarize the key components for implementing 
the hierarchical optimization of the cereal prototype model in 
Sect. 6.2. For further details on multiscale modeling of stiff-
ness and strength of crop stem material within continuum 
micromechanics, we refer the interested reader to Section 3 in 
Gangwar et al. (2021). In the current model, the microscale 
design variables defined at each Gauss point at load step 
(n + 1) are the cell wall fraction �par(x,j)

wall,n+1
 in the parenchyma, 

the fiber fraction �x,j

fib,n+1
 in the vascular bundles, the vascular 

bundle fraction �x,j

vb,n+1
 , and the orientation �x,j

n+1
 of the anisot-

ropy axis of the solid-pith material. The macroscale homog-
enized stiffness tensor ℂ in the global coordinate system can 
be written as a function of the microscale design variables 
m

x,j

n+1
= [�

par(x,j)

wall,n+1
,�

x,j

fib,n+1
,�

x,j

vb,n+1
, �

x,j

n+1
] following Equation 

(27) in Gangwar et al. (2021) as

Here, ℂpar and ℂvb are the homogenized stiffness tensors of 
the parenchyma tissue and the vascular bundle tissue in the 
solid-pith region, respectively. For the analytical expression 
of these estimates, interested readers are referred to Sec-
tion 3.3 in Gangwar et al. (2021). The composition of all 
other RVEs in the multiscale material model of cereal stems 
is considered constant, and model parameters correspond-
ing to the Gopher oat variety are used (see Appendix B in 
Gangwar et al. (2021)). T is a standard rotation matrix for 
tensor transformations.

Lignin exhibits elastoplastic material behavior at the con-
stituent level, and the macroscale limit state point corresponds 
to the yielding of lignin. In this prototype model, we assume 
that only lignin in parenchyma cell wall material is elastoplas-
tic (see Fig. 14). In this case, the macroscale homogenized 
yield criterion reads as

(76)

Êe
ij(n+1)

Ĉijkl(m̄
l
n
) Êe

kl(n+1)
≥

Êe
ij(n+1)

Ĉijkl(m
l
n+1

) Êe
kl(n+1)

⟹ m̄l
n+1

= m̄l
n
.

(77)

ℂ(m
x,j

n+1
) = [T(�

x,j

n+1
)]−1 ℂpith [T(�

x,j

n+1
)] with

ℂ
pith

(ℂpar(�
par(x,j)

wall,n+1
), ℂvb(�

x,j

fib,n+1
), �

x,j

vb,n+1
)

=

{

(1 − �
x,j

vb,n+1
) ℂ

par
+ �

x,j

vb,n+1
ℂvb ∶ [𝕀+

ℙ
par

cyl
∶ (ℂvb − ℂ

par
)]−1

}

∶

{

(1 − �
x,j

vb,n+1
) 𝕀 + �

x,j

vb,n+1
[𝕀 + ℙ

par

cyl
∶ (ℂvb − ℂ

par
)]−1

}−1

.
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where lignin follows the von Mises failure criterion with 
yield strength �Y

lig
 and the bulk modulus �lig . The equivalent 

volume fraction �lig,par of lignin in parenchyma is computed 
as �lig,par = �

wall,par

l
× �

par(x,j)

wall,n+1
× (1 − �

x,j

vb,n+1
) . The lignin 

volume fraction �wall,par

l
 in the parenchyma cell wall material 

is fixed as given in Gangwar et al. (2021).
With these definitions in hand, we write the material opti-

mization problem for a Gauss point x inside element j for load 
increment (n + 1) following (45) as

where �j is the given macroscale dry density for the finite 
element with index j. The first three lines in the constraints 
definition represent the microstructure dependent constitu-
tive equations. The fourth statement connects �j with the 
microscale design variables via the rule of mixture. We 
adopt bounds for �par(x,j)

wall,n+1
 , �x,j

fib,n+1
 and �x,j

vb,n+1
 that are 

[0.01, 0.38] , [0.75, 0.90] , and [0.01, 0.16] , respectively. 
The upper bound reflects the measured microscale parame-
ters reported in Gangwar et al. (2021). The strain energy 
maximization part in the algorithmic treatment of the mate-
rial optimization problem is a constraint optimization prob-
lem with nonlinear equality constraint. We utilize the 
sequential least squares programming (SLSQP) method 
implemented in the SciPy library to solve this problem.

(78)

�(� ,m
x,j

n+1
) =

√
√
√
√

� ∶ [ℂ(m
x,j
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)

� �lig,par
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x,j

n+1
)]−1 ∶ �

−

√

�lig,par

3

�Y
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,

(79)
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p
n
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}
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− E
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1

2
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ℂ(m
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− E
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n+1
)

𝜌j = 𝜌wall 𝜙
par(x,j)

wall,n+1
(1 − 𝜙

x,j

vb,n+1
)+

𝜌fib 𝜙
x,j

fib,n+1
𝜙
x,j

vb,n+1

𝜙
par,min

wall
≤ 𝜙

par(x,j)

wall,n+1
≤ 𝜙

par,max

wall
;

𝜙min
fib

≤ 𝜙
x,j

fib,n+1
≤ 𝜙max

fib
;

𝜙min
vb

≤ 𝜙
x,j

vb,n+1
≤ 𝜙max

vb
; − 𝜋∕2 ≤ 𝜃

x,j

n+1
≤ 𝜋∕2,

The setup of the structure optimization problem for this 
prototype model resembles (42). The sensitivity analysis 
for the macroscale design updates follows from Sect. 5.1. 
The derivative of the homogenized stiffness ℂ with respect 
to the element density �j follows via the chain rule as

The derivatives of ℂ with respect to the microscale design 
variables at the material level are evaluated by finite differ-
ence approximations. The move parameter � and the damp-
ing parameter � are set to 0.02 and 0.5. The filter radius rmin 
is reduced linearly from rmin = 15 le to rmin = 4 le with design 
iterations.
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