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Abstract

Modelling and simulation on the atomic scale play a pivotal role for the under-
standing of complex materials. In this field, machine learning interatomic potentials
(MLIPs) are rapidly evolving tools, which allow the description of interatomic inter-
actions with an accuracy approaching that of quantum mechanical methods. At the
same time, they are computationally much more efficient, opening the possibility
for large-scale molecular dynamics (MD) simulations with unprecedented fidelity.
However, current research in the field is often focused on methodical advancements
and uses simple single element test cases for this purpose. This thesis treats the
development and application of MLIPs, more specifically highly efficient Atomic
Cluster Expansion potentials (ACEPs), for structurally and chemically complex
systems, namely Cu-Zr and silicon oxycarbide (Si-O-C). Both are representatives
of important material classes, metals and glass-ceramics.

Cu-Zr has a plethora of intermetallic phases and is a well known metallic glass
(MG) former. The performance of the developed potential is compared to previously
published classical potentials and experimental data. Using the new MLIP, the
concentration-temperature phase diagram of the material is calculated and found
to be in good agreement with experiments. Furthermore, the MG structure is
investigated, revealing a massively different short-range order compared to classical
interatomic potentials (IPs), and tensile tests of a glass-crystal matrix sample show
the occurrence of martensitic phase transitions in B2-CuZr.

Si-O-C has a highly tunable composition and microstructure. Consequently,
training data for this material needs to cover a wide configuration space, which
is achieved with an active learning strategy based on structural units present in
the bulk material. The developed ACEP is the first publicly available IP for the
system and employed to investigate the atomistic structure and its relation to the
elastic properties. Contrary to common assumptions, graphite agglomerates in the
system are of low importance for the Young’s modulus. Instead, strong correlation
to SiO4 tetrahedra and SiC bonds are found.

Finally, different types of MLIPs are evaluated. During the work on Cu-Zr and
Si-O-C equivariant structure descriptions and message-passing graph neural net-
works emerged as promising methods to reach ever improving accuracies. Novel
NequIP, Allegro and MACE MLIPs implementing them are compared to the well
established High-Dimensional Neural Network Potentials (HDNNPs), Gaussian Ap-
proximation Potentials (GAPs), Moment Tensor Potentials (MTPs) and ACEPs.
The tests reveal the large data requirements for HDNNPs and emphasize the trade-
off between achievable accuracies and computational cost. ACEPs still represent a
good compromise in this regard.

vii





Zusammenfassung

Modellierung und Simulation auf atomistischer Skala sind essenziell für das Ver-
ständnis komplexer Materialien. In diesem Bereich sind Machine-Learning Inter-
atomare Potenziale (engl. machine learning interatomic potentials (MLIPs)) sich
schnell entwickelnde Werkzeuge, die Beschreibung interatomarer Wechselwirkun-
gen mit einer Genauigkeit nahe der von quantenmechanischen Methoden erlauben.
Gleichzeitig sind sie deutlich effizienter zu berechnen. Dies ermöglicht große Mole-
kulardynamik (engl. molecular dynamics (MD)) Simulationen mit nie dagewesener
Detailtreue. Aktuelle Forschung in diesem Bereich ist häufig auf die Methodenent-
wicklung fokussiert und verwendet für den ’proof of concept’ meistens elementare
Systeme. Im Gegensatz dazu, befasst sich diese Dissertation mit der Entwicklung
und Anwendung von MLIPs, insbesondere hocheffizienten Atomare Cluster Expan-
sion Potenzialen (engl. Atomic Cluster Expansion potential (ACEP)), für die struk-
turell und chemisch komplexen Systeme Cu-Zr und Si-O-C. Beide sind exemplarisch
für wichtige Materialklassen, Metalle und Glaskeramiken.

Cu-Zr weist eine Vielzahl intermetallischer Phasen auf und ist ein bekannter
Glasbildner. Die Leistung des entwickelten Potenzials wird mit verfügbaren klas-
sischen Potenzialen und experimentellen Daten verglichen. Das mit dem Potenzial
berechnete Konzentrations-Temperatur Phasendiagramm stimmt weitgehend mit
dem Experimentell überein. Darüber hinaus wird die Glasstruktur untersucht, wo-
bei eine im Vergleich zu klassischen Potenzialen unterschiedliche Nahordnung der
Atome festgestellt wird. Zugversuche an Glas-Kristall Proben zeigen das Auftreten
martensitischer Phasenumwandlungen in B2-CuZr.

Silizium Oxycarbid hat eine weitgehend einstellbare Zusammensetzung und Mi-
krostruktur. Folglich müssen die Trainingsdaten für das Material einen breiten Kon-
figurationsraum abdecken, was durch eine Active-Learning Strategie auf Basis von
im Material vorhandenen Struktureinheiten erreicht wird. Das entwickelte ACEP
ist das erste öffentlich verfügbare Potenzial für dieses System. In dieser Arbeit wird
es verwendet, um die atomare Struktur und ihren Zusammenhang mit elastischen
Eigenschaften zu untersuchen. Entgegen allgemeinen Annahmen spielen graphiti-
sche Agglomerate im System für das Elastizitätsmodul eine untergeordnete Rolle.
Stattdessen wird eine starke Korrelation zu SiO4 Tetraedern und SiC-Bindungen
festgestellt.

Das letzte Thema dieser Dissertation ist die Evaluierung verschiedener Arten
von MLIPs. Während der Arbeiten an Cu-Zr und Si-O-C haben sich äquivariante
Strukturbeschreibungen und Message-Passing Graph Neural Networks als vielver-
sprechende Methoden zur Erzielung immer höherer Genauigkeiten herauskristalli-
siert. Neuartige NequIP, Allegro und MACE MLIPs, die diese Methoden imple-
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mentieren, werden mit etablierten MLIPs verglichen. Die Tests zeigen den großen
Datenbedarf von Hochdimensionalen Neuronalen Netzwerk Potenzialen auf und un-
terstreichen den Zusammenhang zwischen erreichbarer Genauigkeit und erhöhtem
Rechenaufwand. ACEPs stellen hierbei weiterhin einen guten Kompromiss dar.
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1 Introduction
Atomistic simulations play an increasingly important role in the understanding of
materials due to the improvements of underlying theories and increased availability
of computing resources as can be seen by increasing numbers of publications on
the topic ’Atomistic simulation’, shown in Fig. 1.1a. The commonly employed
methodologies here are variants of molecular statics (MS) and molecular dynamics
(MD). In MS calculations the energy 𝐸 of a system of interacting particles (in
this case an atomic structure) is minimized with respect to the particle positions
and simulation cell. MD simulations evolve the system in time based on Newtons
equations of motion. Both require a description of the potential energy surface
(PES) and corresponding forces between atoms, i.e. the energy 𝐸 as function of
the particle coordinates 𝒓. The accuracy, speed and achievable amount of particles
in MS and MD mostly depend on the way the PES is determined.

In this thesis machine learning interatomic potentials (MLIPs), which are a
rapidly evolving field (cf. Fig. 1.1b), are employed for this purpose. They are
developed and evaluated as a tool for the description of structurally and chemically
complex materials. The treated systems are Cu-Zr (chapter 2) and silicon oxycar-
bide (Si-O-C) (chapter 3), which can be seen as representatives of two different
material classes. In the former, chemical interactions between atoms are mostly
metallic, while they are covalent-ionic in the latter. Nonetheless, both systems are
described with Atomic Cluster Expansion potentials (ACEPs), which is a posteriori
justified in chapter 4, where different types of MLIPs are compared.

The remainder of this chapter is organized as follows. First an overview of differ-
ent methods to calculate the PES is given, starting with a general introduction and
an overview of classical interatomic potentials (IPs), before introducing the MLIPs
employed in this work. Then relevant literature about the treated material systems
is reviewed the research questions tried to answer in this work are raised. Finally,
the employed computational and analysis methods are summarized.

1.1 PES of atomic systems
The energy of an atomic system depends on the coordinates of nuclei 𝑹 = {𝑹𝑖}
and electrons 𝒓 = {𝒓𝑖} as schematically depicted in Fig. 1.2. In principle, it can be
determined by solving the (time independent) Schrödinger equation

𝐻̂Ψ(𝑹, 𝒓) = 𝐸Ψ(𝑹, 𝒓). (1.1)

Here, Ψ is the wavefunction of the system and 𝐻̂ is the Hamiltonian operator. In
the Born-Oppenheimer or adiabatic approximation it is assumed that lightweight

1



1 Introduction

a b

Figure 1.1: Number of papers published per year on topics ’Atomistic simulation’ (a) and
’Machine learning interatomic potentials’ (b) according to Clarivate Web of Sci-
ence™. Atomistic simulations and MLIPs are rapidly evolving fields with strongly
increasing numbers of publications.

Figure 1.2: Schematic PES of an atomic system. The energy 𝐸 depends on coordinates of nu-
clei 𝑹 and electrons 𝒓 and can in principle be obtained by solving the Schrödinger
equation. However, exact solutions only exist for very simple systems, so approx-
imate solutions are necessary.
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1.1 PES of atomic systems

electrons move much faster than heavy nuclei, allowing to separate their wavefunc-
tions.1 Using this assumption, 𝐻̂ for a given set of nuclei positions 𝑹 is

𝐻̂ = ∑
𝑖

ℏ
2𝑚𝑒

∇2 + ∑
𝑖<𝑗

𝑞2
𝑒

|𝒓𝑖 − 𝒓𝑗|
+ ∑

𝑖𝑘

𝑄𝑘𝑞𝑒
|𝒓𝑖 − {𝑹𝑘}|

. (1.2)

The terms correspond to the kinetic energy with the reduced Planck constant ℏ and
electron mass 𝑚𝑒, Coulomb interactions between electrons with electron charge 𝑞𝑒
and Coulomb interactions with the quasi-stationary nuclei with charges 𝑄. How-
ever, despite the Born-Oppenheimer approximation, this multibody problem is im-
possible to solve exactly for all but simple molecular systems.2,3 Consequently, alter-
native methods are required to estimate the PES. These methods can be split into
two categories: approximate quantum mechanical (QM) methods, such as density-
functional theory (DFT) (cf. section 1.4.1), and IPs. QM methods are highly
accurate, but computationally expansive. They typically do not scale beyond few
hundreds or thousands of atoms and tens to hundreds of picoseconds simulatable
time. No knowledge about a system besides chemical elements and atomic positions
is required for such simulations. IPs, on the other hand, approximate the PES of
an atomic system based on an analytic function of the atomic coordinates, where
atoms are assumed to be point masses, and require fitting of adjustable parameters
for each kind of interatomic interaction that shall be described. They scale to bil-
lions of atoms and microseconds of simulatable time, but are less accurate than QM
methods. Different schemes for their classification exist (see for example a recent
review on IPs by Müser et al.4), but for this thesis they will be foremost considered
as either empirical IP or MLIP. Empirical (or classical, both terms are used inter-
changeably5–7) IPs use physically motivated functional forms to describe chemical
interactions between atoms. Typically, they have a few to a few tens of adjustable
parameters, which often can be deduced from experimental data or a mixture from
experiments and QM calculations. As stated for example by Behler7 the term MLIP
is not well-defined. In the following it is used for IPs with, a (sometimes learnable)
complex descriptor that is combined with a regression technique to ’learn’ atomic
environments and associated energies and interatomic forces. This is achieved by
adjusting hundreds or thousands of parameters to reproduce energies and forces
obtained via QM calculations, mostly DFT, without the a priori assumptions in-
herent to a physically motivated functional form. MLIPs are a rapidly evolving
field (cf. Fig. 1.1b), which can bridge the accuracy-scalability gap between QM
methods and classical IPs,8 as schematically depicted in Fig. 1.3.

1.1.1 The evolution of IPs
The MLIPs fitted in this work are compared to existing IPs at different points of
this work. Consequently, some important types of classical IPs, as well as problems
and ideas that lead to their development are quickly reviewed here. For a more
comprehensive introduction to IPs the reader is referred to a book by Frenkel and
Smit9 or the recent review by Müser et al.4

3
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Figure 1.3: Schematic of reachable systems sizes and simulation time scales in atomistic MD
simulations depending on the method employed to calculate interatomic inter-
actions. QM methods, such as DFT have limited scalability, but high accuracy.
Classical IPs are less accurate, but usable for much larger systems. MLIPs can be
employed to bridge the accuracy-scalability gap between them.

The first IPs were pair potentials, which use only the scalar distance between pairs
of atoms 𝑟𝑖𝑗 to describe atomic energies 𝐸𝑖 via the summation of pair interactions
𝑉 (𝑟𝑖𝑗)

𝐸𝑖 = 1
2

∑
𝑗≠𝑖

𝑉 (𝑟𝑖𝑗), (1.3)

where 𝑗 are indices of neighboring atoms. Here, the factor 1
2 is introduced to split

the energy gained by two atoms upon bonding between the two. Then, the energy
𝐸 of the whole system is the sum of atomic energies 𝐸𝑖

𝐸 =
𝑁

∑
𝑖

𝐸𝑖, (1.4)

where 𝑁 is the total number of atoms in the system. Examples for these are
Lennard-Jones10,11 or Morse potentials.12 However, such simplified models lead to
severe problems in the description of all but the most simple-systems simple sys-
tems, such as ideal gases or diatomic molecules, for which they were made origi-
nally.11–13 An example of this is the inability of pair potentials to give the correct
number of independent elastic constants.4

For metallic systems the Embedded Atom Method (EAM) approach, developed
by Daw and Baskes,14,15 which is formally equivalent to Finnis-Sinclair16 and Ef-
fective Medium Theory (EMT) IPs17 proved very successful. It can be classified as
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α

a b

c

+ -
d

Figure 1.4: Schematic representation of exemplary physically motivated interatomic interac-
tion terms. The simplest terms are pair interactions which just depend on the
distance between pairs of atoms (a). Multibody terms can depend f.e. on angles
(b) or describe rotations (c). The description of ionic systems benefits from the
integration of long-range Coulomb interactions between charges (d).

pair functional, in which 𝐸𝑖 are described by a sum of pair interactions 𝑉𝑖𝑗 and an
embedding term 𝐹, which in turn is a functional of the ’electron density’ pair term
𝜌𝑖𝑗

𝐸𝑖 = 1
2

∑
𝑗

𝑉 (𝑟𝑖𝑗) + 𝐹 (∑
𝑗≠𝑖

𝜌(𝑟𝑖𝑗)) . (1.5)

This approach is inspired by the idea that atoms are embedded in a cloud of de-
localized electrons of a metallic matrix. In consequence, the amount of energy per
bond gained by an atom is not linearly depending on the amount of bonds anymore.
Instead, it often has some square root form inspired by tight-binding theory.16,18

Modified Embedded Atom Method (MEAM)19 and Angular Dependent Potentials
(ADPs)20 further extend the EAM formalism with angular dependent terms. The
availability of multiple EAM IPs since the late 2000s21–24 lead to a rapid increase
in published MD based studies on Cu-Zr, as shown in Fig. 1.5a, despite several
issues in the quantitative description of the system shown later on (cf. section
1.2.3.2). The new MLIPs for the system, which achieves unprecedented accuracy in
the description of structural and thermodynamic properties is presented in chapter
2.

Covalent systems typically have a lower packing density than metals (for example
diamond instead of FCC structure) and strongly directional interatomic bonds.
Their description benefitted from the introduction of various flavors of bond-order
potentials,25–27 which include angular and bond counting terms to describe the
atomic energy. Such potentials were, for example, successful in the description of
some Si,28,29 SiO2

30 and SiC31,32 phases.
For ionic systems improvements have been achieved by the incorporation of elec-

trostatic Coulomb interactions. These can either rely on fixed charges or apply some
global charge equilibration mechanism to keep the overall system charge neutral.4
Fig. 1.4 shows schematic representations of some exemplary physically motivated
interaction terms.

In computational chemistry the reactive force field (ReaxFF) formalism33 has

5



1 Introduction

a b

Figure 1.5: Number of papers published per year on topics ’Cu Zr Molecular Dynamics’ (a)
and ’Silicon oxycarbide simulation’ (b) according to Clarivate Web of Science™.
MD based studies of Cu-Zr increased after several classical IPs for the system
were published in the late 2000s, showing that the availability of suitable IPs can
significantly help to advance research of a material. The few available potentials
for Si-O-C have rather limited scopes and did not result in a publication spike for
Si-O-C glass-ceramics, as observed for Cu-Zr simulations.

seen much success.34 It combines many previous ideas to describe a wide variety
of chemical interactions, incorporating expressions to describe angular dependent,
bond order, Coulomb and Van der Waals interactions between atoms. Additionally,
it uses under- and over-coordination terms. Considering the amount of fittable
parameters resulting from the plethora of interaction terms, ReaxFF can be seen
as an intermediate step between classical IPs and MLIPs, even though all terms
are still physically motivated. ReaxFF are the only classical IPs which have been
successfully used to model the formation of Si-O-C.35–37 However, these ReaxFFs
have rather specialized purposes (cf. section 1.2.4.2) and have not seen a wide
adaption shown by the low number of simulation based Si-O-C studies in Fig. 1.5b.

Despite the incorporation of more and more chemical interactions in classical IPs
their accuracy seems to be limited due to their fixed functional forms.6,7 Exemplarily
MLIPs recently developed for the Si-O-C subsystems C,38–45 Si,46–51 SiO2

52,53 and
SiC54,55 have considerable improved accuracies compared to classical IPs, showing
the possible benefits of employing them in the description of complex systems as
done in this work.

1.1.2 Machine learning interatomic potentials

The field of MLIPs is rather new and a lot of progress has been achieved within the
last two decades and especially the last few years. First machine learning based at-

6



1.1 PES of atomic systems

tempts to describe the potential energy surface of atomic configurations employed
neural networks for a global description of the system around 30 years ago.56,57

Their application was limited to the system they were trained to, with only few
degrees of freedom allowed to vary. In 2007, Behler and Parrinello58 published a
High-Dimensional Neural Network Potential (HDNNP) using short-ranged symme-
try functions as descriptor and constructed the total energy of the system as sum
of atomic energies. Consequently, their potential could be applied to systems of
arbitrary size and orientation, significantly increasing its usefulness. Later on, a
plethora of MLIPs was developed. Among them are the Gaussian Approximation
Potential (GAP),59 Moment Tensor Potential (MTP),60 Atomic Cluster Expan-
sion (ACE),61 Neural equivariant Interatomic Potential (NequIP),62 Allegro63 and
MACE,64 which are compared with regard to their computational cost and accu-
racy as part of this thesis (cf. chapter 4). Some other recently developed MLIPs
like Spectral Neighbor Analysis Potential (SNAP)65 are not considered further in
this work, because they are very similar to one of the treated potentials or can be
indirectly evaluated using data from previous publications comparing MLIP.51,66

As stated previously, the term MLIP is not well-defined.7 Some of them do not
employ classic machine learning techniques, but they have in common a large
amount of parameters, normally thousands and highly flexible functional forms.
This allows them to accurately reproduce the PES of a material when fitted to
energies and forces of training structures covering a suitable configuration space.
In consequence, they have a high upfront computational cost for the generation of
training data via large amounts of DFT calculations.

Typically, MLIPs can be divided into a descriptor and a subsequent method that
calculates energies and forces based on that descriptor. MLIPs treated in this thesis
are invariant against translation, rotation and permutations of the system, making
them applicable for arbitrary system sizes and different ways the simulation box can
be set up. Their complexity, i.e. the large amount of fitting parameters can be part
of the descriptor or the subsequent method. Complex machine-learning methods
such as neural networks are often combined with rather simple descriptors, while
complex descriptors are usually employed in conjunction with simple models for the
energy. An overview of various descriptors for atomic environments can for example
be found in a review by Langer et al.67 The following sections give an overview of
the types of MLIPs employed in this thesis.

1.1.2.1 High-dimensional neural networks

Various flavors of neural network based MLIPs and corresponding fitting codes ex-
ist.69–78 In this thesis, the HDNNPs originally developed by Behler and Parrinello58

are employed. They are fitted using the program n2p274,79 and usable in the MD
code LAMMPS via the n2p2 LAMMPS interface80 (cf. section 1.4.2 for information on
MD and LAMMPS).

The basic functionality of Behler-Parrinello HDNNPs is schematically shown in
Fig. 1.6. The Cartesian coordinates of atoms 𝒓𝑖 are used to calculate atom-centered
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Figure 1.6: Schematic of a Behler-Parrinello HDNNP.58 Symmetry function vectors 𝐺𝑖 are
calculated based on Cartesian coordinates 𝑟𝑖 of all atoms within the cutoff radius
and used as input vectors for atomic neural networks. The total energy of the
system is the sum of atomic energies 𝐸𝑖. Drawing adapted from Ref. 68.

symmetry function (ACSF)81 vectors 𝑮𝑖 = {𝐺𝑖}. Each vector is used as input layer
for an atomic neural network, which in turn gives an atomic energy 𝐸𝑖. The total
energy of the system is than simply the sum of atomic energies.

ACSFs are radial and angular functions. They need to fulfill the requirements
of rotational, translational and permutational invariance and are short-ranged, i.e.
they are cut off after some distance assumed to capture the majority of chemical in-
teractions between atoms. A comparison and detailed discussion of different ACSFs
by Behler can be found in Ref. 81. In this thesis radial functions of the form

𝐺𝑖 = ∑
𝑗

exp(−𝜂(𝑟𝑖𝑗 − 𝑅𝑠))2 ⋅ 𝑓𝑐(𝑟𝑖𝑗) (1.6)

are used. Here 𝜂 and 𝑅𝑠 are parameters, 𝑓𝑐(𝑟𝑖𝑗) is a cutoff function and 𝑟𝑖𝑗 is the
distance between atoms 𝑖 and 𝑗. The employed angular functions have the form

𝐺𝑖 = 21−𝜁 ∑
𝑗

∑
𝑘

[(1 + 𝜆 cos 𝜃𝑖𝑗𝑘)𝜁 exp(−𝜂(𝑟2
𝑖𝑗 + 𝑟2

𝑖𝑘 + 𝑟2
𝑗𝑘))𝑓𝑐(𝑟𝑖𝑗)𝑓𝑐(𝑟𝑖𝑘)𝑓𝑐(𝑟𝑗𝑘))]

(1.7)
with parameters 𝜁 and 𝜆, where 𝜆 can only be 1 or −1.

Neural Network Potentials (NNPs) are under active development with the goal to
achieve ever higher accuracies by including for example electrostatic interactions.82

They can be categorized into four generations. First generation NNPs are simple
networks that take Cartesian coordinates as input and directly calculate the energy
of the complete system. The second generation are HDNNPs as employed in this
thesis. Third generation HDNNPs include an additional set ACSF and atomic
neural networks to calculate the charge state of atoms and the corresponding long-
range Coulomb interactions. Here, charge neutrality of periodic systems is ensured
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1.1 PES of atomic systems

Figure 1.7: Schematic representation of the SOAP descriptor. Smeared out atomic densities
are constructed using Gaussian functions and expanded in spherical harmonics for
computational efficiency. Figure adapted from Ref. 87.

by rescaling the atomic charges or by adding a compensating background charge. In
the fourth generation non-local charge transfers are included by charge equilibration
techniques. Detailed information on each type of HDNNP can be found in a recent
review by Behler.7

1.1.2.2 Gaussian approximation

GAPs have been developed by Bartók et al.59 They are implemented in the QUIP
code83 and the corresponding python interface quippy.84 GAPs determine the
atomic energy using Gaussian process regression85,86 on a descriptor of the atomic
environment by interpolating between similar configuration from the training data.
The atomic energy is given by

𝐸𝑖 = 𝛼𝑛𝐺(𝑫𝑖, 𝑫𝑛) (1.8)

where 𝑫 are the descriptors of configuration 𝑖 and the reference configurations 𝑛
and 𝐺 is a similarity kernel

𝐺(𝑫, 𝑫′) = exp(− ∑
𝑗

(𝐷𝑗 − 𝐷′
𝑗)2

2𝜎𝑗
) (1.9)

with hyperparameters 𝜎. The interpolation coefficients 𝛼𝑛 are calculated by

{𝛼𝑛} = 𝜶 = 𝑪−1𝒚 (1.10)

with reference values 𝒚 = {𝑦𝑛} and

𝐶𝑛𝑛′ = 𝛿2𝐺(𝑫, 𝑫′) + 𝜎2𝑰. (1.11)

Here 𝛿 and 𝜎 are hyperparameters and 𝑰 is the identity matrix.
The original formulation used the bispectrum obtained by projecting the local

atomic density onto a 4D unit sphere and expanding it in 4D spherical harmonics
as descriptor. In 2013 Bartók et al.88 proposed the Smooth Overlap of Atomic
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Positions (SOAP) kernel as an alternative. It is based on an atomic neighbor density
with Gaussians at atom positions 𝒓𝑖. The Gaussians are expanded in spherical
harmonic functions for computational efficiency,

𝜌(𝒓) = ∑
𝑖

exp(−|𝒓 − 𝒓𝑖|2

𝜎
)

= ∑
𝑖

∑
𝑙𝑚

4𝜋 exp(−(𝑟2 + 𝑟2
𝑖 )

𝜎
) 𝜂𝑙(2𝑎𝑟𝑟𝑖)𝑌 ∗

𝑙𝑚(𝑟̂)𝑌𝑙𝑚(𝑟̂), (1.12)

where the width 𝜎 is a hyperparameter and 𝜂𝑙 are modified spherical Bessel function
of the first kind. This is schematically shown in Fig. 1.7 The similarity of two
densities is given by

𝑆(𝜌, 𝜌′) = ∫ 𝜌(𝒓𝜌′𝒓)𝑑𝒓. (1.13)

Rotational invariance is achieved by integrating over all possible rotations 𝑅̂

𝑘(𝜌, 𝜌′) = ∫ |𝑆(𝜌, 𝑅̂𝜌′)|𝑛𝑑𝑅̂. (1.14)

Based on the overlap between an atomic and a rotated environment with 𝑛 = 2 one
obtains

𝐼 𝑙
𝑚𝑚′ = ∑

𝑖,𝑖′

4𝜋 exp(−
𝑟2

𝑖 + 𝑟2
𝑖′

2𝜎
) 𝜂𝑙(𝑎𝑟𝑖𝑟𝑖′)𝑌𝑙𝑚(𝑟̂𝑖)𝑌 ∗

𝑙𝑚(𝑟̂𝑖′). (1.15)

This allows to simplify

𝑘(𝜌, 𝜌′) = ∑
𝑙,𝑚,𝑚′

(𝐼 𝑙
𝑚𝑚′)∗𝐼 𝑙

𝑚𝑚′ . (1.16)

For the final SOAP kernel the rotationally invariant kernel is normalized

𝐾(𝜌, 𝜌′) = ( 𝑘(𝜌, 𝜌′)
√𝑘(𝜌, 𝜌), 𝑘(𝜌′, 𝜌′)

)
𝜁

, (1.17)

where 𝜁 is a positive integer influencing the sensitivity of the kernel, typically set
to 4.

1.1.2.3 Moment tensors

MTPs were developed by Alexander Shapeev.60 They are fitted using the MLIP code
developed by Novikov et al.89 (Version 2) and Podryabinkin et al.90 (Version 3).
The subsequent description closely follows Ref. 90. The energy 𝐸 of atom 𝑖 in a
MTP is given by

𝐸𝑖(𝑛𝑖) = ∑
𝑎=1

𝜉𝑎𝐵𝑎(𝑛𝑖), (1.18)

where 𝑛𝑖 are atomic neighborhoods, 𝜉 are parameters 𝐵 are MTP basis functions.
Atomic neighborhoods are given by a tuple of relative positions and atom types

10



1.1 PES of atomic systems

({𝒓𝑖1, 𝑧𝑖, 𝑧1, }, ..., {𝒓𝑖𝑗, 𝑧𝑖, 𝑧𝑗, }, ..., {𝒓𝑖𝑁, 𝑧𝑖, 𝑧𝑁, }). The moment tensor descriptors
are

𝑀𝜇,𝜈(𝑛𝑖) =
𝑁

∑
𝑗

𝑓𝜇(𝑟𝑖𝑗, 𝑧𝑖, 𝑧𝑗)𝒓⊗𝜈
𝑖𝑗 =

𝑁
∑

𝑗
[∑

𝛽=1
𝑐(𝛽)

𝜇,𝑧𝑖,𝑧𝑗𝑃 (𝛽)(𝑟𝑖𝑗)(𝑟𝑐 − 𝑟𝑖𝑗)2] 𝒓⊗𝜈
𝑖𝑗 ,

(1.19)
with the radial part 𝑓𝜇 and angular part 𝒓⊗𝑣

𝑖𝑗 . Here, ⊗ denotes the outer product
and 𝜈 the order of the tensor product, 𝑟𝑖𝑗 = |𝒓𝑖𝑗|, 𝑐 are radial parameters, 𝑃 are
polynomial functions and 𝑟𝑐 is a cutoff radius. The basis functions 𝐵 are defined as
contraction of one or more moment tensor descriptors yielding scalar values. The
amount of basis functions and corresponding parameters of a MTP is given by its
level. All basis functions with lev𝐵 ≤ levMTP are included. The level of basis
functions is defined as

lev𝐵 = ∏
𝑝=1

lev𝑀𝜇𝑝,𝜈𝑝
(1.20)

with
lev𝑀𝜇,𝜈 = 2 + 4𝜇 + 𝜈. (1.21)

As stated by Novikov et al.89 this definition of a level with coefficients 2, 4 and 1 is
somewhat arbitrary. However, they empirically found it to be optimal for various
tests and hard-coded these values in the MLIP package.

1.1.2.4 Atomic cluster expansion

The Atomic Cluster Expansion (ACE) descriptor for atomic environments was
developed by Drautz.61 Fitting of ACEP is implemented in pacemaker51,91 and
ACEsuit,92 of which the former was employed for this thesis. Generally, the ACE
descriptor 𝜒 can be employed to calculate a property of interest 𝑃 of atomic systems
using basically arbitrary functional forms 𝐹

𝑃 = 𝐹(𝜒1, .., 𝜒𝑎, ...𝜒𝑁). (1.22)

For ACEPs fitted in this thesis the energy of an atom is given by

𝐸𝑖 = ∑
𝑎

𝑚𝑎𝜒𝑏𝑎
𝑖,𝑎, (1.23)

where 𝑚 are prefactors and 𝑏 some exponents. The descriptors are expanded as

𝜒𝑖 =
𝜈𝑚𝑎𝑥

∑
𝜈

∑
𝒘

𝑐𝒘 ∑ Φ𝒘(𝒓𝑖𝑗1
, ..., 𝒓𝑖𝑗𝜈

) (1.24)

with functions Φ𝒘 of body-order 𝜈 that depend on neighbors 𝑗 and parameters 𝑐𝒘.
Here, 𝒘 are the basis function indices. As is, this would scale as 𝒪(𝑁𝜈). In ACE
linear scaling with 𝑁 is achieved. For this, the atomic density

𝜌𝑖 = ∑
𝑗≠𝑖

𝛿(𝒓 − 𝒓𝑖𝑗) (1.25)
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is projected onto atomic basis functions 𝜙(𝒓). This results in

𝐴𝑖𝑤 = ∑
𝑖≠𝑗

𝜙𝑤(𝒓𝑖𝑗). (1.26)

The atomic basis functions 𝜙 are a combination of radial functions 𝑅𝑧𝑖𝑧𝑗𝑛𝑙(𝑟𝑗𝑖) and
spherical harmonics 𝑌𝑙𝑚(𝑟̂𝑖𝑗)

𝜙𝑧𝑖𝑧𝑗𝑛𝑙𝑚(𝒓) = 𝑅𝑧𝑖𝑧𝑗𝑛𝑙(𝑟𝑗𝑖)𝑌𝑙𝑚(𝑟̂𝑖𝑗), (1.27)

where z are indices for chemical elements. To obtain permutation-invariant basis
functions the products

𝐴𝑧𝑖𝑧𝑛𝑙𝑚 =
𝜈

∏
𝑡=1

𝐴𝑧𝑖𝑧𝑡𝑛𝑡𝑙𝑡𝑚𝑡
(1.28)

are calculated. Here 𝜈 is the maximum number of neighbors the terms depend on.
Finally, one arrives at the expression,

𝜒𝑖 = ∑
𝑧𝑛𝑙𝑚

𝑐𝑧𝑖𝑧𝑛𝑙𝑚𝐴𝑧𝑖𝑧𝑛𝑙𝑚 = 𝒄𝑩. (1.29)

In the last step, rotational invariance is obtained by reducing the basis as 𝑩 =
𝑪𝑨 using generalized Glebsch-Gordan coefficients 𝑪. Accordingly, the final fitting
coefficients are obtained as 𝒄 = 𝑪𝑇𝒄.

Further details of the ACE formalism and the relation to other models can be
found in Refs. 61, 92.

1.1.3 Graph neural networks, equivariant descriptors and message-passing

A recent development in the field of MLIPs is the representation of atomic environ-
ments as graphs and the corresponding use of graph neural network (GNN).93–96

General information about GNNs can be found for example in Refs. 97, 98. For the
description of atomic systems with GNNs, atoms are considered as nodes, which
are connected with all other atoms within some cutoff radius via edges. Each atom
or node has some state vector which depends on its neighbors. In message-passing
GNNs this state vector is sent to neighboring nodes as a message, which influences
the state of all nodes it is sent to. This is done iteratively, effectively increasing the
maximum possible interaction range to 𝑁 ∗ 𝑟𝑐, where N is the number of iterations
and 𝑟𝑐 the cutoff radius. The message-passing process is schematically depicted in
Fig. 1.8.

In the former MLIPs invariance against rotation, translation and permutations of
atoms of the same species was ensured by using descriptors with the corresponding
invariances. However, vector quantities (f.e. forces) are equivariant under rotation,
and transform together with the atomic environment. When using only equivariant
operations on the input equivariant descriptors can be employed, increasing the
contained amount of information and possibly the achievable accuracy.99
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1.1 PES of atomic systems

Figure 1.8: Schematic representation of the message-passing mechanism employed in NequIP
and MACE. Within a GNN the red atom is a node connected to all atoms within its
cutoff radius (indicated as dashed line) via edges (not shown). In the first iteration
it sends its feature vector (message) to all connected nodes, as exemplarily shown
by the arrow to the blue atom. In the second iteration the feature vector of the
blue atom is influenced by the features of the red atom and sends it to all atoms
it is connected to. This way, the green atoms obtain information from the left red
atom which is outside their cutoff, leading to a larger effective interaction range.
The orange atom is directly and indirectly influenced by the red atom.

1.1.3.1 Neural equivariant graph neural networks

Neural equivariant Interatomic Potentials (NequIPs) developed by Batzner et al.62

employ E(3)-equivariant graph neural networks to reproduce the PES of atomic
systems with the aim to require less training data than comparable MLIPs. They
are implemented in the NequIP code, which is based on the e3nn framework.100,101

In the network each node has associated feature tensors of different orders 𝑉𝑖𝑐𝑚𝑙𝑝,
where 𝑖, 𝑐 and 𝑚 are the atom index, elements of 𝑉 and representation index, while
𝑙 is the rotation order and 𝑝 the parity. The employed convolution filters are radial
functions and spherical harmonics

𝑆𝑚𝑙(𝒓𝑖𝑗) = 𝑅(𝑟𝑖𝑗) + 𝑌𝑙𝑚(𝑟̂𝑖𝑗), (1.30)

ensuring rotation equivariance, with all learnable weights being a part of the radial
function 𝑅. For the convolution feature vectors and filters are combined using
geometric tensor products, again yielding rotationally equivariant features. Here,
tensor products that would exceed some rotational order 𝑙max are omitted. Parity
equivariance requires that

𝑝𝑂 = 𝑝𝐼𝑝𝑓, (1.31)
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where indices 𝑂, 𝐼 and 𝐹 denote output, input and filter, respectively. The final
convolutional layer can be written as

𝐿𝑙𝑂𝑝𝑂𝑙𝐹𝑝𝐹𝑙𝐼𝑝𝐼𝑖𝑐𝑚𝑂
(𝒓𝑖, 𝑉𝑙𝐼𝑝𝐼𝑖𝑐𝑚𝐼

) =

∑
𝑚𝐹,𝑚𝐼

𝐶𝑙𝑂𝑚𝑂𝑙𝐼𝑚𝐼𝑙𝐹𝑚𝐹
∑

𝑗
𝑅(𝑟𝑖𝑗)𝑐𝑙𝑂𝑝𝑂𝑙𝐹𝑝𝐹𝑙𝐼𝑝𝐼

𝑌𝑙𝐹𝑚𝐹
(𝑟̂𝑖𝑗)𝑉𝑙𝐼𝑝𝐼𝑗𝑐𝑚𝐼

, (1.32)

where 𝐶 are the Glebsch-Gordan coefficients used to compute the tensor product
and neighbor atoms are denoted with index 𝑗. Overall, NequIPs does the following
in its network:

• An initial set of features is generated based on the atomic numbers.

• Higher order feature tensors are created in interaction blocks, where convolu-
tion operations, self-interaction and concatenation of tensors takes place.

• Final features with rotational order 𝑙 = 0 are processed in two output layers,
giving the atomic energy.

As stated in the original publication Ref. 62, NequIP combines ideas of a variety
of previous neural networks. The initial generation of features follows SchNet.94

Interaction blocks are updated similar to ResNet.102

1.1.3.2 Allegro

Allegro is a local equivariant neural network potential developed in the same group
as NequIP99 and the corresponding Allegro code builds on top of the NequIP code.
The capturing of non-local effects via message passing appearing due to usage of
a graph network, as done within NequIP, can improve the accuracy of potentials.
However, it also reduces their computational efficiency and parallelizability. The
aim of Allegro is a higher accuracy due to the usage of equivariant features combined
with the efficiency of strictly local potentials. This is realized by employing similar
ideas as in NequIP for equivariant features, but a deep neural network instead of a
graph network for their evaluation. The original publication Ref. 99 shows similar
errors compared to NequIP for the description of a wide range of molecules and
demonstrates strong scaling for a system with over 400000 atoms.

1.1.3.3 MACE

MACE is a message passing neural network architecture with equivariant messages
of a high body order developed and implemented in the same name code MACE by
Batatia et al.64,103 The high body order supposedly leads to accurate results within
1 to 2 message layers, so the number of atoms within the effective cutoff range is
still small enough for efficient parallel computation.

In the MACE network nodes are assigned a state tuple

𝜎𝑖𝑡 = (𝒓𝒊, 𝑧𝑖, 𝒉𝑖𝑡), (1.33)
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containing the position 𝒓𝒊, chemical element 𝑧𝑖 and learnable features 𝒉𝑖𝑡. Indices
𝑖 and 𝑡 denote the atom and layer within the network, respectively. Messages 𝒎
are constructed for each node using a learnable pooling operation ⊕ over neighbors
𝑗 and an also learnable message function 𝑀

𝒎𝑖𝑡 = ⊕𝑗𝑀𝑡(𝜎𝑖𝑡, 𝜎𝑗𝑡). (1.34)

The features of nodes are updated using messages evaluated via a learnable update
function 𝑈

𝒉𝑖,𝑡+1 = 𝑈𝑡(𝜎𝑖𝑡, 𝒎𝑖𝑡). (1.35)

The network’s forward pass involves 𝑇 iterative message construction and update
processes. Finally, learnable readout functions ℛ𝑡 determine the atomic energy

𝐸𝑖 =
𝑇

∑
𝑡

ℛ𝑡(𝜎𝑖𝑡). (1.36)

As stated by the original authors,64 the key innovation of MACE is that messages
are expanded in a hierarchical body order

𝒎𝑖𝑡 = ∑ 𝑗𝒖1(𝜎𝑖𝑡, 𝜎𝑗𝑡) + ∑
𝑗1,𝑗2

𝒖2(𝜎𝑖𝑡, 𝜎𝑗1𝑡, 𝜎𝑗2
𝑡) + ... + ∑

𝑗1,...,𝑗𝜈

𝒖3(𝜎𝑖𝑡, 𝜎𝑗1𝑡, ..., 𝜎𝑗𝜈𝑡)

(1.37)
with learnable functions 𝒖 and hyperparameter 𝜈. Messages are constructed us-
ing the previous features and a combination learnable radial basis functions and
spherical harmonics to embed edges of the graph network, similar to the description
of atomic environments in ACE. Further details on the employed network can be
found in the original publication Ref. 64.

1.1.4 Active learning
MLIPs can reproduce the PES of an atomic system with a much higher accuracy
than empirical IPs. To do so, however, they require a large amount of training
data. Configurations such as simple crystalline structures can be created using the
ase python package104 or similar tools. Additional structures with low formation
energies can be found in public databases such as Materials Project,105 Crystallog-
raphy Open Database or Open Quantum Materials Database.106,107 Specific defects
within the structures or randomized deformations and atomic displacements can
be created using tools such as ase or pymatgen.108 However, this typically requires
a significant amount of human intervention and different regions of configuration
space are most likely sampled very unevenly. Alternatively, structures can also be
extracted from MD simulations, employing classical potentials or DFT. The big
drawback of this are long simulation times required to escape local minima and
the consequent dependence on initial structures, again leading to an uneven and
lacking sampling of phase space.

Over the last few years active learning (AL) has been established as an alter-
native way to create training data in a more efficient manner, both in regard to
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Figure 1.9: Initial MLIPs can be fitted to a few training structures and iteratively improved
using AL as schematically shown in (a). Typically, some degree of uncertainty is
considered as ’save’ extrapolation and only structures that are further away from
the training data are used to retrain the potential, as schematically depicted for
two degrees of freedom in (b).

human and computational time. The basic idea of AL is to measure the uncertainty
or extrapolation grade in the description of atomic environments, which can then
be added to the training data to fit an improved potential. This can be incorpo-
rated into an iterative scheme as shown in Fig. 1.9a to quickly generate training
data for MLIPs. An initial potential is fitted to a small amount of training data.
Consequently, this potential is employed in MD simulations, where the uncertainty
is constantly measured. Structures with a high uncertainty are extracted from the
trajectory, calculated using DFT and added to the training data. This process is
repeated until no structures with high extrapolation grade are found anymore. At
this point the training data can be considered as converged regarding some configu-
rational space covered by the MD trajectories. Depending on the initial structures
put into the simulation and settings such as temperature and pressure this can
cover wide or only narrow regions of configuration space. The former is required
when the MLIP should be applicable to a wide range of problems, while the latter
may be sufficient for specific simulations.

The uncertainty of a structure description can be defined in various ways. Dif-
ferent methods are implemented in the codes employed for this thesis depending
on the descriptor. However, their output is always some per atom quantification
of the extrapolation grade as depicted in Fig. 1.10. A generally applicable and
conceptually simple variant is to fit multiple IPs to the same set of training data
and compare the forces they predict for a given atom.109 Assuming that the MLIPs
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1.1 PES of atomic systems

Figure 1.10: The degree of extrapolation in the description of atomic environments can be
’measured’ with different techniques. They depend on the employed descriptor
and result in a per atom extrapolation grade.

are in principle able to accurately reproduce the PES of the material, a large dif-
ference between the two potentials naturally means an insufficient sampling of the
atoms’ environment, i.e. a high extrapolation grade. This method is called query
by committee and has for example been employed for HDNNPs in.110,111 The SOAP
descriptor directly measures the similarity between two structures. Consequently, a
low similarity with all training structures can be interpreted directly as high extrap-
olation grade.46,112 MTPs and ACEPs implement an extrapolation measure based
on D-optimality,89,90,113–115 which can be interpreted as maximizing the volume of
configuration space spanned by a training dataset.114

Besides an efficient generation of training data the extrapolation grade can also be
used in on the fly learning for coupled ab initio/classical MD simulations112,116,117 or
to judge the reliability of a MLIP in large scale simulations. For example some grain
boundary or interface structures may be described in terms of local environments
of atoms that do not naturally occur in small-scale MD simulations, as typically
employed in AL MD. If one measures a high extrapolation grade for an atom within
such large scale simulations the question arises how the local environment of that
atom can be included in the training data. The naive approach, which was also
employed for the Si-O-C training data in this thesis, is to cut out a box with side
lengths greater than 2 ∗ 𝑟𝑐 around the atom. Here 𝑟𝑐 is the cutoff distance of the
potential. While this captures the environment, the artificial boundaries created
this way may lead to broken bonds and the resulting structures are inefficient to
calculate with DFT. A possible alternative is to cut out a box with side lengths
2𝑟𝑐 + 2𝑟𝑏, where 𝑟𝑏 results in a buffer region that can be modified to obtain more
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a b

Figure 1.11: Examples for a perfectly crystalline (a) and an amorphous (b) atomic arrange-
ment.

realistic boundaries, without interfering with the atoms in 𝑟𝑐 directly. For exam-
ple, the buffer region can be selectively heated and quenched to embed the sphere
around 𝑟𝑐 in an amorphous matrix53 or minimized in regard to their extrapolation
grade.115,118

1.2 Materials
This section is organized as follows. First a general introduction into amorphous
structures, which play an important role in both Cu-Zr and Si-O-C, is provided.
Then metallic glasses (MGs) are treated, because Cu-Zr is a prototypical MG for-
mer. Finally, specific aspects of Cu-Zr and Si-O-C themselves are reviewed.

1.2.1 Amorphous materials
”Liquids and glasses have been well known to human kind for millennia.
And yet major mysteries remain in the behavior of glasses and liquids at

the atomic level, and identifying the microscopic mechanisms that control
the properties of glasses is one of the most challenging unsolved problems

in physical sciences”
– T. Egami119

The structural and functional properties of materials depend on their composi-
tion and atomic arrangement. In many materials of everyday life, such as metals
the most common atomic arrangements are periodic, i.e. crystalline. In contrast,
ideal amorphous materials have a random atomic arrangement. Real amorphous
materials typically have some degree of short-range order (SRO) in the form of
favorable local environments that lead to recurring structural motifs, but do not
exhibit long-range order (LRO).120 Examples for a crystalline and an amorphous
structure are shown in Fig. 1.11. As consequence of their structural randomness,
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Figure 1.12: Glasses can be produced by fast quenching a melt. Glass transition temperature,
as well as structure and properties of the final glass depend strongly on the
cooling rate. Here glass 1 is cooled slower than glass 2, leading to a lower
volume, energy and entropy.

amorphous phases can have vastly different characteristics than their crystalline
counterparts made of the same elements. For example, MGs have a high elastic
limit and tensile strength, which makes them interesting for a variety of structural
applications.121–123

Strictly speaking, glasses are a subgroup of inorganic amorphous materials that
undergo a glass transition upon rapid quenching from the melt, as shown in Fig 1.12,
but broader definitions that include organic materials and matter that undergoes
a glass transition upon heating are also common.124–126 The quenching process
’freezes’ the movement of atoms, preventing the formation of an ordered crystal
structure. The liquid-crystal transition is a first order phase transition. It requires
latent heat and the transition temperature 𝑇m is a well-defined quantity. Contrary
to that, the glass transition temperature 𝑇g strongly depends on the applied cooling
rate ̇𝑇, along with the structure, energy, entropy and volume of the final glass. Lower

̇𝑇, i.e. slower cooling leads to a lower 𝑇g, energy, entropy and volume. The most
widespread glasses are based on silicates. They have been used by humankind since
thousands of years127 because the required cooling rate of below 1K/s128 could
be achieved easily. Technical improvements dramatically increased the achievable
quench rates, nowadays allowing the formation of amorphous phases in materials
with a high tendency for crystallization such as metallic alloys (cf. 1.2.2).121,129,130

Large scale amorphous phases are energetically unfavorable compared to their
crystalline counterparts, so their production requires a kinetically driven transition.
Besides melt quenching, these can for example be the deposition of thin films131,132

or the pyrolysis of polymers as typically done for Si-O-Cs.133,134 Other possible
production routes of amorphous phases include ion irradiation,135,136 or severe me-
chanical deformation,137 although it is unclear whether the resulting structures
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should be described as amorphous or strongly disordered crystals.120

1.2.2 Metallic glasses

In 1960 Klement et al.129 produced the first MG, an amorphous SiAu3 flake of ap-
proximately 10µm thickness that started to decompose within a few hours at room
temperature. 14 years later Chen130 found that alloys of elements with different
atomic sizes and strong interactions have a higher glass forming ability and pro-
duced cylindrical samples with diameters of a few mm. Subsequent studies showed
that MGs could be produced from a wide variety of alloys,.138–146 When exceed-
ing casting thicknesses around 1mm to 10mm in the smallest dimension, which is
a necessity for many possible applications, they are typically called bulk metallic
glasses (BMGs).121,147

A common characteristic of MGs is a higher yield strength, elastic limit and
corrosion resistance compared to their crystalline counterparts, which makes them
interesting for high-tech structural applications such as sports equipment or medical
instruments.121,147–149 Currently, they are employed in golf clubs heads150,151 and
luxury watches,152 while patents for application in mobile phone cases have been
filed.153,154 Furthermore, Fe based metallic glasses with nanocrystalline inclusions
are employed as soft magnets in transformers.155–159 However, MGs are brittle and
tend to fail in catastrophic manner, preventing their usage in many fields.147,149,160

This brittleness results from shear localization within shear bands (SBs). The free
volume and shear transition zone (STZ) models for this deformation mode are dis-
cussed in section 1.2.2.1. The ductility of MGs can be improved by the inclusion of
a secondary phase into the amorphous matrix,123,147 that can be introduced as par-
ticles or precipitate within the amorphous phase by annealing.161,162 A special kind
of inclusions are B2 crystallites that undergo a martensitic phase transformation to
the B19 or B33 structure, extending the concept of transformation induced plas-
ticity from steels into the field of MGs.163–169 This transformation within a Cu-Zr
glass crystal composite is investigated in section 2.4.2. Corresponding experimental
and simulational findings are discussed in more detail in section 1.2.3.3.

1.2.2.1 Deformation of MGs in the free volume and STZ models

Macroscopically, MGs can deform in a homogeneous or inhomogeneous manner,
depending on temperature, deformation rate and sample size.122,173 In the case of
inhomogeneous deformation the MG quickly fails due to the localization of deforma-
tion within a SB. Consequently, understanding SB formation could help to develop
glasses with improved ductility.

In an early model developed by Spaepen170 based on the free volume theory of
Cohen and Turnbull174–176 an applied stress creates structural disorder, which is
than resolved by diffusion processes. However, as already discussed by Cohen and
Turnbull in their original work174 and also in a review by Egami119 with support
of more recent data, the free volume theory itself fails to describe the volume
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a b

Figure 1.13: Deformation models for MGs. In the model of Spaepen diffusive jumps resolve
the macroscopic deformation (a).170 According to the STZ model deformations
are localized in within groups of atoms, the STZs (b).171,172

change upon melting and the pressure sensitivity of diffusion in metals, which are
important measures for their underlying assumptions. Furthermore, simulations
have shown collective atomic motion instead of diffusive jumps,177–180 so neither
Spaepen’s model nor the free volume theory will be considered further in this thesis.

In an alternative model originally developed by Argon,171,172 which was extended
several times178,181–185 and reviewed by Falk and Langer186 deformations are local-
ized in STZs. STZs are formed by groups of atoms that are sheared under applied
stress. Due to the inherent inhomogeneity of glassy structures STZs have different
activation barriers. At high temperatures and strain rates, STZs can be activated in
the whole system, leading to macroscopically homogeneous deformation. At lower
temperatures and shear rates, STZs lower the activation barrier for nearby STZ
formation, so they start to percolate and form a shear band. The model of Spaepen
and Argon are schematically depicted in Fig. 1.13.

1.2.3 Cu-Zr(-Al)

Cu-Zr and derived alloys are prototypic MG forming systems. They can be used to
investigate fundamental aspects of MGs and belong to the most studied represen-
tatives of this material class, both experimentally143,187–195 and based on atomistic
simulations.196–203 The former is a result of the relatively high glass forming ability
in a wide compositional range,143,188 which can be further improved by the addition
of elements such as Al204 or Ti.205 The latter probably stems from the availability
of a plethora of empirical IPs.21–24,206–208 In the following sections the phase dia-
gram, published empirical IPs and literature relevant to this thesis regarding Cu-Zr
and, to a lesser extent, Cu-Zr-Al, which is employed in the comparison of MLIPs
in chapter 4, is reviewed.

1.2.3.1 Thermodynamics and structure

Crystalline phases

Cu-Zr is not only a formidable glass former,143,188,216,217 it also has a rich phase
diagram with multiple stable intermetallic phases. The exact composition, crystal
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Figure 1.14: Reproduction of the Cu-Zr phase diagram suggested by He et al.209 Temperature
stability, composition, crystal structure and even existence of many intermetallic
Cu-Zr phases is controversially discussed.209–215 This phase diagram version in-
cludes all intermetallics, about whose existence a consensus exists. More details
about the differences between published phase diagrams are given in the main
text.

structure, temperature stability range and even existence of many intermetallics
is controversially discussed in literature, as can be seen by a variety of differ-
ences within published phase diagrams.209–215 In section 2.2.2 a concentration-
temperature phase diagram is calculated using the developed MLIP, so these dif-
ferences are discussed in some detail in the following. Fig. 1.14 exemplarily
shows the version suggested by He et al.209 Starting from the Cu rich side, it
contains the six intermetallic phases Cu5Zr, Cu51Zr14, Cu8Zr3, Cu10Zr7, CuZr and
CuZr2 which are present in most published phase diagrams. Some authors include
Cu9Zr2 instead of Cu5Zr211,212,214 and different combinations of the four Cu rich
phases Cu5Zr, Cu51Zr14, Cu8Zr3 are considered stable only at elevated tempera-
tures.210,212,214,215,218 Additionally, Cu24Zr13 and/or Cu2Zr phases with small tem-
perature stability ranges are included in,210,212,214,215 however, their crystal struc-
ture remained unclear and others considered them as artifacts of the experimental
procedure.211,219 On the Zr rich side, the existence of a high temperature Cu5Zr7 or
Cu5Zr8 phase is suggested in,210,212,214,218 again with an unclear crystal structure.
Moreover, they did not occur in annealing experiments by Zhou et al.220 The CuZr2
phase is sometimes split into a low and high temperature phase.210,212

Technologically, the CuZr phase, which forms a B2 structure, is the most relevant.
Upon fast quenching or mechanical deformation, it can undergo a martensitic phase
transition to the B19’ or B33 structure leading to a shape memory effect.221 In
sections 2.2.2 and 2.2.3 the predicted thermodynamical and mechanical stability of
the phase are investigated. Furthermore, B2 crystallites can be grown in Cu-Zr-(Al,
Ti) BMGs,163,164 improving their ductility, via martensitic phase transformation (cf.
section 1.2.3.3).
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Figure 1.15: The FI population as predicted by the Mendelev 2009, Mendelev 2019 and Cheng
IPs (cf. section 1.2.3.2) compared to the amount found by Mattern et al.223

via diffraction experiments and RMC modelling. Samples produced via cook
and quench simulations show a far higher amount of FI for lower cooling rates.
These cooling rates, however, are still a few orders of magnitude higher than
typical experimental cooling rates, so the difference between experimental and
simulational results is probably underestimated. The data for the Mendelev IPs
is taken from Ref. 206, the data for the Cheng IP from Refs. 228 and 199.

Glass structure

The structure of Cu-Zr based MGs has been the topic of multiple studies and
is investigated using the new potential in section 2.3. Experimentally, the atomic
structure is accessible in the form of aggregated diffraction data (see section 1.4.3.1).
In a series of studies by Mattern et al.222–224 this was combined with reverse Monte-
Carlo (RMC) modelling to investigate structural motifs of Cu-Zr glasses with dif-
ferent composition and under mechanical load. They found structural features,
density and thermal stability to change monotonically with compositional changes
without outstanding properties at certain compositions, nor any tendency for phase
separation,222 which is contrasting some older works.225,226 Furthermore, they used
Voronoi tessellation (cf. section 1.4.3.2) to classify SRO as polyhedral atomic ar-
rangements. Cu is often found with 12-fold coordination, but no dominating motif
or preferred chemical SRO was identified.223 These findings disagree with simula-
tional studies using different classical IPs, where the Cu-centered full icosahedron
(FI) motif was found in large amounts,24,198,199,227–231 as shown in Fig. 1.15

Furthermore, many studies find relations between the plastic behavior of the MG
and the amount of FI.199,227,232,233 In section 2.4.1 we show that MG samples pro-
duced using the new MLIPs show similar shear banding behavior despite predicting
a far lower amount of FI in good agreement with the results from Mattern et al.
(cf. section 2.3.2).
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Figure 1.16: Error in formation energy ΔE𝐹 with respect to DFT data as calculated for the
IP from Mendelev et al.,206 Kim et al.207 and Paduraru et al.21

1.2.3.2 Review of available interatomic potentials

A plethora of classic IP of EAM and MEAM type,21–24,206–208 as well as a recently
published deep learning MLIP234 have been developed for the Cu-Zr system, mostly
with the aim of investigating the glassy phase. Naturally, the deep learning MLIP
would be an interesting candidate for the comparison with our newly developed
ACEP. However, it is not publicly available and therefore is not considered further.
In the following some known problems of the classical IPs are presented to motivate
the development of a new MLIP.

A common problem of the classical IPs is their limited high accuracy regime due
to the fixed functional form. While they can accurately reproduce specific properties
of certain phases, they can not fully describe complex systems. An example for this
are formation energies of multiple crystalline phases. Fig. 1.16 shows the error
compared to the values predicted by PBE-DFT for the Paduraru,21 Mendelev206

and Kim207 IPs. The error is shown for all phases in the Cu-Zr phase diagram by
He et al.209 (cf. Fig. 1.14). The potentials are named according to the first authors
of the corresponding publications. Mendelev et al. published three versions of their
EAM potential in 2007,197 200923 and 2019.206 If not otherwise noted, Mendelev
potential refers to the latest version throughout this work. It can be seen that the
maximum error for at least one of the crystal structures is on the order of roughly
100meV/atom for all three IPs. Small deviations are to be expected when using
different exchange-correlation functional for the calculation of formation energies.
Here, the errors are the difference to the DFT formation energies, which in principle
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depend on the employed exchange-correlation functional. In this case, however,
the Mendelev and Paduraru potentials employed DFT data calculated with the
Perdew-Wang exchange-correlation functional,235 which should give similar results
to Perdew-Burke-Ernzerhof (PBE). Kim et al. used experimentally determined
formation energies of the liquid phase and B2-CuZr in the fitting procedure. The
errors are shown for all structures included in the phase diagram. Despite this
rather general problem, some more specific issues of potentials are discussed next.

The Mendelev IPs23,197,206 are probably most common in the simulation of Cu-Zr
MGs. Among other properties, they are fitted to XRD data of the liquid phase
(the composition varies between the versions) and use rather complex truncated
polynomials for the pair, electron-density and embedding term. However, as shown
by Brink et al.200 they are not suitable to simulate the boundary phases Cu and Zr.
For example, the stacking fault energy of Cu is severely overestimated. The same
principle shortcoming, even though to a lesser extent, was identified for the Cheng
IP.24,173 They identified the Ward IP208 as more suitable in this regard, which,
however, severely overestimates the stiffness of the amorphous phase and shows
a nonlinear elastic behavior for Cu at very low strains. All of these potentials
(including all three versions of the Mendelev IP) seem to be unable to describe the
SRO of the glass phase, in the sense that they severely overestimate the amount of
FI, when comparing to the experimental data from Mattern et al.223 (cf. section
1.2.3.1) and to the results obtained with the new ACEP later on (cf. section
2.3). A direct comparison of the total structure factor (TSF) of glassy samples
obtained with the newest Mendelev IP with experimental data shown in Fig. 1.17
additionally supports this claim. Details on this are described later on, where the
same simulations are repeated for the new ACEP (cf. section 2.3).

Another important aspect of the Mendelev IP from 200923 is the overstabilization
of Cu2Zr Laves phases. Their stability at elevated temperatures is controversially
discussed (cf. section 1.2.3.1), but the IP massively underestimates their formation
energy and, more importantly for the formation of the amorphous phase, their nu-
cleation barrier.206,236,237 A similar, but less pronounced, crystallization tendency
was found for the Cheng IP and seems to be related to the overestimation of FI.238

This leads to the formation of crystalline precipitates on timescales accessible in MD
simulations, i.e. multiple orders of magnitude faster than experimentally achiev-
able values. While naturally being a problem, Brink and Albe239 made a virtue
of necessity and used the IP to grow nanocrystallites in a glassy Cu64Zr36 ma-
trix to investigate the deformation behavior of nanocrystals and glasses. This has
the advantage, that no artificial phase boundaries are introduced into the system.
Nonetheless, Mendelev et al.206 specifically aimed to reduce the crystallization ten-
dency in the 2019 version of their IP.

1.2.3.3 Experiments and simulations

In section 2.4 tensile tests are conducted on Cu-Zr glasses and glassy-crystal com-
posites. To put these simulations into perspective and show possible applications
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Figure 1.17: TSF of Cu-Zr glasses with three different compositions produced using the
Mendelev IP,206 and experimental data from Mattern et al.223 for reference.

of the newly developed ACEP, this section on Cu-Zr is concluded with a short
overview of related experimental and simulational studies. For comprehensive re-
views of metallic glasses and their deformation the reader is referred to Refs. 160,
186, 240, 241.

Experimentally, pure Cu-Zr MG samples can be produced with comparatively
high casting thickness over a wide compositional range,188 but are not outstanding
otherwise. Addition of Al and Ti can further improve the glass forming ability.242–244

Pauly et al.163,164,245 investigated improved ductility and work-hardening for Cu-Zr-
Al and Cu-Zr-Ti glasses. This effect is due to the precipitation of nanocrystalline
B2 inclusions, which can undergo twinning and a deformation induced martensitic
phase transformation to the B19’ phase to accommodate plastic strains. The effect
of Al contents on the volume fraction and distribution of the B2 phase was further
investigated by Wu et al.166 They found that the B2 crystallites form in a narrow
range of 3 % to 8 % Al content and achieved a tensile ductility >2 % for a sample
with 15 % homogeneously distributed B2 crystals.

On the simulational side, the deformation of Cu-Zr MGs and glass-crystal com-
posites has been studied extensively. Ritter and Albe180,198 investigated shear bands
in the MG, finding a lower degree of topological order compared to the surrounding
matrix. By investigating both, Cu64Zr36 and Cu36Zr64 samples, they could show
that the formation of SBs does not depend on the existence of a structural backbone
sometimes claimed in literature.229,246–249 Their observations are consistent with the
results shown in section 2.4.1, which suggest that the new ACEP leads to qualita-
tively similar shear band formation, despite predicting far less FI. Brink et al.200

simulated a Cu64Zr36 glass matrix with different spherical inclusions of varying size
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to derive a qualitative map of SB-precipitate interaction mechanisms depending
on the critical stress for nucleation of dislocations in the precipitate and its size.
Small precipitates can be dissolved when a SB hits them during their propagation
through the glassy matrix. Different shapes of crystalline inclusions were studies by
Şopu et al.250,251 They observed the martensitic transformation of B2-CuZr similar
to the results in section 2.4.2 in nanowires and glass-crystal laminates. Kalcher et
al.252,253 investigated how creep in Cu-Zr glasses is influenced by different B2-CuZr
inclusions. Finally, it should be noted that this overview can by no means be an
exhaustive list, considering the huge amounts of publications shown in Fig. 1.5a.

1.2.4 Silicon oxycarbide

Silicon oxycarbides (Si-O-Cs) are polymer derived glass-ceramics with remarkable
versatility due to a highly tunable composition and microstructure. They combine
outstanding structural and functional properties such as high temperature resis-
tance and mechanical strength,254,255 a great creep- and corrosion resistance,256,257

piezoresistivity258–260 and high storage capacity for Li+, Na+ and K+.261–268 Con-
sequently, Si-O-C has possible applications among diverse fields ranging from pro-
tective coatings269 over gas and pressure sensing devices270,271 to energy storage272

and biomedicine.273 While the research on carbon containing silica glasses dates
back over 70 years,274 structural details on the atomistic scale and their relation to
properties in Si-O-C often remain elusive and are investigated as part of this thesis.
The following sections give a short overview of current literature on the system
that is of relevance for this thesis, not limited to, but focusing on a modelling and
simulation viewpoint.

1.2.4.1 Thermodynamics and structure

Besides some hypothetical crystal structures, whose existence has not been experi-
mentally confirmed Si-O-C has a glass-ceramic structure, i.e. an amorphous phase
and ceramic precipitates. These precipitates, however, do not contain all three
elements, but are SiC or graphite resulting from phase separation. As evidenced
by nuclear magnetic resonance (NMR) and UV Raman spectroscopy, Si-O-C con-
sist of corner shared SiO4−𝑥C𝑥 tetrahedra with sp3-hybridized C and a segregated
sp2-hybridized turbostratic C phase.278,279 Different models for the nature of the
segregated carbon and the distribution of the two phases exist, which are both
consistent with NMR and small angle X-ray scattering data. According to one,
called model ’a’, the ’free’ carbon phase exists as graphene like layers that form
an interpenetrating network with domains of SiO4−𝑥C𝑥 tetrahedra. In the other,
called model ’b’, graphitic agglomerates are embedded within a matrix of SiO4−𝑥C𝑥
tetrahedra. Scarmi et al.275 and Saha et al.276 argued that the viscoelastic behavior
and creep resistance of Si-O-C could only be explained by model ’a’, which was
further supported by etching experiments.280 On the other hand, Widgeon et al.277

obtained mass fractal dimensions from NMR spin-lattice relaxation measurements
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a b

Figure 1.18: Schematic 2D representations of the Si-O-C structure models as argued for by
Scarmi et al.275 and Saha et al.276 (a) and by Widgeon et al.277 (b). In (a)
the sp2-C phase is consists of graphene like layers forming an interpenetrating
network with the SiO4−𝑥C𝑥 tetrahedra. In (b) the ’free’ carbon agglomerates to
graphite like inclusions within a SiO4−𝑥C𝑥 matrix. Both figures show C in gray,
O in red and Si in beige.

and Roth et al.279 measured turbostratic carbon with small spatial extensions via
UV Raman spectroscopy, both supporting model ’b’. Schematics of both models
are shown in Fig. 1.18.

The amount of free carbon phase in Si-O-Cs depends on their processing and
composition. In ’stoichiometric’ Si-O-C, i.e. a SiO2(1−𝑥)C𝑥 composition that can
be split into SiO2 and SiC without excess carbon, no thermodynamic driving force
for the creation of a free carbon phase exists. Below 1000 °C to 1100 °C excess C
remains in the structure in a strongly disordered state with small spatial extents
and some degree of H-termination.259,279 Higher processing temperature lead to an
increased ordering and growth of the free carbon phase, supported by dehydro-
genation. Finally, carbothermal reduction consuming the free carbon phase sets in
around 1500 °C.281

1.2.4.2 Review of available interatomic potentials

As mentioned before, the amount of published IP for the Si-O-C system is much
smaller than for Cu-Zr (cf. section 1.1.1). If only those publicly available and fitted
to the glass-ceramic are considered there are none, so no further tests with the
existing ReaxFFs could be conducted. Consequently, only information available in
the publications of the IP developers themselves is used here.

Newsome et al.35 developed a ReaxFF for the oxidation of SiC by O2 and H2O.
This IP was employed by Gao et al.36 to simulate the pyrolysis of polymeric pre-
cursors to amorphous Si-O-C structures. However, Ponomarev et al.37 have shown
later, that the ReaxFF developed by Newsome et al.35 can not describe mixed
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SiO4−𝑥C𝑥 tetrahedra, as well as the energetics and thermal stability stoichiomet-
ric Si-O-C glasses accurately. They also state the inability to describe SiO4−𝑥C𝑥
tetrahedra for ReaxFF from Soria et al.282 The published version of the ReaxFF
from Soria et al.,282 however, does not contain an O parameterization at all. Con-
sequently, we assume that the IP was developed further or combined with another
ReaxFF in some unpublished version, which they employed for their tests, but is
not available for this work. After identifying shortcomings of the other IPs, Pono-
marev et al.3735 reparametrized the ReaxFF of Newsome et al. for the pyrolysis of
Si-O-C glass-ceramics, but did not publish their version of the ReaxFF.

Besides IP fitted for the Si-O-C system, it is also possible to combine IPs fitted
to the subsystems. However, this way cross-terms are lacking, i.e. if IPs for SiO2
and SiC are combined, as done for example in,283–285 the C-O interaction has to be
defined somehow. Typically, a purely repulsive IP is used.285 Furthermore, some
interatomic interactions, in this case Si-Si, are defined in both IPs. This can be
treated by either disabling one of them or mixing them. Overall, many approxi-
mations are added on top of the approximation that an IP is by nature, further
reducing the ability to accurately reproduce physical properties of a material.

1.2.4.3 Experiments and simulation

Synthesis and simulational samples

An important aspect of Si-O-C is the flexible and complex synthesis process. The
most common route to produce Si-O-C glass-ceramics is the crosslinking of poly-
meric precursors, typically alkoxysilanes and polyorganosiloxanes, and subsequent
pyrolysis.281,286,287 This can be combined with stereolithography and other additive
manufacturing techniques to obtain complex shaped parts.254,288–290 For pyrolysis
temperatures below around 1200 °C the resulting samples are completely amor-
phous. Above, increasing degrees of phase separation and crystallization can be
observed, but even at 1500 °C a large amorphous faction remains.291 Furthermore,
the composition of the samples changes depending on the pyrolysis conditions due
to the release of gaseous products. A detailed explanation of the chemical reactions
that take place during processing is for example given in a review by Stabler et
al.281

The complex processing route and amorphous structure with different phases
raise the question of how atomistic Si-O-C models for simulations can be created.
The melt and quench technique applied to produce metallic glasses in experiments
can be naively reproduced using MD simulations. Simulation times achievable when
employing IPs are limited to nano- or microseconds. This leads to extremely high
quench rates, typically in the range of 1 × 109 K/s to 1 × 1012 K/s, but otherwise
the process can be accurately described. The pyrolysis of Si-O-C, however, in-
volves more complex chemical reactions and the covalent interatomic bonds require
advanced potentials for an accurate description. Nonetheless, examples for both
simple melt quenching and attempts to accurately simulate the pyrolysis process
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can be found.36,285,292 Due to the time limitations of MD simulations temperatures
of >2500K, instead of 1200K to 1500K used in experimental setups are typically
employed in simulated pyrolysis processes to obtain faster kinetics.36,37

An alternative way to generate networks of SiO4−𝑥C𝑥 tetrahedra are bond-
switching algorithms, which are computationally cheaper than MD simulations.
They can be combined with geometrical optimization methods as implemented by
Wooten et al.293 Extended versions of this method were for example employed by
Kroll294–296 in a series of DFT based studies investigating the structure of Si-O-
C. Melt-quenching with very high quench rates that can be simulated using DFT
leads to high amounts of defects such as under- or overcoordination of atoms. These
defects are rarely observed in experiments. A detailed description of the algorithm
is given by Kroll in.297

Elastic properties

In section 3.3.2 the Young’s modulus of simulated Si-O-C samples is related to
the structural motifs of the glass-ceramics. Related experimental and simulational
publications are quickly reviewed here. Sorarù et al.298 investigated the Vickers
hardness and Young’s modulus of multiple Si-O-C samples with varying composi-
tions. They found both to increase with the amount of C in SiO4−𝑥C𝑥 tetrahedra,
which fits well to our observations in section 3.3.2. In a more recent work, Stabler
et al.299 included experimental data from multiple sources133,256,298,300–302 and con-
ducted own measurements to relate the Young’s modulus to the volume fractions
of ’free’ carbon and SiC in the structure. They found a decrease with the former
and increase with the latter. Haseen and Kroll285 used a combination of IPs by
Tersoff31,303,304 and Munetoh et al.30 to simulate Si-O-C and investigate its Young’s
modulus. They found relations to composition, density and morphology of the ’free’
carbon phase. Their results suggest, that an increased density and carbon content
within the glassy SiO4−𝑥C𝑥 phase lead to higher stiffness. Furthermore, the density
of their samples decreases with increasing ’free’ C content, leading to an indirect
effect on the Young’s modulus, which is not considered in the experimental results.
For samples with equal density they find a slight increase of the Young’s modulus
with increasing amounts of ’free’ C, which is consistent with our results in section
3.3.2.

1.3 Research questions
To conclude the introduction into MLIPs and treated material systems the following
research questions are raised. They summarize the motivation for this thesis, before
continuing with the methods employed to answer them.

Chapter 2: Thermodynamics and glassy structure in the Cu-Zr system

• How well can MLIPs describe structurally and chemically complex systems,
compared to experimental and ab initio computational data?
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• Are mechanical and thermodynamic properties well reproduced and to which
extent does the error inherent to DFT training data influence results?

• What is the topology of Cu-Zr glasses and how important are specific struc-
tural motifs?

• How do glass and glass-crystal samples behave under tensile load?

Chapter 3: Structure and properties of silicon oxycarbides

• How can a training data set for the Si-O-C system be produced and what
does it look like?

• What is the microstructure of Si-O-C, how does it form?

• How does this microstructure relate to existing models and the discrepancies
between them?

• Which structural features are good descriptors for mechanical properties of
the system?

Chapter 4: Comparison of machine learning interatomic potentials

• How do different MLIPs compare, what are their advantages, disadvantages
and limits?

• What is the effect of different error measures and which error measure is
suitable for which purpose?

• Which amount of training data is required for which potential?

• How much computational time is required by MLIPs, and what are the
accuracy-cost trade-offs?

1.4 Methodology
In this thesis materials are investigated by simulation of their atomic structure
using molecular dynamics (MD) employing machine learning interatomic poten-
tials (MLIPs) fitted to large amounts of DFT data. Subsequently, their structural
features and properties are analyzed. This workflow is schematically depicted in
Fig. 1.19. The following sections give an overview of DFT and MD followed by a
description of analysis methods employed in this work.

1.4.1 Density-functional theory
As noted in section 1.1, atomic systems can in principle be described by the
Schrödinger equation (eq. 1.1), which, however, is not solvable for a manybody
system. DFT offers an alternative way to obtain information such as energy and
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Figure 1.19: Overview of workflow employed to investigate materials in this thesis.

interatomic forces within a system without a priori knowledge besides chemical
species and atomic coordinates. The basis for this are the theorems of Hohenberg
and Kohn,305 which prove that all properties for a system in ground state, i.e. at
0K, are unique functionals of the electron density 𝑛(𝒓). Kohn and Sham306 then
showed that the multi body problem can be mapped to a solvable independent-
particle problem of the form

𝐻KSΨ𝑖(𝒓) = [− ℏ2

2𝑚
∇2 + 𝑉eff] Ψ𝑖(𝒓) = 𝜖𝑖Ψ𝑖(𝒓), (1.38)

where 𝐻KS is the Kohn-Sham Hamiltonian, 𝑚 the mass, and 𝑉eff the effective po-
tential. Within 𝑉eff many-body effects are considered via an exchange-correlation
(XC) functional of the density. In principle, the accuracy of DFT calculations is
only limited by this functional, but only approximate forms of it exist, and their
development is an ongoing field of research.307 A sophisticated description of the
Kohn-Sham method and various XC functionals is out of the scope of this the-
sis; it can be found for example in ref.308 Computationally, the Kohn-Sham ansatz
requires to obtain a ground-state 𝑛(𝒓) that is self-consistent with 𝑉eff, depicted
schematically in Fig. 1.20.

While DFT allows to accurately calculate many properties for atomic system of
interest, it scales as 𝒪(𝑛3), where n is the number of electrons explicitly considered
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Figure 1.20: Schematic of computational steps in a DFT calculation.
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(Al)-Cu-Zr Si-O-C

plane wave cutoff [eV] 350 900

k-point spacing [2πÅ
−1

]
0.1 (crystalline) 0.232/13 (amorphous)

Table 1.1: Plane wave cutoff and k-point spacing employed for DFT calculations in this thesis.
Si-O-C settings were kept consistent with the Si-O data set from.52,53

in the calculations. Therefore, it is not suitable to describe systems containing more
than a few thousand electrons, which corresponds to a few hundred atoms.

Within this thesis DFT calculations were employed foremost to generate training
and testing data for MLIPs. The calculations were carried out using the VASP
code309–311 with projector augmented-wave pseudopotentials.312 For the (Al)-Cu-Zr
system the Perdew-Burke-Ernzerhof313 and for the Si-O-C system the SCAN314 XC
functionals were employed. The employed plane wave cutoff and k-point spacings
are listed in Tab. 1.1.

1.4.2 Molecular Dynamics
”We may regard the present state of the universe as the effect of its past
and the cause of its future. An intellect which at a certain moment would
know all forces that set nature in motion, and all positions of all items of

which nature is composed, if this intellect were also vast enough to submit
these data to analysis, it would embrace in a single formula the movements

of the greatest bodies of the universe and those of the tiniest atom; for
such an intellect nothing would be uncertain and the future just like the

past could be present before its eyes.”
– Pierre Simon Laplace, A philosophical essay on probabilities

MD simulations evolve a system of interacting particles, for example a system
of atoms treated as mathematical mass points, in time by integrating Newtonian
equations of motion. When considering atoms as particles of interest some assump-
tions have to be made. Typically, the Born-Oppenheimer approximation is applied,
because the interatomic forces depend on the electronic interactions, while atoms
considered as point masses are moved. Therefore, it is assumed that the electron
system and corresponding forces instantaneously react to the movement of the nu-
clei. Furthermore, atoms are considered heavy and slow enough to be treatable
within classical mechanics. Then the equation of motion for an atom 𝑖 in an 𝑁
atom system is given by

𝑚𝑖
𝑑2𝒓𝑖
𝑑𝑡2 = 𝑭𝑖(𝑟1, ..., 𝑟𝑁) + 𝑭𝑖,ext, (1.39)

where 𝑚 is its mass, 𝒓𝑖 the position, 𝑭𝑖 the force acting on the atom due to other
atoms and 𝑭ext an applied external force. Forces on an atom 𝑖 can be obtained
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using ab initio methods such as DFT or from an IP 𝑉 according to

𝑭𝑖 = −∇𝑖𝑉 . (1.40)

The former comes with the previously discussed scaling problems for larger systems,
while the latter scales as 𝒪(𝑁) when the IPs are limited to short-range interactions,
i.e. some interaction cutoff is applied.

In MD simulations equation 1.39 is numerically integrated for all atoms at each
discrete timestep. The Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) code315,316 is used for MD simulations in this work. It implements
equations of motion as proposed by Shinoda et al.317 They allow simultaneous and
independent control over 𝑇 and 𝑃. The time integrator follows the scheme pro-
posed by Tuckerman et al.318 To speed up simulations LAMMPS’ KOKKOS package was
employed, which ports performance critical parts of the code to GPU accelerators.

Without further measures the number of particles 𝑁, the volume 𝑉 and the
energy 𝐸 of the system stay constant during the MD simulation, i.e. the micro-
canonical 𝑁𝑉 𝐸 ensemble is sampled. To control the temperature 𝑇 and pressure
𝑃 thermo- and barostats are necessary. The temperature of the system is deter-
mined by the kinetic energy of the particles, so thermostats work by influencing the
momenta of atoms. A common choice also used in this thesis is the Nosé-Hoover
thermostat,319,320 which couples a virtual heat bath to the system via an additional
”frictional” force. This force accelerates atoms when 𝑇 is below the desired value
and decelerates them when it is above. The pressure 𝑃 in the system is determined
by the shape and volume of the simulation cell. In analogy to the thermostat a
Nosé-Hoover or Parrinello-Rahman barostat321 modifies the equations of motion
to create a desired stress state in the system. In depth explanations of MD and
related techniques can be found for example in the books from Frenkel and Smit9

or Tadmor and Miller.322

1.4.3 Structure analysis

Experimentally, diffraction techniques play an important role in understanding
atomistic structures. They average information over their characteristic length
scales. This works very well in the case of crystalline matter, because its periodic-
ity allows a direct interpretation based on comparatively simple structure models.
For amorphous structures, however, a detailed atomistic picture can not be obtained
from diffraction experiments alone due to their inherent randomness. Consequently,
modelling techniques in conjunction with experiments and MD simulations play an
important role in the understanding of amorphous phases. The following section
treats the calculation of diffraction data from atomistic structure models, enabling
a direct comparison with experimental data as done for Cu-Zr glasses in section
2.3.1. Furthermore, Voronoi tessellation is explained, which is commonly used to
classify local structural motifs within MGs and used in section 2.3.2 to compare
results between the ACEP and other IPs, as well as RMC results.
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1.4.3.1 Total structure factor

The TSF (𝑞) is the normalized intensity measured in a scattering experiment and
can be calculated. For isotropic matter, such as amorphous materials 𝑞 is the
absolute value of the scattering vector 𝑞 = 4𝜋 sin(Θ)/𝜆 with incident angle Θ and
wavelength 𝜆.223 It is related to the pair distribution function 𝑔(𝑟)

4𝜋𝑟𝜌0(𝑔(𝑟) − 1) = 2
𝜋

∫
∞

0
𝑞(𝑆(𝑞) − 1) sin(𝑞𝑟)𝑑𝑞, (1.41)

where 𝜌0 is the average number density of atoms.323 The radial distribution 𝑅(𝑟)
function can be obtained from 𝑔(𝑟)

𝑅(𝑟) = 4𝜋𝑟2𝜌0𝑔(𝑟). (1.42)

While experimentally the TSF is directly measurable, atomistic structure data can
be used to directly calculate 𝑅(𝑟). To compare simulational and experimental
data of multicomponent system the atomic form factors 𝑓(𝑞), which determine the
scattering amplitude have to be considered. Then, the TSF can be calculated as a
weighted sum of partial structure factors

𝑆(𝑞) = ∑
𝑖≤𝑗

𝑤𝑖𝑗(𝑞)𝑆𝑖𝑗(𝑞), (1.43)

where weights can for example be obtained from the Faber-Ziman formalism223,324

as
𝑤𝑖𝑗(𝑞) = (2 − 𝛿𝑖𝑗)𝑐𝑖𝑐𝑗

𝑓𝑖(𝑞)𝑓𝑗(𝑞)
⟨𝑓(𝑞)⟩2 , (1.44)

which is also employed to calculate the TSF of MG samples (cf. section 2.3.1)

1.4.3.2 Voronoi tessellation

In Voronoi tessellation an n-dimensional space is partitioned by assigning the region
around some point 𝒑𝑖 that is closer to any other point 𝒑𝑗 in space to 𝒑𝑖.325,326 The
corresponding region is the Voronoi area or volume of the point. Examples for two-
and three-dimensional Voronoi tessellation are shown in Fig. 1.21. In the case of
atomic systems, radical or polydisperse Voronoi tessellation is commonly employed.
For this, spheres with a spatial extent, typically atomic radii, instead of points are
considered when calculating the boundaries between particles.199,327

Local structure motifs in MGs are classified using Voronoi tessellation by analyz-
ing the faces of the resulting Voronoi polyhedra. The number 𝑛 of faces with 𝑖 edges
𝑛𝑖 is counted and denoted in the Voronoi index ⟨𝑛3, 𝑛4, 𝑛5, 𝑛6, ...⟩. The Voronoi tes-
sellation can also be used to calculate a well-defined coordination number despite
varying bond lengths in the amorphous phases by counting all faces. A common
motif in metallic glasses is the ⟨0, 0, 12, 0⟩ Voronoi polyhedron, which is also named
FI, after the atomic arrangement resulting in it. The FIs and distorted variants
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a b

Figure 1.21: Voronoi construction in 2D, where atoms are shown as black dots and the Voronoi
area of the center atom is shaded green (a) and 3D Voronoi construction for an
exemplary atomistic structure with atoms shown in blue and red, while gray areas
indicate Voronoi faces (b).

with Voronoi indices such as ⟨0, 2, 8, 2⟩ are considered the dominant structural and
motifs in Cu-Zr based glasses and supposedly play an important role in the struc-
tural stability and formation of shear bands,24,199,228,229,231 which is discussed in
more detail in the results on Cu-Zr. Examples for ⟨0, 0, 12, 0⟩ and ⟨0, 2, 8, 2⟩ motifs
are shown in Fig. 1.22.

The Voronoi analysis of MG structures in this thesis was done with the OVITO
software for visualization and analysis of atomistic simulations.328

a b

Figure 1.22: Examples for atomic arrangements forming ⟨0, 0, 12, 0⟩ (a) and ⟨0, 2, 8, 2⟩ (b)
polyhedra in Cu-Zr. Cu is shown in brown and Zr in green.
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1.4.4 Thermodynamic properties
DFT allows calculating formation energies with a high accuracy, but besides some
examples of small and simple systems it is limited to ground state, i.e. 0K descrip-
tions and associated with a high computational cost.329–335 Through the combina-
tion of MLIP with thermodynamic integration techniques finite temperature prop-
erties of much larger and more complex systems can be calculated with near DFT
accuracy. In this thesis they are employed to construct a composition-temperature
phase diagram of the Cu-Zr system in section 2.2.2.

1.4.4.1 Calculation of free energies

Finite temperature Helmholtz and Gibbs free energies can be calculated using ther-
modynamic integration by continuously switching from a reference system with an-
alytically known free energy to a system of interest. The work required to switch
from an initial system 𝑖 to a final system 𝑓 is given by

𝑊𝑖→𝑓 = ∫
𝑡𝑓

𝑡𝑖

𝑑𝜆(𝑡)
𝑑𝑡

𝜕𝐻(𝜆)
𝜕𝜆

𝑑𝑡 (1.45)

where 𝐻 is the Hamiltonian, 𝑡 is time and 𝜆 is a parameter continuously switching
from 𝐻𝑖 to 𝐻𝑓. The free energy difference between 𝑖 and 𝑓 is Δ𝐹 = 𝑊 − 𝐸𝑑, where
𝐸𝑑 is the dissipated energy. If the switching process is sufficiently slow 𝐸𝑑,𝑖→𝑓 and
𝐸𝑑,𝑓→𝑖 become equal,336 so that

Δ𝐹 = 1
2

((𝑊𝑖→𝑓 − 𝐸𝑑,𝑖→𝑓) − (𝑊𝑓→𝑖 − 𝐸𝑑,𝑓→𝑖)) = 1
2

(𝑊𝑖→𝑓 − 𝑊𝑓→𝑖) . (1.46)

For solids the reference system is typically the Einstein crystal.337 Different systems
can be chosen for liquids. For this thesis, the calphy338 code is employed, which
uses the Uhlenbeck-Ford model.339 Furthermore, calphy uses reversible scaling340

and nonequilibrium calculations341 for computational efficiency.

1.4.4.2 Construction of phase diagram

The output of calphy are tables containing the Helmholtz or Gibbs energy as func-
tion of temperature. To compute the composition-temperature phase diagram the
phase or phase mixture with the lowest free energy has to be found for each compo-
sition and temperature. In the case of the Cu-Zr phase diagram the Gibbs energy
at zero pressure was calculated for FCC Cu, BCC and HCP Zr and each of the
intermetallic phases shown in the Cu-Zr phase diagram suggested by He et al.,209

which was also shown in Fig. 1.14. 𝐺 of the liquid phases was calculated explic-
itly for the pure elements and the compositions given by the intermetallic phases.
The phase with minimum 𝐺 was calculated on a grid with 1% composition and
1K temperature steps, where the composition dimension was supplemented with
the compositions of intermetallic phases. All possible solid-solid and solid-liquid
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mixtures at some concentration were considered by linear combinations of 𝐺 of the
boundary phases according to the lever rule. 𝐺liquid at arbitrary concentrations was
obtained by interpolation between the explicitly calculated values using the SciPy
Clough-Tocher 2D interpolator.342 All phases were treated as stoichiometric com-
pounds, neglecting solubility. Considering that published phase diagrams for the
Cu-Zr system do not show a significant solubility for any phase besides pure Zr, we
do not expect that this causes major differences and avoid additional complexity.
A proper treatment of solubility would require to take the configurational entropy
into account, but thermodynamic integration via calphy only calculates the vibra-
tional entropy. Under the assumption of a dilute solution and randomly distributed
solvents, it could be calculated using the Boltzmann entropy. However, it seems
unlikely that these assumptions are valid, as the interactions in the Cu-Zr system
prevent random distribution of solvents, so the Boltzmann entropy can only be
considered as upper limit. For better results, a computationally expansive method
like Monte-Carlo sampling would be required. Finally, the phase with minimum 𝐺
at each grid point was found using the xarray python package.343

1.4.5 Mechanical properties

The mechanical properties of materials are relevant for their application both as
structural and functional components. Furthermore, many of them can be measured
in experiments and calculated using DFT and IP levels of accuracy, so they offer
an opportunity to judge on the quality of the employed simulation methods. As
part of this thesis the elastic constants of Cu-Zr alloys and Si-O-C are calculated as
described in the next section. In the case of Cu-Zr glasses also plastic deformation
is investigated. Thereby the formation of shear bands is important, which require
a measure for localized deformation as discussed in the very next section.

1.4.5.1 Elastic constants

The elastic tensor 𝑪 relates the stress 𝝈 and strain 𝝐 states of a material in the
linear elastic regime

𝝈 = 𝑪𝝐. (1.47)

Formally, 𝑪 is a fourth-order tensor containing 81 components, which are reduced
to a maximum of 21 independent ones due to symmetry in materials with triclinic
structure. In isotropic materials, such as amorphous phases only 2 components are
independent. 𝑪 can be calculated from the stress-strain or energy-strain relation
by applying deformations to a system, calculating the resulting stresses and solving
the corresponding linear equations. This is implemented in a widely automated
way in different codes. For this work pymatgen108 was employed.

Lamé constants 𝜇 and 𝜆 as well as Young’s modulus 𝐸, shear modulus 𝐺 and
bulk modulus 𝐵 can be measured explicitly or derived from the elastic tensor. For
example the elastic tensor and Lamé constants are related via 𝜆 = 𝐶12 and 𝜇 = 𝐶44,
where the indices of 𝑪 are given in Voigt notation. In the case of polycrystalline
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materials, which are isotropic but consist of anisotropic crystallites, lower and upper
limits can be estimated using the Reuss344 and Voigt345 approximation, respectively.

1.4.5.2 Atomic level deformation

To identify shear bands within a deformed glass sample a local measure of strain
has to be considered. This is done in section 2.4 Here, the approach by Shimizu et
al.346 is followed. The corresponding algorithm is implemented in OVITO.328 Within
the algorithm, the local deformation gradient tensor 𝑱 for an atom 𝑖 is calculated
from relative displacements of neighbors compared to some reference state. Then
the Green-Lagrangian strain tensor

𝜈𝑖 = 1
2

(𝑱𝑖𝑱𝑇
𝑖 − 𝑰) (1.48)

is determined. Here 𝑰 is the identity matrix. Based on this a von Mises local shear
invariant, also called atomic shear strain, is defined as

𝜈𝑖,Mises = √𝜈2
𝑦𝑧 + 𝜈2

𝑥𝑧 + 𝜈2
𝑥𝑦 +

(𝜈𝑦𝑦 − 𝜈𝑧𝑧)2 + (𝜈𝑥𝑥 − 𝜈𝑧𝑧)2 + (𝜈𝑥𝑥 − 𝜈𝑦𝑦)2

6
. (1.49)

In shear bands the atomic shear strain is considerably higher than in other parts
of MG samples.
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2 Thermodynamics and glassy structure in
the Cu-Zr system

The results presented in this chapter are published in:

Niklas Leimeroth, Jochen Rohrer, and Karsten Albe. “General Purpose Potential
for Glassy and Crystalline Phases of Cu-Zr Alloys Based on the ACE Formalism.”

In: Physical Review Materials 8.4 (2024), p. 043602. DOI:
10.1103/PhysRevMaterials.8.043602

and the corresponding supplemental material. Some sections closely follow the
structure and formulations of the original publication. The training dataset and
fitted potential are publicly available on zenodo.348

2.1 Fitting and validation of ACE potential for Cu-Zr
Cu-Zr is a prototypical MG forming system, for which a plethora of classical IP exist
(cf. section 1.2.3.2). However, these classical potentials have a limited fidelity, es-
pecially in complex scenarios with different involved phases. The following sections
treat the development and validation of an ACEP that offers superior accuracy for
a wide range of possible problem settings.

2.1.1 Training data and fitting
The aim for the ACEP is applicability to crystalline and amorphous phases, both
in pristine and defective state, over the whole compositional range, to allow simu-
lations of complex scenarios like glass-crystal composites under deformation. Thus,
the training data is required to cover the configuration space of local environ-
ments present in such structures. For a newly fitted potential, this could have been
achieved by applying the active learning strategy outlined in section 1.1.4. However,
at the time AL techniques were not implemented for ACEPs, so the training data
was generated without them. This ’manual’ structure generation generally con-
sisted of two steps. First, a variety of structures was obtained and relaxed within
DFT. Second, those structures were modified in different ways to cover a larger
configurational space. In the case of pure Cu and Zr the relaxed structures were
simple lattices (FCC, BCC, HCP, SC, diamond). The intermetallic phases present
in the phase diagram were obtained from Materials Project.105 Their names used
in this thesis and the corresponding IDs are listed in the appendix Tab. A.1. Addi-
tional, typically high energy, configurations such as zinc blende and wurtzite were
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2 Thermodynamics and glassy structure in the Cu-Zr system

a b

Figure 2.1: Energy-volume relation of the Cu-Zr training dataset without (a) and with over-
lapping testing data (b). A wide range of energies and volumes is covered over
the whole compositional range, which is considered a necessity to fit a widely
applicable MLIP.

generated using ase.104 Amorphous structures were produced by cook and quench
simulations with the Mendelev potential,23 as schematically depicted in Fig. 2.2.
They contain 128 atoms and their composition was varied from 20 to 80% Zr in
one atom steps. The applied structural modifications are isotropic scaling, defor-
mations for elastic constants, grain boundaries, vacancies, interstitials, surfaces, as
well as random atom displacements and cell distortions. Fig. 2.1 shows that a wide
range of atomic energies and volumes is covered by the resulting training data.

A separate testing data set was used to prevent overfitting. It contains structures
with interfaces as well as random atom displacements and cell deformations. The
interfaces are made from pure Cu and Zr crystals with mixed amorphous structures
of varying compositions.

Both data sets are filtered to prevent the occurrence of structures that can’t
be described by the potential due to the locality of the descriptor, lie very far
from other structures or could cause numerical problems in the fitting process. All
structures with one or more of the following were removed:

• An absolute force greater than 50 eV/Å on any atom

• Formation energy greater than 10 eV/atom above the convex hull

• Minimal distance between atoms smaller than 1.4Å

• A volume per atom greater than 150Å
3
(Surface structures were excluded

from this criterion)
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2.1 Fitting and validation of ACE potential for Cu-Zr

Figure 2.2: Schematic of the cook and quench process employed to produce glassy Cu-Zr
samples. Crystalline structures with randomized distribution of Cu and Zr on
lattice sites were heated to the liquid phase, equilibrated and rapidly cooled to
obtain amorphous structures.

• Atoms with no other atom closer than 5Å

After filtering the whole training dataset contains 24,232 structures with 2,168,544
atoms. The testing set consists of 4242 structures with an average size of roughly
118 atoms.

To ensure an appropriate coverage of configuration space the robustness of the
training data is probed with the AL capabilities of the MLIPcode.60,89,114 An ad-
ditional MTP of level 22 was fitted to the training data. Then it was employed
in cook and quench simulations with around 500 structures and temperatures up
to 3000K. Here, the structures were made by randomly placing Cu and Zr atoms
on an FCC lattice with 108 atoms. During the simulations no configurations with
high extrapolation grade appeared, showing that the training data sufficiently cov-
ers regions with high temperatures and high mobility including the liquid regime.
For the fit the DFT energies are shifted to reproduce the cohesive energies of pure
FCC Cu and HCP Zr from the NIST-JANAF thermochemical tables.349

Finally, four distinct ACEPs with 514, 1352, 2838 and 6084 basis functions and

𝐸𝑖 = 𝜒𝑖,1 + √𝜒𝑖,2 (2.1)

embedding were fitted. Their cutoff was set to 7.6Å, which corresponds to the value
used in several Cu-Zr EAM potentials by Mendelev et al.23,197,206 More basis func-
tions correspond to more fittable parameters and lead to a higher accuracy for the
training data set, at the cost of slower evaluation. In this case the description of the
test data set got worse with increasing number of functions, indicating overfitting
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2 Thermodynamics and glassy structure in the Cu-Zr system

a b

c d

Figure 2.3: Energies (a) and forces (b) calculated with the ACEP and DFT agree well for both,
the training and testing datasets. They are weighted relative to their deviation
from thermodynamic equilibrium with hyperparameter Δ (c). Consequently, the
error is significantly lower for structures that are closer to the convex hull of
formation energies (d).
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2.1 Fitting and validation of ACE potential for Cu-Zr

and lower transferability to other problem settings. Consequently, the potential
with 514 basis functions was chosen. For the training data it has an energy and
force root mean square error (RMSE) of 11.5meV/atom and 168meV/Å. For the
testing set they are 14.2meV/atom and 188meV/Å, respectively. Fig. 2.3 shows
scatter plots of the energy error as function of the distance from the convex and
the calculated forces.

Structures closer to thermodynamic equilibrium, i.e. with low formation energies
and forces were assigned a higher relative weight as described in Ref. 91. The
weight of structures (and energies) 𝑤𝑆 is given by

𝑤𝑆 = 1
(𝐸𝑆 − 𝐸ℎ + Δ𝐸)2 , (2.2)

where the Δ𝐸 is an adjustable hyperparameter, 𝐸𝑆 is energy of the structure and
𝐸ℎ is the energy of the convex hull, i.e. the structure with the lowest energy at the
corresponding composition. Forces 𝐹 are weighted based on their absolute value 𝐹
as

𝑤𝐹 = 𝑤𝑆
𝐹 2 + Δ𝐹

, (2.3)

where Δ𝐹 is another hyperparameter. For the potential Δ𝐸 was set to 0.4 eV and Δ𝐹
to 1 eV/Å and the relative weight of energies and forces to 0.99:0.01. The relative
weights for different Δ𝐸 values and the cumulated energy RMSE as function of the
distance from the convex hull are visualized in Fig. 2.3c and d.

2.1.2 Validation against DFT and experiment

To further validate the potential beyond a simple comparison of energies and forces
a series of properties was calculated and compared to DFT or experimental results.
Fig. 2.4 and 2.5 show energy-volume curves of pure and intermetallic phases, re-
spectively. The volumes were scaled isotropically up to ±30 %. The energies are
calculated using the ACEP and DFT. While simple to calculate, the energy-volume
relations already show several properties of interest. The minimum in the energy
curve determines equilibrium lattice constants, the curvature gives bulk moduli and
different energy levels determine the relative stability of multiple phases of the same
composition.

For pure Cu a very good agreement between ACEP and DFT data can be ob-
served. In the case of Zr it is worse, but mostly for high energy structures. The
BCC and HCP lattices, which are the stable polymorphs at low and high tempera-
ture, are still described very well around the equilibrium lattice constant. A similar
behavior can be seen for the intermetallic phases.

Tab. 2.1 summarizes lattice constants, bulk moduli, vacancy formation energies,
and melting temperature of elemental Cu and Zr and the intermetallic B2 CuZr
phase. In the following each of them will be shortly discussed.
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2 Thermodynamics and glassy structure in the Cu-Zr system

Lattice constants [Å] Exp. DFT (0 K) ACE (0 K)

CuFCC 3.602 (0 K)350 3.634 3.634
ZrHCP-a 3.229 (4.2 K)351 3.235 3.228
ZrHCP-c 5.141 (4.2 K)351 5.172 5.189
ZBCC 3.579 (0 K)352 3.574 3.576
CuZr 3.246 (0 K)353 3.273 3.272

E𝑓
vac [eV] Exp. Clamped Relaxed

DFT ACE DFT ACE
CuFCC 1.27-1.29354,355 1.11 0.96 1.08 0.92
ZrHCP >1.5356 2.06 1.92 1.94 1.88
ZrBCC 2.18 1.82 -0.79 -0.97

B [GPa] Exp. DFT ACE
CuFCC 142357 139 149
ZrHCP 95358 98 115
ZrBCC 90 116
CuZr 121 134

C11 Exp. DFT ACE
CuFCC 177357 180 202
ZrHCP 155359 173 206
ZrBCC 71 101
CuZr 143 168

C12 Exp. DFT ACE
CuFCC 125357 117 121
ZrHCP 67359 42 81
ZrBCC 97 136
CuZr 110 127

C44 Exp. DFT ACE
CuFCC 81357 85 95
ZrHCP 36359 31 45
ZrBCC 24 7
CuZr 44 45

Ttransition [K] Exp. DFT ACE (MB) ACE (Calphy)
CuFCC↔Melt 1358211 1251±15335 1225 1223
ZrHCP↔BCC 1136211 976±6360 938
ZrBCC↔Melt 2128361 1693 1699
CuZrB2↔Melt 1208-1233211,212,362 870±50 865

Cu GSF energy [mJ/m2] DFT ACE
stable 41 31
unstable 171 167

Table 2.1: Comparison of several important properties of pure Cu, Zr and the intermetallic
CuZr-B2 phase as calculated with the ACEP and DFT, as well as experimental
data. The table lists lattice constants, bulk moduli, vacancy formation energies,
melting temperatures and Cu GSF.
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a b

Figure 2.4: Energy-volume curves for pure Cu (a) and Zr (b) structures with isotropically
scaled volume. In the case of Cu, the ACEP agrees very well with the DFT data
across different structures and volume ranges. For Zr the high energy structures
show higher deviations, but the more important HCP and BCC phase are well
reproduced.

2.1.2.1 Cu

Cu remains in the FCC structure up to the melting point. The potential slightly
overestimates its lattice constant compared to the experimental value, but agrees
very well with the underlying reference DFT data.

The vacancy formation energy 𝐸𝑓
vac calculated using DFT lies roughly 0.2 eV

below the experimental values. However, Glensk et al.363 argue that experimental
values should be revised. According to them, the applied extrapolation from high
temperature measurements to formation energies at 0K is not taking all anharmonic
effects into account. By applying their corrections a vacancy formation energy of
1.06 eV is obtained for FCC Cu, which fits very well to the results from DFT. The
ACEP underestimates both, clamped and relaxed 𝐸𝑓

vac by around 0.15 eV. As this
error is quite large, it was employed to test the performance of the ACEP compared
to a potential fitted in the same way, but only to the pure Cu training data subset.
For this potential 𝐸𝑓,clamped

vac = 1.12 eV and 𝐸𝑓
vac = 1.09 eV were calculated. These

much lower errors for the Cu only potential show that a limitation of the training
data can be beneficial when fitting potentials for more specialized purposes.

The elastic tensor and bulk modulus show good agreement between ACEP, DFT
and experimental data. The melting temperature was calculated using the moving
boundary (MB) method364,365 and thermodynamic integration as implemented in
calphy.338 Both values are similar, but about 135K off from the experimental
value. Similar to the lattice constant, however, the potential can not be better
than the data it is trained too and an underestimation of the melting point can be
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Figure 2.5: Energy-volume curves for intermetallic Cu-Zr compounds, grouped by their com-
position. Continued in Fig. 2.6
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Figure 2.6: Energy-volume curves for intermetallic Cu-Zr compounds, grouped by their com-
position. The volume is scaled isotropically. The good agreement of the devel-
oped ACEP with DFT data across compositions already suggests a reasonable
description of several related properties, such as relative formation energies, lat-
tice constants and bulk moduli. Continued from Fig. 2.5

expected for PBE-DFT data, due to the tendency to underbind atoms. Indeed, a
good agreement with the value reported by Zhu et al.,335 who developed the TOR-
TILD approach to calculate the melting temperature directly from ab-initio MD
simulations, is achieved.

Stacking faults occurring on {111} planes are relevant for the formation of partial
dislocations, twin boundaries and cross slip in FCC metal. Borovikov et al.366 fitted
a series of EAM potentials with widely different stacking fault energies but otherwise
similar properties. Consequently, the stable and unstable stacking fault energy are
calculated explicitly and also reported in Tab. 2.1. The values are obtained from
generalized stacking fault (GSF) calculations along the ⟨112⟩ direction. They are
well reproduced, with respective errors of 10mJ/m2 and 4mJ/m2 compared to
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a

b c

Figure 2.7: Comparison of Cu generalized stacking fault (GSF) energy along ⟨112⟩ on a {111}
plane (a). Additionally, the 𝛾 surface excess energy was calculated for 11x11 grid
on {111} planes with DFT (b) and ACE (c), showing good agreement between
the two.
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DFT. Furthermore, the 𝛾-surface energy was calculated on a 11x11 grid with both
DFT and the ACEP, where atoms were allowed to relax in the direction of the
surface normal. The GSF and 𝛾-surface are shown in Fig. 2.7.

2.1.2.2 Zr

Zr has a HCP structure at room temperature and transitions to the BCC lattice
before melting. The transition temperatures were calculated using calphy338 and lie
below the experimental values. As already discussed for Cu this is consistent with
the expectations for PBE-DFT data. However, in this case no explicit simulations
for comparison are available. Both, HCP and BCC, lattice constants deviate by
less than 1% compared to experiment and DFT. Calculated clamped and relaxed
𝐸𝑓

vac agree well with DFT data, but no accurate measurements are available. For
the BCC structure a negative 𝐸relaxed

vac was found. This is caused by a structural
collapse to energetically favorable HCP like coordination around the vacancy. The
elastic constants deviate much stronger from the DFT data than in the case of
Cu, pointing towards the more complex nature of Zr-Zr bonds. To estimate the
achievable accuracy within the employed settings for the ACEP an additional pure
Zr potential was fitted similar to the pure Cu potential. The resulting energy
RMSE is 14.7meV/atom compared to 3.1meV/atom for pure Cu. In most cases
such a direct comparison of RMSEs is not useful because it strongly depends on
the complexity of the underlying training data. Here, however, both training data
sets were produced similarly, so the larger error can be seen as a measure for the
higher complexity of chemical interactions in Zr compared to Cu.

2.1.2.3 CuZr-B2

CuZr-B2 phase becomes stable at elevated temperatures and is of technological in-
terest because it can undergo a martensitic phase transformation to the B19’ or
B33 structure and consequently shows a shape memory effect and is of interest as
crystalline precipitate in strain hardening MGs (cf. section 1.2.3.1). The B2 struc-
ture is a simple cubic lattice with a two atomic basis at (0,0,0) and (1/2,1/2,1/2).
The potential reproduces its DFT lattice constant almost perfectly, while elastic
constants are described with an accuracy in between that of pure Cu and pure Zr.
Similar to the pure phases, the melting point is severely underestimated. Here, the
MB method comes with a much higher uncertainty than for elemental phases. This
is caused by the increased complexity due to the compositional degree of freedom,
leading to a situation in which chemical segregation instead of simple melting or
crystallization could lead to energetically favorable states and slows down kinet-
ics. Consequently, the value calculated using thermodynamic integration should be
considered as the melting point predicted by the ACEP.
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Figure 2.8: Formation energies calculated with the ACEP (red) and DFT (black). The DFT
convex hull is shown as dashed line.

2.2 Thermodynamics and mechanical stability of intermetallic
phases

The Cu-Zr system features a plethora of intermetallic phases. In this section, the
ACEP is employed to calculate a Cu-Zr phases diagram. In an intermediate step
the formation energies of the intermetallics are determined and compared to other
potentials. Furthermore, their phonon dispersions are calculated to judge their
mechanical stability.

2.2.1 Formation energy

All formation energies Δ𝐸𝑓 are calculated with FCC Cu and HCP Zr as reference
states 𝛼 according to

Δ𝐸𝑓 = 𝐸compound − ∑
𝛼

𝑥𝛼𝐸𝛼, (2.4)

where 𝐸 are energies per atom and 𝑥𝛼 are the corresponding mole fractions. Fig.
2.8 shows the formation energies calculated with the ACEP and DFT for all inter-
metallic phases used in the training data. This includes the low energy structures
present in the phase diagram and found on materials projects, but also highly unsta-
ble structures created using ASE. Over the whole range of compositions and energies
the potential and DFT match well.

A high ground state accuracy is prerequisite for an accurate description of finite
temperature thermodynamics. Fig. 2.9 shows the formation energy errors for em-

52
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Figure 2.9: Formation energy errors compared to DFT data for the ACEP and potentials
by Mendelev et al.,206 Kim et al.207 and Paduraru et al.21 The error is shown
with a white background for structures included in the training data and a gray
background for the extrapolating regime. Here, Laves phases were employed to
test the extrapolation capabilities.

pirical potentials and the ACEP, similar to the error of classical IPs in Fig. 1.16.
The values shown are the difference to the DFT formation energies. As discussed in
section 1.2.3.2, a part of the error could be explained by the use of different fitting
data. However, Paduraru and Mendelev employed the Perdew-Wang235 exchange-
correlation functional to calculate formation energies, which should give similar
results to PBE, while Kim used experimental values. The errors are shown for all
structures included in the training data∗ and for Cu2Zr and CuZr2 Laves phases
with C14, C15 and C36 structure, which were not included in the training data,
i.e. where the ACEP extrapolates.

Laves phases were chosen for the extrapolation test due to their relevance in the
Cu-Zr system. Some ternary Cu-Zr containing compounds and other systems with
similar ratios of ionic radii show stable C14 or C15 phases.205,367 Furthermore, the
Mendelev 2009 potential23 overstabilizes the C14 Cu2Zr phase. Combined with a
low kinetic barrier, this leads to crystal nucleation on MD simulation timescales.231

Compared to the empirical potentials the ACEP is always considerably more ac-
curate for the training data. Even in the extrapolating area it consistently performs
better for all structures. The only exception is the C15 Cu2Zr phase, which is more
accurately described by the Mendelev 2019 potential.206 This Mendelev potential
specifically addresses the shortcomings of the previous 2009 version regarding the
overstabilization of Laves phases by explicitly including them in the fit.

∗Unique compositions are named accordingly. CuZr2 structures are named t, c, and m corre-
sponding to tetragonal, cubic and monoclinic structures from materials project. The CuZr phases
are high temperature B2 and metastable B19’ and B33.
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a b

Figure 2.10: Phase diagrams based on the work of He et al.209 (a) and calculated with the
ACEP (b).

2.2.2 Phase diagram

Fig. 2.10 shows the calculated Cu-Zr phase diagram and the version proposed by
He et al.209 for comparison. The significant differences between published Cu-Zr
phase diagrams have already been discussed in the introduction and will not be
repeated. The version by He phases diagram is mostly consistent with the convex
hull obtained using PBE. According to the DFT data Cu5Zr lies above the convex
hull, in the work of He it is stable at low temperatures.

For the calculated phase diagram shown in 2.10b the Gibbs energies calculated
using calphy have been shifted to match the ground state values obtained from
DFT. This is a necessity to stabilize the Cu8Zr3 phase. A version without this
correction can be found in Fig. A.1.

Due to the usage of PBE reference data the melting points are considerably
underestimated, as already discussed in the previous chapter. Besides this, two
main differences between the phase diagrams can be found. The Cu5Zr and the
CuZr phase are not present in the calculated version. Fig. 2.11 shows the Gibbs
energy of both phases relative to the actual equilibrium structures. In the case of
Cu5Zr the relative stability decreases with increasing temperatures and its absence
can be attributed directly to the DFT data, which places it around 8meV/atom
above the convex hull. For CuZr the situation is more complex, because it is
supposed to be stable only at elevated temperatures. Qualitatively, this behavior
is correctly reproduced. However, due to a combination of underestimated melting
point and overestimated formation energy it would be stable only above roughly
1350K. This also illustrates the strong sensitivity to small energetic differences. A
lowering of the formation energy by 5meV would suffice to bring the stability range
close to the experimental value of approximately 1000K.
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Figure 2.11: Gibbs energy difference of Cu5Zr and CuZr compared to the actually stable phase
mixtures. A few meV/atom would be enough to stabilize both phases showing
the high sensitivity to small energetic differences. The CuZr shows qualitatively
correct behavior and would become stable at elevated temperatures. However,
due to the underestimated melting points and a slightly overestimated formation
energy the system will melt before.

2.2.3 Dynamic stability

Besides their thermodynamic stability, it is also of interest whether the potential
predicts the intermetallic phases to be dynamically stable. This is especially true
for the important B2 phase, since the potential predicts it to be thermodynamically
unstable. Structures that would undergo a spontaneous lattice change have a soft
or imaginary phonon mode. Consequently, the phonon dispersion was calculated for
the intermetallic phases. To this end, the harmonic approximation as implemented
in phonopy368,369 was employed. The results are shown in Fig. 2.12. Phases that
should be stable at low temperatures, i.e. all except B2, do not show soft phonons.

The B2 phase is unstable in the harmonic approximation, which matches the
observation of a martensitic phase transition upon cooling. To further investigate
the phase transition MD simulations of small B2 particles were conducted. How-
ever, no spontaneous phase change was observed. Consequently, the stability was
further investigated using the self-consistent phonon method as implemented in
ALAMODE370,371 to obtain finite-temperature phonon dispersions. The result with
anharmonic effects up to the fourth order is shown in Fig. 2.13a. Here, no soft
phonon modes are present, so no spontaneous phase change should be expected in
MD simulations.

A similar B2-B19’ martensitic phase transformation is observed in the common
shape memory alloy NiTi. Hatcher et al.372,373 found a barrier free two-step phase
transition path in this material. First two center layers of a six layer {011} B2
structure are displaced by a0/2 along the ⟨100⟩ direction, where 𝑎0 is the lattice
constant. Second the monoclinic angle changes to the equilibrium one during re-
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2 Thermodynamics and glassy structure in the Cu-Zr system

a b

c d

e f

Figure 2.12: Phonon dispersion of intermetallic Cu-Zr structures using the ACEP and the
phonopy code. All structures but CuZr-B2, which shows soft phonon modes,
are predicted to be stable within harmonic approximation.
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a b

Figure 2.13: Anharmonic, finite temperature phonon dispersion of B2 CuZr calculated
with the ACEP using the self-consistent phonon method implemented in
ALAMODE370,371 (a). Anharmonic effects up to fourth order are considered. For
reference, the harmonic approximation results are shown as black line. In (b) the
energy along the B2-B19’ transformation path suggested by Hatcher et al.372,373

for NiTi is shown. They found the path to be barrier free. Contrary to their
findings for NiTi, the ACEP predicts a barrier of around 10meV/atom in CuZr.

laxation. Fig. 2.13b shows the energy along this path as calculated for CuZr with
the ACEP. In line with the anharmonic phonon dispersion a small energy barrier
is found for the phase transition, so again no spontaneous phase change should be
expected.

2.3 Structure of Cu-Zr glasses

The atomic structure of MGs is an ongoing topic of research (cf. section 1.2.3.1). In
this chapter the new ACEP is employed to produce glass samples in MD via cook
and quench simulations. Consequently, the structure of the samples is compared
to experimental data showing excellent agreement and a detailed analysis of local
motifs is carried out. Finally, the results are verified by DFT calculations.

2.3.1 Comparison to XRD data

To be able to compare simulated and experimental amorphous structures the TSF
is calculated for simulated samples. Fig. 2.14 shows the TSF of ACEP (a) and
Mendelev 2019 (b) samples compared to experimental data from Mattern et al.223

The MG samples contain 256,000 atoms and were produced by quenching a melt
with a rate of 1 × 1011 K/s. To calculate the TSF the radial distribution function
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a b

Figure 2.14: Comparison of experimental and simulated amorphous Cu-Zr structures via their
TSF. In (a) ACEP the samples were produced using the ACEP, in (b) the
Mendelev potential was employed. Experimental data is taken from Mattern
et al.223 and the same in both plots. The composition of experimental samples
is Cu65Zr35 and Cu35Zr65 instead of Cu64Zr36 and Cu36Zr64, respectively. For
improved visibility the S(q) values are shifted by +2 and +1 for Cu64Zr36 and
Cu50Zr50. The Mendelev MG samples do not show an accurate splitting of the
second peak. Additionally, the height of the first peak agrees better for the
ACEP.

was averaged over 40 snapshots taken over 1ns in NPT MD simulations at 300K.
As can be seen, ACEP samples agree very well with the experimental data. The
Mendelev potential can excellently reproduce the TSF of the melt.206 Despite this,
it fails to describe the height of the first and splitting of the second peak in the
glassy samples.

2.3.2 Topology

To investigate the atomistic details of the samples the structural motifs were clas-
sified using polydisperse Voronoi tessellation with radii set to 1.35Å and 1.55Å for
Cu and Zr, respectively.∗ Fig. 2.15 shows the population of all motifs that occurred
with a frequency of at least 1% in one of the compositions.

No dominant motif can be identified. This differs from other MD based studies,
where Cu-centered FIs with the Voronoi index ⟨0, 0, 12, 0⟩ were found to be the pri-
mary structural motif in amorphous Cu-Zr.199,227,228,231 For instance, Ding et al.199

investigated Cu64Zr36 glasses using the Cheng24 and Mendelev23 (2009) potentials.
For these potentials they respectively found up to 25.6 % and 22.4 %† of all atoms

∗This is similar to other works, but exact employed radii are seldomly given. The sensitivity to
this parameter was analyzed and no effects influencing the conclusions drawn in this chapter were
found. This is shown in the appendix Fig. A.2.

†Ding et al. reported 40 % and 35 % of all Cu atoms to be in the center of FI. To compare the
numbers with those of Mattern et al. they are given as fraction of all atoms here. They are calculated
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2.3 Structure of Cu-Zr glasses

Figure 2.15: Population of Voronoi polyhedra in the ACEP Cu-Zr samples also employed for
the TSF calculation.

being in the center of a FI.
Voronoi polyhedra can not be quantified directly in experiments. However, by

combination multiple diffraction measurements and RMC simulations Mattern et
al.223 found a FIs population 6.3%, 4.5% and 3.5% for Cu65Zr35, Cu50Zr50 and
Cu35Zr65, respectively. Furthermore, they report a plethora of different structural
motifs. This matches well with the population within the ACEP samples.

Previous simulation studies found a drastic increase of FI population with de-
creasing quench rates.199,206 To exclude the quench rate as a decisive factor samples
quenched with 1 × 1014 K/s to 1 × 1011 K/s were produced and analyzed. The
result is shown in Fig. 2.16. A dependence on the quench rate is observed, but
it is already rather small for the applied quench rate of 1e11K/s. Overall far less
FI than for example in206,228 are found across all quench rates. In combination
with the excellent agreement of ACEP and experimental TSF no major changes
are expected to occur at lower quench rates.

As shown in section 2.2.3, the structural differences do not lead to qualitatively
different behavior of the MGs. However, before continuing with the mechanical
properties, we show that the ACEP can also reproduce the energetics of the MGs,
and that less FI are consistent with DFT results.

2.3.3 Energetics

Finally, the formation energy of different glass samples produced using the ACE
and Mendelev potentials were evaluated. Three samples with 256 atoms each were

as 𝑃all = 𝑃Cu ⋅ 𝑐Cu, where 𝑃 denotes the population of FI clusters as fraction of all and only Cu atoms
and 𝑐 the concentration. This expression is valid under the assumption that the fraction of Zr atoms
in the center of FI is negligible.
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2 Thermodynamics and glassy structure in the Cu-Zr system

Figure 2.16: Frequency of the FI motif in MG samples for different quench rates. Their
amount only increases very slightly between 1×1012 K/s to 1×1011 K/s already.

Figure 2.17: Formation energy of MG samples with 256 atoms calculated with DFT, ACE and
Mendelev potentials. CuFCC and ZrHCP were used as reference states. Samples
were produced using the ACE and Mendelev potentials, respectively. The ACEP
accurately reproduces the values predicted by DFT and correctly estimates Zr
rich structures to be less stable than Cu rich ones.
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produced for each composition and potential by quenching a melt with 1×1010 K/s.
Their formation energies were calculated using the IPs and DFT, after relaxing
volume and atomic positions with the respective method. Fig. 2.17 depicts the
results. Here, the formation energy is averaged over the three samples. The ACEP
and DFT formation energies agree well. According to them, the ACEP structures
with a lower amount of FI are favorable. The Mendelev potential favors its own
glasses, showing that the different structures are not a result of different kinetics.
Furthermore, ACEP and DFT predict Cu rich glasses to be energetically favorable
compared to Zr rich glasses, while the opposite trend is observed for the Mendelev
potential.

The DFT relaxations also pointed towards and overestimation of FI population
in empirical potentials. A Voronoi tessellation of the Mendelev samples before and
after relaxation revealed that out of the 768 atoms for each composition the number
of FI coordinated ones reduced from 112 to 108, 41 to 34 and 17 to 14 for Cu64Zr36,
Cu50Zr50 and Cu36Zr64, respectively.

2.4 Tensile testing
This section presents tensile test simulations on pristine Cu-Zr glasses and a glass-
crystal composite structure. The former is of interest because the impact of the
different short-range order (SRO), and especially the lack of FIs is unclear. The
latter is a showcase for the capability of the potential to accurately describe complex
scenarios and helps to understand the occurrence of the martensitic phase transition
within B2 CuZr inclusions.

2.4.1 Glasses
According to several studies employing classical potentials the FI motif leads to an
increased shear localization and significantly influences the mechanical behavior of
Cu-Zr MGs.228,229,231,375 Ding et al. even found a massively increased shear modulus
upon reaching the percolation threshold for FIs.199

Considering the much lower number of FI found for the ACEP, the question arises
whether a qualitatively similar behavior should still be expected under mechanical
load. To test this Cu36Zr64, Cu50Zr50 and Cu64Zr36 samples were subjected to
tensile tests at 50 and 300K. A strain rate of 4 × 107 1/s and periodic boundary
conditions in all dimension were applied. The samples were generated by a 6×2×6
replication of smaller cubic samples, which contain 10976 atoms and were quenched
with 5 × 1010 K/s. The artificial periodicity introduced by this procedure was
reduced by annealing at 450K for 0.5ns.

At 50K the localization of strain within SBs can be observed for all compo-
sitions. At 300K STZs are activated across the complete samples, leading to a
homogeneous deformation mode. Despite the different employed potentials these
results are similar to previous works,374 i.e. no qualitatively different deformation
mode is observed.
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2 Thermodynamics and glassy structure in the Cu-Zr system

Figure 2.18: Atomic shear strain in Cu36Zr64, Cu50Zr50 and Cu64Zr36 samples under tensile
load at 12 % strain. The tests were conducted at 50K and 300K with a strain
4 × 107 1/s. In the cryogenic temperature regime, strain is strongly localized
within SBs. At room temperature multiple STZs are activated, leading to a
more homogeneous deformation mode. These results are in line with observations
made for classical IPs.374

2.4.2 Glass-Crystal composite

Finally, the deformation behavior of a glassy matrix with a crystalline B2 inclu-
sion was investigated to better understand the occurrence of the martensitic phase
transition on the atomic level. To generate the glass matrix the previously em-
ployed Cu50Zr50 sample was replicated again by 1 × 2 × 1. The final sample has
size of 34.5×23×34.5nm. A spherical B2 CuZr inclusion with 14nm diameter was
placed in the center of the cell. Then the sample was annealed at 450K for 0.5ns
to equilibrate the glass-crystal interface. Then the sample was strained with a rate
of 4 × 107 1/s at 50K.

The structural evolution during the simulation was evaluated using the SOAP
descriptor,88 as implemented in the dscribe code.376 The similarity to the reference
configurations is defined as

( 𝑺1 ⋅ 𝑺2

√|𝑺1| ⋅ |𝑺2|
)

4

, (2.5)
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2.4 Tensile testing

Figure 2.19: Formation of a SB in a Cu50Zr50 glass matrix with a crystalline B2 CuZr inclusion
under tensile load. The inclusion has a spherical shape and [1,0,0] points along
the strain direction. The strain localizes at the interface until a shear band is
formed. Once this happens, the martensitic phase transition from the B2 to the
B19’ structure can be observed in the crystalline phase. It takes place within a
band of similar width as the SB.
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2 Thermodynamics and glassy structure in the Cu-Zr system

where 𝑺1 and 𝑺2 are the soap vectors of the two structures to compare (cf. section
1.1.2.2).

Fig. 2.19 shows snapshots of the atomic shear strain and structure analysis at
different stages of the simulation. Initially, the interface serves as nucleation site for
STZs and strain concentrates at the top and bottom of the inclusion. Starting from
these strain concentrations, a SB begins to form within the MG matrix. It occurs at
a 45° angle, corresponding to the direction with the highest Schmid factor. Lastly, a
mature SB crossing the whole sample forms. Along its path, the crystalline inclusion
undergoes a martensitic phase transition to the B19’ phase to accommodate the
strain.

2.5 Conclusion
A new ACEP for the Cu-Zr system was developed. It is fitted to PBE-DFT training
data spanning the whole compositional range and a variety pristine and defective,
crystalline and amorphous structures. Energies and forces of the training data and
a separate testing set are reproduced with a high accuracy. Furthermore, the MLIP
is validated by comparing to several properties of Cu, Zr and B2-CuZr. Here, the
error for Cu rich structures is lower than for Zr rich structures and potentials fitted
to limited subset of the data can describe the corresponding subsets with a higher
accuracy.

The formation energy of intermetallic phases are described with a drastically
improved accuracy compared to classical IPs, even for structures not included in
the training data. Using Gibbs energies calculated with calphy, the concentration-
temperature phase diagram of the potential is constructed. Melting points are un-
derestimated due to the usage of PBE-DFT training data, but otherwise it matches
well with experimentally determined phase diagrams. It is shown that errors in the
range of few meV/atom can significantly influence the thermodynamic stability
range of phases.

The TSF of MG samples produced with the ACEP via cook and quench simu-
lation excellently agrees with XRD measurements. A subsequent Voronoi tessel-
lation revealed that the SRO in the samples differs considerably from the SRO
obtained with commonly employed EAM potentials. The FI unit is much rarer and
a plethora of different motifs is found instead. These findings are in line with RMC
models. Furthermore, ACEP glasses are more stable than samples produced using
the Mendelev potential according to DFT.

Despite these structural differences, a similar qualitative behavior is observed in
tensile tests. SBs form at low temperatures and homogeneous deformation takes
place at room temperature. The simulation of a Cu50Zr50 glass matrix with a
spherical B2-CuZr inclusion under tensile load showed that a martensitic phase
transformation to the B19’ phase takes place along the SB path, accommodating
the strain.
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3 Structure and properties of silicon
oxycarbides

The results presented in this chapter are published in:

Niklas Leimeroth, Jochen Rohrer, and Karsten Albe. “Structure–Property
Relations of Silicon Oxycarbides Studied Using a Machine Learning Interatomic

Potential.” In: Journal of the American Ceramic Society 107.10 (2024),
pp. 6896–6910. ISSN: 1551-2916. DOI: 10.1111/jace.19932

Some sections closely follow the structure and formulations of the preprint and
the corresponding supplemental material. The training dataset and fitted potential
are publicly available on zenodo.378

3.1 ACE potential
Si-O-Cs have a highly complex structure with strong angular dependencies and no
stable crystalline phase. The only classical IPs which have seen some success in
describing the material are complex ReaxFF. However, they come at similar com-
putational cost as fast MLIPs (cf. Fig. A.3) and require specialized parametriza-
tions to achieve high accuracies for a given problem setting. The following chapter
describes the development of an ACEP for the Si-O-C system.

3.1.1 Training data

The complexity of the amorphous structure combined with the lack of crystalline
phases in the system make a ’manual’ generation of Si-O-C training data basically
impossible. Consequently, it was generated using an iterative AL process as de-
picted in Fig. 3.1a. For early iterations a MTP was employed because correspond-
ing functionality was not implemented for ACEPs. After the process converged
with the MTP, i.e. no new structures were found, an ACEP was employed instead.

The initial Si-O-C structures were generated to match chemical intuition, i.e.
4-fold coordination for Si and C and 2-fold for O atoms, using a bond switching
algorithm as described in.379,380 In order to create structures covering a wider phase
space, including molecules and polymer-like structures, the PACKMOL381 program was
employed. PACKMOL implements an algorithm to densely pack structural units, while
keeping adjustable minimal distances between the atoms they are made of.382 The
packed structures fed into the AL cycle are based on polymer backbone (PB), bulk

65

https://doi.org/10.1111/jace.19932
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a

b

Figure 3.1: The Si-O-C training data was generated using the MTP and ACEP AL imple-
mentations in an iterative process (a). In addition to the AL process described
in section 1.1.4, structures consisting of closely packed smaller building blocks
created with PACKMOL were fed into the AL cycle to cover a wider phase space.
These additional structures process were obtained packing the polymer backbone
(PB), bulk fragment (BF) and isolated atom (Ats) structure fragments shown in
(b) using the PACKMOL program. The graphite flakes and isolated atoms (GrAts)
were used to produce large sample structures later on, but not in the AL process.
polymer backbone (PB) structures are the backbones of polymers stripped of H
atoms. Si is shown in beige, O in red and C in gray.
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3.1 ACE potential

a b

Figure 3.2: The AL generated training data covers a large range of energies and volumes (a).
The area in the black box is magnified in (b).

fragment (BF) and isolated atom (Ats) units, as shown in 3.1b. graphite flakes
and isolated atoms (GrAts) units, which are also shown, were used to produce
large samples later on, but not directly for AL. PB structures are inspired by
Polymethylsilsesquioxane (PMSQ), the polyorganosiloxanes RD-212, RD-684 and
SILRES-604. Additionally, an artificial Si2O2C monomer was used.

The configuration space for quaternary systems is much larger than for ternary
ones, so by stripping the H atoms from the PB structures a massive extension of the
training data is avoided. In samples synthesized at 1273K to 1523K and higher the
remaining amount of H is very small.383–385 Thus, this is expected to have negligible
influence on structures pyrolyzed at these and higher temperatures. Furthermore,
the removal of H atoms leaves underbonded atoms with high reactivity, so it could
speed up reactions at lower temperatures and lead to a quicker formation of the
Si-O-C microstructure elements. However, we can not exclude that the relative
speed with which they form is influenced. This could be the topic of further studies
and is not investigated here. Regarding the results presented in this chapter, we
expect that calculated formation energies (cf. section 3.2.2) would be lower if H
was included, because some ’dangling’ bonds could be saturated, but qualitative
trends should not be influenced. For the calculated Young’s moduli (cf. section
3.3.2), we expect no relevant influence.

For the complete training set, the Si-O-C data was supplemented with training
data for the subsystems. Si, O and Si-O data was taken from a previous ACEP fit
by Erhard et al.53 C structures were generated with the ASE package104 and Si-C
structures were obtained from materials project.105 The AL MD simulations were
cook and quench processes with temperatures up to 3000K and pressures up to
200GPa. The process was considered converged, when now new structures with a
maximum DFT force of less than 150 eV/Å were found.

Fig. 3.2 shows the distribution of training data in terms of atomic energy and
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a b

Figure 3.3: Energy error as function of the distance to the convex hull (a) and correlation of
ACEP and DFT forces (b).

volume. The Si-O-C data obtained by AL scatters widely across this 2D represen-
tation of configuration space. Pure elements and Si-C show a narrower distribution
due to the reduced compositional degree of freedom and more manual data genera-
tion. An aggregate of Si-C structures with high energy and density can be observed.
This data was added to prevent the occurrence of unphysically large forces when
atoms came close in MD simulations.

For the testing data separately created Si-O-C structures and the testing data of
the Si-O dataset53 were combined. The Si-O-C test structures were created with
varying densities and compositions using PACKMOL. After packing, the atoms in the
structures were randomly displaced.

Training and testing datasets were filtered to fulfill the following criteria:

• No force larger than 150 eV/Å

• Minimal distances between two atoms ranging from 0.6Å to 5Å

• Formation energy distance from the convex hull below 20 eV/Atom

3.1.2 Fitting
A cutoff of 5Å was employed for the MLIPs. Early AL was carried out with a level
26 MTP. Intermediate ACEPs employed in the AL process were fitted with a triple
embedding

𝐸𝑖 = 𝜒0.5
𝑖,1 + 𝜒1

𝑖,2 + 𝜒2
𝑖,3 (3.1)

and 2325 basis functions. In most cases, the accuracy of ACEs is increased by
increasing the number of basis functions. However, this considerably increases the
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a b

Figure 3.4: RMSEs of energies (a) and forces (a) during optimization of the potential.

computational cost.91 Instead, different embeddings for the final potential were
tested in a non-systematic manner. Here, a 10-fold embedding with exponents
0.125, 0.25, 0.375, 0.5, 0.75, 0.875, 1, 1.25, 1.5 and 2 gave the best results. The
DFT single atom energies were subtracted from the fit values to improve numerical
consistency in case of atomic distances close to the cutoff radius.

The final potential predicts energies and forces in good agreement with the DFT
data, as shown in Fig. 3.3. Energy RMSEs of 24 and 36meV/atom were obtained
for training and testing data, respectively. The corresponding force RMSEs are 479
and 650meV/Å. Here, higher errors for the testing set are a result of the different
distribution of structures regarding compositions and energy. Fig. 3.4 shows a
continuous decrease of training and testing errors, i.e. no overfitting.

3.2 Structure and energetics of amorphous Si-O-C
As discussed in the introduction, the microstructure of Si-O-C remains elusive (cf.
section 1.2.4.1). In this section the generation of Si-O-C samples based on different
precursors and their subsequent analysis is described.

3.2.1 Sample creation

The structure of Si-O-C glass-ceramics produced via pyrolysis depends strongly
on the employed precursors and processing conditions, such as pyrolysis temper-
ature.281 However, experimental time and length scales are not accessible in MD
simulations. To still be able to investigate a variety of microstructures a series of Si-
O-C samples were produced. Here, two degrees of freedom, the precursor structure
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Figure 3.5: Cook and quench process used to generate Si-O-C samples. Depending on the
precursor an additional compression step was necessary to obtain structures with
reasonable densities.

and the composition, were varied. The compositions were chosen to match those
of the five PB derived structures as given in Tab. 3.1. For each composition the
four PB, BF, Ats or GrAts structural units, as shown in the previous chapter, were
employed as precursors. They were packed to structures containing roughly 10,000
atoms using PACKMOL, resulting in a total of 20 initial structures. Consequently,
these 20 structures were processed via cook and quench simulations as depicted in
Fig. 3.5. Each structure was processed with an annealing temperature of 1000K,
1500K and 2000K, leading to 60 samples in total. The annealing time was 1ns
and a quench rate of 1 × 1012 K/s was employed. For PB and GrAts structures an
initial compression step was necessary to obtain reasonably dense structures. They
were equilibrated for 10ps at 500K with an applied isotropic pressure of 10GPa,
before heating to the annealing temperature.

XSi XO XC

Si2O2C 0.4 0.4 0.2
PMSQ 0.25 0.5 0.25
RD-212 0.25 0.25 0.5
SILRES-604 0.125 0.125 0.75
RD-684 ≈0.121 ≈0.121 ≈0.758

Table 3.1: Compositions of hydrogen stripped PB structures, sorted from low to high carbon
content. Samples with these compositions were generated by packing PB, BF, Ats
and GrAts units.
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3.2.2 Structure analysis

To separate the influence of precursor and composition, Si0.4O0.4C0.2 and Si0.25-
O0.5C0.25 samples are analyzed individually, before the carbon rich Si0.25O0.25C0.5,
Si0.125O0.125C0.75 and Si0.121O0.121C0.758 are considered. The later are grouped,
because their composition is similar in the sense that they would decompose into
SiO2, SiC and different amounts of C, while Si0.4O0.4C0.2 and Si0.25O0.5C0.25 should
not form C and SiC, respectively.

3.2.2.1 Si0.4O0.4C0.2

Fig. 3.6 shows Si0.4O0.4C0.2 samples as packed and processed at 1500K. No major
differences between PB, BF and Ats structures are observable by visual inspection.
Only the GrAts structures stick out because they still contain graphite agglomerates
after annealing. The graphite flakes are thermodynamically unstable, because Si0.4-
O0.4C0.2 should decompose into SiO2 and SiC. However, they do not dissolve due
to their apparently slow kinetics.

To reveal structural differences, a quantitative analysis of the Si-O-C samples was
carried out. The Voronoi volume fractions all 3-fold coordinated C atoms, i.e. the
free carbon phase, and the SiO4 tetrahedra, i.e. the silica phase, were determined.
Additionally, formation energies with respect to 𝛼-quartz, 𝛽-SiC and graphite were
calculated. The result is shown in Fig. 3.7.

In the case of Si0.4O0.4C0.2, only GrAts based structures contain free carbon in
a relevant amount. Based on the expected decomposition products, there is no
thermodynamic driving force for the formation of the phase. In the GrAts sample,
its amount stays constant between 1000K and 1500K and even for 2000K it is only
reduced slightly. This shows a kinetic stabilization of the phase and suggests that
it forms a deep local energetic minimum. The silica volume fraction increases with
increasing temperatures, but the absolute values differ massively between samples.
GrAts structures contain the highest fraction, Then BFs, Ats and PB follow. This
observation can be rationalized considering the thermodynamics and kinetics of the
system. In GrAts samples the carbon atoms are trapped in the graphite structure,
while the previously isolated Si and O atoms can form silica. Without long-range
diffusion, SiC can only form in interface regions. The BFs SiO2, SiC4 and Si4C can
form interconnected SiO4 and SiC4 clusters by small rotations and rearrangements.
When starting from Ats basically all bonds that can form are local minima, favoring
the formation of mixed tetrahedra and slowing down the evolution of the system.
In the PB structure the situation is similar. All Si atoms are initially bonded to
a C and a O atom, leading to an easy formation of mixed tetrahedra, which form
local minima and thus a barrier to phase separation into SiC and SiO2.

The formation energy does not show a strong dependence on the precursors
compared to the other compositions. Especially the samples annealed at 2000K
are very similar, which is somewhat surprising, considering the high amount of
(thermodynamically unfavorable) free carbon in the GrAts structure. However, the

71



3 Structure and properties of silicon oxycarbides

Figure 3.6: Packed Si0.4O0.4C0.2 precursors (left) and corresponding structures obtained by
cook and quench processing (right). Samples produced with an annealing tem-
perature of 1500K are shown. PB, BF and Ats structures look very similar. In
GrAts based structures graphite like flakes are still present after processing. This
shows their kinetic stabilization, as one would expect a decomposition into SiO2
and SiC from a thermodynamic viewpoint.
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Figure 3.7: From left to right the columns show free carbon volume fraction, silica volume
fraction and formation energy of Si-O-C samples. Rows correspond to compo-
sitions. The last row contains Si0.125O0.125C0.75 and Si0.121O0.121C0.758. Due
to their compositional similarity a direct comparison of them is of interest. The
symbol legend shown in the first plot is valid for the whole figure.
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large amount of (thermodynamically favorable) silica apparently compensates for
it.

3.2.2.2 Si0.25O0.5C0.25

Due to the different Si:O ratio, Si0.25O0.5C0.25 and Si0.4O0.4C0.2 have different de-
composition products despite the similar C content. Si0.25O0.5C0.25 should form
graphite and 𝛼-quartz in thermodynamic equilibrium. However, the same kinetic
arguments regarding the formation of mixed tetrahedra and the barriers to phase
separation as before apply. Consequently, similar trends can be observed for the
silica volume fraction, while the amount of free carbon slightly increases with in-
creasing temperatures across all precursors. As a result GrAts samples have the
lowest formation energies, followed by BF structures, while PB and Ats are very
similar.

3.2.2.3 Si0.25O0.25C0.5, Si0.125O0.125C0.75 and Si0.121O0.121C0.758

Si0.25O0.25C0.5, Si0.125O0.125C0.75 and Si0.121O0.121C0.758 have a 1:1 Si:O ratio and
contain excess carbon. Consequently, their thermodynamic equilibrium would be a
mixture of SiO2, SiC and graphite. Due to their high C content, all three have a
high free carbon volume fraction and low amount of silica. The observed qualitative
temperature dependence of both phases and the formation are similar between the
three and also Si0.25O0.5C0.25.

Si0.125O0.125C0.75 and Si0.121O0.121C0.758 have a very similar composition, allow-
ing to single out the influence of different PB precursors. As shown in Fig. 3.1b,
Si0.121O0.121C0.758 (RD684) contains closely stacked C6 rings, while they are fur-
ther apart in Si0.125O0.125C0.75 (SILRES604). This could lead to the existence of
a low barrier path for graphite formation. However, no significantly increased fee
carbon volume fraction, which would be expected in this case, is observed.

3.2.3 Relation to model structures
Two models for the microstructure of Si-O-C exist (cf. section 1.2.4.1). In the
first silica rich nanodomains and graphene like carbon layers form interpenetrating
networks.275,276 The second model suggests graphitic inclusions within a silica rich
matrix.277 Of all samples GrAts structures, corresponding to the second model, are
closer to thermodynamic equilibrium whenever graphite is expected as decomposi-
tion product. However, no formation of graphitic carbon was observed in the other
samples due to the slow kinetics within the system. Instead, small graphene like
clusters were forming spread out across the system and started to interconnect,
hinting to model one.

These observations lead to the conclusions depicted in Fig. 3.8. The models
represent different stages in the formation of Si-O-C. Short pyrolysis times or low
temperatures are not sufficient to overcome the kinetic barriers associated with
the formation of graphitic inclusions leading to structures as suggested by model
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Figure 3.8: Formation of free carbon phase in Si-O-C. Low pyrolysis temperatures and short
times lead to formation of graphene like carbon segregations as argued by Scarmi
et al.275 and Saha et al.276 Higher C mobility resulting from higher temperatures
allows the formation of graphite like agglomerates, which are consistent with
the mass fractal dimension as found by Widgeon et al.277 The figures show the
free carbon phase in Si0.25O0.25C0.5 PB samples annealed at 2000K (a), 3000K
(b) and at 3500K (c). The latter two were annealed and quenched with an
isotropic pressure of 10GPa to prevent the formation of pores. Following the
thermodynamic driving force, the Si-O-C system evolves from spread out graphene
like carbon to structures similar to the GrAts samples and finally nearly complete
phase separation with a single graphite like carbon agglomerate. MD timescales,
however, do not allow a direct observation of this evolution without very high
temperatures.

one. Longer times and higher temperatures allow the system to evolve towards
thermodynamic equilibrium by forming large graphitic agglomerates, corresponding
to model two.

3.3 Elastic properties
The investigation of structure-property relations in Si-O-C glass ceramics is difficult
due to the large amount of degrees of freedom within the structure. Here, the
samples from the previous chapter are employed to establish relations between
Young’s modulus (E) and different structural features, after testing the performance
of the potential in predicting elastic constants of exemplary crystalline structures.

3.3.1 Elastic tensor
Before calculating the elastic properties of Si-O-C samples, the ability of the fitted
ACEP to predict elastic tensors compared to experimental data was evaluated for
graphite, 𝛼-quartz and 𝛽-SiC. The results are shown in Tab. 3.2. In the case of
𝛼-quartz and 𝛽-SiC the potential and experimental data show excellent agreement.
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C11 C12 C13 C14 C33 C44 C66

graphite Exp.386,387 1060, 1109 180, 139 15, 0 36.5, 38.7 4, 5 440, 485
ACE 1013 239 55 201 56 387

𝛼-quartz Exp.388 85-88 5-8 11-19 17-19 105-108 57-59
ACE 86.4 13.3 11.8 17.1 99.6 55.1

𝛽-SiC Exp.389 360-393 142-154 149-256
ACE 384 136 226

Table 3.2: This table lists independent elastic constants of graphite, 𝛼-quartz and 𝛽-SiC cal-
culated with the ACEP and different experimentally determined values. Excellent
agreement is observed for 𝛼-quartz and 𝛽-SiC. For graphite C11 is well reproduced,
but directions depending on Van der Waals interactions between layers are strongly
overestimated.

Graphite C11 also agrees very well with the experimental data. However, other
directions, where Van der Waals interactions are relevant are overestimated. This
shortcoming presumably stems from the inability of the underlying SCAN DFT to
reproduce these interactions correctly. Due to the directional averaging effects and
presence of other phases in larger Si-O-C samples only a small error is expected
due to this difference.

3.3.2 Young’s modulus of Si-O-C samples

For Si-O-C samples E was determined from the elastic tensor as

𝐸 = 𝜇(3𝜆 + 2𝜇)/(𝜆 + 𝜇) (3.2)

with the Lamè constants 𝜇 = 𝐶44 and 𝜆 = 𝐶12. This expression is valid for isotropic
materials. The isotropy of samples was verified by comparing 𝐶𝑖𝑗 which should be
equivalent in symmetric materials. Differences were in the range of ±3 % for all but
GrAts structures, which sometimes were more anisotropic due to the orientation
of graphite flakes. For them, differences up to ±15 % were found. Errors were
mitigated by averaging over supposedly equal 𝐶𝑖𝑗.

Fig. 3.9 shows E as function of silica and free carbon volume fractions, as well as
its dependence of average amount of C atoms in SiO4−𝑥C𝑥 tetrahedra and density.
Across all samples E ranges from roughly 70GPa to 145GPa. The former value
corresponds to that of SiO2 glass,391 while the latter is slightly higher than experi-
mental values. However, the experimental data does not include compositions with
similarly large amounts of C as employed here. Consequently, we assume that this
relates to the lower possible amount of Si-C bonds, as discussed next. A strong cor-
relation of E is found for the silica volume fraction and the amount of C in mixed
tetrahedra. Silica glass has a low stiffness, correspondingly high fractions of silica
lead to a low E. The opposite can be observed for the relation to 𝑥 in SiO4−𝑥C𝑥.
SiC has a very high stiffness and E increases significantly with 𝑥. As a consequence
of this GrAts samples typically have a lower modulus than other samples with equal
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a b

c d

Figure 3.9: Young’s moduli (E) as function of silica volume fraction (a), average carbon
content in mixed SiO4−𝑥C𝑥 tetrahedra (b), free carbon volume fraction (c) and
density (d) The experimental data included in (c) is from Refs. 133, 256, 298–
301, as collected in Refs. 299 and 390.
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composition, because the C atoms are trapped within graphite inclusions and not
participating in SiC bonds.

Experimentally, a similar increase of the stiffness with the SiC fraction and C
within mixed bonds has been observed.298,390 These studies also found a decrease
with increasing free carbon, which is not seen in the data presented here. How-
ever, Stabler et al.299 demonstrated that the results can scatter massively based
on the measurement methods and sample preparation. Furthermore, Haseen and
Kroll285 recently simulated the effect of various structural properties on E (cf. sec-
tion 1.2.4.3). They observed a strong decrease of E with lower sample densities,
which in turn correlates strongly with higher amounts of free carbon. Consequently,
they argued that the effects are overlapping. Indeed, they found the opposite trend
for samples with the same density. Overall the findings match the observation of a
weak overall correlation in our data. Only when considering compositions individ-
ually the experimental downwards trend is found for all but Si0.25O0.5C0.25. Here,
the effect that more C atoms within the free carbon phase instead of mixed SiC
tetrahedra lead to a lower stiffness can be observed again.

3.4 Conclusion

A highly diverse set of Si-O-C structures was generated employing the AL tech-
niques implemented for MTPs and ACEP. Additional structures based on densely
packed atoms or bulk fragments were fed into the process to further increase the
covered configuration space. This dataset was employed to fit a highly nonlinear
ACEP, which accurately predicts energies and forces of Si-O-C glass-ceramics over
a wide range of compositions, temperatures and pressures. The employed nonlinear
embedding term is a computationally cheap way to increase the accuracy, compared
to increasing the number of basis functions.

With the potential Si-O-C samples based on different precursor configurations
were synthesized in cook and quench simulations. The influence of the precursor
structure and composition on the structure of the final glass-ceramic was inves-
tigated. Graphite agglomerates within the amorphous network of SiO4−𝑥C𝑥 are
thermodynamically more stable than graphene like sheets when excess carbon is
present in the composition. Even if not thermodynamically stable, i.e. in stoichio-
metric Si-O-C, the agglomerates were kinetically stabilized within MD timescales.
In the case of excess carbon being present, the formation of graphite agglomerates
requires significant reordering of the structure. In consequence, an interpenetrating
network of silica rich domains and graphene like fragments and sheets form as an
intermediate step during pyrolysis. High temperatures are required to observe the
evolution towards the graphitic agglomerates on MD accessible timescales.

Finally, the Young’s moduli of the samples were related to structural features
of Si-O-C. We found that SiO2 reduces the stiffness, while a high amount of C
atoms in mixed SiO4−𝑥C𝑥 tetrahedra increases it. The observed correlation with
the amount of free carbon phase is weak. This seems contradictory to experimental
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results at the first glance, but can be explained by an overlapping effect of density
and ’free’ C volume, which was not accounted for in the experimental data.
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4 Comparison of machine learning
interatomic potentials

Previous chapters have shown the development and application of ACEPs for two
complex material systems. Up to now, the ACE formalism was chosen based on
published accuracy vs speed comparisons of GAPs, SNAPs, MTPs, HDNNPs and
ACEPs.51,66 The results from51 are shown in Fig. 4.1. However, these assessments
were done for single element systems. Furthermore, the field of MLIPs is rapidly
evolving and recent developments such as message-passing and equivariant descrip-
tors were not included in those tests. This chapter presents a systematic evaluation
of HDNNP, MTP, ACE, NequIP, ALLEGRO and MACE IPs. They are compared
in regard to their accuracy, extrapolation behavior as well as computational and
data efficiency.

4.1 Fitting
4.1.1 Training data
The MLIPs were fitted to an Al-Cu-Zr dataset. It is an extended version of the
Cu-Zr training data previously described and produced using the same ’manual’
procedure of relaxing, then modifying glassy and crystalline structures. Crystalline

Figure 4.1: Comparison of different Cu and Si MLIPs with respect to error vs computa-
tional cost. The figure is reproduced from Ref. 51, where it is published under
the Creative Commons Attribution 4.0 International License http://creativecom-
mons.org/licenses/by/4.0/. It reuses data from Ref. 66 for the MLIPs besides
ACE.
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a b

Figure 4.2: Energy-volume relation of the Al-Cu-Zr dataset employed to test MLIPs. The
shown energy is the formation energy distance from the convex hull. (b) is a
magnified version of the area indicated by the black box in (a)

Al-Cu, Al-Zr and Al-Cu-Zr base structures were obtained from materials project.
Glasses were produced in short ab initio MD simulations. The test set was extended
similarly. Both datasets were filtered using the previously described criteria for Cu-
Zr. Fig. 4.2 shows the energy volume relation of the Al-Cu-Zr training data set.
Compared to the Si-O-C dataset it has a narrower distribution and the amount
of three element structures is rather low compared to Al-Cu, Al-Zr and Cu-Zr
structures. For these subsystems many intermetallic crystalline phases exist, while
only three crystalline phases containing all elements were available on Materials
Project when producing the training data.

4.1.2 Splitting of training data

To probe different error measures and the data efficiency of different MLIPs (cf.
section 4.2 and 4.3) the training data was split into ten parts. Data subsets con-
taining 10 % to 100 % of structures in 10 % steps were created. The data was added
in a cumulative manner, so that each subset with an increased amount of structures
also contains all structures included in the previous set.

4.1.3 Parameters

The fits were done with a variety of parameters specific to the type of MLIP. Poten-
tials like MTPs and ACEPs offer very straightforward ways to increase the accuracy,
by increasing the level or amount of basis functions. Even though other settings can
be changed, these are recommended and systematic, so they are modified here. On
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the other hand, MLIPs like HDNNPs can be optimized by changing the descriptor
functions or the architecture of the neural network. This section describes which
parameters were set for each potential type employed in the following comparison.

The MTPs were fitted with levels 14, 18 and 22. Level 22 was employed for
comparisons, if not otherwise noted.

ACEPs were fitted with Finnis-Sinclair like embedding of the form

𝐸𝑖 = 𝜒𝑖,1 + √𝜒𝑖,2, (4.1)

also used for the Cu-Zr potential. The potentials were fitted with 200, 400, 600 and
800 basis functions per element. If not otherwise noted the version with 800 basis
functions is employed in the tests.

MACE potentials were fitted with 0, 32, 64 and 128 invariant messages, where
the 128 message version was employed when not otherwise noted.

In the case of HDNNPs, the descriptor functions were set to defaults recom-
mended by Behler et al.68,392 in the RuNNer fitting code. Network architectures
with one and two hidden layers were tested. They contained 10, 15, 20, 5|5, 10|10
and 15|15 nodes, where n|m denotes two layers with n and m nodes in the first and
second layer, respectively. The 10|10 version was found to give best testing errors
and is applied if not otherwise noted.

For Allegro the parameters env_embedded_multiplicity (number of equivariant
features used to describe the atomic envionment), l_max (order of spherical har-
monics) and num_layers (layers of the neural network) were varied. Finally, they
were set to 8, 2 and 1, respectively, if not noted otherwise.

NequIPs were trained with different num_features (multiplicity of features), and
num_layers (message-passing layers). Data efficiency and extrapolation tests were
conducted with those parameters set to 16, 2 and 2, respectively.

Finally, GAPs could not be trained with anything more than 10 % of the train-
ing data due on an HPC system with 4TB available main memory, to their huge
memory requirements. Versions with 50, 100, 500, 1000 and 2000 sparse points, i.e.
environments to which structures are compared were fitted to this small database
for the runtime comparison. Consequently, their accuracy is worse than that of
other MLIPs, as seen in section 4.4.

4.2 Error measures
The first question that arises when comparing potentials, is which error measure
to employ in the evaluation. Up to now, the RMSE of energies or forces was
used. However, other error measures may give different results as discussed in the
following on the example of the mean absolute error (MAE) vs RMSE.

Fig. 4.3 shows MAEs and RMSEs for series of ACEPs with 200 and 800 basis
functions per element, i.e., 600 and 2400 in total. The energy training errors show
a slight increase with more training data, while the force errors stay roughly equal.
Such an increase points towards the accuracy limitations of the potential formalism
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a b

c d

Figure 4.3: MAEs and RMSEs for ACEPs with 200 and 800 basis functions in dependence of
the fraction of training data employed. The upper row shows energy, the lower row
shows force errors. Training errors increase when adding data, due to the increased
complexity, while testing errors go down due to a lower degree of extrapolation
necessary. Due to how the RMSEs is calculated it has higher sensitivity to outliers
with very high errors. Such outliers become more likely with more basis functions,
because the chance that some configuration space described by the function is
not covered is higher. Thus, the ACEPs with 800 basis functions have higher test
RMSEs, but lower MAEs.
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itself, because some configurations can not be described accurately within the same
potential. The testing error decreases with more data, because a large part of con-
figuration space is covered. Interestingly, the trends are not monotonic. Especially
the testing errors for 800 basis functions oscillate rather strongly. This presum-
ably originates in the minimization problem underlying the fitting procedure. The
system of equations is massively overdetermined and has multiple local minima.
Which one is found depends on the random seed employed to initialize the function
coefficients. In each of these minima different structures are described with higher
or lower accuracy. Due to the way the RMSE is calculated the effect of singular
very high error values is higher than in the MAE leading to stronger oscillations.
Single outlier structures with a high degree of extrapolation also become more likely
when increasing the basis functions. This leads to the observed higher RMSEs, but
lower MAEs for the potential with 800 basis functions.

Depending on the desired characteristics, the potential with 200 or with 800 basis
functions may be more suitable. Correspondingly, the RMSE or the MAE may be
the better error measure. If an increased reliability for potentially extrapolating
structures is required, the RMSE fits better. If single outlier structures are not
relevant, for example because one is interested in an average quantity over many
structures, the MAE is more suitable. A plethora of other errors measure could be
considered. For example, the maximum absolute error or some weighting scheme
for more or less important structures could be employed. An example for such a
weighting scheme is the weighting of structures based on formation energy distance
from the convex hull and magnitude of forces employed for the Cu-Zr ACEP (cf.
section 2.1.1). When considering such measures, however, there are infinite different
ways to define it. Consequently, the choice is always somewhat arbitrary and the
parametrization of an IP can not be optimal with respect to all error measures.

In the following the MAE will be employed to compare the potentials. As dis-
cussed single outlier structures have a lower weight in this measure, which also
decreases the influence of factors such as the random seed, making a comparison
between potentials more feasible.

4.3 Data efficiency

4.3.1 Testing errors

To compare the training data efficiency, i.e. the ability of the potential to accurately
reproduce test data with a certain amount of training data, The training dataset
was split into fractions as described in section 4.1.2. For each fraction the different
MLIPs were fitted and their MAE for the testing data set was calculated. The
results are shown in Fig. 4.4.

MACE and Allegro MLIPs have the best errors and are closely followed by
NequIP, MTPs and ACEPs, while the HDNNPs errors are significantly worse.
MTPs and ACEPs have very similar errors, but the MTPs seems to perform slightly
better for very low amounts of training data. The HDNNPs shows the strongest
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a b

Figure 4.4: Test energy (a) and force (b) MAE as function of the amount of training data used
to fit potentials. The best error is found for MACE and Allegro for all amounts of
data. NequIP, MTP and ACEP give very similar errors. HDNNPs show a strongly
decreasing error with more data, but on an overall higher level than the other
potentials, suggesting that they would benefit the most from adding even more
data.

decrease in testing error, suggesting that it could benefit stronger from more data
than other MLIPs. GAPs are not shown, because they could not be fitted with
more than 10 % of training data (cf. section 4.1.3).

4.3.2 Relation to training errors

For comparison the training set errors are shown in Fig. 4.5. Here, MACE and
Allegro still give the best results, but ACEPs are more accurate than MTPs and
HDNNPs still gives the worst accuracy. However, the observed trends are different
for the MLIPs. Errors of HDNNPs, MTPs and ACEPs stay approximately constant
or increase. This behavior was already seen and discussed in section 4.2. It can
be explained by the increased complexity within the training data, that cannot
be reproduced fully by the MLIPs, so that some structures are described worse
and the average error increases. The MACE, NequIP and Allegro training error,
however, decreases with more data, showing that the formalisms are able to describe
the increasing complexity of the full dataset. Consequently, we assume that the
minimization process employed in their fitting codes benefit from the increased
amount of data, allowing to find a deeper minimum of the loss function, i.e. a better
result for all data points. Another point to note is the large difference between
testing and training energy errors observed for the HDNNPs, especially for small
amounts of data. This difference is much larger than for the other potentials and
less pronounced in the case of force, hinting towards bad extrapolation capabilities.
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a b

Figure 4.5: Training energy (a) and force (b) MAE as function of the amount of training data
used to fit potentials.

4.4 Accuracy versus computational cost

This section treats the accuracy of the MLIPs in comparison to their computation
cost similarly to the analysis shown in Fig. 4.1. From the perspective of a user,
i.e. someone who neither develops fitting codes nor the fits the potentials, but
just wants to apply them in MD simulations, this is probably the most relevant
property. Here, their performance on CPUs, which are still dominant in most
supercomputers, and on GPUs, which become increasingly common, is evaluated.
The latter is currently only available for ACEP, NequIP, ALLEGRO and MACE.
For all potentials the runtime is evaluated using LAMMPS,316 with the KOKKOS package
for GPU acceleration. The employed hardware is a single core of an AMD Ryzen
5800X processor and an NVIDIA RTX 3060 GPU. For the test runs an FCC lattice
with Al equilibrium lattice constant was randomly populated with equal amounts
of Al, Cu and Zr and simulated at 300K for 100-1000 MD steps, depending on
the speed of the potential. When possible, the structure was replicated to contain
13500 atoms, however, memory intensive MLIPs required to reduce the system size
to as few as 500 atoms.

4.4.1 Performance on CPUs

The accuracy and speed of the MLIPs using a CPU is shown in Fig. 4.6. MACE
and Allegro offer a very high accuracy at the cost of slow evaluation times, with
Allegro being slightly slower. The ACEPs are the fastest, while also achieving
good accuracies comparable to those of MTPs at roughly one order of magnitude
faster evaluation. As already seen in previous sections, the accuracy of the tested
HDNNPs is slightly worse than that of other MLIPs. Regarding computational
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a b

Figure 4.6: Accuracy versus speed on CPUs for different MLIPs. Further to the left means
faster calculations and further down means higher accuracy. Energy (a) and force
errors (b) are shown. For comparison, the dashed line shows the computational
cost of an EAM potential.206

cost, they are comparable to MTPs. GAP evaluation times are comparable to
MACE, but offer a far lower accuracy. This low accuracy, however, is probably
caused by the small amount of training data that could be included in the fitting
process (cf. section 4.1.3), as other studies found them on par with MTPs and
ACEPs in this regard.51,66 The accuracy and speed of NequIPs span a rather large
range. Those with accuracies comparable to MTPs and ACEPs, are as expansive
as MACE MLIPs.

4.4.2 Performance on GPUs

Fig. 4.7 shows the same speed comparison as before, but only for those MLIPs with
an available GPU acceleration. ACEP, MACE and Allegro are implemented in
KOKKOS, while NequIP was only accelerated by using a GPU version of PyTorch,393

which is not as efficient. MACE, for example, is sped up by a factor of 12.2 with
KOKKOS, but only a factor of 4.2 when using it with GPU enabled PyTorch.

On GPUs a similar relative ranking of the MLIPs is found as on CPUs, but the
potentials are roughly one order of magnitude faster. The equivariant and message-
passing MLIPs gain a little more and ACE a little less. Importantly, the GPU
acceleration allows running ACEPs at speeds approaching that of non accelerated
classical potentials, making them feasible for similar long simulations.

It should be noted that the equivariant and message-passing MLIP tests required
to use smaller test structures with as few as 500 atoms to prevent memory issues.
This shows that such MLIPs have significantly reduced achievable system sizes on
a given computing architecture.
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a b

Figure 4.7: Energy (a) and force errors (b) versus speed on GPUs for different MLIPs. Com-
pared to the CPU versions MACE is more than an order of magnitude faster.
ACEPs gain a little less than an order of magnitude. The GPU accelerated version
of ACEP is only around one order of magnitude slower than the non accelerated
EAM, showing that fast MLIPs can be employed in similar simulations as classical
IPs. The MACE fit without messages is not shown, because GPU acceleration
currently works only for non-zero messages.

4.4.3 Extrapolation behavior

Finally, the extrapolation behavior of the MLIPs was tested using Al-Cu and Al-Zr
C14, C15 and C36 Laves phases. An extrapolation test using Cu-Zr Laves phases
was already done for the Cu-Zr potential in section 2.2.1, after which those struc-
tures were included as part of the training data. The C14 Al2Zr phase is excluded
from the extrapolation test, because it is a part of the crystalline training data com-
ing from materials project under id mp-2772. So in total 11 intermetallic crystalline
phases are used. Fig. 4.8 shows the energy MAE for the MLIPs in dependence of
the amount of training data used. Additionally, the error of a potential fitted
including the Laves phases is shown as dashed line.

ACEPs and Allegro extrapolate very well. NequIPs, MTPs and MACE have a
slightly higher error. The HDNNPs performs significantly worse than the other
MLIPs, again showing their need for large amounts of training data in the config-
uration space domain that is of interest.

4.5 Conclusion

Different types of MLIPs, namely HDNNP, GAP, MTP, ACEP, NequIP, Allegro
and MACE were compared. HDNNPs were found to have lower accuracies than
other potentials, while requiring lots of training data and not extrapolating well.
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Figure 4.8: Energy MAE for extrapolating Al-Cu and Al-Zr Laves structures. The dashed lines
indicate the error for potentials where the structures were included in the training
set. ACEPs and Allegro show the lowest error, followed by NequIPs, MTPs and
MACE potentials, which have comparable accuracy. HDNNPs have considerably
higher errors than the other potentials.

However, they are rather fast to evaluate with speeds comparable to MTPs. Here,
only second generation HDNNPs, i.e. without electrostatic interactions, were em-
ployed. For the treated Al-Cu-Zr system with mostly metallic bonding this should
not lead to large differences. For ionic systems or molecules, however, third and
fourth generation HDNNPs could offer advantages over other MLIPs.

GAPs were found to have similar speeds as MACE, i.e. much slower than the
non message-passing MLIPs. Furthermore, due to their extremely high memory
requirements in the training process, they could only be fitted to a tenth of the
data employed for other MLIPs. Their accuracy was comparable to HDNNPs,
which is probably caused by the small amount of data. MTPs offer convenient AL
capabilities, systematically improvable accuracy and comparatively high speeds.
The fitted ACEPs offer similar functionality. However, they are about one order
of magnitude faster when using CPUs and two orders when using GPUs at similar
accuracies. Furthermore, they fared better in the extrapolation tests.

The equivariant Allegro and the equivariant + message-passing MACE potentials
have a superior accuracy but come at the cost of slow evaluation time and very high
memory need, which puts considerable constraints on system size and simulatable
time. The Allegro MLIPs extrapolated very well, while MACE was on par with
MTPs and NequIPs. Despite also employing equivariant descriptors and message-
passing the accuracy of NequIPs was similar to that of MTPs and ACEPs, but at
much higher evaluation times.

Overall, we find ACEPs to be suitable for bulk materials with mainly metallic or
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covalent bonding, a posteriori justifying their use in chapters 2 and 3. For strongly
ionic systems a reevaluation with new HDNNPs would be of interest. The novel
equivariant and message passing Allegro and MACE MLIPs are beneficial in cases
where it is clear a priori that simulation times and sizes are small, because they
offer a great accuracy at the expanse of high computational costs.
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5.1 Summary
In this thesis Atomic Cluster Expansion potentials (ACEPs) for the complex multi-
element systems Cu-Zr and silicon oxycarbide (Si-O-C) are developed and applied
to investigate their structural, mechanical and thermodynamical properties. Fur-
thermore, different machine learning interatomic potential (MLIP) formalisms are
evaluated. This summary concisely answers the corresponding research questions
raised in section 1.3. The treated material systems are representatives of two ma-
jor material groups, metals and glass-ceramics. In the former undirected metallic
bonding dominates, while interatomic interactions in the latter are of covalent-ionic
nature. Here, MLIPs show a big advantage compared to classical interatomic po-
tentials (IPs). Due to their flexible functional form both materials can be treated
with the same formalism while still achieving very high accuracies.

The developed ACEPs for the Cu-Zr system is able to describe the system over
the whole compositional range, including boundary phases, intermetallics and amor-
phous structures. A phase diagram calculated with the potential using thermody-
namic integration shows qualitatively good agreement with experimentally deter-
mined versions, but also severely underestimated melting points. However, as shown
by a comparison to melting points directly determined by density-functional theory
(DFT), the underlying issue here is the quality of training data. This points out
one of the largest challenges of MLIPs, they inherit all inaccuracies of underlying
quantum mechanical methods. The predicted amorphous structure is made of many
local motifs, while classical IPs result in a short-range order (SRO) dominated by
full icosahedron (FI) ordering. Nonetheless, a similar shear localization is observed
in tensile tests. In a glass-crystal composite under tensile load, a martensitic phase
transformation of a B2 inclusion to the B19’ phase is observed. The phase change
seems to occur in order to accommodate shear strain.

Due to the flexibility of MLIPs compared to classical IPs the main task in the
fitting process shifts from the choice of functional forms to the generation of rep-
resentative training data. In the case of Cu-Zr this was done by handcrafting a
variety of pristine and defective amorphous and crystalline structures. For Si-O-C,
however, the fitted ACEP is the first one fitted to glass-ceramics, which is publicly
available. Furthermore, no crystalline structures including all three elements exist
making training data generation more complicated. Here, an active learning (AL) is
employed to extensively sample configuration space. This sampling can even start
from randomized atomic or molecular arrangements and still yield representative
structural elements for the bulk phase (cf. section 3.1.1), opening the possibility to
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create training data without a priori knowledge of a system. The potential predicts
microstructures containing motifs similar to expected decomposition products to
be energetically favorable. However, it also shows that an interpenetrating network
of graphene like carbon layers and SiO4−𝑥C𝑥 tetrahedra is formed at low pyrolysis
temperatures due to slow kinetics, while larger graphitic inclusions in a SiO4−𝑥C𝑥
tetrahedra matrix form at elevated temperatures. These states correspond to two
microstructure models proposed in literature. The calculation of Young’s moduli
for multiple Si-O-C samples reveals a strong dependence on Silica volume fraction
and Si-C bonds, where the former leads to a lower and the latter to a higher stiff-
ness. The amount of graphitic or graphene like carbon, on the other hand, has a
low impact.

Different MLIPs are compared for Al-Cu-Zr training data. Here, the mean abso-
lute error (MAE) was preferred as error measure over the root mean square error
(RMSE), because it puts a lower emphasis on singular high error values. High-
Dimensional Neural Network Potentials (HDNNPs) and Gaussian Approximation
Potential (GAP) had the worst errors, but contrary to the other MLIPs they would
probably benefit from increasing the amount of training data. Here, the HDNNPs
was limited by the amount of training data available, while the GAPs could not
be trained to more than 10 % of the dataset due to the giant amount of required
memory.

The error of MACE and Allegro, which use equivariant descriptors, and in the
case of MACE message-passing, is superior compared to the other MLIPs. However,
this increase in accuracy comes with around two to three orders of magnitude slower
computation compared to ACEPs, which are the fastest test candidates. All poten-
tials with a GPU accelerated variant massively profited from it, gaining around one
order of magnitude speedup. In regard to extrapolation to untrained intermetallic
phases the Atomic Cluster Expansion (ACE) and Allegro slightly outperform other
MLIPs.

5.2 Outlook

As shown in this work, MLIPs are a very helpful tool for the modelling and sim-
ulation of complex materials. Due to the ongoing developments in the field the
evaluation of different MLIPs in the last part of this thesis should be considered
as snapshot of the current state. Future scientific and technological advancement
are likely to result in improved accuracies and significant computational speed-ups.
Exemplarily, calculation with 32- or 16-bit floats could lead to significant speedups
for MLIPs with some kind of neural network architecture on GPUs. The inclu-
sion of charge and magnetism models could further improve the applicability of
MLIPs for ionic or ferromagnetic systems. Some approaches in this direction are
4th-generation7 and spin-dependent111 HDNNPs or extension of ACEP to general
multidimensional features,394 which has recently been demonstrated to describe
magnetism in Fe.395 Similar extensions also exist for Moment Tensor Potentials
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5.2 Outlook

(MTPs).396

New formalisms could improve upon the ACEPs developed for Cu-Zr and Si-O-
C. By publicly providing not only the fitted potentials, but also the training data
employed, the possibility to simply fit another MLIP is opened up for future re-
searches. Furthermore, this enables the extension of the training data with other
elements. Interesting candidates for Cu-Zr would be Al, which is already partly
done for the testing of different MLIPs, and Ti due to their impact on the forma-
tion of B2-crystallites.163 This could be further combined with Ni to investigate
the formation of NiTi phases observed in Cu-Zr-Ti-Ni glasses.397 In the case of
Si-O-C an extension with H would be beneficial to attempt the simulation of py-
rolysis reactions. For the usage in batteries the interaction with Li, Na and K is of
interest.267,380

Considering the observed problems in the calculated Cu-Zr phase diagram, the
current MLIPs have already reached the point where underlying DFT training
data and not the formalism itself can be a limiting factor in the achievable ac-
curacy. Here, interesting approaches are the training of MLIPs to experimental
data398,399 and ’transfer learning’ with a relatively small amount of coupled cluster
calculations.400

The unprecedented accuracy of the Cu-Zr ACEP over a wide compositional and
structural range offer new possibilities for the investigation of glass-crystal matrix
composites. Here, a B2-crystallite in a glassy matrix under tensile load was inves-
tigated. However, different orientations, distributions of multiple inclusions other
shapes or laminates, as well as other intermetallic phases are of interest for the un-
derstanding of shear band (SB) formation and propagation in the material.250,251,401
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A Appendix

A.1 Additional material for chapter 2

Name MP ID

Cu51Zr14 1216441
CuZr2-t 193
CuZr2-c 583800
CuZr2-m 1077372
CuZr3 580287
Cu8Zr3 1195821
Cu10Zr7 1188077
CuZr-B2 2210
CuZr-B33 1080022
CuZr-B19’ 1067210
Cu2Zr 1072655
Cu3Zr 1188040
Cu5Zr 30603

Table A.1: Names used in this work and corresponding Materials Project IDs for intermetallic
Cu-Zr structures.

Figure A.1: Cu-Zr phase diagram calculated with the ACEP. In this version the ground state
energies are not shifted.
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A Appendix

B C11 C12 C44
lattice DFT ACE DFT ACE DFT ACE DFT ACE

CuFCC 139 149 180 205 119 115 76 95
ZrHCP 98 114 158 209 58 100 23 59
ZrBCC 89 116 65 104 100 142 32 2
Cu5Zr 137 144 205 200 103 109 66 55
Cu51Zr14 136 140 217 215 97 103 56 52
Cu3Zr 129 129 179 158 99 87 44 40
Cu8Zr3 133 144 206 207 104 116 58 44
Cu2Zr 127 138 235 242 94 97 53 43
Cu10Zr7 127 147 201 200 80 94 53 46
CuZr-B2 121 133 149 178 107 126 43 43
CuZr-B33 120 128 146 138 99 106 52 39
CuZr-B19’ 121 127 195 106 90 155 12 22
CuZr2-t 112 135 165 233 74 99 56 63
CuZr2-c 111 116 152 160 91 92 21 27
CuZr2-m 110 113 179 122 75 80 31 33

Table A.2: Calculated bulk moduli and elastic constants C11, C12, C44 for Cu-Zr structures
with a formation energy less than 0.1 eV/atom above the convex hull. All values
are in GPa.

Figure A.2: The results of polydisperse Voronoi tessellation depends on the relative radii,
which are adjustable parameters. In this work the atomic radii 1.35Å and 1.55Å
were used for Cu and Zr, respectively. However, often the exact employed values
are not given and one could also set ionic radii for example. Consequently, the
sensitivity was tested. This figure shows the population of Voronoi polyhedra for
the Cu64Zr36 metallic glass (MG) sample also employed in the main text, but for
different Cu radii. No major changes that would influence the conclusions of this
work occur even for significantly different radii.
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A.2 Additional material for chapter 3

A.2 Additional material for chapter 3

Figure A.3: ACEP and reactive force field (ReaxFF) have a similar computational cost. The
speed was evaluated using LAMMPS on one core of an AMD Ryzen 5800X processor
and on an NVIDIA RTX 3060 GPU. A Si-O-C structure with 80896 atoms was
simulated. Here, the ACEP is slightly faster. However, the runtime of both
potential types depends on several factors such as the amount of basis functions,
employed cutoff or charge equilibration scheme. Consequently, other tests could
show different results.

Figure A.4: After annealing for 1ns silica and free carbon volume fractions are in steady state
even at 2000K.
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