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Abstract
Recent studies have shown that precipitation hardening effectively enhances
the mechanical quality factor of ferroelectric material. In this work, Li-doped
NaNbO3, amaterial systemwith elliptical precipitates is investigated.We present
a mechanical model to determine energetically stable precipitate shapes by
minimizing the total energy, consisting of elastic and interface energy. Further-
more, we investigate the influence of external loads on the precipitate topology.
Correct elastic constants as well as lattice misfits for the simulation are pro-
vided. The shapes determined from finite element simulations agree well with
observed results.

1 INTRODUCTION

Ferroelectric materials are of great importance for a variety of sensors and actuators, relating electrical, and mechanical
fields in technical applications such as microelectronics, medical diagnostics or electronic devices in automobile industry
[1]. Lead Zirconate Titanate (PZT) is a prominently used material because of its relatively large coupling coefficients and
good performance at high temperatures. However, due to the well known toxicity of lead, the replacement of PZT is a
topic of active research. Recent studies [2–4] investigate Li-doped NaNbO3 as a lead-free alternative. Furthermore, these
studies propose the technique of precipitation hardening, which is well known from metal processing. For application in
ferroelectric material, supersaturated, orthorhombicNaNbO3 is subjected to an aging process, which leads to the precipi-
tation of hexagonal LiNbO3 in the matrix. This effectively hinders domain wall motion due to pinning at the precipitates,
leading to a reduced heat loss and thus higher mechanical quality factor of the new ferroelectric material. In ref. [4] the
morphology and topology of thematrix-precipitate-systemwas investigated. However, determining the optimal shape and
size of the precipitates remains an open question. This paper presents a mechanical model to determine energetically sta-
ble precipitates for the given material system. Furthermore we are interested in the influence of external mechanical load
on the precipitate topology. The model is introduced in Section 2. To be self-consistent, we derive the elastic constants in
Section 2.2 and quantify the lattice misfit of the crystalline phases in Section 2.3.

2 GEOMETRY OPTIMIZATION

2.1 Mechanical model

The schematic model for different two-dimensional matrix-precipitate systems is given in Figure 1. The grey lines indicate
the pseudocubic axis system of thematrix material. The total energy consists of an elastic and an interface contribution, as
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F IGURE 1 Matrix-precipitate-system for (A) variant I and (B) variant II as described in ref. [4]. (C, D) Models for systems under load
with precipitate orientated parallel or perpendicular to load direction. Grey lines indicate the pseudocubic axis of the matrix material.

well as the potential of the external forces. We define a two-dimensional body that comprises of an infinite matrix domain
M and a precipitate domain P, with interface Γ. We assume plane strain conditions. Due to the latticemisfit of the different
crystal systems, an eigenstrain field 𝜺0 is present in the precipitate domain, as derived in Section 2.3. Furthermore, tomodel
the interatomic forces between the two materials at the interface, we define a surface energy density 𝛾 on Γ. The internal
energy then reads

𝐸int = ∫P∪M
1
2
(𝜺 − 𝜺0) ∶ ℂ (𝜺 − 𝜺0) d𝐴 + ∫Γ 𝛾d𝑠, (1)

with 𝜺 as the infinitesimal strain tensor, ℂ = ℂ(�⃗�) the local fourth order stiffness tensor and d𝐴 and d𝑠 the infinitesimal
surface and line element respectively. The stiffness tensor distinguishes between matrix and precipitate phase such as

ℂ(�⃗�) =

{
ℂPC for �⃗� ∈ M
ℂ̃LN for �⃗� ∈ P , (2)

with the respective tensors derived in Section 2.2. The interface energy density is assumed to be isotropic and set to the
constant value of

𝛾 = 0.38
J

m2
. (3)

If external loads are present on the boundary 𝜕M, they contribute to the total energy as

𝐸ext = −∫𝜕M 𝑡 ⋅ �⃗� d𝑠, (4)

with the traction vector 𝑡 and the displacement �⃗�. Thus, the total energy of the system reads

𝐸tot = 𝐸int + 𝐸ext. (5)

From ref. [4], the cross section of the precipitate is determined to �̃� = 8042 nm2. By restricting the cross section 𝐴 of
the precipitate to a fixed value 𝐴 = �̃�, Equation (5) presents a minimization problem with the shape of the precipitate as
degree of freedom. In this work, we restrict the precipitate to be purely elliptic and characterize it by its normalized aspect
ratio

𝑚 =
𝑎 − 𝑏
𝑎 + 𝑏

, (6)
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where 𝑎 and 𝑏 denote the semi axis of the ellipsis. A finite element model is used to compute 𝐸tot of Equation (5) for a
given aspect ratio. The aspect ratio𝑚 is adjusted by an optimization routine to yield the optimal value𝑚opt. In particular,
we make use of the finite element library from the FEniCS Project [5–14] as well as the optimization algorithm COBYLA
provided by the SciPy library [15]. Formesh generation, we use the open source finite elementmesh generator GMSH [16].

2.2 Elastic constants

We are focusing on the material presented in ref. [4]. Here, hexagonal LiNbO3 (LN) precipitates out of the orthorhombic
NaNbO3 matrix (NN). For convenience, NN is transformed to a pseudocubic crystal system (PC). The transformation (7)
is formulated in Miller indices by denoting the parallelism of (hkl) crystal planes and [hkl] directions with a “∕∕”-symbol:

[100]NN∕∕[100]PC, (7a)

(002)NN∕∕(011)PC, (7b)

(020)NN∕∕(011)PC. (7c)

Due to the different crystal systems and lattice parameters of PC and LN, the precipitation happens along lattice planes
that yield the lowest lattice misfit at the interface. From a mechanical point of view, the lattice of LN is rotated in space to
fit into the NN lattice. As the pseudocubic matrix offers three dimensional symmetry, multiple precipitation planes can be
identified. Thus, in a two-dimensional view, four different variants of precipitates were observed in ref. [4]. In this work,
we focus on the crystallographically equivalent variants I and II. Their orientation in space is given by relation (8).

[100]PC∕∕[241]LN, (8a)

(011)PC∕∕(210)LN, (8b)

(011)PC∕∕(014)LN. (8c)

Section 2.3 presents the calculation of the lattice misfit corresponding to relation (8). Due to the anisotropic misfit, the
shape of the precipitate appears to be plate-like with an elliptic cross section projected along [100]PC. In this plane, the
two crystallographically equivalent precipitate variants are inclined by 45◦ and perpendicular to each other, as sketched
in Figure 1A,B. For the computation of the mechanical energy introduced in Section 2, one must transform the elastic
constants of LN to the PC system, whose basal vectors are parallel to the global coordinate system. In crystallography,
the basal vectors of a unit cell are denoted by �⃗�, 𝑏, and 𝑐. The stiffness for pure LN with respect to �⃗�LN, 𝑏∗LN, 𝑐LN, where
𝑏∗LN = 𝑐LN × �⃗�LN, can be found in ref. [17] as

ℂ
LN
=

⎛⎜⎜⎜⎜⎜⎜⎝

𝐶11 𝐶12 𝐶13 𝐶14 0 0
𝐶11 𝐶13 −𝐶14 0 0

𝐶33 0 0 0
𝐶44 0 0

sym. 𝐶44 𝐶14
𝐶66

⎞⎟⎟⎟⎟⎟⎟⎠
, 𝐶66 =

𝐶11 − 𝐶12
2

. (9)

Voigt notation is used denoted by an underbar. The plane relations (8) call for a change of basis for the stiffness tensor (9)
to transform the elastic constants of LN to the PC system. Fundamental basics on tensor algebra can be found in ref. [18].
The relations (8) are casted into a system of equations such as

⎛⎜⎜⎝
1 0 0
0 −1 1
0 1 1

⎞⎟⎟⎠
⏟⎴⎴⏟⎴⎴⏟

𝑵

= 𝑨−1
⎛⎜⎜⎝
2 −2 0
4 1 1
1 0 −4

⎞⎟⎟⎠
⏟⎴⎴⎴⏟⎴⎴⎴⏟

𝑳

, (10)



BOHNEN and MÜLLER 4 of 8

where𝑨 = 𝑳𝑵−1 presents themapping of LN basal vectors to the PC system. As the transformation for the stiffness tensor
requires an orthonormal basis we perform

�⃗� = 𝑨 ⋅
⎛⎜⎜⎝
1
0
0

⎞⎟⎟⎠→ ̃⃗𝑎 =
1||�⃗�|| �⃗� (11a)

𝑐 = 𝑨 ⋅
⎛⎜⎜⎝
0
0
1

⎞⎟⎟⎠→ ̃⃗𝑐 =
1||𝑐||𝑐 (11b)

̃⃗
𝑏
∗
= ̃⃗𝑐 × ̃⃗𝑎. (11c)

and compose the transformation matrix as

�̃� =

(
̃⃗𝑎
̃⃗
𝑏
∗
̃⃗𝑐

)
. (12)

The transformation of the fourth order stiffness tensor in index notation reads

ℂ̃ijkl = �̃�mi�̃�nj�̃�ok�̃�plℂmnop, (13)

which yields the final set of elastic constants for LN with

ℂ̃
LN
=

⎛⎜⎜⎜⎜⎜⎜⎝

197.15 54.32 73.26 3.8 −0.15 6.28
206.39 75.47 −0.13 −6.78 5.84

205.78 17.32 −1.65 −6.05
68.47 −3.13 −2.32

sym. 72.22 −7.13
62.82

⎞⎟⎟⎟⎟⎟⎟⎠
GPa. (14)

As the pseudocubic matrix coincides with the global coordinate system, no transformation is required. We chose the
values from [19] and assemble the stiffness tensor as

ℂ
PC
=

⎛⎜⎜⎜⎜⎜⎜⎝

235 110 110 0 0 0
235 110 0 0 0

235 0 0 0
77 0 0

sym. 77 0
77

⎞⎟⎟⎟⎟⎟⎟⎠
GPa. (15)

For the investigation of the influence of external loads, the material system faces another in-plane rotation with

𝑹 =
⎛⎜⎜⎝
cos 𝜑 − sin 𝜑 0
sin 𝜑 cos 𝜑 0
0 0 1

⎞⎟⎟⎠ , (16)

with 𝜑 ± 45◦ as can be seen in Figure 1C,D. The following modeling is performed in two dimensions only and we select
the 2-3-plane to model the mentioned precipitate variants I and II.

2.3 Lattice misfit

To model the lattice misfit, we first compute the interplanar spacing of the crystal planes of the two phases meeting at
the interface, widely denoted as the d-spacing. We use the formulas provided by ref. [20], which read for orthorhombic
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TABLE 1 Interplanar spacing of matrix and precipitate phase.

PC LN 𝜹

𝑎 3.8721Å 5.1501Å
𝑏 3.9046Å 5.1501Å
𝑐 3.9046Å 13.8639Å
𝑑011 2.7610Å
𝑑210 2.5750Å –0.0673
𝑑014 2.7368Å –0.0088

Abbreviation: PC, pseudocubic crystal system.

systems

1

𝑑2
=
ℎ2

𝑎2
+
𝑘2

𝑏2
+
𝑙2

𝑐2
(17)

and for the hexagonal systems

1

𝑑2
=
4
3

(
ℎ2 + hk + 𝑘2

𝑎2

)
+
𝑙2

𝑐2
, (18)

where 𝑎, 𝑏, 𝑐 represent the lattice parameters of the respective unit cell and ℎ, 𝑘, 𝑙 the Miller indices of the plane under
consideration. According to ref. [21], the lattice misfit 𝛿 is computed as the relative difference of the precipitate spacing
with respect to the matrix spacing:

𝛿 =
𝑑P − 𝑑M
𝑑M

. (19)

The lattice parameters of pseudocubic NN and hexagonal LN are given in ref. [4]. The interfacial misfits for the lattice
planes given in the plane relations (8) are presented in Table 1. From the misfit values, the eigenstrain tensor with respect
to the semi-major and semi-minor axes of the ellipsis is composed and assumed constant in the precipitate domain:

𝜺LN =

(
−0.0673 0
0 −0.0088

)
. (20)

This tensor needs to be transformed to the global coordinate system with the transformation formula:

𝜀0ij = 𝑅ik𝑅jk𝜀LNkl , (21)

with 𝑅ij from Equation (16). This yields the final eigenstrain tensor with respect to the PC system

𝜺0 =

(
−0.03805 0.029
0.029 −0.03805

)
. (22)

3 SIMULATION RESULTS

3.1 Energetically stable precipitate shapes

Themodel is verified by simulating a systemwith variant I like in Figure 1A. Starting from a circular inclusion, the dashed
line in Figure 2 shows the evolution of the aspect ratio𝑚 versus the iteration steps. Larger negative values for𝑚 indicate
an elongation of the ellipsis along its b-axis, with a final value 𝑚opt = −0.870, which is equivalent to 𝑏∕𝑎 = 14.38. This
agrees well with the measured value of 14 in ref. [4]. The solid lines show the evolution of the energy contributions versus
the optimization steps. Due to the anisotropic eigenstrain, precipitates with large aspect ratios are energetically more
favorable which can be seen from the plot of the total energy, which is closely related to the elastic energy reduction.
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F IGURE 2 𝐸el: elastic energy, 𝐸int: interface energy, 𝐸tot: total energy,𝑚: aspect ratio versus iteration step for precipitate variant I.

F IGURE 3 Total energy curves for matrix-precipitate-systems for (A) free boundaries, (B) loaded boundaries.

Increasing the aspect ratio goes along with an increase of interface energy. However, all curves are reaching stationary
values towards the end of the optimization, indicating that an energetically stable precipitate shape was found.

3.2 Influence of external loads

To investigate the influence of external loads on the precipitate geometry, we model two extreme cases in which the pre-
cipitate is oriented parallel or perpendicular to the load direction, as given in Figure 1C,D. For this purpose, the material
properties are subjected to an in-plane rotation as described in Section 2.2. We repeat the simulations for different precip-
itate sizes and compare the total energy curves. Figure 3A yields that in the load-free case, the total energies of horizontal
and vertical precipitate are equal. This agrees well with the observation of the crystallographically equivalent precipitate
variants I and II in ref. [4]. However, if the system faces a vertical compression, the precipitate variant that is aligned
perpendicular to the load direction appears to be energetically more favorable due to a lower total energy. Note that the
sign of the energy changes due to the contribution of the work of the external forces. This holds for all precipitate sizes,
as the energy difference becomes even larger with growing precipitate size. This can be attributed to a growing elastic
energy contribution of the anisotropic eigenstrain field, which competes with the energy of the external forces. If the
principle strain direction of the greatest principle strain is aligned parallel to the load direction, the configuration is more
favorable.
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4 CONCLUSION

Motivated by the precipitation hardening technique for application on ferroelectric material, the present work proposes
a model to compute energetically stable precipitate shapes by finding the minimal mechanical energy for a free aspect
ratio. In particular, we investigate Li-doped NaNbO3, for which elliptical precipitates were observed in previous studies.
In principle, the approach presented in this work can be applied to other crystalline material as well. Based on a well
defined morphology and crystal orientation for the exemplary material, this work includes an approach for a correct
definition of elastic constants as well as latticemisfit. The anisotropic eigenstrain resulting from the latticemisfit is mostly
responsible for the optimal aspect ratio of the precipitates and the determined shape agrees well with the observed results.
Furthermore, if a load is applied to the system, the model yields that precipitates are energetically more favorable if the
principle strain direction is aligned parallel to the load direction.
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