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Symmetric Electron Transfer Coordinates are Intrinsic to Bridged
Systems: An ab Initio Treatment of the Creutz–Taube Ion
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Abstract: A long-standing question in electron transfer
research concerns the number and identity of collective
nuclear motions that drive electron transfer or local-
isation. It is well established that these nuclear motions
are commonly gathered into a so-called electron transfer
coordinate. In this theoretical study, we demonstrate
that both anti-symmetric and symmetric vibrational
motions are intrinsic to bridged systems, and that both
are required to explain the characteristic shape of their
intervalence charge transfer bands. Using the properties
of a two-state Marcus–Hush model, we identify and
quantify these two coordinates as linear combinations of
normal modes from ab initio calculations. This quantifi-
cation gives access to the potential coupling, reorganiza-
tion energy and curvature of the potential energy
surfaces involved in electron transfer, independent of
any prior assumptions about the system of interest. We
showcase these claims with the Creutz–Taube ion, a
prototypical Class III mixed valence complex. We find
that the symmetric dimension is responsible for the
asymmetric band shape, and trace this back to the offset
of the ground and excited state potentials in this
dimension. The significance of the symmetric dimension
originates from geometry dependent coupling, which in
turn is a natural consequence of the well-established
superexchange mechanism. The conceptual connection
between the symmetric and anti-symmetric motions and
the superexchange mechanism appears as a general
result for bridged systems.

Introduction

Electron redistribution is at the core of every chemical
transformation. For instance, electron transfer takes place in
intermolecular redox events during catalysis, along enzy-
matic charge transport chains, or as intramolecular events in
some mixed-valent compounds. Electron redistribution is
associated with a change in nuclear configuration, and
models are needed to describe, rationalize and predict these
changes.
The simplest model might treat the transfer of a single

electron between two states, each associated with the
electron occupying one of two redox sites. The central
model for electron transfer (ET), Marcus–Hush theory (an
extension of the Marcus theory of electron transfer and their
rates for strongly coupled systems, see Figure 1c),[1,2] covers
this scenario. A complete model would identify the specific
nuclear motions associated with ET, mapping out the
relevant electronic states along these ET coordinates. It
would also handle coupling between these states, which
changes the observables and properties of the system.
Therefore, a complete model would explain the experimen-
tal behavior of systems undergoing electron transfer. Of
course, to validate any theoretical model, one needs a
suitable reference compound which encompasses many or
all of the testable aspects of the model.
The Creutz–Taube ion[3] (CTI, (μ-pyrazine)[RuII/III-

(NH3)5]2
5+) was the first molecule purposefully synthesized

to study the transfer of single electrons,[4–9] and has served as
a benchmark for theoretical models[10–12] and quantum
chemical calculations[13–18] ever since. Its mixed valence state
is stabilized relative to disproportionation by strong coupling
between the metal centers. This strong coupling between the
metal centers and the intramolecular nature of the ET
pathway together mean that the nuclear rearrangements
associated with ET will be dominated by those of the
complex, simplifying what must be considered in applying a
model.
The CTI was found to have an intervalence charge

transfer (IVCT) absorption band in the near infra-red
region, Figure 1a.[3] Its position and shape have long been
used as the main tool to better understand the electronic
nature of the CTI, specifically its degree of localization or
delocalization.[6,7] While it is firmly assigned as a Class III
system (i.e. it has a delocalized electronic structure in the
framework introduced by Robin and Day),[19] detailed
discussions have also established that it must lie near the
Class II/III borderline,[20] meaning that it possesses proper-
ties of both localized and delocalized electronic structures.
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Basic theories for linking IVCT band shapes with the
underlying electronic structure were developed by
Mulliken[21] and extended by Hush.[22,23] These works were
applied to mixed-valent systems, as classified by Robin and
Day.[19] Information about the electronic coupling was
extracted from the position and width of the IVCT band
using the Mulliken–Hush treatment.[24] This initial treatment
assumed a Gaussian-shaped band, although many real
systems, including the CTI, exhibit an asymmetric IVCT
band shape (Figure 1a–b). In order to resolve this discrep-
ancy, alternative explanations for the shape of the IVCT
band and, in turn, the interaction between the redox centres
were introduced. Two approaches have been considered:
(a) the IVCT band can either be reconstructed from the
adiabatic potential energy curves, or (b) computed from a
quantitative description of the interaction of diabatic states.
In the former case (a), the IVCT band is computed semi-

classically[25,26] (i.e. the nuclear kinetic energy is neglected,
and the vibrational levels are unknown) using the nuclear
ensemble method[27] on the adiabatic potentials from the

Marcus–Hush model.[1,2] These surfaces are drawn along an
electron transfer coordinate (q, see Figure 1c), which is
conceived of as an anti-symmetric motion involving the two
redox sites of a mixed-valent system. One collects the
excitation energies along this coordinate into an absorption
band and weights them by the Boltzmann distribution on
the ground state surface. However, because the vibrational
levels are not included, the shape of the IVCT band cannot
be reproduced if its origin is vibronic.
In the latter case (b), the IVCT band is obtained from a

quantitative description of coupled diabatic states and the
adiabatic states they produce.[11] A proper quantum mechan-
ical description (including also the kinetic energy of the
nuclei) can be achieved with vibronic coupling models.[28,29]

A specific vibronic coupling model designed to describe the
IVCT transition in the CTI was proposed by Piepho, Krausz
and Schatz, the so-called PKS model.[10] The model has three
parameters related to the postulated diabatic states, an
interaction between the monomers (coupling term), a
change of bond lengths upon oxidation/reduction, and the
frequency of the totally symmetric stretch of the monomer.
Because the diabatic states for a mixed valent system cannot
be known exactly, they are approximated by an isolated
monomeric unit. In the case of the CTI ion a logical choice
is [Ru(NH3)6]

3+. The PKS approach proposes constructing
the electron transfer coordinate as the anti-symmetric
combination of the monomer stretches.
Hush[30,31] criticized the PKS model for its exclusion of a

symmetric dimension. He expected the IVCT to involve an
antibonding orbital of the bridge, producing a symmetric
distortion of the bridge. As a consequence, the minimum of
the IVCT state would be offset along a symmetric
dimension, accounting for this distortion. Another point of
criticism was that the anti-symmetric dimension was incom-
pletely described by monomers, because it should also
include vibrations of the bridging unit.
On the other hand, Ko and Ondrechen[12,32] reasoned

that, in a two-state model, the symmetric dimension should
remain decoupled from the electronic motion and not affect
the absorption band shape. As an extension of the two-state
model, they proposed to add a third diabatic state associated
with the isolated bridge. This results in a three-mode three-
state vibronic coupling model that is consistent with Hush’s
interpretation. It contains up to five parameters that need to
be determined from spectroscopic data.[12,32]

An alternative idea by Reimers and Hush[11] was to
introduce a two-state vibronic coupling model where the
potential coupling depends linearly on the symmetric
coordinate. This model accounts for multiple anti-symmetric
and symmetric modes, however it was not yet possible to
identify their precise nature and relation. In a similar
fashion, the PKS model was later extended to account for
multiple modes, including also the symmetric one.[33–35]

These refinements adapted the vital features of the models
proposed by Ko and Ondrechen[12] and addressed the
criticism of Hush.[30,31]

All vibronic coupling models discussed above success-
fully describe the general IVCT band shape of the CTI, even
though they build on different underlying assumptions.

Figure 1. a) Experimental spectrum of the Creutz–Taube ion (structure
shown as an inset), adapted from Ref. [3] with permission. b) Simu-
lated IVCT band of a Class III system using the nuclear ensemble
approach presented in Ref. [25]. Gray dashed lines schematically
represent vibronic transitions. c) Marcus–Hush model depicting a
strongly coupled (Class III) system; q denotes the electron transfer
coordinate. Adiabatic potential energy curves are depicted by orange
and blue solid lines. Diabatic surfaces are indicated by dashed black
lines. Vab is the potential coupling between the diabatic states. Vibronic
transitions are depicted with gray dashed arrows.
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Thus, it is difficult to identify which of the models best
represents reality. Moreover, which normal modes contrib-
ute to electron transfer cannot be inferred from the model
but needs to be postulated; it is challenging to postulate the
correct weight for each of the normal modes. These points
are important because the electronic structure implications
differ widely, even up to the point of disagreeing whether
the ground state has a single vs. double well potential.
We have recently proposed a method that quantitatively

identifies the anti-symmetric dimension of intramolecular
electron transfer according to the Marcus–Hush model from
ab initio calculations.[36] The approach involves an ensemble
generated from Wigner sampling at finite temperature, to
which a multicomponent fit is applied that only assumes the
validity of the Marcus–Hush model. The fitting procedure
uses either the electron position or the IVCT energy as the
descriptor for progress along the electron transfer coordi-
nate. The anti-symmetric dimension for electron transfer is
obtained as a linear combination using a basis of all
vibrational modes.
Herein, we extend our approach to also identify the

symmetric dimension, free of prior assumptions about the
nature of electronic coupling. We find that the anti-
symmetric dimension drives electron localization, while the
minimum of the IVCT surface is offset with respect to the
minimum of the ground state surface along the symmetric
coordinate. We obtain the vibronic structure of the IVCT
band from the adiabatic ab initio potentials spanned by only
these two dimensions, thus achieving excellent agreement
with the experimental shape of the band. Our approach is
independent from the previously proposed vibronic coupling
models as well as the semiclassical treatment. Despite this,
our approach recovers the very surfaces that were sought by
these prior models. We demonstrate our method using the
CTI, but note it is likely general for systems with single
welled potentials.

Results and Discussion

Electronic Structure

The Creutz–Taube ion,[3] (μ-pz)[RuII/III(NH3)5]2
5+(pz=

pyrazine), is a mixed-valent Class III complex in the
nomenclature introduced by Robin and Day, i.e. fully
delocalized.[19] The IVCT band of the CTI is centered
around 6500 cm� 1 and shows distinct asymmetry at the
higher-energy side,[3] the origin of which has been assigned
to vibronic transitions.[10,12,33,37] The IVCT band is solvent
independent which is a marker for a delocalized electronic
structure.[20,38,39]

As pointed out by Richardson and Taube,[40] the Ru
atoms interact via superexchange as schematically shown in
Figure 2. The in-phase and out-of-phase combinations of the
Ru dxz orbitals interact with the HOMO and LUMO of the
pz bridge, which have one and two nodal planes perpendic-
ular to the pz plane, respectively. Interaction with the
LUMO produces the pdxz orbital, in which the in-phase
combination of the d-orbitals is stabilised. In contrast,

interaction with the HOMO destabilises the out-of-phase
combination of the d-orbitals and results in the pd*xz orbital,
which is the SOMO of the Creutz–Taube ion.
Apart from the orbitals pdxz and pd*xz that arise from

superexchange, a set of four non-bonding orbitals are
occupied in the frontier molecular orbital region. These
essentially pure Ru d-orbitals participate in neither π- nor σ-
bonding interactions with the pz bridge or the ammonia
ligands. Excitations from these orbitals into the pd*xz orbitals
will result in four electronic states that are lower in energy
than the IVCT state. These states will, however, have
transition dipole moments of zero.
While it is common to discuss the IVCT and the coupling

strength in terms of transitions between pdxz and pd*xz
orbitals, this is not correct. Instead, the value 2Vab in the
Marcus–Hush model corresponds to the energy difference of
the adiabatic electronic states. Calculating the potential
coupling from the orbital energy difference does not lead to
reliable absolute values because the Coulomb and exchange
energy of the exciton are neglected.[41] Nevertheless, it is
often convenient to discuss IVCT processes, energies and
band shapes in terms of orbitals, with the caveat that it is,
ultimately, the states they comprise that are of interest.
The vertical excitation energy to the IVCT state at the

Franck–Condon point is 8516 cm� 1 at the LH20t/def2-
TZVP(def2-SVP) level of theory (as implemented in the
TURBOMOLE package[42]), which has shown a great
performance for mixed-valent compounds from the Class II/
III borderline.[43] Given the high total charge of the complex,
the agreement with the experimental value at 6500 cm� 1 is
satisfactory. However, such a simple calculation on a single
geometry cannot provide any insight into the band shape.
Using a nuclear ensemble approach, specifically Wigner
sampling at 300 K, the IVCT band in implicit water solvation
is predicted as a fairly symmetric, isolated absorption
centered around 8500 cm� 1, see Figure 3a. The band is
constructed from the individual excitations in Figure 3b,
which almost exclusively have IVCT character, i.e. state D5

Figure 2. Molecular orbital diagram of the CTI depicting the interaction
of the metal centers via the superexchange mechanism. The in-phase
and out-of-phase combinations of the metal dxz orbitals interact with
the LUMO and HOMO of the pz bridge, respectively. The often used
approximation to equate this orbital energy difference with 2Vab is
shown here.
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is dominated by transitions of type pdxz ! pd*xz. In compar-
ison with the experimental spectrum, the IVCT band shape
calculated in this way appears too symmetric and too broad.
Thus, even though the nuclear ensemble approach accounts
for the full dimensionality of the system and adds vibrational
resolution to the electronic absorption band, it fails to
reproduce the correct shape. A central reason is that all the
Franck–Condon factors are set to 1 in this methodology, i.e.
the vibrational levels are ignored as shown in Figure 3c.[27] A
correct treatment requires the calculation of the proper
vibronic structure, but this requires knowledge of the
dimensions relevant for the IVCT process.

Marcus Dimensions: Anti-Symmetric and Symmetric Motions

Access to a correct treatment of the Franck–Condon factors
requires that the PES along the dimensions relevant to the
IVCT process be known. The anti-symmetric motion of the
CTI is identified as isolated, unidirectional movements of
the pz bridge nitrogen atoms along the Ru� Ru axis, see
Figure 4a, using our recently established procedure.[36] This
finding is consistent with the superexchange mechanism
(Figure 2): for positive displacements, the interaction of the
pz bridge is strengthened with the Ru atom on the left and
weakened with the Ru atom on the right, which should lead
to electron localization. The normal mode contributions to

the anti-symmetric dimension (Huang–Rhys factors) are
shown in Figure 5a. This decomposition into normal modes
allows for a straightforward calculation of the reorganization
energy[44] even for a fully delocalized system. We found a
value of 8612 cm� 1 (see Table 1). Comparison with the
calculated value of the potential coupling 2Vab=8515 cm� 1,
using the excitation energy at the Franck–Condon geometry,
sets the CTI to the Class II/III borderline, i.e. to the
borderline of localized and delocalized electronic structure.
We note that this is in agreement with the experimental
literature, where it has been repeatedly shown that the CTI
is situated near the Class II/III border.[4]

Besides the anti-symmetric motion, a symmetric dimen-
sion has been invoked to explain the properties of mixed-
valent compounds. According to Hush,[30] the minima of the
ground and the IVCT states should not be perfectly nested
since the IVCT process describes an excitation to an orbital
with greater antibonding character, which will result in a
symmetrical distortion of the molecule. This argument can
be exploited to identify and quantify the symmetric
dimension. Fitting the normal coordinates to the IVCT

Figure 3. a) Experimental and calculated spectrum using 600 single
point calculations (LH20t/def2-TZVP) from Wigner sampling. The
experimental spectrum is reproduced from Ref. [3] with permission.
b) The oscillator strengths from the individual single point calculations.
c) Schematic description of the nuclear ensemble approach.

Figure 4. a) Marcus dimension of electron transfer obtained by fitting
to the electron position in the ensemble. b) Symmetric dimension
obtained by fitting to the excitation energy of the IVCT state.

Table 1: Properties of the identified dimensions. The reorganization
energy was computed from the Huang–Rhys factors as: l ¼

P
i Si�hwi.

The ZPE is the energy of a relaxed wave packet in the one-dimensional
potential along the respective dimension. The potentials are presented
in Figure 6a–b and further computational details are given in the SI.

anti-symmetric symmetric

l [cm� 1] 8612 4139
ZPE [cm� 1] 534 634
mass [amu] 13.0081 15.6780
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excitation energy identifies the dimension along which the
minima of the ground and excited state potentials are offset,
ignoring dimensions along which they are not.[36]

The symmetric dimension we find in this way is confined
exclusively to the pz bridge and modulates the Ru–pz
distances as well as the N� C and C� C interactions, see
Figure 4b. It is essentially orthogonal to the anti-symmetric
dimension (overlap of 0.057). Three normal modes dominate
the contribution to this symmetric dimension, Figure 5b, all
of which are symmetric stretches of the pz bridge. These
findings confirm Hush’s argument:[11,30,31] a symmetric dimen-
sion exists that contains vibrations of the bridge, and along
which the minimum of the IVCT potential energy surface is
offset with respect to the ground state potential.
In Table 1 we summarize the key parameters of the

identified dimensions. The reorganization energy for the
symmetric dimension does not have a clear interpretation in
the scope of the Marcus–Hush model, but it is computed for
completeness. The different ZPEs imply only slightly differ-
ent curvatures of the ground state potentials along the two
dimensions. Additional information can be extracted from
the normal mode masses of the dimensions. For the anti-
symmetric dimension, the value is lower than the mass of a
nitrogen atom which suggests that lighter atoms must
participate. Indeed, a close inspection of the motion in
Figure 4a (top right) shows the participation of hydrogen
atoms. Since these contributions are small in magnitude and
asymmetric, we suspect that they are due to noise in the
ensemble. In the symmetric dimension, the mass is higher
than the mass of a nitrogen atom. This is caused by the
participation of the ruthenium atoms, but their contribution
is too small to be visible in Figure 4b. It is thus difficult to
determine whether or not their contribution originates from
a noisy ensemble. Nevertheless, the dimensions we identify
clearly match chemical expectations, and hence they are

suitable for evaluating the potential energy surfaces of the
electronic states.

1D Potentials for Anti-Symmetric and Symmetric Dimensions

Predicting the vibronic contributions to the IVCT band
requires that the relevant potentials be known. A scan along
the anti-symmetric dimension reveals the expected Class III
behavior (Figure 6a), i.e. the ground and the IVCT states
are nested and have single minima. The four states D1–4
characterized by excitations from non-bonding orbitals to
the SOMO (see Figure 2) exhibit a second-order Jahn–
Teller effect at the Franck–Condon point (position 0.0 Å).
They are, however, not relevant for the discussion of the
mixed-valence behaviour of the CTI because of their energy
separation from both the ground and the IVCT states. The
chemically relevant spatial extent of the anti-symmetric
dimension is very narrow, suggesting a higher frequency
motion than usually assumed. The fundamental frequency
employed in the vibronic coupling models is usually around
500 cm� 1, corresponding to a ZPE of 250 cm� 1 for a
harmonic oscillator.[10,33] We find a significantly higher zero-
point energy of 534 cm� 1 again suggesting a higher frequency
motion (see Table 1). The reason that underestimated
frequencies have been used in past vibronic coupling treat-
ments is that modes were chosen by inspection of vibrational
spectra. Since the participation of low-frequency skeletal
modes is chemically intuitive, their contribution may have
been overweighted. Our approach identifies and weights all
relevant modes from ab initio calculations, avoiding bias
against high frequency modes.
A scan along the symmetric coordinate (Figure 6b)

shows that the minimum of the IVCT state is shifted towards
negative displacements (i.e. upon a contraction of the pz

Figure 5. Calculated Huang–Rhys factors as a projection of normal modes to the anti-symmetric (panel a) and symmetric (panel b) dimensions.
The dominant contributors are depicted as insets along with the respective frequencies.
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bridge) relative to the ground state. Similarly to the anti-
symmetric dimension, the symmetric one appears to be a
high frequency motion which is confirmed by the calculated
zero-point energy of 643 cm� 1 (see Table 1). The offset of
the IVCT potential will have an impact on the shape of the
absorption band, especially if the energy spacing of the
vibrational levels is large.
The electron transfer process is usually assumed to occur

along only one coordinate, assigned to the anti-symmetric
coordinate. Therefore, it should be verified that electron
localisation occurs only along one of the dimensions we
identified. The degree of electron localization in the ground
state is depicted in Figure 6c. A value of 1 would mean a
complete localization of the unpaired electron at one
[Ru(NH3)5]

2+ /3+ unit, and equivalently a value of 3 would
mean a complete localization on the other unit. Starting
from the Franck–Condon point, movement of the atoms
along the anti-symmetric dimension leads to a localization of
the unpaired electron on the Ru ions. In the scope of the
Marcus–Hush model, such a localization corresponds to a
change in the admixture of the diabatic state comprising the
adiabatic one. In contrast, movement along the symmetric
dimension reveals no change in the degree of electron
localization, Figure 6d. Thus the dimensions we find with
our ab initio procedure satisfy all formal requirements
expected of the electron transfer coordinates postulated in
the Marcus–Hush model.

2D Potentials from Anti-Symmetric and Symmetric Dimensions

To construct the PES spanned by the anti-symmetric and
symmetric dimensions, we performed a two dimensional
scan, see Figure 7a–b. With the dimensions now being
quantified in spatial units, a direct comparison between the
two coordinates is possible for the first time. The ground
state potential energy surface of the CTI, Figure 7a, is
steeper along the symmetric dimension. This finding is

consistent with the assumption commonly made for the two-
dimensional two-state Marcus–Hush model, where the
potential along the anti-symmetric dimension is expected to
be flatter due to the merged minima of the diabatic basis.
The potential of the IVCT state is plotted in Figure 7b.

It has a single minimum and it is again steeper in the
symmetric dimension with an apparent degree of anharmo-
nicity (more clearly visible in Figure 6b). An important
feature is the offset of the minimum with respect to the
ground state along the symmetric coordinate. The tradi-
tional two-state model,[1,45] even in two dimensions, provides
no means to incorporate an offset along the symmetric
dimension. There are two possible extensions of the model
that could allow such an offset:
I) A third diabatic state shifted along the symmetric

dimension could be introduced. This state is usually
labelled as the bridge state.[12,25] However, if the bridge
state were responsible for the offset of the minima, we
should be able to find an adiabatic state with a large
contribution of metal-to-bride charge transfer (MBCT)
character close to the near infra-red region. The
energetically closest MBCT state is situated at about
1.4 eV above the IVCT state (see SI), so that its
influence on the other states is expected to be extremely
limited. We therefore find this explanation implausible.

II) Geometry dependent coupling between the diabatic
basis in the two-dimensional two-state Marcus–Hush
model could arise because movement along the symmet-
ric coordinate will result in a change in the Ru–bridge
distance, hence altering the coupling strength. An
increase in coupling by moving along only the symmetric
dimension in one direction will push the adiabats apart,
while a decrease in coupling by movement in the other
direction will bring them closer together, as illustrated
in Figure 7e. This must result in an offset of the minima.
The coupling strength along the anti-symmetric dimen-
sion remains unaffected as depicted in Figure 7d. This
explanation appears reasonable in the context of the

Figure 6. One dimensional scans along (a) anti-symmetric and (b) symmetric dimensions depicting the potential energy curves of the six lowest
electronic states. The electron position as a measure of the degree of localization is plotted in panels (c) and (d) for the anti-symmetric and
symmetric dimensions, respectively. The scans were performed with a step size of 0.01 Å.
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dimensions we identified, and is in accord with the
superexchange coupling mechanism.[40] This situation
would be consistent with the point of view of Reimers
and Hush,[11] but only restricted to a single anti-
symmetric and symmetric mode. The geometry depend-
ent coupling is a natural result of the vibrational motion
of the complex, but it remains to be seen to what extent
it can explain our observations. We will explore this
idea below.

Though we could continue to use the electron position
to monitor the electron localization, as in Figure 6c–d, the
dipole moment is just as valid, while being experimentally
more accessible. Distribution of the dipole moment in the
two-dimensional scan produces Figure 7c. Starting from any
point, any displacement (both positive and negative) along
the anti-symmetric dimension leads to a change in local-
ization of the unpaired electron and, consequently, to a
change in the dipole moment magnitude. In contrast, there
is a single line parallel to the symmetric dimension and
passing through the origin along which the dipole moment
does not change (i.e. will remain zero). Starting from any
other displacement along the anti-symmetric dimension and
moving along the symmetric dimension will result in a
change in dipole moment. The two-state two-dimensional
Marcus–Hush model cannot explain this behaviour, where
the composition of the diabatic states in the adiabatic
ground state (which can be directly connected to the dipole
moment and the electron position) remains constant along
the symmetric dimension under all circumstances. In con-

trast, extending the Marcus–Hush model by introducing a
dependence of the coupling on the position along the
symmetric dimension explains this behaviour. Details on this
modified Marcus–Hush model are given in analytical form
in the SI.
Since the dipole moment can change along the symmet-

ric dimension, the symmetric mode may become detectable
in the IR spectrum through anharmonic and non-Condon
effects. In fact, IR-active symmetric modes have been
observed in several mixed valence systems, but no satisfac-
tory explanation has emerged.[46,47] In our analysis of the
two-dimensional scanned potential, the vibrational transition
that would correspond to the excitation in the symmetric
dimension (1392 cm� 1) is weaker by a factor of 100 than the
transition in the anti-symmetric dimension (973 cm� 1; details
in the SI). Thus, our ab initio data in their current form do
not explain the experimental observation. However, consid-
ering environmental effects explicitly may change this.

IVCT Band Shapes

We will use the calculated one- and two-dimensional
potential energy surfaces (Figures 6a–b, 7a–b) to reconstruct
the IVCT absorption band shape. To this end, two
approaches are used: a nuclear ensemble approach and
wave packet (WP) dynamics. Technical details are provided
in the SI. Within the nuclear ensemble approach, the
spectrum is calculated as a distribution of energy differences
between the ground and IVCT states weighted by the

Figure 7. Two dimensional scans along the anti-symmetric and symmetric dimensions. a–b) Two dimensional potential energy surfaces of the
ground and IVCT states, respectively. c) Two dimensional distribution of the dipole moment in the ground electronic state. The scans were
performed in a range of displacements from � 0.16 to 0.16 Å in both dimensions with a step size of 0.01 Å. d–e) One-dimensional cuts of the
analytical Marcus–Hush model with two states, two dimensions and geometry dependent coupling. Cuts are created by setting one of the
coordinates to zero. A more detailed description is given in the SI.
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respective Boltzmann probabilities. The approach is semi-
classical and the vibronic transitions are not accessible,
Figure 8c. With WP dynamics, the spectrum is computed as
a Fourier transform of an autocorrelation function which is
obtained by numerical propagation of a ground state-relaxed
WP on the IVCT potential surface. In this way, the vibronic
structure of the absorption band is fully recovered, Fig-
ure 8f.
Advantages of utilizing adiabatic potentials from ab

initio calculations are that the calculation of spectra is free
of any pre-postulated parameters, and that the energy
differences and curvatures of the potentials reflect those of
the real system according to the chosen level of theory. The
resulting spectra will naturally depend on the choice of
coordinates spanning the potential. In our approach, no
system-specific assumptions about the coordinate(s) were
made: the only requirement is that each coordinate satisfy a
given property of the Marcus–Hush model, i.e. moving from
the ground state minimum either involves electron local-
ization (anti-symmetric) or an offset of the potential energy
surfaces (symmetric).
Focusing first on the spectra computed with the nuclear

ensemble method, Figure 8a–b, the asymmetry of the
experimental band shape is severely underestimated. Fur-
thermore, the computed spectrum utilizing only the anti-
symmetric dimension (Figure 8a) is very narrow. This may
be surprising at first glance because it has been repeatedly
demonstrated that the two nested adiabats with different
curvatures are responsible for the asymmetric band shape
according to the Marcus–Hush model.[25,26] Inspecting the ab
initio potentials presented in Figure 8a reveals that they
have almost identical curvatures, which explains the absence

of asymmetry in the calculated spectrum. Accounting for
both dimensions, Figure 8b, leads to a small degree of
asymmetry. However, the computed spectrum still misses
the long high-energy tail. Overall, the nuclear ensemble
approach thus fails to reproduce the experimental IVCT
band shape.
Accounting for the proper vibronic structure of the

IVCT band by using WP dynamics, Figure 8d–e, leads to a
similarly narrow shape when considering only the anti-
symmetric dimension (Figure 8d). The spectrum contains
only one vibronic transition between the vibrational ground
states of the ground and IVCT potentials; the vibronic
transitions to higher vibrational states are missing. This is
due to the perfect nesting of the two potentials and their
almost identical curvatures in the anti-symmetric dimension.
While the former is in perfect agreement with the Marcus–
Hush model, the latter diverges from the model. Nearly
identical curvatures of the ground and IVCT states would be
possible only for large couplings (2Vab@l). However, the
coupling strength and the reorganization energy computed
here set the CTI to the Class II/III borderline (2Vab�l).
This deviation from the conceptual model can be expected
since we do not rely on the existence of a harmonic diabatic
basis.
When accounting for both dimensions (Figure 8e), the

IVCT band has the correct width and a clearly asymmetric
shape. There are three vibronic transitions separated by
approximately 1500 cm� 1. This is consistent with the high
curvatures of the PESs, which can, in turn, explain the
insufficient description of the IVCT band with the nuclear
ensemble approach (panel b): because the zero-point energy
is neglected in the nuclear ensemble approach, a smaller

Figure 8. IVCT spectra obtained from one-dimensional or two-dimensional scans along the anti-symmetric dimension. a–b) Spectra computed with
the nuclear ensemble approach from one- and two-dimensional PESs, respectively. c) Computed transitions via nuclear ensemble approach. d–
e) Spectra computed using the Fourier transform of an auto-correlation function from wave packet dynamics on one- and two-dimensional PESs,
respectively. f) Computed transitions via WP dynamics. The experimental spectrum is reproduced from Ref. [3] with permission.
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portion of the coordinate space is accessible and hence the
absorption band will be too narrow. Importantly, the second
and third vibronic transitions gain intensity because of the
offset potentials in the symmetric dimension. We note that
further refinements of the WP dynamics results, e.g.
regarding broadening or position of the IVCT band with
respect to experiment, can presumably be achieved by
including the solvent-induced changes of the PESs or going
beyond the Condon approximation.
In conclusion, the correct shape and width of the IVCT

band can be reconstructed only when the proper vibronic
structure is taken into account and the minima of the PESs
are offset in the symmetric dimension. Our findings support
the proposal of Reimers and Hush[11] that the symmetric
dimension is of high importance for delocalized systems like
the CTI, and contradict the conclusion of Piepho[33] that the
high energy tail of the IVCT band is unlikely to be
associated with the symmetric modes. The offset potentials
can be reconciled within the Marcus–Hush model by
introducing geometry dependent coupling, as elaborated in
detail in the following section.

Geometry Dependent Coupling

Throughout this work, we have aimed to connect ab initio
data to the Marcus–Hush model. By inspection of the
predicted IVCT absorption bands, we concluded that a
model with two states and one dimension is not sufficient to
capture all electronic and vibrational aspects of the molecule
that give rise to the position and shape of the IVCT band.
We demonstrated that an additional symmetric dimension is
an intrinsic feature of bridged systems, and that the potential
coupling between the metal centers Vab has to depend on
this dimension. We can confidently state at this point that
two dimensions and two states with geometry dependent
coupling are necessary to discuss the properties of the CTI.
In the following, we explain the origin of this effect.
The geometry dependence of the coupling is rooted in

the superexchange mechanism (Figure 9), which conceptual-
ises how the interaction between the redox centers is

mediated via the molecular bridge. As is shown in the MO
diagram in Figure 2, the in-phase and out-of-phase combina-
tions of the metal dxz orbitals interact with the π-type
HOMO and π*-type LUMO of the pyrazine bridge,
respectively.[40] To simplify the discussion of geometry
dependent coupling, we represent the pyrazine bridge by a
diatomic bridge. Figure 9a shows the expected MOs for the
equilibrium configuration. The bonding interaction between
the in-phase combination of the dxz orbitals with the LUMO
of the bridge produces an MO that is lower in energy than
the MO formed by the antibonding combination of the out-
of-phase dxz orbitals and the HOMO of the bridge. The
latter becomes the SOMO of the mixed valence state, while
the other is doubly occupied. The energy difference between
the newly formed frontier molecular orbitals can be used as
a first approximation for twice the potential coupling value,
2Vab. With the MO diagram for the equilibrium structure in
hand, we now discuss the influence of the anti-symmetric
and the symmetric motion on the molecular orbitals and
thereby on the potential coupling.
In Figure 9b, the anti-symmetric dimension is repre-

sented by a distortion of the molecule in which both bridging
atoms move in the same direction. This movement will
increase the orbital overlap with one metal center and
simultaneously decrease the overlap with the other metal
center. Since these effects oppose one another, the energy
splitting of the frontier MOs, and in turn 2Vab, remains
largely unchanged. This picture of a constant potential
coupling corresponds to the expectations set by the one-
dimensional two-state Marcus–Hush model and its
extensions.[25]

The symmetric dimension is represented by the move-
ment of only the bridging atoms towards one another
(Figure 9c, negative direction) and away from each other
(Figure 9d, positive direction). Contraction of the bridge as
in Figure 9c leads to a decreased overlap of the bridge
orbitals with the metal d-orbitals. This decreases the energy
gap between doubly and singly occupied molecular orbitals,
resulting in a smaller Vab. For a distortion in the positive
direction (Figure 9d), the situation is exactly the opposite:
expansion of the bridge leads to a larger overlap with the d-

Figure 9. Schematic description of the effects of symmetric and anti-symmetric distortions on the potential coupling between the metal centers
within the superexchange mechanism. a) Equilibrium configuration. b) Anti-symmetric distortion is realized by moving the bridge towards one
metal center. c–d) Negative and positive symmetric distortions are realized as contraction and expansion of the bridge, respectively.
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orbitals, thus a larger energy gap, and as a result an
increased coupling strength (Vab). These simple MO consid-
erations demonstrate that motion along the symmetric
dimension must affect the magnitude of coupling Vab.
A simplified way of monitoring this dependence in the

ab initio scans is provided with the energy difference of the
frontier orbitals, see Figure 10a–b. The true coupling refers
to the energy difference of the respective states at the
Franck–Condon point, and the pure Marcus–Hush model
provides no access to variations of Vab beyond the equili-
brium structure. A visualisation of the variance in Vab along
the symmetric and anti-symmetric dimensions is shown in
Figure 10c. The absolute values of Vab shown here are twice
as large as expected from the position of the IVCT band and
the excitation energy at the Franck–Condon point, largely
due to neglecting the Coulomb and exchange energy of the
exciton. Nevertheless, the qualitative trends demonstrate
the extent of geometry dependent coupling as a function of
the two relevant dimensions.
Along the anti-symmetric dimension, the change in the

Vab is almost negligible. In contrast, Vab changes significantly
along the symmetric dimension (approximately by 40%).
These findings confirm the conceptual understanding of the
superexchange mechanism discussed above. Furthermore,
they explain the observed change in dipole moment along
the symmetric dimension, the offset of the minima of the

ground and IVCT states, and the asymmetric shape of the
IVCT band.

Conclusion

While an anti-symmetric dimension is present in all
descriptions of ET, we have shown here that, additionally, a
symmetric dimension is intrinsic to and required for accurate
descriptions of bridged systems. We provided an approach
for identifying and quantifying this symmetric dimension
from ab initio calculations. It is constructed as a linear
combination of normal modes, in a complementary manner
to our approach for quantifying the anti-symmetric
dimension.[36] Our method reaches the same objective as the
vibronic coupling models, but relies only on ab initio
calculations rather than pre-postulated diabatic states. This
resolves the decades-old question of which coordinate(s) are
required to explain the IVCT band of strongly coupled
bridged systems, as showcased here using the Creutz–Taube
ion.
An advantage of our approach is that we can for the first

time explain the shape of the IVCT band using the exact
required dimensions and associated potentials from ab initio
calculations. We have shown that to capture the character-
istic high-energy tail of the IVCT band, the vibronic
transitions between the potentials spanned by these two
dimensions are needed. These arise from the offset minima
of the ground state and excited state potentials in the
direction of the symmetric dimension. This offset is a result
of geometry dependent coupling along the symmetric
dimension which must be a natural consequence of the well-
known superexchange mechanism.
Though we are providing a new ab initio route for

rationalising mixed-valent electron transfer systems, we can
connect the results with the established models and their
specific parameters. For instance, we can recover the
potential coupling and the reorganization energy even for
fully delocalized systems. Our method is easily accessible
and widely applicable. Potential application areas include
enzymatic electron transfer, (electro-)catalysis, photosensi-
tizer chemistry, molecular electronics and superconductivity.
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