ChemSusChem

Supporting Information

Iron as Recyclable Metal Fuel: Unraveling Oxidation Behavior and Cyclization Effects Through Thermogravimetric Analysis, Wide-Angle X-ray Scattering and Mössbauer Spectroscopy

Carola Kuhn, Anna Knapp, Max P. Deutschmann, Jonas Spielmann, Steffen Tischer, Ulrike I. Kramm, Hermann Nirschl, and Olaf Deutschmann*

Supplemental Information

Particle size distribution

Figure S1. Particle size distribution of iron powder sample a) Fe23 and b) Fe70, Fe119 and Fe185. The particle size distribution of sample Fe23 is taken from Spielmann et al.^[1] as the same powder batch is used.

Thermogravimetric experiments

Figure S2. Isothermal oxidation of powder sample Fe23 at 600 °C. Comparison of samples diluted 1:4 with crystalline SiO₂ (blue) and 1:3 with amorphous SiO₂ (black) in cylindrical crucibles and with crystalline SiO₂ (red) in a plate-like crucible.

Figure S3. Isothermal oxidation of powder sample Fe23 at 600 °C. The dashed lines mark the points up to which the samples were oxidized and analyzed by WAXS.

Wide angle X-ray scattering

Figure S4. WAXS spectra of the oxidation of iron with a mean particle diameter of $23 \,\mu m$ with a heating rate of $5 \,K \min^{-1}$ and $2 \,K \min^{-1}$ up to $1000 \,^{\circ}$ C according to Fig. 1.

Mössbauer fits

Table S1. Spectral area $A_{i,\%}$, amount of iron atoms $n_{i,\%}$ and the resulting molar and mass fractions of each species.

		$A_{i.\%}$								
Temp.	Time	F	'e	Fe ₂ O ₃ Fe ₃ O			$_{3}O_{4}$	D ₄ FeO		
[°C]	[min]		error		error		error		error	
600	15	38.5	1.7	31.0	1.7	28.9	3.4	1.6	0.7	
600	30	27.1	2.0	42.6	2.3	29.6	4.2	0.7	0.9	
600	45	24.2	1.3	46.9	1.6	28.2	2.9	0.7	0.9	
600	240	18.0	1.1	65.8	1.5	15.0	2.1	1.3	0.5	
			$n_{i,\%}$							
600	15	40.8	3.0	31.2	2.0	26.3	3.5	1.7	0.3	
600	30	28.9	3.3	43.2	2.8	27.1	3.5	0.8	0.3	
600	45	25.8	3.1	47.6	2.3	25.8	2.6	0.8	0.2	
600	240	19.0	4.6	66.1	2.0	13.6	2.2	1.4	0.1	
					mo	1%				
600	15	61.0	4.5	23.3	1.5	13.1	1.7	2.6	0.5	
600	30	47.9	5.5	35.8	2.3	15.0	1.9	1.3	0.5	
600	45	43.8	5.3	40.4	1.9	14.6	1.5	1.3	0.3	
600	240	32.8	7.9	57.1	1.7	7.8	1.3	2.4	0.2	
					wt.	-%				
600	15	32.9	2.5	36.0	2.3	29.3	3.9	1.7	0.3	
600	30	22.4	2.6	47.9	3.1	29.0	3.7	0.7	0.3	
600	45	19.8	2.4	52.2	2.5	27.3	2.8	0.7	0.2	
600	240	14.2	3.4	70.5	2.1	14.0	2.3	1.3	0.1	

Figure S5. Mössbauer fits of iron powder samples oxidized at $600\,^{\circ}\mathrm{C}$ for $15\min$ to $240\min.$

			$A_{i\%}$						
Temp.	Time	F	e	Fe ₂	Fe_2O_3		Fe_3O_4		FeO
[°C]	[min]		error		error		error		error
400	60	89.3	3.0	2.9	1.5	7.8	4.0	0.0	0.0
500	60	61.9	2.0	16.1	1.6	22.0	3.1	0.0	0.0
600	60	38.0	1.2	43.7	1.3	16.9	2.4	1.5	0.5
700	60	0.0	0.0	96.4	1.5	3.6	2.2	0.0	0.0
800	60	0.0	0.0	100.0	2.1	0.0	0.0	0.0	0.0
900	60	0.0	0.0	100.0	2.1	0.0	0.0	0.0	0.0
			$n_{i,\%}$						
400	60	90.4	3.5	2.8	1.4	6.8	7.7	0.0	0.0
500	60	64.4	2.8	15.9	1.6	19.6	4.9	0.0	0.0
600	60	39.8	3.1	43.5	1.7	15.2	3.4	1.6	0.2
700	60	0.0	0.0	96.8	1.9	3.2	1.9	0.0	0.0
800	60	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0
900	60	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0
					mol	%		•	
400	60	96.1	3.7	1.5	0.8	2.4	2.7	0.0	0.0
500	60	81.6	3.6	10.1	1.0	8.3	2.1	0.0	0.0
600	60	58.4	4.5	31.9	1.3	7.4	1.7	2.3	0.3
700	60	0.0	0.0	97.8	2.0	2.2	1.3	0.0	0.0
800	60	0.0	0.0	100.0	2.0	0.0	0.0	0.0	0.0
900	60	0.0	0.0	100.0	2.0	0.0	0.0	0.0	0.0
					wt	%			
400	60	87.1	3.4	3.9	2.0	9.0	10.3	0.0	0.0
500	60	56.4	2.5	19.9	2.0	23.7	5.9	0.0	0.0
600	60	31.8	2.4	49.8	2.0	16.8	3.7	1.6	0.2
700	60	0.0	0.0	96.9	1.9	3.1	1.9	0.0	0.0
800	60	0.0	0.0	100.0	2.0	0.0	0.0	0.0	0.0
900	60	0.0	0.0	100.0	2.0	0.0	0.0	0.0	0.0

Table S2. Spectral area $A_{i,\%}$, amount of iron atoms $n_{i,\%}$ and the resulting molar and mass fractions of each species.

Figure S6. Mössbauer fits of iron powder samples oxidized for $60 \min$ at temperatures from $400 \,^{\circ}\mathrm{C}$ to $900 \,^{\circ}\mathrm{C}$.

Table S3. Spectral area $A_{i,\%}$, amount of iron atoms $n_{i,\%}$ and	and the resulting molar and mass fractions of each species.
--	---

	$A_{i,\%}$								
Sample	I	Fe	Fe_2O_3		$\mathrm{Fe}_3\mathrm{O}_4$		FeO		
Dample		error		error		error		error	
Fe23	55.0	2.2	0.0	3.0	30.0	4.3	15.0	1.0	
Fe70	36.9	2.2	0.0	0.0	44.2	4.7	18.9	1.3	
	$n_{i,\%}$								
Fe23	57.5	9.6	0.0	1.8	26.9	4.6	15.6	2.1	
Fe70	39.3	8.4	0.0	0.0	40.5	3.4	20.1	0.4	
	mol%								
Fe23	70.0	11.7	0.0	1.8	10.9	1.9	19.1	0.6	
Fe70	53.9	11.5	0.0	0.0	18.5	1.6	27.6	0.6	
	wt%								
Fe23	50.4	8.4	0.0	3.7	32.6	5.6	17.0	0.6	
Fe70	32.7	7.0	0.0	0.0	46.5	3.9	20.8	0.5	

Figure S7. Mössbauer fits of the iron powder samples of the cyclization experiments

Sample	Species	CS [m	$m s^{-1}$]	$ $ FWHM $[mm s^{-1}]$		Int.	[%]
			error		error		error
600 °C	Fe	0.00	0.01	0.19	0.01	38.49	1.65
$15\mathrm{min}$	FeO	1.07	0.17	0.40	-	1.62	0.72
	Fe_3O_4 A-Site	0.26	0.02	0.17	0.06	9.93	1.82
	Fe_3O_4 B-Site	0.68	0.01	0.22	0.04	18.97	1.56
	Fe_2O_3	0.37	0.01	0.17	0.02	30.99	1.70
600 °C	Fe	0.00	0.01	0.18	0.03	27.10	1.96
$30\mathrm{min}$	FeO	0.93	-	0.40	-	0.71	0.92
	Fe_3O_4 A-Site	0.28	0.02	0.13	0.07	8.98	2.11
	Fe_3O_4 B-Site	0.65	0.02	0.25	0.05	20.58	2.13
	Fe_2O_3	0.37	0.01	0.18	0.02	42.64	2.31
600 °C	Fe	0.00	0.01	0.19	0.02	24.18	1.30
$45\mathrm{min}$	FeO	0.93	0.33	0.40	-	0.71	0.62
	Fe_3O_4 A-Site	0.27	0.01	0.15	0.05	9.54	1.50
	Fe_3O_4 B-Site	0.67	0.01	0.23	0.03	18.63	1.38
	Fe_2O_3	0.37	0.00	0.18	0.01	46.94	1.60
600 °C	Fe	0.01	0.01	0.20	0.02	17.95	1.09
$240\mathrm{min}$	FeO	0.86	0.15	0.40	-	1.29	0.51
	Fe_3O_4 A-Site	0.28	0.05	0.15	-	3.02	0.77
	Fe_3O_4 B-Site	0.67	0.03	0.32	0.06	11.96	1.35
	Fe_2O_3	0.37	0.00	0.19	0.01	65.78	1.51
Cycling	Fe	0.00	0.00	0.16	0.01	55.03	2.20
Fe23	FeO	1.06	0.01	0.35	0.04	14.99	1.00
	Fe_3O_4 A-Site	0.24	0.03	0.17	0.07	9.71	2.01
	Fe_3O_4 B-Site	0.68	0.02	0.29	0.06	20.27	2.33
Cycling	Fe	-0.01	0.01	0.17	0.02	36.88	2.17
Fe70	FeO	1.06	0.01	0.33	0.04	18.89	1.31
	Fe_3O_4 A-Site	0.28	0.02	0.15	0.05	15.67	2.26
	Fe_3O_4 B-Site	0.66	0.01	0.22	0.04	28.56	2.43
400 °C	Fe	0.00	0.00	0.20	0.01	89.27	3.00
$60\mathrm{min}$	Fe_3O_4 A-Site	0.27	-	0.27	0.24	3.40	2.02
	Fe_3O_4 B-Site	0.67	-	0.40	0.27	4.38	2.02
	Fe_2O_3	0.37	-	0.17	0.16	2.95	1.52
$500^{\circ}\mathrm{C}$	Fe	0.02	0.00	0.20	0.01	61.93	1.95
$60\mathrm{min}$	Fe_3O_4 A-Site	0.29	0.02	0.16	0.06	8.30	1.67
	Fe_3O_4 B-Site	0.68	0.01	0.22	0.05	13.67	1.42
	$\mathrm{Fe}_2\mathrm{O}_3$	0.39	0.01	0.20	0.04	16.11	1.62
$600^{\circ}\mathrm{C}$	Fe	0.00	0.00	0.20	0.01	38.50	1.19
$60 \min$	FeO	0.93	-	0.40	-	1.06	0.50

Table S4. Summary of the Mössbauer fit parameter. es $|CS[mms^{-1}]|$ FWHM $[mms^{-1}]|$

Table 34. Summary of the Mossbader int parameter.										
Sample	Species	CS [n	$1 \mathrm{m s^{-1}}$	FWHM $[mm s^{-1}]$		Int.	[%]			
			error		error		error			
	Fe_3O_4 A-Site	0.27	0.02	0.15	0.06	5.82	1.24			
	Fe_3O_4 B-Site	0.65	0.02	0.25	0.05	10.92	1.20			
	$\mathrm{Fe}_2\mathrm{O}_3$	0.37	0.00	0.18	0.01	43.81	1.27			
$700^{\circ}\mathrm{C}$	Fe_3O_4 A-Site	0.27	-	0.20	-	0.68	1.17			
$60\mathrm{min}$	Fe_3O_4 B-Site	0.67	-	0.20	-	2.88	1.01			
	$\mathrm{Fe}_2\mathrm{O}_3$	0.37	0.00	0.20	0.01	96.44	1.51			
800 °C	Fe_2O_3	0.37	0.00	0.20	0.01	100.00	0.00			
$60\mathrm{min}$										
900 °C	Fe_2O_3	0.37	0.00	0.19	0.01	100.00	0.00			
$60 \min$										

Table S4. Summary of the Mössbauer fit parameter.

Table S5. Summary of the Mössbauer fit parameter. $M_{\rm max} = \frac{1}{2} \int \frac{1}{2} \frac$

Sample	Species	QS [mm s ⁻¹] $ $		H/	T	A1/2	
			error		error		error
600 °C	Fe	0.00	0.01	33.00	0.04	1.30	0.07
$15\mathrm{min}$	FeO	0.66	-	-	-	0.56	-
	Fe_3O_4 A-Site	-0.05	0.04	49.11	0.15	1.50	-
	Fe_3O_4 B-Site	0.00	0.03	46.03	0.10	1.50	-
	Fe_2O_3	-0.18	0.01	51.85	0.04	1.50	-
600 °C	Fe	0.01	0.02	33.05	0.07	1.30	0.13
$30\mathrm{min}$	FeO	0.66	-	-	-	0.56	-
	Fe_3O_4 A-Site	-0.02	0.04	49.13	0.14	1.50	-
	Fe_3O_4 B-Site	0.01	0.03	46.15	0.12	1.50	-
	Fe_2O_3	-0.18	0.01	51.77	0.04	1.50	-
600 °C	Fe	0.00	0.01	32.98	0.05	1.30	0.09
$45\mathrm{min}$	FeO	0.66	-	-	-	0.56	-
	Fe_3O_4 A-Site	-0.03	0.03	49.08	0.11	1.50	-
	Fe_3O_4 B-Site	0.01	0.02	46.03	0.08	1.50	-
	Fe_2O_3	-0.19	0.01	51.74	0.03	1.50	-
600 °C	Fe	0.00	0.02	33.14	0.06	1.21	0.10
$240\mathrm{min}$	FeO	0.66	-	-	-	0.56	-
	Fe_3O_4 A-Site	-0.07	0.08	48.92	0.36	1.50	-
	Fe_3O_4 B-Site	0.05	0.04	45.97	0.21	1.50	-
	Fe_2O_3	-0.18	0.00	51.77	0.02	1.50	-
Cycling	Fe	0.00	-	33.03	0.03	1.40	0.06
Fe23	FeO	-	-	-	-	-	-
	Fe_3O_4 A-Site	0.00	-	48.76	0.22	1.50	-
	Fe_3O_4 B-Site	0.02	0.04	46.15	0.17	1.50	-
Cycling	Fe	0.00	-	32.98	0.05	1.31	0.13
Fe70	FeO	-	-	-	-	1.50	-
	Fe_3O_4 A-Site	0.00	-	49.13	0.11	1.50	-
	Fe_3O_4 B-Site	-0.02	0.03	45.97	0.09	1.50	-
$400^{\circ}\mathrm{C}$	Fe	0.00	0.00	33.05	0.01	1.37	0.03
$60\mathrm{min}$	Fe_3O_4 A-Site	0.02	0.14	48.97	0.49	1.50	-
	Fe_3O_4 B-Site	0.09	0.17	45.92	0.60	1.50	-
	Fe_2O_3	-0.19	-	51.72	-	1.50	-
$500^{\circ}\mathrm{C}$	Fe	0.00	0.01	33.11	0.02	1.33	0.04
$60\mathrm{min}$	Fe_3O_4 A-Site	-0.02	0.04	49.21	0.13	1.50	-
	Fe_3O_4 B-Site	0.01	0.03	46.05	0.10	1.50	-
	Fe_2O_3	-0.18	0.03	51.86	0.08	1.50	_
$600^{\circ}\mathrm{C}$	Fe	-0.01	0.01	33.05	0.03	1.32	0.05
$60\mathrm{min}$	FeO	0.66	-	-	-	0.56	-
	\mid Fe ₃ O ₄ A-Site	-0.03	0.04	49.07	0.13	1.23	0.08

Sample	Species	QS [m	$m s^{-1}$]	H/T		A	1/2
			error		error		error
	Fe_3O_4 B-Site	0.00	0.03	45.96	0.11	1.50	-
	$\rm Fe_2O_3$	-0.18	0.01	51.78	0.02	1.50	-
$700^{\circ}\mathrm{C}$	Fe_3O_4 A-Site	0.00	-	49.00	-	1.50	-
$60\mathrm{min}$	Fe_3O_4 B-Site	0.00	-	46.00	-	1.50	-
	$\mathrm{Fe}_2\mathrm{O}_3$	-0.19	0.00	51.80	0.02	1.37	0.03
800 °C	$\rm Fe_2O_3$	-0.19	0.00	51.75	0.02	1.36	0.03
$60 \min$							
900 °C	Fe_2O_3	-0.20	0.00	51.72	0.01	1.38	0.03
$60\mathrm{min}$							

Table S5. Summary of the Mössbauer fit parameter

References

 J. Spielmann, D. Braig, A. Streck, T. Gustmann, C. Kuhn, F. Rainauer, A. Kurnosov, O. Leubner, V. Potapkin, C. Hasse, O. Deutschmann, B. J. Etzold, Scholtissek A., U. I. Kramm, *Phys. Chem. Chem. Phys.* 2024.