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1. Introduction

The macroscopic thermal properties of
inherent or engineered composites are
strongly dependent on the composite
structure and interface characteristics.
Recognizing the importance of unraveling
this dependency for materials design, we
acknowledge the hindrances posed by
complexities such as challenges in micro-
structure representation and limited data
availability that impede research progress.
ðHf0:7Ta0:3ÞC=SiC is a model system of
an inherent nanocomposite (NC) ultra-
high-temperature ceramic (UHTC), where
the thermal conductivity depends on the
composite structure, especially the interfa-
ces or interphases.

UHTCs with melting points exceeding
3000 °C have attracted significant interest
for their potential application as protective
coatings on metal substrates in extreme
environments.[1–3] They are well suited
for use in thermal protection structures
for gas turbine engines, chemical plants,
or aerospace applications, where they can
withstand temperatures above approxi-
mately 1600 °C and harsh environmental

conditions.[1–4] UHTCs are primarily binary compounds
composed of elements such as boron, carbon, or nitrogen in con-
junction with early transition metals such as Zr, Hf, Ti, Nb,

M. Fathidoost, Y. Yang, B.-X. Xu
Mechanics of Functional Materials Division
Technical University Darmstadt
Institute of Materials Science
Otto-Berndt-Straße 3, 64287 Darmstadt, Germany
E-mail: mozhdeh.fathidoost@tu-darmstadt.de;
yangyiwei.yang@mfm.tu-darmstadt.de; xu@mfm.tu-darmstadt.de

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adem.202302021.

© 2024 The Authors. Advanced Engineering Materials published by Wiley-
VCH GmbH. This is an open access article under the terms of the Creative
Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original
work is properly cited and is not used for commercial purposes.

DOI: 10.1002/adem.202302021

N. Thor
Institute of Applied Geoscience
Technical University Darmstadt
Schnittspahnstraße 9, D-64287 Darmstadt, Germany

J. Bernauer, R. Riedel
Department of Dispersive Solids
Technical University Darmstadt
Institute of Materials Science
Otto-Berndt-Straße 3, 64287 Darmstadt, Germany

A. Pundt
Insitute for Applied Materials - Materials Science and Engineering (IAM)-
WK
Karlsruhe Institute of Technology
Engelbert-Arnold-Str. 4, 76131 Karlsruhe, Germany

Macroscopic thermal properties of engineered or inherent composites depend
substantially on the composite structure and the interface characteristics. While it
is acknowledged that unveiling such dependency relation is essential for
materials design, the complexity involved in, e.g., microstructure representation
and limited data impedes the research progress. Herein, this issue is tackled by
machine learning techniques on image-based microstructure and property data
predicted from physics simulations, along with experimental validation. The
methodology is demonstrated for the model system ðHf 0:7Ta0:3ÞC= SiC ultrahigh-
temperature ceramic nanocomposite. The structure is reconstructed from
scanning electron microscope images, and is resolved by a diffuse-interface
representation, which is advantageous in handling complicated structure and
interface properties. Subsequently, hierarchical finite element homogenization is
carried out to evaluate the effective thermal conductivity. A thorough comparison
between the computed results and experimentally measured data, conducted
across diverse temperatures and varying interface thermal resistances, reveals a
high level of agreement. The observed agreement allows for the inverse esti-
mation of the interface thermal resistance, a parameter typically challenging to
ascertain directly through experimental means. Utilizing comprehensive data, a
machine learning surrogate model has been meticulously trained to accurately
predict the effective thermal conductivity of composite structures with excep-
tional performance.
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or Ta.[1–3,5] UHTCs have a distinctive mixture ofmetallic and cova-
lent bonds, resulting in exceptional properties, including high
refractoriness, extremely high melting points, high hardness, high
elastic moduli, and outstanding chemical stability. Additionally,
their metallic bonding grants UHTCs enhanced thermal and elec-
trical conductivity when compared to oxide ceramics.[1,2,4,6,7]

Polymer-derived ceramic (PDC) technology is an emerging
and promising approach for producing ceramics such as
UHTCs. It involves the production of ceramics from preceramic
polymer precursors that undergo cross-linking and pyrolysis.
This method enables the fabrication of high-performance
nonoxide ceramics, including a variety of binary, ternary, and
quaternary materials, in various forms. PDC technology offers
advantages over conventional ceramic synthesis techniques, such
as sol–gel and solid-state reactions, in terms of energy efficiency
and formability.[8–11]

The effective thermal conductivity (keff ) of composite materials
is influenced by several factors, including the properties of the
individual components, microstructures, and interfaces.[12–14]

Modeling and simulation methods are valuable for understanding
these effects, especially when experiments are costly or challeng-
ing. Simulation data can complement experimental results for
composite design and guide the direction of the material micro-
structure design. In addition, they can help to gain a deeper under-
standing of the characteristics of heterogeneous materials.[12,15–17]

Computational thermal homogenization using the finite
element method (FEM) is widely used to numerically determine
the thermal conductivity of composites.[18,19] Sharp-interface and
diffuse-interface approaches are used to describe complex
microstructures, while the latter one allows more flexibility
and consideration of thermal resistance and thermal flow effects
at the interfaces.[20–22]

In this investigation, the novel diffuse-interface thermal
homogenization model is applied to the real microstructure of
the ðHf ;TaÞC=SiC material system obtained from the scanning
electron microscope (SEM) image. To address the issue of vary-
ing microstructure scales across different regions, a hierarchical
homogenization scheme is planned to be implemented across
different scales. Notably, in this material system the microstruc-
ture in one region is significantly finer compared to the other
region. Subsequently, we intend to validate the calculated effec-
tive thermal conductivity by comparing it with experimentally
measured values at various temperatures and different normal-
ized interface thermal resistances (Rs) within the material.

As part of the methodological investigation, it is intended to
construct a surrogate model based on machine learning (ML).
This model aims to receive the microstructural features of a sam-
ple and predict its effective thermal conductivity as an output.
There are numerous techniques for representing microstruc-
tures that can be incorporated into ML models to predict prop-
erties and develop the structure–property relationship in
composites. These techniques are generally categorized into
three primary groups: descriptor-based, spatial correlation-based,
and image-based.[23] In the case of descriptor-based approaches,
the challenge is to identify appropriate descriptors that have a
significant impact on material properties. The use of image-
based descriptors and convolutional neural networks is compu-
tationally expensive. Consequently, in recent years, numerous
studies have shifted their focus to the use of statistical features

such as the n-point correlation function to represent microstruc-
tures.[24,25] The n-point correlation functions capture the proba-
bility of specific n-point arrangements occurring within the
microstructure.[26] As the higher order correlations are computa-
tionally expensive, the two-point statistics of the microstructures
are fed into the model as representative microstructural input.

There are several analytical and numerical methods for
predicting the effective thermal conductivity of composites.
Analytical approaches such as the Maxwell[27] and Bruggeman
models[28] are straightforward but do not consider the intricate
details of material distribution within composites. There are
also some other analytical homogenization methods for random
heterogeneous materials, such as the contrast expansion
methods. As these methods can directly derive the effective ther-
mal conductivity tensor via provided morphological information
in the form of correlation functions (such as the n-point
correlation mentioned by the reviewer) without considering the
interface thermal resistance, they can be readily integrated
into our proposed two-level homogenization scheme by
replacing the diffuse-interface-based computational thermal
homogenization.[29,30] However, the interface thermal resistance
is a crucial factor to be considered for the Si(Hf,Ta)C material
system in this study, especially for the accurate characterization
of complex microstructures using the diffuse-interface model.

The comprehensive approach in this work includes both the
application of a thermal homogenization model and the develop-
ment of a ML-based structure–property relationship. This allows
a thorough investigation of the thermal properties of the
ðHf ;TaÞC=SiC material system.

2. Material System

The material system investigated in this study is a SiC-based
PDC NC (PDC-NC) containing the two refractory metals haf-
nium (Hf ) and tantalum (Ta). The polymer-to-ceramic route
was used to prepare a single-source precursor with a tailored
Hf : Ta ratio of 0:7 : 0:3. Subsequent sintering via the field-
assisted sintering (FAST) technique resulted in an UHTC NC
(UHTC-NC), namely, ðHf0:7Ta0:3ÞC=SiC. Further information
regarding the synthesis route and a detailed description of the
microstructure development upon high-temperature sintering
can be found in ref. [2]. The mentioned UHTC-NC is intended
to be used as a top coat on an intermetallic alloy substrate, to
improve the thermal and corrosion protection properties of
the compound material. Therefore, it should have low keff .

The microstructure of the monolithic ðHf ;TaÞC=SiC ceramic
following FAST sintering was examined using SEM, as illus-
trated in Figure 1 at different magnifications.

The FAST sintering process resulted in a crystalline ceramic
material, as confirmed by XRD analysis.[31] The analysis of pol-
ished cross sections revealed three distinct microstructural
regions: the former powder particles (FPPs), sinter necks
(SNs) formed during the sintering process, and residual porosi-
ties within the ceramic. The microstructure consists mainly of
FPPs and SNs. These two regions are labeled and outlined in
light-blue in Figure 1b. Different types of porosity were observed,
including small intragranular pores within the FPPs and porosity
at the interface between the FPPs and the SNs. The dark regions
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in the microstructures represent pores, while the bright regions
correspond to (Hf,Ta)C. The medium gray regions denote SiC,
as shown in Figure 1c. Comparison of FPPs and SNs microstruc-
tures reveals a significant contrast in their scales, with FPPsmicro-
structures being significantly finer than SNs microstructures.

To deal with this scale difference between the regions (as
shown in Figure 1), a two-step homogenization process should
be implemented in the calculations. In this study, the two-step
homogenization is characterized as a two-step hierarchical ther-
mal homogenization approach capable of calculating the effective
thermal conductivity (keff ) of the PDC-NC. In the first step, the
nano- and microscale thermal homogenization in both FPPs and
SNs is calculated separately. In the second step, the keff values
obtained in the first step for FPPs and SNs are used as the ref-
erence thermal conductivity for these regions in the mesoscale
computational thermal homogenization. In summary, the
homogenization model is able to 1) address the nanosized micro-
structures within the FPPs, 2) analyze the microsized micro-
structures within the SNs; and 3) consider the mesosized
microstructures including both regions.

3. Theory and Method

3.1. FE-Based Computational Thermal Homogenization

The study by Yang et al. verified the diffuse-interface microstruc-
ture with anisotropic interface thermal conductivity using

FE-based computational thermal homogenization models.[20]

The binarized microstructure images (see Figure 2) served as
initial conditions for the variable ϕ, which denotes the phase
of the microstructure (e.g., ϕ ¼ 1 for particles; ϕ ¼ 0 for the
matrix). In particular, the profile of ϕ across the interface must
exhibit central symmetry around its inflection point, which is
the expected position of the corresponding sharp interface.
In this study, the Allen–Cahn equation was used to numerically
construct the necessary diffuse interface as follows:

∂ϕ
∂t

¼ ∇2ϕ� 4α2

l2
ϕð1� 3ϕþ 2ϕ2Þ (1)

where l denotes the diffuse-interface width which is adjusted by α
parameter.[20,32] Here, we set α to 2.94 for all microstructures to
replicate the setup of our previous work. Each microstructure
was generated using Equation (1) for 1–3 time steps with a time
interval of 0.1 unit to achieve a diffuse interface without chang-
ing the morphology, as shown in the mesh image in Figure 3.
The continuity of the thermal flux along both the normal and
tangential directions of the surface is considered via phase-
dependent thermal conductivity tensor, as formulated in
refs. [20,33].

kðϕÞ ¼ ½hðiÞkðiÞ þ hðmÞkðmÞ�Tþ kðiÞkðmÞ
hðiÞkðmÞ þ hðmÞkðiÞ þ Rsj∇ϕj

" #
N

(2)

Figure 1. The different magnifications of the SEM images reveal significant variations in the morphological scales of different phases within the material
system, suggesting a two-step hierarchical homogenization process.

SEM Image Blurred Image Binary Image Meshed Image

Gaussian Smoothing Thresholding Mesh Generation

Figure 2. Image processing from SEM image to binary and mesh images.
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where kðiÞ and kðmÞ are the thermal conductivities of the inclusion
(i) and matrix (m), respectively. hðiÞ and hðmÞ are correspondingly
the monotonic interpolation functions. T and N represent the
tangential and normal tensors of the surface, respectively. Rs

denotes the interface thermal resistance between the phases.
The diffuse-interface approach successfully addresses the

numerical and geometric challenges associated with the analysis
of complex microstructures and interpolating the properties of
the interface. In this research, this diffuse-interface-based
computational thermal homogenization model is conducted to
evaluate the keff of the complex microstructure of the sintered
ðHf0:7Ta0:3ÞC=SiC PDC in a hierarchical manner. Because of
the two-level hierarchical thermal homogenization used here,
the terms kðiÞ and kðmÞ represent various phases at different
scales. For instance, in the thermal homogenization within
the FPPs, kðmÞ and kðiÞ refer to the thermal conductivity of SiC
and (Hf,Ta)C, respectively. The governing equations included
Fourier’s law and the conservation law for temperature and ther-
mal flux. The thermal homogenization problem was defined for
both microscale and macroscale regions as below:

�
j ¼ kðϕÞ · ∇T on microscale

jh i ¼ keff · ∇Th i on macroscale
(3)

where T represents the temperature flux, j denotes the
thermal flux, and k signifies the specified local conductivity.
Here, keff represents the homogenized effective thermal conduc-
tivity tensor, with an effective value of keff ¼ trðkeff Þ=3, which is
evaluated in this investigation; ⋅h i ¼ ∫ Ωð⋅ÞdΩ=Ω is the mean
operator.

The Hill–Mandel condition was used to ensure equality of
thermal dissipation at both scales. A linear temperature bound-
ary condition was used to satisfy this condition, and the mean
temperature gradient and keff tensor components were deter-
mined based on calculated thermal flux components under
applied gradients. More details on the homogenization formula-
tion can be found in refs. [20,34]. The authors used numerical
models implemented by the custom simulator NIsoS, which
was developed based on the open-source finite element frame-
work MOOSE.[35,36]
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Figure 3. a) Selected ROIs within the different phases, i.e., former powder particles and sinter necks. The representative SEM images for b) former
powder particles and c) sinter necks phase are highlighted by pink boxes.
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3.2. Two-Point Spatial Correlations

To study the microstructure of a material, which refers to its
microscopic internal arrangement and characteristics, the chal-
lenge is to identify a reduced-form feature that effectively repre-
sents the complex microstructure. In other words, it should
retain all essential structural information to serve as a substitute
for detailed microstructure images. Various types of features,
such as physical and statistical features, are employed for this
purpose. Examples include the volume fraction percentage of
the phases, as well as the size and aspect ratio of the par-
ticles.[23,37] A broader form of representation involves employing
statistical correlation functions. The n-point correlation, along
with its simplified variations, is the most widely used of various
types. Due to the significant computational cost associated with
the n-point correlation, the two-point correlation functions are
often employed as an alternative. The two-point correlation func-
tion, often denoted as S2ðrÞ, is a mathematical function used in
the analysis of spatial patterns such as microstructure, which
describes the structural features and topological arrangements
of a material at a particular length scale.

The two-point correlation function S2ðrÞ is derived by repeat-
edly placing a randomly selected line segment of length ðrÞ
within the sample and noting how often its endpoints fall within
a particular phase of the material system. By conducting this pro-
cedure for various lengths ðrÞ, a graph of S2 versus ðrÞ can be
constructed. Consequently, S2ðrÞ represents the probability that
the endpoints of a line segment of length ðrÞ are in a particular
phase of the microstructure. It is obvious that fluctuations in
S2ðrÞ indicate the degree of correlation between the two points
within the system.[26] S2ðrÞ provides statistical information about
the correlation between points in a system or distribution as a
function of their separation distance rð Þ. In summary, it gives
the probability of finding two different points at a certain distance
rð Þ from each other in the same phase, where this probability
varies as the distance changes. Namely, it helps to quantify
the correlation between different points at different locations
in heterogeneous materials.[23,26,37–40] The two-point correlation
function was computed for all images within the dataset to assess
the variability in the microstructure images using the PoreSpy
Python toolkit.[41] Further details regarding the application of
the two-point correlation function in our study can be found
in Section 5.1 and Figure 6b.

To establish the ML-based structure–property relation in our
study, it was necessary to provide the ML model with microstruc-
ture features as input. For this aim, the two-point statistics[42] are
employed. The two-point statistics characterize the spatial corre-
lations between distinct local states within the internal structure
of a material similar to the two-point correlation function.
However, these correlations are determined by randomly insert-
ing vectors of varying sizes and orientations into the material
microstructure. This means that the orientation of the vectors
will be taken into account in the correlation as well. Recent stud-
ies[25,42] have shown that the full set of two-point correlations con-
tains all the necessary information to accurately reconstruct a
representative microstructure, with the exception of translation
and/or inversion, as demonstrated in previous research. The
two-point statistics for a material system can be defined as[42]

f nn
0 ¼ 1

S

XS�1

s¼0

ms
nmn0

sþt (4)

where ms
n is our digital microstructure array, n enumerates the

local state, and s indicates the bin index. The subscripts t and S
enumerate all vectors that occur randomly and all bins in the
domain, respectively. More information and the mathematical
relations can be found in refs. [25,43,44]. The PyMKS[43] frame
work was also employed for calculation of the two-point statistics
of all the microstructure image and two examples of the two-
point statistics on the microstructure are shown in Figure 7.
The two-point statistics of a 2D image share the same dimension,
resulting in significant information redundancy. To improve
computational efficiency, dimensionality reduction techniques,
such as principal component analysis (PCA), should be applied
to minimize this redundancy.

3.3. PCA

PCA is a statistical technique used to reduce the dimensionality
of data into its key components, known as principal components.
These principal components are combinations of the original var-
iables and are orthogonal to each other. The combinations are
arranged to capture the maximum variance across all variables.
Through this process, PCA provides an approximation of the
original data table and reduces dimensionality by emphasizing
only the crucial components.[45,46]

As discussed earlier, the two-point statistics provide a valuable
representation of microstructure, but result in a significantly
large feature space that may contain unnecessary information
redundancies. Dimensionality reduction techniques, specifically
PCA, can then be applied to generate low-dimensional micro-
structure descriptors from sets of spatial correlations. The
reduced two-point correlation function obtained from PCA
can be efficiently used as a ML input, reducing the time and
computational cost of model training by using lower dimensional
data.[43,47]

4. Image-Based FE Simulation

4.1. Identifying the Representative Area Element for Different
Microstructure Scales

To implement FEM directly on a SEM image as the input geom-
etry, several image processing steps are required to streamline
the image. These processing steps are outlined in Figure 2.
First, a Gaussian smoothing filter is applied to the SEM image,
which reduces intricate details and results in a more opaque
image. Next, thresholding is used to segment the image, result-
ing in a binary image. All of these steps are done using scikit-
image package in Python.[48] The binary image is then utilized
to generate a finite element mesh with an initial sharp interface.
Interface relaxation is then conducted using the Allen–Cahn
equation to obtain a diffuse-interface microstructure. More
details on the diffuse-interface generation can be found in
refs. [20,34].

To initiate the finite element simulation by hierarchical
computational homogenization, it is crucial to establish the
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representative images for all three scales discussed in Section 2.
The workflow for exploring the representative region of interest
(ROI) at different scales is illustrated in Figure 3.

Due to the limited number of variations in the mesoscale
images of the sample, the ROI selection process focuses on iden-
tifying representative images specifically for FPPs and SNs.
Considering that the microstructure within the FPPs is finer
than that of SNs, representative testing involves selecting images
of a single particle but at different image sizes (magnifications).
These selected images are outlined by yellow boxes in Figure 3a.
For SNs with a coarser microstructure, ROIs of identical size are
selected from different locations. These selected regions are
highlighted with pink boxes in Figure 3a.

Afterward, the selected ROI images undergo the same image
processing steps discussed earlier to be converted into binary
images. Subsequently, the proportions of each phase in these
ROIs are calculated and marked on each image using the
scikit-image package[48] in Python. The phase fractions versus
image size for FPPs are then plotted in Figure 3b. It can be seen
that the phase fractions stabilize after the image iii, indicating
that the image size does not affect the phase fraction for the
images larger than this limit. For SNs, the phase percentages
for various images, all of the same size, are displayed, and the
average values for different phases, including SiC, ðHf0:7Ta0:3ÞC,
and pores, are plotted in red, blue, and green solid lines, respec-
tively, in Figure 3c. It can be seen that among all the images, the
outlined image with the pink box is the closest to the average
phase values. Therefore, it is selected as the representative image
for SNs.

4.2. Validation of FE Results through Experimental
Measurements

In this work, all detected pores in the microstructure are smeared
out and merely the composite of FPPs and SNs is considered in
the thermal homogenization, assuming the perfectly synthesized
microstructure. Nonetheless, we recognize the potential effect of
pores (blocking the heat flux) in reducing the measured thermal
conductivity of the composite, which has a similar effect to

increasing the interface thermal resistance. In other words,
the value of the Rs already recapitulates the influence of pores.
Initially, the results of the computational thermal homogeniza-
tion of the material system are demonstrated on three different
scales: the nanoscale within the FPPs, the microscale in the SNs,
and the mesoscale through the combination of the two aforemen-
tioned regions, using the aforementioned diffuse-interface
model. The results are shown visually in Figure 4. In this figure,
the colored regions indicate the amount of normalized thermal
flux passing through the microstructure, and the vertical lines
indicate the normalized temperature in the microstructure. All
homogenization processes were conducted at the temperature
of 1600 °C, which is the expected operating temperature in
high-temperature applications such as gas turbine engines.
The thermal conductivity values for the constituent phases, i.e.,
SiC and (Hf,Ta)C, were obtained through an extensive literature
review, and the corresponding plots are illustrated in Figure 5a,b.

The simulation results need to be validated by experimental
measurements. Information on the equipment and methodology
used for experimental thermal conductivity measurements can
be found in the study by Bernauer et al.[49] It is important to note
that the validation simulation is performed using the aforemen-
tioned two-step homogenization approach described in Section 2
and 3.1. In order to simulate the thermal conductivity using the
specified model, certain input parameters are required, namely,
the thermal conductivity of the constituent phases and the geom-
etry or microstructure of the material system at different scales.
The former comes from the literature, specifically the thermal
conductivity of different phases at different temperatures. This
information is presented as plots of thermal conductivity versus
temperature for SiC and (Hf,Ta)C in Figure 5a,b. The latter,
which is the ROI at different scales, is explained in Figure 3.
The only unknown input pertains to the Rs between the phases.
In nanoscale (FPPs) and microscale (SNs) microstructures, the
Rs between SiC and (Ta,Hf )C is taken into account. However,
no Rs is considered between FPPs and SNs at the mesoscale.
In fact, FPPs and SNs are treated as separate regions rather than
distinct phases. Therefore, incorporating Rs in this context would
have no physical meaning.

0.1
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N
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Figure 4. In the hierarchical computational thermal homogenization process, the effective thermal conductivities calculated for different regions at the
lower scale, i.e., a) former powder particle at the nanoscale and b) sintered neck at the microscale, serve as the reference thermal conductivities of the
corresponding regions in c) mesoscale microstructure.
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As the exact value of Rs is unknown in the system, simulations
are conducted for different values of Rs ranging from 10�1 to 108.
The summarized results are presented in Figure 5c. The solid
black line represents the experimental thermal conductivity
results at various temperatures. The distinct markers in different
colors depict the simulated results obtained at different values of
Rs. Additionally, the various styles in matching colors illustrate
the fitted lines corresponding to the simulation results of the
same Rs.

Observations indicate that for temperatures below 400 °C, the
experimental measurements agree with the simulation results,
where the value of Rs is 108. As the temperature increases,
the experimental results tend toward smaller Rs values. At the
maximum temperature of 850 °C for which experimental data

are available, the experimental and simulation results coincide
at Rs equal to 105. Extrapolation of the experimental line
(represented by the dashed black line extending from the contin-
uous black line) suggests that at higher temperatures, around
1000 °C, the Rs is expected to be about 102 for the agreement
between experimental and simulation data.

This leads to the conclusion that the interface thermal resis-
tance between phases has a significant and dominant influence
on the thermal conductivity of the composite, especially at lower
temperatures. In summary, Rs tends to be high at temperatures
lower than 500 °C due to increased phonon scattering and ther-
mal flux deviation at the interface. This behavior results from
imperfect interfaces and phase mismatch on either side of the
interface.[50]

(a)

(b)

(c)

Figure 5. a) Thermal conductivity of SiC redrawn from ref. [54]. b) Thermal conductivity of (Hf,Ta)C redrawn from ref. [55]. c) Validation of the experi-
mentally measured thermal conductivity with the computationally calculated thermal homogenization results obtained at various temperatures and
interface thermal resistances.
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Figure 6. a) Analysis of the mesoscale microstructure to obtain the parameterized descriptor, i.e., the aspect ratio and the minor and major diameters.
The diversity and data distribution in terms of the two-point correlation function, i.e., (S2ðrÞ), and volume fraction are shown in (b,c), respectively.
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5. Data-Driven Surrogate Model for Thermal
Homogenization

The development of a ML-based surrogate model for predicting
the properties of composite materials, trained on data obtained
from physical models, provides a powerful and efficient approach
to the design of new materials.[51,52] It accelerates the material
design and optimization process, allowing researchers and

engineers to explore a wider range of composite formulations
and configurations. It facilitates the identification of key factors
that influence material properties, contributing to a deeper
understanding of the structure–property relationship in
composites.

In this study, a surrogate model is developed to predict the
thermal conductivity of composites with high accuracy using
data-driven approaches, eliminating the need for complex and
computationally expensive simulations or experiments. In the
model, the input is the two-point correlation of the (Hf, Ta)C/
SiC microstructures, and the output is the corresponding
thermal conductivity. The following section details the data gen-
eration process used to train and develop the model.

5.1. Data Generation

To construct a surrogate model capable of predicting the thermal
conductivity of diverse ðHf ;TaÞC=SiC microstructures, a variety
of different microstructures are essential. As it is impractical to
obtain these different microstructures experimentally, synthetic

Table 1. Parameterized descriptors extracted from the mesoscale SEM
image analysis.

Param. Meana) [unit] Std.

D1 40, 50, 60 [μm] 20%

D2 20, 25, 26, 30, 33, 40 [μm] 30%

Ar 1.5, 2 –

V f 35, 40, 45, 55, 60 [%] –

a)1440 images in total.

(a) (b)

Figure 7. a) Visualization of the two-point statistics on two microstructure examples shown in the top row. The second and third rows show the auto-
correlation for the bright phase (FPPs) and the correlation for the dark and bright phases, respectively. b) The correlation of the first three principal
components (PC1, PC2, and PC3) obtained from the PCA on the entire dataset.
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data are generated. The homogenization scheme involved a hier-
archical model with three different length scales in the material
system. In this study, the surrogate model focuses specifically on
the mesoscale microstructure. Consequently, the data generation
process only considers the mesoscale microstructure of the mate-
rial system as well, which includes two distinct regions of SNs
and FPPs.

In the mesoscale microstructure, we consider the SNs as the
matrix and the FPPs as the second phase. Key features such as
volume fraction and size of the second phase are essential for
synthetic image generation. These parameters are obtained by
manually modeling the FPPs phase using ellipsoids of different
sizes and shapes, as illustrated in Figure 6a.

In this binary image, the bright and dark regions correspond
to the FPPs and SNs, respectively. The FPPs are represented by
ellipsoids of different sizes, with a distinct color. The major and
minor axes of these ellipsoids are labeled as D1 and D2, respec-
tively. The aspect ratios of the ellipsoids are defined as
Ar ¼ D1=D2. On the left side of the figure, the color-coded values
of D1, D2, and Ar, corresponding to the ellipsoid colors, along
with their mean value are also reported. The final microstructure
parameters are determined based on the ellipsoid model analysis
on the SEM image and are presented in Table 1. By using these
parameters as microstructure features, it is possible to generate
synthetic microstructures that closely resemble the SEM images.
For this task, the commercial software GeoDict 2023
(Math2Market, GmbH, Kaiserslautern, Germany) is employed.

The combination of parameters, as described in Table 1, is
used for microstructure generation. As GeoDict generates 3D

morphology, cross-sections are extracted for analysis. A total
of 180 3D microstructures were generated, from which
1440 cross-sectional images were extracted for the input dataset.
To assess the diversity of the input microstructures, the distribu-
tion of the dataset is visualized through the two-point correlation
functions, i.e., S2ðrÞ and volume fraction histograms, as
illustrated in Figure 6b,c, respectively. The calculation of the
two-point correlation function is performed on all images by
poreSpy,[41] a Python package designed for the analysis of micro-
structure images.

To prepare the images as input for ML, two crucial steps are
performed. First, the two-point statistics (based on Equation (4))
of all the images are extracted and stored. These statistics provide
a detailed representation of spatial relationships, but they remain
as 2D data, posing computational challenges for ML training. To
address this, PCA is used to reduce the dimensionality of the data
by transforming it into uncorrelated variables known as principal
components (see Section 3.3). This simplification streamlines
the learning process and improves the efficiency of the ML
model. In this study, only the first three principal components
of PCA are used, as they showed promising performance in
our ML training. Examples to illustrate the two-point statistics
of two microstructures are shown in Figure 7a. There, the
two-point statistics are represented in both the autocorrelation
between the FPPs and also the correlation between PPTs and
SNs. In addition, the relationship between the principal compo-
nents in our datasets is also shown in Figure 7b. The colors of the
points correspond to the volume fraction of the second phase in
the artificially generated microstructures. In the first two plots,

Figure 8. ML-based structure–property relation development workflow, adopted by ref. [25].
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which show the correlation of the first principal component with
the second and third ones, the points representing microstruc-
tures are arranged according to the volume fraction of the second
phase. As a result, the ML input is transformed from a large,
pixel-wise image to just three principal components obtained
from the two-point statistics of the microstructures. The two-
point statistics are derived from PyMKS,[43] a Python implemen-
tation of methods developed within the Materials Knowledge
System framework.

The output of our ML model is the predicted effective thermal
conductivity. To generate the output data for training the ML
model, cross-sectional images of 3D microstructures generated
by GeoDict are meshed and transformed into the diffuse-
interface microstructures (see Section 4.1). Subsequently, the
keff is calculated using the computational thermal homogeniza-
tion diffuse-interface model described in Section 3.1. In our
material system, the calculated keff using the computational
homogenization model at each temperature for both phases,
namely, FPPs and SNs, resulted in nearly identical values.
As part of the methodological approach in the ML model, we
adopt a thermal conductivity ratio of approximately 0.5 between
the two phases. This assumption enables us to explore differen-
ces in keff for different microstructures, i.e., developing the
structure–property relation.

5.2. ML Model Training and Validation

The process of building an ML-based surrogate model is outlined
in Figure 8. It starts with the binary image of the microstructure
and illustrates the steps of ML input preparation in the form of
principal components at the top. At the bottom, the generation of
the output dataset for the ML model through computational
homogenization is shown. Training is conducted on 80% of
the dataset, with the remaining 20% used for testing. The train-
ing steps, which take a few seconds on a PC with a 2.5 GHz Intel
Core i5-7200 processor and 8 GB of RAM, are due to the use of a
simple data structure of the two-point statistics rather than using
large images, sufficient amount of training data, and well-defined
features. After training ML models, it is crucial to evaluate their
predictive performance. The microstructure–property plot in
Figure 8 visualizes FE simulated and ML predicted results
and shows the complete agreement between the two values.
Regarding the performance evaluation based on the well-known
metrics such as the mean square error (MSE) and the coefficient
of determination or R2,[53] the model shows an excellent perfor-
mance with MSE¼ 10�5 and R2 ¼ 0.99. By obtaining the prom-
ising R2 ¼ 0.99 from the initial model results, hyperparameter
tuning is unnecessary in this work.

6. Conclusion

This study focused on the development of a hierarchical diffuse-
interface thermal homogenization scheme for the calculation of
the effective thermal conductivity of ðHf0:7Ta0:3ÞC=SiC UHTC-
NC. It was achieved by combining experimental insights such as
SEM images and the measured thermal conductivity of the NC.
In addition, a ML surrogate model is developed to predict the
effective thermal conductivity of new microstructures in order

to establish a useful structure–property relationship that can
be useful in the design of new materials. The point-wise conclu-
sions derived from the study are listed as follows: 1) An approach
was introduced to define representative images for computa-
tional homogenization from both nanoscale FPPs and micro-
scale SNs regions. In addition, several image processing steps,
such as Gaussian smoothing and thresholding, were employed
to streamline the generation of the meshed image for finite ele-
ment simulations. 2) Computational thermal homogenization
results were demonstrated over nanoscale, microscale, and
mesoscale regions at the working temperature of 1600 °C. The
thermal conductivity values obtained from both FPPs and SNs
were utilized as the reference thermal conductivity for the meso-
scale homogenization. 3) The numerically obtained effective
thermal conductivity values at different temperatures were vali-
dated by experimental measurements. They showed a good
agreement at temperatures below 500 °C, considering a normal-
ized interface thermal resistance value of 108. This highlights the
temperature-dependent nature of the thermal resistance of the
material system. 4) A ML-based surrogate model was developed
to predict the effective thermal conductivity of composites with
different microstructure designs. The model was trained on syn-
thetically generated microstructures to overcome the challenge of
obtaining expensive experimental samples and images. The
reduced form of the two-point statistics of the microstructure
images is fed to the model for training, resulting in a strong per-
formance with R2 ¼ 0.99.

Further investigation of the dependence of the effective ther-
mal conductivity on the porosity is planned for future work.
Regarding the ML aspect, it is proposed to extend the dataset
to different material systems with different thermal conductivity
contrast ratios between the phases. Furthermore, a systematic
sensitivity study will be performed to determine the number
of principal components that should be used as input to achieve
a good performance of the ML model.
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