

Supporting Information

for Cryst. Res. Technol., DOI 10.1002/crat.202400055

Morphologically and Compositionally Controlled Cs₂SbBr₆ by Bi and Ag Substitution

Alexander Frebel, Songhak Yoon*, Samuel Meles Neguse, Dennis Michael Jöckel, Marc Widenmeyer, Stefan G. Ebbinghaus, Benjamin Balke-Grünewald and Anke Weidenkaff

Supporting Information

Morphologically and compositionally controlled Cs₂SbBr₆ by Bi and Ag substitution

Alexander Frebel¹, Songhak Yoon^{1,*}, Samuel Meles Neguse¹, Dennis Michael Jöckel¹, Marc Widenmeyer², Stefan G. Ebbinghaus³, Benjamin Balke-Grünewald¹, Anke Weidenkaff^{1,2}

Supporting Information S1. Alexander Frebel et al.

Figure S1. XRD patterns of the 3 substitution paths of Cs_2SbBr_6 . (a) Bi substitution ending up in $Cs_3Bi_2Br_9$, (b) Bi+Ag substitution ending up in $Cs_2AgBiBr_6$, and (c) Ag substitution.

Supporting Information S2. Alexander Frebel et al.

	a (Å)	<i>c</i> (Å)	c/a	
SM_0	10.845(5)	21.967(1)	2.025(4)	
M_B4	10.905(3)	21.989(1)	2.016(3)	
M_B6	10.904(4)	21.959(8)	2.013(8)	
M_B6A	10.939(4)	21.941(0)	2.005(6)	
M_A2	10.849(3)	21.972(3)	2.025(2)	
M_A5	10.848(8)	21.970(7)	2.025(1)	
M_A7	10.850(1)	21.956(1)	2.023(5)	

Table S2. Unit cell parameters *a* and *b*, and tetragonality c/a derived from LeBail fits (space group: $I4_1/amd$).

Figure S2. The by Le Bail fit determined lattice parameter a and the unit cell parameter ratio c/a of the (a) Bi substituted samples and (b) Ag substituted samples.

Supporting Information S3. Alexander Frebel et al.

Figure S3. Average band position and broadening of the A_{1g} band of the Sb-Br bondings of the (a) Bi substituted samples and (b) Ag substituted samples. (c) Position and broadening of several crystals containing the Cs₂SbBr₆ and Cs₃Sb₂Br₉ phase.

Supporting Information S4. Alexander Frebel et al.

Supporting Information S4. In order to show a relation between the oxidation state of Sb, both the position and broadening of A_{1g} bands of both possible structures Cs_2SbBr_6 (M_0 black) and $Cs_3Sb_2Br_6$ (M_0 yellow) together with the Bi substituted samples are summarized in **Figure S4**. It can be shown that due to the dominance of Sb³⁺ the A_{1g} band is shifted towards higher wavenumber. Additionally, the FWHM is reduced. The sample M_0 black representing the Cs_2SbBr_6 structure have the band placed at lower wavenumber and show compared to the other samples the highest broadening, due to the coexistence of two different oxidation states. By Bi substitution the wavenumber of the A_{1g} band is further reduced and the broadening shows in the samples without Ag a lower value. A plausible reason for the shift to lower wavenumber is the larger ion size of Bi³⁺ compared to Sb³⁺.^[17,20]

Figure S4. Position and broadening of the A_{1g} band of the Sb-Br bonds of crystals containing the Cs₂SbBr₆ and Cs₃Sb₂Br₉ phase.

Supporting Information S5. Alexander Frebel et al.

Additional SEM and EDX measurements.

Spectrum Label	Sp 102-1-1	Sp 102-1-2	Sp 102-1-3	Sp 102-1-4
Cs	22.24	22.29	22.72	22.45
Sb	11.41	11.35	11.71	11.51
Bi	0	0	0	0
Ag	0	0	0.21	0
Br	66.35	66.35	65.37	66.05

Figure S5(a) SEM and EDX measurement of sample M_0. Atomic ratios are given in the table.

Spectrum Label	Sp 151-1-1	Sp 151-1-2	Sp 151-1-3
Cs	21.76	22.39	25.05
Sb	5.07	5.56	6.16
Bi	5.98	6.65	6.15
Ag	1.3	2.4	2.52
Br	65.89	63.01	60.13

Figure S5(b) SEM and EDX measurement of sample M_B6A2. Atomic ratios are given in the table.

Spectrum Label	Sp 152-2-1	Sp 152-2-2	Sp 152-2-3	Sp 152-2-4
Cs	35.13	26.48	27.88	29.28
Sb	13.13	7.24	5.9	5.85
Bi	8.93	5.17	9.4	9.35
Ag	1.88	0.77	0.45	0.42
Br	40.92	60.31	56.38	55.1

Figure S5(c) SEM and EDX measurement of sample M_B6A. Atomic ratios are given in the table.

Spectrum Label	Sp 155-1-1	Sp 155-1-2	Sp 155-1-3	Sp 155-1-4	Sp 155-1-5
Cs	16.62	21	20.6	21.59	21.53
Sb	4.91	6.31	6.35	11.28	11.23
Bi	4.96	4.96	5.09	3.32	3.55
Ag	0.83	1.14	1.68	0.36	0.63
Br	72.67	66.59	66.29	63.46	63.06

Figure S5(d) SEM and EDX measurement of sample M_B4A. Atomic ratios are given in the table.