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Abstract
Silicon oxycarbides show outstanding versatility due to their highly tunable
composition and microstructure. Consequently, a key challenge is a thorough
knowledge of structure–property relations in the system. In this work, we fit an
atomic cluster expansion potential to a set of actively learned density-functional
theory training data spanning a wide configurational space. We demonstrate the
ability of the potential to produce realistic amorphous structures and rational-
ize the formation of different morphologies of the turbostratic free carbon phase.
Finally, we relate the materials stiffness to its composition and microstructure,
finding a delicate dependence on Si-C bonds that contradicts commonly assumed
relations to the free carbon phase.
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1 INTRODUCTION

Silicon oxycarbides (Si-O-Cs) are highly versatile mate-
rials that combine remarkable structural and functional
properties. Among them are high-temperature resistance,
good mechanical strength,1,2 great creep- and corrosion-
resistance,3,4 as well as piezoresistivity and the ability to
reversibly store Li+, Na+, and K+.5–8 These properties
make them interesting for applications in very different
fields, such as protective coatings,9 energy storage,10 and
biomedicine.11
Despite the plethora of desirable properties and inten-

sive research, open questions about structural features
and their relation even to basic characteristics such as the
Young’s modulus (E) remain. From NMR measurements,
it is known that Si-O-Cs consist of corner-shared SiO𝑥C4−𝑥
tetrahedra with carbidic sp3-hybridized carbon12,13 and
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a segregated secondary phase with sp2-hybridized tur-
bostratic carbon.14,15 The detailed nanostructure, however,
remains elusive and sensitively depends on the composi-
tion, precursor structure, and processing conditions. For
example, it is still unclear in which form the turbostratic
carbon is present in Si-O-C. Scarmi et al.16 and Saha et al.17
argued that interpenetrating networks of graphene-like
carbon and silica-rich mixed tetrahedra domains are
formed, based on the high creep resistance of the material.
In contrast, Widgeon et al.12 found that a model with
graphitic inclusions embedded in a silica-rich matrix
result in a better match of the mass fractal dimensions of
mixed tetrahedra.
Here, atomistic simulations may help in understand-

ing structure formation and structure–property relations of
Si-O-C compounds at the nanoscale. As shown, for exam-
ple, in a series of studies by Kroll,18–20 ab-initio molecular
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TABLE 1 Compositions of hydrogen stripped polymers, sorted
from low to high carbon content. These compositions were used to
generate polymer derived (PD), bulk fragment (BF), isolated atoms
(Ats), and graphite flakes and isolated atoms (GrAts) samples (see
Figure 1A).

𝐗𝐒𝐢 𝐗𝐎 𝐗𝐂

Si2O2C 0.4 0.4 0.2
PMSQ 0.25 0.5 0.25
RD-212 0.25 0.25 0.5
SILRES-604 0.125 0.125 0.75
RD-684 ≈0.121 ≈0.121 ≈0.758

dynamics (MD) simulations can be employed to investi-
gate structural details, energetics, and elastic properties of
Si-O-C, but are limited to structures consisting of a few
hundred or thousand atoms and simulation times on the
order of tens of picoseconds. This makes nanoscale hetero-
geneities hard to capture and requires a careful preparation
of model structures. Direct large-scale MD simulations,
on the other hand, require suitable interatomic potentials
and the complex nature of the strongly directional covalent
bonds is hard to capture in empirical formulas like bond
order potentials. Recent studies showed that the ReaxFF
framework21 allows investigating specific aspects of the Si-
O-C system. For example, Newsome et al. simulated the
oxidation of silicon carbide,22 Soria et al.23,24 investigated
organic molecules on silicon surfaces, and Gao et al.25
used the Newsome reaxFF to simulate the pyrolysis of spe-
cific polymers to amorphous Si-O-C. However, Ponomarev
et al.26 have shown that this parametrization, and the one
by Soria et al. rupture mixed SiO𝑥C4−𝑥 tetrahedra, which
are essential parts of Si-O-C glass ceramics. In their work,
they fitted a parameter set stabilizing these tetrahedra and
also employed it to simulate pyrolysis processes. Of the
three Si/O/C parameter sets, only the one by Newsome
et al. is publicly available though.
Modern machine learning interatomic potentials

(MLIPs) offer an alternative approach to describe complex
systems, which does not rely on specific functional forms
based on chemical insights. They can achieve high accu-
racies over a wide compositional and structural range at
similar computational cost, but at the expanse of requiring
more training data. Recent studies have shown the suc-
cessful application of MLIPs to carbon,27–34 silicon,35–40
SiO2,41–44 and SiC.45,46 In this work, we present an atomic
cluster expansion (ACE) potential47 for the Si-O-C system
fitted to an extensive database generated using the active
learning (AL) capabilities of moment tensor potential
(MTPs)48 and ACE.49 We show that the potential achieves
a high accuracy for a wide compositional range and that
it can be used to produce realistic amorphous Si-O-C
structures. We investigate structural features, formation

energies, and Young’s moduli for samples with varying
compositions and precursor configurations. Thereby, we
find that the structure model containing graphene-like
sheets and the graphitic inclusions in a silica matrix
are both likely to describe the structure of Si-O-C, but
occur at different stages of processing. Furthermore, we
establish relations of Young’s modulus to the fraction
of Si-C bonds in mixed SiO𝑥C4−𝑥 tetrahedra and the
silica volume.

2 METHODS

2.1 Training and testing data

The training data for the potential were produced as fol-
lows. Initial Si, O, and Si-O structures were taken from an
ACE potential previously fitted for the Si-O system.50 Pure
C structures were generated using the ASE package51 with
diamond, graphite, graphene, FCC, BCC, SC, and HCP lat-
tices. SiC structures were taken from the materials project
database.52 Further C and SiC structure were created by
applying random displacements and cell deformations.
Si-O-C structures with varying compositions were gen-

eratedwith two different procedures. First, structureswere
produced tomatch the expected coordination, that is, four-
fold for Si and C and twofold for O.53,54 Second, an AL pro-
cedure, schematically shown in Figure 1, was employed.
Ternary systems based on the polymer derived (PD), bulk
fragment (BF), and isolated atoms (Ats) building units
shown in Figure 1(A) were generated and fed into the AL
process. Theywere packed to dense structures, while keep-
ing minimal distances between atoms using PACKMOL,55,56
and subjected to a cook and quench procedure with tem-
peratures up to 3000K and pressures up to 200GPa to find
structures with high extrapolation grades. Here, for struc-
tures based on Ats and BFs, the composition was varied to
cover a wider phase space, with Si and C concentrations
ranging from 0% to 100% and the oxygen concentration
from 0 to 2.2 times the Si concentration. PD building
units are inspired by polymethylsilsesquioxane (PMSQ),
the polyorganosiloxanesRD-212, RD-684, and SILRES-604,
and a fully artificial polymermade from Si2O2C. In the fol-
lowing, we will use their compositions, instead of polymer
names as shown in Table 1. The AL capabilities of MTPs57
and ACE potentials49 were employed. We started with
MTPs because the AL capabilities for ACE were imple-
mented only recently.49 Furthermore, we covered a wider
variety of structures by using both codes. The training
data set was considered complete when no new structures,
which had a maximum density-functional theory (DFT)
force of less than 150 eV∕Å, were discovered in an AL
iteration. Distribution of the resulting training data with
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F IGURE 1 Si-O-C structure generation and active-learning strategy. Most initial structures for the AL process were generated by densely
packing smaller building blocks using the PACKMOL program. These building blocks and the nomenclature used to describe them throughout
this work are shown in (A). Si is shown in beige, O in red, and C in gray. PD structures are stripped of H atoms. GrAts building blocks were
used to produce large sample structures, but not in the AL process. The AL procedure employed to iteratively improve the training data is
schematically shown in (B). Structures for AL and samples used in the analysis were produced using a cook and quench simulations depicted
in (C). The compressions step shown as dotted line was only applied for PD and GrAts structures, where it was necessary to obtain nonporous
bulk samples. For structures made from BFs or Ats, it was not necessary, because the initial packing already leads to reasonable densities.

respect to structure sizes, energies, and forces can be found
in the Supporting Information.
In the PD units, H atomswere stripped from the original

monomers. This avoids a massive extension of the neces-
sary training data, as the configuration space for a quater-
nary system is much larger than for a ternary, but keeps
the polymeric backbone. This prevents a direct comparison
with the experimental pyrolysis process, because the reac-
tions taking place cannot be simulated. Due to the limits
in timescale, however, this is difficult anyway. Further-
more, a dependence on the atmosphere during pyrolysis
on structure formation has been observed, which would
require the addition of even more elements,58 which is
beyond the scope of thiswork.We expect that the influence
of missing H is smaller for higher pyrolysis temperatures,
because increasing amounts of H are removed from the
material in the form of gaseous products.59,60 Yet, we invite
researchers to extend our publicly available database61 by
H, to enable the simulation of pyrolysis processes.

For the test data set, the test data of the Si-O potential50
were supplemented with a separately created set of Si-O-
C structures. These Si-O-C test structures were created
with PACKMOL at varying densities and compositions sim-
ilar to the training data. Consequently, the atoms were
randomly displaced.
Finally, the training and test data sets were filtered to

not contain structures with a maximum force of more
than 150 eV∕Å, aminimal distance between atoms smaller
than 0.6 Å or greater than 4 Å or an energy of more than
20 eV∕atom above the convex hull. Training and testing
data employed in this work are publicly available (see Data
availability section).

2.2 Details of potentials

For the potentials, we used a cutoff of 5 Å. The ACE and
MTPs were fitted using the pacemaker40,62 and MLIP
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packages.48 For the AL process with MTPs, a level 26
potential was employed. The intermediate ACE potentials
for ALwere fitted with the triple embedding 𝜌0.5

1
+ 𝜌1

2
+ 𝜌2

3

and a total of 2325 basis functions. While ACE can the-
oretically represent MTPs,47 a direct transfer of fitting
coefficients is not implemented, so the potential was
trained from scratch. In principle, the most straightfor-
ward way of increasing the accuracy of ACE potentials
is to increase the number of basis functions. However,
this considerably increases the computational cost.62
Instead, we tested different embedding terms for the final
potential, which is computationally very cheap. Here, we
found a highly nonlinear sum of expansions

∑𝑛

𝑖
𝜙
𝛼𝑖
𝑖
with

𝑛 = 10 and exponents 𝛼𝑖 0.125, 0.25, 0.375, 0.5, 0.75, 0.875,
1, 1.25, 1.5, and 2 to result in the best testing errors.

2.3 Si-O-C sample structures

The structure samples used to analyze formation energies,
structural features, and elastic properties contain roughly
10.000 atoms each. They were produced in a cook and
quench process, as schematically shown in Figure 1(C).
Here, we tested two different degrees of freedom, the influ-
ence of the composition and the effect of the precursor
on the structure and properties of the final sample. The
compositions of the structures correspond to the five poly-
meric compositions, shown in Table 1. As precursors, we
employed four different types of building blocks shown
in Figure 1(A). The graphite sheets in graphite flakes and
isolated atoms (GrAts) structures consist of 160-atom two-
layer graphite. The resulting 20 structures were used in
cook and quench simulations with annealing tempera-
tures of 1000, 1500, and 2000K to obtain a total of 60
sample structures. Here, the annealing time was 1 ns. As
shown in the Supporting Information (Section S1), this
time is sufficient to reach a steady state regarding differ-
ent structural features. The employed quench rate was
1 × 1012 K∕s. PD and GrAts-based structures required an
additional compression step before the cook and quench
process to obtain nonporous initial structures. For this
purpose, they were equilibrated at 500K with an applied
isotropic pressure of 10GPa for 10 ps before heating them
up to the annealing temperature.

2.4 Simulations

DFT calculations were carried out with the same set-
tings as used for a silica potential previously fitted44 to
keep the training data consistent. The plane wave code
VASP63–65 with projector-augmented wave66 pseudopo-
tentials and the SCAN67 meta-GGA exchange-correlation
were employed with a plane-wave cutoff of 900 eV and

a k-spacing of 0.23 Å-1. Classical MD simulations were
carried out with LAMMPS,68 applying GPU accelerated
KOKKOS versions where possible. If not otherwise noted
an NPT ensemble with isotropic 0 Pa pressure, Nosé-
Hoover thermo- and barostats and a timestep of 1 fs were
employed in the simulations.

3 RESULTS

In the following, we will start by shortly presenting the
results of the applied AL procedure and evaluate the newly
developedMLIP. Then, we will discuss the structure of the
produced Si-O-C samples based on their composition and
precursors going from low to high C contents. Finally, we
will relate structural features to the Young’s modulus of
the samples.

3.1 Training and performance of the
potential

The flexibility of the ACE formalism allows for an accurate
description of highly complex materials, under the condi-
tion that similar atomic configurations have been part of
the data used in their training procedure. In this work, an
AL procedure was employed to ensure that the training
data cover a large-phase space volume. Here, we started
with MTPs as implemented in the MLIP package,48 and
continued with ACE potentials for which AL capabilities
were implemented only recently.49 We included structures
with varying compositions and at high temperatures and
pressures, as well as different defective structures that can
form during MD simulations. This makes the potential
applicable to a wide area of problems. Figures 2(A) and
2(B) show the resulting distribution of the training data in
terms of atomic energies and volumes.
The mostly actively learned Si-O-C structures are scat-

tered widely in this 2D representation of phase space. The
pure elements and SiC structures were mostly made by
hand. In combination with less compositional degrees of
freedom, this leads to a comparatively narrow distribu-
tion for them. To prevent the occurrence of unphysically
large forces on single atoms duringMD simulations at high
temperatures or pressures, we found it helpful to add SiC
structures with a high density, leading to a second area
with aggregated SiC structures around 4 eV∕atom above
the convex hull.
Energies and forces predicted using the potential agree

well with those calculated using DFT over the whole range
of structures. This is shown by the energy error as a func-
tion of the distance from the convex hull in Figure 2(C) and
the force scatter (Figure 2D) and error plots (Figure 2E).
For energies, a root mean square error (RMSE) of 24 and
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F IGURE 2 Training data and performance of the potential. Training data resulting from the AL procedure (A) with the black box
indicating the magnified region shown in (B). Error of energies as a function of the formation energy distance from the convex hull (C).
Correlation (D) and histogram of force errors (E). Training and test RMSEs of forces (F) during optimization of the potential.

36meV∕atom for the training and test sets was obtained.
For forces, the RMSEs were 479 and 650meV∕Å, respec-
tively.Wewant to note that the higher errors for the testing
set are a result from the different distribution of the struc-
tures regarding their composition and energy and not from
overfitting as shown by the continuous decrease of testing
error in Figure 2(F).

3.1.1 Energy of sample structures

For further evaluation of the potential with respect to
structures similar to those analyzed later on, the procedure
described in Section 2.3 was also employed to generate one
Ats sample with roughly 200 atoms for each composition
listed in Table 1, respectively. This system size allows a
direct comparison to DFT calculations. An annealing tem-
perature of 3500K was employed, to reduce the impact of
the initial structural motif. The samples were fully relaxed
using the ACE. Consequently, their ionic degrees of free-

domwere relaxed usingDFT. Figure 3 shows the formation
energies with respect to graphite, 𝛼-quartz, and 𝛽-SiC as
calculated with the potential, with DFT without further
relaxation (labeled DFT 0) and after relaxing the ionic
degrees of freedom. The potential overestimates the forma-
tion energies compared to the DFT data. As shown by the
relatively low-energy gain during theDFT relaxation, how-
ever, the localminima in the potential energy surface agree
well between both.

3.1.2 Elastic constants

In Section 3.3, elastic properties are related to structural
motifs in Si-O-C samples. Here, the performance of the
potential is exemplarily evaluated for the independent
elastic constants of graphite, 𝛼-quartz, and 𝛽-SiC. Table 2
lists experimentally determined and calculated values. For
𝛼-quartz and 𝛽-SiC, excellent agreement is observed. In
the case of graphite, the agreement is worse in directions
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TABLE 2 Independent elastic constants of graphite, 𝛼-quartz, and 𝛽-SiC calculated with the ACE potential compared to experimental
values.

C𝟏𝟏 C𝟏𝟐 C𝟏𝟑 C𝟏𝟒 C𝟑𝟑 C𝟒𝟒 C𝟔𝟔

graphite Exp.69,70 1060,
1109

180, 139 15, 0 36.5, 38.7 4, 5 440,
485

ACE 1013 239 55 201 56 387
𝛼-quartz Exp.71 85–88 5–8 11–19 17–19 105–108 57–59

ACE 86.4 13.3 11.8 17.1 99.6 55.1
𝛽-SiC Exp.72 360–393 142–154 149–256

ACE 384 136 226

F IGURE 3 Formation energy of small Si-O-C samples. The
samples were prepared similar to the large ones analyzed later on.
After fully relaxing them with the ACE, their formation energy with
respect to graphite, 𝛼-quartz, and 𝛽-SiC was calculated with the
potential and DFT. The latter was done as is (DFT 0), and after
relaxing ionic degrees of freedom with DFT.

where Van der Waals interactions between graphite layers
are important, such as C33. These values are considerably
overestimated. We assume that this shortcoming is caused
by errors within the DFT training data, which is also not
able to describe Van der Waals interactions with high
accuracy. Consequently, elastic constants of graphite-
rich structures could be overestimated. However, due
to directional averaging and importance of other bonds
within larger Si-O-C samples, we expect a small overall
effect.

3.2 Structure and energetics

3.2.1 Si0.4O0.4C0.2

The microstructure and properties of Si-O-C compounds
depend strongly on the precursor material and processing

conditions like pyrolysis temperature.7 Time and length
scales of the experimental processes cannot be reproduced
directly in MD simulations. Instead, we used different
building blocks to produce a variety of microstructures
in cook and quench simulations as previously described.
Examples of these initial structures are shown in the
upper row of Figure 4. Exemplary samples produced via
the cook and quench protocol described in Section 2.3
with an annealing temperature of 1500K are shown in
the row below. Qualitatively, the PD, BF, and Ats struc-
tures are very similar. Major differences are only found for
GrAts. Here, large graphite areas are still present in the
final structure. From a purely thermodynamic viewpoint,
this is surprising, as one would expect that Si0.4O0.4C0.2
decomposes into SiO2 and SiC, but at the tested temper-
atures and timescales, the kinetics do not allow for such a
phase separation.
To quantify differences between the structures, we cal-

culated the Voronoi volume fractions occupied by free
carbon (threefold C coordinated C) and silica phases (SiO4

tetrahedra). The results are shown in Figure 5. Only the
structures based on GrAts contain a meaningful amount
of free carbon. As discussed previously, there is no ther-
modynamic driving force for the formation of graphene-
or graphite-like carbon, so its volume fraction is deter-
mined by the kinetics of the system and this behavior
can be expected. In the GrAts structure, the volume frac-
tion stays constant between annealing temperatures 1000
and 1500K. At 2000K. a slight decrease can be observed,
showing that the graphite phase is kinetically stabilized
up to temperatures greater than 1500K. Regarding the sil-
ica volume fraction, a continuous increase at increasing
temperatures can be observed for all structures, indicat-
ing a higher degree of phase separation. However, the data
show large differences with regard to the absolute values.
The largest amount is observed for the GrAts structure,
followed by BFs, Ats, and finally the PD configuration.
Again, this observation can be rationalized by the ther-
modynamics and kinetics of the system. In the GrAts
structure, the unpaired Si and O atoms can quickly form
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F IGURE 4 Si0.4O0.4C0.2 assembled precursors and final structures. Shown are samples as packed with PACKMOL (upper row) and after the
cook and quench process (lower row) with an annealing temperature of 1500K for all structure prototypes. The PD, BF, and Ats structures
appear to be very similar upon visual inspection. The graphite-like flakes in the GrAts-based structure are still present after processing,
showing that they are kinetically stabilized, as one would expect a decomposition into SiO2 and SiC from an energetic viewpoint.

silica without interference of the carbon, because it is
already bound in the graphite phase. Si-C can only form
in the relatively small interface regions or requires long-
range diffusion. In the BF-based structure, SiO2, SiC4, and
Si4C units are already present, only requiring rotations
and minor rearrangement to form the thermodynamically
favored products, while the diffusion paths necessary to
achieve phase separation in the atom-based structure are
long and intermediate bonds can form and need to brake
again. Similarly, the PD structure contains Si bonded to C
and O, which needs to break before forming pure SiO4 or
SiC4 tetrahedra.
The right column of Figure 5 shows the forma-

tion energy of samples with respect to 𝛼-quartz, 𝛽-
SiC, and graphite. In the case of Si0.4O0.4C0.2, they are
very close in energy, despite the significant structural
differences. Especially for the structures annealed at
2000K, the difference of nearly 0 may irritate, when
considering that the system still contains a consider-
able amount of free carbon in the case GrAts, but this
energetically unfavorable state is apparently compen-
sated by the high fraction of very favorable silica in the
system.

3.2.2 Si0.25O0.5C0.25

The carbon content of Si0.25O0.5C0.25 is very close to the
previously discussed Si0.4O0.4C0.2, but the different Si:O
ratio leads to a different thermodynamic situation. In

equilibrium, Si0.25O0.5C0.25 should split into a pure sil-
ica and a graphite phase, whereas no SiC should form.
Consequently, the formation energies of structures based
on GrAts are considerably lower than those of the other
precursors for Si0.25O0.5C0.25. The difference between the
Ats and GrAts structures with an annealing temper-
ature of 1000K is about 300meV∕atom, that is, the
driving forces for phase separation are very high. Since
the structures are in a steady state, this also indicates
a very low mobility. For an annealing temperature of
2000K, the difference between precursors becomes much
smaller, reaching around 100meV∕atom. It is expected
that the differences shrink, because the increased mobil-
ity at higher temperatures allows coming closer to the
thermodynamic equilibrium. The free carbon and silica
volume in Si0.25O0.5C0.25 samples increases significantly
with increasing annealing temperatures. The least changes
are observed for the GrAts structure, which is already close
to the phase separation. Generally, the arguments regard-
ing the kinetics of the different precursors discussed for
Si0.4O0.4C0.2 also apply for Si0.25O0.5C0.25, so similar trends
can be observed, with the main differences determined by
the decomposition products.

3.2.3 Si0.25O0.25C0.5, Si0.125O0.125C0.75, and
Si0.121O0.121C0.758

Si0.25O0.25C0.5, Si0.125O0.125C0.75, and Si0.121O0.121C0.758
contain Si and O in a 1:1 ratio, but, in contrast to
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F IGURE 5 Structure analysis and formation energies of Si-O-C samples. The left column shows the free carbon volume fraction
(Voronoi volume of all threefold C coordinated C atoms), and the center column shows the silica volume fraction (Voronoi volume of SiO4

tetrahedra). The right column contains the formation energies of samples with respect to 𝛼-quartz, 𝛽-SiC, and graphite. Rows correspond to
different sample compositions. Si0.125O0.125C0.75 and Si0.121O0.121C0.758 are shown in the same row, as a direct comparison of them is
interesting. Due to their compositional similarity, they allow to estimate the error between different initial random configurations.
Furthermore, the PD units have a rather different initial stacking of C6 rings, but the difference in free carbon fraction is very small.
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Si0.4O0.4C0.2, also excess carbon. Thus, we expect the for-
mation of a varying amount of free carbon phase in
the system and not just SiO2 and SiC. The composi-
tional similarity of Si0.125O0.125C0.75 and Si0.121O0.121C0.758
allows us to estimate structural differences due to ran-
dom placement of Ats, BF, and GrAts and the influence
of different polymer-like precursors. From a comparison
of structural motifs across building units and annealing
temperatures, one can see that the random initialization
only leads to small differences, indicating the robust-
ness of our data. In the Si0.121O0.121C0.758 polymer, C6
rings are stacked very closely (cf. Figure 1a), which could
ease the formation of graphite. However, this cannot be
observed in our data. Generally, the three compounds
show high free carbon contents and qualitatively simi-
lar temperature dependence for both the silica and free
carbon fractions. The energetically most favorable sam-
ple is the one made from GrAts. Similar to Si0.4O0.4C0.2,
this can be explained by the high degree of phase sep-
aration, which corresponds to the thermodynamic equi-
librium. Si0.125O0.125C0.75 and Si0.121O0.121C0.758 behave
similar.

3.2.4 Relation to model structures

As discussed previously, two models for the nanostruc-
ture of Si-O-C exist. One suggests silica-rich nanodomains,
which are separated by an interconnected graphene-like
carbon network.16,17 The other describes the structure as
graphitic inclusions in a silica-rich matrix.12 The results
from our simulations are shown in Figure 6. For struc-
tures that should contain graphite upon decomposition,
we found the GrAts models to be energetically favorable,
favoring the latter model. However, in the other samples,
no graphitic carbon could be found and instead graphene-
like layers spread through the system, pointing to the
former. This allows us to conclude that both models are
representative for two distinct stages. In early stages of
structure formation, the structure is likely described by the
firstmodel, because the slowkinetics in the systemprevent
the formation of graphitic inclusions.With increasing tem-
peratures and pyrolysis times, the structure evolves toward
the latter model argued for by Widgeon et al., as it is lower
in energy.

3.2.5 Sample densities

Densities of employed samples are shown in Figure 7.
The values range from 1.9 to 2.6 g/cm3, which is in line
with experimental samples considered pore-free.73 Sam-
ples annealed at high temperatures and compositions high

TABLE 3 Percentage of under- and overcoordinated Si and O
atoms relative to the total amount of Si and O atoms, respectively.
The table exemplarily lists the values observed for Ats samples
annealed at 2000K. Additionally, values for a SiO2 Ats sample and
values from Ponomarev et al.26 obtained with their ReaxFF are
given for comparison.

Si𝟑 Si𝟓 O𝟏 O𝟑

Si0.4O0.4C0.2 12.3 3.1 0 2.35
Si0.25O0.5C0.25 0.32 1.88 6.68 0.06
Si0.25O0.25C0.5 6.88 2.16 0.08 1.04
Si0.125O0.125C0.75 8.88 3.04 5.12 1.6
Si0.121O0.121C0.758 9.87 4.06 5.22 0.66
SiO2 ACE 0.1 2 0 0.05
SiO2 ReaxFF26 3.78 2.62 1.89 1.31

in carbon have lower densities. Si0.4O0.4C0.2 Ats and PD
samples show an increase in density with higher anneal-
ing temperatures.We assume that this is a result of ongoing
phase separation into SiO2 and SiC, without the formation
of free graphite. As a result, the density lies between that of
amorphous silica and SiC,with theBF sample approaching
a similar value.

3.2.6 Si and O coordination

A further interesting aspect of Si-O-C structures produced
in MD simulations is the under- and overcoordination of
atoms. Table 3 exemplarily lists percentages of wrongly
coordinated Si and O in Ats samples annealed at 2000K.
Additionally, an SiO2 sample containing 3000 atoms was
prepared from Ats with an annealing temperature of
3500K, to compare it to the values given by Ponomarev
et al.26 for their ReaxFF. As apparent by the differences
between silica and Si0.25O0.5C0.25 samples compared to the
others, thermodynamically favorable network carbon is
detrimental for Si coordination.
We want to note that the coordination numbers can

strongly vary depending on the way they are determined.
Consequently, the comparison to numbers by Ponomarev
et al.26 should be taken with a grain of salt. In this study,
coordination numberswere obtainedwith fixed cutoffs per
element combination using ovito.74 Atoms were consid-
ered bonded, when their distance was less than 0.6(𝑅1 +
𝑅2), where 𝑅 were the Van der Waals radii 𝑅Si: 2.1 Å, 𝑅O:
1.52 Å, and 𝑅C: 1.7 Å (default values).
Figure 8 exemplarily shows a shortcoming of this

method. Here, two Si atoms are considered overcoordi-
nated. However, it seems reasonable to assume that there
is no actual bond between the Si atoms in the quan-
tum mechanical sense, because both are already fourfold
coordinated with closer atoms.
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F IGURE 6 Structure formation of free carbon phase in Si-O-C. The figures show the free carbon phase as found for Si0.25O0.25C0.5 PD
sample annealed at 2000K (A), 3000K (B), and 3500K (C). During annealing, an isotropic pressure of 10GPa was applied for the latter two to
prevent the formation of pores. For low pyrolysis temperatures and times, graphene-like carbon forms as argued by Scarmi et al.16 and Saha
et al.17 based on high creep resistance. At higher temperatures energetically more favorable graphite-like agglomerates form, which are
consistent with the mass fractal dimension as found by Widgeon et al.12 The 3000K looks similar to GrAts structures, showing that they can
be considered as an intermediate step of structure formation.

3.3 Elastic properties

The structure of Si-O-C is highly tunable, depending on
the pyrolysis conditions and precursors. An understand-
ing of structure–property relations can therefore guide the
search for processing routes that bestmatch specific needs.
Here, we investigate the structural features influencing the
elastic properties of Si-O-C. For this purpose,we calculated
the elastic tensors of our samples using pymatgen80 and
derived the Young’s modulus

𝐸 = 𝜇(3𝜆 + 2𝜇)∕(𝜆 + 𝜇) (1)

with the Lam‘e constants 𝜇 = 𝐶44 and 𝜆 = 𝐶12, as valid
for isotropic materials. Here, the assumption of isotropy
is very accurate with differences between 𝐶𝑖𝑗 that should
be equivalent due to symmetry in the range of ±3%. Only
the GrAts structures show larger anisotropies, due to the
limited amount of randomly orientated graphite flakes,
leading to differences in the range of ±15%. To reduce
resulting errors, we averaged over the supposedly equiva-
lent directions. The deformations applied to obtain elastic
tensors are not fully reversible because the relaxation of
atomic positions leads to small energy barriers on the path
back to the initial state that cannot be overcome in static
relaxations. Corresponding energy–strain relations can be
found in the Supporting Information.
Figure 9 shows the dependence of E on SiO4 volume

fraction, the average amount of carbon in SiO4−𝑥C𝑥 tetra-
hedra, free carbon volume fraction, and density of samples.

Generally, the modulus ranges from 70GPa, which cor-
responds to E of silica glass81 up to around 145GPa.
The lower bound agrees well with the experimental data,
while the observed upper values are higher. However, the
experimental samples contain less C overall, and a higher
fraction of it is part of the free carbon phase instead of the
mixed tetrahedra. The data scatter significantly between
different compositions and building blocks, showing the
multidimensional nature of the problem. Strong corre-
lations of E can be seen for the SiO4 volume fraction
and the amount of carbon within SiO4−𝑥C𝑥 tetrahedra.
As expected, the modulus decreases for higher silica vol-
ume fractions, approaching that of the pure amorphous
phase and increases with an increasing amount of carbon
in the mixed bonds. As discussed previously, GrAts-based
structures contain high amounts of SiO4 tetrahedra and
the C atoms are bound within the graphite inclusions,
that is, they do not participate much in mixed bonding.
Consequently, these structures have lower Young’s mod-
uli than structures based on other building blocks at the
same compositions. Experimental studies have established
empirical relations between structural features of Si-O-
C and its elastic properties. Typically, it is observed that
the Young’s modulus increases with the amount of SiC
and C within the SiO4−𝑥C𝑥 tetrahedra and decreases with
increasing free carbon volume.73,76 However, as shown
by Stabler et al.79, the results can differ significantly
based on the kind of sample and applied measurement
method. Furthermore, a recent simulation-based study by
Haseen and Kroll82 found a strong decrease of E with
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F IGURE 7 Sample densities. The resulting densities depend
on the composition, annealing temperature, and building units.
Increasing annealing temperatures lead to lower densities. Only
some Si0.4O0.4C0.2 samples show a different trend, which
presumably depends on the decomposition products SiO2 and SiC
as discussed in the main text.

F IGURE 8 Example of two Si atoms classified as
overcoordinated (shown in green) due to definition of bonds by
interatomic distance.

decreasing sample densities of equal composition employ-
ing a Tersoff-type potential. They argue that the density
effect overlaps with the direct effect of the Cf ree phase,
because the density of samples also strongly correlateswith
the amount of Cf ree. Indeed, they observed an increase

of E with higher free carbon contents for samples with
same density. Similar results are observable for the ACE
potential in Figure 9(D). While the overall correlation of
E with the density is weak, structures with equal compo-
sition show an increase of E with higher densities. This
also fits well to our observation of a weak overall correla-
tion of E with Cf ree. If anything, when taking into account
all data points, we observe a slight increase that could be
related to the overestimation of some elastic constants in
graphite. Considering each composition individually can
also help to resolve the discrepancy with experimental
results, as all of them but Si0.25O0.5C0.25 show downward
trends. Therefore, we conclude that the amount of free
carbon only weakly influences E, but at similar compo-
sitions, more free carbon is equivalent to lower amounts
of the strong Si-C bonds, indirectly leading to a lower
stiffness.

4 CONCLUSION

Using multiple iterations of AL techniques implemented
for MTPs and ACE potentials, we produced a highly
diverse set of amorphous Si-O-C structures, spanning a
large area of phase space. With the converged data set,
we fitted a nonlinear ACE potential to energies and forces
calculated with DFT and showed that the potential can
accurately reproduce them. Due to the diversity of the
training data, the potential has a large applicability range
and can describe the formation of Si-O-C compounds
and their properties in a large temperature and pressure
range.
Applying the potential, we produced amorphous Si-O-C

samples with various compositions in a cook and quench
procedure. Here, we tested the influence of different ini-
tial structures on the final configuration. We found that
manually added graphite agglomerates are kinetically sta-
bilized in MD simulation times and lead to energetically
favorable states compared to graphene-like sheets, if the
structure contains excess C. However, their formation is
kinetically hindered, and we assume that an interpene-
trating network of silica-rich domains and graphene-like
sheets is formed as an intermediate step during synthesis
of amorphous Si-O-C.
To test and establish structure–property relations in Si-

O-C, we calculated Young’s moduli of the samples. We
found that the silica volume fraction and the average
amount of carbon in mixed SiO4−𝑥C𝑥 tetrahedra correlate
well with the stiffness across all samples. Silica reduces
the stiffness and high amounts of Si-C bonds increase it.
Furthermore, the free carbon volume fraction is a good
indicator of E for samples with similar compositions, but
not in general.
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F IGURE 9 Dependence of E on structural features. Calculated E values for samples in dependence of silica volume fraction (A), average
amount of carbon in mixed tetrahedra (B), free carbon volume fraction (C), and density (D). Experimental data in (C) are taken from Refs. [3,
75–79] as collected in Ref. [79] and from Ref. [73]. Contrary to the simulated structures, the experimental data do not include samples with
very high total carbon contents. Consequently, the relative frequency of SiC bonds and therefore E are lower.

We believe that the presented potential will allow
detailed investigations of structure formation and proper-
ties in Si-O-C. In a broader context, we have shown that
modern MLIPs can be employed to study multielement
material systems that form highly complex structures.
Therefore, they can greatly benefit the understanding of
glassy and ceramicmaterials on the atomistic scale. Future
works could extend the potential to describe H, enabling
the reactive simulations to create Si-O-C models, or other
elements of interest. The training data and potential files
necessary are provided on zenodo61 as part of this work.
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