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Abstract
This contribution aims to model and characterize the nonlinear elastic behav-
ior of hoses under internal pressure. A highly resolved 3D continuum model is
used to identify relevant effects of preformed hoses under internal pressure. The
focus of this work is on the Bourdon effect, which is illustrated by simulating two
simplified models, a full torus and a quarter torus. For a full torus, the Bourdon
effect can be observed by the fact that the radius of curvature increases in addi-
tion to the expansion of the cross-sectional radius. For a quarter torus, which is
a simplified example of a curved hose, the Bourdon effect can be observed by
the tendency of the hose to straighten under internal pressure. Furthermore it
is detected for both examples that the non-constant distribution of the poloidal
(hoop) stress over the cross-section leads to an ovalization behavior. In addition,
the model of a quarter torus is extended to a more complex model with straight
hose sections at both ends.

1 INTRODUCTION

Flexible structures, such as cables and hoses, are widely used in the automotive and heavy machinery industry [1]. There-
fore a digital simulation tool, which is real-time capable and nevertheless physically correct, is required for the virtual
safeguarding of these flexible structures. For this purpose, the structural-mechanical model and its mathematical for-
mulation are crucial. It has been shown that Cosserat rod theory provides a suitable framework to model such flexible
structures in a geometrically exact way [2]. However, when the hoses are preformed and subjected to internal pressure, a
deformation behavior occurs that cannot be predicted easily using rod theory. Therefore, a 3D continuum model is used
to reproduce the behavior of curved hoses under internal pressure. With such a model, we can investigate the dominant
effects of the internal pressure for different kind of hoses and figure out, if we can include these effects in nonlinear rod
theory. With our 3D solid continuum model, all known effects like pressure dependent bending stiffness, radial expan-
sion, axial shortening, cross-sectional deformation, as well as a curvature dependent force, also known as the Bourdon
effect, can be simulated [3]. We focus on the Bourdon effect, which is a dominant effect for the deformation behavior of
curved hoses under internal pressure by simulating two illustrative models, a full torus and a quarter torus. Furthermore,
the cross-sectional ovalization is shown in both examples and the relationship to the non-constant distribution of the
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F IGURE 1 Geometry of a pressurized straight hose.

poloidal (hoop) stress in the cross-section is established. Moreover, the quarter torus model is expanded to incorporate
straight hose sections at both ends to simulate the behavior of a hose system.

2 ANALYTICAL CONSIDERATIONS

In this section, we present analytical considerations which are relevant for the description of the behavior of hoses.
We give a brief introduction to already known effects of straight hoses. These are extended to curved hoses by pre-
senting the Bourdon force. Furthermore, the stresses in a full torus are derived and the resulting ovalization of the
cross-section is explained.

2.1 Effects of straight pressurized hoses

Hoses are geometrically hollow, long, cylindrical structures. The straight hose is the simplest and best-studied case. Bar-
low’s equation specifies the mechanical stresses in thin-walled, rotationally symmetrical bodies, which are subjected to
internal pressure. As a membrane stress description, it is based on an equilibrium of forces, which means that neither
deformation assumptions nor elasticity values are required for calculation.
For a straight hose with closed ends, the stresses are as follows:

𝜎𝜑 =
𝑝𝑟𝑚
ℎ

; 𝜎𝑥 =
𝑝𝑟𝑚
2ℎ

; 𝜎𝑟(𝑟𝑖) = −𝑝; 𝜎𝑟(𝑟𝑜) = 0, (1)

with the cylindrical coordinates 𝑟-radial, 𝜑-hoop, and 𝑥-axial and the internal pressure 𝑝, the wall thickness ℎ, the outer
resp. inner radius 𝑟𝑜 and 𝑟𝑖 , as well as the medium radius 𝑟𝑚, see Figure 1. The basic statement of Barlow’s formula
is that the hoop stress is twice the axial stress [4]. Basing on these stresses, the strains and thus the deformations can
be determined by applying a constitutive law. For the example of a straight hose without end caps with an isotropic,
linear elastic material with poisson-ratio 0 < 𝜈 < 0.5, it comes to a radial expansion due to the internal pressure, which
leads to an axial shortening in consequence of the transverse contraction. The movement in the circumferential direction
remains unaffected due to the rotational symmetry. Because of the radial expansion, the cross-section deforms and the
wall thickness ℎ decreases.

2.2 Effects of curved pressurized hoses—The Bourdon effect

All the above mentioned effects also occur for curved hoses. An additionally known effect for curved hoses under internal
pressure is a force pointing outwards which leads to a straightening of the hose. This effect is known since the 19th century
as the Bourdon effect [5]. Every Bourdon pressure gauge works according to this principle. For the modeling of structures
with a curved center line, a toroidal coordinate system is used with the three coordinate directions 𝑟-radial, 𝜃-toroidal and
𝜑-poloidal. The poloidal angle 𝜑 =

𝜋

2
is called extrados, 𝜑 =

3𝜋

2
is called intrados, while 𝜑 = 0 = 𝜋 is called crown, see

Figure 2 [3]. In the following analytical considerations, due to the assumption of thin-walled structures, the radius 𝑟 is
used for the calculations and no distinction is made between 𝑟𝑜, 𝑟𝑖 , and 𝑟𝑚.
In the following the Bourdon effect for a pressurized full torus is briefly recapitulated. Therefore, we calculate the

outwardly directed effective force acting on an infinitesimal area 𝑑𝐴 of the torus by integrating the pressure 𝑝 acting
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F IGURE 2 Outwardly directed force on an infinitesimal area of a curved hose with toroidal coordinates.

on 𝑑𝐴. To derive the infinitesimal area 𝑑𝐴 of a torus, we use the toroidal angle 𝜃 and the poloidal angle 𝜑, to convert
Cartesian coordinates into toroidal coordinates. For a torus with a greater radius 𝑅0 and a smaller radius 𝑟 (see Figure 2)
the parameterization is as follows

𝑥1(𝜃, 𝜑) = (𝑅0 + 𝑟 sin 𝜑) cos 𝜃.

𝑥2(𝜃, 𝜑) = (𝑅0 + 𝑟 sin 𝜑) sin 𝜃.

𝑥3(𝜃, 𝜑) = 𝑟 cos 𝜑.

(2)

and

𝑠 = 𝑥1𝑒1 + 𝑥2𝑒2 + 𝑥3𝑒3. (3)

The area element 𝑑𝐴 follows from

𝑑𝐴 =
||||
𝜕𝐬
𝜕𝜑

×
𝜕𝐬

𝜕𝜃

||||
𝑑𝜑 𝑑𝜃, (4)

where × indicates the cross product. With the derivatives

𝜕𝐬
𝜕𝜑

=
⎛
⎜
⎜
⎝

𝑟 cos 𝜑 cos 𝜃
𝑟 cos 𝜑 sin 𝜃
−𝑟 sin 𝜑

⎞
⎟
⎟
⎠
,

𝜕𝐬

𝜕𝜃
=
⎛
⎜
⎜
⎝

−(𝑅0 + 𝑟 sin 𝜑) sin 𝜃
(𝑅0 + 𝑟 sin 𝜑) cos 𝜃

0

⎞
⎟
⎟
⎠
, (5)

an infinitesimal area 𝑑𝐴 of the torus can be described as follows

𝑑𝐴 = 𝑟(𝑅0 + 𝑟 sin 𝜑)𝑑𝜑𝑑𝜃. (6)

The force 𝑑𝐹, which acts on an infinitesimal area 𝑑𝐴, results from the internal pressure 𝑝 and can be decomposed into
the components 𝑑𝐹𝑥1, 𝑑𝐹𝑥2, and 𝑑𝐹𝑥3 in the Cartesian system, see Figure 2:

𝑑𝐹 = (𝑝𝑅0𝑟 + 𝑝𝑟2 sin 𝜑)𝑑𝜑𝑑𝜃; 𝑑𝐹𝑥1 = 𝑑𝐹 sin 𝜑 cos 𝜃; 𝑑𝐹𝑥2 = 𝑑𝐹 sin 𝜑 sin 𝜃; 𝑑𝐹𝑥3 = 𝑑𝐹𝑐𝑜𝑠𝜑. (7)

By integrating the two Bourdon force components 𝑑𝐹𝑥1 and 𝑑𝐹𝑥2 along the cross section 𝜑 from 0 to 2𝜋, we get the
following:

𝐹𝑥1 = ∫
2𝜋

0 ∫
𝜃2

𝜃1

(𝑝𝑅0𝑟 + 𝑝𝑟2 sin 𝜑) sin 𝜑 cos 𝜃𝑑𝜑𝑑𝜃 = ∫
𝜃2

𝜃1

𝑝𝑟 cos 𝜃𝑑𝜃 ∫
2𝜋

0
(𝑅0 + 𝑟 sin 𝜑) sin 𝜑𝑑𝜑

= ∫
𝜃2

𝜃1

𝑝𝜋𝑟2 cos 𝜃𝑑𝜃.

(8)
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(A) (B)

(D)(C)

F IGURE 3 Stresses in a full torus and in a general vessel.

𝐹𝑥2 = ∫
2𝜋

0 ∫
𝜃2

𝜃1

(𝑝𝑅0𝑟 + 𝑝𝑟2 sin 𝜑) sin 𝜑 sin 𝜃𝑑𝜑𝑑𝜃 = ∫
𝜃2

𝜃1

𝑝𝑟 sin 𝜃𝑑𝜃 ∫
2𝜋

0
(𝑅0 + 𝑟 sin 𝜑) sin 𝜑𝑑𝜑

= ∫
𝜃2

𝜃1

𝑝𝜋𝑟2 sin 𝜃𝑑𝜃.

(9)

𝐹𝑥1 and 𝐹𝑥2 describe the effective force components acting on the torus fragment going from 𝜃1 to 𝜃2. The Bourdon force
𝐹𝑥1,2(𝑝, 𝑟, 𝜃) is consistent with an earlier study of Thiagarajan that proposed the same mathematical model [6]. The force
component 𝑑𝐹𝑥3 does not depend on 𝜃 and disappears when being integrated along the cross-section 𝜑 from 0 to 2𝜋, so
that no Bourdon force appears in the 𝑥3-direction.

2.3 Ovalization

In this subsection, we take a closer look at the ovalization behavior which occurs when curved structures are subjected
to pressure. For this purpose, we derive the stress distribution of a full torus under internal pressure, because it seems to
differ from the stress distribution of a straight hose due to curvature effects. We assume again a membrane stress state, so
that the internal pressure is always perpendicular to the inner wall and just normal stresses appear, which are assumed
constant across the wall thickness. Figure 3A shows a cut through a pressurized full torus along the planes 𝑎–𝑐 and 𝑏–𝑐.
We see that balance occurs between the internal pressure acting on the annular plane 𝑎–𝑐 and the vertical component of



HOESCH et al. 5 of 10

the poloidal stress 𝜎𝜑 at point 𝑎.

𝜋𝑝(𝑅2 − 𝑅2
0) = 2ℎ𝜋𝑅 sin 𝜑𝜎𝜑 �→ 𝜎𝜑 =

𝑝(𝑅2 − 𝑅2
0)

2ℎ𝑅 sin 𝜑
. (10)

The radius𝑅 describes the distance from the center plane to any point on the cross-section, which is point 𝑎, see Figure 3A.
By inserting the relation 𝑅 = 𝑅0 + 𝑟 sin 𝜑 in (10), we see that the poloidal stress depends on the poloidal angle 𝜑, which
varies along the circumference of the cross-section:

𝜎𝜑 =
𝑝𝑟

2ℎ

2𝑅0 + 𝑟 sin 𝜑

𝑅0 + 𝑟 sin 𝜑
. (11)

By inserting different 𝜑-values, we find a maximum poloidal stress value at the intrados 𝜑 =
3𝜋

2
, while the minimum

poloidal stress is at the extrados 𝜑 =
𝜋

2
. Figure 3B shows the variation of the poloidal stress 𝜎𝜑 around the cross-section of

the torus. On the crown 𝜑 = 0, 𝜋, (11) reduces to the hoop stress in a straight cylinder, see Barlow’s Equation (1).

𝐌𝐢𝐧 ∶ 𝜎𝜑(
𝜋
2
) =

𝑝𝑟

2ℎ

2𝑅0 + 𝑟

𝑅0 + 𝑟
; 𝐌𝐚𝐱 ∶ 𝜎𝜑(

3𝜋
2
) =

𝑝𝑟

2ℎ

2𝑅0 − 𝑟

𝑅0 − 𝑟
; 𝐌𝐢𝐝 ∶ 𝜎𝜑(0, 𝜋) =

𝑝𝑟

ℎ
. (12)

In Figure 3C we see the variation of the maximum or minimum poloidal stress value of a full torus 𝜎𝜑,𝑡𝑜𝑟 in comparison
with the hoop stress value of a straight hose 𝜎𝜑,𝑠ℎ. The stresses become larger for smaller curvature radii (toruswith a small
hole). The stresses at the intrados increase more pronounced than the stresses at the extrados decrease. The toroidal stress
of a full torus can be calculated by the membrane stresses in a general vessel (see Figure 3D), where 𝜎𝜃 is the longitudinal
or meridional stress and 𝜎𝜑 is the hoop stress in circumferential direction. The radius 𝑅1 describes in Figure 3D the radius
of curvature of the element in the hoop direction and the radius 𝑅2 describes the meridional radius of curvature. Note
that meridional and circumferential directions are perpendicular to each other. So the membrane stresses in a vessel are
as follows [4]:

𝜎𝜑
𝑅1

+
𝜎𝜃
𝑅2

=
𝑝

ℎ
. (13)

By modifying the principal radii of curvature of a general vessel to those of a torus, the principal radii 𝑅1 and 𝑅2 as well
as their reciprocals, the principal curvatures 𝐾1 and 𝐾2, can be described as follows:

𝑅1 = 𝑟; 𝑅2 = 𝑟 +
𝑅0
sin 𝜑

; 𝐾1 =
1
𝑅1

=
1
𝑟
; 𝐾2 =

1
𝑅2

=
sin 𝜑

𝑅0 + 𝑟 sin 𝜑
. (14)

This leads to the total Gauß-curvature of a torus, which is positive, negative or zero, depending on the angle 𝜑 (see
Figure 3B):

𝐾 = 𝐾1𝐾2 =
sin 𝜑

𝑟(𝑅0 + 𝑟 sin 𝜑)
. (15)

The toroidal stress 𝜎𝜃 of a torus can now be calculated by the membrane stresses in a general vessel (13) using the radii of
curvature of a torus (14). It is the same as for a straight cylinder (see Equation 1) and is thus constant and independent of
position.

𝜎𝜑
𝑅1

+
𝜎𝜃
𝑅2

=
𝑝

ℎ
�→

𝜎𝜑
𝑟

+
𝜎𝜃 sin 𝜑

𝑅0 + 𝑟 sin 𝜑
=

𝑝

ℎ
�→ 𝜎𝜃 =

𝑝𝑟

2ℎ
. (16)

Figure 4A shows the connection between the non-constant distributed poloidal stress 𝜎𝜑 and the ovalization. As shown
in Figure 3A, the poloidal stresses 𝜎𝜑 balance the internal pressure 𝑝. If the principal axes 𝑎1 and 𝑎2 are of different length,
the poloidal stresses differ as well and vice versa. For the case that the poloidal stresses of themain axis 𝑎1 are greater than
those of the main axis 𝑎2, the length of axis 𝑎1 is also greater than the length of 𝑎2, resulting in longitudinal ovalization.
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(A) (B)

F IGURE 4 Poloidal stresses and ovalization in a full torus.

TABLE 1 Model parameters for finite element analysis.

Parameter 𝒓𝒐 𝒉 𝑹𝟎 𝑬 𝝂 𝒑

Description Outer radius Thickness Curvature radius Young’s modulus Poisson-ratio Pressure
Unit (mm) (mm) (mm) ( N

mm2
) (-) ( N

mm2
)

Value 12 2 50 750 0.4 1

Conversely, if the stresses at 𝑎2 are higher than those at 𝑎1, this leads to transversal ovalization. However, in the case of a
torus, the poloidal stresses 𝜎𝜑 at the ends of the longitudinal main axis 𝑎1 are different, see (11), so that a new value Δ𝜎𝜑
is introduced to describe the ovalization behavior:

Δ𝜎𝜑 =
𝜎𝜑,𝑚𝑎𝑥 + 𝜎𝜑,𝑚𝑖𝑛

2
− 𝜎𝜑,𝑚𝑖𝑑. (17)

If Δ𝜎𝜑 ≠ 0, the originally circular cross-section ovalizes, depending on the stress values at the principal axes. The bigger
Δ𝜎𝜑, the higher is the ovality Ω, which can be described by comparing the main axes 𝑎1 and 𝑎2:

Ω[%] =
𝑎1 − 𝑎2
𝑎1 + 𝑎2

. (18)

A positive ovality value Ω means longitudinal ovalization, while a negative ovality value means transversal ovalization.
In Figure 4B the dimensionless value Δ𝜎𝜑

𝑝
is shown with respect to a geometrical factor 𝜆 =

ℎ𝑅0

𝑟2
. This geometrical factor

𝜆 is normally used to describe the flexibility of pipe bends and was first introduced by Von Kármán [7]. It contains the
curvature radius 𝑅0, the radius 𝑟 and also the wall thickness ℎ. We observe that for lower 𝜆, the ratio

Δ𝜎𝜑

𝑝
increases, so that

consequently the ovality also increases. The narrower and thicker a curved hose becomes, the larger is the ovalization.
The wider and thinner the geometry is, the smaller the ovalization.

3 FINITE ELEMENTMETHOD

To investigate the deformation behavior of pressurized, preformed hoses, we perform simulations with the finite element
method using the commercial software ANSYS with its command language APDL [8, 9]. 3D continuum elements with
hexahedron shape and 20 element nodes are used. A linear elastic, isotropic constitutive relation is applied. By imple-
menting Large-Deformation Theory and defining the internal pressure 𝑝 as a follower load, a quasi-static analysis via the
Newton-Raphson-algorithm as solution method is performed. The model parameters are listed in Table 1.
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(A) (B) (C)

F IGURE 5 Full torus.

4 RESULTS

In this section we verify the previously shown Bourdon effect (see Subsection 2.2) and the shown ovalization (see Sub-
section 2.3) with the finite element method (see Section 3). The results are presented for the examples of a full torus, a
quarter torus and a combination of curved and straight hoses.

4.1 Full torus

For a full torus, the Bourdon effect causes an increase in the radius of curvature 𝑅0. The deformed structure is shown
in Figure 5A, where it is constrained at one node with the coordinates 𝑟 = 𝑟𝑜, 𝜃 = 0, 𝜑 = 0 in the way 𝑢∗ = 𝑢𝑟,𝜃,𝜑 = 0.
Furthermore, we observe a radial expansion of the cross-section, as shown in Figure 5B. We define the principal axes,
where 𝑎1 is from extrados to intrados, while the axes 𝑎2 is from crown to crown. We reveal a longitudinal ovalization
behavior, which is explained in Subsection 2.3. The longitudinal ovalization Ω is constant and positive along the toroidal
direction 𝜃 as shown in Figure 5C by the red line. Due to the radial expansion, the wall thickness ℎ decreases constantly
in toroidal 𝜃-direction, represented by the solid black line and decreases also constantly in 𝜑-direction. The dashed black
line represents the undeformed thickness ℎ of the full torus when not being pressurized.

4.2 Quarter torus

The structural behavior of a pressurized quarter torus is shown. The Bourdon effect of this curved hose can be observed by
the tendency to straighten under internal pressure. We use fixed-free displacement boundary conditions, where all nodes
at 𝜃 = 0 are constrained in the way 𝑢∗ = 𝑢𝜃,𝜑 = 0, while radial deformation is free. In Figure 6A, the finite element model
is presented, whereas in Figure 6B, the deformed structure is shown with reference to the undeformed mesh. Looking
at the deformed structure, the effect of straightening, while the cross section remains perpendicular to the toroidal axis,
but rotates out of the cross-sectional plane, can be seen quite well. In Figure 6C, the ovalization behavior of the cross-
section along the toroidal direction 𝜃 is shown. The inner radius of the quarter torus is described by the value 𝑟𝑖 (black
line), while 𝑟𝑚 describes the mean radius (blue line) and 𝑟𝑜 the outer radius (red line). The ovality values Ω are higher
for the inner radius 𝑟𝑖 than for the mean radius 𝑟𝑚 and the outer radius 𝑟𝑜. This is because the deformation has a higher
influence in percentage terms on smaller than on larger radii. Additionally, the ovalityΩ is not constant over the toroidal
direction 𝜃 and differs therefore from the ovalization of a full torus (see Figure 5C). This is due to the influence of the
boundary conditions. At the free end of the quarter torus (𝜃 = 𝜋

2
), the ovalization is zero due to the straightening behavior

of the internal pressure. The radial deformation is permitted at the clamp (𝜃 = 0) and thus longitudinal ovalization occurs
there. The highest ovalization does not occur in the toroidal center of the quarter torus (𝜃 = 𝜋

4
), but about 1

3
of the toroidal

length of a quarter torus (𝜃 = 𝜋

6
) and is also influenced by the boundary conditions.
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F IGURE 6 Quarter torus.

F IGURE 7 Geometry: Combination of curved and straight hoses.

4.3 Combination of curved and straight hoses

Next, straight and curved hose sections are combined. For the geometry of the bend (𝑅0, 𝑟𝑜, ℎ), the material (𝐸, 𝜈) and the
pressure 𝑝, the same parameters from Table 1 are used. In Figure 6, the geometry of the discretized structure is shown for
different straight lengths with 20, 10, and 2 times the mean cross-sectional radius 𝑟𝑚. The models are called case a, b, and
c. At both ends, boundary conditions are applied using the cylindrical coordinate directions 𝑟, 𝜑 and 𝑥: 𝑢∗ = 𝑢𝜑,𝑥 = 0.
Figure 8A shows the deformed hose structure with a length of the straight hoses 20𝑟𝑚 (case a). A scaling factor of 20

was applied for better visualization. A closer look at the bend, which is the region of interest as the greatest stresses and
deformations are expected there, shows that it resembles the deformation of a full torus. A stress analysis at the outer layer
of the bend confirms the hypothesis that a curved hose with attached straight pieces behaves like a torus, see (11), (12),
and (16) and the black lines in Figure 8B. All the stresses of the bend are 𝜃-position independent. Therefore, the stresses
are evaluated at the middle of the bend, see the red line Figure 8A. For case a (straight hose length 20𝑟𝑚), the radial and
toroidal stress 𝜎𝑟 and 𝜎𝜃 remain constant in the cross-section (black dashed lines), while the poloidal stress 𝜎𝜑 varies and
has its maximum at the intrados (𝜑 =

3𝜋

2
) and its minimum stress at the extrados (𝜑 =

𝜋

2
), see the black solid line in

Figure 8B and Equation (12). According to previous studies [3, 10–12], the length of the attached straight pipes is modeled
with the length 20 times the mean radius 𝑟𝑚 (see Figure 7A case a) to avoid end effects of the boundary conditions on the
90◦ curved hose. Our investigation confirms the selection of case a, to avoid boundary condition influence. In Figure 8B
one sees, that the straight hose length and so the boundary conditions does not influence the radial stresses 𝜎𝑟 at the
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(A)

(C)

(B)

F IGURE 8 Combination of curved and straight hoses.

bend. But one observes a higher impact on the toroidal stresses 𝜎𝜃 (blue and red dashed line) and on the poloidal stresses
𝜎𝜑 (blue and red solid line) in case b and case c. So the poloidal stresses 𝜎𝜑 and the toroidal stresses 𝜎𝜃 are sensible to
boundary effects.
To compare the undeformed and deformed curvature radius 𝑅0

𝑅0,𝑑𝑒𝑓
and to describe the deformation of the bend, the

geometrical parameters are varied. For the calculation of this factor, the rotation of the cross-section due to deformation is
neglected. In Figure 8C, we have shown the Bourdon deformation in comparison to the Kármán-Factor 𝜆. The narrower
and thicker the curved hose, the higher the outward deformation and the lower the factor 𝑅0

𝑅0,𝑑𝑒𝑓
becomes.

5 SUMMARY AND OUTLOOK

The Bourdon effect is the most dominant influence on the deformation behavior of curved, pressurized hoses with lin-
ear elastic, isotropic material. Hence, in this contribution, we investigated the influence of the Bourdon effect using the
example of a full torus and a quarter torus. For a full torus, the Bourdon effect is expressed by the increase in the radius
of curvature, while for a quarter torus the Bourdon effect is expressed by the fact that the curved hose tends to straighten
under internal pressure. Additionally, an ovalization of the cross-section is observed in both examples, which is attributed
to a non-constant poloidal stress, which was derived analytically for a full torus. The model of the quarter torus was
extended by two straight hoses at both ends and the influence of the boundary conditions on the stress distribution and
the influence of the geometrical parameters on the deformation behavior was shown. Our next step is to include fiber rein-
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forcements into our simulations in order to get closer to the hose behavior of practical applications. Therefore, various
modeling techniques are tested and described.
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