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Abstract

The dissertation presents a comprehensive study of advanced computational methods for
simulating incompressible two-phase flows, particularly addressing challenges associated
with high-density ratios, mass and momentum conservation, and non-orthogonality errors in
unstructured Finite Volume methods. The thesis extends the unstructured Level Set / Front
Tracking (LENT) method, introducing the ρLENT approach to ensure numerical consistency
between mass and momentum conservation in the collocated Finite Volume discretization
of the single-field two-phase Navier-Stokes equations. This method demonstrates exact
numerical stability for two-phase momentum advection across a wide range of density and
viscosity ratios, effectively handling challenging fluid pairings such as mercury/air and
water/air, and scenarios involving strong interactions between phases.

Further, the study applies the consistency conditions derived for the ρLENT method to
geometric flux-based Volume-of-Fluid (VOF) methods. It reveals that standard computations
of mass fluxes in these methods can disrupt the equivalence between scaled volume fraction
equations and mass conservation equations, depending on temporal and convective term dis-
cretization schemes. The thesis proposes a dual solution approach: a consistent combination
of temporal discretization and interpolation schemes, and an auxiliary mass conservation
equation with a geometric calculation of face-centered densities. This approach is validated
for extensive density and viscosity ratios, demonstrating its robustness and effectiveness.

Additionally, the dissertation tackles non-orthogonality errors in unstructured Finite
Volume methods, which can compromise force-balanced discretization in simulating incom-
pressible two-phase flows. A novel, deterministic residual-based control of non-orthogonality
correction is introduced, removing the number of non-orthogonality corrections as a global
parameter from the simulation process. This method ensures force balance, particularly for
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surface tension and gravity forces, and is verified on polyhedral unstructured meshes with
different non-orthogonality levels.

Overall, this dissertation provides contributions by developing, verifying and validating
advanced methodologies to accurately and efficiently simulating incompressible two-phase
flows under complex conditions. These developments have improved applications in industrial
multiphase microfluidics, where precise computational fluid dynamics is crucial.
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Zusammenfassung

Die vorliegende Dissertation präsentiert neue Entwicklungen im Bereich fortgeschrittener
Berechnungsmethoden zur Simulation inkompressibler Zweiphasenströmungen, wobei ins-
besondere Herausforderungen im Zusammenhang mit hohen Dichteverhältnissen, Massen-
und Impulseserhaltung sowie Nichtorthogonalitätsfehlern in unstrukturierten Finite-Volumen-
Methoden adressiert werden. Die Dissertation erweitert die unstrukturierte Level-Set / Front-
Tracking (LENT) Methode durch Einführung der neuen ρLENT Methode, mit deren Hilfe die
numerische Konsistenz zwischen Masse- und Impulseserhaltung in der kollabierten Finite-
Volumen-Diskretisierung der einphasigen Zweiphasen-Navier-Stokes-Gleichungen gewährleis-
tet werden kann. Diese Methode zeigt exakte numerische Stabilität für die Impulsadvektion
in Zweiphasenströmungen über ein breites Spektrum an Dichte- und Viskositätsverhältnissen.
Dies ermöglicht die numerische Simulation von Zweiphaseströmmungen für herausfordernde
Fluidpaarungen wie Quecksilber/Luft und Wasser/Luft sowie Szenarien mit starken Wechsel-
wirkungen zwischen den Phasen.

Darüber hinaus wendet die Studie die für die ρLENT Methode abgeleiteten Konsistenz-
bedingungen auf geometrische, flussbasierte Volume-of-Fluid (VOF) Methoden an. Es wird
gezeigt, dass Standardberechnungen des Massenflusses in diesen Methoden die Äquivalenz
zwischen skalierten Volumenfraktionsgleichungen und Massenerhaltungsgleichungen zerstö-
ren können, abhängig von den Diskretisierungsschemata für zeitliche und konvektive Terme.
Die Dissertation schlägt einen dualen Lösungsansatz vor: eine konsistente Kombination aus
zeitlicher Diskretisierung und Interpolationsschemata sowie eine Hilfsmassenerhaltungsglei-
chung mit einer geometrischen Berechnung der dichtebezogenen Flächenmitte. Dieser Ansatz
wird für umfangreiche Dichte- und Viskositätsverhältnisse getestet und zeigt seine Robustheit
und Effektivität.
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Zusätzlich befasst sich die Dissertation mit Nichtorthogonalitätsfehlern in unstrukturier-
ten Finite-Volumen-Methoden, welche die kraftbalancierte Diskretisierung bei der Simulation
inkompressibler Zweiphasenströmungen beeinträchtigen können. Eine neue, deterministische,
residual-basierte Steuerung der Nichtorthogonalitätskorrektur wird eingeführt, wobei die
Anzahl der Nichtorthogonalitätskorrekturen als globaler Parameter aus dem Simulationspro-
zess entfernt wird. Diese Methode gewährleistet eine Balance von Kräften, insbesondere bzgl.
Oberflächenspannungs- und Schwerkraftkräfte, und wird auf polyedrischen unstrukturierten
Gittern mit unterschiedlichen Nichtorthogonalitätsgraden geprüft.

Insgesamt leistet diese Dissertation einen Beitrag zur hochgenauen numerischen Berech-
nung von inkompressibler Zweiphasenströmungen unter komplexen Bedingungen durch die
Entwicklung, Verifizierung und Validierung fortschrittlicher Methoden. Diese Entwicklungen
haben die Anwendungen in der industriellen Mehrphasen-Mikrofluidik verbessert, bei der
eine präzise rechnergestützte Fluiddynamik entscheidend ist.
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Foundations

1 Introduction

Two-phase flow processes, where two distinct phases interact, are pervasive in both industrial
applications and natural phenomena. These processes often involve fluids with high density
ratios, such the atomization of fuel jets [8], sloshing tanks [9], mold filing [10], water flooding
[11], oil and water separation in the petroleum industry [12], and air-water interactions
in environmental systems like oceans waves [13]. The investigation of two-phase flows is
crucial due to their widespread occurrence and significant impact on the efficiency, safety,
and environmental sustainability of various operations. For instance, understanding microflu-
idic systems is essential for optimizing the design of surface-tension-driven Lab-On-a-Chip
components [14] and preventing fluid penetration caused by unforeseen microfractures along
the sealing joints [15].

With the advancement of computational capabilities, Numerical methods for Direct
Numerical Simulations (DNS) of two-phase flows have gained considerable attention [16].
These methods are vital for providing detailed insights into flow dynamics that are often
impractical or impossible to obtain through experimental studies alone. In the last decades,
there has been a surge in the development of new numerical techniques aimed at enhancing
accuracy, reducing computational costs, and extending the capability of predictively simulating
complex physical processes. This is particularly relevant for handling high density-ratio flows,
which present unique challenges due to the significant differences in the properties of the
interacting phases.

The geometrical complexity of flow domains in both industrial and natural processes
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does not allow for exact domain discretization, which makes it very challenging to obtain a
curved discretization of the domain boundary required by higher-order methods. Therefore,
the second-order numerical Partial Differential Equation (PDE) discretization method, i.e.,
Unstructured Finite Volume Method (UFVM) is adopted in this dissertation to reduce the
error significantly enough with increasing mesh resolution while ensuring a simple domain
discretization workflow [17]. The flexibility of UFVM in handling irregular mesh structures
makes it ideal for capturing the intricate details of the flow domain, which is often a limiting
factor in structured grid approaches. Additionally, this method’s local conservation properties
and the ability to easily incorporate various boundary conditions make it a robust choice for
a wide range of applications.

Simulating two-phase flows, especially those involving high density ratios, presents
additional significant challenges. One of the most challenging tasks is accurately capturing
the sharp interface between the two phases [18]. This interface represents an evolving discon-
tinuity of physical properties such as density/viscosity and undergoes strong deformation and
topological changes such as breakup and coalescence. Capturing these dynamics is complex
due to the interface’s inherent instability and the need to accurately resolve interfacial force
jumps. Additionally, ensuring numerical stability and physical fidelity in the presence of large
property variations across the interface adds to the computational challenge.

This dissertation introduces a general method to address these hurdles of robustly and
accurately simulating incompressible high density ratios two-phase flows on unstructured
mesh and implements the method with different interface tracking approaches. This general
method, as outlined in the following chapters, has been developed on the OpenFOAM® plat-
form [17, 19], an open-source CFD toolbox widely recognized for its modularity, robustness,
and extensive user community. OpenFOAM® offers a flexible environment for customizing
and extending standard solvers, making it an ideal platform for implementing and testing
novel computational approaches like those proposed in this thesis.
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2 Mathematical model

This section outlines the equations that govern a two-phase flow system characterized by a
sharp interface between fluids or phases. Initially, the standard conservation equations for
each flow are presented without considering the interface. Subsequently, the focus shifts
to the mathematical depiction of the interface. The section concludes by introducing the
one-field formulation of these equations, which is the base for the numerical methods explored
in the subsequent sections and chapters of this thesis.

2.1 Single phase fluid dynamics

In the realm of fluid mechanics, the principles of conservation are pivotal in understanding
and predicting fluid behavior. The conservation law states that the change in the total amount
of a quantity within a specific domain equals the net amount entering or exiting that domain,
plus any contributions from sources and/or sinks [20]. The conservation of mass, momentum,
and energy together with the material behavior determines the evolution of fluid flows, i.e.,
fluid dynamics [20].

The conservation of mass in a single-phase fluid flow is governed by

∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

where ρ represents mass density. In this thesis, the research focuses on low Mach number
flows, for which flow compressibility is negligible. The density of each flow can be considered
constant and homogeneous during motion, characterizing it as incompressible flow. Under
this assumption, the mass conservation equation eq. (2.1) is simplified

∇ · v = 0, (2.2)

which is named the continuity equation or the volume conservation equation.
The momentum balance in conservative form reads as

∂(ρv)
∂t

+∇ · (ρvv)−∇ · T = fv, (2.3)

where v, T, and fv denote stress tensor, and force density of the body forces, respectively.
In the present work, the force per unit volume fv is solely attributed to gravitational force
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for single phase flow, i.e, fv = ρg. For Newtonian fluids, the stress T is modeled as a linear
function of the rate of strain, more precisely

T = (−P +
2

3
µ∇ · v)I+ µ

(︁
∇v+ (∇v)T

)︁
(2.4)

with the pressure P , the unit tensor I, the dynamic viscosity µ. The term of divergence of the
stress in eq. (2.3) has the formulation as

∇ · T = ∇ ·
(︃
(−P +

2

3
µ∇ · v)I+ µ

(︁
∇v+ (∇v)T

)︁)︃
. (2.5)

The dynamic viscosity µ keeps constatnt in Newtonian fluids, which results in

∇ ·
(︁
µ(∇v)T

)︁
= µ∇(∇ · v) (2.6)

Substituting eq. (2.2) into eq. (2.5) and eq. (2.6) yields

∇ · T = −∇P +∇ · (µ∇v) (2.7)

for the single phase fluids. Inserting eq. (2.7) into eq. (2.3) gives the final form of the
incompressible Navier-stokes equation

∂(ρv)
∂t

+∇ · (ρvv)−∇ · (µ∇v) = −∇P + ρg. (2.8)

Another premise of this thesis is the negligible impact of temperature variations within
the considered flows. This assumption leads to isothermal conditions, allowing the decoupling
of the energy conservation equation from the momentum conservation equation eq. (2.3). In
fact, the energy conservation equation is not addressed in this work.

2.2 Two-phase fluid dynamics with interface

In fig. 1, a basic two-phase flow system is illustrated. The entire domain, denoted as Ω,
is separated by the interface Σ(t) into two distinct subdomains: Ω−(t) and Ω+(t). Each
subdomain is filled with a single-phase fluid, adhering to eq. (2.2) and eq. (2.8) within its
respective region. These flows are considered immiscible with the assumption that no phase
change happens at the interface. The assumption of a sharp interface is adopted in this context,
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Ω−(t)

χ(x, t) = 1

χ(x, t) = 0

∂Ω

nΣ

Ω+(t)

Σ(t)

Figure 1: The domain Ω, split by the fluid interface Σ(t) into two sub-domains Ω±.

which approximates very thin transition zone between the two bulk phases by a surface of
mathematical zero thickness - the sharp interface.

In this thesis, a phase indicator function χ(x, t) is adopted to implicitly describe the
interface Σ(t). As shown in fig. 1, the indicator χ(x, t) is defined as

χ(x, t) :=

⎧⎨⎩1, for x ∈ Ω−(t),

0, for x ∈ Ω+(t),
(2.9)

which is a discontinuous function. The interface is characterized by a sharp transition in
the χ field, where an abrupt change from one value to another marks the interface location.
Since the absence of phase change is assumed in this study, each fluid element retains its
phase indicator value during its motion.

An approach that employs a single set of governing equations applicable to the entire
flow domain, encompassing all the phases, is adopted in this thesis. The so-called one-field
approach treats the phases as a single fluid but with material properties changing abruptly at
the interface. Considering the indicator function, the flow density and viscosity in the full
domain can be written as

ρ(x, t) = ρ−χ(x, t) + ρ+(1− χ(x, t)) = (ρ− − ρ+)χ(x, t) + ρ+, (2.10)

µ(x, t) = µ−χ(x, t) + µ+(1− χ(x, t)) = (µ− − µ+)χ(x, t) + µ+. (2.11)
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A singular force exerted by the interface is surface tension, which describes an inclination
for the interface to minimize its free energy. The surface tension force density is expressed as
follows

fΣ = σκnΣδΣ +∇Σσ, (2.12)

where σ is the surface tension coefficient, κ = ∇Σ · (−nΣ) indicates the interface curvature,
i.e., the sum of the two principal curvatures, and ∇Σ denotes the surface gradient. To accord
surface tension present solely at the interface with Control Volume (CV)-integrity in Finite
Volume (FV) method, the fundamental method in this work and elaborated in section 3.1,
the singular surface tension term is formulated via an interfacial Dirac distribution (denoted
by δΣ(x, t)), which converts the interfacial force to a volume force. For an arbitrary function
f which has definition at interface Σ that intersects a CV , e.g., Ωc with Σ̃ [21], it gives∫︂

Ωc

δΣ(x)f(x)dV =

∫︂
Σ̃

f(x)dS. (2.13)

Within the framework of this thesis, it is assumed that the surface tension coefficient remains
constant. As a result, the second term in eq. (2.12), involving the gradient of the surface
tension coefficient, vanishes.

In the two phase fluids, the viscosity varies in a domain intersected by a interface,
regarding to eq. (2.11), which causes that∇·

(︁
µ(∇v)T

)︁
is unequal to 0 and should be restored

in eq. (2.5). By incorporating eqs. (2.10) to (2.12) and ∇ ·
(︁
µ(∇v)T

)︁
in the single-phase

momentum conservation equation eq. (2.8), it is possible to adapt this equation for a two-phase
flow system. The extended formulation is as follows:

∂(ρv)
∂t

+∇ · (ρvv)−∇ ·
(︁
µ
(︁
∇v+ (∇v)T

)︁)︁
= −∇P + ρg+ σκnΣδΣ. (2.14)

This equation integrates the essential dynamics of two-phase flow, encompassing both phases’
momentum conservation while accommodating the unique characteristics of the fluid inter-
face.

In this thesis, a modified pressure p is utilized, defined by subtracting the hydrostatic
pressure from the total pressure P . This is mathematically expressed as:

p = P − ρg · x
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where x represents the position vector and g is constant gravitational acceleration. Accordingly,
the pressure and gravitational terms in eq. (2.14) are reformulated as:

−∇P + ρg = −∇P +∇(ρg · x)− (g · x)∇ρ

= −∇(P − ρg · x)− (g · x)∇ρ

= −∇p− (g · x)∇ρ.

This modification of pressure is advantageous for establishing a force-balanced model across
the interface, a topic further elaborated in section 9.6. The one-field formulation of the
momentum equation is thus

∂(ρv)
∂t

+∇ · (ρvv)−∇ ·
(︁
µ
(︁
∇v+ (∇v)T

)︁)︁
= −∇p− (g · x)∇ρ+ σκnΣδΣ. (2.15)

Equation (2.15) and the continuity equation eq. (2.2) constitute the core mathematical model
for two-phase flow mechanics within this thesis.
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3 Numerical method

This section delves into the FV method employed in this study for solving the mathematical
models of incompressible, immiscible two-phase flow systems, outlined in the preceding
section 2. Section 3.1 introduces briefly the FV method. Section 3.2 offers an overview of
the spatial decomposition of the computational domain and the geometric characterization
of the fundamental computational element, named cell. In Section 3.3, attention shifts to
the process of discretizing each term in eq. (2.15). The FV method is applied to break down
the equation into discrete counterparts, suitable for numerical computation. Section 3.4
turns to the discussion of a family of iterative methods employed to address the challenge of
decoupling pressure-velocity linkage in the incompressible Navier-Stokes equations.

The FV method is applied in various styles across different platforms. In this study, the
focus is on the specific implementations within the OpenFOAM® platform. Therefore, all
subsequent introductions and explanations are tailored to align with OpenFOAM’s method-
ologies. For more comprehensive details, readers are encouraged to consult the relevant
literature, such as [17, 19, 22]

3.1 Finite Volume Method

The finite-volume (FV) method directly discretizes the integral form of conservation equations.
It achieves this by subdividing the computational domain into finite, contiguous, and non-
overlapping control volumes and integrating the equations over control volumes, ensuring
the exact conservation of relevant properties within each volume. Second-order accurate
volume averages are associated as solution variables with volume centroids. The interpolation
extends values to the volume surfaces from the centroids. This interpolation, coupled with
suitable quadrature formulae, approximates both surface and volume integrals. Algebraic
equations are then derived for each control volume, incorporating neighboring CV averages.

The finite-volume method is compatible with various mesh types, including structured
and unstructured meshes. Unstructured meshes, in particular, offer enhanced flexibility in
handling complex geometries. As the method operates solely on control volume boundaries, it
maintains conservation properties as long as the surface integrals applied at these boundaries
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align with the control volumes sharing the boundary [23].

Three levels of approximation are required for the family of FV methods [16]: integration,
differentiation and interpolation.

3.1.1 Integration

The cornerstone of the finite volume method is the control volume integration. A generic
spatially-varying quantity φ(x) has a volumetric integral approximated by the value φ(xc) at
the geometric centroid of CV Ωc as∫︂

Ωc

φ(x)dV = |Ωc|φ(xc) +O(|(x− xc)|2), (3.1)

with second-order accuracy according to the Taylor Series expansion within Ωc, given by

φ(x) = φ(xc) + (x− xc) · (∇φ)c +O(|(x− xc)|2), (3.2)

and the definition of the centroid of Ωc according to∫︂
Ωc

(x− xc)dV = 0. (3.3)

Similarly, the face integrals can be evaluated by∫︂
f

φ(x)dS = |Sf |φf +O(|(x− xf )|2) (3.4)

with the definition of face centroid xf according to∫︂
f

dS(x− xf ) = 0, (3.5)

where Sf indicates the face area normal of the face f with the magnitude |Sf | denoting the
face area and normal Sf/|Sf | directed outwards.
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3.1.2 Differentiation

In a control volume, the bounding face values are directly linked to the discretization of the
first- and second-order differentiation [23]. For both differentiation, the Gauss’s divergence
theorem can be applied to the volume integral. The gradient of φ(x) is exemplified to discretize
the volume integral of the first-order differentiation within Ωc, which is written as∫︂

Ωc

∇φdV =

∮︂
dSφ

=
∑︂
f∈Fc

∫︂
f

dSφ

=
∑︂
f∈Fc

φfSf + e(h2),

(3.6)

by utilizing the Gauss-divergence theorem, where Fc represents the set of boundary faces of
cell Ωc and h is a characteristic discretization length. It’s assumed that φ(x) is second-order
differentiable. The volume integral of the second derivative of φ(x) can be expressed as
follows ∫︂

Ωc

∇ · ∇φdV =

∮︂
dS · (∇φ)

=
∑︂
f∈Fc

∫︂
f

dS · (∇φ)

=
∑︂
f∈Fc

Sf · (∇φ)f + e(h2).

(3.7)

The quantity of φ(x) can be replaced by a vector, such as the velocity v. In this case,
the discretizations of the volumetric integrals have a very similar formulation as eqs. (3.6)
and (3.7), which are discussed in section 3.3.

3.1.3 Interpolation

The approximations of the integrals in eqs. (3.6) and (3.7) require the values of variables at
locations other than computational nodes (CV centers), namely φf and (∇φ)f . The process
of estimating values of a physical quantity at locations within a computational domain based
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on known values at computational nodes is named interpolation. Numerous schemes are
available for calculating φ and its gradient at the cell face from cell centroid values [16,
24]. An exemplified straightforward approximation for the value at the CV-face center is a
linear interpolation (equivalent to Central Differencing Scheme (CDS)) between the values of
centers adjacent to Sf . The scheme is represented as

φf = λφNf
+ (1− λ)φOf

(3.8)

(∇φ)f = λ(∇φ)Nf
+ (1− λ)(∇φ)Of

(3.9)

where Nf , Of note the neighbor cell and owner cell of the face f , the description of
neighbor and owner cell referring to section 3.2.2, and λ is the linear interpolation factor
defined by

λ =
|xf − xOf

|
|xNf

− xOf
|
. (3.10)

For the face normal gradient of the implicit variables like pressure in conservation equations,
an approximation method using compact stencil is adopted as

(∇φ)f · Sf

|Sf |
=

φNf
− φOf

|xNf
− xOf

|
(3.11)

to avoid involving large neighboring stencils in the calculation, which improves the com-
putational efficiency when solving large sparse linear equation systems [19]. The compact
stencil method is sensitive to mesh quality, specifically the non-orthogonality and skewness of
mesh, discussed in section 3.2.3. It necessitates numerical corrections for poor mesh quality,
addressed in section 9.6.

3.2 Spatial discretization

The process of spatially discretizing the physical domain involves creating a mesh, which
serves as the basis for solving the conservation equations. This entails dividing the entire
domain into distinct, non-overlapping subdomains (cells) that collectively encompass the
entire computational domain, forming a mesh system. Many techniques are employed to
generate mesh [25], leading to various mesh types. Mesh generation is beyond the scope of
this thesis.
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3.2.1 Geometric information

Of , xOf

Nf , xNf

Sf

xf

xvi

VOf

Figure 2: Exemplary general mesh cell ΩOf
.

Figure 2 depicts a general mesh cell ΩOf
, which is bounded by a set of polygons, named

faces. Each face is a sequence of indices of vertices. The geometric information, including the
position of vertices, cell centers, face centers, face area normals, and cell volumes, is pivotal
for the FV method [16].

Once the mesh is generated, the position vectors of all its vertices are fixed. From these
positions, the remaining geometric information can be deduced. It is important to note,
however, that in cases of complex geometries, only tetrahedral meshes ensure perfectly planar
faces. For other polyhedral shapes, non-planarity may occur, complicating the computation of
further geometric information, as noted by [22]. The acquisition of the geometric information
in OpenFOAM® is exemplified by the cell ΩOf

shown in fig. 2.
An intermediate face center is first obtained regarding

x
′

f =
1

Nf

Nf∑︂
i=1

xvi , (3.12)
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with a digit Nf indicating the number of vertices belonged to the face f . The Sf in fig. 2
represents the area normal, i.e. a normal with the magnitude of the face area |Sf | and face
normal direction. The calculation of the face area normal relies on summing the area normal
of sub-triangles constructed by x′

f and edges of the face polygon, shown as

Sf =
1

2

Nf−1∑︂
i=1

(xvi+1
− xvi)× (x

′

f − xvi) (3.13)

An area-weighted method is used to estimate the final face center, which has the form

xf =
1

|Sf |

Nf−1∑︂
i=1

⃓⃓⃓⃓(︃
1

2
(xvi+1

− xvi)× (x
′

f − xvi)
)︃⃓⃓⃓⃓(︃

1

3
(x

′

f + xvi + xvi+1
)

)︃
. (3.14)

The cell center xOf
and volume VOf

are calculated from face center and face area fraction by
Gauss’s theorem. Two preliminary equations are given:

∇ · x = 3,

∇|x|2 = 2x.

The cell volume |ΩOf
| can be approximated as

|ΩOf
| =

∫︂
ΩOf

dV =
1

3

∫︂
ΩOf

∇ · xdV

=
1

3

∫︂
f

dS · x

≈ 1

3

∑︂
f

Sf · xf .

The similar derivation for cell center xOf
reads as

xOf
=

1

|ΩOf
|

∫︂
ΩOf

xdV =
1

2|ΩOf
|

∫︂
ΩOf

∇|x|2dV

=
1

2|ΩOf
|

∫︂
f

dS|x|2

≈ 1

2|ΩOf
|
∑︂
f

Sf |xf |2.
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3.2.2 Mesh structure

The FV method is favored partly due to its adaptability to various mesh types, including
both structured and unstructured meshes. Structured meshes consist of intersecting line
families, with each mesh point located at the intersection of a single line from each family.
This pattern applies to both 2D (two line families) and 3D (three line families) structures. In
contrast, unstructured meshes comprise arbitrarily distributed points connected by triangles,
quadrilaterals, or polygons in 2D, and by a range of polyhedrals like tetrahedra, prisms,
pyramids, hexahedra, or other polyhedrals in 3D [20]. This diversity in mesh structure affects
the discretization approach for both the domain and equations, as well as the connectivity and
addressing of mesh cells [19]. Unstructured meshes are particularly advantageous for their
flexibility in fitting complex shapes and boundaries, providing a more precise representation
of the physical domain. Additionally, they support adaptive mesh refinement, which is critical
for enhancing accuracy in areas with sharp gradients or where greater detail is necessary.
Due to these benefits, OpenFOAM® utilizes unstructured meshes [19].

The mesh connectivity and addressing in OpenFOAM® are introduced briefly henceforth.
The mesh connectivity determines how and which (stencil) cells are accessed and, furthermore,
calculated. The FV method relies on mesh connectivity to compute fluxes through faces,
gradient calculations, reconstructions, and other operations central to solving the governing
equations. Three important types of mesh connectivity [19] is listed below.

• Vertex-to-Cell Connectivity: This defines which cells are connected to a given vertex. It’s
important for reconstructing cell data from vertex data and vice versa.

• Face-to-Cell Connectivity: Critical for the flux calculations across cell boundaries, this
connectivity defines which cells are adjacent to each other, via shared faces.

• Boundary Connectivity: Defines how cells and faces interact with the boundaries of the
computational domain, which could be walls, inlets, outlets, etc.

There are other connectivity types, such as Vertex-to-Edge Connectivity and Edge-to-Face
Connectivity, which are used rarely and not described here.

Mesh addressing involves the use of data structures to reference and access various
mesh entities (like cells, faces, and vertices). These data structures are crucial for efficient
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computation, as they enable the software to locate and manipulate the entities of the mesh
quickly. Addressing is closely linked to mesh connectivity, as it provides the means to
traverse and reference the connectivity information. OpenFOAM® employs various addressing
methods, such as indirect addressing, owner-neighbor addressing, and boundary mesh addressing
[19].

An illustrative example of mesh addressing in unstructured meshes within OpenFOAM®

is depicted in fig. 2. Here, a mesh face f of a cell is associated with an index pair (Of , Nf),
comprising the indices Of , Nf of the adjacent cells ΩOf

and ΩNf
. The face-adjacent cell with

the lower index is designated as the ’owner’ cell (Of), while the cell with the higher index
is termed the ’neighbor’ cell (Nf). Notably, the area normal Sf consistently points from the
owner cell towards the neighbor cell.

3.2.3 Mesh quality

After the generation of the mesh, the mesh quality should be assessed. It influences the
accuracy, stability, and efficiency of all numerical methods. Good mesh quality is crucial for
obtaining reliable and accurate simulation results. Hereafter, four common mesh quality
metrics are described below with corresponding illustrations in fig. 3.

• Orthogonality: Refers to the angle θf between the face area normal Sf and the direction
of d, a vector connecting the centers of two adjacent cells sharing the face, i.e, d =

xNf
− xOf

, in fig. 3a. For non-orthogonal mesh, the angle θf is not equal to zero. The
non-orthogonality reduces the accuracy of the central difference approximation to the
derivative in the direction of the face normal [16]. In this study, an iterative correction
method to alleviate the errors from non-orthogonality is introduced in section 9.6.

• Skewness: Refers to the deviation of xf ′ , the intersection point between d and face,
from the face center xf , in fig. 3b. The common practice to estimate the value at the
cell face is to use a linear interpolation profile. To keep the overall accuracy of the
spatial discretization method second order, all face integrations need to take place at
point xf [17]. For a skew mesh, the linearly interpolated face value at xf ′ does not
coincide with the cell center value at xf , which the loss of the second-order accuracy.
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xOf
xNf

xf

Sf

d θf

(a) Non-orthogonality

xOf
xNfx

f
′

Sf

d
xf

(b) Skewness

δx

δy

(c) Aspect ratio

δy1

δy2

(d) Smootheness

Figure 3: Four mesh quality metrics

• Aspect Ratio: The ratio of the longest to the shortest length of a cell, namely δx
δy

in fig. 3c.
A high aspect ratio can smear gradients and cause inaccurate interpolation across cells.

• Smoothness: Refers to the transition in size between contiguous cells, i.e., δy2

δy1
in fig. 3d,

which is also known as expansion rate, growth factor, or uniformity. A large rate of cell
expansion adds numerical diffusion to the solution.

The errors from non-orthogonality and skewness can be corrected with special numerical
techniques. However, when the mesh is not uniform enough, i.e. with the large aspect ratio
and or the expansion rate, remeshing is usually necessary [16].

16



3.2.4 Variable arrangement

Meshes used in computational fluid dynamics are classified based on the locations where
variables from conservation equations are stored. There are two primary categories: collocated
mesh and staggered mesh. In a collocated mesh, all variables, such as velocity, pressure, and
density, are stored at a single set of points within each cell, typically at the cell center. On the
other hand, the staggered mesh employs a different storage approach. Here, vector variables
like velocity are calculated and stored at the cell faces, whereas scalar variables such as
pressure and density are computed and stored at the cell centers [17]. This configuration
is particularly effective in suppressing unphysical oscillations in the pressure and velocity
fields, especially under strong coupling conditions between these fields. It also ensures the
conservation of kinetic energy approximation [16]. However, managing a staggered mesh,
especially for unstructured meshes, can be complex due to the intricate bookkeeping required
for each variable’s location [18].

Despite the benefits of staggered meshes in certain scenarios, the collocated arrange-
ment is generally preferred in modern codes due to its simpler data structure and easier
implementation. Moreover, recent advancements in numerical algorithms have significantly
reduced problems that were once common in collocated grids, such as pressure-velocity
decoupling [16]. OpenFOAM® , the platform used in this study, employs the collocated mesh
arrangement, benefiting from these advancements and the simplicity of the collocated data
structure.

3.3 Equation discretization

In Section 2, the mathematical model for fluid mechanics governing two-phase flow in one-
fluid formulation is derived. In this subsection, the focus is on discretizing this model using FV
method on collocated unstructured mesh. The continuity equation eq. (2.2) and momentum
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conservation eq. (2.15) with named terms equation are re-presented here in integral form∫︂
Ωc

∇ · vdV = 0,∫︂
Ωc

∂(ρv)
∂t

dV⏞ ⏟⏟ ⏞
Transient term

+

∫︂
Ωc

∇ · (ρvv)dV⏞ ⏟⏟ ⏞
Convective term

−
∫︂
Ωc

∇ ·
(︁
µ
(︁
∇v+ (∇v)T

)︁)︁
dV⏞ ⏟⏟ ⏞

Viscous term

=

∫︂
Ωc

(−∇p− (g · x)∇ρ+ σκnΣδΣ) dV⏞ ⏟⏟ ⏞
Source term

.

(3.15)

The discretization of both equations is introduced in the following subsections.

3.3.1 Continuity equation

Applying the divergence theorem introduced in section 3.1.2 to the continuity equation results
in ∫︂

Ωc

∇ · vdV =

∮︂
v · dS

=
∑︂
f∈Fc

∫︂
f

v · dS

= 0,∑︂
f∈Fc

∫︂
f

v · dS ≈
∑︂
f∈Fc

vf · Sf =
∑︂
f∈Fc

Ff ,

(3.16)

where dS denotes the infinite area normal of face f , this face area normal is defined by
Sf =

∫︁
f
dS. The volumetric flux across f is defined by

Ff := vf · Sf . (3.17)

The flux across a face f is consistent in magnitude and differs only in sign between two
cells sharing it. This is essential for maintaining mass conservation properties at the discrete
level. It’s notable that the discretized continuity equation is not approximated and solved,
but used as a constraint to decouple the pressure-velocity coupling and as a metric to assess
the convergence of the computational solution [26].
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3.3.2 Convective term

The convective term is discretized using the divergence theorem introduced in section 3.1.2∫︂
Ωc

∇ · (ρvv)dV =
∑︂
f∈Fc

∫︂
f

ρvv · dS

=
∑︂
f∈Fc

∫︂
f

v(ρfv · dS)

≈
∑︂
f∈Fc

(ρfvf · Sf )vf =
∑︂
f∈Fc

(ρfFf )vf

(3.18)

with a second-order midpoint approximation of velocity, i.e., vf , at the face center xf , regard-
ing section 3.1.1. It is noticeable that the convection term (ρvv) is non-linear. This issue is
solved by linearization which applies the newest updated known velocity to (ρvf · Sf ). The
approximated mass flux across f are defined here as

ṁ = ρfvf · Sf = ρfFf . (3.19)

Within the collocated FV method, the face centers are not the computational nodes, making
face-centered quantities like vf unavailable. Therefore, an interpolation to vf is entailed.

3.3.3 Viscous term

In the case of the diffusion term, the discretization is carried out with the divergence theorem
as ∫︂

Ωc

∇ ·
(︁
µ
(︁
∇v+ (∇v)T

)︁)︁
dV =

∑︂
f∈Fc

∫︂
f

µ
(︁
∇v+ (∇v)T

)︁
· dS

≈
∑︂
f∈Fc

µf

(︁
(∇v)f · Sf + (∇v)Tf · Sf

)︁ (3.20)

The gradient flux (∇v)f · Sf is treated implicitly and approximated as stated in eq. (3.11),
more specifically

(∇v)f · Sf ≈
vNf

− vOf

|xNf
− xOf

|
|Sf |. (3.21)

More numerical techniques to discretize the gradient flux on a non-orthogonal mesh are
extensively reviewed in section 9.6.
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On the other hand, the transposed tensor (∇v)Tf is addressed explicitly and approximated
following eq. (3.9), e.g. with CDS, having the form

(∇v)Tf ≈ λ(∇v)TNf
+ (1− λ)(∇v)TOf

. (3.22)

The divergence theorem is applied to explicitly approximate the gradient at the cell center.
For the owner cell ΩOf

, (∇v)Of
is computed by

(∇v)Of
=

1

|ΩOf
|

∫︂
ΩOf

∇vdV

≈ 1

|ΩOf
|
∑︂

f∈FOf

vf ⊗ Sf ,
(3.23)

where vf is interpolated from the explicit center values of saddling cells. An additional
approach to calculate the gradient term is Least Squares Fit (LSF), which offers more flexibility
concerning the accuracy and the stencil but requires higher cost for computation [17] as
addressed in Appendix 2. The (∇v)Tf is then obtained by transposing (∇v)Of

.

3.3.4 Source term

Both implicit and explicit discretization for the first derivative at cell centers and faces are
discussed in Sections 3.1.2 and 3.3.3. The pressure and density gradient terms in the source
term in eq. (3.15) are discretized following these discretization schemes. The sole remaining
term is the surface tension force σκnΣδΣ. In this study, the Continuum Surface Force (CSF)
model [27] is deployed to estimate the surface tension as follows:

fΣ = σκnΣδΣ ≈ σκ∇c(x), (3.24)

where c(x) is a characteristic function.The definition of this characteristic function depends
on the method used to capture the interface, e.g. volume fraction in VOF method or signed
distance function in LSM. These interface capturing methods are addressed in section 3.5.

To eliminate the spurious currents appearing artificially in what should be a static two-
phase flow system, the discretization scheme for the three gradients, i.e. ∇p, ∇ρ, and ∇c
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must be consistent, which is called well-balance approach. More details about the concept of
a well-balanced discretization are discussed in section 9.6.

3.3.5 Transient term

Time is an additional solution dimension for transient flow. Similar to the subdivision of
computational domain to CV, the prescribed time interval [t0, tE ], where t0, tE ar the start
and end of the simulation, is decomposed as a partition [t0, t1, t2, ..., tn−1, tn, tn+1, ..., tE ], such
that tn− 1 < tn < tn+1 with a time interval ∆tn+1 = tn+1 − tn called a time step.

The volume integral of the transient term aligns with the general integral form in
Section 3.1.1, stated as follows ∫︂

Ωc

∂(ρv)
∂t

dV ≈ |Ωc|
∂(ρcvc)
∂t

(3.25)

with second-order spatial accuracy. The temporal integral in a time step [tn, tn+1] of semi-
discrete eq. (3.15) can be represented as∫︂ tn+1

tn

[︄
|Ωc|

∂(ρcvc)
∂t

+
∑︂
f∈Fc

(ρfvf · Sf )vf −
∑︂
f∈Fc

µf ((∇v)f · Sf + (∇v)Tf · Sf )

]︄
dt

=

∫︂ tn+1

tn

[︂
|Ωc| (−∇p− (g · x)∇ρ+ σκ∇c)c

]︂
dt (3.26)

To shorten the eq. (3.26), a function f(v(x, t)) including all spatial terms from eq. (3.26) is
utilized. The shortened version of eq. (3.26) is given as follows∫︂ tn+1

tn
|Ωc|

∂(ρcvc)
∂t

dt =

∫︂ tn+1

tn
f(v(x, t))dt (3.27)

Conducting the temporal integration of eq. (3.27) results in∫︂ tn+1

tn
|Ωc|

∂(ρcvc)
∂t

dt = |Ωc|ρc(vn+1
c − vnc ) =

∫︂ tn+1

tn
f(v(x, t))dt, (3.28)

where the superscripts n, n+ 1 mean the values at time tn and tn+1, respectively.
Three common temporal approximation methods for the time integration of spatial terms

are listed below [16]

21



• Explicit Euler method. In this method, all independent variables v are treated explicitly,
which means that the calculated v at the end of the last time interval [tn−1, tn], namely
vn, is used to update the new v. The time integration of f(v(x, t)) is approximated by∫︂ tn+1

tn
f(v(x, t))dt ≈ f(vn)∆t. (3.29)

This method has the first-order accuracy in time. A few stability tests conducted in [16,
17] show that this method is conditionally stable. It is stable only under the condition
that the Courant number Co = |v|∆t

h
is smaller than unity. Here, |v| is the characteristic

velocity, and h is the cell size. The imposed time restriction mandates a greater number
of steps to advance the solution in time, potentially resulting in extended simulation
times, particularly with a fine mesh.

• Implicit Euler method. This method approximates eq. (3.28) using the implicit value
of v in spatial terms, i.e. vn+1, which is unknown and obtained by solving a system of
algebraic equations for each time step. The approximated form is expressed as∫︂ tn+1

tn
f(v(x, t))dt ≈ f(vn+1)∆t. (3.30)

The accuracy of this method is also first-order. In contrast to the explicit Euler method,
this scheme requires solving a large coupled set of equations at each time step. However,
it offers the advantage of being able to utilize larger time steps, making it advantageous
for many scenarios.

• Crank-Nicolson method. This method averages the approximations in eqs. (3.29)
and (3.30) and has the form∫︂ tn+1

tn
f(v(x, t))dt ≈ 1

2
(f(vn) + f(vn+1))∆t. (3.31)

This scheme features second-order time discretization and achieves stability over a
wider Co range, specifically Co ≤ 2 [16, 17].

In this study, the implicit Euler method is mainly used, and the final discretized momen-
tum equation is represented as
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|Ωc|
(ρcvn+1

c − ρcvnc )
∆t

+
∑︂
f∈Fc

(ρfvnf · Sf )vn+1
f −

∑︂
f∈Fc

µf ((∇vn+1)f · Sf + (∇vn)Tf · Sf )

= |Ωc| (−∇p− (g · x)∇ρ+ σκ∇c)n+1
c (3.32)

In the two-phase flow system, the interface evolves with the velocity v.The spatial and
temporal discretization and calculation are discussed in section 3.5.4 and section 6.4.

3.4 Solution algorithms for pressure-velocity coupling

The discretized momentum equation (eq. (3.32)) reveals a linear interdependence among
velocity, pressure, and the fluid interface (surface tension, gravity). While the velocity field
derived from the momentum equation must satisfy the continuity equation (eq. (3.16)), there
is no dedicated transport or other equation for the pressure in the context of incompressible,
isothermal flow as investigated in this study. This challenge is commonly referred to as
pressure-velocity coupling. To address this issue, a strategy is employed wherein the pressure
field is constructed to ensure that the velocity satisfies the continuity equation. This involves
modifying the continuity equation into an equation for pressure, as outlined by [16, 17].

3.4.1 Construction of pressure equation

By applying interpolation and first derivative schemes, Equation (3.32) is reformulated as

acvn+1
c = H(vn+1

n )− |Ωc|(∇p)n+1
c + bn+1

c , (3.33)

where

• ac is a sum of all coefficients of vn+1
c ,

• H(vn+1
n ) consists of effects from new velocity of neighbor cells and old velocity, expressed

as
H(vn+1

n ) = −
∑︂

n∈N(Ωc)

anvn+1
n +

|Ωc|
∆t

vnc +
∑︂
f∈Fc

µf ((∇vn)Tf · Sf ) (3.34)

with the set N(Ωc) including all indices of neighbor cells of Ωc,
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• bn+1
c contains the body force terms, i.e., bn+1

c = |Ωc| (−(g · x)∇ρ+ σκ∇c)n+1
c .

The new velocity vn+1
c can be obtained by dividing eq. (3.33) with ac, have form

vn+1
c =

H(vn+1
n )

ac
− |Ωc|

(∇p)n+1
c

ac
+

bn+1
c

ac
, (3.35)

which must obey continuity equation eq. (3.16) for every time step, resulting in∑︂
f∈Ff

vn+1
f · Sf

=
∑︂
f∈Ff

(︄
Sf ·

(︃
H(vn+1

n )

ac

)︃
f

− |Ωc|
(︃

1

ac

)︃
f

Sf · (∇p)n+1
f +

(︃
1

ac

)︃
f

Sf · bn+1
f

)︄
= 0.

(3.36)

A critical issue to be solved is that the momentum and continuity equation reformulated in
eq. (3.35) and eq. (3.36) show strong non-linearity because of their dependency on H(vn+1

n ),
which is a function of vn+1

n , unknown velocities of neighbor cells. This non-linearity can be
resolved using an iterative procedure. The most widely used approach for iteratively solving
coupled equations is the segregated approach, where equations are linearised and solved
sequentially one after the other [16, 17, 28, 29]. A brief introduction to three extensively
utilized algorithms will be presented below.

3.4.2 SIMPLE

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) was originally put forward by
Patankar and Spalding [30] for the calculations of steady flows and then extended to transient
calculations. Ever since the pioneering work by them, it has found widespread application in
the majority of commercial CFD codes. In this scheme, a guessed pressure field is used to
solve the momentum equations. A pressure-correction equation, deduced from the continuity
equation, is then solved to obtain a pressure-correction field, which in turn is used to update
the velocity and pressure fields. These guessed fields are progressively improved through the
iteration process until convergence is achieved for the velocity and pressure fields.
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To elaborate on this process, the new velocity and pressure field is first split into the
intermediate part (marked by superscript ∗) and the corrector part (marked by superscript ′),
as follows

vn+1 = v∗ + v′,

pn+1 = p∗ + p′.
(3.37)

SIMPLE consists of the following steps:

1. Momentum prediction: The intermediate velocity is calculated from

v∗c =
H(v∗n)
ac

− |Ωc|
(∇p∗)c
ac

+
bn+1
c

ac
(3.38)

where the intermediate pressure p∗ and known velocity contained in ac and H(v∗n) are
guessed at the first iteration, and usually initialized by their old values at the last time
step. Notably, v∗c does not necessarily satisfy the continuity equation in this step.

2. Pressure correction: Substituting eq. (3.37) into eq. (3.35) and then subtracting eq. (3.38)
results in

v′c =
H(v′n)
ac⏞ ⏟⏟ ⏞

Neglected

−|Ωc|
(∇p′)c
ac

(3.39)

By substituting eq. (3.39) and eq. (3.37) into continuity equation, the Laplacian equa-
tion for p′ is constructed, as follows

−|Ωc|∇ ·
(︃
(∇p′)c
ac

)︃
= ∇ · v∗c −∇ ·

(︃
H(v′n)
ac

)︃
⏞ ⏟⏟ ⏞

Neglected

(3.40)

The handling of the operator H(v′n) needs discussion at this moment. Given that the
velocity corrector v′ remains unknown at this stage, an approximation for H(v′n) is
necessary. Upon convergence of the solution for v and p, the correctors v′ and p′ are
rendered as zero. Consequently, in the original SIMPLEmethod,H(v′n) is disregarded for
approximation purposes. Consequently, the correctors p′ in this iteration can be obtained
by solving eq. (3.40). Omitting this term does not compromise the final solution, as its
value converges to zero. However, its exclusion influences the convergence trajectory, as
its value can be significant at first iterations. This notable magnitude may lead to either
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divergence or deceleration in the convergence rate due to an overestimated pressure
corrector. To address this challenge, the under-relaxation factor λp is introduced for
pressure updating, expressed as

p = p∗ + λpp′, 0 < λp < 1. (3.41)

3. Velocity correction. By the omission of H(v′n) and the substitution of newly known
p′ into eq. (3.39), the velocity corrector v′ is calculated. Similar to λp, there is an
under-relaxation factor λv for limiting the velocity corrector. The velocity is updated
following

vc = v∗c + λvv′c, 0 < λv < 1. (3.42)

Moukalled, Mangani, Darwish, et al. [17] proved that when λv ≈ 1− λp, SIMPLE can
reach the optimum acceleration rate of convergence.

4. Convergence estimation and iteration. The source term on the right hand of eq. (3.40)
is commonly regarded as the criteria to terminate the iteration. If the source term is
larger than the prescribed residual tolerance, the newly updated pressure p and v are
applied to eq. (3.38) for the next iteration. And the whole procedure is repeated from
step 1.

Algorithm 1 Algorithm for a single SIMPLE time step [tn, tn+1]

while not converged do
Solve momentum prediction equation implicitly for v∗ ▷ Equation (3.38)
Solve pressure correction equation for p′ ▷ Equation (3.40)
Update of v and p with under-relaxation factors ▷ Equations (3.41) and (3.42)

end while
Update new fields vn+1 = v, pn+1 = p
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3.4.3 PISO

Despite the use of under-relaxation, the rate of convergence of the SIMPLE algorithm remains
problem-dependent and researchers sought alternatives for further improvements. One widely
used variant is Pressure-Implicit Split-Operator (PISO)[31], which extends SIMPLE with an
additional correction step that involves an additional pressure-correction equation to enhance
the convergence.

Different from SIMPLE, the momentum prediction step in section 3.4.2 is not contained in
the iteration during a time step. Instead, the updated velocity is employed to solve eq. (3.40)
and as the intermediate velocity for the next iteration, while the updated pressure is redefined
as the new intermediate pressure for the next iteration. PISO algorithm contains the following
steps during a time step:

1. Momentum prediction: The first intermediate velocity v∗(1)c is calculated according
to eq. (3.38). The superscripts (i) marks the ith iteration. Same as in SIMPLE, the
eq. (3.38) is solved with the guessed pressure and velocity, usually pn and vn.

2. Pressure correction: The pressure corrector is acquired by solving its Laplacian equation
regarding eq. (3.40)

−|Ωc|∇ ·
(︃
(∇p′(i))c

ac

)︃
= ∇ · v∗(i)c . (3.43)

The pressure is updated by

p(i) = p∗(i) + λpp′(i), 0 < λp < 1. (3.44)

3. Velocity correction: The velocity corrector is calculated by solving

v′(i)c = −|Ωc|
(∇p′(i))c

ac
, (3.45)

followed by updating velocity as

v(i)c = v∗(i)c + λvv′(i)c , 0 < λv < 1. (3.46)
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4. Iteration: When i is not equal to the preset iteration numberNPISO, the i+1th iteration
begins with

v∗(i+1)
c = v(i)c ,

p∗(i+1) = p(i).
(3.47)

Algorithm 2 Algorithm for a single PISO time step [tn, tn+1]

Solve momentum prediction equation implicitly for v∗(1) ▷ Equation (3.38)
for i = 1; i ≤ NPISO; ++ i do

Solve pressure correction equation for p′(i) ▷ Equation (3.43)
Update of v(i) and p(i) with under-relaxation factors ▷ Equations (3.44) and (3.46)
if i ̸= NPISO then

Update intermediate pressure and velocity ▷ Equation (3.47)
else

if i = NPISO then
Update new fields vn+1 = v(i), pn+1 = p(i)

end if
end if

end for

In the case NPISO = 1, PISO is equivalent to one iteration of SIMPLE, which means
that the same approximation error regarding neglecting H(v′n) is generated. In the original
PISO[31], the authors indicate that at least NPISO = 3 are required to converge the solution.

3.4.4 PIMPLE

PIso + siMPLE (PIMPLE) is a solution algorithm available in OpenFOAM® . This algorithm
combines internal iterations for pressure correction in PISO with the whole iterations for
momentum prediction and pressure correction in SIMPLE and adds the third layer iterations
for non-orthogonality correction. The non-orthogonality correction is the main topic of
section 9.6, which is addressed later. Different from in SIMPLE, the advancement of outer
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iteration is controlled by both the prescribed tolerance and the fixed iteration number in
PIMPLE.

Algorithm 3 Algorithm for a single PIMPLE time step [tn, tn+1]
1: o := 1

2: while o ≤ Nouter or res > tol do
3: Solve momentum prediction equation implicitly for v∗(o) ▷ Equation (3.38)
4: for i = 1; i ≤ Ninner; ++i do
5: Solve pressure correction equation for p′(i) ▷ Equation (3.43)
6: Update of v(i) and p(i) with under-relaxation factors ▷ Equations (3.44) and (3.46)
7: if i ̸= Ninner then
8: Update intermediate pressure and velocity ▷ Equation (3.47)
9: else

10: if i = Ninner then
11: Update fields vo+1 = v(i), po+1 = p(i) for the next outer loop
12: end if
13: end if
14: end for
15: ++o
16: end while
17: Update fields vn+1 = v(o), pn+1 = p(o) for the next time step
18:

The PIMPLE is one of themost widely used algorithms for transient problems in OpenFOAM®

. It is also the basis of the solution algorithm in this study. The combination of PISO and
PIMPLE makes it possible to use larger Courant numbers (Co >> 1)[32] in the computa-
tion. Comparing algorithm 3 with algorithm 2 and algorithm 1, it is evident that PIMPLE is
equivalent to PISO with Nouter = 1, and equivalent to SIMPLE with Ninner = 1.

3.4.5 SAAMPLE

A novel segregated solution algorithm, termed SAAMPLE, has been developed by Tolle, Bothe,
and Marić [2] to stabilize two-phase flows dominated by surface tension force. Differing
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from the classical PIMPLE, SAAMPLE is an iterative approach driven by solution accuracy. In
addition to the prescribed inner and outer iteration numbers, two additional convergence
conditions are introduced for the outer and inner loops, respectively. For the outer loop, a
boolean flag, named conv(Ff ), is defined as follows:

conv(Ff )
o =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true, ifL∞

(︁
|Ff − F prev

f |/L∞(Ff )
)︁
< tolrel

true, L∞
(︁
|Ff − F prev

f |
)︁
< tolabs

false, otherwise

(3.48)

where the parameters tolrel and tolabs are prescribed for the relative and absolute change of
volumetric flux Ff between two consecutive outer iterations. The inner loop performs the
pressure correction to enforce discrete volume conservation. To ensure this, an additional
inner condition defined by a boolean value, i.e.,

conv(p)i =

⎧⎨⎩true, resp < tolinn

false, otherwise
(3.49)

with a prescribed inner tolerance tolinn and the pressure residual error norm resp, is introduced
for the inner loop. The complete algorithm of SAAMPLE is outlined in algorithm 4.

3.5 Interface capturing methods

As discussed in section 2, no jumps occur in physical properties such as density, viscosity,
and pressure resulting from surface tension forces within the bulk of each fluid phase. This
implies that

ρc = ρf = ρ±,

µc = µf = µ±,

(−(g · x)∇ρ+ σκ∇c)c = 0

(3.50)

in the semi-discrete momentum equation eq. (3.33). However, these jumps must be accounted
for in the interfacial region, necessitating an interface-capturing method prior to solving
eq. (3.33). Over the past decades, numerous interface-capturingmethods have been developed
and extensively reviewed in the literature [18, 21, 33, 34].
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Algorithm 4 Algorithm for a single SAAMPLE time step [tn, tn+1]

1: conv(Ff )
o := false

2: conv(Ff )
i := false

3: o := 0

4: while o < Nouter and not conv(Ff )
o do

5: if not conv(Ff )
i then

6: Update mass flux: mf := ρfFf

7: end if
8: Solve momentum prediction equation implicitly for v∗(o) ▷ Equation (3.38)
9: i := 0

10: correct-pressure:= true

11: while i < Ninner and correct-pressure do
12: Set up pressure correction equation for p′(i) ▷ Equation (3.43)
13: Update the conv(p)i ▷ Equation (3.49)
14: if not conv(p)i then
15: Update of v(i) and p(i) with under-relaxation factors ▷ Equations (3.44) and (3.46)
16: Update intermediate pressure and velocity ▷ Equation (3.47)
17: Update volumetric fluxes Ff

18: else
19: correct-pressure:= false

20: if i = 0 and conv(p)i then
21: Update fields vo+1 = v(i), po+1 = p(i) for the next outer loop
22: conv(Ff )

o := true

23: end if
24: end if
25: ++i
26: end while
27: ++o
28: end while
29: Update fields vn+1 = v(o), pn+1 = p(o) for the next time step
30:
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In this section, four methods are introduced. The fundamental concepts of the Front
Tracking Method (FTM) and Level Set Method (LSM) are initially outlined in sections 3.5.1
and 3.5.2, respectively, laying the groundwork for the unstructured Level Set/Front Tracking
(LENT) method [35], which is employed in section 3.5.4. Subsequently, the basic principles
of the unstructured geometrical Volume of Fluid (VOF) method and detailed information on
isoAdvector [36], the exact VOF method utilized in section 6.4 and section 9.6, are elucidated.

3.5.1 Front Tracking method

In FTM, the interface between two fluids is marked by a separate front, which consists of
marker points connected by elements, which are line segments in two dimensions or triangles
in three dimensions. These points evolve with the flow and then reconstruct the approximated
phase indicator field from the location of the front. Figure 4 displays schematically the
representation of an interface Σ(t) approximated by a front Σ̃(t) using connected marker
points, e.g. the kth point xk

Σ̃
, in two dimensions domain Ω.

Tryggvason et al. [21] provided a concise historical overview of FTM and outlined key
considerations associated with this method:

• Data structure for the front: The front encompasses information about each marker
point, including its location and index, as well as the connectivity of these points and
a description of the physics at the interface. Effective management of this complex
information requires an appropriate data structure, which significantly influences the
performance of an FTM.

• Front restructuring: As the front undergoes motion, it undergoes deformation, stretching,
and compression with the flow. These geometrical changes can result in a highly non-
uniform distribution of front elements, potentially compromising the quality of the front.
Therefore, dynamic evaluation and restructuring of the front during the simulation are
necessary. Restructuring operations involve element manipulations such as addition,
deletion, and reshaping [37], all of which depend critically on the flexibility of the data
structure.
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Ω

Σ(t)

Σ̃(t)

xk
Σ̃

nΣ̃

Ω−

Ω+

ṽk

Figure 4: Exemplary illustration of interface approximation using FTM at time t: the red
dashed curve indicates the exact interfaceΣ(t), the black line segments connected
by marker points (black dots) construct the front Σ̃(t) with front normal nΣ̃(t) of
each segment, the kth marker points xk

Σ̃
moves with the interpolated velocity ṽk.

• Communication between the front and fixed mesh cells: The governing conservation
equations are solved at fixed cell centers or cell faces of a mesh, while the marker
points can move anywhere within the computational domain. Hence, establishing
communication between the front and the governing equations is essential. The moving
front requires information about the velocity field, discretely solved on the mesh,
necessitating interpolation from mesh points to marker points. With the interpolated
velocity on the front, the new position of a marker point, exemplified by kth marker
point, is explicitly updated in the time interval [tn, tn+1] by

xk,n+1

Σ̃
= xk,n

Σ̃
+

∫︂ tn+1

tn
ṽ(xk

Σ̃
, t)dt, (3.51)

where ṽ(xk
Σ̃
, t) indicates the interpolated velocity at the marker point. Conversely, trans-

mitting information contained in the front to the mesh is more intricate. Theoretically,
the phase indicator has a sharp jump across the front, leading to abrupt changes in
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fluid properties from one mesh point to the next and resulting in numerical instability
in solving the governing equations. To mitigate these issues and smooth the changes,
the interface is given a small thickness on the order of the mesh size. A smoothing
phase indicator function is generally defined by

χ̃(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (x− x′

Σ̃
) < −ϵh,

H(x) −ϵh ≤ (x− x′
Σ̃
) ≤ ϵh,

0 (x− x′
Σ̃
) > ϵh,

(3.52)

where x′
Σ̃
is the projected point from x to the front in the normal direction nΣ̃, as

depicted in fig. 4, h is the cell size, ϵ is an empirical parameter to control the smoothing
thickness and H(x) is the smoothing function in the interfacial region and varies in
different methods, e.g. [4, 5, 37, 38]. The density and viscosity can be represented
by eqs. (2.10) and (2.11) that are replaced with the smoothed phase indicator χ̃. The
surface tension is approximated by CSF model, i.e., eq. (3.24) with c(x) = χ̃ and
κ = −∇ · ñ, where the ñ is the normal interpolated from the normals of the near front
elements. Besides the smoothing methods, some methods attempt to maintain the
sharpness [39, 40]. One option is Ghost Fluid Method (GFM) [41, 42], where the
”ghost” values across the front are extrapolated from another side of the front and the
mesh is still fixed.

3.5.2 Level Set method

The LSM uses the level set function φ(x, t) to represent the interface between two phases.
Traditionally, this function is a signed distance function[43, 44], representing the shortest
distance to the interface, defined as follows:

φ(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−dist(x(t),Σ(t)) x(t) ∈ Ω−,

+dist(x(t),Σ(t)) x(t) ∈ Ω+,

0 x(t) ∈ Σ(t),

(3.53)

34



where dist(x(t),Σ(t)) is the Euclidian distance to the interface Σ(t) := {x, φ(x, t) = 0}, i.e.,
constructed by the points at the level curve φ(x, t) = 0. The level set function evolves with
the flow, following the advection equation

∂φ

∂t
+∇ · (φv) = 0, (3.54)

where v is the flow velocity, in an incompressible setting ∇·v = 0. The discretization schemes
for time and space follow the discussion in section 3.3.5 and section 3.3.2. The similar
smoothed phase indicator function to eq. (3.52) is employed to reconstruct density and
viscosity, taking the form as

χ̃(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 φ(x) < −ϵh,

H(x) −ϵh ≤ φ(x) ≤ ϵh,

0 φ(x) > ϵh,

(3.55)

where the smoothing function H(x) can be selected same as in eq. (3.52). The level set
Ω

Σ̃(t), φ(t) = 0

φ(t) < 0

φ(t) > 0 nΣ̃

Ω−

Ω+

Figure 5: Exemplary illustration of interface approximation using LSM at time t.

function can also be used to compute the interface normal nΣ, with the characteristic function
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c(x) = φ(x) substituted in general CSF model for surface tension eq. (3.24), as

nΣ =
∇φ
|∇φ|

,

fΣ = σκ∇χ̃, with κ = −∇ · nΣ.

(3.56)

Since the level set function does not retain its signed distance function property |∇φ| = 1

as it evolves in time, it is necessary to reinitialize the level set function periodically. Without
reinitialization, the magnitude of the level set function gradient |∇φ| can become very large
or small near the interface, i.e. φ = 0, leading to numerical instability and a loss of accuracy.
Sussman, Smereka, and Osher [44] proposed an iterative approach to reinitialize φ by solving
the following equation

∂φ

∂τ
= sgn(φτ=0)(|∇φ| − 1) (3.57)

where the τ is an artificial time, φτ=0 denotes the un-reinitialized level set function calculated
from eq. (3.54) and sgn indicates a smoothed signum function with definition as following

sgn(φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 φ < 0,

0 φ = 0,

1 φ > 0,

(3.58)

After several iterations, the adjusted φ stabilizes, ensuring |∇φ| = 1 and thereby reinstating
the signed distance property of φ. However, reinitialization introduces a new issue: the
artificial displacement of the interface (φ = 0) violates mass conservation. Addressing this
challenge necessitates additional measures, further complicating the LSM [45].

3.5.3 Hybrid Level Set / Front Tracking method (LENT)

The LENT[38, 46, 47] emerges as a hybrid approach, amalgamating the strengths of FTM
and LSM while operating on unstructured meshes. Similar to FTM discussed in section 3.5.1,
this method represents the interface via the front, evolving alongside marker points along
discrete Lagrangian trajectories. Additionally, akin to LSM, it computes the signed distance
field in the immediate proximity of the front cells. This field aids in restructuring the front
through the application of an iso-surface reconstruction algorithm[38, 48].
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Ω

φ > 0

Σ̃(t), φ = 0

xk
Σ̃

nΣ̃

Ω−

Ω+

ṽk

φ < 0

Figure 6: Exemplary illustration of interface approximation using LENT at time t.

Interface evolution The marker points move following the classical FTM as described by
eq. (3.51) with the interpolated velocity from neighboring cell centers. The neighboring cells
relative to each marker point must be specified before interpolating. Unlike in structured
meshes where cell indices suffice for locating, unstructured meshes require additional more
complex steps to determine the neighboring cells of a marker point. This is accomplished
through a fusion of octree space subdivision and known-vicinity search algorithm[35].

Signed distance calculation In contrast to conventional level set methods, the evolution of
the signed distance field φ does not rely on solving an advection equation eq. (3.54). Instead,
φ is geometrically computed from the front Σ̃ at each time step. For a given point x, φ(x) is
determined as follows

φ(x) = sgn((x− xΣ̃, closest) · nT )|x− xΣ̃, closest|, (3.59)

where xΣ̃, closest represents the point on the interface Σ̃ closest to x. The sign is determined
with the normal vector nΣ̃ of the triangle containing xΣ̃, closest. Given that φ is primarily
needed in the vicinity of Σ̃, octree space subdivision is employed to confine computations to
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a narrow band. A comprehensive explanation of this process is provided in [35]. The same
approximation as eq. (3.56) is used to evaluate surface tension force.

3.5.4 Volume of Fluid method

Ω

Σ̃(t)

n
Σ̃

Ω+

0

0 0 0 0.08 0.09 0 0 0

00.070.72110.700.04

0 0.5511110.46

0.5711110.480

0 00.080.79110.740.05

0 000.000.130.1100

0

0

Ω−

Figure 7: Exemplary illustration of interface approximation using VOF at time t with marked
volume fraction in each cell.

In VOF, the phase interface is represented by the volume fraction of a phase liquid in each
cell. The volume fraction is the discrete version of the phase indicator function (eq. (2.9))
and is defined in each cell, e.g. for the cell Ωc, as

αc(t) :=
1

|Ωc|

∫︂
Ωc

χ(x, t)dV. (3.60)

Accordingly, the one-field density and viscosity are calculated cell-wisely as

ρc(t) = ρ−αc(t) + ρ+(1− αc(t)), (3.61)

µc(t) = µ−αc(t) + µ+(1− αc(t)). (3.62)
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in the cell Ωc, corresponding to eq. (2.10) and eq. (2.11). Integrating the conservative mass
equation eq. (2.1) over a control volume Ωc yields

∂

∂t

∫︂
Ωc

ρdV +

∫︂
∂Ωc

ρv · dSf = 0. (3.63)

Applying one-field density eq. (2.10) to eq. (3.63) results in

∂

∂t

∫︂
Ωc

[(ρ− − ρ+)χ+ ρ+]dV +

∫︂
∂Ωc

[(ρ− − ρ+)χ+ ρ+]v · dSf = 0. (3.64)

Equation (3.64) is reformulated as following

(ρ− − ρ+)
∂

∂t

∫︂
Ωc

χdV + (ρ− − ρ+)

∫︂
∂Ωc

χv · ndS + ρ+
∫︂
∂Ωc

v · dSf = 0. (3.65)

Integrating continuity equation ∇ · v = 0 in a same way gives∫︂
Ωc

∇ · vdV =

∫︂
∂Ωc

v · dSf = 0. (3.66)

The integral form of phase indicator transport equation is acquired by inserting eq. (3.66) to
eq. (3.65) and dividing the constant (ρ− − ρ+), i.e.,

∂

∂t

∫︂
Ωc

χdV +

∫︂
∂Ωc

χv · dSf = 0. (3.67)

Applying the volume average to eq. (3.67) results in

∂

∂t

1

|Ωc|

∫︂
Ωc

χdV +
1

|Ωc|

∫︂
∂Ωc

χv · dSf = 0. (3.68)

The conservative transport of volume fraction within Ωc is obtained by substituting eq. (3.60)
into eq. (3.68), i.e.,

∂αc

∂t
+

1

|Ωc|

∫︂
∂Ωc

χv · dSf = 0. (3.69)

Integrating eq. (3.69) from tn to tn+1 gives the following equation for the new volume
fraction of cell Ωc,

αn+1
c = αn

c − 1

|Ωc|
∑︂
f∈Fc

sf

∫︂ tn+1

tn

∫︂
f

χv · dSfdt = αn
c − 1

|Ωc|
∑︂
f∈Fc

sfV
α
f , (3.70)
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where sf represents the sign of the volumetric flux, i.e. sf = sgn(Ff ), which is used to ensure
that sfdSf always points out of the cell, and V α

f is named the phase-specific volume, defined as

V α
f =

∫︂ tn+1

tn

∫︂
Sf

χv · dSfdt. (3.71)

The VOF methods can be divided into two main categories based on the approach to
transport and approximate the volume fraction α: algebraic VOF methods and geometric VOF
methods[33]. Algebraic VOF methods represent α using a polynomial or hyperbolic-tangent
function. These methods algebraically compute the phase-specific volume without the need
for geometric interface reconstruction, hence their name. Conversely, geometric VOF methods
involve reconstructing the phase indicator function χ using a cellwise continuous geometrical
approximation and eq. (3.60). Subsequently, the reconstructed interface is advected by
calculating the phase-specific volume across each interfacial cell using geometric techniques.
The volume fraction α is employed as the characteristic function in CSF model (eq. (3.24)) to
estimate the surface tension in this study.

In section 6.4 and section 9.6, a geometric VOF method named isoAdvector [6, 36, 49] is
adopted to capture the interface. A brief review of the isoAdvector method is outlined below.

Figure 8: PLIC interface approximated by Youngs’algorithm [1] (blue lines) and exact inter-
face (red circle).
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Interface Reconstruction With only volume fraction information available and no actual
interface data, specifying the distribution of two liquids in an interfacial cell becomes chal-
lenging, rendering geometric calculation of phase-specific volume difficult. To surmount this
obstacle, a specialized technique for interface reconstruction is essential. The interface is
characterized by its center positions xΣ and area normals nΣ.

In the original isoAdvector method [36], a α-isosurface based approach is employed. In
this method, cell volume fraction data is interpolated to the cell vertices. An initial guessed
isovalue, α0, is assigned to construct the α0-isosurface inside the cell by examining all the
cell’s edges and determining whether they are intersected by the isosurface. An edge is
considered intersected if the interpolated volume fraction at one end is greater than α0 and
the value at the other end is smaller than α0. If this condition is met, the intersection point
along the edge is calculated via linear interpolation. Connecting these intersection points
across the cell faces enables construction of the isosurface in the interfacial cell. Since α0

is initialized with a guessed value, the sub-volume of the intersected cell typically does not
correspond to the volume fraction. To determine the isovalue capable of recovering the
volume fraction, a sweeping process is required. The same computational method for the
interface centers xΣ and area normals nΣ is utilized as described in eq. (3.14) and eq. (3.13).

In the subsequent study by Scheufler and Roenby [6], two additional schemes based on
Reconstructed Distance Function (RDF)-based schemes are introduced for the computational
interface reconstruction. The RDF is computed as a weighted average of distances to the
interfaces within the cell itself and neighboring cell layers composed of point neighbors.
While similar to a signed distance function discussed in section 3.5.2, the RDF does not
necessarily constrain the magnitude of the gradient of the signed distance function to be 1. In
the first scheme, iso-RDF is employed instead of iso-alpha value to construct the iso-surface.
Differing from iso-approaches, where interface centers and normals are determined from
intersection points of the iso-surface, the interface normal nΣ is algebraically obtained by
initially computing the unit gradient of the RDF. The conventional Piecewise Linear Interface
Calculation (PLIC) method is employed to capture the interface centers. In PLIC, the interface
is approximated in each interfacial cell as a line in two dimensions and a plane in three
dimensions given by

nΣ · xΣ + C = 0, (3.72)
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where C is the constant in the plane equation. In this scheme, C is computed through
sweeping to ensure that the volume cut by the interface Σ equals the volume fraction in the
computational cell to ensure eq. (3.60) is satisfied. The calculation of RDF and interface
reconstruction are performed iteratively in both RDF-based schemes, guaranteeing second-
order convergence of interface normals. The combined scheme is named plicRDF.

In this study, the plicRDF scheme is employed to reconstruct the interface.

Interface Advection Given the known interface normals and centers, the phase-specific
volume V α

f can be estimated. To decouple eq. (3.70) from the momentum transport equation,
the velocity field in eq. (3.70) is assumed to remain linear, resulting in constant volumetric
fluxes Ff across mesh faces. The term v · dS in eq. (3.71) can be approximated by

v · dS ≈ Ff

|Sf |
dS, (3.73)

with second order accuracy in space, where |Sf | is the area of cell face f , dS is the differential
of face area of f . Substituting this approximation into eq. (3.71) yields

V α
f ≈

0.5(Fn
f + Fn+1

f )

|Sf |

∫︂ tn+1

tn

∫︂
f

χdSdt. (3.74)

The area of the cell face f submerged in the Ω− is defined as

Af =

∫︂
f

χdS. (3.75)

The phase-specific volume is then approximated as

V α
f ≈

0.5(Fn
f + Fn+1

f )

|Sf |

∫︂ tn+1

tn
Afdt. (3.76)

The only remaining term to estimate is the time integral of Af within the time step
[tn, tn+1]. Roenby, Bredmose, and Jasak [36] devised a discontinuous function of t for the
submerged area Af , derived from iso-surface motion and the submerged polygonal face
calculation. To ensure that the updated volume fraction remains within a physically feasible
range, i.e., αn+1 ∈ [0, 1], a bounding procedure is conducted. This procedure iteratively
redistributes any undershoot or overshoot of volume in a cell to neighboring cells.
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Hybrid Level Set / Front Tracking method
with high density-ratios

4 Introduction

A variety of natural and industrial two-phase flow processes involve gas/liquid flows, char-
acterized by density ratios ρ−/ρ+ ≥ 103, such as the atomization of fuel jets [8], sloshing
tank [9], mold filing [10], water flooding [11]. Large density ratios at the fluid interface
cause severe challenges for numerical simulations [50]. For segregated solvers, the discrete
pressure Poisson equation becomes ill-conditioned if density is cell-centered, since its abrupt
change across the interface between the two fluids can lead to a large variation in the matrix
coefficients. Additionally, spurious numerical errors in the solution of the momentum equation
accumulate because of inconsistencies between mass and momentum advection.

Ghods and Herrmann [51] point out that for level set methods mass and momentum are
typically transported in different, inconsistent ways. While mass is transported by a solution
of the level set equation, momentum is obtained from solving a non-conservative form of a
momentum balance equation. Hence, a large non-physical change in the momentum can be
generated by a small error in the interface position when the density ratio is high. Nangia et al.
[52] state that the abrupt change in density often introduces notable shear at the interface
and adds difficulties in the discretization of governing momentum equations at the interface,
which further leads to higher stiffness of the linear equation system.

Many researchers have addressed these problems, and some indicated further that be-
cause of the sizeable numerical error resulting from high-density ratios, some flow algorithms
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or solvers can only be used to solve low density-ratio cases with ρ−/ρ+ ∈ [1, 10] [53]. How-
ever, in engineering applications, density ratios usually range from 102 to 103, and even
104 for molten metals or water-water vapor systems. Hence, a solution algorithm with the
ability to handle a broader range of density ratio problems is required to simulate real-world
engineering problems.

In this chapter, the unstructured LENT [2, 35] is extended for handling two-phase flows
with strongly different densities (high-density ratios) by providing the theoretical basis for the
numerical consistency between the mass and momentum conservation in the collocated Finite
Volume discretization of the single-field two-phase Navier-Stokes equations. The analysis
provides the theoretical basis for the mass conservation equation introduced by Ghods and
Herrmann [51] and used in [7, 52–55].

A mass flux that is consistent with mass conservation in the implicit Finite Volume
discretization of the two-phase momentum convection term, and solve the single-field Navier-
Stokes equations with SAAMPLE segregated solution algorithm [2], is used in this study. The
proposed ρLENT method recovers exact numerical stability for the two-phase momentum
advection of a spherical droplet with density ratios ρ−/ρ+ ∈ [1, 104]. Numerical stability
is demonstrated for in terms of the relative L∞ velocity error norm, for density-ratios in
the range of [1, 104], dynamic viscosity-ratios in the range of [1, 104] and very strong surface
tension forces, for challenging mercury/air and water/air fluid pairings. In addition, the
solver performs well in cases characterized by strong interaction between two phases, i.e.,
oscillating droplets and rising bubbles.

The proposed ρLENT method1 is applicable to any other two-phase flow simulation
method that discretizes the single-field two-phase Navier-Stokes Equations using the col-
located unstructured Finite Volume Method but does not solve an advection equation for
the phase indicator using a flux-based approach, by adding the proposed geometrical ap-
proximation of the mass flux and the auxiliary mass conservation equation to the solution
algorithm.

1The implementation in OpenFOAM is publicly available at https://gitlab.com/leia-methods/lent/-/tree/
2022-02-rhoLENT-R1 [56].
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Literature review

A pioneering attempt to alleviate numerical instability of the VOF method caused by high-
density ratios was made by Rudman [57]. Rudman [57] has used a sub-mesh with a doubled
mesh resolution for advecting volume fractions, compared to the mesh used for the momentum
and pressure equations. The goal of this two mesh approach was the reduction of small errors
in the discrete momentum that cause large errors in the velocity. However, an additional
higher mesh resolution for the volume fractions requires a discrete divergence free velocity
on the finer mesh. Furthermore, using an additional mesh for the volume fractions increases
the computational costs significantly, and it is not applicable to general unstructured meshes.
Rudman [57] demonstrates qualitatively a reduction of parasitic currents for the stationary
droplet case with ρ−/ρ+ = 100, and improved results for more complex cases. Another
important finding of Rudman [57] is the role of the densities used in the mass flux and the
momentum flux in ensuring numerical consistency of the two-phase momentum advection.

Bussmann, Kothe, and Sicilian [58] extended the work of Rudman [57] for the un-
structured collocated finite volume method. Bussmann, Kothe, and Sicilian [58] employ
the conservative form for the momentum convection. At first, the momentum advection is
solved separately, using an explicit Euler time integration scheme. Bussmann, Kothe, and
Sicilian [58] use the unstructured unsplit Volume-of-Fluid method of Rider and Kothe [59],
which enables the simplification of the numerical consistency requirement for the density and
momentum equations. Specifically, the solution of the volume fraction equation results in
phase-specific volumes at face centers. Those phase-specific volumes are then used to compute
the volume fractions at face centers. These volume fractions are used by Bussmann, Kothe,
and Sicilian [58], together with a simple average of cell densities, and velocities calculated by
the least squares reconstruction technique, to compute the momentum fluxes at face centers.
Since the velocity is continuous at the interface, the least squares approximation is acceptable.
However, calculating face-centered densities by an average does not yield numerical stability
in all cases. Contrary to Rudman [57], Bussmann, Kothe, and Sicilian [58] do not require an
additional finer mesh. They do, however, limit the solution to first-order accuracy in time and
introduce the Courant-Friedrichs-Lewy (CFL) condition by solving the momentum advection
equation explicitly. Bussmann, Kothe, and Sicilian [58] introduce the important case of a
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translating droplet in a quiescent ambient fluid. This test case can be used to demonstrate
numerical consistency in the momentum transport. Their solutions show accurate results
for high density ratios, especially considering the fact that even the unsplit VOF method
distorts the interface during the translation [60]. However, for ρ−/ρ+ ∈ [1, 102], the constant
translation velocity is modified by the solution of the pressure and momentum equations,
which implies a remaining numerical inconsistency in this approach.

Sussman et al. [61] employ the Coupled Level Set and Volume Fluid Method (CLSVOF)
method [62] for obtaining a robust and stable solution for the density ratio of 1000 by
extrapolating the liquid velocities into the gas domain. The interface is advected using the
extrapolated liquid velocity field only.

Raessi and Pitsch [53] propose a 2D staggered discretization of conservative single-field
form of two-phase Navier-Stokes equations for handling high density ratios. Like Bussmann,
Kothe, and Sicilian [58] did, Raessi and Pitsch [53] first solve the momentum advection
equation, using second-order (or higher) explicit integration schemes, and upwinding for
the velocity near the interface. The density used in the momentum convective term is
computed as a weighted combination of signed distances from the old and the new time
step. For the partially submerged line segments bounding 2D rectangular cells, intersection
between the mesh and the zero level set (iso-surface) is performed using the marching cubes
algorithm. Raessi and Pitsch [53] point out that there is still an inconsistency between
the face-centered density and the momentum transport, as the Level Set equation remains
decoupled / inconsistent with the momentum transport. The verification of numerical stability
was done using the translating droplet case from Bussmann, Kothe, and Sicilian [58], and
results demonstrate qualitative improvement for the density ratio ρ−/ρ+ = 106. Other density
ratios have not been verified. A viscous oscillating droplet case demonstrates quantitative
improvement in terms of the improved amplitude decay rate, compared to non-conservative
form of the momentum equation.

Le Chenadec and Pitsch [63] extend their forward/backward Lagrangian tracking and
Eulerian remapping VOF method [63] for handling high density ratios. Equivalent to volume
fractions in [63], the density and themomentum are advected in the Lagrangian forward/back-
ward tracking step by observing the control volume as a material volume and moving the
mesh forward / backward with the flow velocity. While the content of material volumes
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does not change on the continuum level, this condition cannot be discretely ensured and
is a source of conservation errors. In the Eulerian re-mapping step, physical properties are
transferred from the Lagrangian to the Eulerian mesh, and the geometrical intersections
between the PLIC interface on the forward/backward image of the mesh, and the background
mesh, are another source of volume conservation errors. Ensuring numerical consistency
further requires the transfer of velocities located at the center of mass. Since the velocities
associated with the cell centroids are used, an inconsistency is introduced. Qualitative results
show significant improvements for the stationary droplet with ρ−/ρ+ = 109, and quantitative
improvement is shown for the standing wave by Prosperetti [64] with ρ−/ρ+ = 850.

Ghods and Herrmann [51] have developed a Consistent Rescaled Momentum Transport
(CRMT) method. The CRMT method discretizes the conservative form of the single-field
Navier-Stokes equations using a collocated unstructured Finite Volume method. To increase
the numerical stability for high density ratio, CRMT solves an ”auxiliary” mass conservation
equation using a mass flux either by upwinding the face-centered density in the interface cells
and their face-neighbors (defined by a volume fraction tolerance), or by averaging the densities
elsewhere. The same discretization scheme used for the face-centered density is also applied
to the mass flux in the convective term of the momentum equation. A difference is therefore
introduced in the mass flux of the continuity equation and the mass flux in the convective term
of the momentum equation when upwinding is used, because the upwinded face-centered
density in the continuity equation uses the face-centered velocity, while the upwinded mass
flux in the momentum equation includes both the upwind velocity and density. In this
chapter, it is shown that any difference in the discretization of the mass flux to be a source
of numerical inconsistency for the two-phase momentum advection. Like Bussmann, Kothe,
and Sicilian [58], the explicit discretization of the momentum convective term introduces
the CFL condition, limiting the time step for convection-dominated multiphase flows, where
high density ratios play a major role. Using upwind schemes makes the discretization first-
order accurate. The droplet translation case [58], with ρ−/ρ+ = 106, is compared in terms
of the droplet shape, that remains stable. Other density ratios are not reported for this
verification case. It is considered, that the droplet shape errors may result from the interface
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advection scheme2, and should be generally substituted by the L∞ norm of the velocity error
to demonstrate numerical consistency.

Vaudor et al. [65] base their approach on a CLSVOF code from Ménard, Tanguy, and
Berlemont [66] and Aniszewski, Ménard, and Marek [67], which can switch between LSM-
based and VOF-based mode to calculate momentum fluxes. They [65] chose the VOF-based
momentum fluxes calculation mode and implemented the framework of Rudman’s method
[57] but with more accurate interpolation schemes for velocities and velocity gradients on
faces of staggered meshes to ensure consistency. This method is developed in two-dimensions
and exploits two sets of meshes. To provide a more widely applicable method, Vaudor et al.
[68] advanced the method in their more recent study. In contrast to the previous work
[65], the LS method tracks the interface, while the VOF method is utilized to update density.
They exploited the identical scheme to discretize conservative convective term in mass and
momentum equation. In addition, the mass flux is also identical in both discretized equations.
A new strategy that leverages half cell-faces’ and half cells’ quantities of volume fraction and
density to couple staggered mass cells and momentum cells is introduced to avoid the need
for a refined mesh in the original method by Rudman [57]. A prominent feature of this new
method is that it can be used to simulate three-dimensional applications. Besides, comparing
with the method from Rudman [57], the new method shows relatively low computational
cost when simulating the same 2D application.

Owkes and Desjardins [69] presented a three-dimensional, unsplit, second-order semi-
Lagrangian VOF scheme that conserves mass andmomentum and ensures consistency between
the mass (volume fraction) and momentum fluxes. The volume fractions are geometrically
transported near the fluid interface using the method from [70]. As in [57], Owkes and
Desjardins [69] introduce an additional refined mesh for the calculation of semi-Lagrangian
fluxes. The motivation for the refined mesh is to enforce the consistency between semi-
Lagrangian mass and momentum fluxes, similar to Rudman [57]. Results confirm mass and
momentum conservation, and stability of the momentum convection. The method proposed
by Owkes and Desjardins [69] relies on the staggered variable arrangement and this, together
with the use of the additional finer mesh, makes this approach inapplicable to unstructured

2The Level Set and VOF methods do not exactly preserve the shape of a translating droplet.
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finite volume meshes.
Orazzo et al. [54], similarly to Rudman [57], resolve the volume fraction function on

twice finer sub-cells and update density from the volume fraction. After that, they update face-
centered density on mass cells by averaging density on sub-cells, and then evaluate the mass
flux on the faces of standard staggered momentum cells. These density and mass flux values
are used to initialize and calculate interim momentum and velocity during the prediction step.
Zuzio et al. [7] made no changes and applied Orazzo’s method [54]. Besides, they further
verified and validated this method with more complex cases, e.g., liquid jet in cross-flow.
Yang, Lu, and Wang [71] notice that the high-density ratio has a profound effect on robustly
simulating two-phase flows at high Reynolds numbers. To mitigate the problem, they adopt
the consistent framework from Nangia et al. [52] and replace the interface-capturing method
in [52], which is standard LSM, with CLSVOF method [62] to ensure mass conservation.

Patel and Natarajan [72] employ the method of Ghods and Herrmann [51], a high-
resolution scheme called Cubic Upwind Interpolation (CUI) for the convective terms of
momentum and volume fraction transport equations, and the solution of a momentum equa-
tion in the face-normal direction. The face-normal momentum equation leads to a combined
collocated/staggered variable arrangement, that requires the use of nonlinear solvers, as
this equation is a non-linear algebraic equation. Patel and Natarajan [72] demonstrate the
balanced nature of their discretization for the stationary droplet using exact curvature and
density ratios ρ−/ρ+ ∈ [10, 1000]. Numerical stability is demonstrated with reduced parasitic
currents when the curvature is approximated numerically for ρ−/ρ+ = 10,We = 1. For the
verification test case of the two-phase momentum advection problem, ρ−/ρ+ = 106 is used
without surface tension and viscous forces and qualitative results show slight deformations of
the interface shape, the L∞ norm of the velocity error is not reported. With enabled surface
tension and viscous forces and exact curvature prescribed, and density ratios ρ−/ρ+ = 1, 1000,
the velocity error in the L∞ norm lies within [10−3, 10−2].

Manik, Dalal, and Natarajan [73], similarly to [72], attempt to enforce numerical
consistency by applying the similar discretization scheme on the conservative form of the
volume fraction advection equation and the momentum conservation equation. Manik, Dalal,
and Natarajan [73] are using a collocated unstructured Finite Volume method for the equation
discretization and the Convergent and Universally Bounded Interpolation Scheme for the
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Treatment of Advection (CUBISTA) scheme (Alves, Oliveira, and Pinho [74]) to discretize
convective terms. The verification of the numerical consistency for the two-phase momentum
advection is done using the droplet translation case of Bussmann, Kothe, and Sicilian [58]
and density ratios ρ−/ρ+ = 103, 106, that demonstrates qualitative improvement compared
to a naive discretization of the momentum convective term with the upwind method. The
qualitative evaluation is based on the shape of the droplet, given by the 0.5 iso-surface of
the volume fraction. Although the proposed method demonstrates improvement w.r.t. an
obviously inconsistent approach, some shape deformation is still visible, so one can conclude
that L∞(v) ̸= 0 and some non-zero velocities are still generated.

A recent second-order accurate LSM is proposed by Nangia et al. [52], extending the
work from Ghods and Herrmann [51] that is first-order accurate. Similar to the method
proposed by Ghods and Herrmann [51], an additional mass conservation equation is solved,
and the identical mass flux is used for both mass and momentum transport. Two techniques
are employed: one is the third-order accurate Koren’s limited CUI, which is modified to
consistently discretize the convective term of both mass andmomentum equation. This scheme
satisfies the Convection-Boundedness Criterion (CBC) and is Total Variation Diminishing
(TVD). The second technique is the solution of an update equation for the face-centred
densities. In this step, a 3-order accurate Strong Stability Preserving Runge-Kutta (SSP-RK3)
scheme is used for time integration. The update is performed in every fix-point iteration,
and the updated face-centered density is then employed to solve the discretized momentum
equation.

Zuzio et al. [7] also follow Ghods and Herrmann [51] by solving an auxiliary continuity
equation for increasing the numerical consistency in discretizing the two-phase momentum
convection term. Their Consistent Momentum-Mass (CMOM) transport method utilizes a
staggered Cartesian variable arrangement and utilizes the two-phase incompressible Navier-
Stokes equations in the conservative form, solved using Chorin’s projection method [75]
together with the CLSVOF method for tracking the fluid interface. The solution of the
auxiliary density equation requires the evaluation of staggered (face-centered) densities, by
constructing staggered control volumes, and evaluating the densities using sub-grid quadtree
(octree in 3D) refinement and intersection with the PLIC interfaces. This aspect of CMOM
shows the importance of evaluating the densities at face-centeres that are required for the

50



solution of the auxiliary continuity equation. Momentum flux reconstruction scales the
fluxed phase-specific volume from the VOF method. Finally, the two-phase momentum is
advected in the staggered cells, and scaled with the corresponding density to obtain velocity
components in all spatial directions. Zuzio et al. [7] demonstrate significant improvements in
numerical stability in a very detailed way, reporting shape, position and kinetic energy errors
for canonical verification and validation cases. The kinetic energy for the dense translating
droplet [58] with a density ratio of 106 is reported, and CMOM recovers a numerically stable
solution.

Arrufat et al. [76] consider the conservative form of the advection equation of a discontin-
uous property to enforce numerical consistency of the advected two-phase momentum, using
face averages that are derived by integrating the advection equation in space and time. Since
the discontinuity of the property introduced by the interface complicates the evaluation of the
face averages, two additional equations are introduced, one for each phase. The method is
derived for the Marker-And-Cell (MAC) staggered variable arrangement. Results demonstrate
a numerically stable droplet shape when it is advected with a constant velocity, however,
the authors consider this case to only test the consistency of the implementation and not
the numerical consistency of the method - it is verified that it is important for both in the
following sections - so the results are not quantified in terms of kinetic energy or L∞ velocity
errors. Still, the method shows significant improvements for realistic multiphase flows with
high density ratios.

The high-density ratio is also challenging for other numerical methods for two-phase
flows, like the phase-field and lattice Boltzmann. The corresponding surveys are beyond
the scope of this work, more details can be found in [77–82]. Contrary to the numerical
two-phase methods mentioned so far, the difficulties with high density ratios are far less
pronounced for Front Tracking methods [83] because the marker field (phase-indicator) is
not as sharp as in the unstructured Volume-of-Fluid method [34] and the unstructured Level
Set / Front Tracking method [2, 35].

The methods of Ghods and Herrmann [51], Bussmann, Kothe, and Sicilian [58], Patel
and Natarajan [72], and Manik, Dalal, and Natarajan [73] utilize the unstructured Finite
Volume equation discretization, other above-mentioned methods utilize a staggered variable
arrangement that is not applicable to unstructured meshes. Compared to contemporary
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collocated Finite Volume methods, ρLENT method proposed in this chapter achieves the
numerical consistency in the two-phase momentum advection exactly. The requirement for
the auxiliary mass conservation equation introduced by Ghods and Herrmann [51], and the
requirement for the face-centered (flux) density from the mass conservation principle are
derived in this chapter. Compared to a similar observation by [76], the integration in time
that complicates the evaluation of face-centered quantities is avoided, as demonstrated in
detail below. Although hybrid Level Set / Front Tracking LENT method [35] is used for
interface capturing, the ρLENT solution algorithm can be used with other interface capturing
methods, where there is a discrepancy in the evaluation of the collocated density.

A collocated unstructured Finite Volume discretization is used in this study because it is
ideal for geometrically complex domains. At its core, the proposed unstructured collocated
finite-volume ρLENT geometrically approximates the face-centered density in the mass flux
and implicitly discretizes the two-phase momentum convective term, thus avoiding the
interpolation of face-centered densities and the CFL stability criterion introduced in [58].

5 Methodology review

Hybrid multiphase flow simulation methods combine the sub-algorithms of FTM, LSM, or
VOF to achieve better overall results. The structured Hybrid Level Set / Front Tracking
method ([38, 46, 48, 83, 84]) has demonstrated remarkable capabilities for simulating a
wide range of multiphase flows. The unstructured LENT method - as exhibited in [2, 35, 85]
- shows promising computational efficiency and accuracy for surface tension driven flows on
unstructured meshes.

However, LENT method in its existing form cannot handle two-phase flows with strongly
different densities. Cell-centered volume fractions αc(t) are computed from signed distances
ψc(t), that are computed geometrically from the Front Σ̃(t) ≈ Σ(t). The approximation
algorithm for αc(t) from ψc(t) is detailed in [85]. This geometrical calculation of αc from
Σ̃(t) and, subsequently, the calculation of ρc(t) from αc(t) by eq. (3.61), together with the
interpolation of the face-centered density in the mass flux of the discretized convective term
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from eq. (2.15), introduces an inconsistency described in detail and addressed below.

5.1 Numerical consistency of momentum convection term

As outlined in the introduction section 4, many authors have addressed numerical instabilities
in various discretizations and two-phase flow methods arising from high-density ratios. In this
sub-section, a detailed analysis of the inconsistencies that lead to numerical instabilities by
studying the relationships between mass conservation, phase indicator function conservation,
and momentum convection is provided. It turns out that the conservative formulation of
conservation equations permits us to precisely define equalities that must hold in the mathe-
matical model and its discretization to achieve consistency in the equation system and prevent
numerical instabilities.

Bussmann, Kothe, and Sicilian [58] were the first to consider the problem of numerical
consistency of the two-phase momentum convective term in the setting of the collocated
unstructured Finite Volume method. An expansion on their work by improving the accuracy
of the face-centered density evaluation and employing a solution algorithm that allows for an
implicit discretization of the convective term, thus removing the CFL condition, is given below.
The two-phase momentum convection term from eq. (2.15) using the collocated unstructured
finite volume method is discretized as∫︂

Ωc

∇ · (ρvv) dV =

∫︂
∂Ωc

(ρvv) · n ds =
∑︂
f∈Fc

ρfFfvf + eρv,con(h
2). (5.1)

The second-order discretization error is denoted as eρv,con(h2), with the ρv subscript indicating
the equation (ρv for momentum eq. (2.15)), con subscript the convective term of the equation,
and h the discretization length.The convective term in eq. (5.1) has been linearized with
respect to the solution variable v in order to obtain a linear equation system. Here, ρf
represents the face-center density, and Ff represents the linearized volumetric flux. Details
on the flux linearization and temporal integration are given in section 5.2, here the spatial
discretization is focused at first.

The discretization 5.1 requires a mass flux ρfFf . The volume fraction conservation and
the conservation of mass are equivalent if both phases are incompressible. To show this, the

53



mass conservation equation is written in conservative form in a fixed (time-independent)
control volume Ωc ̸= Ωc(t) as

∂

∂t

∫︂
Ωc

ρ dV = −
∫︂
∂Ωc

ρv · n dS. (5.2)

Applying eq. (2.10) and eq. (2.2) to eq. (5.2) leads to

(ρ− − ρ+)
∂

∂t

∫︂
Ωc

χdV = −(ρ− − ρ+)

∫︂
∂Ωc

χv · n dS − ρ+
∫︂
∂Ωc

v · ndS, (5.3)

with
∫︁
∂Ωc

v · ndS =
∫︁
Ωc

∇ · v dV = 0 because of eq. (2.2). Dividing eq. (5.3) by |Ωc|, and
using the volume fraction definition eq. (3.60) leads to

(ρ− − ρ+)
∂

∂t
αc(t) = −(ρ− − ρ+)

1

|Ωc|

∫︂
∂Ωc

χv · n dS. (5.4)

The eq. (5.2) implies
∂

∂t
ρc(t) = − 1

|Ωc|

∫︂
∂Ωc

ρv · n dS. (5.5)

An important equality arises from eqs. (5.2), (5.4) and (5.5), namely

∂tρc(t) = − 1

|Ωc|

∫︂
Ωc

ρv · n dV = (ρ− − ρ+)∂tαc(t) = −(ρ− − ρ+)
1

|Ωc|

∫︂
∂Ωc

χv · n dS. (5.6)

Selecting ∂tρc(t) = (ρ− − ρ+)∂tαc(t) from eq. (5.6), and integrating over the time interval
[tn, tn+1] leads to

ρn+1
c = (ρ− − ρ+)αn+1

c + ρnc − (ρ− − ρ+)αn
c , (5.7)

and applying eq. (3.61) at tn to eq. (5.7) leads to

ρn+1
c = (ρ− − ρ+)αn+1

c + ρ+, (5.8)

which is eq. (3.61) at tn+1. Note that the time integration is exact because of the fundamental
theorem of calculus. The equality ∂tρc(t) = (ρ− − ρ+)∂tαc(t) from eq. (5.6) can lead to a
false conclusion of consistency of the two-phase momentum convection. If other equalities
from eq. (5.6) are not upheld, e.g. when the method that advects the phase indicator αc does
not rely on phase-specific fluxes (cf. [34] for a recent review), inconsistencies arise.
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Since unstructured finite volumes are bounded by faces Sf ,

1

|Ωc|

∫︂
Ωc

ρv · n dV = (ρ− − ρ+)
1

|Ωc|

∫︂
∂Ωc

χv · n dS

from eq. (5.6) is rewritten as∑︂
f∈Fc

∫︂
Sf

ρv · n dS = (ρ− − ρ+)
∑︂
f∈Fc

∫︂
Sf

χv · n dS, (5.9)

and discretize it further using second-order-accurate face-averages, resulting in∑︂
f∈Fc

ρfFf +Oρ,con(h
2) =

∑︂
f∈Fc

(ρ− − ρ+)
Ff

|Sf |

∫︂
Sf

χdS +Oα,con(h
2)

=
∑︂
f∈Fc

(ρ− − ρ+)Ffαf +Oα,con(h
2),

(5.10)

with φf := 1
|Sf |

∫︁
Sf
φdS defining the face-average associated to the centroid of each face Sf .

In eq. (5.10), Ff := vf · Sf is the linearized volumetric flux given by the velocity v from
the discretized single-field Navier-Stokes equations eqs. (2.2) and (2.15). Equation (5.10)
reveals an important fact: the mass flux ρfFf - necessary for the discretization of the two-
phase momentum convective term eq. (5.1) - must be linearly proportional to the phase-
specific volumetric flux Ffαf used to advect the phase indicator αc, with (ρ− − ρ+) as the
proportionality coefficient. This consistency is not ensured by any two-phase flow simulation
method that does not solve an advection equation for the volume fractions using a flux-based
discretization method.

The unstructured LENT method [2, 35, 85] is extended to ensure that the condition
from eq. (5.10) is upheld. Before describing the numerical method in detail, a discussion on
a verification case of a droplet advected in a constant velocity field is given.

5.1.1 Verification case: droplet translating with constant velocity

The Euler explicit collocated unstructured FV discretization of eq. (5.2) is

ρn+1
c = ρnc − ∆t

|Ωc|
∑︂
f∈Fc

ρnfF
n
f . (5.11)
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The two-phase momentum advection is modeled using eq. (2.15) with a prescribed initial
constant velocity and without forces on the r.h.s, namely

∂t(ρv) +∇ · (ρvv) = 0. (5.12)

Without forces on the r.h.s. of eq. (5.12), the initial constant velocity should remain spatially
constant. Therefore, a numerically consistent unstructured collocated FV discretization of
the two-phase momentum convection equation (eq. (5.12)) must ensure that no artificial
acceleration or deceleration occurs. For example, just like eq. (5.11), the Euler explicit
discretization of eq. (5.12) is

ρn+1
c vn+1

c = ρnc vnc − ∆t

|Ωc|
∑︂
f∈Fc

ρnfF
n
f vnf . (5.13)

Given a consistent discretization, the velocity field remains spatially constant, so

vnf = vnc , (5.14)

which is, of course, ensured for the initial spatially constant velocity (v0f = v0c). Equa-
tion (5.14), applied to eq. (5.13), results in

ρn+1
c vn+1

c = vnc

(︄
ρnc − ∆t

|Ωc|
∑︂
f∈Fc

ρnfF
n
f

)︄
, (5.15)

and dividing by ρn+1
c finally gives

vn+1
c =

vnc
(︃
ρnc − ∆t

|Ωc|
∑︁

f∈Fc
ρnfF

n
f

)︃
ρn+1
c

. (5.16)

As there are no forces on the r.h.s. of eq. (5.12), the velocity should not be changed simply
by advecting the two-phase momentum, i.e.

vn+1
c = vnc , (5.17)

and this condition is ensured in eq. (5.16) if

ρnc − ∆t

|Ωc|
∑︁

f∈Fc
ρnfF

n
f

ρn+1
c

= 1, (5.18)
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which is equivalent to eq. (5.11): the Euler explicit discretization of the mass conservation
equation. Consequently, a numerically consistent discretization of the momentum convection
equation in this verification case requires the new cell-centered density ρn+1

c to be computed
by solving a mass conservation equation.

Modern unstructured geometric flux-based VOF ([6, 69, 86, 87], see [34] for a recent
review) potentially ensure this property, since they solve the conservative formulation of the
volume fraction advection equation [34] for αn+1

c by computing phase-specific fluxed volumes,
scale the phase-specific fluxed volumes to compute the mass flux, and use the cell-centered
volume fraction αn+1

c to compute ρn+1
c with eq. (3.61). However, the temporal discretization

scheme used in the momentum equation for the convective term must be consistent with
the integration of the fluxed phase-specific volumes, used to obtain αn+1

c . Even if the mass
flux can be computed by scaling the phase-specific fluxed volumes with δt, any difference
between the temporal integration schemes used for the volume fraction and momentum
equations, or any flux limiting in the momentum equation, cause inconsistencies. Additionally,
the αn+1

c ∈ [0, 1] must hold near machine epsilon. Any correction to αn+1
c performed after the

numerical solution of the volume fraction advection equation, that bounds αn+1
c within [0, 1],

results in a discrepancy between ρn+1
c computed using the mass flux that gives unbounded

αn+1
c , and the ρn+1

c computed from the a-posteriori bounded αn+1
c using eq. (3.61).

It is important to note that if the pressure gradient is included on the r.h.s of eq. (5.12),
any error in vn+1

c will result in non-zero source terms on the r.h.s. of the resulting pressure
equation, in the p − v coupling algorithm. Since the pressure gradient enforces ∇ · v = 0

(
∑︁

f∈Fc
Ff = 0 on the discrete level), this results in artificial velocities similar to parasitic

currents caused by the surface tension force.
Bussmann, Kothe, and Sicilian [58] have utilized the consistency of the Volume-of-Fluid

method and the availability of phase-specific volumetric fluxes in the VOF method to first
solve eq. (5.12) explicitly in the first step, followed by the second step that includes volume
and surface forces. The approach from Bussmann, Kothe, and Sicilian [58] cannot be applied
without modifications to the Level Set method, the Front Tracking method, their hybrids,
or any other collocated FV two-phase flow simulation method that does not rely on phase-
specific volumetric fluxes to discretely advect volume fractions. If the phase-specific volumetric
fluxes (or volumes) are not calculated by the method, they cannot be used to construct a
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consistent mass flux. The solution algorithm for high density ratios that proposed in this
study avoids the CFL condition imposed by Bussmann, Kothe, and Sicilian [58] and increases
the accuracy of the face-centered density ρf required by the mass flux, and it is applicable
to any multiphase flow simulation method that utilizes the single-field formulation of the
Navier-Stokes equations.

5.2 A semi-implicit solution algorithm for high-density ratios

Ω+(t)

ρ+nΣ

Ωc

Σ(t)

Ω−(t)

ρ−

Figure 9: A two-phase fixed control volume Ωc separated by the interface Σ(t).

Section 5.1 provides the formal reasoning behind solving the mass conservation equation
(or its equivalent) for ρn+1

c . Since Ghods and Herrmann [51] introduced an ”auxiliary” mass
conservation equation, other researchers have adopted this approach, with the main difference
in the way the face-centered (mass flux) density ρf is evaluated both in the discretized mass
conservation equation (eq. (5.2)) and the discretized momentum equation (eq. (2.15)).

The condition given by eq. (5.18), derived from eqs. (5.16) and (5.17) can be fulfilled
only if the same face-centered (mass flux) density is used when discretizing the auxiliary
mass conservation and momentum equations. Going one step further, the volumetric flux
Ff must also be the same in the discretized auxiliary mass conservation and momentum
equations. Put together, the mass flux in the auxiliary discretized mass conservation equation
must be equal to the mass flux in the discretized momentum conservation equation: this is
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the requirement for the mass flux consistency, mentioned throughout the literature.

It is relevant to point out that the same model for the single-field density given by
eq. (3.61) is used throughout the literature. The basis of this model is mass conservation, and
this fundamental principle further leads to an interesting conclusion regarding the evaluation
of the face-centered (mass flux) density ρf in the discretized mass and momentum conser-
vation equations. The face centered density is evaluated differently throughout scientific
publications reviewed in section 4, and here we show that there is a strict relationship between
the phase indicator and the face centered density ρf .

Consider the fixed control volume Ωc in fig. 9, that is separated by the fluid interface Σ(t)
into two parts, occupied by fluids Ω∓(t). The single-field density model given by eq. (2.10) is
adopted in every publication reviewed in section 4, an in the rest of the scientific literature on
two-phase flow simulations. The mass conservation principle together with the single-field
density model (eq. (2.10)) give

d

dt

∫︂
Ωc

ρ dV = −
∫︂
∂Ωc

ρv · ndS = −
∫︂
∂Ωc

[ρ−χ+ ρ+(1− χ)]v · n dS. (5.19)

The equality of surface integrals in eq. (5.19),

∫︂
∂Ωc

ρv · ndS =

∫︂
∂Ωc

[ρ−χ+ ρ+(1− χ)]v · n dS,

demonstrates that the mass flux of the single-field density over ∂Ωc is determined by the
constant densities ρ∓ and the phase indicator given by eq. (2.9), if eq. (2.10) is used to
model the single-field density. In other words, the single-field density at ∂Ωc should be
computed using the phase indicator as done on the r.h.s. of eq. (5.19), otherwise the mass
conservation of the single-field density model given by eq. (2.10) will not be upheld. This
relevant condition transfers to the discrete level, leading to an interesting consequence for
the computation of the face-centered (mass flux) density, that has so far been computed in
many ways throughout the literature.

Specifically, when the surface integrals in eq. (5.19) are discretized using the unstructured
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collocated finite volume method,

∑︂
f∈Fc

ρfFf =
∑︂
f∈Fc

[︄
ρ−

(︄∫︂
Sf

χdS

)︄
vf · Ŝf + ρ+

(︄∫︂
Sf

dS

)︄
vf · Ŝf − ρ+

(︄∫︂
Sf

χdS

)︄
vf · Ŝf

]︄

=
∑︂
f∈Fc

[︄
ρ−

∥Sf∥
∥Sf∥

(︄∫︂
Sf

χdS

)︄
vf · Ŝf + ρ+

(︄∫︂
Sf

dS

)︄
vf · Ŝf

−ρ+ ∥Sf∥
∥Sf∥

(︄∫︂
Sf

χdS

)︄
vf · Ŝf

]︄
=
∑︂
f∈Fc

[︁
ρ−αf + ρ+(1− αf )

]︁
Ff ,

(5.20)
where

αf :=
1

|Sf |

∫︂
Sf

χdS ≡ |Ω−(t) ∩ Sf |
|Sf |

(5.21)

is the area fraction of the face Sf ⊂ ∂Ωc, i.e. the ratio of the area of Sf submerged in Ω−(t),
and the total face-area |Sf |. Further, ∥Sf∥ ≡ |Sf |, and Ff is the volumetric flux in eq. (5.20).

An important consequence of eq. (5.20) is the requirement for the evaluation of the
face-centered (mass flux) density, necessary for ensuring the numerical consistency of the
single-field two-phase momentum convection. Equation (5.20) requires all methods3 that
define ρ using eq. (3.61) to either compute ρf using the area fractions or

∫︁
Sf
χdS from

eq. (5.20), or to achieve this equivalently when computing ρn+1
c from the advected volume

fractions αn+1
c , which is possible for the flux-based VOF methods [34].

Another important realization is that eq. (5.20) is valid at any time t - which is very
relevant for the semi-implicit discretization developed within the ρLENT method, that applies
eq. (5.20) at tn+1.

Any simulation method that relies on the collocated unstructured FV discretization of
single-field two-phase Navier-Stokes equations, but does not advect the phase indicator by
solving an advection equation using phase-specific volumetric fluxes, does not provide the
phase-specific volumetric fluxes for the approximation of the mass fluxes needed to ensure
the consistency of the two-phase momentum transport. This, however, does not infer that

3All two-phase flow simulation methods encountered use eq. (3.61).
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eq. (5.20) cannot be applied. The idea of using an auxiliary mass conservation equation
introduced by [51], made into a formal requirement by eqs. (5.16) and (5.17), allows the
use of eq. (5.20): αf can be computed regardless of the approximation of the fluid interface
Σ(t) and the method used to advect it.

Σ(tn) Σ(tn+1)

(a) Interface Σ at tn and tn+1 and the respective Ω−(tn) and Ω−(tn+1) in gray color, used to compute
αn

c and αn+1
c , that are further used to compute ρn

c and ρn+1
c in an inconsistent way.

ρfFf

αf

(b) Interface at Σ(tn+1) used to compute αn+1
f ,

then ρn+1
f and finally ρn+1

c in a consistent
way, by solving a mass conservation equa-
tion.

Figure 10: Updating the face-centered (mass flux) density in the ρLENT method.

Similar to other contemporary methods, the ρLENTmethod also first advects the interface
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using the velocity from the previous time step as shown in the left image of fig. 10a, resulting
in the new position of the interface shown in the right image in fig. 10a, that is then used
to geometrically calculate the face-centered density ρn+1

f , by calculating area fractions αn+1
f

from the interface approximation, as shown in fig. 10b. The face-centered density ρn+1
f and

the volumetric flux F o
f are then used to update the cell-centered density ρn+1

c by solving a
mass conservation equation. The index o in the volumetric flux refers to the linearization
of the convective term in the momentum equation. The same mass flux ρn+1

f F o
f is used in

the implicitly discretized momentum conservation equation. The pressure-velocity coupling
algorithm iterates the linearized volumetric flux F o

f to Fn+1
f . Finally, the cell-centered velocity

vn+1
c is obtained, which is used to evolve the fluid interface in the next time step, from tn+1

to tn+2. At this point, the numerically consistent cell-centered density ρn+1
c has served its

purpose and is reset according to eq. (3.61), using αc approximated from signed distances
[2], to make it consistent again with the fluid interface approximation.

In the original Front-Tracking method, the density is updated utilizing the new position
of marker points (the approximated interface) [88]. After the velocity field in the current step
is computed, the position of marker points in the new time step can be updated immediately
by

xn+1
p = xnp +∆t vnp , (5.22)

where xp,vp indicate the position and interpolated velocity of marker points respectively, and
∆t is the time step length. The advection of marker points along Lagrangian trajectories
eventually corrupts the triangular mesh, leading to discrepancies in the ratios of triangular
angles and areas and self-intersections of the triangular mesh. The original Front Tracking
method [37] deals with this by redistributing marker points based on quality criteria imposed
on the triangular mesh, which involves manipulating the connectivity of the triangular mesh.

Contrary to original Front Tracking [37], the LENT method reuses the principles from
Level Contour Reconstruction Method (LCRM) / Local Front Reconstruction Method (LFRM)
methods [38, 46, 83, 84] and reconstructs the interface using an iso-surface reconstruction
algorithm. The iso-surface reconstruction does not add/delete marker points locally by
changing the connectivity of the triangular surface mesh; it reconstructs the entire interface
in the solution domain as an iso-surface. Following the strategy from LCRM / LFRM, the
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physics of the problem determines the iso-surface reconstruction frequency. The LENT method
uses the marching tetrahedra [89] algorithm to enable the iso-surface reconstruction on
unstructured meshes.

Once the marker points are advected and redistributed, the cell density is updated
depending on xn+1

p , namely

ρn+1 = ρ(xn+1
p ). (5.23)

The face-centered density used for the mass flux is then interpolated by the LENT method
from densities of two adjacent cells. Contrary to LENT, the face-centered density is updated
by ρLENT using the phase indicator approximated at each cell-face by an area fraction. A
2D interface is depicted in fig. 10b, where αn+1

f is the area fraction at tn+1: the ratio of the
cell-face area submerged in the phase Ω̃

−
(tn+1) ≈ Ω−(tn+1), and the total face area |Sf |.

More precisely, the area fraction αn+1
f is computed by the ρLENT method using a second-

order accurate approximation from signed distances [90], used in [2] to approximate the
volume fraction αc (see eq. (3.60)). The Level Set component of the LENT method [35]
calculates signed distances from the triangular surface mesh that approximates the interface
Σ̃(tn+1) ≈ Σ(tn+1) := ∂Ω̃

−
(tn+1). With the narrow band approach from [35], the signed

distances can be computed efficiently at any point in a close vicinity of Σ̃(t). The original
LENT method [35] computes signed distances at cell-centers and cell corner-points, and
the proposed ρLENT additionally computes signed distances at face centers. Each face Sf is
triangulated using its centroid xf , as shown in fig. 11. The face centroid xf , together with
the two successive cell-corner points that belong to the face Sf , xf,i, xf,i+1, forms a triangle
(xf , xf,i, xf,i+1). Face-triangles may be partially submerged in the phase Ω̃

−
(tn+1), in which

case the submerged area of the triangle is computed using the nearest signed distances to
Σ̃(tn+1) from the triangle points (xf , xf,i, xf,i+1), namely (ψf , ψf,i, ψf,i+1), as shown in fig. 11.
The second-order approximation developed in [90] is used here for computing the area
fraction of a triangle submerged in Ω̃

−
(tn+1). Any other second-order method can be applied.

For example, a linear interpolation of signed distances along the edges of the triangle may be
used equivalently, or a geometrical intersection between Ω̃

−
(tn+1) and the triangle. The total
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submerged area of the face Sf is then the sum of the submerged areas of face-triangles

An+1
f := |Ω−(tn+1) ∩ Sf | =

∑︂
k∈Tf

|Ω−(tn+1) ∩ Tk|, (5.24)

where Tf is the set of indexes of the triangles in the triangulation of the face Sf . As mentioned
above, any other two-phase flow simulation method that discretizes single-field Navier-Stokes
equations but does not utilise phase-specific fluxes can be adapted to compute |Ω−(tn+1)∩Tk|.

αn+1
f =

|Ω̃−
(tn+1)∩Sf |
|Sf |

ψn+1
f,i

ψn+1
f,i+1

xf,i+1

xf,i

Ω̃
+
(tn+1)

nΣ

ψn+1
f

xf Σ̃(tn+1)

Ω̃
−
(tn+1)

Figure 11: Computing area fractions from signed distances in the method.

The area fraction αn+1
f is then computed as

αn+1
f :=

|Ω̃
−
(tn+1) ∩ Sf |
|Sf |

=
Af

|Sf |
, (5.25)

as shown in fig. 11. Once the area fraction αn+1
f is approximated, it is used to compute the

face-centered densities required by eq. (5.20), namely

ρn+1
f = αn+1

f ρ− + (1− αn+1
f )ρ+, (5.26)

at the new time step, because the interface has been advected forward in time to tn+1 with
the available velocity vn. The discretized continuity equation (eq. (5.11)) then attains the
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form
ρo+1
c = ρnc +

∆t

|VΩc
|
∑︂
f

ρn+1
f F o

f , F o
f = vof · Sf . (5.27)

It is important to note that, although ρn+1
f appears in eq. (5.27), ρLENT does not use an

implicit discretization for eq. (5.27): ρn+1
f is geometrically computed from the fluid interface

approximation Σ̃
n+1

, so eq. (5.27) is solved exactly. The exact (iterative) evaluation of cell-
center density at loop o+ 1, i.e. ρo+1

c from eq. (5.27), alongside eq. (5.16), further infers the
possibility of exact numerical consistency for the discretized convective term in the single-field
momentum equation, which is in fact achieved and supported by the results.

In addition to density, the viscosity is updated utilizing the area fraction αf . Note that
there is no need to calculate the cell-centered viscosity for the unstructured FV discretization,
only the face-centered viscosity is updated as follows

µn+1
f = αn+1

f ρ−ν− + (1− αn+1
f )ρ+ν+. (5.28)

The non-linearity of the convective term in the momentum equation eq. (2.15), namely
ρvv, is usually linearized when solving the single-field Navier-Stokes equations using the
unstructured Finite Volume method. The convective term is discretized as∫︂

Ωc

∇ · (ρvv)dV ≈
∑︂
f∈Fc

ρn+1
f F o

f vn+1
f . (5.29)

Numerical consistency imposed by eq. (5.6) does not depend on the implicit or explicit
discretization: the proportionality between the mass flux and the phase-specific flux, and the
equivalence of the mass flux in the mass conservation equation and the momentum transport
equation must both hold at any time, and in any iteration of the solution algorithm. Therefore,
the requirement given by eqs. (5.16) and (5.17), is valid for an implicit discretization as well.

The volumetric flux F o
f is initialized to Fn

f and iterated within the SAAMPLE [2] pressure-
velocity coupling algorithm loop until o = n+ 1 is reached. The ρLENT algorithm is outlined
in algorithm 5 and it extends the SAAMPLE algorithm [2]. It is relevant to note that F o

f

is iterated from Fn
f to Fn+1

f and po is solved for from pn to pn+1 such that the discrete
incompressibility condition

∑︁
f∈Fc

Fn+1
f is ensured.
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Algorithm 5 The ρLENT solution algorithm.
1: while simulation time ≤ end time do
2: Advect the interface to Σ̃

n+1. ▷ [35]
3: Compute the signed-distance field ψn+1 from Σ̃

n+1 at xc, xf , xp in the narrow-band. ▷ [35]
4: Compute αn+1

c from ψn+1
c , ψn+1

p . ▷ [2]
5: Compute the area fraction αn+1

f from the signed distance fields ψn+1
f , ψn+1

p . ▷ Figure 11
6: Compute the face-centered densities ρn+1

f using αn+1
f . ▷ Equation (5.26)

7: while F o
f does not converge or o < omax do

8: Solve the continuity equation using ρn+1
f F o

f for cell-centered densities ρo+1
c . ▷ Equation (5.27)

9: while r > tolls and i < imax do
10: Use ρo+1

c and ρn+1
f F o

f in p− v coupling to compute vi+1
c , F i+1

f . ▷ [2] and eq. (5.29)
11: end while
12: end while
13: Make ρn+1

c consistent with Σ̃
n+1, i.e. ρn+1

c = αn+1
c ρ− + (1− αn+1

c )ρ+.
14: Make µn+1

c consistent with Σ̃
n+1, i.e. µn+1

c := αn+1
c ρ−ν− + (1− αn+1

c )ρ+ν+.
15: end while

The p − v coupling - mentioned in the step 8 in algorithm 5 - requires some further
explanation. The semi-implicit discretization (with the convective term linearized as an
explicit mass-flux and implicit velocity) of the single-field momentum equation using the
implicit collocated unstructured finite volume method [17, 19], results in

acvn+1
c +

∑︂
k∈Nc

akvn+1
k = −(∇p)n+1

c − [(∇ρ)n+1 · (g · x)]c + (fΣ)n+1
c , (5.30)

where Nc is the index-set of cells that are face-adjacent to cell Ωc, and the total pressure
is expressed using the dynamic and the hydrostatic pressure. The diagonal coefficient ac
corresponds to the cell Ωc, and k denotes the coefficients contributed from cells that are
face-adjacent to Ωc. We discretize the surface tension force (fΣ)n+1

c ) using the semi-implicit
model from [2].

Equation (5.30) is also discretized semi-implicitly, because of the linearized convective
term, that contributes the volumetric flux Ff to the ac,k coefficients in eq. (5.30). Linearizing
the convective term introduces a need for iteration. Iterations are also introduced by splitting
eq. (5.30) into two equations: one for vn+1

c , and another for pn+1
c . Dividing the equation
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eq. (5.30) with ac and applying the discrete divergence ∇c·, results in the pressure equation

∑︂
f∈Fc

(︃
1

ac

)︃o

(∇p)i+1
f · Sf =

∑︂
f∈Fc

(︃
1

ac

)︃o

[H(vi)]f · Sf +
∑︂
f∈Fc

(︃
1

ac

)︃o

[(∇ρ)i · (g · x)]f · Sf+

∑︂
f∈Fc

(︃
1

ac

)︃o

σκn+1
f (∇α)if · Sf ,

(5.31)
where we use the CSF model [27] to model the surface tension force (fΣ)f ≈ σκf (∇α)f . The
discrete divergence-free condition imposed on vn+1

c in eq. (5.30) results in the divergence-free
volumetric flux

∑︂
f∈Fc

F o
f = 0, (5.32)

used as the control variable for the convergence of outer iterations o by the SAAMPLE algorithm
[2]. The outer iterations o are used for linearizing the volumetric flux as described above
and contribute the volumetric flux to the coefficients ac,k, from eq. (5.30), while H(v) in
eq. (5.31) is the contribution of convection and diffusion operators from face-adjacent cells
in eq. (5.30). Note that (∇ρ)n+1

c,f and the implicit part of (fn+1
σ )f,c are known at tn+1 from

fn+1
σ := fn+1

σ ({xn+1
p }p∈P ), and eq. (5.27).

This segregated solution for (pn+1
c , vn+1

c ) is standard in the context of collocated un-
structured finite volume method [17]: the inner iterations and the assembly of the pressure
equation originates from the PISO algorithm [31], the outer iterations originate from the
SIMPLE algorithm [30], and the tolerance-based control of outer iterations is described in
detail in [2]. In addition, the implementations of the LENT method [35], the SAAMPLE algo-
rithm [2] and the ρLENT method are publicly available [56]. This description, the details on
the tolerance-based outer iteration control in [2], and the publicly available implementation
in OpenFOAM® , provide sufficient information for an interested reader willing to understand
or further extend the methodology.
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5.3 Volume correction method

Σ̃0 = {x, ψ(x) = ψ0}

ψ = ψ1

ψ = ψ0

h x

Σ̃1 = {x, ψ(x) = ψ1}

x ∈ Σ̃0

x′ ∈ Σ̃1 x′

Figure 13: The volume correction method: iso-value compensates the volume-change.

Level Set / Front Tracking methods are Lagrangian / Eulerian methods that kinematically
evolve the fluid interface without utilising fluxes through control-volume boundaries and are
therefore inherently not mass(volume)-conservative. Rising bubble and oscillating droplet
simulations are presented in the results section to demonstrate the benefits of the ρLENT
method for stronger momentum interaction between fluid phases that have strongly different
densities. Mass conservation is crucial for accurately simulating rising bubbles (Hua and Lou
[4], Singh and Shyy [91], Hua, Stene, and Lin [92], and Pivello et al. [93]). In particular,
Hua and Lou [4] conducted comparative analyses which revealed that mass conservation
carries equivalent importance to mesh resolution and domain size in influencing the accuracy.
The Front reconstruction in the LENT method [2, 35] uses marching tetrahedrons with linear
interpolation of the iso-surface root-points Treece, Prager, and Gee [89], that causes volume
loss. To demonstrate the benefits of the proposed ρLENT method for handling high density
ratios with stronger interface deformation and momentum exchange, we ensure volume
conservation using by extending/contracting the Front with a modified iso-value.

Figure fig. 13 depicts the volume correction at time step n, where Σ̃0 denotes the Front
at the time step n. The value ψ0 = 0 is the iso-value used to reconstruct the Σ̃0 at tn. From Σ̃0

that contains volume-conservation errors, we compute the corrected Front Σ̃1, as Σ̃0 extended
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in the normal direction by h. We consider volume loss, with no loss of generality in the case
of volume gain. For sufficiently small h, for any x ∈ Σ̃0, we define x′ := x+ hnΣ(x), x′ ∈ Σ̃1.
The linear Taylor-series approximation

ψ(x′) .= ψ(x) +∇ψ(x) · hnΣ(x), (5.33)

with ψ(x) = 0 by the definition of an iso-surface ∀x ∈ Σ̃0, results in

ψ(x′) .= h∇ψ(x) · nΣ(x). (5.34)

Since Level Set / Front Tracking ensures ∇ψ(x) = nΣ and thus ∇ψ(x) · nΣ(x) = 1 by
geometrically re-distancing ψ from the reconstructed Front Σ̃

n

0 ,

ψ(x′) = h. (5.35)

The height h is expressed from the change in volume between Σ̃0 and Σ̃1∫︂
Σ̃0

h dS = Vtarget − Vini,

h =
Vtarget − Vini∫︁

Σ̃0
1 dS

,
(5.36)

Volume Vtarget is the target volume and known before the reconstruction, and we aim to recover
Vtarget’s corresponding front Σ̃1. The volume Vini is computed from the initially reconstructed
Σ̃0. If volume loss really occurred, then Vtarget > Vini, and h > 0, so we extend Σ̃0 in the
direction of nΣ by reconstrucing an iso-surface Σ̃1 = {x′ : ψ(x′) = h}. However, if volume
gain occured, Vtarget < Vini, so h < 0, and reconstrucing an iso-surface Σ̃1 = {x′ : ψ(x′) = h}
shrinks Σ̃0 in the normal direction.

The volume Vini is computed geometrically [85] as

Vini =
1

3

⃓⃓⃓⃓
⃓⃓NΣ̃0∑︂
e=1

xe · Se

⃓⃓⃓⃓
⃓⃓ , (5.37)

where NΣ̃0
is the number of triangles in Σ̃0, xe is a centroid, and Se the area-normal vector

of the e-th triangle in Σ̃0. At reconstruction time step tn, the front is first reconstructed
using the iso-value ψ0 = 0, as shown in fig. 13. The volume V n(ψ0 = 0) is then calculated
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w.r.t eq. (5.37). Since the loss/gain of volume between successive reconstructions is small
(O(10−4)), the compensated extension/contraction is uniformly distributed across the Front.
The iso-value adjustment given by eq. (5.36) is then discretized as

h =
V (Σ̃1)− Vini∑︁NΣ̃0

e=1 |Se|
, (5.38)

in which |Se| denotes the area of the e-th triangle. Reconstruction with the new iso-value
ψ1 = hn generates a volume-conserved Front, as illustrated by the solid line on the right in
fig. 13.

70



Calc. search distances [35]

tn+1 = tn + ∆t

Reconstruct then evolve front [35]

Calculate signed distances [35]

Calculate phase indicator
αn+1

c [2]

Update cell face den-
sity ρn+1

f (eq. (5.26))

Calc. mass flux mo
f = ρn+1

f F o
f

using ρn+1
f from eq. (5.26)

Update mixture density
ρo+1
c from eq. (5.27)

Calc. predicted velocity by solving
momentum predictor equation

Initialize pressure residual norm r

Solve pressure equation

Update residual norm r

Update flux to obtain F i+1
f

Reconstruct velocity vi+1
c

END

Update mixture prop-
erties µn+1

c , ρn+1
c

(eqs. (3.61) and (3.62))

t < tEND

F o
f does not converge or o < omax

r > tolls and i < imax

Figure 12: Flowchart of the ρLENT method. The dashed blocks denote the new and modified
elements of the SAAMPLE method [2]. The indices omax and imax in the flowchart
indicate the maximal iteration numbers for the outer and inner loop, respectively,
while tolls denotes the prescribed linear solver tolerance.
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6 Verification and validation

The hybrid Level Set / Front Tracking method is not strictly volume conservative, and volume
errors arise from three sources. First, the iso-surface reconstruction - that handles the
topological changes of the fluid interface - introduces volume errors by interpolating the
level-set function. This error source can be reduced using higher-order level set function
interpolation. Second, the Front Tracking method approximates the fluid interface as a
surface triangulation and advects the interface in a co-moving reference frame by displacing
the triangulation points along Lagrangian trajectories. The volume errors introduced by
Front Tracking are reducible significantly by a second (or higher)-order temporal integration
of the Lagrangian displacements. The third source of volume conservation errors is the
phase-indicator model: Volume fractions are approximated from signed distances stored
at cell centers and cell-corner points in previous work [2]; a more accurate geometrical
intersection between the Front and the volume mesh is being investigated in [85]. The
volume conservation of the hybrid Level Set / Front Tracking method depends on the physics
of the problem. For the verification problems, the ρLENT method recovers very low maximal
relative volume conservation errors of 5.13 · 10−4 for the coarsest resolution of only 6 cells per
droplet diameter and 5.49 · 10−5 for the finest resolution of 26 cells per droplet diameter. The
volume conservation errors of such small magnitude have no effect on the numerical stability
of the two-phase momentum convection term, so their detailed visualization is omitted for
brevity.

Secondary data presented in this section in the form of diagrams and tables [94], the snapshot
of the LENT implementation used in this manuscript [95], and the active development
repository of the LENT method as an OpenFOAM® module [96] are publicly available.

6.1 Time step size

The time step size limit due to the CFL condition is given by

∆t ≤ ∆tCFL =
h

U
, (6.1)
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where h is cell length and U is a characteristic velocity. In the cases, h is the minimum cell
size, while U is equal to magnitude of the ambient flow velocity vector, i.e. U = |va| = 1.
Another restriction for the time step size arises from the propagation of capillary waves on
interfaces between two fluids. This time step constraint is firstly introduced by Brackbill,
Kothe, and Zemach [27], and afterwards revised by Denner and Wachem [97]. It has the
form

∆t ≤ ∆tcw =

√︃
(ρd + ρa)h

3

2πσ
, (6.2)

in which ρd and ρa are density of droplet and ambient fluid, respectively, σ is the surface
tension coefficient. In the case setup procedure, the method devised by Tolle, Bothe, and
Marić [2] is followed, i.e., using a compare function

∆t = min (kcw∆tcw, kCFL∆tCFL) (6.3)

where kcw and kCFL are arbitrary scale factors between 0 and 1. In the following, kcw = 0.5

and kCFL = 0.2 are used.

6.2 Translating droplet

Following the setup of Popinet [98], a sphere of radius R = 0.2 translates in a rectangular
domain having side lengths Lx = Ly = 5R,Lz = 6R. The initial position of the sphere’s
centroid is Cx = Cy = 0.5, Cz = 0.4. One corner of the rectangular domain locates in the
origin as shown in fig. 14. The boundary conditions of the rectangular domain are set as
follows: ∇v = 0 and p = 0 for the outlet, v = va andzero gradient ∇p = 0 for the pressure
at the mantle and the inlet. The initial conditions for internal field is set to p(t0) = 0 and
v(t0) = va. The end time of simulation is set to tend = 0.41 s, which corresponds to a droplet
displacement of one diameter.

Two groups of cases are tested to verify the ρLENT method, their parameters are listed
in table 1. For the first group, only the advection of momentum and pressure term are
considered, and the ambient flow has a constant density ρa = 1, while the density of the
droplet ρd varies between (1, 102, 103, 104), resulting in four density ratios. Three mesh
resolutions N ∈ (16, 32, 64) are tested. For each mesh resolution N , the domain is discretized
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mantle
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v = (0, 0, 1)
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v = (0, 0, 1)

inlet:

mantle:

oulet:

R = 0.2, Cx = Cy = 0.5, Cz = 0.4, Lx = Ly = 5R,Lz = 6R

tend = 0.41s

∇p = 0

∇p = 0

p = 0

Figure 14: Translating droplet case setup.

Parameters range

Momentum equation Density ratio Resolution Kinematic viscosity Surface tension coefficient

Group 1 ∂t(ρv) +∇ · (ρv⊗ v) = −∇p (1, 102, 103, 104) (16, 32, 64) 0 0

Group 2
∂t(ρv) +∇ · (ρv⊗ v) = −∇p− (g · x)∇ρ

+∇ · µ
(︂
∇v+ (∇v)T

)︂
+ fΣ

(1, 102, 103, 104) (16, 32, 64) (0.057735, 0.018257, 0.0057735, 0.0) 1

Table 1: The parameters range of the case group 1 and the case group 2.

equidistantly into 1.2N3 hexahedral cells, as shown in fig. 15. The exact solution is given by
vn+1
c = vnc = vc(t0) = va and can be used to verify the numerically consistent discretization

of the single-field conservative two-phase momentum convection.

Viscosity and surface tension forces are included in the second test case group. The same
range of density ratios is simulated, ρ−/ρ+ ∈ (1, 102, 103, 104). The same kinematic viscosity is
used for the ambient and the droplet phase, namely ν ∈ (0.057735, 0.018257, 0.0057735, 0.0).

The surface tension coefficient is constant σ = 1.
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Figure 15: Half section of mesh N = 64, droplet at initial position.

6.2.1 Droplet translation without viscosity and surface tension forces

When the momentum is transported only by advection, no forces are exerted on the droplet
body and surface. As a result, the velocity field in the overall domain should remain spatially
constant and equal to va = (0, 0, 1). The maximum norm L∞ is employed to measure how
much the numerical velocity deviates from the analytical one, i.e.,

L∞(v) = max
i

(︃
∥vi − va∥

∥va∥

)︃
, (6.4)

where vi denotes velocity of all cells. The previous SAAMPLE method [2] can cause large
nonphysical interface deformations leading to a complete deterioration of the solution, visible
for a verification configuration in the left image in fig. 17. The deterioration is amplified by
the p − v coupling algorithm that will calculate a pressure field p that enforces ∇ · v = 0.
This, in turn, causes artificial acceleration in all cells where vn+1

c ̸= va. The consistent ρLENT
method ensures the shape of the droplet is preserved, as shown on the right image in fig. 17.

The fig. 16a contains the velocity error calculated with the old, inconsistent method.
Every line in the diagram is labeled by the number of the case, mesh resolutionN , and droplet
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(a) SAAMPLE method. (b) ρLENT method.

Figure 16: Temporal evolution of velocity error norm L∞(v): the left figure depicts the results
from SAAMPLE algorithm, the right shows the results from ρLENT method.

Figure 17: Comparison of the strong interface deformation with SAAMPLE method (left) and
the numerically consistent interface shape of the ρLENT method. Parameters:
N = 64, ρ−/ρ+ = 104, t = 0.0008s.

density ρ−. The default ambient density is 1. Thus, the ρ− also represents the density ratio.
As shown in fig. 16a, all cases with a density ratio higher than 1, namely ρ− > 1, diverge and
stop at early stage. Cases with a very high density ratio of 104 (e.g., case 0011 and 0003) fail
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catastrophically. The complete results are shown in fig. 48, in appendix 1.
When ρLENT is used, as shown in fig. 16b, the velocity error remains exactly 0 in all

cases. This means that the interface velocity remains consistent with the ambient flow and
is unaffected by the mesh resolution and density ratio. The results demonstrate the exact
recovery of numerical consistency for the advection of the two-phase momentum, using an
implicitly discretized momentum term in a conservative formulation of single-field two-phase
Navier-Stokes equations.

6.2.2 Droplet translation with viscosity and surface tension forces

(a) SAAMPLE: interface stable only for cases with density
ratio ρ−/ρ+ = 1

(b) ρLENT: interface stable for density ratios ρ−/ρ+ ∈
(1, 102, 103, 104)

Figure 18: Temporal evolution of velocity error norm L∞(v) for the viscous flow with surface
tension forces: the left diagram depicts the results from the SAAMPLE method,
and the right diagram contains the results from the ρLENT method. The legends
of these diagrams are large, and the full information is available in Appendix :
fig. 49 for fig. 18a, fig. 50 for fig. 18b.

Here, viscous and capillary forces are taken into account when solving the momentum
equation. Since SAAMPLE is a well-balanced algorithm [2] - SAAMPLE balances the discrete
surface tension force exactly with the pressure gradient when constant curvature is used,
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using the same discretization for the pressure gradient and the surface-normal gradient of
the volume fraction [98]. The force-balance is maintained also if the curvature is exactly
calculated and propagated as a constant in the interface-normal direction. For numerically
approximated curvature, the balance is obtained on a dissipation timescale with respect to
initial perturbations. The translating droplet test case combines the force-balance requirement
in the droplet’s frame of reference, with the requirement for numerical consistency of the
two-phase momentum advection. In the absence of gravity, such a droplet does not accelerate
or decelerate. The temporal evolution of L∞ is shown in fig. 18. The inconsistent method
remains stable only for ρ−/ρ+ = 1. For the results of all other cases, i.e., with ρ−/ρ+ > 1,
the velocity error increases exponentially, and the simulations crash. In contrast, as depicted
in fig. 18b, the ρLENT demonstrates numerically stable results for all tested density ratios.
Additional numerical errors are introduced compared with two-phase momentum advection,
specifically when approximating the curvature [2]. The approximation of curvature in [2]
recovers accurate L2 norms of the curvature errors for a sphere, in the range [10−4, 10−3|] for
discretization lengths in the range [128−1, 16−1] in the unit-box solution domain. Because of
the numerically approximated curvature, L∞ cannot exactly be equal to zero, as shown in
fig. 16b. However, as seen in fig. 18b, the final L∞ error given by eq. (6.4) 10−4 and 10−2,
which is acceptable.

6.2.3 Translating sub-millimeter droplet with realistic physical properties

materials/properties (25 ◦C) density (kgm−3) kinematic viscosity (m2 s−1) surface tension (Nm−1) density ratio

air 1.1839 1.562× 10−5 −−− −−− [99]

water 997.05 8.926× 10−7 0.07213 (in air) 842.17 (in air) [99]

mercury 13.5336× 103 1.133× 10−7 0.4855 (in air) 11431.37(in air) [99]

silicone oil (cSt 10) 0.934× 103 1.088× 10−5 0.0201 (in air) 788.92(in air) [100]

silicone oil (cSt 50) 0.96× 103 5× 10−5 0.032 (in water) 0.96 (in water) [101]

Table 2: Realistic fluid properties are combined into four tests: water droplet/air ambient,
mercury droplet/air ambient, silicone oil droplet/air ambient, silicone oil droplet/wa-
ter ambient.
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The physical properties including densities, viscosities, and surface tension coefficients in the
widely used translated droplet case from Popinet [98] are not related to physical two-phase
flows systems. In this test, the case has been adapted, and small droplet dimensions have been
used to challenge the method in terms of surface tension force approximation for capillary
problems, along with the utilization of real-world fluid pairings with challenging density
ratios.

Table 2 contains the physical properties used for the test-case configuration of the
translating sub-millimeter droplet with realistic physical properties. In terms of size, a
spherical droplet of radius R = 0.25mm is translating a distance of three diameters with
velocity 0.01m/s in z-direction of the rectangular solution domain (Lx = Ly = 5R,Lz = 10R).
The initial centroid position of the droplet is (2.5R, 2.5R, 2R). Surface tension and viscous
forces are not considered for this setup.

As depicted in fig. 19, it is obvious that L∞(v) remains stable over time when the droplet
translates. Even in the cases with a density ratio of over 104, as shown in fig. 19d, no matter
how high the resolution is, the results from ρLENT the method can reach machine precision.

The fig. 20 illustrates the results of the same realistic droplets’ cases, considering the
influence of viscous forces and surface tension. It is observed that the errors decrease as the
resolution increases, reaching magnitudes as low as 10−5 for all cases. This indicates the
excellent capability of ρLENT to handle a wide range of density ratios in such cases.

Apart from the observation mentioned above, table 3 reveals another advantage of ρLENT
method - high computational efficiency. As shown in table 3, the ρLENT method demonstrates
very high computational efficiency in serial. Increasing the parallel computational efficiency
requires further research, specifically, regarding a more efficient message-passing parallel
implementation for unstructured Level Set / Front Tracking.

6.3 Oscillating droplet

An ellipsoidal droplet is submerged in an ambient fluid with an approximate axially symmetric
solution provided by Lamb [102]. The solution can be represented as a summation of a
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(a) Silicone oil droplet in water, density ratio 0.96 (b) Silicone oil droplet in air, density ratio 788.92

(c) Water droplet in air, density ratio 842.17 (d) Mercury droplet in air, density ratio 11431.37

Figure 19: Temporal evolution of velocity error norm L∞(v) with pure advection: ρLENT
method used in simulating two-phase flows with different density ratios, mesh
resolution: N ∈ (16, 32, 64).

constant and a Legendre polynomial Pn(cos θ), i.e.,

R(θ, t) .= R0 + anPn(cos θ) sin(ωnt), θ ∈ [0, 2π], (6.5)

where R0 is the initial unperturbed radius, an is the amplitude of the n-th oscillation mode, θ
is the angle between the radius line of a droplet point and the symmetric axis, ωn represents
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(a) Silicone oil droplet in water, density ratio 0.96 (b) Silicone oil droplet in air, density ratio 788.92

(c) Water droplet in air, density ratio 842.17 (d) Mercury droplet in air, density ratio 11431.37

Figure 20: Temporal evolution of velocity error norm L∞(v) with the effect of viscosity and
surface tension: ρLENTmethod used in simulating two-phase flows with different
density ratios, mesh resolution: N = 16, 32, 64.

the oscillation frequency. The latter ωn has the form

ω2
n =

n(n+ 1)(n− 1)(n+ 2)σ

[(n+ 1)ρd + nρa]R3
0

, (6.6)

where n is the mode number, ρd, ρa represent the droplet and ambient flow density respectively,
σ indicates the surface tension coefficient. Lamb [102] derived eq. (6.5) neglecting the viscous
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cases resolution serial execution time (s)

16 6.62
32 74.34silicone oil droplet / water
64 929.79
16 7.77
32 91.64water droplet / air
64 1324.38
16 7.71
32 94.57mercury droplet / air
64 1334.36
16 7.31
32 83.43silicone oil droplet / air
64 1318.43

Table 3: Serial execution time for the ρLENT method.

effect, and used constant an. Chandrasekhar [103], Miller and Scriven [104], and Prosperetti
[105] extended the expression of an to include the influence of the viscosity, where the
amplitude an decays exponentially over time by

an(t) = a0e
−γt, γ =

(n− 1)(2n+ 1)ν

R2
0

, (6.7)

where ν is the kinematic viscosity. Hiller and Kowalewski [106] conducted a series of
experiments to validate the decay expression.

The physical properties of mercury and air from 2 is applied to the droplet and the ambient
fluid. The droplet interface is initialized with the parameters: R0 = 0.01, n = 2, ϵ = 0.00025,
t = π/(2ωn) and the center (0.0200001, 0.0199999, 0.020000341). The computational domain
size is (0, 0, 0)× (0.04, 0.04, 0.04). The gravity is neglected in this case. At the simulation’s
beginning, the droplet and the flow are still, i.e. v(t = 0) = 0 holds for the whole field. Since
the analytical frequency ωa can be acquired from eq. (6.6), the results are evaluated by an
error norm

L1(ω) =
|ω − ωa|
ωa

. (6.8)

Three mesh resolutions are tested to verify the convergence of both methods. The results of
the SAAMPLE[2] and ρLENT with increasing mesh resolutions are summarized in the table 4.
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As shown in fig. 21, the oscillating frequencies calculated from SAAMPLE do not converge.
On the contrary, when deploying the new consistent method, L1 norm exhibits second-order
convergence.

Grid size h Background mesh Front mesh SAAMPLE ρLENT
Points Cells Points Tris. Frequency L1 norm Frequency L1 norm

0.0016 17576 15625 3150 6296 16.255923 0.040397 16.346002 0.035080
0.0008 132651 125000 12662 25320 16.444685 0.029254 16.888921 0.003031
0.0004 1030301 1000000 50732 101460 16.218606 0.042600 16.928274 0.000708

Table 4: The analysis of the oscillation frequency convergence and its comparison between
the SAAMPLE method and the consistent ρLENT method.

Figure 21: L1 norms of the oscillation frequency errors.

6.4 Rising bubble

In this test case, the proposed method is applied to a single bubble rising in quiescent viscous
liquid. The configuration from Anjos et al. [5] is adopted, who simplified the rising bubble
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experiments previously conducted by Bhaga and Weber [3] and selected three different
viscosity ratios to perform tests and comparisons. In this section, the focus is on the most
challenging case, i.e. the case with the smallest viscosity ratio, which corresponds Morton
numberMo = gν4l /ρlσ

3 = 1.31, where g is the gravitational acceleration value, and νl, ρl, σ
indicate the viscosity, density of the ambient liquid and the surface tension. The initial state
of the air bubble is idealized to be spherical with a diameter of D = 2.61 cm. The physical
properties of the air are characterized by a viscosity of 1.78× 10−5 kg/ms and a density of
1.225 kg/m3, whereas the properties of the liquid are defined by a viscosity of 0.54 kg/ms and a
density of 1350 kg/m3. Additionally, the surface tension between the air bubble and the liquid
is 0.078 N/m. The computational domain is defined as (−4D,−4D,−2D) × (4D, 4D, 6D),
which show the positions of space diagonal vertices of the computational domain, and the
initial position of the bubble is set as the origin, (0, 0, 0). As the parallel computing module

Figure 22: SAAMPLE method: the collapsed bubble shape caused by numerical inconsis-
tency.

in the ρLENT method is still in the developmental phase, the entire domain was resolved
using a single core. Consequently, relatively coarse meshes were utilized to simulate the
motion of the bubble, i.e. N ∈ (64, 96, 128, 160), where N indicates the grid numbers in all
three directions of the computational domain. To estimate the results, a set of dimensionless
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Figure 23: ρLENT: the temporal evolution of bubble’s shape with resolution N = 128.

characteristic variables was introduced as follows:

w =
v√
gD

, t =

√︃
g

D
τ, (6.9)

where τ indicates the realistic time. When deploying the inconsistent method, the simulation
crashed at an early stage, as shown in 22. Inconsistent method deployment resulted in a
simulation crash at an early stage. The velocity of the bubble’s bottom region increased
abruptly, causing the front’s vertices in that region to have much higher velocity than the
neighbor region, which explains the bottom sharp cone formation as shown in Figure 22.
Conversely, Figure 23 depicts the temporal evolution of the bubble’s shape using the consistent
method with N = 128. The predicted bubble shapes show good agreement with the previous
simulation results [4, 5, 92] and the experimental results [3]. Additionally, 24 shows a
comparison of the bubble’s rising velocities between the ρLENT method and some previous
works. At the acceleration stage, the predicted rising velocity from ρLENT method with the
finest mesh N = 160 agrees remarkably well with the results from Anjos et al. [5], whereas
the velocities from the cases with coarser meshes are slightly higher than the results from
Anjos et al. [5]. The deceleration stage of the bubble can be observed for all cases with
different resolutions, which also exists in the results of Anjos et al. [5]. Except for in the case
with the coarse mesh N = 64, the rising velocities in cases with higher resolutions reach a
stable state and converge to the experimental value from Bhaga and Weber [3].
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Figure 24: The average bubble velocities from ρLENT with four resolutions are compared
with: the experimental results (black solid line) from Bhaga and Weber [3], the
simulation results (black dashed double-dotted line) from Hua and Lou [4], and
the extracted simulation results (blue solid dotted line ) from Anjos et al. [5]. Simu.
and exp. are the abbreviation of simulation and experiment.
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Inconsistencies in Unstructured Geometric
Volume-of-Fluid Methods for Two-Phase
Flows with High Density Ratios

7 Introduction

Geometric flux-based VOF methods [34] are widely regarded as being consistent in handling
two-phase flows with high density ratios. However, although the conservation of mass and
momentum is deemed consistent for two-phase incompressible single-field Navier-Stokes
equations without phase change, as discussed in section 3.5.4 and [47], small inconsistencies
may easily be introduced by discretization, resulting in very large errors or catastrophic
failure. The consistency conditions derived for ρLENT in section 3.5.4 are applied to flux-
based geometric VOF methods [34], and the consistent discretization is implemented into
the plicRDF-isoAdvector geometrical VOF method [36]. It is found in this chapter that the
equivalence between the scaled volume fraction equation and the mass conservation equation
is destroyed, depending on the choice of temporal and convective term discretization schemes,
when computing the mass flux by scaling the geometrically computed fluxed phase-specific
volume. Two solutions are proposed in this study. First, based on the analysis of discretization
errors, a consistent combination of the temporal discretization scheme and the interpolation
scheme for the momentum convection term should be utilized. Second, similar to section 3.5.4,
an auxiliary mass conservation equation is solved with a geometrical calculation of the face-
centered density. The equivalence between these two approaches is mathematically proved,
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and their numerical stability for density ratios within [1,106] and viscosity ratios within
[102,105] is verified and validated in this chapter.

In this chapter, the consistency requirements imposed by the single-field Navier-Stokes
equations derived in section 3.5.4 are applied to flux-based geometric VOF methods [34],
using the isoAdvector method [6, 36, 49] to verify and validate these findings. The consistency
requirements from last chapter indicate that geometric flux-based VOF methods are inherently
consistent in handling high density ratios. On the modeling level, an exact solution of
the volume fraction equation is equivalent to solving the mass conservation equation. On
the discrete level, mass fluxes needed in the implicitly discretized single-field momentum
convection term are consistently computed by flux-based VOF methods, by scaling the fluxed
phase-specific volume. However, it is demonstrated that inconsistencies can easily arise
through the choice of an inconsistent combination of the temporal integration scheme and the
interpolation scheme for the two-phase momentum conservation term, leading to significant
errors for small density ratios and catastrophic failures for large density ratios.

The review is provided of the single-field formulation of incompressible two-phase Navier-
Stokes equations, and their discretization is analyzed using the collocated unstructured Finite
Volume method, in section 3. In section 8.1, it is shown that a consistent combination of the
temporal discretization scheme and the interpolation scheme for the momentum convection
term is necessary to ensure stable solutions with high density ratios. In sections 8.2 and 8.3,
the introduction of an auxiliary mass conservation equation with a geometrical calculation of
the face-centered density to the geometrical VOF method isoAdvector [6, 36, 49] is discussed.
The equivalence between these two approaches is proved, and their numerical stability for
density ratios of [1,106] and viscosity ratios of [102,105] is verified and validated in the results
section 9.
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Literature review

A detailed review of two-phase flow simulation methods that address the challenges in
handling high density ratios is provided in section 3.5.4, and here more current literature
contributions are listed.

Huang, Lin, and Ardekani [107] proposed the mixed Upwind/Central Weighted Essen-
tially Non-Oscillatory (WENO) scheme on a staggered structured grid, an extension of the
conventional WENO scheme [108] on collocated grids, to spatially discretize the nonlinear
convective term in conservative form. The Upwind WENO scheme is used to evaluate velocity
at cell faces, while 3 different forms of Central WENO scheme are applied to evaluate mass
flux in x-/y-directions as well as density at cell corners. In addition to the mentioned spatial
discretization scheme, Huang, Lin, and Ardekani [107] proposed also a semi-implict projec-
tion scheme to decouple pressure and velocity in momentum transport equation. A backward
difference scheme combined with a special treatment for the viscous term is introduced to
discretize the momentum equation without the pressure gradient. The viscous term contain-
ing the intermediate velocity is split into two parts, one of which comprises the constant
arithmetic mean of two phases’ viscosity and the intermediate velocity, another one comprises
the updated viscosity and the explicit velocity (referring to [109, Apendix A]). Numerous
2D cases with density ratio [1, 1000] are tested, whose results are in good agreement with
analytical and experimental results. The interface capturing method in [107] is selected to
phase-field. The authors indicated that the mixed Upwind/Central WENO scheme is able to
be coupled with any interface capturing/tracking method.

Xie et al. [110] introduced a consistent and balanced-force model with Consistent
Balanced-force Level Set and Volume Of Fluid (CBLSVOF) on polyhedral unstructured grids.
A hybrid algebraic/geometric VOF method based on Tangent of Hyperbola Interface Captur-
ing with Quadratic surface representation and Gaussian Quadrature (THINC/QQ) [111] is
developed to capture interface, while the level set function constructed from volume fraction
is exploited to improve the accuracy of interface curvature evaluation. To achieve the consis-
tency, the convective term of both the volume-fraction equation and momentum equation in
the conservative form are discretized in the same manner, wherein the velocity and volume
fraction are reconstructed by using the identical high-order reconstruction scheme based
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on a quadratic polynomial function. The balanced-force formulation proposed firstly by
Francois et al. [112] is adapted in this work to eliminate the parasitic current at the interface.
The interface curvature estimated by the continuous signed-distance function instead of the
abruptly changing volume fraction function offers computational simplicity and numerical
stability. A 3D single bubble, and two bubbles coalescence cases with the density ratio of
magnitude 103 are tested. The results agree well with previous experimental results.

Desmons and Coquerelle [113] proposed a generalized approach known as the High-
Order Momentum Preserving (HOMP) method. A high-order temporal and spatial scheme,
i.e., Runge-Kutta (RK)2 and WENO5,3 [114], are used to discretize an auxiliary advection
equation of characteristic function χ that is compatible with the mass equation and inde-
pendent of the underlying interface-representation function. The momentum equation is
then discretized using the same high-order schemes as before, and the density is deduced
from the characteristic function χ, which is computed from the auxiliary advection equation
rather than from the interface transport step. During the discretization, both the auxiliary
advection equation and the momentum equation remain in the conservative form. The authors
combined several interface representation methods, i.e., Volume Of Fluid, Level Set Method,
and Moment Of Fluid, with HOMP and then tested them. The results from various selected
validation cases, including water and air, demonstrate good agreement with the literature
results. It is worth noting that no theoretical explanation is offered as to why the auxiliary
advection equation is required, rather than just maintaining the consistency between the
interface transport equation and the momentum equation. Alternatively, the higher-order
WENO scheme requires very large stencils of variable width when used with the finite-volume
method, making its parallel implementation inefficient using the domain-decomposition /
message-passing parallel programming model.

El Ouafa, Vincent, and Le Chenadec [115] devised a fully coupled solver for simulating
incompressible two-phase flows characterized by large density and viscosity ratios on a stag-
gered structured mesh. The interface is captured by a Piecewise Linear Interface Calculation
(PLIC)-Volume of Fluid (VOF) method. In this solver, the linearized momentum and continuity
equations arising from the implicit solution of the fluid velocities and pressure are solved
simultaneously. To complete the one-fluid formulation of the momentum equation, velocity
boundary conditions of the fluid domain are imposed by adding a penalty term. The authors
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interpreted that the errors from the splitting operator and the additional pressure boundary
conditions for segregated methods are sensitive to density ratio. Using the fully coupled
method can overcome the problems. The consistency between the advection equation of
volume fraction and the momentum equation is not necessary for this solver. A few cases
featuring density ratios up to 106 and viscosity ratios up to 1010 are tested, whose results
show remarkable stability and accuracy.

Yang, Lu, and Wang [116] introduced a robust methodology that integrates the consistent
mass-momentum convection approach from Nangia et al. [52] with the CLSVOF interface
capturing method by Sussman and Puckett [62] to tackle the challenge posed by high-density
ratio problems encountered in high-Reynolds-number flows. At each time step, the interface
evolution is initiated using the CLSVOF method to provide an initial value for the mass
equation. Subsequently, the conservative form of the momentum equation and mass equation
are simultaneously solved employing consistent temporal (second-order RK) and spatial
(third-order CUI) discretization schemes at all cell faces of the staggered structured mesh.
The authors emphasized the importance of employing identical densities in the discretized
mass and momentum equations at the two substeps of the second-order RK method to ensure
robust simulation of high-Reynolds-number two-fluid flows with high density ratios. The
proposed method yields accurate predictions for both two-dimensional and three-dimensional
wave breaking cases with a density ratio of 103 and Reynolds number of 108.

Li, Liu, Wan, et al. [117] proposed a simple and robust method to simulate high density
ratio interfacial flows. Similar to the method in [116], the auxiliary mass equation is solved
together with the momentum equation. However, instead of using the consistent discretization
schemes in space and time, this method applies the identical cell-center velocity updated
by solving the mass equation and the mass flux to the discretized momentum equation to
maintain consistency between them. Three different schemes of VOF, i.e, PLIC-VOF, the
spatial filtering VOF, and the Tangent of Hyperbola Interface Capturing with Quadratic surface
representation (THINC)-VOF, are implemented in the work to transport the interface. The
improvements of stability and accuracy for all three schemes in canonical cases like heavy
droplet advection and falling droplet show the generality of the consistent method to deal
with high density ratios problem.

Zeng et al. [118] transferred the consistent treatment of conservative mass and momen-
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tum equations on staggered Cartesian grids introduced by Nangia et al. [52] to multilevel
collocated grids. The adapted level set method with a multilevel reinitialization technique is
applied to capture the interface. The consistent scheme achieves a numerically stable and
reasonably accurate solution to realistic multiphase flows, such as breaking waves with a high
Reynolds number.

8 Methodology review

The singe-field formulation of incompressible two-phase Navier-Stokes Equations (NSE) with-
out phase change (eq. (2.15)) is especially relevant for engineering applications because it
provides a solid modeling basis for two-phase flows with fluid interfaces that can arbitrarily
deform, breakup and merge, provided that the method responsible for advecting the phase
indicator does not impose its own restrictions regarding fluid interface deformation and topo-
logical changes. Single-field NSE also embed strict consistency requirements section 3.5.4: an
equivalence between the conservation of mass and the phase-indicator (volume) conservation.
These requirements translate on the discrete level into requirements for the computation of
the mass flux in the discretized two-phase momentum convection term in eq. (2.15), analyzed
in the following sub-section.

To preserve a continuous derivation and avoid jump back and forth frequently to check
equations, some important equations shown in section 5 are replicated in this section.

8.1 Single-field mass conservation and volume fraction conservation

The discretization of the single-field two-phase momentum convection term from eq. (2.15)
is reformulated by∫︂

Ωc

∇ · (ρvv) dV =

∫︂
∂Ωc

(ρvv) · n ds =
∑︂
f∈Fc

ρfFfvf + eρv,con(h
2), (8.1)

with the face-centered volumetric flux

Ff := vf · Sf . (8.2)
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To compute ρfFf , the volume fraction is defined using the phase-indicator eq. (2.9) as

αc(t) :=
1

|Ωc|

∫︂
Ωc

χ(x, t) dV. (8.3)

The volume fraction advection equation [34]

d

dt

∫︂
Ωc

χdV = |Ωc|
d

dt
αc(t) = −

∫︂
∂Ωc

χv · n dS, (8.4)

is equivalent to the advection equation for the phase Ω+(t) indicated by 1− χ(x, t), namely

d

dt

∫︂
Ωc

(1− χ) dV = −|Ωc|
d

dt
αc(t) = −

∫︂
∂Ωc

(1− χ)v · n dS, (8.5)

since d
dt

∫︁
Ωc
dV = 0, as Ωc ̸= Ωc(t), and

∫︁
∂Ωc

v · n dS =
∫︁
Ωc

∇ · v dV = 0 for incompressible
two-phase flows without phase change.

The mass conservation with the single-field density eq. (2.10) in a fixed control volume
Ωc states

d

dt

∫︂
Ωc

ρ dV = −
∫︂
∂Ωc

ρv · n dS. (8.6)

Inserting eq. (2.10) into the r.h.s. of eq. (8.6) and integrating over the time step [tn, tn+1]

results in

= ρnc +
1

|Ωc|

[︄
−ρ−

∫︂ tn+1

tn

∑︂
f∈Fc

∫︂
Sf

χv · n dS dt− ρ+
∫︂ tn+1

tn

∑︂
f∈Fc

∫︂
Sf

(1− χ)v · n dS dt,

]︄
(8.7)

Inserting the eqs. (8.4) and (8.5) in the eq. (8.7) to replace the sums of surface integrals
results in

ρn+1
c = ρnc +

ρ−

|Ωc|
|Ωc|

∫︂ tn+1

tn

d

dt
αc(t) dt+

ρ+

|Ωc|
|Ωc|

∫︂ tn+1

tn
− d

dt
αc(t) dt, (8.8)

leading finally to

ρn+1
c = ρnc + (ρ− − ρ+)(αn+1

c − αn
c ). (8.9)
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Equation (8.9) shows that solving eq. (8.6) for ρn+1
c is equivalent to adding the solution

of the volume fraction equation scaled with (ρ− − ρ+) to ρnc .
Alternatively, integrating the single-field density model (eq. (2.10)) over the control

volume Ωc gives

∫︂
Ωc

ρ dV =

∫︂
Ωc

ρ−χ+ ρ+(1− χ) dV. (8.10)

Dividing eq. (8.10) by |Ωc| using eq. (8.3) results in the discrete single-field density
model,

ρc(t) = ρ−αc(t) + ρ+(1− αc(t)), (8.11)

which, evaluated at tn+1 and tn and subsequently subtracted, results in

ρn+1
c − ρnc = ρ−αn+1

c + ρ+(1− αn+1
c )− ρ−αn

c − ρ+(1− αn
c )

= (ρ− − ρ+)(αn+1
c − αn

c ),

which is eq. (8.9): solving the volume fraction advection equation eq. (8.4) and using the
single-field density model to compute the cell centered density by eq. (2.10) is equivalent to
solving the mass conservation equation (eq. (8.6)).

Note that all equations eq. (8.3) - eq. (8.11) are exact, as ∂Ωc :=
⋃︁

f∈Fc
Sf , where Sf

are non-linear surfaces that bound the control volume Ωc, and reformulating the integration
in time is exact by the fundamental theorem of calculus.

Ghods and Herrmann [51] introduce the auxiliary mass conservation equation as a means
for ensuring the consistency of the two-phase momentum convection, and the theoretical
reasoning for the auxiliary mass conservation equation is provided in section 3.5.4. Contrary
to Ghods and Herrmann [51], eq. (8.9) and eq. (8.10) both demonstrate, that the solution
of the volume fraction equation in the context of the VOF method [34] is exactly equivalent
to the solution of the mass conservation equation, rendering an auxiliary mass conservation
equation unnecessary.

However, the following question arises: if flux-based algebraic/geometric VOF methods
inherently ensure numerical stability for the two-phase momentum convection with high
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density ratios, where do the numerical inconsistencies reported throughout the literature [7,
76, 119–122] come from?

Although eqs. (8.9) and (8.10) show the inherent consistency of VOF methods in the
mathematical model, the discrete computation of αn+1

c , the approximation of the mass flux
ρfFf , the choice of the temporal scheme and the flux limiting scheme, can potentially cause
inconsistencies.

The explication is started with the discrete computation of αn+1
c and the approximation

of ρfFf by scaling the fluxed phase-specific volume. For a second-order accurate flux-based
VOF method, the approximations applied to the temporal and surface integrals for the fluxed
phase-specific volumes V α

f when solving eq. (8.4) lead to

αn+1
c = αn

c − 1

|Ωc|
∑︂
f∈Fc

∫︂ tn+1

tn

∫︂
Sf

χv · n dS dt = αn
c − 1

|Ωc|
∑︂
f∈Fc

|V α
f |s + eαt

(∆tp) + eαh
(h2),

(8.12)
with eαt

(∆tp) and eαh
(h2) as temporal and spatial volume fraction discretization errors. Note

that
|V α

f |s := sgn(Ff )|V α
f | (8.13)

is a signed magnitude of a phase-specific volume V α
f [34], whose sign is determined by the

volumetric flux ρfFf .
The phase-specific volume |V α

f |s can be used to approximate the mass flux ρfFf using
eq. (8.9) and eq. (8.12). Reordering eq. (8.12), results in

αn+1
c − αn

c =
1

|Ωc|
∑︂
f∈Fc

|V α
f |s + eαt

(∆tp) + e(αh)(h
2) (8.14)

Inserting eq. (8.14) into eq. (8.9) results in

ρn+1
c − ρnc =

ρ− − ρ+

|Ωc|
∑︂
f∈Fc

|V α
f |s + (ρ− − ρ+)[eαt

(∆tp) + eαh
(h2)]. (8.15)

Equivalently integrating eq. (8.6) over [tn, tn+1] results in

ρn+1
c − ρnc =

1

|Ωc|
∑︂
f∈Fc

∫︂ tn+1

tn
ρfFf dt =

1

|Ωc|
∑︂
f∈Fc

|Mf |s + eρt
(∆ts) + eρh

(h2), (8.16)
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with eρt
(ts), eρh

(h2) as the temporal and spatial discretization errors of the mass conservation
equation. The right-hand sides of eqs. (8.15) and (8.16) express the mass fluxed through ∂Ωc

over [tn, tn+1], i.e. |Mf |s, as the phase-specific volume |V α
f |s scaled by the density difference,

thus connecting the fluxed mass with the fluxed phase specific volume.
Consistency of the volume fraction advection and the mass conservation on the discrete

level requires the equivalence of eqs. (8.15) and (8.16). Equations (8.15) and (8.16) will be
exactly the same, only if their errors on the r.h.s. cancel out. Error cancellation is impossible
if equations eqs. (8.15) and (8.16) are using different numerical schemes for |V α

f |s and |Mf |s,
which strongly connects the fluxed mass |Mf |s with the fluxed phase-specific volume. In other
words, if a specific VOF method for |V α

f |s is deployed, the fluxed mass from |V α
f |s should

be computed. This is hypothetical, of course, since there is no need to actually solve two
equations that are equivalent. However, it is notable the mass flux is needed for the discretized
momentum equation (eq. (2.15)). If the fluxed mass must be computed from the scaled |V α

f |s
to ensure the consistency of the volume fraction advection and mass conservation, it follows
that the mass flux consistent with mass conservation must also be computed from |V α

f |s, using
eq. (8.15).

However, geometrical VOF methods use temporal integration schemes and geometrical
algorithms to compute |V α

f |s - a time-integrated quantity - that are very unlike the algebraic
discretization schemes applied on eq. (2.15). Precisely this difference is a source of very
strong instabilities and catastrophic failures for high density ratios.

It helps to consider a concrete example. Consistency of the mass flux can be shown
when the mass flux is computed by scaling the fluxed phase-specific volume in eq. (8.15)
with (ρ− − ρ+), in a simplified first-order geometrical VOF method, which uses the ”Euler”
temporal integration (rectangle quadrature) of |V α

f |s, i.e.

|V α
f |Euler

s =

∫︂ tn+1

tn

∫︂
Sf

χv · n dS dt =
Fn
f

|Sf |

∫︂ tn+1

tn

∫︂
Sf

χdS dt+ eαt
(∆t2) + eαh

(h2)

= Fn
f

∫︂ tn+1

tn
αf (t) dt+ eαt

(∆t2) + eαh
(h2)

= Fn
f α

n
f∆t+ eαt

(∆t2) + eαh
(h2),

(8.17)

where the fraction of the wetted face area Af (t) is defined as αf := Af (t)/Sf in this study,
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and Nteαt
(∆t2) = T

∆t
eαt

(∆t2) ∝ ∆t results in a first-order temporal quadrature error over
the simulated physical time T . Equation (8.17) is a simplified scheme used here only to
discuss the mass-flux consistency condition on the discrete level, it is not a practically usable
scheme for advecting αc, because it is significantly less accurate than modern geometrical
schemes [34]. Multiplying |V α

f |Euler
s from eq. (8.17) with (ρ− − ρ+) to obtain |Mf |s ensures

the consistency of eqs. (8.15) and (8.16), namely

(ρ− − ρ+)|V α
f |Euler

s

∆t
= (ρ− − ρ+)Fn

f α
n
f + (ρ− − ρ+)(eαt

(∆t) +
1

∆t
eαh

(h2)),

= (ρnfF
n
f )

Euler + (ρ− − ρ+)(eαt
(∆t) +

1

∆t
eαh

(h2)).

(8.18)

Note that the temporal accuracy lost by dividing by ∆t is recovered when the mass flux is
integrated over (multiplied with) ∆t, from the temporal term in the momentum conservation
equation. The next step, therefore, uses the mass flux (ρnfF

n
f )

Euler from eq. (8.18) in the
discretized convective term from eq. (2.15). Since the unstructured Finite Volume Method
linearizes the volumetric flux when discretizing the convective term, an Euler implicit dis-
cretization of eq. (2.15) leads to the contribution from the discretized momentum convection
term in the form or

∆t

|Ωc|

(︃∫︂
Ωc

∇ · (ρvv) dV
)︃

tn+1

≈ ∆t

|Ωc|
∑︂
f∈Fc

ρofF
o
f vfn+1, (8.19)

with the factor ∆t
|Ωc| resulting from the finite-difference approximation of the cell-centered

average of the temporal derivative term, i.e. (∂tρv)c, recovering the first-order temporal
accuracy in eq. (8.18) for the implicit Euler temporal discretization scheme physical time T .
Note that eq. (2.15) is solved (discretized) iteratively in a segregated solution algorithm (e.g.,
[2, 47]), so the linearized mass flux is denoted with the outer iteration index 1 ≤ o ≤ No. If
the solution algorithm converges, ρofF o

f = ρn+1
f Fn+1

f . The Euler implicit scheme in eq. (8.19)
allows ρofF o

f to be approximated with the consistent mass flux (ρofF
o
f )

Euler from eq. (8.18),
which ensures the consistency between mass conservation and volume fraction advection.
Namely, in a converged solution, the Euler implicit discretization requires ρofF o

f = ρn+1
f Fn+1

f ,
and a single mass flux (ρfFf )

Euler can only be obtained by scaling |V α
f |Euler in eq. (8.17), a

mass flux averaged over ∆t. Therefore, increasing No brings the mass flux in eq. (8.19) closer
to the one expected by the implicit Euler scheme; however, it does not impact consistency.
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The consistency of the mass conservation and volume fraction advection is crucial in the
momentum conservation equation, as any deviation from mass conservation in momentum
conservation increases the the source-term

∑︁
f∈Fc

(︂
1
ac

)︂
f
[H(F o, ρo, vi−1)]f ·Sf in the pressure

Poisson equation, with i denoting the inner iterations of the pressure equation (cf. [2, 47] for
details). In other words, errors in the mass flux artificially accelerate or decelerate the fluid
as the pressure equation tries to ensure volume (mass) conservation. Examining the errors
in eq. (8.18), it’s clear that an error in the mass flux scaled from |V α

f |s will be multiplied by
(ρ− − ρ+): small errors in the volumetric flux (fluxed phase-specific volume) are scaled with
the density difference, and this leads to large errors in the velocity field and catastrophic
failures for large density differences.

An alternative temporal integration scheme is exemplified for eq. (2.15), say, Crank-
Nicolson scheme, resulting in contributions from the convective term in the form of

0.5
∆t

|Ωc|

(︄∑︂
f∈Fc

ρnfF
n
f vfn +

∑︂
f∈Fc

ρofF
o
f vfn+1

)︄
(8.20)

In this case, it is impossible to ensure consistency. The Crank-Nicolson scheme strictly requires
ρofF

o
f = ρn+1

f Fn+1
f , and (ρfFf )

Euler is obtained from eq. (8.18) as a single average quantity
over ∆t, so there are no two mass fluxes for eq. (8.20), making eq. (8.18) inconsistent with
the Crank-Nicolson scheme eq. (8.20) already in the first time step.

The main takeway point is that computing the mass flux by scaling the fluxed phase-
specific volume over ∆t limits the temporal discretization to schemes that utilize a single
mass flux term within ∆t - e.g., Euler explicit or implicit, or 2nd-order backward implicit
schemes. Any other temporal discretization scheme (e.g., Runge-Kutta) that utilises a linear
combination of different mass fluxes within ∆t are inconsistent with the mass flux scaling
given by eq. (8.18).

Additionally, any modification of the scaled mass flux causes inconsistencies. Concretely,
limiting the mass flux in the discretized eq. (2.15) causes a hidden inconsistency between
mass and volume fraction conservation. The inconsistency is hidden because eq. (8.16) is
not solved, a scaled flux is however used , e.g., in eq. (8.18), resulting in the integration of
a mass flux (along with momentum) over ∆t that is different from the consistent mass flux
from eq. (8.18).
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Figure 25: Geometric upwinding for |V α
f |isoAdvector

s in plicRDF-isoAdvector [6].

In addition to the simplified VOF scheme eq. (8.17), a more complex, geometric isoAd-
vector scheme [36] is discussed here, that computes

|V α
f |isoAdvector

s =
0.5(Fn

f + F o
f )

|Sf |

∫︂ to

tn

∫︂
Sf

χ(x, t) dS dt+ eαt
(∆t2) + eαh

(h2)

=
0.5(Fn

f + F o
f )

|Sf |

∫︂ to

tn
Af (t) dt+ eαt

(∆t2) + eαh
(h2)

= 0.5(Fn
f + F o

f )

∫︂ to

tn
αf (t) dt+ eαt

(∆t2) + eαh
(h2)

(8.21)

with
∫︁ to

tn
αf (t)dt computed geometrically by displacing the piecewise-linear interface from

the upwind cell, using the upwind-cell velocity and the first-order accurate displacement
approximation vc∆t, schematically shown in fig. 25. The Euler temporal integration of the
displacement vc∆t for the evaluation of

∫︁ to

tn
αf (t)dt on the r.h.s. of eq. (8.21) makes it possible

to consistently compute the mass flux by scaling the phase-specific fluxed volume

(ρofF
o
f )

isoAdvector =
(ρ− − ρ+)|V α

f |isoAdvector
s

∆t
, (8.22)

equivalently to eq. (8.18). Even though
∫︁ to

tn
αf (t)dt is evaluated using exact geometric

integration (cf. [6] for details), the Ao
f , used as the end-point of the geometric integration is

approximated by first-order displacement v∆t, that makes the average displacement velocity
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of the fluid interface constant over ∆t, and, consequently, the mass flux from eq. (8.22)
consistent.

The same consistency would be ensured if V α
f would be constructed using a flux-based

VOF method that maps Sf using the reverse flow-map (e.g., [87]), if the approximation
of the flow-map is first-order accurate. In other words, if V α

f is constructed geometrically
using displacements given by v(x, tn)∆t, regardless of the geometrical approximation, V α

f is
constructed using displacements constant over ∆t, so dividing the volume V α

f with ∆t results
in the consistent volumetric flux, constant over ∆t.

Trying to compute the consistent mass flux by scaling the phase-specific fluxed volume
for the Crank-Nicolson scheme,∑︂

f∈Fc

0.5∆t(ρofF
o
f + ρnfF

n
f ) = (ρ− − ρ+)

∑︂
f∈Fc

|V α
f |s, (8.23)

involves ρfFf at tn and to in the same equation, making it impossible to express either one
without the other, using only the known phase-specific volume |V α

f |, fluxed over∆t before the
solution of the momentum equation. This confirms the difficulty in evaluating mass flux from
time-integrated volumetric fluxes pointed out by Arrufat et al. [76]. Furthermore, in order to
integrate |V α

f | using the Crank-Nicolson scheme (i.e. trapezoidal quadrature), the position of
the interface at to must be known, namely Σo. The interface Σo can be reconstructed from
αo
c , which is advected using the forward extrapolation in time (eq. (8.21) and fig. 25, [36]).

However, this kind of quadrature does not exactly correspond to the Crank-Nicolson scheme
used in the momentum equation, because the advection of the interface Σo uses old-time
velocities vnc , and Crank-Nicolson in the momentum equation uses the new, implicit velocity
vn+1
c .

If, however, the mass flux is not computed by scaling |V α
f |, ρfFf is uniquely determined

by χ(x, t) section 3.5.4. Namely, at any time t omitted here for brevity, from eq. (2.10), it
exists∫︂

Sf

ρv ·n dS =: (ρfFf )
ρ ≈ Ff

|Sf |

∫︂
Sf

[(ρ−−ρ+)χ(x)+ρ+] dS = (ρ−−ρ+)αfFf +ρ
+Ff (8.24)

with superscript ρ in (ρfFf )
ρ denoting the mass flux estimated directly from the model for ρ

eq. (2.10), i.e. from ρ± and the phase indicator χ (eq. (2.9)). The phase-specific volumetric
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flux αfFf from eq. (8.24) is, however, inconsistent with the equivalent volumetric flux used for
advecting volume fractions eq. (8.12), which can be discretized with a wide range of different
flux-based geometric VOF methods. The mass flux (ρfFf )

ρ is different from (ρfFf )
isoAdvector

eq. (8.22); however, they are both consistent, in the sense that they both satisfy eqs. (8.15)
and (8.16). Namely, inserting

ρv = (ρ− − ρ+)χv+ ρ+v (8.25)

from eq. (2.10) multiplied by v, into eq. (8.6), and integrating over [tn, tn+1] results in

ρn+1
c = ρnc − 1

|Ωc|

∫︂ tn+1

tn

[︃∫︂
∂Ωc

(ρ− − ρ+)χv · n dS dt+ ρ+
∫︂
∂Ωc

v · n dS
]︃
dt (8.26)

= ρnc − 1

|Ωc|

∫︂ tn+1

tn

[︃∫︂
∂Ωc

(ρ− − ρ+)χv · n dS + ρ+
∫︂
Ωc

(∇ · v)dV
]︃
dt (8.27)

= ρnc − 1

|Ωc|

∫︂ tn+1

tn

[︃∫︂
∂Ωc

(ρ− − ρ+)χv · n dS
]︃
dt (8.28)

= ρnc − (ρ− − ρ+)

|Ωc|
∑︂
f∈Fc

∫︂ tn+1

tn
χv · n dS (8.29)

= ρnc − (ρ− − ρ+)

|Ωc|
∑︂
f∈Fc

|V α
f |s. (8.30)

The main point of eq. (8.30) is that the additional term ρ+v, discrete ρ+Ff in eq. (8.24),
does not impact consistency requirement of eqs. (8.15) and (8.16) - ensuring that the mass
conservation remains equivalent to volume (phase indicator, volume fraction) conservation,
scaled with the density difference. More importantly, eq. (8.30) shows this is true irrespective
of the VOF method used to approximate |V α

f |s, in our case, the plicRDF-isoAdvector method
[6]. The second consistency requirement to use exactly the same ρfFf in the discrete
momentum equation is still necessary.

8.2 Collocated segregated solution algorithm with the auxiliary density
equation

The consistent solution algorithms are adapted for the unstructured Volume-of-Fluid methods
on the plicRDF-isoAdvector method [6], and the auxiliary density equation solution is imple-
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mented into the segregated algorithm (i.e. solver) ”interIsoRhoFoam”, which is summarized
by algorithm 6.

In section 3.5.4, it is shown on the level of the mathematical model why solving an
auxiliary mass conservation equation plays a key role in reducing numerical inconsistency
caused by high density ratios.

The mass conservation equation is solved in the outer loop of the segregated algorithm
algorithm 6 in the following discrete form

ρo+1
c = ρoc +

∆t

|VΩc
|
∑︂
f

ρofF
o
f . (8.31)

Equation (8.31) is the auxiliary mass conservation (density equation). It is solved after
updating the volume fraction in the outer loop to αo

c by utilizing eq. (8.12) with any flux-
based VOF method. Interface reconstruction computes χ̃c(x, to) in every finite volume Ωc

intersected by the fluid interface. The piecewise-linear interface approximation χ̃c(x, to),
together with eq. (2.10), provides ρof for eq. (8.31). Since F o

f is also available, eq. (8.31) can
be explicitly evaluated. To compute the mass flux, the consistency relationship between the
phase indicator and the face-centered density ρf is utilized, derived in section 3.5.4 for the
hybrid Level Set / Front Tracking method. It can be applied on any two-phase flow simulation
method that is using a phase indicator χ. The surface integral of mass flux at time step o is
expressed as ∫︂

∂Ωc

ρovo · ndS =

∫︂
∂Ωc

[ρ−χo + ρ+(1− χo)]vo · n dS, (8.32)

and discretized as ∑︂
f∈Fc

ρofF
o
f =

∑︂
f∈Fc

[︁
ρ−αo

f + ρ+(1− αo
f )
]︁
F o
f , (8.33)

where
αo
f =

1

|Sf |

∫︂
Sf

χ(x, to) dS =
|Af (t

o)|
|Sf |

. (8.34)

is used to define the face-centered density

ρof = ρ−αo
f + ρ+(1− αo

f ) (8.35)

in the mass flux. The momentum equation is discretized as

ρocvo − ρnc vn +
∆t

|Ωc|
∑︂
f

ρofF
o
f vof =

∆t

|Ωc|
M, (8.36)
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and solved for vof in the outer loop of the p− v solution algorithm. The source term M is a
shorthand term that contains all the remaining contributions from the discretizaiton, used here
for brevity. The volume fractions αo

c are already solved for using eq. (8.12) at the beginning
of the ”o” outer iteration, and used to approximate the phase indicator χ̃c(x, to) for the mass
flux ρofF o

f using eq. (8.33), used in the same way in the auxiliary density equation eq. (8.31),
solved for ρoc, as ρofF o

f in eq. (8.36), without using flux limiters. The values computed from
the last outer loop are regarded as the new values at the time step. At last, the density field
is needed to be restored with respect to the volume fraction to maintain consistency between
them. The solution algorithm interIsoRhoFoam is summarized by algorithm 6. Algorithm 6
uses a combination of SIMPLE and PISO algorithms in OpenFOAM® with a residual-based
control to terminate outer iterations, which tests if a maximal number of iterations has been
reached, the final domain-maximal residuals of the pressure equation rp are below absolute
tolerance, or the ratio of the final and initial domain-maximal residuals rp

rip
is smaller than a

user-prescribed relative tolerance.

Algorithm 6 The solution algorithm interIsoRhoFoam.
1: while t ≤ tend do
2: tn+1 = tn +∆t

3: for o = 0; o < Nouter; ++o do
4: Solve volume fraction for αo

c ▷ Equation (8.12)
5: Reconstruct the phase indicator χ̃c(x, t

o)

6: Compute ρof from χ̃f (x, t
o) ▷ Equation (8.35)

7: Compute the mass flux ρofF o
f := ρof (vo−1

f · Sf )

8: Solve the density for ρoc with ρofF o
f ▷ Equation (8.31)

9: Discretize momentum equation (Equation (2.15)) with ρoc and ρofF o
f .

10: for i = 0; i < Ninner; ++i do
11: Solve the pressure equation for pic. ▷ Cf. [2, 47].
12: Compute F i

f and vic from pic. ▷ Cf. [2, 47].
13: end for
14: end for
15: Restore ρn+1

c consistent with αn+1
c , i.e. ρn+1

c = (ρ− − ρ+)αn+1
c + ρ+ ▷ Equation (2.10).

16: end while
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8.3 Phase-specific face area calculation

Ω̃
+

D(t
o)

Ω̃
−
D(t

o)

Σ̃
n+1

(to)

Ω̃
−
U (t

o)

Ω̃
+

U (t
o)

(a) Upwind and downwind cells intersected with piecewise-
linear VOF interfaces.

(αf )U (t
o) (αf )D(t

o)

(b) A face Sf intersected with downwind (D) and upwind (U)
piecewise-linear VOF interfaces.

Figure 26: Interface reconstructed as Σ̃
o

U,D in upwind (U ) and downwind (D) cells. Green
polygons are interface polygons Σ̃

o

U,D ∩ ΩU,D. Blue lines are intersection line
segments Σ̃

o

U,D ∩ Sf . Red points are intersection points Σ̃
o

U,D ∩ ∂Sf .

The integral eq. (8.34) leaves room for alternative discretizations, and therefore requires
attention. Flux-based geometrical Volume-of-Fluid methods advect volume fractions using
geometrical upwind advection schemes, transporting Ω̃

−
(t) ≈ Ω−(t) geometrically from the

upwind cell, denoted with U in fig. 26a, to the downwind cell, denoted with D in fig. 26a.
Flux-based geometrical VOF methods therefore already provide the intersection points and
the intersection line segments denoted as red dots and the blue line segments in fig. 26, are
available, simplifying the area fraction calculation in eq. (8.34). Since the geometrical VOF
methods approximate the phase indicator as piece-wise continuous, with a jump discontinuity
not only across the fluid interface Σ(t) but also across the finite volume boundary ∂Ωc, the
line segments forming the intersection of the piece-wise continuous interface and a face Sf it
intersects (see fig. 26a), do not overlap. fig. 26b shows schematically the two intersection
line segments on a cell face. The intersection line segment of the interface and the upwind
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cell are selected as the submerged area border to calculate the area fraction. The evaluation
of αf and, from it, ρf , µf , is summarized by algorithm 7.

Algorithm 7 Sub-algorithm for calculating αf , ρf , µf .
1: Initialize ρf , αf with upwind cell-centered values ρU , αU .
2: αf = 1

|Sf |

∫︁
Sf
χ̃U (x) dS =

|Ω̃−
U∩Sf |
|Sf | ▷ Equation (8.34) with upwind χ.

3: ρf = (ρ− − ρ+)αf + ρ+. ▷ Equation (2.10).
4: µf = (ρ−ν− − ρ+ν+)αf + ρ+ν+. ▷ Equation (2.11).

It is important to note that µf is geometrically evaluated from a geometrical αf , and not
interpolated, as it is found that interpolation leads to large errors in simulations with large
differences in dynamic viscosity.

8.4 Consistency of VOF methods for Two-Phase Flows with High Density
Ratios

Here the findings that lead to an equation discretization with flux-based geometrical VOF
methods that remains consistent for very high density ratios are summarized:

• Computing the mass flux ρfFf by scaling the fluxed phase-specific volume |V α
f |s with

(ρ− − ρ+)/∆t approximates only one constant average mass flux over ∆t.

• The constant mass flux ρfFf scaled from |V α
f |s with ∆t , as an average value over ∆t,

can only be consistently used in first-order schemes, i.e. use a single mass flux value
over ∆t.

• Computing the mass flux ρfFf from the density model eq. (2.10) disconnects mass
conservation from volume fraction advection, which uses geometrical integration, i.e. a
geometrically integrated phase-specific volumetric flux. This requires a solution of an
additional (auxiliary) density equation ([47, 51]) for cell-centered density, discarded
at the end of the time step.
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• Upwinding geometric VOF methods that use the Euler temporal scheme to approximate
point displacements are equivalent to using ρfFf from eq. (8.24) and solving the
density equation for ρoc, used further in p − v coupling to obtain a divergence-free
cell-centered velocity. In other words, combining Euler temporal integration scheme
with upwind scheme for the momentum equation guarantees numerical consistency for
any flux-based VOF method, which uses temporally first-order accurate displacements
in its geomterical integration of the fluxed phase-specific volume.

These points are verified and validated in the following section.

9 Verification and validation

Data archives of the implementation of the interIsoRhoFoam algorithm, input data, post-
processing software and secondary data are publicly available [123, 124]. The method is
actively developed in a publicly available git repository [125].

9.1 Time step size

The time step is limited by the CFL condition in the explicit plicRDF-isoAdvector method [6],

∆tCFL =
CFL h

|v|
, (9.1)

where h is the discretizaiton length, and CFL = 0.2 is used from [6]. Another restriction for
the time step size considers the propagation of capillary waves on fluid interfaces,

∆tcw =

√︃
(ρ+ + ρ−)h3

2πσ
. (9.2)

This time step constraint was introduced first by Brackbill, Kothe, and Zemach [27], and
revised by Denner and Wachem [97]. In this study, the time step is restricted using the
relation from Tolle, Bothe, and Marić [2], namely

∆t = min(k1∆tcw, k2∆tCFL) (9.3)
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where k1 and k2 are scaling factors. k1 = 1, k2 = 0.5 are give as the default value in this
section.

9.2 Translating droplet in ambient flow

A canonical test case, originally introduced by Bussmann, Kothe, and Sicilian [58] in 2D,
involves a moving droplet in quiescent ambient flow. Zuzio et al. [7] extended the 2D case to
3D using a density ratio of 106. Following the setup in [7], the droplet of radius R = 0.15

has the initial velocity of (0, 0, 10). To smooth the velocity field and avoid the perturbation
caused by sudden acceleration of still ambient flow, the initial constant velocity is assigned
not only for the cells of the droplet and the interface layer but also the interface cell layer
adjecent to interface cells. The droplet with initial center location (0.5 0.5 0.5) translates to a
distance of L = 1 and the simulation time is then tend = 0.1. The computational domain has
dimensions Lz = Lx = Ly = 1. The periodic boundary condition is applied to all boundary
patches. The tests with the periodic boundary condition showed that the plicRDF-isoAdvector
method [6] implemented in [49] has an inconsistency at the periodic boundary, which is fixed
as described in appendix 3. The mesh setup from [7] is also followed: the mesh resolution is
in a range of N ∈ (32, 48, 64) per unit side-length of the computational domain, resulting in
≈ (10, 15, 20) mesh cells per droplet diameter. Surface tension force is neglected in this case,
so only ∆tCFL from eq. (9.3) is taken into account. The viscosity and gravitational forces
are neglected to highlight the numerically consistent behavior of the mass and momentum
convection. Three error norms are adopted to evaluate the results quantitatively, for mass,
momentum, and sphericity:

Emass =
M(t)−M(0)

M(0)
=

∑︁
kmk(t)−

∑︁
kmk(0)∑︁

kmk(0)
=

∑︁
k ρk(t)Vk∑︁
k ρk(0)Vk

, (9.4)

Emom =
|
∑︁

kmk(t)vk(t)| − |
∑︁

kmk(0)vk(0)|
|
∑︁

kmk(0)vk(0)|
, (9.5)

Esph =

⃓⃓⃓⃓
⃓∑︂
c∈C

Sc(t)−
∑︂
c∈C

Sc(0)

⃓⃓⃓⃓
⃓ , (9.6)
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where the subscript k indicates that the value is extracted from the cell Ωk and the mk, Vk

denote the mass and volume of Ωk. In eq. (9.6),Sc is the area of the PLIC-VOF interface
polygon in the cell Ωc. These two ratios of eqs. (9.4) and (9.5) represent the time evolution
of the normalized error of the global sum of the heavy phase mass and momentum. In this
case, Emass is expected to be near zero because there is no source and dissipation for both
mass, and flux-based geometrical VOF method have a very high degree of local volume (mass)
conservation.

In the absence of force terms on both sides of momentum transport equation, i.e,
eq. (2.15), assuming the periodic boundary condition is applied to all boundary patches,
momentum conservation dictates that the deviation Emom should also theoretically remain at
zero over time. Bussmann, Kothe, and Sicilian [58] proposed that a droplet, characterized by
a large density ratio (106), should undergo translation without deformation in an ambient
flow, much like a solid sphere moving through a void. This conclusion has been widely
accepted and corroborated by several publications (e.g., [50, 51, 53, 55, 65]). However, these
studies qualitatively assessed droplet deformation based on visual representations of droplet
shape. In this work, the sphericity Ψd is employed as a quantitative measure. Additionally,
Esph is used to characterize the deviation of deformation from the initial droplet shape.

As discussed in section 8.4, when the first-order accurate Euler and Gauss upwind scheme
are employed to discretize momentum conservation eq. (2.15), the mass flux (ρfFf )

isoAdvector

from eq. (8.22) will be consistent. Since the choice of discretization schemes ensures consis-
tency of the discretization, there is no need to modify the implementation of the numerical
method. The analysis from section 8 has been verified for the ”interIsoFoam” solver and it
has been compared with the ”interIsoRhoFoam” solution algorithm 6 that implements the
auxiliary density equation. The normalized mass error eq. (9.4) is nearing machine epsilon,
and is therefore much smaller than than the linear solver tolerance (set for this case to 10−12),
for both interIsoFoam and interIsoRhoFoam, showing excellent conservation of mass for both
configurations. The consistency of the mass and phase indicator transport, as well as the
consistency of the mass flux approximation of the interIsoFoam and interIsoRhoFoam with
Euler+upwind schemes is reflected in an equivalent accuracy and stability for the momentum:
eq. (9.5) remains equally much smaller than the linear solver tolerance, nearing machine
epsilon, and remains stable. Therefore, the consistency and equivalence of the ”interIsoFoam”
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Time schemes Gaussian convection schemes Order of convection accuracy Category of convection Boundedness of convection Mass flux consistency

Crank-Nicolson[126] upwind first-order NVD/TVD Bounded no

Euler

upwind first-order NVD/TVD Bounded yes

cubic[127] second-order non-NVD/TVD Unbounded no

limitedLinearV first-/second-order NVD/TVD Unbounded no

linear second-order non-NVD/TVD Unbounded no

LUST second-order non-NVD/TVD Unbounded no

MUSCL[128] second-order NVD/TVD Unbounded no

QUICK[129] second-order NVD/TVD Unbounded no

SuperBee[130] second-order NVD/TVD Unbounded no

vanLeer[131] second-order NVD/TVD Unbounded no

Table 5: The combinations of different time and convection schemes used to test the effect
of numerical consistency.

and ”interIsoRhoFoam” are verified, with the Euler+upwind schemes.
Note that this verification case is extremely challenging, since it is an inviscid case - there

is no viscous force available in this case to dampen the errors resulting from inconsistent
two-phase mass and momentum transport.

Next, inconsistencies leading to large errors and often to catastrophic failure when more
than one mass flux is used over ∆t when discretizing eq. (2.15) are demonstrated, or the
mass flux is limited in the discretized eq. (2.15).

9.2.1 Comparison of different schemes

Using the Crank-Nicolson scheme to discretize eq. (2.15) reveals that the temporal scheme
involving implicit mass flux ρfFf results in a mismatch between mass convection and volume
fraction convection scaled by (ρ−−ρ+), due to the fact that the Navier – Stokes equation using
a segregated method is solved iteratively within a time step, and the interface’s advection
velocity thus cannot be updated simultaneously with vn+1 from the previous p− v coupling
iteration. The inconsistency is amplified by the density-ratio. Combinations of schemes listed
in table 5, are tested to verify their effect on the mass flux inconsistency.

Figures 27 and 28 represent the temporal evolution of Emass, and Emom. It is evident
from fig. 27 that mass conservation is not maintained when utilizing the Crank-Nicolson time
discretization scheme, and divergence schemes cubic, Linear-Upwind Stabilised Transport
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Figure 27: Temporal evolution of normalizedmass conservation error with different schemes:
interIsoFoam, N = 64.
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Figure 28: Temporal evolution of normalized momentum conservation error with different
schemes: interIsoFoam, N = 64.
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Figure 29: Temporal evolution of sphericity error with different schemes: interIsoFoam,
N = 64.

(LUST) and Quadratic Upstream Interpolation for Convective Kinematics (QUICK). These
simulations terminate at an early stage with catastrophic failure. However, for cases that can
run until the final time, the magnitude of mass errors, as shown in the zoomed subfigure
of fig. 27, is on the order of 10−10, indicating mass conservation. This observation aligns
with the inherent characteristic of the volume of fluid method, which is known for its mass
conservation property. The vertical lines from the results of cubic, QUICK and Crank-Nicolson
can be observed in fig. 28. Some combinations deliver stable momentum errors. A closer
examination of the stable cases in the zoomed view of fig. 28 confirms the use of the Euler
temporal scheme.

The temporal evolution of sphericity error is depicted in fig. 29 where the steepness of the
curves indicates the extent of droplet deformation from its initial shape. The results obtained
from four unstable scheme combinations show significantly larger deviations in sphericitiy. It
is notable that although the schemes Euler+limitedLinearV, linear and vanLeer, demonstrate
comparable performances compared with the consistent-on-paper Euler+upwind in terms of
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(a) Crank-Nicolson + upwind (b) Euler + LUST

(c) Euler + limitLinearV (d) Euler + upwind

Figure 30: Final shape of the droplet calculated by interIsoFoam with different schemes:
N = 64.

mass and momentum conservation in figs. 27 and 28, sphericity errors calculated using these
schemes deviate more from the expected value. Moreover, the zoomed view reveals that,
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apart from Euler+upwind, all other stable scheme combinations display varying degrees of
divergence. This suggests that if the simulations were to continue for a longer duration, these
cases would likely crash. Figure 30 presents the final shapes of the droplets simulated using
interIsoFoam with two stable scheme combinations and two unstable combinations. For the
unstable combinations, a common occurrence is observed: the original droplets disintegrate
into small, irregularly scattered pieces. A comparison between the final shapes obtained
using the inconsistent but in this verification case, for these parameters, still stable scheme
combination Euler + limitedLinearV (fig. 30c) and the consistent scheme combination Euler
+ upwind (fig. 30d) corroborates the findings from the sphericity errors in fig. 29: an evident
”crown” with irregular bumps forms on the top part of the droplet in fig. 30c, leading to a
reduction in sphericity. On the contrary, in fig. 30d, only a slight shrinkage occurs in the neck
region of the droplet, while the top surface remains smooth.

table 6 summarizes these findings, providing information on early termination of scheme
combinations that are inconsistent, as well as mass, momentum and sphericity errors for dif-
ferent mesh resolutions. Two finer resolutions, i.e., N ∈ (96, 128), are tested for interIsoFoam
with Euler+upwind schemes to verify the mesh convergence of the consistent method. The
study shows the clear tendency of error reducing with the finer mesh, as illustrated in fig. 31.

All scheme combinations are tested for a low density ratio with interIsoFoam, i.e., density
ratio= 1. As shown in fig. 51, all cases run stably to the terminated time, and the conservation
errors are reduced to below the machine epsilon.

9.3 Translating sub-millimeter droplet with realistic physical properties

materials/properties (25 ◦C) density (kg/m3) kinematic viscosity (m2/s) surface tension (N/m) density ratio

air 1.1839 −−− −−− −−− [132]

mercury 13.5336× 103 −−− −−− (in air) 11431.37(in air) [132]

Table 7: Realistic fluid properties of the mercury droplet/air ambient pair.

The realistic densities of the mercury droplet and air ambient pair are selected for the
verification case of the translating sub-millimeter droplet. The density ratio displayed in table 2
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interIsoRhoFoam interIsoFoam
Scheme combination Resolution End time Mass error Momentum error Sphericity Error End time Mass error Momentum error Sphericity Error

Euler+upwind 32 0.1 0.0 0.0 3.062e-03 0.1 0.0 0.0 3.062e-03
48 0.1 0.0 0.0 1.111e-03 0.1 0.0 0.0 1.110e-03
64 0.1 0.0 0.0 3.484e-04 0.1 0.0 0.0 3.484e-04
96 * * * * 0.1 0.0 0.0 3.197e-04
128 * * * * 0.1 0.0 0.0 2.298e-04

Euler+cubic 32 0.0206 4.840 1.028e+18 -0.1299 0.067 8.807e-03 1.440e+10 0.3501
48 0.01 -2.925e-02 3.581e+22 -0.2341 0.0260 1.6346 2.390e+6 0.1024
64 0.0065 -2.190e-03 2.233e+22 -0.2267 0.0273 0.8301 3.142e+8 0.6643

Euler+limitedLinearV 32 0.1 0.0 5.511e-04 6.773e-03 0.1 0.0 -2.656e-09 5882e-3
48 0.1 0.0 4.793e-04 2.852e-03 0.1 0.0 -4.995e-09 3.671e-03
64 0.1 0.0 3.290e-04 2.343e-03 0.1 5.695e-11 6.407e-11 2.216e-04

Euler+linear 32 0.0384 -4.520e-04 3.603e+21 -0.1932 0.1 0.0 -2.540e-10 2.234e-02
48 0.0306 -0.1954 4.271e+24 -0.2330 0.1 0.0 2.210e-07 1.843e-02
64 0.0239 -0.0676 2.604e+25 -0.2481 0.1 1.210e-09 3.915e-10 9.681e-4

Euler+LUST 32 0.0221 598.0 3.036e+21 -0.2055 0.0993 0.1097 2.162e+19 0.4242
48 0.0166 1.026e+55 3.272e+120 0.2428 0.0258 1.047e+13 1.797e+39 -0.1762
64 0.002 0.0 9.254e-05 5.042e-04 0.0485 2.006e-05 -2.664e-05 0.2856

Euler+MUSCL 32 0.0046 0.0 4.727e+8 -0.0932 0.1 0.0 1.143e-05 7.383e-03
48 0.0064 0.0 -0.1949 -3.500e-03 0.0485 2.227e+12 2.566e+36 -0.1434
64 0.0092 0.0 1.059e-03 -1.202e-03 0.1 3.075e-09 1.780e-07 7.070e-4

Euler+QUICK 32 0.0203 0.0 5.455e+6 -0.2096 0.1 0.0 5.177e-4 9.6670e-03
48 0.0066 -3.198e-09 6.806e+82 -0.2699 0.0185 2.417e-06 4.164e+51 0.0118
64 0.0079 -5.097e-07 1.862e+24 -0.1086 0.0518 0.1564 5.537e+21 7.812e-3

Euler+SuperBee 32 0.0237 0.0 5.732e+15 -0.1570 0.1 0.0 -2.632e-05 5.094e-03
48 0.0022 0.0 0.2876 -4.630e-04 0.0631 1.645e-10 8.588e+42 0.0120
64 0.0075 0.0 -1.206e-04 -8.018e-04 0.1 1.477e-08 2.970e-07 1.628e-03

Euler+vanLeer 32 0.1 0.0 4.190e-04 -4.514e-04 0.1 0.0 4.916e-07 3.495e-03
48 0.1 0.0 3.480e-04 1.417e-03 0.1 0.0 3.535e-07 4.868e-03
64 0.0896 0.0 -9.273e-05 0.0107 0.1 3.310e-09 5.478e-08 1.388e-04

CrankNicolson+upwind 32 0.0096 0.0 4.131e-04 -9.018e-04 0.0043 -0.2219 7.627e+21 -0.1632
48 0.0049 0.0 3.238e-03 -3.139e-04 0.0037 32.30 2.203e+24 -0.1965
64 0.0032 6.001e-03 6.280e+04 -2.093e-3 0.0729 9.124e+25 2.576e+60 0.3248

Table 6: The terminated time and the final normalized errors of interIsoRhoFoam and inter-
IsoFoam with different scheme combinations and mesh resolutions for translating
droplet in ambient flow case.

115



Figure 31: Mesh convergence study for sphericity error: interIsoFoam, Euler+upwind, N ∈
(36, 48, 64, 96, 128).

is around 104. The rest setups are same as in [47]. A spherical droplet of radius R = 0.25mm
translates a distance of three diameters with velocity 0.01m/s in z-direction of the rectangular
solution domain (Lx = Ly = 5R,Lz = 15R). The ambient flow has the same velocity, that is
va = (0, 0, 0.01). Three resolutions are tested in this case: N ∈ (16, 32, 64, 96, 128). The
initial centroid position of the droplet is (2.5R, 2.5R, 2R). Surface tension and viscous forces
are not considered in this case. Since the droplet translates with the ambient flow and there
is no sink or source for the droplet moving, the velocity field should keep unchanged.

The error norm L∞ is employed to measure the maximal deviation between the numerical
velocity and the analytical one among all cells, i.e.,

L∞(v) = max
i

(︃
∥vi − v∞∥

∥v∞∥

)︃
, (9.7)

where vi denotes the velocity of the cell i, and the analytical velocity value is v∞ = va =

(0, 0, 0.01). The expected exact value of L∞ is 0; however, in practice, the absolute accuracy
is limited by the absolute tolerance of the linear solver used to solve the pressure Poisson
equation.
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(a) interIsoFoam (b) interIsoRhoFoam

Figure 32: Temporal evolution of the velocity error norm L∞(v) with pure advection: Euler,
Gauss upwind, density ratio: 104, mesh resolution: N ∈ (16, 32, 64, 96, 128).

Figure 32 presents the temporal evolution of L∞(v). The same L∞(v) calculated for
both solvers reveals a very close numerical equivalence between the volume fraction and
mass conservation equation using the Euler+upwind combination of schemes. Errors of
both solvers remain stable. Absolute errors of interIsoFoam are somewhat larger; however,
they remain in the realm of numerical noise, significantly below the linear tolerance for the
pressure Poisson equation, ensuring consistency. A notable outcome from fig. 32 is the value
of the final converged L∞(v), which is at the magnitude of 1×10−11 and for interIsoRhoFoam
almost reaches the machine epsilon, confirming numerical stability and consistency of a very
high degree for this challenging verification case.

Additional tests are conducted on all schemes listed in table 5 for this particular case
setup. The corresponding results are presented in fig. 33. The results from Crank-Nicolson
temporal scheme and SuperBee convection scheme show significant numerical instability at
the initial stage of the simulation. In contrast, the errors obtained from all other schemes
remain stable throughout the entire simulation. Notably, there is a substantial variation in
accuracy among these schemes. The velocity errors from Euler + QUICK and upwind remain
at magnitudes around 10−11, while the errors from the other schemes initially increase and
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Figure 33: Temporal evolution of the velocity error norm L∞(v) with pure advection - com-
bining 10 schemes, density ratio is 104, mesh resolution isN = 96. Only Euler and
upwind(ing) schemes remain consistent and stable.
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stabilize at values that are 107 to 1010 times larger. Additionally, the same cases are tested
with density ratio 1 to investigate the effects of the density ratio on the numerical instability.
As shown in fig. 52, all cases keep stable with the low density ratio at the final stage. The
velocity errors of all tests are reduced to magnitudes of 10−14, even for the most critical
schemes, i.e. Crank-Nicolson + upwind.

9.4 Mixing layer

x

y

ρ+

ρ−

1.5mm

−1.5mm
0mm 3mm

Figure 34: 2D mixing layer

In this case, a 2D mixing layer case is tested. The 2D computational domain as depicted
in fig. 34 has the same length L = 3mm in both x− and y−direction. The liquid with high
density ρ− = 1000 kg/m3 flows in the middle region −0.15mm < y < 0.15mm of the square
computational domain with relatively low initial velocity v−x = 2m/s, while the gas with the
density ρ+ = 1 kg/m3 flows on both sides of the liquid area with very high initial velocity
v+x = 30m/s. A spatial velocity perturbation is initialized in the internal field and has the
distribution

vy(y) = 0.01v−x sin 2π
x

L
exp−(

2y

h
)2,

where h indicates the thickness of the liquid region, i.e. 0.3mm. The simulations are tested
with a resolution of Nx ×Ny ×Nz = 256× 256× 1. The duration of the simulation is set to
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0.003 s, allowing for sufficient number of time steps for the inconsistencies to develop. To
highlight the dominant impacts of the convection, the surface tension force, gravity, and
viscosity are excluded from the simulations. The periodic condition is employed for all
boundaries. The results are compared with the results computed by the ONERA DYJEAT
codes [7, 133–136], which upholds consistent mass-momentum transport through solving
the temporary density equations together with momentum equations on staggered meshes.

Figure 35 provides a quantitative comparison among multiple schemes in table 5 and
with the DYJEAT code, focusing on the temporal evolution of the normalized momentum error
evaluated using eq. (9.5).From the plot, it is evident that only two cases using interIsoFoam
remain stable, namely, as expected using Euler + upwind, but also Euler + limitedLinearV.
The zoomed-in view in fig. 35 highlights the accuracy of the results for these four stable cases.
The errors calculated from DYJEAT are larger than errors from stable cases using interIsoFoam,
which are around 4%. As shown in the detail in fig. 35, the errors from consistent Euler +
are minimal, with respect to all other combinations of schemes.

Figure 35: Time evolution of normalized momentum error of mixing layer with different
schemes and DYJEAT codes, density ratio: 103, resolution: N = 256.
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9.5 Validation of a single rising bubble

In the present study, the performance of the proposed method is investigated by applying it to
the simulation of a single bubble rising in a quiescent viscous liquid. To validate the proposed
approach, the configuration presented by Anjos et al. [5] is adopted, who simplified the
rising bubble experiments originally conducted by Bhaga and Weber [3]. In their work, Anjos
et al. [5] select three distinct viscosities for comparative analysis. The focus, in particular,
lies on the cases, characterized by larger liquid viscosities. The specific cases correspond to
a Morton number Mo = gν4l /ρlσ

3 = (848, 41.1, 1.31), where g represents the gravitational
acceleration, and νl, ρl, and σ denote the viscosity, density of the ambient liquid, and surface
tension coefficient, respectively. Three resolutions are tested: N ∈ (64, 96, 128).

For the presented simulations, the air bubble is initialized with an idealized spherical
shape, possessing a diameter of D = 2.61 cm. The air properties are defined by a viscosity
of 1.78× 10−5 kg/(ms) and a density of 1.225 kg/m3, while the liquid properties encompass
viscosities of (2.73, 1.28, 0.54) kg/(ms) and a density of 1350 kg/m3. Furthermore, the surface
tension between the air bubble and the liquid is 0.078Nm−1. The computational domain
is defined as (−4D,−4D,−2D)× (4D, 4D, 6D), where the positions of the space diagonal
vertices of the computational domain are delineated, with the initial position of the bubble set
at the origin, (0, 0, 0). A set of dimensionless normalized variables is introduced as follows:

w =
v√
gD

, t =

√︃
g

D
τ, (9.8)

where τ indicates the physical time in seconds.
As illustrated in fig. 36, the utilization of the Euler and upwind schemes ensures the

preservation of equivalence between volume fraction and mass advection equation. Con-
sequently, the results obtained from interIsoFoam and interIsoRhoFoam, when employing
the identical Morton number, display a substantial level of similarity. When considering Mo
= 41.1, as demonstrated in fig. 36c and fig. 36d, the velocities acquired from both solvers
demonstrate an initial increase until approximately t = 1, followed by a subsequent decline
leading to a stable state. Notably, the differences among the results become evident when
dealing with the cases involving Mo = 41.1. Specifically, in instances where a coarse mesh
(N = 64) is employed, the velocity decline is more pronounced, resulting in a smaller final
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stable velocity compared to the values presented in prior works [3–5]. The larger final velocity
disparity from the previous works, can be observed for Mo = 1.31 with a mesh resolution
N = 64 in figs. 36e and 36f, which is resulted from that the rising bubble with lower viscosities
has a stronger deformation and has a thinner structure required to be captured. Using a
coarse mesh loses this information and subsequently causes a larger error. Conversely, higher
resolutions yield stable velocities that agree well with the experimental data documented by
Bhaga and Weber [3] and Hua and Lou [4]. On the other hand, for cases with Mo = 848,
characterized by a larger viscosity, the impact of resolution is less conspicuous, as depicted
in fig. 36a and fig. 36b. The final velocities attained from different resolutions converge
similarly to values that fall between the results obtained in the simulation conducted by Hua
and Lou [4] and the experimental study conducted by Bhaga and Weber [3].

Furthermore, the profiles obtained by slicing the surfaces of the droplets, passing through
their centers, are compared with the experimental profiles from Bhaga and Weber [3], as
illustrated in fig. 37. For both solvers, the droplets with varying viscosities exhibit final
shapes that closely align with the experimental visualizations, validating the hypothesis of the
equivalence between Euler+upwind discretization of eq. (2.15) using the scaled mass flux
|V α

f |s from eq. (8.22), and the solution of the auxiliary density equation using algorithm 6.

9.6 Liquid jet in high speed gaseous cross-flow

Different from the parallel velocities of the mixing layers in section 9.4, the liquid flows with a
lower velocity is perpendicular to the velocity of the gaseous phase in this case, which is called
the injection of a liquid jet in a gaseous cross-flow (LJCF) and is common in many engineering
applications. The geometry and the physical properties are configured by referring to Zuzio
et al. [7]. The rectangular computational domain Ω : [−0.01, 0,−0.01]× [0.03, 0.02, 0.01]m
has two inlets. The gas flows in with a velocity v+ = [65, 0, 0]m/s from the left boundary
xmin. Thuillet [0] revealed the impact of the liquid inlet velocity profile on the jet trajectory.
He simulated the jet with an uniform liquid inlet velocity profile, and with a velocity profile
calculated through simulating the injector. The jet trajectory results from the case with
calculated velocity profile showed better agreement with the experiment. The calculated
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liquid injected velocity profile from [0] is utilized, which is

v−y = −21.434
(︂r
d

)︂3
+ 15.512

(︂r
d

)︂2
+ 8.6504

, where v−y is the y−component of the liquid inlet velocity v−, r indicates the distance to
the nozzle center, and d is the diameter of the nozzle. The x, z−component of v− are set to
zero, whereas d = 0.002m. The nozzle’s center locates at [0, 0, 0] in the bottom boundary
patch ymin. To save the computation resource, the uniform Cartesian mesh with a moderate
resolution of [Nx, Ny, Nz] = [128, 64, 64] has been adopted. Figure 38 depicts the flow domain.
The physical properties are ρ− = 1000 kg/m3, ρ+ = 1.225 kg/m3, µ− = 1.0× 10−3 kg/(ms),
µ+ = 1.78× 10−5 kg/(ms), σ = 7.2× 10−2 Nm−1, g = 9.81m/s2.

−0.01 0.03
−0.01

0.01
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Figure 38: Liquid in a cross flow.

Figure 40 shows the final state of the injected liquid at t = 7.1ms using interIsoFoam
and interIsoRhoFoam with Euler and Gauss upwind regarding the iso-value of the recon-
structed distance function RDF = 0, as well as using DYJEAT [7] with a high resolution of
[Nx, Ny, Nz] = [1024, 512, 512], whose shape is rendered by the iso-value 0.5 of the volume
fraction. Figure 40a and fig. 40b illustrate the ruptured liquid jet from the y-side view.
The droplets’ distributions of interIsoFoam and interIsoRhoFoam display many comparable
characteristics. There are two strips of droplets and a strip of bag-like liquid structure. The
outer liquid segregates into two yz-plane symmetric strips of droplets at an early stage, i.e.,
at a low penetration height, as shown in the right subfigure of fig. 40a and fig. 40b. These
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droplets translate with the gas along the x-direction and spread spanwise in the y-direction.
The remaining center liquid has a wavelike detachment and forms the bag-like structure in
the middle of the strips. Figure 40c demonstrates the results from DYJEAT codes with a higher
resolution. Similar liquid distributions can be observed: the liquid in the center zone of the
nozzle propagates like a wave and breaks up into some large packets at a higher position,
whereas the liquid in the periphery of the nozzle zone rips at a low penetration height. The
tests using interIsoFoam with unstable schemes are also conducted, and they fail. An example
combination of Euler + cubic, is shown in fig. 54, with the simulations on both coarser and
finer mesh fail catastrophically.

This validation case is a candidate for a benchmark case for validating two-phase flow
numerical methods that consistently handle high density ratios, because the experimental
form of the jet can be accurately reproduced on coarser mesh resolutions. Using a coarser mesh
resolution interIsoFoam and interIsoRhoFoam of course do not capture the small structures
such as liquid streaks, sacs and droplets, as shown in DYJEAT’s results. However, the solvers
accurately predict the jet curve, which can be used as a quantifiable argument for validity of
a consistent method against experimental data.

Figure 39 displays the final bent shape of liquid jet simulated by three solvers and their
comparison with the experimental observation made by ONERA [0]. The same case with two
different resolutions are tested. The liquid jets’ shape results in the same parallel view are
compared with each other and also with the experimental results marked by the red line.
The blue translucent liquid jet represents the results from the case with a higher resolution
Nh = [254, 128, 128], while the gray liquid jet comes from the above low-resolution results. It
can be seen from each figs. 39a to 39c that more small droplets and complex structures can
be captured when deploying the higher mesh resolution. Despite the different resolutions,
there exists a very minor difference between the liquid jets with regard to the bent shape.
The windward surfaces of the two liquid jets in each sub-figure almost attach to each other,
which highlights that this case is insensitive to the mesh resolution. As to the comparison
with the experimental trajectories, both the jets’ bent surface in figs. 39a and 39b show good
correspondence to the experimental shape, i.e. the red line at the low penetration height
< 9mm. The jets reattach to the red line in the upper-right zone. The maximal deviation
between the simulated jets and the experiment shape is around 1mm, which is 5% of the jet
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height. A more obvious discrepancy between the jets and the experiment is shown in fig. 39c.
The liquid jet bent less than the experiment in the high-speed flow after the given time, which
results in a wrong prediction of the impingement position.
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(a) interIsoFoam: Mo= 848 (b) interIsoRhoFoam: Mo= 848

(c) interIsoFoam: Mo= 41.4 (d) interIsoRhoFoam: Mo= 41.4

(e) interIsoFoam: Mo= 1.31 (f) interIsoRhoFoam: Mo= 1.31

Figure 36: Temporal evolution of rising velocity using interIsoFoam and interIsoFoam: Euler
+ upwind, ρ−/ρ+ ≈ 103.
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(a) Mo= 848 (b) Mo= 41.4

(c) Mo= 1.31

Figure 37: Comparisons of final shapes of rising bubbles using interIsoFoamand interIsoRho-
Foam with the experimental visualization from Bhaga and Weber [3] (reprinted
with permission): Euler + upwind, red line from interIsoRhoFoam, blue line from
interIsoFoam, ρ−/ρ+ ≈ 103, N = 128, t = 6.
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(a) interIsoFoam (b) interIsoRhoFoam

(c) DYJEAT

Figure 39: The instantaneous liquid jet shape at final time t = 7.1mswith different resolutions
(the blue translucent jet: Nh = [256, 128, 128]; the gray jet: Nl = [128, 64, 64]) and
its comparison with the experimental results(the red line). This case makes it
possible to evaluate performance on coarser meshes as resolving finer structures
does not impact the jet trajectory.
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(a) interIsoFoam: t = 7.1ms

(b) interIsoRhoFoam: t = 7.1ms

(c) DYJEAT: t = 7.07ms

Figure 40: The shape of the injected liquid with interIsoFoam and interIsoRhoFoam (Euler
and Gauss upwind, density ratio: 816, CFL number: CFL = 0.2, resolution: Nl =

[128, 64, 64]), and with DYJEAT (resolution: N = [1024, 512, 512] [7])
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A residual-based non-orthogonality
correction for force-balanced unstructured
Volume-of-Fluid methods

10 Introduction

Numerical methods for simulating two-phase flows must ensure a balance of forces acting on
the fluid interface on the discrete level. An imbalanced discretization makes it impossible in
some cases to achieve a steady-state interface shape, e.g. for a canonical case of a spherical
droplet suspended in air without the influence of gravity, or a stationary droplet that is wetting
a surface and stationary liquid column in equilibrium characterized by high density ratio.

Non-orthogonality errors in unstructured Finite Volume methods for simulating incom-
pressible two-phase flows may break the force-balanced discretization. It is shown in this
chapter that applying the same explicit non-orthogonality correction for all gradient terms
in the context of segregated solution algorithms is not sufficient to achieve force balance.
To ensure force balance, a straightforward and deterministic residual-based control of the
non-orthogonality correction is introduced, which removes the number of non-orthogonality
corrections as a free parameter from the simulation. This method is directly applicable to
different unstructured finite-volume two-phase flow simulation methods as long as they
discretize the one-field formulation of incompressible two-phase Navier-Stokes equations.
The demonstration of force balance for the surface tension force and the gravity force near
linear solver tolerance for an algebraic and a geometric Volume-of-Fluid method is provided

131



in this chapter using the stationary droplet and stationary water column verification cases on
polyhedral unstructured meshes with varying levels of non-orthogonality.

The force-balanced di scretization in the unstructured Finite Volume Method [19, 28,
137] is , because of its high degree of volume conservation and its ability to discretize boundary
conditions at geometrically complex domain boundaries with second-order accuracy. This
approach is implemented and verified it for the unstructured geometrical VOF method [6]
and the unstructured algebraic VOF method [138].

In section 11, the force-balanced discretization and their solution algorithm is described
in details. In section 11, the same principle of error cancellation in the structured force-
balanced discretization [139] intuitively extends to unstructured meshes, is demonstrated,
contrary to recent findings in [140], under the condition that the pressure and velocity
equation solution converges. In section 11.3, with the knowledge about the mathematical
model and the unstructured Finite-Volume and VOF discretization from sections 8 and 11,
respectively, the proposed approach is compared with state-of-the-art methods.

11 Methodology review

In this chapter, the impact of the UFVM on the balance of forces at the fluid interface is inves-
tigated when the UFVM meshes are non-orthogonal and a highly accurate, computationally
efficient and deterministic stopping criterion is developed for the iterative non-orthogonality
correction in the UFVM. Handling non-orthogonality in UFVM is crucial for simulating two-
phase flows in geometrically complex domains whose unstructured finite discretization results
in a larger degree of non-orthogonality.

The proposed non-orthogonality correction is implemented into the unstructured geomet-
rical VOF method [34], specifically the plicRDF-isoAdvector method [6], which is described
in section 6.4. The research software [0, 141] and research data [0] are publicly available.
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11.1 Solution algorithm

Discretizing volume and momentum transport equation, i.e., eqs. (2.2) and (2.15), with the
implicit UFVM results in an algebraic equation system∑︂

f∈Fc

Fn+1
f = 0, (11.1)

acvn+1
c +

∑︂
n∈N

anvn+1
n = −(∇p)n+1

c − ((g · x)∇ρ)n+1
c − σc(κ∇α)n+1

c + Sc(vnc ), (11.2)

solved together with the unstructured geometric VOF equation eq. (8.14). In eq. (11.2),
ac is the linear equation system coefficient of the finite volume Ωc, N is the set of finite
volumes that are face-adjacent to Ωc, and Sc(vnc ) is the momentum source term containing
contributions from all operators in eq. (2.15) from time tn. The details of the derivation for
eq. (11.2) are referred to section 3.

Equations (8.14), (11.1) and (11.2) cannot be solved simultaneously at the new time
step tn+1, because eqs. (11.1) and (11.2) are linear algebraic equations resulting from an
implicit UFVM discretization, and eq. (8.14) is solved geometrically. To ensure that equations
eqs. (8.14), (11.1) and (11.2) are satisfied at tn+1, a segregated solution algorithm developed
by OpenFOAM® is selected as basis, i.e. PIMPLE, as discussed in section 3.4, to solve these
equations, sequentially iterating until all equations are satisfied.

A simplified description of the PIMPLE algorithm is adjusted from section 3.4 here,
focusing on the interplay between the curvature approximation accuracy, surface tension force
approximation and mesh non-orthogonality as the primary sources of numerical instabilities.

Dividing semi-discrete momentum equation eq. (11.2) by the coefficients ac, and applying
Rhie-Chow interpolation [142] gives

vif = −
(︃

1

ac

)︃
f

(∇p)if −
(︃

1

ac

)︃
f

((g · x)∇ρ)of −
(︃

1

ac

)︃
f

σf (κ∇α)of +

(︃
1

ac

)︃
f

(H(F o
f , vi−1))f ,

(11.3)
where o denotes the outer iteration in which the momentum equation is discretized (and
solved), and i denotes the inner iterations used for solving the pressure Poisson equation
derived below, and H(F o

f , vi−1) := −
∑︁

n∈N anvi−1
n +Sc(vn), with an containing, among other
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terms, F o
f , the volumetric flux resulting from the integration of eq. (8.2) with second-order

accurate face-centered quadrature F o
f = vof · Sf .

Applying eq. (11.1) to eq. (11.3), leads to the discrete Poisson equation for the pressure∑︂
f∈Fc

(︃
1

ac

)︃
f

(∇p)if · Sf = −
∑︂
f∈Fc

(︃
1

ac

)︃
f

(g · x)f (∇ρ)of · Sf

−
∑︂
f∈Fc

(︃
1

ac

)︃
f

σfκ
o
f (∇α)of · Sf

+
∑︂
f∈Fc

(︃
1

ac

)︃
f

H(F o
f , vi−1)f · Sf .

(11.4)

The volume fraction, velocity, and pressure are coupled in eqs. (8.14), (11.3) and (11.4),
respectively, with the volume fraction αo

c available from the solution of eq. (8.14) using the
plicRDF-isoAdvector method, or any other method that approximates χ(x, t) as a discrete
phase-indicator α in the form of volume fractions, or, similarly, a marker field [47].

11.2 Force Balance

Regarding (∇p)if , (g · x)f (∇ρ)of and σfκof (∇α)of : it is widely known that all face-centered
gradients must be discretized with the same scheme to ensure a force-balanced discretization,
that can be shown for the balanced CSF model [139].

To show that the Unstructured Finite Volume discretization is also balanced, a sphere
suspended in zero-gravity with a constant mean curvature κ in a steady state is investigated,
which reduces eq. (11.4) to

∑︂
f∈Fc

(︃
1

ac

)︃o

f

(∇p)if · Sf = −
∑︂
f∈Fc

(︃
1

ac

)︃o

f

σfκ(∇α)of · Sf (11.5)

i.e.,

(∇p)if + σfκ(∇α)of = 0, (11.6)

and if the same discretization scheme (∇.)f is used, then following holds for a sphere

∇(pi + σκαo) = 0, (11.7)
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finally leading to
pi = pC,i − σκoαo, (11.8)

where pC,i is any constant pressure. Equation (11.8) recovers the exact Young-Laplace
pressure-jump across the interface Σ(t), equivalently to structured discretizations [139]. If
the curvature as κa is approximated with some approximation error ϵκ, i.e., κa = κ+ ϵκ and
balance the forces using

(∇p)if + σfκ
a
f (∇α)f = 0, (11.9)

while considering only orthogonal gradient discretization, this results in

∇(p+ σκα) = −σϵκ(∇α)f ,

p′,iNf
− p′,iOf

|df |
= −

σϵκ(α
o
Nf

− αo
Of

)

|df |
,

p′,iNf
= p′,iOf

− σϵκ(α
o
Nf

− αo
Of

),

(11.10)

where p′ = p + σκα, and Of , Nf are the indices of cell centers from cells adjacent to the
face Sf . Equation (11.10) shows that modification of the Young-Laplace pressure, ensured
for constant κ by eq. (11.8) in the order-of-accuracy of ∇(.)f , is linearly proportional to the
curvature approximation error ϵκ, making curvature approximation crucial.

Curvature approximation in the context of numerical methods for two-phase flows is
a long-standing challenge, which is not addressed here. Instead, here the focus is put on
ensuring that the unstructured Finite Volume Method (FVM) remains force-balanced on
non-orthogonal meshes that are ubiquitous to industrially relevant two-phase flow problems
that have geometrically complex flow domains.

11.3 Force Balance on Non-Orthogonal Meshes

The unstructured Finite Volume Method must retain second-order accuracy and force balance
also on non-orthogonal meshes: where the face area-normal vector Sf is not collinear with
the vector connecting the centroids of cells, that share Sf , i.e., df := xNf − xOf , as depicted
in fig. 41. A widely used approach for non-orthogonality correction uses the principle of
error superposition, i.e. splitting the total gradient flux into an explicit non-orthogonal ∥ and
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Figure 41: Representation of non-orthogonality: xOf
, xNf

are the centroids of two adjacent
cells O, N ; df is the vector connecting xOf

and xNf
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Figure 42: Three common non-orthogonality correction approaches: minimum correction
(left), orthogonal correction (middle), over-relaxed correction(right). Vector d̂f is
the unit vector of df , i.e., d̂f :=

df

|df | .
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implicit orthogonal ⊥ contribution. Several non-orthogonal corrections [28, 137, 143, 144],

(∇φ)f · Sf = (∇φ)⊥f · S⊥
f + (∇φ)∥f · S∥

f , (11.11)

for a property φ, as shown in fig. 42. A runtime-configurable simulation software such as
OpenFOAM® [19] enables very straightforward consistent gradient scheme selection at the
start of a simulation.

Following the principle of error superposition, if (∇p)∥f · S∥
f balances out σfκf (∇α)∥f · S∥

f

on the right hand side of eq. (11.5), after applying eq. (11.11) in eq. (11.5) to p and α, the
non-orthogonality correction will be force-balanced. The logic following the force-balanced
orthogonal gradient is that the same scheme used to discretize (∇p)∥f ·S

∥
f and σfκf (∇α)∥f ·S

∥
f

will ensure force-balance.
However, ensuring that all terms are corrected in the same way is insufficient for force

balance in the context of two-phase flow simulations. Since the non-orthogonality correction
is explicit, σfκf (∇α)∥f · S∥

f lags behind internal iterations in eq. (11.4). Focusing only on the
force balance between the pressure gradient and the surface tension force in eq. (11.4), an
explicit non-orthogonality correction becomes∑︂

f∈Fc

(︃
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ac

)︃o

f

(∇p)k,⊥f · S⊥
f = −
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−
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)︃o
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f · S∥
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(11.12)

In eq. (11.12), the explicit non-orthogonality correction indexed with k − 1 lags behind
the implicit orthogonal pressure gradient indexed with k in balancing orthogonal and non-
orthogonal (∇α)f · Sf from the outer iteration o. This lag, if not resolved by absolutely
ensuring a sufficient number of k iterations are applied, causes oscillations in the pressure
and, in turn, large parasitic velocities on non-orthogonal meshes, which perturb the fluid
interface (volume fractions), reflecting the errors further into the curvature approximation,
which closes the loop by forwarding the errors again into the pressure through eq. (11.4).

A deterministic stopping criterion for the k non-orthogonality iteration is proposed in
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this work, which ensures force-balance for non-orthogonal meshes that avoids introducing a
problem-specific number of corrections, and significantly modifying the UFVM, or the solution
algorithm. The solution is straightforward and becomes clear if the linear system given by
eq. (11.4), extended with the non-orthogonality correction from eq. (11.12), is written in
matrix form as

Lopk = bo + sk−1
no (11.13)

where p (pressure), b (source term), sno (non-orthogonality source) are cell-centered fields
of the size equal to the number of cells in the mesh (|C|), and

sk−1
no = −

∑︂
f∈Fc

(︃
1

ac

)︃o

f

σfκ
o
f (∇α)

o,∥
f · S∥

f −
∑︂
f∈Fc

(︃
1

ac

)︃o

f

(∇p)k−1,∥
f · S∥

f (11.14)

is the force-imbalance between the pressure gradient and the surface-tension force resulting
from the explicit non-orthogonal correction. The source term sno should diminish with increas-
ing k, independent of the chosen non-orthogonality correction, as long as the same correction
is applied to all gradients, and the correction is, of course, convergent. A deterministic way
to ensure that skno diminishes, is by

|Lopk − bo − sk−1
no |λ < τ, (11.15)

i.e., requiring the non-orthogonal force-balance to reach the accuracy of the linear-solver
tolerance τS using a linear-solver residual norm λS , for the pressure Poisson equation. Equa-
tion (11.15) works because of the way modern linear solver algorithms are implemented.
Given that, in Computational Fluid Dynamics, PDEs whose solutions evolve either over iter-
ations for steady state problems, or time steps for transient problems, in each subsequent
iteration, are solved, the linear solver will first compute the initial residual using the solution
from the previous iteration. If the chosen non-orthogonality correction is convergent, with
increasing k, it will achieve force-balance. At the point of force-balance, the linear solver
will use the current pk to compute the residual of eq. (11.4), which will fall under the tol-
erance τ given the solver norm λ. This defines a straightforward and entirely deterministic
termination criterion for a force-balanced explicit non-orthogonal correction, and does so,
without the need to quantify the tolerance for the non-orthogonality error. In addition to
being deterministic, the residual-based non-orthogonality correction in eq. (11.15) works in
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the same way for any linear solver and any tolerance. Equation (11.15) will incur a minimal
number of corrections - the force-balance cannot be more accurate than satisfying eq. (11.4)
using the chosen linear solver norm and tolerance. If the non-orthogonality error is small,
sk−1
no will diminish quickly, if it is large, an increase of iterations is justified and confirmed by
our results section.

Satisfying eq. (11.15) is very straightforward in a numerical source code: it is equivalent
to expecting that the linear solver exits the initial iteration since this means that the initial pk

used to compute the initial residual, already satisfies eq. (11.15).

The proposed non-orthogonality correction is designated as Residual-based Non-Orthogonality
Correction (ResNonOrthCorr) and outline the required straightforward modification of the
segregated solution algorithm to incorporate ResNonOrthCorr in algorithm 9.

In algorithm 9, the option is added to stop if the number of iterations exceeds Nmax as
means of avoiding exceedingly large number of corrections that would lead to computationally
intractable simulations, in cases with unavoidable extremely large non-orthogonality in
industrial applications.

When adding the gravity force to balanced forces, equivalently to the CSF surface tension
force, the same principle of error-superposition is applied and sknon is extended to include the
explicit non-orthogonal gravity force contribution
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(11.16)

It is important to note at this point that, from eq. (2.10),

∇ρ = (ρ− − ρ+)∇χ ≈ (ρ− − ρ+)∇α. (11.17)

With sufficient information about the UFVM discretization, segregated solution algorithms
and non-orthogonal force balance, ResNonOrthCorr can be verified.
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Comparison with state-of-the-art methods

The ResNonOrthCorr is first compared with the widely used heuristic fixed-number of non-
orthogonality corrections (FixNonOrthCorr) in the PIMPLE algorithm 8 algorithm in Open-
FOAM [145] and similar iterative segregated solution algorithms.

The PIMPLE method updates αc, vc and pc as outlined in algorithm 8. In each outer loop,
the geometric information of the interface and physical properties are updated. In the inner
loop, source terms of eq. (11.4) are calculated and eq. (11.4) is solved.

Algorithm 8 FixNonOrthCorr in the PIMPLE solution algorithm.
1: while t ≤ tend do
2: tn+1 = tn +∆t

3: for o = 1; o ≤ Nouter; ++ o do
4: Reconstruct the fluid interface, i.e., χ̃(x, to−1) ≈ χ(x, to−1) from αo−1

c .
5: Solve eq. (8.14) for αo

c using χ̃(x, to−1), F o−1
f , giving ρof,c, µo

f from eqs. (2.10) and (2.11), respec-
tively.

6: Discretize the momentum eq. (11.2) using αo
c , ρ

o
c , ρ

o
f , µ

o
f compute the H(F o−1

f , vo−1) operator.
7: for i = 1; i ≤ Ninner; ++ i do
8: for k = 1; k ≤ Nnon; ++ k do ▷ Non-orthogonality correction.
9: Solve the pressure equation eq. (11.4) for pik with H(F o

f , vi−1) and αo
c , ρ

o
c .

10: end for
11: Update F i

f , vic with H(F o
f , vi−1) and pNon

c using

12: end for
13: end for
14: end while

Correcting face-centered gradients for non-orthogonality introduces the non-orthogonality
correction loop k in algorithm 8. Generally, Nouter, Ninner and Nnon, are set by the user
of algorithm 8, making Nnon a problem-specific ”free” parameter. The number Nnon in
algorithm 8 requires adjustment by trial and error; It is shown in the results section that
this is insufficient for achieving force-balance. It is widely known that the pressure Poisson
eq. (11.4) is the computational bottleneck in CFD. In segregated solution algorithms, the
computational cost is directly proportional to the number of times eq. (11.4) is solved, namely,
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Nouter ×Ninner ×Nnon. The ResNonOrthCorr completely removes Nnon as a ”free” parameter
from the solution algorithm 8 and replaces the stopping condition in the innermost loop in
algorithm 9.

Algorithm 9 ResNonOrthCorr in the PIMPLE algorithm.
1: while t ≤ tend do
2: tn+1 = tn +∆t

3: for o = 0; o < Nouter; ++ o do
4: Reconstruct the fluid interface, i.e., χ̃(x, to−1) ≈ χ(x, to−1) from αo−1

c .
5: Solve eq. (8.14) for αo

c using χ̃(x, to−1), F o−1
f , giving ρof,c, µo

f from eqs. (2.10) and (2.11), respec-
tively.

6: Discretize the momentum eq. (11.2) using αo
c , ρ

o
c , ρ

o
f , µ

o
f compute the H(F o−1

f , vo−1) operator.
7: k = 0

8: for i = 0; i < Ninner; ++ i do
9: while |L0pk+1 − bo − skno|λ > τ or k > Nmax do

10: k = k + 1

11: Solve the pressure equation eq. (11.4) for pik with H(F i−1
f , vi−1) and αo

c , ρ
o
c .

12: end while
13: Update F o

f , voc with F i
f , vic from pik using eq. (11.3).

14: end for
15: end for
16: end while

A recent algorithm proposed by [140] seeks to balance (∇p)f with (∇α)f on a non-orthogonal
mesh by employing the same scheme to discretize pressure and forces gradients. This approach
combines explicit correction terms for both discretized pressure and forces gradients into
a ”revised” pressure gradient. The reconstruction of this new pressure gradient at the cell
center is accomplished using, what the authors call, the Time-evolution Converting (TEC)
operator, instead of the conventional Green Gauss and least-square methods. The TEC
operator, proposed in [146], is actually a variant of the least-square method that minimizes
the sum of squares of the error between the computed fluxes from the cell center gradient
and the directly estimated fluxes at the cell faces. This has been in widespread application in
OpenFOAM® for reconstructing cell center values from known fluxes, as discussed by Tolle,
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Bothe, and Marić [2] and Aguerre et al. [147] and revisited by Assam and Natarajan [148].
Prior works, such as those by [72, 73, 110, 146], have also acknowledged the impact of

consistent discretization between pressure gradient flux and force gradient fluxes in preserving
force balance on non-orthogonal meshes. Consequently, they utilized identical discretized
formulations for all these gradient fluxes. However, the correction for non-orthogonality in
these methods occurs only once per internal iteration when solving the discretized Poisson
equation, i.e., during the assembly of the coefficients matrix and sources of the discretized
Poisson equation.

The discretization of gradient flux (eq. (11.11)) has been extensively discussed, not
only for pressure and force gradients but also for diffusive fluxes in various fields such as
velocity, temperature, and electric fields, among others. Over the past decades, numerous
methods have been developed to address this discretization challenge [144]. Muzaferija
and Gosman [143] and Muzaferija [149] initiated an approach to approximate the gradient
flux by interpolating the gradients at two adjacent cell centers to the intersected face and
multiplying the interpolated face gradient by the face area vector. However, they found
that this simple gradient interpolation method could introduce unphysical oscillations in
the solution on a collocated mesh. To mitigate this issue, recoupling terms, inspired by
oscillatory pressure handling methods proposed by Rhie and Chow [142], were added to
the interpolated face gradient [143, 149]. Demirdžić and Muzaferija [150] made slight
adaptations to these added terms [143, 149] to ensure their vanishing when the solution
converges. Nishikawa [151, 152] proposed a general principle for discretizing the diffusion
term based on a first-order hyperbolic system. In the context of the finite volume method, the
diffusion discretization scheme involves the addition of an arithmetic average of neighboring
cell center gradients and a jump term containing a free parameter. This parameter is used
to dampen high-frequency errors caused by the arithmetic average. In addition to these
pure numerical derivations for diffusion discretization, some works ([16, 28, 137]) chose
a geometric perspective. Jasak [28] decomposed the face area vector Sf into the direction
of the line connecting two neighboring cell centers, denoted as df in fig. 42, and the vector
Sf −df . The central differencing formula was then used to implicitly approximate the product
of the face gradient and the df component, while face interpolation of the center gradient was
used to explicitly approximate the product of the face gradient and the Sf − df component.
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The author also compared these three correction methods in fig. 42 and showed the over-
relaxation correction has the best performance. Ferziger, Perić, and Street [16] extrapolated
two neighboring cell center values to two auxiliary nodes, which are located on the line in
the face normal direction and passing through the face center. The extrapolated values and
positions of these two nodes are used to construct a central difference to approximate the face
gradient. Similarly, Darwish, Mangani, and Moukalled [137] introduced a scheme utilizing
two auxiliary nodes, although these two nodes are not placed on the normal line through face
center. Instead, they are constrained by constructing two opposite directional gradient fluxes
with the corresponding near cell centers. The final gradient flux is calculated by averaging
the two fluxes. Darwish, Mangani, and Moukalled [137] indicated that the gradient flux
could be fully implicit by carefully selecting the averaging parameters concerning the node
values and positions. For this fully implicit scheme, each internal iterative step in solving the
discretized equation contained one non-orthogonal correction, leading to fewer iterations
required to converge to a satisfactory tolerance compared with the semi-implicit schemes,
where the correction is conducted only once during the assembly of the source term of the
discretized equation. While numerous methods have been developed, review papers such as
[144, 153] reveal equivalences between the final formulations of the discretized diffusion
flux in different works, e.g., [28] and [143, 149, 150]. A comprehensive comparison of
various semi-implicit diffusion discretization schemes, considering both discretization and
truncation errors, is presented in Jalali, Sharbatdar, and Ollivier-Gooch [154]. The authors
[154] concluded that the most accurate approximation for diffusive fluxes is achieved by
adding a solution jump term to the average of two adjacent cell gradients, as proposed in
[151, 152].

All contemporary methods require a number of iterations for the non-orthogonality
correction that is left as a free parameter. Our contribution to non-orthogonality correction
using the gradient-flux decomposition, regardless of the chosen gradient scheme or the
numerical method for tracking fluid interfaces, is a deterministically controlled number
of iterations that ensures force-balance for two-phase flow simulations on non-orthogonal
meshes, verified in the next section.
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12 Results

Data archives including the algorithm implementation, input data, post-processing software
and secondary data are publicly available [0]. The proposed method is actively developed in
a publicly available git repository [141].

In this section, the efficiency and accuracy of the proposed force-balanced algorithm
are assessed using two canonical verification tests, namely, the stationary droplet and the
stationary water tank, used, respectively, to test the force-balanced surface tension force
and gravity force discretization. These tests are conducted on unstructured meshes and the
non-orthogonality corrections are either kept fixed (FixNonOrthCorr) or are controlled by
our residual-based algorithm (ResNonOrthCorr). To systematically investigate the influence
of different mesh types on the solutions, simulations are performed on equidistant unstruc-
tured mesh (blockMesh), perturbed equidistant unstructured mesh, i.e. hexahedral mesh
(perturbMesh), and polyhedral mesh (polyMesh), as illustrated in fig. 43. Three distinct mesh
resolutions are investigated, with resolutions ∆x ∈ (L/30, L/60, L/90). Here, L indicates the
characteristic length of the cubic computational domain Ω. These hydrodynamic test cases
consider a water/air fluid pairing to emphasize a problematic two-phase flow scenario, the
fluid properties are outlined in table 8.

Both tests share identical termination times and fixed time steps, specifically tend = 0.01 s
and ∆t = 1e−4 s. For the segregated solution algorithm algorithm 9 used in this work,
exemplary, Nouter = 4, Ninner = 1. For FixNonOrthCorr, non-orthogonality is corrected Nnon

times within an inner loop. In the case of ResNonOrthCorr, the non-orthogonality correction is
performed until eq. (11.15) is satisfied. The linear solver tolerance for eq. (11.4) is uniformly
set to 1e−12 for both algorithms.

12.1 Stationary droplet in equilibrium

In accordance with the Young – Laplace law, the velocity of a spherical droplet in equilibrium,
in the absence of gravity, is zero, i.e. v = 0. This is attributed to the balance between
the surface tension force and the pressure jump across the interface. This test involves a
stationary water droplet, with microfluidic dimensions, in equilibrium with surrounding
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(a) blockMesh (b) perturbMesh (c) polyMesh

Figure 43: A sliced cell layer from a cubic computational domain with three mesh types:
equidistant mesh (blockMesh), perturbed hexahedral mesh (perturbMesh) and
polyhedral mesh (polyMesh).

20 ◦C
density ρ
(kg/m3)

kin. viscosity ν
(m2/s)

dyn. viscosity µ
(Pa s)

surface tension σ
(N/m)

gravity g
(m/s2)

water[155, 156] 998.2 1e−6 9.982e−4
72.74e−3[157] (0, 0,−9.81)

air[156] 1.19 1.53e−5 1.8207e−5

Table 8: Physic properties of water/air pair.

air. The water droplet of radius R = 1 mm is placed at the centroid of the cubic domain Ω,
with domain dimensions [0, 0, 0]× [10, 10, 10] mm. For a spherical droplet, the curvature is
uniform throughout the interface, denoted as κΣ = 2

R
= 2000 m−1. This curvature value is

prescribed and held constant in simulations to avoid testing errors arising from curvature
approximation and only verify the force-balanced non-orthogonality correction. Two error
norms are evaluated to highlight the accuracy of the algorithm, namely

L∞(|v|) = max(|vn − ve|)

L∞(|∆p|) = |max(∆pn)−∆pe|
∆pe

max(∆pn) = max(p)n −min(p)n

(12.1)
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Mesh type Resolution max. non-ortho. ResNonOrthCorr FixNonOrthCorr(Nnon = 1)

∆x
L

global(θf )
(◦)

local(θf )
(◦)

L∞(|v|)
(m/s)

L∞(|∆p|)
(Pa)

CPU time
(s)

L∞(|v|)
(m/s)

L∞(|∆p|)
(Pa)

CPU time
(s)

blockMesh 1/30 0 0 2.4567e-11 1.4457e-14 432.32 9.1924e-11 8.2053e-15 384.54
1/60 0 0 1.7332e-11 1.7583e-14 3138.92 3.0472e-10 2.8914e-14 3032.42
1/90 0 0 7.9776e-12 2.3835e-14 8990.49 6.0617e-12 2.2076e-14 8633.76

perturbMesh 1/30 12.79 10.09 4.0199e-10 3.7432e-13 463.24 2.1683e-07 3.9894e-10 560.91
1/60 14.45 10.87 2.8729e-10 3.6006e-13 3294.92 1.5253e-06 4.063e-09 5210.09
1/90 13.54 11.00 1.7006e-09 1.8767e-12 9432.08 1.8398e-06 5.8021e-09 18328.48

polyMesh 1/30 30.81 1.48e-06 3.9613e-11 4.6731e-13 1653.41 4.3341e-11 1.6684e-13 1600.45
1/60 33.42 1.57e-06 7.7984e-12 3.5556e-14 10256.68 9.0486e-12 1.2015e-13 9630.83
1/90 30.81 1.71e-06 7.3637e-12 1.6743e-13 38833.63 1.9106e-12 1.1917e-14 37077.32

Table 9: Maximum global and near-interface non-orthogonality, the velocity and pressure
jump errors, and CPU times for a stationary droplet in equilibrium at the end time
tend = 0.1s

where the subscript n and e denote the numerical and exact solutions correspondingly. The
exact solutions are

ve = 0 m/s,

∆pe = σκΣ = 145.48 Pa.

Table 9 presents CPU time, the final velocity and pressure jump errors for both control
algorithms on various meshes, along with information regarding non-orthogonality. The
non-orthogonality is corrected once per inner loop for FixNonOrthCorr in table 9, denoted
as Nnon = 1. The non-orthogonality at a cell face described in table 9 is quantified by the
angle of intersection of the line connecting two adjacent cell centers and the face normal, i.e.,
θf depicted in fig. 41. Two maximum non-orthogonalities are documented in table 9. The
global maximum non-orthogonality represents the largest θf among cell faces throughout
the computational domain Ω. Additionally, particular attention is given to the maximum non-
orthogonality in the vicinity of the interface that actually causes force-imbalance resulting in
parasitic currents. Specifically, the maximum non-orthogonality over the faces in the interface
cell-layer and two adjacent cell layers is assessed.

When the pressure Poisson equation eq. (11.4) is solved on orthogonal meshes (i.e,
blockMesh or orthogonal polyMesh), where the non-orthogonality is zero or near-zero, both
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ResNonOrthCorr and FixNonOrthCorr perform similarly. Very minor disparities in two error
norms and CPU time are observed, demonstrating a very low computational overhead of
ResNonOrthCorr stopping criterion. On the orthogonal mesh, the explicit non-orthogonal
contribution (·)∥f in eq. (11.11) is zero, implying that the non-orthogonal correction does not
introduce new errors. The errors reported in table 9 for cases employing blockMesh arise
solely from the orthogonal contribution. Notably, the errors approach the prescribed error
tolerance, reaffirming the force-balance property inherent in the consistent discretization of
pressure and body force gradients at cell faces [112], for the unstructured Finite Volume
method [141].

The non-orthogonality of perturbMesh in table 9 is uniformly distributed throughout
the computational domain, with both global and local non-orthogonality ranging between
10◦ and 15◦ - still very small and generally acceptable magnitudes. Even for acceptably small
non-orthogonality, strong differences arise between ResNonOrthCorr and FixNonOrthCorr.
The final L∞(|v|) and L∞(|∆p|) values computed with ResNonOrthCorr are three to four
orders of magnitude smaller than those obtained with FixNonOrthCorr. Furthermore, the CPU
times for all three cases with varying resolutions employing ResNonOrthCorr are markedly
lower than those using FixNonOrthCorr, especially with a reduction in approximately half
the CPU time for the two higher-resolution cases. The force-balance impacts computational
efficiency: a force-balanced discretization will recover the accurate steady state, causing less
work for the solution algorithm and the linear solver, compared to the lack of force balance.
Not ensuring force balance incurs acceleration of the fluid, whose velocity changes in time
(until possibly reaching steady state), and should be divergence-free for incompressible fluid,
which means more work for the solution algorithm and the pressure Poisson equation.

To thoroughly investigate the impact of the non-orthogonality correction number Nnon

on the errors and CPU time for the FixNonOrthCorr algorithm, additional tests are conducted
with two distinct groups of cases featuring identical perturbMesh setups as outlined in table 9
but with larger values for the number of non-orthogonality corrections, i.e., Nnon = [2, 10],
and present the details in table 10.

AsNnon increases to 2, both final errors are reduced by two orders of magnitude However,
these results are still significantly outperformed by ResNonOrthCorr, whose CPU times are
also significantly shorter.
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When the non-orthogonal contribution is corrected 10 times in each inner loop, i.e.,
Nnon = 10, for FixNonOrthCorr, the final errors exhibit minor differences compared to
ResNonOrthCorr and approach the prescribed tolerance, suggesting that setting Nnon = 10

for this static droplet test is sufficient to mitigate errors attributable to non-orthogonality to a
satisfactory level. However, the CPU time required to achieve a similar level of accuracy with
FixNonOrthCorr and Nnon = 10 is approximately 70% higher than that with ResNonOrthCorr
for each resolution. Figure 44 illustrates the temporal evolution and average non-orthogonal
correction times. After sufficient corrections at the first time step, the non-orthogonality is
corrected only around 5 times for ResNonOrthCorr with all resolutions, as shown in fig. 44a.
Owing to the prescribed Nouter = 4, Ninner = 1 and Nnon = 10, the correction times for
FixNonOrthCorr are fixed accordingly, i.e., Nouter ×Ninner ×Nnon = 40, which explains the
horizontal blue dashed line of FixNonOrthCorr in fig. 44a. Figure 44b presents the average
non-orthogonal correction times per time step regarding fig. 44a. The correction times rise
slightly as the resolution increases for ResNonOrthCorr, whereas the correction times are
unchanged for FixNonOrthCorr regardless of the resolution. The fig. 45 visually depicts the
temporal evolution of L∞(|v|) with different control methods and indicates a trend: the
errors from FixNonOrthCorr decreases as Nnon rises in the context of the non-orthogonal
perturbMesh. When the specified Nnon is sufficiently large, such as Nnon = 10 in this case,
FixNonOrthCorr works same as ResNonOrthCorr, as evidenced by the complete overlap of the
blue stars from ResNonOrthCorr with the red transparent stars from FixNonOrthCorr with
Nnon = 10 in fig. 45. Finally, fig. 46 visually represents the final velocity field on perturbMesh
with ResNonOrthCorr and FixNonOrthCorr, where the orientation and length of each glyph
arrow signify the direction and magnitude scaled by a factor of 1e-7 of velocity at a cell center.

In addition to the prescribed Green Gauss method, a least-square method named point-
CellsLeastSquares were explored. This method utilizes point-neighbor cells as the stencil to
calculate the gradient, allowing us to investigate the impact of different cell center gradient
reconstruction methods on non-orthogonality correction. As depicted in table 11, the errors
obtained using the higher-order accurate least-square method are reduced at the final time
for both ResNonOrthCorr and FixNonOrthCorr (Nnon = 10). However, the more complex
calculation involved in the least-square gradient results in higher computational costs, as
evidenced by the increased CPU time shown in table 11. The temporal evolution of velocity
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errors for different gradient reconstructions is illustrated in fig. 55.
Table 12 presents the final results of errors and CPU time on perturbMesh using the

MULES, another Volume of Fluid (VoF)-based interface capturing method in OpenFOAM®

[158]. In contrast to the geometric isoAdvector [159] utilized earlier, MULES is an alge-
braic VoF solver that employs the Flux Corrected Transport (FCT) technique [160, 161].
The ResNonOrthCorr is combined with MULES. As shown in table 12, the errors obtained
from MULES + ResNonOrthCorr approach the preset tolerance. On the other hand, the
CPU time for all resolutions is very similar to the preceding results obtained from isoAd-
vector + ResNonOrthCorr. Our method demonstrates excellent compatibility with different
phase advection methods. Figure 56 illustrates the velocity errors over time for MULES +
ResNonOrthCorr. The combination of ResNonOrthCorr with MULES yields even better results
for this stationary droplet case.

Mesh type Resolution FixNonOrthCorr(Nnon = 2) FixNonOrthCorr(Nnon = 10)

∆x
L

L∞(|v|)
(m/s)

L(|∆p|)
(Pa)

CPU time
(s)

L∞(|v|)
(m/s)

L(|∆p|)
(Pa)

CPU time
(s)

perturbMesh 1/30 3.81861e-09 8.7535e-12 527.45 4.0199e-10 3.3798e-13 857.35
1/60 2.9294e-08 8.5609e-11 4947.63 2.8729e-10 1.3269e-12 5771.95
1/90 1.1993e-07 2.6584e-10 16894.48 1.7006e-9 2.2078e-12 15530.31

Table 10: The performances of FixNonOrthCorr with non-orthogonality loop numbers larger
than one for a stationary droplet in equilibrium case on perturbMesh.

Mesh type Resolution ResNonOrthCorr FixNonOrthCorr(Nnon = 10)

∆x
L

L∞(|v|)
(m/s)

L(|∆p|)
(Pa)

CPU time
(s)

L∞(|v|)
(m/s)

L(|∆p|)
(Pa)

CPU time
(s)

perturbMesh 1/30 6.3041e-11 1.4322e-12 663.04 6.3041e-11 1.4322e-12 1066.53
1/60 6.5157e-11 7.1151e-13 5166.65 6.5157e-10 6.8416e-13 7171.11
1/90 4.0325e-11 5.7556e-12 13342.54 4.0325e-11 5.7281e-12 19408.88

Table 11: The performances of ResNonOrthCorr and FixNonOrthCorr(Nnon = 10) with least-
square cell center gradient reconstruction method for a stationary droplet in equi-
librium case on perturbMesh.
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(a) perturbMesh: temporal evolution of the number of non-
orthogonality corrections.

(b) perturbMesh: average number of non-orthogonality
corrections.

(c) perturbMesh: CPU time; average speedup of ResNonOrthCorr
174.97%.

Figure 44: The temporal evolution and average of non-orthogonal correction times, and the
CPU time with ResNonOrthCorr and FixNonOrthCorr (Nnon = 10) for a stationary
droplet in equilibrium on perturbMesh with different resolutions.

In contrast to perturbMesh, the distribution of non-orthogonality within the polyMesh
is irregular. As illustrated in table 9, the maximum local θf values are notably small, while
the maximum global θf values exceed 30◦ for all resolutions. This observation indicates that
cells near the interface exhibit nearly orthogonal characteristics. Consequently, despite only
using a single correction for non-orthogonality (i.e., once in each inner loop, Nnon = 1), the
velocity and pressure jump outcomes from FixNonOrthCorr on polyMesh align with the high
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(a) perturbMesh: ∆x
L

= 1/30 (b) perturbMesh: ∆x
L

= 1/60

(c) perturbMesh: ∆x
L

= 1/90

Figure 45: The temporal evolution of velocity error norm L∞(|v|) with ResNonOrthCorr and
FixNonOrthCorr (Nnon = [1, 2, 10]) for a stationary droplet in equilibrium on per-
turbMesh with different resolutions.

accuracy achieved on blockMesh. The substantial non-orthogonality does not necessitate a
higherNnon, rendering the determination of an appropriateNnon more arbitrary and intricate
for users. ResNonOrthCorr, in contrast, circumvents this issue and yields satisfactory results.

To conclude the results for the stationary droplet, the ResNonOrthCorr algorithm suc-
cessfully ensures force-balance for the surface tension force and the pressure gradient on
non-orthogonal unstructured finite volume discretization. It adjusts the number of required
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(a) ResNonOrthCorr (b) FixNonOrthCorr(Nnon = 1)

Figure 46: The velocity field of the stationary droplet in equilibrium on perturbMesh with the
resolution ∆x

L
= 1/60 at t = tend: the glyph arrows are scaled by 1e-7m/s.

Mesh type Resolution ResNonOrthCorr: MULES

∆x
L

L∞(|v|)
(m/s)

L(|∆p|)
(Pa)

CPU time
(s)

perturbMesh 1/30 6.1017e-12 5.6519e-13 371.47
1/60 9.6775e-11 1.2905e-11 3398.93
1/90 1.8768e-11 1.2631e-11 10096.52

Table 12: The performances of combining MULES phase advection algorithm with
ResNonOrthCorr for a stationary droplet in equilibrium case on perturbMesh.

non-orthogonality iterations to satisfy eq. (11.15), a very cost-effective stopping criterion.
The total CPU time is significantly reduced compared to the heuristic approach, since the
number of non-orthogonal corrections is kept to a minimum. Finally, and equally impact-
ful, ResNonOrthCorr removes the number of non-orthogonality corrections as a heuristic
user-defined parameter from the CFD simulation. It is found in this verification study that
Nnon = 10 ensures sufficient accuracy (at a much higher computational cost); however,
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finding this number for a highly resolved geometrically complex 3D microfluidic simulation is
nearly impossible, as it is not possible to know the maximal interface-local non-orthogonality
of all the cells that will be visited by the fluid interface during a simulation.

12.2 Stationary water column in equilibrium

In order to investigate the balance between gravitational force and the associated pressure
gradient, a stationary water column in equilibrium is under consideration. In this analysis,
the effects of surface tension force and viscosity are neglected. The test employs the same
discretization scheme for density and pressure gradients to satisfy the fundamental force-
balance requirement. It is crucial to note that inappropriately estimating x in (g · x) can also
deteriorate the force-balance [162–165], particularly for the multiphase flows characterized
by high density-ratios. This is because any error from the estimation of x is amplified by
(ρ− − ρ+)|g|, which approaches 104 for water/air on earth. However, addressing the accuracy
improvement of x estimation falls outside the scope of this study. Interested readers are
directed to [162, 165] for further details. For an inviscid water column in equilibrium, the
interface Σ between water and air is flat, resulting in a constant value for (g · xΣ).

The cubic container of the water column is used as the computation domain Ω, with
dimensions of [0, 0, 0]× [1, 1, 1]m. The water occupies the region where zΣ ≤ 0.5145m within
Ω. All the boundaries are treated as walls, except for the top boundary, which is modeled by
the open-air boundary condition.The relevant properties of water and air, as well as gravity,
are defined in table 8. The error norms from eq. (12.1) are employed, along with the exact
solution

ve = 0 m/s

∆pe = (ρ− − ρ+)|g|zΣ = 5040.95633874 Pa.

Similar to the stationary droplet case, when non-orthogonality is uniformly zero across the
entire computational domain for blockMesh, ResNonOrthCorr and FixNonOrthCorr (Nnon =

1) exhibit closely comparable performance in terms of velocity and pressure jump errors, as
well as CPU time, presented in table 13.

The maximal local non-orthogonality exceeds 10◦ for perturbMesh, leading to notice-
able disparities in errors between ResNonOrthCorr and FixNonOrthCorr. Specifically, with
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Mesh type Resolution max. non-ortho. ResNonOrthCorr FixNonOrthCorr(Nnon = 1)

∆x
L

global(θf )
(◦)

local(θf )
(◦)

L∞(|v|)
(m/s)

L(|∆p|)
(Pa)

CPU time
(s)

L∞(|v|)
(m/s)

L(|∆p|)
(Pa)

CPU time
(s)

blockMesh 1/30 0 0 6.1977e-14 7.1573e-13 686.11 1.4301e-13 7.1898e-13 675.24
1/60 0 0 7.8625e-12 4.0783e-13 4052.7 7.8600e-12 4.0801e-13 4018.51
1/90 0 0 6.6016e-12 1.7352e-13 10641.22 6.6131e-12 1.7316e-13 10587.81

perturbMesh 1/30 12.79 12.16 1.3731e-10 6.0642e-13 725.66 3.5756e-05 2.7689e-11 725.8
1/60 14.45 13.64 4.9291e-11 3.3008e-13 4154.27 1.0977e-04 9.9943e-11 4349.29
1/90 13.54 12.77 1.7483e-11 5.9791e-12 10872.64 6.7688e-05 3.0113e-11 11505.59

polyMesh 1/30 60.41 58.88 1.4677e-09 1.8047e-08 3232.11 7.5769e-03 8.5541e-08 3516.54
1/60 63.30 58.98 1.1224e-08 2.4435e-09 16538.47 3.3555e-02 2.7190e-07 21090.88
1/90 60.64 58.73 4.5175e-08 2.8148e-08 49231.96 8.2165e-03 6.1529e-08 57566.64

Table 13: The maximum non-orthogonalities in the global region and the local region near
the interface, the velocity, pressure jump errors, and CPU time for a stationary
water column in equilibrium at the end time tend = 0.1s

regard to the velocity field, errors with ResNonOrthCorr are 5 to 7 orders of magnitude
smaller than those observed with FixNonOrthCorr. Although the CPU times for simulations
with ResNonOrthCorr control are slightly lower than those using FixNonOrthCorr, the error
discrepancies are significant.

The polyMesh for this test shows the highest local non-orthogonality when compared
with blockMesh and perturbMesh. Although the mesh generation is the same as for table 9,
here the fluid interface touches the domain boundary, that has maximal non-orthogonality.
Despite the very large non-orthogonality of ≈ 60◦, ResNonOrthCorr effectively achieves force
balance with velocity error magnitudes of ≈ 1e-8. In contrast, parasitic velocities arising from
the use of FixNonOrthCorr reach the magnitude of 1e-2. The CPU times of ResNonOrthCorr
are additionally comparatively lower than those of FixNonOrthCorr.

Table 14 contains the errors and CPU times from FixNonOrthCorr with Nnon > 1 on
both perturbMesh and polyMesh. Clearly, the errors decrease with increasing Nnon, but
significantly more CPU time is required as Nnon increases for each resolution on both meshes.
Figure 57 and Figure 58 illustrate the temporal evolution of the velocity error norm L∞(|v|)
with ResNonOrthCorr and FixNonOrthCorr (Nnon = [1, 2, 10]) for a stationary water column
in equilibrium on perturbMesh and polyMesh respectively. After correcting the explicit
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Mesh type Resolution FixNonOrthCorr(Nnon = 2) FixNonOrthCorr(Nnon = 10)

∆x
L

L∞(|v|)
(m/s)

L(|∆p|)
(Pa)

CPU time
(s)

L∞(|v|)
(m/s)

L(|∆p|)
(Pa)

CPU time
(s)

perturbMesh 1/30 8.0268e-10 1.8642e-11 748.68 1.3731e-10 1.9503e-10 965.61
1/60 1.5662e-09 1.4149e-10 4321.92 4.9291e-11 1.1832e-10 5989.96
1/90 1.1303e-09 1.4348e-10 11422.03 1.7483e-11 1.6857e-09 16392.02

polyMesh 1/30 1.8107e-04 2.2694e-09 3466.42 1.7267e-10 3.0471e-08 4447.46
1/60 9.5487e-04 4.0979e-09 18902.18 1.0068e-08 1.6252e-09 24490.22
1/90 7.5324e-05 5.4888e-10 54671.07 1.1127e-08 8.1320e-09 76854.99

Table 14: The performances of FixNonOrthCorr with non-orthogonality loop numbers larger
than one for a stationary water column in equilibrium case on perturbMesh and
polyMesh.

non-orthogonal part of the face gradient a sufficient number of times, e.g., Nnon = 10 for
perturbMesh, the final errors in velocity converge to the results obtained with ResNonOrthCorr
as depicted in fig. 57. For the polyMesh owning the largest non-orthogonality, for Nnon = 10,
FixNonOrthCorr still cannot recover force balance as accurately as ResNonOrthCorr do, as
illustrated in fig. 58, where the red star symbols from FixNonOrthCorr with Nnon = 10 are
still slightly higher than the blue stars from ResNonOrthCorr. The significantly increased
CPU time associated with the higher Nnon, as shown in tables 13 and 14, implies the poor
balance between the result accuracy and the computational costs for FixNonOrthCorr method.
On the contrary, ResNonOrthCorr can achieve high accuracy with relatively much lower
computational costs. Figure 47 shows the final velocity field using ResNonOrthCorr and
FixNonOrthCorr on perturbMesh with the middle mesh resolution. The parasitic currents are
distributed randomly above the flat interface in the results using FixNonOrthCorr, whereas
they cannot be observed at the same scale when adopting ResNonOrthCorr.
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(a) ResNonOrthCorr (b) FixNonOrthCorr(Nnon = 1)

Figure 47: The velocity field of the stationary water column in equilibrium on perturbMesh
with the resolution ∆x

L
= 1/60 at t = tend: the glyph arrows are scaled by 1e-5m/s.
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Summary and outlook

Within this thesis, a method ensuring numerical consistency of the single-field incompressible
two-phase momentum convection, discretized by the unstructured collocated Finite Volume
Method, is proposed to deal with challenging high density ratios problems. The method
can be seamlessly integrated into any two-phase flow simulation method relying on the
collocated FVM for equation discretization of two-phase single-field Navier-Stokes equations.
This integration involves incorporating a geometrical computation of area fractions from the
approximated fluid interface and an auxiliary density equation to the solution algorithm. An
analysis connecting mass conservation, phase indicator function conservation, and momentum
convection is provided, theoretically justifying the necessity for the numerical consistency of
the cell-centered density computed by a mass flux identical to the one used in the two-phase
momentum convective term.

This consistent method is first implemented on an existing Level Set / Front Tracking
method [2, 35, 85], where the numerical instability is lost in simulating two-phase flows
with high density ratios. The new approach is termed ρLENT. Results confirm the method’s
accuracy and stability, with exact recovery of canonical droplet translation and successful simu-
lation of droplets with sub-millimeter diameters. Validation against experiments demonstrates
accurate capture of phenomena such as the oscillation frequency of ellipsoidal droplets and
the deformation of rising bubbles, affirming the method’s reliability in practical applications.

While substantial stability and accuracy improvements have been achieved for the ρLENT
method when applied to high density-ratio flows, further work is required to make predictive
simulations for technical applications feasible. The current iso-surface reconstruction approach
limits the method to cases with small to moderate interface deformation. More efforts are
still needed for this method to simulate cases containing more complex processes such as
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breakup and coalescence, where structures with different scales are needed to be captured
and resolved, which usually needs more computational resources. Therefore, the capability
of parallel computation is indispensable for ρLENT in the future development. The ρLENT,
which is implemented on OpenFOAM® platform, relies on OpenFOAM® ’s Message Passing
Interface (MPI) parallelization. The unstructured VOF method requires only two cell-layers
adjacent to the boundary shared between two MPI processes to discretize PDE. A naive
MPI-parallelizaiton of the ρLENT algorithm requires the Front to be communicated across
the MPI boundary. However, it is found that this approach scales poorly and complicates
the parallel implementation beyond the point of utility. Additional investigation will be
conducted on higher-order compact interpolation (e.g. Radial-Basis-Function interpolation)
or approximation (e.g. quadratic surface approximation) to reduce reconstruction errors
when interpolating signed distances. The second-order interpolation is used to find the root
points of the iso-surface - the points that define Front - without actually performing the
polygonization of the surface mesh. Sets of root-points thus recovered for each cell have a
centroid associated with them. This inaccurate (mean-value) dual-contouring centroid is
then projected onto the higher-order interpolation (approximation) of the fluid interface -
significantly reducing such as volume conservation errors. Dual contouring then proceeds to
polygonize the surface (Front) using higher-order centroids. Another point of future work
involves the proper handling of viscous term in Navier-Stokes equations. Similar with density
ratio, high viscosity ratio can also result in numerical instability. An extended discussion
about viscous term modeling are given in appendix 4.

Solving the auxiliary density advection equation looks unnecessary at first glace consid-
ering the definition of mixed density from volume fraction, when transplanting the consistent
method to a flux-based VOF method. However, an analyse in section 6.4 shows that the
equivalence between conservative mass equation and volume fraction advection equation
establishes strictly in mathematics. On the discrete level, the analysis reveals that achieving
equivalence necessitates specific conditions: first-order Euler temporal discretization for
momentum conservation, absence of flux limiting, and utilization of first-order quadrature
for integrating the fluxed phase-specific volume. Any deviation from the conditions results
in errors proportional to density differences, potentially leading to significant distortions in
interface shape as well as catastrophic failure. To verify theses points, the consistent method
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is extended to an unstructured geometric VOF methd, i.e., plicRDF-isoAdvector [6, 36, 49].
This adaptation requires straightforward geometric calculations of upwind area fractions
from existing geometric VOF interface approximations. The demonstration of equivalence on
the discrete level between mass flux scaled from phase-specific volume and the solution of
an auxiliary density equation is corroborated through verification with challenging inviscid
translating droplet cases and validation against experiments.

Section 6.4 reveals the limitation of the temporal and spatial discretization scheme when
computing the mass flux by scaling the fluxed phase-specific volume over a time step. The
explicit integration of the volume fraction is problematic for approximating the mass flux at
different time steps tk, if the mass flux is approximated by scaling the phase-specific fluxed
volume, e.g., as (ρ−−ρ+)|V α

f |s
∆t

, because by scaling, a mean value of the mass flux over the time
step ∆t is calculated. In section 3.5.4, there is no phase-specific volume |V α

f | in the Level
Set / Front Tracking method that could be scaled, so ρfFf is recovered geometrically as
ρfFf ≈ [(ρ− − ρ+)αf + ρ+]Ff , with αf geometrically reconstructed from signed distances.
This can be done at any point in time t, given the affordable way of obtaining Σ(t), as the Front
can be moved with higher-order accuracy by moving its points using a higher-order explicit
method that utilizes existing velocities. However, even for ρLENT, Crank-Nicolson fails with
ρfFf ≈ [(ρ− − ρ+)αf + ρ+]Ff . The same scheme is tried for the unstructured VOF, geometric
(isoAdvector) and algebraic (interFoam/MULES/FCT) and it also failed. In the future work,
the fractional step method will be attempted, which might allow to geometrically consistently
advect momentum by re-using directly the VOF geometrical advection and thus retain its CFL
condition for the momentum convection term. The topic of higher-order integration in this
context is not straightforward for unstructured methods, especially since it is not expected to
integrate the momentum equation explicitly entirely. Higher-order temporal integration will
also be tracked in the future work.

One more interesting point deserved to further explore in the future is how to adapt the
geometric interface tracking/capturing methods to meet the geometric constraints according
to the boundary’s type. An example is the adjustment of plicRDF on the cyclic boundary, as
addressed in appendix 3. In the cyclic boundary condition, the pairing cyclic boundaries
should be treated as a single internal patch, which constrains the calculation of the signed
distances of the cells near the cyclic boundaries and further, the interface center and normal
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and the curvature. Incorrect estimation of the signed distances at cyclic boundaries results in
catastrophic failure in simulation, as shown in appendix 3. It is notable that in addition to
cyclic boundary condition there are many other geometric boundary conditions, like symmetry
condition, axis-symmetric (wedge) condition and processor condition. The plicRDF should
be adapted for each according to its special geometric constraints. Actually, the geometric
boundaries effect not only the plicRDF but also all interface tracking/capturing methods,
which need reconstruct the interface and make use of the geometric information of interface,
such as the FTM, LSM or the hybrid methods.

A novel approach is proposed in section 9.6 to address non-orthogonality issues in the
unstructured Finite Volume method, offering high precision, determinism, and computational
efficiency. This proposed method achieves a delicate equilibrium among pressure gradient,
gravity force, and surface tension force at fluid interfaces by leveraging the residual norm
of the solver, ensuring precise force balance without imposing substantial computational
overhead. Notably, even on intricately perturbed hexahedral meshes where artificial error
cancellation is impractical, this method operates effectively. By integrating the linear solver’s
norm and tolerance into a deterministic stopping criterion, the optimal number of non-
orthogonality corrections required for maximum accuracy is established, eliminating the
need for algorithmic adjustments or trial-and-error-based correction selection. Furthermore,
the results demonstrate a remarkable enhancement in computational efficiency, yielding an
order-of-magnitude improvement compared to traditional heuristic approaches.

In section 3.5.4, an iterative and accuracy-driven algorithm SAAMPLE [2] is adopted to
solve the discretized pressure-velocity system. In SAAMPLE, extra update criterion based on
the convergence of volumetric flux Ff are added to the loop. A combination of the residual
control method in section 9.6 with SAAMPLE will be investigated at a future time to improve
whole accuracy and stability of a solver. One work that is left for the future exploration
involves modeling the gravitational term (g · x)∇ρ. In section 9.6, the necessity of consistent
discretization scheme for pressure gradient and density gradient ∇ρ is addressed. However,
the estimation of g · x remains under-discussed. The estimation is nontrivial considering that
its error is amplified by ∇ρ, which is a large value in a interfacial cell filled with two phases
with high density ratio. A preliminary discussion about the approximation of g · x is given in
appendix 5.
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Appendices

1 Supplementary results

Figure 48: Full figure of fig. 16a
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Figure 49: Full figure of fig. 18a
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Figure 50: Full figure of fig. 18b
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(a) Mass error. (b) Momentum error.

Figure 51: Temporal evolution of normalized mass and momentum conservation error with
different schemes for the case of Translating droplet in ambient flow: interIso-
Foam, N = 64, density ratio = 1.

Figure 52: Temporal evolution of the velocity error norm L∞(v) with pure advection - com-
bining 10 schemes, density ratio is 1, mesh resolution is N = 64. All schemes are
stable.
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(a) Mass error. (b) Momentum error.

Figure 53: Temporal evolution of normalized mass and momentum conservation error using
CrankNicolson + upwind with different resolutions for the case of Translating
droplet in ambient flow: interIsoFoam, N = 64, 96, 128, density ratio = 106.

(a) Resolution: Nl = [128, 64, 64]; final time: t = 0.7ms. (b) Resolution: Nh = [256, 128, 128]; final time: t = 0.4ms.

Figure 54: The shape of the exploded injected liquid with interIsoFoam (Euler and cubic,
density ratio: 816, CFL number: CFL = 0.2.
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(a) perturbMesh: ∆x
L

= 1/30 (b) perturbMesh: ∆x
L

= 1/60

(c) perturbMesh: ∆x
L

= 1/90

Figure 55: The temporal evolution of velocity error norm L∞(|v|) using ResNonOrthCorr
and FixNonOrthCorr (Nnon = 10) with least-square gradient reconstruction for a
stationary droplet in equilibrium on perturbMesh with different resolutions. These
results show that there is no influence on the gradient scheme on the proposed
method.
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(a) perturbMesh: ∆x
L

= 1/30 (b) perturbMesh: ∆x
L

= 1/60

(c) perturbMesh: ∆x
L

= 1/90

Figure 56: The temporal evolution of velocity error norm L∞(|v|) using MULES with
ResNonOrthCorr for a stationary droplet in equilibrium on perturbMesh with dif-
ferent resolutions. These results show that the proposed method is directly
applicable to the algebraic VOF method.
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(a) perturbMesh: ∆x
L

= 1/30 (b) perturbMesh: ∆x
L

= 1/60

(c) perturbMesh: ∆x
L

= 1/90

Figure 57: The temporal evolution of velocity error norm L∞(|v|) with ResNonOrthCorr and
FixNonOrthCorr (Nnon = [1, 2, 10]) for a stationary water column in equilibrium
on perturbMesh with different resolutions. Although Nnon = 10 achieves force-
balance, it is a problem-dependent ”free” parameter that the proposed method
does not use.

170



(a) polyMesh: ∆x
L

= 1/30 (b) polyMesh: ∆x
L

= 1/60

(c) polyMesh: ∆x
L

= 1/90

Figure 58: The temporal evolution of velocity error norm L∞(|v|) with ResNonOrthCorr and
FixNonOrthCorr (Nnon = [1, 2, 10]) for a stationary column in equilibrium on poly-
Mesh with different resolutions. Although the polyhedral mesh has very low non-
orthogonality in the bulk, near walls, even for a cubic domain, non-orthogonality
is substantial, and the force-imbalance is efficiently and effectively restored by
the proposed method.
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2 Least square method

The description below is referred to Demirdžić and Muzaferija [150] and Jasak and Weller
[166]. The basic linear spatial distribution of a dependent variable φ is adopted

φ(x) = φP + (∇φ)P · (x− xP ) (2.1)

, where φP represents the value at the position xP .Generally, the gradient of φ is approximated
by fitting some nearby sampled points, i.e., solving the following set of equations

dn · (∇φ)P = φn − φP (n = 1, ..., N) (2.2)

, in which dn = xn− xP is the displacement vector from point xP to one of its neighbor points
xn. The least-square method is used to solve this set of equations.

dT
ndn · (∇φ)P = dT

n (φn − φP ) (2.3)
N∑︂

n=1

dT
ndn(∇φ)P =

N∑︂
n=1

dT
n (φn − φP ) (2.4)

Utlizing a weighting function wn = 1/|dn| gives

N∑︂
n=1

w2
ndT

ndn(∇φ)P =
N∑︂

n=1

w2
ndT

n (φn − φP ) (2.5)

For brevity, M =
∑︁N

n=1w
2
ndT

ndn and f =
∑︁N

n=1w
2
ndT

n (φn − φP ) are defined. Finally, it is

M(∇φ)P = f. (2.6)

Since M and f are known, the gradient (∇φ)P can be calculated. Three kinds of least square
gradient methods are implemented in OpenFOAM® . The major difference lies in the selection
of the sampling cells, i.e., the stencil. When selecting the entry leastSquaresGrad, the
face-neighbor cells are the stencil. The pointCellsLeastSquares uses the point-neighbor
cells as the stencil, whereas applying edgeCellsLeastSquares regards the edge-neighbor
cells as the stencil. Jasak and Weller [166] mentioned that this gradient calculation method
can promise second-order accuracy regardless of the sampled points.
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In interIsoFoam, Scheufler and Roenby [49] adopted a slightly different method to
approximate the gradient. The starting point is a first degree polynomial function

φ̂n = a0 + a1dn,x + a2dn,y + a3dn,z (2.7)

, where φ̂n represents the approximated φn, dn,x, dn,y and dn,z are three components of dn,
a0, a1, a2, a3 are four polynomial parameters. eN =

∑︁N
n=1(φn − φ̂n)

2 is defined to describe
the residual. The aim of this method is to calculate a0, a1, a2, a3 to minimize the eN . The
partial derivative of eN are

∂eN
∂a0

= −2
N∑︂

n=1

[φn − (a0 + a1dn,x + a2dn,y + a3dn,z)] = 0

∂eN
∂a1

= −2
N∑︂

n=1

[φn − (a0 + a1dn,x + a2dn,y + a3dn,z)]dn,x = 0

∂eN
∂a2

= −2
N∑︂

n=1

[φn − (a0 + a1dn,x + a2dn,y + a3dn,z)]dn,y = 0

∂eN
∂a3

= −2
N∑︂

n=1

[φn − (a0 + a1dn,x + a2dn,y + a3dn,z)]dn,z = 0.

(2.8)

A matrix can be assembled from the equation eq. (2.8)

M′p = f′ (2.9)

, whereM′ is a 4×4matrix that can be represented byM′ =
∑︁N

n=1 d′Td′, d′ = (1, dn,x, dn,y, dn,z),
and f′ =

∑︁N
n=1 d′Tφn. The p is the polynomial parameters vector. From the equation eq. (2.1),

it is clear that the last three components of g compose the gradient of φ.
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3 Correct cyclic boundary condition for the
plicRDF-isoAdvector method

xown
i

xneic

xneii

xneif xown
f

v

owner-patchneighbor-patch

RDF

RDF

Figure 59: The ghost cells layer to correct signed distance: the green line ( ) presents
fixed RDF from cell centroid xneic to interface in the cyclic neighbor cell, while the
red line ( ) depicts the original unfixed RDF.

A cyclic boundary condition (BC) treats two boundary patches as if they were physically
connected, with their respective cell layers placed next to each other. For the geometrical
VOF method such as the plicRDF-isoAdvector, the cyclic boundary condition impacts the
interface reconstruction and the volume fraction advection. To achieve this, the cyclic BC
performs calculations on the so-called owner-patch, and then reflects the result to the so-called
neighbor-patch, as shown schematically in Figure 59 for a geometric VOF method in two
dimensions.

For the advection discretization at cyclic BC, we noticed that the fluxed phase-specific
volumes V α

f field is not properly adjusted for the cyclic patches.
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In the first step, the cyclic BC initializes V α
f at every face of both cyclic patches using the

upwind scheme, i.e.,
V α,init
f = FfαU∆t, (3.1)

where Ff := vf · Sf is the volumetric flux at the centroid of the cell-face Sf , αU is the volume
fraction of the upwind cell U w.r.t the cell face Sf , and ∆t is the time step.

In the second step, the cyclic BC computes the geometric V α
f at the faces that belong to

interface cells on both patches

V α
f =

∫︂ tn+1

tn

∫︂
Sf

χv · n dS dt =
∫︂ tn+1

tn

Ff (t)

|Sf |
Af (t) dt (3.2)

The existing cyclic BC [145] does not consider cyclic boundary conditions. The dis-
cretization in cell layers adjacent to two cyclic boundary patches should handle the cell layers
as if they are placed next to each other as shown in Figure 59. A phase-specific volume fluxed
out of the domain on a face that belongs to the cyclic owner-patch, should be fluxed into the
corresponding face in the cyclic-neighbor patch, as described in Algorithm 10.

Algorithm 10 The modified fluxed phase-specific volumes V α
f update method in interIsoFoam.

1: Initialize V α,owner
f using the upwind scheme. ▷ Equation (3.1)

2: for all boundary patches do
3: if boundary patch is cyclic then
4: for all cyclic-patch faces f ∈ [1, |Pcyclic|] do
5: if Ff > 0 then
6: Geometrically compute the outflow V α

f .
7: else if Ff < 0 then ▷ The inflow Ff < 0 here is outflow Ff > 0 of the neighbor.
8: V α

f = −V α,neigbor
f

9: end if
10: end for
11: end if
12: end for

Aside from the consistent calculation of V α
f in the advection, the cyclic BC allso affects

the geometric interface reconstruction. The plicRDF reconstruction [6] uses the reconstructed
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distance function (RDF) and its gradient for improving discrete interface-normal vectors.
When considering the cyclic boundary condition, the distance calculation should be treated
carefully, especially in the case where two cells sharing a vertex are also attached to two cyclic
patches. This issue is illustrated in Figure 59, where xown

i denotes a center of a VOF interface
polygon located in a corresponding interface cell Ωown

i that belongs to the cell layer attached
to the owner patch of the cyclic BC. In the plicRDF implementation in OpenFOAM-v2306
[145], the cyclic BC falsely uses VOF interface polygon centers xown

i to compute signed
distances at centers xneic in the cell layer adjacent to the cyclic neighbor-patch. A correct
implementation of the cyclic BC requires positions xneii , as shown in Figure 59. The VOF
interface centroids from the cell layer adjacent to the cyclic owner-patch xown

i and the face
centers of the cyclic owner-patch can be used to compute xneii for every xown

i and facilitate a
correct cyclic (periodic) computation of the Reconstructed Distance Function (RDF) in the
plicRDF-isoAdvector method.

We define a transformation of the position of the interface centers using

xneii := xown
i + (xneif − xown

f ), (3.3)

where (xneif − xown
f ) is the difference (displacement, or transformation) vector between the

face centers of cyclic BC owner and neighbor patch face centers.
Note that there is no need to tranform the interface normals ni, because they are

orientation and not position vectors. The transformed PLIC polygon centroids together with
the cyclic BC neighbor-patch interface normals nnei

i = nown
i build a cyclic ghost-data layer

that is shown schematically by dashed cells in Figure 59.
Signed distances in the cell layer adjacent to the cyclic owner-patch at cell centers

xown
i , are thus computed from the transformed PLIC interface information from the cyclic

patch-owner data.
If the cyclic-patch-adjacent cell Ωc does contain its own PLIC interface with the PLIC

centroid, then the signed distance to this PLIC interface is used, if it is closer to xi of that cell.
We verify our discretization of the cyclic BC in the plicRDF-isoAdvector method using a

constant flow case shown in Figure 60, where both the droplet and the ambient flow have
the same initial velocity v = (vx, 0). The left and right boundaries are set as cyclic (periodic).
It is noteworthy that the momentum equation Equation (2.15) is not solved in this test case,
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ensuring exactly constant velocity and pressure over time, aiming to only to test the periodic
(cyclic) interface reconstruction and advection. We test two interface reconstruction methods,
e.g. isoAlpha and plicRDF from [6].

Figure 61 shows the droplet reaching the right cyclic boundary. With the erroneous
calculation of the fluxed phase-specific volume V α

f at the cyclic boundaries, as shown in
Figure 61a, the interfaces appear in the patch neighbor cells incorrectly. The Figure 61b show
the accurate result of our modification with a single interface cell. The modification of V α

f

impacts both isoAlpha and plicRDF methods, while adapting the displacement is crucial only
for the plicRDF reconstruction. As shown in Figure 62a, without modifying the displacement
vector, some liquid remains in the cell layer adjacent to the neighbor-patch after the droplet
crosses the cyclic boundary, and reaches a location far from both cyclic boundaries. With
applying our modification from Figure 62b, the droplet retains its initial form. The fixed
cyclic boundary condition is available in [123].

v

x
z

Figure 60: A droplet moves with the ambient constant flow.
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(a) Unfixed (b) Fixed

Figure 61: The alpha field and interfaces reconstructed by iso-Alpha method reach to the
right cyclic boundary; blue region: the ambient flow; red region: the liquid droplet;
white line segments: the PLIC interfaces.

(a) Unfixed (b) Fixed

Figure 62: The alpha field and interfaces reconstructed by plic-RDF method cross the right
cyclic boundary; blue region: the ambient flow; red region: the liquid droplet; white
line segments: the PLIC interfaces.
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4 Viscous term modelling

The viscous term in eq. (2.15) is split, as follows

−∇ ·
(︁
µ(∇v+ (∇v)T )

)︁
= −∇ · (µ∇v)−∇ · (µ(∇v)T ) (4.1)

In this thesis, the first term on r.h.s of eq. (4.1) is treated implicitly, while the second term is
calculated explicitly as a source term by directly interpolating µ(∇v)T to cell faces with an
arithmetic mean viscosity from eq. (3.62), i.e.

∇ · (µ(∇v)T ) ≈ 1

|Ωc|
∑︂
f∈Fc

µf (∇vn)Tf · Sf . (4.2)

This treatment works well for the cases where the viscous effect does not dominate. However,
in the viscous force dominated cases such as rising air bubble in aqueous sugar solutions,
which is simulated in sections 3.5.4 and 6.4, this traditional treatment causes failures in
section 3.5.4 and damped rising velocity at the acceleration stage in section 6.4 for the cases
containing solution with higher viscosity.

One possible way to improve the approximation of eq. (4.1) involves further inspection
on the explicit part in eq. (4.1), as follows

∇ · (µ(∇v)T ) = ∇µ · (∇v)T + µ∇ · (∇v)T

= ∇µ · (∇v)T + µ∇(∇ · v).
(4.3)

According to the continuity condition, i.e., ∇ · v = 0, the approximation of ∇ · (µ(∇v)T ) can
switch to

∇ · (µ(∇v)T ) = ∇µ · (∇v)T ≈ (∇µ)c · (∇v)Tc , (4.4)

where the gradient at cell center can be approximated by utilizing Gauss-divergence theorem
or Least-square method. Another way to deal with∇µ ·(∇v)T explicitly is to put it in Poisson’s
equation as a source term. In this case, the divergence of∇µ·(∇v)T needs to be approximated,
which has the formulation

∇ · (∇µ · (∇v)T ) = ∇v : ∇∇µ+∇µ · ∇(∇ · v)

= ∇v : ∇∇µ

≈ (∇v)c : (∇∇µ)c

(4.5)
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It is remarkable that ∇ · v = 0 can not be ensured strictly everywhere in computation,
especially near the interface, where the continuity errors are usually visible. The errors are
then amplified by the gradient calculation, which may have unpredictable effects on results.
Thus, any omission of ∇(∇ · v) or ∇ · v on the numerical level should be further discussed.

Another possible improvement may come from the careful selection of average method
for viscosity. The simplest and most widespread method is arithmetic average, which is
adopted in this thesis. Patankar [167] thought any diffusion coefficient including the viscosity
should be handled in the same way as a conductivity, which has a harmonic formulation
rather than the arithmetic formulation of average. The harmonic average of viscosity has been
employed by many later works, e.g. [52, 53, 72, 168]. Deubelbeiss and Kaus [169] proposed
a geometric average method and compared these three average methods. The results showed
that the performances of these methods vary among different cases.

µarth = µ−α+ µ+(1− α)

µharm =
µ−µ+

µ−(1− α) + µ+α

µgeom = (µ−)α(µ+)1−α

(4.6)

To estimate viscosity, Coward et al. [170] put forward a blended method, which differentiates
components in tensor ∇v based on if a component is continuous or non-continuous across
the interface. For the component that is continuous across interface, a arithmetic average
of viscosity is utilized to construct the corresponding stress tensor component, whereas the
harmonic average is used for non-continuous component.
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5 Gravity term modelling

As described in section 2, the body force ρg is replaced by the interfacial force formulation
(g · x)∇ρ to limit the gravitational effects to the interfacial region, and to simplify the wall
pressure boundary condition [139, 171]. Like parasitic currents appearing in the static
droplet equilibrium when numerically solving the governing eq. (5.1), numerical errors are
also generated in the case of hydrostatic equilibrium, whose governing equation is displayed
by eq. (5.2)

−∇p+ σκ∇α = 0 (5.1)

−∇p− (g · x)∇ρ = 0. (5.2)

Two primary sources have been identified as the sources of spurious currents: inaccurate
curvature estimation and discrepancies in discretization between the surface tension and
pressure forces, as noted in previous studies [139, 172]. Many works like [139] (and more,
check the collected papers later) noticed the generality of adopting identical discretization for
pressure gradient and the interfacial force and extended it to maintain hydrostatic equilibrium
between pressure gradient and gravity force. However, fewer works discussed the impact of
approximating the term (g · x) on the equilibrium. In fact, the errors arising from carelessly
estimating (g · x) can be large, which will be explained and verified in the following. To
reduce the errors, Montazeri [162] put forward that the real altitude of the points, where the
pressure Poisson equation is solved, in the interfacial region i.e., interfacial cell face centers
for staggered grids the author used, should be replaced by the altitude of the closest point at
the interface. In [162], the level-set method is used to capture the interface on the staggered
grid. The distances’ vectors from the face centers of interfacial cells to the interface are known
and projected to the gravitational direction. The altitude of the closest point at the interface
can be obtained by adding the projected altitude and the altitude of the targeted point. A
series of subsequent works (Montazeri, Bussmann, and Mostaghimi [163] and Montazeri and
Ward [164]) showed promising results in the hydrostatic equilibrium case when using the
corrected altitude. Møller [165] adopted a similar approach to correct the altitude, whose
work is based on a PLIC-VOF method isoAdvector developed on collocated unstructured
mesh [36]. In Møller [165], the closest points of the centers of the interfacial cells and their
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point-neighbor non-interfacial cells are located at the interface and then assigned to the
corresponding center to update pressure. Although the correction is utilized, none of the
mentioned works [162, 165] elaborated on it at full length.

x

z

oPo

Ground

g

n

s

n′

s′
Σ, xΣ(xΣ, zΣ)
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−
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Figure 63: A cell ΩC is separated by the interface Σ into two regions: the shaded region Ω−
C

is occupied by the flow with density ρ−, the rest region Ω+
C is occupied by another

flow with density ρ+.

As shown in fig. 63, it is assumed that the origin of the global coordinate system o is
connected to the ground, where the pressure is set to Po, and the gravitational acceleration
g is in the −z direction. The total pressure of any point x located in the cell ΩC has the
following formulation

P (x, z) =

⎧⎨⎩Po + ρ−gz , z < zΣ

Po + ρ−gzΣ + ρ+g(z − zΣ) , z > zΣ.
(5.3)

According to the definition of dynamic pressure in section 2.2, the corresponding dynamic
pressure at x is defined by

p(x, z) =

⎧⎨⎩Po , z < zΣ

Po + (ρ− − ρ+)gzΣ , z > zΣ.
(5.4)

The analytical pressure jump ∆p = (ρ− − ρ+)gzΣ varies along the interface in the 2D-case of
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fig. 63. For the isoAdvector method used in this work, the interface plane is reconstructed
every time step in a cell layer, i.e., the interfacial cell layer.
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