
Efficient Algorithms for
Symmetry Detection

Vom Fachbereich Mathematik

der Technischen Universität Darmstadt

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

genehmigte

Dissertation

von

Markus Anders

aus Kaiserslautern

Erstgutachter: Prof. Dr. Pascal Schweitzer
Zweitgutachter: Prof. Dr. Adolfo Piperno
Drittgutachter: Prof. Dr. Brendan McKay

Darmstadt, 2024

Efficient Algorithms for Symmetry Detection
Doctoral thesis by Markus Anders
Darmstadt, Technische Universität Darmstadt, 2024

1st Referee: Prof. Dr. Pascal Schweitzer
2nd Referee: Prof. Dr. Adolfo Piperno
3rd Referee: Prof. Dr. Brendan McKay

Tag der Einreichung: 16.05.2024
Tag der mündlichen Prüfung: 17.09.2024

Published by TUprints in 2024.
Veröffentlicht durch TUprints im Jahr 2024.
URN: urn:nbn:de:tuda-tuprints-282571
URL: http://tuprints.ulb.tu-darmstadt.de/28257

This publication is licensed under the following Creative Commons license:
Attribution 4.0 International CC BY 4.0
Diese Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International CC BY 4.0
https://creativecommons.org/licenses/by/4.0/

ii

http://tuprints.ulb.tu-darmstadt.de/28257
https://creativecommons.org/licenses/by/4.0/

Abstract

The use of symmetry dramatically impacts the efficiency of algorithms in various appli-
cation areas. However, no matter how symmetries are used, there needs to be a way to
obtain them efficiently. In practice, symmetries of combinatorial structures are usually
computed by modeling said structure as a graph. The automorphisms of this graph then
precisely model the symmetries of the combinatorial structure. A so-called practical graph
isomorphism solver is then used to compute the automorphism group of the constructed
graph. Practical graph isomorphism solvers have been developed for more than half a
century. While all state-of-the-art solvers are based on the same principles, namely the
so-called individualization-refinement paradigm, there are vast differences among them.
The differences in the algorithms, in turn, lead to vast performance differences in practice.
While practical graph isomorphism has been considered “solved” multiple times over the
past few decades, no single algorithm can efficiently solve all the graphs stemming from
the various application areas. Indeed, there are even some particular applications for
which state-of-the-art implementations struggle to solve all the graphs efficiently. Ideally,
one would like to have a singular algorithm that is fast on all graphs.
In this thesis, we describe the design of a new practical graph isomorphism solver

called dejavu. Instead of trying to develop a better implementation ad hoc, we per-
form a theoretical analysis of essential algorithmic ingredients used in state-of-the-art
algorithms. A central result is a theoretical model for the backtracking behavior of all
state-of-the-art algorithms. Within this model, we prove that a Monte Carlo strategy
is optimal in the worst-case up to logarithmic factors. A Monte Carlo strategy can use
randomization and is allowed to err with bounded probability. In particular, we prove
that randomized strategies outperform deterministic strategies. In theory, the Monte
Carlo backtracking strategy outperforms all strategies currently used in practice in the
worst-case. Further theoretical results include a characterization of the structure of the
aforementioned backtracking trees and an analysis of design choices in the so-called color
refinement algorithm, a crucial subroutine used by the solvers.
In turn, the design of dejavu is based on these theoretical results. In particular, the

backtracking strategy of dejavu follows the near-optimal Monte Carlo strategy. The
solver further contains various novel practical components. These components are care-
fully designed to complement the Monte Carlo strategy. Notably, one of the components
is a preprocessor designed to shrink large and sparse inputs, which can also be used with
all the other state-of-the-art solvers. Benchmarks on a vast library of graphs reveal that
dejavu is faster than any other state-of-the-art solver on most tested graph classes.

iii

Zusammenfassung

Die Ausnutzung von Symmetrien hat einen großen Einfluss auf die Effizienz praktis-
cher Algorithmen in vielen verschiedenen Bereichen. Egal wo und wie Symmetrien ver-
wendet werden, wird eine effiziente Möglichkeit benötigt, um Symmetrien zunächst zu
berechnen. Dafür werden kombinatorische Strukturen in der Praxis üblicherweise als
Graphen modelliert. Die Automorphismengruppe dieses Modellgraphen entspricht dann
den Symmetrien der kombinatorischen Struktur. Ein Graphisomorphie-Algorithmus wird
anschließend verwendet, um die Automorphismengruppe des Modellgraphen zu berech-
nen. Praktische Graphisomorphie-Algorithmen werden seit über 50 Jahren entwickelt.
Obwohl alle moderne praktische Algorithmen auf demselben Prinzip basieren, nämlich
dem Individualization-Refinement (IR) Paradigma, gibt es dennoch große Unterschiede
zwischen den Implementierungen. Dies wiederum führt zu großen Leistungsunterschieden
zwischen den Algorithmen. Obwohl die praktische Graphisomorphie schon oft als “gelöst”
bezeichnet wurde, ist in der Tat kein einziger praktischer Algorithmus in der Lage, alle
Graphen aus den verschiedenen Anwendungsbereichen effizient zu lösen. Es gibt sogar
einzelne Anwendungen, in denen es keiner der Algorithmen schafft, alle Graphen effizient
zu lösen. Idealerweise gäbe es einen einzigen Algorithmus, der auf allen Graphen schnell
ist.
Die vorliegende Arbeit beschäftigt sich mit dem Entwurf eines neuen Algorithmus,

dejavu, für die Erkennung von Symmetrien auf Graphen. Anstatt ad-hoc nach einer
besseren Implementierung zu suchen, führen wir eine theoretische Analyse der wesent-
lichen algorithmischen Bestandteile des IR Paradigmas durch. Ein zentrales Ergebnis ist
ein theoretisches Modell für die Backtracking-Strategien moderner praktischer Algorith-
men. Wir beweisen, dass ein bestimmter Monte-Carlo Algorithmus innerhalb des Modells
optimal bis auf logarithmische Faktoren ist. Ein Monte-Carlo Algorithmus kann Zufall in
Berechnungen miteinbeziehen, und darf mit einer begrenzten Wahrscheinlichkeit Fehler
machen. Insbesondere beweisen wir, dass in unserem Modell probabilistische Strate-
gien beweisbar besser sind als deterministische. Die Monte-Carlo Strategie ist asympto-
tisch schneller als alle anderen Strategien, die in der Praxis verwendet werden. Weitere
theoretische Resultate beinhalten eine konstruktive Charakterisierung der Backtracking-
Bäume, sowie eine Analyse von Design-Entscheidungen im sogenannten Color Refinement
Algorithmus.
Das Design von dejavu basiert auf unseren neuen theoretischen Erkenntnissen. Ins-

besondere verwendet dejavu eine Monte-Carlo Backtracking-Strategie. Darüber hinaus
besteht der Solver aus vielen weiteren praktischen Komponenten, die dafür entwickelt
wurden, die Monte-Carlo Strategie zu unterstützen. Eine dieser Komponenten ist ein
Preprocessor, der auch mit allen anderen modernen Implementierungen verwendet wer-
den kann. Eine experimentelle Analyse auf einer weitreichenden Kollektion von Graphen
demonstriert anschließend, dass dejavu auf der großen Mehrheit der Graphklassen sig-
nifikant schneller ist als alle anderen Implementierungen.

v

Acknowledgements

I thank my colleagues Jendrik Brachter, Sofia Brenner, Billy Joe Franks, Gaurav Rattan,
and Florian Wetzels. Our collaborations were truly the most fun part of the journey. I also
want to thank Moritz Lichter, Georg Schindling, Thomas Schneider, and Lena Volk for
proofreading parts of this thesis and for being amazing colleagues. I thank Marc Pfetsch
and Christopher Hojny for sharing their insights on symmetry breaking with me. I thank
Brendan McKay and Adolfo Piperno for the inspiring discussions on practical graph
isomorphism, which always resulted in additional tinkering with the implementation. I
am grateful to Pascal Schweitzer for teaching me an endless number of things.

Last but certainly not least, I thank Luisa for always having my back and supporting
me in all of my endeavors.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 6
1.3 Structure of this Thesis . 9

2 Preliminaries and Related Work 11
2.1 Graphs and Groups . 11

2.1.1 Graphs . 11
2.1.2 Isomorphisms and Automorphisms 13
2.1.3 Permutation Groups and Schreier-Sims 15

2.2 Algorithms and Data Structures . 19
2.2.1 Sets, Lists, and Arrays . 19
2.2.2 Sparse Graphs . 21
2.2.3 Sparse Symmetries . 22
2.2.4 Vertex Colorings . 22
2.2.5 Testing Automorphisms . 24
2.2.6 Efficient Orbit Algorithm . 25

2.3 Individualization-Refinement . 26
2.3.1 Refinement . 26
2.3.2 Selectors . 28
2.3.3 IR Tree . 29
2.3.4 Pruning with Invariants and Automorphisms 31
2.3.5 IR, Isomorphisms, and Canonical Labeling 33

2.4 Existing Solvers and their Strategies . 33
2.4.1 nauty . 33
2.4.2 saucy . 34
2.4.3 bliss . 35
2.4.4 Traces . 35
2.4.5 Other Algorithms . 36

3 Search Tree Traversal 39
3.1 A Model for Search Tree Traversal . 40

3.1.1 Exploration Model . 41
3.1.2 Isomorphism Invariance . 42
3.1.3 Isomorphism Exploration Problem 43

3.2 Upper Bounds . 43
3.2.1 Monte Carlo Traversal . 44
3.2.2 Las Vegas Traversal . 49

ix

Contents

3.3 Lower Bounds . 56
3.3.1 Randomized Lower Bound . 57
3.3.2 Deterministic Lower Bound . 59

3.4 Monte Carlo, Las Vegas, and Traces . 59
3.5 Characterization of IR Trees . 60

3.5.1 Necessary Conditions for IR Trees 61
3.5.2 Gadgets for Construction . 63
3.5.3 Construction for Asymmetric Trees 66
3.5.4 Construction with Symmetries . 70
3.5.5 Necessary Conditions are Sufficient 73

4 Color Refinement 77
4.1 Efficient Color Refinement . 79
4.2 Worklist Order . 86

4.2.1 Online Model . 87
4.2.2 Graph Gadgets . 89
4.2.3 Competitive Ratio in Online Model 91
4.2.4 Competitive Ratio in Offline Model 97

4.3 Split Algorithms . 99
4.3.1 Singleton Split . 100
4.3.2 Dense Split . 101
4.3.3 Very Dense Split . 102

4.4 Various Optimizations in the IR Context 102
4.4.1 Individualization . 102
4.4.2 Early Out Opportunities . 105
4.4.3 Reversible Refinement . 106
4.4.4 Canonical and Non-Canonical Refinement 106
4.4.5 Matched Vertex Colorings . 107
4.4.6 Small Graphs . 108

5 Preprocessing 111
5.1 Interface and Conceptual Principles . 112
5.2 Framework for Reductions . 113
5.3 Automorphism-Preserving Reductions . 114

5.3.1 Color Refinement and Discrete Vertices 114
5.3.2 Quotient Graph Flips . 115

5.4 Lifts based on Vertices . 115
5.4.1 Degree 0 . 117
5.4.2 Twins . 118
5.4.3 Degree 1 . 120
5.4.4 Degree 2 with Unique Endpoints 121

5.5 Lifts based on Edges . 124
5.5.1 Degree 2 and Edge Flips . 125
5.5.2 Degree 2 Densification . 126

x

Contents

5.6 Further Techniques . 128
5.6.1 Non-uniform Components . 128
5.6.2 Probing . 129

5.7 High-level Algorithm of the Preprocessor 129

6 The dejavu Algorithm 131
6.1 Design Principles of the Solver . 131
6.2 Random Search and Breadth-First Search 133

6.2.1 Monte Carlo Algorithm for Symmetry Detection 135
6.2.2 Breadth-first Search with Trace Deviation 140
6.2.3 Choosing between Monte Carlo and Breadth-first Search 144

6.3 Random Search and Depth-first Search 145
6.3.1 Limited Depth-First Search . 145
6.3.2 Monte Carlo Algorithm and Schreier-Sims, Revisited 150

6.4 Restarts and Strategy Sampling . 152
6.4.1 Cell Selectors . 152
6.4.2 Restarts . 153

6.5 Inprocessing . 154
6.5.1 Simplify using Automorphisms . 154
6.5.2 Simplify using Breadth-First Tree 155
6.5.3 Simplify using Shallow Search . 155

6.6 Parallelization . 156
6.6.1 Random Search and Sifting . 157
6.6.2 Breadth-First Search . 157
6.6.3 To parallelize, or not to parallelize? 159

7 Benchmarks 161
7.1 Graph Library . 161

7.1.1 Graph Classes from the nauty/Traces Collection 162
7.1.2 Additional Graph Classes . 162

7.2 dejavu versus State-of-the-Art . 163
7.3 Preprocessing . 182

8 Conclusions and Outlook 185
8.1 Conclusions . 185
8.2 Future Work . 186

Bibliography 188

List of Figures 198

List of Algorithms 200

List of Tables 201

xi

Chapter 1

Introduction

1.1 Motivation

Symmetry is an intuitive concept that appears in various contexts, both in nature and
mathematics. Indeed, skilled mathematicians often argue “by symmetry”. This can often
severely shorten a proof or argument. A particular kind of symmetry is one exhibited
by combinatorial structures. For example, parts of a computational problem or variables
in an equation may be interchangeable on a syntactic level: exchanging x and y in
x2+2xy+y2 leaves us with the same formula. We intuitively know that when arguing over
the variables x and y, we only need to worry about one of the symmetrical choices. It has
often been observed that such symmetries are commonplace and naturally occur through
mathematical modeling [38]. Indeed, instances of computational problems can exhibit a
remarkable amount of symmetry [92, 101]. Naturally, we therefore want algorithms also
to be able to argue “by symmetry”.

In an algorithmic context, systematically reducing symmetrical computations can lead
to a tremendous gain in efficiency [51, 26]. Indeed, the use of symmetry has a dramatic
impact on the efficiency of practical algorithms in various fields. This includes computer
graphics [68], automated reasoning [53], machine learning [105], chemistry [95, 99, 77],
constraint programming in general [42], SAT solvers [101], software verification [22, 67],
model checking [44, 79], SMT solvers [30], mixed integer linear programming [72, 92, 54],
answer set programming [32] and many more. Precisely how symmetries are used best in
an algorithmic context remains a matter of active research. Even for a particular applica-
tion, such as SAT, there may be numerous approaches which try to balance computational
overhead with the strength of symmetry reduction [26, 2, 34, 100, 35, 24, 33, 78, 52, 57, 64].

However, no matter how symmetries are used precisely, there needs to be a way to
obtain them. If the goal is to speed up other computations, being able to efficiently obtain
symmetries is essential. Fortunately, computing the symmetries of a combinatorial object,
such as an instance of a computational problem, can very often be efficiently reduced
to computing the symmetries of a graph [80]: research can be focused on efficiently
computing the symmetries of graphs.

The efficient detection of symmetries of graphs is the topic of this thesis. Comput-
ing symmetry is intimately related to the so-called graph isomorphism problem. Hence,
practical algorithms for symmetry detection are often referred to as practical graph iso-
morphism algorithms. In the early days, the development of these algorithms attracted
so much research that it was dubbed a disease [97]. Half a century of further research has
led to the current suite of state-of-the-art algorithms. The thesis consists of an algorith-

1

Chapter 1 – Introduction

mic analysis of ingredients used in practical graph isomorphism algorithms, which then
inspires the design of a new, significantly more powerful implementation called dejavu.

Before going into more detail, let us begin our exposition with more background on
using symmetries in practice. This will then lead us to the current state-of-the-art in
symmetry detection.

Symmetry in Practice. How symmetries are used best in an algorithmic context re-
mains a matter of active research. While there are many different application areas, quite
commonly, symmetries are used to speed up an exponential-time backtracking search.
Here, the difficulty lies in the fact that methods need to balance computational overhead
with the strength of symmetry reduction. Indeed, it should be mentioned that there can
be several sources for overhead: it can stem from the symmetry detection, the compu-
tational overhead of the symmetry reduction method, as well as interfering with other
strategies used by the original backtracking algorithm. It is possible to remove all sym-
metries from a backtracking search using so-called isomorph-free exhaustive generation
(see e.g., [75, 57]). However, these techniques incur a substantial computational over-
head. Another natural strategy is to include a symmetry-aware backtracking rule, which
essentially skips symmetric choices (see e.g., [89, 100, 33]). A downside of such techniques
is that they usually require a substantial modification of the underlying algorithm, which
may interfere with other strategies and may therefore be undesirable. In constraint pro-
gramming, another very common technique is to add static symmetry breaking constraints
to a given instance. This adds additional variables and constraints which ought to re-
strict the search space to only asymmetric solutions (see e.g., [26, 37, 2, 34, 92]). While
symmetry reduction is usually limited, a distinct advantage of static symmetry breaking
constraints is that the underlying algorithms do not have to be modified.

Computing Symmetry. All these numerous applications and approaches to exploiting
symmetry do however have one issue in common: before symmetries of a structure can
be exploited, one first has to have algorithmic means to find them. Towards this goal, a
typical first step is that the given combinatorial structure is transformed into an annotated
graph whose symmetries correspond to the symmetries of the original structure. Indeed,
this is efficiently possible for all finite relational structures [80].

The approach is also used in practice: the instances of a computational problem are
transformed into a so-called model graph, which is then given to a tool solving symmetry
detection for graphs. Figure 1.1 illustrates such a model graph for a Boolean formula, as
it might occur in SAT. First, every variable and its negation are a vertex of the graph.
Second, every disjunction of the formula is a vertex connected to the contained variables
or negated variables. The symmetries of this graph correspond precisely to the syntactic
symmetries of the formula [101].

It thus suffices to be able to compute the symmetries of a given graph. In fact, even
simple, undirected graphs suffice [80]. One may wonder: how difficult is this problem? It
turns out that computing the symmetries, or the automorphism group, of a given graph
is polynomial time equivalent to the graph isomorphism problem.

2

1.1 Motivation

x ¬x y ¬y

Figure 1.1: A model graph for the Boolean formula (x ∨ y) ∧ (¬x ∨ y) ∧ (¬y ∨ x).

Whether the graph isomorphism problem can be solved in polynomial time is a long-
standing open problem [12]. Resolving this question even seems difficult for the restricted
subcase of the group isomorphism problem [12], for which it seems particularly challenging
to apply the combinatorial machinery used elsewhere [19]. Quite trivially, we know that
the graph isomorphism problem can be solved in nondeterministic polynomial time (i.e.,
NP). Moreover, we know that graph isomorphism is in coAM [15], which means there is
a randomized protocol for verifying graph non-isomorphism. NP-completeness of graph
isomorphism is arguably implausible: firstly, since this would lead to a collapse of the
polynomial hierarchy [46, 15]. Secondly, the best-known theoretical algorithm, due to
Babai [12], runs in quasi-polynomial time. Hence, NP-completeness would immediately
contradict the strong exponential time hypothesis [21].

On the other hand, graph isomorphism is easy on average: asymptotically almost all
graphs can be solved using a naive linear time algorithm [14]. Furthermore, numerous
restricted graph classes are known for which graph isomorphism can be solved in polyno-
mial time. This includes trees [1], planar graphs [56], graphs with bounded degree [71],
bounded tree width [18], bounded rank width [50], graphs with a forbidden minor [48],
tournaments with bounded twin width [49], and many more. Many of these results use
a group-theoretic framework due to Luks [71]. As already pointed out by McKay and
Piperno [76], while some of these algorithms have practical merit [1, 56], most of them
use subroutines which do not seem to be viable. Indeed, in practice, a different class of
algorithms is used.

Practical Graph Isomorphism. The current state-of-the-art implementations for com-
puting the symmetries of graphs are bliss [58, 59], nauty [74, 76], Traces [93, 76, 94],
as well as saucy [27, 28, 60, 23]. It should be mentioned that nauty, Traces, and
bliss can also solve a more general task: they can compute a canonical labeling, which
provides a canonical representative within an isomorphism class of graphs.

All these tools are based on the so-called individualization-refinement (IR) paradigm.
Parris and Read introduced the IR paradigm in a series of papers [91]. The paradigm was
then further developed in publications which predate nauty [25, 9]. However, nauty
was the first implementation to truly realize the potential of IR, with the introduction of
several essential ingredients [74], further explained below. The paradigm itself essentially
describes how the backtracking trees of the tools are constructed, as is explained in the
following. IR consists of two main procedures: a refinement routine and the individu-
alization technique. A refinement is a heuristic to distinguish vertices that can not be

3

Chapter 1 – Introduction

mapped by symmetry: it partitions the vertices so that for two vertices of two different
parts, no symmetry maps one to the other. All solvers implement color refinement, also
known as the 1-dimensional Weisfeiler-Leman algorithm. The routine first distinguishes
vertices according to their degree, then their neighbors’ degrees, and so forth. In IR,
vertices not yet distinguished into separate partitions by the refinement are artificially
separated using individualization. The algorithm chooses a partition, or “selects a cell”,
and separates one of the vertices into its own partition. More precisely, a branch in the
backtracking tree is created for every vertex of the selected cell. Then, the refinement
is applied to each branch, and the process repeats. We should note that color refine-
ment and the more general k-dimensional Weisfeiler-Leman algorithm are also studied in
various other domains. In the context of machine learning, graph neural networks are
strongly related to Weisfeiler-Leman, and various results try to exploit this connection
[83, 39]. Moreover, aspects of the Weisfeiler-Leman algorithm are strongly related to
finite model theory [20].

Algorithms in the IR paradigm have also been the subject of theoretical study. Gold-
berg showed that with certain modifications, IR algorithms can achieve single exponential
runtime [45]. On the other hand, graphs guaranteed to cause exponential runtime for
IR algorithms are rare and difficult to obtain. Indeed, it is known that color refinement
asymptotically distinguishes almost all graphs [14]. Based on the construction of [20],
Miyazaki was the first to provide graphs on which nauty provably exhibited exponential
runtime [82]. The graph construction makes use of a particular “cell selector” used by
nauty, and could therefore be easily circumvented [108]. This was later rectified by
Neuen and Schweitzer, proving an exponential lower bound regardless of the cell selector
used [87].

While all state-of-the-art tools for symmetry detection are based on the IR paradigm,
there are still vast differences. In particular, there are differences in the pruning tech-
niques and how tools traverse the IR backtracking trees. Let us now briefly introduce
the tools and some of their differences. Designed by McKay in 1977, nauty had been
the indisputable fastest solver for decades. A key feature introduced by nauty was au-
tomorphism pruning, meaning the tool itself made use of symmetry during search [74].
Furthermore, nauty introduced a particularly efficient implementation of color refine-
ment [74], which is still used as the blueprint for all modern implementations. Continu-
ously updated over several decades, nauty now features a version for dense graphs, one
for sparse graphs, a vast array of invariants, and the Schreier-Sims algorithm for more
rigorous automorphism pruning [76]. The tool saucy, published in 2004, was initially
designed to exploit symmetry in SAT formulas [27] to be used in SAT solvers. saucy can
exploit sparsity both in the input and output: a crucial feature is that saucy attempts
to detect and output symmetries with small support efficiently. Indeed, graphs stemming
from SAT formulas often exhibit symmetries with small support. The tool bliss, pub-
lished in 2007, constitutes a reimplementation of the algorithm underlying nauty with
a particular focus on efficient low-level data structures. Besides efficient low-level data
structures, bliss introduced a way of dealing with homogeneously connected components
of graphs and a form of conflict propagation [59]. All the tools mentioned above follow
a natural depth-first approach to traversing the IR backtracking tree. The tool Traces

4

1.1 Motivation

102 103

size

10−3

10−2

10−1

100

101

co
m
pu

ta
ti
on

ti
m
e

latin-sw

dejavu

Traces

bliss

nauty

saucy

(a) Graphs stemming from
Latin squares.

0 100 200 300 400

instance

10−4

10−2

100

102

co
m
pu

ta
ti
on

ti
m
e

pace23

dejavu

Traces

bliss

nauty

saucy

(b) Graphs from the PACE
2023 competition.

103

size

10−3

10−2

10−1

100

101

102

co
m
pu

ta
ti
on

ti
m
e

tseitin

dejavu

Traces

bliss

nauty

saucy

(c) Graphs from “Tseitin”
SAT instances.

Figure 1.2: Performance of state-of-the-art practical graph isomorphism solvers on select
benchmark families. The timeout is 100 seconds.

by Piperno, released in 2008, broke away from this principle and pioneered a completely
different search strategy for IR trees. Traces mainly uses breadth-first search in con-
junction with random root-to-leaf walks of the IR backtracking tree. This strategy excels
at effectively pruning the search space of difficult combinatorial graphs. Moreover, the
tool contains many new features, including novel pruning techniques, a highly engineered
color refinement implementation, and a limited form of preprocessing.
Overall, the reader might now wonder: which tool is the fastest one? Being particularly

efficient on difficult combinatorial graphs, Traces has a strong case for being the fastest
overall solver. This is exemplified by the performance of Traces on graphs obtained
from Latin squares, as illustrated in Figure 1.2a. However, this is not universally true
for all graph classes. The diverging techniques used by the solvers lead to significant
differences in their performance across different graph classes. In particular, there are
essential practical graph classes where saucy runs faster than Traces. For example,
on graphs stemming from the PACE challenge 2023 [90] saucy can utilize its strongly
tailored detection of sparse symmetries, as can be seen in Figure 1.2b. There are also
cases in which nauty or bliss are faster. Lastly, there are classes where all solvers
are intractable, and Traces seems particularly slow: the so-called shrunken multipedes
provably incur exponential runtime for any IR algorithm [86, 87].
Only having solvers available that are geared toward specific types of graphs is an un-

desirable situation. A practitioner looking for a symmetry detection tool needs to check
which tool suits the application best. Even worse, there might not even be one single
tool that suits all the encountered graphs in an application. This is true in SAT solving:
designed with SAT in mind, saucy is the fastest of these tools on most SAT competition
instances. However, saucy struggles to solve, for example, model graphs from the well-
established tseitin benchmark family [109] efficiently, as illustrated in Figure 1.2c. We
should also note that the state-of-the-art symmetry breaking tool in SAT describes sym-
metry detection as the bottleneck [34] and artificially limits the time spent on symmetry
detection. Regarding our overall discussion, solvers will also naturally struggle with input
graphs that are combinations of the different types of graphs.
Ideally, one would like to have a single implementation that is fast on all graphs.

5

Chapter 1 – Introduction

However, it seems that to create an algorithm that combines the benefits of the different
solvers, a deeper understanding of the various strategies and techniques is necessary.

1.2 Contributions

In this thesis, we describe the design of a new symmetry detection tool called dejavu.
Instead of trying to develop a better implementation ad hoc, we first perform a thorough
theoretical analysis of essential algorithmic ingredients used in IR solvers. In particular,
we give a theoretical analysis of the IR backtracking behavior, as well as the color refine-
ment algorithm. The most crucial result concerns a theoretical model for IR traversal
strategies, which essentially captures how algorithms traverse the IR backtracking trees.
In this model, we prove that randomized strategies outperform deterministic ones. We
show that a specific Monte Carlo strategy is optimal in the worst-case up to logarithmic
factors. In turn, we base the design of dejavu precisely on this near-optimal Monte
Carlo strategy. This is augmented with an extensive array of novel practical techniques
and novel applications of successful methods used in state-of-the-art solvers. Benchmarks
demonstrate that this yields a significantly more powerful implementation compared to
the state-of-the-art. A detailed summary of the individual contributions follows below.

Traversal Strategy. Looking at the history of state-of-the-art IR tools, algorithms tra-
ditionally followed a depth-first search approach to traverse the search tree. However,
Traces broke away from this principle, performing a form of breadth-first search that is
combined with a random traversal of the tree. Practical observations demonstrate that
the approach is particularly effective on difficult, combinatorial graphs. But this im-
mediately raises the question: are there theoretical, structural reasons why this traversal
strategy is favorable?

We design a theoretical model for the traversal strategy of IR algorithms. The model is
based directly on trees, which ought to model the IR backtracking trees of the solvers. In
this model, we investigate lower and upper bounds within three settings: deterministic,
Monte Carlo, and Las Vegas. In the Monte Carlo setting, algorithms may incorporate
randomization into their computations and may err with bounded probability. In the Las
Vegas setting, algorithms may use randomization but must not err.

Regarding the bounds, for deterministic algorithms, we prove matching linear lower and
upper bounds. The matching bounds even hold in the case of binary trees. In the worst-
case, deterministic algorithms need to essentially investigate the entire IR backtracking
tree. For Las Vegas algorithms, we prove a linear lower and upper bound for unrestricted
IR trees. In the case where IR trees have a bounded degree d, we prove a O(d log(N)

√
n)

upper bound for expected worst-case runtime. (Here, n and N refer to the size of the
involved trees; see Chapter 3 for more details.) For Monte Carlo algorithms, we show
a lower bound of Ω(

√
n) and an almost matching upper bound of O(log(n)√n). This

means that even in the worst-case, there is a Monte Carlo traversal strategy that only
ever investigates a O(log(n)√n) portion of the IR backtracking tree.

6

1.2 Contributions

Furthermore, we provide a constructive characterization of IR trees. We provide nec-
essary conditions for a tree to be an IR tree using color refinement. Then, for each tree
that satisfies the necessary conditions, we construct a graph and a so-called cell selector,
which lead to an IR tree that structurally matches the input tree. Specifically, this proves
that the IR trees used in our lower bound constructions can stem from actual inputs to
the algorithm.

Overall, the results explain why the randomized breadth-first with experimental path
search strategy of Traces is often superior to the depth-first search employed by other
tools. The strategy employed by Traces incorporates aspects of both the Monte Carlo
and Las Vegas strategies. Yet, the worst-case performance of Traces is still linear. Our
Monte Carlo strategy and Las Vegas strategy asymptotically outperform all traversal
strategies that are currently used in practice in the worst-case. In our model, the Monte
Carlo strategy is near-optimal in the worst-case. It is provably more efficient than any
Las Vegas or deterministic strategy.

Color Refinement. Color refinement is continuously applied during the execution of
an IR algorithm and is thus the most important subroutine. The efficiency of the color
refinement implementation is a crucial factor in the overall runtime of a solver. Further-
more, advanced strategies used by the solvers are sometimes entangled with the color
refinement algorithm itself. The color refinement algorithm is a crucial cornerstone in
the design of an efficient IR algorithm. Color refinement can be implemented such that
it runs in worst-case time O((n +m) log n) [16]. Indeed, within a model of modest as-
sumptions, there is a matching Ω((n + m) log n) lower bound [16]. It should be noted
that the theoretical algorithm used for the upper bound in [16] significantly differs from
the implementations used by modern solvers.

We describe a color refinement algorithm that closely resembles the implementation
used in dejavu and Traces. Then, we argue its correctness and worst-case runtime of
O((n+m) log n). This means the practical implementation also matches the theoretical
upper bound [16]. Based on this exposition, we describe crucial engineering tricks and
other strategies based on color refinement, as used by contemporary solvers.

The efficient implementation of color refinement splits partitions of vertices, called color
classes, according to their neighbor counts in other color classes. A central design choice
of the algorithm is the order in which these splits are performed. The splits are usually
kept in a worklist, such as a stack or queue, the choice of which determines the order of
the splits. Indeed, the order implied by the worklist is of no importance for the worst-case
runtime, or the lower bound construction. Still, it could be that one worklist is always as
good or superior to another. There might even be a worklist that is always competitive
with any other worklist on all graphs. We provide a rigorous theoretical analysis of the
worklist. We define an online model and an offline model, enabling us to formally compare
and analyze different worklist choices in color refinement. The results within these two
models concur: in the online model, no worklist that is competitive beyond a logarithmic
factor to all other worklists can exist. In the offline model, unless P = NP, the optimal
worklist can not be approximated in polynomial time up to a logarithmic factor.

7

Chapter 1 – Introduction

Solver Design. We describe the design of the dejavu algorithm for symmetry detection.
As informed by our theoretical analysis, the foundation of the solver is a Monte Carlo
algorithm. The algorithm has a one-sided bounded error : the user provides a probability
ϵ, and in each run, the solver may miss a symmetry with a probability of at most ϵ. In
particular, the solver never outputs a permutation that is not a symmetry of the input
graph. In practice, it turns out that applying only the Monte Carlo algorithm does not
make for a good solver. The algorithm cannot efficiently solve numerous graph classes:
recall that the Monte Carlo strategy is only proven superior in the worst case. In many
cases, IR trees are either very easy or can be readily pruned. In order to deal with these
cases more efficiently, the solver incorporates a multitude of further components. The
aim is to efficiently reduce graphs and IR trees to a difficult core, which is then passed to
the Monte Carlo strategy. This includes many novel techniques and novel applications of
existing methods. We highlight the following key features of the solver:

• A Monte Carlo search, which can be mixed with both depth-first and breadth-first
search.

• A universal preprocessor, which is designed to shrink and simplify the input graphs.
It reduces vertices with degrees at most 2, twins, and features further reductions
based on the so-called quotient graph. The preprocessor can be used in conjunction
with all state-of-the-art tools.

• A restart-and-inprocessing scheme, which draws inspiration from the design of con-
temporary combinatorial solvers. This means whenever a graph is difficult, the
solver occasionally restarts its search and varies the strategies used. On each restart,
partial results are used to simplify the graph.

• A compressed Schreier structure. The Schreier structure is used to keep track of
the collected symmetries. The structure is compressed using information gathered
from the IR tree.

• The so-called trace deviation set pruning technique, which is designed to speed up
breadth-first search in IR trees.

Juggling these different components and aspects from different areas poses a severe chal-
lenge. Components are only valuable as part of a coherent strategy, which must also be
implemented in a highly efficient manner.
We describe how the dejavu algorithm combines these components. We provide cor-

rectness arguments for each component individually and essential interactions between
the components. Furthermore, we prove that the Monte Carlo strategy implicitly per-
forms complete automorphism pruning, meaning it takes full advantage of the presence
of symmetry.

Benchmarks. We compare dejavu to all state-of-the-art symmetry detection tools
across a wide range of graph classes. These graph classes include almost all graphs

8

1.3 Structure of this Thesis

listed in the de-facto default benchmark library [85] as well as further graph classes en-
countered in practice. The benchmarks demonstrate that dejavu is the fastest solver
on the majority of graph classes (33 out of 44). A solver is competitive on a graph class
whenever it is the fastest solver or if it does not take more than twice the time of the
fastest solver. dejavu is competitive on almost all graph classes (39 out of 44). The
second-best solver in our benchmarks is Traces, which is competitive on half of all
classes (22 out of 44). Whenever the results of dejavu could be compared against the
results of a deterministic solver, we checked whether dejavu missed any symmetries due
to the Monte Carlo algorithm. No probabilistic error was observed in our benchmarks.
Moreover, the preprocessor of dejavu can be used in conjunction with any other state-

of-the-art solver. We demonstrate that the preprocessor significantly speeds up nauty,
saucy, bliss, and Traces on the benchmark library.

Barring the potential one-sided error, dejavu is probably the most powerful symmetry
detection algorithm currently in use.

1.3 Structure of this Thesis

We give an overview of the contents of each chapter.

Chapter 2. We begin by introducing important preliminaries. This includes basic nota-
tion for graphs, data structures, and algorithms. The main part of the chapter concerns
individualization-refinement, the paradigm that all state-of-the-art symmetry detection
tools follow. The chapter concludes with a description of all state-of-art symmetry de-
tection tools.

Chapter 3. Next, we discuss how tools traverse their IR search tree. In this chapter,
we describe a model for search tree traversal. We provide upper and lower bounds within
the model across different settings. Furthermore, a characterization of IR trees is given.
The analysis of traversal strategies is joint work with Pascal Schweitzer, and has been
previously published in [6]. The characterization of IR trees is joint work with Jendrik
Brachter and Pascal Schweitzer, and has been previously published in [3].

Chapter 4. Color refinement is the most crucial subroutine of symmetry detection tools.
In this chapter, a detailed description of a modern implementation is provided. We discuss
several optimization strategies employed by the different tools. The chapter also includes
an analysis of the competitiveness of different “worklists” in the algorithm. The analysis
of worklists has been previously published in [8], and is joint work with Pascal Schweitzer
and Florian Wetzels.

Chapter 5. Next, we describe a preprocessor for symmetry detection. The preprocessor
focuses on strategies to reduce low-degree vertices, twins, and related strategies based on
the color refinement algorithm. The preprocessor was previously published in [7], and is
joint work with Pascal Schweitzer and Julian Stieß.

9

Chapter 1 – Introduction

Chapter 6. All these previous results culminate in our description of the dejavu algo-
rithm. The chapter describes all the components of the algorithm as well as the high-
level procedure. Furthermore, we argue the correctness of the components as well as
important interactions between the components. Previous iterations of the solver have
been published in [5, 4], which is joint work with Pascal Schweitzer. We note that the
implementation of the solver described in this thesis differs significantly from previous
publications.

Chapter 7. We benchmark the resulting implementation against all other state-of-the-
art solvers. Furthermore, we also test the effectiveness of the preprocessor in conjunction
with all state-of-the-art solvers.

Chapter 8. Lastly, we discuss interesting theoretical open questions, as well as how
symmetry detection may be further improved in future work.

It should be noted that the introduction and preliminaries also contain parts of the
previous publications [6, 3, 8, 7, 5, 4].

This exposition aims to serve as a reference for how to construct an efficient IR algo-
rithm. Of course, a major part of this concerns our theoretical results. However, there
are also many crucial practical details. In particular, in Chapter 2 and Chapter 4, we
provide low-level descriptions for crucial procedures and data structures used in IR al-
gorithms. In order to keep things manageable, we skip these low-level descriptions for
high-level algorithms and ideas, such as in Chapter 5 and Chapter 6. If the reader desires
more algorithmic detail in certain places, in light of our descriptions here, the remain-
ing information can hopefully be easily gathered from the implementation itself. The
implementation is open source and freely available [31].

10

Chapter 2

Preliminaries and Related Work

We begin by introducing basic notation for graphs and symmetries. This includes a
definition of the graph isomorphism problem, graph automorphism problem, and canon-
ical labeling problem. We reason why these problems are of interest to other areas of
mathematics and computer science. Considering the graph automorphism problem, a
basic fact is that the automorphisms of a graph form a permutation group. Therefore,
we introduce a few rudimentary results of computational group theory. We then describe
several basic algorithms and data structures needed for symmetry detection.
This culminates in the description of the individualization-refinement (IR) framework,

which is the foundation of all state-of-the-art practical graph isomorphism algorithms.
We describe the various ingredients of the framework. Then, we explain how IR is used to
compute graph isomorphisms, graph automorphisms, and canonical labelings. Lastly, we
give a brief description and history of all the state-of-the-art practical graph isomorphism
solvers, with a particular focus on techniques for symmetry detection.

2.1 Graphs and Groups

2.1.1 Graphs

A finite graph G = (V,E) consists of a finite set of vertices V ⊆ N and an edge relation
E ⊆ V × V . Unless stated otherwise, we assert the following three properties about a
graph:

1. The set of vertices V is {0, . . . , n− 1} and m := |E| denotes the number of edges.

2. The edge relation contains no self-loops, which means there exists no v ∈ V for
which (v, v) ∈ E.

3. Graphs are undirected, which means E is symmetric.

If E is not required to be symmetric, the graph is called directed. Furthermore, we say
that n+m denotes the size of a graph. For the sake of convenience, we may refer to the
set of vertices of G with V (G), and to the set of edges with E(G).
We call two vertices v1 ∈ V, v2 ∈ V adjacent, if (v1, v2) ∈ E holds. Another way to

phrase this is to say that v1 and v2 are neighbors in G. For a vertex v ∈ V , the open
neighborhood

N(v) := {v′ ∈ V | v′ is adjacent to v}

11

Chapter 2 – Preliminaries and Related Work

0

1

2

5 3

4

0

1

2

5 3

4

0

1

2

5 3

4

0

1

2

5 3

4

(G, π1) (G, π2) (G, π3) (G, π4)

Figure 2.1: A graph on 6 vertices with three different vertex colorings. The vertex coloring
π2 is finer than π1, and π3 is finer than π1. The vertex colorings π2 and π3
are incomparable using the finer relation. The coloring π4 is finer than all the
other colorings.

is the set of all its adjacent vertices. The closed neighborhood additionally includes a
vertex in its own neighborhood, denoted by

N [v] := N(v) ∪ {v}.

The degree deg(v) := |N(v)| of a vertex is the size of its open neighborhood. For a
set of vertices V ′ ⊆ V (G) the neighborhood is the set N [V ′] := (∪v∈V ′N(v)) \ V ′. An
edge (v1, v2) ∈ E is called incident to its endpoints v1 and v2. A vertex v ∈ V is incident
to all edges where v appears as an endpoint.

Let V ′ ⊆ V (G) denote a subset of the vertices of a graph G. We define the induced
subgraph G[V ′]. The vertex set is V (G[V ′]) := V ′ (observe that this may in particular
not be {0, . . . , n− 1}). The edge relation consists of all the edges where both endpoints
are in V ′. Formally, let

E(G[V ′]) := E(G) ∩ (V ′ × V ′).

An important notion is to be able to color a graph. More specifically, we are coloring
the vertices of a graph. Formally, a vertex coloring π : V → {0, . . . , n−1} maps vertices of
a graph to colors 0, . . . , n− 1. We call π−1(i) ⊆ V with i ∈ {0, . . . , n− 1} and π−1(i) ̸= ∅
a cell, or color class, of π. If π−1(i) = C = {v}, we call v a singleton, and C a singleton
color class. With

|π| := |{i | i ∈ {0, . . . , n− 1} ∧ |π−1(i)| ≥ 1}|
we denote the number of cells (or color classes). If |π| = n holds, we call π discrete. Note
that a discrete coloring is a permutation of {0, . . . , n − 1}. In other words, a discrete
coloring characterizes a permutation on the set of vertices V . A vertex-colored graph
(G, π) simply consists of a graph and a vertex coloring.

In the literature, vertex colorings are also often called ordered partitions. Observe that
a vertex coloring indeed partitions the set of vertices V according to their color. We
refer to the partitioning induced by a vertex coloring π as the color partition of π. Each
color class of a coloring π is a part of the color partition. Since the colors themselves are
ordered, we can order the parts according to the order of the colors.

12

2.1 Graphs and Groups

0

1

2

3

4

2

1

0 4

3

2

1

0

4

3

G1 G2 G3

Figure 2.2: Two isomorphic graphs G1
∼= G2, and another graph G3 that is not isomorphic

to G1 and G2. Note that G3 has a vertex of degree 1, whereas G1 and G2

have no vertex of degree 1.

We want to be able to compare two given vertex colorings. A vertex coloring π is finer
than another coloring π′, if

π(v) = π(v′) =⇒ π′(v) = π′(v′)

holds for all v ∈ V, v′ ∈ V . This means that any two vertices which have the same color
in π′, must also have the same color in π. We denote this with π ⪯ π′. Going into the
other direction, we call π′ coarser than π.
Figure 2.1 illustrates three different vertex colorings of a graph. We note how π2 ⪯ π1

and π3 ⪯ π1 hold, whereas π2 and π3 are incomparable using ⪯. Furthermore, π4 ⪯ πi
for all i ∈ {1, 2, 3}.

2.1.2 Isomorphisms and Automorphisms

We now introduce the concepts of isomorphisms and automorphisms. Fundamentally, an
isomorphism describes whether two graphs are structurally equivalent when ignoring the
names of the vertices. As such, it defines a notion of structural equivalence.
We define the shorthand notation (x, y)φ := (xφ, yφ) and Sφ := {sφ | s ∈ S}. Formally,

two graphs G1 = (V1, E1), G2 = (V2, E2) are said to be isomorphic, whenever there exists
a bijection φ : V1 → V2 such that

φ(G1) = (V φ
1 , E

φ
1) = (V φ

2 , E
φ
2) = G2.

We call φ an isomorphism between G1 and G2. We may also write G1
∼= G2 to denote

that G1 and G2 are isomorphic.
Figure 2.2 shows two isomorphic graphs G1 and G2, and a corresponding isomorphism

(gray lines). Note that every isomorphism must preserve the neighborhood of each vertex.
Hence, quite naturally, vertices of differing degrees can not be mapped onto each other.
Since G3 has a vertex of degree 1, whereas G1 and G2 contain no vertex of degree 1, there
can not be an isomorphism between G3 and the other two graphs.
We call two vertex-colored graphs (G1, π1) and (G2, π2) isomorphic whenever there

exists an isomorphism φ between G1 and G2, which additionally only maps vertices of

13

Chapter 2 – Preliminaries and Related Work

the same color onto each other. Formally, φ must additionally satisfy the property

∀v ∈ V1 : π1(v) = π2(v
φ).

We define a corresponding computational problem:

Problem 1 (Graph Isomorphism). Given two graphs G1 and G2, does G1
∼= G2 hold?

Based on this, we define the automorphisms or symmetries of a graph. The set Aut(G)
denotes the automorphism group of a graph G. The automorphism group Aut(G) con-
tains all permutations φ of the vertices V (G) that are isomorphisms, i.e., a bijective
map φ : V → V where

Gφ := (V φ, Eφ) = (V,E) = G.

In other words, automorphisms are isomorphisms mapping the graph to itself. Again, for
vertex-colored graphs, we additionally require that the vertex coloring is preserved. We
thus define the colored automorphism group Aut(G, π) as those permutations φ which
satisfy (G, π)φ = (Gφ, πφ) = (G, π). (Let πφ := π ◦ φ.)
Again, we define a corresponding computational problem. It uses the notion of gener-

ating sets, which is formally defined further below (in Section 2.1.3):

Problem 2 (Graph Automorphisms). Given a graph G, determine a generating set S
such that ⟨S⟩ = Aut(G).

Practical graph isomorphism algorithms often solve another task, namely computing
canonical labelings of graphs. While not the main topic of this thesis, the problem is
strongly related to computing graph isomorphisms and automorphisms. The idea is to
compute a canonical form of a graph. Our definition follows the one given in [76]. Let G
denote the set of all graphs. We call C : G → G a canonical form, whenever for all G ∈ G
and all φ ∈ Sym(V (G)) the following hold:

1. All graphs isomorphic toG result in the same canonical form, which means C(Gφ) =
C(G).

2. The canonical form is isomorphic to the input graph, which means C(G) ∼= G.

(The definition assumes that all graphs on n vertices are defined using the same vertex
set.) Again, we can define a similar vertex-colored version, where colors need to be
preserved. A canonical labeling is a canonical form that is achieved by permuting the
vertices of the graph. A corresponding, natural computational problem is the following:

Problem 3 (Canonical Labeling). Given a graph G, determine a bijection φ : V (G) →
V (G) such that Gφ is a canonical form of G.

Next, we turn our attention to the computational complexity of the three problems
defined above. In particular, we are interested in how these problems are related to each
other. A fundamental result is that the graph isomorphism problem and the graph auto-
morphism problem are polynomial time equivalent, i.e., one can be solved in polynomial
time using an oracle for the other problem.

14

2.1 Graphs and Groups

Lemma 4. The graph isomorphism and graph automorphism problems are polynomial
time equivalent.

Quite trivially, the graph isomorphism problem can be solved in polynomial time using
an oracle for canonical labeling: we just canonize each of the input graphs and check
equivalence.

Lemma 5. The graph isomorphism problem polynomial time reduces to canonical labeling.

On the other hand, it is an open problem whether canonical labeling reduces to iso-
morphism [13].
Interestingly, the isomorphism problem of more general objects polynomial time reduces

to graph isomorphism. In turn, this also holds for the corresponding automorphism prob-
lems. First, we note that vertex-colored graph isomorphism is polynomial-time equivalent
to graph isomorphism (follows from [80]). This can be achieved using a gadget construc-
tion, where we model the colors as small gadgets in the graph. A much more crucial
result is that we can efficiently model arbitrary finite relational structures as graphs [80],
and, in turn, solve the isomorphism problem on graphs instead of relational structures.

Lemma 6. The isomorphism problem of finite relational structures polynomial-time re-
duces to graph isomorphism.

This paves the way for using graph isomorphism, graph automorphism, or graph canon-
ical labeling algorithms in a variety of different contexts, as discussed in Chapter 1. We
remark that finite relational structures include the notions of directed graphs, graphs
with self-loops, hypergraphs, and more.

2.1.3 Permutation Groups and Schreier-Sims

The automorphism group of a graph is a permutation group. Naturally, we require some
tools to deal with permutation groups. We begin with basic definitions for permutation
groups, followed by some fundamentals of the Schreier-Sims algorithm.

Permutation Groups. The symmetric group Sym(Ω) is the set consisting of all permu-
tations of the set Ω. A permutation group on a domain Ω is a group Γ that is a subgroup
of Sym(Ω), denoted as Γ ≤ Sym(Ω). Unless stated otherwise, we assume our permutation
groups Γ ≤ Sym(Ω) are defined on the same domain Ω = {0, . . . , n − 1} as our graphs.
In particular, we write Sn := Sym({0, . . . , n−1}). Given a set S ⊆ Sym(Ω), we write ⟨S⟩
for the group generated by the elements of S, i.e., all elements that can be written as a
product of elements of S. If ⟨S⟩ = Γ holds, we call S a generating set of Γ.
For φ ∈ Γ and ω ∈ Ω, we write ωΓ = {ωφ : φ ∈ Γ} for the orbit of ω under Γ. In

other words, ωΓ contains all the points in Ω that can be reached from ω by applying
permutations of Γ. The partition of Ω into the orbits of Γ is called the orbit partition.
For a given subset of the domain Ω′ ⊆ Ω, we define the restriction of Γ to Ω′ as

Γ|Ω′ := {φ|Ω′ | φ ∈ Γ}.

15

Chapter 2 – Preliminaries and Related Work

This restriction is not necessarily a permutation group since the images need not be in Ω′.
The setwise stabilizer is the group

Γ{Ω′} := {φ | φ ∈ Γ ∧ φ(Ω′) = Ω′}.

The group Γ{Ω′} contains all permutations of Γ which stabilize Ω′ as a set.
Let ω ∈ Ω be a point, then the pointwise stabilizer of ω in Γ consists of all the elements

of Γ that map ω to itself. Formally, we define

Γ(ω) := {φ ∈ Γ | φ(ω) = ω}.

(Observe that Γ(ω) is indeed a permutation group.) For a sequence of points Ω′ :=
(ω1, . . . , ωm) ∈ Ωm we recursively take the pointwise stabilizer of all the elements in the
sequence:

Γ(ω1,...,ωm) :=

{
Γ if m = 0

(Γ(ω1,...,ωm−1))(ωm) otherwise.

We recall the orbit-stabilizer theorem [104]:

Theorem 7. Let Γ ≤ Sym(Ω), and ω ∈ Ω. Then, |ωΓ| = |Γ|
|Γ(ω)|

.

With supp(φ) := {ω | ω ∈ Ω ∧ φ(ω) ̸= ω} we denote the support of a permutation,
which contains all points of Ω that are not stabilized by φ. The support of a group
Γ ∈ Sym(Ω) is the union of all supports of permutations of Γ, i.e.,

supp(Γ) := {ω | ω ∈ Ω ∧ ∃φ ∈ Γ : φ(ω) ̸= ω}.

We use the cycle notation for a permutation φ : Ω→ Ω. For example, the permutation
of {1, . . . , 7} given by

1 7→ 3, 2 7→ 7, 3 7→ 4, 4 7→ 1, 5 7→ 5, 6 7→ 6, 7 7→ 2

we write as (1, 3, 4)(2, 7). Algorithmically, the cycle notation enables us to read and store
a permutation φ in time | supp(φ)|.

Sifting. The routine described in the following is a crucial subroutine of the so-called
Schreier-Sims algorithm [106]. In particular, the routine provides us with a data structure
to dynamically manage permutation groups. Our brief introduction follows the descrip-
tion of [104].
We call a sequence of points B = (β1, . . . , βm) ∈ Ωm a base relative to a group Γ ≤

Sym(Ω) if Γ(B) = {id}. This means that the pointwise stabilizer of B fixes all the
permutations of Γ, i.e., the pointwise stabilizer is trivial. For a generating set ⟨S⟩ = Γ
and a base (β1, . . . , βm) we define

Si := S ∩ Γ(β1,...,βi).

16

2.1 Graphs and Groups

Algorithm 1: Sifting an element into a Schreier structure.

1 function Sift
Input: ➢ generating set S

➢ transversal table T

➢ base points B

➢ element φ
Output: ➢whether S, B and T remained unchanged

2 // for each base point...

3 for (i = 1; i ≤ |B|; i = i+ 1)
4 // calculate which transversal element is needed to fix bi
5 bi := φ(Bi);
6 t := (Ti)bi ;

7 // stop if corresponding transversal element does not exist

8 if t = ⊥ then break;

9 // stabilize bi in φ using transversal

10 φ := φ · t−1;
11 // here, bφi = bi holds

12 // if φ ̸= id, extend Schreier structure

13 if φ ̸= id and i ≤ |B| then
14 S := S ∪ {φ};
15 bi := φ(Bi);
16 (Ti)bi := φ;
17 return false;

18 // if φ = id and i = |B|+ 1, sift was successful

19 return true;

Here, Si ⊆ S denotes those generators, which stabilize the first i points of the base B. In
particular, we observe that each ⟨Si⟩ fixes the i-th base point of B, i.e., for all φ ∈ ⟨Si⟩
it is true that φ(βi) = βi.
We call S strong relative to the group Γ and the base (β1, . . . , βm) if ⟨S⟩ = G and
⟨Si⟩ = Γ(β1,...,βi) holds for all i ∈ {1, . . . ,m}. When S is strong, then each Si suffices to
generate the pointwise stabilizer Γ(β1,...,βi), which in turn means that S contains sufficiently
many generators to generate all the pointwise stabilizers related to the base B.
Given a subgroup ∆ ≤ Γ, a transversal of ∆ in Γ is a subset T ⊆ Γ which satisfies
|T ∩ gH| = 1 for every coset gH of H in Γ. We construct a transversal table for a given
base B and generating set S, which contains a transversal for each subgroup ⟨Si⟩ in ⟨Si−1⟩.
We write Ti for the transversal of ⟨Si⟩.
In order to determine the cosets of Si in ⟨Si−1⟩, we need to find the possible images

of βi in ⟨Si−1⟩. Elements of ⟨Si−1⟩ under which βi has the same image are in the same
coset of ⟨Si⟩. Thus, we can differentiate transversal elements Ti according to the image
of βi under them. We denote by (Ti)b the element in Ti mapping βi 7→ b if it exists. We
set (Ti)b = ⊥ if such an element does not exist.

17

Chapter 2 – Preliminaries and Related Work

The cosets correspond to the orbit of βi in Si−1. Given an element φ ∈ Si−1, we need
to determine the image of βi under φ, in order to determine the coset in which it is
contained. The representative of the coset is the element t in the transversal Ti, which
maps βi to φ(βi). In particular, note that by forming the product φ · t−1 ∈ Si we obtain
an element that fixes βi.

Description of Algorithm 1. The algorithm describes a sifting procedure, which can
be used to test membership in a given permutation group whenever a strong generating
set S and corresponding base B are available. Otherwise, if S is not strong, the sifting
procedure computes a non-trivial permutation. In the version of the algorithm described
here, this permutation is added to the generating set to ensure that the sifted element
is covered. Since we assume B to be a base of the group, we never need to extend the
base for this purpose. If an element sifts successfully, i.e., the procedure returns true, we
know that it is contained in ⟨S⟩. This is also the case if the generating set S was not a
strong generating set. On the other hand, if the sifting is unsuccessful, i.e., the procedure
returns false, then the element was not in the group, or the generating set was not strong.
In any case, the Schreier structure is extended whenever sifting is unsuccessful.
The algorithm repeatedly multiplies transversal elements to the initial element. The

operations preserve the property of whether the initially given element is in the group.
Each operation modifies the element so that it is contained in the next respective pointwise
stabilizer. If an element sifts successfully, the resulting element is the identity. This gives
us a representation of the group element as a product of transversal elements, i.e.,

φ · t−1
1 · t−1

m = id ⇐⇒ φ = tm · . . . · t1.

We will loosely refer to base, transversal table, and generating set together as a Schreier
structure. As more and more elements are sifted, such a structure captures the progress
made towards constructing the group.

Implementation of Algorithm 1. While the implementation of the algorithm follows
the given outline, a few important adjustments are made. In particular, the so-called
Schreier vectors are used to efficiently store transversal elements in terms of a description
of how they can be obtained from elements in the generating set. We refer to [104] for
a thorough description of this technique. Furthermore, when extending the Schreier
structure (Line 13), we extend it by all elements which can be reached using φ and
existing generators of Si. In turn, bi in φ is fixed using itself, and sifting continues.
In this thesis, we will mostly be concerned with the correctness of the Schreier structure.

It should be noted that the efficiency of sifting is crucial for our routines. However, we
resort to high-level techniques to improve efficiency (see Chapter 6). Our implementation
of sifting itself follows the implementation used in nauty and Traces closely, with
adjustments enabling the sparse storage of generators and transversals (see Section 2.2.3).

Correctness of Algorithm 1. We give a crucial result related to Lemma 4.3.1 in [104],
which will be required for correctness arguments later on:

18

2.2 Algorithms and Data Structures

Lemma 8. Let Γ be a group, B a base of Γ, S a set of permutations in Γ and φ a
uniformly distributed element in Γ. If ⟨S⟩ ≠ Γ, the probability that φ does not successfully
sift through the Schreier structure defined by B and S is at least 1

2
.

Proof. If φ /∈ ⟨S⟩ holds, by definition, φ can not sift successfully through the Schreier
structure defined by S and B. Since ⟨S⟩ ̸= Γ there is at least one element φ′ ∈ Γ such
that ⟨S, φ′⟩ ̸= ⟨S⟩. However, since |⟨S, φ′⟩| ≥ 2 · |⟨S⟩|, a uniform random element of Γ is
not contained in ⟨S⟩ with probability at least 1

2
.

The previous results are also the foundation for the Schreier-Sims algorithm [104]. The
Schreier-Sims algorithm can, among many other things,

1. test membership of a permutation φ in Γ,

2. determine the order |Γ|, and

3. compute pointwise-stabilizers for a given sequence of points,

in polynomial time. In particular, note that given a Schreier structure, we can determine
the order of the represented group by multiplying the sizes of all the contained transver-
sals. For a description of the algorithm, particularly if no uniform random elements are
available, we refer to [104].

2.2 Algorithms and Data Structures

We now discuss rudimentary data structures and algorithms that are used in practical
graph isomorphism solvers. This will also enable us to state our algorithms more briefly
and concisely. We mainly discuss particular operations on the data structures and how
they can be implemented to satisfy certain theoretical runtime guarantees.

2.2.1 Sets, Lists, and Arrays

Let us describe a few basic data structures.

Small Integer Sets. First, we discuss how a set of integers S ⊆ {0, . . . , n − 1} can be
stored. We are interested in the following operations:

• Initialize the data structure as the empty set.

• Check for i ∈ {0, . . . , n− 1} whether i ∈ S.

• Add i ∈ {0, . . . , n− 1} to S, i.e., i ∈ S holds after the operation.

• Iterate over all the elements contained in S.

• Reset S to the empty set.

19

Chapter 2 – Preliminaries and Related Work

2
5
7

0
1
0
1
0
0
1
0

L R

Figure 2.3: A small integer set representation for S = {2, 5, 7}.

The data structure consists of a Boolean array B of length n, and an additional list L
that contains all the elements of the set. Initially, we set B[i] = 0 for all i ∈ {0, . . . , n−1}
and initialize L as an empty list. Every time we add an element i, we check whether it
is already in the set (B[i] = 1), and if not, set B[i] = 1 and add it to L. If we reset the
set, we iterate through the list L and set B[i] = 0 for all i ∈ L. The data structure is
illustrated in Figure 2.3.
We record the following basic facts about this data structure:

Lemma 9. Given a set S as a small integer set data structure, the following operations
can be implemented within the given worst-case runtime guarantees:

• Initialize the data structure in time O(n).

• Check for i ∈ {0, . . . , n− 1} whether i ∈ S in time O(1).

• Add i ∈ {0, . . . , n− 1} to S in time O(1).

• Enumerate all elements of S in time O(|S|).

• Reset the data structure to the empty set in time O(|S|).
Note that when starting from the empty set, resetting the data structure is amortized

by the addition operations and therefore runs in amortized time of O(1).
We use this data structure in two different ways: either to store a set of small integers

or to store a “list of unique small integers”. Regarding the second use, note that we are
also free to permute L, which means that, in principle, we are able to sort the list in
place.

Reset Array. We also want to be able to store an arbitrary array of n integers, again
with the ability to efficiently reset the array to an initial state.
The array is initialized with all 0 entries, and a reset operation is supposed to revert

the array back to all 0. The idea we use is quite simple and related to the previous data
structure: we additionally maintain a small integer set S of n integers. Every time an
entry of the array is manipulated, we add the entry to S (unless it is already in S). On
a reset, we iterate over all the elements in S to reset the array.

20

2.2 Algorithms and Data Structures

1
2
1

0
1
3

1
0
2
1

VertexToDeg VertexToEdges Edges

Figure 2.4: A sparse graph representation for a path of length 2, i.e., for the graph G =
{{0, 1, 2}, {(0, 1), (1, 0), (1, 2), (2, 1)}}.

Lemma 10. Given a reset array R, the following operations can be implemented within
the given worst-case runtime guarantees:

• Initialization in time O(n).

• An entry R[i] with i ∈ {0, . . . , n− 1} can be accessed and changed in time O(1).

• A reset of the data structure can be performed in amortized time O(1).

2.2.2 Sparse Graphs

While there are many ways to store graphs, we describe a specific data structure for
sparse graphs. It makes use of adjacency lists. Indeed, it is precisely the sparse graph
data structure employed by nauty and Traces.

We store a graph G = (V,E) using three arrays, called VertexToEdges, VertexToDeg,
and Edges. VertexToEdges and VertexToDeg have length n, whereas Edges has a length
of m. Each VertexToDeg[v] stores the degree for v ∈ V . Each VertexToEdges[v] stores a
pointer into Edges. The neighbors of v ∈ V are stored in

Edges[VertexToEdges[v]], . . . ,Edges[VertexToEdges[v] + VertexToDeg[v]].

An illustration of the data structure is depicted in Figure 2.4.

In our algorithms, unless stated otherwise, we assume that a given graph is precisely
given as such a sparse graph. We record the following facts about the data structure:

Lemma 11. Given a graph G as a sparse graph, the following operations can be imple-
mented within the given worst case runtime guarantees:

• Given v ∈ V (G), we can determine the degree deg(v) in time O(1).

• Given v ∈ V (G), we can enumerate the open neighborhood N(v) of v in time
O(|N(v)|), and the closed neighborhood N [v] in time O(|N [v]|).

• For two given vertices v1, v2 ∈ V , we can determine whether v1 is adjacent to v2 in
time O(min{deg(v1), deg(v2)}).

21

Chapter 2 – Preliminaries and Related Work

2.2.3 Sparse Symmetries

Since we are dealing with symmetries, or permutations in general, we also need a way to
store them efficiently. In particular, we give three different data structures to represent
permutations.
The first data structure stores a given permutation φ ∈ Sn using an array Permφ where

Permφ[i] = iφ. We refer to this as the dense data structure for storing a permutation.
Clearly, this always takes up space Θ(n). Checking where a given point i ∈ {0, . . . , n−1}
is mapped to can be computed in time O(1) with a simple lookup operation. The support
supp(φ) can be computed in time O(n) by iterating over all the points once and checking
whether they map to themselves or not.
The second data structure stores φ as the cycle notation for φ. We consecutively store

the cycles of φ, in order, in a list, using a unique separator element ⊥ to denote the
end of a particular cycle. This can clearly be achieved in space O(| supp(φ)|). Checking
where a given point i is mapped to, or computing the support of φ, is possible in time
O(| supp(φ)|). Hence, while this way of storing a permutation is space efficient, some
computations take up more time.
The third data structure is more involved. We refer to it as the dense-sparse data

structure. Essentially, this data structure combines the previous data structures. It
enhances the dense data structure with a list that stores the support. In particular, given
φ ∈ Sn, we store the permutation using two arrays Permφ and Suppφ. The array Permφ

is precisely the array from the dense structure, whereas Suppφ stores supp(φ) as a list.
The dense-sparse structure is particularly useful in the following scheme. We initialize

the structure once in time O(n) to the identity but then use it over and over again for
multiple permutations. Note that if a permutation φ is given in cycle notation, and
we have an initialized dense-sparse data structure, we can write φ to the dense-sparse
structure in time O(| supp(φ)|). Afterward, we can reset the data structure to the identity
again in time O(| supp(φ)|). By iterating Suppφ, the support can be computed in time
O(| supp(φ)|). Since we are also storing the dense representation, checking where φ
maps a given point i ∈ {0, . . . , n − 1} can be computed in time O(1). Also note that
given φ1 and φ2 as a dense-sparse data structure, we can easily compute φ1 ◦ φ2 in time
O(| supp(φ1)|+ | supp(φ2)|).

2.2.4 Vertex Colorings

Let us now discuss a data structure for storing vertex colorings of a graph. Let π be
a vertex coloring of a graph G. We store π in a specific manner, as described in the
following. First, our colorings are spacious :

Definition 12. A coloring π : V (G) → {0, . . . , n − 1} is spacious, whenever for all
v ∈ V (G), π(v) = |{v′ ∈ V (G) | π(v′) < π(v)}| holds.

This type of coloring is common among all state-of-the-art solvers and enables us to
easily split up colors into smaller pieces, i.e., to make them finer. Unless stated otherwise,
we consider vertex colorings to be spacious throughout this thesis. In particular, we also

22

2.2 Algorithms and Data Structures

assume that the vertex colorings given as the input to an algorithm are spacious. Of
course, any vertex coloring can be made spacious by renaming the colors.

The data structure for vertex colorings consists of four integer arrays of length n,
namely VertexToColπ, ColToSizeπ, Labπ, and VertexToLabπ. We describe their meaning
in the following:

• The array VertexToColπ stores the color for each vertex, i.e., for all v ∈ V (G) we
maintain VertexToColπ[v] = π(v).

• The array ColToSizeπ maps colors to their size, i.e., for all c ∈ π(V (G)) we maintain
ColToSizeπ[c] = |π(c)|, whereas all other entries may be arbitrary.

• The array Labπ maintains a list of all vertices, ordered according to color. For
each vertex v ∈ V (G) there is an i ∈ {π(v), . . . , π(v) + |π−1(π(v))| − 1} such that
Labπ[i] = v.

• The array VertexToLabπ maps vertices to their position in the array Labπ, meaning
for all v ∈ V (G),Labπ[VertexToLabπ[v]] = v holds.

We refer to the four arrays of storing π as our default data structure for a vertex coloring.
Again, unless stated otherwise, we assume all vertex colorings considered throughout this
thesis are provided using this data structure.

We record the following basic facts about the data structure:

Lemma 13. Given a default data structure of a vertex coloring π of a graph G, the
following operations can be implemented within the given worst-case runtime guarantees:

1. Given a vertex v ∈ V (G), π(v) can be computed in time O(1).

2. Given a color c ∈ π(V (G)), the size of the color |π−1(c)| can be computed in time
O(1).

3. Given a color c ∈ π(V (G)), the vertices π−1(c) can be computed in time O(|π−1(c)|).

4. The set of all (non-trivial) colors π(V (G)), can be computed in time O(|π(V (G))|).

Proof. Claims (1) and (2) amount to simple array lookup of VertexToCol and ColToSize,
respectively. For Claim (3), the respective elements can be found in

Labπ[c], . . . ,Labπ[c+ ColToSize[c]− 1].

For Claim (4), we start at color 0. If we are at color c, the next color is c+ColToSize[c].

23

Chapter 2 – Preliminaries and Related Work

Algorithm 2: Checks if dense-sparse permutation is automorphism of graph.

1 function CheckAutomorphism
Input: ➢ graph G = (V,E)

➢ coloring π

➢ dense-sparse permutation φ
Output: ➢whether (G, π) = (Gφ, πφ) holds

Auxiliary: ✏ small integer set M of length n
2 for (each v in Suppφ)
3 // set v′ = vφ

4 v′ := Permφ[v];

5 // automorphism must preserve vertex coloring

6 if VertexToColπ[v] ̸= VertexToColπ[v
′] then return false;

7 // automorphism must preserve neighborhood

8 x := 0;
9 for (each n in N(v))

10 add Permφ[n] to M ;
11 x += 1;

12 for (each n in N(v′))
13 if n ̸∈M then
14 reset M ;
15 return false

16 remove n from M ;
17 x -= 1;

18 if x ̸= 0 then
19 reset M ;
20 return false

21 return true

2.2.5 Testing Automorphisms

We now describe how to test whether a given permutation φ : V (G)→ V (G) is indeed a
symmetry of a given vertex-colored graph (G, π). Essentially, this means we test whether
(G, π) = (G, π)φ holds. Such a procedure is commonly applied for every permutation a
symmetry detection algorithm produces, in order to ensure correctness. Thus, it is indeed
an important procedure that is continuously applied in practice. Also, it is a good excuse
to get acquainted with the data structures described in this section.
Specifically, the algorithm works on our dense-sparse permutation data structure. We

want to ensure it only runs in time that is proportional to the support and the edges
incident to the support. The algorithm is given in Algorithm 2.
The algorithm assumes two additional properties. First, we assume that we have access

to a small integer set M of length n, which is empty upon starting the algorithm. We
make sure it is empty again upon terminating the algorithm. The idea is that we usually
check many symmetries, and we only need to initialize the set M once for all of these

24

2.2 Algorithms and Data Structures

checks.
Secondly, we assume that φ is a bijection which is stored properly as a dense-sparse

permutation. The actual implementation of the algorithm has additional checks in place
to ensure that φ|Suppφ is indeed a bijection.

Description of Algorithm 2. The algorithm iterates over the support of φ. For each
vertex v in the support, it then ensures that v and vφ have the same color. Then, the
following two for-loops ensure that the open neighborhoods of the two vertices are mapped
onto each other by φ.

Correctness of Algorithm 2. We claim that under the assumptions stated above, the
algorithm returns true if and only if φ is a symmetry of (G, π).
Let us make the following observations. For each v ∈ supp(φ), two properties are

ensured:

1. The algorithm ensures π(v) = π(vφ), as checked in Line 6.

2. The algorithm ensures φ(N(v)) = N(vφ), as checked by the for-loops starting in
Line 9 and Line 12.

Now if (1) and (2) are satisfied for all v ∈ V (G), then it immediately follows that φ is
a symmetry of the graph. We note that for each v ̸∈ supp(φ), (1) is trivially satisfied
because the vertex is just mapped to itself. However, (2) might indeed not be. Therefore,
we need to prove that if v ̸∈ supp(φ) and φ(N(v)) ̸= N(vφ) hold, the algorithm correctly
detects this.
If φ(N(v)) ̸= N(vφ), then there is a v′ ∈ N(v) such that v′ ̸= v′φ. Specifically, there

is a v′ for which v′ ∈ N(v) and v′φ ̸∈ N(v) hold. Since v′ is in supp(φ), the only case
in which the algorithm does not detect this is if additionally φ(N(v′)) = N(v′φ) holds
(otherwise the algorithm would return false in the for-loop of Line 12, in the iteration
for v′).
Towards a contradiction, assume that φ(N(v′)) = N(v′φ) holds. In this case, we

know that both v′ and v′φ are neighbors of v. But this is an immediate contradiction
to v′φ ̸∈ N(v).

Runtime of Algorithm 2. The algorithm runs in time linear in the number of closed
neighbors of vertices in the support of φ, i.e.,

O(
∑

v∈supp(φ)

|N [v]|).

2.2.6 Efficient Orbit Algorithm

A second routine we want to briefly discuss is to compute the orbit partition of a group
given as sparse generators. Again, efficiently keeping track of an orbit partition is an
essential routine for symmetry detection algorithms.

25

Chapter 2 – Preliminaries and Related Work

Algorithm 3: Computes the orbit partition for a given generating set.

1 function ComputeOrbits
Input: ➢ list of generators in cycle notation S = {φ1, . . . , φm}, where

⟨S⟩ ≤ Sn

Output: ➢union-find structure representing orbit partition of ⟨S⟩
2 initialize union-find data structure ∆ of size n;
3 initialize dense-sparse permutation φ of size n;
4 for (φi ∈ S)
5 load φi into dense-sparse permutation φ;
6 for (each v in Suppφ)
7 v′ := Permφ[v];
8 union v and v′ in ∆;

9 reset φ to identity;

10 return ∆

We make use of a union-find data structure. The structure is initialized to the discrete
partition on n points. Recall that for k operations of any type, using path compression,
the structure can be implemented such that it runs in a worst case running time of
O(kα(n)), where α is the inverse Ackermann function.

Description of Algorithm 3. The algorithm begins by initializing a union-find data
structure ∆. Then, the algorithm iterates over all the generators. For each generator,
the respective partitions of two neighboring elements in each cycle are merged in ∆.

Runtime of Algorithm 3. Loading and iterating the cycles of the given generators can
be implemented in the sum of the support of each of the generators, i.e.,

k :=
∑
φ∈S

| supp(φ)|.

We then perform k array lookups and union operations on a union-find data structure
with domain size n. This gives a total runtime of O(α(n)k).

2.3 Individualization-Refinement

We now describe the individualization-refinement paradigm. The exposition begins with
the description of two important ingredients, namely the refinement and cell selector.
Then, we describe the notion of IR trees. Lastly, we describe how IR trees can be used
to solve our problems of interest. Our exposition of IR follows the one given in [76].

2.3.1 Refinement

In the following, we want to individualize vertices and refine vertex colorings. Individ-
ualizing vertices in a vertex coloring is a process that artificially forces a vertex into its

26

2.3 Individualization-Refinement

ind ref ind ref

Figure 2.5: An illustration of individualizations and color refinement on a 5-cycle. Indi-
vidualization steps split apart equally colored vertices (vertices marked with
a cross are individualized). In turn, color refinement propagates this infor-
mation.

own singleton color class. We use ν ∈ V ∗ to denote a sequence of vertices. (Here, ∗

denotes the Kleene star.) In particular, we use ν to denote sequences of vertices which
are individualized.
Next, we define the refinements. In IR, several different algorithms may be used as the

refinement. Instead of describing a particular refinement, let us first define the necessary
properties a refinement must satisfy for our purposes. A refinement is a function Ref
which takes a graph G, a vertex coloring π of G, a sequence of vertices ν ∈ V ∗, and
maps them to a coloring π′. Furthermore, a refinement must satisfy the following three
properties:

1. It is invariant under isomorphism, i.e., Ref(Gφ, πφ, νφ) = Ref(G, π, ν)φ holds for all
φ ∈ Sn.

2. It produces finer colorings, i.e., Ref(G, π, ν) ⪯ π holds.

3. It respects vertices in ν as being individualized, i.e., {v} is a singleton cell in
Ref(G, ν) for all v ∈ ν.

We observe that if φ ∈ Aut(G, π),

Ref(G, π, νφ) = Ref(Gφ, πφ, νφ) = Ref(G, π, ν)φ

holds.
In practice, variants of the color refinement algorithm (also known as the 1-dimensional

Weisfeiler-Leman algorithm) are commonly used as refinement. Intuitively, they classify
vertices according to their degree, then the degrees of their neighbors, then the degrees
of their neighbors’ neighbors, and so on. Indeed, throughout this thesis, the only instan-
tiation of Ref that we consider is color refinement.
We give a detailed account of color refinement in Chapter 4. Let us for now describe

the result of color refinement, which is called an equitable vertex coloring. A coloring π is
called equitable if for every pair of (not necessarily distinct) colors i, j ∈ {0, . . . , n−1} the
number of j-colored neighbors is the same for all i-colored vertices. For a graph (G, π),
there is (up to renaming of colors) a unique coarsest equitable coloring π′ finer than π.
This is the coloring π′ = CRef(G, π, ϵ), where ϵ is the empty sequence. Considering
individualization, CRef(G, π, ν) is the unique coarsest equitable coloring finer than π
in which every vertex in ν is a singleton with its artificial color. Note if vertices are

27

Chapter 2 – Preliminaries and Related Work

Figure 2.6: Construction of an IR tree. Pairs of nodes connected by a squiggly line
correspond to one node in the IR tree. The upper node in a pair (other than
the root) illustrates the individualization of a vertex, whereas the lower node
in the pair shows the final coloring obtained after color refinement has been
applied to the upper node. (The figure is adapted from [40].)

individualized, the artificial colors must be chosen isomorphism-invariantly, such that
CRef respects the properties laid out above. Figure 2.5 illustrates the process.
We say two colored graphs (G1, π1) and (G2, π2) are distinguishable (by color refine-

ment), if with respect to the colorings CRef(G1, π1, ϵ) and CRef(G2, π2, ϵ)

1. there is a color c with differently sized cells in G1 and G2, i.e.,

|CRef(G1, π1, ϵ)
−1(c)| ≠ |CRef(G2, π2, ϵ)

−1(c)|,

2. or there are vertices v1 ∈ V (G1), v2 ∈ V (G2) of the same color, i.e.,

CRef(G1, π1, ϵ)(v1) = CRef(G2, π2, ϵ)(v2),

such that there is a color c within which v1 and v2 have a differing number of
neighbors,

|{(v1, w) ∈ E(G1) | CRef(G1, π1, ϵ)(w) = c}| ≠
|{(v2, w) ∈ E(G2) | CRef(G2, π2, ϵ)(w) = c}|.

2.3.2 Selectors

If refinement classifies all vertices into different colors, determining automorphisms and
isomorphisms for a graph is easy: this simply follows because colors have to be pre-
served. Otherwise, individualization is used to artificially single out a vertex inside a

28

2.3 Individualization-Refinement

non-singleton color class. The task of a cell selector is to isomorphism invariantly pick a
non-singleton color class of the coloring. In the IR paradigm, all vertices of the selected
color class are then individualized one after the other using some form of backtracking.
After individualization, refinement is applied again, and the process continues recursively
(see Figure 2.5). Formally, a cell selector is a function that takes a graph G and vertex
coloring π of G, and maps them to a subset of vertices V ′ ⊆ V (G) satisfying the following
properties:

1. It is invariant under isomorphism, i.e., Sel(Gφ, πφ) = Sel(G, π)φ holds for all φ ∈ Sn.

2. If π is discrete, then Sel(G, π) = ∅ holds.

3. If π is not discrete then | Sel(G, π)| > 1 and Sel(G, π) is a color class of π, i.e., there
is a i ∈ {0, . . . , n− 1} such that Sel(G, π) = π−1(i) holds.

Cell selectors are analogous to determining the next variable to backtrack on in classical
solvers of constraint programming, commonly referred to as the variable order.

2.3.3 IR Tree

With the functions Ref and Sel at hand, we are now ready to define the IR search tree. (We
may also refer to these trees as IR tree or simply search tree.) For a vertex-colored graph
(G, π) we use T(Ref,Sel)(G, π) to denote the IR tree of (G, π) with respect to refinement
operator Ref and cell selector Sel. We omit indices Sel and Ref if they are either apparent
from context or of no particular importance. The search tree is constructed as follows:
each node of the search tree corresponds to a sequence of vertices of G, the vertices
individualized in that particular node of the tree.

1. The root of T(Ref,Sel)(G, π) is the empty sequence ϵ.

2. If ν is a node in T(Ref,Sel)(G, π) and C = Sel(G,Ref(G, π, ν)), then its children are
{νv | v ∈ C}, i.e., all extensions of ν by one vertex v of C.

We note that if Ref(G, π, ν) is discrete, then C = ∅ and thus ν is a leaf of T(Ref,Sel)(G, π).
In other words, leaves of T(Ref,Sel)(G, π) always correspond to discrete vertex colorings
and, therefore, to permutations of V . With T(Ref,Sel)(G, π, ν) we denote the subtree of
T(Ref,Sel)(G, π) rooted in ν.
We recite the following crucial facts on isomorphism invariance of the search tree as

given in [76], which follows directly from the isomorphism invariance of Sel and Ref:

Lemma 14. For a vertex-colored graph (G, π) and φ ∈ Sn we have T(G, π)φ = T(Gφ, πφ).

Based on this lemma, we can make the following observation regarding the symmetries
of (G, π).

Corollary 15. If ν is a node of T(G, π) and φ ∈ Aut(G, π), then νφ is a node of T(G, π)
and T(G, π, ν)φ = T(G, π, νφ).

29

Chapter 2 – Preliminaries and Related Work

Essentially, this tells us that symmetries are naturally represented in an IR tree. Let
us make another observation. We observe that if C is the selected color class at a
node ν ∈ T(G, π), and v ∈ C, then C ⊆ vAut(G,π)(ν) : Corollary 15 tells us that we
can use elements of φ ∈ Aut(G, π)(ν) to obtain elements νvφ ∈ T(G, π).
We have yet to mention how the search tree is used to find the automorphisms of a

graph.

Lemma 16. If ν and ν ′ are leaves of T(G, π), then there exists an automorphism φ ∈
Aut(G, π) such that ν = φ(ν ′), if and only if Ref(G, π, ν ′)−1 ·Ref(G, π, ν) is an automor-
phism of (G, π).

Proof. Let φ′ = Ref(G, π, ν ′)−1 · Ref(G, π, ν), which is a well-defined permutation on V
since ν and ν ′ are leaves, which correspond to discrete colorings.
If φ is an automorphism with ν = φ(ν ′), then Ref(G, π, ν ′) · φ = Ref(G, π, ν) holds,

due to isomorphism-invariance of Ref. But then,

φ = Ref(G, ν ′)−1 · Ref(G, ν ′) · φ = Ref(G, ν ′)−1 · Ref(G, ν) = φ′,

proving the first direction.
For the other direction, assume φ′ ∈ Aut(G, π). We observe that ν ′ = φ′(ν), showing

the claim.

Let us also record that the individualized vertices in a leaf of the search tree actually
form a base of the respective automorphism group [76].

Lemma 17. If ν is a leaf of T(Ref,Sel)(G, π), then ν is a base of Aut(G, π).

Proof. Consider φ ∈ Aut(G, π) with φ(v) = v for all v ∈ ν. Now assume towards a
contradiction that there is a v′ ∈ V such that φ(v′) ̸= v′. By applying φ, we thus get a
different node in the search tree. By Lemma 14 and isomorphism invariance of Ref, we
do however get

φ = Ref(G, π, ν)φ · Ref(G, π, ν)−1 = Ref(G, π, ν) · Ref(G, π, ν)−1 = id,

which is a contradiction to the assumption that φ ̸= id.

Let us further make the following observation.

Lemma 18. A leaf τ can be mapped to exactly |Aut(G, π)| many leaves in T(G, π) using
elements of the automorphism group Aut(G, π).

Proof. From Lemma 17 we know that τ is a base of Aut(G, π). Now consider an el-
ement φ ∈ Aut(G, π). Clearly, τφ also corresponds to a leaf in the tree (Lemma 15)
and τφ is a base as well. Now consider a different element φ′ ∈ Aut(G, π), i.e., φ′ ̸= φ.
Clearly, τφ ̸= τφ

′
holds since τ is a base.

We call two leaves equivalent if there is an automorphism mapping one to the other.
We refer to a leaf τ ′ as an occurrence of another leaf τ , if τ and τ ′ are equivalent.

30

2.3 Individualization-Refinement

2.3.4 Pruning with Invariants and Automorphisms

Let us fix a single leaf τ of the search tree. We may now search for automorphisms by
comparing other leaves to τ . In the following, we call such a fixed leaf τ the target leaf.
Corollary 15, Lemma 17, and Lemma 16 tell us how to obtain all automorphisms of

(G, π) by comparing other leaves to τ : first, for all automorphisms φ ∈ Aut(G, π), it
follows that τφ is a node of the search tree (Corollary 15). In particular, since τ is a base
of the automorphism group (Lemma 17), if φ ̸= id, τ ̸= τφ follows. In particular, we
obtain φ by inspecting the corresponding colorings of τ and τφ (Lemma 16).
The search tree can be of exponential size in the size of the input graph since there can

be an exponential number of automorphisms in the size of a graph. It should, however,
be noted that even search trees of asymmetric graphs can be exponentially large in the
input [87]. Therefore, in any case, we want to prune the tree as much as possible. Towards
this goal, let us define a node invariant. A node invariant Inv is a function that essentially
maps nodes of the search tree to some totally ordered set I. Formally, Inv takes as input
a graph G, vertex coloring π, and sequence of vertices ν ∈ V ∗, and maps them to the
totally ordered set I. A node invariant must satisfy two further properties:

1. The invariant must be isomorphism invariant, i.e., we require that Inv(G, π, ν1) =
Inv(Gφ, πφ, νφ1) holds for all φ ∈ Sn.

2. If |ν1| = |ν2| and Inv(G, π, ν1) < Inv(G, π, ν2), then for all leaves ν ′1 ∈ T(G, π, ν1)
and ν ′2 ∈ T(G, π, ν2) we require Inv(G, π, ν ′1) < Inv(G, π, ν ′2).

If we have some invariant Inv, we immediately get the following result:

Lemma 19. Let ν, ν ′ be leaves of T(G, π). If there is an automorphism φ ∈ Aut(G, π)
such that ν = φ(ν ′), then Inv(G, π, ν) = Inv(G, π, ν ′) holds.

Proof. This follows from the equalities Inv(G, π, ν ′) = Inv(Gφ, πφ, ν ′φ) = Inv(G, π, ν).

Hence, even if we remove all nodes of the tree whose invariant deviates from the cor-
responding node invariant on the same level on the path to the target leaf, we can still
retrieve the entire automorphism group. This operation is called pruning using invariants.
Formally, we define PruneInv(τ

′, ν ′) as the operation that removes the subtree rooted in
node ν ′ if Inv(G, τ ′) ̸= Inv(G, ν ′), where |τ ′| = |ν ′| holds and τ ′ is the prefix of length |ν ′|
of the target leaf.
Let us describe a natural invariant used in practice. For an equitable coloring π of a

graph G, the quotient graph Q(G, π) captures the information of how many neighbors
vertices from one cell have in another cell, as described in the following. Quotient graphs
are complete directed graphs in which each vertex has a self-loop. They include vertex
colors as well as edge colors. The vertex set of Q(G, π) is the set of all colors of (G, π),
i.e., V (Q(G, π)) := π(V (G)). The vertices are colored with the color of the cell they
represent in G. We color the edge (c1, c2) with the number of neighbors a vertex of cell c1
has in cell c2 (possibly c1 = c2). Since π is equitable, all vertices of c1 have the same
number of neighbors in c2.

31

Chapter 2 – Preliminaries and Related Work

A crucial fact is that vertex-colored graphs are indistinguishable by color refinement if
and only if their quotient graphs on the coarsest equitable coloring are equal. We should
also remark that quotient graphs are indeed complete invariants, yielding the following
property.

Lemma 20. Let ν, ν ′ be leaves of T (G, π). There exists an automorphism φ ∈ Aut(G, π)
with ν = φ(ν ′) if and only if Q(G,Ref(G, π, ν)) = Q(G,Ref(G, π, ν ′)).

We may also view quotient graphs as a way to color IR trees themselves, i.e., where we
color a node ν with Q(G,Ref(G, π, ν)).
The search tree can also be pruned using automorphisms. For simplicity, we prevent

the removal of the initial target leaf. Assume we already have φ ̸= id of Aut(G) available.
For all nodes ν where νφ is not a prefix of the target leaf, we define PruneAut(ν, ν

φ) as the
operation which removes the subtree rooted at νφ from the search tree. Intuitively, ap-
plying PruneAut can only cut away parts of the search tree generated by already available
automorphisms.
We record correctness arguments for PruneInv and PruneAut in the following lemma:

Lemma 21. Let τ be the target leaf of a search tree T(G, π). Suppose TP is the tree after
any sequence of operations of type PruneInv or PruneAut has been performed on T(G, π).
Let φ1, . . . , φk denote all the automorphisms used for the operations PruneAut. Then,

⟨{φ | τφ is a leaf of TP} ∪ {φ1, . . . , φk}⟩ = Aut(G, π)

holds.

Proof. Since all elements in the definition above are clearly in Aut(G, π), it suffices to
argue that every φ ∈ Aut(G, π) is generated by the given set.
First note that neither the target leaf τ nor any node corresponding to a prefix of τ

can be removed through the pruning operations, by definition. If τφ is an element of
the remaining search tree, or φ ∈ ⟨φ1, . . . , φk⟩ holds, the statement is immediately true.
Therefore, consider the case where τφ has been removed by an application of PruneInv and
PruneAut. PruneInv can not remove the leaf or any of its prefixes since Inv(τφ) = Inv(τ)
holds. Therefore, τφ was removed through an application of PruneAut(τ

′φ′
, τ ′φ) with

τ ′ ≤ τ , using φi for some i ∈ {1, . . . , k}. Clearly, there is a leaf τ (φφ
−1
i) in T(G, π, τ ′φ

′
)

and φ = φφ−1
i φi. By iterating the argument for τ (φφ

−1
i), and since there are only finitely

many applications of PruneAut, we must end up in a remaining leaf eventually. This, in
turn, proves the claim.

Lastly, we recall the following observation [66].

Lemma 22. Let TP be the tree that resulted from applying PruneAut exhaustively to
T(G, π). Then, TP has

|L(TP)| =
|L(T (G, π))|
|Aut(G, π)|

many leaves.

Proof. Note that a leaf in the search tree TP is an equivalence class of leaves in the
original search tree. Let l be a leaf of T (G, π). From Lemma 18 it follows that there are
|Aut(G, π)| − 1 other occurrences of l equivalent to l under Aut(G, π).

32

2.4 Existing Solvers and their Strategies

2.3.5 IR, Isomorphisms, and Canonical Labeling

While the main focus of this thesis is to compute the automorphism group of a graph, IR
search trees can also be used to solve graph isomorphism and graph canonical labeling.
In Section 2.1.2, we discussed the close relationship between the graph isomorphism

problem and computing the automorphism group of a graph. This is, in particular, also
true within the IR framework. Given two input graphs (G1, π1) and (G2, π2), consider
the IR search trees T(G1, π1) and T(G2, π2). Analogously to the automorphism search,
we can obtain all isomorphisms between (G1, π1) and (G2, π2) from the leaves of the two
search trees. If ν ∈ T(G1, π1) and (G1, π1)

φ = (G2, π2), then νφ ∈ T(G2, π2) follows
immediately. Note the strong similarity to the automorphism search discussed in the
previous sections. Indeed, all search strategies discussed previously and further strate-
gies discussed throughout this thesis naturally translate between graph isomorphism and
graph automorphism search.
For graph canonical labeling, we are given a single graph (G, π) and want to compute

a canonical representative from the isomorphism class of (G, π). In practice, this is
achieved by searching for aminimal leaf in T (G, π) according to a complete node invariant
Inv (see [76] for a more detailed discussion). Indeed, we need to ensure that the same
minimal leaf (up to isomorphism) is found for every graph with the same isomorphism
type as (G, π). Intuitively, the requirements for canonical labeling are more strict than
for the other two problems: we are now looking for a specific leaf, and not just any
pair of equivalent leaves that represent isomorphisms or automorphisms. Indeed, some
techniques discussed throughout this thesis are not applicable for graph canonical labeling.
In a sense, this matches the current complexity landscape of these three problems: the
problems of computing graph isomorphisms and graph automorphisms are polynomial
time equivalent, whereas canonical labeling may be harder (see Section 2.1.2).

2.4 Existing Solvers and their Strategies

We now describe state-of-the-art practical graph isomorphism solvers. All of these solvers
are based on the IR paradigm. The descriptions below are collected from the papers
describing said tools, by analyzing the source code of the newest version of the tool, or
through personal communication with the authors of the respective tool.

2.4.1 nauty

The solver nauty [74, 76] for canonical labeling and symmetry detection was first pub-
lished by Brendan Mckay in 1977. Its main innovation at the time was the use of au-
tomorphism pruning, which is reflected in its name reading “no automorphisms? yes”.
However, over the years, the tool received many new optimizations and features.
The tool is able to read both a sparse (described in Section 2.2.2) and a dense (adjacency

matrices) graph format. Among many options, it has a configurable refinement routine as
well as invariants that can be activated by the user. Using these options, an experienced
user may tailor the tool towards a specific application. nauty uses a depth-first traversal

33

Chapter 2 – Preliminaries and Related Work

of the IR tree, and keeps the lexicographically least leaf for automorphism comparisons
[76]. The solver features two cell selectors, one which simply chooses the first non-trivial
color of the current vertex coloring, and the other chooses the first color which is joined in
a non-homogeneous fashion to the most number of other colors [76]. A notable feature of
nauty is the use of the random Schreier-Sims algorithm for more thorough automorphism
pruning.
The color refinement implementation of nauty is, in some ways, rudimentary: the

vertex colorings stored by nauty have no ability to efficiently determine in which color
class a vertex is contained. This is particularly prohibitive when refining colorings of
large, sparse graphs. As a mitigation strategy, after the first individualization is made,
nauty computes the distance from the individualized vertex to all the other vertices and
splits color classes according to this distance.
Due to its more compact data structures and highly efficient low-level programming,

the tool excels on small graphs [76]. In particular, it should be noted that nauty can
be configured to only allocate very little memory on the heap. The efficient handling of
small graphs is essential for applications such as exhaustive graph generation [75].

2.4.2 saucy

The solver saucy for symmetry detection was first published in 2004 [27]. The aim of
the tool was to compute the symmetries of sparse graphs that exhibit a lot of symmetries
with small support. Therefore, the design is mostly composed of features to accommodate
this goal.
The tool reads sparse graphs stored in a similar data structure as described in Sec-

tion 2.2.2. The tool outputs symmetries in a dense-sparse structure as described in
Section 2.2.3, making it the only tool, apart from dejavu, that enables the user to read
symmetries in time that is linear in the size of the support of the symmetry.
Internally, saucy uses a depth-first traversal of the search tree. A crucial concept of

the tool is the use of “matched ordered partition pairs” [28]. To make the terminology
more consistent, we refer to this concept as matched vertex colorings. Crucially, this
concept enables the early detection of sparse symmetries. Here, “early” means sym-
metries are already detected at the inner nodes of the IR tree instead of at the leaves.
Essentially, matched vertex colorings enable the solver to efficiently detect when partial
automorphisms can be extended with the identity. This enables automorphism pruning
to be applied earlier and more efficiently. We describe the concept of matched vertex
colorings in more detail in Section 4.4.5.
The refinement routine is optimized for sparse graphs. It facilitates the efficient reversal

of refinements and checks whether two colorings are “matched”. The same holds for the
cell selector used: the tool attempts to choose cells that steer search to matched colorings
more quickly [28]. In subsequent publications, methods of dynamically switching the
cell selector and methods for “conflict learning” have been described [23]. However,
these features seem to come with severe downsides and limited applicability. Indeed, the
features have not made it into the version of saucy that is in use by practitioners today
(e.g., as used in [34]).

34

2.4 Existing Solvers and their Strategies

2.4.3 bliss

The solver bliss by Tommi Junttila and Petteri Kaski was first published in 2007 [58].
The tool can solve both symmetry detection and canonical labeling. At first, the tool was
described as an efficient reimplementation of nauty. However, it also contains unique
features, as explained below. Again, bliss employs a depth-first traversal of the IR search
tree.

The tool exploits non-uniform components of the quotient graph during its traversal
of the tree, which enables it to potentially determine automorphisms and conflicts early.
Moreover, the tool features a form of backjumping [59]. The observation used is that every
“failure” encountered in the search tree must be isomorphic to a failure encountered in
the subtree of the target leaf. If this is not the case, the tool can backtrack immediately.
We use a similar technique later on when discussing our “trace deviation set” technique
in Chapter 6.

2.4.4 Traces

The solver Traces for canonical labeling and symmetry detection was first published
by Adolfo Piperno in 2008 [93]. Over the past years, the tool has received many more
techniques and optimizations, which enabled it to surpass most other solvers on many
types of graphs [76].

A major aspect of Traces is that it chooses to traverse the search tree differently. The
main routine uses a breadth-first search as opposed to a depth-first search. Clearly, this
would only lead to the discovery of automorphisms at the very end of the search. There-
fore, Traces strategically intersperses random walks of the search tree, “experimental
paths”, to find automorphisms. This is done by starting from a leaf in the tree computed
so far and executing a random walk (or alternatively using a specific heuristic) towards
a leaf. The detected leaf is stored and compared to the leaves of other experimental
paths, enabling Traces to detect automorphisms. Traces continuously searches for
and stores additional leaves when computing experimental paths. This enables Traces
to detect leaves on a lower level in the tree, which might otherwise be pruned through
invariant pruning. If it detects such a beneficial leaf on the next level, a special algorithm
is applied, whenever Traces is used for symmetry detection (as opposed to canonical
labeling). We describe the algorithm in the following.

When in symmetry detection mode, the tool has another special search strategy: If
Traces detects a leaf l at some level i during experimental path exploration, a special
mode of breadth-first search is used. Assume l is located right below node ν at level i−1
of the search tree. First, all other leaves at level i below node ν are computed. Let Lν

be the set of those leaves right below ν. Then, for every other remaining node ν ′ at level
i− 1, only a single leaf l′ has to be computed to prune ν ′: we argue that this is the case,
depending on whether l′ is an occurrence of some leaf in Lν or not. If the leaf l is an
occurrence of some leaf in Lν , this determines an automorphism mapping ν and ν ′. Using
this automorphism, ν ′ can be immediately pruned. Otherwise, l′ is not an occurrence
of any leaf in Lν . But this immediately implies that there can not be an automorphism

35

Chapter 2 – Preliminaries and Related Work

mapping ν to ν ′. In turn, since it suffices to find all automorphisms with respect to a
single leaf, ν ′ can be pruned. In any case, only a single leaf of ν ′ is required to prune ν ′.

To summarize, if a leaf was uncovered at level i right below some node ν, this method
enables Traces to finish the automorphism search by:

1. Computing all leaves at level i below one node ν.

2. Computing one leaf at level i for all other nodes ν ′ ̸= ν at level i− 1.

While Traces is only able to read a sparse graph format, its color refinement routine
is optimized to deal with graphs of all kinds of densities. Indeed, it contains different
“splitting routines” depending on the density of a graph and color class. We discuss this
in detail in Chapter 4.

Crucially, during color refinement, the tool records a so-called trace invariant (hence
the name “Traces”). At each step of the routine, i.e., for each color class that is dealt
with in color refinement, some isomorphism-invariant information is written to the trace.
In subsequent branches of the search tree, this information is continuously checked. If the
isomorphism invariant information ever differs, then color refinement can be terminated
early: the branches can not lead to isomorphic leaves. More details can again be found
in Section 4.4.2.

Traces also uses the random Schreier-Sims algorithm to facilitate automorphism
pruning. The algorithm is, however, not always applied: a heuristic is used to infer
whether applying the Schreier-Sims algorithm is beneficial [76]. The implementation of
the Schreier-Sims algorithm itself is the same as used by nauty.

Before the IR search tree is traversed, Traces preprocesses vertices of degree 0, 1, or
n− 1 of the graph. Furthermore, the cell selector never chooses cells containing vertices
of degree 2. Special code then handles colorings in which color classes with vertices of
degree 2 are not necessarily discrete. There is also a separate version of Traces which
can handle edge-colored and directed graphs [94].

2.4.5 Other Algorithms

We briefly discuss other notable implementations that were not described above. It should
be mentioned in our benchmarks (Chapter 7), we only compare to the implementations
listed above, and not the ones described below.

Individualization-refinement was first introduced into the realm of graph isomorphism
in a series of papers by Parris and Read [91]. Interestingly, they describe a breadth-first
traversal of the individualization-refinement tree.

The solver conauto [70, 69] has a mode for isolated graph isomorphism testing, as
well as symmetry detection of graphs. Notably, cell selection is performed dynamically
at each level of the IR search tree. On a technical level, the solver is limited to a dense
graph representation.

The tool nishe by Greg Tener [108] features an interesting cell selector, which is dynam-
ically adapted upon the discovery of automorphisms. The strategy is carefully designed

36

2.4 Existing Solvers and their Strategies

such that it is even applicable for canonical labeling. This, in turn, leads to provable poly-
nomial runtime on the so-called Miyazaki graphs [82]. In [108], schemes to dynamically
adapt and improve invariant pruning are also discussed. Furthermore, nishe features a
rudimentary parallel implementation.
The ScrewBox [66] is a solver for graph isomorphism, which makes use of a random-

ized termination criterion.

37

Chapter 3

Search Tree Traversal

Historically, state-of-the-art IR solvers followed a depth-first search approach to tra-
verse the IR tree (see Section 2.4). The tool Traces infamously broke away from this
principle, mainly performing breadth-first search that is combined with a random traver-
sal of the IR tree. This traversal strategy is at the very heart of the underlying algorithm.
With its remarkable performance on difficult combinatorial graphs, Traces revealed that
the traversal strategy is arguably the most important design choice in IR algorithms. This
immediately raises the question whether there are theoretical, structural reasons why this
traversal strategy is favorable. Going one step further, we can ask for optimal traversal
strategies.

Traversal Model. In this chapter, we define a particular search problem in trees with
symmetry. This search problem allows us to strip away all the other design choices that
are made in the creation of an IR algorithm, isolating the core issue of the traversal
strategy in the IR search tree.
An input consists of two trees. A node in a tree must either be a leaf, or have at least

two children. Let n denote the size of the smaller one of the two trees and N the size of
the larger one. The cost of our algorithms is the number of nodes that are “explored” by
an algorithm.
Within this model, we consider three settings:

1. The Monte Carlo setting, in which algorithms have access to randomness, and may
exhibit a bounded error.

2. The Las Vegas setting, in which algorithms have access to randomness, but may
not err.

3. The deterministic setting, in which algorithms do not have access to randomness,
and may of course not err.

Bounds. Within our theoretical model, we give upper and lower bounds. We are con-
cerned whether the bounds imply a linear or sublinear runtime in the size of a given
tree. Keep in mind that these trees model IR search trees: we can easily achieve linear
runtime by simply traversing the entire IR search tree using, for example, depth-first or
breadth-first search. In practice, linear runtime in the size of an IR search tree might, of
course, mean exponential runtime in the size of a given input graph. In turn, sublinear
time means we do not have to traverse the IR search tree in its entirety.

39

Chapter 3 – Search Tree Traversal

Setting Lower Bound Lower Bound (d-adic) Upper Bound

Monte Carlo Ω(
√
n) Ω(

√
n) O(log(n)√n)

Las Vegas Ω(n) Ω(
√
n) O(d log(N)

√
n)

Deterministic Ω(n) Ω(n) O(n)

Table 3.1: This table summarizes lower and upper bounds for the isomorphism prob-
lem implied by the results of this chapter. Here, n = min{n1, n2} and N =
max{n1, n2}, where the sizes of the trees are n1, n2 and d gives the maximum
degree of the two input trees. We state separate lower bounds for trees with
bounded (d-adic) and unbounded degree.

Regarding upper bounds, we provide a simple randomized Monte Carlo algorithm with
a worst-case runtime of O(√n log n) in the number of explored nodes. For trees of
bounded degree, we design a Las Vegas algorithm, which has a worst-case expected
runtime of O(√n logN).
These algorithms are accompanied by nearly matching lower bounds, which show

that Ω(
√
n) nodes need to be explored for randomized Monte Carlo algorithms even

on bounded degree trees. For unbounded degree inputs, Las Vegas algorithms must visit
Ω(n) nodes in expectation. For deterministic algorithms, we get a lower bound of Ω(n)
even for inputs of bounded degree. Table 3.1 provides an overview of the particular lower
and upper bounds in all settings.

Characterization of IR Trees. A natural follow-up question may of course be: is the
model used in these lower and upper bounds even reasonable? For the upper bounds, we
may simply refer to our implementation of the algorithm used in the Monte Carlo upper
bound, as described in Chapter 6. The lower bound constructions will however work
using particular worst-case families of trees. In turn, the question is whether these trees
can actually occur in practice: whether there is a cell selector and graph that produces
precisely the given tree. In order to prove that these worst-case examples are actually
reasonable, in the last section of this chapter, we turn to the question of which kinds of
trees can appear as IR trees.
We give a characterization of which trees are IR trees. More precisely, we characterize

which trees are IR trees using color refinement under a free choice of cell selectors. The
characterization is constructive, meaning for a given tree that satisfies the requirements,
we give a graph and cell selector that results in the given IR tree. Crucially, the charac-
terization proves that all families used to prove the lower bounds of Table 3.1 are in fact
IR trees.

3.1 A Model for Search Tree Traversal

We now describe our abstract model for IR search tree traversal. In our model search
problem, the input consists of one or two hidden trees of which certain information is to
be discovered. We begin by explaining how these trees can be explored by the algorithms.

40

3.1 A Model for Search Tree Traversal

Then, we describe further properties of the model trees, followed by a definition of the
model search problem.

3.1.1 Exploration Model

We consider rooted trees in which there is a priori no bound on the degree of the vertices.
However, we require that

1. no vertex has exactly one child (i.e., the tree is irreducible),

2. each leaf of the tree is colored,

3. there is no node that has exactly two children of which exactly one is a leaf.

The first requirement is natural, considering that cell selectors are not allowed to produce
a singleton cell (see Section 2.3). The second requirement models that in a leaf, the
discrete coloring reveals the isomorphism type of the leaf: we can efficiently discover
isomorphisms and automorphisms at the leaf of IR trees (see Lemma 16). The third
requirement stems from the fact that if a vertex of a color class of size 2 is individualized,
the other vertex of that color is in turn also singleton. We discuss this in more detail in
Section 3.5.1. (In fact, it turns out there are a few more necessary conditions regarding
leaf colors and non-trivial automorphisms of trees, which are however of no importance
for now: all trees we consider in our lower bounds will be asymmetric.)
Our exploration model for the trees restricts access of algorithms to the trees themselves

and how they can be explored. We think of new information as being provided by an
oracle to the exploration algorithm.
During execution, a node of the tree is either explored or unexplored. Whenever a new

node is explored, the algorithm learns the number of children of the node. In particular
the algorithm knows whether the node is a leaf or not. Furthermore, in case the node is
a leaf, it learns its color.
At the beginning of an execution, everything except the root is deemed unexplored. The

algorithm can only ever access previously explored nodes. The degree (i.e., the number of
children) of an explored node v is always known. To explore further nodes, the algorithm
can explore a child of a previously explored node. Specifically, when k is the number
of children of node v, the algorithm can request the i-th child of v with i ∈ {1, . . . , k},
which thereby becomes explored. For this, the input has an arbitrary but fixed ordering
for the children of each vertex.
The cost of the exploration is measured in the number of oracle accesses, i.e., the

number of nodes that are ever visited by the algorithm. In particular, there is no cost
for traversing previously explored parts of the tree, or any other auxiliary computation.
Figure 3.1 illustrates such an exploration of a tree. Note that while the algorithm always

knows the degree of explored nodes, it is essentially unable to choose a specific child to
explore, since in another input the ordering of the children may in fact be different.
More formally, a black box search tree T = (V,E, π) consists of a rooted tree with

colored leaves, and for each node an ordering of the children. With πT , we denote the

41

Chapter 3 – Search Tree Traversal

Figure 3.1: Example exploration in the black box search tree model. Starting from
the root, the algorithm only ever knows explored nodes and their degrees.
Through the use of an oracle, random children of explored nodes may then
be queried.

coloring of a given black box search tree T . We omit the orderings from the notation.
Of course all choices of orderings lead to proper search trees. The function π : L(T)→ N
specifically only maps the leaves of the tree L(T) to colors.
In our algorithms, we use the procedure

NewChildT : V (T)→ V (T) ∪ {⊥}

to explore the tree, which agrees with the previous description as follows. For an explored
vertex v the algorithm chooses the smallest index of a previously unexplored child of v
and queries the oracle for that child. If no unexplored child exists, the function returns ⊥.
Moreover, in the description of randomized algorithms, we also use the function

RandomChildT : V (T)→ V (T) ∪ {⊥},

which returns a child chosen uniformly at random among all children of v, which means
that it can in particular return previously explored children.

3.1.2 Isomorphism Invariance

So far we are lacking a crucial property of IR trees, namely the isomorphism-invariance.
The core property of our trees is that the presence of leaves with equal colors implies
the existence of symmetries of the trees. More specifically, they imply the existence of
a color-preserving isomorphism. An isomorphism φ between two trees T1 and T2 is a
bijection on vertices φ : V (T1)→ V (T2), such that v is a child of v′ if and only if vφ is a
child of v′φ. In other words, φ is an isomorphism between the T1 and T2 interpreted as
graphs, which additionally respects the root of the trees. A color-preserving isomorphism
furthermore requires that πT1(l) = πT2(l

φ) holds for all leaves l ∈ L(V1). This implies
that leaves of a color can only be mapped to leaves of that same color. If T1 = T2, φ is
an automorphism.
The crucial property that we require for all black box search trees is that whenever

two leaves have the same color, we can derive an isomorphism:

Axiom (Complete Isomorphism Invariance). If l1 ∈ T1, l2 ∈ T2 and πT1(l1) = πT2(l2),
then there exists a color-preserving isomorphism φ : V (T1)→ V (T2) such that lφ1 = l2.

We should highlight that the axiom in particular has to hold for the case T1 = T2,
yielding automorphisms (possibly the identity if l1 = l2).

42

3.2 Upper Bounds

The crucial consequence of the axiom is that it allows us to draw conclusions about the
structure of unexplored parts of the search tree. For example, applying this knowledge
enables us to conclude that the last remaining node of Figure 3.1 is blue. In the remaidner
of this chapter, we assume that all input black box search trees, in particular if an input
consists of two trees, adhere to this axiom. Also, all exploration algorithms operate in
the exploration model defined above.

3.1.3 Isomorphism Exploration Problem

We are now ready to the state our problem of interest for black box search trees: the
isomorphism exploration problem.

Problem 23 (Isomorphism Exploration). Given two search trees T1 and T2, compute
leaves l1 ∈ T1 and l2 ∈ T2 with πT1(l1) = πT2(l2), if they exist and return ⊥ otherwise.

For simplicity we will always assume that the trees are disjoint, that is V (T1)∩V (T2) =
∅. This way we do not need to specify for oracle queries what tree they relate to.
Furthermore, this allows us to indiscriminately refer to the colors of leaves, no matter if
they are in T1 and T2. Essentially, we combine πT1 and πT2 into a unified coloring π.
We should remark that the problem as stated above of course relates to solving graph

isomorphism, rather than computing graph automorphisms, using IR algorithms. How-
ever, as already pointed in Section 2.3.5, these two problems are strongly related in the
context of IR algorithms. For example, consider the isomorphism exploration problem
on asymmetric trees. Here, we can easily relate the isomorphism exploration problem to
deciding whether a tree contains a non-trivial automorphism, as follows. We can combine
two search trees into a single tree by adding a new root node, which is in turn connected
to the root of the two given search trees. If we can decide whether there exists at least
a single non-trivial automorphism of the resulting tree, we can solve the original isomor-
phism exploration problem. In any case, we believe that the isomorphism exploration
problem seems more natural to work with.

3.2 Upper Bounds

We begin our exposition with upper bounds for the isomorphism exploration problem.
All upper bounds are given in terms of algorithms solving the isomorphism exploration
problem.
Let us begin with the trivial deterministic upper bound. We are given two input black

box search trees T1 and T2. Our algorithm proceeds by exploring a single arbitrary node
in each of the two input trees at a time. If we ever encounter two equally colored leaves,
we have solved the problem. Once we finished exploring one of the trees, and no equally
colored leaves have been found, we return ⊥. Since we explore the trees one node at a
time, the algorithm runs in time linear in the size of the smaller of the two input trees,
i.e., O(min{n1, n2}).
Next, we discuss the Monte Carlo strategy, followed by the Las Vegas strategy for trees

of bounde degree.

43

Chapter 3 – Search Tree Traversal

Algorithm 4: Random walk in a black box search tree.

1 function RandomWalk
Input: ➢ black box search tree T

➢ explored vertex v ∈ V (T)
Output: ➢a random leaf of the search tree rooted at v

2 // continue to walk down in the tree, until leaf is reached

3 while deg(v) ̸= 1 do
4 v := RandomChildT (v);
5 return v;

3.2.1 Monte Carlo Traversal

The central idea of the probabilistic isomorphism test discussed in this section is to
repeatedly perform random root to leaf walks in the black box search trees.

Description of Algorithm 4. A random walk is performed by starting in the root node
and repeatedly choosing uniformly at random a child of the current node, until a leaf is
reached.

Cost of Algorithm 4. In the worst-case, the cost of the procedure is the height of the
input tree T , i.e., O(h(T)).

The probabilistic isomorphism test will exploit the following observation: assume we
have two isomorphic trees T1, T2. Furthermore, assume we fix an arbitrary leaf l ∈ T1
of the first tree. We call all leaves l′ ∈ L(T1) ∪ L(T2) with π(l) = π(l′) occurrences of l.
Naturally, if we find any occurence of l′ in T2, we have determined that the two trees are
isomorphic. The algorithm tries to find occurrences of l solely through the use of random
walks of the trees. Towards finding l, we always perform two random walks, one in T1
and one in T2. Since we assumed the trees are isomorphic, we are in fact equally likely
to find an occurrence of l in T1 or in T2. But if the trees are not isomorphic, we can find
occurrences of l only in T1 (otherwise, due to the isomorphism invariance axiom, T1 and
T2 would be isomorphic).

Description of Algorithm 5. Instead of using just a single leaf l, the algorithm uses
two sets of leaves L1 and L2 for comparison. Whenever a new leaf is found, which is not
an occurrence of a previously found leaf, it is added to the respective set of leaves and
used for subsequent testing (see Line 21 and Line 22).
If a leaf is an occurrence of a previously found leaf, i.e., it is contained in L1 or

L2, it either reveals an isomorphism between the trees or an automorphism (possibly the
identity) of one of the trees (as checked in the for-loop starting from Line 16). This is again
a consequence of the isomorphism invariance axiom. If the algorithm ever encounters
two equally colored leaves, one in each of the two trees, it terminates (see Line 14 and
Line 18). Otherwise, after a certain number of automorphisms have been found (the

44

3.2 Upper Bounds

T1 T2

auto iso

Figure 3.2: The probabilistic bidirectional search algorithm simultaneously samples leaves
in both trees using random walks. It then tests for automorphisms within a
tree and isomorphisms across trees to perform the probabilistic test.

number depends on the desired error bound), the algorithm concludes that the trees are
probably non-isomorphic within the given error bound (see Line 24).
Again, if the trees are isomorphic, we find automorphisms and isomorphisms (that is

not an automorphism) with equal probability. Hence, the idea is that we are highly
unlikely to discover many automorphisms without also discovering an isomorphism (see
further below for a formal proof). Figure 3.2 illustrates this key concept underlying the
algorithm.

Correctness of Algorithm 5. The following lemma proves correctness of the algorithm.

Lemma 24. Given black box search trees T1, T2 and a desired error probability ϵ, Algo-
rithm 5 solves the isomorphism exploration problem with probability at least 1− ϵ.

Proof. First, observe that whenever a pair of leaves is returned, their color is checked
for equality (Line 14 and Line 18). This ensures that if the algorithm returns a pair of
leaves, the answer is always correct. The algorithm can therefore only fail to produce the
correct output by not finding a suitable pair of equally colored leaves despite the fact that
they exist. In particular, this implies that if the trees are non-isomorphic, the algorithm
cannot err.
To bound the error probability, we view the computation as a sequence of tests. A test

repeatedly performs random walks of the search trees until one automorphism (possibly
the identity) or one isomorphism is found. Hence, each test can be described as a sequence
of j iterations. In each iteration j′ < j, neither l1 nor l2 produced an isomorphism or
automorphism. During a test, the algorithm neither terminates, nor is c incremented. In
iteration j of the test, an automorphism or isomorphism is found. Now, note that when T1
and T2 are isomorphic, leaves contained in L1∪L2 can equally likely be found in T1 or T2.
Hence, finding an automorphism or isomorphism in a test is equally likely. In particular,
the probability is 1

2
for finding an isomorphism which is not an automorphism. Anytime

we find an automorphism but no isomorphism, we increment c by 1. We terminate when c

45

Chapter 3 – Search Tree Traversal

Algorithm 5: Probabilistic bidirectional search in black box search trees.

1 function Isomorphism
Input: ➢ black box search trees T1, T2

➢ probability ϵ
Output: ➢two leaves l1 ∈ T1, l2 ∈ T2 such that π(l1) = π(l2) with

probability at least 1− ϵ if such leaves exist, ⊥ otherwise
2 // initialize probabilistic abort criterion

3 c := 0;
4 e := ⌈− log2(ϵ)⌉;
5 // initialize empty leaf storage

6 L1 := L2 := ∅;
7 // as long as probabilistic abort criterion not satisfied...

8 while c ≤ e do
9 // f(aut,i) indicates automorphism found in Ti

10 f(aut,1) := f(aut,2) := false

11 // compute a random walk in each of the trees

12 l1 := RandomWalk(T1, root of T1) ;
13 l2 := RandomWalk(T2, root of T2) ;
14 if π(l1) = π(l2) then return (l1, l2);

15 // check color against all stored leaves

16 for (i ∈ {1, 2})
17 for (l′ ∈ L(3−i))
18 if π(li) = π(l′) then return (li, l

′) ;
19 if π(l3−i) = π(l′) then f(aut,(3−i)) := true ;

20 // add leaves to stored leaves

21 if ¬f(aut,1) then L1 := L1 ∪ {l1};
22 if ¬f(aut,2) then L2 := L2 ∪ {l2};
23 // manage probabilistic abort criterion if automorphisms

found

24 if f(aut,1) ∨ f(aut,2) then c := c+ 1;

25 // trees non-isomorphic with probability at least 1− ϵ
26 return ⊥;

reaches e. Assuming the trees are isomorphic, the probability of this outcome is therefore
bounded by 1

2e
.

Cost of Algorithm 5. We now analyze the worst-case runtime of Algorithm 5 in the
cost model of black box search trees. This means that only Line 12 and Line 13 affect
cost in the analysis. Since termination of the algorithm depends on random events, the
running time of the algorithm is a random variable. Thus, we consider expected runtime.

46

3.2 Upper Bounds

We are now ready to analyze the running time of Algorithm 5.

Lemma 25. Given black box search trees T1, T2 of heights h1 and h2, respectively, and
error probability ϵ, Algorithm 5 has an expected worst-case runtime bounded by

O
(
⌈log2

(
1

ϵ

)
⌉ ·max(h1, h2) ·min{

√
|T1|,

√
|T2|}

)
.

Proof. We calculate the expected number of leaves explored before termination. We
may consider the number of leaves instead of nodes by adding the multiplicative factor
max(h1, h2) for the maximum length of a root to leaf walk in the search trees to our
runtime. (We explain subsequently how to improve this factor.)
We may assume that the input trees are non-isomorphic and thus that the algorithm

terminates because the condition c > e = ⌈− log2(ϵ)⌉ was met. This suffices to give an
upper bound since earlier termination due to the discovery of isomorphisms clearly only
leads to a smaller expected running time.
Consider running 2

√
|Ti| iterations of the algorithm. We may assume that in the j-th

iteration L1 and L2 each contain at least j leaves: otherwise, some previous iteration
already discovered an automorphism or an isomorphism. Furthermore, we may assume
that the probability to find a leaf is uniform across all leaves: if probabilities are non-
uniform, the chance for finding some leaves repeatedly only increases (see [84]). The
probability of finding an automorphism in Li (with i ∈ {1, 2}) within j iterations is
therefore at least j

|Ti| . After
√
|Ti| iterations, the probability for finding an automorphism

in Ti is then at least √
|Ti|
|Ti|

=
1√
|Ti|

.

Hence, the probability of finding no automorphism after 2
√
|Ti| many steps is at most(√

|Ti| − 1√
|Ti|

)√|Ti|

≤ 1

e
<

1

2
.

We view the computation as a series of batches consisting of 2
√
|Ti| iterations each. For

each of them, the probability for finding an automorphism is at least 1/2. For termination,
we need to find e many automorphisms. The expected number of batches is thus in O(e),
which shows that the overall number of iterations is in O(e · 2

√
|Ti|).

We can improve the bound on the runtime replacing the factor max{h1, h2} with the
factor log2(min{

√
|T1|,

√
|T2|}). To do so we alter the algorithm to take into account

that the trees may be of very different sizes and also the trees may be quite unbalanced.
To compensate for this we employ a doubling technique. However, we first need a bound
for the expected length of the random root to leaf walks used in our algorithm.

Lemma 26. In an n-node black box search tree the expected length of a random root to
leaf walk (i.e., the running time of Algorithm 4) is in O(log n).

47

Chapter 3 – Search Tree Traversal

Proof. Let g(T) be the expected length of a random root to leaf walk in tree T . Note that
the number of leaves t of a black box search tree is in Θ(n) for an n-node tree. We will
argue that among the trees T with t leaves and no inner nodes of degree 1, the value g(T)
is maximal if T is a binary tree in which all leaves are located on two consecutive levels.
Since in such a tree even the maximum root to leaf distance is O(log n), this proves the
theorem.
First let T be a tree which has a vertex v with more than two children u1, . . . , uj. Let Ti

be the subtree of T rooted at ui and assume without loss of generality that g(Ti) < g(Tj)
for i < j. Alter the tree T into a new tree T ′ by inserting a new node w as a child of v and
then relocating the trees T1 and T2 so that their roots are now children of w instead of v.
Note that while we are adding an inner node to the tree, the number of leaves remains
unchanged. Then, conditional on the event that the random walk reaches v the expected
length of the walk has increased. Thus g(T ′) > g(T). Since there are only finitely many
trees with t leaves, by induction it suffices now to consider binary trees.
Let T be a binary tree and suppose there are leaves ℓ1 and ℓ2 whose height differs

by more than 1. Say ℓ1 is on the level furthest from the root. There must be another
leaf ℓ3 whose parent p is also the parent of ℓ1. Alter the tree to obtain a new tree T ′

by assigning ℓ2 as the new parent of ℓ3 and ℓ2. Note that the transformation turns p
into a leaf, and l2 into an inner node. Hence, the number of leaves remains unchanged.
Furthermore, since the height of ℓ1 and ℓ2 differs by more than 1, the node p is indeed
further away from the root than ℓ2. Thus, the tree being binary, the probability of a
random walk reaching ℓ2 is larger than that of reaching p. Therefore g(T ′) > g(T). By
induction this proves the theorem.

This in turn suffices to prove the final theorem of this section.

Theorem 27. There is an algorithm that solves the isomorphism exploration problem
with probability at least 1− ϵ and expected worst-case runtime bounded by

O
(
⌈log2

(
1

ϵ

)
⌉ · log2(min{

√
|T1|,

√
|T2|}) ·min{

√
|T1|,

√
|T2|}

)
.

Proof. Set n = min{|T1|, |T2|}. For an integer s, we run the algorithm with a budget 2s
that limits the number of walks that can be performed in each tree to s. Furthermore,
we limit the length of the random walks by h = c log2(s) for some suitable constant
determined later. Whenever a random walk exceeds the length h, we abort the walk and
ignore it. If the algorithm does not terminate within the alloted budget then we double s
and restart. This guarantees that the number of queries does not exceed O(s log s) when
we run it with integer s.
At least in the smaller of the two trees, automorphisms are found with high probability

whenever s exceeds
√
n. Indeed, by Lemma 26 the average length of a random walk in the

smaller tree is in O(log n) = O(log√n). Thus, by Markov’s bound with probability 1/2,
the random walks end in a leaf of height at most O(log n). Thus, by the Chernoff bound,
for sufficiently large s, with probability 1/2 at least 1/4 of the random walks end in a
leaf of height at most O(log n). We choose c so that this height is at most c log2(n).

48

3.2 Upper Bounds

In case the graphs are isomorphic, automorphisms and isomorphisms are still found
with equal probability. Thus our arguments for the probabilities remain in place since
we essentially perform the same algorithm in pruned subtrees. Regarding the running
time, note that the probability that the algorithm does not terminate with budget s

decreases exponentially with s. That is, the probability is in O(as/min{
√

|T1|,
√

|T2|}) for
some constant a < 1 once s > 2min{

√
|T1|,

√
|T2|}.

We should remark that the collision problem was previously exploited in the context
of the group isomorphism problem [98]. However, in the group isomorphism problem
additional structural information on the corresponding trees is known. Also, the idea of
sampling with random walks was used for the isomorphism algorithm in [66], but that
algorithm only uses a single leaf in the search tree and thus cannot achieve sublinear
running time guarantees.

3.2.2 Las Vegas Traversal

The major drawback of the bidirectional search algorithm is that it makes errors. By
considering trees of height 1, it is not difficult to see that a non-erring algorithm, even
a randomized one, will need to query a linear fraction of the leaves to distinguish non-
isomorphic trees. However, if the degree of the input graphs is restricted, we can beat
this bound.
To do this, we basically strive to choose a specific set of nodes in both trees that ensures

a “collision” of leaves. This guarantees that we find equally colored leaves, if they exist.
We refer to the maximum degree among the considered trees as d. The main new idea

we use is to split the search tree in a balanced manner, followed by techniques to exploit
isomorphism invariance. We want to note that the techniques for exploiting isomorphism
invariance are inspired by the techniques described in [76, 107], in particular the special
automorphism traversal of Traces (see Section 2.4.4), which essentially also use splits.
However, rather than heuristically applying them, here, we perform them in a balanced
and systematic way. Towards this goal we need the notion of a split (v, h), which is
simply a node v ∈ Ti at level h in one of the input trees. We define the cost of a split as
a pair of numbers (s1, s2) as follows:

1. s1 is the size of the tree T3−i truncated at level h (i.e., the ball of radius h around
the root).

2. If the tree Ti truncated at level h is non-isomorphic to the tree T3−i truncated at
level h, then s2 := s1, otherwise s2 is the size of the subtree rooted in v ∈ Ti at
level h.

The intuition for our exploration strategy is that s1 bounds the size of the subtree to
be explored in T3−i, while s2 bounds the size of the subtree to be explored in Ti (up to
logarithmic factors). While the definition for (2) may seem cumbersome at first, the idea
is simply that if trees already differ in the first h levels, we can decide non-isomorphism
by exploring all nodes in the subtree of Ti consisting of the first h levels and then at most
as many vertices within the first h levels of T3−i.

49

Chapter 3 – Search Tree Traversal

We call a split (v, h) a balanced split whenever its cost (s1, s2) satisfies

max{s1, s2} ≤ 4d ·min{
√
|T1|,

√
|T2|}.

Note that slightly abusing terminology, in a balanced split the subtree with root v can be
large, as long as the two trees truncated at level h are non-isomorphic and s1 is sufficiently
small.
At this point it might neither be clear how to find a balanced split nor that a balanced

split always exists. However, assume for now that we are given a balanced split. In that
case we can efficiently solve isomorphism (even deterministically) as follows. We perform
breadth-first search up to level h in both trees T1 and T2, visiting all nodesN1 ⊆ V (T1) and
N2 ⊆ V (T2) up to and including level h. We can conclude non-isomorphism immediately
whenever the breadth-first search has finished level h and the two trees truncated at
level h are non-isomorphic. We can thus assume now that these trees are isomorphic.
By exploring all nodes up to level h (which is the level containing v), we surely explore
the node v in one of the trees. Without loss of generality assume in the following that
v ∈ V (T1).
In T1, we explore all leaves Lv of the subtree rooted at one fixed node, namely v from

the balanced split. Let N ′
2 ⊆ N2 denote the set of nodes at level h in T2. Then, we explore

for each node v′ in N ′
2 one arbitrary leaf lv′ in the subtree rooted at v′. If the trees are

isomorphic, there must exist some v′ ∈ N ′
2 that can be mapped to v with an isomorphism.

Since we explored all leaves of v, the leaf lv′ with ancestor v′ must be isomorphic (equally
colored) to one of the leaves in Lv. Figure 3.3 illustrates how the collision of leaves is
enforced by this exploration strategy.
The procedure for exploring, within our model, the first h levels of the subtree rooted

at a particular node v is described in Algorithm 6. Starting from a given node v, it
performs breadth-first traversal until only leaves are left, or h levels have been explored.
The algorithm is also given a cost limit s and the algorithm aborts if this limit is reached.
Using Algorithm 6 as a subroutine, Algorithm 7 gives an implementation in the explo-

ration model of the entire algorithm just described.

Cost of Algorithm 7. Let us argue an upper bound for the runtime of Algorithm 7,
assuming that we are given a balanced split. From the definition of a balanced split,
we can conclude that |Lv| and |N2| are bounded by O(d · min{

√
|T1|,

√
|T2|}). Since

exploration up to level h in T1 (Line 4) may only explore as many nodes as exploration
in T2, we ensure that |N1| ≤ |N2| holds. Now, the last phase probes at most O(d ·
min{

√
|T1|,

√
|T2|}) many paths, giving an overall upper bound of

O
(
d · h(T2) ·min{

√
|T1|,

√
|T2|}

)
.

However, note that the factor h(T2) can be excessively large because the paths from
level h to the leaves can be of length Θ(|T2|). To prevent this, we alter the algorithm
as follows. In T2 we allocate a total budget of c′

√
|T2| log(|T2|) for some constant c′ for

all the level-h-to-leaves paths. By Lemma 26 the expected length of one such path is

50

3.2 Upper Bounds

Algorithm 6: Breadth-first search on a black box search tree.

1 function Subtree(v, h, s)
Input: ➢ black box search tree T

➢ explored start node v ∈ V (T)

➢ height limit h

➢ cost limit s
Output: ➢(L, s′) where L is the set of leaves of the subtree under v up to

level h and s′ is the number of explored nodes, or (⊥,⊥) if cost
limit did not suffice

2 // immediately terminate for trivial height limit

3 if h = 0 then return {v};
4 // initialize worklist N and empty set of leaves L
5 N := {(v, 0)} ; // (v, i) denotes node v at level i
6 L := {};
7 s′ := 0;

8 // as long as the worklist is not empty...

9 while N ̸= ∅ do
10 // take an element v off the worklist

11 (v, h′) := Some(N) ; // pick arbitrary element of N
12 N := N ∖ {(v, h′)};
13 h′ := h′ + 1;

14 // now we iterate over all children of v
15 c := NewChildT (v);
16 while c ̸= ⊥ do
17 s′ := s′ + 1 ; // keep track of cost limit

18 // reached cost limit? terminate!

19 if s′ > s then return (⊥,⊥) ;
20 // reached height limit or node is a leaf? add node to

result L
21 if h′ = h ∨ deg(c) = 0 then L := L ∪ {c} ;
22 else
23 // otherwise, add node to the worklist

24 N := N ∪ {(c, h′)}
25 c := NewChildT (v);

26 // we stayed within the cost limit and return the result

27 return (L, s′);

51

Chapter 3 – Search Tree Traversal

T1 T2

iso

iso

Figure 3.3: State of the search trees after termination of Algorithm 7. If trees are iso-
morphic, a node v1 in T1 at some level h must be mapped to some node v2 in
T2 at level h by an isomorphism. But if that is the case, then a leaf below v2
is isomorphic to some leaf below v1.

Algorithm 7: Bidirectional search based on a given split.

1 function Isomorphism(T1, T2, v, h)
Input: ➢ black box search trees T1, T2

➢ a split v, h with v ∈ V (T1)
Output: ➢two leaves l1 ∈ T1, l2 ∈ T2 such that Col(l1) = Col(l2) if they

exist, ⊥ otherwise
2 // explore the upper parts of trees

3 (N2, s) := Subtree(root of T2, h,∞) ;
4 (N1,) := Subtree(root of T1, h, s) ; // discovers v

5 // trivial case in which truncated trees not isomorphic

6 if N1 = ⊥ or T1 and T2 up to level h non-isomorphic then
7 return ⊥;
8 // explore subtree under v
9 (Lv,) := Subtree(T1, v,∞,∞);

10 // ...and then a single leaf for each n ∈ N2

11 for (n ∈ N2)
12 l := RandomWalk(T2, n) for (l′ ∈ Lv)
13 if π(l) = π(l′) then return (l, l′) ;

14 // no isomorphism found

15 return ⊥;

52

3.2 Upper Bounds

in O(log |T2|). Thus, by linearity of expectation, the expected total cost for the paths
is O(

√
|T2| log |T2|). By Markov’s inequality for a suitable choice of c′, with probabil-

ity 1/2 the total cost is in O(
√
|T2| log |T2|). If the total cost exceeds this bound we

simply restart the process.
Overall we can replace the factor h(T2) by O(log(|T2|)), giving

O(d · log2(max{|T1|, |T2|}) ·min{
√
|T1|,

√
|T2|}).

More generally, it is easy to see that given a split of cost (s1, s2), the modification of
Algorithm 7 runs in

O(log2(max{|T1|, |T2|}) ·max{s1, s2}).
There is an interesting analogy to the runtime of the probabilistic bidirectional search
algorithm. A main difference is that the runtime directly depends on the maximum
degree of the trees.
The crucial question remains whether balanced splits always exist and whether they

can be found efficiently. We first address the question of existence of balanced splits.

Lemma 28. Let T1, T2 be black box search trees with maximum degree d. Then there
exists a balanced split for search trees T1 and T2.
In particular, if

• h′ is the maximal level for which the tree T1 truncated at level h′ is smaller than
4d ·min{

√
|T1|,

√
|T2|},

• the two subtrees up to level h′ are isomorphic, and

• there are no leaves up to level h′,

then at least 3
4
of the nodes at level h′ in the smaller tree constitute balanced splits with

cost s2 ≤ 2min{
√
|T1|,

√
|T2|}.

Proof. We can assume w.l.o.g. that |T1| ≤ |T2|. Let h′ be the maximal level of T2 where
the size of the subtree up to level h′ is smaller than or equal to 4d ·min{

√
|T1|,

√
|T2|}.

If the subtrees up to level h′ in T1 and T2 differ, we have found a balanced split.
Furthermore, if there are leaves in the trees up to level h′, we have found a balanced split
as well. Hence, we assume that subtrees are isomorphic and no leaves are present.
We now argue that at least 3

4
of the nodes at level h′ in T1 constitute balanced splits.

Consider level h′ of T1 and T2. Let sh′ ≤ 4d ·min{
√
|T1|,

√
|T2|} be the size of the subtree

up to and including level h′ in T1. By assumption, the respective subtree of T2 is of equal
size. Furthermore, by assumption there are no leaves up to level h′, implying that the
tree contains at least nh′ ≥ 1

2
· sh′ nodes at level h′.

Towards a contradiction, we assume sh′ ≤ 4 ·min{
√
|T1|,

√
|T2|}. But then we can in-

crement h′: since sh′ ≤ 4·min{
√
|T1|,

√
|T2|}, it holds that sh′+1 ≤ 4d·min{

√
|T1|,

√
|T2|}.

This is a contradiction to the assumption that h′ is maximal. Hence, we know 4 ·
min{

√
|T1|,

√
|T2|} < sh′ ≤ 4d ·min{

√
|T1|,

√
|T2|}.

53

Chapter 3 – Search Tree Traversal

We can immediately conclude nh′ ≥ 2 · min{
√
|T1|,

√
|T2|}. Naturally, there can be

at most 1
2
· min{

√
|T1|,

√
|T2|} corresponding subtrees which have a size greater than

2 ·min{
√
|T1|,

√
|T2|} with roots at level h′ in T1 (since |T1| ≤ |T2|). Consequently, there

must be at least nh′ − 1
2
· min{

√
|T1|,

√
|T2|} ≥ 3

4
nh′ subtrees rooted at level h′ with a

size smaller than 2 ·min{
√
|T1|,

√
|T2|}. This concludes the proof for both claims of the

lemma.

Thus, for all search trees there exist balanced splits. However, we still need to explain
how to find balanced splits efficiently. As shown by the lower bound in the next section,
it is impossible to do this deterministically in an adequate running time. We thus need a
randomized procedure for finding balanced splits. We will show that the following method
is suitable. Rather than pseudocode we give a high level description of the algorithm.

Algorithm 8 (Las Vegas Balanced Splits).
Input: Black box search trees T1 and T2.
Output: The algorithm either returns a split (v, h) or determines that T1 and T2 are
non-isomorphic.

1. Set cost limit s← 1.

2. Perform breadth-first search in T1 and T2, limiting the size of the traversed subtree
to s nodes (each). If after any level the breadth-first search trees for T1 and T2
differ, the algorithm terminates concluding non-isomorphism. Let h denote the
level reached so far. If breadth-first search discovers a leaf v at or below level h,
the algorithm terminates with the split (v, h).

3. For each i ∈ {1, 2}, uniformly and independently at random choose a node vi at
level h in both trees.

4. Compute breadth-first search starting from the node vi in Ti, until one of the
following conditions is met:

• Breadth-first search finishes exploring the entire subtree of vi, constituting the
split (vi, h).

• Breadth-first search explored s nodes.

This step is performed in parallel for both i ∈ {1, 2} (i.e., each step alternates
between the two), until one method succeeds in finding a split or both finish un-
successfully. If at any point a split is found, the algorithm terminates immediately
returning the split.

5. Set s← 2s and jump to Step 2.

It turns out that when the cost limit is sufficiently high the algorithm finds balanced
splits with good probability. The intuition behind this is based on Lemma 28: once
the algorithm reaches a sufficiently high level of the tree with breadth-first search, the
majority of nodes constitute balanced splits.
From the description of the algorithm, the following corollary follows readily:

54

3.2 Upper Bounds

Corollary 29. If Algorithm 8 chooses in some iteration an element v at some level h in
Step 3 so that (v, h) constitutes a split with cost (s1, s2) and at this point s ≥ s2, then
the algorithm terminates after this iteration and returns a split with cost (s′1, s

′
2) where

s′1 = s1, s
′
2 ≤ s2.

Proof. By assumption, (v, h) constitutes a split with cost (s1, s2). This implies that
the entire subtree below v is smaller than s2. Consequently, since s is large enough,
Algorithm 8 explores the entire subtree below v in Step 4, unless probing the other way
in parallel terminates first: this only contradicts our claim if it results in a more expensive
split. However, since a more costly split necessitates more steps to explore its respective
subtree, running the search in parallel ensures that the cheaper split is found first. Note
that s1 = s′1 holds for all nodes at level h, concluding the proof.

Using this, we can prove that Algorithm 8 terminates with a balanced split with good
probability, giving what we need for our isomorphism test:

Lemma 30. If Algorithm 8 terminates with a split, it constitutes a balanced split with a
probability of at least 3

4
.

Proof. We can assume w.l.o.g. that |T1| ≤ |T2|. Let h′ be the maximal level of T2 where
the size of the subtree up to level h′ is smaller than or equal to 4d ·min{

√
|T1|,

√
|T2|}.

First, we observe that we may always assume that the breadth-first trees explored in T1
and T2 up to level h′ are isomorphic, since otherwise Algorithm 8 terminates immediately
with no split (Step 2). Furthermore, since Algorithm 8 terminates when discovering
leaves within the first h′ levels in the breadth-first exploration (Step 2) and this result in
balanced splits, we may assume that Algorithm 8 explores no leaves in the breadth-first
search. We note that if Algorithm 8 finds no leaves, each doubling of s can only increase
the level h reached by breadth-first search by at most 1.
Consider now Step 3 in the algorithm once level h′ is reached. The algorithm picks

a node of level h′ uniformly at random. We now argue that with probability at least 3
4

a node that is the root of a small subtree is chosen, i.e., a subtree that is smaller than
2 · min{

√
|T1|,

√
|T2|}. This however follows readily from Lemma 28: since all subtrees

at level h′ are chosen for exploration with uniform probability, we can conclude that
choosing a node that is the root of such a small subtree in T1 has a probability of at
least 3

4
. From the maximality of h′ we can conclude that s ≥ 4 ·min{

√
|T1|,

√
|T2|} (see

proof of Lemma 28). Hence, Corollary 29 ensures that the algorithm terminates with a
balanced split when choosing a node that is the root of a small subtree.
Furthermore, note that before level h′ is reached, it is not possible for Algorithm 8 to

return a split that is not a balanced split since the cost of probing is smaller than the
bound for balanced splits.

At level h′ Algorithm 8 terminates with probability 3
4
. Careful inspection of the proof

of Lemma 28 and Lemma 30 reveals that Algorithm 8 also terminates with probability
at least 3

4
after every consecutive doubling of s. While the cost (and therefore potential

execution time) doubles, the probability of terminating before reaching the respective

55

Chapter 3 – Search Tree Traversal

Figure 3.4: A search tree from the classM3.

cost quarters, which defines a geometric series: this results in an expected runtime of
Algorithm 8 bounded by

O(d ·min{
√
|T1|,

√
|T2|}).

We now run Algorithm 8 and Algorithm 7 in series, which results in the desired algo-
rithm: if Algorithm 8 terminates with non-isomorphism we are done. Otherwise, Al-
gorithm 7 tests isomorphism with the provided split. We observe that whenever Algo-
rithm 8 terminates with a split, the costs of the split are also bounded by s: the execution
time can not be larger than the cost of the returned split. Running the previously de-
scribed modification of Algorithm 7 with a split of cost s incurs expected cost bounded
by O(log2(max{

√
|T1|,

√
|T2|}) · s). Using this, we can conclude the section with the

following theorem.

Theorem 31. Let T1, T2 be black box search trees with maximum degree d. There exists
an algorithm for the isomorphism exploration problem with no error that has an expected
worst-case runtime bounded by

O(d · log2(max{
√
|T1|,

√
|T2|}) ·min{

√
|T1|,

√
|T2|}).

3.3 Lower Bounds

Now we prove lower bounds within the confines of the model of Section 3.1. Easy lower
bounds can be obtained by considering input trees of height 1, where each leaf obtains a
distinct color. However, we are interested in bounds that also apply to trees of bounded
degree. We utilize the search tree familyMh for this purpose (see Figure 3.4). A tree is
inMh, if it is a complete binary tree of height h such that leaves have pair-wise distinct
colors, i.e., for all (l1, l2) ∈ L(V (Mh))

2 with l1 ̸= l2 it holds that π(l1) ̸= π(l2). WithM
we denote the smallest set which contains all the search tree familiesMh.

We remark that shrunken multipedes (see [86]) are graphs that produce search trees
very similar to those inMh when used as input for IR algorithms.

Generally, due to their uniformity, trees fromMh can only be distinguished or proven
isomorphic by considering leaves. A traversal strategy must either conclude – with good
probability (1

2
)– that the set of leaves of the trees are entirely disjoint or equal. In the

case when trees are isomorphic, the traversal strategy must provide two leaves with equal
colors.

56

3.3 Lower Bounds

3.3.1 Randomized Lower Bound

We prove lower bounds for the isomorphism problem for randomized algorithms that err.
We use a particular type of exploration algorithm for our purposes. We call an algorithm
unadaptive on a class of inputs if on each input from the class, the number of queries is
always the same (in particular independent of randomness involved in the algorithm) and
the queries performed by the algorithms on inputs from the class are independent of the
answers given by the oracle. The queries may however still depend on the randomness
involved in the algorithm. This means in particular that even when matching leaves have
been found the algorithm will simply continue to run, possibly making further queries,
and at some later point make a decision about the output.

Lemma 32. If some (possibly randomized) algorithm A solves the isomorphism explo-
ration problem with expected runtime f(n) and error-probability ϵ then there is a ran-
domized algorithm B with error-probability ϵ, which runs in time O(f(n)) onM and for
each h ∈ N is unadaptive on the class of inputsMh.

Proof. If an algorithm A solving the problem with expected runtime f(n) and error
probability ϵ is given, then by repeating the algorithm and using Markov’s inequality we
can design an algorithm A′ with a runtime bounded by O(f(n)) (not just in expectation)
that still has an error probability of ϵ. For this note even if the trees have been partially
explored, it is possible to simulate the algorithm from scratch by pretending that explored
nodes of the tree are unexplored.
To obtain the algorithm B we alter algorithm A′ by simply pretending all discovered

leaves have a randomly chosen previously unused color. More precisely, when a leaf is
discovered, we pretend it has a color in {1, . . . , 2h} drawn independently and uniformly at
random from the colors that have not been used yet (note that we can infer h whenever
the algorithm reaches a leaf). We continue the simulation until A′ halts. We then claim
the input to be a yes instance if we found matching leaves and a no instance otherwise.
This can only decrease the error probability in comparison to A′.

The above lemma shows that every adaptative algorithm can be efficiently translated
into an unadaptive algorithm. In turn, it suffices to prove a lower bound for unadaptive
algorithms.
For our lower bound, we define a combinatorial problem of trees. Let Mh be the

complete binary tree of height h, so that trees in Mh are colored versions of Mh. For
two rooted trees U, S let Inj(U, S) be the set of root respecting injective homomorphisms
from U to S. That is, the set contains the injective maps from V (U) to V (S) that map
the root of U to the root of S and that map an edge of U to an edge of S.
From now on, fix a height h and consider the tree Mh. Let Uh be the set of trees U

for which Inj(U,Mh) is non-empty. This set contains exactly the trees isomorphic to a
subtree of Mh. For two trees U1, U2 ∈ Uh we let P (h, U1, U2) be the probability that for
uniformly chosen α1 ∈ Inj(U1,Mh) and independently, uniformly chosen α2 ∈ Inj(U2,Mh)
the set L(Mh) ∩ α1(V (U1)) ∩ α2(V (U2)) is non-empty. For integers a, b define

P (h, a, b) = max {P (U1, U2) | |L(U1)| = a ∧ |L(U2)| = b} .

57

Chapter 3 – Search Tree Traversal

Let P (h,m) = max{P (h, a, b) | a + b ≤ m}. We will argue that P (h,m) constitutes an
upper bound on the probability of success for a randomized algorithm for isomorphism
exploration that queries at most m nodes.

Lemma 33. Let B be an algorithm that is unadaptive on the class of inputs from Mh.
Suppose on inputs from Mh algorithm B makes m queries and has error probability ϵ.
Then 1− ϵ ≤ P (h,m).

Proof. Consider the behavior of the algorithm B on inputs from Mh with the col-
ors {1, . . . , 2h} being randomly assigned bijectively to the leaves. The algorithm B ex-
plores subtrees T ′

1 and T ′
2, one in each of the input trees. Since the algorithm makes m

queries, together, these trees can have at most m leaves. Our argument groups the pos-
sibilities in which B can query the oracle according to the topology of the two subtrees.

For two trees U1 and U2 consider the event EU1,U2 that T ′
1 is isomorphic to U1 and T ′

2

is isomorphic to U2. The event can of course only occur if |U1| + |U2| ≤ m. Recall
that algorithm B, being unadaptive, does not use the information on colors of the leaves
provided by the oracle until the very end. Thus, the probability that B finds matching
leaves on isomorphic inputs conditional to event EU1,U2 is P (h, U1, U2).

We conclude that the probability that B finds matching leaves is at most P (h,m).

We remark that in our problem definition, the algorithm has to find two leaves of the
same color. If the task only asked to decide whether the graphs are isomorphic, the
algorithm could still guess, which would incur another factor of 1/2.

We now show that the trees need to have sufficiently many leaves for P (h, T1, T2) to
be large.

Lemma 34. P (h, a, b) ≤ ab
2h
.

Proof. For two trees T1 and T2 let E(T1, T2) be the expected number of elements contained
in the set L(Mh)∩α1(V (T1))∩α2(V (T2)), where α1 and α2 are taken independently and
uniformly from Inj(T1,Mh) and Inj(T2,Mh), respectively. We define E(h, a, b) in analogy
to P (h, a, b) as the maximum E(T1, T2) over all choices of T1 and T2 with |L(T1)| = a
and |L(T2)| = b. By the Markov inequality it suffices to show that E(h, a, b) ≤ ab

2h
.

Only vertices that are of distance h from the root in Ti can be mapped to a vertex
in L(Mh). The automorphism group ofMh can map each leaf to every other leaf (i.e.,
acts transitively on the leaves). The graphMh has 2h leaves. Thus, for vertices v1 ∈ T1
and v2 ∈ T2 both of distance h from the root, the probability that α(v1) = α(v2) is at
most 1

2h
.

By linearity of expectation the expected number of pairs (v1, v2) for which α(v1) =
α(v2) ∈ L(Mh) is at most 1

2h
· a · b.

Theorem 35 (randomized lower bound). In the black box search tree model, a (possibly
randomized making errors) traversal strategy runs in Ω(min{

√
|T1|,

√
|T2|}) worst-case

cost for the isomorphism exploration problem, even on binary trees.

58

3.4 Monte Carlo, Las Vegas, and Traces

Proof. By Lemma 32, it suffices to show the statement for an unadaptive algorithm B
onMh. By Lemma 34, if B queries less than 1

2

√
|Mh| nodes then both trees T1 and T2

uncovered by B have at most 1
2

√
|Mh| leaves. But by the previous lemma we know that

P (h, 1
2

√
|Mh|, 12

√
|Mh|) ≤ 1

4
, which shows that the probability that B finds matching

leaves in the two trees is at most 1
4
. This shows that B cannot find matching leaves with

probability 1
2
.

3.3.2 Deterministic Lower Bound

We exploit the randomized lower bound to obtain a strengthened deterministic one.

Theorem 36 (deterministic lower bound). In the black box search tree model, a deter-
ministic traversal strategy runs in Ω(min{|T1|, |T2|}) worst-case cost for the isomorphism
exploration problem, even on binary trees.

Proof. Consider a deterministic algorithm on inputs fromM2h, where h = log(n) and n
is a power of 2. By Theorem 35 there are instances consisting of pairs of trees T1, T2
on which the algorithm makes Θ(

√
22 log(n)) = Θ(n) queries in total. From the proof,

we know that trees Ti can be chosen from the class M2h. For each i ∈ {1, 2}, we now
remove from Ti all non-root vertices whose grandparents have not been explored by the
algorithm (and thus who have not been explored either). More precisely, if v is at level h
of T , we remove v whenever its ancestor on level h− 2 has not been explored. Note that
this guarantees that if v and v′ have the same parent p, then v is a leaf if and only if v′

is a leaf (so as to satisfy our requirement for black box search tree): this follows, because
we remove the children of v if and only if we remove them from v′, since all children have
them same ancestor p.
Let T ′

i be the resulting tree, respectively for each i. On the input pair (T ′
1, T

′
2) the

algorithm behaves exactly the same as on (T1, T2) and thus also makes Θ(n) queries in
total, however T ′

i has at most O(n) vertices. This shows that on (T ′
1, T

′
2) the algorithm

makes Ω(min{|T ′
1|, |T ′

2|}) queries.
Note that balanced splits for the trees ofMh can be found almost trivially: after finding

out the height h through a single walk, an arbitrary node at level h
2
will induce a bal-

anced split. This shows that whileMh constitutes worst-case examples for probabilistic
algorithms, this is not true for deterministic algorithms. And indeed, our deterministic
lower bounds applies subtrees of trees inMh which have leaves on different levels.
This concludes the proof of all the results stated in Figure 3.1.

3.4 Monte Carlo, Las Vegas, and Traces

Using our new insights we can explain why some of the strategies used by Traces turn
out to be highly efficient. As discussed previously, Traces uses breadth-first search
intertwined with random walks of the search tree (see Section 2.4.4). In particular,
this is often done in a cost balancing manner, such that the number of random walks

59

Chapter 3 – Search Tree Traversal

is proportional to the cost of breadth-first search. This, in turn, often leads to the
automorphism group being found in time proportional to the square root of the search
tree size. For sophisticated pieces of software such as Traces, the traversal strategy is, of
course, not the only deciding factor when it comes to running time. However, generally,
the experimental paths often enable Traces to discover automorphisms much earlier
than solvers solely utilizing deterministic depth-first traversal. Hence, automorphisms
are available more quickly for pruning. Overall, in some sense, Traces emulates some
of the techniques described in our Monte Carlo algorithm.
Moreover, Traces also sometimes uses some techniques of the Las Vegas algorithm we

describe. Specifically, it performs splits in its “special traversal” strategy for automor-
phism groups (see Section 2.4.4). When Traces detects a leaf on level h with parent v,
in our terminology it executes the split (v, h− 1). Since some graph classes in the bench-
mark suite (see Chapter 7) contain leaves at a height of 2 or 3 (e.g. the graph classes
latin-sw, sts-sw, pp), Traces in practice turns out to frequently perform splits that are
fairly balanced. This results in significant speedups over other solvers (e.g., see runtime
of Traces on aforementioned classes in Section 7.2).

3.5 Characterization of IR Trees

The bounds of Figure 3.1 only apply to the search problem in arbitrary trees with sym-
metries, independent of whether they originate from actual IR computations or not. In
this section, however, we turn to precisely characterizing which trees can occur as IR
trees. We should make clear that throughout this section, IR trees will specifically mean
IR trees using color refinement as a refinement, and quotient graphs as the invariant. In
particular, the quotient graphs are interpreted as a vertex coloring of the IR trees. As
discussed in Section 2.3, these choices reflect the choices used in practice. Overall, given
a tree (T, π) satisfying the necessary conditions, we give a procedure that produces a cell
selector and graph which lead to the IR tree (T, π), up to a renaming of the vertices and
colors.
Arising from a branching process, all IR trees are rooted and all inner vertices naturally

have at least 2 children. Such trees are called irreducible (or series reduced). It turns out
that not all irreducible trees are IR trees.

Theorem 37. An irreducible tree is an IR tree if and only if there is no node that has
exactly two children, of which exactly one is a leaf.

Beyond this, our characterization also fully describes how color classes may be dis-
tributed in a given tree (Section 3.5.1). It turns out that there are several simple restric-
tions, in particular for vertices that have precisely two children, but apart from that all
colorings can be realized and, in particular, any number of symmetries can be ensured.
Overall, when modeling a graph that is supposed to produce a particular IR tree, two

major difficulties arise, roughly summarized as follows:

1. The effect of color refinement on the graph needs to be kept under control.

60

3.5 Characterization of IR Trees

2. The shape of the IR tree may dictate that symmetries must be simultaneously
represented in distinct parts of the graph.

We resolve these issues using various gadget constructions specifically crafted for this
purpose. We introduce concealed edges, which allow us to precisely control the point in
time at which the IR process is able to see a certain set of edges and thus color refinement
to take effect, resolving issue (1). By combining concealed edges with gadgets enforcing
particular regular abelian automorphism groups we can synchronize symmetries across
multiple branches of the tree, resolving issue (2).
Here, as the main tool we show the following. As an additional restriction, which stems

from the structure of IR trees, we consider only trees where all leaves can be mapped to
the same number of other leaves via symmetries (i.e., under automorphisms all leaf orbits
have the same size). We show that each such tree T can be embedded into a graph HT ,
such that HT restricts the symmetries of T in a particular way. Intuitively, we keep just
enough symmetries to allow leaves to be mapped to each other whenever this is possible
in T . We thereby effectively couple leaf orbits so that when fixing one leaf, all other
leaves are fixed as well. Formally, we call a group Γ semiregular on a set T , whenever for
each pair t1 ∈ T, t2 ∈ T there is at most one element of Γ which takes t1 to t2. We prove
the following theorem.

Theorem 38. Let T be a colored tree in which all leaf orbits have the same size. There
exists a graph HT containing T as an automorphism invariant induced subgraph so that
the action of Aut(HT) is faithful on T and semiregular on the set of leaves of T . More-
over, Aut(HT) induces the same orbits on T as Aut(T).

Again, we prove the theorem in a constructive manner. All steps can be easily converted
into an algorithm that takes as input an admissible (i.e., compatible with our necessary
conditions from Section 3.5.1) colored tree T and produces a graph and cell selector with
IR tree T .

3.5.1 Necessary Conditions for IR Trees

Let us first formalize our coloring of IR trees. We call sequences (or t-tuples) of vertices
ν1 ∈ V (G1, π1)

t and ν2 ∈ V (G2, π2)
t distinguishable, if the graphs (G1,CRef(G1, π1, ν1))

and (G2,CRef(G2, π2, ν2)) are distinguishable by color refinement. By extension, this
means two nodes in the IR tree are distinguishable, if and only if the quotient graphs of
their respective colorings are equal. In order to make this explicit, we color the nodes of
the IR trees themselves using its corresponding quotient graph, i.e., we color a node ν
with Q(G,Ref(G, π, ν)). Hence, distinguishing nodes of the tree using the quotient-graph
invariant reduces to checking whether they have the same color.
We now collect the necessary conditions for the structure of IR trees. Since IR trees

are the result of a branching process, they are naturally irreducible (no node has exactly
one child).

Lemma 39. IR trees are irreducible.

61

Chapter 3 – Search Tree Traversal

Figure 3.5: Forbidden structures in asymmetric binary IR trees.

Naturally, indistinguishable leaves can be mapped to each other using an automor-
phism, and this implies an automorphism of the tree.

Lemma 40. Let l1, l2 be two leaves of an IR tree (T, π). If l1 and l2 are indistinguishable,
there is an automorphism φ ∈ Aut(T, π) mapping l1 to l2.

Proof. Follows directly from Lemma 15.

The following condition also follows directly (see Lemma 18).

Lemma 41. A leaf l can be mapped to exactly |Aut(G, π)| leaves in Γ(G, π) using ele-
ments of the automorphism group Aut(G, π).

This means all classes of indistinguishable leaves are equal in size.
Since we are using color refinement, equitable partitions and, hence, quotient graphs

only ever become finer and more expressive. Therefore, the following holds.

Lemma 42. Let n1, n2 be two nodes of an IR tree where ni is on level li.

1. If l1 ̸= l2, then n1 and n2 are distinguishable.

2. Consider the two walks starting in the root and ending in n1 and in n2, respectively.
If in these walks two nodes on the same level are distinguishable, then n1 and n2

are distinguishable.

Some further restrictions apply specifically in the case of cells of size 2.

Lemma 43 (Forbidden Binary Structures). 1. If a node n has two children n1 and n2,
then it cannot be that exactly one of the children n1 or n2 is a leaf (see Figure 3.5,
left).

2. If n1, n2 are any two nodes and n1 has exactly 2 children then the multiset of colors
of the children of n1 and n2 are equal or disjoint (Figure 3.5, middle and right).

Proof. Part 1 follows from the fact that individualizing one vertex in a cell of size 2 also
individualizes the other vertex of the cell.
For Part 2 we note that individualization of a child of n1 also individualizes the other

child of n1 and vice versa. This implies that if a child c2 of n2 has the same color as some
child c1 of n1, then by definition, individualization of c1 and c2, respectively, produces
indistinguishable colorings. So, in this case, there is a one-to-one correspondence between
the colors of the children of n1 and those of n2.

62

3.5 Characterization of IR Trees

It is easy to see that if at any point the cell selector chooses differently sized cells
in different branches, the branches subsequently become distinguishable. However, if we
assume cell selectors only base their decision on the quotient graph, this restriction applies
earlier. More specifically, we call a cell selector quotient-graph-based whenever the result
of the cell selector depends only on the quotient graph rather than other aspects of G
and π, i.e., essentially, we have Sel(Q(G, π)) instead of Sel(G, π). Then, the following
holds.

Lemma 44. If two nodes n and n′ in an IR tree are indistinguishable, then their parents
have the same number of children. If additionally the cell selector is quotient-graph-based,
then n and n′ also have the same number of children.

Restricting the cell selector to quotient graphs thus changes whether we can distinguish
nodes with a differing number of children before or after individualizing one more vertex.
We may even distinguish cells before individualization in both cases if we include the
decision of the cell selector into the invariant itself (i.e., using (Q(G, π), Sel(G, π)) instead
of Q(G, π), which is only more expressive in case the cell selector is not quotient-graph-
based).
In the following, we assume cell selectors are indeed quotient-graph-based. In the

construction, we could indeed alternatively drop the additional restriction above with
minor adjustments by allowing a more powerful cell selector.
For the remainder of this chapter, we say that a tree fulfills the necessary conditions if

none of the conditions laid out by this section are violated.

3.5.2 Gadgets for Construction

Given a colored tree (T, π) which satisfies the necessary conditions, our goal is now
to construct a vertex-colored graph G(T, π) and quotient-graph-based cell selector that
yield the IR tree (T, π), up to renaming of colors. We make abundant use of gadget
constructions, which we describe first.
All our gadgets have multiple input and output gates. Each gate is a pair of vertices

that together form their own color class in the gadget. Vertices in the gates are the
only vertices of the gadgets connected to other vertices outside the gadget. We say that
vertices labeled with bi denote the “input”, while ai denote the “output”.
Gates can be activated, by which we mean the process of distinguishing the vertices of

the gate pair into distinct color classes, and applying color refinement afterwards. We
say activation discretizes the gadget if the resulting stable coloring on the gadget vertices
is discrete.
We should note that three of the gadgets we are about to present (specifically the

ANDi, unidirectional and dead end gadget) have already been used in other contexts
related to color refinement [16, 10, 47].

ANDi Gadget [16, 10, 47]. The AND2 gadget, as illustrated in Figure 3.6a, realizes
the logical conjunction of gates with respect to color refinement and an XOR gadget with
respect to automorphisms.

63

Chapter 3 – Search Tree Traversal

b0

b1

b2

b3

a0

a1

(a) AND2 gadget.

a0

a1

b0

b1

(b) Unidirectional gadget.

a0

a1

b0

b1

(c) Dead end gadget.

Figure 3.6: The AND2 gadget and two variants of directional gadgets.

Given i > 2, we can realize an ANDi gadget with i input gates by combining multiple
AND2 gadgets in a tree-like fashion. The ANDi gadget is constructed by attaching the
first and second input gate to an AND2, whose output is connected to another AND2

together with the third input gate, and so on. We use colors to order the input gates,
i.e., we color the i-th input gate with color i.
We define the special case of the AND1 gadget to simply consist of a pair of vertices

that functions as the input and output gate at the same time.

Lemma 45 ([47]). The ANDi gadget admits automorphisms that flip the output gate
and either one of the input gates while fixing other input gates. As long as some input
gate remains unsplit, the output gate is not split, but activating all inputs discretizes the
gadget.

Unidirectional and Dead End Gadget [10, 47]. Next, we describe gadgets through
which gate activation can be propagated or blocked depending on the direction of the
gadget. Specifically, we construct the unidirectional gadget (Figure 3.6b) and the dead
end gadget (Figure 3.6c). Note that the two gadgets are indistinguishable from each
other by color refinement. The smaller vertices depicted in Figure 3.6 have been included
to guarantee that the gadgets become discrete after the input and output gate have been
split and can otherwise be ignored.

Lemma 46. The unidirectional and dead end gadget are indistinguishable by color refine-
ment. In the unidirectional case, activating the input discretizes the gate, but activating
the output does not split the input gate. In the dead end case, both input and output have
to be activated to discretize the gadget.

Asymmetry Gadgets. Our next gadgets only have one gate (see Figure 3.7). Both of
the asymmetry gadgets A1 and A2 (Figures 3.7a and 3.7b) have the crucial property
that the two gate vertices of either gadget are initially indistinguishable by color refine-
ment, but individualizing one of the gate vertices leads to a different quotient graph than
individualizing the other gate vertex.

64

3.5 Characterization of IR Trees

F

(a) The asymmetry gadget A1.

F

(b) The asymmetry gadget A2.

Figure 3.7: Non-isomorphic asymmetry gadgets. The two input vertices are connected
regularly to disjoint halves of the Frucht graph F .

A1

(a) A true edge.

A2

(b) A fake edge.

Figure 3.8: The two types of concealed edge gadgets.

Lemma 47. The asymmetry gadgets form asymmetric graphs that are stable under
color refinement. Activating the input gate discretizes the gadget and we obtain two
non-isomorphic colorings depending on which vertex was individualized. Furthermore,
A1 ≇ A2.

Concealed Edges. Lastly, we describe the concealed edge gadget that is used to hide
edges from color refinement. The gadget has two vertices that represent the endpoints of
an edge (the blue vertices in Figure 3.8). The idea is that instead of an edge connecting the
two vertices, we insert a concealed edge gadget. For this the gadget has a pair consisting
of two inner vertices (the green vertices in Figure 3.8), which are both connected to each
input vertex. This pair is then connected to an asymmetry gadget. We define two classes
of edges, where one type of edge attaches the asymmetry gadget A1 and the other A2.
We call edges with asymmetry type A1 true edges, and those with A2 fake edges.
The crucial property is that as long as inner vertices of the gadgets are not distin-

guished, color refinement can not distinguish between true edges and fake edges. How-
ever, if we distinguish the inner vertices, true edges can indeed be distinguished from fake
edges.
We always employ this gadget within the following design pattern. Whenever we want

to connect two sets of vertices V1 and V2 with edges E ⊆ V1 × V2 in a concealed manner,
we first add a concealed edge gadget between all pairs (v1, v2) ∈ V1 × V2. However, only
if (v1, v2) ∈ E, we use a true edge, and whenever (v1, v2) /∈ E we use a fake edge. Finally,
we connect all pairs of inner vertices of the concealed edge gadgets to some construction

65

Chapter 3 – Search Tree Traversal

that is used to reveal the edges.
The asymmetry gadget prohibits automorphisms from flipping the concealed edge gad-

get itself. However, care has to be taken when connecting the inner vertices to other
constructions: it is imperative to connect the inner vertices of multiple concealed edge
gadgets that are on the, say, left side of the asymmetry gadget, in the same manner.
Otherwise, once revealed, edges could possibly be distinguished into even more categories
than just fake and true edges.

3.5.3 Construction for Asymmetric Trees

For our construction, we first restrict ourselves to asymmetric trees, i.e., all leaves have
different colors. Building on this, the following section takes symmetries into account.
Let (T, π) be an asymmetric, colored tree that satisfies the necessary conditions (see
Section 3.5.1).
We describe a graph G(T, π) and a cell selector S(T, π) such that (T, π) is (up to

renaming of colors) the IR tree TS(T,π)(G(T, π)). We describe the construction step by
step. Initially, G(T, π) is the empty graph and we successively add more and more
vertices.
The goal is to model the graph and cell selector in such a way that there is a one-to-one

correspondence between paths in T and sequences of individualizations in G(T, π). Note
that such sequences are precisely the paths in the IR tree TS(T,π)(G(T, π)). To guarantee
such a correspondence, certain properties of the paths in the tree T must translate into
specific properties for their corresponding sequence of individualizations. When modeling
G(T, π), we must in particular ensure the following.

1. Two paths must end in nodes of different color exactly if the corresponding se-
quences of individualizations result in different quotient graphs.

2. A path must end in a leaf exactly if the corresponding sequence of individualizations
(when followed by color refinement) results in a discrete coloring.

These two effects are guaranteed by different parts of our construction. We start by
describing the part of the graph on which the cell selector operates, i.e., within which
cells are chosen.

Selector Tree. One of the central difficulties is that color refinement executed on T
may actually result in a coloring that is finer than π. This is precisely the reason why
the tree must be concealed and why we cannot simply use the tree T itself. Therefore,
structural and color information about T is encoded into the selector tree so that it is
initially hidden from color refinement. In particular, the selector tree will be stable under
color refinement, and only after individualizations are applied, parts of the structure of
T are revealed.
To construct the selector tree, we first copy all the nodes of T and color each node

with its level. To make cells appear uniform, we encode the edges of T in the selector
tree using concealed edges, as follows. We fully connect nodes of level i to nodes of level

66

3.5 Characterization of IR Trees

T G(T)

Figure 3.9: Connecting levels of the selector tree. Blue/red edges on the right symbolize
true/fake edge gadgets

T G(T)

Figure 3.10: Colors of T are represented in G(T) through concealed edges to special color
nodes.

i+1 using concealed edges, creating a complete bipartite graph. Only if a node v at level
i+ 1 is a child of node p at level i in T , we use a true edge between v and p. Otherwise,
we use a fake edge. This guarantees that our copy of T is stable under color refinement.
See Figure 3.9 for an illustration.

At some point, we will need to add another gadget construction to ensure that the edges
between the levels are actually revealed at the right time. Assuming this for now, the
cell selector S(T, π) always chooses as the next cell the cell that consists of the children
of the node chosen last. Here, children means children with respect to true edges in the
selector tree.

Colors. Next, we translate the colors π of T into a construction that is part of G(T, π).
Recall that the colors indicate whether a sequence of individualizations should lead to
differing quotient graphs. We make use of fake edges again to encode this: intuitively, we
encode a one-to-one correspondence between selector tree nodes and their color in π using
concealed edges. Since the edges are concealed, they are hidden from color refinement
until revealed. We proceed level-wise. Let l be the level under consideration. Let C be
the set of colors that appear at level l of (T, π). For all c ∈ C, we create a unique color
node c in G(T, π). This node is also colored with c. We now connect every node at level
l of the selector tree to every node in C using concealed edges: we use a true edge for all
pairs (n, c) where π(n) = c. All other edges are fake. See Figure 3.10 for an illustration.

As before, we still have to explain how and when edges are revealed. The idea is to
always reveal the type of those concealed edges incident with node n at the point in time
when node n is individualized.

67

Chapter 3 – Search Tree Traversal

AND3

receiver broadcast

individualization output

Figure 3.11: Leaf detection mechanism for the leftmost node of the cell. If the leftmost
vertex is individualized, the AND3 gadget is activated. The figure only shows
true edges. In the overall construction, all remaining connections between
vertices of cells at level l and ANDi gadgets of level l are fake edges.

Leaf Detection. Whenever we individualize a node that corresponds to a leaf in T , the
graph G(T, π) is supposed to become discrete, thereby terminating the IR process. The
first step towards this is to add a construction that detects whether a specific node n in
a cell was individualized. Then, a decision can be made as to whether n corresponds to
a leaf or not. Let s ≥ 2 be the size of the current cell (in the tree T the current cell
is always the set of children of some node). For each vertex n in the cell, consider all
s − 1 (unordered) pairs with other vertices of the cell. We add an ANDs−1 gadget and
connect the left vertex of every input pair to n, and the other to one of the s − 1 other
vertices. An ANDs−1 gadget is not symmetric in its input gates, so in order to keep things
symmetrical, we actually add (s− 1)! many ANDs−1 gadgets for every possible order of
vertices in the input. We connect the output gates of all the ANDs−1 gadgets to a new
pair of vertices, which we call the individualization output of n.

Fact 48. The individualization output is activated (i.e., split) whenever n is individual-
ized. If the cell size is larger than 2, then the individualization output is not activated
when another vertex in the cell is individualized.

We should discuss the case of a size 2 cell, in which actually both vertices of the
cell become singletons when one of them is individualized. The necessary conditions
for T imply that either both vertices are leaves or both vertices are internal nodes in
T (see Lemma 43). Hence, while this activates the construction for both vertices, the
construction is still able to model any case that satisfies the necessary conditions.
We need to ensure the construction is stable under color refinement. Again, we can do so

using concealed edges. Consider each level i in the selector tree: all of the aforementioned
edges connecting vertices of level i in the selector tree with ANDs−1 gadgets become true
edges. We then insert fake edges between nodes of the selector tree of level i and the other
ANDs−1 gadgets of level i if there is no true edge. This way, the construction becomes

68

3.5 Characterization of IR Trees

stable under color refinement.
Whenever a node does indeed correspond to a leaf, and its individualization output is

activated, we want to propagate discretization to the entire graph. We add some control
structures for every node n in the selector tree for this purpose. We add a unidirectional
gadget if the node is a leaf in T , or a dead end gadget if not. We call this gadget the
broadcast gadget of node n. We also add a receiver gadget to every node n, which is
always a unidirectional gadget.
We connect the input of the broadcast gadget to the individualization output of n, as

well as the output of the receiver gadget to the individualization output of n. Next, we
connect the output of the broadcast gadget to the input of all receiver gadgets in the
graph. See Figure 3.11 for an overview of the construction.

Fact 49. When a leaf is individualized, in turn, all individualization outputs in G(T, π)
are split. As long as no leaf is individualized, individualization outputs are split only if
they belong to individualized nodes.

The idea goes as follows: if n is individualized, the individualization output is split. If
n is a leaf, we want to propagate this split to all other individualization outputs, causing
a discretization of the graph. For this, the broadcast gadget is activated, which sends
the split to all the receiver gadgets, which in turn split their respective individualization
output. If n is not a leaf, the broadcast gadget is a dead end gadget and activation of
the individualization output does not have this effect. Below, we explain how we can use
the same process to reveal cells of the entire selector tree as well as actual color nodes.

Revealing Cells and Colors. Recall that the cell selector makes choices along the se-
lector tree and so choosing a particular cell corresponds to individualization of its parent
node in the parent cell. Assume we are individualizing a node at level i of the selector
tree. At this point, we want the connections in the selector tree from level i to level i+1
to be revealed. This is realized via the AND-gadget construction from the previous para-
graph. We re-use the individualization output at level i to reveal the edges of the selector
tree to level i+ 1. For this, we connect the output through a unidirectional gadget with
the internal nodes of the concealed edges between level i and level i+1. To be precise, for
every node n, we add a unidirectional gadget, the output of which is then connected to
all internal nodes of the concealed edges. The use of unidirectional gadgets ensures that
revealing the edges does not split an individualization output in the opposite direction.
Initially, the construction is stable under color refinement. Upon activating the unidi-

rectional gadget, i.e., after a node on the previous level has been individualized, all true
edges are distinguishable from fake edges. Hence, actual connections to cells are visible
to color refinement.

Fact 50. When a node at level i is individualized its color and its edges to level i+1 are
revealed. Before individualizing a node at level i + 1, these are the only revealed edges
connected to level i+ 1.

In order to actually activate the individualization output, we also need to reveal edges
from level i + 1 nodes to the ANDs−1 gadgets. Hence, we do the same construction as

69

Chapter 3 – Search Tree Traversal

Figure 3.12: Symmetry cycles couple leaf orbits across multiple branches of the selector
tree. The illustration omits fake edges. In the construction, cycles do not
contain directed edges, but specially colored nodes that indicate direction.

above, connecting the unidirectional gadgets we added on level i to reveal these edges on
level i+ 1.

Note that the construction guarantees that if two nodes n1, n2 at level l of T have a
different number of children, then n1 and n2 are distinguished. This reflects the necessary
requirement discussed in Lemma 44. As mentioned there, this restriction could be avoided
through the use of a more powerful cell selector.

For the very first level of the selector tree, the immediate children of the root, we
remove the concealed edge construction by removing fake edges, such that the level is
initially revealed.

Finally, the same technique is also used to reveal colors. We connect the individual-
ization output of node n at level l to the inner vertices of the concealed edges between
n and the color nodes C of level l. This immediately reveals the color of n whenever we
individualize n. In this case, we need no special construction for level 1.

3.5.4 Construction with Symmetries

We expand our construction so that it can also handle colored trees (T, π) with prescribed
symmetries. As such, the graph G(T, π) can also be built from a tree (T, π) that is not
necessarily asymmetric. In this case, sequences of individualizations along root-to-leaf
paths still produce the desired tree (T, π) as a subtree of TS(T,π)(G(T, π)). However,
G(T, π) is supposed to become discrete after the IR process reaches a leaf of (T, π), but
at this point the selector tree in G(T, π) is only split up to orbits that correspond to
orbits of T .

Discretization of orbits is challenging since we need to make sure that the symmetries
are not destroyed by the addition of new gadgets. Once leaf orbits have been discretized,
discretization propagates through the selector tree as before and the whole construction
becomes discrete.

Overall we need to construct the graph HT mentioned in Theorem 38.

70

3.5 Characterization of IR Trees

To construct HT , we introduce symmetry cycles and symmetry couplings. The basic
idea is shown in Figure 3.12, a detailed explanation follows below. This in turn defines a
new construction G̃(T, π) by adding a concealed version of HT to the selector tree.

Discretization up to Orbits. Revealing the true and fake edges in G(T, π) is not enough
to discretize orbits, since this just reveals the orbit partition. By definition, nodes in the
same orbit must be connected to the rest of the construction in a symmetric way and
thus, splitting an orbit has to be induced by individualizations inside the orbit or through
connections to other orbits that have already been split.
We thus face two independent problems related to leaf orbits. First, when the IR

process on G(T, π) reaches leaf l, the orbit of l may not be discrete in the current con-
struction. Second, other leaf orbits have not been split at all. We solve these problems
in an isolated setting first, by providing a constructive proof of Theorem 38. We then
add the graph HT of the construction on top of G(T, π) to obtain our final construction
G̃(T, π).
For now, we are in the setting of Theorem 38. We first describe how to construct HT

from T .

Symmetry Cycles. Consider a leaf orbit Ω in T . Let p1p2 . . . pm = |Ω| denote a prime
factorization. We construct directed cycles of length pi for i ∈ {1, . . . ,m}, such that
we have one cycle for each prime pi. Cycles of the same length are ordered, which is
expressed by giving them distinct colors.
To model a directed edge, we employ two colored vertices. We add two special vertex

colors d1, d2 for this purpose. A symmetry cycle of size n consists of n base nodes and
2n edge nodes, of which n are colored with d1 while the other n are colored with d2. We
define an arbitrary order on the base nodes b1, . . . , bn, d1-colored edge nodes d1,1, . . . , d1,n
and d2-colored edge nodes d2,1, . . . , d2,n. The cycle is then connected up by attaching bi
to d1,i, d1,i to d2,i and d2,i to bi+1 for all i ∈ {1, . . . , n} (we set bn+1 = b1).

Symmetry Coupling. The next step of the construction is to match leaf orbits with
symmetry cycles (see Figure 3.12). This naturally restricts the possible symmetries of
leaf orbits but we can choose the connections in a consistent way that does not break up
any orbits.
The pairwise matching of leaf orbits is realized by coupling each orbit with the set of

symmetry cycles. Thus, it is enough to describe a coupling between one leaf orbit Ω and
the set of symmetry cycles. To this end, we first introduce a new tree TΩ.
Consider the common ancestor a of Ω in T that has least distance to Ω. The root of

TΩ is a and TΩ contains exactly those a-to-leaf branches of T that end in Ω. Then TΩ
describes the group structure of the symmetries of Ω that correspond to automorphisms
of T . Note that root-to-leaf branches of TΩ can be permuted transitively. In particular,
the degree of TΩ is uniform for each level. Then sibling classes on the same level have the
same size and this size always divides |Ω|. Note that the sibling class size may actually
be 1 for some levels.

71

Chapter 3 – Search Tree Traversal

We modify TΩ into another tree T ′
Ω whose sibling class sizes are prime numbers. The

first modification is to iteratively contract levels of TΩ if the branching factor between
them is 1. This removes sibling classes of size 1. Next, consider the i-th level of TΩ and
assume the sibling class size on level i is a compound number, say s = rp for a prime p
and r > 1. We add a new level between levels i and i − 1 by partitioning each sibling
class on level i arbitrarily into p classes of size r. We repeat the process exhaustively to
obtain T ′

Ω.

Let |Ω| = p1 · · · pm be a prime factorization, then the multiset of branching factors in T ′
Ω

is given by {{p1, . . . , pm}}. Furthermore, each permutation of leaves corresponding to an
automorphism of T ′

Ω also defines an automorphism of T , since both types of modifications
we described only restrict the possible symmetries but they do not break up orbits:
contracting levels with branching factor 1 does not interfere with automorphisms at all
and when partitioning sibling classes into equally sized blocks, the action on each sibling
class remains transitive. Therefore, the leaves of T ′

Ω still form one orbit.

We use T ′
Ω to define a coupling between leaves in T and symmetry cycles.

For each sibling class C on level i of T ′
Ω, we connect the descendants of C to a symmetry

cycle (whose length is the sibling class size of level i), such that leaves are connected to the
same vertex of the cycle if and only if they descend from the same node in C. In particular,
sibling classes of leaves are connected to symmetry cycles via a perfect matching. We
always use one fixed symmetry cycle for each level. Recall that symmetry cycles of the
same length are ordered. For all orbits, we always use the first cycle of length p for the
highest level with sibling class size p and so on. This ensures that we do not introduce
dependencies on rotations of different symmetry cycles (different orbits in T might have
ancestors in a common orbit).

Proof of Theorem 38. We construct HT from T by attaching T ′
Ω to each leaf orbit Ω in T ,

such that we identify leaves of T ′
Ω with nodes in Ω. We choose a color that is not contained

in T to color inner vertices of T ′
Ω. Then we add symmetry cycles to HT (as a disjoint

union) and connect the symmetry cycles with each T ′
Ω as described in the construction

above. Again, we use new colors for each symmetry cycle. Thereby we make sure that
Aut(HT) fixes the copy of T as well as each symmetry cycle and each T ′

Ω setwise.

By construction, Aut(T ′
Ω) acts on Ω as a transitive subgroup of Aut(T)|Ω (automor-

phisms restricted to Ω). Consider the graph H ′(Ω) induced by HT on T ′
Ω and the set of

symmetry cycles. Let level i of T ′
Ω be connected to a symmetry cycle Cpi . Observe that

a rotation of Cpi induces a simultaneous cyclic permutation in all sibling classes on level
i and that in H ′(Ω) different symmetry cycles can be rotated independently from each
other. Moreover, all automorphisms of H ′ are induced by rotations of symmetry cycles
and since all sibling classes of T ′

Ω can be permuted transitively, Aut(H ′(Ω)) ≤ Aut(T)|Ω
acts regularly on Ω.

Since we choose the order of symmetry cycles of the same length consistently for all
orbits, we do not introduce dependencies between symmetry cycles, even in the full
construction HT . This finally implies that the action of Aut(HT) on Ω is permutation
isomorphic to the action of Aut(H ′(Ω)) on Ω, in particular, the action on the full set of
leaves is semiregular.

72

3.5 Characterization of IR Trees

Discretization of Orbits. To build G̃(T, π), we now add the construction from Theorem
38 to the selector tree in G(T, π). Observe that each leaf of T ′

Ω is connected to exactly
one vertex in each symmetry cycle. That means that individualization of a leaf in G̃(T, π)
individualizes a node in each symmetry cycle and in turn, all symmetry cycles become
discrete. Moreover, since leaves that are not siblings have predecessors that are siblings
in some higher level, for each pair of leaves there is one symmetry cycle such that the
leaves are connected to different nodes of the cycle. As a consequence, individualizing
a leaf in G̃(T, π) discretizes all symmetry cycles which then distinguishes all leaves from
each other.

Fact 51. Individualization of a root-to-leaf path in G̃(T, π) discretizes the set of leaves.

Concealing Symmetry Couplings. We need to hide HT from color refinement until a
leaf is individualized, or otherwise, leaves would be distinguishable from internal nodes in
the selector tree. As before, we do so by employing concealed edges. In the construction
of HT , we replace all edges with true edge gadgets. Then, to conceal the edges, all pairs
(n, v), where v is contained in a symmetry cycle and n is a node in the selector tree, which
are not yet connected by a true edge gadget, are connected with a fake edge. The type
of these edge gadgets is revealed upon activating a (unidirectional) broadcast gadget.
For this we connect the inner nodes of the concealed edge gadgets to the output of all
broadcast gadgets.

3.5.5 Necessary Conditions are Sufficient

In this section, we prove the correctness of our graph constructions G(T, π) and G̃(T, π).
We start by proving some more specific properties, which ultimately culminate in our
main theorem.
Throughout the section, if v is a node of the selector tree in G(T, π), then vT denotes

its corresponding node in T .

Lemma 52. The selector tree in G̃(T, π) is stable under color refinement.

Proof. Initially, vertices in the selector tree are colored with their level. Recall that by our
concealing paradigm, all connections of the selector tree are hidden from color refinement
and nodes on the same level are connected to the same combined number of true or fake
edges. This immediately implies the claim.

Lemma 53. Let (T, π) be asymmetric and let l be a leaf in the selector tree. If the
concealed edges connecting l to its corresponding AND-gadgets have been revealed, G(T, π)
becomes discrete after individualizing l and applying color refinement.

Proof. Since we assume concealed edges to the respective AND-gadgets have been re-
vealed, individualizing l, by construction, splits the vertices of its corresponding individ-
ualization output. Since l is a leaf in the selector tree, the connected broadcast gadget is
a unidirectional gadget. The gadget is connected to all inputs of receiver gadgets in the

73

Chapter 3 – Search Tree Traversal

graph. Hence, the split is propagated and all individualization outputs in the graph are
split.
Now, the individualization outputs, in turn, reveal all edges in the selector tree, as well

as concealed edges to color nodes. Since T is asymmetric, the connections to the color
nodes, in turn, discretize nodes in the selector tree that correspond to leaves of T .
Since we also reveal all edges of the selector tree itself, all nodes in the selector tree

subsequently become discrete. This fully discretizes the attached ANDi gadgets as well
as their connected individualization outputs. Note that at this point, for any broadcast
gadget, even if they are a dead end gadget, all inputs and outputs are discrete, meaning
the gadgets themselves become discrete as well.
Since all nodes belonging to sets connected by concealed edges are now discrete, and

all edges have been revealed, the concealed edge gadgets now become fully discrete as
well.
This, in turn, covers all of the constructions in G(T, π).

Lemma 54. Consecutive choices of the cell selector on G(T, π) correspond to sibling
classes along paths of T .

Proof. Initially, v is colored with the level of vT . In particular, nodes corresponding to
the first level of T form a color class in G(T, π) that is stable under color refinement (see
Lemma 52). Hence, it is, by definition, the first class the cell selector chooses.
In case vT is a leaf of the tree, the graph becomes discrete. This implies there is no

subsequently selected cell. Hence, we can assume vT is an inner node of the tree.
By definition, whenever a node v is individualized, the next cell chosen by the cell

selector corresponds to children of vT . Recall that v is connected to other nodes of the
selector tree via true edge gadgets if and only if they correspond to children of vT and v is
connected to all other nodes of the selector tree via fake edge gadgets. By construction,
individualizing v activates the individualization output of v.
Since v is an inner node, this split does not propagate into other gadgets: the receiver

gadget is a unidirectional gadget in the wrong direction. This gadget therefore does not
propagate the split. Furthermore, the broadcast gadget is a dead end gadget. Note that
the AND, receiver, and broadcast gadgets attached to v can be distinguished from the
other gadgets of their respective type. However, none of these splits propagates further
since all the other gadgets are connected uniformly to v and the gadgets of v.
The individualization output does, however, reveal the edges in the selector tree that

connect v to its children: after individualizing v, fake edge gadgets attached to v are
distinguished from true edge gadgets attached to v and so the next cell can be chosen
among children of v.
It remains to argue that at this point, children of v are indistinguishable in G(T, π).

We may inductively assume that edge types between higher levels have not been revealed
yet. Thus, since edge types are initially indistinguishable by color refinement, the only
relevant connections children of v have, are connections to the layer of v and to inputs of
ANDi gadgets. Both of these connections are uniform by construction.

Lemma 55. Consider two nodes v, w in the selector tree of G(T, π). If π(vT) ̸= π(wT)
then individualization of v and w, respectively, produces different quotient graphs.

74

3.5 Characterization of IR Trees

Proof. Individualizing v or w also activates their corresponding individualization output,
which in turn reveals the concealed edges that connect v or w to the color nodes. In par-
ticular, the corresponding quotient graphs already differ with respect to these connections
since π(v) ̸= π(w).

Lemma 56. Consider nodes v, w in the selector tree of G(T, π) such that vT and wT are
leaves of T . If π(vT) = π(wt) then v and w can be mapped to each other via automor-
phisms of G(T, π). The same holds for G̃(T, π).

Proof. Recall that Lemma 40 implies that the equally colored leaves vT and wT lie in
the same orbit of T . The selector tree without connections to individualization outputs
or symmetry coupling is just a concealed copy of T , where edges and non-edges were re-
placed by true edge gadgets and fake edge gadgets, respectively and colors were replaced
by true/fake connections to color nodes. Thus, automorphisms of (T, π) are in one-to-one
correspondence with automorphisms of the subgraph induced on the isolated selector tree
together with color nodes. By construction, two nodes in a common cell are connected
uniformly to individualization outputs belonging to their cell or their common parent cell.
Thus, all automorphisms of the selector tree induce automorphisms of G(T, π) by per-
muting individualization outputs (and the corresponding gadgets) accordingly. Finally,
from Theorem 38, we obtain that the leaf orbits of G(T, π) are the same as the leaf orbits
of G̃(T, π).

Lemma 57. Consider two nodes v, w in the selector tree of G(T, π). If π(vT) = π(wT)
then individualizing nodes along paths to v and w, respectively, produces the same sequence
of quotient graphs.

Proof. First, recall that due to Lemma 42, color classes in T are contained within single
layers. This implies that v and w belong to the same level l of the selector tree and, in
particular, they are connected to the inputs of ANDi gadgets uniformly. We make a case
distinction on whether vT and wT are leaves or not.
Assume vT and wT are inner nodes of T . Individualizing v or w reveals the concealed

edges connecting them to color nodes. However, by assumption, they are connected to
the same color node.
Furthermore, individualizing v or w reveals the concealed edge gadgets connecting level

l to l + 1 in the selector tree. By Lemma 42, v and w have the same number of children
on level l+1. Furthermore, the concealed edges connecting the children to other parts of
the graph are not revealed. In particular, their color has not been revealed. Hence, they
are still indistinguishable.
Also, due to Lemma 42, nodes of the same color in T have predecessor nodes that are of

the same color level-wise and have the same number of children. In case vT is not a leaf,
the latter implies that v and w are uniformly connected in all steps of the construction.
Since edges have only been revealed up to the level of v and w, this shows the equality
of quotient graphs.
If vT and wT are leaves, we can apply Lemma 56. Note that actually the complete

root-to-leaf paths for vT and wT are in the same orbit and, thus, individualizations along

75

Chapter 3 – Search Tree Traversal

both paths produce isomorphic quotient graphs by the isomorphism invariance of color
refinement.

Lemma 58. Let v correspond to a node in the selector tree that belongs to a leaf of
T . If the concealed edges connecting v to its corresponding AND-gadgets have been re-
vealed, G̃(T, π) becomes discrete after individualizing a root-to-v path and applying color
refinement.

Proof. Consider a node l in the selector tree for which lT is a leaf of T . Recall that G̃(T, π)
is just G(T, π) extended by symmetry cycles and symmetry coupling. In particular, as
in the asymmetric case, individualizing l will reveal the colors of nodes in the selector
tree (see the proof of Lemma 53). In particular, since leaf colors correspond to orbits,
color refinement partitions the leaves into their orbits. Furthermore, all edge types are
revealed at this point and, thus, from a combinatorial perspective, we may treat true
edge gadgets as edges and fake edge gadgets as non-edges.
By Fact 51, individualization of a path to v induces the complete discretization of the

set of leaf nodes in the selector tree and, as in the asymmetric case, this discretizes the
whole construction.

We are now ready to prove our main theorem:

Theorem 59. Let (T, π) be a colored tree that fulfills the necessary conditions. Then,
TS(T)(G̃(T)) is equal to (T, π) (up to renaming colors).

Proof. By Lemma 52, the selector tree in G̃(T, π) is initially stable under color refinement
and, in particular, its levels form stable color classes. The cell selector chooses the first
level of the selector tree as the first cell to individualize. By Lemma 54, the subsequent
choices are always given by the full set of children of the node last individualized. Together
with Lemma 58, this implies that the tree structure of the IR tree Γ := TS(T)(G̃(T)) is
exactly the same as the structure of T and we obtain a one-to-one correspondence between
Γ and T .
Finally, the Lemmas 55 and 57 together show that nodes in Γ obtain the same color

(i.e., the sequences of individualizations they describe give the same quotient graphs) if
and only if the corresponding nodes in T have the same colors, so up to renaming colors
Γ and T are the same tree.

76

Chapter 4

Color Refinement

Color refinement is repeatedly and continuously applied in IR algorithms. Its efficiency
is crucial when designing a fast practical graph isomorphism solver. Modern implementa-
tions are based on Hopcroft’s algorithm for automata minimization [55], which was first
adapted to color refinement by McKay in nauty [74]. Given a graph, color refinement
iteratively recolors the vertices producing increasingly fine partitions of vertices into color
classes. Starting with an initial, usually monochromatic coloring, in each iteration the
colors of the vertices are chosen to depend on the colors of the neighbors and their mul-
tiplicities. If vertices differ in the number of neighbors they have in some color class, the
algorithm splits up the vertices accordingly by assigning them distinct colors. This is
done exhaustively until no further splits are possible.
Indeed, the best known upper bound for color refinement is O((n+m) log(n)) (see [16]).

Remarkably, within a model with modest assumptions, a tight lower bound construction
matching this upper bound was given in 2015 [16]. This result tells us that there are
graphs for which color refinement, if it is implemented within these modest assumptions,
runs in time Ω((n+m) log(n)). However, the result does not make any comparative state-
ments between various ways to implement color refinement. In fact, there are dramatic
differences in the various implementations of color refinement. While all color refinement
algorithms depend on performing the aforementioned splits there is a lot of freedom as
to which order we perform the splits in, or how the splits themselves are exactly imple-
mented. Moreover, when considering its context within the individualization-refinement
framework, implementations usually perform various additional tasks during color refine-
ment itself.

Efficient Color Refinement. We begin with an extensive exposition of an efficient color
refinement implementation. The goal of this exposition is to provide a description of the
algorithm as implemented in dejavu. The algorithm is reverse-engineered from the
implementation of Traces. We argue its correctness and worst-case running time of
O((n +m) log(n)). Furthermore, we discuss differences between our version, the imple-
mentation of Traces, as well as the theoretical algorithm used in the upper bound given
in [16].

Worklist Choice. It turns out that color refinement comes with many potential design
choices. A central choice is in which order splits of color refinement should be performed.
Potential splits are usually kept inside a worklist. The order is therefore usually deter-
mined by the choice of the worklist data structure. Intuitive choices include a stack,
queue, priority queue or combinations of these.

77

Chapter 4 – Color Refinement

So far however, there has been no rigorous analysis whether one worklist choice is
superior over another – or how significant the order of splits actually is. Going one step
further, a natural question is whether there are efficient optimal solutions. If not the
case, maybe there are at least solutions that are competitive with all other methods. In
particular, we provide a rigorous formal analysis for worklists used in color refinement.

We employ a two-pronged approach. We distinguish (1) algorithms that may only
use information realistically collected during the color refinement process itself, and (2)
algorithms that are allowed to compute additional information about the underlying
graph. Remarkably, our results in the two orthogonal models concur in their conclusion.
Namely, that there is no design choice that is competitive beyond a logarithmic factor.

More specifically, in (1) we model algorithms that may only access information explored
during the color refinement process itself. For this we define a formal online model within
which, in fact, all practical algorithms operate. In this model, the algorithmic decisions of
when to refine with respect to what may solely depend on this information. We prove that
this information does not suffice to make optimal or even competitive choices, no matter
the amount of computational power used. Specifically, we show no online algorithm is
within a logarithmic factor of the offline optimum.

For (2), we define an “offline” version of the problem, which is essentially to compute an
optimal split order for a given graph. Through a reduction from the set cover problem we
prove an approximation hardness result. Specifically, unless P = NP, no approximation
factor in o(log(n)) can be achieved by polynomial time algorithms. This proves that
unless P = NP, even when collecting more information about the underlying graph than
current algorithms actually do, computing a competitive let alone optimal order of splits
is intractable.

Splits. Another important practical design choice is how to actually perform the splits
of color classes. A split routine counts the neighbors of a given color class, and in turn
splits up the neighboring color classes according to these counts. In practice, the split
routine usually contains the hot spot of the entire IR algorithm. Therefore, the split
routine is a natural target for low-level optimizations.

Algorithms have long featured a simplified, faster split routine for singleton color
classes. However, Traces pioneered the approach of further varying the splits depending
on the density of the graph and color class. We give a detailed account of the different
split routines used in our implementation, and reason why the different split routines
yield the appropriate theoretical runtime.

IR Context. Lastly, we describe further optimizations and techniques used in an IR
context which are related to color refinement. We also describe how they can be effi-
ciently used within the algorithm described in this section. This includes undoing a color
refinement, the trace invariant as introduced by Traces, early-out opportunities of the
algorithm, as well as the so-called matched vertex colorings as introduced by saucy.

78

4.1 Efficient Color Refinement

4.1 Efficient Color Refinement

We begin with the description of an efficient color refinement routine, as is provided in
Algorithm 9, Algorithm 10, Algorithm 11, and Algorithm 12.

Intuition behind Algorithm 9. The basic idea is as follows. If two vertices in some
class X have a different number of neighbors in some class C then X can be split by
partitioning it according to neighbor counts in C. Whenever we split up a class X
according to its connections to another class C in such a fashion we say that we refine X
with respect to C, which is the subroutine described in Algorithm 10. Specifically, this
means that after the split, two vertices have the same color precisely if they had the same
color before the split and they have the same number of neighbors in X. We repeatedly
split classes with respect to other classes until no further splits are possible, or in other
words until the worklist W of Algorithm 9 is exhausted. As defined in Chapter 2, a
partition not admitting further splits is called equitable.

Note that in Line 27 of Algorithm 10 the method makes a call to a “ReportSplit”
routine. This routine is not part of the color refinement algorithm itself, but will be used
in the following sections to implement further routines based on color refinement. For
now, you may assume that this routine has no effect.

Description of Algorithm 9. The first few steps of the algorithm initialize data struc-
tures that are used throughout the algorithm and its various subroutines. We describe
them once they are needed.

(Initialization.) The first important step is the initialization of the worklist W . The
worklist contains colors of π which still have to be considered by the algorithm. Initially,
the worklistW is filled with all the colors of π, in increasing order. Note that in the argu-
ments below we do not specify exactly how the worklist operates. Indeed, in Section 4.2,
we thoroughly analyze how the choice of a specific worklist may affect the running time
of the algorithm. Intuitively, for now, the reader may simply think of the worklist as a
stack.

(Main Loop.) Next, we enter the main loop of the algorithm: we pop a color c from
the worklist W , and run Algorithm 10 on c. The main loop is repeated until W is empty.
Note that Algorithm 10 may enqueue more elements to W . We therefore now continue
with the description of Algorithm 10.

(Neighbor Counts.) The goal of Algorithm 10 is to look at all the neighbors of vertices
of C = π−1(c), and split their color classes according to the neighbor counts in c. Hence,
the algorithm begins by iterating over the vertices of C (Line 3). For each of the vertices
v ∈ C, it then iterates over all of the neighbors N(v) (Line 4). In the following we may
also refer to this overall process as iterating over the neighbors of C.

For each of the neighbors v′ of c, we then do the following. First, we check whether we
have seen the color x of v′ before. If not, we record the color into Colold.

Next, we check whether we have seen v′ itself before. If not, we record the vertex
into a list of neighbors in x (Line 9). Intutively, the arrays AdjCol and NumCol together

79

Chapter 4 – Color Refinement

maintain efficiently accessible lists of adjacent vertices for each color c′, where adjacent
means adjacent to some vertex of C.
Lastly, we increment the degree of v′ in Deg[v′]. Having finished the loop beginning in

Line 3, we record the following facts:

Fact 60. After the loop beginning in Line 3 is finished in Algorithm 10, the following is
true:

1. For each v ∈ V (G), Deg[v] contains the number of neighbors of v with color c.

2. The list Colold contains precisely those colors x, which contain a vertex v′ that is
adjacent to some vertex v with color c.

3. For each color x ∈ π(V (G)), NumCol[x] contains the number of vertices with color
x that are adjacent to a vertex with color c.

4. For each color x ∈ π(V (G)), when NumCol[x] ≥ 1 holds, the elements denoted by
AdjCol[x], . . . ,AdjCol[x + NumCol[x]− 1] are vertices with color x that are adjacent
to a vertex with color c. When NumCol[x] = 0 holds, there are no such vertices.

(Sort.) In the next step, we remove colors from Colold that will not split according to
the counts in Deg. Then, we sort the remaining elements of Colold.
(Spacious Colors.) For each color x ∈ Colold that will split, we then perform the

following operations.
The algorithm makes a list of the different degrees Deg[v] that occur for vertices

v ∈ π−1(x). This is recorded in the list UniqueDeg. Note that as the name suggests,
UniqueDeg only contains unique degree values. These values correspond to the color
classes that we will split x into. Additionally, for each different degree d in UniqueDeg,
DegCol maintains how many vertices v of x have Deg[v] = d. This corresponds to the size
of color classes that x will be split into.
Next, for each degree d ∈ UniqueDeg, we compute precisely what the new color will be.

Note that this makes use of the fact that π is a spacious coloring (see Section 2.2.4). If
there are vertices of x, that are not connected to c, these will remain in the color x. So for
the first new color, we leave room in the coloring for these disconnected vertices (Line 23).
Then, we iterate over the degrees in increasing order, and accumulate the number of
vertices of each degree. In each iteration, we determine one new color (Line 26). To be
more precise, we create a mapping from the degrees to the new color.
Now that we have this mapping, we are ready to rearrange the coloring such that the

split is actually performed. This is described in Algorithm 11. The details are however
of no particular importance, the algorithm is mainly concerned with maintaining the
properties of the stored coloring.
More crucially, once the split is performed, we want to maintain our worklist, which is

described by Algorithm 12. The idea is that we enqueue all but the (first) largest color
xi. And if the current color x is already on the worklist W , we can replace it with xi.
We argue why this is sufficient further below.

This concludes our description of the color refinement algorithm.

80

4.1 Efficient Color Refinement

Correctness of Algorithm 9. We want to argue three properties:

1. The result π′ of the algorithm is an equitable coloring of (G, π).

2. The color partition of the result π′ is coarser than the orbit partition.

3. The result is isomorphism invariant, i.e., for all φ ∈ Sym(V (G)), given (Gφ, πφ),
the algorithm computes π′φ.

Claim (1). Assume towards a contradiction there are v and v′ with π′(v) = π′(v′), but
there is a non-trivial color c ∈ π′(V (G)) such that

N(v) ∩ π′−1
(c) ̸= N(v′) ∩ π′−1

(c).

Let c be the color with this property which appeared earliest in the execution of Algo-
rithm 9. Since C = π−1(c) could not have been added to the worklist, C was the largest
fragment of a color class D, split into C1, . . . , Ck (with respective colors c1, . . . , ck), where
C = Cj for some j ∈ {1, . . . , k}. Since C was the earliest color appearing in the algorithm
with the above property,

N(v) ∩D = N(v′) ∩D
follows. We observe that∑

i∈{1,...,k}

N(v) ∩ Ci = N(v) ∩D = N(v′) ∩D =
∑

i∈{1,...,k}

N(v′) ∩ Ci,

and ∑
i∈{1,...,k}∖{j}

N(v) ∩ Ci ̸=
∑

i∈{1,...,k}∖{j}

N(v′) ∩ Ci.

hold. Therefore, there must be a Ci ̸= C with

N(v) ∩ Ci ̸= N(v′) ∩ Ci,

where the corresponding color ci must have been added to the worklist. Hence, v and v′

must have been split with respect to ci, a contradiction to the assumption that π′(v) =
π′(v′).
Claim (2). Vertices v, v′ only ever obtain different colors, if there is a color class C

such that
N(v) ∩ C ̸= N(v′) ∩ C.

Hence, an automorphism can not preserve the neighborhoods when mapping v to v′,
meaning v and v′ can not be in the same orbit of the initial graph.
Claim (3). Clearly, determining splits of the classes of vertices according to other classes

of vertices (when interpreted as sets), is an isomorphism-invariant process. Sorting of the
degree sequence Line 22 and previous colors Line 13 ensures that these classes always
obtain the same exact color, which in turn also ensures an isomorphism-invariant order
of the worklist, and in turn the entire algorithm.

81

Chapter 4 – Color Refinement

Runtime of Algorithm 9. We argue that Algorithm 9 can be implemented such that
in runs in worst-case time O((n+m) log n).

Let us first record the runtime of the subroutines: first of all, assuming all operations
of the worklist run in time O(1), Algorithm 12 can be implemented in time O(k), where k
refers to the list of colors in the input. We require that the data structure of the worklist
enables the efficient look-up and replacement of colors already in the worklist. This can
usually be achieved by storing an array that provides pointers from colors to a position
in the worklist. Next, Algorithm 11 only consists of three loops where each loop runs in
time O(l), where l refers to the list of vertices in the input.

The runtime of Algorithm 10 is more interesting. Let us first make a runtime analysis
of the algorithm ignoring the two sorting operations (Line 13 and Line 22). We will come
back to these operations further below.

Ignoring the sorting operations, it is easy to see that the two loops of Line 3 and Line 4
run in time that is linear in the number of vertices of π−1(c) and edges incident to the
vertices π−1(c), i.e.,

O

 ∑
v∈π−1(c)

1 + |N(v)|

 .

Indeed, the rest of the algorithm runs at most in linear time in the lists recorded during
this operation, so this is indeed the overall time of the routine.

Let us now argue the runtime of the overall procedure, i.e., Algorithm 9. For this,
we need to analyze the behavior of the worklist W . First, let us observe that a given
vertex v can only ever be re-introduced to the worklist, if the color c that contains v
is split. However, if a color class C = π−1(c) is split, then only all but the largest
fragment is enqueued to the worklist (see Algorithm 12). This means, all the fragments

C1, . . . , Ck of C that are actually enqueued are at most half the size of C, i.e., |Ci| ≤ |C|
2

for all i ∈ {1, . . . , k}. From the perspective of a vertex v, this means each time it is
re-introduced to the worklist, the color that contains it can at most be half the size of
the previous color. Hence, it can at most be re-introduced to the worklist log n number
of times. This means, each vertex can at most be considered log n number of times in a
color c of Algorithm 10, which gives us a total running time of

O

 ∑
v∈V (G)

1 + |N(v)|

 log n

 = O((n+m) log n),

barring the sorting operations.

Lastly, we now argue that the two sorting operations (Line 13 and Line 22) are within
the appropriate running time. Let us recall a crucial argument of [16]. Overall, the
algorithm is only ever able to produce n new colors: since we are relying on spacious
colorings, there can only ever be a total of n different colors.

In each iteration i of the main loop, a total of ki new colors may be introduced, which
together sum up to at most n. Hence, assuming there are l total iterations we record the

82

4.1 Efficient Color Refinement

Algorithm 9: Detailed version of the color refinement algorithm.

1 function ColorRefinement
Input: ➢ graph G = (V,E)

➢ coloring π
Output: ➢refines coloring π

2 // initialize auxiliary workspace for subroutines

3 initialize reset array Deg and NumCol with length n;
4 initialize small integer sets Colold and UniqueDeg with length n;
5 initialize arrays AdjCol and DegCol with length n;

6 // initialize the worklist

7 initialize empty worklist list W ;
8 add colors π(V) in increasing order to W ;

9 // work on worklist

10 while W is non-empty do
11 take a color c from W ;
12 SplitWithRespectTo(G, π, c, W);

13 return π

following: ∑
i∈1,...,l

ki log ki ≤ n log n

Having removed non-splitting colors, sorting Colold using, e.g., merge sort, can therefore
be bounded by O(n log n). The reason is that each color that is split, is split into at least
2 new parts: hence, there is at least one new color for each entry of Colold.
We can use a similar argument for sorting the list UniqueDeg. We record the following

fact. Assume that for each ki, ki ≥ 1 holds. This implies that for the number of iterations
l ≤ n holds. Then, it follows that∑

i∈1,...,l

(ki + 1) log(ki + 1) ≤ 2n log 2n = O(n log n).

Now we note two things: first, all elements of UniqueDeg except for one must correspond
to newly introduced colors. Secondly, UniqueDeg contains at least two elements. Thus,
we can apply our argument from above and sort it using merge sort in the appropriate
runtime.

Differences to other Versions. The version described in [16] mainly differs in two ways:
first of all, colors (and other important structures) are maintained as linked lists instead
of arrays. While this is convenient to argue about the algorithm, it comes with the well-
known downsides for implementations. This results in many parts of the algorithm being
very different from the version given here.
Secondly, sorting the degrees(Line 22) is not described as a sorting operation. Instead,

a maximal degree for each color is maintained, and potential degrees are simply iterated

83

Chapter 4 – Color Refinement

Algorithm 10: Refine with respect to a color c in color refinement.

1 function SplitWithRespectTo
Input : ➢ graph G

➢ coloring π

➢ color c

➢ worklist W
Output : ➢refines coloring π

➢changes worklist W
Auxiliary : ✏ reset array Deg of length n

✏ reset array NumCol of length n

✏ small integer set Colold of length n

✏ small integer set UniqueDeg of length n

✏ array AdjCol of length n

✏ array DegCol of length n

2 // count neighbors of c
3 for (each v ∈ π−1(c))
4 for (each neighbor v′ ∈ N(v))
5 x := π(v′);
6 if x ̸∈ Colold then add x to Colold ;
7 if Deg[v′] = 0 then
8 AdjCol[x + NumCol[x]] = v′;
9 NumCol[x] += 1;

10 Deg[v′] += 1;

11 // remove non-splitting colors and then sort

12 remove x ∈ Colold where all v, v′ ∈ π−1(x) have Deg[v] = Deg[v′];
13 sort Colold in increasing order ;

14 // split up colors according to neighbor counts

15 for (each x ∈ Colold)
16 (n1, . . . , nl) := AdjCol[x], . . . , AdjCol[x+NumCol[x]− 1];
17 for (each v in (n1, . . . , nl))
18 if Deg[v] not in UniqueDeg then
19 add Deg[v] to UniqueDeg;
20 DegCol[Deg[v]] = 0;

21 DegCol[Deg[v]] += 1;

22 sort UniqueDeg in increasing order;
23 s := x+ |π−1(x)| −NumCol[x];
24 for (each d in UniqueDeg)
25 s′ := DegCol[d];
26 DegCol[d] = s;
27 if c ̸= s and ReportSplit(π, c, s, d) then return;
28 s += s′;

29 Rearrange(π, x, (n1, . . . , nl), Deg, DegCol);
30 ManageWorklist(π, W , x, (x1, . . . , xk));
31 reset UniqueDeg;

32 reset Deg, NumCol, and Colold;

84

4.1 Efficient Color Refinement

Algorithm 11: Rearrange and split color class c.

1 function Rearrange
Input: ➢ coloring π

➢ color c

➢ list of vertices (n1, . . . , nl)

➢ array Deg

➢ array DegCol

Output: ➢refines coloring π

➢manipulates DegCol

2 // set all VertexToColπ to the correct color

3 for (each v ∈ (n1, . . . , nl))
4 d := Deg[v];
5 c′ := DegCol[d];
6 VertexToColπ[v] = c′;
7 ColToSizeπ[c

′] = 0;

8 // adjust ColToSizeπ appropriately

9 for (each v ∈ (n1, . . . , nl))
10 c′ := VertexToColπ[v];
11 ColToSizeπ[c

′] += 1;
12 ColToSizeπ[c] -= 1;

13 // rearrange Labπ and VertexToLabπ

14 for (each v ∈ (n1, . . . , nl))
15 d := Deg[v];
16 p := DegCol[d];
17 DegCol[d] += 1;
18 p′ := VertexToLabπ[v];
19 v′ := Labπ[p

′];
20 Labπ[p] := v;
21 Labπ[p

′] := v′;
22 VertexToLabπ[v] := p;
23 VertexToLabπ[v

′] := p′;

Algorithm 12: Manage the worklist according to the given split.

1 function ManageWorklist
Input: ➢ coloring π

➢ worklist W

➢ color x

➢ list of colors (x1, . . . , xk)
Output: ➢changes worklist W

2 let i be the smallest i where ∀j ∈ 1, . . . , k : |π(xi)| ≥ |π(xj)|;
3 add x1, . . . , xk except xi to W ;
4 if x ∈ W then replace x in W with xi;

85

Chapter 4 – Color Refinement

from 1 to the maximal degree. So in essence, it describes a bucket sort of the list. This
is amortized by the fact that the appropriate number of edges has been seen by the
algorithm anyway.
The algorithm described here is inspired by the implementation of Traces. This

means that, unsurprisingly, the description here is quite close to the algorithm of Traces.
While there are of course differences, most of the maintained data structures are similar,
while some additional optimizations of Traces are described in Section 4.3. What is
noteworthy however, is that Traces implements the two sorting operations (Line 13 and
Line 22) using the quicksort algorithm. This means that, while typically not an issue in
practice, the color refinement of Traces indeed does not run in the O((n + m) log n)
worst-case time, simply due to the sorting operations.

4.2 Worklist Order

Algorithm 9 maintains the classes with respect to which refinements still have to be
performed in a worklist W . Note that the algorithm does not fully specify the internals
of the worklist. Specifically, it does not state in Line 11 which cell is extracted from the
worklist.
The worklist order used in practice does differ between the solvers, but there are com-

mon themes. First of all, stack-based worklists are preferred over other approaches
[76, 27]. The reasoning is quite simple, and has nothing to do with the asymptotic
behavior of the algorithm: colors that are on the top of stack, tend to be colors which
have been looked at recently. Thus, the intuition is that these colors have a higher chance
of still being cached by the computer than others.
Next, there is a preference for smaller color classes, or more specifically singletons. The

reason is explained in detail in Section 4.3.1, where we describe an optimized variant of
Algorithm 10 for singleton color classes. The benefit of this optimized singleton variant
over the normal split algorithm is quite significant in practice. Traces looks at the first
12 elements of the stack and prefers the first, smallest one of these color classes. saucy
maintains two different stacks: one for singletons, one for non-singletons. As long as the
singleton stack is non-empty, it is preferred over the non-singleton stack.

Let us now analyze this design choice formally. As mentioned previously, we define
an online model, which enables us to compare and analyze different worklist strategies
formally. In this model, we prove that no worklist strategy is competitive to all other
worklist strategies. We then corroborate the result with a second offline version of the
problem.
The following results are based on a model for color refinement as was introduced in

[16]. We mention the following technicality: in our implementation, we refine with respect
to a color class C. In particular, we refine all other color classes with respect to the color
C. In the lower bound model, we allow algorithms to operate in a more fine-grained
manner. In particular, we allow algorithms to refine a union of color classes X with
respect to a union of color classes C. This means only the union of color classes X is
split according to its neighbor counts in C. Clearly, our color refinement implementation

86

4.2 Worklist Order

also operates within this model.

4.2.1 Online Model

Partial Quotient Graphs. For an equitable partition, quotient graphs capture the in-
formation of how many neighbors vertices from one class have in another class. They are
used in so-called individualization-refinement algorithms as pruning invariants, as was
discussed in Section 2.3.4. Typically, information about the quotient graph is computed
on the fly during the execution of a color refinement algorithm.
We now introduce the concept of partial quotient graphs. These graphs are a tool

to formalize the information gathered up to a certain point during the execution of
color refinement algorithms. As we cannot precisely say which information an algorithm
collects, the quotient graphs give an overapproximation of the available information and
model all information that could have possibly been gathered. For the purpose of our
lower bounds, overapproximating can only strengthen the conclusions.
The partial quotient graph of a colored graph (G, π) is denoted by P (G, π). Quotient

graphs are directed and contain self-loops. They include vertex labels lV as well as
edge labels lE. The vertex set of P (G, π) is the set of all sets of colors of (G, π), i.e.,
V (P (G, π)) := 2π(V (G)). A set of colors represents the class that is the union of the
respective color classes.
Vertices of the partial quotient graph are labeled with the size of their corresponding

set of vertices in G, i.e., for all sets of colors c ∈ 2π(V (G)) we define

lV (P (G, π))(c) := |π−1(c)|.

The edge set contains all connections between (unions of) color classes that would not
cause a split. Thus there is an edge from c1 to c2 if π−1(c2) does not split π−1(c1).
Formally, this means

E(P (G, π)) := {(c1, c2) | c1, c2 ∈ 2π(V (G)),∀v, w ∈ π−1(c1) : dπ−1(c2)(v) = dπ−1(c2)(w)}.

Edges only exist whenever the connection between unions of color classes are regular on
one side, so we can label each edge with the corresponding degree, i.e.,

lE(P (G, π))((c1, c2)) := dπ−1(c2)(v),

where v ∈ π−1(c1) is arbitrary.
Let us justify the definition with an example. Suppose we split in a monochromatic

graph the class of all vertices with itself. Then the new coloring partitions the vertices
precisely by degree. That is, classes contain vertices of the same degree. An algorithm
would know this degree, since it has counted the edges incident with each vertex, but it
would not know how many neighbors a vertex has within a current color class. In the
partial quotient graph, there is an edge from each new color class to the union of all color
classes.
The definition of partial quotient graphs contains many more vertices and edges and

information on these than would truly be available while executing color refinement. In

87

Chapter 4 – Color Refinement

Algorithm 13: Corresponding color refinement for an online strategy W .

1 function ColorRefinement
Input: ➢ graph G

➢ coloring π
Output: ➢refined coloring π

2 create list S containing P (G, π);
3 while π is not equitable do
4 (C,X) := W (S);
5 for each vertex in X count its neighbors in C;
6 split X into X1, . . . , Xk in π, according to neighbor counts;
7 append P (G, π) to S;

8 return π

fact, partial quotient graphs grow exponentially in size, since all possible unions of color
classes are considered. Common color refinement algorithms clearly gather much less
information. Firstly, only connections of classes that are involved in a refinement are
actually considered. Secondly, only information about unions of colors that occurred as a
color class in a previous step of the refinement is known. Thus, usually color refinement
algorithms only uncover a small, polynomial-sized portion of the partial quotient graphs
defined above.

However, for our lower bounds, we assume that algorithms have access to the entire
partial quotient graph. We show that even if we generously allow such access, the infor-
mation is not sufficient to derive a strategy with constant competitive ratio. For upper
bounds, we only use information of the aforementioned polynomial-sized portion of par-
tial quotient graphs. In fact, the upper bounds are based on a stack-based approach,
akin to a simple worklist as used by Algorithm 9.

Model. We now define a model that bases the choice of which color classes to use for
the next refinement solely on the information available through partial quotient graphs.
Practical implementations such as a queue or a stack are naturally captured by this, but
the model even allows for much more powerful choices. The goal is then to prove that
no strategy based solely on information of partial quotient graphs is sufficient to make
optimal choices.

Let us start by defining the concept of a strategy W : P∗ → (2N)2. A strategy is a
function mapping a string of quotient graphs P = P1 · · ·Pk ∈ P∗ to two vertices of the
last quotient graph (C,X) ∈ V (Pk)

2, that is, two unions of color classes. The string of
graphs P denotes all partial quotient graphs observed during execution of the algorithm
up to step k. The pair (C,X) denotes the choice of colors with which the algorithm
continues in the next step: in step k + 1, the algorithm refines X with respect to C.

For a strategy W we now define a corresponding color refinement implementation.
Assume we are working on G and have already refined up to a coloring πk within k
steps. Furthermore, let P1, . . . , Pk denote the partial quotient graphs corresponding to
the execution. Next, we compute (C,X) = W (P1 · · ·Pk) and refine X with respect to

88

4.2 Worklist Order

C. The algorithm terminates whenever πk is equitable. A formal definition is given in
Algorithm 13. We call W a valid strategy if the corresponding color refinement imple-
mentation is correct, i.e., if it terminates with an equitable partition in finite time on all
finite graphs.
We measure the cost of the strategy W , denoted cost(W,G), in terms of the number of

edges that need to be considered to execute the refinements. Specifically, when refining
X with respect to C, we charge the algorithm the number of edges connecting X with
C. This is the same model as used in [16], which ought to reflect the runtime of efficient
implementations. We use the terms cost and time interchangeably.

4.2.2 Graph Gadgets

We want to construct graphs that cause color refinement to behave in particular manners.
These graphs are mostly built using three types of graph gadgets, described next.

ANDi gadgets. We recall ANDi gadgets as were already used in Chapter 3. Whenever
all pairs of in-vertices have been split, a split of two out-vertices a0 and a1 is induced, but
not before. The ANDi gadget is constructed recursively using AND2 gadgets. Figure 4.1
shows how the AND3 gadget can be constructed using three AND2 gadgets.
Recall that in an ANDi gadget, all pairs b2j, b2j+1 with j ∈ {0, ..., 2i−1} need to be

distinguished to induce a split of a0 and a1. We should also record a property for the
opposite direction: if a0 and a1 are distinguished, no split on B should be induced.

Unidirectional gadgets. The undirectional gadget used in this section slightly differs
from the one defined in Chapter 3. Recall that unidirectional gadgets block the continu-
ation of a split of pairs in one direction but allows it in the opposite direction. Figure 4.1
illustrates the gadget.
The gadget behaves as follows. Consider in-vertices b0, b1 and out-vertices a0 and a1.

Distinguishing b0 and b1 should induce a split of a0 and a1. However, distinguishing a0 and
a1 should not cause a split of b0 and b1. The gadget is obtained through a modification
of the AND2 gadget. We use the fact that a split of out-vertices in AND2 does not cause
a split of the pairs of in-vertices. Therefore, by connecting the in-vertices to new vertices
a0 and a1, such that the AND2 gadget is activated by any of the two singletons, we get
the desired property.

Concealer gadgets. We conclude our discussion of gadgets with the concealer gadgets.
Similar to the ANDi gadget, a concealer gadget Ci of level i has 2i in-vertices B and 2
out-vertices a0, a1. Whereas in the AND gadget, all input pairs need to be distinguished,
the concealer gadget only includes one specific pair that causes a split of the out-vertices.
We call the pair causing the split of out-vertices the correct pair, while all other pairs not
causing the split are called dead end pairs.
The idea is that the correct pair can not be located easily by color refinement algo-

rithms. Hence, the gadget conceals where refinement can be continued.

89

Chapter 4 – Color Refinement

b0

b1

b2

b3

a0

a1

(a) An AND2 gadget.

b0

b1

b2

b3

b4

b5

b6

b7

a0

a1

(b) An AND3 gadget.

a0

a1

b0

b1

(c) Unidirectional gadget.

Figure 4.1: Basic gadget constructions as used in the online model construction. Vertices
labeled with bi always denote in-vertices, while ai denotes out-vertices.

To achieve this behavior, the gadget consists of 2i−1 unidirectional gadgets and the out-
vertices a0, a1. We modify all but one of the unidirectional gadgets so that the connection
of the in-gate agrees with the one of the out-gate. This causes these gadgets to become
dead ends – activating any of these gadgets has no effect on the out-vertices. The last,
unmodified unidirectional gadget is the only one that can actually split the out-vertices
and is therefore the only correct gadget.
The out-vertices of the entire concealer gadget are then connected to the out-vertices

of all the unidirectional gadgets so that activating the correct pair causes a split of the
out-vertices. Figure 4.2 shows a concealer gadget C3.
Since we did not specify which of the pairs is the correct pair, there are several concealer

gadgets for each i ∈ N. Abusing notation we denote all of them by Ci. The concealer
gadgets have two crucial properties. First, as long as the correct pair has not been split
(and the neighbors of a correct pair have not been split) the partial quotient graphs of
two concealer gadgets on the same size are isomorphic. Second, the correct pair can only
be split from outside the gadget. We formalize these properties in the following.
Consider two colored concealer gadgets (Ci, π), (C

′
i, π

′) of the same order. Suppose
{bs, bs+1} is the correct pair in (Ci, π) and {bt, bt+1} is the correct pair in (C ′

i, π
′). We say

the two graphs still concur if the colors for the vertices agree (note that the two graphs
have the same vertex set) and in both graphs neither the correct pairs nor their neighbors
have been split. Specifically, we require that

• the vertex colorings agree, (i.e., π(v) = π′(v) for every v ∈ V (Ci) = V (C ′
i)),

• the correct pairs have not been distinguished (i.e., π(bs) = π(bs+1) and π′(bt) =
π′(bt+1)),

• the neighbors of the correct pairs have not been distinguished, i.e., π(v) = π(v′) for
all v, v′ ∈ NCi

(bs) ∪ NCi
(bs+1) and π(v) = π(v′) for all v, v′ ∈ NC′

i
(bt) ∪ NC′

i
(bt+1).

Here, NG denotes the neighborhood in graph G.

Lemma 61. Suppose (Ci, π) and (C ′
i, π

′) are colored concealer gadgets that concur. Then
the graphs have the same partial quotient graphs, i.e., P (Ci, π) = P (C ′

i, π
′).

90

4.2 Worklist Order

Proof. Suppose for a vertex v we want to count the number of neighbors that v has
in a union of color classes X. We claim that this number is the same in Ci and C ′

i.
Indeed, we only need to consider edges incident with v that have one endpoint in M =
{bs, bs+1, bt, bt+1} and one endpoint in N [M] (the neighborhood of M). Let E ′ be the set
of these edges and let E ′

v be the set of these edges incident with v.

Note that for each of the four sets {bs, bs+1}, {bt, bt+1}, N [{bs, bs+1}], and N [{bt, bt+1}]
either X contains the set entirely or not at all.

If v is in M , then either all edges of E ′
v have an endpoint in X or no such edge does.

Likewise, if v is in N [M], then either all edges of E ′
v have an endpoint in X or no such

edge does.

Moreover, in either case, whether all such edges are or no such edge is contained does
not depend on whether we consider Ci or C

′
i.

This implies that the number of edges counted in the refinement (i.e., those incident
with v and having an endpoint in X) is the same in Ci and C

′
i.

Lemma 62. For concealer gadgets (Ci, π) and (C ′
i, π

′) suppose π = π′ so that

• vertices in an input pair that is correct in one of the graphs have the same color
and

• all vertices that are not in an input pair have the same color.

Then (Ci, π) and (C ′
i, π

′) concur. After an arbitrary sequence of splits to both graphs the
resulting graphs still concur and neither correct input pairs nor the out pair are split.

Proof. This follows by induction on the number of steps observing that the functionality
of the unidirectional gadget ensures that the output pair is never split, and thus vertices
inside correct gadgets are never split.

The two lemmas show that unless a correct pair is split, the gadgets always concur and
an algorithm in the online model will have to perform splits consistently on both graphs.
Moreover, the output pair is never split.

Intuitively this means that in the online model, an algorithm can only guess which
pair is the correct pair. Therefore, when faced with a concealer gadget, the algorithm
potentially has to try all input pairs.

4.2.3 Competitive Ratio in Online Model

We prove the non-existence of a c-competitive strategy in the online model. In particular,
in this section, we prove the following theorem:

Theorem 63. For every strategy W of the online model, there is an infinite family of
graphs Gk (k ∈ N) such that cost(W,Gk) ∈ Ω(opt(Gk) · log(opt(Gk))), where opt(Gk) ∈
Θ(|Gk|) is the minimal cost of a strategy on Gk.

91

Chapter 4 – Color Refinement

b0b1b2b3b4b5b6b7

a0a1

Figure 4.2: A concealer gadget C3. Vertices b6, b7 form the correct pair; other pairs are
dead ends.

v3 v2
v1

X
X

Y
Y

C1C2C3

Figure 4.3: A concealer graph from the class G4.

92

4.2 Worklist Order

The theorem implies that the information provided by partial quotient graphs is not
sufficient to make competitive let alone optimal choices in color refinement algorithms.
Towards this goal, we first define the class of concealer graphs, which we denote with
Gk (k ∈ N). Concealer graphs resemble the graphs of the lower bound construction in [16]
closely. Essentially, we swap out ANDi gadgets in the original construction for concealer
gadgets Ci. A concealer graph of G4 is illustrated in Figure 4.3.
The main idea is that we can then speed-up or slow-down particular strategies by

changing the position of the correct pairs within the concealer gadgets. This forces one
strategy to extensively search for the correct pairs, while another strategy finds them
immediately.
In the rest of this section we provide formal arguments for the above claims. We start

with a precise description of concealer graphs. Then, we show that for every concealer
graph there exists a fast strategy. Contrarily, we then provide a slow concealer graph for
every strategy. Together these two statements prove Theorem 63.

Concealer Graphs. The first ingredient for the concealer graphs is a “splitting scheme”
that results in the worst-case running time of Ω(m log(n)). Consider a vertex set of size
n = 2k, on which the following refinements are performed. First, we split the set in
halves, then quarters, then eighths and so on, until all vertices have their own distinct
color. This gives us log(n) rounds of refinements, each with a cost of Ω(n). This results
in total costs of Ω(n log(n)). By ensuring that sufficiently many edges are involved, the
running time can be increased to Ω(m log(n)).
Concealer graphs can be used to cause the splitting scheme just described. The graphs

contain middle layers (X,X ,Y , Y) (see Figure 4.3) in which the splitting scheme can be
forced. The graph is constructed in a way such that splitting Y into halves, quarters,
eighths and so on, causes the next halving refinement on X. The edge colors in Figure 4.3
indicate the splitting scheme. While the halves (yellow and purple) of Y lead to a split
of X into quarters (red and green), the quarters of Y lead to eighths (blue and orange)
of X and so on. By initially splitting X in halves, any color refinement algorithm needs
to cycle through these layers until X is fully discrete.
The core idea of the general lower bound construction in [16] is that the ANDi gadget

enforces refinements with respect to every block of level i, which in turn ensures costs of
2k · k2 ∈ Ω(m) for every level.
We modify the construction to suit our purposes as follows. In the concealer graphs,

we swap for each i the ANDi gadget for a concealer gadget Ci. On a particular graph,
the worst-case behavior is therefore not enforced for all refinement strategies anymore.
However, a deterministic online algorithm cannot choose for all possible concealer gadgets
the correct pair in level i to allow it to continue with level i+1. Hence, an adversary can
construct a graph that makes a specific color refinement slow, while keeping a “shortcut”
for other algorithms that choose the correct pair directly.
We now formally define the class Gk of concealer graphs. Note that for every k ∈ N,

we define a set of graphs Gk. Essentially, we describe a graph Gk ∈ Gk based on concealer
gadgets, and the set Gk then simply consists of all possible instantiations (i.e., positions
of the correct pairs) for the included concealer gadgets.

93

Chapter 4 – Color Refinement

At its core, a graph Gk ∈ Gk consists of the four middle layers of vertices (X,X ,Y , Y),
that are interconnected using additional gadgets. Formally, the vertex set of Gk includes

X := {x0, . . . , x2k−1},
X := {xji | 0 ≤ i < 2k, 0 ≤ j < k},
Y := {yji | 0 ≤ i < 2k, 0 ≤ j < k},
Y := {y0, . . . , y2k−1},

a simple starting gadget induced by only three vertices v1, v2, v3 and k − 1 concealer
gadgets. For 0 ≤ l ≤ k and 0 ≤ q ≤ 2l − 1 let

Bl
q := {q2k−l, . . . , (q + 1)2k−l − 1}

be the q-th binary block of level l. We use this notation on all sets of size 2k for some
k ∈ N.
Every xi is connected to a corresponding yi via a complete bipartite graph of size k

consisting of vertices in X and Y (see Figure 4.3). Formally, each xi is connected to all

xji , yi to all yji and xji to all yj
′

i . For each level l ∈ {1, . . . , k − 1}, the i-th binary block
of level l is connected to the i-th in-vertex of the l-th concealer gadget. Furthermore, for
each gadget Cl, we connect a0 to all X l

i with i even and a1 to all X l
i with i odd. The

starting construction splits X into the blocks X0
0 and X0

1 . We refer to the i-th in-vertex
of the l-th concealer gadget as bli and to the i-th out-vertex as ali.
Let us generally consider how a refinement strategy has to operate on Gk. The al-

gorithm starts with the monochromatic coloring of Gk. The first refinement always
distinguishes vertices by their degree, meaning we get the individualized starting gadget
{v1}, {v2}, {v3}, the distinct layers in the middle X,X ∪Y , Y , the in- and out-vertices of
the concealer gadgets ⋃

l∈{1,...,k−1}

{bli, alj | i ∈ {0, . . . , 2l}, j ∈ {0, 1}},

and the union of the inner vertices of the concealer gadgets. Next the middle layers are
split in half. From this point onwards the splits that are possible depend on finding the
correct pair in the gadgets. This can lead to fast or slow refinements, as discussed next.

A Fast Strategy for Every Concealer Graph. We now show that for every fixed con-
cealer graph Gk ∈ Gk we can define a linear time strategy. We show this by providing an
appropriate sequence of refinements.
For each concealer gadget Cl in Gk, let b

l
il
, blil+1 be the correct pair. Now consider an

online refinement strategy on such a graph. After the first (and fixed) refinement, we
refine X with respect to {v2} or {v3}. We choose one half of X1

i1
for the next refinement

and then X 1
i1
, Y1

i1
and Y 1

i1
while propagating the split through the middle layers. The

important property is that Y 1
i1
always splits the correct pair of the next concealer gadget.

The concealer gadget then in turn splits X into quarters. Now, we continue with the

94

4.2 Worklist Order

quarters X2
i2
, X 2

i2
, Y2

i2
and Y 2

i2
, such that the second concealer gadget is activated. This

splits X in eighths.
We now repeat this scheme, such that for each level we only propagate the blocks

corresponding to correct pairs through the layers and immediately continue with the
next level after activating the concealer gadget. When X is discrete, we get the equitable
coloring by refining with respect to each level k block of X, X , Y and Y .
Now consider the cost of this strategy. While cycling through the layers, the most

expensive refinements are those with respect to the blocks of X and Y . On level l, they
have cost 2k−l · k2, which means the total cost for all levels is 2k · k2 = Θ(m). Once X is
discrete the cost of the final refinements of X , Y and Y is also in Θ(m).
Overall, the cost for an optimal solution for Gk is linear, i.e., opt(Gk) ∈ Θ(m). Note

that since refinement is always continued with color classes that have just been created,
the scheme actually follows a depth-first approach and could be implemented using a
stack (barring a particular order in which newly created color classes are pushed to the
stack).

A Slow Concealer Graph for Every Strategy. For a fixed strategy W , we now provide
an infinite family of concealer graphs Gk on which this strategy is slow, i.e., incurs super-
linear cost. The family is constructed by choosing for every k ∈ N one specific concealer
graph Gk ∈ Gk.
We start with an arbitrary graph Gk ∈ Gk. We run W on Gk and observe which color

classes are split within the concealer gadgets. Say we are looking at concealer gadget Ci.
If W distinguishes the correct pair in Gk, but there are still dead ends that have not been
distinguished, then we replace Gk by the graph G′

k ∈ Gk obtained from Gk by replacing
the gadget Ci with another one so that a dead end not yet investigated becomes the
correct pair. Due to Lemma 61 and Lemma 62 we know that up until the point where W
finds the correct pair in Ci for graph Gk, the strategy W performs the same sequence of
splits when executed on G′

k as on Gk. Thus, by doing these transformations exhaustively,
we ensure W distinguishes all correct pairs in all the concealer gadgets last. This causes
2k · k2 cost per level and hence 2k · k3 = Θ(m log(n)) total cost.
Since the optimal solution for fixed Gk only has linear cost, we in turn get that

cost(W,Gk) ∈ Ω(opt(Gk) · log(opt(Gk))).

We now argue this in more detail. Let us first discuss some general behavior of color
refinement on concealer graphs. There are two core properties that hold for every color
refinement algorithm. The first one is that in each level l, we split X completely into the
blocks of this level, X l

0, ..., X
l
2l
. The other layers can only be split by the blocks of X, so

we know that their partitions are always coarser than the one of X. The second property
is that out-vertices of the level l concealer gadget have to be distinguished to partition
X into the blocks of level l + 1. Thus, also the correct input pair in this gadget has to
be split.
For a coloring α we denote by πα the partition induced by the coloring. The nota-

tion πα[X] indicates the restriction of the partition to a set X and we use πα ⪯ πα′ to

95

Chapter 4 – Color Refinement

indicate that the former partition is at least as fine as the latter. Abusing notation we
compare partitions of the layers of the graphs, as they are related by direct connections.

Lemma 64. Let αi denote the coloring after i steps of color refinement. For any αi with
i ≥ 0 there is a number nA, such that

• for all j ≤ nA: αi(a
j
0) ̸= αi(a

j
1), and

• for all j > nA: αi(a
j
0) = αi(a

j
1).

In addition, we have either

• παi
[X] = {XnA+1

q

∣∣ 0 ≤ q ≤ 2nA+1 − 1} or

• παi
[X] = {XnA

q

∣∣ 0 ≤ q ≤ 2nA − 1}.

Furthermore, it holds that παi
[X] ⪯ παi

[X], παi
[Y], παi

[Y].

Proof. For i = 0 this is obviously true with nA = 0.
For later iterations, we consider the possible splits. The start vertices v1, v2 and v3 are

not able split X any further after the first iteration. Any part of X in παi
can split X ,

but not A, since aj0 and aj1 are equally connected to all XnA
q and XnA−1

q for all j > nA.
Due to the simple one-to-k connection from X to X and because X is already finer,

none of these splits makes X finer than X. Since X is coarser than X, παi
[X] will not be

changed by subsets of X . With the same argument, X does not make Y coarser than X
and vice versa. The same holds for Y and Y .
Now consider the case that παi

[X] = {XnA
q

∣∣ 0 ≤ q ≤ 2nA − 1}. Since Y is coarser, no
part of Y can yield an activated gadget CnA

. Also, any other splits of concealer gadgets
(which do not split input pairs) do not change the claimed property. Only distinguished
out-vertices of the concealer gadgets can cause splits of X, which are all the aj0, a

j
1 with

j ≤ nA. Out of those, only anA
0 and anA

1 can further split X into the blocks of level nA+1,
not changing the claimed property. The other levels can only split X into blocks of lower
level, which has already been done.
Otherwise, i.e., if παi

[X] = {XnA+1
q

∣∣ 0 ≤ q ≤ 2nA+1 − 1}, there can be a part Y ′ of
Y in παi

[Y] with Y ′ = Y nA+1
q for some q. Then Y ′ can activate CnA+1, which leads to a

split of anA+1
0 from anA+1

1 . This will increase nA by 1 (since X was partitioned into blocks
of level nA + 1, the claimed property is preserved). A split of X from anA

0 or anA
1 cannot

happen in this case.
A split from the in-vertices of the concealer gadgets to Y will also never make Y finer

than X, since CnA
, the gadget which can split Y into the finest partitions under all the

pairs in A, is connected to the nA-th level of Y , and X has already been split into the
blocks of level at least nA.

With this lemma, we can define an adversary that constructs a graph such that a
specific strategy shows worst-case behavior. It should be noted that the lemma can
also be stated with aj0/a

j
1 exchanged by bjij/b

j
ij+1, since the split of the former is directly

96

4.2 Worklist Order

dependent on the split of the latter. The lemma is stated in this way so that we can reuse
it at a later point.
Let A be the corresponding color refinement to some strategy W . We construct an

infinite family of graphs on which A has costs of Ω(m log(n)). In the family there is
for each k ∈ N a graph Gk ∈ Gk. We start with a concealer graph G ∈ Gk and then
successively specify the position of the correct pairs.
Let πt be the partitions of G that A produces in step t. Consider an arbitrary step t

in the execution of A, where

πt[X] = {XnA+1
q

∣∣ 0 ≤ q ≤ 2nA+1 − 1}

for the unique nA from the previous lemma, but the correct pair bnA
inA
, bnA

inA
+1 of the level nA

concealer gadget has not been distinguished. We know that A needs to split bnA
inA
, bnA

inA
+1

to continue to the next level. Let tnext be the largest t′ such that

πt′ [{bnA
0 , . . . , bnA

2nA−1}] = πt[{bnA
0 , . . . , bnA

2nA−1}],

i.e., the next point in time where the in-vertices of the current concealer gadget are split.
We assume w.l.o.g. that this is a split of an input pair. Let bnA

inext
, bnA

inext+1 be the in-vertex
pair which is distinguished at tnext. An adversary can choose the concealer gadget of
level nA such that bnA

inext
, bnA

inext+1 is a dead end pair.
Due to Lemma 61 and Lemma 62, the behavior of A until step tnext stays the same, no

matter what concealer gadget is used in G. With the previous lemma, we know that after
distinguishing bnA

inext
, bnA

inext+1, we are in the same situation as before, i.e. X is partitioned
into the blocks of level nA, but the correct pair bnA

inA
, bnA

inA
+1 has not been split (thus,

another split of an input pair is needed to increase nA).
If at step t we are in the case that

πt[X] = {XnA
q

∣∣ 0 ≤ q ≤ 2nA − 1},

no important splits happen, since for all levels l ≤ nA, every input pair of Cl has already
been split and for all l ≥ nA, no splits of input pairs are possible.
Thus, we can repeat these changes as often as necessary such that the correct pair is

only split after all the dead end pairs have been split. By doing this for each level, we
get a graph on which A has cost Ω(m log(n)).

4.2.4 Competitive Ratio in Offline Model

Complementing our previous results, we now provide an approximation hardness result
for computing optimal color refinement strategies. We begin by defining the optimal
refinement worklist problem:

Problem 65 (Refinement Worklist Problem). Given a colored graph (G, π), compute a
minimal cost sequence of pairs of color classes W = (C1, X1), . . . , (Ct, Xt) such that:

1. Refining with respect to W results in the stable coloring π∞.

97

Chapter 4 – Color Refinement

a b c da b c d

U1U2U3

(a) Set cover instance.

U1 U2 U3

X

(b) Result of the reduction.

Figure 4.4: Reduction of the set cover instance S = {a, b, c, d} and U =
{{d}, {b, c, d}, {a, b}}. Orange lines indicate connections to elements of S,
all other edges are connections to dummy elements.

2. For all prefixes (C1, X1), . . . , (Cs, Xs), the partial quotient graph obtained after re-
fining Ci w.r.t. Xi for i = 1, . . . , s − 1 contains Cs and Xx (as unions of color
classes).

The cost of a sequence W is the sum of the costs for refining with respect to all (Ci, Xi) ∈
W .

The approximation hardness result is based on a reduction from the set cover problem.
The set cover problem takes a finite universe S and a set of subsets of S, i.e., U ⊆ 2S.
The decision variant then asks whether there exists a selection of k subsets in U whose
union equals S. For simplicity, we assume

⋃
U∈U U = S. Set cover is well-known to be

NP-complete.
The optimization variant requires a minimal selection of subsets that cover S, i.e., a

solution that minimizes k. This problem is known to be NP-hard. More specifically, it is
known that unless P = NP, polynomial time algorithms can only reach an approximation
factor of Ω(log(n)) [96].

Theorem 66. Unless P = NP, polynomial time algorithms may only reach an approxi-
mation factor of Ω(log(n)) for the optimal refinement problem.

Proof. We reduce the optimization variant of the set cover problem to the refinement
worklist problem. More specifically, we reduce it in a manner which allows control of the
parameters, so that the approximation hardness result of set cover immediately transfers
to refinement worklists. The reduction is illustrated in Figure 4.4.
Given a set cover instance (S,U) we define a related colored graph (G, π). We create

one large color class X containing all elements of the universe S, as well as n2 dummy
elements (where n is the size of the set cover instance). Hence, the size of X is n2 + |S|.
We add a singleton color class for each subset U ∈ U , i.e., we add vertex U with color

U . We connect the vertex U with all vertices of X except for the elements that are
contained in U . Formally, we define the edges

E(G) := {{U, x} | x ∈ X ∧ x /∈ U }.

98

4.3 Split Algorithms

Note that U has n2 + |S| − |U | connections to X.

In the constructed graph, all elements of the universe are eventually distinguished from
the dummy elements in X. Refining X with respect to X is not productive, since there
are no edges present and no splits occur. The only way to distinguish elements of X
is to refine X with respect to an element of U . Doing so always distinguishes all the
elements contained in U ∈ U from the dummy elements and other remaining elements of
X. Overall, we need to refine X with a subset of U that forms a set cover of S.

After that, assuming all elements of S have been distinguished from the dummy ele-
ments, it might be possible to split the resulting classes further through their connections
to U . However, the total cost for these further refinements is bounded by c · n2 for some
fixed constant c.

The cost for refining X with respect to U is n2+m, wherem is the number of remaining
elements of S in X after the elements of U have been removed. Since we need to choose at
most |S| subsets in a reasonable solution (otherwise we could remove redundant elements
from the solution), and each timeX gets smaller by at least one element, the cost incurred
by m over all subsets is at most |S|2 ≤ n2. Ignoring the cost of m, we get that each subset
incurs additional cost of n2 through the dummy elements.

Hence, the final cost is at most

c · n2 + (NU + 1) · n2 = (NU + c+ 1)n2

and at least NUn
2, where NU is the number of chosen subsets.

We finish our arguments with a proof by contradiction. Assume there is a polynomial
time algorithm with an approximation factor in o(log(n)). Given a set cover instance
(S,U), we apply the polynomial time reduction stated above. Assume now we get an
approximate solution with cost x ·n2. We know that this implies a set cover solution with
cost at most x.

The optimal set cover solution with cost x′ would imply a worklist solution with cost at
most (x′+c)n2 (for a fixed c). Hence, we know that the worklist solution also approximates
the optimal solution of the original set cover instance with a factor in o(log(n)).

The set cover instance has a size in the 3rd root of the size of the refinement worklist
problem. But since o(log(n)) = o(log(3

√
n)), we get a contradiction to the approximation

hardness result of set cover.

4.3 Split Algorithms

Next, we describe the different split algorithms, to be used within Algorithm 9. The
motivation for these different split algorithms is of practical nature, and they do not
result in a better theoretical asymptotic runtime. As discussed previously, the split
algorithms often contain the hot spot for the entire IR algorithm and hence, a high level
of optimization is important. We will describe the different routines, and discuss cases in
which they can be applied without detriment to the theoretical runtime. The different
split algorithms are reverse-engineered from the implementation of Traces [76].

99

Chapter 4 – Color Refinement

Algorithm 14: Split with respect to a singleton color c.

1 function SplitWithRespectToSingleton
Input: ➢ graph G

➢ coloring π

➢ color c

➢ worklist W
Output: ➢refines coloring π

➢changes worklist W
Auxiliary: ✏ reset array NumCol of length n

✏ small integer set Colold of length n

✏ array AdjCol of length n

2 // count neighbors of c
3 v := π−1(c);
4 for (each neighbor v′ ∈ N(v))
5 x := π(v′);
6 if NumCol[x] = 0 then add x to Colold ;
7 AdjCol[x + NumCol[x]] = v′ NumCol[x] += 1;

8 // remove non-splitting colors and then sort

9 remove x ∈ Colold where all v, v′ ∈ π−1(x) have Deg[v] = Deg[v′];
10 sort Colold in increasing order ;

11 // split up colors according to neighbor counts

12 for (each x ∈ Colold)
13 n1, . . . , nl := AdjCol[x], . . . , AdjCol[x+NumCol[x]− 1];
14 x′ := x+ |π(x)| − NumCol[c];
15 if x ̸= s then
16 if ReportSplit(π, c, s, 1) then return;

17 RearrangeSingleton(π, x, (n1, . . . , nl));
18 ManageWorklist(π, W , x, (x, x′));

19 reset NumCol, and Colold;

The descriptions here are included purely for the sake of completeness and are meant
as a reference for how efficient color refinement is implemented. They have no further
bearing on other results of this thesis.

4.3.1 Singleton Split

A crucial optimization employed by state-of-the-art solvers is a split routine specifically
tailored to splitting with respect to a singleton color class C = {v}. A description of this
optimization can be found in Algorithm 14 and Algorithm 15.

We remark on the differences to Algorithm 10 and Algorithm 11. The crucial observa-
tion is that any vertex of the graph can either be connected or not connected to v. This
means that for every vertex there is only two potential neighbour counts: connected or

100

4.3 Split Algorithms

Algorithm 15: Rearrange and split color class c.

1 function RearrangeSingleton
Input: ➢ coloring π

➢ color c

➢ list of vertices (n1, . . . , nl)
Output: ➢refines coloring π

2 // set ColToSizeπ
3 c′ := x+ |π(x)| − l;
4 ColToSizeπ[c] := |π(x)| − l;
5 ColToSizeπ[c

′] := l;

6 // rearrange Labπ and VertexToLabπ

7 p = c′;
8 for (each v ∈ (n1, . . . , nl))
9 VertexToColπ[v] = c′;

10 p′ := VertexToLabπ[v];
11 v′ := Labπ[p

′];
12 Labπ[p] := v;
13 Labπ[p

′] := v′;
14 VertexToLabπ[v] := p;
15 VertexToLabπ[v

′] := p′;
16 p += 1;

disconnected. This removes the need for keeping track of the Deg array, or any part of
the routine to determine the colors of the split vertices.

While there seems to be no asymptotic advantage to using Algorithm 14 and Algo-
rithm 15, it should still be quite apparent that the algorithms have a practical advantage
in terms of using much fewer auxiliary arrays, and performing less overall operations.
Specifically in the individualization-refinement context singletons occur often: every in-
dividualization creates a singleton, and the subsequent refinement starts only with this
singleton on the worklist.

4.3.2 Dense Split

We simplify the split algorithm if the graph is dense. In particular, we observe that if a
graph is dense, i.e., has asymptotically more edges than vertices, then the splitting routine
will spent most time iterating over the edges adjacent to the color of consideration. The
optimization for dense graphs therefore aims to reduce the number of operations that are
performed on each incident edge.

Description of Algorithm 16. Compared to Algorithm 10, the algorithm does not keep
track of the vertices adjacent to the input color c in the first two for-loops of Line 3 and
Line 4. This severely reduces the number of operations performed in these loops.

101

Chapter 4 – Color Refinement

When splitting the color classes however, the algorithm can not efficiently access ver-
tices which have non-trivial degree, and must therefore consider all the vertices of con-
nected color classes (Line 13).

Runtime of Algorithm 16. Clearly, the additional cost incurred by considering every
vertex of connected colors is bounded by O(n). Let us fix a constant α ∈ Q with
0 < α ≤ 1, such that we only use Algorithm 16 in case a vertex v ∈ π−1(c) has degree
of deg(v) > αn. Under this assumption, our asymptotic worst-case runtime analysis of
Algorithm 10 remains unchanged.

4.3.3 Very Dense Split

We can go even further by not keeping track of which colors are adjacent to the color of
interest.

Description of Algorithm 17. Compared to Algorithm 16, the algorithm now further
does not even keep track of the colors adjacent to the input color c in the first two
for-loops of Line 3 and Line 4. We only update the degree for each connected vertex.
When splitting the color classes, the algorithm now has to iterate over all color classes

of π (see Line 8). Interestingly, this removes the need for sorting connected color classes:
in a sense, we are replacing the sorting operation with a bucket sort.

Runtime of Algorithm 17. We can use the same argument as for Algorithm 16: for
a fixed a constant α ∈ Q with 0 < α ≤ 1, we only use Algorithm 17 in case a vertex
v ∈ π−1(c) has degree of deg(v) > αn.
Interestingly, the algorithm can be advantageous, even in a theoretical sense: assuming

a split divides k many color classes, in case k log k > n, replacing the sorting operation
by a simple iteration of color classes can become asymptotically faster.

4.4 Various Optimizations in the IR Context

We now describe further techniques and optimizations, which are in particular important
in the context of IR algorithms.

4.4.1 Individualization

Of course, we need to be able to do an individualization. The routine is quite simple and
is described in Algorithm 18. It simply rearranges the coloring to place v into its own
singleton color class. The routine runs in time O(1).
By alternating Algorithm 9 and Algorithm 18, we can now compute CRef, i.e., a node

in an IR tree. Note that after an individualization, the worklist of Algorithm 9 can be
initialized to only contain the singleton color class π(v) of the individualized vertex v.
Essentially, the split incurred by individualization can be treated like any other color class

102

4.4 Various Optimizations in the IR Context

Algorithm 16: Split with respect to a color c if the graph is dense.

1 function SplitWithRespectToDense
Input: ➢ graph G

➢ coloring π

➢ color c

➢ worklist W
Output: ➢refines coloring π

➢changes worklist W
Auxiliary: ✏ reset array Deg of length n

✏ small integer set Colold of length n

✏ small integer set UniqueDeg of length n

✏ array DegCol of length n

2 // count neighbors of c
3 for (each v ∈ π−1(c))
4 for (each neighbor v′ ∈ N(v))
5 x := π(v′);
6 if x ̸∈ Colold then add x to Colold ;
7 Deg[v′] += 1;

8 // remove non-splitting colors and then sort

9 remove x ∈ Colold where all v, v′ ∈ π−1(x) have Deg[v] = Deg[v′];
10 sort Colold in increasing order ;

11 // split up colors according to neighbor counts

12 for (each x ∈ Colold)
13 n1, . . . , nl := π−1(x);
14 for (each v in n1, . . . , nl)
15 if Deg[v] not in UniqueDeg then
16 add Deg[v] to UniqueDeg;
17 DegCol[Deg[v]] = 0;

18 DegCol[Deg[v]] += 1;

19 sort UniqueDeg in increasing order;
20 s := x;
21 for (each d in UniqueDeg)
22 s′ := DegCol[d];
23 DegCol[d] = s;
24 if c ̸= s then
25 if ReportSplit(π, c, s, d) then return;

26 s += s′;

27 Rearrange(π, x, (n1, . . . , nl), Deg, DegCol);
28 ManageWorklist(π, W , x, (x1, . . . , xk));
29 reset UniqueDeg;

30 reset Deg and Colold;

103

Chapter 4 – Color Refinement

Algorithm 17: Split with respect to a color c if the graph is very dense.

1 function SplitWithRespectToVeryDense
Input: ➢ graph G

➢ coloring π

➢ color c

➢ worklist W
Output: ➢refines coloring π

➢changes worklist W
Auxiliary: ✏ reset array Deg of length n

✏ small integer set UniqueDeg of length n

✏ array DegCol of length n

2 // count neighbors of c
3 for (each v ∈ π−1(c))
4 for (each neighbor v′ ∈ N(v))
5 x := π(v′);
6 Deg[v′] += 1;

7 // split up colors according to neighbor counts

8 for (each x ∈ π(V (G)))
9 n1, . . . , nl := π−1(x);

10 for (each v in n1, . . . , nl)
11 u := 0;
12 if Deg[v] not in UniqueDeg then
13 add Deg[v] to UniqueDeg;
14 DegCol[Deg[v]] = 0;
15 u += 1;

16 if u = 1 then continue;
17 DegCol[Deg[v]] += 1;

18 sort UniqueDeg in increasing order;
19 s := x;
20 for (each d in UniqueDeg)
21 s′ := DegCol[d];
22 DegCol[d] = s;
23 if c ̸= s then
24 if ReportSplit(π, c, s, d) then return;

25 s += s′;

26 Rearrange(π, x, (n1, . . . , nl), Deg, DegCol);
27 ManageWorklist(π, W , x, (x1, . . . , xk));
28 reset UniqueDeg;

29 reset Deg;

104

4.4 Various Optimizations in the IR Context

Algorithm 18: Individualize a vertex in a coloring.

1 function Individualize
Input: ➢ coloring π

➢ vertex v
Output: ➢refines coloring π

2 // retrieve original color, calculate new color

3 c := VertexToColπ[v];
4 c′ := VertexToColπ[c] + ColToSizeπ[c]− 1;
5 VertexToColπ[v] := c′;

6 // adjust color class sizes

7 ColToSizeπ[c] -= 1;
8 ColToSizeπ[c

′] = 1;

9 // adjust Lab and VertexToLab accordingly

10 p := c′;
11 p′ := VertexToLabπ[v];
12 v′ := Labπ[p

′];
13 Labπ[p] := v;
14 Labπ[p

′] := v′;
15 VertexToLabπ[v] := p;
16 VertexToLabπ[v

′] := p′;

split, and thus we may omit the other fragment of the individualized color class. Note
that the cell selector guarantees that for each individualized vertex v, |π−1(π(v))| ≥ 2
holds (see Section 2.3). In turn, it is easy to see that any node of the IR tree using color
refinement can be computed in time O((n+m) log n).

4.4.2 Early Out Opportunities

We describe two ways in which the algorithm may terminate early.

Discrete Coloring. The algorithm may terminate whenever the number of cells in π
equals the number of vertices of G, i.e., |π| = |V (G)|. In this case, it is easy to see that
no further refinements can be made. In practice, this is a crucial optimization: anytime
a leaf of the IR tree is reached, the remainder of the worklist can simply be ignored.

Note that the number of cells in π can very easily be maintained. Assuming we know
the number of cells initially, we can maintain the number very easily using a ReportSplit
function: whenever there is a split, we increase the number of cells by 1.

Trace Invariant. As discussed in Section 2.3, we want to be able to compute a node
invariant in the IR tree. In particular, the node invariants we compute consists of infor-
mation of the quotient graph. However, doing so explicitly at each step of an IR algorithm

105

Chapter 4 – Color Refinement

seems prohibitively expensive. Instead, we collect some information of the quotient graph
during the execution of color refinement itself.
In particular, we collect precisely the information as described by the ReportSplit

function (except for the entire coloring π). A standard technique [76] is to accumulate a
hash of this information, and then use this hash as a node invariant. Traces introduced
the notion of the trace invariant: we simply collect this information in a list, and use
the entire list as a node invariant. In subsequent branches, instead of just writing a new
trace and then comparing the results at the end of the computation, we can just compare
the information on-the-fly each step of the way. (In particular, note that in subsequent
branches, we do not even need to write a new list: we can simply track the position of
where we are in the previously collected trace.) This enables an early-out of the color
refinement algorithm, whenever the information differs.

4.4.3 Reversible Refinement

Sometimes, in an IR algorithm, we want to do color refinement, but then also be able to
“undo” the application of color refinement again, efficiently. This corresponds to moving
up and down in the IR tree. In order to facilitate this, we describe how a color refinement
can be undone.
A trivial way to achieve this is to store the coloring π before applying color refine-

ment, and then retrieving it if the refinement is to be undone. While this method seems
unsophisticated, it turns out to be quite efficient in some cases. In particular, if color
refinement changes most (i.e., a linear fraction) of the coloring anyway, then there really
is no point in trying to be more granular. An obvious downside is that if color refinement
does not change most of the coloring, we perform a linear time operation, even already
before performing color refinement.
A more granular approach is to record the splits that are made while color refinement

is performed. When we want to undo color refinement, we read the splits back and merge
the colors that appear in the splits.
Recording the splits is simple enough: by implementing a ReportSplit function, we

can maintain a list S of all the pairs (x, x′) where x was split into x and x′. The algorithm
to reverse the refinement is described in Algorithm 19. It is crucial to observe that at the
time π−1(x′) is accessed, the part of the coloring that concerns x′ is correctly preserved.
Note that the correctness of the algorithm also fundamentally relies on spacious colorings
(see Section 2.2.4).
It is easy to see that Algorithm 19 runs in at most the time that it took the corre-

sponding application of the color refinement algorithm. However, in practice, it is usually
much faster since it does not need to consider the underlying graph or any auxiliary data
structure (except S) at all.

4.4.4 Canonical and Non-Canonical Refinement

We can ease our requirements for color refinement, by only requiring the algorithm to
produce an equitable coloring up to renaming of colors. Essentially, this still determines

106

4.4 Various Optimizations in the IR Context

Algorithm 19: Reverse a color refinement.

1 function ReverseRefinement
Input: ➢ coloring π

➢ list of splits S
Output: ➢coarsens π according to S

2 // read S backwards

3 for (each (x, x′) of S in reverse order)
4 for (each v in π−1(x′))
5 VertexToColπ[v] = x;
6 ColToSizeπ[x

′] -= 1;
7 ColToSizeπ[x] += 1;

the same partitioning of vertices, but not the same ordered partitioning. In the context
of IR algorithms this is generally not sufficient: it breaks the isomorphism-invariance of
the IR tree. However, it is indeed sufficient as the first color refinement applied by the
algorithm, before any individualizations are made.
The optimization is quite simple: we remove all sorting operations, i.e., Line 13 and

Line 22 in Algorithm 10.

4.4.5 Matched Vertex Colorings

Matched vertex colorings are a technique introduced first by saucy [60]. The technique
concerns the IR tree itself, however, the necessary computations needed for the tech-
nique are performed during color refinement itself. Since dejavu also makes use of the
technique, we give a high-level description following the lines of [60].
Consider two vertex colorings π1, π2 of a graph G. We call π1 and π2 isomorphic, if

for each i ∈ {1, . . . , n− 1} it holds that |π−1
1 (i)| = |π−1

2 (i)| holds. This means π1 and π2
have the same set of non-trivial colors, and each corresponding color class has the same
size. We call π1 and π2 matched, whenever |π−1

1 (i)| ≥ 2 implies that π−1
1 (i) = π−1

2 (i): all
non-singleton color classes are identical.
Given two matched vertex colorings π1, π2, we may construct the following permutation

φπ1,π2 : V (G)→ V (G):

φπ1,π2(v) :=

{
v if |π−1

1 (π1(v))| ≥ 2

v′ if |π−1
1 (π1(v))| = 1 and π1(v) = π2(v

′)

Observe that when π1, π2 are matched, the above definition indeed defines a bijection.
Vertices which are singletons are mapped onto each other, whereas vertices which occur
in non-singleton color classes are mapped as the identity. (Observe that if v is a singleton
in π1, and π1(v) = π2(v

′) holds, then v′ must also be a singleton in π1.)
We alter an observation of [60], to obtain the following lemma.

Lemma 67. Let (G, π) be a vertex colored graph. Let ν1, ν2 be two nodes of TCRef(G, π).
Let π1, π2 be the corresponding equitable vertex colorings of ν1, ν2, with π1 ⪯ π and π2 ⪯ π.

107

Chapter 4 – Color Refinement

If π1 and π2 are matched, then either φπ1,π2 is an automorphism of (G, π), or there is no
automorphism of (G, π) which maps ν1 to ν2.

Proof. Note that by definition, φ := φπ1,π2 respects the colors of the graph. In fact,
any automorphism mapping ν1 and ν2 must map the singletons in the manner in which
they are mapped in φπ1,π2 , otherwise the singleton color classes would not be respected.
Assume that φ is no automorphism of (G, π). This means there must be an edge (v1, v2)
such that (v1, v2) ∈ E(G), whereas (v1, v2)

φ is not. Without loss of generality, assume
v1 ̸= vφ1 .
If v2 = vφ2 , we observe that v2 connects to v1 of color c in (G, π1), but v2 does not

connect to vφ1 of color c in (G, π2). Hence, we conclude that v2 ̸= vφ2 must hold for
any automorphism mapping ν1 to ν2. Furthermore, we observe that since π1 and π2 are
equitable, v2 and v

φ
2 can not obtain the same color in π1 and π2: the singleton v1 connects

to v2 but not vφ2 .
We conclude that v1, v

φ
1 , v2, v

φ
2 are singleton. However, in this case, in order to respect

the vertex coloring, these vertices must be mapped according to φπ1,π2 . Hence, if the edge
relation of the graph is not satisfied by φπ1,π2 , then there is no automorphism mapping
ν1 to ν2.

Let τ be a target leaf of the IR tree. In subsequent color refinement computations of
different branches, we can efficiently track whether the current vertex coloring is matched
to the one of τ . Indeed, we can again implement this operation as a rather involved
ReportSplit function. The details of the implementation are quite technical, but es-
sentially, on each split, we check the vertices of the involved color classes. In turn, we
remove and add differences between the color classes. (We refer to the implementation
for more detail.)
A crucial fact however is that once we find a matched pair of vertex colorings, we can

efficiently construct and check an automorphism. Let us first observe that it is easy to
efficiently keep track of a list of singleton color classes using ReportSplit: if c or s is a
new singleton of π, we add it to the list of singletons. When colorings are matched, we
use the list of singletons to write φπ1,π2 into a dense-sparse permutation data structure
(see Section 2.2.3). In turn, we verify φπ1,π2 on the graph using Algorithm 2. Given a
matched vertex coloring and corresponding lists of singletons, we can therefore construct
and test an automorphism in time

O

 ∑
v∈supp(φπ1,π2)

|N [v]|

 .

4.4.6 Small Graphs

We should mention that the data structures and algorithms used in this chapter are
given with asymptotic scaling in mind. For small graphs, different considerations should
be made. In particular nauty is quite efficient at dealing with these graphs, as was
discussed in Section 2.4.1. For example, nauty features the use of adjacency matrices,

108

4.4 Various Optimizations in the IR Context

and the colorings are stored in a more rudimentary fashion. The colorings do not feature
the VertexToLab or VertexToCol arrays, which has crucial implications for the color
refinement implementation.

109

Chapter 5

Preprocessing

Many of the graphs and symmetries encountered in practical applications are of a
peculiar type: on one hand, most of these graphs are quite simple in terms of their IR
tree, i.e., there is only one equivalence class of leaves. On the other hand, the graphs of
interest are often very large and may exhibit a lot of symmetry. At first, this might not
seem like an issue: simple structure is, of course, handled “somewhat efficiently” by any
well-implemented IR algorithm. In particular, if there is only one equivalence class of
leaves, any IR algorithm should run in polynomial time. Considering the sheer scale of
these practical graphs however, the approach starts to run into problems. The challenge
arises to handle large, practical graphs more efficiently. Precisely this challenge prompted
the design of saucy, which features special techniques precisely for these classes of graphs
(in particular we mean matched vertex colorings, as described in Section 4.4.5). However,
as was thoroughly discussed in Chapter 1, only having solvers available that are geared
towards specific types of graphs is an undesirable situation.
Preprocessors are a commonly used paradigm to make solvers for computational prob-

lems more widely applicable. The idea is to shrink or simplify an input, before handing
it to a main solver. The use of preprocessors has indeed already led to countless success
stories, in particular in SAT, QBF or MaxSAT [36, 17, 65]. In these applications, it is
standard to apply a preprocessor to all inputs. To the contrary, no preprocessor has been
available for symmetry detection. In fact, McKay and Piperno [76] explicitly highlight
that in their opinion “graphs of [particular types] ought to be handled by preprocessing”
before using their tools. Given the lack of an existing preprocessor for symmetry detec-
tion, Traces, for example, has complicated subroutines that simplify some low-degree
vertices before (and sometimes during) the computation (see Section 2.4.4). Overall, the
question is whether it is possible to design a common preprocessor that can simplify
inputs and is beneficial to all state-of-the-art solvers.

Preprocessor for Sparse Structure. We describe a preprocessor for symmetry detection
that satisfies the specifications above. It is compatible by design with all state-of-the-art
symmetry detection tools.
There are two immediate benefits to this approach: first of all, tackling certain parts of

the graph independent of the rest of the solver severely reduces the software engineering
burden, i.e., there is a separation of concerns. We can implement a fairly independent
routine that deals with specific aspects of the graph. The second major benefit is that
if designed correctly, the preprocessor should be compatible with all symmetry detection
tools. We only need to implement these strategies once, and can then apply the benefits
to all the other solvers as well.

111

Chapter 5 – Preprocessing

preprocessor

graph
reduction

symmetry
lift

symmetries of

G

graph

G

symmetries of

G main
solver

symmetries of

G′

reduced graph

G′

Figure 5.1: Our proposed preprocessor/main solver and user/preprocessor interfaces for
symmetry detection. The preprocessor may already determine some (or all)
symmetries of G during graph reduction. The reduced instance is then passed
on to the main solver.

In this chapter, we describe the design and implementation of our preprocessor for
sparse and large graphs. The preprocessor is an integral part of the dejavu solver and
is applied to all inputs. However, the preprocessor also works in conjunction with any
other state-of-the-art solver. In Section 7.3, we test the performance of our preprocessor
in conjunction with all other state-of-the-art symmetry detection tools. In particular, we
compare each solver without the preprocessor to itself with the preprocessor.

5.1 Interface and Conceptual Principles

When designing a preprocessor, one of the main challenges is to map out which techniques
and methods fall within the responsibility of the preprocessor and which task should be
resolved by the main algorithm. Another delicate matter is the preprocessor/main solver
interface, as well as the user/preprocessor interface. In the design of our preprocessor we
were guided by conceptual principles as well as technical requirements.

Conceptual principles. On a conceptual level, our goal is to design efficient preprocess-
ing subroutines that simplify the task of computing symmetries. Naturally, a preprocessor
should only apply procedures that are comparatively fast in relation to the runtime of
the main algorithm.

The design of our preprocessor is centered around the color refinement algorithm.
Recall that color refinement is continuously and repeatedly applied in all state-of-the-art
solvers (see Section 2.3). Thus, procedures that run within or close to color-refinement-
time are safe to apply.

The general idea of the preprocessor is to remove substructures of the graph that are
already “basically resolved” by an application of color refinement. The main difficulty

112

5.2 Framework for Reductions

lies in detecting and exploiting these substructures as efficiently as possible. Essentially,
any part that can be handled efficiently ought to be carefully handled using precisely the
right technique. Overall, we need to balance efficiency, effectiveness, and generality for
our subroutines.

Technical requirements. On a technical level, we want our preprocessor to be compat-
ible with all state-of-the-art solvers. Hence, we need to use an interface that is universal
for all the existing tools. All symmetry detection tools read vertex-colored graphs and
output symmetries. Hence, this is the interface that the preprocessor uses as well.
The preprocessor reads a vertex-colored graph and outputs a reduced vertex-colored

graph passed to a main solver. Moreover, the preprocessor may already determine some
or all of the symmetries and immediately outputs these to the user. There is one more
technicality: symmetries of the reduced graph are, by definition, not symmetries of the
original graph. To rectify this, the preprocessor employs a backward-translation (i.e., a
form of postprocessing) to lift symmetries that were discovered by the main solver back
to being symmetries of the original input graph. Our design is illustrated in Figure 5.1.
We should remark that our implementation can also recover the size of the original

automorphism group, given the size of the automorphism group of the reduced graph.

5.2 Framework for Reductions

Most, but not all, techniques we describe modify an input graph (G, π) on vertex set V
to another graph (G′, π′) with vertex set V ′ ⊆ V so that

1. Aut(G, π)|V ′ ⊆ Aut(G′, π′) (symmetry preservation) and

2. Aut(G, π)|V ′ ⊇ Aut(G′, π′) (symmetry lifting) hold.

Here, by Aut(G, π)|V ′ we mean the set of maps obtained by restricting the domain of each
φ ∈ Aut(G, π) to V ′ (and the range to φ(V ′)). If conditions (1) and (2) hold, V ′ must
also be invariant under Aut(G, π). In conjunction, these conditions ensure that we do
not introduce extra symmetry in the reduced graph, and the reduced graph’s symmetries
correspond to symmetries of the original graph.
Let us address a technicality: our data structures in Chapter 2 require us to store a

graph using the vertex set {0, . . . , n − 1}, but clearly, the reduced graph G′, as defined
above, may not adhere to this. In the implementation, each reduction of the graph
renames the vertices such that they map into {0, . . . , n−1}. For all subsequently produced
symmetries we apply a simple renaming step, to restore their original names. For the
sake of simplifying our exposition here, we will not cover the renaming of vertices and
let V ′ be any subset of V . Similarly, restricting the coloring π to π|V ′ leads to analogous
issues, i.e., πV ′ is not spacious and colors are {0, . . . , n− 1}. Again, the implementation
reorders vertex colorings appropriately, while in our exposition here, we will not.
Under the conditions stated above the restriction to V ′ is a natural homomorphism

p : Aut(G, π)→ Aut(G′, π′).

113

Chapter 5 – Preprocessing

The orbit-stabilizer theorem (Theorem 7) implies then that if S ′ ⊆ Aut(G, π) is a set of
lifts of a generating set S of Aut(G′, π′), i.e. p(S ′) = S, then

Aut(G, π) = ⟨S ′, ker(p)⟩.

Here
ker(p) = {φ ∈ Aut(G, π) | p(φ) = id}

is the kernel of p.
Overall this enables us to separate the computation of Aut(G, π) into computing au-

tomorphisms of the removed parts of the graph and the automorphisms of the reduced
graph. To summarize, crucial for these techniques are the two following ingredients:

1. The reduced graph (G′, π′) and a generating set for the reduced parts ker(p) can be
efficiently computed from (G, π) (the reduction step).

2. The set of lifts S ′ can be efficiently computed from a given generating set ⟨S⟩ =
Aut(G′, π′) of the automorphism group of the reduced graph (the lifting step).

5.3 Automorphism-Preserving Reductions

Let us first discuss reductions which preserve all automorphisms, i.e., the cases in which
the lift is trivial.

5.3.1 Color Refinement and Discrete Vertices

The first step in our procedure is to apply color refinement, and in turn reduce discrete
vertices from the graph. It should be noted that this step is a prerequisite for most of
the following routines: subsequent routines often rely on the fact that the given vertex
coloring is equitable.

Color Refinement. Recoloring a graph (G, π) with the coarsest equitable coloring pre-
serves all the symmetries of the graph (see Section 2.3). Thus, this a correct way of
preprocessing the graph. In fact, we may even use non-canonical color refinement (see
Section 4.4.4).

Singleton Vertices. Recall that singleton vertices are those vertices v of (G, π) with a
color class size of 1, i.e., |π−1(π(v))| = 1. Since automorphisms must be color-preserving,
for all automorphisms φ ∈ Aut(G, π) and all singletons v of (G, π) it holds that φ(v) = v.
Indeed, it is easy to see that we may just remove them from the graph entirely, and this
operation preserves the automorphism group of the graph.
Let Vd denote the set of singleton vertices of (G, π). Consequently, we reduce G to

induced subgraph G′ := G[V (G)∖ Vd], and π to the restriction π′ := π|V (G)∖Vd
. It is easy

to see that Aut(G, π)|V ′ = Aut(G′, π′) holds, and Aut(G′, π′) lifted to the identity on Vd
is Aut(G, π).

114

5.4 Lifts based on Vertices

5.3.2 Quotient Graph Flips

Let us assume (G, π) is our graph of consideration. We describe how to flip edges between
color classes. Let C1, C2 be two distinct color classes of π. Essentially, if π is equitable,
these are two nodes of Q(G, π). Assume they are connected by m edges. The maximum
number of edges between C1 and C2 is |C1||C2|. If m > |C1||C2|/2, we can flip every edge
to a non-edge, and every non-edge to an edge, reducing the total number of edges in the
graph. Formally, we transform (G, π) into (G′, π) for an edge flip between color classes C1

and C2 of π. We let V (G′) := V (G). For the edges, we define

E(G′) := {(v1, v2) | (v1, v2) ∈ E(G),¬(v1 ∈ C1 ∧ v2 ∈ C2) ∧ ¬(v1 ∈ C2 ∧ v2 ∈ C1)}
∪ {(v1, v2) | v1 ∈ C1, v2 ∈ C2, v1 ̸= v2, (v1, v2) ̸∈ E(G)}
∪ {(v2, v1) | v1 ∈ C1, v2 ∈ C2, v1 ̸= v2, (v1, v2) ̸∈ E(G)}

Since this operation is isomorphism-invariant and reversible, the automorphism group
of the graph does not change. We record this fact in the following lemma.

Lemma 68. Let (G, π) be a vertex colored graph, and C1 and C2 two (not necessarily
distinct) color class of (G, π). Let (G′, π) denote the graph obtained having performed the
edge flip between C1 and C2. It then holds that Aut(G, π) = Aut(G′, π).

Proof. Let φ ∈ Aut(G, π). Assume towards a contradiction φ ̸∈ Aut(G′, π) . Since the
vertex colorings of the considered graphs are identical, φ is color-preserving. Hence, there
is an edge (v1, v2) ∈ E(G′) such that (v1, v2)

φ ̸∈ E(G′). Since we only manipulated edges
between vertices of C1, C2, we can assume without loss of generality v1 ∈ C1 and v2 ∈ C2.
Due to our construction, we can conclude (v1, v2) ̸∈ E(G) and (v1, v2)

φ ∈ E(G). Hence, φ
does not respect the edge relation of G, a contradiction to the assumption φ ∈ Aut(G, π).
The other direction follows analogously.

5.4 Lifts based on Vertices

Let us now turn to graph reductions which may require a non-trivial lift. During prepro-
cessing, some parts removed from the original graph might be symmetrical to (i.e., in the
same orbit as) other parts of the graph. So, after symmetries of the reduced graph have
been computed, we need to lift the reduced graph’s symmetries back to symmetries of
the original graph. In particular, the lifted symmetries must map all the removed parts
correctly. These reductions are facilitated by a general technique to lift automorphisms,
called the canonical representation strings. We begin by introducing canonical represen-
tation strings, followed by a description of how they can be used to lift automorphisms.

Canonical Representation Strings. To simplify the lifting of symmetries we introduce
representation strings associated with the remaining vertices. These encode the nature
(i.e., the “isomorphism type”) of the vertices that were removed. The encoding is stored
in the color of a suitable vertex that remains. If a remaining vertex is then mapped to

115

Chapter 5 – Preprocessing

another vertex, the corresponding subgraphs represented by the strings are then mapped
to each other in a canonical way.
We define this process formally through a representation mapping R : V 7→ V ∗ from the

vertices to sequences of vertices as follows. Assume we have a graph (G, π) := ((V,E), π)
which is reduced to (G′, π) := ((V ′, E ′), π′) with V ′ ⊆ V and E ′ ⊆ E. We require the
following:

1. It holds that R(v) := vS with S ∈ V ∗ for all v ∈ V ′, i.e., each remaining vertex
must represent itself first.

2. It holds that R(v) := ϵ for all v ∈ V ∖ V ′, i.e., a removed vertex does not represent
any vertex.

3. For each deleted vertex v ∈ V ∖ V ′ there is at most one v′ ∈ V ′ and at most one
i ∈ N such that v := R(v′)i, i.e., each deleted vertex is represented by at most one
remaining vertex, once.

Automorphism Group Lift. We explain how canonical representation strings can be
used to lift automorphisms from the reduced graph to the original graph. We use our
dense-sparse encoding of automorphisms, as was introduced in Section 2.2.3. A global
dense-sparse encoding is maintained as the identity, and algorithms write automorphisms
to this data structure whenever necessary. In turn, this automorphism is either utilized
or presented as an output to the user and lastly reset back to the identity.
For each automorphism of the remaining graph φ ∈ Aut(G′), we now define its lifted

bijection φR ∈ Sym(V). First, we require that

|R(v)| = |R(vφ)|

holds for every v ∈ V ′, otherwise we can not construct a lifted bijection. We define

φR(v) :=

vφ if v ∈ V ′

R(v′φ)i if v = R(v′)i for v′ ∈ V ′, i ∈ N
v if v ̸= R(v′)i for all v′ ∈ V ′, i ∈ N.

Using a canonical representation mapping R and a dense-sparse automorphism encod-
ing, automorphisms of a reduced graph G′ can be efficiently lifted to automorphisms of
the original graph G. Indeed, lifts can be computed in time (and in space) linear in the
size of the support of the lift, by replacing vertices by their represented strings. This
procedure is described in more detail in Algorithm 20.

Description of Algorithm 20. The algorithm reads as input a permutation φ and canon-
ical representation strings R. An auxiliary dense-sparse permutation data structure φ′

is assumed to be set to the identity. The algorithm, in turn, constructs φR in the data
structure φ′. Then, φR is presented as an “output” to the user or further routines, and
finally reset to the identity.

116

5.4 Lifts based on Vertices

Algorithm 20: Lift permutation according to canonical representation strings.

1 function LiftAutomorphisms
Input: ➢ canonical representation strings R

➢ dense-sparse permutation φ
Output: ➢output φR using φ′

Auxiliary: ✏ dense-sparse permutation φ′, where φ′ = id
2 // using dense-sparse permutation, we can iterate the support

3 for (each vertex v in supp(φ))
4 // map repr. string of v to repr. string of vφ

5 foreach i ∈ {0, . . . , |R(v)| − 1} do
6 // map vertices accordingly...

7 Permφ′(R(v)[i]) := R(φ(v))[i];
8 // ...but also maintain the support

9 if R(v) ̸= R(φ(v)) then append R(v)[i] to Suppφ′ ;

10 present φ′ as output to the user;
11 reset φ′;

Runtime of Algorithm 20. By a simple inspection of Algorithm 20, it follows that given
φ ∈ Aut(G′), the algorithm runs in worst-case time O(| supp(φR)|).

We note that by definition, canonical representation mappings can be chained, i.e.,
if we reduce a graph G multiple times, we can simply apply the respective canonical
representation mappings in reverse until we reach an automorphism of G. We can even
rewrite chained canonical representation mappings into a single map by essentially com-
posing the functions. (More accurately, we have to interpret strings of strings as simple
strings using concatenation.)
We want to remark that in the implementation, we use one canonical representation

mapping to keep track of all removed vertices. In addition to acting as a global canonical
representation mapping, we also allow a renaming of vertices, which enables us to map
all remaining vertices into the interval {0, 1, . . . , n− 1}, whenever n vertices remain.

Let us remark that often canonical representations in fact ensure that lifted supports
are as small as possible. We say that a representation mapping R respects kernel orbits
if it has the property that v1 ∈ R(v) ⇔ v2 ∈ R(v) whenever v1 and v2 are in the same
orbit of ker(p). All representations we describe subsequently respect kernel orbits.

Fact 69. If R respects kernel orbits then p(ψ) = φ implies that | supp(φR)| ≤ | supp(ψ)|.

In the following sections, we describe reduction rules based on canonical representation
strings.

5.4.1 Degree 0

Preprocessing vertices of degree 0 (and analogously n − 1) is simple. The algorithm
detects and treats color classes solely consisting of vertices of degree 0, one class at a

117

Chapter 5 – Preprocessing

Algorithm 21: Preprocess degree 0 vertices of a given graph.

1 function PreprocessDeg0
Input: ➢ graph G

➢ equitable coloring π of G
Output: ➢removes degree 0 vertices from G

➢generators for all the removed degree 0 vertices
Auxiliary: ✏ dense-sparse permutation φ′, where φ′ = id

2 for (each color c in π(V (G)))
3 pick arbitrary vertex v of color c;
4 if deg(v) = 0 then
5 for (each vertex v′ in π−1(c) with v ̸= v′)
6 output generator (vv′) using φ′;
7 reset φ′;

8 remove vertices π−1(c) from G;

time. We let V ′ be the set of vertices of degree larger than 0. By simply removing
vertices of degree 0 and not representing them in R at all, R indeed defines a canonical
representation mapping. The procedure is described in Algorithm 21.

Description of Algorithm 21. The kernel ker(p) of the restriction p onto V ′ is computed
as follows. For each color class of degree 0 vertices in (G, π) we output generators for the
symmetric group on the class.

Runtime of Algorithm 21. The algorithm can be implemented to run in time O(|π|+
n0), where n0 refers to the number of vertices of degree 0 in the graph.

We note that loop of Line 5 describes how to output the generators for a natural
symmetric action on a set of vertices. In the following, we just refer to this operation as
producing the generators for a natural symmetric action.

5.4.2 Twins

Two vertices v, v′ ∈ V (G) are called true twins, whenever they have the same neighbor-
hood in G, i.e., N(v) = N(v′) holds. Similarly, two vertices v, v′ ∈ V (G) are called false
twins, whenever they have the same closed neighborhood in G, i.e., N [v] = N [v′] holds.
For a vertex colored graph (G, π), let us further require that twins must be of equal
color, i.e., π(v) = π(v′) must hold in addition to the above definition. For both true and
false twins, it follows immediately that there is an automorphism φ ∈ Aut(G, π) that
interchanges v and v′. Specifically, the automorphism may map φ(v) = v′ and φ(v′) = v,
and be the identity everywhere else.
Using a folklore partition-refinement approach, the partition of all true or false twins

of a graph can be determined in time O(n + m): we initialize a partition-refinement
structure to the coloring π, and refine it with respect to the open (closed) neighborhood

118

5.4 Lifts based on Vertices

of every vertex in G. The partitioning in turn corresponds to equivalence classes of true
(false) twins. (This process can be terminated early, whenever the partitioning becomes
discrete.) For our graph reduction, we then remove all but one of the vertices in each
equivalence class. We output generators for a natural symmetric action on each class of
twins. The remaining vertex is colored with a color indicating its original color as well
as the size of its twin class.
Let us describe and argue correctness of the procedure formally. We do so for true

twins, but the arguments follow analogously for false twins. Observe that being true
twins defines an equivalence relation t on the vertices of a graph. We refer to T = [v]t for
some v ∈ V (G) as an equivalence class of true twins. In turn, V (G) can be partitioned
into equivalence classes of true twins. For every equivalence class of true twins, we define
an (arbitrary) canonical representative r(T).
Given a graph (G, π), let us define the reduced graph (G′, π′). We define V ′ =
{r([v]t) | v ∈ V (G)}. The reduced graph G′ is then the induced subgraph G′ = G[V ′]. To
ease notation, our coloring π′ will map vertices to tuples: a tuple consists of a color of π,
the original color of the vertex, as well as the size of their equivalence class. Formally,
π′(v) := (π(v), |[v]t|). Every remaining vertex represents its equivalence class of twins,
i.e., for v ∈ V ′ we let

R(v) := v([v]t ∖ {v}).
We observe that the reduction is indeed not symmetry-preserving, due to the fact that

symmetries of the equivalence classes of twins themselves, in particular those which map
the canonical representative, are not preserved. However, we argue correctness of the
reduction below.
Let ⟨S⟩ = Aut(G′, π′) and S ′ be the respective generating set lifted using R. We argue

that the original automorphism group Aut(G, π) is generated by S ′, and Sym(T) for each
equivalence class of twins T .

Lemma 70. Let (G′, π′) be the graph obtained by the reduction of true twins from (G, π),
and R the canonical representation strings. Let ⟨S⟩ = Aut(G′, π′), and S ′ := {φR | φ ∈
S} be the respective generating set lifted using R. It then holds that

Aut(G, π) = ⟨S ′ ∪ {Sym([v]t) | v ∈ V (G)}⟩.

Proof. Observe that if vφ = v′ holds, then |[v]t| = |[v′]t| follows. Hence, the coloring of
(G′, π′) does not restrict any automorphism of (G, π).
Assume φ ∈ ⟨S ′ ∪ {Sym([v]t) | v ∈ V (G)}⟩. First, assume φ ∈ Sym([v]t) for some

v ∈ V (G). Clearly, since all vertices of [v]t are twins in (G, π), φ ∈ Aut(G, π) follows.
Let us now consider the case φ ∈ S ′. Let (v1, v2) ∈ E(G). Clearly both [v1]t ̸= [vφ1]t and
[v2]t ̸= [vφ2]t must hold, since the statement follows trivially for true twins. Furthermore,
we know |[v1]t| = |[vφ1]t| and |[v2]t| = |[vφ2]t| hold. Consider the edge (r([v1]t), r([v2]t)) ∈
E(G′). By construction of the lift using R, it follows that (r([v1]t), r([v2]t))

φ ∈ E(G′)
holds. We recall that v1 and r([v1]t), as well as v2 and r([v2]t) are true twins. Therefore,
(v1, v2)

φ ∈ E(G) holds.
For the other direction, assume φ ∈ Aut(G, π). We observe that the equivalence classes

of twins must be (set-wise) preserved by φ. All automorphisms mapping these equivalence

119

Chapter 5 – Preprocessing

classes onto each other can be recovered using S ′. Any desired ordering of the equivalence
classes themselves can be recovered using {Sym([v]t) | v ∈ V (G)}.

5.4.3 Degree 1

Exhaustively removing all vertices of degree 1 essentially removes all tree-like appendages
from graphs. Fast algorithms for tree isomorphism have been known for decades [1].
Moreover, it is well-known that applying color refinement produces the orbit partitioning
on these tree-like appendages – with the notable exception of not determining whether
the roots of these appendages are in the same orbit or not (see [63]).
We remove degree 1 vertices recursively. Let (G, π) be a graph that contains degree

1 vertices, where π is required to be equitable. We describe (G′, π′) and R, where we
remove a color class of degree 1 vertices. Let C denote such a color class of degree 1
vertices. Since the coloring is equitable, all neighbors of vertices of C are in the same
color class P . In case P = C we have connected components of size 2. This case can be
handled similar to the reduction of degree 0 vertices, so we assume P ̸= C.
We partition C into classes C1, . . . , Cm where c ∈ Ci is adjacent to pi ∈ P . For the

representation mapping, we set R(pi) := piCi (where Ci may appear in arbitrary order).
We set G′ := G[V (G)∖ {C}]. Again, the coloring π is simply reduced to the domain of
G′, i.e., π′ := π|V (G′).
We collect the following properties of the reduction.

Lemma 71. Let (G′, π′) be the graph obtained by the reduction of a color class of degree
1 vertices C from (G, π). Let R denote the respective canonical representation strings.
The following hold true.

1. The coloring π′ is equitable on G′.

2. The reduction is symmetry-preserving and symmetry-lifting, i.e.,

Aut(G, π)|V ′ = Aut(G′, π′)

holds.

3. Let p denote the natural homomorphism which corresponds to the reduction. Let
C1, . . . , Cm denote the partition of C, where c ∈ Ci is adjacent to pi ∈ P . The
kernel ker(p) is the direct product of the symmetric group Sym(Ci) for each i ∈
{1, . . . ,m} (and points outside C are fixed).

4. Let ⟨S⟩ = Aut(G′, π′), then S ′ := {φR | φ ∈ S} satisfies S ′ ⊆ Aut(G, π) and
p(S ′) = S.

Proof. For claim (1), observe that we only remove the color class C from G, all neighbors
of which are in color class P . Since we remove all vertices of the color class C, no further
split of P becomes possible. Hence, π′ is equitable.

120

5.4 Lifts based on Vertices

For claim (2), Aut(G, π)|V ′ ⊆ Aut(G′, π′) immediately follows from the fact that we
simply remove an entire color class. For the other direction, assume φ ∈ Aut(G′, π′).
Since π is equitable, observe that the color of each p ∈ P encodes the number of children
in C that were removed, i.e., each p ∈ P must have the same number of neighbors
(children) in C In particular, for each p ∈ P , we removed the same number of degree 1
children of color C. Hence, we can simply lift φ to an automorphism of Aut(G, π) by
mapping the children of each p and p′ accordingly. Note that this is formally described
by φR.

Claim (3) follows by a simple inspection: if an automorphism φ ∈ Aut(G, π) maps
v, v′ ∈ C as φ(v) = v′, but N(v) = {p} and N(v′) = {p′} with p ̸= p′ holds, then
φ(p) = p′ follows. Hence, φ ̸∈ ker(p).

For claim (4), for φ ∈ Aut(G′, π′), as discussed above, we observe that φR simply lifts
mappings of the parents to their respective children. Hence, φR ∈ Aut(G, π) follows
immediately. Moreover, since φR|V (G′) = φ holds, the claim follows.

The process can then be repeated until all vertices of degree 1 are removed. (Observe
that iteration is enabled by the first claim of Lemma 71.) A sketch of the iterated
procedure can be found in Algorithm 22. Correctness of the algorithm follows from an
iterated application of the above reduction and Lemma 71.

5.4.4 Degree 2 with Unique Endpoints

If we were to allow graphs produced by our preprocessor to contain directed, colored
edges, there is a simple reduction that removes all vertices of degree 2: we may encode
the multiset of paths between two vertices v1 and v2 with deg(vi) ≥ 3 whose internal
vertices all have degree 2 as one directed, colored edge between v1 and v2 (see also [62,
Proof of Lemma 15]).

There are, however, drawbacks to this approach: most solvers do not implement di-
rected and colored edges. Since we want our preprocessor to be compatible with all
modern solvers, this immediately disallows the use of directed, colored edges. Even when
they do, using directed and colored edges comes at the price of additional overhead [94].
Intuitively, while removing all degree 2 vertices can cause a significant size-reduction,
some of the complexity of the removed path is only “shifted” into the color encoding
of the edges. In turn, we require refinements to take into account edge colors. This
complicates color refinement, the central subroutine.

For these reasons, if possible, we prefer to remove degree 2 vertices in a way that does
not require the introduction of directed or colored edges. We describe particular settings
in which this is possible.

Non-branching paths with unique endpoints. We describe a heuristic which we found
to be often applicable in practical data sets. It encodes paths with internal vertices of
degree 2 that run between two color classes by a set of edges connecting the endpoints
directly. However, it only does so if the set of paths can be reconstructed unambiguously

121

Chapter 5 – Preprocessing

Algorithm 22: Preprocess degree 1 vertices of a given graph.

1 function PreprocessDeg1
Input: ➢ graph G

➢ equitable coloring π of G
Output: ➢removes degree 1 vertices from G

➢generators for kernel of the reduction
Auxiliary: ✏ dense-sparse permutation φ′, where φ′ = id

2 // maintain a worklist on S
3 initialize empty stack S;

4 // find the colors with degree 1
5 for (each color c in π(V (G)))
6 pick arbitrary vertex v of color c;
7 if deg(v) = 1 then
8 push c to S;

9 // continue as long as the worklist is not empty...

10 while stack S non-empty do
11 pop c from S;

12 // vertices of c are essentially the leaves of a tree

13 pick arbitrary vertex v of color c;
14 if deg(v) = 1 and π(v) ̸= π(v′) where v ∼ v′ then
15 // which of these leaves have the same parent?

16 make a partition ξ of π−1(c) such that ξ(v) = ξ(v′) iff N(v) = N(v′);

17 // for leaves with same parent, output symmetric action

18 for (each part x of ξ)
19 write generator for symmetric action on ξ−1(x) to φ′;
20 output lift φ′

R;
21 reset φ′;

22 for (each part x of ξ)
23 // all vertices of ξ−1(x) have the same parent

24 let p be parent of ξ−1(x);

25 // add the leaves to representation string of their

parent

26 for (each v in π−1(x))
27 append R(v) to R(p);
28 R(v) := ϵ;

29 // now remove all these leaves

30 remove π−1(c) from G;
31 // the parents might have degree 1 now

32 put parent color c′ on stack S;

122

5.4 Lifts based on Vertices

Y

C2

C1

X

(a) Unique endpoints.

Y

C ′
1

C1

X

(b) Obfuscated matching.

Y

C2

C1

X

(c) Obfuscated edge flip.

Figure 5.2: Reducible degree 2 patterns.

from the set of edges. In particular, the inserted edges may not interfere with existing
edges.
Let (G, π) denote our graph of interest. We consider color classes of π. We detect paths

of length t between distinct color classes X and Y whose internal vertices have degree 2.
In each vertex of X exactly one such path should start (see Figure 5.2a). More formally,
suppose X = C0, C1, . . . , Ct, Ct+1 = Y are color classes of π so that

1. vertices in X do not have neighbors in Y ,

2. for i ∈ {1, . . . , t} vertices in Ci have degree 2,

3. for i ∈ {1, . . . , t} vertices in Ci have a neighbor in Ci−1 and Ci+1,

4. and every node in X has exactly one neighbor in C1.

If the above requirements are satisfied, we say that X = C0, C1, . . . , Ct, Ct+1 = Y is a set
of paths with a unique endpoint in X. Then, we define the reduced graph G′ = (V ′, E ′)
via V ′ := V ∖ (C1 ∪ · · · ∪ Ct) and E

′ := E(G[V ′]) ∪ E ′′, where E ′′ consists of pairs (x, y)
for which there is a path (x, c1, . . . , ct, y) with ci ∈ Ci. The corresponding representation
map is R(x) = xc1c2 · · · ct, where (x, c1, . . . , ct, y) is the unique path from x to some
vertex y ∈ Y with ci ∈ Ci.
Note that the newly introduced edges E ′′ form a biregular bipartite graph between X

and Y in which vertices of X have degree 1. It is not difficult to check that this yields a
canonical representation map that respects kernel orbits.

Lemma 72. Let (G′, π′) be the graph obtained when reducing the set of paths X =
C0, C1, . . . , Ct, Ct+1 = Y with a unique endpoint in X from (G, π). Let R denote the
respective canonical representation strings. The following hold true.

1. The reduction is symmetry-preserving and symmetry-lifting, i.e.,

Aut(G, π)|V ′ = Aut(G′, π′)

holds.

2. Let p denote a natural homomorphism which corresponds to the reduction. The
kernel of p is trivial, i.e., ker(p) = {id}.

123

Chapter 5 – Preprocessing

3. Let ⟨S⟩ = Aut(G′, π′), then S ′ := {φR | φ ∈ S} satisfies S ′ ⊆ Aut(G, π) and
p(S ′) = S.

Proof. For claim (1), let us first assume φ ∈ Aut(G, π)|V ′ . Clearly, φ respects the edge
relation of G′ for all edges not connecting the vertices of X and Y . For the edges between
X and Y , observe that each edge corresponds to a unique, removed path of G. Since
φ respects these paths, it also respects the edge relation between X and Y . The other
direction is analogous: since X and Y are not adjacent in G, the edges of G′ only need
to ensure that automorphisms respect the paths in G.
For claim (2), observe that an automorphism mapping any path p to another path

p′, must map the corresponding endpoints in X onto each other. Hence, there are no
automorphisms in the kernel.
For claim (3), observe that φ ∈ Aut(G′, π′) determines how the paths have to be

mapped by determining φ(X). In turn, φR simply lifts the mapping of X to a mapping
of the paths. Both claims follow immediately.

Moreover, it is easy to check that if π is equitable, then π′ is equitable after application
of the reduction.

Obfuscated Matchings. The preprocessor has special fast code for the particular case
in which |X| = |Y |. In this case E ′′ encodes a perfect matching between X and Y .
A slight extension of the technique checks for other choices of Ci whether they also

satisfy the required properties and yield exactly the same matching E ′′. In fact, if there
is another matching via color classes C ′

1, . . . , C
′
t′ between X and Y which encodes E ′′ ,

we also delete vertices in the C ′
i (see Figure 5.2b). The special purpose code uses arrays

and can efficiently check whether matchings coincide. We should mention that in the
implementation, we only perform the check for paths of length t = 1 for obfuscated
matchings. It turns out that the special case of t = 1 and in fact multiple such paths
encoding the same matching is quite common, in particular on MIP and SAT benchmarks.

5.5 Lifts based on Edges

Edge Representation Strings. We introduce an extension of representation strings,
which are associated with the remaining edges. We define this extension formally by an
edge representation mapping E : V × V 7→ V ∗, which maps an edge of the remaining
graph to a sequence of vertices of the original graph. Assume we have a graph (G, π) :=
((V,E), π) which is reduced to (G′, π) := ((V ′, E ′), π′) with V ′ ⊆ V and E ′ ⊆ E. We
require the following:

1. It holds that E(v1, v2) = ϵ for all v1 ∈ V ∖ V ′ or v2 ∈ V ∖ V ′, i.e., a removed edge
does not represent any vertex.

2. For each deleted vertex v ∈ V ∖ V ′ there is at most one (v1, v2) ∈ V ′ × V ′ and at
most one i ∈ N such that v = E(v1, v2)i, i.e., each deleted vertex is represented by
at most one remaining (directed) edge, once.

124

5.5 Lifts based on Edges

Automorphism Group Lift. We extend our automorphism group lift to lift automor-
phisms from the reduced graph to the original graph. For each automorphism of the
remaining graph φ ∈ Aut(G′, π′) we define its lifted bijection φE ∈ Sym(V). Again, we
require that

|E(v1, v2)| = |E(vφ1 , vφ2)|
holds for every φ ∈ Aut(G′, π′) and (v1, v2) ∈ V ′ × V ′, otherwise we can not construct a
lifted bijection. We define

φE(v) :=

φ(v) if v ∈ V ′

E(vφ1 , vφ2)i if v = E(v1, v2)i for (v1, v2) ∈ V ′ × V ′, i ∈ N
v if v ̸= E(v1, v2)i for all (v1, v2) ∈ V ′ × V ′, i ∈ N.

Observe that technically, the “edges” used by E need not correspond to the actual re-
maining edges in the reduced graph.
In the implementation, we store edge representation maps as a sparse graph (see Sec-

tion 2.2.2) on the original vertices of the graph. This enables the implementation to
efficiently look up edge representation maps incident to vertices in the support of a given
permutation.

5.5.1 Degree 2 and Edge Flips

Another case that can be handled efficiently and is not covered by previous techniques is
where color classes X and Y (X ̸= Y) are connected by |X||Y | equally-colored, unique
paths. In this case, each vertex x ∈ X is connected to all y ∈ Y by a path (see Figure 5.2c).
It is easy to see that deleting all such paths is both symmetry preserving and symmetry
lifting. Observe that this is strongly related to the edge flip described in Section 5.3.2.
Formally, suppose X = C0, C1, . . . , Ct, Ct+1 = Y are distinct colors so that

1. for i ∈ {1, . . . , t} vertices in Ci have degree 2,

2. for i ∈ {1, . . . , t} vertices in Ci have a neighbor in Ci−1 and Ci+1, and

3. every node in X has exactly |Y | neighbors in C1, where the corresponding paths
end in all y ∈ Y .

The technique in turn removes all C0, C1, . . . , Ct from the graph. Given a graph (G, π),
we define the reduced graph for a given potential edge flip X = C0, C1, . . . , Ct, Ct+1 = Y .
We define the reduced graph G′ = G[V ∖ (C1∪ · · ·∪Ct)], and π

′ is restricted accordingly.
For each pair x ∈ X and y ∈ Y , let (x, c1, . . . , ct, y) denote the unique path connecting
x to y. The corresponding edge representation map is E(x, y) = c1c2 · · · ct. We argue
correctness of the reduction.

Lemma 73. Let (G′, π′) be the graph obtained by reducing the edge flip

X = C0, C1, . . . , Ct, Ct+1 = Y

in (G, π). Let E denote the respective edge representation strings. The following hold
true.

125

Chapter 5 – Preprocessing

1. The reduction is symmetry-preserving and symmetry-lifting, i.e.,

Aut(G, π)|V ′ = Aut(G′, π′)

holds.

2. Let p denote a natural homomorphism which corresponds to the reduction. The
kernel of p is trivial, i.e., ker(p) = {id}.

3. Let ⟨S⟩ = Aut(G′, π′), then S ′ := {φE | φ ∈ S} satisfies S ′ ⊆ Aut(G, π) and
p(S ′) = S.

Proof. For claim (1), Aut(G, π)|V ′ ⊆ Aut(G′, π′) follows immediately since we are simply
removing a union of color classes from the graph. Observe that C1, . . . , Ct does not restrict
any permutation of X and Y , and is analogous to a homogeneous connection of X and
Y (compare with Lemma 68). Hence, all φ ∈ Aut(G′, π′) correspond to a symmetry of
Aut(G, π), by lifting the mapping of the endpoints to the paths, as is described formally
by φE .
For claim (2), observe that an automorphism mapping any path p to another path p′,

must map the corresponding endpoints in X and Y onto each other. Since there are
no two paths which have the same endpoint in X and Y , it follows that there are no
automorphisms in the kernel.
For claim (3), observe that φ ∈ Aut(G′, π′) determines how the paths have to be

mapped by determining φ(X) and φ(Y): assume a symmetry maps x ∈ X to x′ ∈ X and
y ∈ Y to y′ ∈ Y . This just means that in the lift, we need to map the path connecting
x to y to the path connecting x′ to y′. This matches the definition of φE . Both claims
follow immediately.

Observe that indeed, canonical representation strings are not sufficient to express the
lift: we need to determine how C0, C1, . . . , Ct are mapped, and this depends on both the
vertices of X and Y .

5.5.2 Degree 2 Densification

As a last resort, we use a technique which “summarizes” the out-going paths of a particu-
lar color from a vertex into an additional hub vertex. Figure 5.3 illustrates the technique.
The technique works without many of the requirements necessary for the previous tech-
niques. However, while it is still able to substantially reduce the size of graphs, compared
to the other techniques, it is the least efficient in doing so. Another technicality is that
it introduces new vertices which means we need to alter our framework slightly in or-
der to argue correctness. Let us first describe the technique in more detail. Formally,
suppose X = C0, C1, . . . , Ct, Ct+1 = Y are distinct colors so that

1. for i ∈ {1, . . . , t} vertices in Ci have degree 2,

2. for i ∈ {1, . . . , t} vertices in Ci have a neighbor in Ci−1 and Ci+1, and

126

5.5 Lifts based on Edges

3. if (x, c1, . . . , ct, y) is a path where ci ∈ Ci, then there is no distinct path

(x, c′1, . . . , c
′
t, y) ̸= (x, c1, . . . , ct, y)

connecting endpoints x and y.

If these requirements are met, we call X = C0, C1, . . . , Ct, Ct+1 = Y a set of distinct
paths.
Given a graph (G, π), we define the reduced graph (G′, π′) for a given set of distinct

paths X = C0, C1, . . . , Ct, Ct+1 = Y . Let us first define the set of hub vertices H :=
{hx | x ∈ X}, and we require that the names of vertices H are fresh, i.e., H ∩ V (G) = ∅.
Hence, with each x ∈ X we associate a new hub vertex hx ∈ H. Let us now formally
define the reduced graph. The vertex set is

V ′ := (V ∪H)∖ (C1 ∪ · · · ∪ Ct),

i.e., we remove paths but introduce the hub vertices H. On vertices V ′∩V , π′ is restricted
accordingly, and hub vertices H receive a fresh color not appearing in π. In other words,
H is a color class in π′. For each pair x ∈ X and y ∈ Y , let (x, c1, . . . , ct, y) denote the
unique path connecting x to y, where ci ∈ Ci. The edge set is

E ′ := E(G[V ′ ∖H]) ∪ {(hx, x) | x ∈ X} ∪ {(x, hx) | x ∈ X} ∪ E ′′.

E ′′ includes (hx, y) (and (y, hx), respectively) for each hx ∈ H and y ∈ Y , if and only
if there is a path (x, c1, . . . , ct, y) in G. The corresponding edge representation map
is E(hx, y) = c1c2 · · · ct.
For the lift, we remove the vertices of H from the symmetry but otherwise simply

apply E . We argue correctness of the reduction, by slightly altering our definitions of
Section 5.2.

Lemma 74. Let (G′, π′) be the graph obtained by reducing the set of distinct paths X =
C0, C1, . . . , Ct, Ct+1 = Y in (G, π). Let E denote the respective edge representation strings.
The following hold true.

1. It holds that

Aut(G, π)|V ′∖H = Aut(G′, π′)|V ′∖H .

2. The restriction from V to V ′ ∖H is a natural homomorphism

p : Aut(G, π)→ Aut(G′, π′)|V ′∖H .

The kernel of p is trivial, i.e., ker(p) = {id}.

3. Let ⟨S⟩ = Aut(G′, π′), then S ′ := {φE | φ ∈ S} satisfies S ′|V ⊆ Aut(G, π) and
p(S ′|V) = S|V ′∖H .

127

Chapter 5 – Preprocessing

Y

C2

C1

X

(a) Colors without duplicate paths.

Y

H

X

(b) Reduced using hub vertices.

Figure 5.3: Example for degree 2 “densification” strategy, which introduces a hub vertex
to summarize the out-going paths of a particular vertex.

Proof. For claim (1), we simply observe that any automorphism of G must respect the
edge relation of the set of distinct paths, whereas automorphisms of G′ must respect the
edge relation between color class X and H – a matching – and between Y and H, which
encodes precisely the set of paths in G. The claim follows.

For claim (2), observe that an automorphism mapping any path p to another path p′,
must map the corresponding endpoints in X and Y onto each other. Since there are
no two paths which have the same endpoint in X and Y , it follows that there are no
automorphisms in the kernel.

For claim (3), observe that φ ∈ Aut(G′, π′) determines how the paths have to be
mapped by determining φ(H) and φ(Y): assume a symmetry maps hx ∈ H to hx′ ∈ H
(which implies x ∈ X is mapped to x′ ∈ X) and y ∈ Y to y′ ∈ Y . This just means that
in the lift, we need to map the path connecting x to y to the path connecting x′ to y′.
This matches the definition of φE .

5.6 Further Techniques

We discuss a few further techniques, which are currently not implemented within the
preprocessor.

5.6.1 Non-uniform Components

Consider the quotient graph Q = Q(G, π) of a graph G with respect to an equitable
vertex coloring π. The (weakly) connected components of Q partition the vertex set
of G into parts that are homogeneously connected. This allows us to treat components
independently:

Lemma 75. If D1, . . . , Dt denote the represented vertices of the connected components
of the quotient graph Q(G, π), then

Aut(G, π) = Πt
i=1 Aut((G, π)[Di]).

128

5.7 High-level Algorithm of the Preprocessor

By flipping edges between two color classes we can only ever shrink the components
of Q(G, π). It is therefore beneficial to first exhaustively flip edges and then consider
connected components (see also [63]).
These types of components have previously been employed for isomorphism and auto-

morphism testing [45, 59]. (In these contexts flips are not employed but rather edges in
the quotient graph are characterized by non-homogeneous connections, which is equiva-
lent.)
Regarding the implementation, we compute the connected components of the quo-

tient graph without explicitly computing the quotient graph. We first perform edge flips
for all fully connected color classes, i.e., whenever the number of edges between C1, C2

equals |C1||C2|. Then, we modify a basic algorithm for computing connected components
as follows: usually, the algorithm determines for a vertex v its neighborhood N(v) and
adds this neighborhood to the connected component of v. Our modification simply also
adds π−1π(v) in addition to N(v) (i.e., it adds entire color classes). In turn, the algorithm
gives us a partition of the vertices into the components of the quotient graph.
Using non-uniform components, we can therefore partition the initial symmetry detec-

tion problem into several independent problems. Therefore, the technique can be used
to make several independent solver calls. Usually, only one component is left, or there is
one very large component and several smaller ones. On some practical graphs however,
the technique can be quite effective.
It should be noted that in the implementation, the routine is not implemented as part

of the preprocessor, but rather as part of the dejavu algorithm (see Chapter 6).

5.6.2 Probing

The initial publication of the preprocessor featured a technique called probing [7]. Using
IR, the probing strategy only searches for automorphisms that can be used directly to
reduce the graph. The idea is as follows. For a color class that we want to reduce, we
attempt to collect automorphisms that transitively permute all the vertices in the entire
color class. This certifies that the color class is an orbit. We can then individualize an
arbitrary vertex of the color class. (In contrast, if we only have some automorphisms that
together do not act transitively on the color class, it is not clear how to manipulate the
graph favorably.) The probing strategy only attempted to detect automorphisms that
can be determined “early” using IR (see Section 4.4.5).
The technique is particularly effective for nauty, bliss, and Traces. However, in

the current version of dejavu, we found that the technique is, typically, less efficient
than the combined DFS and compressed Schreier strategy (see Section 6.3.1). Hence, the
current version of the preprocessor does not feature probing.

5.7 High-level Algorithm of the Preprocessor

We now describe when and how the preprocessor combines the techniques described in
the previous sections.

129

Chapter 5 – Preprocessing

The first step of the preprocessor is to apply non-canonical color refinement to produce
an equitable coloring. The coloring remains equitable throughout the entire algorithm.
We also continuously remove singletons. Beyond this, the implementation allows the user
to freely specify a schedule for the various techniques.
The default schedule is as follows. We remove vertices of degree 0 and 1 (Section 5.4.1

and Section 5.4.3), apply edge flips (Section 5.3.2), and possibly repeat removing vertices
of degree 0 or 1. Then, we remove true and false twins (Section 5.4.2). If some true or
false twins were indeed removed, we restart the schedule from the beginning. Lastly, we
apply the heuristics described for vertices of degree 2: first, checking for matchings (Sec-
tion 5.4.4), then unique endpoints (Section 5.4.4), followed by edge flips (Section 5.5.1),
and lastly the densification heuristic (Section 5.5.2).
The lemmas provided throughout this section show the correctness of the overall algo-

rithm.

130

Chapter 6

The dejavu Algorithm

We now describe the main practical contribution of this thesis: the dejavu algorithm
for symmetry detection. The solver is based on both the theoretical and practical insights
gathered throughout the previous chapters.

The main ingredient of the solver is a Monte Carlo algorithm for symmetry detection.
We argue correctness, i.e., error probability, and runtime of this algorithm. Notably,
considering the runtime, the factor in the size of the IR tree reflects the portion of the
search tree explored by the Monte Carlo strategy given in Chapter 3. Furthermore, we
prove that the algorithm implicitly performs perfect automorphism pruning: the presence
of automorphisms directly improves the runtime without any explicit pruning. The Monte
Carlo algorithm is then extended with further techniques. The purpose of the chapter is
to provide a thorough description of the solver and to argue the correctness of all further
components. Furthermore, we argue the correctness of certain interactions between the
components, whenever this is relevant. In the next chapter, benchmarks demonstrate the
efficiency of the implementation.

Let us begin by discussing the overall design philosophy and strategy of dejavu.

6.1 Design Principles of the Solver

Ideally, one should not be required to pick and choose the right symmetry detection tool
for an application. There should be a single tool that has adequate performance across
all the different kinds of applications and graphs. The main goal of the dejavu solver is
to create a tool that scales well on as many types of graphs as possible. But how can this
be achieved?

The overarching assumption used in the creation of the solver is that computing the
automorphism group of most graphs is easy, once tackled with the right kind of strategy.
The solver tries to apply a carefully chosen sequence of procedures on the graph and the
IR tree. If these procedures are not able to solve the graph within a given “cost budget”,
a new cell selector and target leaf are chosen in the hopes that they might reveal a more
efficient strategy for solving the graph. The budget is increased in an exponential back-off
scheme. In order to retain as much information as possible, when choosing a new cell
selector and target leaf, an attempt is made to simplify the graph using the information
gathered up to that point.

The most important component of the algorithm is the Monte Carlo traversal, similar
to the one described for isomorphism testing in Chapter 3. Recall that the Monte Carlo
strategy consists of random walks in the IR tree. Indeed, random walks in the IR tree

131

Chapter 6 – The dejavu Algorithm

h1

h2
B
F
S

M
on

te
C
a
rlo

S
ch
reier

D
F
S

Figure 6.1: Relation between depth-first search, breadth-first search, Monte Carlo search,
and the Schreier structure in dejavu. In the illustration, breadth-first IR
search is performed from the root up until h1. Depth-first IR search is per-
formed from a leaf up to level h2.

fulfill two purposes. Firstly, our theoretical analysis suggests the strategy is a near-
optimal way of traversing IR trees in the worst case. But not only does it seem like a
good choice for traversing the IR tree; random walks are also a natural tool to gauge
the size and difficulty of the tree and its individual levels. The Monte Carlo traversal
is facilitated by depth-first search and breadth-first search, as well as other optimization
strategies, outlined below.
The underlying machinery of the solver is based on the efficient color refinement algo-

rithm and other facilities described in Chapter 4. The preprocessor described in Chapter 5
is of course always applied before running the remainder of the algorithm.
The high-level procedure of dejavu is described in Algorithm 23. We give a description

of the algorithm below, but more details on each of the steps can be found throughout
this chapter.

Description of Algorithm 23. The algorithm begins by applying color refinement to
the graph. Here, the color refinement is specifically a non-canonical one, meaning the
partition is isomorphism-invariant but the ordering of the colors is not (see Section 4.4.4).
This is followed by applying the preprocessor techniques described in the previous

section. The last preprocessor technique splits up the graph into non-uniform compo-
nents (see Section 5.6.1). The remainder of the algorithm is applied to each non-uniform
component separately (Line 6).
We then initialize a budget to 1, and enter the loop used for restarts (Line 10). Here,

we first determine a cell selector and target leaf for the IR tree. Cell selectors are mostly
chosen from an ensemble of cell selectors, but some limited randomization is applied, in
particular when the budget is high. Then, we are ready to traverse the IR tree according
to the selected cell selector and target leaf.
First, we perform a depth-first search (Line 12) on the IR tree, starting from the

target leaf. We do so using matched vertex colorings (see Section 4.4.5) and the trace
invariant (see Section 4.4.2). If the tree contains many sparse automorphisms, the hope is

132

6.2 Random Search and Breadth-First Search

that this solves the component very efficiently. The depth-first search gives up whenever
it encounters a leaf that is non-equivalent to the target leaf. If it can not solve the
component, it stops on some level h. If it did solve the component, we continue with the
next component (Line 15).
If depth-first search was not successful, we continue by applying the Monte Carlo

strategy, combined with breadth-first search. For this, we first need to initialize a Schreier
structure with a base (the target leaf). A crucial fact is that we only need to initialize
the Schreier structure up to level h. This is because depth-first search guarantees that we
have found all the automorphisms starting from level h (i.e., generators of the stabilizer
of the first h points). Hence, we only need to ensure that we find all the automorphisms
up to level h.
Then, a heuristic decides whether we perform random walks in the IR tree and sift

automorphisms into the Schreier structure towards the probabilistic abort criterion, or
we perform breadth-first search in the hope of pruning nodes of the tree. We also compare
the transversals of the Schreier structure to the color classes individualized on the walk to
the target leaf, which essentially gives us an additional deterministic abort criterion. We
continuously track the cost of these methods and compare it to our budget. The process
is continued until one of the following is satisfied:

1. The budget is exceeded.

2. The deterministic abort criterion or probabilistic abort criterion are satisfied and
we have solved the component.

3. Breadth-first search solves the component.

Each time the budget is exceeded, the algorithm doubles the budget. In this case,
we first try to simplify the component using the information gathered so far (e.g., using
automorphisms and breadth-first levels of the tree). Then, we go back to choosing a new
cell selector and target leaf.

Figure 6.1 illustrates the relationship between depth-first search, breadth-first search,
the Monte Carlo search, and the Schreier structure in the algorithm. In the remainder of
this chapter, we explain each of the involved procedures in more detail.

6.2 Random Search and Breadth-First Search

The core routine of the dejavu algorithm is random walks in the IR tree combined
with breadth-first search. We first describe the Monte Carlo algorithm for automorphism
computation. We argue its correctness and runtime. In particular, we discuss why, at
least theoretically, it does not require any form of additional automorphism pruning.
Then, we discuss breadth-first search and a crucial implementation strategy called

“trace deviation sets”. We carefully argue why the interplay of the breadth-first strategies
and the Monte Carlo algorithm produces correct results.
Lastly, we discuss the heuristic of the solver that chooses between random search and

breadth-first search.

133

Chapter 6 – The dejavu Algorithm

Algorithm 23: High-level description of the dejavu algorithm.

1 function dejavu
Input: ➢ graph G

➢ coloring π

➢ error probability 0 < ϵ ≤ 1
Output: ➢set S ⊆ Aut(G, π), with probability at least 1− ϵ,

⟨S⟩ = Aut(G, π) holds
2 refine π using non-canonical color refinement;
3 // preprocess graph according to Section 5.7

4 preprocess (G, π);
5 // all subsequently detected symmetries are lifted accordingly

6 foreach non-uniform component (G′, π′) of (G, π) do
7 // we are only treating (G′, π′) now

8 budget := 1;

9 // loop for restarts

10 while true do
11 make a new cell selector and target leaf;

12 perform limited depth-first search;
13 let h be level where depth-first IR search ended;
14 // did depth-first search solve this component?

15 if h = 0 then break;

16 initialize Schreier structure with h levels;
17 perform random IR search and/or breadth-first IR search until

probabilistic criterion satisfied or budget exceeded;
18 // did we solve this component now?

19 if probabilistic criterion or deterministic criterion satisfied then
break;

20 // if not, we exceeded our cost budget

21 inprocess component (G′, π′);
22 budget := budget·2;

134

6.2 Random Search and Breadth-First Search

6.2.1 Monte Carlo Algorithm for Symmetry Detection

We begin by describing how a random walk in an IR tree can be computed. A key
observation is that by choosing uniform, random walks through the tree we also get a
uniform distribution of elements in the automorphism group.

Description of Algorithm 24. The algorithm applies the refinement to the input graph
and then repeatedly chooses a vertex uniformly at random from the target cell chosen
by the cell selector. The chosen vertex is then individualized. Starting from the initial
coloring, it then keeps individualizing and refining until the coloring becomes discrete. It
returns the coloring and the sequence of individualized vertices.

Runtime of Algorithm 24. We recall the fact that a path in the IR tree only incurs a
cost of O((n+m) log n) in color refinement (see Section 4.4.1). In the implementation, all
the cell selector calls collectively run in linear time. Thus, if an appropriate cell selector
is used, and a random element can be chosen in time O(1) (Line 9), a random walk in
the IR tree can be computed in time O((n+m) log n).

Correctness of Algorithm 24. Let τ ′ be an occurrence of a fixed target leaf τ . In this
situation we call φ with φ(τ) = τ ′ the corresponding automorphism with regard to τ ′.
Recall that Lemma 18 shows, that there is a unique occurrence of τ for every φ ∈ Aut(G).
We are now ready to argue the correctness of the algorithm, which is that for any fixed
leaf τ , the algorithm produces uniform random elements of the equivalence class of τ .

Lemma 76. As a random variable, the output of Algorithm 24, which is a leaf in the
search tree, is uniformly distributed within each equivalence class of leaves.

Proof. There is a unique occurrence of τ for every automorphism (Lemma 18). Hence, it
suffices to argue that the probability of finding each occurrence of τ through a random
walk in the tree is equal. Assume that we are in a node ν of the search tree and let
ν1, . . . , νk be the children of ν. Let ν ′1, . . . , ν

′
k be the children that correspond to the

subtrees of ν that contain an occurrence of τ . Since we are sampling an element uniformly
from ν1, . . . , νk in Algorithm 24, each of these subtrees has the same probability of being
chosen. Therefore, it suffices to argue that the chance of finding an occurrence of τ in each
of ν ′1, . . . , ν

′
k is equal. Since they all contain an occurrence of τ , they can all be mapped

to each other using the corresponding automorphisms. But this immediately implies that
all of these subtrees must be isomorphic (Lemma 14), showing the claim.

Corollary 77. Let τ be a fixed target leaf. Consider the distribution of outputs of Al-
gorithm 24 under the condition that an occurrence of τ is computed. For such a given
output τ ′ consider the automorphism φ with φ(τ) = τ ′ corresponding to τ ′. Then φ is
uniformly distributed in Aut(G).

Next, we turn to using random walks to compute the automorphism group of a given
graph. The procedure is described in Algorithm 25.

135

Chapter 6 – The dejavu Algorithm

Algorithm 24: Random walk of an IR tree.

1 function RandomWalk
Input: ➢ graph G

➢ coloring π
Output: ➢a random leaf of the search tree

➢individualized vertices
2 // initialize base to empty list

3 B := ϵ;
4 π := CRef(G, π,B);
5 C := Sel(G, π);

6 // perform random root-to-leaf walk in IR tree

7 while C ̸= ∅ do
8 // pick a random vertex of selected cell to individualize

9 v := RandomElement(C);
10 B := Bv; // append v to base

11 // do IR

12 C := Sel(G,CRef(G, π,B));

13 return (π,B);

Description of Algorithm 25. The algorithm repeatedly samples automorphisms from
the automorphism group using random walks (Algorithm 24). This is done by keeping all
the randomly sampled leaves in a set L. The algorithm compares all subsequently sampled
leaves to the leaves already contained in L. Then, it uses a probabilistic test based on
Lemma 8 to terminate. When a certain number d = ⌈− log2(

ε
2
)⌉ of consecutively sampled

automorphisms turn out to be already covered by the previously found automorphisms
(i.e., they sift successfully) the algorithm terminates. The initial value of d is linked to the
guaranteed bound on the error probability of the algorithm ε that can be chosen by the
user. To guarantee that the error bound is kept, when some but less than d consecutively
found automorphisms sift successfully, the value of d is incremented. (This is loosely
related to sequential testing in statistics. See also Section 2.7 of [103].)

Correctness of Algorithm 25. We argue that given a graph (G, π) and an error prob-
ability ε, the algorithm produces a generating set for the automorphism group of (G, π)
with probability at least 1− ε.
First, observe that the discovered permutations are certified before being added to the

group, which immediately ensures that all elements of the computed group are indeed
automorphisms of the input graph. The algorithm can therefore only fail by not adding
enough elements to the group.
We first argue that a random walk of the tree (as computed by Algorithm 24) either

produces a new leaf of the tree, or a uniform random occurrence of a previously discvered
leaf. Note that if no leaf equivalent to the output leaf τ ′ of Algorithm 24 has been
seen before, τ ′ is added to the set of leaves, and no automorphism is computed. If a

136

6.2 Random Search and Breadth-First Search

Algorithm 25: Monte Carlo strategy for automorphism group computation.

1 function RandomAutomorphisms
Input: ➢ graph G

➢ coloring π

➢ error probability 0 < ϵ ≤ 1
Output: ➢set S ⊆ Aut(G, π), with probability at least 1− ϵ,

⟨S⟩ = Aut(G, π) holds
2 // error probability management

3 c := 0;
4 d := ⌈− log2(

ε
2
)⌉;

5 // generating set S and set of leaves L
6 S := ∅;
7 L := ∅;
8 // base of the automorphism group

9 fbase := false;
10 B := ();

11 // probabilistic abort criterion

12 while c ≤ d do
13 // compute a random leaf

14 (τ ′, B′) := RandomWalk((G, π));

15 // do we already have a base for the group?

16 if ¬fbase then
17 B := B′;
18 fbase := true;

19 // check whether equivalent leaf has been seen before

20 fleaf := false;
21 for (τ ∈ L)

22 φ := τ · τ ′−1;
23 if CheckAutomorphism((G, π), φ) then
24 if ¬ Sift(S, B, φ) then c := c + 1;
25 else
26 if c > 0 then d := d + 1;
27 c := 0

28 fleaf := true;
29 break;

30 if ¬fleaf then L := L ∪ {τ ′} ;
31 return S;

137

Chapter 6 – The dejavu Algorithm

leaf equivalent to τ ′ has been seen before, Corollary 77 ensures that the corresponding
automorphism is a uniform random element of the automorphism group. This, in turn,
enables us to use Lemma 8 to argue correctness as follows.
We terminate the algorithm when d consecutive uniform random elements of Aut(G, π)

were successfully into the Schreier structure. As long as the sifting process fails and we
add elements to the Schreier structure, we know that no error occurs and the process
is not yet finished. We view the computation as a sequence of tests of the hypothesis
that we are missing automorphisms. We define the beginning of a test to be right after
sifting succeeds once (i.e., at the moment when c is set to 1 in an execution of Line 24).
The probability that the test fails (i.e., that we do not abort the test early and instead
increment c for d times in a row) is bounded by (1

2
)d (Lemma 8). In order to ensure a

total error bound of ε for the algorithm, we require that the failure probabilities of the
tests sum up to at most ε. For this it suffices that the i-th test fails with probability at
most ε

2i
. The probability that the entire computation fails is then surely at most ε since

∞∑
i=1

ε

2i
≤ ε.

In order to satisfy this bound of ε
2i
, we increment d after each successful test. Initially,

for the first test, we set d1 = ⌈− log2(
ε
2
)⌉ which ensures that (1

2
)d ≤ ε

2
. Note that the

value di for variable d used during the i-th test is then di = d1 + i− 1, so (1
2
)di < ε

2i
, as

desired.

Runtime of Algorithm 25. We want to recover a runtime guarantee similar to the
bounds of the Monte Carlo strategy of Chapter 3. In particular, we want to argue that
the factor of the runtime in the size of the IR tree is only in the square root of the size
of the tree.
Let us assume that the time for performing a random walk is bounded by twalk(n),

sifting an element of the group is bounded by tsift(n), and checking whether an equivalent
leaf exists by tlookup(n). It is reasonable to assume that all of these procedures run in
time that is polynomial in n, or more precisely, quasi-linear in n. We want to mention
the lookup procedure can be implemented efficiently using a hash table and complete
invariant, in order to locate candidates for equivalent leaves. Due to the nature of the
Schreier structure, a trivial bound for filling the table is that it requires at most n2 distinct
automorphisms that sift unsuccessfully (see Section 2.1.3).
We claim that for a given constant probability ϵ, the algorithm runs in expected worst-

case time
O(n2(tsift(n) + tlookup(n) + twalk(n))

√
|T (G, π)|).

Due to our assumptions above, we only need to argue that, in expectation, Algorithm 25
computes at most O(n2

√
|T (G, π)|) random leaves of the IR tree. We may assume that

the algorithm does not terminate too early and that the Schreier structure is indeed filled
to completion: earlier termination only leads to fewer computed leaves.
Let us first argue how many uniform random automorphisms it takes in expectation to

fill the Schreier structure. Assume that the Schreier structure is not yet completely filled,

138

6.2 Random Search and Breadth-First Search

i.e., there exists an automorphism φ ∈ Aut(G, π) which fails to sift. Due to Lemma 8,
in this case, a uniform random automorphism is not contained in the Schreier table with
probability is at least 1

2
. Hence, 2n2 is a trivial upper bound on the expected number

of uniform random automorphisms needed to fill the Schreier structure. A technicality
remains: during the execution of the algorithm, we increase the value d whenever we sift
automorphisms that are already in the Schreier structure, but the structure is not yet
filled. Hence, more uniform automorphisms can be necessary to satisfy the probabilistic
abort criterion. By assumption, at the beginning of the algorithm d is a constant. Let
us give an upper bound on the expected number of automorphisms that are found but
already in the Schreier structure, i.e., the expected value of d upon termination of the
algorithm. Trivially, d + 2n2 is an upper bound. Therefore, the expected number of
automorphisms needed to satisfy the Schreier structure is bounded by d+ 4n2.

The question remains how many random walks of the individualization-refinement tree
it takes to find each uniform random automorphisms. Clearly, as a random variable, this
is independent of the number of automorphisms needed to satisfy the Schreier structure.
Using similar arguments to Lemma 25, it follows that c

√
|T (G, π)| suffice in expectation.

(We also give a more fine-grained argument below.)

No automorphism pruning? Yes. We argue that for a given constant error probability
ϵ, the algorithm runs in expected worst-case time

O
(
n2(tsift(n) + tlookup(n) + twalk(n))

√
|T (G, π)|
|Aut(G, π)|

)
.

Recall that the relevant factor in the size of the IR tree matches our observation of
Lemma 22.

It suffices to argue that the likelihood of finding an occurrence in the search tree through
random walks is amplified by the size of the automorphism group. Let (G, π) be a graph
and τ ∈ L(T (G, π)). In T (G, π), there are |Aut(G, π)| occurrences of τ (Lemma 18). Let
p be the probability of finding the node τ through a random walk of T (G, π). But due
to isomorphism invariance of T (G, π) (Lemma 14), the probability of finding a specific
occurrence τ ′ of τ is also p. Hence, the probability to find any occurrence is |Aut(G, π)|p.
We again assume uniformity, i.e., that the probability of finding a leaf is uniform across all
leaves. If probabilities are non-uniform, the chance of finding leaves repeatedly increases
(see [84]). In our specific case, the probability of finding an automorphism in L after i
distinct leaves have been found is therefore at least

|Aut(G, π)| · i
|T (G, π)| .

There, after √
|T (G, π)|
|Aut(G, π)|

139

Chapter 6 – The dejavu Algorithm

random walks have been computed, either we have already found an automorphism, or all
of the walks resulted in distinct leaves. Hence, we may assume the latter. The probability
for finding an automorphism in T (G, π) using a random walk is then at least√

|T (G,π)|/|Aut(G,π)|

|T (G,π)|/|Aut(G,π)|
=

1√
|T (G,π)|/|Aut(G,π)|

.

Using similar arguments to Lemma 25, this suffices to show that there is a fixed constant
c, such that in expectation, the algorithm finds an automorphism after at most

c

√
|T (G, π)|
|Aut(G, π)|

random walks.

Overall, this shows that IR trees are implicitly pruned using automorphisms: isomor-
phic copies of leaves actively contribute towards termination. In particular, in conjunction
with Lemma 22, we can see that the algorithm exploits all automorphisms.

No automorphisms? Probably. Observe that the error of Algorithm 25 is one-sided.
The algorithm may fail to discover symmetries of the input graph. However, ⟨S⟩ ⊆
Aut(G, π) always holds.

I’ve just been in this place before. Termination of the algorithm hinges on seeing
already explored leaves as well as already generated automorphisms again – a déjà-vu.
The correctness of the algorithm depends on the fact that we are probing automorphisms
uniformly from the group. In the next section, we introduce further techniques to prune
the search tree. When we do so, we always make sure to do this in a manner that still
enables us to probe uniformly after the pruning. Ensuring this suffices to retain the
correct behavior of the algorithm.

6.2.2 Breadth-first Search with Trace Deviation

Combined with the Monte Carlo algorithm of the previous section, dejavu also performs
a breadth-first search of the IR tree. The reason is that if nodes can be pruned using
invariant pruning early in the tree, meaning close to the root, then random walks tend
to fail early, and often. However, whenever we prune the search tree, and we want to
apply Algorithm 25 again, we need to ensure that we prune the tree uniformly. Fig-
ure 6.2 illustrates the issue. Fortunately, for breadth-first search, pruning always occurs
uniformly.
The algorithm for breadth-first search going from level k to k + 1 computes the cor-

responding node ν at level k + 1 that leads to the target leaf τ . It then takes all the
remaining nodes from k, computes all their children at level k + 1. Let ν ′ be one of
these children. Let Inv be an invariant (see Section 2.3.4, the precise invariant we use is
described further below). If Inv(ν) ̸= Inv(ν ′), ν ′ is pruned.

140

6.2 Random Search and Breadth-First Search

µ

τ1 τ2 γ1 γ2

µ′

τ3 τ4 γ3 γ4

µ

τ1 τ2 γ1 γ2

µ′

τ3 τ4

Figure 6.2: Example search tree illustrating non-uniform pruning. A search tree before
(left) and after (right) pruning is shown. Orange nodes indicate the path of the
target leaf τ1. Leaves τi indicate occurrences of τ1, γi indicates occurrences of
γ1. In the pruned tree, an occurrence of τ is found more likely in the subtree
of µ′ than µ (through random walks, assuming the immediate path to the
pruned node is not taken).

Probing after a breadth-first traversal of an entire level has been performed can equiv-
alently be characterized as starting random walks from the remaining nodes of the IR
tree at a given level. We probe from a level k by choosing uniformly at random a node
ν ′ of the IR tree with |ν ′| = k that satisfies Inv(ν ′) = Inv(ν). Here, ν is the prefix of
length k of the vertex sequence corresponding to the target leaf. Using the argument of
Lemma 76 again, the trees rooted in prefixes that contain some occurrence of the target
leaf are isomorphic (Lemma 14). Therefore, the probability of finding an occurrence of
the target leaf is the same in every such subtree. If we apply no other form of pruning,
the entire process samples automorphisms with a uniform distribution.

Deviation Invariant. During breadth-first traversal, we keep a so-called trace deviation
set. The idea of this pruning technique is related to the special automorphism algorithm
of Traces (see Section 2.4.4) and the failure sets of bliss (see Section 2.4.3). We present
the idea in the following.

We first define a new node invariant, which we call the deviation value DevInv : V
∗ →

N2 ∪ {⊥}. Consider a fixed invariant Inv(τ), which, for our purposes, will be the trace
invariant of the target leaf τ (see Section 4.4.2). The deviation value DevInv(ν) for a
node ν is then defined as a tuple of the first position and the corresponding value in the
trace Inv(ν) that is different from Inv(τ). If there are no differences, we set the deviation
value to ⊥, denoting “no deviation”. Since the deviation value is a function of the trace
invariant computed until an isomorphism invariant point, it is naturally invariant under
isomorphism.

Consider a node µ ∈ T (G, π) in the IR tree. The crucial observation is that in our
algorithm, we can also use the set of deviation values of its children as an invariant for µ
itself. Assume ν1, . . . , νk are children of µ and none of the subtrees rooted in the children
has been pruned through invariant pruning. Then,

D(µ) := {DevInv(ν1), . . . ,DevInv(νk)},

141

Chapter 6 – The dejavu Algorithm

the trace deviation set of µ, can be used as an invariant for µ: we claim that for any
other node µ′ with children ν ′1, . . . , ν

′
k,

D(µ) = {DevInv(ν1), . . . ,DevInv(νk)} = {DevInv(ν ′1), . . . ,DevInv(ν ′k)} = D(µ′)

must hold whenever µ and µ′ are isomorphic. If no pruning has taken place, this is
easy to see since the branches are isomorphic by assumption, immediately implying that
branches must contain the same invariant values.
When advancing in a breadth-first manner, the aforementioned requirements are guar-

anteed to be satisfied: no invariant pruning has taken place on the level that is currently
being pruned. Furthermore, while computing the level, the set of deviation values is auto-
matically calculated anyway: whenever we find out that a node ν below µ deviates from
the desired invariant Inv(ν) and should be pruned, we already have enough information
to derive DevInv(ν).

Deviation Pruning. These observations are specifically exploited as follows: first, all
children of the base node τ ′ (which belongs to the path on the way to the target leaf τ) are
computed. If nodes deviate from the trace, their deviation values are recorded into a set,
i.e., we calculate the trace deviation set D(τ ′). The idea is that if a node is (supposedly)
isomorphic to the base node τ ′, then, for its (supposedly) isomorphic children, it must
deviate from the trace in the same manner at the same position. Hence, for all other
parent nodes µ, we also keep track of D(µ) when calculating their children. Whenever we
discover a new element of D(µ), we check whether the equality of sets D(τ ′) = D(µ) can
still be satisfied. If not, µ can be pruned immediately without the necessity to calculate
all of its children.
We collect the fact that the Monte Carlo strategy can be applied starting from a

breadth-first level pruned with trace deviation. The lemma below suffices.

Lemma 78. Let T ′(G, π) be an IR tree that was pruned with deviation pruning on a level
k of breadth-first search, with target leaf τ . For any node µ ∈ T (G, π), the pruned tree
T ′(G, π) either contains all nodes µAut(G,π), or none of them.

Proof. If µ′ is a node on level k′ with k′ < k, the statement follows immediately.
Let µ be any node, and µφ for φ ∈ Aut(G, π) be any occurence of µ in T (G, π). If a

node µ′ at level k contains µ, then µ′φ contains µφ. Each child ν of µ′ has a corresponding
isomorphic counterpart νφ in µ′φ. Due to isomorphism-invariance of the invariant Inv, ν
and νφ must have the same value, i.e., Inv(ν) = Inv(νφ). It follows that

D(µ′) = {DevInv(ν1), . . . ,DevInv(νk)} = {DevInv(νφ1), . . . ,DevInv(νφk)} = D(µ′φ).

Hence, either both µ′ and µ′φ are pruned, or neither of them are pruned.
The above argument also holds whenever µ′ = µ.

Note that the above is enough to ensure that we can prove a result similar to Lemma 76
for random walks on the pruned tree T ′(G, π): again, we can think of starting Algo-
rithm 24 from a random node at level k of T ′(G, π).

142

6.2 Random Search and Breadth-First Search

d1 d2 d3 d1 d2 d1

Figure 6.3: Potential search tree traversed when using trace deviation sets. Orange indi-
cates base nodes, and gray indicates pruned nodes. Children of pruned nodes
are of course eventually pruned as well.

For example, assume that we calculated deviation values {d1, d2} for the base node
(illustrated in Figure 6.3). From the previous discussion, it follows that we can immedi-
ately prune all nodes that produce a value other than {d1, d2}. We can also prune nodes
that do not produce all of the deviation values. If for example a value d3 /∈ {d1, d2} is
encountered, the parent node can immediately be removed from the tree.

Practical Aspects. A crucial point is that pruning through trace deviation sets has
negligible cost: children of the base node always have to be computed, and the trace
deviation does not require more calculation than is done for that particular node anyway.
We are still able to fully use the early-out capabilities of the trace invariant.
In the implementation a slight variation of the above technique is used: to distinguish

deviation values further, it is sometimes beneficial to not use the early-out immediately.
Instead, for a fixed constant k, color refinement is continued past the deviation for k more
cells, accumulating more information for the deviation value. The trade-off is as follows:
if k becomes larger, the early-out in color refinement is taken later, but deviation values
become more distinct. In practice, this trades per-node cost for the number of nodes in
the search tree. However, in our experiments we observed that even for small k, node
reduction can be substantial – while not increasing per-node cost by a significant amount.
The value for k used in practice is determined by a heuristic, which takes into account
where random walks of Algorithm 25 deviated from the trace.

Implementation Pitfall. Typically, breadth-first search is carried out on a node-by-node
basis. The peculiarity using trace deviation pruning is that it is possible to compute a new
node ν of the IR tree that is not immediately pruned using invariant pruning. However,
after computing one of its siblings ν ′ (both ν and ν ′ have the common parent µ), it might
become necessary to prune ν (see Figure 6.3).
The reason is that ν might not be pruned using invariant pruning, but ν ′ might indicate

a trace deviation of their common parent µ. In order to achieve uniformity of the resulting
tree, it is crucial to remove ν as well.

Comparison to Related Techniques. The trace deviation technique is related to a
family of pruning techniques that make use of the isomorphism-invariance of the IR tree
itself.

143

Chapter 6 – The dejavu Algorithm

The first related technique is the special automorphism algorithm used in Traces (see
Section 2.4.4), or in a sense, the Las Vegas algorithm (see Section 3.2.2). Specifically,
these strategies are related in the case when nodes are not isomorphic. Both try to exploit
the technique of first handling all children for one node to then compute fewer children
for the other nodes. The techniques are however not immediately comparable: on the
one hand, the technique of Traces is more generic since it can also gain benefits on
isomorphic branches. Also, it guarantees that only a single leaf for each node has to be
explored after the base node has been fully computed. On the other hand, the technique
described here is, in a sense, more generic since it can be applied – with negligible cost
– on all levels of the breadth-first search. Another related technique are the so-called
failure sets of bliss (see Section 2.4.3).

Automorphism Pruning. An earlier version of dejavu contained automorphism prun-
ing while performing breadth-first search. This comes with the additional challenge of
ensuring that the automorphisms probed from the tree are still uniform. The solution as
detailed in [5] adds weights to the tree, according to how many isomorphic nodes each
node in the tree represents. These weights are then accounted for when probing in the
tree.
The version of dejavu described in this thesis never combines the use of automorphism

pruning and probing. One reason is that the introduction of the weights adds severe
implementation complexity. Another reason is that the cases in which significant speedup
was observed were mostly due to cases in which automorphisms are discovered during
breadth-first search, i.e., on the last level of the IR tree. For this specific case, the
current version also has a limited version of automorphism pruning. Here, the algorithm
is guaranteed to immediately terminate after breadth-first search is finished, i.e., that no
further probing is needed.

6.2.3 Choosing between Monte Carlo and Breadth-first Search

We have a heuristic that continuously decides whether to compute random walks or
another level of breadth-first search. This heuristic is based on a cost estimation, which
we describe in the following.
Consider the following question: given a constant c, is it more expensive to compute c

random walks of the IR tree, or the next level of breadth-first search?
We can use previously computed random walks as samples for the next breadth-first

level. Given enough samples k, we can compute a good estimate on the number of nodes
on the next breadth-first level that remain under invariant pruning. The idea is that
we are continuously sampling random walks, which can detect whether we will prune
nodes via invariant pruning. Let nl denote the number of breadth-first nodes remaining
at level l. We assume all nodes have the same number of d children. (In practice, this
is guaranteed by the fact that the trace invariant would immediately prune nodes with
differing selected cells.) This means there are precisely dnl children at level l + 1. We
assume that we have k uniform samples of the dnl children, meaning we know for k
uniform random children on level l+1 whether they are pruned or not. Let kprune denote

144

6.3 Random Search and Depth-first Search

the number of samples that correspond to pruned nodes. Our estimate for nl+1 is then
kprune

k
dnl.

In practice, we try to make even more fine-grained estimations. We incorporate the
following variables:

1. The expected cost of a random walk versus the expected cost for each breadth-first
node, which is estimated by considering the length of the trace used for each.

2. The expected cost of reversing the refinement, i.e., resetting the entire coloring for
random walks versus using reversible refinements (see Section 4.4.3) for breadth-first
search.

3. The effects of trace deviation pruning.

This gives us a cost estimate of whether c random walks or the next breadth-first level
should be cheaper. However, the decision heuristic does not simply choose the cheaper of
these two options. Intuitively, this is also not what it should do: what we want to choose,
is the method that has the greatest impact on finishing the computation. Unfortunately,
this does not seem to be something that we can easily estimate in a rigorous manner.
In general, we apply a bias coefficient that prefers random walks over breadth-first

search, since this both improves our estimates and potentially solves the graph immedi-
ately, whereas breadth-first search usually does not. We apply different biases to the cost
estimation in certain situations where the effectiveness seems more clear:

1. If we are already regularly finding equivalent leaves, we strongly prefer random
walks to finish the search.

2. If breadth-first search will prune nodes on the next level, we apply a bias to prefer
it. In particular, we apply a strong bias whenever the estimate for nl+1 is smaller
than nl, i.e., whenever the pruned size of the next level is smaller than the size of
the current level.

6.3 Random Search and Depth-first Search

As described in Algorithm 23, before applying the Monte Carlo algorithm, dejavu first
runs a limited depth-first search of the IR tree. In this section, we discuss the reasoning
behind the depth-first search, the routine itself, and further interactions with the random
automorphism search.

6.3.1 Limited Depth-First Search

At this point, the reader might be wondering: why depth-first search? The primary
motivation is quite simple, however: to reduce the size of the Schreier structure. Indeed,
for large practical graphs, the Schreier structure can quickly grow quite large. The
previous version of dejavu [5] often ran out of memory on these graphs. The same holds
true for nauty (when using the Schreier-Sims algorithm) and Traces.
In turn, we now employ three key strategies to reduce the size of the Schreier structure:

145

Chapter 6 – The dejavu Algorithm

1. Running a depth-first search prior to the Monte Carlo search, which reduces the
length of the base in the Schreier structure (explained in this section).

2. A domain compression, as explained in detail in Section 6.3.2.

3. Generators and transversals of the Schreier structure are stored in a sparse manner.

Depth-first search is therefore aimed specifically at graphs which exhibit a lot of sym-
metry, and in turn produce large Schreier structures. However, in such cases, depth-first
search can even be a beneficial strategy to begin with: as explained in detail in Sec-
tion 4.4.5, matched vertex colorings can be used to efficiently determine automorphisms
with small support. (Essentially, we use a very similar strategy as applied in the depth-
first search of saucy.) On the other hand, often few random automorphisms suffice to
generate the entire group – however, random automorphisms tend to have a large support,
and filling the Schreier structure with random automorphisms comes at a cost. Hence,
there is a trade-off.
Coming back to depth-first search, the goal is clear: we only want to discover automor-

phisms efficiently prior to our random search. In particular, if the graph seems difficult
and requires a more extensive search due to non-equivalent leaves, we immediately stop
the depth-first search. The sole purpose of depth-first search is to efficiently reduce the
size of the Schreier structure, whereas difficult graphs ought to be handled by our other
routines. Algorithm 26 and Algorithm 27 contain a sketch of the depth-first search used
in dejavu.

Description of Algorithm 26. The algorithm begins at the target leaf. It backtracks
one level from the target leaf (Line 7), and attempts to determine that all vertices of the
respective color class (Line 11) are in fact in the same orbit of the base vertex vb (in the
pointwise stabilizer Aut(G, π)(τ ′)). (In other words, when depth-first search is at level
l, base vertex means the corresponding vertex on the way to the target leaf at level l.)
For this, an orbit partition is maintained and consulted for each of the candidate vertices
(Line 15). If this check fails, the algorithm tries to find an automorphism mapping vb to v.
This procedure is described in Algorithm 27. If the procedure returns an automorphism,
the automorphism is added to the orbit partition (Line 20) and we continue the search
(see Section 2.2.6 for the orbit algorithm used). Otherwise, we would have to backtrack
due to non-equivalent leaves – in which case, as outlined above, the process is halted.
The algorithm returns the level up to which it determined all the automorphisms (see
Line 24 and Line 26). Whenever a level of depth-first search is completed, the algorithm
backtracks to the next level (see Line 25).

Description of Algorithm 27. The main idea of this procedure is to exploit matched
vertex colorings (see Section 4.4.5). Recall that once the colorings are matched, we only
need to check whether the particular permutation which is determined by the singletons of
the colorings is an automorphism of the graph (see Lemma 67). Instead of using a given,
fixed cell selector, we individualize and refine two colorings in lock-step. We always choose
a non-trivial color that is not yet matched in the two colorings (Line 6). Once the colorings

146

6.3 Random Search and Depth-first Search

are matched (observe that when colorings are discrete, they are matched), we check
whether the corresponding permutation is an automorphism of the graph (Line 17). If it
is not an automorphism, or the colorings become non-isomorphic at any point (Line 15),
the procedure would have to backtrack due to a non-equivalent leaf. Therefore, instead,
the algorithm simply terminates without producing a result.

Correctness of Algorithm 26. The algorithm describes a limited version of a standard
depth-first search of the IR tree. We record the basic fact that if the depth-first search
returns a level h, then the automorphisms returned by depth-first search generate at least
the corresponding pointwise stabilizer of Aut(G, π).

Corollary 79. Let (h, S) be the output of Algorithm 26 on a graph (G, π) and target leaf
τ . Let τ ′ be prefix of length h of τ . Then, Aut(τ ′) ⊆ ⟨S⟩ holds.

Implementation of Algorithm 26 and Algorithm 27. In order to ease the presentation,
the algorithm as described is missing a few crucial optimizations. Let us collect some of
them, here. First, of course colorings are not always recomputed: the implementation
only ever backtracks using reversible refinements (see Section 4.4.3), and moves forward
in the IR tree by individualizing single vertices (see Section 4.4.1). Furthermore, in
Algorithm 27, whether the two colorings are matched is handled dynamically during
color refinement itself (see description in Section 4.4.5). Automorphisms are actually not
stored in a generating set, but output immediately to the user using a single dense-sparse
data structure (see Section 2.2.3). In particular, this enables the efficient computation of
many automorphisms with small support. Lastly, invariants are used to determine more
quickly whether there is any hope of finding automorphisms, as is described below.

Limited Invariant Pruning. Algorithm 26 and Algorithm 27 continuously apply and
check a trace invariant (see Section 4.4.2), in order to more quickly terminate search.
However, let us consider the particular case in which Algorithm 27 rejects τ and τ ′v on
the first individualization. In this case, no further search is required: we have successfully
determined that τ and τ ′v (see Line 17) are indeed not in the same orbit of the pointwise
stabilizer. In particular, this is true if τ and τ ′v lead to different invariants. The same
holds true whenever the colorings of τ and τ ′v are matched, but do not result in a valid
automorphism (see Lemma 67). Hence, in these cases, the algorithm continues with the
search.

Trace Cost Termination. As was discussed previously, there is a trade-off between
discovering automorphisms using depth-first search, and discovering them using random
search while filling a Schreier structure. In particular, we expect random search using
the Schreier structure to require fewer total automorphisms. The random search does
however lack the matched vertex coloring technique, and automorphisms tend to have a
larger support. We use a heuristic to stop depth-first search in favor of random search.
We do so by keeping track of the average “trace cost” per automorphism. Assume

that the trace invariant for the target leaf τ has length k. For each automorphism in

147

Chapter 6 – The dejavu Algorithm

Algorithm 26: Depth-first search of IR tree.

1 function DFS
Input: ➢ graph G

➢ coloring π

➢ target leaf τ
Output: ➢level h

➢generators S with Aut(G, π)(τ ′) ⊆ ⟨S⟩, where τ ′ is τ -prefix of
length h

2 initialize trivial orbit partition ∆, where each vertex is in its own orbit;
3 S := ∅;
4 // as long as there are levels to backtrack

5 while |τ | ≥ 1 do
6 // backtrack one base point in τ
7 τ ′ := τ1 . . . τ|τ |−1;
8 // which vertex was individualized on the way to τ?
9 vb := τ|τ |;

10 // which color was individualized on the way to τ?
11 C := Sel(G,CRef(G, π, τ ′));
12 // consider all vertices of C
13 foreach v ∈ C do
14 // if we already know v and vb are in the same orbit,

continue

15 if v and vb are in same orbit of ∆ then continue ;

16 // otherwise, look for an automorphism mapping v to vb
17 φ := MatchRecurse(G, π, τ, τ ′v);

18 // if we found an automorphism, continue, otherwise

terminate

19 if φ ̸= ⊥ then
20 extend orbit partition ∆ with φ;
21 S := S ∪ {φ};
22 output φ;

23 else
24 return (S, |τ |)
25 τ := τ ′;

26 return (S, |τ |)

148

6.3 Random Search and Depth-first Search

Algorithm 27: Search for automorphisms between two nodes in IR tree.

1 function MatchRecurse
Input: ➢ graph G

➢ coloring π

➢ list of vertices ν

➢ list of vertices µ
Output: ➢automorphism φ ∈ Aut(G, π) mapping ν to µ, or ⊥

2 πν := CRef(G, π, ν);
3 πµ := CRef(G, π, µ);
4 while (πν , πµ) not matched do
5 // find a non-matching color class

6 c := non-trivial color of πν , πµ with π−1
ν (c) ̸= π−1

µ (c);

7 // find vertices which cause color classes to not be matched

8 vν := v ∈ π−1
ν (c) and v ̸∈ π−1

µ (c);

9 vµ := v ∈ π−1
µ (c) and v ̸∈ π−1

ν (c);

10 ν := νvν ;
11 µ := µvµ;

12 // now individualize these vertices

13 πν := CRef(G, π, ν);
14 πµ := CRef(G, π, µ);

15 if πν and πµ are non-isomorphic then
16 return ⊥
17 if CheckAutomorphism((G, π), φπν ,πµ) then
18 return φπν ,πµ

19 else
20 return ⊥

149

Chapter 6 – The dejavu Algorithm

depth-first search, we keep track of how much of the trace we needed to compute in
order to detect the automorphism. Let k′ be the length of the recomputed trace. We
then continuously track the ratio k′

k
for detected automorphisms. (The implementation

averages the ratio of multiple recent automorphisms.) In particular, this means if τ ′

in Algorithm 26 is still fairly close to a leaf, the ratio will be small. Furthermore, if
colorings in Algorithm 27 match within few individualizations, the ratio will be small as
well. Once the ratio exceeds a certain threshold, depth-first search is terminated. The
typical threshold used in the implementation is 0.25, but larger values are used if the
expected absolute size of the Schreier structure is large.

6.3.2 Monte Carlo Algorithm and Schreier-Sims, Revisited

We revisit our Monte Carlo algorithm of Section 6.2.1. We describe the interaction with
the depth-first search, as well as further optimizations to the approach.
Specifically, we assume that we have successfully performed depth-first search using the

target leaf τ up to level h. Instead of just using the first encountered base, we specifically
choose the base of the Schreier structure used in Algorithm 25 to be τ . This will aid in
some of the optimizations described below.

Partial Base. Let h′ = |τ | and assume that h ≤ h′. Furthermore, we let τ ′ = τ1 . . . τh
denote the prefix of h vertices of τ .
We observe that depth-first search ensures that we have found all the elements of the

pointwise stabilizer Aut(G, π)(τ ′) (see Corollary 79). Hence, due to the orbit-stabilizer
theorem, it suffices now to find automorphisms S ⊆ Aut(G, π) such that

⟨S,Aut(G, π)(τ ′)⟩ = Aut(G, π).

We observe that using the Schreier structure with the partial base τ ′ ensures to find such
a set S. In particular, this means we sift an automorphism only according to the partial
base τ ′. If the automorphism successfully sifts through all the levels of τ ′, but is not
the identity, we deem the sift successful. The Schreier structure is not extended (see
Algorithm 1).

Deterministic Termination. Again, we let τ ′ ∈ T (G, π) denote any prefix of the target
leaf τ in T (G, π). We include that case that τ ′ = τ , but exclude τ ′ = ϵ. We let τ ′′v = τ ′

for v ∈ C, where C = Sel(G,CRef(G, π, τ ′′)). Furthermore, we let π(τ ′′) denote the
corresponding coloring of τ ′′, and C(τ ′′) the set of vertices contained in the color selected
at node τ ′′.
It follows readily from Corollary 15, that the orbit vAut(G,π)(τ ′′) is a subset of the vertices

in C. In other words, the size of the color class of v in the IR tree is an upper bound for
the size of its orbit in the pointwise stabilizer Aut(G, π)(τ ′′). (Recall that the orbit of v in
the pointwise stabilizer corresponds to the transversal in the corresponding level of the
Schreier table.)
In particular, this implies that if |C| equals the size of the transversal of v stored in

the Schreier table, we know that the transversal can not be extended any further. If this

150

6.3 Random Search and Depth-first Search

is true on all levels of the Schreier table, we know that we have filled the Schreier table
to completion, and thus we have found all automorphisms of the graph.

Hence, this can be used to terminate Algorithm 25 immediately, even guaranteeing that
all automorphisms have been found. We refer to this as the deterministic abort criterion.

Since color refinement is quite effective in determining the orbit partition for many
graph classes, the deterministic abort criterion is often applicable. Indeed, for practical
graphs, dejavu rarely invokes its probabilistic abort criterion. In particular, for Tinhofer
graphs [11], dejavu is guaranteed to terminate deterministically.

Domain Compression. A crucial observation is that we only ever use the Schreier struc-
ture to check whether a given automorphism is in the group or not. In particular, we
do not need to output elements from the Schreier structure itself – these elements are
generated by the automorphisms found by random search.

This observation gives rise to the following idea: we may be able to maintain the
Schreier structure on a smaller domain V ′ ⊆ V (G) that still suffices to perform the
check. Indeed, if such a smaller domain V ′ already fully determines the automorphisms,
then there is no need to store the other vertices.

The idea used in the following is that the target leaf τ is a complete base of the
automorphism group (Lemma 17). Intuitively, this means that however the points of τ
are mapped uniquely identifies an automorphism.

Formally, given a graph (G, π) and target leaf τ we define the compressed domain
V ′ ⊆ V (G) as follows: For all v ∈ V (G), v ∈ V ′ holds if and only if there is a v′ ∈ τ
such that v ∈ π−1(π(v′)). Essentially, V ′ is guaranteed to contain all the points to which
points of τ could be mapped under automorphisms. We show that a Schreier structure
on the domain V ′ suffices for our purposes.

Lemma 80. For a graph (G, π) and leaf τ ∈ T (G, π), let V ′ ⊆ V (G) be the compressed
domain of τ . Then, for all automorphisms φ ∈ Aut(G, π) and subsets of automorphisms
S ⊆ Aut(G, π), the following holds:

φ|V ′ ∈ ⟨S|V ′⟩ if and only if φ ∈ ⟨S⟩.

Proof. First, recall that τ is a complete base of Aut(G, π) (Lemma 17). This means the
pointwise stabilizer Aut(G, π)(τ) is trivial.

Let φ1 ∈ Aut(G, π) and assume towards a contradiction there is a φ2 ∈ Aut(G, π),
such that φ1 ̸= φ2 and φ1|V ′ = φ2|V ′ .

We let W := {v | φ ∈ Aut(G, π), v ∈ τφ} denote all the vertices to which vertices of
τ can be mapped to using automorphisms of (G, π). The colors of π, by definition, are
an over-approximation of the orbit partition of Aut(G, π). Hence, V ′ is guaranteed to
contain W , i.e., W ⊆ V ′ holds.

Since φ1|V ′ = φ2|V ′ , we know that φ1(τ) = φ2(τ) holds. In particular, we know that
φ1φ

−1
2 (τ) = τ and therefore φ1φ

−1
2 ∈ Aut(G, π)(τ) hold. However, since φ1 ̸= φ2, we

know that φ1φ
−1
2 ̸= id. This contradicts the fact that Aut(G, π)(τ) is trivial.

151

Chapter 6 – The dejavu Algorithm

This shows that we can define our Schreier structure on the compressed domain V ′

instead of the original one. (Observe that the arguments above also naturally hold for
the case when we are considering a partial base.)
The effectiveness of the technique of course heavily depends on whether the group

actually contains parts not required to understand the entire group action. Another
important choice is that of the base τ .
In the implementation, we apply the technique whenever the compression ratio, i.e., the

quotient |V ′|/|V |, is sufficiently small. Then, we create a map p : V (G)→ {1, . . . , |V ′|,⊥}
that either maps a given vertex to a point in 1, . . . , |V ′| interval, or signifies that the vertex
is not needed in the Schreier domain using ⊥. The Schreier structure and algorithm can
then just be used as usual on the domain {1, . . . , |V ′|}.

Base-aligned Search. Whenever we run the Monte Carlo algorithm from the root of
the tree, we apply another optimization. Observe that this is the case whenever we have
not run any breadth-first search yet. We perform a so-called base-aligned search.
As the name suggests, base-aligned search initiates random walks from a base point,

i.e., a node that corresponds to a prefix of τ . The base point is advanced whenever it is
detected that the target cell of the current base point is equal to the orbit in the Schreier
structure. As argued above, whenever this is the case the orbit on this level can not be
extended any further. Hence, the sampled automorphisms are still uniform.
Since base-aligned search finds all automorphisms of graphs with easily structured IR

trees, e.g., Tinhofer graphs, optimizations for these cases turn out to be highly beneficial.
We found that preferring base points whenever possible, i.e., whenever it is already known
that the randomly chosen point is in the same orbit as the base point, can drastically
reduce sifting cost.

6.4 Restarts and Strategy Sampling

As outlined in Algorithm 23, the solver features the use of restarts. On each restart, the
solver potentially alters the cell selector used and the target leaf.
We first describe the different strategies employed by the solver. Then, we describe

the mechanisms and heuristics surrounding restarts: sometimes, restarts are mitigated,
whereas other times a strategy is immediately discarded and the solver restarts again.

6.4.1 Cell Selectors

Below, we give a description for the cell selectors of dejavu. The cell selector is varied
upon restart. Furthermore, all cell selectors are used in the following way: the target leaf
is computed using the selector as described. For efficiency reasons, in subsequent branches
of the IR tree, the solver simply chooses the color that was chosen on the branch of the
target leaf. If this is not a non-trivial color class in the subsequent branch, then the first
non-trivial color is chosen.
The ensemble of cell selectors used by dejavu is as follows.

152

6.4 Restarts and Strategy Sampling

Connected Colors. The first cell selector chooses a color for which the product of the
number of adjacent colors and the size of the color class itself is largest. Formally, we
choose a color class C which maximizes

|C||π(N(C))|.

The cell selector augments this choice either whenever it can recurse into the previous
color (i.e., it chooses a color that is a fragment of the previously selected color), or it can
choose a neighbor of the previous color. Among the neighbors, it again maximizes the
score as stated above.

Largest Cells. The second cell selector chooses a largest color class, i.e., a color class
maximizing |C|. The solver contains a version of this cell selector that recurses into
fragments of the previous color (similar to the cell selector of Traces, see Section 2.4.4),
and one that does not.

Small Cells. The third cell selector chooses a smallest color class, i.e., minimizing |C|.

Early Splits. Lastly, there is a cell selector which tries to heuristically find color classes
which enable invariant pruning early on in the tree. This is achieved by probing several
vertices of a candidate color class. If they lead to differing values of an invariant, they
are preferred. (However, this cell selector is only applied if the budget is already very
high, such that the cost for probing is amortized by previous restart iterations.)

6.4.2 Restarts

A restart is usually performed whenever the Monte Carlo strategy and breadth-first search
exceed the current budget. On each restart, the budget is doubled.

Restart Mitigation. In specific circumstances, the solver does however not restart even
if the budget is exceeded. These circumstances are designed to model some “common
sense” situations in which it seems clear that restarts are detrimental:

1. Equivalent leaves are already being found regularly. In this case, it is likely that
the solver is close to completion, and we should not restart anymore.

2. The length of the base is larger than the number of nodes predicted to be computed
on the next breadth-first level, and some nodes will be pruned on the next level. In
this case, computing the target leaf comes with significant cost, and it seems more
beneficial to first do some additional pruning, potentially making the restart and
inprocessing more effective.

153

Chapter 6 – The dejavu Algorithm

Partial Base Equivalence. On each restart, the solver checks whether a prefix of the
new target leaf agrees with the previous target leaf. If so, this prefix is not discarded in
the Schreier structure and breadth-first traversal. If the new target leaf fully agrees with
the previous leaf, the solver state of the previous iteration is kept for the next iteration.
(If incompatible domain compression is used, the entire Schreier structure is discarded
even if prefixes match.)

Evaluating Strategy. In certain circumstances a strategy is immediately discarded, even
before performing depth-first search. This is the case in the following circumstances:

1. The estimated IR tree size exceeds the previous tree size.

2. The base is significantly longer than the last base.

We point out that there are further hard limitations in place, to prevent the solver from
continuously discarding strategies.

6.5 Inprocessing

On each restart, dejavu checks whether the solver state can be used to simplify the
graph. In certain circumstances, further invariants are applied.

6.5.1 Simplify using Automorphisms

It is easy to see that whenever we determine an orbit that coincides with the color in the
equitable partition, we can individualize an arbitrary vertex of the color.

Lemma 81. Let (G, π) be a vertex-colored graph and ⟨S⟩ ⊆ Aut(G, π). Assume that the
orbit partition ∆ of ⟨S⟩ contains an orbit δ ∈ ∆ such that there is a color class C with
C = δ. Let πv denote the coloring in which some v ∈ π−1(c) has been individualized. It
follows that ⟨S,Aut(G, πv)⟩ = Aut(G, π).

Proof. The claim follows immediately from the orbit-stabilizer theorem (Theorem 7).

We apply the technique for both the automorphisms computed by depth-first search,
as well as the random search.
Considering the Schreier structure, we may individualize the base vertex v of level k

whenever the orbit matches the color class of the initial vertex coloring of the graph.
(Note that each time we individualize a vertex, we modify the initial vertex coloring by
individualizing said vertex and then apply color refinement.) Then, we may check for
more potential applications of the simplification rules on levels k′ > k of the depth-first
search. For correctness, observe that automorphisms found at levels k′ > k must stabilize
the vertex v, i.e., for all automorphisms S found at level k′, ⟨S⟩ ⊆ Aut(G, π)(v) holds.
The same technique can be applied to the computed depth-first levels.

154

6.5 Inprocessing

6.5.2 Simplify using Breadth-First Tree

When restarting, we might have computed a partial breadth-first search T ′(G, π) of the
IR tree. Essentially, we want to apply this IR tree as a vertex invariant on the graph G.
More precisely, we refine π using the information gathered in the breadth-first tree.
We rephrase aspects of T ′(G, π) using Lemma 78, such that we may apply them as a

node invariant.

Lemma 82. Let T ′(G, π) be the IR tree T (G, π) up to level k, on which deviation pruning
using breadth-first search has been applied.
Let v ∈ V (G) and φ ∈ Aut(G, π). The following hold:

1. If there are k nodes µvµ′ ∈ T ′(G, π) (where µ ∈ V c, µ′ ∈ V d), then there are k
nodes νvφν ′ ∈ T ′(G, π) with |µ| = |ν| and |µ′| = |ν ′|.

2. If there are k nodes µ ∈ T ′(G, π) where πµ(v) = c (for some c ∈ {0, . . . , n − 1}),
then there are k nodes ν ∈ T ′(G, π) such that πν(v

φ) = c (here, πµ and πν denote
the corresponding coloring of the node of the IR tree).

Proof. The claims follow from the uniformity of the pruning procedure (Lemma 78): if
µvµ′ ∈ T ′(G, π) has not been pruned in the tree, then φ(µvµ′) = νvφν ′ was not pruned,
either. For the second claim, observe that for each πµ(v) = c, πµφ(vφ) = c.

In the implementation, the above aspects are combined in a hash, which is then used
to split color classes of π. This is followed by an application of color refinement.

6.5.3 Simplify using Shallow Search

As discussed previously, the solver will often perform breadth-first search, which is then
used as an invariant for the next restart iteration of the solver. In some situations,
it is apparent that the solver performs one level of breadth-first search, followed by
an immediate restart: this is the case whenever the breadth-first level uses up all the
remaining budget of the current restart iteration.
Whenever the solver would perform breadth-first search on the first level and the search

would exhaust the remaining budget, the solver chooses to instead immediately restart
and apply the invariant described in the following. The idea is that instead of performing
a “proper” breadth-first traversal of the level, a “shallow” breadth-first traversal often
suffices.

Shallow IR. The idea of the invariant is to only do a shallow check for each vertex v ∈
V (G). The shallow check might distinguish fewer nodes from the target leaf, but is
cheaper to compute. The method used is similar to the increased deviation for deviation
pruning.
We set a constant c. Then, for each v ∈ V (G), we individualize v and perform at

most c splits in color refinement. The invariant recorded by this limited application
of color refinement is stored for vertex v, say, as Inv(v). Having computed Inv(v) for

155

Chapter 6 – The dejavu Algorithm

all v ∈ V (G), we split the initial vertex coloring π according to this invariant. Then, we
apply color refinement again to propagate the information further.

In practice, we use the following estimate to choose the constant c: for each computed
random walk, we store the point c′ at which the walk deviates from the target leaf. For
c, we then choose the smallest value observed for c′. Intuitively, this still guarantees us
to distinguish some of the nodes of the level from the target leaf.

Shallow Multi-Level IR. For some graphs, a single individualization is not sufficient to
distinguish any nodes. We extend the method to a heuristic that is able to potentially
cover more levels of breadth-first search at once.

Let us fix constants c, d, e. Then, for each v ∈ V (G), we individualize v and perform
at most c splits in color refinement. In the resulting coloring π′, we collect all color
classes C with |C| > 1 and |C| ≤ d. For each of these color classes, we repeat the
process, individualizing all v ∈ C for each of these color classes C. We do so for at most
e levels. (Note that e = 1 amounts to the method described above.) We collect a hash
of the resulting partial IR tree to split color classes of the initial coloring π, followed by
an application of color refinement.

Observe that the shallow IR search as described individualizes vertices indiscriminately.
At first, this might seem counter-intuitive: why not use a cell selector and in turn indi-
vidualize fewer vertices? We believe that, in the way defined above, shallow IR search
is orthogonal to “restarts and picking a new cell selector”. In a sense, restarts amount
to a “depth-first” search for a good cell selector, while shallow search is more akin to
a “breadth-first” search for cell selectors which lead to distinguishability in the IR tree.
Furthermore, using our budget, we are easily able to ensure that the application of the
invariant is amortized by computations performed up to that point.

Automorphisms. By definition, for any automorphism φ ∈ Aut(G, π) and any invariant,
we know that v ∈ V (G) and vφ must receive the same value under the invariant. (This
follows by definition of isomorphism-invariance.) Conversely, this means that if a subset
S ⊆ Aut(G, π) is already known, we only need to compute the invariant for one vertex
of each orbit in ⟨S⟩.
We make use of this for our invariant calculations by keeping track of an orbit partition

under all applicable automorphisms.

6.6 Parallelization

An earlier version of the solver, described in [5], focused on a parallel implementation.
While the implementation as described here is not parallelized, we still discuss how the
procedures can be parallelized. In particular, we highlight aspects that seem to parallelize
well, namely random walks and breadth-first search. We describe which parts need to
be synchronized. Lastly, we also discuss the drawbacks of parallelization, and ultimately,
why the current version is not parallelized.

156

6.6 Parallelization

6.6.1 Random Search and Sifting

Random walks of the IR tree trivially parallelize due to their independent nature. Once
the random walks are computed though, some synchronization is necessary. There are
two main aspects:

1. Storing leaves of the tree needs to be synchronized.

2. Storing the Schreier structure and sifting elements needs to be synchronized.

Since the cost of storing and retrieving leaves is negligible, the implementation of [5]
simply uses locks to synchronize this task.
Synchronizing the Schreier structure is more involved, and we describe it in the fol-

lowing. Let us make some observations about the Schreier structure, when we are sifting
elements for the probabilistic abort criterion.

1. The base is never changed or extended.

2. Changes in the transversal tables T are always local to one level in the Schreier
structure.

3. In practice, if sifting is expensive, many elements — probed automorphisms and
randomly generated group elements — are sifted. The computationally expensive
part is then mostly multiplication of elements (Line 10 of Algorithm 1 and Algo-
rithm 28).

We should stress that in particular, (1) and (2) are generally not true when sifting is
employed by traditional, deterministic IR algorithms, and are indeed specific to the way
it is used by Algorithm 25. This means the algorithm does not need to make base changes,
which are generally expensive [104].
Crucially, these three observations enable a rather simple modification to the algo-

rithm: we can sift elements into a shared Schreier structure concurrently, as long as we
synchronize local changes to transversal tables when changing a level. Essentially, we only
need to add a lock for every level and one global lock for the generating set to enable
parallel sifting on a fixed base with sufficient practical performance. These modifications
are summarized in Algorithm 28.
We should remark that an even more fine-grained locking mechanism can be easily

implemented.

6.6.2 Breadth-First Search

Breadth-first search as used by dejavu can be parallelized fairly easily, since computing
individual children is independent (unless trace deviation is used, which is discussed
further below). For example, we may simply use a queue to share work between threads.
One consideration that has to be made is how color refinement is reversed: if reversible

refinement is used (see Section 4.4.3), then preferably all children of a particular node
should be computed by the same thread.

157

Chapter 6 – The dejavu Algorithm

Algorithm 28: A thread-safe sifting algorithm.

1 function Sift
Input: ➢ generators S

➢ transversal table T

➢ base B

➢ element φ
Output: ➢modifies S and T

➢Boolean whether S and T remained unchanged
2 for (i = 1; i ≤ |B|; i = i+ 1)
3 bi := φ(Bi);
4 t := (Ti)bi ;
5 if t = ⊥ then break;
6 φ := φ · t−1;

7 if φ ̸= id then
8 acquire lock for level i;
9 acquire lock for generators;

10 S := S ∪ {φ};
11 release lock for generators;
12 bi := φ(Bi);
13 update (Ti)bi = φ;
14 release lock for level i;
15 return false;

16 return true;

158

6.6 Parallelization

Trace Deviation. Making use of trace deviation has a slight synchronization overhead.
For trace deviation to be applicable, one first has to compute all children of the target
leaf and collect them in a set, before trace deviation pruning can be applied. In order
to achieve uniformity of the resulting tree, we need to also ensure that trace deviation
pruning was applied on all parts of the tree, and siblings are removed. Depending on the
implementation, this might require another pass of the resulting breadth-first level.

6.6.3 To parallelize, or not to parallelize?

Parallelization comes with a severe software engineering burden. This is amplified by the
circumstance that taming the complexity of the implementation is arguably already an
issue for IR algorithms, even without considering parallelization. However, it all boils
down to the question: is it worth it? Purely from a performance perspective, the answer
is certainly yes [5]. If IR trees are difficult enough, the parallelization as discussed in this
section can lead to a significant speed-up.
However, this misses the fact that in many circumstances, parallelization on the level

of symmetry detection is either not wanted or not needed. For example, in applications
such as exhaustive graph generation, parallelization can usually be achieved on a more
macroscopic scale. Furthermore, many computational competitions for which symmetry
exploitation could be interesting only allow sequential algorithms. If symmetry detection
is to be used as a subroutine, an implementation that only works well in parallel is
therefore undesirable.
In particular, the previous parallel implementation described in [5] used strategies that

did not work well sequentially, essentially trading sequential performance for parallel
performance. On the other hand, the sequential implementation described in this thesis
features routines which do not trivially parallelize (e.g., the preprocessor, depth-first
search phase, restart scheme). Observe that these include precisely the routines which
are heavily used for large, practical graphs. However, using a more condensed approach to
parallelization, i.e., by only parallelizing breadth-first search and random search for large
budgets, one should be able to recover most of the benefits of the parallel implementation,
while maintaining the sequential efficiency of the current implementation.

159

Chapter 7

Benchmarks

For practical algorithms, it is of course paramount to test the effectiveness of algorithms
in practice. We compare the C++ implementation of dejavu to all state-of-the-art tools,
namely nauty, saucy, bliss, and Traces. Furthermore, we gauge the effectiveness of
the preprocessor for nauty, saucy, bliss, and Traces.

Let us begin with some technicalities. All benchmarks ran on an Intel i7 9700K with
64GB of RAM on Ubuntu 20.04. The solvers used a single thread with the full amount
of RAM available (we did not run any benchmarks in parallel). The time limit is 100
seconds. If a solver runs out of memory or crashes for any other reason, this counts
as a time out (only nauty and Traces occasionally ran out of memory). All graphs
were randomly permuted, but each solver was passed the same permuted version of each
graph. The solver versions used are bliss 0.73, nauty/Traces 2.6R12, saucy 3.0, and
dejavu 2.0. The source code of dejavu is available here [31]. (In particular, the precise
version tested in this thesis is archived [31].)

We configured dejavu with an error probability below 0.1% (using a pseudo random
number generator). Essentially, we used the default configuration of the solver. However,
we did make one adjustment for the sake of fairness: we artificially ensured that all
generators are lifted back to the original graph (see Chapter 5). If only the automorphism
group size is computed, dejavu will not do so, in turn potentially running faster.

Regarding the probabilistic one-sided error, we checked the reported automorphism
group sizes of dejavu against the automorphism group sizes reported by a deterministic
solver whenever this was possible – i.e., whenever there was a deterministic solver which
did not time out. In our benchmarks, no probabilistic error for dejavu could be observed:
the automorphism group sizes reported by the solvers always agreed.

7.1 Graph Library

To compare solvers in a meaningful way, it is crucial to test them on a well-rounded bench-
mark suite that covers a wide variety of interesting graphs. We list all the graph classes
tested in our benchmarks. Most of the graphs are from the collection of nauty/Traces,
obtained from [85]. The collection combines most graph classes tested in prior publica-
tions regarding practical graph isomorphism solvers. We add further graph classes to
the suite, most of which are directly motivated by practical applications. The additional
classes are described in Section 7.1.2.

161

Chapter 7 – Benchmarks

7.1.1 Graph Classes from the nauty/Traces Collection

We give a brief description of the graph classes used from the nauty/Traces collection
[85]. Note that we include almost all graph classes listed in [85]. We only excluded the
suite of Brendan McKay, which is mostly comprised of very small graphs. Furthermore, we
exlcuded some variants of the multipedes [86]. Testing these classes takes a substantial
amount of time, and would most likely be largely redundant to testing the shrunken
multipedes (see [86]).

We recall the descriptions as given in [58, 28, 70, 85, 86]. The classes ag [58] and
pg [58] contain bipartite point-line incidence graphs of 2-dimensional affine and projec-
tive geometries. The class pp [58] consists of bipartite point-line incidence graphs of
projective planes. The class cfixl (originally from [58], but extended with larger graphs)
consists of random 3-regular graphs augmented using the construction of [20]. The class
had [58] consists of graphs built from Hadamard matrices, whereas the graphs in had-sw
are augmented further using switching operations to reduce symmetry [88]. The class
latin [58] contains graphs stemming from latin squares, whereas latin-sw again contains
graphs obtained from symmetry-reducing switching operations. Similarly, sts [58] stem
from Steiner triple systems, and sts-sw are said graphs with reduced symmetry. Further-
more, there are the Kronecker eye flip graphs kef [85].

The Miyazaki graph classes cmz, mz, mz-aug, and mz-aug2 [58] are based on the con-
struction of [82], describing adversarial graphs for IR algorithms, aimed at particular
cell selectors. The shrunken multipedes multipedes are asymmetric benchmark graphs
designed to cause IR trees of exponential size [86]. The Dawar-Yeung graphs dy are
based on random 3-XOR formulas, and were also designed with the aim of providing
hard instances for IR algorithms [85, 29].

The class dac [85] contains model graphs for CNF SAT formulas, internet represents
interconnections of major routers on the internet [28], ispd is derived from circuits of the
ISPD 2005 placement competition [28], and states [85] contains the road networks of US
states.

The class k consists of complete graphs, grid [58] of grid graphs, and grid-w[58] of grid
graphs with a wrapped boundary. The class ranreg [85] consists of random 6-regular
graphs, whereas rnd-3-reg[58] contains random 3-regular graphs. The class tran [85] is a
collection vertex transitive graphs, combinatorial a collection of combinatorial graphs by
Gordon Royle [85], and f-lex a collection of product graphs by Petteri Kaski [85].

The class chh contains tailored graphs built from hypo-Hamiltonian graphs [70]. Graphs
of the class tnn are built from two tripartite graphs [70]. The class usr contains unions of
strongly regular graphs [70].

The classes ran2, ran10, ransq [85] contain Erdős-Rényi graphs with various edge prob-
abilities. The class rantree [85] contains random trees. The class hypercubes contains,
unsurprisingly, hypercubes.

7.1.2 Additional Graph Classes

We extend the suite above with the following graph classes.

162

7.2 dejavu versus State-of-the-Art

The first graph class sat21 contains model graphs for instances of the SAT competition
2021 [102]. As discussed in Chapter 1, the use of symmetry in SAT is of great interest
and hence it seems only natural to test a collection of contemporary instances. Similarly,
the second class mip17 contains model graphs stemming from a MIP benchmark library
[43, 81]. The third class is pace23, and is simply comprised of all the graphs used in the
PACE challenge 2023 [90]. Lastly, groups128 contains graphs obtained from the Caley
tables of several groups of order 128, sampled from the small groups library of GAP [41].

7.2 dejavu versus State-of-the-Art

Let us first consider the results of our benchmarks separated into graph classes. The
results for each graph class are summarized in Table 7.1. First, taking the sum of all the
runtimes of a graph class, dejavu is fastest on 33 classes, with Traces being fastest
on 7, saucy on 3, and nauty on 1 (out of 44 total classes). We define a solver to be
competitive, if it finishes within a factor of two of the fastest solver. Considering this,
dejavu is competitive on 39 classes, Traces on 22, saucy on 15, nauty on 10, and
bliss on 3 (out of 44 total classes). On all graph classes, dejavu posted the lowest
number of timeouts achieved in the benchmarks (in the majority of classes the score was
tied at 0, though). Summing over all the graphs in the benchmark suite, dejavu reported
27 timeouts, Traces reported 558, bliss reported 489, nauty reported 840, and saucy
reported 557 (out of 4259 graphs). We also remark that nauty and Traces ran out of
memory on some graphs, which we counted as a timeout.

Figure 7.1 illustrates the results on all the tested graphs individually. Each diagram
shows the results of one state-of-the-art solver compared to the results of dejavu. Here,
saucy is faster than dejavu on 34.9% of all graphs, Traces is faster on 25.3%, nauty
is faster on 15.6%, and bliss is faster on 12.5%. Hence, in our benchmarks, compared
to any other solver, dejavu is faster on the majority of individual graphs. A trend that
is quite apparent in these figures is that dejavu tends to be comparatively slower on
graphs that are solved very quickly. The solver starts to gain an advantage as graphs
become more challenging (i.e., as they become more difficult or larger). However, in the
plots, we can also readily observe that graphs on which dejavu wins tend to be further
away from the diagonal: on average, dejavu wins by a larger margin. This is exemplified
by the fact that there is only one graph on which dejavu times out, but there is a solver
which does not. (Traces solves one particular instance of the sat21 graph class within
the timeout, which dejavu does not.)

These observations match expectation: the high-level algorithm of dejavu probes for
good strategies, and potentially employs several techniques before solving a graph. It
is to be expected that this overall process comes with a certain overhead. This in turn
sometimes leads to diminished performance on easy, and typically very small, graphs.
However, on the other hand, dejavu has many more options for finding a good way of
solving a graph when needed, which leads to the improved performance on more involved
graphs.

Going into more detail, Figure 7.2 up to Figure 7.45 plot the results for each graph class

163

Chapter 7 – Benchmarks

set dejavu Traces bliss nauty saucy
name size t t/o t t/o t t/o t to t t/o
ag 23 0 .097 0 0.084 0 0.29 0 0.20 0 1804 18
cfixl 101 51 0 95 0 806 7 765 7 1000 10
chh 26 0.14 0 477 4 286 2 1217 11 1238 12
cmz 46 0 .031 0 0.18 0 74 0 3418 33 0.024 0
combinatorial 12 21 0 63 0 527 5 847 7 1060 10
dac 29 0.40 0 2.1 0 1.8 0 31 0 64 0
dy 290 231 0 7477 72 261 1 321 0 7198 64
f-lex 210 34 0 16619 162 8733 83 19457 192 395 0
grid 39 0 .071 0 0.044 0 0.096 0 0 .062 0 0 .070 0
grid-w 39 0 .12 0 0 .078 0 0.17 0 0.066 0 0 .10 0
groups128 17 12 0 37 0 43 0 342 2 333 1
had 66 11 0 21 0 48 0 470 3 1254 7
had-sw 51 8.5 0 3.0 0 202 1 523 3 807 4
hypercubes 19 93 0 100 0 186 1 155 1 230 1
internet 3 0.16 0 2.4 0 198 1 300 3 0 .19 0
ispd 8 5.7 0 6 .4 0 800 8 800 8 7 .4 0
k 112 0.053 0 41 0 370 3 122 0 0.30 0
kef 11 0 .005 0 0.056 0 0.029 0 0.065 0 0.005 0
latin 29 0.077 0 0.031 0 0.17 0 0 .058 0 0 .040 0
latin-sw 231 3.6 0 5 .0 0 44 0 444 0 281 0
lattice 27 0.024 0 0.065 0 0.33 0 0.057 0 0.13 0
mip17 240 14 0 1103 9 174 0 1470 10 22 0
multipedes 348 4336 25 21452 214 12107 114 12019 108 15170 145
mz 25 0.067 0 0.013 0 0.14 0 0.15 0 1003 10
mz-aug 25 0.11 0 0.015 0 0.13 0 0.090 0 1403 14
mz-aug2 24 0.010 0 0 .005 0 0.19 0 1739 17 0.005 0
pace23 400 35 0 5736 51 3927 26 10149 90 133 0
paley 53 0.018 0 0 .020 0 0.32 0 0 .020 0 0.046 0
pg 23 0.083 0 0 .087 0 0.36 0 0.27 0 0 .11 0
pp 243 606 0 2661 1 21366 203 20702 196 22800 228
ran2 131 0.077 0 0.19 0 0.55 0 0 .13 0 0.28 0
ran10 150 0.12 0 0.27 0 0.86 0 0 .21 0 0.42 0
ransq 150 0.033 0 0 .054 0 0.14 0 0 .057 0 0 .062 0
rantree 19 0 .033 0 0.022 0 2.4 0 230 2 0 .026 0
ranreg 13 0.40 0 4.7 0 155 1 437 4 4.9 0
rnd-3-reg 110 0.73 0 1 .1 0 28 0 2081 0 3.0 0
sat21 400 1531 2 4231 28 4242 26 11057 88 2387 12
states 56 7.1 0 12 0 1538 7 5120 51 7 .6 0
sts 25 0.21 0 0 .36 0 0.64 0 14 0 9.5 0
sts-sw 231 3.1 0 5 .4 0 33 0 659 0 396 0
tnn 20 0.33 0 403 4 1.7 0 7.4 0 905 9
tran 139 1.1 0 4.9 0 6.6 0 7.7 0 1 .6 0
triang 27 0.012 0 0 .018 0 0.13 0 0 .021 0 0.046 0
usr 18 4.6 0 1306 13 8 .8 0 441 4 1203 12

Table 7.1: Benchmark results for each graph class. Columns labeled “t” contain the sum
of the runtime in seconds for each graph class. Columns labeled “t/o” record
the number of timeouts (100 seconds) on the graph class.

164

7.2 dejavu versus State-of-the-Art

individually. The (a) part of each figure orders the results for each solver by runtime,
whereas (b) distributes the instances according to their number of vertices. Let us remark
on some notable observations.
On the shrunken multipedes (Figure 7.24), which are essentially worst-case examples

for IR algorithms, benchmarks match the better asymptotic scaling we would expect of
the Monte Carlo algorithm.
For random regular graphs (Figure 7.36 and Figure 7.37) and f-lex (Figure 7.9), dejavu

heavily relies on the shallow IR inprocessing technique (see Section 6.5). The data suggest
that the technique exhibits an asymptotic advantage over the search strategies of the other
solvers.
On some of the Miyazaki graph classes (Figure 7.5, Figure 7.25, Figure 7.26 and Fig-

ure 7.27), dejavu is not competitive to the fastest solver. This seems to be due to
inconsistent and unnecessary restarts, which lead to a higher overall runtime, but not
necessarily worse scaling. The same seems to be true for Latin squares (Figure 7.20):
in particular, we observe that different permutations of a graph can lead to significantly
different numbers of restarts, which in turn sometimes cause unnecessary overhead, and
other times it does not.

165

Chapter 7 – Benchmarks

10−5 10−4 10−3 10−2 10−1 100 101 102

Traces

10−5

10−4

10−3

10−2

10−1

100

101

102

d
e
ja
v
u

(a) Traces versus dejavu.

10−5 10−4 10−3 10−2 10−1 100 101 102

saucy

10−5

10−4

10−3

10−2

10−1

100

101

102

d
e
ja
v
u

(b) saucy versus dejavu.

10−5 10−4 10−3 10−2 10−1 100 101 102

bliss

10−5

10−4

10−3

10−2

10−1

100

101

102

d
e
ja
v
u

(c) bliss versus dejavu.

10−5 10−4 10−3 10−2 10−1 100 101 102

nauty

10−5

10−4

10−3

10−2

10−1

100

101

102

d
e
ja
v
u

(d) nauty versus dejavu.

Figure 7.1: Comparing state-of-the-art solvers on all tested graphs. The y-axis is the
runtime of dejavu in seconds, and the x-axis is the runtime of the other
solver. Points below the diagonal indicate dejavu being faster.

166

7.2 dejavu versus State-of-the-Art

0 5 10 15 20

instance

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

ag

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103

size

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

ag

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.2: Benchmark results for the graph class ag.

0 20 40 60 80 100

instance

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

cfixl

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

103 104

size

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

cfixl

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.3: Benchmark results for the graph class cfixl.

0 5 10 15 20 25

instance

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

chh

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

chh

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.4: Benchmark results for the graph class chh.

167

Chapter 7 – Benchmarks

0 10 20 30 40

instance

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

cmz

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

103

size

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

cmz

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.5: Benchmark results for the graph class cmz.

0 2 4 6 8 10

instance

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

combinatorial

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

103 104 105 106

size

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

combinatorial

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.6: Benchmark results for the graph class combinatorial.

0 5 10 15 20 25

instance

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

dac

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

103 104 105

size

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

dac

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.7: Benchmark results for the graph class dac.

168

7.2 dejavu versus State-of-the-Art

0 50 100 150 200 250 300

instance

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

dy

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103 104

size

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

dy

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.8: Benchmark results for the graph class dy.

0 50 100 150 200

instance

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

f-lex

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

103

size

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

f-lex

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.9: Benchmark results for the graph class f-lex.

0 10 20 30

instance

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

grid

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103 104

size

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

grid

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.10: Benchmark results for the graph class grid.

169

Chapter 7 – Benchmarks

0 10 20 30

instance

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

grid-w

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103 104

size

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

grid-w

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.11: Benchmark results for the graph class grid-w.

0 5 10 15

instance

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

groups128

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

104 105

size

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

groups128

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.12: Benchmark results for the graph class groups128.

0 20 40 60

instance

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

had

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103

size

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

had

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.13: Benchmark results for the graph class had.

170

7.2 dejavu versus State-of-the-Art

0 10 20 30 40 50

instance

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

had-sw

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 2× 102 3× 102 4× 102

size

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

had-sw

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.14: Benchmark results for the graph class had-sw.

0 5 10 15

instance

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

hypercubes

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103 104 105 106

size

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

hypercubes

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.15: Benchmark results for the graph class hypercubes.

0.0 0.5 1.0 1.5 2.0

instance

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

internet

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

1.25× 1051.5× 1051.75× 1052× 1052.25× 1052.5× 1052.75× 105

size

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

internet

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.16: Benchmark results for the graph class internet.

171

Chapter 7 – Benchmarks

0 2 4 6

instance

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

ispd

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

106

size

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

ispd

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.17: Benchmark results for the graph class ispd.

0 20 40 60 80 100

instance

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

k

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103

size

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

k

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.18: Benchmark results for the graph class k.

0 2 4 6 8 10

instance

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

kef

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

2× 102 3× 102 4× 102 6× 102

size

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

kef

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.19: Benchmark results for the graph class kef.

172

7.2 dejavu versus State-of-the-Art

0 5 10 15 20 25

instance

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

latin

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103

size

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

latin

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.20: Benchmark results for the graph class latin.

0 50 100 150 200

instance

10−3

10−2

10−1

100

101

co
m
p
u
ta
ti
on

ti
m
e

latin-sw

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−3

10−2

10−1

100

101

co
m
p
u
ta
ti
on

ti
m
e

latin-sw

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.21: Benchmark results for the graph class latin-sw.

0 5 10 15 20 25

instance

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

lattice

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

lattice

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.22: Benchmark results for the graph class lattice.

173

Chapter 7 – Benchmarks

0 50 100 150 200 250

instance

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

mip17

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103 104 105 106

size

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

mip17

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.23: Benchmark results for the graph class mip17.

0 100 200 300

instance

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

multipedes

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

multipedes

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.24: Benchmark results for the graph class multipedes.

0 5 10 15 20 25

instance

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

mz

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

mz

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.25: Benchmark results for the graph class mz.

174

7.2 dejavu versus State-of-the-Art

0 5 10 15 20 25

instance

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

mz-aug

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

mz-aug

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.26: Benchmark results for the graph class mz-aug.

0 5 10 15 20

instance

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

mz-aug2

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

mz-aug2

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.27: Benchmark results for the graph class mz-aug2.

0 100 200 300 400

instance

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

pace23

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103 104 105 106

size

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

pace23

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.28: Benchmark results for the graph class pace23.

175

Chapter 7 – Benchmarks

0 10 20 30 40 50

instance

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

paley

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102

size

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

paley

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.29: Benchmark results for the graph class paley.

0 5 10 15 20

instance

10−5

10−4

10−3

10−2

10−1

co
m
p
u
ta
ti
on

ti
m
e

pg

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−5

10−4

10−3

10−2

10−1

co
m
p
u
ta
ti
on

ti
m
e

pg

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.30: Benchmark results for the graph class pg.

0 50 100 150 200 250

instance

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

pp

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

pp

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.31: Benchmark results for the graph class pp.

176

7.2 dejavu versus State-of-the-Art

0 25 50 75 100 125

instance

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

ran2

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103

size

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

ran2

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.32: Benchmark results for the graph class ran2.

0 25 50 75 100 125 150

instance

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

ran10

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103 104

size

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

ran10

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.33: Benchmark results for the graph class ran10.

0 25 50 75 100 125 150

instance

10−5

10−4

10−3

co
m
p
u
ta
ti
on

ti
m
e

ransq

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103 104

size

10−5

10−4

10−3

co
m
p
u
ta
ti
on

ti
m
e

ransq

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.34: Benchmark results for the graph class ransq.

177

Chapter 7 – Benchmarks

0 5 10 15

instance

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

rantree

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103 104 105

size

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

rantree

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.35: Benchmark results for the graph class rantree.

0 2 4 6 8 10 12

instance

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

ranreg

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103 104 105

size

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

ranreg

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.36: Benchmark results for the graph class ranreg.

0 20 40 60 80 100

instance

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

rnd-3-reg

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

103 104

size

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

rnd-3-reg

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.37: Benchmark results for the graph class rnd-3-reg.

178

7.2 dejavu versus State-of-the-Art

0 100 200 300 400

instance

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

sat21

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

103 104 105 106 107

size

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

sat21

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.38: Benchmark results for the graph class sat21.

0 10 20 30 40 50

instance

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

states

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

103 104 105 106

size

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

states

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.39: Benchmark results for the graph class states.

0 5 10 15 20 25

instance

10−5

10−4

10−3

10−2

10−1

100

co
m
p
u
ta
ti
on

ti
m
e

sts

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103

size

10−5

10−4

10−3

10−2

10−1

100

co
m
p
u
ta
ti
on

ti
m
e

sts

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.40: Benchmark results for the graph class sts.

179

Chapter 7 – Benchmarks

0 50 100 150 200

instance

10−3

10−2

10−1

100

101

co
m
p
u
ta
ti
on

ti
m
e

sts-sw

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−3

10−2

10−1

100

101

co
m
p
u
ta
ti
on

ti
m
e

sts-sw

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.41: Benchmark results for the graph class sts-sw.

0 5 10 15

instance

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

tnn

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−4

10−2

100

102

co
m
p
u
ta
ti
on

ti
m
e

tnn

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.42: Benchmark results for the graph class tnn.

0 25 50 75 100 125

instance

10−5

10−4

10−3

10−2

10−1

100

co
m
p
u
ta
ti
on

ti
m
e

tran

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102 103 104

size

10−5

10−4

10−3

10−2

10−1

100

co
m
p
u
ta
ti
on

ti
m
e

tran

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.43: Benchmark results for the graph class tran.

180

7.2 dejavu versus State-of-the-Art

0 5 10 15 20 25

instance

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

triang

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

101 102

size

10−5

10−4

10−3

10−2

co
m
p
u
ta
ti
on

ti
m
e

triang

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.44: Benchmark results for the graph class triang.

0 5 10 15

instance

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

usr

dejavu

Traces

bliss

nauty

saucy

(a) Sorted according to runtime.

102 103

size

10−4

10−3

10−2

10−1

100

101

102

co
m
p
u
ta
ti
on

ti
m
e

usr

dejavu

Traces

bliss

nauty

saucy

(b) Sorted according to size.

Figure 7.45: Benchmark results for the graph class usr.

181

Chapter 7 – Benchmarks

7.3 Preprocessing

We test the solvers nauty, saucy, bliss, and Traces in conjunction with our pre-
processor described in Chapter 5. Our goal is to gauge whether the preprocessor speeds
up the solvers. Considering the techniques of the preprocessor, the hope is that solvers
become faster on large practical graphs, while not slowing down too much on difficult
combinatorial graphs. We simply ran the solvers again on the entire benchmark suite,
while applying the preprocessor first.
Figure 7.46 shows the results of our benchmarks. Clearly, for nauty, bliss, and

Traces we can observe a significant overall speedup. However, on average, the prepro-
cessor is also beneficial for saucy, albeit this is not as clear as for the other solvers.
Considering the design of saucy however, this is to be expected. The preprocessor
speeds up nauty on 80.1% of instances, saucy on 69.2% of instances, bliss on 73.4%
of instances, and Traces on 72.8% of instances. The number of timeouts is reduced for
all solvers.
It should be noted that some combinatorial instances are solved considerably slower

using the preprocessor. (Others get faster.) In particular, in many cases, this is despite
the fact that the preprocessor does not manipulate the graph structurally. The change in
performance can however be explained as follows: the preprocessor applies color refine-
ment, and passes the already refined graph to the solver. While every solver of course
would also apply color refinement internally, the ordering of the colors may be differ-
ent when done by the preprocessor. In turn, this can have knock-on effects for other
strategies: the cell selector may now indeed choose different cells, which can lead to large
differences in the IR tree itself.
Overall, it does however seem that the application of the preprocessor is generally

beneficial for all solvers.

182

7.3 Preprocessing

10−5 10−4 10−3 10−2 10−1 100 101 102

Traces

10−5

10−4

10−3

10−2

10−1

100

101

102

p
r
e
p
+
T
r
a
c
e
s

(a) Traces versus preprocessor+Traces.

10−5 10−4 10−3 10−2 10−1 100 101 102

saucy

10−5

10−4

10−3

10−2

10−1

100

101

102

p
r
e
p
+
sa

u
c
y

(b) saucy versus preprocessor+saucy.

10−5 10−4 10−3 10−2 10−1 100 101 102

bliss

10−5

10−4

10−3

10−2

10−1

100

101

102

p
r
e
p
+
b
l
is
s

(c) bliss versus preprocessor+bliss.

10−5 10−4 10−3 10−2 10−1 100 101 102

nauty

10−5

10−4

10−3

10−2

10−1

100

101

102

p
r
e
p
+
n
a
u
t
y

(d) saucy versus preprocessor+nauty.

Figure 7.46: Testing state-of-the-art solvers using the preprocessor on all tested graphs.
The y-axis is the runtime (in seconds) of the solver additionally using the
dejavu preprocessor, and the x-axis is the runtime of the solver without the
use of the preprocessor. Points below the diagonal indicate the use of the
preprocessor is beneficial.

183

Chapter 8

Conclusions and Outlook

We conclude this thesis with a short summary of our results, potential future work, as
well as open problems.

8.1 Conclusions

This exposition began with an introduction to the IR paradigm, as well as current state-
of-the-art solvers implemented within the IR paradigm.

We found that a distinct feature of the state-of-the-art solver Traces is its unique
traversal strategies for the IR backtracking trees, which seems to enable its outstanding
performance on difficult combinatorial graphs. This prompted our theoretical investiga-
tion into IR backtracking strategies. First, our theoretical model offered an explanation
for the effectiveness of the Traces strategy. Second, we found near-optimal Monte Carlo
and Las Vegas strategies within the model, which asymptotically outperform all traversal
strategies currently used in practice in the worst-case.

We then investigated color refinement, a crucial building block of IR algorithms. First,
we gave a description of a state-of-the-art color refinement implementation, further argu-
ing its correctness and worst-case runtime. Second, we modeled a central design choice of
the algorithm: the worklist order, i.e., the order in which color classes are refined. Within
a theoretical online and offline model, we showed that no worklist order is competitive
beyond a logarithmic factor to every other worklist order.

Turning to the practical side of things, we then described our universal preprocessor
for symmetry detection. The preprocessor is designed to work with all state-of-the-art
symmetry detection tools. We described techniques to reduce vertices of low degree,
twins, as well as further reduction techniques based on the quotient graph. Benchmarks
demonstrated that the preprocessor speeds up all existing state-of-the-art solvers.

Finally, we described the dejavu algorithm for symmetry detection. The algorithm is
heavily based on our theoretical investigation: in particular, its main backtracking strat-
egy is based on the near-optimal Monte Carlo traversal strategy. We further augmented
the Monte Carlo strategy with many novel practical techniques. The motivation behind
all of these augmentations was to enable the solver to work well across a wide range
of graph classes. Benchmarks then demonstrated that dejavu outperforms all state-of-
the-art solvers on the majority of tested graph classes while being close to the fastest
solver on almost all classes. In particular, dejavu seems to gain an advantage as graphs
become more difficult or larger. On the other hand, dejavu slightly lacks performance
on very easy or small graphs, at least compared to some of the other solvers. Overall,

185

Chapter 8 – Conclusions and Outlook

our benchmarks provide evidence that dejavu is indeed the most powerful symmetry
detection algorithm currently in use.

8.2 Future Work

There seem to be many promising directions in which the present work, as well as the
practical implementation, could be expanded upon.

Canonical Labeling. The present algorithm solves symmetry detection and does not
solve canonical labeling. An interesting approach could be to run dejavu first and then
a tailored canonical labeling algorithm that can efficiently use a given automorphism
group. A similar approach has already been explored using saucy and bliss in [61],
where saucy and bliss are essentially applied in lock-step. However, we believe the
approach could be even more successful using dejavu and a canonical labeling approach
akin to Traces. Furthermore, the preprocessing routines could be expanded to canonical
labeling.

Las Vegas in Practice. Another interesting approach could be to explore the Las Vegas
strategy of Chapter 3 in practice. Again, we could simply run dejavu as-is first and then
only apply the Las Vegas algorithm whenever dejavu does not terminate deterministi-
cally. Furthermore, random walks could most likely already be used to determine a fairly
balanced split.

Luks’ Framework in Practice. In general, it seems difficult to apply techniques from
computational group theory as used in theoretical algorithms for graph isomorphism in
practice. However, in dejavu, applying techniques only under specific circumstances,
e.g., if previous techniques already amortize them, is straightforward. In particular, the
algorithm for bounded color multiplicity could be of interest in practice [71], since it could
solve the current class of worst-case examples [86, 87] in polynomial time.

Canonical Labeling Traversal. Our model for IR tree traversal does not seem to prop-
erly model canonical labeling. The author does not believe that canonical labeling can
be solved in time that is sublinear in the size of the IR backtracking tree. However, in
order to prove this, a refined theoretical model seems to be necessary.

Incremental Graph Isomorphism. In certain applications, it would be interesting to
be able to compute the symmetries of a graph, modify it slightly, and then compute
the symmetries again (e.g., to compute local symmetries in a backtracking tree). While
adding or removing a single edge can completely discretize an otherwise symmetrical
graph, in practice, there could still be many cases in which the incremental problem can
be solved efficiently.

186

8.2 Future Work

SIMD and Color Refinement. Our implementation of color refinement may still leave
room for significant improvements. An interesting case could be small or very dense
graphs. Here, using single instruction multiple data (SIMD) instructions could potentially
greatly improve performance.

Certified Non-Isomorphism. While we can efficiently certify isomorphisms and au-
tomorphisms of graphs, this does not necessarily hold true for non-isomorphism, non-
automorphism, and canonical labeling. As mentioned in Chapter 1, using a randomized
protocol, non-isomorphism and non-automorphism can be verified. Still, it could be of
interest to enhance solvers to provide a certificate for non-isomorphism or for canonical
labelings, which can be checked using a machine-verified checker [73]. A particular case in
which this could be interesting is canonical labeling: if canonical labeling is used as part
of a larger process (e.g., exhaustive graph generation), this could, in turn, help provide a
certificate for said larger process.

For all intents and purposes, it seems that practical graph isomorphism is still not
“solved” and is sure to be pushed further in the future.

187

Bibliography

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[2] Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Shatter: efficient symmetry-
breaking for boolean satisfiability. In Proceedings of the 40th Design Automation
Conference, DAC 2003, Anaheim, CA, USA, June 2-6, 2003, pages 836–839. ACM,
2003.

[3] Markus Anders, Jendrik Brachter, and Pascal Schweitzer. A characterization of
individualization-refinement trees. In 32nd International Symposium on Algorithms
and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212
of LIPIcs, pages 24:1–24:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[4] Markus Anders and Pascal Schweitzer. Engineering a fast probabilistic isomorphism
test. In Proceedings of the Symposium on Algorithm Engineering and Experiments,
ALENEX 2021, Virtual Conference, January 10-11, 2021, pages 73–84. SIAM,
2021.

[5] Markus Anders and Pascal Schweitzer. Parallel computation of combinatorial sym-
metries. In 29th Annual European Symposium on Algorithms, ESA 2021, September
6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 6:1–
6:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[6] Markus Anders and Pascal Schweitzer. Search problems in trees with symmetries:
Near optimal traversal strategies for individualization-refinement algorithms. In
48th International Colloquium on Automata, Languages, and Programming, ICALP
2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of
LIPIcs, pages 16:1–16:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[7] Markus Anders, Pascal Schweitzer, and Julian Stieß. Engineering a preprocessor for
symmetry detection. In 21st International Symposium on Experimental Algorithms,
SEA 2023, July 24-26, 2023, Barcelona, Spain, volume 265 of LIPIcs, pages 1:1–
1:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[8] Markus Anders, Pascal Schweitzer, and Florian Wetzels. Comparative design-choice
analysis of color refinement algorithms beyond the worst case. In 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16,
2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 15:1–
15:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

189

Bibliography

[9] Vladimir L. Arlazarov, I.I. Zuev, A.V. Uskov, and I.A. Faradzhev. An algorithm for
the reduction of finite non-oriented graphs to canonical form. USSR Computational
Mathematics and Mathematical Physics, 14(3):195–201, 1974.

[10] Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, Sebastian Kuhnert, and
Gaurav Rattan. The parameterized complexity of fixing number and vertex in-
dividualization in graphs. In MFCS2016, volume 58 of LIPIcs, pages 13:1–13:14,
2016.

[11] Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. On tin-
hofer’s linear programming approach to isomorphism testing. In Mathematical
Foundations of Computer Science 2015 - 40th International Symposium, MFCS
2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II, volume 9235 of Lec-
ture Notes in Computer Science, pages 26–37. Springer, 2015.

[12] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697. ACM,
2016.

[13] László Babai. Canonical form for graphs in quasipolynomial time: preliminary
report. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1237–1246.
ACM, 2019.

[14] László Babai, Paul Erdös, and Stanley M. Selkow. Random graph isomorphism.
SIAM J. Comput., 9(3):628–635, 1980.

[15] László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof sys-
tem, and a hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276,
1988.

[16] Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. Tight lower and upper
bounds for the complexity of canonical colour refinement. Theory Comput. Syst.,
60(4):581–614, 2017.

[17] Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimination for
QBF. In Automated Deduction - CADE-23 - 23rd International Conference on
Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings,
volume 6803 of Lecture Notes in Computer Science, pages 101–115. Springer, 2011.

[18] Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. J. Algorithms, 11(4):631–643, 1990.

[19] Jendrik Brachter. Combinatorial approaches to the group isomorphism problem.
PhD thesis, Technische Universität Darmstadt, Darmstadt, 2023.

190

Bibliography

[20] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the
number of variables for graph identification. Comb., 12(4):389–410, 1992.

[21] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of
satisfiability of small depth circuits. In Parameterized and Exact Computation, 4th
International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11,
2009, Revised Selected Papers, volume 5917 of Lecture Notes in Computer Science,
pages 75–85. Springer, 2009.

[22] Duc-Hiep Chu and Joxan Jaffar. A complete method for symmetry reduction in
safety verification. In Proceedings of the 24th international conference on Computer
Aided Verification, volume 7358 of Lecture Notes in Computer Science, pages 616–
633. Springer, 2012.

[23] Paolo Codenotti, Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. Conflict
analysis and branching heuristics in the search for graph automorphisms. In 25th
IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2013,
Herndon, VA, USA, November 4-6, 2013, pages 907–914. IEEE Computer Society,
2013.

[24] Michael Codish, Graeme Gange, Avraham Itzhakov, and Peter J. Stuckey. Breaking
symmetries in graphs: The nauty way. In Principles and Practice of Constraint Pro-
gramming - 22nd International Conference, CP 2016, Toulouse, France, September
5-9, 2016, Proceedings, volume 9892 of Lecture Notes in Computer Science, pages
157–172. Springer, 2016.

[25] Derek G. Corneil and Calvin C. Gotlieb. An efficient algorithm for graph isomor-
phism. J. ACM, 17(1):51–64, 1970.

[26] James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy.
Symmetry-breaking predicates for search problems. In Proceedings of the Fifth
International Conference on Principles of Knowledge Representation and Reasoning
(KR’96), Cambridge, Massachusetts, USA, November 5-8, 1996, pages 148–159.
Morgan Kaufmann, 1996.

[27] Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploit-
ing structure in symmetry detection for CNF. In Proceedings of the 41th Design
Automation Conference, DAC 2004, San Diego, CA, USA, June 7-11, 2004, pages
530–534. ACM, 2004.

[28] Paul T. Darga, Karem A. Sakallah, and Igor L. Markov. Faster symmetry discovery
using sparsity of symmetries. In Proceedings of the 45th Design Automation Con-
ference, DAC 2008, Anaheim, CA, USA, June 8-13, 2008, pages 149–154. ACM,
2008.

[29] Anuj Dawar and Kashif Khan. Constructing hard examples for graph isomorphism.
J. Graph Algorithms Appl., 23(2):293–316, 2019.

191

Bibliography

[30] David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo.
Exploiting symmetry in SMT problems. In Automated Deduction - CADE-23 -
23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31
- August 5, 2011. Proceedings, volume 6803 of Lecture Notes in Computer Science,
pages 222–236. Springer, 2011.

[31] dejavu. https://automorphisms.org, source code tested in this thesis is also
archived at swh:1:dir:5d33400fd9149c6e3507cc1b1f9a0f3c396d6372.

[32] Jo Devriendt and Bart Bogaerts. BreakID: Static symmetry breaking for ASP
(system description). CoRR, abs/1608.08447, 2016.

[33] Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation
learning: Effective dynamic symmetry handling for SAT. In Theory and Appli-
cations of Satisfiability Testing - SAT 2017 - 20th International Conference, Mel-
bourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10491
of Lecture Notes in Computer Science, pages 83–100. Springer, 2017.

[34] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved
static symmetry breaking for SAT. In Theory and Applications of Satisfiability
Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-
8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages
104–122. Springer, 2016.

[35] Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, and Christopher
Mears. Symmetry propagation: Improved dynamic symmetry breaking in SAT.
In IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI
2012, Athens, Greece, November 7-9, 2012, pages 49–56. IEEE Computer Society,
2012.

[36] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and
clause elimination. In Theory and Applications of Satisfiability Testing, 8th Inter-
national Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings,
volume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.

[37] Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin
Pearson, and Toby Walsh. Breaking row and column symmetries in matrix models.
In Principles and Practice of Constraint Programming - CP 2002, 8th International
Conference, CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings, volume
2470 of Lecture Notes in Computer Science, pages 462–476. Springer, 2002.

[38] Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kızıltan, Ian Miguel, and
Toby Walsh. Matrix modelling. Technical Report APES-36-2001, APES group
(2001), 2001.

[39] Billy J. Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-
leman at the margin: When more expressivity matters. CoRR, abs/2402.07568,
2024.

192

https://automorphisms.org
https://archive.softwareheritage.org/swh:1:rev:84ee7457bff9f8d8b470da9fa851ea55758880fb;origin=https://github.com/markusa4/dejavu;visit=swh:1:snp:144d3897e49f0ddb6d4e10034b1bc3188dfd0367

Bibliography

[40] Billy Joe Franks, Markus Anders, Marius Kloft, and Pascal Schweitzer. A system-
atic approach to universal random features in graph neural networks. Transactions
on Machine Learning Research, 2023.

[41] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.13.0,
2024.

[42] Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in constraint
programming. In Handbook of Constraint Programming, volume 2 of Foundations
of Artificial Intelligence, pages 329–376. Elsevier, 2006.

[43] Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael
Bastubbe, Timo Berthold, Philipp M. Christophel, Kati Jarck, Thorsten Koch, Jeff
Linderoth, Marco Lübbecke, Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs,
Domenico Salvagnin, and Yuji Shinano. MIPLIB 2017: Data-Driven Compilation
of the 6th Mixed-Integer Programming Library. Mathematical Programming Com-
putation, 2021.

[44] Patrice Godefroid. Exploiting symmetry when model-checking software. In Proceed-
ings of the IFIP TC6 WG6.1 Joint International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols (FORTE XII)
and Protocol Specification, Testing and Verification (PSTV XIX), volume 156 of
IFIP Conference Proceedings, pages 257–275. Kluwer, 1999.

[45] Mark K. Goldberg. A nonfactorial algorithm for testing isomorphism of two graphs.
Discret. Appl. Math., 6(3):229–236, 1983.

[46] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):691–729, 1991.

[47] Martin Grohe. Equivalence in finite-variable logics is complete for polynomial time.
In FOCS ’96, pages 264–273. IEEE Computer Society, 1996.

[48] Martin Grohe. Fixed-point definability and polynomial time on graphs with ex-
cluded minors. J. ACM, 59(5):27:1–27:64, 2012.

[49] Martin Grohe and Daniel Neuen. Isomorphism for tournaments of small twin width.
CoRR, abs/2312.02048, 2023.

[50] Martin Grohe and Pascal Schweitzer. Isomorphism testing for graphs of bounded
rank width. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1010–1029. IEEE
Computer Society, 2015.

[51] Armin Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308,
1985.

193

Bibliography

[52] Marijn J. H. Heule. Optimal symmetry breaking for graph problems. Math. Comput.
Sci., 13(4):533–548, 2019.

[53] Marijn J. H. Heule and Oliver Kullmann. The science of brute force. Commun.
ACM, 60(8):70–79, 2017.

[54] Christopher Hojny and Marc E. Pfetsch. Polytopes associated with symmetry
handling. Math. Program., 175(1-2):197–240, 2019.

[55] John E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
In Theory of Machines and Computations, pages 189–196. Academic Press, 1971.

[56] John E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs (preliminary report). In Proceedings of the 6th Annual ACM Symposium on
Theory of Computing, April 30 - May 2, 1974, Seattle, Washington, USA, pages
172–184. ACM, 1974.

[57] Tommi A. Junttila, Matti Karppa, Petteri Kaski, and Jukka Kohonen. An adaptive
prefix-assignment technique for symmetry reduction. J. Symb. Comput., 99:21–49,
2020.

[58] Tommi A. Junttila and Petteri Kaski. Engineering an efficient canonical labeling
tool for large and sparse graphs. In Proceedings of the Nine Workshop on Al-
gorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana,
USA, January 6, 2007. SIAM, 2007.

[59] Tommi A. Junttila and Petteri Kaski. Conflict propagation and component recur-
sion for canonical labeling. In Theory and Practice of Algorithms in (Computer)
Systems - First International ICST Conference, TAPAS 2011, Rome, Italy, April
18-20, 2011. Proceedings, volume 6595 of Lecture Notes in Computer Science, pages
151–162. Springer, 2011.

[60] Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. Conflict anticipation in the
search for graph automorphisms. In Logic for Programming, Artificial Intelligence,
and Reasoning - 18th International Conference, LPAR-18, Mérida, Venezuela,
March 11-15, 2012. Proceedings, volume 7180 of Lecture Notes in Computer Sci-
ence, pages 243–257. Springer, 2012.

[61] Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. Graph symmetry detection
and canonical labeling: Differences and synergies. In Turing-100 - The Alan Tur-
ing Centenary, Manchester, UK, June 22-25, 2012, volume 10 of EPiC Series in
Computing, pages 181–195. EasyChair, 2012.

[62] Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The weisfeiler-leman di-
mension of planar graphs is at most 3. J. ACM, 66(6):44:1–44:31, 2019.

[63] Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs identified by logics
with counting. ACM Trans. Comput. Log., 23(1):1:1–1:31, 2022.

194

Bibliography

[64] Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph gener-
ation. In 27th International Conference on Principles and Practice of Constraint
Programming, CP, volume 210 of LIPIcs, pages 34:1–34:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

[65] Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo. Maxpre: An
extended maxsat preprocessor. In Theory and Applications of Satisfiability Testing
- SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August
28 - September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer
Science, pages 449–456. Springer, 2017.

[66] Martin Kutz and Pascal Schweitzer. Screwbox: a randomized certifying graph-non-
isomorphism algorithm. In Proceedings of the Nine Workshop on Algorithm Engi-
neering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January
6, 2007. SIAM, 2007.

[67] Wenchao Li, Hossein Saidi, Huascar Sanchez, Martin Schäf, and Pascal Schweitzer.
Detecting similar programs via the Weisfeiler-Leman graph kernel. In Proceed-
ings of the 15th International Conference on Software Reuse: Bridging with Social-
Awareness, volume 9679 of Lecture Notes in Computer Science, pages 315–330.
Springer, 2016.

[68] Yanxi Liu, Hagit Hel-Or, Craig S. Kaplan, and Luc Van Gool. Computational
symmetry in computer vision and computer graphics. Foundations and Trends®
in Computer Graphics and Vision, 5(1–2):1–195, 2010.

[69] José Luis López-Presa and Antonio Fernández Anta. Fast algorithm for graph iso-
morphism testing. In Experimental Algorithms, 8th International Symposium, SEA
2009, Dortmund, Germany, June 4-6, 2009. Proceedings, volume 5526 of Lecture
Notes in Computer Science, pages 221–232. Springer, 2009.

[70] José Luis López-Presa, Antonio Fernández Anta, and Luis Núñez Chiroque.
Conauto-2.0: Fast isomorphism testing and automorphism group computation.
CoRR, abs/1108.1060, 2011.

[71] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. J. Comput. Syst. Sci., 25(1):42–65, 1982.

[72] François Margot. Symmetry in integer linear programming. In 50 Years of Integer
Programming 1958-2008 - From the Early Years to the State-of-the-Art, pages 647–
686. Springer, 2010.

[73] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certi-
fying algorithms. Comput. Sci. Rev., 5(2):119–161, 2011.

[74] Brendan D. McKay. Practical graph isomorphism. In 10th. Manitoba Conference
on Numerical Mathematics and Computing (Winnipeg, 1980), pages 45–87, 1981.

195

Bibliography

[75] Brendan D. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26(2):306–
324, 1998.

[76] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb.
Comput., 60:94–112, 2014.

[77] Brendan D. McKay, Mehmet Aziz Yirik, and Christoph Steinbeck. Surge: a fast
open-source chemical graph generator. J. Cheminformatics, 14(1):24, 2022.

[78] Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. Cdclsym:
Introducing effective symmetry breaking in SAT solving. In Tools and Algorithms
for the Construction and Analysis of Systems - 24th International Conference,
TACAS 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Pro-
ceedings, Part I, volume 10805 of Lecture Notes in Computer Science, pages 99–114.
Springer, 2018.

[79] Alice Miller, Alastair F. Donaldson, and Muffy Calder. Symmetry in temporal logic
model checking. ACM Computing Surveys, 38(3), 2006.

[80] Gary L. Miller. Graph isomorphism, general remarks. J. Comput. Syst. Sci.,
18(2):128–142, 1979.

[81] MIPLIB 2017 - The Mixed Integer Programming Library.
https://miplib.zib.de/.

[82] Takunari Miyazaki. The complexity of McKay’s canonical labeling algorithm. In
Groups and Computation, Proceedings of a DIMACS Workshop, New Brunswick,
New Jersey, USA, June 7-10, 1995, volume 28 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 239–256. DIMACS/AMS,
1995.

[83] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural:
Higher-order graph neural networks. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Ar-
tificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 4602–4609. AAAI Press, 2019.

[84] A.G. Munford. A note on the uniformity assumption in the birthday problem.
Amer. Statist., 31(3):119, 1977.

[85] nauty and Traces. http://pallini.di.uniroma1.it.

[86] Daniel Neuen and Pascal Schweitzer. Benchmark graphs for practical graph isomor-
phism. In 25th Annual European Symposium on Algorithms, ESA 2017, Septem-
ber 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 60:1–60:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

196

https://miplib.zib.de/
http://pallini.di.uniroma1.it

Bibliography

[87] Daniel Neuen and Pascal Schweitzer. An exponential lower bound for
individualization-refinement algorithms for graph isomorphism. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,
Los Angeles, CA, USA, June 25-29, 2018, pages 138–150. ACM, 2018.

[88] William P. Orrick. Switching operations for hadamard matrices. SIAM J. Discret.
Math., 22(1):31–50, 2008.

[89] James Ostrowski, Jeff T. Linderoth, Fabrizio Rossi, and Stefano Smriglio. Con-
straint orbital branching. In Integer Programming and Combinatorial Optimization,
13th International Conference, IPCO 2008, Bertinoro, Italy, May 26-28, 2008,
Proceedings, volume 5035 of Lecture Notes in Computer Science, pages 225–239.
Springer, 2008.

[90] PACE challenge. https://pacechallenge.org/.

[91] R. Parris and R. C. Read. Graph isomorphism and the coding of graphs. Technical
Report UWI/CC5, University of the West Indies, Jamaica, 1967.

[92] Marc E. Pfetsch and Thomas Rehn. A computational comparison of symmetry
handling methods for mixed integer programs. Math. Program. Comput., 11(1):37–
93, 2019.

[93] Adolfo Piperno. Search space contraction in canonical labeling of graphs (prelimi-
nary version). CoRR, abs/0804.4881, 2008.

[94] Adolfo Piperno. Isomorphism test for digraphs with weighted edges. In 17th In-
ternational Symposium on Experimental Algorithms, SEA 2018, June 27-29, 2018,
L’Aquila, Italy, volume 103 of LIPIcs, pages 30:1–30:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[95] Milan Randić. On canonical numbering of atoms in a molecule and graph isomor-
phism. Journal of Chemical Information and Computer Sciences, 17(3):171–180,
1977.

[96] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and
a sub-constant error-probability PCP characterization of NP. In Proceedings of
the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso,
Texas, USA, May 4-6, 1997, pages 475–484. ACM, 1997.

[97] Ronald C. Read and Derek G. Corneil. The graph isomorphism disease. J. Graph
Theory, 1(4):339–363, 1977.

[98] David J. Rosenbaum. Breaking the nlog n barrier for solvable-group isomorphism.
In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
1054–1073. SIAM, 2013.

197

https://pacechallenge.org/

Bibliography

[99] Irene Luque Ruiz and Miguel Ángel Gómez-Nieto. A java tool for the management
of chemical databases and similarity analysis based on molecular graphs isomor-
phism. In Computational Science – ICCS 2008, pages 369–378, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[100] Ashish Sabharwal. Symchaff: exploiting symmetry in a structure-aware satisfiabil-
ity solver. Constraints An Int. J., 14(4):478–505, 2009.

[101] Karem A. Sakallah. Symmetry and satisfiability. In Handbook of Satisfiability -
Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications,
pages 509–570. IOS Press, 2021.

[102] SAT Competition 2021. https://satcompetition.github.io/2021/.

[103] Pascal Schweitzer. Problems of unknown complexity: graph isomorphism and Ram-
sey theoretic numbers. Phd. thesis, Universität des Saarlandes, Saarbrücken, Ger-
many, 2009.

[104] Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics.
Cambridge University Press, 2003.

[105] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt. Weisfeiler-Lehman graph kernels. Journal of Machine
Learning Research, 12:2539–2561, 2011.

[106] Charles C. Sims. Computational methods in the study of permutation groups. In
Computational Problems in Abstract Algebra, pages 169–183. Pergamon, 1970.

[107] Stoicho D. Stoichev. New exact and heuristic algorithms for graph automorphism
group and graph isomorphism. ACM J. Exp. Algorithmics, 24(1):1.15:1–1.15:27,
2019.

[108] Greg Tener. Attacks On Difficult Instances Of Graph Isomorphism: Sequential And
Parallel Algorithms. PhD thesis, University of Central Florida, 2010.

[109] Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.

198

https://satcompetition.github.io/2021/

List of Figures

1.1 A model graph for a Boolean formula. 3
1.2 Performance of state-of-the-art practical graph isomorphism solvers on se-

lect benchmark families. 5

2.1 Finer, coarser, and incomparable vertex colorings. 12
2.2 Isomorphic and non-isomorphic graphs. 13
2.3 Illustration of a small integer set data structure. 20
2.4 Illustration of a sparse graph data structure. 21
2.5 Illustration of individualization and refinement on a 5-cycle. 27
2.6 Example of an IR tree. 28

3.1 Example exploration in the black box search tree model. 42
3.2 Monte Carlo strategy for IR tree traversal. 45
3.3 Las Vegas strategy for IR tree traversal. 52
3.4 A search tree from the classM3. 56
3.5 Forbidden structures in asymmetric binary IR trees. 62
3.6 The AND2 gadget and two variants of directional gadgets. 64
3.7 Two non-isomorphic asymmetry gadgets. 65
3.8 The two types of concealed edge gadgets. 65
3.9 True and fake edges of the selector tree used in IR tree characterization. . 67
3.10 Color nodes used in IR tree characterization. 67
3.11 Leaf detection mechanism used in IR tree characterization. 68
3.12 Symmetry coupling in selector tree of IR tree characterization. 70

4.1 Gadget constructions used in the online model for color refinement. . . . 90
4.2 A concealer gadget C3. 92
4.3 A concealer graph from the class G4. 92
4.4 Set cover reduction for offline worklist model in color refinement. 98

5.1 Preprocessor/main solver and user/preprocessor interfaces for symmetry
detection. 112

5.2 Reducible degree 2 patterns. 123
5.3 Example for degree 2 “densification” strategy. 128

6.1 Relation between DFS, BFS, random search, and the Schreier structure. . 132
6.2 Illustration of non-uniform pruning in IR trees. 141
6.3 Pruning using trace deviation sets in IR trees. 143

7.1 Comparing state-of-the-art solvers to dejavu on individual graphs. . . . 166
7.2 Benchmark results for the graph class ag. 167
7.3 Benchmark results for the graph class cfixl. 167

199

List of Figures

7.4 Benchmark results for the graph class chh. 167
7.5 Benchmark results for the graph class cmz. 168
7.6 Benchmark results for the graph class combinatorial. 168
7.7 Benchmark results for the graph class dac. 168
7.8 Benchmark results for the graph class dy. 169
7.9 Benchmark results for the graph class f-lex. 169
7.10 Benchmark results for the graph class grid. 169
7.11 Benchmark results for the graph class grid-w. 170
7.12 Benchmark results for the graph class groups128. 170
7.13 Benchmark results for the graph class had. 170
7.14 Benchmark results for the graph class had-sw. 171
7.15 Benchmark results for the graph class hypercubes. 171
7.16 Benchmark results for the graph class internet. 171
7.17 Benchmark results for the graph class ispd. 172
7.18 Benchmark results for the graph class k. 172
7.19 Benchmark results for the graph class kef. 172
7.20 Benchmark results for the graph class latin. 173
7.21 Benchmark results for the graph class latin-sw. 173
7.22 Benchmark results for the graph class lattice. 173
7.23 Benchmark results for the graph class mip17. 174
7.24 Benchmark results for the graph class multipedes. 174
7.25 Benchmark results for the graph class mz. 174
7.26 Benchmark results for the graph class mz-aug. 175
7.27 Benchmark results for the graph class mz-aug2. 175
7.28 Benchmark results for the graph class pace23. 175
7.29 Benchmark results for the graph class paley. 176
7.30 Benchmark results for the graph class pg. 176
7.31 Benchmark results for the graph class pp. 176
7.32 Benchmark results for the graph class ran2. 177
7.33 Benchmark results for the graph class ran10. 177
7.34 Benchmark results for the graph class ransq. 177
7.35 Benchmark results for the graph class rantree. 178
7.36 Benchmark results for the graph class ranreg. 178
7.37 Benchmark results for the graph class rnd-3-reg. 178
7.38 Benchmark results for the graph class sat21. 179
7.39 Benchmark results for the graph class states. 179
7.40 Benchmark results for the graph class sts. 179
7.41 Benchmark results for the graph class sts-sw. 180
7.42 Benchmark results for the graph class tnn. 180
7.43 Benchmark results for the graph class tran. 180
7.44 Benchmark results for the graph class triang. 181
7.45 Benchmark results for the graph class usr. 181
7.46 State-of-the-art solvers versus themselves using the dejavu preprocessor. 183

200

List of Algorithms

1 Sifting an element into a Schreier structure. 17
2 Check whether permutation is automorphism of a graph. 24
3 Compute orbits given a generating set. 26

4 Random walk in a black box search tree. 44
5 Probabilistic bidirectional search in black box search trees. 46
6 Breadth-first search: computing a subtree of a given black box search tree. 51
7 Bidirectional search based on a given split. 52

9 The color refinement algorithm. 83
10 Refine with respect to a given color class. 84
11 Rearrange and split a color class. 85
12 Rearrange and split color class . 85
13 Corresponding color refinement for an online strategy. 88
14 Split color class with respect to singleton color class. 100
15 Rearrange and split color class for singleton split routine. 101
16 Dense version of color class split. 103
17 Very dense version of color class split. 104
18 Individualize a vertex. 105
19 Reverse a color refinement. 107

20 Lift a permutation. 117
21 Preprocess degree 0 vertices. 118
22 Preprocess degree 1 vertices. 122

23 Pseudocode for dejavu. 134
24 Random walk of an IR tree. 136
25 Monte Carlo strategy for automorphism group computation. 137
26 Depth-first search for automorphism group computation. 148
27 Recursion for automorphisms in depth-first search. 149
28 A thread-safe sifting algorithm. 158

201

List of Tables

3.1 Summary of upper and lower bounds in the theoretical traversal model for
IR algorithms. 40

7.1 Benchmark results comparing dejavu versus state-of-the-art solvers. . . 164

203

Academic Curriculum Vitae

2013-2014 DHBW Mannheim

2014-2017 TU Kaiserslautern
Bachelor of Science, Computer Science

2017-2019 TU Kaiserslautern
Master of Science, Computer Science

2019-2021 TU Kaiserslautern
PhD Student, Supervisor: Pascal Schweitzer

2021-2024 TU Darmstadt
PhD Student, Supervisor: Pascal Schweitzer

205

	Introduction
	Motivation
	Contributions
	Structure of this Thesis

	Preliminaries and Related Work
	Graphs and Groups
	Graphs
	Isomorphisms and Automorphisms
	Permutation Groups and Schreier-Sims

	Algorithms and Data Structures
	Sets, Lists, and Arrays
	Sparse Graphs
	Sparse Symmetries
	Vertex Colorings
	Testing Automorphisms
	Efficient Orbit Algorithm

	Individualization-Refinement
	Refinement
	Selectors
	IR Tree
	Pruning with Invariants and Automorphisms
	IR, Isomorphisms, and Canonical Labeling

	Existing Solvers and their Strategies
	nauty
	saucy
	bliss
	Traces
	Other Algorithms

	Search Tree Traversal
	A Model for Search Tree Traversal
	Exploration Model
	Isomorphism Invariance
	Isomorphism Exploration Problem

	Upper Bounds
	Monte Carlo Traversal
	Las Vegas Traversal

	Lower Bounds
	Randomized Lower Bound
	Deterministic Lower Bound

	Monte Carlo, Las Vegas, and Traces
	Characterization of IR Trees
	Necessary Conditions for IR Trees
	Gadgets for Construction
	Construction for Asymmetric Trees
	Construction with Symmetries
	Necessary Conditions are Sufficient

	Color Refinement
	Efficient Color Refinement
	Worklist Order
	Online Model
	Graph Gadgets
	Competitive Ratio in Online Model
	Competitive Ratio in Offline Model

	Split Algorithms
	Singleton Split
	Dense Split
	Very Dense Split

	Various Optimizations in the IR Context
	Individualization
	Early Out Opportunities
	Reversible Refinement
	Canonical and Non-Canonical Refinement
	Matched Vertex Colorings
	Small Graphs

	Preprocessing
	Interface and Conceptual Principles
	Framework for Reductions
	Automorphism-Preserving Reductions
	Color Refinement and Discrete Vertices
	Quotient Graph Flips

	Lifts based on Vertices
	Degree 0
	Twins
	Degree 1
	Degree 2 with Unique Endpoints

	Lifts based on Edges
	Degree 2 and Edge Flips
	Degree 2 Densification

	Further Techniques
	Non-uniform Components
	Probing

	High-level Algorithm of the Preprocessor

	The dejavu Algorithm
	Design Principles of the Solver
	Random Search and Breadth-First Search
	Monte Carlo Algorithm for Symmetry Detection
	Breadth-first Search with Trace Deviation
	Choosing between Monte Carlo and Breadth-first Search

	Random Search and Depth-first Search
	Limited Depth-First Search
	Monte Carlo Algorithm and Schreier-Sims, Revisited

	Restarts and Strategy Sampling
	Cell Selectors
	Restarts

	Inprocessing
	Simplify using Automorphisms
	Simplify using Breadth-First Tree
	Simplify using Shallow Search

	Parallelization
	Random Search and Sifting
	Breadth-First Search
	To parallelize, or not to parallelize?

	Benchmarks
	Graph Library
	Graph Classes from the nauty/Traces Collection
	Additional Graph Classes

	dejavu versus State-of-the-Art
	Preprocessing

	Conclusions and Outlook
	Conclusions
	Future Work

	Bibliography
	List of Figures
	List of Algorithms
	List of Tables

