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Surface Spectroscopic Characterization of Graphene Oxide 

When the method for synthesizing Graphene Oxide (GO) described in the experimental section 

is applied, various carbon-oxygen surface species are obtained. For the spectroscopic 

identification of these groups FTIR and XP spectroscopy were employed (see Figure S1).  

The IR transmission spectrum in Figure S1 a) shows bands at 1730, 1625, 1225, 1065, and 985 

cm-1. The bands at 1730 and 1625 cm-1 can be assigned to C=O stretching vibrations of carbonyl 

and carboxyl groups, as found in esters and lactones, and C=C vibrations originating from the 

sp2 carbon framework of the GO, respectively.1,2,3-5 Explicit assignment of the bands at 

wavenumbers below 1500 cm-1 is more complex since in this region stretching and 

deformational vibrations of hydroxyl, carbonyl, carboxyl, ether, and epoxy groups overlap.1,2,3-

5 The sharp feature at 1384 cm-1 may arise from traces of KNO3 in the KBr used to record the 

background spectrum.6,7  

As shown in Figure S1 b), C 1s photoemissions were observed at binding energies between 284 

and 290 eV. A detailed peak-fit analysis reveals contributions at binding energies of 284, 286, 

288, and 290 eV, which can be assigned to carbon originating from aliphatic sp2, hydroxyl, 

carbonyl, and carboxyl species, respectively.1,2 An atomic ratio O:C of 0.4 was derived from 

the peak areas, considering the relative sensitivity factors given in Table 2. Besides, traces of 

sulfur (1.2 at.-%) and nitrogen (1.8 at.-%) were detected. 

 

 

 



3 
 

 

Figure S1. Spectroscopic characterization of carbon-oxygen species serving as functional 

groups on the surface of multilayered GO using a) FTIR and b) XPS. In b) the results of a peak-

fit analysis are also shown. For details see text. 
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