## **Supporting Information**

## Rational Design of Mesoporous CuO-CeO<sub>2</sub> Catalysts for NH<sub>3</sub>-SCR Applications Guided by Multiple *In Situ* Spectroscopies

Jun Shen<sup>1</sup>, Stefan Lauterbach,<sup>2</sup> Christian Hess<sup>1\*</sup>

<sup>1</sup>Eduard Zintl Institute of Inorganic and Physical Chemistry, TU Darmstadt, Alarich-Weiss-Str. 8,

64287 Darmstadt, Germany

<sup>2</sup>Institut für Angewandte Geowissenschaften, TU Darmstadt, Schnittspahnstraße. 9, 64287 Darmstadt,

Germany

\*email: christian.hess@tu-darmstadt.de

This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © 2022 The Authors. Published by American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/ acsami.2c13367



**Figure S1**. (a) N<sub>2</sub> adsorption/desorption isotherms, and (b) NLDFT pore size distributions of tfSBA-CuO and asSBA-CuO. The N<sub>2</sub> adsorption/desorption experiments were carried out at 77 K using on an Autosorb-3B (Quantachrome Instruments, USA) device.



**Figure S2**. Temperature-dependent  $NH_3$  SCR performance for the synthesized samples: (a)  $NO_x$  conversion, (b)  $N_2$  selectivity.



**Figure S3**. *In situ* detection of the exhaust gas during NH<sub>3</sub>-SCR reaction of (a) tfSBA-CeCuO, (b) asSBA-CeCuO. The temperature was increased stepwise from 25°C to 500°C. The feed consisted of 500 ppm NH<sub>3</sub>, 500 ppm NO, and 5% O<sub>2</sub> (balanced with N<sub>2</sub>) at a total flow rate of 50 NmL/min (GHSV = 60,000 h<sup>-1</sup>).



**Figure S4**. (a) TGA profiles of asSBA-15, bare cerium nitrate and bare copper nitrate, (b) DTG profiles of tf/asSBA-CeO<sub>2</sub>, tf/asSBA-CuO, and tf/asSBA-CeCuO during heating to 500 °C in air or inert N<sub>2</sub> (heating rate: 1.5 °C/min).



**Figure S5**. Online IR detection of the exhaust gases during air calcination of the precursor samples (a) tfSBA-CeO<sub>2</sub>, (b) asSBA-CeO<sub>2</sub>. The temperature was raised from 25 °C to 500 °C at a heating rate of 1.5 °C/min.



**Figure S6**. Calculation of band gap energies based on the *in situ* DR UV-vis spectra shown in Figure 8 by applying Tauc's method. (a) tfSBA-CeCuO and (b) asSBA-CeCuO.